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Abstract

Tlhe formmilation and implementation of a {ar field boundary condition (FFBC model
for compressible flows s reported in this thesis. This FFBC model. developed for
anast-one-dimensional and two-dimensional flows. aims to permit a substantial re-
duction of the computational domain, leading to a considerable improvement in the
computational efficiency. The present FFBC approach uses asympiotic expansions
of the Riemann vaniables. which are truncated up to the required degree of accu-
racy. Then. the far field perturbation equations are integrated in time and applied in
conjunction with the solution calculated within the computational domain. The prop-
agating iwnformation from the computational domain is determined along the outgoing
characteristic fronts. based on the estimation of the wave front orientation.

The proposed FFBC model is implemented in conjunction with an implicit finite-
difference flow field solver using an alternating direction implicit (ADI) scheme for
solving the Euler equations. The discretized form of the governing equations are
solved using a time-marching technique until the steady-state solution is reached. An
accurate procedure for the solid boundary treatment was also used.

The proposed FFBC model was used for solving tvpical problems of confined
and external compressible flows in subsonic and transonic regimes. For the transenic
regimne, the proposed FFBC model has been extended for the case of non-isentropic
outgoing flows, which appear behind the shock waves. The solutions obtained are
compared with previous theoretical and numerical results. This comparison shows
that the proposed FFBC model can generate accurate solutions using a substantially
rediced computational domain, which reduces by an order of magnitude the size of the
block tridiagonal matrices to be inverted. This leads to a corresponding improvement

in the overall computational efficiency.
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Résumé

Cette these presénte le developpment d7 un nouvean modele de traitement
numerique des conditions limites eloignées (CLE) pour les éconlements adrodynamiques
compressibles.  Ce modele améliord des CLE vise & permettre une réduction sub.
stantielle du domaine de calcul, dans le but d’obtenir une meilleure efficacité de cal-
cul numérique. Cette méthode utilise un développement asyvmptotique des variables
de Riemann, tronqué au niveau de précision désiré. Ces équations de perturbation
sont intégrées dans le temps et utilisées conjointement avec la solution obtenue &
U'intérieur du domaine numérique. La propagation de Uinformation a partir Ju do-
maine numérique est determinde le long des lignes caractéristiques de Uécoulement.

Ce modele pour les CLE est utilisé avec une méthode numénique de diffiérences
finies pour résoudre les équations d'Euler, basée sur un schéma implicite des directions
alternantes. Les équations discrétisces sont résolues par Iintégration dans le temps,
jusqu’a atteindre la solution stationnaire. Une méthode améliorée de traitement des
parois solides est aussi présentée.

Le modéle présenté dans cet ouvrage a été appliqué a la solution de problemes
d’écoulements internes ct externes typiques en régime subsonique ct transsonique.
Pour le régime transsonique, une extension du présent modele a été developée pour les
écoulements non-isentropiques, tel qu’ils se présentent en aval d'une onde de choe. Les
résultats fournis par ce modéle ont été comparés aux solutions exactes et numeriques
disponibles. Ces comparaisons démontrent que ce modéle est capable de produire
une solution précise dans un domaine numérique de dimensions réduites, réduisant de
fagon substanticlle la taille de la matrice-bloque tridiagonale a manipuler et aussi la

durée de calcul numérique.

m



A cknowledgement

My stneere gratitndes oo 1o iy supervisor Professor Do Mateesen for his as-
sintanee, criticism and initiztion of new ideas which were used 1n this Thesis. He
provided me an interesting and cheallenging field of study.

I would like to thank my parents for the faith they always had in me and their
continnons encouragement, bwant 1o thank my wife for her understanding. patience
and providing a 1idy environment at home during the lonely vears.

Thiatks are due to Dr. K. Mazaheri and Dr. S. Karni for the enlightening
discusstons,

The facilities. provided by the Mechanical Engineering network, McGill Univer-
sity, are highly appreciated.

I am zreathy indebied to the Ministry of Culture and Higher Education of Iran.

fur providing the Anancial support during the course of this work.

i



Contents

[ 5]

ADSract o o . oL L e e e e e e i
Résumé . . . .. . . .. it
Acknowledgemenis . . . .. L L L L L v
Contents . . v o v i i e e e e e e e e e e e viil
Listof Figures . . . . .. L. o oo o XX
Introduction 1
1.1 General considerations . . . . . . . . .t ittt i
1.2 An overview of far field boundary condition procedures . . . ... .. 6
I3 OutlineoftheThesis . . . .. .. .. ... ... . ... .. 10
Basic Features of Compressible Fluid Flow 13
2.1 Governing equations of rotational compressible flows .. .. .. ... 14
2.1.1 Conservative form of the Fuler equations . . . . . ... .. .. &
2.1.2 Primitive variable form of the Euler equations . . . . . .. .. 14
2.1.3 Characteristic form of the Euler equations . . . ... ... .. 15
2.2 Behavior of the Eulerequations . . . ... ... ... ......... 18
221 Onespacedimension . .. ... ........c.couu.... 18
222 Twospacedimensions . . ..........ueuvnununon 21
2.3 Compatibility relations for 2D Euler equations . . . . .. ... .. .. 23
Implicit Flow Field Solver and Solid Boundary Treatment 30
3.1 Implicit quasi-1D flow fleldsolver . . . . ... ... ... ....... 30
32 Implicit 2D flowfieldsolver . .. .. .. ... ... ... ........ 32



320 Generalized coordinate transformations . 0 0 0 0 L0 L 33
5.2.2 0 hplich time differencing . . . oL oL o000 o 0L 34
3280 Fluw vector linearization . . o o 0 0 o 0 o e e e e 33
324 Approximate factorization . ... Lo 0oL o 0oL 36
325 Implicit and explicit dissipation . . . . .o oL o000 36
330 Grid features © L L 0L e e e 33
3ob 0 Solid Wall Boundary Conditions . . . 0 . . 0. 0000000 39
3.1.1  Conventional solid boundary methods . . . . . . ... .. ... 39
3.4.2  Solid beundary conditions in finite-difference methods . . . . . 40
3.4.3 Charactenistic solid boundary conditions . . . . ... ..... 42
3.4.4 Effect of solid boundary treatment on the numerical solution . 44
353 Remarks . . . L . L L e e e e e e 45
Far Field Boundary Conditions for Quasi-One-Dimensional Flows 50
4.1 Introduction . . . . . L L e e e e e 30
4.1.1 Linear waveequation . . . . . . . . . . ... 31
4.1.2  First-order hyperbolicsystems . . . . .. .. ... .. ... .. 32
4.2 Conventional boundary condition methods . . . . . .. ... ... .. 54
4.3 Proposed FFBC formulation . . . . . . ... ... ... ... . ... 36
4.3.1 Equations used for isentropicflows . . ... .......... 36
4.3.2 Expanded Riemann variables approach . . . . . ... ... .. a7
4.4 Boundary condition development (isentropicflow) . . .. .. ... .. 39
+.4.1 Upstream farfieldregion . . . . .. ... ... .. ..... 60
44.2 Downstream far-fleldregion . .. ... ... ... ... ... 63
4.3 Outflow boundary conditions for non-isentropic flows . . .. ... .. 65
4.6 Model validation and numericalresults . . ... ... ... ...... 63

Far Field Boundary Conditions for Two-Dimensional Confined Flows 84

51 Imtroduction . . . . . . .. ... e e e e 84
T2 Conventional FFBC treatments . .. ... ............... 83

vi



. 52,1 Algebraic extrapolation methods L0 0 0000000000 N

53.2.2  One-dimensional characteristics approach . . . . . . . . . . .. X%

7.3 Proposed FFBC formulation for 2-D contined flows .~ 0 00 00 00 . st
5.3.1  Equations used for isentropic tlows . .. ... L St

5.3.2  Expanded Riemann variables zpproach .. . . . 00000 NN

54 Boundary condition development (isentropic tlow) . . . . . . ... w2
54.1 Upstream far-fleld region . . . . . . .. ..o 0oL 03

5.4.2  Matching the far field and near field solutions . . . . . .. . w7

53.4.3 Downstream far-field region . . . ... ..o L0000 o

5.5 Discretization of far-field perturbation equations . . . . . . . ... .. 100
5.6 OQuiflow far-field boundary conditions for non-isentropic flows . . . . . 101
57 Numerical flow fleldsolver . . . . . ..o o000 oL 1041

5.8 Model validation and numerical results . . . . ... ..o 0oL Lo

6 Far Fleld Boundary Conditions for External Flows 126
. 6.1 Imtroduction . . . . . . . . . . 126
6.2 Conventional far field boundary methods . . . . . .. ... ... ... 127
6.3 Boundary condition development . ... ... .. .. ... . ..... 128
6.3.1 Expanded Riemann variables approach . . .. ... ... ... 130

64 Inflow FFBformulation .. ... .. ... ... .. . ... . ... 132
6.5 Outflow FFB formulation . ... .... .. ... ... ... . ..., 133
6.6 Discretization of the far field equations . . .. .. ... .. ... ... 134
6.7 Nonm-isentropicoutflow FFBC . . .. .. ... ... .. ... .... 135

6.8 Model validation and discussion . . . . . ... ... ... ... 135

T Conclusions 152
7.1 Main Contributions of this Thests . . . . ... .. ... ..... ... 153
7.2 FutureExtensions . . . ... ... . .. e 135
References 156

vii



Appendices

Compatibility Equations for the 2D Euler Equations
Natural Coordinate Formulation of the Euler Equations
Entropy Based formulation of the Euler Equations
Riemann Variable Formulation of the Euler Equations
Kinematic Conditions for the Compressible Flows
Roe’s Estimation of the Outgoing Wave Direction
Characteristic Interpolation at Boundaries
Determination of the Separation Factor

Block-tridiagonal System of Equations

Vit

167



Nomenclature

Ordinary Symbols

a Speed of sound

A Conservative Jacobian martix. r-direction
A Primitive .Jacoblan martix. r-direction
ne Free-stream speed of sound

B Conservative Jacobian martix. y-direction
B Primitive Jacoblan martix. y-direction

c Constant

o Cy Specific heats at constant pressure and volume
C, Pressure coefficient

D Dissipation function

D Velocity of wave {ront

D Characteristic matrix

E Total energy

E Flux vector in z direction

f Function of surface front

F Flux vector in y direction

G Flux vector in = direction

H Area in quasi-one-dimensional flow

i Unit vector in Cartesian coordinates

I Identity matrix

in Unit vector, normal to streamline direction
is Unit vector, streamline direction

J Unit vector in Cartesian coordinates

J Jacobian of transformation

/4 Far field distance

L Length of computational domain

X



Left cigenvecior

Matrix of left elgenvectors

Masimum number of =eri elements

Local Mach number

Maximum number of grid roints in r-direction
Maximum number of grid points in y-direction
Normal to streamline direction

Normal vector

Pressure

Free-stream pressure

Total velocity value

Left-propagating Riemann variable
Asymptotic function

Asvmptotic function for external fiow

Right eigenvector

Right-propagating Riemann variable, gas constant
Matrix of right eigenvectors

Asymptotic function

Radius of curvature

Asvmptotic function, external flow
Streamwise coordinate

Entropy

Time

Temperature

x-velocity component

Contravariant velocity along £

Free-stream z-velocity component

y-velocity component

Contravariant velocity along 7



Y Velocity vegior

e z-velocity component
W Cotgervative vector
Loy z Cartestan coordinates

Greek Letters

a Constant

3 (Constant

g Ratio of specific heats

¢ Distance, in characteristic interpolation
A Forward difference operator

€ Perturbation function

[ (Y

Dissipation coefficient

] Generalized coordinate

0 Flow angle

8, Slope of FFB

? Constant in time discretization
A Eigenvalue

£ Generalized coordinate

n Constant, 3.1415

p Density

c Smoothing fuaction

T Time

o Wave front velocity

\Y Backward difference operator
T Characterisitc wave angle

|\ Dummy scalar function

@ Coefficient, internal fiow

Q)

Difference, R-Q



b

."UHJ]J

Cocflicient. external fow

Subscripts

Boundary

Computational

r-direction index. grid index
y-direction index. grid index
Counter

Free-stream

Time-level, normal direction
Cartesian coordinate directions

Perpendicular to boundary

Superscripts

Time-level, normal direction
Transpose

Generalized coordinate system

Note: ( ) represents the negative values in figures.

xii



List of Figures

3.1

3.3

3.4

4.1
4.2

4.3

...........

Propagation of Riemann variables on the time-like planes for time-
dependent 2D flows. . . . .. .. .. .. L L

Space-time diagram showing the propagation of characteristic front. a

particle path. and Mach cone in the (z,y.?) space

............

Characteristic wave propagations at a solid wall boundary along the

normal direction.

.............................

Grid configurations for the quasi-one-dimensional and two-dimensional

confined (circular arc) flows, extended and reduced domains for each

Grid configurations for external flow (NACAQOQ12 airfoil), extended and
reduced computatioanl domains. . . . . . . ... oL ..
Mach number distributions on the lower solid boundary, obtained with
characteristic and conventional (extrapolation) solid boundary treat-
ments, channel with circular-arc 10%. M, =0.5, CFL=2. .. .. ..

Convergence histories obtained by characterisitc and algebraic treat-

ments of solid boundary conditions, channel with circular are 10%.

Propagation of information for linear wave equation.

ooooooooo

Characteristic lines for supersonic flow at inflow and outflow boundaries. 5

Characteristic lines for subsonic flow at inflow and outflow boundaries.

xiii

24

47

48



Ay

411

4.13

414

4.15

Propanition of Riemann varizbies at inflow and outfiow boundaries, .

Ricimann variable propagations for one-dimensional fow at a boundary

Time evolution of the characteristic waves (Riemann varizbles) at «
houndary point for two consecutive time levels. . .. ... ... ...
Imerpolation along left-propagating characteristic line at the inflow
bBonndary, o . L e e e e e e
Inerpolation along characteristic line at the outflow boundary. . . . .
Eutropy propagation in the steady quasi-one-dimensional flow. . . . .

Characteristic lines propagation for non-isentropie flow at outfiow bound-

Subsonic low: Mach number distributions for extended computational
domain (conventional FFBC treatment) and reduced computational
domain (conventional FFBC treatment). M = 0.6. CFL=1.8, circular
are 100G, .« o o L e e e e e e e e e e e e
Subsonic flow: Mach number distributions for extended computational

domain (conventional FFBC treatment) and reduced computational

domain (proposed FFBC model}. M, = 0.6, CFL=1.8, circular arc 10%.

A comparison of Mach number distributions in four cases: (enlarged
view) a) Reduced computational domain (proposed FFBC model). b)
Exact solution. ¢} Extended computational domain (conventional FFBC
treatment). d) Reduced computational domain (conventional FFBC
treatment). My, = 0.6, CFL=1.8, circular arc 10%. ... ... .. ..
Subsonic flow: Mach number distributions within a reduced computa-
tional domain, resulted by applyving the first- and second-order FFBCs
i comparison with the exact solution. M, = 0.6, CFL=1.8. . .. ..
Transonic flow: Effect of the conventional outflow boundary conditions
on Mach number distributions obtained by a fixed inflow condition and

outflow methodsof Eidelman . . . .. ... ... .. .. .......

D

it
.

60

61
64
66

(=21
[V

1
(V]

3

-



'
12
—

Ly

Ao
—
=1

1.19

4.20

4.21

Transonic flow: Effect of the conventional outflow boundary conditious
on pressure distributions obtained by a fixed milow condition and vut-

fow methods of Eidelman

Non-isentropic How: Mach number distributions tor extendaed compu-
tational domain (conventional FFBC treatment). exact solution, re-
duced computational domain (conventional FFBC treatiment), M =

0.7.ps = pe. CFL=0.9

Non-isentropic flow: Pressure distributions for extended computational
domain (conventional FFBC treatment). exact solution and reduced
computational domain (convenuional FFBC treatment). Mo =0.7.ps =
P CFI=0.9, . . . o e
Non-isentropic flow: Mach number distributions with exact solution
and solution with the proposed FFBC model (reduced computational
domain). . ... .. .. ...,
Non-isentropic flow: Pressure distributions with exact solution and
solution with the proposed FFBC model (reduced computational do-
main). Mee =07, . . 0 oL e e
Isentropic flow: Convergence histories for extended computational do-
main (conventional FFBC treatment), reduced computational domain
(conventional FFBC treatment) and reduced computational domain
(proposed FFBC model), CFL=1.8. . . . . .. .. .. e e
Non-isentropic flow: Convergence histories for extended computational

domain (conventional FFBC treatment) and reduced computational

domain ( proposed FFBC model), CFL=0.9

Propagation of Riemann variables at inflow and outflow portions for

time-dependent two dimensional flows in a certain time level

Projections of Riemann variables at FFB of two-dimensional flow at a

certain timestep. . . . ... ... .. ..

@ = 4 % & = + 8 & 2 = 4 » = =

A

9

83

88

89



-~

A1

[ ]

13

ot

Far ficld regious, extended and reduced domains for confined flow. . .
Propagation of the outgoing wave fronts with different orientations to-
wards an inflow boundary ina 2D setup, . .. o oL L0000
Oblique FFB with respect to Cartesian coordinates. . . . . . . .. ..
Propagation of left-propagating Riemann variable at inflow boundary

along the calculated bicharacteristic for time-dependent two dimen-

Propagations of the Riemann variables and entropy at a certain time-
level for the two consecutive boundary points. . . . . .. . ... ...
Interpolation stencil for wall values. . . . . .. . ... ... o L.
Comparison of upper and lower Mach numbers distributions for channel

with circular arc 10%. obtained by conventional FFBC treatments for

the extended and reduced computational domains. M = 0.5, CFL=3.

Comparison of upper and lower pressure distributions for the extended
and reduced computational domains obtained by conventional FFBC
treatment. M, =05, CFL=3. . .. ... .. ... . . . ...
Comparison of upper and lower Mach numbers for a) Extended com-
putational domain, conventional FFBC treatment. b) Reduced compu-
tational domain, proposed FFBC model. M, = 0.5, CFL=3. . . . . .
Comparisons of upper and lower pressures between the extended com-
putational domain (conventional FFBC reatment) and reduced com-
putational domain (proposed FFBC model). My = 0.5, CFL=3. . . .
Comparisons of upper and lower wall Mach number distributions for
the extended computational domain solutien of Ni . . . .. ... ..
Convergence histories of extended and reduced computational domains,
circular arc 10%. M, =05, CFL=3. .................
Mach number distributions for extended and reduced computational
domains, channel with circular are (10%), conventional FFBC treat-

ments for both cases. M, =0.675,CFL=04. .............

xvi

96

109

110

111

113

114



wit
.

o
f)

6.1

6.2
6.3

6.4

Mach number distribution for extended computational domain and the

solution obtained by Ni

T Mach number distribution for reduced computational domain with pro-

poused FFBC model and the solution obtained by Ni

Convegence histories for the extended and reduced computational do-
mains. effect of the proposed FFB(C model. circular are 108, M =
0.673. CFL=0.4.. . . . . . . e
Mach number contours for the subsonic flow. circular arc 10%. M =
0.5. CFL=3. . . . . e e e
Mach number contours for the transonic flow, circular are 0%, M, =
0.675. CFL=0.4.

.............................

Mach number profiles at different longitudinal stations of the compu-

1w

17

11y

LY

tational domain. subsonic flow, circular are 10%. M. = 0.5, CFL=2.2. 120

Propagation direction of the wave fronts during the time-integration
process at an inflow FFB, confined flow with reduced computational
domain. circular arc 10%. M, =05 CFL=2. . ... ... ......
Propagation direction of the wave fronts during the time-integration

process at an outflow FFB, confined flow with reduced computational

domain, circular arc 10%. M, = 0.5, CFL=2.

.............

Propagations of the Riemann variables and entropy waves at the FFB

of the external flow

.............................

Inflow and outflow parts of the FFB at a certain time level

Propagations of the outgoing waves at horizontal outflow and inflow

FFBs.

...................................

Extended and reduced domain configurations for solving the external

fiow problem.

-------------------------------

xvii

133



£y.5)

.0

6.7

6.9

6.10

G.11

6.12

6.13

6.14

Mach number distributions for extended and reduced computational
dumains obtained by conventional FFBC method. NACA 0012 airfoil.
M. =06, CFL=2220 00000 0 e
Pressure cocefficient comparisons for extended and reduceé computa-
tional domains with conventional FFBC treatments. NACA 0012 air-
foil. Mo =06.CFL=22. .. ... .. ... ... . ... .. ...
Mach numbers obtained from extended computational domain (conven-
tional FFBC method) and reduced computational domain (proposed
FFBC model). NACA 0012 airfoil. M, =0.6. CFL=2.2. .. ... ..
Pressure coefficient comparisons of the reduced computational domain
with the solution of Jameson . . . .. .. ... ... . ... ...
Convergence hisiory for NACA 0012 airfoil, extended computational
domain. Mo, =06, CFL=2.2, . . .. .. . ... .. .. .. ...,
Convergence history for NACA 0012 airfoil, reduced computational do-
main. M., =06, CFL=22. . . . . . ... . . . e
Transonic flow: Mach number comparisons of extended and reduced
computational domains using conventional FFBCs. NACA 0012 airfoil.
Mew=08, CFL=04. . . . .. . i i it e
Transonic flow: Mach number comparisons of extended computational
domain, NACA 0012 airfoil, CFL=0.4, Jameson et al solution

Transonic flow: Mach number comparisons of extended computational
domain {with conventional FFBC treatments) and reduced computa-
tional domain with the proposed FFBC model. M, = 0.8, CFL=0.4,
zeroincidence. . . . . .o i L e e e e e e e e e e e
Transonic fiow: Pressure coefficient comparisons of extended computa-
tional domain (conventional FFBC treatments) and reduced computa-
tional domain (conventional FFBC treatments). My = 0.8, CFL=0.4,

zero incidence. . . . . . .. e e e e e e e e e e e e e e e e e e e e e .

xvii

139

140

141

142

143

143

144

145

146



6.15

6.16

6,17

6.19

6.20

B.1

F.l

G.1

Transonic flow: Pressure coefficient comparisons of exiended computa-
tional domain (conventional FFBC treatment) and reduced compuia.
tional domain with the proposed FFBC model. M. = 0.3, CFL=0.4,

zero incidence

Transonic flow: Pressure coefficient comparisons of reduced computa-
tional domain {proposed FFBC model) with Jameson et ol . . . ..
Convergence history for NACA 0012 airfuil. extended computational
domain, Mo =03.CFL=04. .. .. .. .. e e e e e e e e
Convergence history for NACA 0012 airfoil. reduced computational do-
main. M =03 CFL=0.4. . .. .. ... .. .. . ... . ...
Iso-Mach lines for subsonic flow over NACA 0012 airfoil. zero incidence.
Mo =006, . . o e
Iso-Mach lines for transonic flow over NACA 0012 airfoil. zero inci-

dence, Moo = 0.8, . . . . o L . i e e

Cartesian and Natural coordinates.

-------------------

Geometry of two-dimensional bicharacteristics

..............

Grid points near to the boundary in (z, 1) space and their correspondent

characteristic lines.

----------------------------

Interpolating for the left-propagating characteristic slope. . . . . . ..

Comparison of the slopes for left-propagating Rieman variables in order

to find the suitable grid points for interpolation

.............

xix

L1

150

150

G-2

G-3



Chapter 1

Introduction

1.1 General considerations

Most of the aerodynamic problems of interest are not completely naturally bounded by
physical boundaries. as in the case of the flows past «wings and aircraft configurations,
or that of the flows through channels with open extremities, with maoy applications
in various engineering problems.

In such cases, the flow domain has 1o be delimited by introducing artificial inflow
and outflow boundaries which enclose the fluid-flow field of interest. These artificial
boundaries may also be used to reduce the size of the computational domain and thus
to increase the overal computational efficiency. Far field boundaries (FFBs) are made
by introducing artificial partitions within the flow domain. Generally two kinds of
boundaries are encountered in the computational fluid dvnamics (CFD) calculations,
namely far field {open) boundaries and solid ones. With respect to the flow direction
crossing the boundary, the FFBs can be grouped into inflow and oviflow boundaries.
The computational treatment of FFBs is of importance because during the numerical
calculations, disturbances are generated inside the computational domain and then
propagate back and forth between the domain boundaries. When the steady-state
solutions are sought this process is repeated until the disturbances decay and fall

into the specified error band. In the conventional numerical treatment, the open



boundaries have 10 be situated at an appreciable distance from the source of the
disturbances {101. 102, 149}, These large distances should be tilled cither with o very
large number of grid points in the far tield region where the How variatious are ofien
unimportant. or with large grid sizes having reduced accuracy. When one atiempts 1o
locate the FFBs close to the domain of interest. an improved FFB model is required.
The inflow and outflow boundary conditions {BCs) are ilso important for wind-tunnel
simulations. because wind-tunnel fows are basically channel flows and are sensitive
to far field conditions {62].

The far field boundary conditions (FFBCs) have substantial effect in the com-
putation of internal and external aerodvnamic flows. In the internal tiows. these
boundaries are inherently separated into inflow and outflow parts. whilst in the exter-
nal flows, depending on the type of grid used and on the solid boundary position the
inflow and outflow FFB ports are not distinguished as clearly as in the internal flow
cases. A defective FFB treatment can destroy the stability. accuracy and convergence
of a reliable numerical scheme. On the other hand, consistent FFBC modelling re-
sults in increased accuracy, reduced number of grid points (minimized computational
domain) and also faster convergence.

Most of the aerodynamic flows are governed by time-dependent Euler equa-
tions. which are always hyperbolic in time. For hyperbolic systems, the method of
characteristics forms the foundation of boundary condition analysis. For far-field and
solid boundary modelling the equivalent characteristic equations are needed in order
to figure out the number and directions of disturbances propagating to or from the
boundaries. Most of the numerical simulations, based on the method of characteris-
tics for the inflow and outflow boundary conditions, assume a certain degree of flow
uniformity at these boundaries, which have thus to be situated far from the nonlinear
flow region. The flow regime plays an important role in the FFBC modelling of com-
pressible flows. Based on the theory of characteristics [99, 98], for supersonic flows
crossing the FFBs, information propagates from upstream towards the boundary. Es-

pecial attention is required when solving the subsonic and transonic flows, where the
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disturbanees cross the boundaries in different directions. At an inflow boundary there
ares twn waves propagatine from the far field region to the computational domain.
and one wave propagating from the computational domain towards this boundary.
At an outlow boundary there exist two waves propagating from the computational
domain and crossing this outlet port, and one wave comes from the downstream far
field resion. The inflow far field boundary condition (FFBC) is valid even if there is
entropy production downstream of the boundary within the computational domain.
For non-isentropic flows only downstream boundary conditions are required.

[t is generally believed that boundary condition formulations consistent with the
characteristic directions of propagation lead to stable and accurate solutions [37, 101.
102, 119, 142]. During the convergence process the numerical (residual) and acoustic
waves start to travel between boundaries of the computational domain, until they
decay [7. 73, 101, 102). Inappropriate solid and far field boundary treatments cannot
either absorb or transmit this kind of disturbances. thus it causes reflections from the
boundaries back into the computational domain which consequently creates stability
problems aud may lead to inaccurate solutions.

For quasi-one-dimensional flows the characteristic paths are figured out without
ambiguity, while in multi-dimensional fows finding the directions of propagations is
not an easy task. However, the FFBCs are modelled based on the propagation of the
characteristic fronts. In this case the normal component of the flow velocity to the
boundary has been used in the past [61, 68, 134, 116]. In this thesis, it is shown that
other than normal directions may be selected in applying the characteristics relations.

For internal flows the inflow and outflow FFBs are usually taken to be perpen-
dicular to the free-stream velocity direction. On the other hand, in external flows the
FFB configuration is dependent on the grid topology.

Not only the Euler equations govern the flow field, but also they describe the
propagation of disturbances which travel between the boundaries of the computa-
tional domain. These disturbances carrv the pressure, density or velocity differences.

For ow problems governed by hyperbolic equations, boundary condition formulation



should be consistent with the directions of these propagations.

The FFBCs are exposed to two kinds of information. vne from outside of the
computational domain (far field region) and the other from its instde. Onigoing
information is supplied by the numerical scheme used for solving the ow ficld. Ap-
propriate far field modelling is needed for both tvpes of propagations in terms of
physical conditiens and mathematical considerations.

Depending on the flow fleld the disturbances ca.. o one or multidimensional,
Analytically. 1D disturbances should maintain a constant profile as they propagate.
However. they dissipate in numerical simulations or when interacting with a boundary
or 2 shock wave. In contrast. two-dimensional (2D) disturbances decay as they move
away from the center of disturbance and tend to zero strength as they approach to far
distances. Anv disturbance produced within the subsonic flow feld would propagate
and interact with the information coming from the far field regions. In mathemat-
ical expression there exist one characteristic which is alwavs directed towards the
upstream. Now if the boundary is inflow the disturbances coming from the computa-
tional domain interact with the downstream-propagating waves. As well the outflow
FFB would be influenced by the upstream-propagating waves from the far field region.

At a solid boundary the characteristic waves can only propagate from the com-
putational domain towards this boundary. Various types of solid boundary treatments
have been suggested in the past [68, 113, 124, 144].

The number of flow variables that can be specified at a FFB is dependent on the
propagation properties of the system and in particular on the information propagated
from the boundary towards the flow region.

Since each characteristic direction can be considered as transporting a given
information, expressed as a combination of conservative or primitive flow variables,
the quantities transported from the inside of the computational domain towards the
far field or solid boundary will influence the situation along these boundaries.

The propagation properties in a one-dimensional (1D) flow are expressed in

a straightforward way by characteristic variables, or equivalently by the Riemann



wattahiles,

Heonwever, in muitidimensional Hows there exist various directions for disturbauce
propasations. In the following chapters, it is shown that similar 1o one-dimensional
case the Riemann variables can be extracted and used in a straightforward manner
for the 2D Bows, A streamline coordinate system makes an accepiable justification of
the propagations of Riemann variables in 2D flows.

Any FFBC model should finally be matched to the fiow field solver. This neces-
sitates an overview of the existig Euler solvers. Generally. one can divide the existing
alsorithms into explicit and implicit with respect to time. The main advantage of
explicii methods lies in their simplicity. The stability of these schemes can be checked
by modal a2nalysis (see [49. 78. 99]). When one has 2 complicated grid structure. it
ix almost imperative to use an explicit method [4]. The major disadvantage of ex-
plieit schemes lies in the time-step restrictions dictated by the Courant number (CFL
fimit). in which the numerical domain of dependence must contain the physical do-
main of dependence for hyperbolic equations. This limits the size of the time-step used
for time-integration and results in slow convergence rates whenever small and non-
uniform grids are required. For hyperbolic systems, the Courant number obtained for
simple equation is used as stability criterion. When the aim is to obtain steady-state
solutions then it is desirable to take large time steps in order to reach the steady-state
as fast as possible. In the light of these observations, there has been increased interest
in implicit schemes in recent vears [11, 23, 83, 85. 115, 136, 159, 163]. The choice of
boundary models can affect the stability of the implicit schemes [12, 137)].

From spatial discretization point of view, the schemes can be grouped into cen-
tral differncing and upwind differencing. One of the main advantages of the upwind
differencing is that they do not usually need artificially added dissipation, but they
have a reduced accuracy [32, 122]. The central difference schemes have been success-
fullv developed as practical tools for aerodynamic problems by Jameson [68, 134, 69]
and Pulliam [115, 116]. Recently, central differencing methods have been developed,

which are implemented without adding the dissipation terms [235, 84].



The major difficulty of upwind schemes is their generalization to the multidi-
mensional fows [82, 122]. Methods were developed to remedy this problem [120, 121,
122, 132]. However. most of the upwind methods are based on an application of a
one dimensional splitting (or decomposition) along some preferential directions which
purely depend on the construction of mesh.

For steady solutions the discretized equations are integrated in virtual time until
relaxing to stcady-state. An advantage of this procedure for the Euler cquations is
that they keep their hyperbolicity with respect to the time, hence they are applicable
to all flow regimes. During time-integration the effect of initial conditions is damped,

while any change in far field and solid boundary conditions can produce a new solution.

1.2 An overview of far field boundary condition

procedures

Many workers have been active in this area in the last ten years. but their works
have mainly been concerned with scalar partial differential equations (PDEs), with
only a couple of recent applications to the Euler equations in specific circumstances
[33, 45). In general, the preceding attempts in far ficld formulation consist of two
parts: analytical aspects and computational aspects. It is worthwhile to separate
the analytical and computational approaches which are mostly used in practical fluid
dvnamics problems.

The PDE is well-posed only when appropriate initial and boundary conditions
are appended to the differential equation. Numerical algorithms frequently require
additional data to supplement those supplied from the outside of the domain of in-
terest. This sometimes can be done by using one-sided schemes or spectral methods.
For most methods it is necessary to check the stability of the algorithm for the com-
bined IBVP. Different aspects of stability for hyperbolic equations are discussed in
(1,12, 49, 117, 139, 141]. An analysis of a finite-difference scheme is presented in [52].

For complicated schemes or systems of equations it is usually necessary to check the
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<tability conditions by nnnerical experiments [138]. For systems of egnations the sta-
bility of the boundary conditions depends on the specific systemn as well as the scheme,
For example. space extrapolation may be stable for the Lax-Wendroff method with
sealar equation but it need not be stable when used on a system [42].

An anziyiical investigation of {ar field conditions for less compressible flows is
piven in [28]. based on the asymptotic behavior of pressure and veiocity fields. The
approximations in the boundary conditions can infiuence the stability of the overall
scheme and have effects on the global accuracy of the numerical solutions [14. 49].

It was shown that if the numerical treatment is applied to the outgoing Riemann
variables then stability for the scalar equation implies stability for the svstem of
cquations {27, 411, A discussion of the well posedness for many of the linear cases
is presented in [108). Mostly mathematicians have tried to investigate the far field
behavior by using the model equations. which includes the features such as stability.
well-poseduess and reflection analysis. Basis for the analytical approach has been done
by Engquist and Majda (30, 31, 32]. They analysed the wave equation, which is not
of practical interest. There are also some other works in hyperbolic equations done
by mathematicians without direct application in CFD [32, 65. 130, 139, 141, 133].

Gustafsson and Kreiss [47) considered a hyperbolic system in (z,y,t) domain
and obtained nonlocal boundary conditions involving the Fourier coefficients.

Hedstrom [53] derived the linear and nonlinear forms of BCs for the Euler equa-
tions, using an eigenvector approach. Lindman [87] introduced a new concept by
cousidering projection operators in one dimension. This was generalized by Engquist
and Majda [30] to multidimensional wave equations by using pseudo-differential op-
erators. In general. one can construct nonreflecting boundary conditions only if one
knows something about the solution pear infinity [47]. An attempt to avoid the infin-
ity conditions was to map the exterior region into a bounded one. It was found that
there were reflections from the gradient of stertching [44]. In some circumstances the

mapping could deteriorate the accuracy of the numerical solution.

The FFBCs have been encountered in solving the problems of various fields, such
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as acoustics. geophysics. electromagnetics. Since. our concern here s the aerodyuamic
applications governed by the Euler equations. we limit the discussion to this tield.

A survey in the literature shows that the methods, numerical experience and
couclusions regarding the use of FFBCs have not been tully shared by rescarchers
of different areas. A symptom 1s the variety of names based on the property of
these boundaries were given such as nonreflecting. transmitting, absorbing and open
boundaries. Recently a review of boundary conditions using one-dimensional imethods
has been given in {1111,

Some authors used potential equation as the governing far field equation [35.
0. 106. 136]. For fully subsonic flows it would be no problem solving this equation at
far tield regions. However. it cannot be true for the non-isentropic flow cases where o
shock is present in the flow field. In this case the potential equation is not capable of
taking into account the entropy generation within the computational domain. From a
computational view it is not possible to extend outer delimiting boundary to infinity:
for example in turbomachinery flows. the FFBs are typically less than one chord away
from the blade [37).

An approach, based on the Riemann variales was given by Verhoff et al [148)-
[1531], which includes lots of analytical integrations, and many assumptions for per-
forming them. In this case, a defficiency is the boundary condition (BC) formula-
tion using the steady-state Euler equations, which are not hyperbolic for subsonic
and transonic Mach numbers. Another one is that the grids cannot be clustered
near the solid boundary by applying this method, for performing the inverse Fourier
transformations. A simple method was proposed by Jameson et al throughout their
works [68]-[70]. He used the 1D characteristic relations equations at boundaries of the
2D flows. With this type of boundary treatment the far field boundary should be at
least 15 chords away from the solid one with an O-type grid.

The approach of Bayliss and Turkel was first suggested for wave-like equations
{10] and then for elliptic systems {9]. It provided reduced reflections for the Navier-

Stokes equations [7, 8]. For steady-state problems they were used to accelerate the



copreraence 1260 12700 Bavliss and Turkel [T expressed the linearized Euler equa-
tions it ferins of pressure only. which was used as an outflow boundary condition.
An interesting choice results from the analysis of Bayvliss and Turkel. which has been
shown by Roe 1119, 120, 1217 to correspond to a direction making an angle with the
inctdent veloeily directions aligned with the r axis: however. he did not report numer-
teal results in this regard. The FFBCs based on Fourier transforms were developed
b Gustafsson (43, 46, 18, 50] and by Ferm [33]. in which the unsteady terms were
dropped and after Fourier transforms (applied to steady equations}. they were added.
this is also the case in the works done by Verhoff €t al [149]- [130]. By doing so the
svstem looses its hivperbolicity in the subsonic and transonic flow regimes.

Aun approach using the group velocity for travelling disturbances was given by
Trefethen {139. 141]. A few other computational attempis have been made based on
some sort of algebraic extrapolation procedures [24. 33, 36, S0, 129].

At a subsonic FFB, part of the information can be specified. The rest of the
information should be calculated using the numerical solution {41, 102]. When the
inflow is given by free-stream conditions, it is necessary to decide which of the known
quantities should be specified at the boundaries. Frequently, this can be done on
physical grounds. e.g. the total enthalpy or total temperature is constant; see [21, 83,
102. 104, 154] for some disagreement on this point.

It is noted that the outgoing disturbances can reflect from ali the domain bound-
aries, no matter they are solid or far field. The outflow boundary conditions arise in
man)y applications like external aerodynamics, acoustics [32], and geophysics {36, 23].
The purpose for outflow treatment is to allow the FFB to be close to the region of in-
terest. At the same time we demand that this boundary not reflects disturbance waves
that destroys the solution accuracy and the convergence. When the steady-state is of
importance. one wishes to choose the BCs to accelerate the convergence.

A way of absorbing the reflections of unwanted waves is to put some “sponge
layers™ at FFBs [67, 73, 74, 75]. However they are usually effective only for a narrow

bandwidth. Outside of the sponge laver, reflections of frequencies are again created by



aradients due to the sponge laver itself. For many problems the boundary conditions
at the body surfaces are the most crucial. According to theory 191 one cau use an
approximation that iz one order less accurate at the boundary than m the interior do-
main. However. in many problems the solutions in the neighborhood of the boundary
is the most important part of the solution. e.g. we wish to calculate the loading forces
on the boundary. Hence. the precise implementation of the solid boundary conditions
is important. In [129] a selection of boundary treatments is analyzed for stability
requirements. An alternative FFBC method is to use the 1D characteristic equations,
[n which the FFB is locally assumed to be one-dimensional [109]. The disadvantage
of this treatment is discussed in [101].

The extrapolation methods for solid boundary treatments are widely used {19,
68. 115, 124, 144]. They all are considered one dimensional treatments. Oue should
be aware that this can lead to incorrect solutions. Most of the proposed models for
treating the FFBCs have been used in conjuction with the explicit schemes {73. 119,
148]. Throughout the present work, the applicability of the proposed far field and
solid boundary models have been investigated using an implicit scheme. Usually,
for solving the fluid dynamic problems the implicit schemes are encountered with the
drastic sizes of matrix manipulations. It will be shown in the next chapters that when
an appropriate model for the FFBs is employed, the reduction in the grid size and
consequently memory requirements can be kept at minimum level, while maintaining

the accuracy of computations.

1.3 Outline of the Thesis

The main goal in this thesis is to investigate, formulate and implement a FFBC
model for solving the inviscid compressible flow problems within the subsonic and
transonic ranges. It is mainly based on the Riemann variables expansions and outgoing
information related to the first-order hyperbolic PDE systems.

The remainder of this thesis describes the development and application of the

10



proposed FFBC model for the quasi-one and two-dimensional internal and external
flesses,

Chapter 2 presents some key features and mathematical specifications of the
Euler equations. which recovers foundations for FFBC formulation. The Euler equa-
tions from the characieristics point of view are taken into account. Also a formulation
fur the characteristic compatibility equations of 2D time-dependent Euler equations
ts addressed. Based on these compatibility equations the direction of the outgoing
waves were approximated and used i the next chapters.

The formulations of finite-difference flow field solver are presenied in Chapter 3.
for both quasi-one- and two-dimensional compressible flows. A factored ADI scheme is
used for 2D flows, in which the block pentadiagonal coefficient matrix is decomposed
into two tridiagonal ones along the coordinate axes. The discretized equations are
integrated in the transient time until relaxing to the steady-state. A modified artificial
dissipation is also discussed. The numerical solid boundary treatment is discussed,
and a moudified method is presented, which is based on the combination of normal-
momentum equation and characteristic compatibility relations. It is shown that the
solid boundary treatment can affect the solution accuracy and convergence towards
steady-state.

The developed FFBC model for quasi-one-dimensional flows is discussed in chap-
ter 4. which is based on the Riemann variables expansions and interpolations along the
outgoing characteristic waves. Numerical solutions obtained by using the proposed
FFBC model are compared and validated against the available exact analytic solu-
tions. The results of the conventional FFBC treatments are also shown and compared
with the exact solutions.

The proposed FFBC model is extended for 2D confined compressible flows in
Chapter 5. The inflow and outflow FFBCs are determined from Riemann variables ex-
pansions and corresponding perturbation equations, in conjunction with the outgoing
information from the computational domain, calculated along the outgoing waves.

For computation of confined flow, the FFBC model is applied to a channe] with a

11



circular-are-bump. The model is validated by comparing the present solutions with
previous results obtained by different authors for the same geometry.

In Chapter 6 the proposed FFBC model is extended for external aerodynamic
flows. The corresponding perturbation equations are solved outside of the computa-
tional domain for achieving the far field values on the outer boundary. This equations
are used to reduce the size of the computational domain. while maintaining the ac-
curacy. The solutions generated by the proposed model are compared and validated
with available existing solutions for certain applications {NACA 0012 airfoil).

The conclusions and main contributions are presented in Chapter 7. which also

contains some suggestions for further extensions of this work.



Chapter 2

Basic Features of Compressible

Fluid Flow

This chapter presents the basic equations of compressible flows and elements of the
characteristics theory for the hvperbolic systems of equations. The behavior of the
time-dependent Euler equations in one and two space dimensions are overwieved.
Then characteristic compatibility relations were developed based on the orieniations
of the propagating wave fronts. It was shown that similar to the 1D flow, the compat-
ibility relations can be obtained for the 2D Euler equations. However in this case the
equations depend on the orientations (angle) of the propagating fronts. The domi-
nant propagation direction was approximately determined based on the compatibility
relations. The 2D characteristic compatibility relations and wave front orientation
will be used in the next chapters to calculate the information from the computational

domain.
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2.1 Governing equations of rotational compress-

ible flows

2.1.1 Conservative form of the Euler equations

The three-dimensional Euler equations can be written in conservation form as

6W GE oOF 0G
Sttt =0, (2.1)

ot 9z gy 0=
where the state vector W = [p,pu,pv,pw,pE]T, contains the density p, the three
velocity components u, v, w and the energy per unit mass £. The flux vectors E, F

and G are given by

pu pv pw
pul +p puv puw
E= puv . F=| p*+p |, G= pyw , {2.2)
puw pow pw* +p
(PE + p)u (pE + p)v (PE + pw

and the pressure is related to the state variables as

- 1 - ] 2 .
p=(y—1)pE — Z 5 plu+v +w®), = % (2.3)

Usually the conservative form is used as the flow field solver in shock capturing meth-

ods, while the primitive variable form is used in the boundary condition formulation.

2.1.2 Primitive variable form of the Euler equations

The primitive variable approach forms the basis for the shock fitting schemes [27, 103]
and is also widely used in the boundary condition formulation {102, 104, 105, 137}. In

this case the Euler equations are expressed as

U -0U  -9U  -9U
_a_f.+A§;+Ba_y+C-é?=o’ (2.4)
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. where U = pouovcu.p)’ is the primitive variables vector and the Jacobians of the

primitive varnables are given by
v op 00 0 v 0 p 0 0 ]
0 uw 00 1/pg 0 0 0 O
A={0 0 w0 0 B=|(00 ¢ 01 /e
6 0 0 « 0 00 0 =« 0
0 pa® 0 0 u 0 0 pa 0 v |
w 00 p 0]
_ 0 w 0 0 0
C=|0 0 = 0 0 (2.5)
00 0 w 1/p
0 0 0 pa*® wuw |

where a is the speed of sound. Since the primitive Jacobians (equation (2.3)) are
related to the conservative Jacobians (5'3"%,5"3‘%, 53%) by similarity transformations,
the two sets of Jacobians have identical eigenvalues. These eigenvalues are in fact
the speeds of information propagations. In the next chapters the system (2.4) will be

expressed in terms of the Riemann variables for the FFB formulation.

2.1.3 Characteristic form of the Euler equations

This is the most important feature of the Euler equations and hyperbolic PDEs that
considers the propagation of signals through the flow domain. Basically the Euler
equations describe the motion of such surfaces [133, 164). Finding the characteristic

form of the Euler equations is to seek for wave-like solutions of the form [37, 157]
U =U((), (2.6)

for the equation (2.4), where { = zk. + yk, + zk. — A,

The solution U is constant on some hypersurfaces in the (z,y,=.t) space. The
characteristic fronts are moving with speed A along their normal vector, i = (n., n,, n:)7,
which is a generic unit vector, |ii] = 1. related to the vector (kz, ky, k-)7. Substituting

solution (2.6) into equation (2.4) yields

. det [Dy - AI| =0, (2.
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where I 1x the identity matrix. Hence.

V. pn: futh P, U
a ‘l. 0 0 n_,_‘.",‘n

I-Du = .:ln_- + :én_.,. - (-:'n_. = 0 0 |9 0 noe ol (28
0 0 0 V.o on.lp

0 pa*n. pa*n, patn, VG

where 1 1s the projection of the velocity V' in direction n. which is

V.=V.n=un.+en, +un,. (2.9

7

Svstem (2.4) is said to be hyperbolic if the matrix Dy has real eigenvalues and a
complete set of linearly independent eigenvectors for all ft. One can diagonalize matrix
D,. but it is not possible to diagonalize simultaneously the three Jacobians A.B.C.
The eigenvalues of matrix Dy, are found by solving the algebraic equation (2.7). which

gives
A1=V°n, ,\2=V-n, A3=V-n.
AM=V-.n+a, As=V.n-—-a (2.10)

It is well known that the eigenvalue A, has a multiplicity order equal to the number
of space dimensions. This means that, while for 1D case a unique definition of the left
and right eigenvectors exists, in two and in three space dimensions different choices
are possible.

The left eigenvectors of matrix Dy considered as line vectors 1 (or L if grouped

in a matrix), can be found solving

ID, = Al (2.11)
or equivalently in matrix form
LDn = AL, (2.12)
where matrix A is a diagonal matrix with the eigenvalues A; and j € {1,5}.
1 0 0 0 -1/q?
_ 0 0 —n:/(n2 + n2) n,/(n? +n3) 0
L=}0 1 -nanyf(ni+nl) —nnf(nd+nl) 0 . (2.13)
0 —n. —-n, —n, 1/(pa)
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The inverse R = LY, which consists of the right eigenvectors of Dy,. is found solving

LD,R = A. (2.14)
which vields
I 0 0 pli2a) p/f(2a)
0 ¢ :z;: +nl naf? —n:f2
R=|0 —n. —nmn, ny/2 -n,/2|. (2.15)
0 n, -—n.n. nf2 —ng?2
0 0 0 pa/2  paf?

Having determined the left and right eigenvectors matrices, the characteristic variables
can be defined as

dZ = LdU, (2.16)

where dU = [dp, du, dv. dw, dp]”. Hence, one gets the following characteristic variables

veclor
. dp_% -
dV -§
dZ = dv -t (2.17)
dV -fi + £
- do
| dV-n—22 |

where the normalized vectors § and t. whose components are

T T

:=|g —-N. ny E =11 =Ny  —NeN: (.) ].S)

s= [ LR - . = T RS e H = dt
ng +n; n,;-!—n; ng +ng ny+n;

form an orthonormal base vector with fi, i.e. fi x§ = t. The first element in the
equation (2.17) corresponds to the entropy wave. The second and third ones are the
shear waves and the fourth and fifth are acoustic waves. Note that these solutions are
linearized and may not reflect whole the behavior of the 3D flow field \’«;hen applied
to the FFB. Iu the conventional approaches to the FFBs, these simple waves have
been used (3. 119. 120, 144]. In conventional FFBC methods, equation (2.17) is
also used to figure out the number of necessary boundary conditions. Also it is
locally discretized and used for far field calculations [68, 144]. In the next sections an

alternative approach based on the directions of the propagating fronts will be given.
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2.2 Behavior of the Euler equations

Since the quasi-one- and two-dimensional flows have been cousidered in the FFRC

formulation. we proceed with them in some detail.

2.2.1 One space dimension

Consider the Euler equations for ideal 1D flow of & perfect gas in a constant area duct

ou  -gu
—+Ai—=o0 21
at A dx 0 (=1
where
p ) uop 0
U=]uf{. A=]0ua 1/p
P 0 pa* wu

The matrix A has real eigenvalues and a complete set of eigenvectors. therefore it can

be decomposed as
A = RAL, (2.20)

where R is the matrix of right eigenvectors {columns) and L is the matrix of left

eigenvectors (rows). The following relation holds
RTLT=1LR=1, (2.21)

where I is the identity matrix. Now, the eauation (2.19) could be decomposed to
three scalar equations and, then any of the scalar equations could be integrated on the
corresponding characteristic lines. Initially the matrix A is assumed to be constaut.

Considering the relations (2.20) and (2.21), equation (2.19) when premultiplied by L

becomes _
JEV) , = ey 8 oo 599
= +LAL EEU‘U) =0, (2.22)
which can also be written as
P ar
— A A — 2.9
Eri 0 (2.23)
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o P = LU, Equation 1223 indicates ¢

s elorities o fl'Id' to the l,l”"" ‘alizes of the matsl

theere will e three charzcteristic enrves, zlong any
conation cODE . Lolds. To find these ODEs. one jI =1

Ti;".l.iuu. [ERE IR .-\ ‘--:ll‘l alne
i = 0. pe. 1
12 = i—d.". 0. 1
13 = 'U —pa. i

The equation (2

lations gives the characteristic reiations

duy = dp+padu=0. ealong dr/dt
dws= dp—a“dp=0. along dz/dt
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Equations {2.23) are describing the acoustic and entropy waves with the correspond-

ing prupagation speeds A; (eigenvalues of the mairix A). Based on these equations.

the information propagates through the flow field, in¢luding the boundaries, For dif-

ferent flow regimes the equations (2.23) will have different directions of propagations.

Equations (2.23) can also be written as

dp  du _
at " PiE T
_dﬁ_ :dP__O
g
P u
iRl
where
4_98.,9
dt ~ at ' oz

(2.26)



Figure 2.1: Propagation of information through characteristic lines.

Expanding the equations (2.26) along the corresponding characteristic lines in (r.t)

space vields [99]

dp du [dp  Ou|
[E +,0a'a—t] + (u + a) _b: -rpag] =0,
dp  0p QE '.'_a_P -
[5?““ a] e e ax] =0
Op _ 0] (O _ ¢ _ 598
{E - pa 3t | +(u-—a) 3 paax] =0. {2.28)

In the extreme far field regions some authors [33, 68, 126] have ncglected the spatial

derivatives in equations (2.28), which reduce to

p du

gt—-,i-pag—t—o.

98 _ 29 _

2 h

P u :

= — s = 0. (2.29)

The boundary conditions (2.29), derived for 1D flows, are commonly used in mul-
tidimensional applications for the far field regions {68, 126, 127, 144]. In genuinly
multidimensional flows, 1D analysis is only valid for disturbances normal to the bound-
ary and asymptotic expansions are required for waves in other directions. Figure 2.1

depicts how the information propagates along the characteristic lines.



2.2.2 Two space dimensions
Iii tweo space dimensions. the time-dependent Euler equations can be written as
— +A— +B— =0. (2.30)

"'.'ll' e

7 u p U 0 ¢ 0 p ¢

- |wu T _ |0 uw 0 1l/p = 10 v 0 0
=1l 2=loo w ol B=loo ¢ 1/
p 0 p 0w 0 0 »p v

The Jacobian matrices A and B cannot be diagonalized simultaneously. Simple wave
solutions. in which U is constant on some planes in the (z. y.t) space. could be written
in the form
U =TU((), (2.31)
where
{ =zcosy + ysing — At (2.32)
Equation (2.31}) indicates solutions which are constant on straight lines in (z,y) plane
(l.e. constant in (x,y, t) planes), moving with speed ) in the direction of the unit nor-
mal n = (cosy. sing). Introducing these solutions and requiring non-trivial solutions
for U. results in the relation
det [A cosip + Bsing — M| =0. (2.33)
Substitution of A and B gives

(ucos@ +vsine = A) [(u cosw - vsing — A)F — a"’] = 0, (2.34)

which has four real roots. This shows the characteristic surfaces (or simple wave

fronts) are moving with the speeds

A = ucosy +using + a,

As = ucosp-+vsing,

Az = ucosyg +uvsing,

Ay = ucosg +uvsing —a, (2.35)
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and they carry disturbances proportional to the right clgenvectors of A cos o+ Bsin o

-

g P ¢ o
QoS & 0 sin g —G s O .
1= sin N 2100l BT —cos c HE O asin ;‘ (=301
pa- \ 0 P

One can trace movements of a wave front in (r.y) space (119, 1200 Eaclh wave
front is specified by its speed M. direction ~. and the type of disturbance. vy, An
entropy or shear wavefront has the speed of How particles, uwcos o + esing, Note
that the particle paths may differ from the front normal. An entropy wave carries the
disturbance r» (only a change in density). A shear wave. includes a change in velocity
in a direction paraliel to its front (i.e. no changes in the normal component of the
velocity. pressure and density. as described by rz). Fmally. acoustic wavefronts move
with the velocities A, and Ay. Consider a wavefront passing through the origin at time
0. It will move forward as much as (ucos ¢ + vsing & a}AtL, which 1s a combination
of two movements. First the wavefront is moved (ucose + vsing)At forward. after
which it passes through point O in Figure 2.2 {for all values of ), and then there
is another (forward or backward) movement by an amount aAi. Hence. regardless
of the value of . the wavefront will be finally tangent to the circle in Figure 2.2.
Changes caused by acoustic waves are proportional to r1 and ry. It was shown that
they influence the convergence process {101]. A rough estimation of the dominant

wave direction gives
¥
d¢

in which a value is found for the direction of the outgoing waves as

0, (2.37)

v
tane = —
u

= tand. (2.38)

This value can locally be used for approximating the direction of the wave fronts [73).
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Figure 2.2: Propagation of acoustic waves in 2D flows,
2.3 Compatibility relations for 2D Euler equa-

tions

and is not capable of showing the nonlinear effects of wave propagation. However, at
the regions far from the highly nonlinear part of the flow the simple wave approach
could be valid with good degree of accuracy. If one is interested to come closer to the
nonlinear parts. they might not be valid. A new approach is followed to derive the
equivalent characteristic set for the 2D Euler equations.

The solution of equations (2.30) for known initial conditions (origin of distur-

bance) is assumed to be a moving surface
flz.t) =0, (2.39)

which is the surface of the disturbance front. Since the acoustic wave fronts carry small

disturbances of the fluid, the flow variables (p,u. v, p, ¢) change only by infinitesimal
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amounts. but their derivatives with respect to the coordinates (for constant timed or
with respect to time (for constant coordinates) may change by Hnite amonnts during
a short tme interval, Consequently these derivatives can experience a discontinuity
when a wavefront passes at a certain location of the flow field. Such discontinuitios are
weak in contrast to the shock waves. in which the flow variables themselves expetience
discontinuities.

In the theory of PDEs. fronts of this tyvpe are denoted by characteristic sur-
faces [26. 34. 63. 123]. Considering the surface cquation (2.3, the flow variables

such as p. u. ¢, p can be specified along the surface. Using the derivatives 2, 28 22 4y,

o
22 in the governing equations (2.30) results in the following characteristic condition
4

o
Sy

o 0 ?-%-% 0
A= Q, ° w0y (2.10)
psE p5 0 @
0 0 (o} -tI.'!C"
where
df _9f , af  of 5
o= - Bt -:-uax . Lay. (2.11)

The equation A = 0 defines the characteristic surfaces. For the derivation of A see

Appendix A. After some algebraic manipulation one can get from equation (2.40) as

8 {o*-a* (g—i)- + (g—ﬁ) = 0. (2.42)

The solution ¢ = 0 corresponds to the equations of streamlines. Another solution of

2 a2 _3_f 2...'. .a_f i '2.4.
o =a (3::) '(ay) . (2.43)

The equation of wave front motion is obtained by combining the equations (2.41) and
(2.43) as

equation {2.42} is

af . af . af _ . |(af\* . (a5’
'a—tTu-a-;-:-t-a—y—-.;_d\ (5) -r(a—y) . (2.44)
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B the aid of chain rule derivatives, one gets

d d dudf d
o=—{. g A {2.45)
dt dt df dt df
aud the fullowing isentropic relation from gas dynamics
a dp @
2= 222 (2.46)
dr dp dr '

We now return to the momentum equations in svstem (2.30) and rewrite them as

du 1dpdp 5 1=
df° 7 pdpdx (247)
v, 1dpop (2.48)
df = pdpdy

Partial derivatives of flow variables in (z.y,t) space. on both sides of the characteristic
surface f(r.y.t) = 0. are evaluated. All these derivatives are proportional to the

corresponding derivatives of the f(z,y,t). This relationship for p is

Bo e ] d

Bt _ 3z _ 3 _ %P (2.49)
YT TH T =,
at 8z By

For more details of condition (2.49) see Appendix E and [77, 135]. Considering the

relation (2.149), one could write

9p _ dpdf -
3z df oz’ (250)

By introducing the value of gf_ from relation (2.30) into equation (2.47), one gets

du . 1dpdpdf _

—F ——— i = 2.5
TR PP (231)
or after simplification
dpd
ydy 3 —~~—=10. 2.52
odu > 9z 0 (2.52)
Introducing the value of ¢ from realtion (2.43) into (2.52) results in

iad (af J -+ ?‘-"a—f =0, (2.53)
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i1 which. one can define

S s
hI. —

e

e = - —— (250
\_,’\;—‘;\J"T{L.—:;)' \.’(F'_Z\""\F;\'
For the propagating disturbances along the r-direction. equation (2.53) can be written
as
. dp .
=du = cosg— = (. {200
pu
In a similar manner the propagating disturbances along the y-direction becomes
L, . dp -
=dv +sing— =0, 12.56)
pa
The relations (2.55) and (2.56) are the 2D compatibility equations presenting a
general case of 1D characteristic relations,

Taking the squares of the equations {2.33) and (2.36) and adding vields
o “ d -
(du)® + (dv)* = (;E)-. (2.57)
and defining the differential of resultant velocity, dg. as

(dg)? = (du)? + (dv)". (2.

| )
o
oo
S

If the velocity changes in magnitude and not in direction. one obtains

. dp .
(dg)’ = (50)* (2.59)

By integrating equation (2.59), one gets the Riemann variables in terms of the velocity

q and sound speed a
)

7 —
This expression has been used by Verhoff et aleither for boundary treatment {148, 149,

g=

1a = const. (2.60)

151] or in the flow field solver [152]. Relation (2.60) will be used in next chapters for
the FFBC formulation and analysis of time-dependent 2D flows in natural coordinate

system. Integrating the equations {2.53) and (2.56) results in the

fdu+cos¢/d—p=Ru, fdu-C05¢fg§=Qm

pa
fdv-s-sin-,:j-j-f:m, fdv—sing:j%:Qu, (2.61)
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Figure 2.3: Propagation of Riemann variables on the time-like planes for time-
dependent 2D flows.

which can be expressed for z and y directions in the following forms

2 2
@,  Q.=u-—cosy

~ —
T !

2 . 2
R.=v+sing— T Q. =v—sin L_:‘r e (2.62)

a.

R, =u-+cosg

The projected Riemann variables show the paths of information propagation of multi-
dimensional inviscid compressible flows. Considering the domain of dependence and
how the Mach cone is cut by the boundary (see Figure 2.4), the number of BCs are
known. Each bicharacteristic which brings information from outside of the domain
should be replaced by a BC. The relation between the projected Riemann variables

and direction of propagation is given by

Ru - Qu
tan g = ————. 2.63
ane Ru - Qu ( )
The equations (2.35) and (2.56) can also be expressed as
dp ., du

€os P? = pa%-{ =0,

1 'F—p -t —E -_ ‘)
sing— = pa— 0. (2.64)
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Along the particle path one has

o e} e} é

_— = e - . — ... 1 m— '_‘_li:\]
dt gt d.l‘ du’

and for the bicharacteristics the following operator holds

d ( -
5 = % +(D-V\ (2.06)

Soe 3. I . . . eyt .
where U = =i+ =] and D is the velocity of acoustic wave frouts {1351, given by

D=uzacosy)l + (v = asing)j. (2.67)

where 1 and j are the unit vectors in Cartesian coordinates.

Considering the operator (2.66), equations (2.64) are expressed as

9 ' 3 ?—p-é-(ciasin;)—;—)}
ey

dy
w2 a2 s <o
sin [g—}; + (u iacosq)%:: + (v =asin p)g—ﬂ
=pa [g—t: + (uxacos gs)-g—:- +(vxasin np)g—:] =0. (2.63)

It can be assumed that at far field regions the variations of flow variables with re-
spect to space are negligible, therefore in the limit of vanishing spatial variations, the

equations (2.68) reduce to

dp , Ou
cos o * pa— 5 =0,
sin cpgf = % = (. (2.69)

and hence

(2 = o | o+ G (2.70)

To determine the wave angles, one combines the equations (2.69) and gets

_ 9v/ot

W = Seler
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t particle path .

Figure 2.4: Space-timme diagram showing the propagation of characteristic front, a
particle path, and Mach cone in the (z,y,t) space.

Equation (2.71) will be used in the next chapters to find the direction of outgoing
waves. This is an alternative to the Roe’s approach {119}, who approximated this
wave angle using the linearized Euler equations; for more details see Appendix F.

It is often assumed that the disturbances strike the FFB with the wave fronts
parallel to the boundary (i.e. the partial derivative with respect to the tangential
direction is negligible). This assumption results in the 1D characteristic boundary
treatments for multi-dimensional flows. If the wave fronts are not parallel to the
boundary. the wave will partially be reflected back into the computational domain

which slows the convergence process and may generate inaccurate solutions.



Chapter 3

Implicit Flow Field Solver and
Solid Boundary Treatment

In this chapter the implicit time-marching methods for solving the quasi-one- and
two-dimensional flow fields are discussed. For solving the 2D fiow a factored scheme
was used, similar to that developed by Beam and Warming [11]. A modified solid

boundary method is also discussed.

3.1 Implicit quasi-1D flow field solver

The Euler equations for a quasi-one-dimensional flow may be expressed as

oW OF ,
wa-a—x—G—U, (3.1)

where W = [p, pu, pE|”, and H = H(z) is the variable cross-sectional height. The

flux and source vectors are

pu 0
F=] pu*+p |H, G=|p %{» (3.2)
(PE + p)u 0
By an implicit time discretization (Euler implicit scheme), the equation (3.1) takes
the form
AW aF n+$+l
—_ e - G*! =0, .
A At (8:1:) (3:3)
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The finite-difference equation (3.3] is recast in terms of AW (or delta form). By

approaching to the steady-state. AW would tend to zero. A linearization procedure
for equation €3.3) vields
‘ .. OF 2 -
F'=F"+ -a-t—At + QLA (3.5)

Sinee F = f(W.H). the =hain rule of differentiation gives

OF OW OF OH ,
A tean e (3.6)

where the flux Jacobian matrix is

, 0 1 0
a= X _ 22’ —(v—=3u  4-1]. (3.7)

—yuE 4+ (7=1)d £ -3y 4y
For non-moving solid boundaries, %‘:i = 0 and hence

oF IwW AW
oA A A (3:8)

Substituting relation (3.8) into (3.3) gives
F** = F" + AAW + O(At?). (3.9)

In & similar fashion one can linearize the source vector

G*! =G+ BAW + O(Atz). (3.10)
where
B_B_G____( _1).@1{. 1?;—’ ’ (1) (3.11)
“aw dz "'0 Ou 0 ’ ]

and v = 2 = 1.4. The first order hyperbolic equation (3.1) has the property that

the flux vector F is a homogeneous function of first degree in W3 ie. F(AW) =
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PEOWIL where £ 35 an arbitrary constant. In general. Enler equatiops possess this

a0

property (131, 1321
The eigenvalues of A represent the characteristic directions for information prop-
agation. For stability considerations one is refered 1o {1320

The linearized form of equation (3.3) in terms of Jacobian matrices then is

\\- D 1) “
H_\——--:—,.iLA_\\\-’\-BA\\'= _9E L G ERRY
At dr Jr
which can be recast as
[H1=+ At A - ABAW = VTR (3.13)
dr ’ dr
where I is the identity matrix and %(A._\VV) is discretized by central differencing as
a . ! . . .
[d_x'(A.A“' )] = E(Ai.@.].ﬁ"""_’_l bl .A.l‘_].A\Ng_l). l‘l-l)

Equation (3.13) generates a block-tridiagonal systewn of equations. when discretized

by (3.14).

3.2 Implicit 2D flow field solver

Implicit schemes have widely been used for stability considerations. ln practice for
nonlinear systems the stability bounds encountered for implicit schemes are less re-
strictive than for explicit schemes. However, they produce large linear systems of
algebraic equations which are computationally expensive to solve. Hence, factored
methods [4, 11, 16] are used to split the problem along the coordinates.

For 2D compressible flows, the Euler equations in the conservation form can be

written as

ow 9F oG -
where W = [p, pu, pv, pE]¥ and flux vectors are
pu pv
22 .
F= P“pu; P, G= pbf’z“_“; » (3.16)
(pE+pjul _ = L(pE+p



The pressure s reated 1o the conservative fow variables. W by the equation of state

n= (m - ]N)E — plfu: - 1'2_}. (317!

2

The vhotee of nondimensionzl parameters depends on the flow nature. Here the stae-
I p 2

nation values are used

; a . i - v = £ ._ P - apt

. = - 4 —_ .

. . p O e
IeY) iy Uy ag Poy [-r:—_,"

(3.13)

where L, 7 represents the chord length.  For simplicity. the superseript = will be

dropped in the foliowing equations. in which all guantities are nondimensional.

3.2.1 Generalized coordinate transformations

The 2D Euler equations are transformed from cartesian coordinates to general curvi-

linear coordinates where for a time-independent grid
T =1, §=¢(z.y). n = n(z. y)- (3.19)

The coordinate transformation introduced here follows the development of Vinokur [155].
The transformations are chosen so that the grid spacing in the curvilinear space is
uniform and of unit length. This produces a rectangular computational domain in
(£.n) space with uniform grid (Af = 1, An = 1), hence unweighted differencing
schemes are used.

The following relation is used to represent the Cartesian derivatives in terms of
the curvilinear derivatives

a/at 1 & = a/or
8/0z | =|0 & 72 a/a¢ | . (3.20)
9/8y 0 & n, ] 19/0n

where

f:-‘ = Jym E:,r = _sz

= = _Jy& T = Jl'E, (321)
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in which J represents the Jacobian of the fransformation

Eguations (3.211 are discretized by a second-order central difivrencing scheme, Near
the boundaries thev are switched to one-sided second-order ones,

After transtormation the Euler equations take the form

N ,@,ac_o .
5: T o T oy L
p pU pY
. 1| pu = 1) pul +&p - L] pul +yp
W= — . = — L oF . = - . i 3.2

J | pr ¥ J| el +&p G JopeV +p (3.24)

pE (pE +p)U (pE +pIV

where

U=Cu+&eu. Vo= nau+ e, (3.23)

are the contravariant velocity components.
The transformed equations (3.23) are somewhat more complicated than the
original Cartesian form but offer several significant advantages. One advantage is

that boundaries in the physical plane are mapped onto rectangular configuration in

the computational plane.

3.2.2 Implicit time differencing

Consider an implicit three-point time differencing scheme [156]

OW 1 (1+9)A" =9,V o : .
3t T At 1+ 9.A0 W (92 = 9 = )0(88) + O(8),  (3.26)

where A™ and V" represent the forward and bachward time difference operators re-
spectively, for example: AW = W —~ W", The parameters #, and 9, can be
chosen to produce different schemes of either first- or second-order accuracy in time.

For ¥ = 0 and ¥, = 1, we have the first-order Euler implicit scheme, which is
W = W+ At( )“*1 + O(A?). -(3.27)
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For vy = & apd o, = 1. one obtains the three-point implicit scheme of second-order

Using the first-order Euler scheme. equation (3.231 is discretized as

[N
o
——

Wil - W AFP + G =0 (3.

3.2.3 Flux vector linearization

e Hnx vectors F and G oare nonlinear functions of W and therefore equation (3.28)
is nonlinear in W1 The nonlinear terms are linearized in time about W™ by Taylor

series such that

1 = 7+ A"ATW + 0(a8),
&M= Gr 5 BRARW 1 0(AR), (3.29)

where A = 9F/OW and B = G /W are the transformed flux Jacobians and AW

is O{At). The linearizations are second order accurate and so if a second-order time

scheme had been chosen. the linearizations would not degrade the time accuracy.
Applying relations (3.29) to equation (3.28) and combining the AW terms

produces the unfactored “delta form™ of the algorithm

I+ At(-a%.&“ - %B" )] AW = — At (aai& + %i—) : (3.30)
The Jacobian matrices are {115]
0 Kx Ky 07
Ao | I el T T G |09
(=) Kzo—(7—1)ue £Kyq —{v—1)ve e

where oy = 7E — v, e=ru+nru. ¥=23(v—1)(v*+v), and s =€ or g for A or
B. respectively.
The convective derivatives in equation (3.30) are approximated by three point

central differences.



3.2.4 Approximate factorization
An approximate factorization is used for the left hand side of equation (33N, which
can be written as

I+ AfdA -.x:-‘)-B AW = I-—Atd I-—Ar—-—B AW
¢ an BN ay

DD
AR A D Raw, e
N dn

The cross term is of a second order and can therefore be neglected: the factored forn
of equation (3.30) is

d - [ d .- ) L ekl
" "W = - 2 . 333
[1 '“a ]1 AtaB}A\ .}d(()c. a,,) (3.33)

They lead to block tridiagonal systems after the spatial discretization. This equation
can be solved in two different sweeps along & and 75 directions. by introducing the

intermediate variable A"W~_ in the form

3 gF"  HG™
—A% AW = - =],
[1 _\taEA]_\ _\t(ds 313)'
[1 -+ At%ﬁ“] AW = A"W™, (3.34)

The spatial derivatives —A“ and 2 B“ are discretized by ceatral differencing, similar
to equation (3.14); this leads to a block tridiagonal system of equations for each sweep.
The block matrix size is 4M X 4M;. At each time step the system is solved by block

LU decomposition (see Appendix I).

3.2.5 Implicit and explicit dissipation

Although linear stability analysis shows unconditional stability for this implicit algo-
rithm, in practice stability bounds are encountered. This is because of shock waves
and boundary condition problems. The wave interactions lead to high and low fre-
quency waves. The lower frequencies postpone the convergence, but higher frequencies

violates the numerical stability, when they exceed the mesh size. For coping with this
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problens o mnnerical dissipation is added with an error level that does not interfere
'''' th the solution acenracy,
An inpiienr second-order dissipation is inserted into the respective implicit block

operalors

D = _\_::At']—l T\-:A;‘.].

Do = =2, MJ7ITALL (3.35)

witere ¥ and A represeni the backward and forward spatial difference operators re-
spectively, The parameter £, 1s of O(1). Also. a nonlinear explicit dissipation is added
to the right hand side of equation {3.33) and will be shown later. After applying the
dissipation terms. equation {3.34) becomes

[1 _\.z(dizxf -'aiBf )] AW = —At(
[

s 5 - - . - - - . . .
where A7 and B"" are the matrices after introducing the implicit dissipation. The

—— ——

gF  aGr\ | o
3%~ o )T D. (3.36)

implicit dissipation is used to extend the stability range. The explicit dissipation [63,

114] is

D = Veoe {82 = sV AT A W+ V0, [, = cIA, VoA | W (3.37)

where
£} 7—
C¢ = AEE-)IJ‘I:-HJ ASJ)thl'
( } () y- 5 9
!;J+1J11+1 + )‘:: J:'j“ ('3'3b)

The A€ and A are the spectral radii of the transformed Jacobian matrices A and

B respectively,

XO = [V +a/E+E,
AW = V| +ay/n2 + 2. (3.39)

They show the largest propagation speeds in the computational space. The coefficients

.29 and 9 are
= k,Af ma.x(u,-.;.l_.;, Vijs V§_1j),
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27 = o mp A maN Ly
W — . ] ‘ * -l"\
g = maxiUoaydt =70

M = manil by Ar = 2 e

where &y = 0.23 and &y = 001 and » ix a sensor 1o feel the steep aradients

—

! Y ' A S . !
!P:—l.,‘ = =P, p:—l.,: - ciaer T e T P E

e =

(A

if":-‘rt.; = .-).D:.; + [ i . i.r":.'-i—'. + -]:’ - Pio=1 | ‘
The scaling factors of equations (3.33) consider both spatial directions. by using the
eigenvalues. Near the steep pressure gradients. **! takes larger values due to larger
values of v related to the steep pressure gradients there. so that from equations (3,40,
£ drops to zero. hence only the second-order dissipation is added. In the smooth

flow regions. £ is vanishingly small and only the fourth-order dissipation is applied.

Based on propagation speeds the switch functions are modified as

,_(M )d ,_(M )“' 3.49)
ve = W Ve, v, = M Vn- (3.42

where constant values are d = 1,2, The inclusion of local Mach number increases the
dissipation value near the steep gradients and reduces it near the stagnation potunt.
This procedure allows to use rather coarser grids to perform the calculations. The
~omputations are performed fromi=2toi=M; -l andfromj =210 ;= M; - .

At the boundaries the disspation is switched off.

3.3 Gnid features

A grid with variable spacing was generated by an algebraic method. The numerical
grid is aligned with the solid walls for confined flow and with airfoil contour for the
external flow problems. A rectangular outer boundary was used in order to facilitate
the application of the far field perturbation equations for Loth cases. On the arc-
shaped wall and airfoil, 26 and 28 grid points were used, respectively. Our main
concern here being a comparative study of the far field behavior in both the extended

and reduced computational domains having the same specifications. The grid points
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were eoptatlv-spaced along the w-direction . while in the y-direction they were stretched
hoperbolically, starting from the nozzie wall or the airfoil surface. The computational
erids used for the How ina duct with a cireular-arc-bump on the lower wall (nozzle
flow 1 and for the external flow past a NACAOQ012 airfoil are illustrated in Figures 3.2

and 3.3,

3.4 Solid Wall Boundary Conditions

The computational treatment of solid boundaries is an essential aspect of a numerical
scliemie, The effect of solid boundary conditions on the solution accuracy and conver-
gence is discussed and a method based on the characteristics relations in conjunction

with normal-momentum equation is presented.

3.4.1 Conventional solid boundary methods

For the computation of aerodynamic flows. it is important to implement numerically
the solid boundary conditions. Since, on the solid boundary not all of the flow vari-
ables are specified by the boundary conditions. and there are more unknowns than
available equations. In the finite-difference methods, the transformation to a general-
ized coordinate system makes the application of the solid boundary affordable. Good
solid boundary conditions must ensure the disturbance dissipation in the computa-
tional domain without reflection. The propagation of perturbations is consistent with
the characteristic properties of the Euler equations [101], expressed by compatibil-
ity relations [88]. Violating the characteristic directions leads to inaccurate solutions
and delayed convergence. Inconsistent solid boundary treatment destroyes the global
conservation {113}

A conventional procedure is to discretize the governing equations from the
boundary into the flow field by one-sided difference scheme (in general different from
that applied to the other interior points). Usually free-stream stagnation enthalpy

is held constant along the solid surface. After the velocity components and pressure
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were compuied a value of density is obtained at the solid boundary 131, Rico (120
states that for a solid body more than one characteristic equation is necessary, He also
introduced the use of normal momentum equation avoiding the need for extrapolation.

A first-order boundary method is consisten: with a second-order tuterior scheme
and the convergence to the true solution is still of second order 12310 The soft
wall boundary was developed and applied to acrodynamic flows to accelerate the

cuivergence process 1015

3.4.2 Solid boundary conditions in finite-difference meth-

ods

In the solid boundary treatment. the normal component of the flux vector reduces
thus only to the contribution of pressure. ln the computational space. on the solid

boundaries the relations (3.23) for contravariant velocity components become

2 Sy u [ _ U
tHBEG!

because on the solid boundary V' = 0. From relations (3.43) one could find the

physical velocity components as

| S | S .
u= jnybq v= _71?:0- (3-44)

In the conventional solid boundary methods. U is extrapolated from the computational
domain. The pressure is either calculated from the normal-momentum equation or
extrapolated from the neighboring grid points. Having calculated the velocity compo-
nents (u,v) and pressure (p), the density (p) can be determined from the assumption
that on the solid boundary the total enthalpy is equal to the total enthalpy of the
free-stream flow.
The normal-momentum equation is used to determine the pressure on the solid
boundary. Starting from the momentum equation. one has
Ty +Vp=0. (3.45)
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At s solid walll the npremeabiiity condition Is expressed as
gu: =V -1, =0. {3.46)

where by s the unit vector normal to the solid boundary, Note that on the solid
boundary, the streamline follows the body shape. therefore equation {3.46) leads
to tanfiy = = where 0, is the solid boundary inclination. By differentiating equa-
non G316 with respect Lo time, one gets

d . -
;E(v.ln) =0 {3.47)

PProjecting the momenium equation {3.43) along normal to the solid boundary gives

dv
Pin * ar +in-Vp=10. (3.48)

Combining the equations (3.47) and (3.48) leads to
di

pV =R =ip- Vp. (3.49)

For non-moving solid boundary (3 = 0), equation (3.49) is simplified to
pV - (V- -V)ip =1, -Vp (3.50}

Using the relations (3.20) and (B.4), equation {3.50) can be expressed in generalized

coordinate system as

.o Ou Qv dp ., 2.9p .
—pl (Wrg - nya_f) = (& + Ey’?y)a_&. +(nz + ﬂy)a—n- (3.51)
In equation (3.51) the derivatives with respect to £ are approximated with second-
order central differences. while the derivatives with respect to 5 are replaced by second-

order one-sided differences. For example one has

B_P — P11 — Pi-11

> E - 2A§ L]

op _ T3pua t+4pia —pis (3.52)
n 2An ) e
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Equation (3.51 becomes thus in discretized form.
‘:”.'”:—l.l - H.‘“:‘I - ‘l'.:’:e‘l.l = \::-'A':‘\

where the coetfictents ¢ 8 ¢" and " have the expressions

]
o = - wAJE-”- N R
4 = ),
) — '— f
C’ = ;-)AEKE:’]:' + EEI:IIJ)'
, Ju dv 1, .
d = —pl (I}:EE 7].,?) - Eh]: + r; Sedpea = poah. CLA

The tridiagonal svstem (3.53) is solved at each iteraticn step and a value of pressure
on the solid boundary. p;. is then found. Values of the flow variables such as p, u

and v, which appear in the equation (3.53), are taken from the previous time step.

3.4.3 Characteristic solid boundary conditions

At the rolid boundary, one characteristic does not come {from the flow domain, hence
one physical boundary condition is needed. This condition is expressed by vanishing
normal velocity to the wall (because no mass, or other convective Hux, can penetrate
the solid body, in which only one eigenvalue is positive). Hence, the condition Vi, = 0
is imposed. The pressure on the solid wall is calculated from the equation (3.53),
then velocity components and density is determined along the characteristic lines. In
Figure 3.1 the characteristic waves at the solid boundary are shown.

An effective way of solid boundary treatment is to use the method of character-

istics. Considering equation (2.17), the vector of characteristic variables for 2D flow

becomes
dp— % dpd— 2
dv -t
dZ = aV-fr 2 | = dq.?fz {3.55)
4 a S c
QV-f~ 2 dg. — &
pa - pa
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n
~all]—

solid boundary

Figure 3.1: Characteristic wave propagations at a solid wall boundary aleng the
normal direction.

where the normal and parallel velocity components to the solid boundary are

dg, = —dusinf, +dvcosb;.
dgy = ducosf +dvsiné,. (3.56)
Similar to equations (2.23), the compatibility relations are modified along the normal

to solid boundary. Note that in this case dV-n = —dg, , regarding the positive normal

vector which is directed outward of the solid boundary. Hence,

dun, = dp— padg, =0,

duwsy = dp—a*dp=0.

dwsy = dp+ padgq. =0, (3.37)
At a solid boundary the waves dw,; and dw,, are propagating towards this boundary
(Figure 3.1). Using two of the compatibility relations (3.57) in discrete form at solid
boundary and neighboring grid points yields

Pis — Po — Pisaii(Qige —qu) =0,
Pig — b5 = (aF;)*(pF; — ps) = 0, (3.38)
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where g, = 0 on the solid surface. Combining equations (3.53Y with cach other. the

density at the boundary is determined as

Yol

pr=plm ==pl (3.0

o, .
Near the solid buundaries the grid points are clustered. therefore the velocity compo-
nents on the solid boundary can be approximated using the netghboring potuts aud a

weighted extrapolation

Uy = kl - {J)'u:_-)_ - Ht;a.

vy = {1+ ple s - ptia. (3.60)
where
=y
po= B2 g (3.61)
Yiz— W2

Some authors use p = 0.5 for computations [33. 85, 101, 14d]. The lower order
extrapolation increases the amount of dissipation near the solid boundaries. Finally

the energy at the solid boundary is calculated as

— 1 Pb 1 1 2.2 D]
5—7_1—;-:-2(11 = vy ). (3.62)

3.4.4 Effect of solid boundary treatment on the numerical

solution

During the convergence process, disturbances originate near the solid boundary and
propagate into the computational domain. Numerical experiments show that solid
boundary is more reflective at the first convergence steps, depending on the type of
solid boundary treatment. Disturbance reflection at the solid and far-field boundaries
delays the convergence. Using characteristic compatibility relations i-n the numerical
solid boundary treatment prevents inaccuracies and instabilities.

Effect of solid boundary treatment on the solution accuracy is shown for the

channel flow. Figure 3.4 shows the symmetry loss due to using the conventional

44



mwethiod and improved approach.  Siuce. in inviscid flows the pressure solution is
itnportant. therefore it necessitates using accurate solid boundary conditions.

Figure 3.5 shows how the solid boundary treatment can improve the convergence
towards the steady-state by reducing the reflections. Accurate solid boundary treat-
meent Is necessary on the cireular-arc-bump and is of less interest on the upper flat
wall fur the channel problem. For the external flow problem. the same characteristic

solid boundary method was used.

3.5 Remarks

Implicit factored scheme was presented in this chapter with a modified solid boundary
method and displayed very zood computational efficiency and accuracy for all cases
tested. The codes namely EU1D and EUTD were developed for the flow field calcu-
lations. The schematic grid geometries are shown in Figures 3.2 and 3.3 for quasi-1D
and 2D flows. All the computations were performed or a 486/33 PC using a Lahey

FT77L-EM/32 FORTRAN compiler.
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Figure 3.2: Grid configurations for the quasi-one-dimensional and two-dimensional
confined (circular arc) flows, extended and reduced domains for cach case.
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Figure 3.4: Mach number distributions on tke lower solid boundary. obtained with
characteristic and conventional (extrapolation) solid boundary treatments, channel
with circular-arc 10%. M. = 0.3, CFL=2.
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Chapter 4

Far Field Boundary Conditions for

Quasi-One-Dimensional Flows

4.1 Introduction

Boundary condition modelling in the context of quasi-one-dimensional flows is pre-
sented throughout this chapter for isentropic and non-isentropic flows. A model for
inflow and outflow boundary conditions was developed. The formulation is based on
the Riemann variables expansions simulating the far field solutions and character-
istic interpolations along the outgoing simple waves. This FFBC model takes into
account the physical and mathematical behavior of the flow at far field regions from
information propagation aspect. The FFBC formulation was first developed for the
isentropic flows, ther modified for non-isentropic flows by considering the effect of
entropy generation within the computational domain. The inflow and outflow FFBs
receive information from the far field regions and also from the computational domain.
After solving the far field perturbation equations the corresponding Riemann variables
are updated and matched with the solution within the computational domain. The
FFBC model was validated for different test cases by comparing the numerical and

available exact solutions. The results are presented at the end of this chapter.



4.1.1 Linear wave equation

The following first-order lincar hyperbolic equation can be used for studving the

houndary condition concepts

du du

— == =}, 4.

BT CB;r: 0. (4-1)
with the inttial condition

u(z,0) = (). (49)

at an open domain. The boundaries at z = 0 and z = L are introduced to delimit
the domain. There are many interesting features of the hyperbolic equations that
this simple form can represent. If ¢ > 0, the solution u(z,t) = f(x — ct) represents a
right-moving wave. Hence, the characteristics lines, (z — #t = const.), have positive
slopes, and the boundary condition can be imposed at £ = 0 from the information
outside of the domain (Figure 4.1a). The solution at the boundary z = L is obtained
by following the characteristics back to the domain, so u{L,t) = f(L — ct); hence,
at x = L the boundary condition cannot be obtained from the information outside.
If ¢ = 0, the equation (4.1} becomes ‘;—'; = 0 (see Figure 4.1b); the characteristics
are vertical lines (sce Figure 4.1b}. If ¢ < 0, the characteristics (z — ¢t = const) are
propagating towards the boundary at z = 0. Hence, u{0,t) = f(—ct) in this case,
since the boundary conditions cannot be set from the information outside at = = 0.
Note that du = 0 on lines with slope dz/dt = ¢, hence u is constant on these lines.
The simple wave is a disturbance propagating on one family of characteristics. In
general, for systems of hyperbolic PDEs, these curves are not straight lines, and the
solution is not constant along them. For the case of the Euler equations within the
subsonic and transonic ranges, both of the above mentioned waves exist, which are

used in the FFBC formulation.
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ieure 4.1: Propagation of information for linear wave equation.
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4.1.2 First-order hyperbolic systems

Recall the equation (2.23) from Chapter 2

Equation (2.23) was decomposed to three characteristic equations (see section 2.2.1).
The analogy of linear wave equation can be used. Depending ou the flow regime it
will produce different propagation patterns shown in Figures 4.2 and 1.3.

Figure 4.2 shows for supersonic flow crossing the inflow boundary all the informa-
tion propagates from outside to the computational domain, while at supersonic outflow
boundary all the information propagates from computational domain to the outside.
For subsonic flow crossing the inflow boundary one of the eigenvalues is negative,
so one information propagates from the computational domain towards this bound-
ary (Figure 4.3). Outflow boundary is being crossed by the subsonic flow thereby
two information propagate from the computational domain and one comes out of it.
This is equivalent with imposing one flow varizble, such as the static pressure, at
the subsonic outflow boundary. For achieving a unique solution, boundary conditions
should properly close the hyperbolic system.

In the computational FFBC treatment two kinds of information should be taken

into account: one is propagating from far field region outside of the computational
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Figure 4.2: Characteristic lines for supersonic flow at inflow and outflow boundaries.
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Figure 4.3: Characteristic lines for subsonic flow at inflow and outflow boundaries.

domain. and another is coming from the computational domain itself. Now, at the
FFB these two types of information should be matched for calculating the flow vari-
ables. The subsonic and transonic regimes are of major importance because of the
different directions of propagation occuring in the flow field. The characteristic paths
in the flow field should be used to figure out the number of incoming and outgoing

disturbances.



4.2 Conventional boundary condition methods

The previous works 1n this field can be grouped into mathematical aspects of the
boundary conditions on the stability and wellposedness [T8. 1620 163] and practical
aypects (19, 43. 160, 163}, (Definition: An iaitial boundary value problem is well-
posed if 1t possesses a unique solution. coutinuously dependent ou the initial and
boundary conditions.)

Various boundary condition treatments are available for the quasi-one-dimensionad
flows as was refered in Chapter 1: in this regard see also {12, 92, 160. 162, 163]. The
classical boundary treatments mainly include the algebraic extrapolation and discrete
form of the characteristic compatibility relations. The important point in all kinds
of boundary treatments is that the directions of propagations should be taken into
account. For example at a subsonic inflow the compatibility equations (2.25) along
the characteristic lines are discretized between the free-stream and a boundary grid

point

Ps = Pos + pa(uy — o) = 0.
Py = Poo = @*(p4 = Poo) = 0,

Pb = Peomp — P&(Up — Ucomp) = 0, (4.3)
where p,, us. p, are the boundary values, while Ueomp, Peomp are calculated from the
computational domain. The values p and a are locally linearized and determined by
lagging procedure.

For linear equations, the BCs can be one order lower than the interior scheme
without reducing the global order of accuracy of the complete scheme [49]. Hence,
the zero-order space-accurate BCs will reduce the overall accuracy of second-order
schemes, while this will not be the case for the first-order ones. During numerical
experiments, the second-order extrapolation did not demonstrate extra advantage
than the first-order ones. The extrapolation techniques are discussed in {42, 43], for

applications to the MacCormak and two-step Lax-Wendroff type schemes see (83,
162, 163].



A tvepe of infow B 290 107] s chosen to be analysed in the following. At a

subsonic inflow boundary the total enthalpy and entropy are specified. in which

o P . 1 2 A
— ; p - 5 = ho. ['-r'”
sx £ = me {+.3)
pm =

The density pis ezleulated from equation (4.5) and introduced into the equation (4.4}

which provides

[ &

1
pT +su® = ho. (4.6)

= 1P
Differentiating the equation (4.6) and simplifving leads to the following momentum

cq:_x:ltion
dp - pudu = 0 (-‘LT)

In fact equation (4.7) is equivalent to the conditions (4.4) and (4.3). Note that
equation {4.7) is not equivalent to the right-propagating characteristic equation dp +
padu = 0. which should be used at an inflow boundary.

As another test case the outflow BC developed by Rudy and Sirikwerda [126,

127] is analyzed. They modified the following left-propagating characteristic relation

d d
w0 w0
into
o) d
a—f - pagu + ap(p = pec) = 0. (4.9)

The parameter o, is an empirical coefficient and is adjusted in order to yvield rapid
decay of transient disturbances. It needs adjustment in 2D setup. A drawback to
equation (4.9) is that at the steady-siate, one has the boundary condition p = p,
which is reflective according to the discrete characteristic waves. Figures 4.13 and
4.16 illustrate the solutions obtained by using this method. Note the effect of outflow

BC on the shock position.
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4.3 Proposed FFBC formulation

4.3.1 Equations used for isentropic flows

For modelling the inflow and outflow FFBCs. the Euler equations in primitive variable
form are used. This is because the primitive variables can be related to the charac:
teristic compatibility relations in a straightforward manner. The Exler equations for

isentropic quasi-one-dimensional flows cau be expressed as

a_p_,_l_d(puh". _ 0
aat g drd )
u Ju 10dp .
LY - = J4.10
R p Ox V. u10)

where H = H{z) is the cross-sectional area. It is noted that for FFBC modelling of
1sentropic flows, the energy equation is excluded, and the isentropic relation. £ =
const. is used instead. Converting the equations (4.10) in terms of the sound speed
is an effective way in the boundary condition approach in terms of wave propagation.

For this purpose the continuity and momentum equations in (4.10) are reformulated

based on the velocity and speed of sound, in the form

a_a'ua +Ar—laa_u =] —‘T_lau-l—ﬁ.{

gt* gx 2 gx T Ty YHd@

u o '_‘-_ _G. - R
§+u§77—1aax 0. (4.11)

Replacing the dependent variables with Riemann variables results in

d
X er+sE = 1 g0
d 1dH
aa?.(ﬁR-.*-aQ)a—f "S (B - Qg (412
9S  R+Q35 _
R T il (4.13)

where R and @ are the right- and left-propagating Riemann variables, S represents

the entropy, and a the speed of sound,

2 2 P
R=u-+ a, Q=u-— a. a=[v~, (4.14)
71 7—1 P
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Figure 4.4: Propagation of Riemann variables at inflow and outflow boundaries.

and where @ = (1 =+ %)/4 and 3 = (3 — 4)/4 are constant values. and 4 = 1.4 for
air. Equations (4.12) and (4.13) express the propagation of pressure and velocity
waves by Riemann variables and propagation of entropy along the streamlines. For
isentropic How with 4 = const at the upstream and downstream far field regions, the
system of equations (4.12) would be simplified. This vields the following nonlinear sets

of equations expressed in terms of the Riemann variables

dR ‘ OR _
—g—b+ (aR + 5Q)g—6'— 0,
T + (B8R + QQ)E =0, (4.13)

Equations {4.15) state the variations of the Riemann variables as functions of time
and space: it is noted that for isentropic flows the equation (4.13) is not used. In
Figure 4.4 the Riemann variables are shown when propagating through the domain
boundaries. The propagations of Riemann variables are shown in Figure 4.5 for a grid
point located on the boundary. In this case the disturbances can only travel along or

opposite to the flow direction.

4.3.2 Expanded Riemann variables approach

In the far field regions. the physical and numerical perturbations generated within
the computational domain will decay [7, 57, 92, 101, 143]. In regions of the flow

field where nonlinear effects are weak, the flow can be treated as a perturbation to a
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Figure 4.5: Riemann variable propagations for one-dimensional flow at a houndary
node.

constant free-stream, rectilinear flow. Such regions occur near and beyvond the FFBs,

Numerical experiments alse confirm the validity of the behavior that as one
gets far from the highly non-linear region. the Riemann variables tend to their free
stream values. Therefore. the intensity of the perturbations are in tnverse relation
with the distance to far field. Both the right- and left-propagating Riemann variables

are expanded into series as

m

R=R,.-+ Z Ri(t)er ),
k=1

Q = Qe + 3_ Qu(t)er{z), (4.16)

k=1
where R, and Q.. refer to the free-stream Riemann variables defined as
2 2 .
Cocs ro = Uow — Qoo (4.17)
v—1 ¥ -1

and where the perturbation functions are er(z) = ek*7 where w is a tunable {actor

Roo = Ueo +

and can be estimated, by taking a lead from the work of Verhoff et al {148}, as

TSe

J1= M2

where s. is a safety factor less than one, which can be calibrated by numerical tests.

& =

(4.18)

This factor can be optimized thereby leading to fast convergence. The Ricmann

variables are expanded up to the desired degree of accuracy
R=PRy+eR +€€Ra+--,
Q=Qw+5Ql+52Q2+"': (4.19)
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where the notation « = =7 has been introduced. These expansions reflect the far field
behavior of the inviscid compressible and viscous compressible flows. Introducing the
enpansion: (4,197 into the equations {4.13} and doing some algebraic manipulation
resizlts in she lnearized cquations in terms of the first- and second-order perturbation

vquations. These vquations are uncoupled. First order perturbation equations are

”_ﬁ‘ = slaR., + 300k, = 0. (4.20)
it

J0 _

?}]“ “ {3Rue + aQu )1 = 0. (4.21)

and second order perturbation equations take the form

a—;} + 2(aRee + 8Qus) o + w(a Ry + 3Q1) Ry = 0,
% + Zu(JR:\; -+ QQ&:)Q‘J -+ ---'(BR;[ - an)QI = 0. (4-22)

In the far field regions downstream of the computational domain, the solutions can-
not accept exponentially growing terms. Therefore, the functions ¢;(—z) should be
used in the expansions (4.19). This is equivalent to a sign change for w in the equa-
tions (4.20)-(4.22). Considering the second-order equations (4.22) in addition to the
first-order ones may lead to more accurate results. however, they demand more com-
putational effort than the first-order equations. Figure 4.6 shows the propagations of
the Riemann variables and entropy waves at two consecutive time steps. The slopes

of the characteristic lines will be varying during the time-integration process.

4.4 Boundary condition development (isentropic

flow)

The FFBCs are formulated in the next sections based on the assumptions made for
the flow behavior at the far field regions. Linear characteristic theory determines
the directions of wave motion in and out of the computational domain. For FFBC

development it was assumed that:



Figure 4.6: Time evolution of the characteristic waves (Riemann variables) at a bound-
ary point for two consecutive time levels.

p—a

. Disturbances decay as they approach o the undisturbed free-stream.

[V

. The free-stream region flow variables do not vary with time.

e

. Disturbances consist of residual, acoustic and entropy waves.

4.4.1 Upstream far-field region

For the region upstream of the computational FFB (i.e. £ 0} the exponential terms
in expansions (4.19) will be suppressed, then R and @ would tend to far field free-
stream values. If the origin is located at the inflow boundary (z = 0) the spatial

functions €;(x) would become unity, hence
R=R°°+R1+R2+"'!
Q=Qu+Qi+ Qoo (4.23)

For locally-subsonic flows, there are two downstream-propagating waves carrying in-
formation from outside of the computational domain to the inflow boundary and one
upstream-propagating wave carrying information from the computational domain {nu-

merical solution) along the characteristic lines. For updating the far field solution at
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e Yo ntinilary ol has YO Solve The hirste-order DerTurdalion eqguation

i}!‘f,; , . X .
— il - 30, Ro=0. .24
9N '

e b ocntesrated In time either by an explictt or impliclt method: the explicit
approach s chosen here,

Ry~ = Ry
A

~wtafy ~ 3Q. R = 0. 14.25)

The time step for inteorating the perturbation equation (4.24) is taken smeller than
the time step used for solving the How field. This smaller time-step delays the pertur-
bition waves in reaching the FFBs of the computational domain {73, 92{. Then the
guantity A s updated from the expansion (4.23) up 1o the first order degree at each

thne-step

R.-;-'.-I(é) =R.+ R;"‘I(‘) (+.26)

The information which is carried out vy the left-propagating Riemann variable Q, is
vbtained from the computational domain following the corresponding characteristic
line. This kind of interpoiation is more stable than extrapolation methods and is
consistent with the direciion of outgoing wave from the computational domain in
whick the relations uy; = fi(us wsy) and aap = fo{u; wier) hold. This interpolation
is expressed as

n+1 T 5 n o—-

= Quy = Qu=(1- —)Q + —0Q%y. (4.27)

where ¢ is calculated from Appendix G. Once the value of Q731 (i} is known, the

wOmp

perturbation function Q3! is computed from the equation (4.23) as
Q7)) = Quip(d) — Q- (4.28)

which is needed for the second-order formulation of the boundary conditions. Then,
the values of the left- and right-propagating Riemann variables are known. therefore

the far fieid and inner domain solutions are matched to determine the How variables
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at the boundary, For inflow boundary the following relatious are used 1o caleulate

the boundary values at each time step

. 1 . . ‘ ~ =1 . .
n=1 _ - pu=1 Nl ne=l __ sl pnl
Uy = _)'kR - Q:an;p)‘ Uy = 3 kﬁ Qcmr;p)'
—tm
-~ P 1
n=l p:-: n=142 na=1l _ el na1,2
Piw = [. {a:'n )j\ . P = TPu (am "
1Poe '
1 piFt
n==1 _ in : n+1y2 305
W= e Tylunn)n (1.29)
c in =

The flow crossing rae inflow boundary is assumed to be isentropic (this is the case for
most of the applications). therefore isentropic relation holds between the far field re-
gion and the inflow boundary. The conservative flow vector [pir’ . {pu)ir!, (pEYTYT

is then calculated and coupled to the numerical scheme in order to close the system

of hyvperbolic equations.
The second-order perturbation equation could be used for inflow boundary if
one solves the following equation

%‘?‘1 + %(aRy + 3Q )R + w(aRI + QTR =0, (4.30)

where the values of R; and Q; have already been calculated by solving the first-order
perturbation equation (4.24). Ther R is updated using three terms taken from the

expansions {4.19). The time-step which was used for solving the far field perturbation
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couations was dess than the global time-step for the computational domain., This

celioss the disturbanees in reacthing the boundaries J53. T4, 920,

4.4.2 Downstream far-field region

I order to suppress the growing modes at the downsiream region of the computational
houndary e, o > L), the functions ¢,{ =) have to be used in the expansions (4.16).

el

R':Rf:\: ‘:-GR]'E'f:R-_»':.‘"‘.
Q=Qu+eQi+€Qa+- . (4.31)

where in this case ¢ = ¢™%. For locally-subsonic isentropic flows, there are two
downstream-running waves carryving information to the downsiream boundary from
the numerical solution and one upstream-running wave carrving information from
outside of the computational domain. The updating process for the outflow FFB is

done by solving the following first-order perturbation equation
—= — (B8R + aQx)Q; = 0. (+-32)

With an explicit time-integration scheme, it becomes

n+l _ An
B (R + Q)] =0, (4.33)

Similar to the upstream boundary case, the quantity @ is updated from the expansion

relation (4.31) at each time step
O = Qo + Q7. (4.3

The right-propagating Riemann variable R is computed from the computational do-

main along the corresponding characteristic line

i 6 n \ 5 n =
RC::‘?};) = R_.\': = R_\.- = (1 - E)Ri_z - E‘Rg . . (4_33)
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where ux = g1{u;-1.4;) and ax = ga{a;-q1.@;). In the interpolation relation (4.35).
the direction of outgoing wave has been taken into account. Upon compniation of

Rz, the RT™) is determined from the foilowing relation

R (3) = YR — Ra). (1.36)

comp

which is needed for the second-order formulation of the boundary condition. Then
the velocity and speed of sound at the outflow boundary are determined by matching

the far field and near field solutions at each time step, as

= S(REL+QW. a = IR, -0 )

4 comp

Then, the rest of flow parameters are calculated as

n+1 28 ( atiy2| ™ at1 _ 1 am u+1)2
Poue = vp Qout ) H Powr = _{pou: (aout s
o
. 1 p“'H
(25 out - +142
Bt = ol Sty (439

The conservative flow vector [oh%}! . (pu)23! | (pE)RFHN7 is then completely calcu-
lated. This vector is coupled to the numerical scheme for properly closing the system
of hyperbolic equations. For outflow boundary treatment, the outgoing information
carried by R is calculated from the computational domain. The second-order pertur-

bation equation for the outflow boundary can also be used for more accuracy in the
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The valne of € 1 then updated using three terms from the expansions (4310,

Many numerical solution algorithms for Euler equations use the FFBCs in which
f.oand (. are specified at inflow and outflow boundaries respectively: however.
this requires an extremely large computational domain. with very negative effects on
the computational efficiency. The proposed model allows flexible variations of the
Riemann variables during the time-integration process.

Althoigh the entrupy should be theoretically constant for the isentropic fows. it
can vary due to discretization and boundary treatment errors. To avoid this situation

thie value of total enthalpy should be checked during the numerical computation.

4.5 Outflow boundary conditions for nnn-isentropic

. flows

For guasi-1D tlows the non-isentropic conditions occur when entropy is generated
within by the formation of a normal shock in the diverging part of the nozzle. Entropy
variation after the normal shock is convected to the downstream of the flow within
the cdmputa.tiona.l domain. For this case the Riemann variable formrulations of Euler
equations are modified by considering the entropy change inside the computational

domain in the form

aR + (R + BQ)— = F(R.Q.S), (4.40)
%‘f +(8R+ Q)T = 7:(R.Q.5) (4.41)
35 R+ Q as

S+ =0, (4.42)

where the functions .F;(R, @.5) and Fa(R. Q. S) are

. -1l 2 [R+Q)_ 2 18R-Q)]
® ARQ.9) =~ R QS - 59 [T - st
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and where a = 55, 0 = 37 and the eutropy S are not constants ax in the isentropic

flow case. For details about the equations 1400 and (4.41) sce Appendix DL L these

equations. the entropy is connected to the state variables as following (110, 151

and the Riemann variables have been moditied for the non-isentropic case as [143, 11

{see also Appendix C)
R=u+ Sa. Q=u-—- Sa. (115)

From the relations (4.44) and (4.43). the pressure is related to the Riemann variables

aud entropy as

- R"O o (S 1 3
p:a-,' ~—1(__..__—')s-1e (5 -v-:)_ (-L-H))

' 25
The modified equations (4.40) and ({4.41) take into account the effect of entropy change
accross the shock wave. At each time step the entropy S is convected towards the
outfiow boundary and eventually propagates out of the computational domain by
another non-isentropic (mixing) process. The ontropy generation downstream in the
flow domain does not affect the upstream and isentopic inflow BCs are still valid.
Therefore, for non-isentropic flow only the outflow boundary condition is {ormulated
by using the expansions of the Riemann variables and considering the characteristic
propagation directions. As in the isentropic case, the modified Riemann variables are

expanded into asymptotic series (equation (4.19))
R= Ry +ehy,

Q=Q05+EQ1'

Here the first-order outflow boundary condition is developed for the non-isentropic

flows. After introducing the above expansions into the equation (4.41) and considering
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Figure 4.9: Entropy propagation in the steady quasi-one-dimensional flow.

the fact that, the entropy wave is convected towards downstream. One gets for the

left- propagating Riemann vartable

0

T - w(‘ij + aQoo)Ql = g(Rh Qh S)- (447)
where
Gl 2 (R - Q)
G(R,@1,8) = 35 (-5",7_1)“1«: Qo) 11+ + 7-13 | (4.48)

In the above equation S is calculated from the computational domain based on the
refation (4.44). After solving cnation (4.47) as shown in section 4.4.2, the deviation
of Q"' from the far field value is also calculated. The RLEl is calculated by the

interpolation (indicated in section 4.4.2); hence,
RYP(d) = T RGL(E) — Ro)-

Then the velocity and speed of sound are found in the form

1 ) Rﬂ+'l — Qn+1
n+1 _ n+1 n+ n4l __ “comp %
Upue = :;(Rcomp + Q )‘ Qout = .)S“.HI (4'49)
= “~comp

Note that Ry*' = Rl and Sp+' = S3F (Figure 4.10) are calculated from the
numerical solution in the computational domain considering the characteristic direc-
tions. At each iteration step the discretized form of the equation (4.47) is solved
explicitly for Q"*! and the updated value for Q7! is then determined. Finally, as

in the isentropic case, the rest of the flow variables are computed from the values for
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Figure 4.10: Characteristic lines propagation for non-isentropic low at outtow bound-
ary.
R Sty and Q™F1. The information propagation for the non-isentropic is shown
in Figure 4.10 for an outflow boundary.

Remark: The reflection concept applies to physical and numerical phenomena.
The nonrefiecting boundary conditions were proposed by several authors [30, 37, 53,

74]. Equations (2.25) in discrete form can be written based on their intensities as

Awy, = Ap + palu,
Aws = Ap — a"Ap.

Aws = Ap — padu. (1.50)

In discretized form. the intensities Aw,, Aw, and Aw; are not exactly zero unlike their
analytic counterparts. In numerical calculations this causes errors {or disturbances}
at the boundaries. Different waves propagate at different velocities. Hence, a time
step appropriate for the fastest waves may be inefficient for other waves. In 1D flow,
waves travel perpendicularly to the FFBs. For multidimensional flows finding the

propagation direction is not so trivial and it can be found approximately [101, 119, 75).
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4.6 Model validation and numerical results

Using the proposed FFBC model enabled us to reduce significantly the size of the
commputational domain and. as a result. also the size of the block tridiagonal matrix
to bre inverted.

Numerical computations were conducted for two types of computational do-
mains, namely extended and reduced. Basically, the domain consisted of a channel
having o cirenlar-are-bump. which is located at the middle of the lower-wall and the
upper-wall is straight. The thickness of the circular-arc was 10% of its chord length.
Also the channel height was taken to be equal to the chord length. The extended
computational domain has a total length of five chords. It is extended two chords
from both upstream and downstream sides with respect to the circular-arc-bump. In
this case the computational domain contained 60 equally-spaced grid points.

The reduced computational domain consists of the circular-arc and an extension
of just two grid intervals (or % of chord length) at both the upstream and downstream,
where N is the number of grids along the circular-arc portion. In this case. it contained
214 cqually-spaced grid points. In fact, both the extended and reduced computational
domains have the same geometry, the only difference is between their lengths and
hence the number of grid points.

Two different flow regimes (subsonic and transonic) were calculated by imple-
menting different types of boundary conditions at the inflow and outflow boundaries.
The exact solutions (which can be obtained for the quasi-one-dimensjonal case) were
used for comparison purposes.

Table 4.1 shows the results obtained for different longitudinal extensions of
the computational domain (first column) with different formulations for the far-field
boundary conditions; in this table, the indicated Mach numbers are calculated at the
mid-point of the circular-arc-bump (or minimum cross-sectional area) calculated for
several cases. By contrast, the solution obtained by using the conventional boundary

conditions for a reduced domain shows a deviation of around 3.7% in comparision to
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Table 4.1: Comparisons between the reduced and extended compuational domains
with different tvpes of FFBC treatments. CFL=41.

{ Mach number | Grid pomts | Errort | lterations |

at mid-chord | : IW

i Conventional FFBC treatrnent. 0.7110 60 b0l 194 H

i extended domain [ | |

Conventional FFBC treatment. 0.6714 24 2.0 1Td |

reduced domain @

Present FFBC model. 0.7102 21 0,237 141

reduced domain

i Exact solution 0.v120 ! 24 [ 0.000 - |

the exact solution. It was also found that the present FFBC model on the reduced
grid displayes a much better computational efficiency. requiring about 2.5 times less
computing time than the conventional FFBC treatment for the same geometry in an
extended domain.

It was found that the solution obtained with the proposed FFBC model is in
very good agreement with the exact solution. Memory requirements are substantially
reduced with decreasing the number of grid points by applying the proposed FF'BC
model.

The subsonic flow solutions, obtained with isentropic FFBCs, are shown in Fig-
ures 4.11- 4.14, and the transonic flow solutions, obtained using a non-isentropic
outflow boundary condition, are illustrated in Figures 4.15-4.20.

Figure 4.12 compares the solutions for the extended and reduced computational
domains with the conventional and proposed FFBC methods, respectively. Good
agreement was found between the solutions obtained with the proposed FFBC model
for the reduced domain and the conventional FFBC treatment for the extended do-
maiz. The extended computational domain can be used as a criterion for comparison
purposes, as it can be seen from the comparison with the exact solution in Figure 4.13
(enlarged view).

In Figure 4.14 the effect of the first- and second-order perturbation equations is
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exatmined and compared versus exact solution. Applyving the second-order equation
inproves only slightly the accuracy. whilst it increases substantially the amount of
ralenlativns reguired.

For the non-isentropic flow, the numerical experiments were conducted for tran-
sonic flows in the same circular-arc (10%) channel and the results are shown at tne
end of this Chapter. A small amount of over- and undershooting takes place through
the shock i the case of transonic flow by using the proposed FFBC model. Memory
requiretnent is reduced with decreasing the number of grid points by applying the
proposed FFBC model.

Figures 4.15 and 4.16 show how much the solutions can be affected by imple-
menting the different outflow boundary conditions for a transonic flow, while keeping
the conventional inflow boundary condition the same.

Figure 4.17 illustrates the effect of the conventional FFBC treatments for the
wransonic flow case. The shock position is dependent on the type of outflow FFBC
method that used. Pressure distributions for the same case are shown in Figure 4.18.

Figures 4.19 and 4.20 illustrate the Mach number and pressure distributions
obtained with the proposed FFBC model compared with exact solutions for the quasi-
one-dimensional flow. A good agreement was found between these solutions.

The convergence histories are plotted for both subsonic and transonic flows in
Figures 4.21 and 4.22. Using the proposed FFBC model led to reduced iteration steps
in subsonic case, however no considerable difference is observed in transonic case. It
could be because of the strong reflections from the domain boundaries, when a shock
is present inside the domain. As it is shown in Figures 4.15 and 4.16, the outflow BC

has the dominant effect on the numerical solutions.
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Figure 4.11: Subsonic flow: Mach number distributions for extended computational
domain (conventional FFBC treatment) and reduced computational domain (conven-
tional FFBC treatment). M, = 0.6, CFL=1.8, circular arc 10%.
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Figure 4.12: Subsonic flow: Mach number distributions for extended computational
domain (conventional FFBC treatment) and reduced computational domain (pro-
posed FFBC model). M, = 0.6, CFL=1.8, circular arc 10%.
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Figure 4.13: A comparison of Mach number distributions in four cases: (enlarged
view) a) Reduced computational domain (proposed FFBC model), b) Exact solution,
¢) Extended computational domain {conventional FFBC treatment), d) Reduced com-
putational domain (conventional FFBC treatment). M, = 0.6, CFL=1.8, circular
arc 10%.
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Figure 4.14: Subsonic flow: Mach number distributions within a reduced computa-
tional domain, resulted by applying the first- and second-order FFBCs in comparison
with the exact solution. M, = 0.6, CFL=1.8.
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Figure 4.15: Transonic flow: Effect of the conventional outflow boundary conditions on
Mach number distributions obtained by a fixed inflow condition and outflow methods
of Eidelman [29], Rudy and Strikwerda [126]. My, = 0.71,p, = po. CFL=1.2,
compared with exact solution.
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with exact solution.
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Figure £.17: Non-isentropic flow: Mach number distributions for extended computa-
tional domain (conventional FFBC treatment), exact solution, reduced computational
domain (conventional FFBC treatment). M, = 0.7, ps = poo. CFL=0.9.
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Figure 4.18: Non-iseptropic flow: Pressure distributions for extended computational
domain (conventional FFBC treatment), exact solution and reduced computational
domain (conventional FFBC treatment). M, = 0.7, p = poo. CF1=0.9.



1.4

|-
? Exact (analytic) solution
13 - - | .
i Proposed FFBC treatment -
" ({reduced comp. domain) | 3
e lpenes ‘ I
12 — /.
_ | Circulararc 10% /
O 11 - :
R 4 |
3 L :
c 1r- '!- i
ST » ‘=.
© ) ':
S 0.9 !.
. .'.- i‘
08 [ 2 '
. ;
i . 3
-"" )
07 o E\%
0 6 . | . 1 s | . ! s
0 5 10 15 20 25
length

Figure 4.19: Non-isentropic flow: Mach number distributions with exact solution
and solution with the proposed FFBC model (reduced computational domain).
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Figure 4.20: Non-isentropic flow: Pressure distributions with exact solution and so-
jution with the proposed FFBC model (reduced computational domain). M., = 0.7,
Po = Pew, CFL=0.9.
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Chapter 5

Far Field Boundary Conditions for

Two-Dimensional Confined Flows

5.1 Introduction

Throughout this chapter the strategy developed for 1D flows in the previous chapter is
followed in order to formulate the inflow and outflow FFBCs for the time-dependent
2D internal flows. This mode!l considers the asymptotic decay of the flow pertur-
bations and allows FFBs to be located much closer to the ronlinear region of the
computational domain.

The natural coordinate system for Euler equations were used in order to define
the Riemann variables in two spatial dimensions. The FFBC model was formulated
and applied to the isentropic and non-isentropic flows. Proposed model alleviates
the difficulty related to the directions of information propagation. Expansions of the
Riemann variables were used to describe the perturbation decay in the far field regions
along the main flow direction. Present model incorporates the information from the
far field regions and also computational domain. The numerical solutions obtained
with the conventional FFBC methods and the proposed FFBC model are shown and

compared at the end of this chapter.
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5.2 Conventional FFBC treatments

5.2.1 Algebraic extrapolation methods

Algebraic extrapolation consists of zero-. first- and second-order degrees. Thev can be
in time. space or their combinatiorn. During the numerical experiments. it was fonnd
that usually first-order extrapolation is a good approximation for the most of schemes,
in an extended computational domain. At subsonic inflow boundary, the tlow angle,
the total entalpy. and entropy are specified and held constant. At subsonic outtlow
boundary. the static pressure is specified and otner fow variables are defined by using
an algebraic extrapolation of zero or one degree. This procedure has been used by

different authors {29, 96. 69).

5.2.2 One-dimensional characteristics approach

This way of boundary treatment which is widely used by the authors for multidi-
mensional flow problems. It depends on the grid topology used for generating the
physical domain and FFB. In this approach, the normal component of the velocity to
the FFB is taken into account and the tangential component is assumed to have no
effect on the boundary treatment [68, 116, 125, 136]. In this case equations (4.3) can

be rewritten by replacing the velocity by its component normal to the FFB, in the

form

Pb— Poo + pa(tis — Uie) =0,
Po = Poo — ag(Pb - Poo) =0,

Dy = Peomp — Pa(u.'.b - u..Lcornp) = 0. (51)

[t was proved that this assumption is not true regarding the outgoing waves direc-
tions [101]. Other directions than the normal to the boundary surface may be selected
in applying the characteristic relations. One choice results from an analysis of Bayliss

and Turkel [7] which has been shown by Roe [119] to correspond to a direction making



ancanele with the incidens velocity direction rsee Appendiz Foo An alternative to this

ar oiven i Chapter 20 where the wave directlon was approximately found for the

far frend rosions,

5.3 Proposed FFBC formulation for 2-D confined

flows

5.3.1 Equations used for isentropic flows

[n practice. internal aerodynamic flows are represenied by compressible flows between
solid walls. For this kind of flows having subsonic free-stream Mach numbers, the
perturbations in the presence of solid obstacles are propagated to appreciable distances
upstream and downstrearm of the solid obstacle. which is a highly nonlinear process.

For 2D formulation of FFBCs we proceed with Euler equations

3p|3p_3 ou  Ov

B0 T THE Ty =0

o, B, o 15

ot " Y9z Lc'?y poz

v v 31. 10p _

—_——h Y— - YP— - —

ot " ox ay POy
9 .p a.p P\ _ = o
52+ ug(B) + o2y =0, (52)

where the energy equation is replaced by the isentropic relation. For wave propagation
problems the density and pressure in the equations (5.2) are expressed in terms of

sound speed. therefore, one gets

da  da da =1 du v _
ETua—z'f' a + > a(a ---5;) 0,

5 P_"’ +Uax Iz +v-a—y(;;)=0. (5.3)



When the equations (3.3) are expressed in natural coordinate svstem, they can be

formulated as following

JR R ~ =1 L O
_— ’; e ()7 —
T (aR JO\ T R =Q T
aqQ C)O ~ =1 . gl
= (3R +aQ e R~ Q")
ot W2 ok ]()a N A ¢ n
o6 . R+Qd0  ~—=1R-Q&R-Q)
ar 2 as 1 R+Q  dn
95 R=QoN ]
7o (5.4

in which the left- and right-propagating Riemann variables are defined by

2 2
R=g¢+ a. =q— a.
~ =1 v -1
-1 v L - -
f =tan™ - g = Vu? + 3, (3.5)
u
where the a = -—- and 3 = —— are constants. For derivation of equations (3.1} see

Appendixes B and D. Equations {5.4) express the propagation of pressure waves by
Riemann variables, the propagation of entropy along the streamlines. and the variation
in time of the inclination angle, 8, of the streamlines. The system of equations (5.4}
was also used by Verhoff et al [152] as flow field solver.

The spatial derivatives in the Cartesian and natural coordinates are related by

the following equations, as discussed in section 3.2.1,

J . a0 g . ,0
A cosBam -+ sin Ga, Pl —sin Gaz -+ cos 9-3_3}_’
g . ,0 2 _ d d -
3z = Cos 95.; —sin Ga—n, Pl sin Ba + cos 9-3-7; (5.6)

To discretize the equations (5.4) with finite-difference methods along the FFB, it is
advantageous to transfer them into the Cartesian coordinates; thus for isentropic flows

(S = const), equations (5.4) become

§£—+( R-i-,'3'Q)(cos€%§-é-san%E =
171 mr_ 0% [ 02+ cos0®
(R - Q) mﬂa -'-cosBay]
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Figure 5.1: Propagation of Riemann variables at inflow and outflow portions for time-
dependent two dimensional flows in a certain time level.

C;f +(3R+ aQ)(cosB%Q--—Smchj)
2 2 Q ?_9_... S @
3 (R—Q)[—mﬂa coﬂay].
R+ 06 a6
.5{ : 5 Q(cosﬂa—z-sme'a—g) =
_-.:12;3 [—sined(Ra; Q) ,cosﬁa—(‘%y—Q)] (5.7)

Equnations (3.7) are the governing equations for the isentropic compressible flows ex-
pressed in terms of Riemann variables and flow inclination angle. The system of
equations (3.7) includes nonlinear terms which are linearized using the expansions
of the Riemann variables as far field solutions. This system also express the propa-
gation of left- and right-propagating Riemann variables and the flow direction. The
trigonometric functions are linearized by lagging procedure. Figure 5.2 shows that
ouly the projections along z-direction contribute to the boundary formulation, if the
How crosses the boundary at a right angle. The directions of the outgoing waves are

found from the equations (2.69) of Chapter 2.

5.3.2 Expanded Riemann variables approach

The Riemann variables possess an important role in the information propagation. In

1D flows they are defined along the characteristic lines, while in two and three space

38



Qe

R,

Figure 5.2: Projections of Riemann variables at FFB of two-dimensional tlow at a
certain time step.

dimensions they consist of surfaces or hypersurfaces. Usually the far field values can
be reached by asymptotic expansions of the Riemann variables (such as Fourier ex-
pansions in [148]). Note that the Fourier expansions obey the exponentially decaying
property [39]. In light of these observations the Riemann variables are expanded
asymptotically along the main flow direction. Since in this direction the flow varia.
tion is steeper than the other directions. The physical understanding comes from the
fact that at distances far from the nonlinear region of the computational domain, the

perturbations would be attenuated to have very small intensities. Therefore,

R(z,:t) = Reo + 3" Rely: t)exl2).

k=1
Qz.9:1) = Qoo + 3" Qulys t)eula).
k=1
B(2,0:1) = b+ 3 Bi(y, t)es(z), . (58)
k=1

where ¢.(z) = ¢"*, and w is the separation factor which is estimated from the work
of Verhoff et ol [148] as w = 7;-3“? sy is a safety coefficient. For derivation of the
-M,

separation factor see Appendix H. The R, and Q.. refer to the far field Riemann
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For our ehianne! flow the free-stream velocity s parallel to the solid walls. Le. ¢ = us.
Also. the unknown funetions R; and @, are determined numericzlly. Predefined
triconometric functions have been used for simulating the perturbations along the
g-direetion 43, 46]. Since the propagation directions are not known along y-axis.
therefore, the consistent wayv is the space discretization of the Riemann variables.
Expanded Riemann variables as far field solutions are sought for the regions bevond
thie FFBs. The underlyving principle is that the streamline variations of both upstream
and downstream propagating perturbation waves should decay to zero at infinity. A
physical model of the flow outside of the FFBs provides the boundary conditions
which interacts with the interior flow. Hence, the equations (5.8) are expanded up to

the desired degree of accuracy

R(Ieyet) = Roo+5R1(y7t)+5232(y!t)+"'r
Q(Iwyrt) = Qoo'i'ch(y?t)"rezQE(y?t)-:"'"
B(2.y.t) = Ooo+€br(y.1) + 02(y.1) + -+, (5.9)

where ¢ = ¢ and §,, = 0 for the confined flow applications. Introducing the ex-
panded Riemann variables (5.9) into equations (3.7) and performing some algebraic
manipulation vields the following partly uncoupled equations. The first-order pertur-

bation equations become

66% 4+ (0B + 8Q) {le cosd + -a%sin 9] =
=1 mr 2yl < a ., % .
3 (R, — Q%) [ why sin8 + 33 cos 9] ) (5.10)
6.& + (B8R + aQy) [w@ycosf + a—-lein 6| =
at By
- 1 0] ) . aa -
‘)T(R;a -Q) [—wﬁ; sin§ -+ a_yl cos 0] . (5.11)
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EEL -+ 'j R\. + Qc\.) [...'01 cosll + L()ul N H] =
2 _IRC\‘_QuD . - d(HI—Q‘) e 5 1
TR 0. [ R - Qp)sinf + T(Obo . (5. 12)

in which the non-linear terms like sin @ and cos @ are calculated by lagging procedure,
To achieve higher accuracy. the second-order perturbation equations can be nsed.
The second-order perturbation equations are expressed as

%T(OR +3Q )[-whﬂ{()\0+

R, sinfl| +
dy

(aRy + 3C) [wR, cosf + =

adl:! sin 0] =

A IR S CR VI _‘_3_0_2 .
3 (R, = QiLH—2wh:sin 0 + 5y cos ) +
ARWR = Q@i Y{(—wlysind + (z)—i: cos 0)]. (5.13)

6Q5 —— + (BRw + aQc) ['.Zqu cosf + %?}3 sin 0] +

(BRy + Q1) [in cos f + a;i‘ sin 0} =

—-}-[(Ri; — Q2 )(—2wh,sin 6 + %0—; cos0) +
R Ry = Qoo@1 ) (—why sind + %cow)], (5.14)

692 R; +Q1 091 o ] % .
Bt +R 0w EN + (Rm+Q°°) [-w92c050+ 3 sind| +

(Roo + Qoo)(Ra + Q1) [Ugl cosd + %sin 0] =

dy
_T;lgzlg: [__w(nz_Qz)sinM?L%;—Qi)coso]—
Tlefi:_'.g; [_ (R, Ql)smg_i__.(.&ai__Q‘lcos(]]. (5.15)

The solution of second-order perturbation equations (5.13), (5.14) and (5.15) is pos-
sible after solving the first-order ones and finding the Ry, €, and 8,. However, as
shown in quasi-1D case, the first-order FFBC equations provide an acceptable overall

accuracy of the numerical solutions.
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Figure 5.3: Far field regions, extended and reduced domains for confined flow.

5.4 Boundary condition development (isentropic

flow)

In time-dependent 2D flows the FFBC modelling should be consistent with the hy-
perbolic nature of the problem: it should take into account the signals that separately
reach to the FFBs. In time-dependent 2D flows, a point is reached by a multitude of
signals whose paths are the bicharacteristics converging to it. Therefore, 2 dominant
wave direction is required. For FFB modelling, note that a part of information is sup-
plied by far field solution, while the other part is provided by the numerical scheme
within the computational domain.

This FFBC model takes into account the information interchange between the
computational domain and the outer absent world at the FFBs. In Figure 5.3 the
extended and reduced computational domains, also the far field regions are shown

for the confined flow case. Approximate outgoing wave direction (equation (2.71)}
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Figure 5.4: Propagation of the outgoing wave {ronts with different orientations towards
an inflow boundary in a 2D setup.

ts restricted to the neighborhood of FFB and is not valid globally. Before applying
the equations (2.33) to outgoing waves a value of z;; is found and compared to /2.
When ;; = 0, then equations (2.56) yield dv = 0 or v = const. This means that for a
FFB aligned with y-direction, equations (2.56) do not contribute to the information
exchange between the far field and computational domain. However. in confined
flow applications, propagations along y-direction affects the values on the solid walls.
Figure 5.4 illustrates the possible directions of the propagations of the outgoing waves
at each grid point. In fact each grid point, located at a FFB. can experience these
three possible cases during the time-integration process. To determine the value of ¢,
equation (2.71) in discretized form is used. Note that this equation is locally valid.
A multitude of waves move inside the computational domain during the iteration
process. However, we are interested in locating the ones which strike the FFBs. Since
each wave carries information from the numerical solution. For the oblique FFB with
respect to the z and y directions, both the equations (2.33) and (2.56) are used. From
Figure 3.3, along the direction normal to FFB, one has for left- and right-propagating

Riemann variables the following
R:y = Rysiné, —Q,coséb,,
Qis = —Q,sinf, + R, cosb,, (5.16)
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Figure 5.3: Oblique FFB with respect 1o Cartesian coordinates.

where 8, denotes the FFB inclination, which is also shown ir Figure 5.5. Plugging
the values of R,. R, and Q.. Q, from equations (2.62) into the equations (5.16) and

doing some algebraic manipulation, it follows that

Riy = qup+sin(f; + ) s

——

9
Que = —gqus+sin(d +g9)‘v — Ia, (5.17)

where g1, 1s the velocity component normal to FFB defined by

qus = usind;, — veosf,. (5.18)

At each grid point on the FFB. one has

5B = Q)

@ = ﬁ;l_@(awz-om) (5.19)

gis

Having calculated the values of ¢, and 8, the velocity components are found using

the equation (5.18)

cosf siné

U= S, — o) Y sin(8, - O)

(5.20)
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Note that the flow direction # is calculated from the frst-order equation (3,123, since
f = 8. =~ 8. The above relations are used for information caleulation from the

computational domain.

5.4.1 TUpstream far-field region

For upstream region far from the computational boundary (i.c.. r << 0 the expo-
nential terms in the expansions (3.9) become very small. and hence R and (¢ would
tend to far-field free stream values. If the origin is located at the intlow boundary

(x = 0) the functions ¢** become unity. and hence

= Qu + Q1+ Q2. (5.21)

For isentropic flows, there are two downstream-propagating waves carrying informa-
tion from far-field regions towards the upstream FFB and one upstream-propagating
wave carrying information from the numerical solution. At an inflow FFB the per-

turbation equations {5.10) and (5.12) hold as

OR, . R,
St (aRes + BQc0) [u.Rl cos § -+ ——a-I}—SInG]
v=1 2y | . ?_?l
—S—(Rm - Q) [ why sind + 5y cos 9] .
3;; + (Ru, F Qoo) [wel cos f + %iy‘sin 9] =
¥=1Re = Qoo . B(Rl Q)
T R.t0. [— sin 8( Ry — Q)w + cos - % }

After discretization of the above equations in time and y-direction, which is discussed
in section 3.3, the perturbation values (namely R} and 6}7!) are obtained by pro-

ceeding in time. Then the value of Q; is determined from

Q37 H1.7) = Quhn(1:7) = Qu, (5.22)
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Figure 5.6: Propagaticn of left-propagating Riemann variable at inflow boundary
along the calculated bicharacteristic for time-dependent two dirmnensional flow.

where Qeomp 1s the Riemann variable obtained from the numerical solution along the
dominant wave direction. Numerical experiments showed that interpolation along the
dominant wave is advantageous than extrapolation in terms of accuracy, convergence,
and stability. Calculating the outgoing wave direction is an important issue, and
differs from one grid point to the next. Furthermore, this direction does not need
to remain fixed during the computation. Interpolation along bicharacteristics does
not rely on a fixed direction of the outgoing wave. The only assumption made is
that at each grid point there is one such direction, ¢;;, which is calculated locally.
This direction may also be found by geometrical considerations [119]. A rough choice
might be the local flow angle (e.g. ¢ = 8). The outgoing waves can be damped near
the FFB that was proposed by various authors [67, T4]. The damping proposed by
Kosloff aud Kosloff [81] acts on both incoming and outgoing waves. For confined
flows the inlow and outflow FFBs are often taken perpendicular to the free-stream
velocity direction. Therefore, when 6, = x/2, one has g;5 = u. Hence the Riemann

variables from equations {5.17) become

9
Riy = u+ coso— 1a=1-?.m

T

2
Qus = —u 4 cos o Q. (5.23)
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By assuming 2 &= €. one comes up with

Q u 2
h - -
= - a= . (h.24)
cosy vosye o — |
where == = ¢. Figure 3.6 shows how the values of © and a are interpolated between

the grid points (1.;) and (2.7) as in section 1.1.1, then the value of Q"' is known.
Also, the R™*1 and 0"*! are computed {rom the cquations {5.10) and (5.12). An alter-
native is to use the equation (2.71), which was derived in Chapter 2. Equation (2.71)
is approximated by forward time discretization as

‘Yl+l n

Vis  — Uy T
tan @y = —pm——=, 5.25
The calculated flow variables at the previous time-step are then updated
w" = l(Rn-}-‘.l + Qn+l) a™t! = 71 (Rn-}-l = Qu-l-l) (5.26)
2 W u b .1 cos (’9 u u y (L4
so the velocity ¢ is known from
un-}-l
nel __ 27
7T s (3.27)
and finally
l)
1 1 < 1 .
::t:r'np = Qb = Qﬂ»l = Q"+ - - - lan+ - (5.28)

Having the value of Q7. from the above equation, the R™*! and 0™*! arc known by
solving the equations (5.10) and (5.12). Equation (5.25) showed better performance
regarding the convergence than the assumption (@ = 8). In Figure 5.7, the propaga-
tions of the Riemann vairables at two neighboring boundary points arce shown at a
certain time. For each boundary grid point, these variables are calculated based on

their directions of propagations.

5.4.2 Matching the far field and near field solutions

Having calculated the values of Riemann variables and the flow angle at the inflow

FFB, one can determine in a straightforward manner the remaining flow parameters
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Figure 5.7: Propagations of the Riemann variables and entropy at a certain time-level
for the two consecutive boundary points.

as following

i ;
+1 = = 1 1 +1 n+1 __ n+l
q::x ._(Rn-}' + Q::mp » a::x (R comp/®
n-rI - q:t+1 cos 911-5-1’ n-y-l - q:n-rl sm Br..+1,
n$+l Poo n-{-l) A n==1 __ l n—l( n+1y2
Pin = +p ( Ain H P =
oo
1 pﬂ-i-l 1
1 n_o =1 o1 -
B = gl 4 (). 69
Pin -

The far-Beld and computational-domain solutions are genuinly coupled by the Rie-
mann variables along the propagation directions. Then at each iteration step the
conservative flow vector [p:‘,;" L (pw)a, (o0)5, (pE )“"'1] is known and joined to the

numerical scheme.

5.4.3 Downstream far-field region

For the outflow FFB being crossed by an isentropic flow, the left-propagating Riemann
variable is needed, which carries the information from downstream far-field region.
The value of Q is determined from the equation (5.11). For the region downstream of

the computational boundary (i.e. z > 0), the exponential functions should take the
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form e (r} = ¢7%7 hence

Ry+eRy =

@ = Qu+cQy+--- L3300

where ¢ = ¢7% in this case. In the streamline coordinates for isentropic flows. there are
two downstream-propagating waves carrying information to the downstream boundary
from the numerical solution and one upstream-propagating wave carrving informetion
from far-field region.

At an outflow FFB the right-propagating Riemann variable and the entropy are

calculated from the computational domain. and the @ from the following perturbation

equation
Q1 , , o, . .| _
rr +{BRe + aQss) [u.:QI cosf + By sin 0} =
~ =1 a - . 69
. - (R, — Q%) [—wﬂlsmf)-i-a—;cos@] .

An explicit discretization of equation (5.11) results in

n+l _ An
-‘_At_QL + (BRx + o) [le cosf + AA—?;- sin 9] =
%(Ria - Q%) [— sin fwd, + cos 9%’;—] . (5.31)

The flow variables at the outflow FFB are determined in a similar manner to that
used for inflow boundary. Then the conservative state vector is completed and joined
to the flow field solver.

Remark: Many numerical solution algorithms for Euler equations use charac-
teristic FFBCs in which R, and Q. are specified at inflow and outflow FFBs.The new
approach uses expansion of these quantities in a consistent manner with the physical

far field, while maintaining the hyperbolic character of the governing equations.
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5.5 Discretization of far-field perturbation equa-
tions

The time and space derivatives which were appeard in the far field equations for the

inflow and outlow FFBs are discretized as

OR: R = RE)

e A
96, ~ 0:71(5) = 67(5)
Jt At )

i ~ RIl.j+1)=Ry(l.5=1)
dy y(l.j+1)=y(l,7—1)

{5.32}

and similar relations for @;. At an inflow boundary, typically the perturbation equa-
tions (5.10) and (5.12) should be discretized and updated during the time-integration
process. An explicit discretization with respect to time is used. Spatial derivatives in
the equation (5.10) are approximated by central differencing, since the directions of
disturbance propagation along the y-axis are not known. Along y-direction, these dis-
turbances move from both sides towards a grid point situated at the inflow or outflow
boundaries. One needs the perturbation values on the lower and upper solid walls.
For this purpose an interpolation is performed between the free-stream far field value
(Ro) and the inner grid points on the walls, namely R(2,1) and R(2, M), as shown
in Figure 5.8. This procedure is described in the following. For the right-propagating

Riemann variables on the solid walls, one gets

Rly:o = Re+ R1(07t) = R(1= 1)=

Rly=1 = Re+ Ri(1,1) = R(1, My). (5.33)
Note that the nondimensional height of channel is taken here as unity. Linear inter-
polation vields

Az £

: a = . = : 2.
Rsol:d-u. 4 R(ll) £+A3R°c -+ E-!-AIR( 1)
Az £
: = (1.7 = : 9 ] =
Ryotidmwail R(1. M) T A:ch T3 T Az R(2.M;). (0.34)
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Figure 5.8: Interpolation stencil for wall values.

Now, if { —— o2, in the limit, one gets from the equations (3.35) and  (5.3:4) the

following

R(1.1) = R(2.1).
R(1.My) = R(2.My). (5.

=
]
-
—

The value of £ can be taken two or three chords away from the inflow and or outflow
FFBs. These distances are equivalent with the theoretical infinite oues. For the
perturbation equation (3.12) the boundary values are quite simple. One just need to
put § = 0 or v = 0 on the solid walls. In fact on the solid walls. equations (5.4) reduce
to (4.13).

The time-step in the perturbation equation discretization was taken smaller
than the one used for solving the flow domain. This delays the travelling of the

perturbations in reaching to the FFBs [73, 74, 92].

5.6 Outflow far-field boundary conditions for non-

isentropic flows

For non-isentropic flow crossing the outflow boundary, the equation for the extended
left-propagating Riemann variable is expressed as (see equation (D.12) in Appendix

D)

0Q . an. 9@ _ 3
5 T (8R+aQ)7% = Fo(R.Q.5,9), (3.36)
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To apply the equation (3.36) at the outflow FFB. it is transformed to the Cartesian

courdinates

7, [ a0 aQ _ . .
-tF - [JR < a()) if:ue 0:3;- = sin# dJ} Go(R.Q.5.8). (5.33)
where
g _1=lR-Q 2 [ aRLQ) . AR+Q).
GolR.Q.5.0) = 3 5 (S - P 1) [CObB-——-aI—— - sin ay !
2 1 (9R-Q) )
5 - COSGS" (" a (R Q)

2 1 (O(R-Q) .
- ;m@—s—,; (DT—(R—Q)a—)] -

7= 2 2 % 96
T(R -Q )(-smeaz cos f— ) (5.39)

Entropy varies from one streamline to the other in non-isentropic flows. That is, one
has entropy change normal to the streamline direction. For steady transonic flows,
entropy is convected towards the downstream region along each streamline; however,
it may vary from one streamline to the other. Therefore, along y-direction the entropy
variation is steeper than the z-direction, bevond the outflow FFB. Entropy variations
in y-direction depend on the flow regime and the shock wave configuration. In this
approach, a space discretization is performed along the y-direction as shown in section
3.3. For the non-isentropic flows, in addition to the Riemann variables, the entropy

is also expanded as

S= Soo -+ 651 - 6252, (5.40)

where S is the upstream entropy. As was discussed in Chapter 4, only the outflow
FFBCs are needed for the non-isentropic flow of a compressible fluid through 2 chan-

nel. The isentropic inflow FFBC model maintains its validity for transonic flows (see
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After introducing the expansions of .} and = into the equation (5.38)
it is expressed as

%, DI N Bl PSS
af LJE(\;\ 0(-_):\:') “_-Q}('Obf;"r Tb!llf; = 3 \,-\_\‘_1..7__?'_.‘\‘ l"”‘
where
2
oo = (R = Que)(Sis = =)
R
.1=...‘(R;—1Q1)c058_._g_‘_QL sinf +
()u
2 .
T s 1SR = Q1) = (A = Qulwdi] +
2 1 [ AR-Q) 95,
=5 sinb e R,..:-- -
_:__1530b1n [S_ P - (R —0Q )dy

T. = (R:, - Q3.) [—.-.».:91 sinf + %ﬁcosﬁ} .

y

One gets the second-order perturbation equation for the left-propagating Riemann
variable as

—

.(.?: oo + Qo) [Zu:Qg cosf <+ agf sin 9] +
(B3R, + a@y) [wQ1 cosf + C)a_fil sin 9] +
oy o
35 e + (BReo + Qoo ){wQ cos 8 + 3 sin 9)}
g (kT + T + Ts),
where

75 = :.)'LIJ(R-’ -+ Qo) COSB -t 33&&0(}2} 4 Q;) C059 -+
O(R2+Qa)

5y (R, + Q) sin
dy 9+3Soo dy

153 —— 050 [250w(Ra — Q2) + w5 (R — Q)

—2(Roo = Qo0)S2 —w(Ry — Q1) 5] +
1

i_ (R — Qo) , o O(F— Qi)
5% sin 8 [S % = 5, _ay

—(Ron - Qm)aS‘ (Ry - Qs "’5‘}
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T‘i = "R—x. - Qo-cJ'S.l - (R" - QI.J'\.S'x - “_.:—T}

T = (R, — Q%) {-2-.-.-935in9 - %%cosﬁ] +

- -5'1 2 3 . , ag]
2o B = Q@) + 32 URE, = Q;)] ~trsint = Sl cos|
4 Do

The non-isentropic flow crosses the downstream FFB and go to the far field region.
Equation (3.41) is discretized and integrated. then a value for @ is found. The right-
soing Riemann varizble R and the entropy S are computed from the computational
domain. Finally the far field solutions are matched to the solution of the computa-
tional domain through relations (3.29). To achieve higher accuracy the second-order

equations can be solved.

5.7 Numerical flow field solver

To validate the proposed FFBC model and its ability on the accuracy improvernent,
the time-dependent Euler equations in conservation law form are emploved, which
have the shock capturing feature. The factored scheme was used, as shown in Chapter
3. This scheme was developed by Beam and Warming {11] and later extended by
Pulliam [114]. Applying the proposed FFBC model led to a considerable reduction
in the size of the block tridiagonal matrix (along £-direction) needed to be inverted

al each iteration step.

5.8 Model validation and numerical results

The FFBC model in Chapter 4 is extended for 2D flows, which is based on the Rie-
mann variable approach. For flow simulation and testing the effect of BC treatments
on the silution accuracy, geometry of Chapter 4 is used.

Two kinds of domains were used in the numerical computations, namely ex-

tended and reduced. In each domain, subsonic and transonic flows were computed
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by different FFBC methods. The firsi-order FFBU models were used, which are
sufficiently general and can be combined with other numerical Euler sobvers.

It both domaius a circular-arc-bump is located at the middle of the [ower wall,
while the upper wall is straight. In the extended domain. the FFB stations were
lucated one chord in both upstream and downstream sides of the cirenlar-are. ln the
reduced computational domain the FFBs were positioned much closer to the circular-
arc (two longitudinal spacing steps in each side). The 2D grid setup has already been
shown in Figure 3.2 of Chapter 3. Basically, the geometry 15 similar to the quasi-one-
dimensional case, which is treated two-dimensionally here. The total chanuel length
was three chord lengths for the case of extended domain. whilst for the reduced
domain. it was increased only by a small fraction of the chord length. £. at both sides
of its extremities, where /N represents the number of intervals along the circular-arc.
In the present calculations the grid points are clustered near the circular-arc-bump
along the y-direction hyperbolically, while equally-spaced grids are used along the
z-direction (in order to avoid the further effect of highly stretched grids near the far
field region). The grids used for extended and reduced computational domains had
the dimensions 60 % 20 and 24 x 20, respectively.

To illustrate the influence of computational domain size and of the implemen-
tation of various FFBC models on the accuracy of the numerical solutions and con-
vergence rate, the computations were conducted with different FFBC methods and
different sizes of computational domain.

The numerical solutions were obtained and compared for 2D channel flow (for

subsonic and transonic regimes) in the following cases:
1. Extended computational domain (60 x 20) with conventional FFBC treatment.
2. Reduced computational domain (24 x 20) with conventional FFBC treatment.
3. Reduced computational domain (24 x 20) with the proposed FFBC modcl.

4. Previous numerical solutions obtained by Ni [107].
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Different aspects of the proposed FFBC model were considered such as solutions ac-
curacy and computational time. The numerical solutions obtained with the proposed
FFBC model are compared with the results obtained by Ni [107]. The convergence
histories for the proposed FFBC model are compared with those obtained by Eidel-
man 29] BCs, It was found that a reduced convergence is reached by applying the
proposed FFBC model for a subsounic flow. The first-order FFBC model is sufficiently
ecneral and can be combined with other Euler solvers. The extended domain can also
he used as a reference for comparing the 2D solutions. in which the exact solutions
are not available.

Figure 5.9 shows how the numerical solutivns are affected by reducing the do-
main size without implementing an appropriate FFBC model. It proves that solution
accuracy depends on the domain size and FFBC models. Note that by reducing the
dumain size. the accuracy and symmetry of solutions are substantially deteriorated.
This is due to the fact that in the conventional FFBC methods the flow directions
are imposed to be zero at the inflow and outflow ports instead of being determined
accurately. For example at an inflow boundary. when one approaches to the arc-bump
the streamlines deviate from the far field streamlines and they are not parallel to z-
axis anymore. Another factor is a2 consequence of the reflection phenomena occures
at FFBs thereby affecting the solution accuracy and convergence.

ln Figure 5.10 the pressure distributions on the upper and lower walls for ex-
tended and reduced domains with the conventional FFBC treatment are shown. The
difference between two pressure solutions is somewhat smaller in comparison to the
Mach number solutions of Figure 5.9, although they are still important.

It was found that the proposed FFBC model led to a significant improvement
in the computational efficiency due to a substantial reduction of the computational
domain (by a factor of 2.5 times) and in the number of iterations {(about 30% reduc-
tion).

The improved solutions obtained by using the proposed FFBC model are illus-

trated in Figures 5.11 and 5.12.
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The present solutions are also compared in Figure 53,13, for validation with the
solutions obtained by Ni {107}, which were found in good agreement with the present
results obtained with the proposed FFBC model for the reduced computational do-
main.

Comparisons were made in Figure 5.14 between the convergence histories of the
reduced computational domain with the conventional and proposed FFBC models.
The present FFBC model displaved a better rate of convergence.

The transonic flow solutions are illustrated in Figure 5.15 for M = 0.675. This
inlet Mach number was used by the authors for comparison purposes. When the
reduced computational domain is calculated with the conventional FFBC treatment.
it 1s observed that how the shock is not well positioned.

For transonic flow, the comparison of Mach number distributions for the ex-
tended computational domain and the solution of Ni [107] is shown in Figure 5.16. Ni
used an explicit second-order accurate finite-volume method, incorporating multigrid
solution techniques. on a 65 x 17 grid. Figure 3.17 shows the results of applying the
proposed FFBC model in comparison with the solution of Ni. Good agreement for the
upper wall exists, however, near the shock a small difference is observed; this could
be due to grid resolution and type of numerical flow solver.

The convergence history for reduced computational domains with conventional
FFBC treatment and the proposed FFBC model is shown in Figure 5.18. The dashed
line is related to the FFBC model. There is no considerable reduction in the iteration
numbers for this case. This could be due to the strong reflections from the shock in
the comutational domain.

In Figures 5.19 and 5.20 the iso-Mach lines are illustrated for subsonic and
transonic flows. The evolution of Mach number profiles for the subsonic flow is illus-
trated in Figures 5.21. These profiles show how the presence of a solid obstacle could
affect the flow status at upstream and downstream far-field regions. Near the leading
edge of the circular-arc the compressibility is high and Mach number is reduced, but

on the upper flat wall the deviation from the far field state is negligible. Note that
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by getting far away from the circular-arc. deflections are reduced.

Figures 5.22 and 3.23 show typical propagations of the outgoing wave fronts at
the inflow and outflow boundaries of a reduced computational domain. In this Figwres
the values of the outgoing wave angles have been calculated during the convergence
process st different grid points located on the inflow and outflow parts. At the first
stages they have chaotic pattern but after a few time steps they become regulated.
This 1s an important feature of measuring such variations near the FFBs. As it is
seen the wave fronts hit the boundaries not at the right angles (unlike to the usual

assumptions made in the past and was refered in section 5.2.2).
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Figure 5.9: Comparison of upper and lower Mach numbers distributions for channel
with circular arc 10%, obtained by conventional FFBC treatments for the extended
and reduced computational domains. M, = 0.5, CFL=3.
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Figure 5.11: Comparison of upper and lower Mach numbers for a) Extended compu-
tational domain, conventional FFBC treatment, b) Reduced computational domain,

proposed FFBC model. M, = 0.5, CFL=3.
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Chapter 6

Far Field Boundary Conditions for

External Flows

6.1 Introduction

In this chapter the FFBC model developed for solving the confined flows is extended
and used for the external flow problem. As in Chapter 3 the expanded Riemann
variables are used in conjunction with the interpolation along the outgoing charac-
teristics. The FFB was divided into horizontal and vertical parts, in which each part
was treated by the methods developed in Chapter 5. The present FFBC model per-
mitted the computational domain reduction while mzintaining the solution accuracy.
A comparative study was performed to verify the capability of the proposed FFBC
model with respect to the conventional methods for subsonic and transonic flows. It
was found that. further grid extension from the center of disturbance (airfoil) does
not improve the solution accuracy, when the proposed FFBC model is used. In exter-
nal aerodynamics, the FFB configuration depends on the grid type, which is mostly

problem dependent. Here, a Cartesian type grid was used with the FFBC model.
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6.2 Conventional far field boundary methods

In conventional methods of solving the external flows. the FFB 15 constructed with &
body-fitted grid and extends sufficiently far from the airfoil surface (depending also
on the grid topology). Such length scales are disproportioned with the small grid
dimensions required near the airfotl to resolve the solution. This can be overcome
either by using a large number of grid points. which leads to long execution times
{also memory requirements). or extreme grid stretching. which leads to meshes of
high aspect ratio and consequently lower accuracy.

The conventional methods discussed in Chapter 3 have also been applied to ex-
ternal flows with the difference that in the external flows the inflow and outtlow ports
should be distinguished prior to exploiting the FFBC methods. The small perturba-
tion potential equation has been used in the past as the governing far field behavior
[35. 80, 106, 136]. Due to the limited capability of linearized potential equation. it
would not be appropriate for predicting the flows having large perturbations and also
non-isentropic flows. The problem was analysed by using Fourier transforms without
reporiing computational results {47}

Many flow solvers use extended computationai domains with simple FFBC treat-
ments [68, 142, 143]. An O-type FFB is stretched about thirty chords thereby using
the free-stream flow values or 1D characteristic equations (5.1) [69, 144]. The 1D
treatment of FFB is not efficient and correct for multidimensional fows. Therefore,
such 1D boundary conditions cannot be used in regions with even moderate distances
from the airfoil, because of violating the flow behavior. It was shown that for lifiting
airfoils such approximations can generate inaccurate lift [136]. Recently, a method
have been developed by Verhoff et al [149, 150] which uses a C-grid for solving the
flow over an airfoil and is not fiexible to be applied in arbitrary FFB topologies (see
also Chapter 1).

In the following sections the FFBC model of Chapter 5 is modified for the

external low problem: This model alleviates the one dimensionality assumption which



i< present in the previous works in this areq.

6.3 Boundary condition development

The flow field disturbances generated by an airfoil at subsonic and transonic free-
stresun Mach munbers extend outward to large distances from the airfoil surface
taround 20 chords for steady flow and more than that in the unsteady case). For
supersonic free-stream. the domain of dependence is considerably reduced and, conse-
quently. the size of the computational domain 1 reduced relative to that of subsonic
flow. Therefore supersonic FFBs do not demand a special type of treatment.

In 1D problems, the task of distinguishing the incoming and outgoing distur-
bances is straightforward. However, in multidimensional external flows, it is compli-
cated as the perturbation waves may propagate in a multitude of directions (discussed
in Chapter 2). In either case the characteristic field decomposition is necessary for
a consistent FFBC modelling. First, the FFBCs of isentropic flows are worked out,
then the formulation is modified for the non-isentropic flows.

In order to inodel the FFBCs for the external flow problem (airfoil with zero an-
gle of attack), the Riemann variable formulations of the Euler equations from Chapter

3 (equations (3.7)) are used

‘f;f +(aR+ 80) (cosﬁ%q—smaa}z) F(R,0.8),
2 . (3R +aQ) (cosﬁ—-'-sm a—Q) F(R.0,6).
T+ 22 (w02 o2 =6R.0.0) (61
where
F(RO.6) = — ?) (—sm 02+ cosﬁgz)
G(R.Q.8) = —2 = 12—18— (-sina-q(%:—@ + cosG—-a;—Q)) .

Equations (6.1) in the transformed form express the propagation of the information

in Cartesian coordinate system as was used in Chapter 3.
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Figure 6.1: Propagations of the Riemann variables and entropy waves at the FFB of
the external flow.

In Figure 6.1 the propagations of the Riemann variables and entropy waves at
different positions of the FFB are shown. The directions of propagations may vary
on the horizontal FFB. Unlike the confined flow case the horizontal part of the FFB
needs modelling, especially, along the horizontal FFB (Figure 6.1}, when the Riemann
variables change direction. The flow perturbations and numerical disturbances travel
in an unconstraint manner until they hit the FFB. Dissimilar to internal flows, there
are no physical restraints except the artificially made FFB. For external flow problems
the inflow and outflow parts of the FFB are not completely distinct in contrast to
the confined flows. The grids located on the FFB can intermittently be changed
into inflow and outfiow during the transient time integration (Figure 6.2). For low
frequency disturbances, where the disturbance wavelength is of order of a few chords,
a large grid spacing may reflect the outgoing waves [7, 161].

In the following sections the FFBC models for treating the verticai and horizon-
tal parts of the FFB will be introduced. For more details, one is refered to Chapter

3.
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Fieure 6.2 Inflow and outflow parts of the FFB at & certain time level.
6.3.1 Expanded Riemann variables approach

In the present study the FFB iz divided into vertical and horizoatel parts. For sym-
metric flow the computational domain would contzin 2 symmetry line. wo vertical
and one horizontal FFB parts. For inviscid flow cases the symmetry line is treated
as o soltd boundary. The expanded Riemann variables are used. based on the main
flow direction and along the normal to that direction for different parts of the FFB.
Simmlar to confined flows, it is assumed that at distances far from the solid boundary.
the perturbations would decay to zero. For the vertical parts of the FFB (clearly

inflow or outflow) they expressed as

R{x.y.t) = Ry -+ % Ri(y.t)e:(z),

P

x
fl
pA

Q(I?yvt) = Qa:':' Qk(yet)efc(:r)'

0

A
i
-

0(z.y.t) = b+ > Ou(y.t)ex(z), (6.2)
&=1

where ¢{z) = %% and « are indicated in Chapter 3, and .. = 0 for nonlifting

atrfoils. The free-stream Riemann variables are

R, = u, + Qo Qo = Une — T
£s o o o 50 20 S
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where &:(y) = ¢*¥ and 8, = 0. I a similar manner. when the expansions (6.6)

are introduced into the equations (6.1}, results in the first-order {ar-field perturbation

equations

— + (@R, + 3Q..) (’.’:Rl sinf + ?;% cos 9) = };(9,51), {6.7)

- -

aQ’ +{3Re + aQw)( :Qy cosh + == 80, cosa) —F(0.6,). (6.8

-

‘991 + %( + Q) (561 sinf + % o 9) =G(R:.0:1,0.6,). (6.9)
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To treat the horizontal FFB. first it is checked at each grid point if it is either an
inflow or outflow houndary {corresponding 10 v < 0 or v > 0). When v = 0. there
is no flux throush that node and the BC is determined from the neighboring nodes.
At the vertical FFBs (similar to the inlet and outlet of the confined flow). the per-
turbations propagate from the computational domain towards the boundary along
outgoing characteristic fronts. in which the local flow information is obtained by
using equation (5.25). On the other hand for horizontal FFB. the perturbations prop-
agate nearly along the normal to streamlines. Then, at vertical FFBs. one gets from

equations (3.16) for 8, =

(MR

as

Rypy=R. Qu=-Qu (6.10)
and for horizontal FFB (6, = 0)

Rip=—0Qs.  Quo= R (6.11)

In Figure 6.3 the propagations of the Riemann variables at inflow and outflow FFBs
are shown. In each case the outgoing waves directions were calculated from the

relation (2.71).

6.4 Inflow FFBC formulation

At the vertical FFBs, the perturbation equations (6.3) and (6.5) are solved by an
explicit time discretization similar to the confined flow problem. The implicit methods
could be used for this purpose which demand solving tridiagonal systems, increasing
the computational effort. At the horizontal inflow FFB, equations (6.7) and (6.9) are

integrated during the transient time. The information from the numerical solution of
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Figure 6.3: Propagations of the outgoing waves at horizontal outflow and inflow FFBs.

computational domain is locally obtained by using the characteristics similar to that
discussed in Chapter 5. At supersonic inflow FFBs, all the free-stream tow varnables

are specified consistently with the characteristic directions of propagation.

6.5 Outflow FFBC formulation

Outflow boundaries in the Cartesian FFB involve the vertical and horizontal parts.
Equations (6.4) and (6.8) are integrated at the vertical and horizontal outflow FFBs
respectively. For calculating the information from the numerical solution there are
two possibilities: algebraic extrapolation and interpolation along characteristic lines
(see appendix F). In practice, interpolation along the right-propagating characteristic
generated accurate solutions. At a supersonic outflow FFB, based on the characteristic

theory, every flow variable is calculated from the computational domain.
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Figure 6.4: Extended and reduced domain configurations for solving the external flow
problem.

6.6 Discretization of the far field equations

Perturbation equations which were resuited for the FFBs are discretized similar to
the ones in confined flows. Time derivatives are approximated by forward differenc-
ing. while spatial derivatives are approximated by central differencing. The vertical
FFBs are naturally separated into inflow and outflow parts (namely AB and CD in
Figure 6.4). For horizontal parts (AD and BC), one needs to separate the inflow
and outflow portions. This is done by considering the fact that, at inflow parts the
v-component of the flow velocity is directed inward the computational domain, while
at outflow it is reverse. Note that v-component of the velocity is perpendicular to the
horizontal FFB. For an O-type outer boundary the velocity vector should be projected
along the normal to the outer boundary (see section 3.4).

The outgoing information is interpolated along the outgoing bicharacteristics
as confined flow case (see equation (3.23)). Explicit time differencing was used for

solving the first-order perturbation equations (6.3)- (6.5) and (6.7)- (6.9).
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6.7 Non-isentropic outflow FFBC

For non-isentropic How crossing the outlow FFB. the equations are based on the
expansions of the modified Riemann vartubles (was derived in Chapter 50t takes
into account the entropy variations after shock wave and along the normal w the
streamline direction. For non-isentropic external flows. the inflow FFBCs are suill
valid (section 4.5 Chapter 4). For treating the outfiow FFB of & non-isentropic fow
over the airfoll. the first-order perturbation equation (3.1 is used

I, A0, - =1
—— 4 (JR. +aQ) [w@icusf - ——sint| = ——u T, + 1o,

()f ( > Qt\. 21 dy S \ ~ 4] S

where 7y and 7; are defined in section 3.6. For the airfoil problem with zero inc-
dence. the non-isentropic flow crosses the outflow FFB at right vertical side (CD in

Figure 6.4). Therefore, the above equation is solved numerically along the outflow

FFB.

6.8 Model validation and discussion

In order to compare the effect of conventional FFBC methods and the proposed
FFBC model for external flows, the NACA 0012 airfoil (with zero angle of attack)
was used. A Cartesian grid was generated considering the flow symmetry. Therefore,
the calculations were performed for half dorain. The grids were generated starting at
the airfoil surface, which is located at the middle of the symmetry line. Equally-spaced
grids were used along the chord direction (or symmetry line). while they were stretched
along y-direction, starting from the airfoil surface. In the numerical tests, two kinds of
domains were used, namely extended and reduced (Figure 6.4). The extended domain
consisted of 175 x 30 grids, accommodated within T chordsx6 chords along the z and
y directions respectively. The reduced domain had the dimension of 63 x 17 grids,
placed within 2.5 chordsx1 chord.

The numerical solutions which were for the reduced zomputationai domain, gen-

erated by the proposed FFBC model are compared with the solutions of Schmidt and
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Jamneson 134 for Hows over a NACA 0012 airfoil with zero incidence. As in previ-
ous chapters. the subsonic and transonic cases with Mach numbers M, = 0.6 and
V., = 0.5 are considered. Applving the proposed FFBC model allowes a substantial
reduetion of grid points in hoth r and y directions. Numerical experiments showed
that domain reduction along the z-direction affects the solutions more than domain
reduction along the g-direction. The Mach number and pressure coefficients of sub-
sonic aud transonic Hows have been chosen in order to demonstrate the ability of
the proposed FFBC models in comparison to the conventional methods of boundary
treatment. When the proposed FFBC model for calculating the flow around NACA
0012 airfoil was used. the sizes of block tridiagonal matrices were reduced by a factor

of =——— along £-sweep and

1 . 1 N A\ :
Nexchord - along 7-sweep. Where :\¢ and .V, are integer

numbers showing the computational domain extensions along the { and 7 directions
respectively.

Figure 6.5 shows the Mach number distributions for subsonic flow over the airfoil
with zero incidence. When the conventional FFBC methods were applied at the inflow
and outflow FFBs of a reduced computational domain it generated inaccurate solution
in comparison to the solution obtained from the extended computational domain. as
shown in Figure 6.5. This is because the conventional FFBC methods (either algebraic
extrapolation or one-diemnsional characteristic approach) give rise to the reflections
from the FFBs. Also the effect of flow inclination crossing the inflow boundary has
been neglected in the conventional FFBC methods. Therefore, conventional FFBC
methods are not capable of handling the flow inclination near the boundary.

Pressure distributions on tlLe airfoil for the case of Figure 6.5 are shown in
Figure 6.6. The difference in the pressure coefficient. C, = (% —1)/ (3M2) follows
somehow a different pattern than the Mach number and the discrepancies are larger.

In Figure 6.7 the comparisons were made between the Mach number distribu-
tions obtained with the proposed FFBC model for the reduced computational domain

and with conventional FFBC method for the extended computational domain. There

is good agreement between these solutions. Note that the number of grid points has
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been decreased by }ﬁ = ¥ umes for the reduced computational domain.

Figure 6.8 demonstrates the pressure coetiicients on the airfoil obtained by Jame-
sont of al (71 and by implemenzing the proposed FFBC model. A fair agreement is
observed except at the leading and trailing edges. This is because i the present
flow-field solver the grid points are equally distributed along the chord direction.

The convergence histories are shown in Figures 6.9 and .10 for the extended
compuiational domain with the conventional FFBUC treatment and for the reduced
computational domain with the proposed FFBC model.

Figure 6.11 depicts the Mach number distributions {or the transonic flow case
obtained with the conventional FFBC method. It is noted that the reduction in
domain size is performed without altering the grid spacing.

Comparison was made with the solution of Jameson et al in Figure 6.12 in order
to validate the solutions obtained by the present flow field solver. The differences are
due to the grid type and numerical scheme.

The Mach number distribution resulted from a reduced computational domain
(with proposed FFBC model) is compared against the extended domain solution
within Figure 6.13. A small amount of pre-shock overshooting is observed. It is
because in the reduced domain the disturbance reflections emanating from the shock
have not been dissipated completely.

Pressure distributions are shown in Figures 6.14 and 6.15 for the conventional
and proposed FFBC models respectively. The pressure coefficients have been com-
pared in Figure 6.16. The behavior of the pressure field is somewhat different than
the Mach field. In the reduced computational domain Mach numbers are larger (Fig-
ure 6.14) in comparison to the base solution (within extended domain). In this case
the pressure is shifted along tie chord because of the highly nonlinear wave interac-
tions in the reduced domain.

The convergence histories for the transonic case for both extended and reduced
computational domains are shown in Figures 6.17 and 6.18. Although, implementing

the proposed FFBC model for subsonic flows was accompanied by an iteration reduc-
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tion. However, applving the FFBC model to the external flow problem did not show
a faster convergenee in the transonic regimes. This was the case for the corfined flow.
It can be one of the limitations of the proposed FFBC model.

Finally, the isu-Mach lnes are shown through Figures 6.19 and 6.20.
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Figure 6.3: Mach number distributions for extended and reduced computational do-
mains obtained by conventional FFBC method, NACA 0012 airfoil. M, = 0.6,
CFL=2.2.
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Figure 6.6: Pressure coefficient comparisons for extended and reduced computa-
tional domains with conventional FFBC treatments, NACA 0012 airfoil. M., = 0.6,
CFL=2.2.
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Figure 6.7: Mach numbers obtained from extended computational domain (conven-
tional FFBC method) and reduced computational domain (proposed FFBC model),

NACA 0012 airfoil. M, = 0.6, CFL=2.2.
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Figure 6.11: Transonic flow: Mach number comparisons of extended and reduced
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CFL=04.
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incidence.
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Figure 6.13: Transonic flow: Mach number comparisons of extended computational
domain (with conventional FFBC treatments) and reduced computational domain
with the proposed FFBC model. M,, = 0.8, CFL=0.4, zero incidence.
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Figure 6.15: Transonic flow: Pressure coefficient comparisons of extended computa-
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with the proposed FFBC model. M, = 0.8, CFL=0.4, zero incidence.
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M, =08.
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Chapter 7

Conclusions

he formulation and implementation of a far field boundary condition (FFBC) model
has been reported in this Thesis for compressible subsonic and transonic flows. The
developed FFBC model permits a substantial reduction of the computational domain,
for both quasi-one- and two-dimensional flows. which leads to a corresponding reduc-
tion in computational effort. This has considerable impact on the solution accuracy
and the overall computational efficiency. In developing the FFBC model, two kinds

of information are required and have been taken into account:

¢ Information from the far-field regions, by solving the perturbation equations,

based on Riemann variables expansions.

e Information from the numerical solution within the computational domain at

each time-iteration step.

These are taken into account by using natural coordinates and Riemann variables. The
far-field behavior is simulated with an expanded Riemann variables approach and the
corresponding perturbation equations. To determine the behavior of the information
from the computational domain (which propagates towards the FFBs), the directions
of outgoing waves are found by using the compatibility relations developed in Chapter
2; these directions, rarely considered in previous FFBC methods, are significant for

the FFBC formulation of two-dimensional flows.

152



The time dependent far-field perturbation equations are discretized forward in
time and by central differencing in space. Then. these discretized equations are inte-
grated i time and matched with the solution within the computational domatn at each
lleration step. Thus. at an inflow boundary. the right-propagating Ricmann variabks
are caleulated from the discretized far-field equations. whilst the left-propagating ones
are determined numerically in the computational domain along the dominant wave
directions. The flow angle at the inflow boundary is also caleulated mumericaliy by
solving its corresponding equation. A similar approach is used at the vuttlow bound.
aries.

This FFBC model has been first developed for isentropic quasi-ene-dimensional
flows and subsequently was extended for two-dimensional internal and external tlows.
Then. for the FFBC treatment of the transonic flows. for which the outtfiow boundaries
are crossed by nonuniform-entropy flows, the Riemann variables were modified by
considering the entropy variations. In this case the perturbation equation is also
modified o include the entropy variations.

An implicit ADI scheme has been used for solving the flow-field within the com-
putational domain. However, this FFBC model can be coupled with other numerical
Euler solvers as well.

For accurate calculation of the pressure at the solid boundaries, the normal
momentuin equation was used in conjunction with the characteristic relations, result-
ing in an improved solution accuracy. Consistent solid boundary treatment reduces
reflections in the flow domain thereby decreasing the number of convergence steps
required.

Solving quasi-one-dimensional problems using the FFBC model resulted in so-
lutions that are in a very good agreement with the analytic solutions (in terms of
accuracy and shock position). For 2D flows, by incorporating the reduced computa-
tional domain with the FFBC model, good results were generated in comparison with
the solutions obtained with an extended computational domain. Small differences '

are observed in comparison to the solutions of Ni (for confined flows) and Jameson



ifor external Hows), which are due to the utilization of « rather cozrse grid near the
leading and trajling edges of the arc or airfoil.

Applyving the proposed FFBC model to the channel flows. the matrix dimension
i derreased in the r-direction. while for the external flow problem. the matrix di-
mension is reduced in both r and y directions. This leads to a considerable memory
reduction and & corresponding reduction in the computational effort. Numerical ex-
periments with the proposed FFBC model also showed a reduced number of iterations
for the casc of subsonic flow. while this reduction was much smaller in the transonic
flow. This is due to strong refiections appearing in the presence of a shock wave in the
transonic flow regime. The numerical solutions show the capability of the proposed
FFBC model in reducing the domain size. while maintaining the solution accuracy.

For the case of external flow (symmetric airfoil with zero angle of attack), ap-
plying the proposed FFBC method was found to be effective, especially for vertical
FFB, while applying the same FFBC model to the horizontal FFB improved the so-
lution accuracy by only a small amount. This is because along the horizontal FFB,
the perturbation variation is very small, compared to the vertical FFBs.

The proposed FFBC model has been validated by comparing the solutions ob-
tained for a reduced computational domain with the exact solutions available for quasi
1D flows and with the quasi 1D and 2D solutions obtained for an extended computa-
tional domain by using a conventional FFBC treatment. The number of grid points
of the reduced computational domain was in average § times smaller in the case of
2D external flows, and about 3 times smaller for quasi 1D and 2D confined flows.

From the above comparisons, it was found that the proposed FFBC model gen-
erated very accurate solutions with improved computational efficiency and memory

requirements.
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7.1 Main Contributions of this Thesis

The main contributions of this Thesis can be summarized as follows:

s A far field boundary condition {FFBC) model has been developed for the com-

pressible subsonic and transonic rotational flows. Thiz model s based on far-field
expansions of Riemann variables. which are used in conjunction with the prop-
agation of the characteristics from the computational domain. This takes into

account the estimated directions of wave propagation.

This FFBC model has first been developed for quasi 1D isentropic Hows and
then has been extended for two-dimensional confined flows in nozzles and for
2D external flows past airfoils. This model has also been extended for non-
isentropic flows crossing the outflow boundaries. which is important for the

transonic flows involving shock waves inside the computational domain.

The proposed FFBC model has led to a substanti~l reduction of the compu-
tational domain for a very good accuracy, comparable to that obtained for a
much larger domain. This corresponds to a considerable reduction in the nun-
ber of grid points, which led to substantially improved memory requirements

and computational efficiency.

This FFBC model has been developed in a sufficiently general manner, in order
to be used in conjunction with various flow-field solvers. The tlow-field solver
used in this Thesis for numerical computations was based on an alternating

direction implicit scheme.



. 7.2 Future Extensions

Theuilization of the present FFBC model in conjunction with other flow solvers {e.q.
fnite-volure solversy is alsu of interest to be investigated.

Sinece the far-field behavior and the corresponding boundary conditions have
nol becen ipvestigated in the case of unsteady Hows, it is of interest to extend the
proposed FFBC model to such problems. Also, extensions of the proposed model to
the nonsynunetric external flows have to be considered.

The developed FFBC model could also be used with other first-order hyperbolic

systetns (such as shallow water flow equations) with some minor modifications.
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Appendix A

Compatibility Equations for the
2D Euler Equations

The equivalent characteristic form of the time-dependent Euler equations in two spa-
tial dimensiors is derived here. First the procedure for the z-momentum equation
is discussed and for the y-momentum it can be repeated as well. The z-momentum

equation is expressed as
Du 18p
— +-z—=0, Al
Dt + p oz ' (A1)
Taking the derivative of the isentropic relation vields
d,p,\_ 9p _ 20p
3:1:(,0") =t= oz 0z’
% _Dpdo
8z Dpox.
Introducing relation {A.2) into the equation (A.1) resuits in
DuDf 1Dpdp

Substituting ¢ = E,: in the equation (A.3) gives

Dus, 1Dl g (A4)

(A.2)

Taking the partial derivatives on both sides of the characteristic front f(z,y,t) =0

leads to a general relationship called the kinematic condition [133]. This relation for

A-1



poas

2o Be 22
o=z 2P (A5)
= = = Df
From the kinematic condition (A.3}. one gets
9 _ Dpoj (A.6)
dz Df oz
[ntroduciug the refation (A.6) into the z-momentum equation (A.4) yields
Du 1DpDpdf -
— 0+ ——————==0. A
Df°" 2DpDJj o= (A7)
or after simplification
19f
$Du + —=—Dp=0. A8
6Du+ -5 Dp (A.8)
In a similar fishion the following relation for the y-momentum equation can be re-
sulted
19f
Dv+--—Dp= A9
oDv + > a Dp 0. ( k
Now consider the continuity equation expressed as
Dp du
=0. A.l0
7 TP a =) (A.10)
From kinematic conditions (A.5) for u. v and p, one could write
Ou _ Dudf Qv _ Dvdf Dp Dp Df (A.11)

9z Dfdz &y Dfoy Dt DfDt

Considering the relations (A.11), the continuity equation (A.10) can be expressed as

Dp Dudf Dvéf
Df o+ p (Dfa:z: Dfay) 0, (A.12)
simplifving the Df vields
af af L
pa—zDu + pa—yDv +0Dp=0. (A.13)

Differentiating the isentropic relation vields

D p, Dp -Dp
Dt(p'*)_0=>Dt a5 = 0. (A-14)
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Expressing the equation (A.14) with respect to o, one gets

Dp Df Dp Df

T T (A.15)

or
Dp . Dp _ i
Dfo a* Df = 0. (A.16)

Finally the continuity equation (A.13), becomes
6Dp — a*éDp = 0.

Thence system of time-dependent Euler equations is equaivalent to

QDu+0Dv+p,,:Dp+ODp G
0Du+éDv+ 1—-LD]:)-*-ODp—O

AT
ﬂDu+p§Dv+mb+éDp o (A-17)
0Du+0Dv+ ¢Dp—a*¢Dp =
In matrix form the system (A.17) reads

¢ 0 i‘% 0 Du

0 o %ay 0 Dv
: = Q. A.l8
e o3 0 é || Dp (A-18)

0 0 ¢ —a*¢ Dp

In order to have non-zero solution, the determinant of the coeflicient matrix should

be zero. Thereby solving the equation for the determinant it follows that
20,2 3
18 -Gy + Ly =0, (A.19)
which has the trivial solution

6=0, (A.20)

and other roots as

6= :i:\/af)+(a£). (A21)



Appendix B

Natural Coordinate Formulation

of the Euler Equations

[n order to derive the Luler equations it natural coordinate system (or streamline
coordinates) one can start from the Figure B.1, in which the upcoming relations hold

between the Cartesian and streamline coordinates:

- lm ] .
ot reversely
BRI R =2
The differential operators can be written as
8/0s) [ cosf sin8 ][ 8/8z
[8/6714 = | —sinf cosd _8/33;]’ (B-3)
and
d/0z cos@ —siné d/0s
[ 2/dy ] - [ sin@  cosb ] [ d/on ] - (B.4)
The following relations stand for the orthonorrmal unit vectors, which are depicted in
Figure B.1
= 2ol ®3

B-1
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Figure B.1: Cartesian and Natural coordinates.

1 cosf —sind is .
[j]—[sinG cos @ ][in] (B.6)

By the aid of aformentioned relations, the derivatives of the unit vectors ap-

or reversely

pearing in the calculations are:

G i 00 G, 0
9t F Bs o P
diy . o8 1 00 -

R e — i

— =ip—, === B.
dn ~ "ds R, 9s (B.7)
where R. shows the radius of curvature of the streamline. The velocity vector is

always tangent to the streamline in which

V = gi. (B.8)
In natural coordinate system the material derivative and gradient operators take the
form
L_9..8
Dt ; ot ;as’
V = —ls + —1y. .
aslh + an"‘ (B.9)
In coordinate-free form, the continuity and momentum equations can be ex-
pressed as
Dp
Sop— + v - V = ). .
Dr TP 0, (B.10)



vV !
%—J—-&——-?;::O_ 1“.[“
A 0

‘
Cousidering the well-known gas dynamic relations {or isentropic How of an ideal gax

10

D 2 D
Zr_ - 22 SINEL
I = =1 u
.'}_'
Ep- = — &z_ (B
p ~-la
After substituting from equation (B.12) into the continuity equation {B.10)
Da ~-1 .

The divergence of the velocity field, which will be used later in the continuity equation

1s calculated by using the rules from tensor analysis

0 o

VoVo= s oo(gls) +in - o-(dls)
S 3q , 3i5 , = . 3q dib
-_— 15 [lsafqa] '?"ln' [lsa_n'*‘q"é; . (B.15)

By doing the expansions of the vector derivatives and considering the corresponding

relations one has

9 . i . .0 . 90,
V.V = 22 S e . g—1ip. ]
Ds +qis R¢+1n lsan'i‘ln qanln (B.16)
considering that
ai 1 . . -
a—::i, ls'ln=0. (B'Il)

Finally the velocity divergence reduces to

S < _Ogq, 88 :
: VV=ig 3.18)

Introducing the velocity divergence (B.18) into the continuity equation (B.10) yields

da  Ba -1 089 39,
3t+q§7 7 a.('a—s-rq%)—o. (B-19)



Tl mnaterial derivative in the momenium equation (Bl reads
oV

— = —{gly) = —1gls s + gigi, .

D Dt ot O

3y expanding the derivatives of the velocity vector. one gets

DV ('J . 31\) _ (Gaqi ‘ ,_,ais.l
o R TR Nl N
(“oustdering the vector derivatives

o . 08 Jis . 06

e R o
one could write
DV dq dq a6 .09,
=(= g + “—)ip. B.20
Dr = 5 g U T (8:20)
Pressure gradient is expressed as
dp.  Op. 5
P = el Sy, 21
VI) asl-‘.‘ ' anlll (B )

Introducing the equations (B.20) and (B.21) into the coordinate-free momentum

equation. results in the s- and n-momentum equations respectively

aq " aq 1 6p 99
99 T 5P O (B-:22)
BigZ le_, (8.23)

9t T8 " pon
When the Riemann variables R = ¢+ ,lea and Q = ¢g—2;a (derived in the Chapter 2)

are introduced into the continuity equation (B.19) and s-momentum equation (B.22),

_2 _Be

also the pressure gradients are replaced according to 1 n 2 g2 and 12 =

63 y— 1 s Pom =1%3n?
in the same equations it follows that
AR-Q) , R+QUR-0Q) (R+Q) 1l gn2
i mig a(R(RQ)Q) (R (; Sar
-+ + ¢ ]
T -+ 5 B <+ (R Q)———==10. (B.24)
Then, above equations in terms of R and Q are added and subtracted as
BR -1 B 2, 08
EQ- +(BR+ aQ) Q +—(R -Q* )a (B.25)
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The n-momenium equation (B.23). frst divided by ¢ then the equivalents ¢ = L B=Q)

9 R+Q38 -~ —1R-Q3IR-Q _
— i —— = - - - \B-.—)h\

gt 2 Os 4 R-Q on




Appendix C

Entropy Based formulation of the

Euler Equations

Considering the thermodynamic relation for pressure, one can start with

p=p(p.5): (C.1)

the partial derivative of the pressure as a function of density and entropy, with respect

to the streamline coordinate, s. can be expressed as

Bp 9p oS .
= (s + (55 (C2)
or
Op ap 33
P2 (2,5 (©3)

Note that for isentropic flows only the first term in the equation (C.2) would exist.

The s-momentum equation in the streamline coordinate svstem reads

a 8¢ 19
Eq - q5§ + paz (C4)

Now one could introduce the equivalent for the pressure derivative in equation (C.4),
from the equation (C.3) as

3q+ L& ap

8t 33 pd ( )’ 65 (C5)
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In order to find the equivalents of the third and fourth ferms in the equation (U5,

we start from the first law of thermodynamics, which reads

Tds = Comm — -, dh = ¢ dT. (L)
T 5 -

dT dp
d¥ = c,— - —=. o
il T o7 \
dT' dp dp :
S (U8
r p »

Having the relation ¢, = == R for specific heat at constant pressure and R being the

universal gas constant. also considering the equation of state of an ideal gas, one gets

dS = i [d_p —“;@] (C.9)

From equation (C.1), the total derivative of pressure can be written as
dp dp
dp = (==),dS + (=)sdp. C.10
Using the equation (C.9), the total derivative of the pressure is caculated as

7—1

dp= 12 pdS-I-‘}‘%dp. (C.11)

Comparing the equations (C.10) and (C.11) vields the following relations

%) -1
(G5 =77
dp P
— = y—-=ar. .12
Using equations (C.12) and definition of ¢,, it follows that
1,3 a*
() = —. N
(58 =T (c13)

- - . r - .
Now, we are to find an equivalent expression for the term, “7-3—} Considering the

relation for the speed of sound and the isentropic relation as
a*=+2, £ = const, (C.14)
P P’

C-2



thereby elimineting the pressure between the above relations and taking the derivative
with respeet to s and simplifving. vields
a* dp 2 da

3 = 105_' (C15)
p ds - - =

Therefore. the s-momentum equation will have the following form. in which the en-

tropy Is present
¥ . bt
—_—— __'_a—-f-—'——:{]_ (C.lﬁ)
i S v

This formulation together with continuity equation forms the basis for the Euler
equations in terms of the extended Riemann variables in natural coordinate system.
The derivation of the extended Riemann variables is given below for 1-D flows.

For the streamline coordinate system the procedure is similar. From [110], one has

+du <+

2 1,5
= —ad(—). AT
1a.’cz -,'ad(R)' (C.17)

where 5" and R represent the entropy and gas constant respectively. Integrating the

equations (C.17) and arranging, vields

bu g [ = 2 c.1s
:u-r[_y_l—;-é]a—constl,g, (C.18)

where we define the modified entropy as

2 s
¥=1 R

(C.19)

where the entropy §' has the expression similar to equation {C.9). hence, using the

equation (C.9) in the equation (C.19), after differentiation and integration leads to

s==2__L ank (C-20)
1=1 (y=1)" pv h

Also, one can extract the extended Riemann variables from equations (C.18) as

R=u+ Sa, Q=u-Sa (C.21)



Appendix D

Riemann Variable Formulation of

the Euler Equations

In order 10 deal with the true information propagations, the unsteady Euler equations
of motion in natural coordinate system are emploved. Formulation begins with the
continuity and s-momentum equations. One can start with the continuity equation
which reads

da  Ba y—19g -1 &f

+
—

59T T2 Y8 2 Mow (01

multiplying both sides by § and then adding the zero term a—g—f =a %’f + qg—‘:] =0to

the left hand side results in

Qu, DS 4-1 _0g ~~-1 09
BT T T Y5 T e

rearranging the terms in the left hand side and adding the term a%% to both sides of

d
ﬂ§+q (D.2)

equation (D.2), vields
8(Se) . O(Se) , 9g 8¢ -
& " Tas T "es T 2 “as
1aq.S'-—ti. (D.3}

C)

R—Q=2S, R+Q=2, (D.4)



‘ whiere the Riemann variables have been modified to include the entropy effect. Fur

their derivation one may start with the formulations given in {110}, Hence. the equa-
tion (D30 becomes
gift=10))  BR-Q)  OR+Q) =1 . 2 dq
T T +a = ——5al¥ - 75,
(,Jl. ()-’5 a.‘s -?- = d“
- 1 06 -
—-(2)—aqS—. (D.5)
2 dn

The equation (D.53) is the continuity equation which was expressed in terms of the left-
and right-propagating Riemann variables, defined in natural coordinate system. Now
we are going to convert the s-momentum equation in terms of the Riemann variabies.
The s-momenium equation in natural coordinate system reads

g 9g , 2 a_a. 20(5'/e)

T TS a0 (D-6)

The entropy can be set as following (see Appendix C)

S=—'= —_— In &, D.7
. e 1-1 (-1 (-1

The entropy S on the far field boundary is measured with respect to the free-stream

entropy. denoted by S.,. So, using the relation (D.7), one gets

9q | 6q+ 285 2 Qe

5t 98T e T T 1%

(D.8)

adding the term aSZ to both sides of the equation (D.8) and rearranging, results

dg, 8q, [85 .0a]_ 2 da
3t " 93s [a.+sa] -1 75% (D-9)

Introducing from relations (D.4), for the velocity ¢ and rearranging the terms, one

has

AR+Q)  OR+Q) AR-Q) 7-! 2 2 Ba
ot 3s 5 =3 - 35 (D10

Equation (D.10) expresses the s-momentum equation in terms of the Riemann vari-

. ables. Now, when the equations (D.5) and (D.10) are added and subtracted in order

D-2



to give the following equations. partly decoupled in terms of the left- and right-

. propagating Riemann variables
dR | . \f)H S o- l 3 2 \ U(; 2 1"1.’\
- -l == - Q> = = —_— -
ot TG s e T T e T T s
5 =1 L i

-3 t'.'t}:"g;. (D].H
oQ aQ =1 2 d 2 Oa
— +(g—a)=—= a‘\»-——-—-—)t.—q-———“\
t ds 2 4 —=1"9s  1—-10s
2 =1 af

+ dq\:‘—- tD-l’-’)

D-3



Appendix E

Kinematic Conditions for the

Cpmpressible Flows

In the case of weak discontinuities. when the derivatives become discontinuous in
various aspects, displacing and deforming, Iving on one single plane, that condition
requires the satisfaction of certain relations between the jumps of the specified deriva-
tives. These are a consequence of geometric (or kinematics image of the movement)
and appear independently of the gasdynamic relations. These conditions are called
conditions of kinematic compatibility. To satisfy this condition, we assume that the
function ¥{z.y,t) is continuous in the whole space occupied by the fluid, but its first

derivatives on a plane represented by -

flz,y.1) =0, (E.1)

are discontinuous. Then we define a continuous function ¥, with continuous deriva-
tives on the surface (E.1)

¥ (z,y,t) = const. (E.2)
Taking the derivative of the surface (E.1), one gets

oY v ov
d¥ = 3_$dz 4 -a-;dy + Edt =0, (E.3)



which represent the only conditton that our coordinates have to satisfv along the

surface. Considering the relations (E.3) and (E.1). one can write
T¢-dr=0. Yf-dr=1{. Ve

Comparing relations (E.3) and (E.3} 1t follows that, at all the points of the disconti-

nuity plane and at any time the upcoming refation holds

ay o ol
= S -
[ C I I -
W ==7r = -3—’— = . {E.O)
Sz Sy ER

where pg = %} is a function of coordinates and time.

We now consider the function ¥(z.y.t). which is continuous in the whole {r. y. 1)
space and has continuous derivaiives in space and time. The relation (E.3) is called
the kinematic condition. For the case of Euler equations. in the relation (E.3). ¥ can

be any of the flow parameters like p, u etc. Interested reader is refered to [77, 133].



Appendix F

Roe’s Estimation of the Outgoing

Wave Direction

In the far field region away from the solid boundaries the flow variables can be ex-

panded as

P=PosteEpr e,
U= Ugg — €U+ -7,
VS U+ €y +---,

p:pm_i_ep].i....: (F-l)

where vg, is usually zero. Insertion of expansions (F.1) into the system of equa-
tions (5.2) gives

Opy ,  9m Oup , On, _
gt T Uegg Tl T ) =0
A0S A SRR 0 s
Gt | 0z | pe Oz
av; avl \ 1 3p1 _
B TR T oy

d 7) . Ou  Ov
% + um£ + Pt + 'a?l = 0. (F.2)
Equations (F.2) are partly uncoupled, in that p; does not appear in the last three

but could be feund after these have been solved. From now on the first equation is
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excluded. An equation holding in a characteristic plane can be obtained by multiply-
ing the second and third equations by pay cos &0 ans p e, sin e respectively and

adding them to fourth equation. the result is

[%—'Lu + @, COS A)a—Pl-‘—a SN "a}l +
ot T T T gy Y '

du

o du, L \‘(?u‘ +
oo Qe COSF | = + uc.‘-:-——-——-
& ST dr

AT WO d"‘} = 0. (F.3)

Pocloe SIN S | == + Upe=— + = -
at T 9r  sing dy

The equation (F.3) can be arranged as
J . ) d L
Frie (Uogs = @os COS ';)ax - Q. SiD: ,,a [P1 + Pootiooltty COS 2 + 1y sin )] +
sl 0 a . ,
Pssty, |sin ya—x - coscét— (upsing —vycose) =0, (F.Ad)

The first operator in equation (F.4) acts along a particular bicharacteristics (TP in
Figure F.1) on the sum of pressure plus py,a. times the component of velocity in the
direction . The second operator in equation (F.4) acts only in space, perpendicularly
to the direction ¢. on the velocity component in its own direction (PQ). Bayliss and

Turkel [7] combined the equations {F.2). and got the following wave equation

&n o &p . Fp L Fp
A~ RGP Ee- R (F.5)

Equation (F.5) is transformed which implies that p, obeys a regular wave equation

Fp  Fp Fp

R T v (F-9)
where
x I
€= E y—y; 7 —Baoot+-woo§a
— Yoo =./1 - M2
Mo = —, B 1-M2. (F.7)

F e e wibe e w el (F.8)



Figure F.1: Geometry of two-dimensional bicharacteristics.

where
tany = % = BY, (F.9)
¢ x

It is assumed that at large distances, the last term in equation (F.8) tends to be small.

If p; 1s given by the separable variable solution
pr(7or,v) = &5 cos(nv)Ja(kr), (F.10)

the orders of successive terms in equation (F.8) are r—1/2, r=3/2 +—5/2_ Therefore it

can be truncated to

p &, _10p _

FE e (F11)

For equation (F.11) the trial solution is
— f(T - r? V) D)
h= \/’F * (F'l')
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which presents a decaying outgoing solution. Also. equation |F. 127 =atisHes exactly

dm  dm o,
—_—- == F.13)
ar or  2r S

Equation {F.13) holds along an outgoing bicharacteristic of equation (F.11), Under
the transformation inverse to equation (F.7). the bicharacteristics of equation (F.1 D
should become the bicharacteristics of the svstem {F.2). In Cartesian coordinates the

eqguation (F.13) is writtep as

i Mez\dp; 1{ Opm oy, -
—_— =) s L e ) = RN
@ B (I Br ) ot ' r (Iax T dy 2 ¢ (.14
The distinguished bicharacteristic equation (F.I14) then becomes
3p1 Bzam dp1 3p1 1 -
_——_———— i r— Gt Yy T = - Do) = F.
gt ' Br— Mz [:c 9z Y dy 2(p1 Pe) 0 (F.15)

The differential operator in equation (F.15) coincides with the bicharacteristic oper-

ator in equation (F.3) if one chooses

B3y

sine = Br — Mz’

(F.16)

where the z and y show the coordinates of the grid points on the far field boundary.
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Appendix G

Characteristic Interpolation at

Boundaries

The characteristic interpolation which was used in the previous Chapters is a stable
than the extrapolation for approximating the unknown values. Numerical experi-
ments proved the stability of the characteristic interpolation method. Here the one-
dimensional case is considered, however it can be used for two-dimensional flows in
order to interpolate the selected bicharacteristics. Considering the Figure G.1, the
slopes of the left-propagating Riemann variables at the grid points z and 7 +1 are typ-
ically known from the previous time step. From characteristic relations their slopes

are

1 = 1
m. = . ] = ——,
' Ui — Gi ‘+ Uipl — Qitl

(G.1)

where u;, ui4 and a;, ¢izq show the velocities and sound ‘speeds at grid points ¢ and
t + 1 respectively.

At a certain time (At), the left-propagating Riemann variable , Q, does not
usually pass exactly through the grid points i or ¢ + 1. It is somewhere between (at

point M), and has the slope

myy = ———— (G2)



A

At
Y 6 ?‘."'h \“
@
o N
® ————
i Ax M j+1 X

Figure G.1: Grid points near to the boundary in (z.t) space and their correspondent
characteristic lines.

i M i+ X
Az

Figure G.2: Interpolating for the left-propagating characteristic slope.

Now consider the @ as linear function of distance, z. The distance between the grid
points 7 and z + 1 is taken to be Az. From Figure G.2 the equation of line satisfying
the grid points (0, Q;) and : + 1(Az, Q) follows

z z
Q=~01- A_x)Qi + Z;Q:‘-i-l- (G.3)
The point M (8. Qys) should satisfy the equation (G.3), therefore
§.. . &
Qu={(1~- K;)Qe + EQ:—H- (G4)

In a similar manner the slope at M can be written as

- §, _ & _ -
mM = (1 -_— E)m: + Em"_-rl- b - (G-D)
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‘A

Figure G.3: Comparison of the slopes for left-propagating Rieman variables in order
to find the suitable grid points for interpolation.

From Figure G.1, one can determine the slope of Riemann variable at M

my =tan(w -~ a) = —tana = —%. (G.6)

Equating (G.5) and (G.6), one gets the following equation

6 )m- + im— = _ﬁ
AI T =1 6 -

(1- Az

(G.7)

Everything is known in the equation (G.7) except §. A test is done in order to clarify
that the point M is lying between : and : + 1 at each iteration step

1
UM — aM

1

b
Uis1 — Qixi

1 . Qg1 = tan™!

ap =tan”

(G.8)

if ayr < @is1. then the interpolation is performed between the grid points : + 1 and

t + 2. The quadratic equation {G.7) can be written as
(mp, —m7)& + (m7 Az) + AzAt = 0. (G.9)

Hence, the value of § is calculated from the equation (G.9).



Appendix H

Determination of the Separation

Factor

For steady flow the equations (3.4} can be simplified as

a0 a0

11/2-- _— WM — = N
e
nt 21 9¢
.v-_l_—_= L) -
M s T -1qom =" (H.1)
where
Q=R-0, M=%. (H.2)

The first equation is obtained by subtracting the first and second equations in the
systemn (5.4). and defining a new dependent variable Q. The second equation in {H.1)
is obtained by using the equation (B.23) and expressing it in terms of Q. The functions

Q and 6 can be expanded into the asymptotic series as following

Q= +Qp -,
0=0,+6,+---, (H.3)
where
Qoo = R — Qooa
O = Ry — Q. (H.4)



Also for confinerd flow applications 8. is usually zero. If the operators in equation (3.6}

are expanded. one can write up to the first-order terms

9_90_ 4,9
ds Oz dy
J d a -

Therefore the equations (H.1) up to the first order become

o 96,

BP9 M 22 =0
oz 7 =0
a6, o,
2 Moy o=+ — =0, .
9oo Moo - 3y 0. (H.6)

where B = /1 = M2, Equations (H.6) can be solved by separation of variables

assuming

0 = 2gee Moo= fy),

;= e*=g(y), (H.7)

where « is the unknown separation constant. Equations (H.6) then reduce to the

system of ordinary differential equations

B".‘wf _gr = 0,
wg+ f' =0, (E.8)

with boundary conditions on the solid walls

9(0) =g(1) =0 (H.9)
Eliminating f gives
¢+ Blrfg =0, (H.10)
which has the general solution
9(y) = ki sin(Buwy) + k; cos(Bwy). (H.11)
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. To satisfv the boundary conditions {H.9). the % should be zero and therefore
nw
o= == =1.2...9) H.12)
B (n (

For n = 1. one gets

(HAD
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Appendix 1

Block-tridiagonal System of

Equations

The discretization of Euler equations by a three-point implicit method generates a
block-tridiagonal syvstem. In a block-tridiagonal coefficient matrix the non-zero sub-
matrices are in the diagonal and either side of it. In the present analysis, the resulted
matrix is inverted at each step in the transient time. So the solution at each itera-
tion involves solving the two sweeps in both £ and n directions. The dimension of
block-tridiagonal matrix for each sweep is equal to the number of grid points in either

direction. In general the system of block-tridiagonal equations reads
SAQ =R, (I.1)

where AQ and R are the vectors for the unknown coefficients and the boundar con-

ditions, respectively. S represents the block-tridiagonal matrix expressed as

B, C. 0 0 0 0
Ay By C3 0 0 0
o . 0 0
S=io 0o . . . 0 (L
0 0 0 Am—z Bm-2 C-m.—2
L 0 0 0 0 Am—l Bm—l J

where A;, B; and C; are matrices of order (3 x 3) for quasi-one-dimensional and (4 x 4)

for two-dimensional flows.



To solve the svstem of equations, the elimination method with factorization is
utilized. In the first equation. B2AQ@~ + CoAQ: = Ru. involves only AQs and AQ..
Using this equation and the second one to eliminate AQ;. the new second equation
involves only AQ; and AQ,;. Continuing this procedure to the last equation where
AQ,.-» has been eliminated. the new last equation only involves AQ,..;. Therefore.
AQ,, -1 can be determined and the result is applied to the new (m — 2}th equation to
determine AQ . _a. Applying the solution of the 7th equation to the (/1 = I th equation
up to 7 = 2, AQ;.; 1s determined. The algorithm for doing all of this will now be

described. Let us consider the following factorization.

S = LU
T, 0 0 0 0 0 177 A2 0 00 0 ]
Az T3 0 0 0 0 0 7 Az 00 O
o . 0 0 0 0 0 . 0 0 .
1o o . . 0 0 o0 o .. o |3
U 0' 0 .4.,.,,__2 rm_g 0 0 0 0 0 I .'\m_'_t
L 0 0 0 0 Am—l Tm_1 J L 0 0 0 0 0 I J

where [ is the identity matrix of order m. The square matrices I'; and A; are deter-

mined as follows:

To=B8. and A,=B7'C,.
Ti=8B;— AAjy for 1=3,4,---,m—-1

and

A;=BrC; for i=3,4,---,m=2

The system of equations given by (I.1) is now equivalent to
LZ =R, (1.4)
where

Z=UAQ. (1.5)



Rewriting (1.4), one obtains

T, ¢ 0 0 0 0 7 Z, V) [ R ]
4, T, 0 0 0 0 Za R
no. 0 0 0 . . o
0 0 . o 0 A el R (L6)
0 0 0 -4711—2 rm—'.‘ 0 Zm-2 Rrr.—'.!
L 0 0 O 0 Am—l rm-l . L Zm—l J L Rm-l ,
from which
Z,=T7'R..
and
Z;=T7Y R~ AZiny) for i=3,4,---.m—-1
Equation (1.5) is then expressed as
(] A, 0 00 0 J[ AQ2 T [ Za ]
0 I Az 00 © AQs Z3
0o 0o . 0 0 . . -
00 0 . 0 A el (L7)
0 0 0 0 7 An-2 AQm-2 L2
0 0 0 00 I 11AQn- | | Zm-1 |
from which
AQm--l = Zm—lt

and

AQi=2; —AiAQiyq for i=m-1,m-—-2,..-,8,2

For sweep in z-direction m = M, and for y-direction m = M;. In which M; and M;
are the maximum number of grid points in either direction.

In the present work, the size of the block-tridiagonal matrix S can be reduced
considerably when the proposed model of FFBCs is applied. Hence the storage re-

quired for solving the system is substantially reduced.





