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Abstract

Tlw fIJI1111;!;d.i(J!1 i.:.lJf.J in:piemerlldtiùn of fi. f~r field bounàary conditiop. (FFBC) moàd

flJi' n'll:;'I'l""sil'!f' tk,..·::-; is reported in thj~ tht'sis. This FFBC n1odel. èe\'e\oped for

/Jll;l"i·;':J,.-d:rllt'lI:-:j()n.d and t\\'ü-din1ensional fio\'.'s. ai:l1~ to pernlit a subst;lI1tial ft:'·

':lll":j'Jl: ,J!' rill' j·UI1IPUt.htivIlit! dUIni:.iIl. le':lding tü <t cons:derabk' itnpru\'t.:'n1t'Ilt iu thL'

('(I!lliJI11;ltiulliti d-ricien.-:y. Tht' pr~ent FFBC approach uses asynlptotic expansions

"f 1.1,.. j{j"l1lann ,"ariables. which are truncated up to the required degree of accu­

r,,,"y- Then. the far field perturbation equations are integrated in time ,nd applied in

'""njlInction with the solution calculated within the computational domail.. The prop­

"!!,,,tin; infurtlwlion from the computational domain is determined along the outgoing

."harart.eri'lic fronts. based on the estimation of the waye front orientation.

The proposed FFBC model is implemented in conjunction with an implicit finite­

ditfercnce fio\\" field solyer using an alternating direction implicit (ADI) scheme for

solving the Euler equations. The discretized form of the governing equations are

solved using a time-marching technique until the steady-state solution is reached. An

"'·ClIral,., procedure for the solid boundary treatment was also used.

The proposed FFBC mode! was used for soh'ing typical problems of confined

"nd .'xt"rnal compressible f10ws in subsonic and transonic regimes. For the transonic

regimc. the proposed FFBC mode! has been extended for the case of non-isentropic

outgoing fiows, which appear behind the shock waves. The solutions obtained are

compared with previous theoretical and numerical results. This comparison shows

that. the proposed FFBC model can generate accurate solutions using a substantially

re.!" ";e.! computational domain, which reduces by an order of magnitude the size of the

block tridiagonal matrices to be im·erted. This leads to a corresponding improvement

in the u\"érall computational efficiency.
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Résumé

Cettl' thl~(' presl~ntt:.. le dt-~\·l'1l)ppnwIlt d' un 1l011\"l'all Ilh.H..il'll' dt' traih'IlH'nt

Il utll~'rique des cond it ions 1in) îles t~IüigJH.;'''s (CLE) pouries l-ct,ndt'n1CIl b al~rlH lytl~ltll iq \les

compressibles. Cc mod<-Ie am,~lior':· dcs l'LE vi,e à pCrIIll"ttre une n:ducti"n ",h·

stantielle du domaine de calcul. dans le hut d'obtenir une nwill,'ur,' l"!li,'acit,: .k ..,.1­

cul numérique. Cette méthode utilise un d'-"c1oppement asymptotique d,'S "ariahle,

de Ricnlann~ tronqué au niveau de précision désiré. Ccs équations de perturhatÎnu

sont intégrées dans le temps et utiIisét.""S conjointC111f'ut avec la solution ohten11e .1

l'intérieur du domaine numérique. La propagation de l'information il partir du do­

m"in,' numérique L'St determinée le long des lignes caractéris! iques de l'l-coul,·nll"nt.

Ce modèle pour les CLE est utilisé avec une méthode numéri,!u,' de dilfl-f<-nCl'S

finies pour résoudre les équations d·Euler. hasée sur un schéma implicite des directions

alternantes. Les équations discrétisées sont résolues par l'intégration dans le temps,

jusqu'à atteindre la solution stationnaire. Une méthode améliorée de traitement des

parois solides est aussi présentée.

Le modèle présenté dans cet ouvrage a été appliqué à la solution de prohlèmes

d'écoulements internes ct externes typiques en régime subsonique ct transsonique.

Pour le régime transsonique, une extension du présent modèle a été deve10pée pour les

écoulements non-isentropiques, tel qu'ils se présentent en aval d'une onde de choc. Les

résultats fournis par ce modèle ont été comparés aux solutions exactes et num':riqucs

disponibles. Ces comparaisons démontrent que ce modèle est capable de produire

une solution précise dans un domaine numérique de dimensions réduites, réduisant de

façon substautielle la taille de la matricL~bloquetridiagonale à manipuler ct aussi la

durée de ca1culnumérique.
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Chapter 1

Introduction

1.1 General considerations

:'-!u,t of the aerodynamic problem, of interest are not complete1y naturally bounded by

phy,iCid boundaries, as in the case of the flows past '::ings and aircraft configurations,

or that of the flows through channels with open extremities, with many applications

in \'~Lriolts engineering probletns.

In such cases, the flow domain has to be delimited by introducing artificial inflow

and outflow boundaries which enclose the f1uid·f1ow field of interest. These artificial

boundaries may also be used to reduce the size of the computational domain and thus

to increase the overal computational efficiency. Far field boundaries (FFBs) are made

by introducing artificial partitions within the f10w domain. Generally two kinds of

boundaries are encountered in the computational f1uid dynamics (CFD) calculations,

namely far field (open) boundaries and solid ones. With respect to the f10w direction

crossillg the boundary, the FFBs can be grouped into inflow and ou.t.f1ow boundaries.

The computational treatment of FFBs is of importance because during the numerical

c.a!eulations. disturbances are generated inside the computational domain and then

propagate back and forth between the domain bonndaries. When the steady-state

solutions are sought this process is repeated until the disturbances decay and fall

into the specified error band. In the conventional numerical treatment, the open

1



• boundaries ha\'t: to be sit uated at an apprl'ciablt' distaIll"t' [r(lnl t ht' :'l..)Ur'1'1..' llf t ht·

dbturbanœs [l0!. 10:2.149]. Thcsc large distances slwuld he lillt-,l"ithcr \\'ith a \wy

large.:' nUJl1bef of gril! points in the far Iit'Id fl'gion wht,rt: tht' tlll\\" \'~Iriati\l\l:' ~lrt' ~Ifil'll

unitnportant. or with large ~Tid ::;iz~::;: h~l\'ing reduced accuracy. \\"hc!l t'lit.:' attl'Illpt:, tp

locate th" FFBs dosc' to th" domain of interest. an impw\'l'd FFB !ll"dd i, ré,!"ir,"!.

Tht"' inflow and outtlow boundary conditions (Bes) are ~dso itnportant f\)r willd-tt1tlllt'l

sinllIlatiolls. because wincl-tunnel flows are basically chan1lel tlo\\':, and art' ~l'tl:,iti\"('

to far field conditions [6:2].

The far field boundary conditions (FFBCs) ha\'<, substantia! etfect in the CO!ll'

putation of internaI and external aerodynanùc f1o\\'s. In thc' internai thl\\". thc"",'

bùundarie~ are inherent!y separated into inflo\\' and outfio\\' part~. ",hibt in the exter­

nal fio\\'s. depending on the type of grid used and on the solid boundary position the

infio\\' and outfio\\' FFB ports are not distinguished as clear!y as in the internai th\\'

cases. A defective FFB treatment can destroy the stabi!ity. accuracy and con\'ergence

of a reliable numerical scheme. On the other hand. consistent FFBC modeUing re­

suIts in increased accuracy. reduced number of grid points (minimized computationa!

domain) and also faster convergence.

~Iost of the aerodynallÙc fio\\'s are governed by time-depende!lt Euler equa·

tiolls. which are al\\'ays hyperbo!ic in time. For hyperbolic systems. the l11ethod of

characteristics forms the foundation of boundary condition analysis. For far· field anu

solid boundary modelling the equivalent characteristic equations are needed in order

to figure out the number and directions of disturbances propagating to or from the

boundaries. iVlost of the numerica.l simulations. based on the method of characteris·

tics for the inflow and outflow boundary conditions, assume a certain degree of fiow

unifornùty at these boundaries. which have thus to be situated far from the nonlinear

flow region. The flo\\" regime plays an important l'ole in the FFBC modelling of corn·

pressible flows. Based on the theory of characteristics [99, 98), for supersonic fiows

crossing the FFBs, information propagates from upstrea.m towards the boundary. Es­

pecial attention is required when solving the subsonic and transonic fiows, where the

2
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(li:.;! TJfr'il!II"":-' ('rus:- r.lw IH)l:lIdé1.rie> in different din:ctions. At é:.n infiow boundary rhere

;~!I' 1':;1) '.':;:';":-- :JfUP;\!!;ltll1g fro:n the faT field regioll to tl1e ('OInputationaJ don1ain.

;llld .,111" .....1\'(' prûp<.tgatillg from the con1putational domain towards this bounàary.

.\: "" olltHow boundary there exis: two wa\"es propagating from the computational

d"rmill ,,,,d crossing this out let port, and one ,,·ave cornes from the downstream far

li,·ld rC'!?,i,,". Tl", inflol\" far field boundary condition (FFBC) is "alid eYen if there is

'·IlU,,!,:, prodlICtioIl downstrealll of the boundary within the computationa! domain.

For llOIl-is<'Iltropic fiows only downstream boundary conditions are required.

Il is g<'Ilerally believed that boundary condition formulations consistent with the

characteristic directions of propagation lead to stable and accurate solutions [3i, 101.

102.119, 142J. During the con"ergence process the numerical (residual) and acoustic

Wi"'es start to tra"el between boundaries of the computational domain, until they

d<'c,,:, li. ï:l, 101. 102J. lnappropriate solid and far field boundary treatments cannot

either absorb or transmit this kind of disturbances. thus it causes refiections from the

bOUIldaries back into the computational domain which consequently creates stability

problellls and may lead to inaccurate solutions.

For quasi-one-dimensional f10ws the characteristic paths are figured out without

alllbiguity, while in multi-dimensional fl:Jws finding the directions of propagations is

not an easy task. However, the FFBCs are modelled based on the propagation of the

characteristic fronts. ln this case the normal component of the f10w velocity to the

boundary has been used in tr.e P<lSt [61,68, 134, 116]. In this thesis, it is shown that

other than normal directions may be sc:1ected in applying the characteristics relations.

For internaI f10ws the inflow and out!}"w FFBs are usually ta.~en to be perpen­

dicular to the free-stream ve10eity direction. On the other hand, in external f10ws the

FFB configuration is dependent on the grid topology.

Not only the Euler equations govern the f10w field, but also they describe the

propagation of disturbances which travel between ';he boundaries of the computa­

tional domain. These disturbances carry the pressure, density or veloeity differences.

For fiow problems governed by hyperbolic equations, boundary condition formulation

3



• ~llould be l"onsist~nt with the directiùn:, ~if tht"'st' prl)p~l~;\til)tlS.

The FFBCs are exposed to t\\'o kinds \.)1' inf(lnllatiI..1J:1. utll" ft\.llll ~lut:,idt' lif tlll'

rO:l1putatioual dOInain ~far fit'Id rt.>giolll ;:llltÎ tilt' (Ilhel' [rl..)111 it~ insidl'. ()Iltg.llill~

information i> supplied by the numerical sd1t'n1l' lIs,'d f,'r ,oh'iu" 11ll' 11<.,,' lit'Id, ,\1"

propriate far field nlodelling is needed for both typèS of prl,)p;:\g;:\t iUIl:' in f('rIll:-> ,A

phy:::ical l'onditioI1s and mathenlatiçal consideration:,.

Depending on the flo\\" field the disturbanCt.'s ca.. ~.!.' \Jin' ,-'1' tlmlt idiml'll:-:il\llal.

Analytically. ID disturbanœs should maintain a constant proliit· '" lhey f""'P"~"!<"

Howe\'er. they dissipate in numerical simulations or when intt'ract in~ with " bUlIlI,lar,"

or a shock wa\'e. ln contras!. two-dimensional (2D) Jisturbance, d,-cay ", th"," mu\','

away from the center of disturbance and tend ta zero strcngth as they appro.lch ',U far

distanœs. Any disturbance prodllced within the subsonic fl(lw field would propagat,·

and interact with the information coming from the far field regions. ln matht'lllat­

ical expression there e:dst one characteristic which is always directed tow,mls the

upstream. !'1ow if the boundary is inflo\\' the disturbances coming from the computa·

tional domain interact \\'ith the downstream-propagating \\'a\"t~s. As wcll the outllow

FFB would be influenced by the upstream-propagating waves from the far field l'cgion.

At a solid boundary the characteristic waves can onl)' propagate from the com­

putational domain to\\'ards this boundary. Various types of solid boulldary trcatments

haYe been suggested in the past [68, 11:3, 124, 144].

The number of flow variables that can be specified at a FFB is dependent on the

propagation properties of the system and in particular on the information propagated

from the boulldary to\\'ards the flo\\' region.

Since each characteristic direction can be considered as transporting a given

information, expressed as a combination of conservative or primitive flow variables,

the quantities transported from the inside of th.~ computational domain towards the

far field or solid boundary will influence the situation along these boundaries.

The :>ropagation properties in a one-dimensional (1D) flow are expressed III

a straightforward \Vay by characteristic variables, or equivalently by the Riemann

4
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l'r''j''l~;\t.ioll::-. 1:1 t.he fülit:.I ..·.. iIlg ché:1pters. it b :shown that sinlilar to one-dim~nsiotlal

f';l~.· t.Jw Jo: jl:maIl!l \"~riables (an be cxtracted and used in a straightfofward nlanner

for iiw:!1J Ho'.';:;;. :\ strci1nllinc coordinétte system makes an acceptable justification of

;\n:; FFBf' mode! si,ollid finally be matched to the fiol\" field sol\"er. This neces­

:-;il ;l!t."S ;I!l U\'('f\'it:w of t.he existig Euler soh·ers. Generally. ont." can dh'ide the existing

;d"-u ..itilln,, illtu explicit and implicit with respect to time. The r:1ain ad"antage of

<'xplieit mèthods lies in their simplicity. The stability of these schemes can be checked

hy modal analysis (see [49. 78. 99]). When one has a complicated grid structure. it

j, ;dlllùst imperati\"e to use an explicit method [41. The major disad"antage of ex­

pliei! "dh'llwS lies in the time-step restrictions dictated by the Courant number (CFL

limit). in which the numerical domain of dependence must comain the physical do­

m'lin of d,'pendenCè for hyperbolic equations. Thislimits the size of the time-step used

for time-integration and results in slow convergence rates whene'"er small and non­

uniform grids are required. For hyperbolic systems, the Courant number obtained for

simple equation is used as stability criterion. When the aim is to obtain steady-state

solutions then it is desirable to take large time steps in order to reach the steady-state

as fast as possible. ln the light of these observations, there has been increased interest

in implicit schemes in recent years [11, 25,83, S·5. 115, 156, 159, 163]. The choice of

boundary models can affect the stability of the implicit schemes [12, 137].

From spatial discretization point of view, the schemes can be grouped into cen­

trai differncing and upwind differencing. One of the main advantages of the upwind

ditfert'ncing is that they do not usually need artificially added dissipation, but they

ha\"e a reduœd accuracy [S2, 122]. The central difference schemes have been success­

fully de\"t~loped as practical tools for aerodynamic problems by Jameson [68, 134, 69]

ant! Pulliam [115, 116]. Recr.ntly, central differencing methods have been developed,

which are implemented without adding the dissipation terms [25, 84].

5
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The major difficu1ty of upwind schl'ml's is thl'ir gl'twralization 10 th,' mu1tidi­

nwnsiona! Iluws [~:2, !:22]. :-'ll'lhods \\"l'rl' dC\"l'!opl'd 10 rl'ml'dy lhis prubll'm [120, 121.

122. !:l2J. Howl'vcr, mosl of tlw upwind ml'lhods are hasl'd un an applicaliun l,f a

Olle diml'nsiona! spEtting (or dl'composition) along soml' pr,-fl'rl'ntial din'cli'llls whidl

purely depend on the construction of mesh.

For steady solutions the discretizl'd cquations are inll'gratl'd in virtual timl' until

rc1axing to steady-state. An advantage of thb procedure for the Euler l'qllations is

that they keep their hyperbolicity with rl':;pect to the timc. Iwncc they an' applicabl<­

to ail fiow regime:;. Ouring time-integration the effect of initial conditions is dampl'l!.

while any change in far field and solid boundary conditions Can pro<!nce a ncw solutiun.

1.2 An overview of far field boundary condition

procedures

Manv workers have been active in this area in the last ten years. but their works

have mainly been concerned with scalar partial differential cquations (POEs), with

only a couple of recellt applications to the Euler equations in specific circumstanccs

[33, 45]. In general, the preceding attempts in far field formulation consist of two

parts: analytical aspects and computational aspects. It is worthwhile to separ,Lte

the analytical and computational approachcs which are mostly used in practical fiuid

dynamics problems.

The POE is well-posed only when appropriate initial and boundary conditions

are appended to the differential equation. Numerical algorithms frequently rcquire

additional data to supplement those supplied from the outside of the domain of in­

terest. This sometimes can be done by using one-sided schemcs or spectral methods.

For most methods it is necessary to check the stability of the algorithm for the com·

bined IBVP. Different aspects of stability for hyperbolic equations are discussed in

[l, 12,49,11 ï, 139, 141]. An analysis of a finite·difference scheme is presented in [52].

For complicated schemes or systems of equations it is usually neccssary to check the

6
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,,~;sllijil.:" !'lJlldjt;'JI::-' 1.y llUlIH·ric;t1,:.'xperimenb [1:~8]. For ~ysten1S of equ<ltion:- the: stét·

Lility lJi" tlw IJljl1wJà.ry ç'uIlliitions depends on the specifie system as weil à$ the scheme.

hJr ''':;lInplo:. '1""'0: extrapolation may be stable for the Lax· \\'endroff method with a

:~";d;lr (·(IUé.11.iuti bl1t. il. !leed Ilot he stable when used on a systen1 t·!:~J.

A" ;,,,;ciyli.:al in\'estigation of far field conditions for less compressible flows is

;:;\','11 in ["~j. based on the asymptotic beha\"ior of pressure and \"elocity fields. The

"l'l'roxim;<liolls in th" boundary conditions can influence the stability of the o\"erall

"'!,,"nle am! hav,· l'ffec\> on the global accuracy of the numerical solutions [14. 49].

It was shown that if the numerical treatment is applied to the outgoing Riemann

vari;,bles then stability for the scalar equation implies stability for the system of

<"qnations [2i, 41] . .-\ discussion of the weil posedness for many of the linear cases

i, pr~ented in [108J. ?vIostly mathematicians ha\"e tried to in\"estigate the far field

J.,ehi1\"ior by using the mode! equations. which includes the features such as stability.

well·po,edness and rdlection analysis. Basis for the analytical approach has been done

by Engquist and Majda [30, 31, 3:2J. They analysed the wa\"e equation, which is not

of practical interest. There are also sorne other works in hyperbolic equations done

by mathematicians without direct application in CFD [52, 65, 130, 139, 141, 153].

Gustafsson and Kreiss [4iJ considered a hyperbolic system in (x,y,t) domain

and obtained nonlocal boundary conditions invoh'ing the Fourier coefficients.

Hedstrom [53J derived the linear and nonlinear forros of BCs for the Euler equa·

tions, using an eigen\"ector approach. Lindman [Si] introduced a new concept by

considering projection operators in one dimension. This was generalized by Engquist

and Majda [30] to muItidimensional wave equations by using pseudo·differential op­

emtors. In general. one can construct nonreflecting boundary conditions only if one

kno,,"s som"thing about the solution near infinity [4i]. An attempt to avoid the infin­

ity conditions was to map the exterior region into a bounded one. It was found that

ther" w"re reflections from the gradient of stertching [44]. In some circumstances the

mapping could dett'riorate the accuracy of the numerical solution.

The FFBCs have been encountered in solving the problems of various fields, such
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a~ acoustic~. geophysic::;. l"kctronlagnt:.~t ie::::. Sil1CL'...)t11" \.~ ...Hl ...·t'rtl ht'ft' i~ t llt' ~tt'n.ldyn~\tnil'

applications go\'erned by tht' Euler equations. wl.-.l1nut the di~ct1:'sil)n 1...) thi:-: lield.

A sun't'y in the literature shows that the I11L'thods. nutllerical t'xpl'ri""lll..'t' ~U1d

conclusions rt.·g':trding the use of FFBCs han.' not bt't'tl fully Sh':lrl'd hy rt':'t'.:\rdll'I"s

of different areas. .-\ synlpt0111 15 tht"" variety of nanles bast'll '.JI} tht." propcrty uf

these boundaries Wèfe gh'en such as nonrctlecting. transluitting. abSI)rbing: aud l1pl'lI

boundarie:::. Reeentlya re\"ie\\" of boundary conditit\I1:-O tlsing: llllt'-dimt'l\sÎl1t1':llllWl illl"\:-:

ha> heen gi\"t,n in [111].

Some authors used potential equation as the go\"erning far lield equatiün i:;,.,.
80, lOG. 1:36]. For fully subsonic flows it would be no problem >ol\"ing this equatiûll "1

far field regions. Howe'·er. it cannot be true for the non-isentropic flow case> where "

shock is present in the flow field. In this case the potential equation is not capable of

taking into account the entropy generation within the computational domain. From a

computational \'iew it is not possible to e:-.l,end outer delimiting; boundary to inlinity:

for example in turbomachinery flows, the FFBs are typical1y less than one chord away

from the blade [37].

An approach, based on the Riemann variales was given by Verhoff et al [1.18]­

[151], which includes lots of analytical integrations, and many assumptions for per­

forming them. In this case, a defficiency is the boundary condition (Be) formula­

tion using the steady-state Euler equations, which are not hyperbolic for subsonic

and transonic Mach numbers. Another one is that the grids cannot be clustere<!

near the solid boundary by applying this method, for performing the inverse Fourier

transformations. A simple method \Vas propose<! by Jameson et al throughout their

works [68]-[70]. He use<! the ID characteristic relations equations at boundaries of the

2D flo\Vs. Vvïth this type of boundary treatment the far field boundary should be at

least 15 chords away from the solid one \Vith an Q-type grid.

The approach of Bayliss and Turkel \Vas first suggested for wave-like equations

[la] and then for elliptic systems [9]. lt provided reduced reflections for the Navier­

Stokes equations [7, 8]. For steady-state problems they were use<! to accelerate the

8



1jl'll:- ill il'nlb ur pres~ure onIy. which Was used aS an outftow boundary condition .• 1 •JI",_ J• 1:!~:. B"yli" ,md Turkt:! [~: expressed the Iineariz...d Euler ..qua-

.\ li illt,·t,,,:.illO', choiee rt'sldts from the analysis of Bayli"s and Turkel. which ha>' been

~hll;'.'ll by Hlw [ll!1. 120. 121] ta correspond ta a direction making an angle with the

illl"idl'1I1 \"l:,il)('jl,y dirt.-'cticl!l::' hligned with the x axis: however. he did not report nun1er-

i.... \ r,·sult.s ill this regard. The FFBCs bascd on Fourier transforms were de\'eloped

l,,: (:ust .. bsull :·1.1. ~6. ·IS. .'ioi and b\' Ferm f:~:~i. in which the unstead,' tenus were. ~ ... . .
dropped 'llid after Fourier transforms(applied ta steady equations). they \\'ere added.

this is "Iso the case in the \\'orks done by Verhoff fi al [149]- [150]. 13y doing so the

system looses its hyperbolicity in the subsonic and transonic fio\\' regimes.

Ali approach using the group "elocity for tra"elling disturbances \\'as gÎ\'en by

Trefetheu [1:~9. l~!]. A fe\\' other computational attempts have been made based on

5011\" sort of algebraic extrapolation procedures [24. 35, :~6, SO, 129].

Al" subsonic FFB, part of the information can be specified. The rest of the

information should be calculated using the numerical solution [41, 102]. When the

inllo\\' is given by free-stream conditions, it is necessary to decide \\'hich of the kno\\'n

quautities should be specified at the boundaries. Frequently, this can be done on

physical grounds. e.g. the total enthalpy or total temperature is constant: see [21, 85,

1O:!. 104, 154J for some disagreement on this point.

It is noted tha~ the outgoing disturbances can refieet from aIl the domain bound­

aries. no matter they are solid or far field. The outfiow boundary conditions arise in

many applications like external aerodynamies, acousties [32J, and geophysies [36, 23J.

The purpose for outfio\\' treatment is to allo\\' the FFB to be close to the region of in­

ter""t. At the same time we demand that this boundary Dot refiects disturbance waves

that clestroys the solution accuracy and the convergence. "\Vhen the steady-state is of

importance. Olle ",ishes to choose the Bes to accelerate the convergence.

A way of absorbing the refiections of unwanted wa....es is to put sorne ~sponge

layers" at FFBs [6ï, ï3, ï4, i5J. However they are usually effective ooly for a narrow

bandwidth. Outside of the sponge layer, reflections of frequencies are again created by

9



• gradient~ due to the ~ponge laYL'r itself. For 111any problem~ tlw h(lUIHlary \''''lldi: illll~

at the body surfaces are the n10st crucial. According ta thcl-)ry 1·1~)]. unt' t'atl U:,C aIl

app:'oximêttion that is one order les::' accurat(' at tilt.." boundary thall in tht' lllit'ri ...lr dt)­

main. Howe\·er. in many problems the solutions in tIlt' nt'ighborlw"d "f the b"llndary

is the nlost important part of the solution. e.g. w(" wish tü cah:ulatt' tht·lu~,\.ling f"lrre:-,

on the boundary. Hence. the precise itnplen1entation of the solid ll\)lllltJ;lry ù.llltlit illll:-'

is important. ln [129] a selection of bcundary treatments is analyzed for stability

requirements. An alternati\"e FFBC method is to us,," the ID c1taract<'ristic ,'quali,,"s.

ln which the FFB is locally assumed to be one-dimensiona! [109]. The disad\"antage

uf this treatment is discussed in [lOI].

The extrapolation methods for solid boundary treatments are widely used [19.

68. 115, 124, 144J. They aIl are considered one dimensional trcatmcnts. Ollt' should

be aware that this can lead to incorrect solutions. NIost of the proposed models for

treating the FFBCs ha\"e been used in conjuction with the explicit schemes lia. 119.

148]. Throughout the present work, the applicability of the proposed far field and

solid boundary mode!s have been investigated using an implicit scheme, Usually,

for sol\"ing the f1uid dynamic problems the implicit schemes are encountered with the

drastic sizes of matrix manipulations. It will be shown in the next chapters that when

an appropriate model for the FFBs is employed, the reduction in the grid size and

consequent!y memory requirements can be kept at minimum level, while maintaining

the accuracy of computations.

1.3 Outline of the Thesis

The main goal in this thesis is to investigate, formulate and implement a FFBC

model for solving the inviscid compressible f10w problems within the subsonic and

transonic ranges. It is mainly based on the Riemann variables expansions and outgoing

information related to the first-order hyperbolic PDE systems,

The remainder of this thesis describes the development and application of the

10



• l'r''I',,,.'rI FFBC lllurle! for the quasi-one and two-dimensional internai and external

li, j"': s.

CIi"I'r.".. ~ presents sume key features and mathematical specifications of the

Euler equar.iuns. which recO\'ers foundations for FFBC formulation. The Euler equa­

1iuliS frum tlie characteristics point of view are taken into account. Also a formulation

fur t.l", cli",acteristic compatibility equations of 2D time-dependent Euler equations

is ,,,ldressed. Based 011 these compatibility equations the direction of the outgoing

"'''\'''s wc...· """roximatéd and used in the next chapters.

Tlie funnulations of finite-difference fio\\' fie!d solver are presented in Chapter 3.

for both quasi-one- and two-dimensional compressible flo\\'s. A factored ADI scheme is

used for 2D fio\\'s, in \\'hich the block pentadiagonal coefficient matrix is decomposed

into t\\'o tridiagonal ones along the coordinate a.xes. The discretized equations are

intégrated in the transient time until relaxing to the steady-state. A modified artificial

dissipation is also discussed. The numerical solid boundary treatment is discussed,

and " mudilied method is presented, \\'hich is based on the combination of normal­

momcntum cquation and characteristic compatibility relations. It is sho\\'n that the

solid boundary treatment can affect the solution accuracy and com'ergence towards

skady-state.

Th., developed FFBC model for quasi-one-dimensional flows is discussed in chap­

tt'r 4. which is based on the Riemann variables e:l.-pansions and interpolations along the

olltgoing characteristic waves. Numerical solutions obtained by using the proposed

FFBC mode! are compared and validated against the available exact analytic solu­

tions. The results of the conventional FFBC treatments are also shown and compared

with the exact solutions.

The proposed FFBC mode! is extended for 2D confined compressible fiows in

Chapter 5. The inBow and outflow FFBCs are determined from Riemann variables ex­

pansions and corresponding perturbation equations, in conjunction with the outgoing

informati<lll from the computational domain, caIculated aIong the outgoing waves.

For computation of confined fiow, the FFBC mode! is applied to a channel with a

11
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•

cin.:ulétr-an.··bul11p. The rnodd is yalidatl'd by c\'.nlparing tht' pn..·~l'nt :-'l,Jlutil'll:- witl!

preYious rt::~sults obtained by differt'Ill authon: for tilt' sanw :;eotl1t't l'y.

ln C'hapter li the proposed FFBC' modd is t'xtèlll!ed for t'xtt'rtla! ;ll'rt)dynamic

flo\\"s. The corresponding perturbation equations ~1I·t' ~oh·l.."d uUbide of the rompllt't·

tiona! domain for achie\"ing the far field \"alues on the outer boundary. This t''1uatit)lI"

are used to recluc..x· the size of the conlputatiollal domaill. while lllailitaillill~ tltt' ;IC­

ClU'cWy. The solu tions gent:rated by t ht'" proposed mode! a t't' ùltl1parl'd and y,did;l t.l'li

\\'ith a\"ailable existillg solutions for certain applic"lions \:".-\C' ,\ Oll!:! "irl~)il).

Th", conclusions and main contributions are presellled in Chapter 7, \\'hich abu

contains some suggestions for further e:--."tensions of this \\'ork.

12
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Chapter 2

Basic Features of Compressible

Fluid Flow

Thi> chapter presents the basic equations of compressible flo\\'s and elemeuts of the

characteristics theory for the hyperbolic systems of equations. The behavior of the

till1t'-dependent Euler equations in one and t\\'o space dimensions are over\\'ieved.

Then characteristic compatibility relations \\'ere developed based on the orientations

of the propagating \\'ave fronts. It \\'as sho\\'n that similar to the ID flo\\', the compat­

ibility relations can be obtained for the 2D Euler equations. Ho\\'ever in this case the

e'!lIation> depend on the orientations (angle) of the propagating fronts. The domi­

nant propagation direction \\'as approximately determined based on the compatibility

rdat iun>. Th" 2D characteristic compatibility relations and wave front orientation

will be used in the next chapters to calculate the information from the computational

domain.

13



2.1 Governing equations of rotational compress-

• ible flows

2.1.1 Conservative form of the Euler equations

The thrL'('·dimensional Euler equations can be writtcn in conservation form as

oW oE oF DG
ai + ox + oy + oz = O. (2.1 )

where the state vector W = [p,pll,pv,pw,pE]T, contains the dcnsity p, the threc

velocity components u, v, w and the energy per unit mass E. Thc flux \'cctors E. F

and Gare given by

and the pressure is related to the state variables as•

pu
pu2 +p

E = puv
puw

(pE + plu

pv
puv

F = pv2 +p
pvw

(pE +plv

pw
puw

G = pvw
pw2 + p

(pE +p)w

(2.2)

., = Cp.
Cv

(2.:1)

Usually the conservative form is used as the How field solver in shock capturing mcth·

ods, while th", primitive variable form is used in the boun<lary condition formulation.

2.1.2 Primitive variable form of the Euler equations

The primitive variable approach fonns the basis for the shock fitting schemes [2i, 103J

and is also \Videly used in the boundary condition formulation [102, 104, 10.5, 13iJ. In

this case the Euler equations are expresscd as

•
oU -au -ou -oU-+A-+B-+C-=O,at ox oy oz

14
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• C · .T· h .. . . bl d 1 J b' - h',':IJl'rl~ . = :{J.Il. c.IJ:.pl l~ t e pnmItJ\'(:' \'ana t:S vector an t 1t" . aco Jans 01 t e

p:'i!lIit j\'l' \';1rii1hll'~ are gi\'(-:II by

li P G G G v 0 p 0 0
G Il 0 0 IIp 0 v 0 0 0

A= () 0 li 0 0 B= 0 0 l' a IIp
() () () Il () 0 a () v a
() (Ja~ 0 () a a ., aIl pa- t'

te a 0 p a
a li: a 0 a

c= a a U' a a (.) -)_..)
a a a U' IIp
a a a .,

pa- u:

"'bere li is the speed of sound. Since the primitive Jacobians (equation (2.5)) are

related to the conservative Jacobians (:~, :&, ;&) by similarity transformations,

t.he t.",o sets of Jacobians have identical eigen\·alues. These eigenvalues are in fact

the speeds of information propagations. In the ne;.;:t chapters the system (2.4) will be

expressed in terms of the Riemann variables for the FFB formulation.

2.1.3 Characteristic form of the Euler equations

This is the most important feature of the Euler equations and hyperbolic PDEs that

considers the propagation of signaIs through the flow domain. Basically the Euler

equations describe the motion of such surfaces [135, 164]. Finding the characteristic

form of the Euler equations is 1.0 seek for wave-like solutions of the form [37, 157]

U = U(), (2.6)

for the equation (2.4), where ( =xk= +yky +zk= - >'t.

The solution U is constant on sorne hypersurfaces in the (J:, y, z, t) space. The

characteristic fronts are mO\'ing with speed >. along their normal vector, ii = (n=, ny, n=)T,

which is a generic unit vector, liil = 1, related 1.0 the vector (k=, ky, k=)T. Substituting

solution (2.6) into equation (2.4) yields

deI. IDn - >'11 =0,

15
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• where 1 is the identity n1atrix. Bence.

1:, pll: pn;., pn.: n
0 \ :, 0 li Tl::' f'

Du = A,,: +Bn, Cil : = 0 0 L. n 11 .~;' P
0 0 n \ ;, 1

":! P
0

.,
\ '.,pa-,,: pa-Tl!; pa-Tl:

\\'he're \;, is the' projection of the velocity V in dirl'ction 11. \\'hich is

System (2.-1) is said to be hyperbolic if the matrix DII h,,,, l'cal l'igen\'alues ,ul<l a

complete set of linearly independent eigenvectors for al! ü. One can diagonalizc' matr;x

Dn, but it is not possible to diagonalize simultaneously the three Jacobians _~. B. ë.

The eigen\'alues of matrix Dn are found by solving the algebraic equation (2.ï). \\'hich

gives

It is \\'ell kno\\'n that the eigenvalue Àn has a multiplicity order equal to the number

of space dimensions. This means that, while for ID case a unique definition of the left

and right eigenvectors exists, in two and in three space dimensions different choices

are possible.

The left eigenvectors of matrix Dn considered as !ine vectors ï (or L if groupe<!

in a matrix), can be found solving

• À4 =V· n + a, Às = V·n - a. (2.10)

or equivalently in matrix form

LDn =AL,

\\'here matrix A is a diagonal matrix with the eigenvalues Àj and jE {1,.S}.

(2.11 )

(2.12)

1 0 0 0 -1/a2

0 0 -n:/(n; + n;) n~/(n; + n;) 0
L= 0 1 /( 2. 2) -n",n./(n; + n;) 0 (2.13)-n=ny n!l ï n=

0 n", n~ n. 1/(pa)
0 -n", -ny -n. l/(pa)

16



• Til" ill":";":'" :Ft = Ï.-1 ....:!licb c:onsists of the right eigenvectors of Dno is found sol\"ing

.,'.. It ;,,1, yiclds

1 0 0 p/(2a) p/(2a)
0 0 2, :! ,,:/2 -11:/211.;: i 11.::

R= 0 -Tl:: -n::ny /') /.)n!.! _ -n
YI

_

0 Tl!} -n:7t:: r -TI =/2Tl,: _

0 0 0 pa/2 pa/2

(2.1~)

(2.1.jj

Hil\'ing determined the left and right eigenvectors matrices, the characteristic variables

can be defined as

dZ = LdU, (2.16)

where dU = [dp, da, dt·. du:, dpjT. Hence, one gets the following characteristic variables

•
vector

dp _ e~ l."N·s
dZ= N·t

N.ii.+ e•
p.

N . ii. - !lE.
p.

wllt're the normalized vectors S and t, whose components are

(2.lï)

[ ]

T_ -n~ ny
s = 0,., ")'., .,

ny+ nz ny+n;
(2.18)

fOl'm an orthonormal base vector with ii., i.e. ii. x s = t. The first element in the

equatiou (2.1 i) corresponds to the entropy wave. The second and third ones are the

shear waves aud the fourth and fifth are acoustic waves. Note that these solutions are

linearized aud may not reflect whole the behavior of the 3D f10w field when applied

to the FFB. In the conventional approaches to the FFBs, these simple waves have

been used [3. 119. 120, 144]. In conventional FFBC methods, equation (2.1i) 15

also used to figure out the number of necessary boundary conditions. Also it is

locally discretized and used for far field calculations [68, 144]. In the nell."t sections an

alternative approach based on the directions of the propagating fronts will be given.

li



• 2.2 Behavior of the Euler equations

::;ince the quasi-one- and two-dimensiona! Ilows ha,"" ht't'n c,)nsid"r"d nI th,' l'l'Ill'

formul,'tion. we procet'd with them in some cktail.

2.2.1 One space dimension

Consider the Euler equations for ideal 1D flow of a l'errect gas in a constant ar,'a dn<'1

ôU -ôU
ôl + A ÔI = O. l~. 1~l \

where

u= [~]. [

tif' 0]
l = 0 "" IIp .

o pa' tI

The matrix A has real eigen"alues and a complete set of eigenvectors. therdore it can

be decomposed as

.~ = RAL. (2.20)

where R is the matrix of right eigenvectors (columns) and L is the matrix of left

eigenvectors (rows). The following relation bolds

RTF = LR = I, (2.21 )

where I is the identity matrix. Now, the equation (2.19) could be decomposed to

three scalar equations and, theu any of the scalar equations could be integrak-d on the

corresponding characteristic 1ines. Initially the matrix A is assumed to be consta'lt.

Considering the relations (2.20) and (2.21), equation (2.19) when premultip1ied by L
becomes

8(LU) -l. LAL-l~(LU)= 0
8t' 8x '

which cau also be written as

18
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,10" .,.:j 1 1. ,', ... •t· ... ·.·.-._·~·· ..... ..;;,1 n' •. :'h- ~'" "d" ~, .." ":::'- .. .., .. ;~1
,,;"," .... : .)1 ,l. ..... (.J<L<.c.c .... l~Ll(' (1 .. 't:::"_. êJÛ:1.:: <:in., O. L. em ""J. O. lnc.,., CL,t".è.. I.ê..

h = ~Ù. pa. l

l~
T .,

O. 1= I-Q- .
l

b = 'O. -pa. r (~.24 )

TIlt' equ<ltitJIl f2.19). when t11ultiplied by these eigen\"ectors. after algebraic manipu-

l'lt.iutl::-- gin~~ the characteristic relations

dU'l = dp -'- padu = O. along dI/dt = '\1 = U -'- c.

du'z = dp - aZdp = O. along dI/dt =),z = U.

dU:3 = dp - padu = O. along dI/dt = '\3 = U - a.

Equations (2.2,)) are describing the acoustic and entropy \,:a\'es \\'ith the correspond­

in;; prupl,gation speeds -\ (eigen\'alues of the matrix A). Based on these equations.

the information propagates through the flow field. including the boundaries. For dif­

ferent f1o\\' regimes the equalions (2.25) will ha"e different directions of propagations.

Equations (2.25) can 0.150 be written as

\\' hert"

dp du
- -'- pa- = O.dt' dt .

dp _azdp = O.
dt dt .
dp du
--pa- = O.
dt dt

d 8 8- - --'-),'­
dt - Bi ' '8x'

19
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• t

x

Figure 2.1: Propagation of information through chara,·teristic lilll's.

Expanding the l'quations (2.26) along the corrcsponding characterislic linl's in (.r.I)

'pace yidds [99J

•
[ap au] [ap au]at + pa8ï + (u + a) ax + pa ax =o.

[a
p _ a2ap ] .l. u [ap _ a2ap ] =0

at at' ax ax '

[ap aul [ap au]--pa-J+(u-a) --pa- =0.
at at ax ax

(2.28)

ln the extreme far field regions sorne authors [53,68, 126] have negl<'cted the spatial

deri"ati"es in equations (2.28), which reduce to

(2.29)

•

The boundary conditions (2.29), derived for 1D flows, are commonly used in mul­

tidimensional applications for tbe far field regions [68, 126, 12ï, 144]. In genllinly

l11ultidimensional flows, ID analysis is only valid for disturbances normal to the bound­

ary and asymptotic expansions are required for waves in other directions. Figure 2.1

depicts how the information propagates along the characteristic lines.

20



• 2.2.2 Two space dimensions

III l"';() Sp;tr,O dimensions. the time-dependent Euler equations can be ',':ritten dS

oU -oU -oU
dt -+- A ox -+- B oy = o.

·.... 111 Tt'

c{] ["
p 0 Il: ] [, 0 p

lin- 0 u 0 - 0 t' 0
A = ~

B-
0 u o . - 0 0 t'

,p 0 u 0 0 ,p

(2 ..30 )

The .bcobiall matrices _~ and Bcannot be diagonalized simultaneously. Simple wave

'l)lutions. ill which U is constant on sorne planes in the (x, y. t) space. could be written

in the f"rIll

Equation (2.31) indicates solutions which are constant on straight lines in (x, y) plane

(i.e. constant in (x,y, t) planes), rnoving with speed À in the direction of the unit nor­

Illal n = (cos:;.sin,?). Introducing these solutions and requiring nou-trivial solutions

for U. results in the relation

•
U = U(Ç),

( = X cos,? -+- y sin 'P - Àt.

det [.~ cos,? +Bsin 'P - À1] =O.

Substitution of A and Bgives

(u cos cp + vsin,? - À? [Cu cos,? + vsin;:> - À? - a2
] = 0,

(2.:31 )

(2.32)

(2.33)

(2.34)

which has four real roots. This shows the characteristic surfaces (or simple wave

fronts) are moving with the speeds

À1 - U cos;:> -+- v sin cp +a,

À2 = U cos;:> + v sin ;:>,

À3 - U cos:; +v sin ;:>,

À.. = ucos;:> +- t'sin:; - a. (2.35)
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•

.-l' a e~s ..: : [ ~; ]Il - . . r~ = ) .
Il ~nl ...: l

pa' 0

Ont" can trace moycments of" W"Yl' front in \"·.!i) spae,· ill~1. lëll]. [acb wa",'

front is specified by its speed Ai. direction .,:. and the typ" ,,1' disturhal\<"·. l'j ...\n

entropy or shear wa\"efront has the specd of t1.o\\" partiel!..'::" /1 (lI:' ':-'~ -+- /' ~ill ':-'~. :\ult'

that the particle paths may differ from thc front normal. :\n "ntrupy w.,,'" ,·arri..s tilt'

disturbance r~ (only a change in density) . .-\ shear waye. includes a chang,· in ydo..it)'

in a direction parallel to its front (i.e. no changes in thc normal componl'nt ur l.h..

yelocity. pressure and density. as described by ra). Finall).. acoustic wa\"efronts mo",'

with the yelocities AI and A•. Consider a wa\'efrollt passing through th" origin al. timl'

O. It will move forward as much as (u cos.,: + vsin <; ± a )~t. wh icb is a combination

of two movements. First the wavefront is moved (U cos 1" + L'sin.,:)~t forwMd. al'ter

which it passes through point 0 in Figure 2.2 (for ail values of ;,::). and then there

is another (forward or backward) movement by an amount a~t. Hencc. regard!css

of the value of ;,::. the wavefront will be finally tangent to the circlc in Figure 2.2.

Changes caused by acoustic waves are proportional to rl and rot. lt was shown tbat

they influence the convergence process [101]. A rough estimation of the dominant

wa"e direction gives

Ô>'i =O.
ô<; .

in which a \'alue is found for the direction of the outgoing waves as

v
tan",::::: - = tane.

. U

(.) .,-)_ ••JI

(2.38)

This value can locally be used for approximating the direction of the wa,ve fronts [i.5].
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Figure 2.2: Propagation of acoustic \\"aves in 2D f1ows.

Compatibility relations for 2D Euler equa-

tions

The simple \\"ave approach shown in section 2.2.2 is limited to linearized equations

<Lnd is not capable of sho\\"ing the nonlinear effects of wave propagation. However, at

tht' regions far from the highly nonlinear part of the f10w the simple wave approach

cou!d he \'alid with good degree of accuracy. If one is interested to come doser to the

nonlillear parts, they might not be valid. A ne\\" approach is followed to derive the

equivalent characteristic set for the 2D Euler equations.

The solution of equations (2.30) for kno\\"n initial conditions (origin of distur­

bance) is assumed to be a moving surface

which is the surface of the disturbance front. Since the acoustic wave fronts carry small

disturbances of the f1uid, the flo\\" variables (p, U, v,p, a) change ooly by infinitesimal•
f(x, y, t) =0, (2.39)
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•
when a wavefront pa~Sl'"S at a certain location of thl.~ Ho\\' tit.·ld. ~u(h di~((llltilluitit';-; arc

\\"eak in contrast to tht' shock \\'a\"(;~s. in whi("h the t1 ...... \\. \'ariabll.:':' t heln:-:l'l\"t':-:' l.'XIH..'ril.'uù'

discontilluities.

:,uch <lS p. u. l', p can be $pt:'c:itit~d <LIùng th~ surfaù', r sillg tht' derivati\·...·:' '~;;. ',il~' ;l/'r;' and
l,., ", '-,

,,~ in the go\"erning equations (2.:30) results in the following characlerislÎ( rondilioll-,

0 0 1 ~ r 0

1

pa;
0 0

1 .3 f 0
~= ;~ = O. (:2.-10 ){'Il ~PJ':

P""
0 0

0 0
-, .

0 -a"O

where

df of, of, of
0= - = - .,. u- - t'-dt ot OX' oy' (2.·11 )

The equation ~ = 0 defines the characteristic surfaces. For the dcri\"ation of ~ sec

Appendix A. After sorne algebraic manipulation on~ can get from cquation (2.40) as

(2.42)

The solution <;) = 0 corresponds to the equations of streamlines. Auothcr solution of

equation (2.42) is

-2 2 [(Of)2 , (Of)2]
o = a OX .,. oy . (2.4:3)

The equation of wa\'e front motion is obtained by combining the equations (2.41) and

(2.4:3) as

af _ af, af_
at .,. u ax .,. 1: ay - ±a
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• 11:: l.lw hid f/f dliti!J rule deri·,,·d.ti\"es~ one gets

df
0= -.

dt

;~lld li\" fulllJwiug isentrupic relation fronl gas dynatnics

ôp dp op
ôx = dp ÔI'

(:2,45 i

(:2.46)

\\', , Ilu,," ""lllrll lu the mumentum cquations in system (:2.:30) and rewrite them as

du. 1 dp ôp
-0"- ---- - 0df 'pdpôx - .

dt' "- ~ dp ôp _ 0
dfo , pdpôy - .

(:2.-li)

(:2.49)•
Partial derivatives of fio\\' variables in (x, y, t) space. on both sides of the characteristic

"urface fl x. y. t) = O. are evaluated. Ali these derivatives are proportional to the

corrcsponding deri\'atives of the f(x, y, t). This relationship for p is

8" 8" 8" d
il.=~=;;.=t
St S: Su lf

Fur mure dct,lils of condition (:2.49) sec Appendix E and [ii, 1:3.5]. Considering the

r..lation (:2.·19), one could write

ôp dpôf
ôx = df ôx' (2.50)

By introducing the value of ~; from relation (2.50) into equation (2.4i), one gets

du, ~ dp dp af _ 0
df °+ Pdp df ox - ,

ur after simplification

édu + dpa
a

f = O.
p x

lntroducing the \"a1ue of <5 from realtion (2.43) into (2.52) results in

(2.51)

(2.52)

, dpaf
du.,. --- = O.

pax . (2.53)

•)0_0



• ill \\'hich. one (an dt."nne

For the propagating disturbances along tht' x-direction. t'quatiülI t2.~1:\) l'ail bl' writlt'u

as

dn
=.<111 -:- (0:; ,,:-' = O.

. pa

lu a silnilar n1all11er the propagating disturballù'~ along the .r/-directiüll hl'l·\JlIlt.·~

. d . dp 0= r + 5111"';- = .
. pa

The relations (2.5.5) and (2.56) are the 2D colllpatibility ~qllation:; pl't'st'nting "

gen~l'al case of ID characteristic relations.

Taking the squares of the equations (2.55) and (2 ..'56) and "ddinp; yidds

•
(duf -:- (dt')Z = (dp)z.

pa

and defining the differential of resultant \'elocity, dq. as

(dqf = (duf + (dt'f·

If the "elocity changes in magnitude and not in direction. ont' obtains

\') --)_.,:)/

(2.58)

(2.59)

(2.61 )

(dq)Z = (dP?
pa

By integrating equation (2.59), one gets the Riemann "ariables in terms of the velocity

q and sound speed a
.)

q ± ---a = const. (2.60),-1
This expression has been used by Verhoff et al either for boundary treatment [148, 149,

151] or in the flow field solver [152]. Relation (2.60) will be used in next chapters for

the FFBC formulation and analysis of time-dependent 2D f10ws in natura! coordinate

system. Integrating the equations (2.55) and (2.56) results in the

Jdu +cos:;;J~~ =R,., Jdu - cos:;;J~~ =Q~,

Jdv + sin,:J~= =R", Jdv - sin,:J~~ = Qu,
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Figure 2.:;: Propagation of Riemann variables on the time-like planes for time­
dcpcndent 2D flows.

which C"II be expressed for x and y directions in the fol1owing forms• .)

Ru = u + cos ~---a.
. '1 - 1

.)

R,. = l' + sin y---a,
; -1

,)

Q. =u - cos :.;---a.
Of - !

.)

Q. =v - sin y---a.
;-!

(2.62)

TIlt' projcctcd Riemann \'ariables show the paths of information propagatiou of multi­

dimensional in\'iscid compressible flows. Considering the domain of dependence and

ho\\' the Mach cone is cut by the boundary (see Figure 2.4), the number of BCs are

kllo\\'lI. Each bicharacteristic \\'hich hrings information from outside of the domain

shuuld be replaced by a Be. The relation between the projected Riemann variables

"nd direction of propagation is gi\'en hy

Ru - Q.
tan:;; = Ru _ Q.'

The equations (2.55) and (2.56) cau also he e.'"pressed as

dp du
COSy dt ± pa dt = 0,

. dp, dv
Slll:;; dt = pa dt =O.

.)­
_1

(2.63)

(2.64)



• Along thl."' parti ... lt· path L)I1l' has

.id Ô il
T. = " • .,. u" .,. "-J' .
(.i UI u.r ,II

and for the bicharacteristics the following operator hold"

do­
-=-':"lD·\)dl 01' .

1 ... ~ • :l • D-' 1 l' f . . , ,,-' .w lèl'e \ = ~l + ~J and 15 t lè \"(' OCtt\" \) .lcouslll' \\'.1\""" tn.lllt~ : }.):.'I, ~1\'t'11 ln'
~: °V • . .~. .

D ' )' l . . )'= lu =a cos.,: 1 + ,. =<l ~111": J.

where i and j are the unit "ectors in Cartesian coordinatc.'.

Con~idering the operator (2.66), equatiolls (2.64) are express..d a~

•
[a

p .. oP... op]co' - --(u-acos ')--("-a<1ll .)-. '" ot' - y, ax' -' y oy

[
aù au au]='pa al + lu=' a cos.,:) ax + (v ± a sin 'P) oy =o.

. [al' (' )al' ( ')ap]sm·- -.:.. u-acos,o - ... ,. ... asm'·-
y at' - ,. ax ' ,- y ay

[
au au. . au]

±pa 8t + (u ± a cos 'i') ax + (v =a sm 'i') ay = o. (2.68)

It can be assumed that at far field regions the variations of flow variables \Vith re­

sper,t to space are negligible, therefore in the limit of vanishing spatial variations, the

equations (2.68) reduce to

al', au
cos y- =pa- =o.at at .
. al', av 0

sm 'Pat =paat = ,

and hence

To determine the wave angles, one combines the equations (2.69) and gets

av/at
tan 'i' = au/at'

28
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Figure :2 ...: Space-time diagram showing the propagation of characteristic front, a
partiele path. and :Vlach cone in the (x, y, t) space.

Equation (:2.il) will be llSe<! in the ne.'(t chapters to find the direction of outgoing

waws. This is an alternati\'e to the Roe's approach [119], who approximated this

wave angle usiug the linearized Euler equations; for more details see Appendix F.

It is often assumed that the disturbances strike the FFB with the wave fronts

paralld to the boundary (i.e. the partial derÎ\'ative with respect to the tangential

direction is negligible). This assumption results in the 10 characteristic boundary

treatments for multi-dimensional f1ows. If the wave fronts are not parallel to the

buundary. the waV<:' will partially be reflected back into the computationai domain

which slows the convergence process and may generate inaccurate solutions.

29



•
Chapter 3

Implicit Flow Field Solver and

Solid Boundary Treatment

In this chapter the implicit time-marching rnethods for solving the quasi-one- and

two-dimensional f10w fields are discussed. For solving the ZD f10w a factored scheme

was used, similar to that developed by Bearn and Warming [Il]. A modilied solid

boundary method is also discussed.

3.1 Implicit quasi-1D fiow field solver

The Euler equations for a quasi-one-dimensional flow may be expressed as

8W 8F
H-+--G=O.8t 8x .

where W = [p,pu,pEjT, and H = H(x) is the variable cross-sectional height. The

flux and source vectors are

F= [ pJ: p ] H,
(pE +plu

By an implicit time discretization (Euler implicit scheme), the equation (a.!) takes

the form

30

(3.3)



• ·.... 1,··:··

Th.. fillile-differenceequalion (:).:3) is recast in terms of ~\V (or della form). By

appru;,,:hillg tû the steady-state. ~Vl would tend to zero. :\ linearization procedure

Silice F = f(W. H). the ~hain rule of differentiation gives

ôF ôW ôF ôH
aï = A8i .,. ôH ôt .

where the flux Jacobian matrix is

•
1
-(-r - :3)u
E 3h-1l'.., - -r-u"

For lIon-moving solid boundaries, aa~ = 0 and hence

ôF ôW .6.W
-=A--:::::A-­ôt ôt .6.t .

Substituting relation (3.8) into (3.5) gives

III ;, similar fashiun one can linearize the source vector

where

ôG dH [ 1
0

, 0 0 ]B = - =b - 1)- :;u· -u 1 ,
ôW dx·O 0 0

Î ~ 1] .
"Yu

(3.7)

(3.S)

(3.9)

(3.10)

(3.11)

and Î = ~: = 1.4. The first order h;yperbolic equation (3.1) has the propert;y that

the flux vector F is a homogeneous function of first degree in W; i.e. F(kW) =
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• • '1" 1 1····"properlY ~ .) . .)..;.;.

Tbè eigen\"alues of A. rcprcsL'IH the charact\;'rist ie din'ct i\)ll~ fllr inflll"lll;ll illH Pl'P\l­

agation. For stability considerations ont' is refcrt'd t(1 Il:t2}.

Tht'iinearized foru1 of equation ~:3.:~î in tcrms \lf .Jaù,hiall lnatriù'~ tllt'Il i:-;

~w a 'IF"
H-- -i- -,(A~W) - B~W = --(_..:.. G··.

~t d.r ,i.l·

\\"hich can be reca~t a$

8 " 8F"
[HI-i- ~t,-,A - ,~tBj~"" = -~t(-a - G"L

vX x

where I is the identity matrix and ';:(A~'V) is discretiz<'d hy n·lltr;.! dilf"I't'Il"ill<'- as

[:x(A~Wl = 2~x(A;+I~'V;+1 - A;_I~'V'_I)'

by (:3.1.l) .

Equation (:3.1:3) generates a block-tridiagollal systew of equatiolls. whell discrdiz"d

• 3.2 Implicit 2D flow field solver

lmplicit schemes have widely been used for stability considerations. III practiœ for

nonlinear systems the stability bounds encountered for implicit schemes are less re·

strictive than for explicit schemes. However, they produce large linear systems of

algebraic equations which are computationally e.xpensive to solve. Rence, factored

methods [4, 11, 16] are used to split the problem along the coordinates.

For 2D compressible flows, the Euler equations in the conservation form can he

written as

aw aF aG
fit + ax + ay =0,

where W = [p, pu, pv, pE]T and flux vectors are

(3.15)

F=
[

PU ]pu~ +p
puv '

(pE +p)u

32
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pv ]puv
G= ~ .pv +p
= (pE + plv

(3.16)



• ~, - l .... .~
fi = '-. - IlpE - -'--piu- -1'-1.
. " 0' (" J-.). 4 1

Til'" "Iluil'{o tif 110Ild:IlJI-..'IISioIl(11 fJitrameters depends on the fio\'; nature. Here the 5tag-

l'
('

1/ - t' E- E - p ,- Got
(:1.l8)1/ = - ,. = = 'O. P = ., . , =

an "0 ,,- poaii L":"~f0

·..:iw".. L.., i n'present' thl' chord length, For simplicity, the superscripr " will be

druppt'd in the following equations. in which ail qualltities are nondimensional.

3_2.1 Generalized coordinate transformations

The :20 Euler equations are transformed from cartesian coordinates to general curvi­

line"r coordinates \\'here for a time-independent grid

• j=L ç = ç(x,Y), TJ = TJ(x, y). (3.19)

TIlt' coordinate transformation introduced here follo\\'s the de\'elopment ofVinokur [155].

The transformations are chosen so that the grid spacing in the curvilinear space is

un iform and of unit length. This produ.:es a rectangular computational domain in

(Ç.11) space \\'ith uniform grid (-Clç = l, -ClTJ = 1). hence un\\'eighted differeucing

schenlt'$ (Lr~ used.

The follo\\'ing relation is used to represent the Cartesian derivatives in terrns of

tht' cun'ilinear derivatives

\\'here

[
a/at ]
a/ax -
a/ay

(3.20)

•
ç::: = Jy.,

TJ::: = -Jy~,

33
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After transformation the' Eukr equations takt' tilt' fonn

'" = ~ [ :u ].J pl'
pE

wher"

[

pl' ]
è; = ~ l''' 1: + ',....1' .

.1 l' '" +'f:,l'
\pE+p)l'

(" ., -1).),-

"-''''':'''}''-' - ....x '''-!l'~

are the contravariant velocity componèIlts.

The transformed equations (3.23) are somewhat more complicated than the

original Cartesian form but offer se"era! significant advantages. Qne advant"ge is

that boundaries in the physical plane are mapped onto rectangular configuration III

the computationa! plane.

3.2.2 Implicit time differencing

Consider an implicit three-point time differencing scheme [156]

aw = 1 (1 + VI)D." - VI 'V" W (vo _ V _ ~)O(D.t) .... O(D.t~).
at D.t 1 + v 2D." +. 1 2 ' .

(:3.2ô)

-; (3.27)

where D." and 'V" represent the forward and bachward time difference operators re­

spectively, for example: D."W = W"+! - W". The parameters {JI and (J2 can be

chosen to produce different schemes of either first· or second-order accuracy in tirn".

For VI = 0 and 192 = 1, we have the first-order Euler implicit scheme, which is

. - ôW.
W"+I = W" + D.t(7ft)"",1 + O(D.t2

).
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•
\" :--il:~ ~.lw lir:->t-ordcr Euler sr:heme. equa.tion (:t2::;} is discr(;,~tizèd à~

\"".0. 1 - \1..7" -+- ~t(F;'O'1 -+- G::~l) = o., "

3.2.3 Flux veetor linearization

C3.28 )

Î i,.. Il,,:-; \',·,·I.u .. ' F ,,,Id Ga"e noniinea.. functions of \\' aud therefore equation (:3.28)

i, Ii«Jdinea.. in \\".... ,. Th", nonliuear terms are linearized in time about v..-r. by Taylor

Fr.... l = Fr. -+- Â n ~r.v..- + O(~t2),

Gn+1 = Gn -+- Bn .::,.r·W + O(~t2), (:3.29)

•
\':her<' Â = üF /ôW and B = ôG/ôW are the transformed flux Jacobians and !:;.nW

is OP,t). The linearizations are se,ond order accurate and so if a second-order time

, ..hl'tIIt' had b<'Cu chosen. the linearizations \\'ould not degrade the time accuracy.

.-\pplying relations (3.29) to equation (3.28) and combining the !:;."W terms

produœs the unfactored "delta form~ of the algorithm

[ Ô' Ô' l' (ôF" ÔG")1 .... ::.t(-A" .... -B") !:;."\V = -t.t - .... - ., ôE, 'ÔTJ ôç , ÔTJ

The Jacobian matrices are [115]

(3.:30)

[

0 "%
• • -Uf +" Ti· ,,- ("\' - 2),,_uA or B = % , -

-Vf +" Ti· ,,_v - ('" -1)" Uy, - 1 Y

f( '" - CI) "%CI - t'Y - 1)Uf

"y

"yU - ('Y - 1),,%v
f - t'Y - 2)"yv

"yCI - t'Y - l)vf

1 "l" ...
1/J = z(')'-I)(u' -+-v'), and" = ç or TJ for A or\\'here Cl = '"'lE -l!:, f = "%u + "yI':,

B. respective1y.

The convectÏ\'e derivatives in equation (3.30) are approximated by three point

't'ntl'al differences.
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•

3.2.4 Approximate factorization

can hl'" wrÎtten as

[
Ô' Û . 1 "l iJ • '1 [ il.].I-'-~t-A"-'-~t-B" ~\V= I-'-~t-'\" I-'-~t-B" '\\'. D~ . DII . J~' . iiTf -'

, il . , il. .
-~r-.-\'·-B··~\Y.

n~ ihl

The cross tenn is of a second order and cau therdore L", Ilt'gkl'l,'d: th,· f",'lur"d ful'ln

of equation (a.30) is

[ 8 . 1f 8 . l' (8F" iië:")l -'- ~t_ACo l -'- ~t-B" ~Co'" = -~t - -'- -- .
, iJ(, _' 81) 8~ . iill

They lead to block tridiagonal systems after the spatial discretization. This equation

can be solved in two different sweeps along ~ and 1) directions. by int.rociucing the

intermediate variable D,CoW-. in the form

(3.34 )

The spatial derivatives :€ÂCo and :"B" are discretized by ceiltra! differencing, similar

to equation (3.14); this leads to a block tridiagonal system of equations for each sweep.

The block matrix size is 4Jlt1r x Ho/1J. At each time step the system is solved by block

LU decomposition (see Appendix 1).

3.2.5 Implicit and explicit dissipation

Although !inear stability analysis shows unconditional stability for this implicit algo­

rithm, in practice stability bounds are encountered. This is because of shock waves

and boundary condition problems. The wave interactions lead to high and low fre·

quency waves. The lower frequencies postpone the convergence, but higher frequencies

violates the numerical stability, when they exceed the mesh size. For coping with this
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•

•

;Jl'lJL!"!JL ,t l:lJ::wrir;d di;-;~ip(~ti(Jn b added with an error Jevel tÎ1àt dùes not interfert:

:\:1 i:npiil'j: :--(dn)Jld-urrb~r djs~jpâ.tioI1 is iIl~erted into tb: respecti\'e inlplicit block

D~, = _;;,~t.rl '\,~,J.

D~., = -;;i~t.J-l'\.:~.J

\·.'il"l"· '\ ,>1,,1 ~ n·pr"""ut the back\\'ard and for\\'ard spati.d difïerenCE' operators re­

,,"'<'tin·ly. Tb.. pill'ill1le1el';;, is of O( 1). Also. a nonlinear explicit dissipation is added

to tll" right bilud sid... of equation (:3.:3:3) and \\'ill be sro\\'n later. After applying the

dissiJliltiou terIllS. equation (a.:34) becomes

[
ô. " ô· , ]. (8Fn 8Gr.)1 -'- ~t( - 1\' -'- -B''') ~r.V\,. = -~t - -'- - -'- D.. 8~' . Bry Bç . Bry ,

\l'b"r.. i.:" illld B'" are the matrices after introducing the implicit dissipation. The

il1lplicit dissipation is used to extend the stability range. The explicit dissipation [68,

114] is

\\' her"

- \ l,) J-1 -l- ,[')J-1
Cfe - "'i+l; i+1; ,Ai; ij ~

- Il") J-1 ,[")J-1
UT'} - "i;+l i;+1 + Ai; ij' (3.38)

Th.. ,\ (() and ,\1") are the spectral radii of the transformed Jacobian matrices A and

:B respectively,

>.«) = lUI +aJei +e;,
>,1") = IVI + aJ7/i + 7/;. (3.39)

•
They sho\\' the largest propagation speeds in the computational space. The coefficients

:\2) ,(2) :\4) and .(4) are
... ~ -"''1 _ ... " - -'7
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'. \" • " " ' 1
!\:.":...j,j .11dX~1 ::-1" ::.1 ::-1 .• ~\'~l =.

\-1'1 =:.~

.:-\-Î , = '. :: .·11I1

: ')', 1
l': = !P:-l.: - -P:.~, -:- tJ:_l..: ... '. ..), ,

i l'.~L; .,.. -1".; .,.. P.-L., 1

Tht:' scaling factor~ of equatioIlS l:t:3S) cÛllsider hot h spat ial l,.lirl'l't i(Jl1~. by t1Sill~ t hl'

eigenvalues. :\ear the steep pressure gradients. il:':) takes l~trg('r values litH' h\ lar~t'r

\\"here constant "alues are d = 1. 2. The inclusion of local i\lach number inere;",,-s th,'

"alues of Il rdated to the steel' pressure gradients there. so that from eqllalions \:\.·IO\.

~(4) drops to zero. hence only the second-order dissipation is "d,lt-d. ln tlll" 'mool h

flo\\" regions. ~I~) is \'anishingly small and only the fourth-orde'r dissipativn is applie',L

Based on propagation speeds the switch functions are modified as

•
(3.·12)

dissipation "alue near the steel' gradients and reduces it llear the stagnation point.

This procedure allows to use rather coarser grids to perform the c,dculations. The

--:omput::tions are performed from i = 2 to i = Iv!] - 1 and From j = 2 to j = MJ - J.

At the boundaries the disspation is switched off.

3.3 Grid features

A grid \\"ith variable spacing \Vas generated by an algebraic method. The numerical

grid is aligned with the solid \\'alls for confined flo\\' and with airfoil contour for the

el'ternal flo\\" problems. A rectangular outer boundary \\"as used in order to facilitate

the application of the far field perturbation equations for both cases. On the arc­

shaped wall and airfoil, 26 and 28 grid points \\'e1e used, resr~cti\'ely. Our main

concern here being a comparative ~t.'ldy of the far field behavior in both the extended

and reduced computational domains having the same specifications. The grid points
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• "':"rl' "(II:idl~:-:-;jJ;l(l"d it]CJllg t.he x·direction . \',"hile in the y-direction they WE:re stretched

!J::I"·r1HJlil';dl:;. SI.'.Irtillg fruIu tilt' l1uzzle wall or the airfoil surface. The COI11putational

!! lirl:-- lJ~,·d !"l):' dl': Hu,,'; i:l d duct with ;1 cirrul<.tr-ê1fc'})l.lmp Oii the lo\\'er wall (n02z1e

il,,·... 1 ;,,,<1 l'ur t.lre "xterIl,d flow past a :\:\C-\0012 airfoil are illustrated in Figures :;.:2

;tlld :~.:L

3.4 Solid Wall Boundary Conditions

TI... comput"tiollai treatment of solid boundaries is an essential aspect of a numerica!

,.-1"'"1<'. Tl ... .-Ift·ct of ,<,iid boulldary conditions on the solution accuracy and con\"er­

g.ellce is discussed and a method based on the characteristics relations in conjunction

with normal-momentum equation is presented.

3.4.1 Conventional solid boundary methods

For the computation of aerodynamic flows. it is important to implement numerically

the sol id boundary conditions. Since. on the solid boundary not al! of the flow \"ari­

ables are specified by the boundary conditions, and there are more unknowns than

a\"ailable equations. ln the finite-difference methods, the transformation to a general­

ized coordinate system makes the application of the solid boundary affordable. Good

solid boundary conditions must ensure the disturbance dissipation in the computa­

tional domain without reflection. The propa~ationof perturbations is consistent with

tht' characteristic properties of the Euler equations [101], expressed by compatibil­

ity rdation. [SS]. Violating the characteristic directions leads to inaccurate solutions

and delayed convergence. Inconsistent solid bound~ry treatment destroyes the global

conser\"ation [113].

A com'entional procedure is to discretize the governing equations from the

boundary into the flow field by one-sided difference scheme (in general different from

that applied to the other interior points). Usual!y free-stream stagnation enthalpy

is held constant along the solid surface. After the velocity components and pressure
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• ..·.. t'n·· l'1..1111tlU'lt.·d <:1 \,<dUl' ûf dt'n~ity 1:' ubtaillt·..J at the :-,\.)lid b()l:lll..bn" ~l:'l1. Hj;:::i :l~·l~
" '.. ..

introdUCt"'d th~ USt.' oÏ nornlal Illoll1t'nt unl t"'quat ion <:l\\.liding t th.' llt't'd (\H' ('xl r~lplll;lt iUIl.

A tirst·order boundary tnr:>thod i::- consistent with a ::'t'c(ltld-\..lrt.ll'r illtt'ril)l' :-'Clit't1Il'

<llll! the CU!lVèrgètlCt" to tht" lilH:' soluti(lJl is still ,,"'l[ second \Inh-I' [l~:\]. l'hl' :'1..)l't

wall boundary \\'<'!..$ dè\'doped and applit'd io <.lL'rodynamic th.l\\'s tll <:Icl'l.:'ic...ratl' thl'

Cull\'eI'2,t'11(t' prO(èS~ il 011.
~ , .

3.4.2 Solid boundary conditions ln finite-difference meth­

ods

•

ln the $olid boundary treatment. the normal compol1<,nt of the tlUl( \'cc·tor reduù'$

thus on1y to the contribution of pressure, ln the computational ~paCe. on the ~olid

boulldaries the relations (3.25) for contra\'ariant \'elocity compollellt~ become

[ ç: çy] [u] = [ u l.
Tl: Tly t· 0 J

because on the solid boundary Il = 0, From relation~ (:1.43) one l"ould Iind thc'

physical "e1ocity components as

1 Uo
U = jTly , (:3.44)

ln the con\'elltional solid boundary methods, U is extrapolated from the computational

domain. The pressure is either caleulated from the norma!olllomentum equatiou or

extrapolated from the neighboring grid points. Ha\'ing ealcu!ated the veloeity eompoo

uents (u, v) and pressure (p), the density (p) ean be deterr.lÏned f.om the assulllption

that on the solid boundary the total enthalpy is equal to the total enthalpy of the

free-stream flo\\'.

The norlllal-momentum equation is used to deterrnine the pressure on the solid

boundary. Starting from the momentum equation, one has

av
p-+ "ilp = 0dt .
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• :\1 ;: .'>II!ilj •..:;dl. tll" iIJ11Jl'(~lIWàbjljty condition is expre~s~J il~

(:U6)

\';!Jl'rl' il! i'i llw uni:. \'('ctur Bonnal to the solid boulldary. :\ote that on the solid

l'ulllldilrY. tilt" S!.rt·"mlin(· follo\':, the body shape. therefore equation (:3.46) leads

tu t;:n (J,. = ::. wl:l'r<' (}" is the sol id boundarv inclination. Ev e!ifferentiatin!!; equa-
11 ~ ~ ....

,jllll (::'.J(j ,1 witiJ respect to tin1t'. one gets

!..(V. i ) = 0dt n
(SAï)

l' l'uj.·,-ting th .. lI1unll'ut um equatiou (:3.4.')) along normal to the solid boundary gives

•

_ dV . ...,
pin' dt + ln . "p = O.

('omhining the equations (:3Aï) and (:3.48) leads to

V
din . ...,

p . dt =ln . v' p.

For uou-mo\'iug salie! boundary (~ = 0), equation (3.49) is simplified to

pV. (V· v)in =in' vp

(H8)

(3.49)

(:3.50)

L:sing the relations (:3.20) and (BA), equation (3.50) can be el-..-pressed in generalized

ù)ordinate systell1 as

(3.51)

ln equatioll (S.51) the deri'-atives with respect to ~ are approximated with second­

arder central differences. while the derivatives with respect to TJ are replaced by second­

arder olle-sided differences. For e.'Cample one has

ôp
ô~
ôp
ÔTJ

Pi+1.1 - Pi-1.1
2~ç

-SPi,1 + 4Pi.2 - Pi,3

2~7]
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• Equatioll \).01 '1 bt"colnè~ tb\1::' in disCft.'ti:l'd fürn1 .

- ,_ 1••

,
a =

[,' =

,
c =

d' =

1 .c . <
-.) \ C\,:Tj,- - ".r,,).

---',.,
.) ., .,

- ) \ (T,;. + '1;).
~ --'T] .'

1
.) \ C\~:II: + ~"TI!,).
---',

. OU Ol" "
-pl \1)-- -'- 1) -) - --( T" -'- "-""/" , - l' .,).

o O~' " â~ '2~II':' , ..- ,..

•

The tridiagonal system (:3.5:3) is solved at each iteraticn step and., \,.,Iu,· of pr\'~"tll"·

on the solid boundary. Pb. is then found. Values of the flow \'ariabk~ ~u\"h 'L' l'. Il.

and v, which appear in the equation (3.53). are taken l'rom the pre\'ious time ~tt'p.

3.4.3 Characteristic solid boundary conditions

Al. tht' ~olid boundary. ont' characteristic doléS not conll> [rum th\' nul\' domain. h"II\,<'

one physical boundary condition is needed. This condition is expressed by vanishing

normal velocity to the wall (because no mass, or other convective flux. can penetrate

the solid body, in which only one eigen\'alue is positive). Hence. the condition V ·in =0

is imposed. The pressure on the solid wall is calculated l'rom the equation (3.53),

then velocity components and density is determined along the characteristic lincs. ln

Figure :3.l the characteristic waves at the solid boundary are shown.

An effective \Vay of solid boundary trea.tment is to use the method of character­

istics. Considering equation (2.H), the vector of characteristic variables for 2D f1o\V

becomes

dZ = [~~.!2 ] -
, p.

dV·fi- 2
p.
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•

n
~--.....----....----

solid boundary

Figure :3.1: Characteristic wave propagations at a soUd wall boundary along the
lIormal direction.

whl'n' the lIormal and parallel velocity components to the solid boundary are

• (3.56)

Similar to equations (2.25), the compatibility relations are modified along the normal

to solid boulldary. Note that in this case av·n = -dq.J.., regarding the positive normal

vector which is directed outward of the solid boundary. Hence,

dWl.J.. = dp - padq.J.. = 0,

du:u = dp - a2dp =0,

dW3.J.. = dp + padq.J.. =0, (3.5i)

At a solid boundary the waves dwu and dW2.J.. are propagating towards this boundary

(Figure :3.1). Using two of the compatibility relations (3.5i) in discrete form at solid

boundary and neighboring grid points yields

(3.58)
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• \\'here q,;..~ = 0 on the ~o1id surface. C'olllhinillg equatll..)4l:-- l,:'.:l::') \\'i~h l\l\-h ~)thl'r. tht'

den::-ity al the boundary i5 detennined a:-:

\\"E'ightE'd extrapolation

where

Yi:~ - Yi.l
J.l=

Yi.3 - Yi."!

Some authors use J.l = 0..5 for computations [8:3. S.5, 101. 144]. Th" lowel" ol"d,'\"

extrapolation increases the amount of dissipation near the solid boundaries. Final1y

the ener"Y at the solid boundarv is calculated aso. •

(" 6").). -

3.4.4 Effect of solid boundary treatment on the numerical

solution

During the convergence process, disturbances originate neal" the solid boundary and

propagate into the computational domain. Numerical experiments show that solid

boundary is more reflective at tbe first convergence steps, depending on the type of

solid boundary treatment. Disturbance reflection at tbe solid and far·field boundaries

delays tbe convergence. Using characteristic compatibility relations in the numerical

solid boundary treatment prevents inaccuracies and instabilities.

Elfect of solid boundary treatment on tbe solution accur"cy is shawn for the

channd f1ow. Figure 3.4 shows tbe symmetry loss due to using the convention"l
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• ;1)l'~.;jlJd _Jl:d imprIJ\'(·d €ipprva.cb. Since. in inviscid fiows the pressure solution lS

illq1{);~;11IL tiw:-efoH..' il neressitates using accurà-te solid boundary conditions.

FigllP~ :L=> shows ho','; the solid boundà.ry treatment can inlprO\"e the convergence

l"\':,,rd, lbe steady-state by reducing the reflections, Accurate solid boundary treat­

Il ","I j, IIt'Ç(-ssary Oll the circlllar-arc- bump and is of less interest on the upper flat

'::;,1I fur lhe challllei problem. For the external flo\'." problem. the same characteristic

",li.! bOlllldary method \'."a, used.

3.5 Remarks

Imp!icil factored ,cheme was presented in this chapter \\'ith a modified solid boundary

lIlt'thod «lId displayed very good computational efficiency and accuracy for all cases

tested, The codes namely ElilD and Et:TD were developed for the flo\\' field calcu­

I"tiolls. The schematic grid geometries are shown in Figures 3.2 and :3.3 for quasi-ID

;Llld :W flo\\'s. Ali the computations \\'ere performed Orl il 486/33 PC using a Lahey

FjjL-E~1/32 FORTRAN compiler.
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Figun' :1.2: Grid configurations for thc quasi-onc-dimcnsionid all<l t\\'u·dill"msional
ronfincd (circular arc) flows, cxtcndcd and rcduccd dOllmins fur each CiLS".
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Figure :3..1: :\Iach number distributions on the lower solid boundary. obtained with
characteristic and con\'entional (extrapolation) solid boundary treatm"n!.s. channd
with circular-arc IOn. .Hoo = 0.5. CFL=2.
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Figure :3.5: Con\'ergenC'e histories obtained by characterisitc and algebraic treatments
of solid boundary conditions, channel \Vith circular arc 10%. Moo = 0.5, CFL=2.
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•
Chapter 4

Far Field Boundarv Conditions for...

Quasi-One-Dimensional Flows

4.1 Introduction

Boundary condition modelling in the conkxt of quasi-one-dimensional flows is pre-

sented throughout this chapter for isentropic and non-isentropic flo\\'s. A mode! for

inllo\\" and outllo\\" boundary conditions \\"as developed. Tht' formulalion is based on

the Riemann variables expansions simulating the far field solutions and charact<:r­

istic interpolations along the outgoing simple \\"aves. This FFBC model takes into

accoutlt the physical and mathematical behavior of the flo\\' at far field rt'gions from

information propagation aspect. The FFBC formulation was first deve!oped for the

isentropic lIows, then modified for non·isentropic lIows by considering the effecl of

entropy generation within the computational domain. The inflow and outflow FFBs

receive information from the far field regions and also from the computational domain.

After solving the far field IJerturbation equations the corresponding Riemann variables

are updated and matched with the solution within the computational domain. The

FFBC mode! was "alidated for different test cases by comparing the llumerical and

available exact solutions. The results are presented at the end of this chapter.
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•
4.1.1 Linear wave equation

TI... folJowill)( first-order !inear hyperbolic equalion can be used for studying the

!HJ11J1diiry cOlldit.ion concepts

",ith tlll" illiti;d collditioll

{)u, ()u _ 0
üt -r c ax - .

u(x,O) = I(x),

(·U)

(4.2)

•

•

al ail "pen domain. The boundaries at x = 0 and x = Lare introduced to delimit

the domain. There arc many interesting features of the hyperbolic equations that

this simple form can represent. If c > 0, the solution u(x, t) = I(x - ct) represents a

right·moving wave. Bence, the characteristics lines, (x - rt = const.), have positive

slopes, and the boulldary condition can be imposed at x = 0 from the information

olltside of th~ domain (Figure 4.1a). The solution at the boundary x =L is obtained

by fol1owing the characteristics back to the domain, so u(L, t) = I(L - ct); hence,

at x = L the boundary condition cannot be obtained from the information outside.

If c = 0, the equation (4.1) becomes ~~ = 0 (sec Figure 4.1b); the characteristics

are \'l'rticallines (sec Figure 4.1b). If c < 0, the characteristics (x - ct = const) are

propagating towards the boundary at x = O. Hence, u(O, t) = I( -ct) in this case,

silice tilt' boundary conditions cannot be set from ~he information outside at x = O.

Note that du = 0 on lines with slope dx / dt = c, hence u is constant on these Iines.

The simple wave is a disturbance propagating on one family of characteristics. In

gelleral, for systems of hyperbolic PDEs, these curves are not straight lines, and the

solution is not constant along them. For the case of the Euler equations within the

subsonic and transonic ranges, both of the above mentioned waves exist, which are

used in the FFBC formnlation .
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Figure 4.1: Propagation of information for linear wav,' eqllation.

4.1.2 First-order hyperbolic systems

Recall th" "quation (2.2:3) from Chapter 2

•

•

ap ap
-+A-=O.at ôx

Equation (2.2:3) was decomposed to three characteristic equations (see sectit'n 2.2.[ \.

The analogy of linear wa\'e equation can be used. Depending on the flow regime it

will produce different propagation patterns shown iu Figures 4.2 and .1.:3.

Figure 4.2 shows for supersonic flow crossing the inflow boundary ail the informa­

tion propagates from outside to the computational domain. while at supersonic outflow

boundary ail the information propagates from computational domain to the outside.

For subsonic flow crossing the inflow boundary one of the eigenvalues is negative,

so one information propagates from the computational domain towards this bound­

ary (Figure 4.:3). Outflow boundary is being crossed by the subsonic lIow thereby

two information propagate from the computational domain and one cornes out of it.

This is equivalent with imposing one flow vari~ble, such as the static pressure, at

the subsonic outflow boundary. For achieving a unique solution, boundary conditions

should properly close the hyperbolic system.

In the computational FFBC treatment two kinds of information should be taken

into account: one is propagating from far field region outside of the computational
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Figure 4.2: Characteristic lines for supersonic fio\\" at infio\\" and outfio\\" boundaries.
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Fi)!;u rt' 4.:~: Characteristic lines for subsouic fio\\" at infio\\" and outfio\\" boundaries.

domain. and another is coming from the computational domain itself. No\\", at the

FFB these t\\"o types of information should be matched for calculating the fiow vari­

ables. The subsonic and transonic regimes are of major importance because of the

different directions of propagation occuring in the fiow field. The characteristic paths

in the fio\\" field should be used to figure out the number of incorning and outgoing

disturbances.
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• 4.2 Conventional boundary condition methods

Tht' prE""ious worb in this field can be grouped into mat lwmatir;tI a"p,'n" ,)f th..

bounda,.y conditions on the stability and we11posedness [7~, lti~, lti:;j an,l prani,'al

"sPt'"ts [Hl, 4:3. 160. 163]. (Definition: An initial boundary "tlu,' pr"bkm i, !l'dl·

pO~td if it po~s~sse::: a unique solution. continuously d('pt..~l1dèllt OH th\.· initial and

boundary conditions.)

Various boundary condition treatments are availablt..' for the qua...;:i-Ûllt·~dillÎ\."'!I~:dul~;l(

!lows as was refered in Chapter 1: in this regard set' also [1:l. 92. 160. 16:!. Ill:\], Th..

classical boundary treatments mainly include the algebraic extrapolation and discrl'le

furm of the characteristic compatibility relations. The important point ill a11 kinds

of boundary treatments is that the directions of propagations should b.. takt"ll int"

account. For example at a subsonic inflow the compatibility equations (2.25) al"ng

the characteristic lines are discretiz':Xl between the free-stream and a boundary grid

point• Pi - Poe + pa(ui - u oo ) =O.

Pi - Poe - a2 (pi - Poo) =0,

Pi - Peomp - pal Ui - Ueomp ) = 0, (4.:3)

where Pi, Ui, Pi are the boundary values, wbile ueomp , Peomp are calculated from the

computational domain. The "alues p and a are locally linearized and determined by

lagging procedure.

For linear equations, the BCs can be one order lower than the interior scheme

without reducing the global order of accuracy of the complete scheme [49]. Hence,

the zero-order space-accurate BCs \...ill reduce the overa11 accuracy of secone ·order

schemes, while this will not be the case for the first-order ones. During numerical

experiments, the second-order extrapolation did not demonstrate extra advantage

than the first-order ones. The extrapolation techniques are discussed in [42, 43], for

applications to the MacCormak and two-step Lax-Wendroff type schemes see [85,

162, 163].
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• .\ 1':1'" I)l' illfirJ\': B(' ':29. 1n7i is chosen tu be an<ih'sed in the followin!!;. At <t
• •• •• ~ '4

:'I.:IJ~I)lli( illfl,)','; blJUI1':ary the total enthalpy and entropy é.Œ"· sperified. in which

" l' 1 0

--'-- -'- -u' = ho.
':-lp' :2

ç .. P _ Po<
.~ :x - - -,-.

p' px

(4.4 )

(4.,'))

'1'11" ,j"lI,jly fi j, (';,lculat('d from equation (4,,')) and introduced into the equation (4,4) .

.... P~::.=l 10') h
---1" + -u' = o·
-, - 1 Poo :2

(4.6)

Ditre'l'e'lItiating the equation (4.6) and simplifying leads to the following momentum

ln fact equation (4.7) is equivalent to the conditions (4,4) and (4.5). Note that

c'qu<'tion (.1.7) is not equivalent to the right-propagating characteristic equation dl' +
pad" =O. which should be used at an inflow boundary.

As another test case the outflow Be developed by Rudy and Strikwerda [126,

127J is <Lllalyzed. They modified the following left-propagating characteristic relation

•

into

dl' + pudu = O•

ôp ôu
- -pa- =0.ôt ôt .

(4.7)

(4.8)

(4.9)
ôp ôu
ôl - pa ôt + Ct~(P - Poo) =O.

The parameter o~ is an empirical coefficient and is adjusted in order to yield rapid

dt>cay of transient disturbances. It needs adjustment in 2D setup. A drawback to

equatioll (4.9) is that at the steady-state, one has the boundary condition l' = Poo,

which is reflective according to the discrete characteristic waves. Figures 4.15 and

4.16 illustrate the solutions obtained by using this method. Note the effect of outflow

Be on the shock position.
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• 4.3 Proposed FFBC formulation

4.3.1 Equations used for isentropic flows

For modelling the intlow and outflow FFBCs. the Euler t'qt:ati"lIs ill primil iv,· \'aria['I,'

form .ire used. This is because the primitiw variables cali be l'd'lIed l" th,· ..ha l';,,'.

teristic compatibility relations in a straightf,)r\\"ard manner. Th,' Eu!er "'1''''li''l1< 1'''1'

op -'- 1 alpuH) _ )
ot 'H ox - L,

oU ou lop
- -'- u- -'- -- = Uat ' ax' pax . (.1.10)

•

where H = H(x) is the cross-sectional area. It is noted that for FFBC llloddling of

iseutropic f1ows, the energy equation is excluded, and the isentropic relation. -/!:: =

const. is used instead. Converting the equations (·!.IU) in te!"lm of tilt' sound speed

is an effective way in the boundary condition approach in terrns of wave propagation.

For this purpose the continuity and momentum equations in (4.10) are reformulated

based on the velocity and speed of sound, in the form

l' - 1 1 dH
---au--

2 H dx'
aa aa l' -1 au
-+u-+--a- =
fJt ax 2 ax
ou au 2 aa
-+u-+--a- - O.
ot ax l' - 1 ox

Replacing the dependent variables with Riemann variables results in

oR aR, - 1 0 0 1 dH- + (o:R +~Q)- = --(R- - Q-)--,
at ax S Hdx
aQ aQ, - 1 0 0 1 dH
- -'- ("'R -'- o:Q)- = +-(R- - Q-)-­
ot'I-" ax S Hdx'

as R+QaS_
oat + 2 ax - ,

(4.11)

(4.12)

(4.13)

where Rand Q are the right- and left-propagating Riemann variables, S represents

the entropy, and a the speed of sound,

.)

R=u+-=-la,,-
?

Q=u----a.
"{- 1 .
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R

s
x=o x=L

Q

Figuré ·1.·1: Propagation of Riemann \'ariables at inflow and outflow boundaries.

;",ri whcre 0 = (1 + ;-)/4 and .3 = (:3 - î)/4 are constant values. and Î = 1.4 for

air. Equations (4.12) and (4.1:3) e:qness the propagation of pressure and velocity

waVes by Riemann \'ariables and propagation of entropl' along the strearrùines. For

iSl'lIlropic liow with H =COllst at the upstream and downstream far field regions, the

system of equations (4.12) would be simplified.This l'ields the following nonlinear sets

of equations expressed in terms of the Riemann variables• 8R 8R
8t + (o:R + (3Q) 8x =0,
8Q 8Qaï + (BR+o:Q) 8x = O. (4.15)

•

Equatiolls (4.15) state the variations of the Riemann variables as functions of time

and space: it is lloted that for isentropic flows the equation (4.13) is not used. In

Figurt' '1.4 the Riemann variables are shown when propagating through the domain

boundaries. The propagations of Riemann variables are shown in Figure 4.5 for a grid

poillt located on the boundary. In this case the disturbances can onll' travel along or

opposite to the flow direction.

4.3.2 Expanded Riemann variables approach

III the far field regions, the physical and numerical perturbations generated within

the computational domain will decay [i, 5i, 92, 101, 145]. In regions of the fiow

field where nonlinear effects are weak, the fiow cau be treated as a perturbation to a
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•
Figure -J.Ji: Ri~tllann \"ariable propag(ltion~ for oth.:·-dinwn:,i()n~d 11\)\\' ~lt ~l lhltltldary
nod",.

constant fre",-stream. rectilinear flow. Such regions occur near 'lI\d [,,,,yc,"d the FFHs.

i'umerical experiments aiso confirm the validity of the beha\"ic.r thal a..' ""C·
gets far from the highly non-linear region. the Riemann variables tend to IIlC'ir frt't"

stream values. Therefore. the intensity of the perturbations are in inverse l'dation

with the distance to far field. Both th", right.. and left-propagating Ri",manll variables

Mt' t"xpand",d into s",ries <l$

•
Q= Q"", + I: Qk(t)fk\X),

k=l

where Roo and Qoo refer to the free-stream Riemann variables defined ""

(4.16)

.)

Roo = U oo + ---aoo~
1'-1

.)

Q"", = u"" - -=--1a"""
1'-

(4.1 i)

and where the perturbation functions are fk(X) = é"", where u: Îs a tunable factor

and can be estimated. by taking a lead from the \':ork of Verhoff et al [148], as

(4.19)
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• ';:11"1'" ~.fw IJI:Jt;.ltiU!: ( = f;-=- hé1.S been :ntrvduced. These e:~pGnsions n:fiect the far field

I,..hil"::r,r rA the iw:Îscid ('ümpr~ssible and \"iSCOllS conlprt..'Ssibl~ tlo\\"s. Introduci:'lg tht'

f':':i';lI:~il)I,:~ (·1.19) into 1.11,-· t~quéttions (·1.1.)} and doing sonlè algebraic 11la.nipulation

p~sl ..dt.s iTl t.1w !iw:arized cquà.tions in terms of the first- and second~orderperturbation

"'lu;1I ;"ns. TheS(' eqll"tivns are uncoup!ed. First order perturbation eguations are

(4.:20)

(4.:21)

<,"d secow! order pertllrl.>ation equations take the form

( ' .).))"'%._-

•

ln the far field regions downstream of the computationa! domain, the solutions can­

not accept exponentially growing terms. Therefore, the functions ~k( -x) should be

Ilsed in th,> expansions (4.19). This is equivalent to a sign change for w in the equa­

tions (4.20)-(4.:2:2). Considering the second-order equations (4.:22) in addition to the

Iirst-order ones may lead to more accurate results, however, they demand more com­

putatiollal effort than the first-order eguations. Figure 4.6 shows the propagations of

the Riemann variables and entropy waves at two consecutive time steps. The slopes

of t.he characteristic lines will be varying during the time-integration l'rocess.

4.4 Boundary condition development (isentropic

fiow)

The FFBCs are formulated in the next sections based on the assumptions made for

the flo\\' behavior at the far field regions. Linear characteristic theory determines

the directions of \\'ave motion in and out of the computational domain. For FFBC

development it was assumed that:
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Figur.. 4.6: Time evolution of the characteristic waves (Riem,ulIl "ariable» al. a hOlllld­
ary point for two consecutive time levels.

1. Distllrbances decay as they approach to the undisturbed fret'stréam.

2. The free-stream region flow variables do not vary with timt',

:3. Disturbances consist of residual, acoustic and entropy wa,','S.

4.4.1 Upstream far-field region

For the region upstream of the computational FFB (i.e. x ::; 0) the expollential terms

in expansions (4.19) will be suppressed, then Rand Q would tend to far field frL'<"

stream values. If the origin is located at the inflow boundary (x = 0) the spatial

functions fk(X) would become unity, hence

R =Roe + R l + Rz + ... ,

Q =Q.. + Ql + Qz + ... (4.2:3)

For loc.ally-subsonic flows, there are two downstream-propagating waves carrying in­

formation from outside of the computational domain to the inflow boundary and one

upstream-propagating wave carrying information from the computational dom"in (nu­

merical solution) along the char"cteristic Iines. For updating the far field solution "t
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•
R;-: - R;'

j,:

1il!' t illl.' ~tep u~t'd for solving th~ no\\' field. This smaller time-step ddays th~ pertur-

i,;di",: "';,n's ia rf·aching th~ FFBs of the computationa! domain [73. 92j. Then the

'l'I""1ity Ris updaled from the expansion \-1.2:3) up 10 the nrst order degree at eac.'1

TIll' information which is carried out I)Y the !.,ft-propagatirrg Riemann ,'ariable Q, is

"I.t"ined from the computationa! domain following the correspondillg characteristic

lin,-. This kind of interpolation is more stable than extrapolation methods and is

"ollsis1<'nl \';ith lht' direction of outgoing \\'ave trom the computatiollal domain in

whie!; lht' relations U.\I = fI (u;. U;+I) and a.\1 = fz( U,_ U;+I) hold. This interpolation

•
R""+I (') - R -'- R""~I (")

l - x' 1 ."

Q""+l Q Q (1 8 )Q""' 8 Q""com'" = .\1: = .\/ = - " - i "":'"'" j"'l'
r ..:..J.X,f,j,x .

(-1.26)

(4.27)

wht'r.. 8 is calcu!ated from Appendix G. Once the value of Q~;;;'p(;)

perturbation function Q;,+I is computed from the equation (4.23) a.>

Q"+I(') = Q""+l (') _ 0l 'l. corn;:> l ",00'

IS known. the

(4.28)

•
which is needed for the second-order formulation of the boundary conditions. Then,

th.. values vf the Idt- and right-propagating Riemann "ariables are known, therefore

the far tid" and inner domain solutions are matched to determine the flo\\" variables
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Figur~ 4.7: Interpolation along lcft·propagatillg (ilaraC~ëri~lit' lillt" ~lt tht" inHu\'.'
boundary.

al the boundary. For infiow boundary the following relat.iull:' art: l1~t·tl hl c~tlcul~lll'

th~ boundary values at è~t.ch tin1e step

P".,.' =:::.

(.1.29)

Th" fiow erossing t;le illfiow boulldary is assumed to be isentropie (this is th(· case ['Jr

most of the applIcations). therefore isentropic relation holds between the far field re­

gion and the illfiow boundary. The consen'ati"e fiow vector [p;~+' . (pu):~;l • (pE);~;ljT

is then calculated and coupled to the numerical scheme in order to close the system

of hyperbolic equations.

The second-order perturbation equation could be used for illflûw boundary if

one sol\'es the following equation

éJR2
-'- .).•(~ D -'- BQ )R" -'- "'(O'R"+l -'- .'.JQ"+l )R"+' = 08t . _..... ......J~ '. 00 2' - 1 ,!J 1 1 ~

•
whf:'re the "alues of R, and Ql have already been calculated by solving the first-order

perturbation equation (4.24). Then R is updated using three terms taken from the

expansions (4.19j. Tbe time-step whicb was used for solving tbe far field perturbation
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•
4.4.2 Downstream far-field reglOn

llll,rd"r 1.0 ~llppre:;~ t.he growing Inodes at the do\',"nstreanl region of the computational

J,1I11JF!;lr:; l'i.t'. J" 2: Ll. tIlt' functions ti:\. -x) ha\"t~' ta De used iIl tilt" expansions (-1.16).

l·.~.

(·1.:31 )

•

\\'lilTt' iu this case ( = c w
:. For locally-subsonic isentropic flo\\'s, there are t\\'o

JO\\'llstrt'am-rullning \\'a\'es carrying information to the do\\'nstream boundary from

t.he llulllerical solution and one upstream-running \\'ave carrying information from

"utsiJt' of tht' computationa! domain. The updating process for the outflo\\' FFB is

Jont' by sol\'ing the follo\\'ing first-order perturbation equation

âQô/ - :..:(.3Rec + o:Q.,,)QI = O.

\Vith an explicit time-integration scheme, it becomes

(4.32)

(4.33)

Similar to tht' upstream boundary case, the quantity Q is updated from the expansion

rdation (4.31) at each time step

The right-propagating Riemann variable R is computed from the computational do­

main along the corresponding characteristic line

• R"+I R R ( 8 )R" 8 R"
c."'p = "..;, = .'Ii = l - ~x .-1 + ~x i'
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Figure 4.S: Interpolation along characteristic line' at the uut!lOIY bl>unJary.

where u.\" = 91(lli_I'U;) and a,y = 92(ai_l.aJ. ln the interpolation relation \.1.:';:;).

the direction of outgoing waye has been taken into "ccount. LTpon comput,,!.ion of

R~';;;,~p, the Ri+1 is detemlÏned from the following relation

R'+I (') - -1 (R'+I R)1 2 - E camp - ·00' (.Uli i

\\'hich is needed for the second-order formulation of the boundary condition. Then

the yelocity and speed of sound at the outflo\\' boundary are determined by m"tching

the far field and near field solutions at each time step, as

U"+I = ~(R"+l -'- Q'+I)
cu: :2 comp' •

an+1 = "1 - 1 (R"+l _ Qn+l)
out 4 COmp • (Ui)

Then, the rest of f10\\' parameters are caleulated as

P
n+l _
out - Pn+1 = ~pn+l (an+1)2

out "'f out out ,

1 n+1 lEn+1 Pout -'- _( n+I)2
out - "'" _ l n+ 1 ' ? uout .

1 Pout -
(4.38)

The consen'ati\'e f10w vector [p~;;;1 , (pu)~~/ , (pE)~;;;ljT is then completely caleu­

lated. This vector is coupled to the numerical scheme for properly closing the system

of hyperbolic equations. For outflow boundary treatment, the outgoing information

carried by R is calculated from the compt:tational domain. The second-order pertur­

bation equation for the outflo\\' boundary can also he used for more :J.ccuracy in the
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• 1, -±.:39 1

).I;t:IY Il1JtlH.:riod sûl1.ltiun algorithnl:::i for Euler equé1tions use the fFBCs in which

Il. ;llld Cd .':' ;tn' specified at inflo\\" and outflow boundaries r<.--spectÏ\-e1y: how€'\"er.

l!li:-- r"(lflires ;'11 ('xtrcmely large computationai donlain. with very negati\'e effects on

1\:O. t·1I111P\1t~lÎ iUIl;t! erficit'llcy. The prùposeJ Inodd allows tlexible ,·ariations ûf the

Hi('IIl;ltllI \"lriaIJIL'~ during the tinlt:... intcgratioll process.

c\ltIJ,,"gh tlw '-'ntrupy should be theoretically constant for the isentropic flows. it

,'all "ary <Ille tü discret.ization and boundary treatment errors. To a,·oid this situation

tilt' ,·,due of total enthalpy should be checked during the numerical computation.

•
4.5 Outflow boundary conditions for nf'n-isentropic

flows

Fur <juasi·l D flows the non-isentropic conditions occur when entropy is generated

within by the formation of a normal shock in the diverging part of the nozzle. Entropy

variation after the normal shock is convected to the downstream o~ the flow within

the computational domain. For this case the Riemann variable forrr.ulations of Euler

equations are modified by cOllsidering the entropy change inside the computational

domain in the form

•

aR aR
at +(aR+BQ)ax =:F1(R,Q,S),

aQ , , aR
7ft ...,. CBR...,. aQ) ax = :F2(R, Q, S),

as + R +Qas = o.
at 2 ôx .

where the fUllctiolls :F1(R.Q.S) and :F2(R,Q,S) are

:F,(R.Q.S) = _ 1:- 1 ~(R- Q)(S-..2-) [Ô(R+Q)
1S:;' ,-1 ôx
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(4.41)

(4.42)

2 1 ô(R - Q)] .
,-lS ôx .



• - 1 1 .) [" R ')' ., 1 1 C') 1- R O'" . - R (), - -, L'l, .,.l,' - ",n - l, 1 • , ••.r,\ . .~'=---I _.1(:::- ' .,.--- .\·I.-t.)\
. - ~ ~ , ~ ",:. - 1 . ('J.r ", - i :,..: if.:" '

flo\'." ca:::e. For details about tht" t.·quations 1,.L·tO) and \4.41) sel:' ;\ppL'thlix n. lu tlH':"t'

.) l il

~ = --- - ln -'-.
-. - 1 ~. \ ': - 1'1 1'-

and tht" Rit"mann \'ariables have bt"t'n modified for th,' llùn·isent.ropi,· cas<, '" [1·1:'. ll!lj

(see also :\ppendix Cl

R = u + Sa. Q = u - Sa.

From the relations (4.44) and (4.45). the pressure is rdated to the Ri•.'mann variables

The modified equations (4.40) and (4.41) take into account the efft"ct of entropy changt'

accross the shock \\"ave. At each time step the entropy S is conwct"d to\\"ards the

outRo\\" boundary and eventually propagates out of the computational domain by

another non-isentropic (mixing) process. ThE' ,'ntropy generation do\\'nstrcam in t.he

•
and entropy as

__'_ R - Q .J.:;... .(S_..2-)
P = -, '_1 ( ) '-1 e ,-:.

. 25 (,1.4")

flo\\' domain does not affect the upstream and isentopic inflo\\' ses are still v"lid.

Therefore, for non-isentropic flow only the outflow boundary condition is formulated

by using the expansions of the Riemann variables and considering the characteristic

propagation directions. As in the isentropic case, the modified Riemann variables are

expanded into asymptotic series (equation (4.19))

Here the first-order outflow boundary condition is developed for the non·isentropic

flows. After introducing the above expansions inTo theequation (4.41) and considering
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..............................--..- -- .

x=o x=L

Figure 4.9: Entropy propagation in the steady quasi-one-dimensiona! f1ow.

th.. ["ct th..t, the entropy wave is convected tO\"ards downstream. One gets for the

!.'[t.. prop"gating Riemann variable

(4.4i)

•
wbcrl"

III the abovc equation 5 is calculated from the computational domain based on the

relation (4,44). After solving e(".Iation (4,4i) as shown in section 4.4.2, the deviation

of Q;'+ 1 from the far field value is also calculated. The R~~p is calculated by the

interpolation (indicated in secti.')n 4.4.2); hence,

Tlwn the velocity and spccd of sound are found in the form

,,+1 _ 1(R"+I + Q"+I)
1L Ollt - 2' camp , (4.49)

•

Not" that R,,+I = R,,+1 and 5"+1 = 5"+1 (Figure 4 10) are calculated from theb oolnp b ~p •

numcrical solution in the computational domain considering the characteristic direc­

tions. At each iteration step the discretizcd form of the equation (4.4i) is solved

explicitly for Q,,+1 and the updated value for Q~+1 is then deternûned. Finally, as

in the isentropic case, the rest of the f10w variables are computed from the values for
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r---------------,t

b

~t

Figure ·LlU: Characteristic lines propagation for non-isentropic tlow at. out.tlo\\" h"und­
ary.

R~';;'p, S;~"';,~p and Qr.+l. The information propagation for t.he non-isentropic is shùwll

in Figure ·LI0 for an outfiow boundary.

Remark: The refiection concept applies 1.0 physical and numeric<tl phcnolllclIa.

Tht" llolll'ctlecting bounda~y conditions were proposed by se"eral authors [aO, :li, 5:1.

i4]. Equations (2.2.5) in discrete form can be written based on their illtellsities <tS

.6.w~ = .6.p - a~ :::"p_

(4.50)

ln discretized form. the intensities .6.Wl, .6.W2 and .6.Wl are not exactly zero unlike their

analytic counterparts. ln numerical ca!culations this causes errors (or disturbances)

at the boundaries. Different waves propagate at different vdocities. Hence, a time

step appropriate for the fastest waves may be inefficient for other waves. ln 1D fiow,

wa"es travel perpendicularly to the FFBs. For multidimensional fiows finding the

propagation direction is not 50 trivial and it can be found approximatdy [101, 119, i5J.
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• 4.6 Model validation and numerical results

t"sing :1,.. prrJ!'<>sed FFBC model enabled us ta reduce significantly the size of the

"Ulll!,llthliulla! dOIllaiii ànd. as a re~;ult. aIso the size of the black trièiagonal nlatrix

lu hl' inverted.

:'\lIl1lerical computations were conducted for t\\'o types of computational do­

Il,,,ills. namdy extended and reduced. Basically, the domain consisted of a channel

It,,\·ill.~ ;, ,-ir,·:d<tr-arc·bump. which is located at the middle of the lo\\'er-\\'all and the

upper·\\'all is straight. The thickness of the circular-arc \\'as 10% of its chord length.

Also th" channel height was taken ta be equal ta the chard length. The extended

cumputational domain has a total length of fi\'e chords. lt is extended two chords

from bath upstream and do\\'nstream sides with respect ta the circular-arc-bump. In

this case the computational domain cOlltained 60 equally-spaced grid points.

The reduced computational domain consists of the circular-arc and an extension

uf just t\\'o grid inter"als (or*of chord length) at both the upstream and dO\\'nstream,

\\'here N is the number of grids along the circular-arc portion. In this case, it contained

;!·l cqually-spaced grid points. In fact, both the extended and reduced computational

domains have the same geometry, the only difference is between their lengths and

hence the number of grid points.

'1'\\'0 different flo\\' regimes (subsonic and transonic) \\'ere calculated by impie­

m.'ntins different types of boundary conditions at the inflo\\' and outflow boundaries.

Tht' exact solutions (which can be obtained for the quasi-Clne-dimensional case) were

ust'd for comparison purposes.

Table ·U shows the results obtained for different longitudinal extensions of

the computational domain (first column) with different formulations for the far-field

boundary conditions: in this table. the indicated Mach numbers are calculated at the

mid·point of the circular-arc-bump (or minimum cross-sectional area) calculated for

se\'eral cases. By contrast, the solution ohtained by using the conventional boulldary

conditions for a reduced domain shows a deviation of around 5.ï% in comparision to
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•

Tahle -t.l: COlnparisons bet\\'een the rt~dUCèd and extt.'n(h,'d l'ompiJ~ltll1I1;tl lilHnaitl:'

with different type:; of FFBC treatments. CFL=-I.

Il
1 :'lacb number Grid points ErnJr~~ 1t cra t il"ln~ li
1
1 at mid-chord "-l:

ii Conventiona! FFBC treatment. 1 0.7110 60 O.l-lll 1!l·l l'
'1

il extended domain 1 1

1 ]'

Conventional FFBC treatment.1 0.671-1 ~-I ZLIII 17li
Ilreduced domain

Present FFBC modeL

1

0.7102 2-1 O.~5:! 1-11
lireduced domain

Exact solution 1 0.7120 :!·l 0.000 Il

the exact solution. lt was also found that tbe present FFBC mode! on 1h,' r"d!lct'd

grid displayes a much better computational efficiency. r<'qniring about :!.5 times less

computing time than the conventional FFBC treatment for tbe same geometry in an

extended domain.

It was found that the solution obtained with the proposed FFBC modd IS III

"ery good agreement with the exact solution. Memory requirements art' substantially

reduced with decreasing the number of grid points by applying tbe proposed FFBC

modeL

The subsonic f10w solutions, obtained with isentropic FFBCs, are shown ill Fig­

ures 4.11- 4,14, and the transonic f10w solutions, obtaiued using a non-isentropic

outflow boundary condition, are illustrated in Figures 4.15-4.20.

Figure 4.12 compares the solutions for the extended and reduced computational

domains with the conventional and proposed FFBC metbods. respectivcly. Good

agreement was found between the solutions obtained with tbe proposed FFBC modcl

for the reduced domain and the conventional FFBC treatment for the extended do­

mai:l. The e.'l:tended computational domain can be used as a criterion for cOlllparison

purposes, as it can be seen from the comparison with the exact solution in Figure 4.13

(enlarged view).

In Figure 4.14 the effect of the first- and second-order perturbation equations is

iO
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•

'·:·:rl.lllÎIl"d ;lIld UHnpétfed ';ersus exact solution. Applying the second·order eqt:ation

ilJijJ"""" unly slightly the aeeuraey. whi!st it inereases substantially the amount of

!";d'"II!;tt.iull:'; n·qll!red.

For the non-isentropie flow, the numerieal experiments were eondueted for tran­

sunie flows in the same eireular-are (10%) channel and the results are shown at tne

elld of this Chapter. A small amount of over- and undershooting takes place through

1ho- SilUCk ill tilt" c<cie of tr<tnsonie flow by using the proposed FFBC mode!. Memory

requirelllellt is reduced with d"ereasing the number of grid points by applying the

pruposed FFBC mode!.

Figures 4.1.5 and 4.16 show how much the solutions can be affected by impIe­

menting the different outflow boundary conditions for a transonic flow, while keeping

the cunventional inflow boundary condition the same.

figure 4.1 ï illustrates the effect of the eonventional FFBC treatments for the

transonic fiow case. The shock position is dependent on the type of outflow FFBC

method that used. Pressure distributions for the same case are shown in Figure 4.18.

Figures 4.19 and 4.20 illustrate the Mach number and pressure distributions

obtained with the proposed FFBC model compared with exact solutions for the quasi­

one-dimensional flo\\'. A good agreement was found between these solutions.

The convergence histories are plotted for both subsonic and transonic flows in

Figures 4.21 and 4.22. Using the proposed FFBC modelled to reduced iteration steps

in subsonic case, howevel' no considerable difference is observed in transonic case. It

couId be because of the strong reflections from the domain boundaries, when a shock

is present insiàe the domain. As it is shown in Figures 4.15 and 4.16, the outflow BC

has the donùnant effect on the numerical solutions.
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Figure 4.11: Subsonic fIow: Mach number distributions for cxtcndcd computational
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tional FFBC treatmentl. Mec = 0.6, CFL=1.8, circular hrc 10%.
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Chapter 5

Far Field Boundary Conditions for

Two-Dimensional Confined Flows

5.1 Introduction

Throughout this chapter the strategy developed for ID flows in the previous chapter is

followed in order to formulate the inflow and outflow FFBCs for the time-depeodent

20 internai flows. This mode! considers the asymptotic decay of the flow pertur­

bations and allows FFBs to be located much closer to the nonlinear region of the

computational domain.

The natural coordinate system for Euler equations were used in order to define

the Riemann variables in two spatial dimensions. The FFBC model was formulated

and applied to the isentropic and non-isentropic flows. Proposed model alleviates

the difficulty related to the directious of information propagation. Expansions of the

Riemann variables were used to describe the perturbation decay in the far field regions

along the main flow direction. Present model incorporates the information from the

far field regions and aIso computational domain. The numerical solutions obtained

with the conventional FFBC methods and the proposed FFBC model are shown and

compared at the end of this chapter.
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• 5.2 Conventional FFBC treatments

5.2.1 Algebraic extrapolation methods

in tin1~. spact" or their con1bination. During tht~ lltlnWri(all'xpl~rin\l'nb.1! \\"~l:' flltl:ld

tll(lt nsually first·ord~r~xtrapolatioIlis a good approxiillatil..lll fur tht-' 111\1:'1. pf .~~·ht·illt·:-'.

in an extended Cot11putational dOlnain. At subsonic..~ Înt10w houndary. t bt-' IllI\\" ;ltl~lt'.

tht> total entalpy. and entropy are spccified and held constant. ..\1 :'lllls\)lIi';.· ,.ut tlt.)\\"

boundary. the static pressure is specified and otner lIo\\" yariables art· ddined by llsin1'­

an algebraic extrapolatior. of zero or one degree. This procedurl' has hœll ll,ed hy

different authors [29, 96, 69].

One-dimensional characteristics approach

This way of boundary treatment which is widely used by the authors for Illllltidi­

mensional fiow problems. lt depends on the grid topology used for generating the

physical domain and FFB. ln this approach, the normal component of the yelocity t.o

the FFB is takzn into account and the tangential component is assumed to have no

effect on the boundary treatment [68, 116, 125, 1:36]. ln this case equations (4.:3) can

be re\\"ritten by replacing the velocity by its component normal to the FFB, in the

form

Pb - Poo + pa(uJ.b - uJ.oo) = 0,

Pb - Poo - a2(pb - Poo) = 0,

Pb - peom~ - parUJ.b - UJ.com~) = O. (5.1)

It was proved that this assumption is not true regarding the outgoing waves direc­

tions [101]. Other directions than the normal to the boundary surface may be selected

in applying the characteristic relations. One choice results from an analysis of Bayliss

and Turkel [i) which has been shown by Roe [119) to correspond to a direction making

85



• ',':;1> ~i'''l':: il! (ïl'JJ!TIOr :2. '.':ben." T!l(: ·..:a...·e direction ....<~~ <tpprOXiIl1àtely found for the

5.3 Proposed FFBC formulation for 2-D confined

flows

5.3.1 Equations used for isentropic flows

III pra<:tice. illlerna! aerodynamic f10ws are represented by compressible f10ws between

suIid walls. For this kind of f1ow~ haYing subsonic free-stream ?vlach numbers, the

perturbations in the presence of solid obstacles are propagated to appreciable distances

upstream and downstream of the solid obstacle. which is a highly nonlinear process.

For 2D formulation of FFBCs we proceed with Euler equations

• ôp, ôp, ôp. ôu, ôv
ôt .,.. u ôx .,.. 1: ôy .,.. p( ôx .,.. Ôy) = 0,

ôu ôu ôu lôp- +u- + t·- +-- = O.
ôt ôx ôy pôx .
ôv ôv ôv 1 ôp-+u-+v-+-- = 0_
ôt ôx ôy pôy .

Ô p Ô p Ô P
-(-)+u-(-)+v-(-) =0.
ôtp~ ôxp~ ôyp~ . (5.2)

where the energy equation is replaced by the isentropic relation. For waye propagation

problems the density and pressure in the equations (5.2) are expressed in tenus of

sound speed. therefore, one gets

•

ôa ôa ôa r - 1 ÔU Ôt·
ôt + uôx + 1)ôy + ---z-a(ôx + ô) = 0,

ôu ôu ÔU 2 ôa- +u- +1)- +--a- =O.
ôt ÔX ôy r-1ôx .
8v av ôv 2 ôa- +u- +v- + --a- = O.8t ÔX ôy r - 1 ÔX .
ô p ô p ô P-(-)+u-(-)+v-(-)=O.
ôt p~ ÔX p" 8y p~
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• fonnulated a~ foil(}\\'i!1~

iJR, ,()R ", - \, ,dtl

- ..:. (aR..:. JQ)- = ---\ j," - 0',-.at' "o.' S • (1"

DQ , ' 'R' ) aQ , ' - 1 " 0' dt l
- -lJ - oC )- = -:---lR - . '1-.al' ' . . a~ s . an

iJe R+QoO '-lR-C}ÔlR-C)\
=Dt ., il" ·1 [,' + Cl an

iJ~: R..:. () 0."
01 ~ . ()$ = U.

in which the left- and right-propagating Riemann yariablco:, arl' detitwd by

.)

R = q + " ~ 1 a.

t'
0= tan- I

-.
u

.)

Q=q-0a.

/' .,q =vu- + t··. (5.:; )

•
where the Cl = I~' and:3 = 3:' are constants. For derivation of coqnation:, \5.·\) :'l't'

Appendixes Band D. Equations (5.4) ell.-press the propagation of prCO$~urco w,n'cos by

Riemann yariables, the propagation of entropy along the streamlinèS. and t.he variat.ion

in time of the inclination angle, 0, of the streamlines. The system of eqnations (.5..1)

was also used by Verhoff et al [152] as fiow field solver.

The spatial derivatives in the Cartesian and natural coordinates are related by

th" fol1owing equations, as discussed in section 3.2.1,

a fJ fJ
- = cos (J- + sin 0-.
fJs fJx fJy

~ =cos O!... - sin O~.
fJx fJs an'

fJ a a
- = -sinO- +cosO-,
fJn fJx ay

~ =sin O!... +cosO~.
fJy fJs fJn

(.5.6)

To disr.retize the equations (5.4) with finite-difference methods along the FFB, it is

advantageous to transfer them into the Cartesian coordinates; thus for isentropic flows

(S = const), equations (5.4) become

fJR fJR . fJR
fJt + (aR+ ,6Q)(cosO fJx + SlO(J fJy) =

l' - l 2 2 [ , fJ(J ao]---(R -Q) -SlO(J- .... COS(J-
8 fJx ' fJy'
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•
Q~omp

'------~----
x=o

R~o~

S~omp-------------'x=L

Fi~ul'" ~,l: Propagation of Riemann variables at inflow and outllo\\' portions for time­
d''1,,,ndent two dimensional flows in a certain time leve!.

•

ôO . ôQ , ôQ
-' -'- (8R -'- oQ)(cose- -'- sm e-) =
ôt" ôx' ôy

.,. - 1 0 0 [ ,ôe ôe]--(R- - Q-) - <Ill e- -'- co< e-s - ôx' - ôy ,
ôe R+ Q ôe . ôe
-.... (cose- .... sm e-) =
ôt':2 ôx' ôy

Î - 1 R - Q [ " oô(R - Q), oô(R - Q)]
---R Q -,IIla Ô ..,.cosa Ô '.. + x y

(5.7)

Equations (.5.7) are the governing equations for the isentropic compressible fiows e.,­
presseJ in tel'lns of Riemann variables and fiow inclination angle. The system of

equations (5.7) includes nonlinear terms which are linearized using the ex-pansions

of the Riemann variables as far field solutions. This system also ex-press the propa­

gation of Idt· and right-propagating Riemann variables and the fiow direction. The

trigonometrie functions are linearized by lagging procedure. Figure 5.:2 shows that

only the projections along x-direction contribute to the boundary formulation, if the

!low crosses the boundary at a right angle. The directions of the outgoing waves are

fouud from the equations (:2.69) of Chapter :2.

5.3.2 Expanded Riemann variables approach

The Riemann variabl~ possess an important l'ole in the information propagation. In

10 fiow5 they are defined along the characteristic lines, while in two and three space
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•
x

•

1 Rv

Figure 5.2: Projections of Riemann \'ariables at FFB of two-dimensional How at a
certain tiIne step.

dimensions they consist of surfaces or hypersurfaces. Csual1y the far field values can

be reached by asymptotic expansions of the Riemann variables (such as Fourier ex­

pansions in [148]). Note that the Fourier expansions obey the expunential1y decaying

property [59J. In light of these observations the Riemann variables are expanded

asymptotically along the main fiow direction. Since in this direction the now "aria­

tion is steeper than the other directions. The physical understanding comcs from the

fact that at distanœs far from the nonlinear region of the computational domain, the

perturbations would be attenuated to have very small intensities. Therefore.

m

R(x, y, t) =~ +L Rk(Y, t)~dx),
k=1
m

Q(x,y,t) = Q", + L Qdy,t)~dx),
k=1

m

B(x,y,t) =B", + L Bk(y,t)~k(x),
k=1

(5.8)

where ~k(X) =é"':::, and", is the separation factor which is estimated from the work

of Verhoff et al [148] as w = v:~k.' si is a safety coefficient. For derivation of the

separation factor see Appendix H. The ~ and Q", refer to the far field Riemann
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• :!
h';o~ = fi,:.: ~ --t'lX'

" - 1

.)

Q", =" '1", - ~a",.

For lJllr rllitll!lI:~l flü\',' ~h(' frec-stre<Lrr. ve10city is paralld tü the solid waIls. i.e. Cfx = tix,.

Ab... : 1,.. Illlkllu\'.'n flln~tiolls R;, and Q< are determined numerically. Predefined

1ri,!!.IJt!uIIld.ric fllTl("tioIl~ have been llsed for simulating the perturbations along the.:-

.II-din'l"lil)ll ~.U) . .IG]. Sjtln~ the propagation directions are not knowD along y-axis.

t I,..n·fun·. t!Je cunsistent \\'ay is the space discretization of the Riemann variables.

[xp,ulùed Riemann variables as far field solutions are sought for the regions beyond

t!Je FFBs. The underlying principle is that the streanùine \'ariations of both upstream

and ùO\\'llstream propagating perturbation \\'aves should decay to zero at infinity. A

physi.,ai mode! of the flo\\' outside of the FFBs pro\'ides the boundary conditions

\\'hic!J interacts \\'ith the interior flo\\'. Hence, the equations (5.8) are expanded up to

tl .... ùesirc'd Jegree of accurac}'

R(x, y, t) = Roo + ~Rl(y, t) + ~zRz(y, t) +"',
Q(x, y, t) - Qoo + ~Ql(y, t) + ~zQz(y, t) + ... ,

O(x.y.t) = ()oo+~()l(y,t)+€z()z(y,t)+ .. ·, (.5.9)

\\'here € = e"'Z and ()oo = 0 for the confined fio\\' applications. Introducing the ex­

pandeJ Riemann \'ariables (5.9) into equations (5.i) and performing sorne algebraic

mallipulation yields the follo\\'ing partly uncoupled equations. The first-order pertur­

bation equations become

aRt [aRt. ]at + (aRoo+.BQoo) wRtcos8+ By sm() =

: - l(R' Q' ) [ 8 . () B()t 8]--- - - - -w lsm ... -cos8 00 00 ' ôy ,
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• l,'i.1 :!)

in which the non-lint"ar tenns likt" sin 0 anù (OS 0 an" calClllttlt'd by la~gitl~ prut'l,dl1n'.

To achh'\"(' higl1t.... r accuracy. th!..' Sf'CûlHl-ordef pt'rlurhatiûn l'lIuations l'an lu' lIsl'd.

The- st'coud-order perturbation equatiolls are ("xpressed as

•
8Qz [ 8Qz. ]8t + (J3R", +oQ",) 2wQz cos 0 + ây sm 0 +

({3RI +OQI) [wQtCOSO+ 8â~1 sin 0] =

")' - 1[ 'Q' . 80z 0)----s- (R~ - ~)(-2wOzsmO+ 8y cos +

2(R",Rt - Q",QtJ(-WOI sinO + ~; cosO)],

(5.1:\)

(05.14)

(5.J.5)

•

80z RI + QI 801 1 [.), 80z,,]
8t + R",+Q", 8t + 2(Roo +Q",) _wOzcosO+ ây SIllO +

(Roo +Qoo)(RI +QI) [WOI cos 0 + ~; sin 0] =

")' - 1 Roo - Qoo [_? (R _ Q ) . 0+ â(Rz - Q2) 0] _
DQ -W2 2 Sll\ â cos

4 '''00 + 00 y

")' - 1 RI - QI [ . (R Q)' 0 + 8(RI - Qd 0]
D Q -w 1 - 1 sm 8 cos.

4 '''00 + 00 y

The solution of second-order perturbation equations (5.13), (05.14) and (05.1.5) is pos-

sible after solving the first-order ones and finding the Rh QI and 01• However, as

shown in quasi-ID case, the first-order FFBC equations provide an acceptable overall

accuracy of the numerical solutions.
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Figure ,5,:l: Far field regiens, e)o.:tended and reduced domains fer cenfined fie\\'.

• 5.4 Boundary condition development (isentropic

flow)

•

ln time-dependent 2D f10ws the FFBC medelling should be consistent with the hy·

perbolic nature of the problem: it should take into account the signais that separately

reach to the FFBs. ln time·dependent 2D fiows, a point is reached by a multitude of

sigmL1s whose paths are the bicharacteristics converging to it. Therefore, a dominant

W,l\',' direction is required. For FFB mode!ling, no~e that a part of information is sup·

plied by far field solution, while the other part is provided by the numerical scheme

within the computational domain.

This FFBC mode! takes into account the information interchange between the

l'omputational domain and the outer absent \\'orld at the FFBs. ln Figure 5.3 the

extended and reduced computational domains, aIso the far fie!d regions are shown

for the confined fio\\' case. Approximate outgoing wave direction (equation (2.;1))
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Figure 5..1: Propagation of the outgoing wave fronts with different oriental ions toward,
an inflow boundary in a 2D setup.

is restricted to the neighborhood of FFB and is not valid globally. Bdor,· applying

the equations (2.55) to outgoing waves a "alue of ..pij is found and compared 10 ,,/2.

\Vhen ..pij =0, then equations (2.56) yield dl' =0 or v =const. This means lhat for a

FFB aligned with y-direction, equations (2.56) do not contribute 10 the information

exchange between the far field and computational domain. However. in confined

flow applications, propagations along y-direction affects the values On the solid w.dls.

Figure .5.4 illustrates the possible directions of the propagations of the outgoing \Vaves

at each grid point. In fact each grid point, located at a FFB. can experience these

three possible cases during the time-integration process. To determille the value of <p,

equation (2.il) in discretized form is used. Note that this equation is locally valid.

A multitude of waves move inside the computational domain du ring the iteration

process. However, we are interested in locating the ones which strike the FFBs. Sinet'

each wave carries information from the numerical solution. For the oblique FFB with

respect to the x and y directions, both the equations (2.5.5) and (2.56) are used. From

Figure 5.5, along the direction normal to FFB, one has for left- and right-propagating

Riemann variables the following

•

•
R.!... = Ru sin (J. - Qu cos (J.,

Q.!..; - -Qu sin (J. + Ru cos (J., (5.16)
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Figure .5.5: Oblique FFB with respect to Cartesian coordinates.

•
where 0, denotes the FFB inclination, which is also shown in Figure 5.5. Plugging

th" v;dues of 8.". R" and Qu, Q, from equations (2.62) into the equations (5.16) and

doing sorne algebraic manipulation, it follows that

.)

= qJ.b + sin(Og + ,,)---a,,-1
.)

- -qJ.b + sin( IJg + l' )-=--1a,
'V­•

(5.1i)

",here qJ.b is the velocity component normal to FFB defined by

(5.18)

At each grid point on the FFB, one has

(5.20)

(5.19)

cos IJ

1
qJ.b - 2(RJ.b - QJ.b)

,-1
a - 4sin(lJ

g
+ l') (RJ.b + QJ.b)

Having calculated the values of qJ.b and IJ, the velocity components are found using

the equation (5.18)

•
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•
C0l11putatiùllal domain.

5.4.1 Upstream far-field region

fur upst rèa111 region far fro111 the conlpu tatiùnal boundary t i.l...... j <....:::. ll). th ..., eXlh.l·

nential tenlls in the expansions (.5.9) beeome yery smal!. and henet' [; aud Q """,,Id

tend to far-field free stream ,·alues. If the origiu is loea1l'd a: tll<" in!h)\\' h<'lllldary

(x = 0) the funetions e"~= beeome unity. and henee

R = R:., + R, + R~.

(5.21 )

•
For isentropie flows, there are two downstream-propagating wa\"es earrying informa­

tion from far-field regions towards the upstream FFB and one upstream-propagating

\VaYe earrying information from the numerieal solution. At an inRow FFB the per­

turbation equations (.;.10) and (5.12) hold as

After discretization of the above equations in time and y-direction, whieh is discussed

in section 5.5, the perturbation values (na.mely R~+l and O~+l) are obtained by pro­

ceeding in time. Then the value of Ql is determined from

Q"+l(l ') - Q"+l (1') Q1 ,} - comp ,} - 00'

95

(5.22)



• t,- --,

b

.t:.t

1,j .t:.x
M 2,j

•

Figure 5.6: Propagaticn of left-propagating Riemann variable at infiow boundary
along the calculated bicharacteristic for time-dependent two dimensional fiow.

where Q,omp is the Riemann variabk obtained from the numerical solution along the

dominant wave direction. Numerical experiments showed that interpolation along the

donùnant wave b advantageous than extrapolation in terms of accuracy, convergence,

and stability. Calculating the outgoing wave direction is an important issue, and

differs from one grid point to the ne:-::t. Furthermore, this direction does not need

to remain fixed during the computation. Interpolation along bicharacteristics does

not rely on a fixed direction of the outgoing wave. The only assumption made is

that at each grid point there is one such direction, <P;j, which is calculated locally.

This direction may also be found by geometrical considerations [119J. A rough choice

might b.. the local flow angle (e.g. <p:::: 8). The outgoing waves can be damped near

the FFB that was proposed by various authors [6i, i4]. The damping proposed by

Kosloff and Kosloff [81] acts on both incoming and outgoing waves. For confined

flows the inlow and outflow FFBs are often taken perpendicular to the free-stream

velocity direction. Therefore, when 8g = "/2, one has qJ.b = u. Hence the Riemann

variables from equations (5.li) become

?
RJ.b =u + cos <p---a =Ru,

AI -1
?

QJ.b = -u + cos <p---a = Qu' (5.23)
1'-1
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•
Ry a.5sunling ..p ~ O. lltH..~ C01lleS up with

Q .)u li _
-- = -- - --Il = Q.
CO:; 'r" COS .ç -: - 1

where -"- = q. Figure 5.6 shows how the values of IL and a are intl'rpolatl'd bel\\""'nc,,:--,.,

the grid points (l.j) and (2.j) as in section .\,.1.1. th,'n th,' value of Q"+I is known.

:\Iso. the R"+I and 0"+ 1 are computed from the ,'quations (5.10) and (5.12). An a!ter­

natÎ\'e is to use the equation (2.il). which was derived in Chapter 2. Equation (2.il)

is approximated by forward time discretization as

The calculated f10w variables at the pre\'ious time-step are then updated

(- 'r),)._.':l

U"+I = ~(R"+l + Q"+I).2 u u. (5.26)

•
so the velocity q is known from

and finally

(5.2i)

(5.28)

•

?
Q"+I Q Q ,,+1 - ,,+1

COfnl'= b= M=q ---la.
'"'(-

Having the value of Q~';;':p from the above equation, the R"+I and 0,,+1 arc known by

solving the equations (5.10) and (5.12). Equation (5.25) showed better performance

regarding the convergence than the assumption (cp ~ 0). ln Figure 5.i, the propaga·

tions of the Riemann vairables at two neighboring boundary points arc shown at a

certain time. For each boundary grid point, these variables are calculated bas,'<! on

their directions of propagations.

5.4.2 Matching the far field and near field solutions

Having calculated the values of Riemann variables and the f10w angle at the inflow

FFB, one can determine in a straightforward manner the remaining f10w parameters
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Figure .5.7: Propagations of the Riemann variables and entropy at a certain time-level
for the two consecutive boundary points.

':!.S following

(5.29)

a~+l = 1 - 1(R"+1 _ Q"+I )
!Tl. 4 comp ~

V!!,+l = q:-+l sin 8l't+l
nt ln ~

U~+I = q~+I cos /1,,+1
ln. ln ~

1

P~I+1 = [ pi,., (a~+I)~]:;=; p~+1 = ~p~+I(a~+!)~.
Ul 'YPoo tn ln , J.. nt .

E~+I = _l_p;:;rl -l- ~ ((U~+I)~+ (V~+I)~) .
nt -" _ 1p~+l l.,:n U\

1 nt -

q,,+l = ~\. R"+I ..... Q,,+l )
Ul 2 'comp ~•

The far-field and computational-domain solutions are genuinly coupled by the Rie­

mann \'ariables along the propagation directions. Then at each iteration step the

conservative flow vector [pi:1, (pu )::'+1, (pv)i:1
, (pE)i,,+!] T is known and joined to the

numerical scheme.

5.4.3 Downstream far-field region

•
For the outflow FFB being crossed by an isentropic flow, the left·propagating Riemann

variable is needed, which carries the information from downstream far-field region.

The value of Q is determined from the equation (5.11). For the region downstream of

the computational boundary (i.e. x > 0), the e.xponential functions should take the
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•

•

R = R".'" tRI'" ....

\\"here <= e-w
: in this case. In the streamline coordinates for isentropic tlo\\"s. t l1<'rt' are

t\\"o downstreanl·propagating wa\oes carrying infornlation to th("l!owllstreanl bl,.)lllldary

fronl the nUITIerical solution and one upstfeanl-propagating wa\"c carrying illfûrl11~·t iOll

from far-field regioll.

At an outflow FFB the right-propagating Riemann variab!<' and tht' t'Iltropy aI'..

calculated from the computationa! domain, and the Q from the following perturbation

equation

An explicit discretization of equation (5.11) results in

Q"+1 _ Q" [!::.QI ]
1 1 + (.8Roo + QQoo) WQI cos 0 + """'h"" sin 0 -

!::.t '-Ooy

l' - 1, , [ . !::.Ol]
-8-(R~ - Q~) - sm OwIJ1+ cos IJ !::.y • (5.31 )

The fio\\" variables at the outflo\\" FFB are determined in a similar manner to that

used for inflo\\" boundary. Then the conservative state vector is completed and joined

to the fiow field solver.

Remark: Many numerical solution algorithms for Euler equations use charac­

teristic FFBCs in which Roo and Qoo are specified at inflow and outfiow FFBs.The new

approach uses expansion of these quantities in a consistent manner with the physical

far field, while maintaining the hyperbolic character of the governing equations.
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• 5.5 Discretization of far-field perturbation equa-

tions

TI,.. t.illl'· ami 'pace cleri\"atÎ\"es which were appeard in the far field equations for the

illf!u\'; ctlld t)utHo\'; FFBs éire discretized as

( - '3')(J •• _

R;'·' (j) - R;'{j)
::::

~t

1);'';'1(j) _ 1);' (j)
::::

~t

R'î(l.j + 1) - R'î(Lj -1)
y(l.j+I)-y(l,j-l) .

oR!
ot
01)1

at
oRI ::::ay

"nd similar relations for QI. At an inflow boundary, typically the perturbation equa­

tiollS (5.10) and (.j.l2) should be discretized and updated during the time-integration

process. An explicit discretization with respect to time is used. Spatial derivatives in

the equation (5.10) are approximated by central differencing, since the directions of

disturbance propagation along the y-a."ds are not known. Along y-direction, these dis­

turballces move from both sides towards a grid point situated at the inflow or outflow

boulldaries. One needs the perturbation values on the lower and upper solid walls.

For th is purpose an interpolation is performed between the free-stream far field value

(R".,) and the inner grid points on the walls, namely R(2, 1) and R(2,MJ ), as shown

in Figure 5.S. This procedure is described in the following. For the right-propagating

Riemann variables on the solid walls, one gets

Rly=o - R"., + RI(O, i) =R(I, 1),

Rly=l - R"., + R1(I,t) =R(I,MJ)' (5.33)

Note that the nondimensional height of channel is taken here as unity.. Linear inter­

polation yields

R.olid-.,aU

(5.34)
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Ro'-,J• Roc> Rb
O---------~.t_-__1 ••

.6.x

Figurt" 5.~: Interpolation "t<'udl for \\"all ,"alll<·;.

"'o\\". if ( - x. in the limit. one gets from the equatious l::;.:n\ and I·).:l·l) III\'

follo\\'in o'

'"

R(l.l) = R(2.1).

R( 1. :\lJ) = R(2. J/J J.

The "alue of ( can be taken t\\'o or three chords away from the inliow aud or outllo\\'

FFBs. These distances are equivalent with the theoretical infinit<, oue". For the

perturbation equation (5.12) the boundary "alues are quite simple. One just need to

put 0 = 0 or v = 0 on the solid walls. In fact on the solid \\'alls. equations (5,4) reduce

to (4.15).

The time-step in the perturbation equation discretization was taken smaller

than the one used for solving the flow domain. This delays the travelling of the

perturbations in reaching to the FFBs [n, ï4, 92].

5.6 Outflow far-field boundary conditions for non-

isentropic fiows

For non-isentropic flow crossing the outflo\\' boundary, the equation for the extended

left-propagating Riemann variable is expressed as (see equation (0.]2) in Appendix

0)

BQ , BQ8t +CBR.,. ",Q)e; = :FQ(R, Q, S, 0),
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• . "-1', '-1 Tl " 1 cl'cl'',':J:'-:" /1 = -'-. hIld .) = -',-.. le flon'!)t ~é.n SI e 1S.:....... ...~

" - l [{ - Q ~' _.-2.- [O(R -+- QI -,-.-2.-~ (R - Q\)] -'-
.' 1. J a ' '0 ' '.'j.) "';-1 .s "','-1 s :::.

", - l.R~ _ O~) oe (- '3-)
:3 \ • an' ,)" 1

l .. ;'l'ply th" e'l"<l:iull (5,:;61 <lt the outflo\\' FFB, it is transform"cl ta th" Cartesian

\\" lIen:

iiq .". -l oQ,., OQ] ,ut "7'!",Ii"7' oq) cosO OX "7' "ne oy = 9c(R.Q.::.,e). (5,:3:3 )

•

,. Q' Î-IR-Q(ç :2)[ .eo(R-+-Q), . eo(R-+-Q) ,",c(R. . ::'.0)=, , ~---l co, " "7'sm >1 '
;:;.) "'1 - uX vy

.-2.- cose~ (SO(R - Q) _ (R _ Q) OS) -+-
"( - 1 S- OX ox

.-2.- sine~ (SO(R - Q) _ (R _Q) OS)] -+-
l' - 1 S- oy oy

"( - 1, 0 ( • 00 Be)_-S-(R--Q-) -smO
ox

+COSO
Oy

.(0.39)

Entropy varies from one streamline to the other in non-isentropic flows. That is. one

has entropy change normal to the streamline direction. For steady transonic flows.

entropy is convected towards the downstream region along each streamline; however,

it IW'Y vary from one streamline to the other. Therefore. along y-direction the entropy

\'ariatioll is steep"r than the x-direction. beyond the outflow FFB. Entropy variations

in y-direction depend on the flow regime and the shock wave configuration. In this

approach. a space discretization is performed along the y-direction as shown in section

5.3. For the non-isentropic flows. in addition to the Riemann variables. the entropy

is also expanded as

(5.40)

•
wher" S,,,, is the upstream entropy. As was discussed in Chapter 4, only the outflow

FFBCs are needed for the non-isentropic flow of a compressible fluid through a chan­

nel. The isentropic inflow FFBC mode! maintains its validity for transonic flows (see
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it i~ expre~st'd as

aQ" 'D ' () ) [0 n, oQ, . '1] -, - J ~ "T \al -:- ~ JH-x; -: Q _::-.~. -' .. 1('0::' (1 ~ al! StIll = ~\f\~"..'1 -:- ~-:. .

\\' here
.)

t:", = (Rex - Q", )(S", - ---l­
" - 1

" . 0\ R, -;- Q, \. ,T, = _'\ R, .,. Q,) cos 0.,. ') SIIl {} .,.
( !I

:2 1 0" R Q) R Q)"---==3 cos l~",~'( ,- , - \ '" - _-.0 ..:~,J -;-
;-l~",

~_l " 0 [S â(R, - Q,) -R _ Q )âS1 ]
•. _ 1 .;'3'1ll "''' (", 00" •

: _00 uy uy

T:: = (R~ - Q~) [-"'0' sin 0-;- ~: cos 0] .
One gets the second·order perturbation equation for the left-propagating Riemanll

variable as

(5.42)

where
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.)

7., = i R" - Q",)S, -7 (R, - Q, )15'", - -.,-~-1)'

Ti,l' lloll·i:;elltropir Ao\\' crosse:; the downstream FFB and go to the far field region.

E'IlIiltioll i,'i.~ 1) i:; discretized and integrated. then a value for Q is found. The right­

:'oui Ilg !{ielllann variable R and the entropy 5 are computed from the computational

domain. Finally the far field solutions are matched to the solution of the computa­

tional domain through relations (5.29). To achieve higher accuracy the second-order

equ"tions can be solved.

5.7 Numerical flow field solver

To validate the proposed FFBC mode! and its ability on the accuracy improvement,

the time-dependent Euler equations in conservation law form are employed, which

have the shock capturing feature. The factored scheme was used, as shown in Chapter

:3. This scheme was developed by Bearn and Warming [11) and later e.'(tended by

Pulliam [l1~J. Applying the proposed FFBC model led to a considerable reduction

in the size of the block tridiagonal matrix (along ç-direction) needed to be inverted

at each iteration step.

5.8 Model validation and numerical results

The FFBC mode! in Chapter 4 is ell.-tended for 2D fiows, which is based on the Rie­

mann variable approach. For fiow simulation and testing the effect of BC treatments

on the silution accuracy, geometry of Chapter 4 is used.-
Two kinds of domains were used in the numerica\ computations, namely e.'(­

tended and reduced. ln each domain, subsonic and transonic fiows were computed
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by dinerent FFBC methods. The iirst-order FFBl.' modds \\"er,' used. \\"hid, 'li"<'

sufficiently general and can be combined \\"ith ot\1l'r numerica! Eu1<'r ,,)IYers.

ln both domains a circular-arc-bump is located at the middle of th"1<"""r wall.

"'hile tht' upper \\"all is straight. In the extt'nded domain. the FFB stations w,"r,"

lûc"t",d one chord in both upstream and do\\"nstream sides of the circnIar·arc ln the

reduced computationa! domain the FFBs \\"ere positioned much dose'r tu th,' circular­

arc (t\\"o longitudinal spacing steps in each side). The:2D grid sdup has already l"'t'II

sho\\"n in Figure 3.:2 of Chapter :3. Basically. the geometry js similar h> the quasi-om'­

dimension"l case. \\"hich is treated t\\"o-dimensioll<tlly here. Th", total chaIlld lellgth

\\"as tluee chord lengths for the case of extended domain. \\'hilst for tIlt' rduCt'd

domain. it \\'as increased only by a small fraction of the chord length. t. at both sicles

of its extr",mities, \\'here N represents the number of inten'als along the circular-arc

In the present calculations the grid points are ciustered near the circular-arc-bump

along the y-direction hyperbolically, ",hile equally-spaced grids are used along the

x-direction (in order to avoid the further effect of highly stretched grids near the far

field region). The grids used for extended and reduced computationa! domains had

the dimensions 60 x 20 and 24 x 20, respectively.

To iIlustrate the influence of computational domain size and of the implemen­

tation of various FFBC models on the accuracy of the numerical solutions and con­

vergence rate, the computations \Vere conducted \Vith dinerent FFBC methods and

different sizes of computational domain.

The numerical solutions \Vere obtained and compared for 2D channel flow (for

subsonic and transonic regimes) in the following cases:

1. Extend~d computational domain (60 x 20) \Vith conventional FFBC treatment.

2. Reduced computational domain (24 x 20) \Vith conventional FFBC treatment.

3. Reduced computational domain (24 x 20) \Vith the proposed FFBC mode\.

4. Previous numerical solutions obtained by Ni [107J.
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!Jilf"n'lIt ;,sl"'cIS uf t!Je proposed FFBC mode! were considered such as solutions ac­

Cllrac:: alld computational time. The numerical solutions obtained wit.h the proposed

l'l'Be 1I."del are compared with the results obtained by ;\i [lOi]. The convergence

I.i,t"ri", [or t!Je proposed FFBC mode! are compared \Vith those obtained by Eide!­

""'" ::!!J] BCs. It was found that a reduced convergence is reached by applying the

pn,p"sed FFBC mode! for a subsonic flow. The first-order FFBC model is sufficiently

.~'·lI<:ral all<.l t;aIl hl' combined \Vith other Euler sol\·ers. The extended domain can also

l'e llsecl 'LS ;l reference for comparing the 2D solutions. in which the exact solutions

are not available.

Figure .5.9 shows how the numerical solutiuns are affected by reducing the do­

main size without implementing an appropriate FFBC mode!. lt proves that solution

accuracy depenàs on the domain size and FFBC models. Note that by reducing the

dùmain size. the aCCUr1lcy and symmetry of solutions are substantially deteriorated.

This is due to the fact that in the conventiona! FFBC methods the flow directions

iLre imposed to be zero at the inflow and outflow ports instead of being determined

accurately. For example at an inllow boundary, when one approaches to the arc-bump

the streamlines deviate from the far field streamlines and they are not parallel to x·

axis anymore. Another factor is a consequence of the reflection phenomena occures

at FFBs thereby affecting the solution accuracy and convergence.

ln Figure 5.10 the pressure distributions on the upper and lower walls for e.'I:'

tended and reduced domains with the conventional FFBC treatment are shown. The

difference between two pressure solutions is somewhat smaller in comparison to the

Mach number solutions of Figure 5.9, although they are still important.

lt was found that the proposed FFBC model led to a significant improvement

in the computational efficiency due to a substantial reduction of the computational

dumain (by a factor of 2.5 times) and in the number of iterations (about 30% reduc­

tion ).

The improved solutions obtained by using the proposed FFBC mode! are illus­

trated in Figures 5.11 and 5.12.
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The present solutions are also con1pared in Figure S.l:.). fl..1t" validation wiih tht'

solutions obtaiued by :\i ~107j. which \\'ere found in gL1Ùd agreement \\'ith tht' present

l't'SUlb obtaineJ with the proposed FFBe mode! for the redllced Ù)mplllatiollai ,10'

Inaln.

Conlparisons \\'ere n1acle in Figure 5.14 bet\\'t."'en the cùllVergcH(l' hi~h)rit.·s l..1f t hl'

reduced computational domain \\"ith thl' conventional and proposl'd FFBl' nllld,'k

The present FFBC mode! displayed a better rait' of convergl'nCt'.

The transollic flo\\" solutions are i11ustrated in Figure 5.15 for .\1". = lUii5. Thi"

inlet :\lach number \\"as used by the authors for comparison purpOSl'''. \\'hl'n thl'

reduced computational domain is calculated \\"ith the conwntion,d FFBC trl'atment,

it is observed that ho\\" the shock is not \\"e11 positioned.

For transonic flo\\", the comparison of Mach number distributions for the ex­

tended computational domain and the solution of Ni [1 Di) is sho\\"n in Figurl' 5.16, Ni

used an explicit second-order accurate finite-\'olume method. incorporating multigrid

solution techniques, on a 65 x li grid. Figure 5.1 i sho\\"s the results of applying the

proposed FFBe model in comparison with the solution of 2\i, Good agreement for the

upper wall exists, however, near the shock a small difference is observed; this could

be due to grid resolution and type of numerical flo\\" solver.

The convergence history for reduced computational domains \Vith conventional

FFBe treatment and the proposed FFBe model is shown in Figure '=5.18, The dashed

line is related to the FFBe mode!. There is no considerable reduction in the iteration

numbers for this case. This could be due to the strong reflections from the shock in

the comutational domain.

In Figures 5.19 and 5.20 the iso-Mach lines are illustrated for subsonic and

transonic flows. The evolution of Mach number profiles for the subsonic flow is illus­

trated in Figures 5.21. These profiles show how the presence of a solid obstacle could

affect the flow status at upstream and downstream far-field regions. Near the leading

edge of the circular-arc the compressibility is high and Mach number is reduced, but

on the upper fiat wall the deviation from the far field state is negligible. Note that
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J,y ~,·t.!.in;; fM away from the circular-arc. deflections are reduced.

Fignn~~ .1.:!:.!. a.nd 5.:!:) show typical propagations of the outgoing wa\"è fronts at

1.11.: illtiow '"-nrl outtiow boundaries of a reduced computationa! domain. In this Fig"lres

tlI .. ,"a!ues of the outgoing Wa\'€ angles have been calculated during the convergence

prû':ess al different grid points located on the inflo\\" and outflo\\" parts. At the first

stage, they have chaotic pattern but after a fe\\" time steps they become regulated.

Tiiis i, an important feature of measuring such variations near the FFBs. As it is

s<:en the \\"aVe fronts hit the boundaries not at the right angles (unlike to the usual

assumptiolls made in the past and \\"as refered in section 5.2.2) .
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Figure .5.19: ;vlach number contours for the subsonic flo\\', circular arc 10l)\,. "1", = 0.5.
CFL=:3.

Figure 5.20: Mach number contours for the transonic Bo\\', circular arc 10%. Mo<. =
0.6ï5, CFL=O.4.
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Figure 5.21: (Continued) Mach number profiles at different longitudinal stations (i =
9; to 111) of the computational domain, subsonic flo\\", circular arc 10%. Moo = 0.5,
CFL=2.2.

123



• '00

1
,

I~d, :.. l,"", ;\1\ 1.:,3:.\,
Îi-~, I~-'50 .~ :i·J"' Il:~

"1 :!l"\ -....--.. l ,.....S .";.\ \ /\ .11 ",.... . , .
.: Il .' 1 ill ". ,

\ ' ,,-............ ....,
9- • ····T' ,.. , '. 1 l'

", i! 1
,

"'. ...~ 1, ~ j. 1 .. 1

"'" ! ':ti 1 ... 1\

W'
~I \ 1

i ~: "
~ •

"..,. 50 '00 '50 ,..
"'.no

'50'0050

\ ~
r--
~
1,,-'·
I~J2

I, ~ !~l J-1C

~ '\ Il
c..=:-

l: ..
Ir f\ ,I.I~ 2;:

----")'Ir \ "' _.------.,. .:1

'(A-\~
.......::,......-.

i~ .,~~
\ .-. i:~

Il J:)"';:
\~
~

1 1 ir. ,, i
\ 1

1

50

.00

"..,.
"".no

'00

1':15
1:..'6
I~",'

50 1"-'lO

S- • 1
1
1 "- ..

.... 1 ....... ~ ••-'
1 j .'/1': l

1 ~".' !I1..... r

"..,. 50 '00 '50
,.. ...

"".no

9- •

•
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Chapter 6

Far Field Boundary Conditions for

External Flows

6.1 Introduction

ln this chapter the FFBC model developed for solving the confined f10ws is extended

and ust'd for the external f10w problem. As in Chapter 5 the e.,panded Riemann

variables are used in conjunction with the interpolation along the outgoing charac­

teristics. The FFB was dh'ided into horizontal and vertical parts, in which each part

Was treated by the methods developed in Chapter 5. The present FFBC model per­

mittee! the computational domain reduction while m<:.intaining the solution accuracy.

:\ comparative study was performed to verify the capability of the proposed FFBC

mode! wi th respect to the conventional methods for subsonic and transonic f1ows. It

\l'as foune! that. further grid extension from the center of disturbance (airfoil) does

not impro\'e the solution accuracy, when the proposed FFBC mode! is used. In e.xter­

nal aerodynamics, t.he FFB configuration depends on the grid type, which is mostly

problem depcndcm. Here, a Cartesian type grid was used with the FFBC mode!.

126



• 6.2 Conventional far field boundary methods

•

III COll\·"ntiollal method5 of so!ving the externa! fiows. 1he FFB i, Cl'IlSlrt"-!ù! wil h "

body-fitted grid and extend5 ,uflicienlly far from tIlt" airfoil ,urface (d"I't"lll!illg "b"

on the grid topology). Such Jength 5cal", are di5proponioned with th,· small grid

dimensions required near the airfoil to re50!ve the 50lulion. Thi~ C"ll 1", l,,"ercome

either by using a large nunlber of grid points. ",hich leads h) lùng eXl'cution linh.·~

(a150 memory requirement5), or extreme grid 5trt'tching. which l,'ad> to nw,h," ,)1'

high aspect ratio and consequently 10wer accuracy.

Th" conventionaJ me~hod5 discnssed in Chapter 5 have al,o l",ell "l'l'lied 1.0 l'X'

ternal fiows with the difference that in the externa! fiOW5 the infiow alld outfJow ports

should be distinguished prior to exploiting the FFBC methods. The smal1 perturba­

tion potential equation has been used in the past as the governing far field behavior

[3.5. 80, 106, 1:36]. Due to the limited capability of linearized potentia! equation. it

would not be appropriate for predicting the fio\\'s having large perturbations and a\50

non-isentropic fio\Vs. The problem \Vas analysed by using Fourier transforms without

reporting computational results [4i].

Many fiow solvers use extended computationa: domains with simple FFBC treat­

mellts [68. 142, 14:3]. An O-type FFB is stretched about thirty chords thereby using

the free-stream fio\\' values or ID characteristic equations (5.1) [69. 144]. The 1D

treatment of FFB is not efficient and correct for multidimensional flows. Therefore,

such ID boundary conditions cannot be used in regions \Vith even moderate distances

from the airfoiL because of violating the fiow behavior. lt was shown that for lifiting

airfoils such approximations l'an generate inaccurate lift [136]. Recently, a method

have been developed by Verhoff et al [149. 150] which uses a C-grid for solving the

fiow over an airfoil and is not fie:cible to be applied in arbitrary FFB topologies (see

aIso Chapter 1).

In the following sections the FFBC model of Chapter 5 is modified for the

external flow problem; This mode! aIleviates the one dimensionality assumption which



•

•

6.3 Boundary condition development

Th" f1o\'." field disturbancc:s generated by an airfoil at subsonic and transonic free­

'lr"""1 :'-Iadl 1I11lllbers e:<k:ld outward to large distances from the airfoii surface

l "rull"'.! :!() rhords for steady How and more than that in the unsteady case). For

>t,person;.: free-stream. the domain of dependence is considerably reduced and. conse­

quelltly. lhe size of the computational domain ,: reduced relative to that of subsonic

flow. Therefore supersonic FFBs do not demand a special type of treatmem.

In ID problems. the task of distinguishing the incoming and outgoing distur­

b,,"ces is straightforward. However. in multidimensional external flows. it is compli­

,'at,'d "s the pt'rturbation wa"es may propagate in a multitude of directions (discussed

in Chapter 2). In either case the characteristic field decomposition is necessary for

" consistent FFBe Illodelling. First, the FFBCs of isentropic flows are worked out,

then the formulation is modified for the non-isentropic flows.

In order to model the FFBCs for the e:l.'ternai :Bow problem (airfoil with zero an­

gle of attack), the Riemann variable formulations of the Euler equations from Chapter

,5 (t'quations (.5.i)) are used

where

âR (8R . 8R)aï + (aR + ,BQ) cos 9 8x + sm 9 8y = :F(R, Q, 9),

âQ , ( 8Q . 8Q)aï + (f3R..,.aQ) cos9
8
x+sm9

8y
=-:F(R,Q,9),

89 R + Q ( 89 . 89)
8t+ 2 cos9 8x+SlD98y =9(R,Q,9). (6.1)

•
:F(R,Q.9) =- ' ; 1(R2 _ Q2) (-sin9~: +COS9~~),

;-IR-Q ( . 8(R-Q). 8(R-Q))
9(R,Q,9) = R Q -sm9 8 ..,.cos9 8 .4 + x y

Equations (6.1) in the transformed form e.':press the propagation of the information

in Cartesian coordinate system as was used in Chapter 5.
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Figure 6.1: Propagations of the Riemann variables and entropy waws al the FFB of
tht' extemal flow.

•

ln Figure 6.1 the propagations of the Riemann "ariables and entropy waves at

different positions of the FFB are shown. The directions of propagations may vary

on the horizontal FFB. Unlike the confined flow case the horizontal part of the FFB

needs modelling, especially, along the horizontal FFB (Figure 6.1), when the Riemann

variables change direction. The flow perturbations and numerical disturbances travel

in an unconstraint manner until they hit the FFB. Dissimilar to internaI flows, there

are no physical restraints except the artificially made FFB. For external 1I0w problems

the inflow and outflow parts of the FFB are not completely distinct in contrast to

the confined flows. The grids located on the FFB can intermittently be changed

into inflow and outflow during the transient time integration (Figure 6.2). For low

frequency disturbances, where the disturbance wavelength is of order of a few chords,

a large grid spacing may reflect the outgoing waves [i, 161).

ln the fol1owing sections the FFBC models for treating the vertical and horizon­

tal parts of the FFB will be introduced. For more details, one is refered to Chapter

5.
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6.3.1 Expanded Riemann variables approach

III the present study the FFB is di\'ided iuto vertical and horizo;ltai pans. For sym·

mt"'tric fio\'.' the conlputational dOInain woule! contain a symmetry line. t\\"o \"ertical

,,-nd One horizontal FFB parts. For inviscid no\'.' cases the symmetry line is treated

tio\\' direction and ."iong the normal to that direction for diiiereut pans of the FFB.

Similar to confined flo\\'s, it is assumed that at distances far from the solid boundary.

tht' pt'rturbations \\'ould decay to zero. For the \'ertical parts of the FFB (clearly

iuno\\' or outflo\\') they e:\:pressed as

"..

R(x,y,t) = Re.. -;- I: R.(y.t)€.(x).
k=1

'"
Q(x,y, t) - Qx -;- I: Qi:(y, t)€i;(X).

k=l
m

9(x,y,t) = 900 -;- I: 9k (y,t)€k(X), (6.2)
k=l

\\'ht're t«x) = C·'-': and;.: are indicated in Chapter 5, and Boe - 0 for nonlifting

airioils. Tht' îrt't'·stream Riemann variables are

.)

RXJ = U oc + ---aoo~
") - 1
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• . , .. .
:-::·:-:- .... :-!.lt·:· ::H·:-7~.::-U;~::Ù:~ ec::":'~:.::Ù:;~

= ..=-, fi. 'lI " , t ~ . :) ,

;/0, (' 'iO')
-'-' - 1 jR . - 00 .1 _'CJ. lÛ~ ri - -'-' ~i:l".dt x. x . . .),:;

=i..:~Rl.O .. tj.U.I.- - , .

(6.G)

•

"';l~t"n:'

For horizontal part oÏ the FFB. Riemann "ariables are expanded in ;, simil;.r manner

to the "ertical parts

~.

R(x.y.t) - Roc -+-)' R,,(x.t)t,,(y).
;':=1

"..

Q(x.y.t) = Q", -+- 2: Qdx.t)t.,(y,i.
k=l
rr.

6(x,y,t) = 60< -+- 2:0;,(x.tj!;,(y).
;'=1

",here t;,(y) = e-;':;" and 60< = O. ln a similar manner. ",hen the expansions (6.6)

are introduced iuto the equations (6.1). results iu the first-order far-field perturbation

equations

âQ1 , , , (_ - . âQ1 ) ••
fjt-:-\,3R.oc.-:-aQoo ) .WQ1cos 6 -:- ax cos6 =-:F(e.61 ).
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, - -, - l, '( - 08,)
F(fJ,O,1 = -~(R:-x -Q:-XJ ':'Ol sinO + ox cos 0 ,

-,-' - R",.-Q"" (_. - O(R'-(iJ),)
ÇIR1,(h,O,Od= Rx,+Q-x. _'(R,-QJlcosO- ox SIlIO,

Tl, Ireal Ihe horizontal FFB. first it is checked at each grid point if it is either an

illll"':,, "r vUI!10\\' hOllndarO' (corresponding to " < 0 or l' > 0), \\'hen t' = O. there

i, IIU flux throlle;h that node and the BC is determined from th" neighboring nodes.

c\t tl", vertical FFBs (similar to the inlet and outlet of the confined fiow). the per­

11IrbittiollS propagate from the computational domain towards the boundarO' along

"'JI;;"ill)', characteristic fronts. in which the local flow information is obtained bO'

usillg equation (.5.2,5). On the other hand for horizontal FFB. the perturbations prop­

"g"te nearlO' along the normal to streanùines. Then, at vertical FFBs, one gets from

"quittions (.5.16) for 09 = ~ as

•

• RJ.b = Ru,

and for horizontal FFB (09 = 0)

QJ.b = -Q., (6.10)

(6.11)

ln Figure 6.3 the propagations of the Riemann variables at infiow and outfiow FFBs

are shown. ln each case the outgoing waves directions were ca1culated from the

relation (2.71).

6.4 Inflow FFBC formulation

At the \'ertical FFBs, the perturbation equations (6.3) and (6.5) are solved by an

t'xplicit time discretization similar to the confined fiow problem. The implicit methods

could be used for this purpose which demand solving tridiagonal systems, increasing

the computational effort. At the horizontal infiow FFB, equations (6.7) and (6.9) are

illtegrated during the transient time. The information from the numerical solution of
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Figur", 6.:3: Propagation~ of the outgoing \\'a\'e~ at horizontal outRo\\' and intlo\\' FFB~.

computational domain is locally obtained by using the characteristic~ similar to t.hat

discussed in Chapter 5. At supersonic inflow FFBs, ail the frœ-stream Ho\\' \'ariable~

are specified consistently with the characteristic directions of propagation.

6.5 Outflow FFBC formulation

Outflow boundaries in the Cartesian FFB involve the vertical and horizontal parts.

Equations (6.4) and (6.S) are integrated at the vertical and horizontal outflow FFBs

respectively. For calculating the information from the numerical solution thcre arc

two possibilities: algebraic ex1:rapolation and interpolation along characteristi,' lines

(see appendix F). In practice, interpolation along the right-propagating characteristic

generated accurate solutions. At a supersonic outflow FFB, based on the characteristic

theot·y, every f10w variable is calculated from the computational domain.
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Figure 6.~: Extended and reduced domain configurations for solving the external f10,,"
problem.

•
6.6 Discretization of the far field equations

Perturbation equations which were resulted for the FFBs are discretized similar to

tht' olles in confined f10,,":;. Time derivatives are approximated by forward differenc­

iug. while spatial derivatives are approximated by central differencing. The vertical

FFBs are naturally separated into in:B.ow and out:B.ow parts (namely AB and CD in

Figure 6.4). For horizontal parts (AD and BC), one needs to separate the in:B.ow

and outtlo,," portions. This is done by considering the fact that, at in:B.ow parts the

t'-component of the :B.ow velocity is directed inward the computational domain, while

at outflow it is reverse. Note that v-component of the velocity is perpendicular to the

horizontal FFB. For an Q-type outer boundary the velocity vector should be projected

along the uormal to the outer boundary (see section 5.4).

The outgoing information is interpolated along the outgoing bicharacteristics

as confined f10w case (sec equation (5.25)). Explicit time differencing was used for

soh'ing the first-order perturbation equations (6.3)- (6.5) and (6.i)- (6.9).
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• 6 -• 1 Non-isentropic outfiow FFBC

into account the entropy variations after shock Wan: a.nd ak)l1g tilt-' tll..lnnal tl. the

streal11.1ine direction. For non-isentropie external fiows. the inflow FFnes "f,' still

""lid Isection -l ..5 Chapter -Il. For treating the oLltfiow FFB ,)f il lwn-is"lltrùl'il' Il,,w

u\'er tht" airfuil. tIlt:' first-ùrder perturbation t'quatÎ,,)n ~5.·l1 Î i~ lISl't.!

where 7i and 7i are defined in section 5.6. For the airfoil probl"1ll with Zero Illel-

dence. the non-isentropic flow crosses the outflow FFB at right wrtieal side (CD in

Figure 6.4). Therefore. the above equation is solved numerically ,dong the outllow

FFB.

6.8 Model validation and discussion

In orde: to compare the effect of com'entional FFBC methods and the proposcd

FFBC model for extemal flows, the NACA 0012 airfoil (with zero angle of attack)

\Vas used. A Cartesian grid was generated considering the flow symmetry. Therefore,

the ca1culations \Vere performed for hall' domain. The grids were gellerated starting at

the airfoil surface, which is located at the middle of the symmetry line. Equally-spaccd

grids \Vere used along the chord direction (or symmetry line), while they were strt'tched

along y-direction, starting l'rom the airfoil surface. In the numerical tests, two kinds of

domains were used, namely extended and reduced (Figure 6.4). The extended domain

consisted of 1;5 x 50 grids, accommodated within ; chordsx6 chords along the x and

y directions respectively. The reduced domain had the dimension of 6a xl; grids,

placed within 2.5 chordsxl chord.

The nurnerical solutions which were for the reduce': ~,=,~putationaidomain, gen­

erated by the proposed FFBC mode] are compared with the solutions of Schmidt and
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•

,J;l!lW~ql: :i:~·l: fl)r tlO\':S ()\"t."f il XACA 001:2 a.irfoij with zero incidence. As in previ­

')'" c1"'I,I..". Lilt" ,,,I,,oniç and transonic cases \\"ith :--lach numbers .\I", = 0.6 and

.\/.. = ru "w cUl1sidered. Applying the proposeè FFBC model aI10\\"t'5 a 5ub5tantial

n'dw,t jOlI ('1' ,!!.rid poinb ill hath ;r and !J directions. \"un1erical experiments showed

t Il;li, dtJlll;lÎlI rt..dunio:l along tht" x-direction affects the solution:::: more than domain

,..·duo:tiuli "IU"& the !I-direction. The :--Jach number and pressure coefficients of 5ub·

,ulli,' "nd tr"II,ullir tio\'.'s h""" been chosen in order to demonstrate the ability of

dw prupos"d FFBC modds in comparison to the con\'entional methods of boundary

treatmellt. When the proposed FFBC mode! for calculating the flo\\' around ~ACA

0012 airfoil \\'as used. the sizes of block tridiagonal matrices \\'ere reduced by a factor

ur \' "'d along ~'s\\'eep and \' \ ' along 7)·s\\'eep. \Vhere ,V, and X" are integer. ~ xc/.v. .' . .,xc:: .ore ..

lIumbers sho\\'ing the computational domain extensions along the ~ and 7) directions

rt""~pecti\"t"ly.

Figure 6..) sho\\'s the l\'!ach number distributions for subsonic fio\\' over the airfoil

\\"ith zero incidence. \-,,"hen the conventional FFBC methods were applied at the infio\\'

and outfio\\" FFBs of a reduced computational domain it generated inaccurat'" solution

in comparison to the solution obtained from the el-"tended computational domain, as

sho\\"n in Figure 6.5. This is because the conventional FFBC methods (either algebraic

extrapolation or one-diemnsion.ll characteristic approach) give rise to the refiections

l'rom the FFBs. Also the effect of fio\\' inclination crossing the infiow boundary has

been neglected in the conventional FFBC methods. Therefore, conventional FFBC

methods are DOt capable of handling the fio\\' inclination near the boundary.

Pressure distributions on tLe airfoil for the case of Figure 6.5 are shown in

Figure 6.6. The difference in the pressure coefficient, Cp = (p: - 1)/GM~) follows

someho\\' a different pattern than the Mach nnmber and the discrepancies are larger.

ln Figure 6. ï the comparisons were made between the Mach nnmber distribu­

tions obtain",d \\'ith the proposed FFBC model for the reduced computational domain

and \\"ith cOll\'entional FFBC method for the extended computational domain. There

is good agreement between these solutions. Note that the nnmber of grid points has
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•

b d J l 175, 50 .,' f 1 d J "1'tt'1l e(rea~eU)Y ~Xl- =:::::' tlnw~ or t lè ft' U('t'U ('(llnputath.)n~ll (~)tl1aln.
lo..,; • •

Figurt' 6.S dell1ûn:::trate:::: tht" pressure ('oeHicit"nt~ lHI the airfl'lii (lbt~dncd by .1allw-

~ull d ai :71J and by 1I1lplt'~nt'nting tht' prop\)st.:·d FFBr nh)del. .-\ f~lir ~l~rt't'l11t'!l1 i~

obser\"(;:~d except at the Ieading and trailing t'àgt's. This i:-- bt"('~lU:'t:· in the;' pl't'~Ctlt

flo\\"·field sol\"er tht? grid point$ arC' equally distribut<'d alon~ tilt' ..b"rd dir"cl iun.

The con\"er~enct' histories are 5hoW11 in Fkure::: ti.~l aud li.lll f(,!" t.he l'xtl'lh.kd, ,

l"omputation,d domain \\"ith th" cOl1\"t?ntional FFB(' tr"atnlt'nt and for tl", rC'duc"d

computationill domain \\"ith th" proposed FFBC' mode'!,

fi.!!;ure (i,ll depicts tht> :\Iilch number distributiuns for tht' transonir lIo\\" e'L't'

obtained \\"ith tht> cOIl\'entional FFBC method. It i$ nokd that the reJuetion in

domain size is performed \\"ithout altering the grid spaeing.

Comparison \\"as made with the solution of Jameson t'I al in Figun' 6.1:! in ord"r

to \'alidate the solutions obtained by the present flo\\" field sol\"er. Tht> ditference$ ilr..

due to the grid type and numerical scheme.

The Mach number distribution resulted from a reduced computational domain

(with proposed FFBC model) is compared against the extended domain solution

within Figure 6.13. A small amount of pre-shock overshooting is observed. It is

because in the reduced domain the disturbance reflections emanating from the shock

have not been dissipated completel)..

Pressure distributions are shown in Figures 6.14 and 6.1.5 for the conventional

and proposed FFBC models respectively, The pressure coefficients have been corn·

pared in Figure 6.16. The behavior of the pressure field is somewhat ditfercnt than

the Mach field. ln the reduced computational domain Mach numbers are larger (Fig·

ure 6.14) in comparison to the base solution (within extended dornain). ln this case

the pressure is shifted along tae chord because of the highly nonlinear wave interac·

tions in the reduced domain.

The convergence histories for the transonic case for both extended and reduced

computational domains are shown in Figures 6.1i and 6.18. Although, implementing

the proposed FFBC model for subsonic f10ws \Vas accompanied by an iteration reduc·
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:i"n. Il,,\',',·-,',·r. applyillg the FFBC mode! to the external flo\\' problem did Hot sho\\'

.1 fh~;tl_'r Cf)IJ\"ergl::we ill the transonic regimes. This WâS the case for the corfined fio\\".

Il ,';,n 1,.. ull" "f :11" limita:ions of the proposed FFBC mode!.

Filli1J1y. 111" isu·\lach line, are sho\\'n through Figures 6.19 and 6.:!ü.
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Figure 6.5: ~Iach number distributions for extended and reduced computational do­
mains obtained by conventional FFBC method, NACA 0012 airfoi!. Mc<> = 0.6,
CFL=2.2.
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Figme 6.11: Trallsonic flo\\": l\Iach number comparisons of extended and reduced
"omputational domains using conventional FFBCs. NACA 0012 airfoil. ]'v[oo = O.S,
CFL=OA.
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Figure 6.16: Transonic flow: Pressure coefficient comparisons of reduced computa­
tioual domain (proposed FFBC model) with Jameson et al [68] solution. M"", = 0.8,
zero incidence.
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Figure 6.19: Iso-Mach lines for subsonic fio\\' o\'er l'JACA 0012 airfoil. zero illcidellœ.
:\1"" =0.6.

Figure 6.20: Iso-~lacb lines for transonic flo\\' over :"ACA 0012 airfoil, zero incidence,
iV100 = O.S.
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Chapter 7

Conclusions

The formulation and implementation of a far field boundary condition (FFBC) model

ha~ been reported in this Thesis for compressible subsonic and transonic fiows. The

developed FFBC model permits a substantial reduction of the computational domain,

for bath quasi-one- and two-dimensional fiows, which leads to a corresponding reduc­

tion ill computational effort. This has considerable impact on the solution accuracy

alld the Q'·emll computational efficiency. In developing the FFBC model, two kinds

uf in formation are required and have been taken into account:

• Information from the far·field regions, by solving the perturbation equations,

based on Riemann variables expansions.

• Information [rom the numerical solution within the computational domain at

"ach time-iteration step.

Th~e are taken into account by using natural coordinates and Riemann variables. The

far-field beha,·ior is simulated \Vith an e.'I:panded Riemann variables approach and the

corresponding perturbation equations. To determine the behavior of the information

from the computational domain (which propagates towards the FFBs), the directions

of outgoing waves are found by using the compatibility relations developed in Chapter

2: thl:'Se directions, rarely considered in previous FFBC methods, are significant for

the FFBC formulation of two-dimensional flows.
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•

The time dependent far-fidd perturbation c'quatic)ns art' disl'reti::t'd fc):"\\,ard in

tinw and by central ditferencing in space. Tht-'n. tht'~e llisl'retizl..'d t'lpl~ltil)n:, art' lnll'­

gr'ltl..'d in tink' and 111atched with tht' solution within tIlt' r0111putatll)llal dl'main at "~Idl

itt"ration stt'p. Thus. at an inflow boundary. the right·propag~ltingRit:nl~tnll '-;Iri"bh.. ':-'

are calculated from the discre:ized far-fidd equation" whibl the l<'ft-pr\ll'a;!:alin;!: "11<"

.:u'e detennined nurnerically in the- conlputational dOlnain along tht' dl..)l1tinant \\,a\"\'

directions. The fio\\' anglt.' al the iuRo\\' boundary i::-. also cakubtt'd ll11lllt'ril-ally hy

soh'ing its corresponding equation. A similar approach is used at tht' üuttlow houml-

This FFBC model has been first developed for isentropil' quasi-ü!lt'·dim"nsional

f10ws and subsequently was extended for two-dimensional internaI and el'terna! llows.

Then. for the FFBC treatment of the transonic f1ows. for which tht' outllow bound..rit's

are crossed by nonuniform-entropy f1ows. the Riemann "ariables were tllodified by

considering the entropy variations. ln this l'ase the perturbation equation is also

modified to inc1ude the entropy variations.

An implicit ADI scheme has been used for so!ving the flow-field within the COtll­

putationa! domain. However, this FFBC model can be coup!ed with other numerical

Euler soh'ers as weU.

For accurate calculation of the prtoSsure at the solid boundaries. the normal

momentum equation was used in conjunction \Vith the characteristic relations, l'esult­

ing in an improved solution accuracy. Consistent solid boundary treatment reduces

reflections in the f10w domain thereby decreasing the number of convergence steps

required.

Solving quasi-one-dimensional problems using the FFBC model resulted in so­

lutions that are in a very good agreement \Vith the analytic solutions (in terms of

accuracy and shock position). For 2D flows, by incorporating the reduced computa­

tional domain \Vith the FFBC mode!, good results were generated in comparison \Vith

the solutions obtained \Vith an extended computational domain. SmaU differences

are observed in comparison to the solutions of Ni (for confined f1ows) and Jameson

153



•

•

1fi)!, ,~;.:tl:rlJd.1 tif)WS). which â.re due to the utilization of a rather coarse grid near the

!"ddiIlg allJ triLiling edgt;s of the arc or airfoil.

Appiyillg; tbe proposed FFBC mode! to the challnd fio\':s. the matrix dimension

j, ,J,."or"",,,,J in the :r-directioIL while for the external fiow problem. the matrix di­

",,,"sion is r"duced in both x alld y directions. This leads to a considerable memory

r",Juel;oll ,,,,d " corresponding reduction in the computatio:lal effort. :\'umerical ex­

I",rilllellts with the proposed FFBC mode! also showed a reduced numbcr of iterations

for th" case of subsonic fio\':. while this reduction was much smaller in the transonic

flow. This is due to strong refiections appearing in the presence of a shock wave in the

trallsonic fiow regime. The numerical solutions show the capability of the proposed

FFBC mode! in reducing the domain size. while maintainillg the solution accuracy.

For the case of external fiow (symmetric airfoi! with zero angle of attack), ap­

piying the proposed FFBC method was found to be effective, especially for vertical

FFB, while applying the same FFBC model to the horizontal FFB improved the so­

lution accuracy by only a small amount. This is because along the horizontal FFB,

the perturbation variation is very smalL compared to the vertical FFBs.

The proposed FFBC model has been validated by comparing the solutions ob·

tained for a reduced computational domain with the exact solutions available for quasi

1D f10ws and with the quasi ID and 2D solutions obtained for an e:-::tended computa·

tional domain by using a couventional FFBC treatment. The number of grid points

of the œduced computational domain was in average 8 times smaller in the case of

2D external flows, and about 3 times smaller for quasi ID and 2D confined flows.

From the above comparisons, it was found that the proposed FFBC model gen­

erated very accurate solutions with improved computational efficiency and memory

requirements.
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• 7.1 Main Contributions of this Thesis

The n:ain (ontribution~ of this The~is can he :,ulll1narlzt'd a~ ft)l1"'lw~:

• A far fidd boundary conclition \FFBC) mode! h,,,, bec-n d"v,-lopc',J for 1h.. ,'''IlI'

pressible subsonic and transonic rotational f1ows. This mùdd is bast'd Oll far-ti"ld

expansions of Riemann variables. which art' uSe'd in ëo"junctic'" witl: th" pr,'p­

agation of the characteristics from the computational dülna.in. This takt"s iuto

account the estimated directions of wave propagation.

• This FFBC mode! has first been developed for quasi 10 isentropic Ho\\'s alld

then has been extended for two-dimensional confined Hows in nozzl"s and for

20 extemal f10ws past airfoils. This mode! has also bcen extendd for nOIl­

isentropic f10ws crossing the outflow boundaries. which is important for the

transonic flows involving shock waves inside the computational domain.

• The proposed FFBe mode! has led to a substan·i.'l reduction of the compu­

tational domain for a "ery good accuracy, comparable to that obtained for a

much larger domain. This corresponds to a considerable reduction in the IlUIll­

ber of grid points, which led to substantially improved memory requiremcllts

and computational efficiency.

• This FFBC model has been developed in a sufficiently general manner, in order

to be used in conjunction with various flow-field solvers. The flow-field solver

used in this Thesis for numerical computations was based on an altcrnating

direction implicit scheme.

155



• 7.2 Future Extensions

•

Til" :lt.ilizilriu/ll)f tilt" pn:~'''I1t FFBC D1ütld in cOlljunction with other fiaw soh'~rs (e.g.

hllil.'·-\·U!l1IlW ::'t)I\'{"r~,1 is alsu uf interest to he investigated.

~illl'(' tIu- f<Lr-tie1d behavior and thl: corft'sponciing boundary conditions haye

110\ !Je('l1 ÎI:\"t'stigé1ted in the case of unsteady fto\\'s. it is of interest to extend the

prr'l''''eci lTBC model ta such problems. AIso, e;,tensions of the proposed model to

the lIûll,ymlllt"tric e):ternal ftows have to be consideredo

Tlw d,oveloped FFBC mode! could also be used with other first-order hyperbolic

sy'tclm (such as sbailow water f10w equations) with sorne minor modifications.
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Appendix A

Compatibility Equations for the

2D Euler Equations

The equivalent characteristic form of the time-dependent Euler equations in two spa­

tial dimensions is derived here. First the procedure for the x-momentum equation

is discussed and for the y-momentum it can be repeated as weil. The x-momentum

equation is e.'i:pressed as

Du + ~ 8p =0
Dt P8x '

Taking the derivative of the isentropic relation yidds

~(E..) =0 ==? 8p =a28P •
8x P~ 8x 8x'

8p Dp 8p
8x = Dp8x.

lntroducing relation (A.2) into the equation (A.l) results in

Du Df + ~Dp fJp =o.
Df Dt pDp8x

Substitutiug if> = %f in the equation (A.3) gives

Du ti> + ~Dp 8p =O.
Df pDp8x

(A.l )

(A.2)

(A.3)

(A.4)

Taking the partial derivatives on both sides of the characteristic front f(x,y, t) = 0

leads to a general relationship called the kinematic condition [135]. This relation for

A-l



p 1:-• cg) &p OP D
a~ ~:" b:; P
:;r = ar = ':JI = DJ'
;; â? ~

From l!Je killem"lic condition (A.5). one gels

ôp DpôJ
Ôx = DJ ôx'

illlr"dllcillg l!Je re1',lioll (.-\.0) illto the x-momentllm equation lA..!) yidds

Duo+~DpDpôJ=0.
DJ p Dp DJ ôx

or afler simplification

9Du + ~ a
ô

J Dp = O.
p x

(A...S)

(A.6)

(A.7)

(A.8)

ln a similar f-tshion the fol1owing relation for the y-momentum equation ean be re-

•
sulted

oDv+~ôlDp=O.
pay

Now eonsider the continuity equation el-.:pressed as

Dp ôu ôv
-+p(-+-) =0.
Dt ax ôy

From kinematic conditions (A.5) for u. v and p, one could write

(A.9)

(A.I0)

ôu Dual
ôx = Dlax'

av Dvôl
ôy = Dlôy'

Dp DpDI
Dt = DI Dt'

(A.ll)

Considering the relations (A.ll), the continuity equation (A.I0) can be e:q>ressed as

Dp. Dual. Dval
DI 9 + P(Dlôx"" Dlôy)=O,

simplifying the DI yields

Differentiating the isentropie relation yields

D p Dp ,Dp-(-) =0 =} - - a-- =O.
Dt p" Dt Dt

A.-')

(A.12)

(A.13)

(A.14)



•
Expr<'ssing lhe equalion (A.1·1) wilh resp<'l'110 O. one gels

Dl' Of .DpDf
Of Dt -n- Of Dt =0.

or

Fina11y the l'onlinuity eqllation (:\.1:3). becomes

Thenee system of timc-dcpendent Euler eqllations is eqllaivaienl to

(:\.1;;)

(:\.\li)

In matrix form the system (A.1 i) reads

• !iU.
pa:
!iU.
p av
o
t/J

0] [Du ]o Du _ 0
t/J Op -.

-a2t/J Dp

(A.li)

(A.tS)

[n order to have non-zero solution, the determinant of the eo...fficicnt matrix shollid

be zero. Thereby solving the equation for the determinant it fo11ows that

which bas the trivial solution

t/J = 0,

and other roots as

(A.19)

(A.20)

•
t/J = ±a

A-3

(A.21 )



•
Appendix B

Natural Coordinate Formulation

of the Euler Equations

III order 1.0 deri"e the Euler equations in natural coordinate system (or streamline

coordinates) one can start from the Figure B.L in which the upcoming relations hold

between the Cartesian and streanùine coordinates:

[
dx ] [ cos 0 - sin 0 ] [ ds ]
dy = sin 0 cos 0 dn'

ut' l'e\'t!I'sely

[ ~: ] = [_c~:OO ::~ ][~; ].
The differential operators can be written as

[ ajas l= [ cosO sinO] [ajax]ajan. -sinO cosO ajay'
a.nd

(B.I)

(B.2)

(B.3)

[ ~~~; ] = [~~:: -c~::] [~j~~]. (B.4)

The fol1owing relations stand for the orthonorI:laJ unit vectors, which are depicted in

Figure B.I

r is] [COsO SinO][i]
in = - sin 0 cos 0 j

B-I

(B.5)



• y! .:::.#

ln

S

n
Yo

o Xo x

(Rtl)

Figure B.l: Cartesian and Natural coordinat,,,.

or reversely

u]= [ ~~~; ~:~~
0
][ :: ]

By the aid of aformentioned relations, the derivatives of the nnit vectors ap-

p..aring in th.. calculations are:

Di. . ae
--1 -at - n ai'

ai. . ao
T = I n ;:;-.
vn uS

ai. . ôO
- =1n-.
ô" a,,·

l ao
Re - a,,' (B.i)

where Re shows the radius of curvature of the streanùine. The velocity vector is

always tangent to the strearrùine in which

v =qis' (B.8)

(B.9)

In natural coordinate system the material derivative and gradient operators take th..

form

D a a
Dt = at + qa,,'

..,. a. a.
v = as 15 + an ln·

In coordinate-free form, the continuity and momentum equations can he ex·

pressed as

Dp_ .... p'V.V=ODt . •

B-2

(B.I0)



• DY 1
--, +-\,,=0.
DI ;J

l! 10j

Dp .) Da
-=---

p -·-la

Dp ::!-: Da
--=---
p -:-1 a

After substituting from equation (B.I:2) illto the continuity equation \8.10)

Da Î - 1 •
-+--aY·" =0Dt:2 .

(B.I.} )

The divergence of the velocity field, which will be used later in the continuity equation

is calcuiated by using the rules from tensor analysis

• y.y . a(.) . a(.)= Is ' -a qls + ln . -a qls
S n

. [. aq ais] . [. aq ais]= Is ' Is - +q- + ln' Is - + q-.- .as as an an (B.15)

By doing the e.,pansions of the vector derÏ\'atives and considering the corresponding

relations ont' has

..,. y aq . in . . aq . ôO .
" . = - + qls . - + ln . Is- + ln . q-.-In·as Re an ôn

considering that

(B.16)

ais in
as = Re'

Finally the velocity divergence reduces to

is ' in =O. (B. li)

. aq ao
\J.y =-+q-.as an 3.18)

Introducing the velocity divergence (B.18) into the continuity equation (B.IO) yields

(B.19)

B-3



• DY D.. iJ. iJ ..
- = -l'II,) = -::-1 (JI..;' ~ fl-, ! (J1~~.DI Dt·' dl' . . (j, .. 0>

iJis . ô()
-=1 ­
ôt n ôt'

olW cuuld write

aL . ô()
:;-'- =ln Ô..
vS ....

!ntroducing the équations (B.20) and (B.21) into the coordinate-free momentum

•

Pressure gradient is expressed as

.., ôp.. ôp.
" p = ôs 1,..,. on 1".

eqll<Ltion. results in the s- and n-momentum equations respectively

ôq ôq 1 ôp
-+q-+-- =0.
ôt ôs pôs .

ôO .ôO 1 ôp
qôt + q- ôs +pôn =O.

(B.20)

(B.21 )

(B.22)

(B.23)

\Vhen the Riemann variables R =q+ .,:1 a and Q=q- ":1 a (derived in the Chapter 2)

are introduced iuto the continuity equation (B.19) and s-momentum equation (B.22),

also the pressure gradients are replaced according to ;~ = .,:1 a ~~ and; ~~ = .,:1 a ~~,

in the same equations it follows that

ô(R - Q) + R +Q ô(R - Q) + Î' -1 (R _ Q) ô(R +Q) = _ Î' -1 (if _ Q2) ôO.
ôt 2 ôs 4 ôs 4 ôn .

?(R
ô
+ Q) + R~QÔ(~+ Q) + 1" -1(R_ Q)Ô(R

ô
- Q) = O. (B.24)

t _ s 4 s

Then. above equations in terms of R and Q are added and subtracted as

a:: + (oR + f'Q) ~~ =- Î' ; 1(R2 _ Q2):'

ôQ (aR Q)ôQ Î' -1(R2 Q2)ÔO
ôt + IJ + 0 ÔS = +-8- - ôn'

B-4

(B.25)



• The n-I110!l1t'ntt::n èquation lB.:2:31. nr~t dl\·idt..'d by 1] tlwn iht·equi\"~dt.'nt~ 1:' = ~\H+~)I

~1.nd .!. :':' == ~a ~~,: are introduct....d. it lC:<:tds tù.... -. .~.;

•

R+Qoe
.) ô.....

·,-IR-Qa\R-q\
= --.l-R-O an

, .

B-5
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Appendix C

Entropy Based formulation of the

Euler Equations

COllsidering the thermodynamic relation for pressure, one can start witr.

p=pep. S), (C.I)

the partial derivative of the pressure as a function of density and entropy, with respect

to the streamline coordinate, s, can be expressed as

or
ap = 2ap.J- (ap) as
as a as . as Pa.s .

(C.2)

(C.3)

Note that for isentropic f10ws only the first term in the equation (C.2) would exist.

Th.. s-momentum equation in the streamline coordinate system reads

aq, aq. l ap
- .,. q- .,. -- = O.
8t as pas (CA)

No\\" one could introcl·;.;e the equivalent for the pressure derivative in equation (C.4),

from the equation (C.3) as

(C.5)

Col



• In order to nnd tl1t.' equivaient::; ûf the third and füurth L\.'r:n::; in thl' l'qU~ltillil ~l· ..~)l .

\\"e start fronl the tirs\: law of thernlüdynanuc$. which read~

;T '
Td

' (. ai'
::- = C"y - p'

frotrl tht" èquation of statt" of an idèal ga~. ont" could ù)t11t' 111' \\":11:

d" = c.,dT _ dl'
, , T pI'

dT dl' dp
y=-p---p

Ha\'ing the relation Cp = ':1 R for specifie heat at constant prcssurt' and R bcing tht'

uni\"ersal gas constant. aiso considering the equation of state of an idcal gas. one gets

•
dS =~ [dl' _", dP]

i -1 p p

From equation (C.l). the total derivative of pressure can be writtcn as

a a
dl' = (a~ )pdS + (a; )sdp.

l:sing the equation (C.g), the total derivative of the pressure is caculated as

Comparing the equations (C.IO) and (C.ll) yields the following relations

Using equations (C.12) and definition of Cp, it follows that

l ôp a2

p(ôS)p = Cp'

(C.9)

(C.IO)

(C.ll )

(C.12)

(C.13)

Now, we arc to find an equiva.lent expression for the term, .; ~:. Considering the

relation for the speed of sound and the isentropic relation as

.l!.... =const.p" ,

C-2

(C.14)



• t.!jI":.·L~: ,·ji:!IiIli"ting tbe pressure bet\'."cen the <1bo"'e rdations and taking the deri\"ati\"e

'::if Il ;'-;;p,·,-r tJJ ." 4Hd simpiifying. yields

a' i)p :2 i)a
--=--a-
p i),< -; - 1 0,<'

(C.15)

TI,..r..["r". tb.· "'lllom"ntum "quar.ion will ha\"" th" following form. in which the en-

trupy j:-; present

oq, aq, 2 aa, a' as--q----a---- = aal ' as' -; - 1 as ' Cp as . (C.16)

This formulation togeth"r with continuity equation forms the basis for the Euler

"'1uati(JllS in t"m" of the cxtended Riemann \"ariables in naturaJ coordinate system.

Th" d"ri\'ation of the extended Riemann \"ariables is gi\"en below for l-D f1o\\'s.

For the streamline coordinate system the procedure is similar. From [110], one has

\\'b"r" S' and R represent the entropy and gas constant respecti\"ely. Integrating the

"quations (C.17) and arranging, yields•
0) 1 S'

±du+ ---da = -ad(-).
,'-1 Î R'

[
2 S1]

';"'u + -- - - a = constl •- ,-1 ,R .-,

where we define the modified entropy as

0) S'S=-----.
,-1 ,R'

(C.li)

(C.18)

(C.19)

\\'here the entropy S' has the e:-..-pression similar to equation (C.9). hence, using the

equation (C.9) in the equation (C.19), after differentiation and integration leads 1.0

.) 1 P
S = --- - din-.

,-1,(1-1) p""
(C.20)

Also, one ca.n e.'i:tract the e.'i:tended Riemann variables fl'om equations (C.18) as

R= u+Sa, Q=u-Sa.

C-3

(C.21)



(D.3)

•

•

Appendix D

Riemann Variable Formulation of

the Euler Equations

ln order to dea] with the true information propagations. the unsteacly Euler equations

of motion in natural coordinate system are employed. Formulation begins with the

continuity and s-momentum equations. One can start with the continuity equation

which reads

8a +q8a =_T - 1a8q _ ", - 1aq 80. (D.l)
at as 2 as 2 an .

multiplying both sides by Sand then adding the zero term a~~ = a[ ~~ + q~~l = 0 to

the left band side results in

ôa ÔI1. DS T - 1 ôq T - 1 ôO
S(8t +qôs)+a Dt =-~aS8s -~aqSôn' (D.2)

rearranging the terms in the left hand side and adding the teml a* to both sicles of

eq1.1ation (D.2), yields

8(Sa) + /(Sa) +aôq = aôq _ -( - 1aSôq
8t ôs ôs ôs 2 as

T - 1 ôO
---aqS-.

2 ôn

OUe could introduce for the quantities Sa and q the fol1owing relations (see Appendix

C)

R-Q =2aS, R+ Q=2q,

D-l

(D.4)



• ·..:ill';l~ riw Riemann ';;lriables ha....e been modified to include the entropy effect. Fur

riwI:' d,·r:'.ù!ion one Inà.Y sta:'t with the formulations given in [110]. Hence. the equa-

riO!l (D.:~ 1 IwC(..rne~

il! R - (d), iJ( R - Q), iJ( R + Q) " - 1, :2 . ôq
- q - a = ---a(::- - --)(2)-

rj: ' ô" 'a" :2 " - 1 ô"
Î - 1 ôl}

-(:2)--aqS-. (D..j)
':2 an

TI", <"Iuatiun (D.5) is the continuity equation \\'hich \\'as expressed in terms of the left­

;,nd right-propagating Riemann variables, defined in natural coordinate system. l'o\\'

\\'<' are going to convert the ,,-momentum equation in terms of the Riemann variables.

Th,' ,,-lllOlllentum equatiolJ in natura! coordinate system reads

•
The "ntropy can be set as follo\\'ing (see Appendix C)

S:2 1 p
5=-=--- ln-.

Cp [-1 [([-1) p~

(0.6)

(D.i)

The entropy 5 on the far field boundary is measured with respect to the free-stream

entropy. denoted by Soo- 50, using the relation (D.i), one gets

aq aq .as 2 aa- +q- + a-- = ---a-.
at as as [ - 1 as'

(D.S)

aùding the term aS~~ to both sides of the equation (D.S) and rearranging, results

aq aq [as aa] 2 aa- .J-q-.J-a a- +S- =a(S- --)-
at' as' as as "Y - l as'

(0.9)

•

Introducing from relations (0.4), for the velocity q and rearranging the terms, one

has

a(R.+Q) +/(R+Q) +aa(R-Q) ="Y-la(S_~)(2)~aa. (0.10)
at as as 2 "Y - l "Y - 1 as

Equation (0.10) ell.-presses the s-momentum equation in terms of the Riemann 'Ira.ri­

ables. Now, when the equations (0.5) and (0.10) are added and subtracted in order

0-2



• to gi\"e the fol1owing equations. partly d('couplt~d 111 tt'nn~ of !tw lcù- a11l.:t ri.dll­

propagating Rien1ann \·a.riables

d R il R -, - 1 .' ~ il,; :.:, l,;
- ~ la ~ a)- = --'--a~~ - --\l-' - ---\
dt ,.' 0" ~ ", - 1 iJ.' -, - ! iJ.,

", - 1 iJO
--'--aq~:-, .:.: an \ D.ll )

aQ , aQ
--(a-a)- =al '. as

", - 1 .• 2 aq :.: oa
--al ~ - --)(- .:. ---)

.) , ", - 1 a,' ~ - l "',_ , ", UL

", - 1 ao
.J--'--tln'::­
, 2 "- ail'

D-3

(D.I~)



•
Appendix E

Kinematic Conditions for the

Compressible Flows

III the c...,;e of weak discontinuities. when the derivatives become discontinuous in

vitrious aspects. disp!acing and deforming, lying on one single plane, that condition

requires the satisfaction of certain relations between the jumps of the specified deriva­

tives. These are a consequence of geometric (or kinematics image of the movement)

and appear independently of the gasdynamic relations. These conditions are called

conditions of kinematic compatibility. To satisfy this condition, we assume that the

function l\1(x,y,t) is continuous in the whole space occupied by the fiuid, but its first

derivatives on a plane represented by .

f(x,y,t) =0, (E.I)

are discontinuous. Then we define a continuous function lIt, with continuous deriva­

tives on the surface (E.I)

lIt (x, y, t) = const.

Taking the èeri\'ative of the surface (E.I), one gets

ôlIt ôlIt ôlIt
dlIt = ôx dx + Ôy dy + 7jtdt =0,

E-I

(E.2)

(E.3)



• \\" hich represent the only condition that our coûrdinatt"':- ha\"t'" t.o :-:'lt î:-;fy all.)ll~ l ht'

surface. Considering the relations \E.31 and \E.l Î. ùne <,an \\"ritt'

'\t]J . dr = O. '\.1' dr = O. 1 E.·11

•

COl1lparing re!;,tions (E.:l) and 1E.·5) it f,'lIù\\"; th"t. at ail th' pOÎllb "f lh.. ,Ii"","ti·

nuity plant' and at any time the upcoming rdatioll hold;

1 d~" f . f d' d .\\" tere /l'lI = ri! 15 a unctlon 0 coor Inates an tUl1e.

We now consider the functionl!!(x,y, 1), which Îs continuous ill the whole (x,y, t)

space and has continuous deri\,atives in space and time. The relation (E,.5) is callt'J

the kinematic condition. For the case of Euler equations, in the relation (E.5), 'l' can

be any of the flow parameters like p, u etc, lnterested reader is refered to [ii, 1:35} .

E-2
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Appendix F

Roe's Estimation of the Outgoing

Wave Direction

III the far field region a\Vay from the solid boundaries the fio\\" variables can be e.x­

pallded as

P = Poo + EPI + ... ,

u = Uoo + fUt + ... ,

v = Voo + EVI + ... ,

P=Poo+EPI+"', (F.l)

(F.2)

•

\\" here v"" is usually zero. Insertion of expansions (F.l) into the system of equa­

tions (5.2) gives

ÔPI ÔPI ÔUI ÔVI
ôt + U"" ÔX + Poo( ÔX + Ôy) = 0,

ÔUI + U
OO

ÔUI + _l_ÔPI = O.
ôt ôx Poo ôx .
ÔVI ÔVI • _1_ ÔPI _ 0
ôt + Uoo ôx ,.. Poo ôy - ,

ÔPI, ÔPI, 2 ÔUI . ÔVI _
ôt ,.. U oo ôx ,.. pooaoo ( ôx ,.. Ôy) - O.

Equations (F.2) are partly uncoupled, in that Pl does not appear in the last three

but could be. fcund after these have been solved. From now on the first equation is

F-l



• t'xcluded. An equation holding in a characteri"tir plane' l'an 1", "htain"d hy l1l11ltil'ly·

<Ldding thenl tu fourth eqtlatiot1. the re~ult i~

TIll' equation (F.:3) l'an be arranged as

[a a. a] . .at + Cu"" + aoo cos:p) ax + aoo sm :p ôy [PI + pooa",( Ut cos:p + v, sm .,:) J +

"[. a a](. )p",a;' sm.pax - cos <.p ay Ut sm 'P - t'I cos:p = o.

(F.:n

(FA)

•
The first operator in equation (FA) acts along a particular bicharacteristics (TP in

Figure F.I) on the sum of pressure plus pooa", times the component of velocity in tlll'

direction :p. The second operator in equation (F.4) acts only in spaœ. perpendicularly

to the direction <.p. on the velocity component in its own direction (PQ), Bayliss and

Turkel [i] combined the equations (F.2), and got the following wave equation

(f..5)

(F.5)

Equation (F.5) is transformed which implies that PI obeys a regular wave equation

a~PI _ a~Pl _ a~p, = 0
a1'~ aç~ ay~ ,

where

By changing the variables, equation (F.6) can be written as

a~p, _ a2PI _ ~apI _ 2.a2pI _ 0
a1'~ ar~ r ar r Z av2 - .•

x
ç = B'

x
y = y, l' = Ba",t + IvI"'B'

M", = u"', B = JI - M;".
a",

F·2

(F.7)

(F.S)



•

where

Figure F.l: Geometry of two-dimensional bicharacteristics.

•... ... ... x- .,
r - - c- , y- - - ..... y­

- T -B'2' ~

tanv=:!!.=S:!!..
C :r

(F.9)

lt is assumed that at large distances, the last term in equation (F.S) tends to be small.

If PI is given by the separable variable solution

(F.ID)

the orders of successive terms in equation (F.S) are r-1/\ r-3/ 2 , r-5/ 2 • Therefore it

can be truncated to

For equatiou (F.ll) the trial solution is

f(.-r,v)
Pl= .JT '

F-3

(F.ll)

(F.12)



•
Equation (F.!:3) holds along an outgoing bicharaet.:ristie of equation (10.11), r11,1t-r

the transformation inverse to equation l F. 7). th.: bieharaet.:rist ies of "quat i"11 \ 10 .11 )

should beeome thl' bicharacteristics of th,' system (F.:!). ln C'artesian eo(,rJina','s lIl<'

eqllation (F.n) is \\'ritten as

1 (1 J/'XX) ÔPt , 1 ( 0Pt , 0Pt , Pl) _ )-- --- --- x--y--- -l.
B B Ô · ô'''')alX r t r x vy :..

The distinguished bicharacteristic equation (F.I") then b.:comes

\10.14)

(10.15)

The dilferential operator in equation (F.I.5) coincides \\'ith the bicharacteristic oper·

ator i11 equatiOll (F.:3) if one chooses

(F.16)

\\'here the x and y sho\\' the coordinates of the grid points on the far field boundary,

F-4
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Appendix G

Characteristic Interpolation at

Boundaries

The characteristic interpolation which was used in the previous Chapters is a stable

than the extrapolation for approximating the unknown values. ;-.Jumerical el-.-peri­

ments proved the stability of the characteristic interpolation method. Here the one­

dimensional case is considered, however it can he used for two-dimensional flows in

order to interpolate the selected bicharacteristics. Considering the Figure G.I, the

slopes of the left-propagating Riemann variables at the grid points i and i+1 are typ­

ically known from the previous time step. From characteristic relations their slopes

are

(G.I)

where Ui, Ui+l and <li, ai+l show the velocities and soundspeeds at grid points i and

i + 1 respectively.

At a certain time (.!lt), the left·propagating Riemann variable, Q, does not

usually pass e."(actly through the grid points i or i + 1. It is somewhere between (at

point ""1), and has the slope

_ 1
mM'=

• UM-aM

G-I

(G.2)



•
f::.t

M i+1 x

Figure G.I: Grid points near to the boundary in (x.t) spac<' and their correspond<'llt
characteristic !ines.

a

M i+1 x

Figure G.Z: Interpolating for the left-propagating characteristic slope.

Now consider the Q as linear function of distance, x. The distance between the grid

points i and i + l is taken to be .6.x. From Figure G.Z the equation of line satisfying

the grid points i(O, Qi) and i +1(.6.x, Qi+l) fol1ows

Th" point M(S, QM) should satisfy th" equation (G.3), therefore

QM = (1 - ~)Qi + ~xQi+!.

In a similar manner the slope at M. can be written as

G-2

(G.3)

(GA)

(G..5)



• t

~t

M i+1 i+2 x

Figure G.3: Comparison of the slopes for left-propagating Rieman variables in order
to find the suitable grid points for interpolation.

From Figure G.l, one can determine the slope of Riemann variable at lltl

•
.c:.t

mM = tan(" - a) =- tan a = --g-'

Equating (G.5) and (G.6), one gets the following equation

é _ é _ .c:.t
(1 - -lm. + -m·...l =--..c:.x • .c:.x· . é

(G.6)

(G.ï)

Everything is known in the equation (G.ï) except é. A test is done in order to darif)'

that the point M is lying between i and i +1 at each iteration step

-11 1 1aM =tan ,
uM-aM

-1\ 1 1ai+l =tan ,
Ui+l - Cli+l

(G.S)

if aM < Qi+l, then the interpolation is performed between the grid points i + 1 and

i +2. The quadratic equation (G.ï) can be written as

Hence, the value of é is ca.Jculated from the equation (G.9).

G-3

(G.9)



•
Appendix H

Determination of the Separation

Factor

For steady Ho,," the equations (5.4) can be simplified as

o ) an ao
(1'"/- - 1 as + 2q1'v/ an =0,

1'11/280 +~.!.. an =o.as '1 -1 n an
where

(H.1)

n=R-Q, M= i.
a

(H.2)

The first equation is obtained by subtracting the first and second equations in the

system (5.4), and defining a new dependent variable n. The second equation in (H.1)

is obtained by usiug the equation (B.23) and expressing it in terms of n. The functions

n and 0 can be expanded into the asymptotic series as following

where

n = n .. -+ nI + ,

o= 0.. + Ol + ,

n.. =Re. - Q..,

. nI = RI - QI'

H-1

(H.3)

(H.4)



• .-\b" [nf co"fille,] flo·.1" applications Boe is usually zero. If th" operators in equation (.5.6)

;tP' e:.:p<.L!lded. one can wrÎte up ta the first-order terms

a a a-. =- -'- 01-.
Ô.- ox' oy

iJ a a
- = -01 - -'--.
A" iJx ' ay (H ..5)

(R.6)

BZan1 _.) 'V.I aBl = 0ax -qoo· 00 ay .
.) aOI , an l
_qooMoo ax -r- ay = 0,

wbert' B = JI - M~. Equations (R.6) can be solved by separation of variables

assullling

where 10: is the unknown separation constant. Equations (R.6) then reduce to the

system of ordillary differential equations
•

BZwJ - g' = 0,

Io:g +f' = 0,

with boundary conditions on the solid walls

g(O) =g(l) =0

Elinùnatillg J gives

which has the general solution

g(y) = klsin(Bwy) + kzcos(Bwy).

R-2

(R.i)

(R.S)

(R.9)

(R.lO)

(R.ll)



•
For n =1. one gets

l"=l.:2····)

•

-' = =JI - \1" .
'";:.c

H-3



•

•

Appendix 1

Block-tridiagonal System of

Equations

The discretization of Euler equations by a three-point implicit method generates a

block-tridiagonal system. In a block-tridiagonal coefficient matrix the non-zero sub­

matrices are in the diagonal and either side of it. In the present analysis, the resulted

matrix is inverted at each step in the transient time. So the solution at each itera­

tion involves solving the two sweeps in both ~ and TI directions. The dimension of

biock-tridiagonal matrix for each sweep is equal to the number of grid points in either

direction. In general the system of block-tridiagonal equations reads

SD.Q = R, (1.1)

•

where D.Q and R are the vectors for the unknown coefficients and the boundar con­

ditions, respectively. S represents the block-tridiagonal matrix expressed as

B2 C2 0 0 0 0
~ B3 C3 0 0 0

S= 0 0 0
(1.2)0 0 0

0 0 0 A"'_2 B"'-2 C"'_2
0 0 0 0 A"'-l B"'_l

where Ai, Bi and Ci are matrices of order (3 x 3) for quasi-one-dimensional and (4 x 4)

for two-dimensional flows.
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• To solve the system of equations. the dimination ll1t'thod with fal'tori:ation is

r sing this equation and the second one to eliminate ~Q3' the new st'l'ond eqnation

in"olves only ~Q3 and ~Q4' Continuing this prol'edure to the Jast t''1uatioll wl1t'rl'

~Qm-~ has been eliminated. the new last equation only involves ~Qm-l' Tht'rdore.

~Qm-l can be deterr:lÏned and the result is applied to the new (m - 2lth equatioll to

dett'rmine ~Qm-~' Applying the solution of the ith equation to tht' li - 1)th equation

up to i = 2, ~Q;-l is determined. The algorithm for doing ail of this will now bt'

described. Let us consider the fol1owing factorization,

5 = LU
f~ 0 0 0 0 0 1 :\~ 0 0 0 0
.·h f 3 0 0 0 0 0 1 :\3 0 0 0
0 0 0 0 0 0 0 0

(1.3)- 0 0 0 0 0 0 0 0 •
0 0 0 Am _ 2 rm_~ 0 0 0 0 0 1 Am_~

0 0 0 0 Am-l f m-l 0 0 0 0 0 1

• where 1 is the identity matrix of order m. The square matrices fi and Ai are deter-

mined as fol1ows:

f z =Bz and ,\ - B-1C• ~ -- 2 z~

fi =Bi - A.Ai_l for i =3,4,···, m - l

and

Ai = BilC. for i =3,4,,'" m - 2

The system of equations given by (I.l) is now equivalent to

LZ=R,

where

Z =Uf1Q.
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P.,,,·;riting 11.4 J. one obtains• r" (1 (1 (1 (1 (1

.4:, r" (1 (1 (1 (1

li (1 (1 (1

(J 0 (1 0
0 0 0 Am _ z rm-2 0
0 0 0 0 .4m_1 rm-I

from which

20 = r:;-I Ro.... .. ....

Zm_Z. Rm-z.
2m _ 1 Rm - I

and

Equation (1.5) is then e:-.:pressed as

1 Az 0 0 0 0 .6.Qz Zz
0 l A3 0 0 0 .6.Q3 Z3
0 0 0 0 (Li)=0 0 0 0
0 0 0 0 l Am - z .6.Qm_z Z",_z
0 0 0 0 0 l .6.Q"'_l Z"'_l

from which

.6.Q"'_l = Z"'-l'

and

.6.Qi =Zi - Ai.6.Qi+1 for i = m - 1, m - 2,' .. ,3,2

For sweep in x-direction m =M], and for y-direction m = !vi}. In which MI and MJ

are the ma:l(imum number of grid points in either direction.

111 the present work, the size of the block-tridiagona.I matrix S can be reduced

cODsiderably ",hen the proposed mode! of FFBCs is applied. Hence the storage re­

quired for solving the system is substantially reduced.
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