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ABSTRACT

_ The problem of nonrecursive digital filtering of stationary random binary
" signals is consideréd. The binary signal is fed into a finite length shift register and the
waveforms to be analysed are obtained by continuous summation of weighted digits stored

in the register.

Expressibns for the autocorrelation fungfibn and pgwer spectral density of
a digitally filtered binary signal are obtained in terms of the wéights at thé taps of the
shift register. A prescribed power slﬁecfral density ma)./ be approximated by appropriate
digital filtering. The approximation criterion used is the mean-square-error -between'the
system function corresponding to the imposed spectral density and that_of the digital filter.
A spacing parameter and‘ a positioning pcrclmeih'er'cre defined and the mecn-sq;.;are-error is
minimized with respect to these and the weighting pvaramefers for an Q;Bifrary orde.r‘sl'.ﬂff
register. The particular cases of a Gaussian and a rectangular or : brickwoll." spectral

density are illustrated.

An expression is obtained for the probability density funcﬁon, aﬁd the Central
_Limit Theorem is discussed in terms of equal and binomial coefficient weights. A figure of
merit is introduced as an approximation criterion between the probability density of the
- obtained signal and fh_;:f of a Gat;ssian process. Solutions for optimum weights are obtained

by numerical computation.
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CHAPTER |

INTRODUCTION

Random and maximum-length pseu,do-rando'm binafy sequences have recently

. . 1
become useful for simulation ’

and \‘esting3 pufposes. .Pseudo-.randor‘n sequences, which
may be considered as approximating truly randém binary Sequences, "have been studied.
extensively in connection with digital cbmmunicaﬁons, rbdar, sonar, navigation and tele-
metry4-7. The binary aspect of these sequences, their ease of generation and the exactly
known statistical properties such as autocorrelation function, power spectral density and
probability density function make them particularly useful for digital applications. In
order to extend their use for continuous systems, one must modify their properties to be
more characteristic of random processes and disturbances occuring in analog systems. Some

3,

consideration has been given to this problem in the Iiterature] 35 by using analog filtering.

In this thesis we investigate the effects of digital filtering on random and
pseudo-random binary sequences. The sequence is fed into a finite length shift register
and the signal to be analyzed is obtained by continuous summation of weighted outputs

from each stage of the register.

4,10,11,12

It has recently been shown that some control of the spectral
content may be achieved by weighting the outputs of the shift register stages before summa-
tion. In Chapter i an arbitrary power spectral density is approximated by the spectral
density obtained from a weighfed shift register. A mean-square-error criterion is intro~

duced and the weights are optimized to minimize the error. The Gaussian and brickwall

spectral density approximations are discussed and nummerical results given.



Krcxmer8 and Davies9discuss the probability density function of .pseudo-mndom
and random binary waveforms obtained by equal summation of the digits stored in the shift
register. The probability density is shown to be binomial for random sequencés and approxi-
. mately binomial for pseudo~random .sequences. Although the binomial probability density
approaéhes the Gaussian distribution as the length of the register increases indefinately,
the approximation is ShOWI:I not to be optimum for finite length registers. In Chapter IV,
we extend the results of Kramer and Davies to arbitrarily weighted re'gisters.-'. The Central
Limit Theorem, as it pertains to weighted registers, is.dis'cussed and a figure of merit. is

waveform produced bya
introduced as an approximation criterion between the probability density of the\\//veighfed

register and that of a Gaussian process. Solutions for finite length registers are obtained

which optimize the approximation with respect to the weights.



CHAPTER II

DIGITALLY FILTERED RANDOM

BINARY SIGNALS

2.0 Introduction

Many of the signals of interest in modern system analysis are non-determinis-
tic in nature. These random orbsfochasﬁc processes are commonly used. for testing and
simulation purposes. Most conventional noise generators emplo.y-ne#we-l-l-y-eeeur-ing-noise
sources such as thyratrons and zener diodes. Although these generators are "ideal " in the
sense that they possess Gaussian statistics, they have the deﬁéiency of being not very

stable, controllable or well - defined.

On the other hand, random binary sequences and, in particular, pseudo=-
random sequences®, have none of these deficiencies. Although they are not Gaussian, and
have a definite power spectral density, proper filteririg (either analog or digital) can modi~
fy their statistical properties without losing any of the advantages mentioned in the above.

We now proceed tc discuss the basic properties of random binary signals.

2.1 The Random Binary Process

The random binary sequence**, shown in Figure 2.1, is a continuous stream

of statistically independent' pulses of width T, amplitude of + 1 or - 1 and no assumed time

* See Section 2.2

** 1t should be noted that the process under consideration is not the well known random
telegraph wave with random Poisson distributed switching times.
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FIGURE 2-1 - RANDOM BINARY SEQUENCE
If the probabilities of the binary sequence x(f) are
P[x(f)=l] =P[x(f)=-1] =-12- (2.1-0)

the process is stationary because the probability is independent of time. Using the
] |
ergodic hypothesis which states that for stationary signals, the ensemble averages are equal

to time averages, we may write the autocorrelation function as

173 .
R(T) = lim i f x(t) x(t +T) dt (2.1-1)

2!

If the binary .signal x(t) is shifted by T seconds, T < T, ﬂ-}en both x(t) and x(t + T )
will have the same sign for time (T—T )/ T, and will have the same or opposite sign

with equal probability for all other time. Thus (2.1-1) yields

R(T) = (T—=T)/T=1—T/T (2.1-2)
for T<T



Due to the symmetry property* of the autocorrelation function, the results of (2.1-2)

are also valid for negative T and hence we may write**

, l
RIT) = 1-1Tl/1 for 7] =
= 0 Cfor |T] > T

The power spectral density of the binary signal can be obtained by applying the Wiener-

2.1-3)

Khintchine relationship***. Hence,

T | - |
5@ = 2[( ] - —TT—) cos(wT)clT |
2

' o)
2 T 1- T sin (T)

2

The autocorrelation function and power spectral density are shown in Figure 2-2.

5

The symmefry of the autocorrelation should be noted. Making the change of variable,
s =t + T,wehavefrom(2 1-1)

) 7
R(T) = lim 1 f xc-T)x@s)ds- = R(-T)

Troo T

**  For'a more rigorous derivation of the autocorrelation function of a sfahonary random
‘ binary process, see Rice 2 or PdeUllS]

rRR 00 . 0o
S6) = f RO BT 4T = 2| RT) cosoT) dT
-00 o]
b 00
R(T) = .-(-[S(w) eindw = f S() cos WT) dw
| 2T

- 00 !
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FIGURE 2-2 - AUTOCORRELATION (a) AND POWER SPECTRAL

DENSITY (b) OF A STATIONARY RANDOM BIN-
ARY SIGNAL.

2,2 Pseudo-Random Sequences

One way 'of physically real%zing a good approximation to a random binary
sequence is by the use of m - sequences or maximum - length shift register sequences first
described by Huffmansf". These pseudo-random sequences, although by no means random,
possess many of the properties of true random binary noise. As will next be shown, the
statistical properties of these sequences (i.e., autocorrelation function, power spectral
density and probability distribution) approach those of a random binary sequence as the

length of the sequence increases.



Referring to Figure 2-3, an n- bit digital shift register whose output is
"scrambled " by suitable digital logic and fed back to recirculate will prokduce periodic
binary sequences. The maximum period length obtainable with “ linear " (mc:sdulo—l2-c1dder)’i
feedback is 2" = 1 bits. The regson for this is that an n-bit shift regi.sfe‘r can have 2"
different states, but one of these states will merely réproduce itself (0000 in the circuit

!
h

of Figure 2-3),

Clock Puise (Period =T)

O I g

: ] 0 0 0 x (1)
> / - 4 ;
C-D ‘Modulo~2-Adder
Initial Condition 1000 )
- 0ol 00
ool0
100l
I 100
261 4 <
1K1 } Period = 2 -1 =15 )
1010
10Ol
1110,
WA
ol
0011
000! /
1 000

FIGURE 2-3 - FOUR-STAGE SHIFT-REGISTER CIRCUIT GENERATING A MAXIMUM
LENGTH SEQUENCE

*  Modulo-2 addition refers to the logic: Exclusive - Or i.e., (A+B)mocl2 = A®B = AB+AB.
The corresponding truth table is therefore 8

o}l
A~7llO




Before proceeding further, it shouid be noted that the levels of the shift

register outputs discussed so far have been 0 and 1. This choice of binary digits was used

in order to conform to the usual binary notation. To obtain pseudo-random. binary noise

from the shift register sequence, we have merely to shift the waveform down by 1/2 and

multiply by 2. Thus the modified séquénce will have two possible values, - 1 and + 1.

As already has been mentioned, the all zero state does not occur in 'maximum

length sequences, and herice in one period of the modified sequence, xp(t) is + 1 for

times and ~ 1 for 2'1-l - 1 times.. Thus the probabilities are

. ; n-1
Plx () = 1] - 2
L P P IS
r n-1
P | x (1) =‘-1] = 2 -1
-~ LP -
Writing (2.2-0) as
1
P [x (t) = ]] =
P 2- !
2n-l

and

2n-l

(2.2-0)



it is easy to see that

(2.2-1)

" | 1
lim P t) 5 1] = lim P t)=-1f =5
fm P[50 1] = mee [ 0= -3
which are the probabilities of the random binary signal..
Korn] and Golc’ml:w‘S have shown that the autocorrelation function of a
pseudo - random binaryvsequence is
n .
R (T) =1 - [T=k(@-1)1l
P T
for |T - k(2"-1DT|=7T; k=0,+1,+2, ...
= - ] otherwise. N (2.2-2)
-1
The _autocorrevlaf-fén function is illustrated in Figure 2-4,
R (T
A ,p( )
—~— (2"-1) T —-—-’
/@ -1) |
— \ ' |\ ’ | eam— >T
{G-T oleT -,-I * '

FIGURE 2-4 - AUTOCORRELATION FUNCTION OF A PSEUDO-RANDOM SEQUENCE



10

It is easily seen fhaf as n-=0o, fhe aufocorrelahon function of Figure 2-4 approaches fhat
of Figure 2-2(a) Obtammg the power-specfral density of the pseudo-random sequence

in a similar way as for the random binary signal, it can be shown that 1

| | 2y . ® - 2 ¥
S @ = 2r [— - (2"-1) B() + Z g" | sin lr/ @-1)) o f 2wk
P 2"-1 | kn/ (2"-1) @17

-k': -00 |

where 8(x) is the Dirae delta function. (2'2‘3)

Thus, due to the periodicity of fhe qutocorrelation function, the power spectral density

radians
“line " spectrum with spacing 2}1/(2 -1) Wand ifs envelope is similar to Figure 2—2.

In this thesis, unless ofherwise menfiohed, all results shall pertaiﬁ directly
to stationary random binary signals. In some cases, modifications to these results sﬁall be.
made in order that they be applicable directly to pseudo-randorﬁ sequences. Neverfheiess,
it has been shown in this section that as n-»o0, pseudo-random sequences approach truly

, i
random sequence, and consequently all results are useful.

2.3 Digitally Filtered Sequences

Consider a random binary sequence, as defined in section 2.1, which is
fed into an n-stage shift register. It is assumed that the binary digits in the register are
+ 1 and ~ 1, and also that the clock pulse period of the shift register is T and synchronized:
to the zero crossings of the binary sequence. If fhe output of each stage is weighted* by
Wk yk=1,2, ..... n, and if we sum these weighted outputs continuously, we obtain

new random process y(t) which is related to the input binary process x(t). Since the output

* It is assumed fhaf the weights may be positive or negative. One way of realizing a negative
weight Wi is by weighting the complementary output of the k h‘ stage with a positive weight.



n o

of the kI stage is identical to the input process delayed by kT , the weighted shift o |
regis}ef may be looked upon as a tapped-delay-line or in this case a nohereéUrsi\('e
- digital fiifer.‘.The' digital filter is shown in'Figu.re 2-5.

- . n Stage S_hiff' Register

——
x()

random
binary
process + 1

‘Continuous Summation

l

FIGURE 2-5 - CONTINUOUS SUMMATION OF WEIGHTED DIGITS STORED IN A
~ SHIFT REGISTER WITH RANDOM BINARY SEQUENCE INPUT

A similar signal yp(f) may be obtained using a pseudo-random sequence as the inpufllo.- .
In this case, the digital filter may simulfaneo.usly be used to make part or all of the shift
register which generates the sequence. Care, however, should Be taken not to make the
length bf the digital filter much greater than that of the register generating the pseudo-

36, 37

random sequence, since it has been shown that if this is the case, the amplitude

probabilify densities obtained will differ markedly from those of the random binary sequence. -

2.4 Output Autocorrelation Function and Power Spectral Density

Let us now consider the two stage weighted register of Figure 2-6, into
which is fed the random binary sequence x(t). The outputs of the first and second stages

ave delayed versions of the input and are denoted by x(t-T )and x(t - 2T ) respectively,
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. , | | | “
where T is the clock period. Weighting thé first and second stage output by W] and W2
respevcﬁvel)‘l, we obtain the signals Xy (t) and x2(f) which we sum continuously to obtain
the output y(f).

Clock Pulse (Period = T)

°—
: o———— I
Random
Binary
Signal + 1

Q(f; T)

) s y(1) = x (1) +x,(1)
FIGURE 2-6 - 2 STAGE WEIGHTED REGISTER

We may write the autocorrelation :function of y(f) as

R (T) = E[y®) ve+T)] : (2.4-0)

Substituting x](f) + xz(f) for y(t) in (2,4-0), we may write
R (T) = E [x](f) + %, (1) ] [ X, (+T) +x, (¢ +.T)] ’
and after multiplying out the terms, we héve

R AT = E [0t +T)] +E [x) 0t +70] +E [y x, ¢ +7)]

+E [x2(t) x2(f +T)]

]

XX

R, (T) + R (T) + R
11 172

T R (D) (2.4-1)
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Now, since

x,(t) Wl x(t=T) | (2-4?_2) |

and

[

W2 x(t-27T) ' (2t4'}3):

EX0)
we may substitute (2.4~2) and (2.4-3) into (2.4-1) to obtain

R (T) =W, E [x_-(f-T) x(t-T +T)] + WW, E [x(f -T) x(t -2T +—r)]

! 2 .
+ WW E [x(t- 2 x ¢-T+T)] + W, E[x(t-2Dx-21+T)]
' (2.4-4)
Defining Ro (T - ) as the autocorrelation function of Figure 2-2(a) shifted in T by A,

we may rewrite (2.4-4) as

2 2
Ryy(‘r) - w, R (T) + W, W, RO(T-T)+W2W] RO(T+ ) +W, RO(T)

(2 .4-5)

Thus we see that the autocorrelation function Ryy( T ) is made up of the four ter&.s
o (T = w2 R (T).
% (T) = W,W,R(T-T)
2 (1) = W R, (T+T)
and | (2.4-6)
e, T - w,? R (T)

which are shown in Figure 2-7.
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FIGURE 2-7 - OUTPUT AUTOCORRELATION FUNCTION (n=2)

In general, for a register of length n, we may write

R (T) = { [ Z x,a)] [ Z X +T) |
=l . J= 1

n n -

=L Y E[xe xeem

i J ]

i=1 J='|
or | n

= 2.4-7
R (T inxj(r) (2.4-7)
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Now considering the case when i % j, we may write

Rx,x. (T) = WW, R [T‘+ (i -J) T] (2 ,"4.‘.8)'.
_ 'J iqv. IR
Similarly, =J
Rex, (T) = R =T L o
J ! g | } - _ (2'4_9)

= Wiwj Ra ['T' G- T] .

Slncefhe ghtoc’orrelqﬁon is an even funcfion , we ma_y w‘rite (2; 4¥-9')ras"":_._:." £

Rx x (,1%)_ '=. WW R [7’+ (J .) T}

|nterch¢,ngmg i and jin 2 4_10) We Ob}qin .‘
R (:T')i'. W R, [1—+ (, J) 'r]

forl‘EJ

RYYZ(T-){ = Z W R [ T-G-9 T]‘ i

i, j=1

_i.F:r'_bv’r:h'w(2.4-12) it is easily shown that the autocorrelation function Ryy( T ) is a piecewise

straight line symmetrical curve as shown in Figure 2-8.
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Ao e o=

R il ittt el

| FIGURE 2-8

I
3

+W  ; +W-
. n

W.W. +ww oo tW W
172 =1 ""n

A +w W, o+ +W2w

13 24

o By subshfufmg R (T) (as deﬁned in (2.2-2) and shown in Flgure 2-4) for R (T) in

(2 4-]2) , we obtain the autocorrelation function correspondmg to a weighted pseudo-

random sequence generator which we write as

= WA - 2.4-14
Ry ™) : '_Wivﬁ R [T+( 12 T] ( | )
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In the same way as for the random binary'se'quence, it can be shown that the autocorrela~-

tion function of (2.4~14) is a periodic piecewise straight line curve as shown in Figure 2-9.

AYR(p)wm | | - o | ZLA

0

@t

| FIGURE 2 9 - OUTPUT AUTOCORRELATION FUNCTION PSEUDO RANDOM
‘BINARY SIGNAL |

it ‘can-also be shown fhat N 5 - [Z " ] .
k P
p=

')L = . (2.4-15)

k = 0,1, ....n

and B is as defined in (2.4-13).

The power spectral density corresponding to'a random binary process being
fed into an arbitrarily weighted shift register may be obtained. by using the Wiener-Khint-
chine relationship on (2.4-12). However, we shall first evaluate the spectral densffy in

another manner by making the following useful observations.
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Let us consider a signal W(t) which is a sequence of pulses separated by a

period T ,
W(t) = o 8(t-kT) L (2409 ’_
| ' k=-00 | | | |
where o ' o R
Co o is either +1 or = 1 S - (2.4-17)
* S
and satisfies the "uncorrelated " properties
'Lm L | a_ «a | =1, k=20
n—s+o00.2n | m “k+m ’ (2.4-18)
- =0; k#0 :
m=-n S L
. 39 . . N
Papoulis™ "~ shows that the autocorrelation of W(t) is
RAT) =481 @)
from which the power spectral density is flat
= -20)
Sw(m) = (2.4~20)

i.e. W(t) is "white noise ".

The signal "WH(t), its autocorrelation function and spectral density is shown -~

" in Figure 2-10.

. . . 38
* A sequence of uncorrelated numbers satisfying (2.4-17) and (2.4-18) is given by Wiener



‘W(*) 19

-,

FIGURE 2-10 - SEQUENCE,OF UNCORRELATED PULSES, ITS AUTO-
: CORRELATION FUNCTION AND POWER SPECTRAL DENSITY

Now if W(t) is fed info'a zero order hold‘d'0 with i.r'n‘puls_eg @spopse function )

h] G) ,_; {ka):"; H (, t—T ) : (2.4-21)

! 23, it is easily ,seén_t.h’_a:t ’rheoufpufWIllbe e

where H (t) is the Heaviside step funcfidn]
- the random binary signal x(1) of section 2.1.  Thus a random binary signal moy be jconsi-_' s
dered as white noise being fed through a system having the impulse response function

hy (1) of (2.4-21).

)

e
!\:
A

L
e

Making use of the. fact et = that continuous summation of digits

_stored in a shift register is equivalent to non-recursive digital filtering, the overall impulse
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response function may be written-as

). hy (1) * h, (1)

~po

ﬁ]<fr)h2(f—r>dr | "'-?-f<2.4»-,22>

where hz(t) is the |mpu lse! 'ré%.bbri;é funchonof the*di.g“ifql filter,which is simply4]
_ . . TR S e L e T e

hy() = Zwk (- kT) R @429

k=1

Substituting (2.4-23) and (2.4-21) into (2.4-22) and evaluating the integral, we obfam
- | | RN

Py = 5 Zwk H@GE-kT) - H(t- [k fl] T) (2.4-24)}35"

= | o

where we have made use of 18

oo |
fl//(s,) §(x-s)ds =W
~ 00

. P
PR

In order fo find the system transfer function of the fifltg_r'..','::Wg""'réEe‘. fhé"'liodtjiq"rf",trwcihéfbmf of .
(2.4-24). B A ATE L

L ) OIS N . .
R e * .ttty . L e EN .
. R N . . . " o- R R o
R T AR PR
.__,“‘-. :' Vot ;‘;‘ t e

IS s

-00 =
k=l (2.4-25)
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Taking the summation sign outside of the integral, we may write

n (k+) T

-j(d(k+])T S é'julk T
= ' e - eV
i W { ————=

k=1 | = T

. which ccnbereduced, wiﬂj ‘somé.manipulcnfionk,v to

L 2sin(E) Vel s
j‘l’y‘(w) = ! ——— 02 e 2 -/ Wr( 'e'JuI.(T
L k=1

2sin(—%l)‘ ‘ -JQT L
= ——e ZW cos (wkT) - JZW sin (WkT)

{2.4-26)

Now, usring the well known result for linear sysferhs namely :
_', | 7 Syy = ’ (m) SW (m) (2.4-27)
s we-»maygul?sf:ifute (2.4-26) and (2.4-20) into (2.4~27) to obtain the result
| . )2 - |
i sin(e—-[-) LN 2 n 2
S (m) =T ( ) { Zwk cos(wkT) + : Zwksin.(wkT) |
k=1 k= .
) U k=1 |

(2.4-28)



2

Using a different notation, we may write

" ) 2 T S ‘
Sw(w) =T { ( oT ) } W W [cos(wkT)cos(umT)+ Si:"(“f',‘vfi"(‘f’m‘ A
| 2 k, m=] - ’ N
L ) AL J .
which reduces to
{ ' 2. 1
; 4 . T
: sin(g—) S
- 2 - :
Syny(u) = T { ﬂ) | WI< Wm cos [(k m)wT]
( 2 k,m=1 | 7
\

As already has been mentioned, the same result may be obtained by taking the Four_ier

transform of the autocorrelation function of (2.4~12).

Making use of the translation property of Fourier transforms  , the transform . .

of (2.4~12) may be written as

5,0 = Z wow_ edmheT g, .(2.4-30)

k, m=1

where S is the spectrum of (2,1-4),

and can easily be reduced to (2.4-29). Although the last method of evaluating the power

|

Fw), then

HEF (]
%[f(f --a)]

e 4% F)

Ras

@429
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specfrum is much more efficient, the usefulness of the first technique shall become evident

in Chapter IlI.

Substituting S (u) of (2. 2-3) for S(w) in (2. 4—30), the power spectral

FA densny correspondmg to a welghfed pseudo-random noise generator becomes R

oo kn
o) sl

N " Nl 2 Voo qbs
s, = o) ! -@1)80) + 22 s o
Py (2"-1) ST L ey [ (2 -l)T] T

k= -co*

n
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SPECTRAL DENSITY APPROXIMATION

3.0 Introduction
In Chapter II, we have evaluated the autocorrelation function, power

- .spectral density, impulse response function and system transfer function resulting from a

stdfior’:afy‘ random binary procéss being fecl'through an n -stage arbitrarily weighfecl shift

A reglsfer. If shall be of interest in. this chapter. to approximate a prescrlbed power specfral

densufy with that obtained from the weighted register. The problem remams, however, |
to find a suitable error criterion so that we may optimize the weights for a fumfe length
" register to obtain a good approximation to the imposed speciral density.

" lnsecﬁon 2.4 we ‘|-1cive shown that a random binary process fed fhrough

' .,’w .

a welghfed shuff reglsfer is equuvalenf to passing whnfe-nonse of the type shown in Flgure

i .-.2-]0 ’rhrough a system with system transfer funchonJ'P (w) glven by (2 4-26) Smce the

o 39
power spectral density associated with white noise is a constant, we may use the result

fhaf given an arbitrary posmve funchon S(u) we can find a function H{w) such that

K ,H(m) V.=4"S(m) o (3.'0-0)

_ whe."re: K "‘.i;:";“vpgéiutive' reai -consfant.

' Thereforé, if K is set to equal S (w) or -ll.— , and S(w) is the presﬁnbed power spectral
density, there exists a correspondmg sysfem frcmsfer function H{w) which we want to approxi- _
mafé. Ther‘cppl:ommahon criterion discussed in this chapter shall be the mean~square-error

i

between the system function corresponding to the imposed spectral density and that of the
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weighted register, which we define as
]“
-0

-. wherej‘l" (n w) is the system function of (2.4-26). The n is mserfed in the parentheses R

dw (3.0-1)

J'KU) = J"’y(n: )

Y to mdncate thatJ-P is a function of the register length n.

BT ‘Impulse Response Approximation

Since spectra centred about a frequency Auc_ ma.y:be obta'ined: by modu |ahng “

a low pass spectrum onto the carrier frequency, we shall restrict our discussion-to low=pass-::.
system functions resulting in power spectral densities centred about zero-frequency.

Using Parseval's formula, which states that if f(t) and F(w') are Fourier .-

transform pairs, i.e., if f(t) «s F(w), then

o0 o0
2 1 2
|f('|') | dt = vy | F) dw ,
~00 -00

and substituting the mfegrand of (3.0-1) into the right hand S|de of (3 1 O),“ e
©0

dw' flh(f) - h(n f)'
where h(t)=wHt(a) and P (n, 1 - (0, 0).

J+(w) J‘i’ (n, w)

=00

(3.1-1)
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From (3.1-1) we see that the approximation is transformed into the time
domain and the criterion is therefore the mean-square-error between impulse response

functions.

The impulse response function of (2.4-24) is illustrated in Figufe 3-1.

B ‘ hin, t)
w, — - Yoo
: : ' hf-]
w ‘ w
1 n
: — —t ; >
T 27 3T 4T  (n=-DT  nT (n¥D)T t

FIGURE 3-1 - IMPULSE RESPONSE FUNCTION CORRESPONDING TO A
- WEIGHTED SHIFT REGISTER
From Figure 3=1, it may be séén that the ‘problem’ is reduced to approximating an arbitrary

real finite* function of time witﬁ_on_equally-spaced discrete-step function of finite length.
The mean-square-error between the two functions are minimized by finding the optimum
weight parameters. Two other parameters are optimized, namely the spacing between steps

(i.e. the clock pulse period T ) and a translation or "starting point " parameter. The

©L %It is meant by finite thut the function h(t) is square or Lebesque integrable;

hee., f| h(f)l dt < o0
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latter parameter is equivalent to the delay of the impulse response function. For con-
venience* we abandon the causality requirement that ﬂ(t) =0 for t < 0, and thus we are
free to find the relative position of the two impulse response functions which minimizes

the mean-square-error.

3.2 : General Minimum Solution

“Let (t) be an drbitrdry i.mpuise' response L’mcfion , which is real and Lebe-
ques integrable. Letting s and A be the spacing and translaﬁon' parameters respectively,

we may write the mean-square~-error as

e ( |
I- f (R [H (- ks =N = H(t= (k+D)s —}\)] - £(t) ‘
oo
| | (3.2-0)
Expanding the-squared term in the integrand and making use of
H20) = Hx)
I= f Z 2[H(f—ks->\)-H(f-(k+l)5~>\)]
- o
-2f | Zwk [ =ks ~A) - H(f—(k+l)s/~‘?\] f)dt
Zoo k=l _ |
+f f(f)2 dt '
Zo0 (3.2-1)

* A delay in the impulse function does not affect the absolute value of the system function,
and since we are not concerned with the phase of the output signal in relation to fhe input,

the causality restriction is not required.
|
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which may be written as
(k+1)s+) | (k+1)s4\

n
Z W -2 Z 'Wk f(f) glt

k=1 ' k=1
ks +\ ks+\

and can be evaluated to yield
n n Go

'. I = sZsz - 2 é:wk[F[(m)sn,] -F[ks+>\]] + '/‘f(i-)zdf.

k= oo

O where . EG) = f-f(f) o

o Différenfiaﬁng (3.2-1) with "rer'sbéc‘f‘ foWI.(and Alééuéfihg to zérob, we’obt_qih:the ébfﬁnum:

(3.2-1)

_ weights

w - ['k+ 1)5 +. >\] - F'[ksf*+ N
. ©(3.2-2)
 for any sjodcing s and any frdnvvs“li::"filéﬁ. pqrqmefer )\

"'-Subsﬁtfd*in'g‘_(3v.“2-‘1.2) ihfc;v»l"(_S;.2-l.]‘)i,"-'\‘Né,-obfain t‘he‘minimum me‘a'r_n-squ.are—_

error fér'arbifrqr}l 5and A, Thus Lo

e . ‘ | P

I-—- ‘/'f‘('r)2 dt - ;]- Z F[\(k+')5+>\]'r'['<5+"]

- 00 k=

(3.2-3)

-l el
-
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To find the optimbm s and A with tﬁe constraint that all the Weights are optimized in the
manner of (3.2-‘2‘) , we differentiate (3.2-3) wifh‘»'respe'c”t to:s to obtain

n

o 1

S = —-]2-— F’[(’k-i-']) s+}\]‘ - F’}’,[ks.’J.rAv‘] ?

S

.’:
W

Z Fl(k+1)s+ J\] F[ks,.;%};]; (k¥.i)§%£(k+l)s.zll-)\]—ktf{[!;%-t-'x‘] :

.2
$
k=l
= 0 " . (3'2_4) :
L ‘qnd Wifh.-t".és:pecf to A to obtain
X1 . 2 . L
B R E F[(k+1)s‘+>\] -_f[ks +\] | tfa+ns+n] - f[ks ]
; k= - R | _
= 0. o (3.2-5)

ln 'geihérdli'v;/e ‘cdnhc'_)f find a closed foll'm‘sollufion for;é and A, however, we rvnay'ﬁnd the

y ophmumvalues using Vnurﬁ,’erical obfir_nizdfidn féchniques. Direct search methods such as

: :dés'crijl:;e_.d. m Appehdix F can be used fd minimi>ze (3.2-3) with respect to the parameters

s and )\ If, hcjwevér, f(t) is continuous, we see fhat the gradienf vector comprised of
.(3,2—4’) and (3.2-5) is also continuous and we may use more quickly convergent techniques

such as the method of conjugate gradienfs42 or that of .Flefcher and Powell
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3.3 Solution for Even Impulse Response Function

The probiem is simplified if we assume!fhe impulse response fqncﬁo'n f(t)

is even. Consider the symmetrical function and the discrete step approximation in Figure - |

3-2 . |
‘f(i')
W7 n =12
.’. ! ]
Wl ‘. [ H N !4 W]2 *
W, ‘W ‘ "y W, :
2w, 4 9 Wy M

FIGURE 3-2 - EVEN ORDER APPROXIMATION TO IMPULSE RESPONSE
FUNCTION

Assuming that the approximation is also an even function of t, we see that
the problem of finding the optimum A of (3.2-3) is eliminated. Two cases shall now be

considered.

Case 1 : n is even

When the length of the shift register is even as in Figure 3-2, due to the

symmetry, we need only to evaluate the first or last n/2 weights. Letting m = —?_)- and
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renumbering the weights so that

(new) _ (old)
Wk ngw = -'wm-+k o

we can write the mean-square-error as

%en‘ f Zw[ f-(k])s]- H[f.-ks ]]-F(f)df
| o

) ~ (3.3-9)
Expanding the integral in the same way as in (3.2-1), we may write '
m ' m : >
2
€« = Zwk 4 wk{ ks |- F [ (k-1)s.]} + 2 Px) dx
k=1 k-1 ) ' : ‘ Q
o (3.3-1)
Differentiating (3.3~1) with respect to Wk' we obtain )
¥ -f 4
—=¥eh = 4sw - 4SF[ks] - F[GeD)s]) (3.3-2)
d W, k | 3
and differentiating again, we obtain
2 2 |
J' €even _
______...__..2 = 45 ' (3.3—3)
o W, e

Since s, the spacing, is always positive, setting (3.3-2) to zero will result in a mini-

mum of e2 with respect W, . We thus obtain
even p k ,

k

Y, = _F_[_ks_J - FE(k’])s] (3.3-4)
opt s .
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which yields opfimpm weights for ci_rbifrary s
Su,bsfitutihg _(3._,3..-'}4"1‘)_ into (3.3’-1) , differentiating with respect fo s

as in (3.2-4) and equafin’gvto zero', we obtain the result

opt {F | F[(k-])s’°Pf]}2

2; { B | v[(k_])sopf]}{ kf[ ksopt]- (I;-]) f[(k'])rsolof]} |

. | (3.3-5)
which may be solved fors opt using iterative methods.

Thus, to find the optimum weights
we first evaluate s

opt using (3.3~5), substitute s
W

opt for s in (3.3—~4) and evaluate
| using (3.3-4), fork=1, 2,

. m. The mean-square error will be
opt
m
e F2 xX)dx — 2s W 2
even opt k

opt ,
<! (3.3-9)

Case Il : n is odd

Similar results may be obtained when the number of shift register stages

is odd. When this is the case, we see that the spacing corresponding fo W]

is = as
2
is shown in Figure 3-3 . A f(t)
W] =11
|~ I W m=6
2
25 1S 35 us
/ ot > 2 2
Y T N =
i w, ©

FIGURE 3~3 - ODD ORDER APPROXIMATION TO IMPULSE RESPONSE FUNCTION
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Letting m = 22-*--]- , we modify (3.3-0) to be

) | | ] .
Codd = Zf w, [HO - HE-D] + Zwk[H [t~ B30 -y s Bl ]]
° 2 | k=2
- f) ) di o .
| R (3.3-7)
Proceeding in the same fash-ioh as for Case |, we obtain the resulis C
2 n i ,
Z[F(&L’—F(o)] s Z ,;[(2|<-1)s;opt _ F[(Zk-3)sopt]
2 : —y J —-——2
Sopt k=2
-~ (2k=1)s, 4 _ | (2k-3)siy (2k-1) (2k-1s. 1 @x-3). [(2k-3)s,
[ v (&mz; P25 0520 2 b e [0 ]
2 F(—"z*)- F(o) (3.3-8)
W, =
opt - Sopt
2k-1) (2k-3) A
F [(—— s ] -F [— 5 ] .
Wk = 2 opt 2 opt (3.3-9)
opt opt
k=23, ..... , m)
and 00 . ) .
-— ‘ :
odd © [ 0% de - Bt~ s > W (3.3-10)
opt
° ﬁ? P
3.4 " Gaussian and Brickwall Spectral Densities

In a recent note, the aufhor]2 has shown that an approximation to a-
Gaussian spectral density can be obtained by weighting the shift register with the binomial

coefficients. It is of interest in this section to approximate the same power spectral
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density using the error criterion discussed in this chapter. Defining the spectral density -

as

S@ = ¢ - (3.4-0)
a choice for J'{’(m) in (3.0-0) may be -
He) = e @y

which is also Gaussian. Taking the inverse Fourier transform of (3.4-1), we obtain the

- impulse response function

W 7 ' ;
1 2 int e
ht) = = | e “edd = (3.4-2)
2m \/21r _
-00

which is also a Gaussian pulse. Since (3.4-2) is an even function of time, we may make

use of the results of section 3.3. Letting

_i-2 .
o 2 o o '
Zt) = R _ - (3.4-3)
2r '
and 4 |
Pt) = fZ(x) dx
Zoo

we may substifute P(x) and Z(x) for F(x) and f(x), respectively, in the equations of section

3.3.

Appendix A consists of a computer printout of the optimum weights,
spacing parameter and mean-square-error for even and odd n up to 50. Due to the sym- » |
metry of the apporximation, only the last n/2 and (n + 1)/2 weights are listed for even and -
odd orders n respectively. In - Graph 1 the normalized Gaussian system transfer func-

tion is illustrated, and compared to the optimum approximations forn =1, 4, 6, 8 and 48
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in+ Graphs. . 2,3, 4,5and 6. In Graph 7. , the optimum order 50 impulse responge.
'ap‘proximation to a Gaussian impulse is shown. A plot is made of the mean-square-error,

for n up to 50, |n Graph §. |

Similar _;esulfs may be obtained for the brickwall spectral density which

may be defined as

S(w) = 1; ‘w' <
(3.4-5)
= 0; lm' >
Thus a convenient choice for H(w) in (3.0-0) may be
Hew) = Sw) (3.4-6)

which is the system transfer function of an ideal brickwall filter. The impulse response

corresponding to the system transfer function of (3.4-6) may be shown to be”

. oo

ht) = e f Hw) O gy = Sin() (3.4-7)

iw t :
In the sume way as for the case of a Gaussian spectral density, we let

) = siG) = Snbd (3.4-8)
and X

F(x) = Si(x) = '/Vsi (t) dt (3.4-9) .

—-—00

and use section 3.3 fo obtain the optimum weights.

In Appendix B, we list the optimum weights, spacing parameter and

mean-~square-error for even n up to 50. It is interesting to note that the optimum spacing
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paramefer‘doeé n&- decrease uniformly as the order of the approximation is increased*.
.This is due to the Qscillatory nature of thesi function of (3.4-8) which givés rise to

, muh"iple_ eigenvalﬁes for equation (3.3\—5)1 ‘This effect can best be seen in Figure 3-4
‘ .:wher‘c;. the mgan-square;error is plotted ";‘/e'rsus the spacing parameters . The. curves are

_ not drawn fo scale in order to emphasize their behaviour as the parameter.n is increased.

“'Mean Squdre: Error

VANRY —

Spacing Parameter

FIGU'RE 3-4 - BEHAVIOUR OF MEAN-SQUARE-ERROR FOR BRICKWALL SPECTRAL
DENSITY APPROXIMATION

* From Appendix B we see that the optimum spacing parameter increases between orders 6
and 8, 14 and 16, 26 and 28 and between orders 40 and 42.
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CHAPTER IV

* PROBABILITY DENSITY APPROXIMATION

4.0 Introduction

The probability density function of pseudo-random and random binary
waveforms, obtained by equal summation of the digits stored in fhe shift register, has
been studied by Kr¢:|mer8 and 'Davi'e's.9. The probability dénsity thus obtained is the bino~
mial distribution. Davies extends this result to multilevel sequences}"Buf again, only for

the equally weighted case.

In this chapter, we wish to extend these results by finding the output
amplitude probability density function of an arbifr&rily weighted shift register fed by a
random binary sequence. It can be shown }haf a random process obtained in this way
will satisfy the conditions of the Central Limit Theorem, provided that the weighfs‘satisfy

4,

certain condifions.] 9. Thus, although the probability density approaches a normal or
Gaussian curve as the number of shift register stages increases indefinately, the problem
of finding the best approximation to a normal density still exists when the number of shift
register stages is finite. An approximation criterion between the probability density of

an arbitrarily weighted shift register and a normal density is introduced, and the weights

are optimized to minimize the error.
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4,1 ~ Amplitude Probability Density for Arbitrary Weights

'We again define the random binary process x(t) by

+1if binavry §igna| is 1
x(t) = | : (N-1) T% t<NT
- 1 if binary signal is 0 : ' .
- , o (4.1-0)
forN=0, +1, + 2,i3,i

and

| P [x(t) = 1] = P[x(t) = - 1] = 12 (4.1-1)

' ' ' . . .th
We also denote xi(f) the random process associated with the event{ i

stage of an ‘i stage shift register being on}

by ‘ . th
‘ W. if the i stage is on
x,(t) = ! th h-1NT£t<nT
! -Wi if the i stage is off
 (4.1-2)
forn=0,+1,+2,+3, +.....
and
_ _ - _ = 1/ 4.1-3
P [x() = w] =p[x(t)=-w] =12 (4.1-3)

where Wi is the weight of the ifh §hiff register stage and T is one period of the clock
frequency. When.t is fixed, we may consider the family of stochastic processes

xi(t), i=1,2,....n, as a family of random variables X o The probability density
fi(x) of X, is shown in Figure 4.1. Since X, is a random variable of discrete type, with

H . e g0 . ]5
only possible values Wi and - Wi' we can define the characteristic function ™ of X, as
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Pifo;) = {e"P(j“’i"i)}
= exp(joW;) P [x=W,] + e (-jow,) P [x =-w] (4.1~4)
Substituting the probabilities of (4.1-3) into (4.1-4) we obtain

" e iwW.) + exp (- ju.W, | S
¢r(¢‘,i) = XP(J.m| l) 2 p( le |)= ¢°5(°iwi) . (4.1-5)

Since the random variables X.s i=1,2,..... n are independent, their

characteristic functions are independénflé, thus

By -0 = Efojlop +oove])
=P D0y .. b ©) | w1

where ¢ (w] s oecoes mn) is the joint characteristic function of the random variables X,

We now wish to find the characteristic function ¢z (0) of the density

fz(x) corresponding to the random variable

z = in V (4.1-7)
We have from (4.1-6) '

‘¢z(w) = exp(J'wz)} =.E{exp[-‘jw(x] +x2+....+)5_ﬁ)]} |
¢ (0,0 ....0) = ¢](m) ¢2(w) ..... ¢n(m) (4.1-8)

Substituting (4.1-5) into (4.1-8), we can show that

n

¢Az(w) = ;— -l,;.]‘ {-exPQ ka) + exp(-J Wkw)}
- ﬁ cos (W, ) (4.1-9)

k=1
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In order to facilitate the mathematics, we shall now introduce some new

notation.
let -I;l.( n.be ann dimehsional vector, k=0, l, ceeey 2" - 1, whose
elements are the ordered digits of the binai’y number cerresponding to kie.g., -5'7 4= [01 l'l]).
Let Vk be defined as
n '

Vk’.n = 2 bk,n - o {4.1-10)

where v is the n dimensional vector with all elements equal to unity. Thus, we see that

V. is b, _ with all zero elements replaced by - 1. .
k, k,n v

Using the above notation and the ordinary definition of the scalar product,

we can write (4.1-9) as

2"
¢z ) = —2-n— vZexp[Jw (Vk’n,,w>] ‘ (4.1-11)
' k=0 |
— ‘
"where W is the n - dimensional vector with elements Wi’ i=1,2,....n.

_To illustrate (4.1-11), consider n = 2. Then,

¢ z(m) = % {exp [Jw (-W] - W2)] + exp [Jm (-W] + W2)]
+ exp [Jw (W] - W2)] + exp [Ju (W] +W2)]} (4.1-12)

which yields the same result as would (4.1-9).

. o n .
Thus it may be seen fhaf< Vk,n' w > forall k=0, ....2" -1, is the
combination of all summations of + Wi' i=1,2,...n. ltshould be noted that for any

function G,
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2"-1 2"

k=0 k=0

& [(VI,,,_,VD] l: [’C"T«T‘"W] .1-19)
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Using the inversion formulaw, the density fz(x) of (4.1-7) can be expressed in terms of

¢z(u) by the integral o
’fZ(x) = %- j¢ 'z(u) e-wa dw

Substituting (4.1~11) into (4.1-14) and using (4.1~13), we obtain

2"-1 oo .

1 Cor. ,‘
w0 = g ) k[ el <,

k=0 Zoo
Based on the property]8
00
:—_,]; exp(-—Jux) do = & (x)
-00
of the Dirac delta function 8(x), (4.1-15) reduces to
271 :
1 e
) = — Z 8 (x+{ V| JW))
k=0

@114

W] @.1-15)
4.1-16)

(4,1-17)

The result obtained in (4.1-17) is the amplitude probability density corresponding to a weighted

random binary process. To modify this result for nfh order maximum length pseudo-random

binary sequences, we make the following observations.

In section 2.2 it was shown that in a maximum length pseudo-rardom binary

. [ . n
sequence, the all zero state in the shift register does not occur and that there are only 2= 1

possible states. This undesired state can be shown to correspond to k =0 in (4 1-17). The

amplitude probability density corresponding to an m - sequence can therefore be written as

2"

1 — —
o 00 = 2 8 (x+V WD)

k=1

(4.1-18)
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4.2 _ The Central Limit Theorem and Equal Weights

The Central - Limit Thearem states that, under certain conditions fz( x) of

(4.1-17) approaches a normal curve as n increases :

‘ 5 N '
1 2 2
fz(x) B ———— exp - X / qi , (4.2-0)
' g V 2y P k; :

where (f i is the variance of Xer which can easily be shown to be*

2 2

gi =W,

If x is properly scaled (i.e., with 1/'\/n so that the limit of the resulting variance is finite),

then (4.2-0) becomes an equality for n =006 provided : !

n :
() | Zwiz —» 00  (4.2-1)
k=l o
{b) For some a > 2
jxa fi(x) dx < C = constant (4.2-2)

~ where fi( x ) is the probability density of X

Ii

T g2

E{xiz} = Wizip[xi'_-wi] +('Wi)2P[xi='W'

2

W2 x 0.5+ (=W, )2x0.5 = wi2
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These are not the most general conditions for the validity of the fheprem. However, they
cover a wide range of applications. We note that (4.2-1) is satisfied if o’i > C'>0,
where C' is some constant,and this is certainly the case if the random variables X, have
equal vdr-iances, i.e., if the weights of all the registers are equal. Similarly, condition

(4.2-2) is satisfied because the densities fi(x)‘cire zero for |x| > Wi°

Now for equal weights W, =W, i=1, 2, ..... n, (4.1-9) may be wriftén
l v .
e | S gwe —jwe
b.0) = co"wey = Lo te )  (4.2-3)
z on .

and using the binomial theorem, we may write

n
jinW : . '
) eJn @ ] ~j2We )
¢'z(‘*‘) =S ‘k) e (4.2-4)

2

where (E) are the binomial coefficients.

Using the inversion formula (4.1~14) and property (4.1-13), we obtain,

with some manipulation

o0
fz(x =;]-— Z —z%—fexp{-jw[W(n—Zk)+x]}dw
0 . _

and making use of {(4.1-16), (4.2-5)

n .
f )= % Z‘E) s[W(n-zk)+x] (4.2-6)
2
k=0

which is a binomial probability density with zero mean.

we obtain

This result is the same as that obtained by Davies9, except that the density

- is centred about zero. This of course, is simply the consequence of defining the off state
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of the register as - 1 instead of zero.

Using(4.2—6)A and the previous discussion, we obtain the well known result.

‘that the binomial density approaches the normal or Gaussian density as n = 00,

4.3 | Binomial Weights

Before consfdering the problém of finding the weights which correspond to
the best approximation to a Gd'ussian probability density function, it would be of interest
to discuss the probability densvifvahich results from using the bilnomial coefficients as the
shift register weights. | has been shown]2 that a binomial weighted register produces
a power spectral density which approximates a Gaussian, and the approximation becomes
exact as the length of the shift register increases indefinately. We shall now consider fhe.

resulting probability density.

Defining the weights of an n + 1 stage shift register® as

= [P = (4.3-0
W, (k),k 0,1, evnvun ( )

let us determine if the conditions for the Central Limit Theorem are met. Although we can
see that the binomial weights satisfy condition (4.2-1), they do not satisfy (4.2-2). As it
was mentioned earlier, however, these are not the most general conditions for the theorem,

and we shall now prove the Gaussian convergence of the probability density directly.

Although this result may be obtained using characteristic functions as in
(4.1-4), we prefer to use moment generating functions. 'We define the moment generating

functionw of X, as

* We consider an n+1 stage register because the binomial expansion of order n has n+1 terms.



Mi( W i) = E{gxp o, xi?  {4.3-1)
Proceeding in the same manner as was done for the characteristic function

and substituting the binomial cpefﬁciénfs for the weights, we can show that

M () = T\- cosh. [w ( n)] o ' (4.3-2)
4 e r .
r=o te . . .
Before proceeding further, we must Sfandardi;e the random variable, i.e., modify it to

have zero mean and unit variance.

Using the moment generating function propertyw, namely.

d Mz (w}
[—-——F——] = (4.3-3)
do . =0

where p'r is the rth moment about the origin, we can show that the mean is given by *
p, =0 (4.3-4)

It can also be shown that the variance is given by**

n 2 .
G,zz = Z ‘:‘, (4.3-5)
=0

W K=0

SR A TN 2 o) o [ ] |

w=0
% ntl n+l n 2
2 — 2 _ 2 - 2 In
of = Yol = yw o= ) (]
=1 r=1 r=0
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Making use of the theorem20 for standardizing o random variable, namely,

Mix-p) g (w) = exp '[-'(pw/d)] M (o/@)

we obtain ‘
o

T ?l]
M\?"’ (w) = T\- cosh [ 62

=0

Now using the infinite product expcmsion2

cosh (Z) = ﬂ e —2Z |
: k=1 (2k- ]) ™ .
and substituting in (4.3-7), we obtain

n S 2

M, (@) T ﬂ[, ; s (7) ]

r=0 k=1 Gzz 1f2 (2k'])2

Defining the second moment generating function as

Y(@w) = log M (v)

and taking the logarithm on both sides of (4.3-9), we obtain

2
2 /(n
il <0
: r
\yzs(w) = log ",':‘;El b+ 622n2'(2k-])2
2
2 _
ca [ w2 ()

(4.3-6)

(4.3-7)
(4.3-8)

(4.3-9)

(4.3-10)

(4.3-11)
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Making use of the logarithmic expansion, namely,

x2 x3 x4
log(1+x) = x - 5 + 3 -7
o
=_~—'Z(- |x|<l
9=1
- for sufficiently large* n we may write . = |
.2
o0 %0 q
» 1 - 4“’2 (n) »
wzs (0) = 2 2 — 2 ‘
G (2k-1) q
‘ = 2
and with some mampulcmon we obfam n 2 ~
(1?4 2 Z(:‘) -
Y (0) = S AL (4.3-12)
q z,q 729 (2-1)2
Moklng use of the expcmsmn for Bernoulli numbers namely, |

00, .
s = 2(2)! Z i
T I & k-

with some manipulation we obtain from (4.3-12)

h
2q
0 (.1)dt] (22q-1>3q 4,2 Z (n)
Y w = e \! (4.3-13)
l 2q
po 29 (2q9) |
*
It can easily be seen, by substituting ( ) for ¢_°, that
22( 2) 5 will approach zero as n —» 00.
d (2k-1)

Therefore, for sufficiently Ia;‘ge n, |x| will be less than 1.

k%
For example,

_ 1 1 _ 5
B = e B BT By =5 Bs T aE o
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After sUbsfituﬁng (4.3}5) into (4.3-13), we may write

e S m™
Y, 0 = AZ‘Aq W Z’%’Hz ; (4.3-14)
A [ ,

(-T2 8 4

where A = | (4.3-15)
4  29(2q)1 o
Now forq > 1, i.e., q = 2,3 ......
| q
n n 2q n n 2
lim Z(r Z (r) =0 (4.3-16)
n =00 . ‘
, r=0 r=0
and therefore from (4.3-14) — (4.3-16)
/ 9 02
im W) = AW = 4 (4.3-17)
n—>00

Using the fact that the limit of a logarithm equafs the logarithm of the limit
(provided that these limits exist), we see, from (4.3-10)that

lim Mzs (w) = exp (w2/ 2). (4.3-18)

n =00

which is the moment generating function of the standard Gaussian densh‘y20

Referring to the uniqueness theo:jemzo according to which a moment generating
function, when if. exists, determines a unique probability density, we can now sdy ﬂwt when
n —00 the standardized probability density, resulting from using binomial coefficients of
order n = 1 as weights for a shift register of length n, approaches the standard Gaussian den-

sity.

. . . 12
The results of this section, coupled with those of the author ™ reveal that we
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can use binomial coefficient weights to approximaté a signal which is Gaussian both in the

frequency and time domain. Such a spectrum fsu.éefbl for simulation purposes, and parti-

cularly for doppler radar simulators.

4.4 | Approximation Crlferlon o

As already has been shown in (4 l 7) the probablhfy densn'y resulfmg from
a weighted register is of discrete type. On fhe ofher hcnnd fhe Guussuon probablhfy density
is continuous. This incompatability beftween fhe densuhes |mp||es fhe ruling out of some of
the approximation criteria commonly in use, suﬁh us th; méan;s;quure-error or the mean-

absolute-error** between the densities.

* The mean-square-error is

?= f[zl" Z 8(x+ <Vk,W>) - Z(x)] dx

0 N1

where Z(x) is the standardized Gaussian curve, i.e. , e

Z(x) = exp(— X /2) /\sz

Expanding the squared integrand gives rise to te s_g:; fhe vfor'm‘S - (‘x + A), where A isa
constant, and can be shown to have no meaning R '

** The mean absolute error, written as

00 271
—_ : -
el = — 6 (x yW)D)= Z(x )] dx
N fznZ<+<vp,f’>> (x)
i k=0

can be shown to equal 2, irregardless of the weight vector used.
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Let us consider the integral of the probabnllty densufy resulfmg from a weighted

shnff register, i.e., the probablllty dnstnbuhon funchon Takm‘g the integral of (4.1-17),

it is easy to show that

F,60 =

where

is. the Heaviside step function.

where

f f @) dt = ——-ZH(x+<V ,W>)

(4.4-0)

=00 B
H(x) = 8(f) dt
Writing the Guuss:un "‘d iAsi"r:i_'b.»u‘l;i'on* as
P(x) = f 2’,(%_), o  (4a)
oo f_ﬁ j. | '
Z(t) = exp( t /2) /w/" (4.4-2)

we shall define the error criterion as the mean-square-error between (4.4-0) and (4.4~1).

Using as a simple example the two stage shlff regusfer Wli‘h we|ghfs 1/2 and 3/4, we illu-

strate the probability distributions in Figure 4.4. i ; o -

* This function is similar to the well known 'error-fuhg_fibn_'dh'd the following relations may

be written :

P(x)

erf."Fz: +1
2

2P (x\2) -1

erf( x )

]
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Thus the integral to be evaluated is |

Before we proceed further, Iet us arrange the 2 numbers correspondmg to < V n ,W._>,
N e

k=0,1....2 -1,in ascendmg order,‘ and Ief_us ccnll these numbers 7?

(4.4-4)

We shall now illustrate np by using fheexample "c‘ii‘ff_.éd be_fdré. Let n =2, W] =1/2

- 1 - 1) 1/2 = -5/4
\3/4 -

_] + ] ) (1 /2) = 41 /4' ;.

and W = 3/4. Then,

< 0,21 W>
<VT,2_,VV">

-
}

= =-1/4
<v3’2.,w>; =  _ (+1+1) 1/2 = +5/4
| Lo N
an n]_ = - 5/4'_ n2= = ,]/4’ n3 =+ 1/4, and 714 =+5/4
From the above it may be noted that for any 'n', k, B

- (4.4-5)
nk 7'12"-I<+1
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Thus, we may write the integral (4.4-3) as

| oo 2" S |
E(W) = — Y H(x + N)-Px) ) dx (4.4-6)
S N — _
Defining . no = -00 and 7I 0 = +00, it is easily shbwn that (4;4-6) is
2" +1 . T ' |
equivalent to o T
' 2 Miew 2 - ,
EW) - = E f [—';— - P (x)] dx | (4.4-7)
7 |
k=0 nk ‘

Using the indefinite integral solved in Appendix C, we may write (4.4-7) as

.

E(W) M * N Py + 200, 20,

= PO, - -1 Ment PMysp) - ﬁ ZM\e)

‘ I}
%= 17T
N§| ~

M- M MY - 20 2z

K (4.4-8)

where Z(x) is.as defi;ned in (4.4-2),
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 With some manipulation and cancelling terms*, we may write

N

. i P Z (Y
o= ) nk [1 2, | ‘n-'lk] P 2
| 2 2
P -
- | N (4.4-9)

Making use of property (4.4-5), we can reduce the. number of summations

- in (4.4-9) by half. We write (4.4-9) as

n
’ - P(N) zM,)
- 1 1 -2k | K1 “\k
E(W) = -\f_fr— * ; nk[22n ¥ on=1 ] ¥ 2n-]
X k=1 | |
S n [ 1)
k 22n 2n-l 2n-l :

q=2n-l+]

4 (4.4-10)
Substituting (4.4-5) and making use of the properties

P(-=x) = 1=P(x) end Z(~x) = Z(x)
we may write the last term of (4.4-10) as

n

2

4= 2n-l +

1 1-2(2"-q+1) +P(n2"-q+1) . ZMp_4y)
2" - g+l ,2n | 1 on-1

\

* Terms 2, 3, 4, 8, 9 and 10 inside the summation sign of (4.4-8) will appear twice when
expanding (once wn‘h a plus sign and once with a negaﬂve sign) and therefore they will
cancel for all except the end terms.
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and substituting k for 2" - q + 1 we obtain, with some manipulation,

_ an=l » .
E(W) = 2n]-2 : Z ' n‘k [']'2",;:'-;2T£ + P ( 'I k)] + Z( nk)
k=1 ' .
" ‘j;,-" ‘ | | . (4.4-11)

4.5 Optimum Weights

In this section, we wishvto optimize the weights; inl :other words, we wish
to find the shift register weights which minimize (4.4-11). Although we may be able
to obtain analytical solutions to the minimization problem, it has been found to be im-
practical for values of n greater than two (solutions for n equal vto 1 and 2 are giv‘en in
Appendix D and E, respecfi\;ely)-. Plots of E(W) for the 1 and 2 dimensional case are

given in Figure 4-5 and 4-6, respectively.

The difficulty in finding analytical solutions for large n can be shown in

the following example. . Consider n =4. From (4.4-11) we obtain

8 .
> 1 1 -2k _ 1
E(W) = 7z E 7Ik [T + P(nk)] + Z(nk) VT
k=1 % . ) (4.51)
We shall assume, as in Appendix D and E, that

W, >W > W, >W, >0 .

This does not impose any restrictions on the weights since, due to the symmetry of

(4.4-3), we may interchange any of the elements of the weight vector —VV, and also due

¢
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to (4.1-13), we may multiply any weight element by -1. Thus ’l_], ‘_712 and n3 ‘_are' o

uniquely determined in terms of W], Wé, W3 and W4, namely :

“W. =W, =W, =W

1 2 3 4

T

—
N
I

+ W -W2-W -W

1 3~W,
My = W Wy-We-wy

Now n4 may either be

=Wy =W, +W, - W, (4.5-2)
or o+ W] '*'W2 - W3 - W4 (4.5-3)
depending on whether W3 is less or greater than W] + W2. '

Detemining the values of nk for larger values of k, necessitates more
assumptions, (one way or the other), and, in order to find the optimum solution, we

must examine all regions of the "weight space " corresponding to the different constraints.

Before proceeding to find the optimum weights numerically, it is interesting
to note the non-uniqueness of the solution.’ Assuming the existence of a solution for or&er |
n, where in general, the weights are not equal, i.e.,

Wk 75 W for{p, k=1,2, ....n
pFAk
due to the 5)./mmefry of (4.4-6), there are 2" x n| solutions. The 2" factor results from
-faking all + combinations of the weights, and the n | factor results from inferchanging
elements of the weight vector in all possible ways. From this result we may see that

although the weights are optimized with respect to the probability density function, there
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is still some freedom to interchange the weights in order to obtain 2" x N | different
power spectral densities. We shall now discuss numerical - methods for finding the uncon-

strained optimum weights..

Npmericul optimizatibh. techniques can be classified into .twcv> broad cate-
gories : techniques based on conventional mafh.emdfical methods and dirécf sheurlchuféchz-.
niques. The mathen;aficai methods j'use,;':in' 56me’way or another, the grédiént 6? the
function to be minimized and heﬁce requiré fhe evgllud‘fion of the p‘arf‘ia'l >derivatives éf
that function. Although (4;4—]1) isvconﬁﬁuou’s,» it i$ not differentiable at all poinfs, and '

therefore gradient techniques are not appropriate.

The main advantages in using direct search techniques for this application
is that they do not require derivatives of the function. Furthermore, all that is requiréd
is a way of finding functional values, and there is no need for having the function avail-

able in algebraic form.

Three similar direct methods wérg tried. The method by Hooke and Jeeves2
(also described briefly in qui and Vog|27,- and Wood28), and fHaf by Powe||25, were
found to be satisfactory, although the convergence rate was extremely dependent on the
initial weight parameter estimates. The method exhibiting the best behaviour for this
application was one by Flood and Leon30. A brief description of this method together
with a flow diagram is gi.ven. in Appendix F. Appendix G contains a short list of optimum
weights for orders n up to 10, together with the corresponding probability density error.
In Graph 9, we plot the errors of Appendix G versus n . Also included in Graph 9,
are similar plots correspondfng to equal weights, binomial weights and the Gaussian
impulse approximation weig:hts, discussed in Section 3.4. These latter weights (i.e., equal,

binomial and Gaussian. impulse approximation weights) are nomalized in such a way as to
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minimize the probqbilif‘y‘ dtv.an‘sif)"herr"or (as de:fi'ned in this chapter) with the constraint
that the ratios betweénvfhé 'w"ei‘g‘hfs remains unchanged. |

Gr‘aph“’9: i:rldi;ct"es ti'\af a gre‘a.f i"r‘n\p>rov'<'er".nent over fhevequa_lly weighfed‘case
is obtained when using f‘heopﬁmt_.imy'weigh‘fs fo approxﬁnote a Glo‘us(sian.spectrabl density.
The relatively low errors which result when using the Gaussidn impulsé approxirﬁéfion
weights indicate; that these weights are better sﬁifed for 's;imulafing dopplef specfr& than
are the binomial weights discussed iﬁ Section 4.3. At is iﬁféresﬁng to note that for both
the Gaussian impulse approximation weigh ts and the binomial weights, the line joining
the probability density efrors corresponding to o.dc‘l orders of n is below that of even n .
This result isvuseful for design purposes, and it implies that odd order approximations are

generally advantageous in meeting cost-performance criteria.
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8(x+Wi) S(X-Wi)
1/2 - v val v | e |
--Wi Wi X -5/4 ~1/4 1/4 5/4 %
%FIGURE 4-1 - PROBABILITY DENSITY FUNC- FiIGURE 4-2 - PROBABILITY DENSITY,
TION FOR ONE WEIGHTED SHIFT REGISTER (n =2 W, =1/2, W, = 3/4).
1 2
STAGE ;
A A
' - - - '-—-—?——
S . . p
2(x) hift Register
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‘ - — >
-2 -1 .0 . l’ ) 2 x -5/4 -1/4 1/4 5/4 x
FIGURE 4-3 - GAUSSIAN PROBABILITY FIGURE 4-4 - GAUSSIAN AND SHIFT

DENSITY RECGISTER PROBABILITY DISTRIBUTION
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Probability Densify'Error E(W)
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FIGURE 45 - PROBABILITY DENSITY ERROR FOR n = 1
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FIGURE 4-6 - PROBABILITY DENSITY CONTOURS OF EQUAL E(W) IN W] W2 SPACE
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CHAPTER V

CONCLUSIONS

“Chapter ll contains fhe solutions to the problem of’ the cufocorfélation
function and power specﬁ’al densify of an arbifrarilybweighfed shift register with a |
random binary process as the input. These results oré exfen&ed for the case of maximum
length pseudo-random shift register sequences. |f is also shown that the autocorrelation
function and poWer spectral density of a signal obtained in this manner is equivalent to
that obtained by passing white noise through crnon-rec‘ursive digital filter with a sample
and hold. Using this property, we are able to simplify the problem of approximating a
prescribed power spectral density in Chapter lll. The Gaussian and brickwall power
spectral density are consicjered in greater detail, and the optimum weights for both of

these particular cases are listed in Appendix A and B.

In Chapter |V, we consider the probability density function of arbitrarily
weighted registers. An approximation criterion is introduced between the probability
density of the weighted register and that of a Gaussian process.  Solutions for the vyeighfs
which minimize this error are obtained by using direct optimization methods. The errors
corresponding to thesc optimum weights are compared to the errors of equal, binomial
and the Gaussian spectrum weights discussed in Chapter lll. The results as plotted in
Graph 9, indicate that a great improvement is obtained over the equally wéighfed case,

discussed by Krc:mer8 and Davies9, by using the optimum weights listed in Appendix G.
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1.01257E-02

THE MEAN-SCUARE-ERRCR IS

FGR CRDER 42 IS

,‘g3.757565-o1»1v~
. 2467365E-01
1440579E-01 . -
5046190E-02
1 5691be~oa*¢g

 3.84459&—01&,“
| 24ETT59E-01 .
1461206E-01
64 75943E=-02
;.121355—02¢‘

'3.77605E+01'*
Z.76270E-01

1.53110E-01

6642759E-02
 2.04395E-02.

202547SE~04 o

PARAMETER FOR CRDER 43 IS

3.85603E-01
2.95387E-01
1.73338E-01

7.79189E-02

2+ €8311E-02

220148E-04 .

.31:3i613Efoij,'1iffv’7**f;-

3.550426-01°
2434218E~-01 .

1.14180E-01

| 4.11316E-02 . -
leossare-0z

2f5532§E+bﬁ?;ﬁfﬁ»+f,f' o

5 *151346a}ee‘}-_a’a;{'-- |

3. 67451E~01 

2+55808E~01

1.332956-01
[ 5.19861E-02
(1.s1750E-02

'i2;395915;04f.;ff

1431851E-01

'3.58444E-01
2.44654E-01 -
' 1.264956-01
' 4455405E-02
1¢46965E~02

1+291556~01

3.69876E-01

2+65074E-01
1.45522E-01
6.11989E-02
1.57152E-02




;&§ THE SPACING PARAMETER FBR

. ANG. THE WEIGHTS ARE ==-oe-
. 3.ST876E-01
. 3e36062E-01
'73 ?¢.¢368’E-01~‘5
U 1414241E-01
| ;24.51c9=E-02
] ed 8266E-02'

©3.91561E-0L .
. 3412982E=0QL .
1.93687E=01
- 'Se27915E-Q2
T 3644143E-02
f;9.880625 ca,

N   THE MEAN-SQUARE-ERRGR IS ﬁ

_3.792405-01gq“
. 2084348E-01 '
.- 1265053E=01 .
+Te41704E~02 -
2e seoaee—ozm,‘

“ThE SPACING PARAMETER FOR CRDER 45 IS

AND. THE REIGHTQ ARE ——+v=4]‘
3.55627E-01
‘ 289445-01,ﬁ
4.138335-011,
1e0E6TEE-CL
- 443182QE<02 .
- 1e3414€E-02

 3.58683E~01

3,52526E-01

 '2442698E-01

1.21715E-01"
5,5€57€E~-02
1.£387€E-02

'xThE MEAN—SQUARE ERROR IS

.TbE SPACING PARAMETER FOR CRDER 46 IS

- ANC THE WEIGHTS ARE ---é-—. an
- 3e9211%E~C1
3.1E740E-C1

3.€765C0E~01
' 3e4322CE-01
€e2325GEE-01
1e25472E-01
521848E-02
1677913E-02

2.04472E~C1

1.03514€E-01
4013553E~C2
1.30385E-02

" THE MEAN-SQUARE-ERRGR IS

,3.866125-013;j
3402260E-01"
T 1.84759E-01
| 8.829656-02.

«299056-02
9.637195-03»=w

2.031925-04».,

3.80¢679E-01

'2991659E-01

1.76345E~01
8+41438E-02

3416842E-02
Se41541E-03

| 1.55328E-04 o

2.

A13 614625—01<g-.,;j,:,p L
54220E-01 oo o0 oo

 1e38419E-01 . . oL
-55 83466e-ozygcf' IR

iuzsl4zeeeepas;ewfu;»ﬂ~"~'

1. 241055—01

3 .720205—01-“,”
2573503E~01
1457205E-01 . .
7.064505-02
2.48201E-02

- 1.21724E-01

3.64150E-01
© 24€2959E-01

1.45854E~0C1
6.73935E-0Q2

2.39185E-02




oa-12

-IHE SPACING PARAMETER FGR CRDER 47 IS

DR AR S A

*i;#94475551f§t fﬁj';Q“‘“

AND THE: WEIGHTS ARE RGN

. 2.5869SE=01
3.55747E-01
" 2e52700E-01
. 144290€E-01
- 6.43378E-02
' %430601E-02

. TEE MEAN-SQUARE-ERROR IS

THE. SPACINGSPARANETER

| ANC THE WEIGHTS ARE e

‘3.46955&+01

' 2e4ci80E-QL

1.3€38EE~0]

' 6.15028E-02 -

ZeZZE4EE-02

 3,95675E-01
. 3433650E-C1 -
2423872E-01" .
1+195€EE~01

5.0E6567E~02

1272177602

3.92607E-01

3423938E-(C1
26 145€SE~Q1

1.1406CE-C1
44 B6SS1E-02
1.66867E=02

THE MEAN-SQUARE—-ERRCR IS

THE SPACING

FARAMETER FOR CRDER 49 IS

ANL THE hEIGHTS ARE ====—==

3.5€707E-01
2eEEE39E-01

2060951E~-01

«E36€4E-01
121S1€E-02
2082056E-02
Ee7G5€2E-03

3456GESE-01
3.37852E-01
2.32205E-01

1.30220E-01
5 88304E-C02

2415027€~C2

THE MEAN-SQUARE—ERROR IS

FOR CRDER 48 IS

,“3.875035~01*;
"3,08493E-01 2
. 1s95526E-01
‘94 86595E-02
| 2.96316E-02

 14267426-02 -

3, 80345E-02

1.23360E-02

' 1.€1008E-04 .

3, 88308E-01

3414161E-01

2,05638E-01
1.08903E-01

C4466611E-02
1461749E-02

1¢74562E-04 o .

3.819615—01--
2.98324E-01 -
1487040E-01
 S441390E-02 °

© demgaze-ol
«81206E-01 .+ L

. 1.68383E=01 -

.8 .02411E—02»ﬁf[7,]1“

3¢64413E-02 .. v

9 197675-03,75*p_,g , R

ii;§79525§34f5‘L, -,q.w‘ \

©1e17247E-01 .

3466557E-0L -
2.70984E-01
. 1.60816E-0L .
 T.66150E-02 .
'2493003E-02 -
8459556E-03 -

1.15142E-01

3475654E-01
2.88244E-01

 1.78945E-01
8.58772E-02
3,65212E~02

1.20072E-02




,",f*Aélatﬁ

) weoro .

THE, SPACING PARAMETER FOR cnusa 50 IS ftgiéicoéfc;fi j;jf*:f““1 “

’QAND THE WEIGHTS ARE- -—-é—afff

© 2.58090E-01
. .3,5034QE-01
. 2e51309E-01
| 1.46S37E-01
B 7 002675‘02;."-‘ ’
o ;,8.612895"02‘:"3'7“

'f  fTHE MEAN-SQUARE ERROR xs

-3.93036E-C1
. 2426662E-01
. 22240CEE-CL *
1e24446E-CL
5063540E-02 -

¢.oacooe-cz;ﬂ;

3.83129E-01@ 
3,04400E-01
'1497136E-01 -
1,04064E-01
4e4TT51E=02
1.57027E-02

3468710E~-01 oo
2418356E-01 . -

. 1e71288E~0L = oo
Be89123E=02 " oL
3451230E-02:
e ) 170435—0&'11‘APTJ”»

‘1;5815354é4731‘ff¥9'?*"“




E 'APPE&Dinsiiﬁﬁﬁjifm@,jji”* . '

' ‘?i:0PT1MLM hEIGHTS FUR eesr APPROXIMATION
«ﬂsro A “BRICKWALL PCWER SPECTRAL EENSITY
ERE (EVEA CRDER APPRoxIMATIGA):tv

ek ow v
*#********#***#*
SR **

f,THE SPACING PARAMEIER FUR CROER 2 IS  2.15343E°00.

1_AND ThE WEIGHT IS —=m————— -
v~7 7‘526E-01 ; .

THE MEAN—SQUARE ERRGR IS 5.51279E-01 .

THE SPACING PARAMETER FOR CRDER 4 IS 1.26311E 60 -

" AND THE WEIGHTS ARE =m——m-
S4154S2E-01 = 4497409E-0L

THE MEAN-SGUARE-ERROR IS   3.99265&—01 .

kTHE SPACING PARAMETER FOR CRDER 6 IS 8.98097E401'

"ANC THE WEIGHTS ARE —==-=—- . | |
Se56255E~01 7.18120E-G1 3.49124E~01

THE MEAN-SQUARE-ERROR IS  3.53873E-01 .

THE SPACING PARAMETER FOR CRDER 8 IS ~ 1.32688E 00

ANC ThE WEIGHTS ARE —-—=--
S+C7203E~01 4057256E-01  =3.66434E-02 -2.00249E-01

THE MEAN-SQUARE—ERRCR IS 2492677E-01 .




o '.‘" o

| THF SPACING PARAMEIER FBR CRDER 10 xs
" AND. THE wexenrs ARE ;;_;_;- ‘

| 9.35549E-01  6.010S7E-01 ‘”1;4addéé461fxﬁ
| -1.89524E-01 SRR S

1.09664500

THE MEAN-SQUARE-ERRDR Ls;yf'z;493§3é¥d15,;;.

ThE SPACING PARAMETER FUR CRDER 12 IS ¥
AND THE. NEIGHIS ARE’ -~-;+-Y R

. G4EZT90E-01  6.S7795E-01 ,[Qs.i131254613*
| -1.5S0€4E-01  -1.72607E-01 g

' 9.33952E-01

ngHE'MEAN-SQUARE-ERRCR la.” 2 23&875—01 .

THE SPACING PARAMETER FUR CRDER 14 IS

ANC ThE WEIGHTS ARE =—=——w-m

" Ge€3985E-01 = 7.64437E-01 4.39999E§01 ~

. 8413155E-01

- =1e28B51€E-01  -2.1117€E-C1  ~1455976E-01

THE MEAN-SQUARE-ERROR 1S . 2.07641E-01 o

THE SPACING PARAMETER FOR CRDER 16 IS
ANC THE WEIGHTS ARE —=———~

$.40568E-01  €.2€515E-01 1,92040E-01
-2402569E-01 -8, 16538E-02 7017212E-02

THE MEAN-SGUARE-ERROR IS 1.5608SE-01 .

THE SPACING PARAMETER FOR CRDER 18 IS

ANC THE WEIGHTS ARE ===——— . o

9+ £1409E-01 6e 8S787E-0L 2496764E-01
-2.02€655E~01 -1463752E-C1 = —2.09704E-02
. 1e17425E-01 ‘ :

THE MEAN-SQUARE—ERROR IS 1.78701E-01 .

' 1.05155E 00

=1.28220E-01
1.21191E~01

9.47882E~01

~4+45315E-02

9.87437E-02

-3.099096-02

{1.066955—01



THE SPACING PARAMETER FOR CRDER 20 15 ;‘égbzzﬁééfOif"*“*“”'*“”"‘

AND THE NEIGHTS ARE —----filg e 'L."gzv* Sl ""ﬂ;@
~S¢59610E-01" . 7+438022E~01 " 3,87378E-01 . 4.66648&-025:7wf‘7”
=:-1 €E8L7E-0L —2 04946E-0L . =1.10322E-01 ' 2. 5934562021 i

1 13992E 01 1.12086E~01 2

&

THE MEAN~SQbARE ERRCR IS 112558&25401,;&lﬁ2ﬁﬁTﬁ€ﬁ

THE SPACING PARAMETER FOR GRDER 22 zs - .904seE-01’ o

"AND THE WEIGHTS ARE ;-’;-;”;' L _*,¢ ST R SR
,v9.659315~01 7.76331E-C1 4+6437T9E=01 . 1.36150E=01 .
'=1407251E~01  ~-2.08919E-01 ~ -1,73828E-01 . ~<5.85351E-02 .
€.0227€E-02 . 1.21902E-01 ©  1.06301E-0L . ..

THE MEAN*SQUARE—ERRGRvIS,’ ‘1.56078E—01.. ]f"

« TPE SPACING PARAMETER FOR CRDER 24 IS 7.29591E-01

AND THE WEIGHTS ARE ——————

9.70895E-01  84C7102E-Cl. . 5.,29420€-01 2.19537E-01
-3.,815006-02 —1.85206E-01 - —-2,06587E-01 . —~1.308006~01 .
-1.40138E=02 8o45075E-02 ~ 1.25233E-01 = 1.00574E-01

THE MEAN-SQUARE-ERRCR IS 1.484S7E-01 .

THE SPACING PARAMETER FOR GRDER 26 IS  6.773556-01.

AND THE WEIGHTS ARE ===~=-— R o S ,
9. 7485EE~C1 8432110E-01  £.84344E-01 = 2.95146E-01
3642495E-02  -1.43269E-01 . —Z2,12035E-01 ~1,80981E-01
~E.65825E-02 2621539E-02  1.01263E-01 1.25713E-01
Se51231E-02 Co o

THE MEAN-SQUARE-ERRGR IS 1042496E~01 o



‘ﬂ,f-7 63575602

THE cPACING PARAMETER FUR GRDER 28 IS

ANc Irs HEIGHTS ARE: --~----'~

. Ge62442E-01° 7.550695-01
H)-1.43266E-01

' Se58812E-02 1.23151E-01 -

S ThE MEAN SQUARE-ERROR IS

““ THE SPACING PARAMETER FOR BRDER 30 IS
"AND THE WEIGHTS ARE ——=—===
7.81731E-01
-2.06711E-01
1.18522E-01 - |
~8421155E-02

S.€EB0GE-C1
-G.€6234E-02 -
 4.85707E-02 _

-3.14734E-02 ~ —-8,25618E-C2

 THE MEAN-SQUARE—ERRCR IS

THE SPACING PARAMETER FOR CRDER 32 1S |

AND THE WEIGHIS ARE =====-
Se70475E-01  8.04475E-01
-4,4€844E-02 -1.88353E-(C1
~64€2082E-03

2¢56390E-02 - ~4.6580QZE-C2

THE MEAN-SQUARE—ERROR IS

THE SPACING PARAMETER FCR CRDER 34 IS

AND THE WEIGHTS ARE.

9.7357€E-01 8423S76E~-01

9.01422E-03  -1.594C7E-01
—-€e24150E-02 4¢533€1E-C2

Je€6594E-02 5350Q5E-C3
~1e€E331E~-02

THE‘MEAN-SCUARE—ERRUR is

.*—2 10624E~01“ “~1 40542E-01.

ﬂ:-a 46784&—02 _, G
:1;ééé1é5%6%ig;;;f~-»

’.—1 '81139E-01 -

€454405E-02

- —2412872E-01

4. 210955-01g” .4563es-ozf'[f{?f;ﬁ?eﬁe“‘
<9.6578B2E-03 . - -

7425283E-02. ' -1, 246235—02}w5;;;;‘;é}ﬁf_fﬁ

©1.500296-01 - -
~7.136966-02 .
4.83178E-02

4 755925-01»
1.12696E-01

1.29954E-01 o -

7.34924E-01

2.12005E-01
-1424864E-01
| 9.60352E-02
~7.93487E-02

. '5423755E-01

-2.04752E-01
1425491E-01

-8.64196E-02

1424170E-01 .

6+94660E-01

2.69T68E-01
-1.66239E-01
1.21725E-01
—~8.86074E-02

5.6627T7E-01

1¢13521E-01
~54 84209E-02

 1.19320E-01 o




TPE SPACING PARAMETER FOR ORDER 36 1557

' AND THE NEIGHTS ARE'—-_
9.76220E—011
- €¢30485E-02
”? "l ,121256=01. .
‘1e11159E-01 7 .
”;‘-8.96046E—023T

THE MEAN—SQUAREiERRO,‘°"

THE SPACING PARAMETER FOR GRDER 38 IS

ANG THE MEIGHIS ARE-—--—-V”‘
G4 78490E-01

’1 15897E-+-01

-1.526326-01
. 1425132E-01
| -1.455876-02

 8455371E-01
| ~8422904E-02"
~5456500E-02
9.667E6E-02
—8.97473E~02'

8.40789E~01 .

o S 2=17ce—01‘n
=5,20637E=03/
5467227E-02
7*314945—cz~,,,

6'03842&-01¢
-2.079305-01¢
"8432701E~02.
=;—1 22998&—0

1«15212E—01

;.6.370875-01 y
+ =1e92566E=01 -

4419322E-02 ..
. 2.74814E-02
—7.105315—025A,

CewsssiEor

- 3471982E-01
"‘2 0098 13E"01 o
1,079775_01.' Lo
4~z.737oze 0z

,3'23077&-01];jﬁrﬁy
1494375601 .
142449LE-01 . 0 o
,M6;759155-oz;¢»«**'*

THE MEAN*SQUARE ERROR IS

THE SPACING PARAMETER FUR CRDER 40 IS

- AND THE WEIGHTS ARE —————

1 11702E-01 ; ; »_

5.96330E=01

S¢80452E-01
146672€E-01
-1.8276&4E-01
- 1.21608E-01
-4,00754E-02

8. 68C82E~01
-3.87848E-02
-1.01614E~C1

1. 20172E-C1
~1sGET8EE~-CQ2

THE MEAN-SQUARE-ERROR IS

) 6;665735-01 |
=1.69244E-01
-4,17082E-03
8.02834E~02 -
=8.92776E-02

 1.08683E-01 o

THE SPACING PARAMETER FOR CRDER 42 IS

AND THE WEIGHTS ARE =—==re—

9.12763E-01
~6407414E-03
-4+ 13940E-02
€.3E170E-02
~€e14528E-02

6¢42140E-02

' 8e18838E~-(C1
~1.68327E-01

5.85919E-02
-9.66617E-03
~1.768S8E-02

THE MEAN-SQUARE-ERRGR IS

'5.54568E-01
~2.12037E-01

1. 15001E-01

~6.87014c-02

 3447171E-02

1.05469E-01 «

4.16672E-01

. =2413946E-01
 7.76079E-02

- 1456035E-02

=6+84634E-02

7.05426E-01

' 2e54134E-01
~1.56042E-01
1.16950E-01
-8454127E~02
6+60179E-02



Losas 711245-02.;;-5.esxoee-cz.

THE SPACING PARAMETER FOR GRDER 44 IS 6575486é;qi .?y”
AND THE' wezsurs ARE ------ﬁ»iy:*‘ | "" AT R
9.74996E~01 . 8432980E-01 ~ ;5.862935-015,-42.979125—01;3 e
3. 10553E-02 w~1 413EEE-01 ' '~2,11780E-01 = ~1.82445E-01
:;-a ,6168CE-02 ' 1.95188E-02 . ~9496863E~02 1.25858E-01

'S46$275E-02. 3.28353E-02 3.58411E-02'~'-8 091155-02f112jﬁ5;u~;,§
J5.732105a03 4.22241&-02 .¢ ,;¢33“

'T,_e 7553=E~02 6.267185-02;

i THE MEAN*SQUARE“ERROR IS

ThE SPACING PARAMETER FOR ERDER 46 IS | 6.47906E-01

ANG THE WEIGHTS ARE. -~—:-;]xv',‘v‘ SR e
 SeT6STOE-01  8445594E~01 = ~ 6.14726E-01  3.389128-01 -
. 7.58302E-02 =-1.1C720E-0l =-2.04104E-01 -2.00540E-0lL -
| ~1425S28E-01 -2.,131€5E-02  7.11502E~02 . ' 1.21139E-01
141785 1E-01 7.08514E-02  3.54589E-03  =-5.64133E-02
. =8476035E-02 —8.173205-021 =4451456E~02  5.05462E-03
| 4484030E-02  €.90056E-C2 - 6.104256-02 SR

" THE MEAN-SQUARE-ERROR IS  S.88045E-02 o

THE SPACING PARAMETER FOR CRDER 48 IS  6.224536-01

ANC THE WEIGHTS ARE ===—== ‘ ‘

'Ge787232E-01 €.56872E-01 6640553E-01 3e17172E-01
le21€8CE-0O1 -7 7534€E-02 ~14903216E-01 -2.108056-01
~1456516E-01 ~6+10628E-02 3469226E-02 1.05171E~01
le2€146E-01 1.00155E~-C1 4027524E-02  —~2.22510E-02
~7.15210E~02 -8498458E-02 ~7e42S72E-02 -3.38890E-02
1le4€685E—-02 5¢34604E~-C2 6496334E-02 594142E-02

'THE MEAN-SQUARE-ERROR IS ~ 9.60500E-02 .




THE SPACING PARAMETER FDR CRDER 50 IS

AND THE" NEIGHTS ARE ;;-a;-_
S+8028EE-C1 ' 8467000E~Cl 6.64043E-01

K 1. €221SE-01. —44279C6E=02 .-1,71€25E-01
.»;1 EQ46SE-01  =§.77141E-02 = €.52882E-05 .
“1422€6EE=01  1.1E764E-01 . 7.68808E-~02
‘“--4.372725-02*/=—e 1694£E-02 ' ~8486422E-02.
o TE.3065EE-02 2.31614E-02'f; 5.75698E=02

5.78103&-023 .

THE MEAN—SQUARE-ERRER IS s.éebsaé;ogj;?gﬁ;[Q““*”;g el

*4-2.139945-01: s T
B+07806E=02. . = -
14£3586E-02 .

S =6,55907E~02 - . .
. 6+98568E~02 © .

W




APPENDIX C

EVALUATION OF AN INDEFINITE INTEGRAL

An integral which appears when analysing thé probability density of weighted

I(;&_) =f[A - P(x)]2 dx (c.1)

where A is a constant, X

P (x) =[Z(f) dt (C.2)

shift registers is

- 00
and Z(t) is the standardized Gaussian curve

2
Z (1) = e":/‘_‘_[ /2) (.3
27

Ignoring the constant of integration, we expand (C.1) to obtain

I(x) = [Az dx - 2AfP(x) dx +ﬁ2(x) dx (C.4)

We assume that the second integral in the right hand side of (C.4) may be written as

fP (x) dx = (A+Bx)P(x) + (C+Dx) Z(x) (C.5)

Differentiating both sides of (C.5) with respect to x, and making use of

= Z(x) and = -xZ(x)

we obtain

P(x) = BP(x) + [A+D + (B-C)x—Dx2] Z(x) (C.6)



In order that (C.6) hold true, we must have

Substituting (C.7) into (C.5), we obtain

j—P(x) dx = x P(x) + Z(x) . " (C.8) ° |

Similarly, let us assume* that the third integral in the right hand side of (C.4) may be

written as

sz(x).dx = (A +Bx) P2(x) + (C+Dx) P(x)Z(x) + EP C\/-2-x)

(C.9)

Differentiating both sides of (C.9), we obtain

PP(x) = BPX(x) + [2A+D+(2B-C)x +D(l -x2)] P(x) Z(x)

+(C+Dx) Z%(x) + EF Z(Fx).

Making use of

7 (Fx) =V2Zn 2z I:\/F-zé] (C.10)

* There is no logical reason for making these assumptions other than the fact that they lead
to the solution for the integrals involved.



we may write < ' o : 2

| |>(><)_2 - sz(x).+'[2AA +D +(2B-c)x+b(1-x2)] P(x) Z(x)

+(C+ 2 E + Dx) Z2(x)
In order that (C.11) hold true, we must have

B
2A+ D
2B - C

D
C+2{TE

o uwn
QOOO—

fr?m which we obtain

B:]’ C=2, E:..-]_" A=D=20.

NS

Substituting (C.12) into (C.9), we obtain

2 2 1
P(x)° dx = x P(x) + 2P(x) Z(x) - — P2 x)
J o

™
Since
[Az dx = A2x

we find, by substituting (C.8), (C.13) and (C.14) into (C.4), that

ﬁA - P(x) )2 dx

2

Ix)

A

which is the solution of the required integral.

C-3

'(c.n)

(C.12)

(C.13)

(C.14)

% +x PR(x).+2P(x) Z0) - PYZX) oA Pi) - 2AZ(x)
: s

(C.15)
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APPENDIX D

'PROBABILITY DENSITY SOLUTION - ORDER 1

Although evaluation of the optimum weights is trivial for a one stage register

(n = 1), it is useful for obtaining insight as to the behaviour of the error criterion

-functional .

Assuming the weight W is positive, it is easy to see from (4.4-4) that

711=;W;'7(2=W

From (4.4-11), we see that forn =1
'

+ P(-W)] +Z(~W) p - L (D.1)

V.n.—

INPS

E(W) = 2(-W I:-

Making use of
P(-x) = 1 - P(x)
and

Z(-x) = Z(x)

(D.1) reduces to
3w 1

5 -.‘/_;.. (D.2)

Differentiating with respect to W and equating to zero, we obtain

E(W) = 2WPW) +2Z(W) -

d E(W) _ 3
—aw —2P(W)-§ (0.3)

0




Thus we see that

w) =3 - (0.4

from which we may obtain, using mathematical tables,24

W = 0.67449 | (D.5)
which satisfies the condition W > 0.

In order to see whether (D.5) gives rise to a maximum or a minimum of E(W),

we differentiate (D.3) with respect to W. Thus

2 |
LEW 7w (D.6)
d W

which is greater than zero for all W in the domain of interest; and therefore the value

(D.5) gives. rise to @ minimum as desired.

Similarly, for W 0%

7I|=Wr 7?2="W

and from (4.4-11)

' ] ]
E = 2{(W}- = + P(W +Z(W)) - =
W -3 e ron] ez - 2
which reduces to
EW = 2WPR(W) +2Z(W) - w . 1 |
2 [T
* As explained in Chapter Ill, a negative W can be realized by welghfmg the complementary

output of the shift register stage with a positive weight.



After differentiation, we obtain

d E(W)
dW

1

from which P(W) = v W = -0.67449.

Thus, forn =1, the'opfimum weight is

+0.67449 .

2P(W) -

N =
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~ APPENDIX E

" PROBABILITY DENSITY SOLUTION - ORDER 2

For n = 2, we make the following assumption for the weights ;.
W, >W, >0 | (E.1)

Thus, from (4.4-4) we find

n.l = "W2 "W] ’ 712 = -W "!"W]l n3=W2'W]: and

2
My = Wy*w,
(E.2)
From (4.4-11), we obtain
e =T e +MypM ) + 2N + (M)
L P (£.3)
8 B | T
Taking the partial derivatives of (E.3) with respect to W.I and W2, we obtain
_ ]
PN - P = 2
(E.4)
_ ] |
P + e = 5
where we have made use of
| oM _ oM =;__‘)TI2 = _],élb_ = +1,
I W, IW, I W, A

From (E.4) we get

M) =3, PNY =3 (E.5)



Thus we find24

N = -1as005
| 7’12 = -0.31864
and using (E.2) we obtain
| w2' = 0.73445
(E.6)

W, = 0.415%

In the same way as in Appendix D, the following assumption will yield other

pairs of solutions.

For example,

= 0.73445

W, > W,> 0 W,
W, = 0.41590
W, L W,< 0 W, = -0.73445
W, = -0.415%0
W, W, < 0 W, = -0.73445
W, = -0.4159
efc.

All told, there are 8 solutions symmetrical about the W] W2 axes as is shown in Figure 4.6.
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APPENDIX F

DIRECT OPTIMIZATION TECHNIQUE - METHOD OF FLOOD AND LEON

and A. Leon30

II‘I.

ll2.

II3.

This method is fully described in two papers written ioinﬂy by M.M. Flood

It may be described briefly as followsSI :

Initialization. The optimization process is initiated by picking up, as the

- starting point, an arbitrary point inside the operating space."

Order of Analysis. Once the function has been evaluated at the starting
point, the independent variables to be changed are changed in an order
selected initially by the experimenter. " For the purposes of evaluating the
optimum value of (4.4-11), the order of analysis is unimportant due to the
symmetry of the function with respect to the weight parameters. Thus, for -

convenience, the weight parameters are analysed in their natural sequence.

One-at-a-time search. After deciding upon the order in which to search,
the one-at-a~time search is initiated. Let W1 (1) be the first variable

under study; this variable is incremented by an amount A , holding the other
variables at their initial values. [f the functional value at this point is
better than the one at the preceding point, there is some reason for trying
further in the same direction. A larger step size .is now used, taken equal

to A\ (where N> 1), and if a better functional value (comparing against

the immediately previous one) is obtained, a step of length )\2A is used
next. This is confiﬁued in the same direction of powers of N until no further
improvement is obtained. Assume that step )\n+]A was the first unsuccessful
one; in this case the preceding base point is kept, namely, the one obtained
by step A"A and a new sequence is started from this point with initial step
size equal to A following the same scheme as before. If a step of Ain the
positive direction does not bring a better point, then a step of length A in

the negative direction is tried; if this happens to be a successful step, then
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AN\ is tried in the same negative direction contiﬁding in the same fashion

as was done in the positive direction. Finally, a point is reached where

no improvement is obtained by moving the variable W1.(1) either A o‘r -A ;o
this point is considered to be the best temporarily for variable WI1(1). After-
the best point in the W1('1) direction is found the second varlable W1(2) -

is ready to be analysed. The process is repeafed until all of the n variables
to be analyzed have been studied and a point W2 presenting the best func-

tional value of the round is reached."

"4, Pattern Move. If the functional value F2 at the end of step 3 is better than

the initial one F1 then the pattern move is tried. The coordinates W2 of the
F2 point are incremented by an amount proportional to the change expei‘ienced
for the coordinates in going from F1 to F2. This rate of change will be greater
than one. If F3, after the initial pattern move, happens to be better than F2,
a new step of length A D is taken in the same direction. The process here
follows the same scheme explained in phase 3. As before, when a point is
reached where no improvement is obtained by moving the vector either D or

B
- D, this point is considered the best of this series of pattern moves.

If the point obtained after a series of pattern moves is better than the point
at the beginning of the series (i.e., at the end of the one-at-a-time round),
a new round of the one-variable-at-a-time phase, as it was previously
‘described, is attempted,. and the process is kept going until no better points
are found. :If the pattern move phase happens to be a failure, a one-at-a-
time round will be tried, resulting either in the final point, i.e., the opti~-
mum searched (as far as. the féchnique can tell), or in the continuation of the

optimization calculation .

A simplified flow chart of this subroutine is illustrated in Figure F-1(a) and
—’
detailed in F-1(b) and F-1(c). In Figure F-2, the flow chart for FMIN (i.e., E( W)

of (4.4-11) is given.



—
INITIALIZE W1, F1, N, IPRINT, A, A

]

a~ ONE AT A TIME SEARCH
DEFINES F2, W2

" PATTERN SEARCH
-—rpe
'DEFINES F1, W1

(a)

IS WRITE FINAL
F2 LESS NO
THAN FI F2, W2
END

FIGURE F-1 - OPTIMIZATION SUBROUTINE METHOD OF FLOOD AND LEON

(a)  Simplified Flow Chart.



SAVE = W2 (K)

w2(K) = W2(K) +H-)MX M LA e 1 MX=MX+1

F3 = FMIN (W2) -~ No

| me0 Yes
No

"M=M+1 Y IS No :
F2 =F3 F3< F2 W2(K) = SAVE } MZ=MZ +1.
2 ‘ es

K=K +1 D(K)=W2(K)-W1(K)

WRITE
FINAL j—"{ RETURN

F2, W2

TO PATTERN SEARClﬂ

(b)

FIGURE F-1 = OPTIMIZATION SUBROUTINE METHOD OF FLOOD AND LEON.

(b)  Flow Chart For One At A Time Search.



W1 =WI1+(-1) * N xD [ MX = MX+1 No
—p T
F3 = FMIN ( W1) — 1 Y
M=0 =
[ No
ag No — —= Yes
W1 =W5 MZ=MZ +1

TIME SEARCH

ACK TO ONE AT A]

FIGURE F-1 ~ OPTIMIZATION SUBROUTINE METHOD OF FLOOD AND LEON

Flow Chart for Pattern Search. [PRINT is a parameter which is set to an integer
greater than 0 if all intermediate values of FMIN and the weight vector are to be

printed. |f IPRINT is set less or equal to 0, only the final values are printed.
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*
Define N, W

!

Use Statement Functions To
Define P(x) and Z(x)

1

Find all 2n—l possible values

of W £ Wyt Waoou + W

| j

Take the negative of the
absolute value of each of

these 2n-1 nurﬁbers and set
each number equal to B(k),

Sort the numbers B(k) in
ascending order and call

these numbers N(k)

!

-1  Find: - FMIN
2

- 1 Z NG {zl__ﬁﬁ +p[N<k>]} 2wy -k

k=1

FIGURE F-2 - FLOW DIAGRAM OF FMIN, (PROBABILITY DENSITY ERROR FUNCTION
TO BE MINIMIZED).
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SRR OPTIMUM hEIGHTS FDR BEST APPRUXIMATIUN IR
TO A GAUSSIAN AMPLITUDE{PROBABILITY DENSITY FUNCTIUfow‘“

h **************#*
- e : #* ,

_ THE OPTIMUM HEIGHT FDR ORDER 1 lS-f%;%;ﬁJuf, i
- Q. 6745 R - ‘;‘. :
~ AND THE MEAN-SQUARE—ERROR xs'_ °f37‘15645492fa”‘v[fﬁ5‘

TEE OPTIMUM NEIGHTS FCR CRDER 2 ARE—-4+—Q"w -
0.7344 0.4156 | ST
ANC THE MEAN-SQUARE-ERROR IS Z.0859E-02 .

1HE OPTIMUN WEIGHTS FCR CRDER 3 ARE~———-'

0.¢883 0.5227 C. 3232 =
AND THE MEAN-SQUARE-ERROR IS .  5.9124E-03 .

THE OPTIMUM WEIGHTS FOR CRDER 4 ARE-—=—
046129 0.5247 0.4276 0.2730
ANG THE MEAN-SQUARE-ERROR IS 1.7972E-03 ..



0. 6033 0.4896 0.4033 0 3121 0. 2466

F'ITHE OPTIMUM. HEIGHTS FGR ERDER 5 ARE-—--—‘[;Q v(p*’”""‘ |

:'5QANO THE- MEAN-SQUARE-ERROR 15 {; .6593E—04 .f,*fﬂjﬁﬁ?fﬁff"

 -fTHE DPTIMUM WEIGHTS FGR CRDER 6 ARE-—-- {¥f{}f?f”' 44"" 

Qe 5454 0.5046 0.4033 0.3425 0.2701 0.1860 R
'*AND THE MEAN-SQUARE—ERRUR xs ,}; 2.6423E—04..kf'>ﬂ9 o

‘ THE OPTIMUM HWEIGHTS FGR CRDER 1 ARE--——— : Do
v0.5312 0 4445 C. 3894 0.3649 0. 3052 0.2376 Ool9ﬂ7 G

AND THE MEAN SCUARE—ERROR IS o 1 2664E—04 .

‘TFE OPTiMUM WEIGHTS FCR CRDER 8 ARE~—==—-
" 0e4949 0.4252 C.3784 0. 3‘46 0.3320 02628 0 2263 0, 1727
AND THE MEAN—SQUARE-ERRGR IS 6+9365E-05. » |

THE OPTIMUM WEIGHTS FGR CRDER 9 ARE————
ao.4ec7 044079 0+3635 0+3541 003383 0. 3161 042515 0. 1744 0.1378
AND THE MEAN-SQUARE-ERROR IS - 4e5374E=05

"THE QOPTIMUM WEIGHTS FOR CRDER 10 ARE~—--
064529 0e381c 063383 Ce321S 03176 0.3039 0.2700 0.2308‘0.2194 0.1732
ANC THE MEAN-SGQUARE-ERROR 1S 3¢1747E-05 &



