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ABSTRACT

This study Is an empirical Investigation
concerning automatic pattern recognition of "fuzzy" (not
precisely quantifiable) data, in particular, waveforms
such as the electroencephalogram., Emphasis Is placed on
determining a method for representing the data structure,
both conceptually and in a computer memory, which interfaces
easily between the raw feature space and any subsequent
description.

A graph-structured approach Is presented which
is intended to apply both to functions of time or flixed
images. Low complexity and low precision computations
are involved, which admit the possibility of large-scale
hardware Implementation, while alternatively the graph
structure can interface easily to heuristics of the variety
found in the artificial intelligence literature.

Examples of the performance of the technique
are given using actual electroencephalic data. While no
theory is avallable as yet, the results are sufficiently
promising to warrant more formal investigation, and

recommendations are made in this regard.
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1.1 Considerations Which Have Motivated This Study

The work presented here is primarily an attempt
to synthesize a variety of concepts and techniques into
a general approach to the problem of machine recognition
and interpretation of large, complex and apparently
"qualitative" classes of data. The term "fuzzy" has been
used for such data. |In particular, several points may

be listed as the primary motivations behind this study:

1) The problem of automatic computer recognition
of complex, extended, multichannel functions of time
has received very little attention in the pattern
recognition literature.

2) The rapidly growing field of Artificial
Intelligence (Al) has gliven insufficlent attention
to the problem of representing "fuzzy" events,
hierarchical relations between them, and methods for
accessing them. The introduction of graph techniques
Is probably the most promising approach.

3) The technology for the fabrication of very
large arrays of special function modules by large-
scale integration techniques Is progressing rapidly.
This poses the question of what should these modules

be, and how ought they to be connected and used.
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It is felt that much simulation should be done now
(via software) to explore the potential of such
hardware approaches to certain pattern recognition
problems, until more sophisticated theoretical methods
are developed.

These very brief objectives will be elaborated

upon in Chapter 3.

1.2 Cholce of Data

For the reasons just described it was decided
to select as an example of a fuzzy, multichannel time
series a simple two-channel record of human EEG deliberately
filled with "artefacts", or clinically unwanted signals.
This data is of interest for at least two distinct reasons.
Obviously one would like an efficient automated method
for routine clinical evaluation (as is presently becoming
possible for the electrocardiogram), and for research in
neurophysiology. However it is felt that it is far too
early to undertake the development of a program whose
stated goal is to replace the human interpreter. It will
be at least ten years before such a tool can be perfected,
due to the difficulty of the task. The more appropriate
point of view at the present is to consider the general
class of problems of which the EEG is only an example,
in which it is desired to relate certain events occuring

in a large number of loosely defined, coarsely measurable
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functions of time to situations outside this data, for
example, spike-wave patterns in an EEG of a patient
suffering from epilepsy. (Some other examples from this
class would include geophysical and socio-economic data).
Hence rather than becoming exélusively involved with the
individual peculiarities of the EEG per se, one should
let it be used instead as an example of data from this
class, so that hopefully the techniques developed would
be equally applicable throughout the class. The EEG was
chosen because of the author's desira to learn more about
real brains, which led him to this field, and hence his
present association with the Montreal MNeurological
Institute.

Note that there are two other types of
neurological signals which have been extensively studied
by standard statistical means: the individual neuron
potential or "spike" recorded from a microelectrode, and
the "evoked potential" recordable from a volume of tissue.
Both of these can be studied with the aid of special purpose
averaging computers, although a general purpose computer
is needed for involved analysis. These data, being much
smaller and more precisely quantifiable, have received
considerable attention from the available methods of
engineering and statistics and do not belong to the class

outlined above. Hence they will not be considered.
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Four concepts which will be constantly in use
in what follows will be verbally defined novw., More precise
definitions of each will occur later as they are
incorporated in a computer program.

The most fundamental notion is that of fuzziness,
a term due to Zadeh (1965). A fuzzy set is one whose
characteristic (membership) function is continuous onto
the interval (0,1). Fuzziness is considered here to be
a more appropriate representation of many real situations,
vhen compared with binary-valued representations. Such
situations have previously been handled either by
statistical methods or by converting abruptly (say, by
a threshold decision) to sharp (= not fuzzy) variables.
This study attempts to overcome this problem. (Ve prefer
the term "sharp" to the more popular but less descriptive
"erisp").

A second important concept is that of learning.
Since the program to be presented here is capable of (1)
improving its performance as it is presented with more
data; (2) discovering events and relations between them
in the data which may not have been known to the programmer
and (3) being taught names of these events in the same
manner as one would teach a human student: it is felt that
this program "learns". Considerable attention has been

given in the artificial intelligence literature to devices
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which "learn" by the administration of a reward or
punishment following a correct or incorrect (respectively)
responsé. The present program does not do this; rather

It learns by either (1) clustering the data so that a
maximal response is obtained from an input which in some
sense is the "average of the cluster'" and (2) associating

certain events in the data with additional data of a

'conceptuaIIQ different nature supplied through an additional

channel.

The-notlon of association, introduced above;
is a very fundamental one in the psychological and
physiological literature. Two variables are associated
to the degree that many examples of them have similar
spatial-temporal relationships. !nputs to an organism,
device, or program which are processed through common
pathways and similar algorithms will be said to be of the
same mode. (The term is borrowed from physiology, vhere
we have sensory modes such as vision, hearing, etc.).

Thus we may have inter-mode assoclations where for example
a human student studying the EEG would learn that a certain
waveform represents epileptic activity because a teacher
points to it and tells him so.

The fourth essential concept is that of 3
hierarchy. Any process which transforms an input to an
output in a series of stages, the processing being similar
at each stage but in some sense more refined than the

previous stage, may be termed hierarchical. It was pointed



B el

o

-+

out above that often _the transition from fuzzy variables
to sharp variables is made too abruptly. The solution

offered here is to do this in stages, or hierarchically.

1.4 General Overview of the Thesis

In the following chapter, a brief review of
various attempts at EEG analysis is given, followed by
a more detailed account of the attitudes and approaches
which are to be found in the "Artificial Intelligence"
and "Pattern Recognition" literature,

Chapter 3 develops the notion of a '"fuzzy graph",
and attempts to show how it is related to the ideas reviewed
In Chapter 2, and how it satisfies certain criteria which
are given at the beginning of the chapter.

The detalls of a program written to gain
experience with the fuzzy graph concept are presented in
Chapter 4, and while many of the results are encouraging,
they illustrate the need for a more formal approach.

A summary of the contributions of this work
begins Chapter 5. The chapter concludes the thesis with
a discussion of the general problem of "heuristic" versus
formal methods, and suggests some avenues for more formal

studies.
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Chapter 2. A Review of MWork

Contributing to This Study

2.0 Plan of the Chapter

A review of this chapter will indicate the variety
of existing work contributing to the present approach,
some of it not previously considered related. This variety
includes most of what has appeared under the general title
"pattern recognition" (PR), as a sub-category of the more
inclusive term "artificial intelligence" (Al), and certainly
the various methods of EEG analysis currently in use.
A more detailed exposition of our approach will be presented

in the following chapter.

2.1 EEG Analysis (As It Is Reported In The EEG Journals)

This topic, mentioned last above since it is
least relevant to what is to follow, will be discussed
first, since this will not take long and will clear the
way for the essential problems.

There have been very few serious attempts to
analyse the EEG, and of these most have been the result
of the interest shown by the various persons associated
with MIT in the nineteen-fifties. This heritage is well
documented in the books by Brazier (1961) and Rosenblith

(1962). 1In this work, the EEG is rightfully considered



as a stochastic process and analysed as such by the methods
developed in the engineering literature, that is, auto-
and cross-correlation and the associated frequency domain
functions. This work put on a more rigorous basis the
even earlier frequency analysis attempts using various
hardware bandpass filters. The more sophisticated
procedures merely added additional evidence to the
observation made years earlier by Grass and Gibbs (1947):
"Much experimentation with the data finally leads to the
conclusion that, although frequency analysis has advantages
for reveallng certain general features of the EEG, it is
not satisfactory for clinical purposes. No index, either
simple or complex, based on one or many spectra from a
given case, can express the highly specific detailed
information contained in the EEG",

Some early workers considered time domain and
space domain analysis. Amplitude histograms were obtained
by Lonsdale (1952), King (1951), and others; baseline
crossing was analysed by Young (1954), Burch (1955),
and Saltzberg et al. (1957). Two techniques
affording visual appreciation of the spatial aspects of
the EEG were those of Walter and Remond. Walter (1951)
constructed a "Toposcope", an instrument consisting of
an array of small oscilloscopes, one per electrode, arranged

In a8 pattern that matched the electrode placements. The
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beams were swept synchronously in circles or spirals and
were brightened and/or radially deflected by the EEG signal.
Motion pictures were taken (the activity being too fast
to follow in real time) and eventually some aesthetically
pleasing results were undoubtedly obtained. Remond (1967)
produced contour maps of potential along a line of
eleﬁtrodes (this spatial dimension becoming the ordinate)
versus time plotted horizontally. Fascinating hill and
dale patterns were obtained which of course were left to
visual interpretation., These attempts are all well
summarized by Brazier (1961).

With the availability of computers in the late
nineteen-fifties the problem of handling quantities of
data of sufficient size and with adequate mathematical
detail at last became tractable. The interest of Norbert
Weiner at MIT spurred investigators there to apply the
latest engineering developments in time series analysis.
These early developments are well summarized in the book
by Rosenblith (1962). The need for treating the EEG as
a statistical time series is firmly established there,
thus dating the non-mathematical approaches. Two techniques
developed on the TX-0 computer were landmarks (Farley,
(1961). The first was a pattern detecting scheme to detect
alpha wave bursts by accumulating statistics on pre-assigned
parameters (such as peak-to-peak amplitude and zero-
crossing). Plotting burst activity as a function of the

parameter showed considerably greater inter- than intra-
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subject variability, opening the question of how to .
interpret this finding. The second technique was the
computation of auto- and cross-correlation for several
minutes of data, which demonstrated a high degree of
variability and made visual interpretation difficult.

During the sixties, probably due to the presence
of Mary Brazier, Ross Adey and D. 0. Walter, The University
of California at Los Angeles developed an extensive and
comprehensive set of programs for the analysis of large
amounts of EEG data. This work was certainly the most
detailed and mathematically sophisticated to appear in
the literature during this time. Representative papers
Iinclude Walter (1963) and Walter and Brazier (1969). The
approach is once again statistical, considering the EEG
as a time series in the Weiner tradftion, and relying
heavily on the frequency domain., The output is nearly
always a very complex looking plot (in many cases to the
eye more complex than the raw data) and hopefully the
mathematics have been such as to make obvious to visual
inspection some aspect of the data, such as an enhanced
degree of activity in some frequency band, or a coupling
between two areas previously thought unrelated.

The essential point to be emphasized then is
the following. All of this work, (and almost certainly
the same situation exists in other areas like economics
or physics), is directed solely at developing mathematical

methods which will transform one complex set of curves



into another. The new set, it is hoped, will then "show"
something to the eye (or even allow it to be expressed

in the "cleaner" form as a number or set of numbers) which
was not evident previously. Thus the problem of
interpretation of the data, that is, of relating unusual
events or situations to others within or external to the

data, is left entirely to human judgement.

2.2 Contributions from Artificial Intelligence

We shall now turn to a completely different area,
which has come to be generally known as "Artificial
Intelligence" (Al). It is doubtful that there has as vyet
been any cross-fertilization between Al and EEG processing.

The history of Al, like other disciplines relying
on computers, extends back only about fifteen years.

During this time there have been a number of "vogues",

and fortunately, a few well-established general principles.
Among the vogues, one appears as germain to the present
undertaking, namely, the much-discussed Perceptron. The
essential lessons of this research will be revieved briefly

nowvi.

2.2.1 Perceptrons

The Perceptron was originally introduced by

Rosenblatt (1962) and his colleagues at Cornell in the

11
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late nineteen-fifties. It was viewed as a class of brain
models and was a direct descendent of the original formal
brain model of McCulloch and Pitts (1943). 1t will be
assumed that the reader has sufficient familiarity with
the Perceptron concept to forego the lengthy discussion
which would be required to introduce the subject. (A very
readable summary is that of Daly et al, (1965)). It was
hoped that the Perceptron would turn out to be a machine
of great generality and power with which many of the
problems of pattern recognition and brain modeling could
be solved with one comprehensive theory. A considerable
effort during the period 1958 to 1965 (including the
construction of a number of hardware devices) demonstrated
that in fact the Perceptron was not as general or as
powerful as had been hoped. Merely increasing the size

or complexity did not seem to give adequate return in
performance. The methods of analysis were essentially
statistical, since it was hoped that large collections

of elements would, "on the average' perform arbitrarily
well. The metrics of performance were those suggested

by the traditional mathematics of llnear spaces. Nothing
which could be called "algebraic'" or "topological"
characterized the analysis. Practical (yet essential)
estimates of the amount of memory required or the execution
time were few. Hence, when it was discovered (mainly
through computer simulation) that the performance left

much to be desired, the underlying causes were not certain.

12



Toward the late nineteen-sixties, the number
of Perceptron papers appearing each year began to decrease.
Finally in 1969 Marvin Minsky and Seymour Papert published
a book entitled: Perceptrons. An Introduction to
Computational Geometry. In this book they take a fresh
approach. No statistics, no multi-layer, cross-coupled
machines are discussed. Instead, they take the most basic
configuration of machine and examine the various algebraic
and topological properties it must have. They introduce
the notion of "order", which shows why earlier machines,
lacking sufficient order, would be incapable of computing
some of the simple predicates they were being forced to
attempt. They are concerned with the problem of geometric
complexity, rather than the behaviour of large networks
of elements whose basic computational properties were
uncertain.

The conclusion to be taken is simply this:
elementary machines of the Perceptron variety do not possess
enough power to perform practically useful pattern
recognition, while at the same time pose considerable
mathematical difficulties. (On page 102, Minsky and Papert
admit that they "secretly advocate" syntactic scene analysis
procedures). The main deficiences appear to be these.

The Perceptron suffers excessively from the restrictions
Imposed by the use of Boolean variables (0 or 1) to transmit
information. Since the output of each element gives no

Iinformation about how near the input conditions are to

13



the threshold, but merely indicates on which side of the
threshold the input lies, a tremendous loss occurs. This
is perhaps the most succinct example of the general problem
of excessively abrupt transition from fuzzy to sharp
variables referred to in the introduction. A further
problem, related to the problems of reliable computation
considered by Winograd and Cowan (1963) for example, is
that the ultimate report of the device must eventually

be channeled onto a single output line, which carries too
much responsibility. This is related as well to the point
of view that a single decision is the appropriate response,
j.e. that in the case of classifying alphabetic characters,
it would be meaningless to decide a letter was say, 30%

A, 45% B and 25% C. The Perceptron is not intended to
handle this class of data. A third criticism, most often
heard from the Al community, is that the Perceptron is

not intelligent at all. By this they mean that It uses

no heuristics to shorten its computational task, but simply
computes all quantities whether or not a previous
computation makes them irrelevant. |[f Perceptron popularity
had stayed high, a marriage with heuristic search techniaues
viould have undoubtedly taken place. Instead however,

marriages are occurring between more powerful approaches.



2.2.2 P R itio

0f all the areas being reviewed, that most
frequently referred to as "pattern recognition" (PR) has
by far the greatest bulk of published literature. No
comprehensive survey of this literature can be attempted
here; the reviews of Nagy (1968), Levine (1969) and Nilsson
(1970) are recommended. Instead, the general flavour will
be indicated, and the connection between this work and

the present one established.

2.2.2.1 "Classical' Pattern Recognition

What we shall term "classical'" PR is well
documented in the review by Nagy, and may be seen to bear
the following earmarks. The problem is to design a machine
such that, when an example of a certain class of data is
presented to it, the machine replies with a single "name"
or number, indicating to which class the example belongs.
More precisely, given a set of disjoint classes, C(i),
i=1,...,n, and an input vector X(k), the machine is to
reply with some number i, j=1,...,n. Most often discussed
is the case where the number of classes n is known in
advance. Alternatively, the machine is to "discover" how
many distinct classes there are, often termed '"clustering".

(The "classical" approach has also been termed the

15



"receptor/categorizer'" model (RCM)), by Maril and Green,
1960). |

The classification process is always broken into
two stages which are quite distinct, often called "feature
extraction" (the first stage) and then the "classification"
stage per se. The feature extraction process usually is
determined ad hoc,”;he bulk of attention being given to
the classification. Levine (1969) has pointed out that
in fact, feature extraction (the reduction of the raw data
to a vector of considerably smaller dimension), is just
as important as the classification algorithm to the errall
performance. Some attempts (e.g., Vatanabe, 1969) have
been made to develop general automatic methods of feature
extraction, but this process seems to require more
intelligence than can be programmed, and hence much more
attention has been given to the classification stage
assuming that adequate features have been determined
empirically.

The classification stage receives the feature
vector (usually having a dimension d less than say, 20)
which It is hoped adequately represents the input example.
What it does with it depends on whether the machine has
been "trained" yet or not. During training, the feature
vectors serve to establish regions or boundaries in the
d-dimensicnal space they inhabit. |If the training is
"supervised", an additional input for the class of the

input vector is provided, and the coefficients defining

16
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the regions are updated. Often the output classification
(the machine's "opinion") is "fed back" so that errors
may be corrected. (Most of the Perceptrons functioned
according to this paradigm). In "unsupervised" learning,
the machine must find the class boundaries for itself.
When the machine is considered sufficiently well
tralned, it is tested by inputting examples and recording
the responses, right or wrong, in each case, Typically,
a machine might be trained on several hundred examplesv
of letters of the alphabet, tested on somewhat less, and
with 10 classes (not all letters used, since a number are
quite similar) achieve something like 95% correct response.
The mathematical flavour of the classification
stage is almost exclusively that of linear spaces and
statistics. The boundaries between regions are usually
simple functionals (linear or simple polynomials) in the
fixed space determined in advance by the features. The
training consists in finding suitable values for the
coefficients in these functionals. Recognition then
consists in evaluating the functionals and deciding the
discrete class by the sign of the result, |If statistical
procedures are invoked, the estimation of parameters in
an assumed distribution (the so-called "parametric"
approach), or the estimation of the distributions themselves
("non-parametric"), with the resulting complexity of
arithmetic (matrix operations, iterative procedures) is

the dominant preoccupation. Since usually the computational



load increases as the square of the dimension, large
dimensionality is unfeasible.

We conclude then that these "classical"™ or RCM
methods are applicable in the following situations only.
The data must consist of a small number of sharp (in the
sense defined in 1.3) disjoint classes. Any data example
should be bounded in storage requirement, so as to be
accomodated in core storage. The dimensionality of the
feature space must be "reasonable", and probably the
features will be chosen by the implementer intuitively,
vwith some experimentation. The most likely situation is
one where there can be a short training period followed

by an indefinitely long operational period, in which the

data is sure to retain the characteristics already learned,.

(Two good examples of this situation are probably the
commercially available optical character readers, and the
several electrocardiogram (EKG) analysis programs which

are operational).

2.2.2.2 h m ic Appro

Outside the more well-defined regions in which
classical PR has had success, there lies a much larger
and virtually unexplored terrain. One area is the so-

called "linguistic", (or "articular'" or "syntactic")

18
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approach. This philosophy has been investigated by an
increasing number of workers among whom MNarasimhan (1962,
1964, 1966) is perhaps the best known. In his 1962 paper

he makes the point:

Categorization, clearly, is only one aspect of
the recognition problem; not the whole of it by any
means. It is our contention that the aim of any
recognition procedure should not be merely to arrive
at a 'Yes', 'No', 'Don't know' decision but to produce
a structured description of the input picture. Perhaps
a good part of this confusion about aims might have
been avoided if, historically, the problem had been
posed as.not one of pattern recognition but of pattern
analysis and description.

Shaw (1968) has emphasized the essential phrase
in the above remark: "structured description of the input
picture". This is to say that the emphasis ought to be
placed on the description of the data in terms of simpler
data types, rather than the simplest of all descriptions,
an assignment to a single class. Hence Shaw proceeded
to develop a phrase structure grammar (Chomsky, 1959) with
graph theoretic understructure. An advantage of this
degree of formalism is the theoretical results which may
be called upon to assist in the development. 1In addition,

the class of describable pictures is easily and precisely

19



defined. On the negative side, this degree of formalism
requires strong assumptions about the nature of the data
and the processor so as to insure (in Shaw's case) the
recognition of sharp primitives for input to the parser.
(Shaw's primitives are picture elements which allow 1 to

1 correspondence with graph edges. Thus it has a "natural®
application to connected line drawings. It is difficult

to see how one might select primitives in the case of more
fuzzy data, such as aerial photographs or microscope
images).

The work of Zahn (1970) is in a similar vein.,
The feature extraction must yield a set of points, which
are then connected by lines according to certain rules
to form a graph. This graph is then processed by
mathematically justifiable algorithms to vield what
hopefully is a simpler and more correct graph representing
the data as clusters.

We now turn to an area of Al which at first
glance does not seem very related to what we have been
discussing. The writer feels however that not only is
it related, but a more precise study of such relations
is greatly needed. Ve refer to computer "comprehension"
of natural language.

A sizable literature in computer processing of
natural language has developed within the broad scope of
Al, Earlier attempts at machine translation (between

natural languages) using formal mocdels as a co:mon hase
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have given way to what appears to be a less ambitious goal,
that of fact retrieval or question-answering systems.

(Some recent surveys are Simmons, 1970, Pirotte, 1970,

and Palme, 1970). Among these the most successful have

been those which abandon mathematical formalism entirely,
invoking syntactic rules as little as necessary. Rather

the attention is given to the semantics of the text, where
there is even less hope of a formal approach. Perhaps

the best example of such a semantic network is the Teachable
Language Comprehender (TLC) of Ross Quillian (1969).

TLC is a program capable of learning the meaning
of simple English as it progressively experiences the text.
The meaning of "meaning" is not defined in words or in
mathematical formulae; rather it is a set of heuristics
buried in the program for accepting each input word and
making appropriate changes in the machine's memory to
reflect the relation between the word and the rest of the
text. The machine is under the constant supervision of
a human teacher, so that both factual assertions and the
capability for correctly relating the input to the existing
contents of memory may be progressively taught.

This progress results in the evolution of a large
and complex network of interrelated words and concepts.

It is this network which is termed the "semantic memory",
The details of how TLC constructs and modifies its semantic
memory are once again, not important here, since we are

not about to deal with English text, The salient points
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for our purposes are the following: TLC uses a large and
ever~-growing network, arranged so that related things are
connected by short paths, to represent its experience.

Its knowledge is distributed fairly evenly throughout the
network, though there is a heirarchical relationship between
the more general and the more particular concepts. The
input to the network may be thought of as its "surface",
viith more general concepts lying deeper. The system relies
heavily on human assistance at first, though as it
accumulates experience, the ability to make guesses and

to generalize makes it less dependent.

TLC cannot make use of the more sophisticated
methods of heuristic search due to the lack of a feasible
evaluation function (meaning is hard to quantify): hence
it is limited to a rather small vocabulary and slow breadth-
first search. The loss of reasoning procedures such as
those available in a formal underpinning (usually first-
order predicate calculus) are also a price paid for the
semantic power. However these criticisms will be ignored
since in what is to follow, we shall not be prevented from
searching, and deductive reasoning is not a very likely

requirement in fuzzy data descriptions.

2.2.2.3 r rchi d u i M d

I1f there is one solidly established principle

which has emerged from the body of research which might
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be termed "hard core" Artificial Intelligence (as opposed
to the looser sense of Al in which the heading for Section
2.2 is meant) it is certainly the technique of heuristic
search (often called "tree" or 'graph" searching). A good
overview and bibliography is that by Slagle in the book
edited by Banerji and Mesarovic (1970) or the recent books
by Slagle (1971), and Nilsson (1971). The essence of these
methods is the reduction to a manageable size of an

astronomically large number of possible combinations of

situations which must be evaluated to make a useful decision

in a complex environment. For example, in a game like
checkers it is totally out of the question to compute all
possible situations to find the best one before making

a choice for a move. Hence, if all cannot be evaluated,
then which?

Ve will not become Involved in a discussion of
the details of these various algorithms, since no actual
graph searching will take place in what follows. This
is because (1) time did not permit and (2) the data used
were sufficiently simple that very small graphs were
involved, making exhaustive search pérfectly feasible.

The point to emphasize though, is that if larger data sets
are to be feasible, then any method involving computation

performed at the nodes of a graph must allow an efficient

application of the established search methods. That is

to say, the computation must be simple, it must depend

only on a concise and easily accessible number of previous
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computations, and the result should be obtainable (in any
particular instance) after searching only a small portion
of the total graph.

A technique very closely related to the methods
found in the Al literature is dynamic programming, though
for some reason very few papers on graph searching methods
from the Al community acknowledge this. There has recently
been an increase in interest in such sequential pattern
recognition methods, originating in the methods of Wald
(1947), and currently studied by Fu (1967, 1968, 1970).

The rationale in this approach is to reduce the expected
cost of observations (feature measurements) by suitably
planning the order in which they are made. The only paper
from the Al community along these lines known to the writer
is Slagle and Lee's, (1971). Zahn (1970) uses graph-
theoretical methods (the Minimal Spanning Tree) to achieve
Gestalt-like clustering, thus allowing searching as well

as a graph description of the data structure., It is the
opinion of this writer that such graph-based methods as

these will prove to be very rewarding.

2.3 Fuzzy Sets and Concepts

It was pointed out in the introduction and again
in this chapter that the notion of "fuzziness" is an
essential property of many types of data, and that the

abrupt transition from fuzzy data to sharp variables,
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structures or concepts (without carrying along the
fuzziness) is a probable source of the poor performance
of methods which do this.

Zadeh has introduced the concept of a "fuzzy
set" in several papers (1965, 1965a, 1966, 1968), in which
he gave a number of basic fuzzy equivalents of conventional
set-theoretic concepts. The central idea is that of the
"membership" function, which allows an element of a set
to have a continuously graded membership in the set, rather
than an all-or-none (binary) membership. He points out
the need of the introduction of fuzzy concepts in the areas
of pattern recognition and heuristic programming (!t would
be an advance of vast importance when we learn how to
design machines that can understand fuzzy concepts in much
the same way as human beings are capable of doing"). (1968).

Though there have heen a number of papers (Cofguen,
1967, C. t. Chang, 1968, Marinos, 1662, Lee, 1971) on
various aspects of fuzzy set theory, to the best of the
writer's knowledge there have been no attermpts to directly
incorporate fuzziness in a machine representation scheme,
with the possible exception of the thesis of W. G. Vee
(1967).

Since a proper introduction to the Zadeh fuzzy
theory is best had by reading his original papers, we shall
assume familiarity with them. Discussion and criticisnm

of various aspects of the theory will be found in subsequent
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chapters where certain aspects of the present work suggest

alternative points of view.
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Chapter 3, Fuzzy Graphs

3.0 roduction

This chapter will introduce and discuss at length
the central theme of this thesis: the notion of a "fuzzy
graph". The term "fuzzy graph" has been chosen since the
notions of "fuzzy" and "graph" are well known in the
literature and suggest the essence of the idea. We shall
attempt to present the fuzzy graph concept as a synthesis

of many of the ideas reviewed in the last chapter.

3.1 A More Detailed m f the Objectl
of This Study

In Chapter 1 a number of criteria were given
briefly to indicate the various objectives of this study.
These points will now be reiterated in more detall, so
that the development of this chapter may be better
appreciated. The order of their appearance only partially

reflects the significance of the criterla.
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3.1.1. The Central Problem

This thesis is directed first of all at
what may be termed the "Central Problem" of many areas
of pattern recognition and artificial intelligence,
which we shall express thus: '"to design a scheme
which appropriately and efficiently represents, both
conceptually and in some physical device, a large
collection of fuzzy objects, and fuzzy relations
between them!". This statement emphasizes that
fuzziness must be accomodated in some appropriate
or natural way; that the representation should be
amenable both to some theoretical formulation and
to hardware implementation; and that some form of
abstraction of the relations involving these fuzzy
objects should be provided for. The function of this
representation scheme should be to provide an
"interface" or intermediate structural description
between the raw data and some final or output
description, which may range in complexity from a

simple binary dichotomy to some type of '"language".

3.1.2 Learning and the Problen of "Meaning"

Since we shall be concerned with the design

of a machine whose function is to learn to identify

certain types of patterns presented to it, the attitude
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toward the machine as an "apprentice" is to be
encouraged. Thus it is desirable to build into the
machine as little as possible a priori information
about the data it is to encounter. That is, attention
should be focused on how the machine is to discover
for itself the nature of the data, and how it is to
ascribe some '"meaning'" to this data. Let us then agree
to regard the machine as a mechanical student of EEG
interpretation..Thus we shall call the EEG data the
"visual" data, since a human student would study an
EEG by eye, and any additional information about the
EEG will be termed "verbal" or "auditory", since the
human student would receive this information verbally.
The notion of "meaning" of the visual data
then will be considered to be the following. The data,
consisting of a number of fuzzy objects with fuzzy
relations between them, will be input via some "visual"
channel. The machine will be considered to have learned
the meaning of some item of this data when it can
associate a sharp name, input via some 'verbal"
channel, with this particular item. The name will
have been learned by repeated training examples
considered by the teacher to be similar, each training
example being accompanied by the same name. The machine
is thus able to attach names to what may be called
"events'" or "situations'", consisting of a number of

sub-events, which may in turn be named. The eventual
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goal is to have the machine report not only the event
and its components, but the structural relations
between them. To do this it must have some
representation of its experience in its memory, and
this is of course the Central Problem.

The machine should possess both the ability
to learn without supervision and, when supplied with
verbal input, to use the verbal information to assist
the learning process, In classical pattern recognition,
the learning usually consists in adjusting a number
of prescribed coefficients in some functions of the
features. This approach allows no interplay bhetween
any "intelligence”" and the visual classifier. If the
machine is to be endowed with the kind of artificial
intelligence found in game-playing and question-
answering systems, then the visual classifying
mechanisms should be of a fundamentally different
nature. Hence the method of representing the visual
experience and of structuring it, and of interacting
with it should be posed more as a general Al problem

than as a pattern classification problem,

3.1.3 Temporal Versus !lon-temporal Data

For the reasons stated in Section 1.2 we
would prefer to concern ourselves with "on-going"

functions of time (i. e., having no previously known
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segmentation such as speech has words). We shall
allow a partial segmentation (into "words") but shall
specify no prior structure (“phonemes") within the
words, which we shall take to be non-overlapping EEG
artefact signals. Since most pattern recognition
work has been concerned with functions of two spatial
coordinates only, and those dealing with functions
of time have usually had known structures (e. g.
speech or electrocardiograms), we are concerned here
with a somewhat different problem. VWe shall attempt
however to develop a method which will be applicable
to other data types as well (e.g., "retina" problems).
The type of data considered here adds another
restriction not found in many other more popular
types. Since it is so extensive in time, any form
of random access is probably uneconomical. (A full
clinical EEG of 1/2 hour duration and 16 channels
contains about 109 bits). Hence we should look for
method which will allow a single scan of the data.
This will have the additional advantage of allowing
real-time operation of the machine, such as in a

robot.

Clearly an appropriate way to consider the

problem from the point of view of implementation is



as a program for a general purpose digital computer.
The writer is of the opinion however (cf., Aleksander,
1971) that the von Neumann machine organization is
highly unsuited to this type of problem. Thus the
conventional computer may be considered an
experimenting ground in which one may discover the
principles by which a radically different type of
machine organization could be defined, This is what
was alluded to in Section 3.1.1 when it was included
in the "Central Problem" that a physical device was
to be considered as well as conceptual devices. Too
many conceptual devices are either physically
unrealistic, or are cast in a form determined by some
well-known physical deviée, such as the von Neumann
machine.

Hence the following point of view on
implementation will be adopted. Since there exist
a large number of von Neumann machines and software
for making them relatively easy to use, an approach
should be taken which attempts to function usefully
in this environment. In addition, since there exists
a considerable development of software artificial
intelligence techniques which may be employed, any
advantage of them may only he had in this environment.
However, it should be kept in mind that the
developrments in pure fabrication technology will

probably continue to ocutpace developrnents in
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theoretical areas. It may be safely assumed that by
the end of the decade (if not already) the capability
to construct machines with billions of active elements
will have advanced far beyond the theoretician's
ability to take full advantage of the hardware. Thus
ve should not feel that the von Neumann machine is

to forever be the only machine which will perform
intelligent tasks, but rather suspect, as Aleksander
does, that it is a poor candidate for this role. The
important question then becomes: what are the
alternatives? This study is concerned as well with
this question.,

Two additional questions (for hardware
particularly) are the degree of precision required, and
the reliability. The demonstration of acceptable
performance using very low precision, and a method which
distributes responsibility for recognition, so that errors
in individual elements may be tolerated, will therefore

be additional design objectives.

3.2 A Prognosis

Having reached this point, the knowledgable
reader could not be blamed for feeling somewhat skeptical
that all the various work mentioned and the various criteria
listed are about to be combined in one successful package.

He should be assured right now that this is not about to
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happen. Why then has such a variety of background and
objectives been mentioned? Simply because they are in fact
what the writer has In mind as long-term goals, reallzing
that they will require much more work than what has already
been accomplished, but hoping that the ideas and their
feasibility could be adequately demonstrated here.

Now we will state briefly what does lie ahead,
and what does not, to prevent any undue upset on the part
of the reader. The_program presented may be thought of
as a form of clustering algorithm (for a review of
clustering, see Ball, 1970), and no interaction between
the visual and verbal data of the Al variety will be found.
The data structure is nevertheless Intended to allow such
interactlion, though consideration of this problem is beyond
the scope of this work. Since the size of the graphs is
small, no searching algorithms have been used, but the
nodes compute a natural evaluation function, and searching
could be easily introduced. The data is extremely simple,
consisting of only four categories to be distinguished.
Though no semantic reporting of the data structure is
attempted, printout of the actual graph structure
demonstrates that tﬁe data is accurately and efficiently
represented.

The program attalns a recognition rate above
90% with about 20 nodes, making about 5 nodes per category,
each node requiring about 90 bits of storage. The examples

on which it makes mistakes are usually poor enough in

34



35

quality that the errors may be blamed on the features,
which are not intended to handle distorted or small

examples.

3.3 Repr ing Fuzziness

In Sections 1.3 and 2.3 we have reviewed briefly
the concept of fuzziness, introduced originally by Zadeh.
We assume familiarity with his definitions, and have not
repeated them since we can offer no theoretical extension
of them. To the best of the writer's knovledge, the only
significant extension of Zadeh's original papers is that
of Goguen (1967), in which he generalized the unit interval
J to a complete multiplicative lattice L with certain
restrictions on distributivity and the group operation.
He makes the important observation that J is not suitable
in many instances (i.e., two fuzzy situations may not be
comparable in any sense). He introduced as well hierarchies
of fuzziness, so that two fuzzy sets may bhe compared for
"degree of fuzziness'", for example. Perhaps his most
important addition is the use of category-theoretic language
as a more general and flexible formalism for fuzziness,
along with his "Principle of Fuzzification'", a general
rule for converting sharp mathematical situations into
corresponding fuzzy ones. He makes no attempt to consider

topological questions in this paper, promising them later.



The following attitudes toward theories of

representing fuzziness are suggested by the works of Zadeh

and GCoguen. What is desired is a definition of mathematical

relations between some input or feature space X, an internal

(to the machine) representation scheme R, and an output
space or language Y. |In general, the space X is probably
adequately structured as a‘vector space. The output space
Y may range over a wide number of possibilities, from a
single binary decision to the English languwage, or some
subset thereof which is mathematically tractable, say in
the manner of Chomsky (1965). Given X and Y, the problem
of course is to determine a suitable R, and the mappings
between them. This is where the language of category
theory and topology should be most useful., Two levels

of complexity may be disfinguished in the possible
structures for R: those R's which have a fixed vocabulary
and which learn the data structure in terms of adjusting
values which define functions in this vocabulary; and those
which are in some sense "extensible'", in that a working
vocabulary is automatically developed from some simpler
set of primitives and production rules. Examples of the
former include simple learning of coefficients in classical
pattern recognizers, and scene analysis methods which
express the data structure in a sharp language such as
predicate calculus (the predicates being given by the
designer in advance), or in some "picture'" language in

the manner of Shaw or MNarisimhan., TLC may be an
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approximation to the latter case, though there the input
is not a vector space, and the representation does not
have a mathematical structure. A TLC-like program which
looked at pictures as input and delivered an output in

a Chomsky-like transformational grammar would be closer
to the second situation.

What kinds of structures are suitable candidates
for R? Remember that we wish to incorporate fuzziness,
so that sharp structures per se are rejected. What about
fuzzifying a given sharp mathematical structure (e.g.
predicate calculus) using a Fuzzification Principle such
as Goguen has proposed? The writer suspects that this

is precisely what not to do, since as soon as sharpness

is abandoned, most of the useful algebraic properties will

be lost as well, It is doubtful that a fuzzy group vould
be of much use for example, since the structure of groups
is a very sharp situation. Lee's fuzzy resolution is
simply a "worst case'" theory. Topological notions are
more naturally fuzzified, as C. L. Chang has pointed out.
1t appears then that fuzzification applies naturally to
sorme mathemnatical structures, and not to others, with set
theory and basic point-set topology established as "good"
candidates.

When this study was begun, the writer had no
ideas on how to define a formal fuzzy mathematical structure
adequate for RP. It was decided therefore to employ the

notion of a graph which has been widely applied in skarp
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situations. The notion of a collection of nodes, each
representing some situation and computing some function,
together with relations (weighted edges), between the nodes
is sufficiently general so as to be adaptable to many
situations. Here we will develop a graph-like structure’
R which represents fuzzy clusters in a natural and
hierarchical way, and which maps a feature (visual) vector
space X of small dimension onto an output (verbal) space

Y which is also a vector space of smaller dimension. Mo
attention will be given to finding an optimum structure
for X or Y, this question being data-dependent. Only the
structure of R will be considered, since we are not
concerned with the data (EEG) per se, but rather with the

general problem of managing data of this type.

3.3.1 Clusteripng at Nodes

The clustering methods reviewed by Ball (1970)
range from those which connect together every data point
(e.g., 2ahn's) to the more geheral techniques wvhich
partition the feature space into relatively large reglions,
such as discriminant, nearest-neighbour and mode-seeking
methods. A trade-off between these two extremes would
be to provide for a number of small regions where variations
viithin the regions represent slight differences In quality,
so that the regions may be considered "fuzzy sets". |If

we then associate each of these regions with a node in
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a graph structure, we may add additional nodes to the graph
vhose function is to define relations between the original
nodes. Thus the nodes associated directly with the fuzzy
regions of feature space may be called level 1 nodes,

and the function of such a node is to report. for a given
input situation (i.e. a given feature vector) how close

the vector is to its region, or the degree of membership

in its fuzzy saot.

Leaving for a moment the question of how to
compute this closeness or membership function z, let us
consider how we might connect such nodes in a graph. The
usual method of connecting nodes which are intended to
perform clustering is to connect with all=-or-none (binary-
valued) edges all nodes belonging to the same category.
When the certainty of category is in doubt at a node,
either through poor data or when the node quite properly
belongs to more than one category, this method breaks down.
Neither does it admit a hierarchical description of the
data structure, where for example, one group of nodes
represents one part of the data, another group of nodes
another part, and these two groups are in turn connected
to a node in a manner which represents the relation between
the two parts. If we can define a means for connecting
nodes on the basis of their structural relation instead
of their category, we will open the possibility of a graph
structure which is capable of a deeper description of the

data structure than simply a binary assignment of
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categories. The assignment of the category or
description may then be effected by adding to the node
"pointers" to the descriptions which apply to the region
represented by the node. In th; case of simple categories,
which we consider here, the pointers may consist of a
vector which we will call the "opinion" véctor V, whose
coordinates correspond to the categories. The node then
defines a mapping between a fuzzy region of the feature
space, X, and a direction in the category space Y given
by the opinion vector V. By this mechanism very general
transformations between situations in a feature space X

and their descriptions in a space Y may be defined.
3.3.2 C Functi d the Nod ructu

In this section we will develop the structure
of a node (Figure 1), but first we must discuss membership
functions for fuzzy sets. Closeness or membership functions
for fuzzy sets are usually thought of as "hills",
reminiscent of probability distributions, which are large
over the region of interest and approach zero in all
directions away from the region. Such functions tend to
be very non-linear and require more computation than one
viould like if they are to be computed a large number of
times. e may make a considerable simplification under
the following conditions however. Suppose that we wish

to select regions of a feature space as "interesting" or
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FIGURE 2. INNER PRODUCT REGIONS.

The sloping lines are loci of constant inner product, with a vector W locoted
ot the dot. [t is best not to allow W inside the dotted area, such as in region

R3 which is larger thon Ry or Ry as o result.
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"important" where all the features (coordinates) have the
property that their interest or importance is proportional
to their magnitude. We shall call this the "magnitude-
significance" property. Suppose in addition that most

of the time, less than (say), half of the coordinates of
an interesting region are large. Under these assumptions,
we may choose a vector W somewhere in the middle of the
region of interest. Then any given vector X will have

a large inner product with W in the region, of magnitude
proportional to X. The inner product z=X*¥W (lower case
letters are scalars, upper case are vectors, and * indicates
inner product) may then serve as a membership function

for features with the magnitude-significance property,

and for regions limited to areas away from the origin,
bounded by the hyperplane z=0, Our initial closeness

function is then:

z = k max(X«¥,0) 1)

where ¥ defines the reglon by being a "typical" vector

near the middle of the region, and W should have, say,

at least two coordinates greater than some threshold, and
preferably not all coordinates large, since the
effectiveness of the inner product in determining a region
is reduced in this case. k is a normalizing "gain" factor,
whose value will be given in a moment. We choose the

boundary z=0 as convenient, since certainly negative inner



products are not in the region. Figure 2 indicates some
inner product regions, and the advantage of keeping more
than one coordinate large.

This simple z will work in some cases but not
others, however. Clearly, if W = (5,5,0,0,0) for example,
any vector having the first two coordinates large will
appear to be in the region, regardless of the other
coordinates. The inner product alone can tell nothing
about X coordinates whose corresponding W coordinate is
0. To overcome this, we break W into two parts, those which
are large, and those which are small. We may speak of these
two parts W, and W, as though they add to form a vector
W', but this is not quite appropriate, as equation 3 will
show. Let t,6 and h be small positive constants. Then

if j is the coordinate index, then:

If WGPt ,set Wi(j) = W(j), and ¥ (j) =0
If Wit set W (j) =0, and W,(j) = h(t_-1W(j)I); for all j.

with sign(W,(j)) = sign(¥W(j)) 2)

The h and t_ are selected appropriate to the scale of the
W(j). (In this work, t_=3 and h=2, since |W(j)[<16).

W is thus broken into an "excitory" part W, and an
"inhibitory" part W,. We may now define the z with

inhibition as:

z = k max(Xek - 2 IX(W, () ,0) 3)
J

Ly
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Thus a vector X which gives a large X*wi product but has
components in the region defined by wz will give as well
a large absolute product with the wz vector, resulting
in a small z as desired.

The function of k is to insure that nodes may
be assembled in levels, the outputs of one level becoming
the inputs to the next (see below). For graphs of only

a few levels depth, an acceptable estimate for k is

averggelW(j)l
J

VW

Thus an "average-signal' feature X will result
in z values of this average value.

Reference to Figure 1 shows the visual or feature
data X as a vector entering the node and resulting in the
closeness value z, and in addition, an opinion vector V(j),
where j is the category index which determines the opinion
output vector Y. The determination of V(j) will be
described in the next section. Here we note that the
output opinion Y of the node will be the scalar z times
the vector V, i.e., Y = 2zV. Thus the output opinion of
a node is the estimate Y of the category to which this
node corresponds times the estimate z of the membership
of the input vector X in this node's region. One could

also think of z as the probability that X is in the node
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region R, and V(j) as the conditional probability that

the category is j given a vector X in R.

3.3.3 Node Interconnectiops and the Graph Structure

Given a sequence of feature vectors X;, where
i is the "time" index, we wish to establish a graph
structure which represents both the spatial and temporal
behaviour of X;. Recall that nodes whose inputs are feature
vectors are termed level 1 nodes, and correspond to a fuzzy
region of feature space. We add nodes to the graph
inductively, starting with no nodes, and ¢create or add
a level 1 node at time i if X, has at least two coordinates
X.(j) and X,(k) say, greater than some threshold t and

X-

. Is not in the region of some existing level 1 node,

to avold redundancy. |If the regions belonging to the level
1 nodes are well separated, then not more than one level

1 z should be large simultaneously. However, the inner
product z function often results in considerable overlap
of regions, and an X; in the intersection region of node

p and node q will result in z, and zq being simultaneously
non-zero.

Keeping this possibility of intersecting regions
in mind, we ask: how are we to accomodate temporal relations
between the regions{ that is, if an event is characterized
how

by the X; vectors passing from region R, to R, to R

2 3’

shall the graph reflect the fact that z, will be large,



followed by z, and then 23? (We are using subscripts to
indicate node or region here, and we also use them to

indicate time, as in X Context should signify which

‘.
is intended). Ve may do this as follows. As the sequence
X.

. leaves a region R, instead of the z values being those

glven by equation 3), let them have a linear decay, with
a time constant greater than the time normally taken for
X; to pass between regions. That is, if i is the time

index and j the node index, then:

1) Calculate zg5 from 2) as usual.

2) If z;. <z, , . then set z;. =2

) 1, ) i—l,j -c,

where c is the decay Eonstant. Otherwise do not change
z(j. Hode z values thus decay for a time sufficient for
the X vector to pass into another region, and the following
possibility presents itself. Form a new level 2 noce n

if at least two level 1 nodes have z values exceeding some
threshold t. This will accomodate either the intersection
case or the temporal case, although admittedly n cannot
distinguish the two cases. Often such a distinction is

not required, since if a vector X{ is passing from R, to

R it usually goes through the intersection, and there

zl
is a continuum of cases between the extremes: a) jumping
instantly between two disjoint regions, and b) entering
and then leaving the intersection of R, and R,, without

entering R1 or Rz alone. The only difficulty occurs if
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FIGURE 3. RECOGNITION OF INTERSECTION OF TWO REGIONS

To facilitote drawing in two dimensions, regions have been drawn as circles, which
of course they aren’t. The vector X hos resulted in the formation of node N3. Any
X in both Ry and Ry will now be in R3 in the zyz; plane.
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FIGURE 4. RECOGNITION OF A TEMPORAL SEQUENCE BY THREE NODES.

Nodes A and B are at some level n, while node C at level n+1 accepts their
outputs Z. A is in decay at TZ when B occurs, causing C to respond.
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the data does contain such possible ambiguities in different
categories, or if It is required to represent the spatio-
temporal structure uniquely, for instance, when it is
desired to have the machine reconstruct a waveform as it

has learned it. Figures 3 and L4 indicate these two cases.

We shall endow all nodes at all levels with the
same linear decay functions, and the general node'formation
rule becomes:

FORMATION RULE: Form a new node on level n+l if at least
two level n nodes have z values exceeding a threshold
t, and no other level n+l node has a z value exceeding
some threshold t,.

In this definition, the features themselves are
considered level 0. The weights W, and W, (the "excitory"
and "inhibitory" weights) are determined, as an initial
estimate of the region, by taking the current X; as the
vector W and applying the rule 2).

The opinion vector V must be determined
by the teacher, who provides an estimate of the category
to which he wishes this Xi assigned. FfFor example, if he
is certain that X{ is category 1, and there are 4 categories
and the V(j) have a range of 0 to 9, then he may set
v=(9,0,0,0), etc.

Probably the first estimate W of the region R
Is not the best, and as subsequent examples of the sarme
situation repeat themselves, the X; sequence will again

pass through the same region, though on varying
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trajectories. When X, again reaches a point "well in"

the region of node n , we may obtain a new estimate of

W and V as follows. Let the "update" threshold be t,,
and W be the vector recomputed from W, and W,. |If z,
<z_,and 2z, >t, then X{ is probably the closest to VW that
this current sequence will get. Recompute W and V by
simply averaging the X; and whatever V. is available (the
instantaneous teacher opinion input) with the existing

W and V. That is:

UPDATE RULE: 1) Reconstruct W from w' and wt when the

above conditions on z are met.
2) The new estimate of W is just:
W=(mW+X;)/(m+1)
vihere the W on the right side is the reconstructed
W, and m is the number of previous updates. Recompute
k from the new V¥W. Similarly:
Va(mV+V: )/ (m+1)

3) Recompute Nl.and W, from equation 2)

3.3.4 Obtaining an Output from the Graph

Since we have many nodes, each offering an
"opinion", we must obtain some consensus. Selfridge (1959)
was one of the first to anticipate this problem and

suggested taking the largest opinion. This is acceptable

only if one can be assured that the largest is statistically

the most reliable. Frequently methods with statistical
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underpinnings are seen in the literature (e.g., the so-
called Bayes estimates) which tell one similarly to choose

the "best" or "least risk" estimate. |In practice however,

‘one requires very large samples to obtain a good estimate

of which is best, and any statistically based method
requiring knowledge of distributions would undermine the
objectives of the fuzzy approach. Tests using the greatest
output or outputs (with the very low precision used, &
bits, several may be equal) showed that this method was
ndt satisfactory. Averaging the greatest two was better
and the greatest three again better. Since continually
(at each time step) ranking the outputs to obtain the
largest n outputs begins to increase computation, an
alternative method was sought.

Another method which is intuitively appealing
is to average all outputs which exceed some threshold t
by simply adding them. This method was found superior
to the ranking method, and offers more possibilities for

theoretical development. Thus

Yot ® ZSYJ_ Nt W)
where ﬁ is equal to zYsas usual, and j is an index over
nodes. It will be useful in what follows to refer to this
output opinion vector Yt as a vector of "votes" for the
various categories. |If category k is given the largest

vote, (i.e., Y(k) is greater than all other Y(j)) then



ve will call k the opinion of the machine (the category
assignment).

This output is of course, not a structural
description of the data, but merely a single name
assignment. The incorporation of mechanisms for more
linguistic output spaces is beyond the scope of the present
viork; hoviever, since one major agpect of the fuzzy graph
is to obtaln such descriptions, some indication of how
this could be accomplished is in order. Let us consider
a fuzzy predicate such as "is a member (part) of". If the
predicate is considered an ordered pair of fuzzy vectors
(V1'Vz)' where the V's are name vectors exactly as before,
and (V,,V,) means "V, is a part of V, ", then the teacher
may input in place of V alone, V, and Vz ,» where V, Is
the name of the part which belongs to V,, the parent.

Thus a node carries an estimate of the part name and the
parent name to be associated with a region of visual space.

We may illustrate how the structure of the graph
would be interrogated to yield a part-parent description
of a category (which is the ultimate parent) by assuming,
for the sake of argument, the availability of an interactive
graphics system. Since each node has a large number of
weights associated with it, the system would not show any
veight values or graph edges until asked to. We select
a category k, and the system indicates the deepest level

(=d) nodes whose Vz votes are rmost certainly k, tote that

there may be a number of these, corresponding to disjoint
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regions of feature space vhich in various training examples
have been designated as k. We then choose one of these
level d nodes, and the system displays its V, and V,
vectors, vhere the V, is of course the selected category,
and V, is any part description given to this node. Since
this is a deep node, it will have been formed only as a
result of many earlier nodes, which are in turn, parts
of other gtructures. Thus the deep nodes would not be
expected to possess much of a part vector V;, since part
vectors should only be input on small local regions. At
deep levels then, we expect large V, and small V,, and
analogously, at the first levels, which are relatively
broad in their feature space associations and may well
belong to many different categories, we expect weak V,
vectors and sharper V, vectors.

\le may proceed backward from level d, the system
indicating which nodes are the major inputs to any selected
node, obtaining both part and whole description, so that
the parts, and parts-of-parts may be seen, as well as parts
which are shared by other parents. Two categories could
be selected, with an indication (such as increased
intensity) of those nodes belonging to both, so that the
common parts could be identified.

This very brief description of a possible
extention of the present work is admittedly not sufficient
to satisfy the reader that the graph is providing an

adequate description of the data structure. It is included
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to illustrate the manner in which one could extend the
graph structure as it is presented here; a flexibility
not enjoyed by simpler pattern recognition schemes. In
Chapter 4 an example will be given of a manual recovery,
by printihg of the graph z and Y values during an event,

of the structure of the input waveform,

3.4 Why Has This Structure Been Chosen?

At this point the reader should be wondering

exactly what kind of function a graph such as we have just

defined computes. Let us for the moment consider the graph

vwithout the time delays, i.e. as a function mapping a
single point in feature space into a single point in the
output space. The expression 3) is not very tractable
from a mathematical point of view, since it contains the
two non-linearities (the max function and the absolute
value) vhich defy simplication. Why then use such a
function? Why not use the more manageable and popular
max and min functions from Zadeh's theory, and obtain a
"Zadeh-type" fuzzy AND/OR graph? Certainly this would
have the advantage of familiarity since AMD/OP graphs and
minimax methods are well studied in the literature.

The reason is that the writer feels that the
minimax functions, while having good algebraic qualities,
are not as suitable for real fuzzy sets as one would like.

Max and min functions are desirable for their algebhraic
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properties on the fuzzy domain (termed L by Goguen, who
generalized Zadeh's use of the unit interval to a completely
distributive lattice with zero and infinity). However

they are also '"pessimistic'" (see Santos (1968) and Mizumoto
et al., (1969)) in that they guarantee bounds by taking
viorst case estimates. Such pessimistic estimates have

been seen to function poorly in game playing situations
when pitted against humans, since certainly humans do not
make decisions based solely on the worst case (Slagle and
Dixon, 1970). The problem of how much and what kind of
algebraic structure to incorporate is one well familiar

to those working in computer methods for handling natural
language. Chomsky's formalism for representing language
had to abandon the traditional structures of algebra, and
sti11 Quillian was unable to use Chomsky's methods in his
TLC program. Until a theory of fuzziness can be developed
which relinquishes some of the algebraic structure of L

in favour of more flexible structures, we must be content
with either the restrictions of formal fuzziness or the
lack of rigour of the present informal fuzzy approach.

The graph structure which results from applying
an algorithm of the sort described here to some real data
may probably best be considered as a fuzzy parse, in the
sense of a phrase structure grammar., A given data structure
is reflected in a corresponding graph structure as a
hierarchical set of relations between parts and sub-parts.

Since level 1 nodes represent regions of feature space,



two can be on simultaneously only if they are not far apart
and the input vector falls in their intersection, resulting
in a level 2 node for the occurence of this pair. In a
larger feature space, one would not want to have nodes
with large numbers of inputs - with this metric their
performance decreases as the number of inputs increases.
The number of inputs per node would have to be restricted
to a small number (say 8), and hence a number of nodes
vould be on simultaneously to handle situations with more
than this number of features. MNodes at the next level
would then play the essential role of coﬁpling together
these smaller nodes. Such large situations would be handled
as indicated earlier by a search algorithm which might
go something like this. The most frequent (or important)
features would be computed first, then the first level
nodes Involving them, then the second level nodes involving
these, etc. This would require a change of pointers
defining the inter-node (edge) relations from the sink
node, as they are now, to the source node, where the edge
is from source to sink. Additional features and nodes
would be computed until a sufficiently sharp output was
obtained.

This degree of sharpness, or quality, is defined
as follows, |If the category of an input X is k, and the
vote for category j is Y(j), j=1,...,n, then the quality

is:
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q = Y(k) 5)
S Y5+l

j#k

The 1 is in case the sum Y(j) is zero.

Returning to the time function case (i.e., with
decaying node outputs as described above), level n+l nodes
serve the main purpose of detecting time sequential
relations between level n nodes, as Figure 4 shows. Due
to the non-uniqueness pointed out above, two events occuring
closer in time than their prototypes will give a larger
output than the prototypes, and similarly larger intervals
will give smaller outputs, not an undesirable result.

In this chapter, we have tried to show how the
fuzzy graph is capable of both a visual and a verbal
description of an event, acting as an interface between
a feature space and a description space. In the next
chapter, the results of a program written to experiment

with these ideas are to be presented.



59

Chapter 4, Program Dg;gfls and Performance

This chapter will present the detalls of the
program which was written to gain some numerical experience
with the methods outlined in the last chapter. Many early
results obtained during the period when the present form
of the program was being evolved are not presented; rather
only a sample of the more revealing aspects of the current
program's performance will be given., The main interest
will center on the effect of changing the various
parameters, most of which are thresholds. The two effects
of most interest are of course the error rate and the size
(number of nodes) of the graph. We begin with a description

of the data and its acquisition,

4.1 D A isi

Data was recorded from flive subjects, ranging
from a male of 24 to a female in her sixties. Two channels
of data were recorded, consisting of deliberately created
eye motion artefacts. One channel was from an electrode
pasted about 2 cm lateral and 2 cm above the eye, the other
being 2 cm lateral and 2 cm below the eye. This arrangement
gave a reasonable approximation to the four binary
combinations of positive and negative-going waves in the
two channels when the subjects were commanded to roll their

eyes up, down, left or right. Originally it was attempted
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to record more than four classes of signals by including
eye blinks, squints, and the four eye rolling motions
performed with the eyes shut. The experimenter however

was unable to learn to classify these with any certainty;
It was decided therefore not to ask a machine to do so.
Even the four eye-open rolling motions showed such
variability that the experimenter could not always Identify
the signals. Frequently one of the channels would seem

to "drop out" in that only a slight wave of unrecognizable
shape or polarity was present. The EEG itself, originating
in underlying brain tissue, served only as a source of
nolse added to the artefacts. Figure 5 shows a number

of examples of the four signal classes.

The recordings were made on an analog (Fl4) tape
recorder with a bandwidth of 1 to 20 Hz., along with verbal
identification of the commands to roll the eyes. They
were then digitized at 150 samples/sec with a PDP-12
computer and stored on digital magnetic tape with a
precision of 6 bits. This data was then edited visually
using the PDP-12 display to select those examples which
seemed acceptable. Many signals were unsuitable due to
low amplitude, super-imposed jerks of the eye resulting
in saw-tooth shaped signals, and strange waves due to the
eyes taking a deviation or blinking while rolling. The
edited data contained 80 up (U), 69 down (D), 52 left (L)
and 76 right (R) signals. (The smaller number of lefts

indicates that they were the poorest in quality). This
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selection included a number considered so poor that the
machine was not expected to recognize them. This data

was then transferred to the 2314 disk of the McGill 360/75
on which the main programming was done in PL/1. A digital
plot of the data was obtained by which each event (one

of the four signal types) could be verified and correctly
named by referring to the original analog tape. The events
occurred in the edited data at random times, with no
overlapping. The data was arranged in records of 512
sample vectors (i.e. a vector of the two channels) per
record so that records could be presented to the machine
In any desired order. No events spanned two records to
simplify the programming. Records contained elither UD

or LR events only, or a mixture of all four types of events.

L,2 E u r

Since the determination of good features is a
difficult problem in itself and is dependant on the
particular data, and since it was not an objective of this
study to analyze eye motion artefacts per se, little
attention was given to feature extraction., A pre-program
was prepared which accepted the raw data from disk, applied

a simple four point low pass filter, of the form:
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and wrote back on disk, for each time sample, a six
component feature vector, three for each channel, as
follows.

Let the smoothed signal in one channel be denoted
by x;, a scalar proportional to the electrode voltage at

time I, with 6 bit precision. Compute:

1

2y = xL;.‘ Xy and
{ ) 4

. = 3 - -

fL3 ﬁ-z,z fc+z,1

that is, elementary first and second derivatives. It was
found that the signal and the fij had an unsatisfactory
dynamic range, since it was desired to reduce them to 5
bit features., Taking a hint from biological systems which
handle wide dynamic ranges in a non-linear way so that

the "physiological" range is given the greatest precision,
and very small and very large signals are attenuated, the

/ {
three values x;, f;, and f;, were subjected to a memoryless

[§
piece-wise linear transformation g, of the shape shown
below, to emphasize the interesting range and to suppress
too small or too large values. The exact values of the

function g need not concern us here. The three features

for each channel which were recorded on disk then are:
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where f£3 is given the sign of x;, and the sign bit is

in addition to &k magnitude bits. Thus the Input features
have 5 bit precision, since they naturally.are signed
values. All subsequent z values, which are non-negative,
are only 4 bit numbers. It would be interesting to try
features with only 3 bit magnitude, and the author suspects
they would work. Certalinly the sign is the most significant
bit.

It was discovered some time after having used
these features for the initial development on the graph
program that there were cases where the features did not
distinguish categories sufficiently well. To properly
test the graph performance, an improvement was added as
follows. Two new features were added, one proportional
to the difference between the two signal channels, and
the other inversely proportional to this:

= 3 . -y
f‘* I(x"l x‘.L)

= . J o
fis slgn(fb4)
2 + | ‘Lyl
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Thus the feature vector has 8 components for

each time i: the fl’ fz, and f3 for each channel, and

.f+ and fs.

The verbal information was recorded on disk along
with the visual information as a number v; at each time
step I, where v =0 if no event was occurring, and v =1,2,3
or 4 if the event was U, D, L, or R, respectively. The
beginning and end of the event was a subjective decision
by the author. These v, were used to define the verbal
Information used to create the vector V,(during node
formation) or for updating V, with no attempt to grade

the teacher's opinion of the category, as follows:

I f v, =0, v =(0,0,0,0)
1 f v, =1, Vv =(9,0,0,0)
I f Vng' VL=(0,9,0,0) ..+ €tc.

The range 0 to 9 for the opinion coordinates was arbitrarily
chosen to not exceed one column printing width. Thus nodes
which are always updated on the same category will retain
the sharpest opinion, 9 for that category and 0 for the
others. A node updated half the time on category U and
the other half of the time on category R will have an -
opinion (4,0,0,4), the truncation belng insignificant.

These features have been chosen to be
mathematically simple, Involving a minimum of computation,

and reflect the criteria which the author found himself
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read a record
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'I
increment time
|
set F1 & F2 = 2 largest |§I

no
e—————1js F1+F2 > ts?

yes

compute all node z values, and
accumulate the sum of all opinion
vectors Y for this time step.

end of event?

yes
n

output OP and record
errozldata.

Is F1>t,, and F2>t,, and no
z on level 1 > tl? yes

no

form a new node on
level 1 using X; and V;
< ]

repeat above formation step
for levels > 1 using t,, and
t, in place of t, and t_, .

update any nodes whose z > t
and which are at a maximum
In time.

end of record?

no
yes

Figure 6. Flowchart of Main Program



to be using in recognizing the data types. They will be
seen to suffice for the larger and less distorted examples,
but fail to give an adequate measure of the poor quality
waves. As we have stated earlier, this deficiency is not
the direct concern of this study.

lle have now specified the action of the pre-
program which prepares on disks a set of features (visual
Input) and teacher opinions (verbal input) which the main
program accepts as input with which to build the fuzzy

graph.

5.3 } P m

The main program, which performs the recognition,
reads the features and the names of the events from the
disk a record at a time, so that the records may be
presented in any order. Figure 6 is a flowchart of the
essential program details.

_We will explain Figure 6 briefly. A record is
scanned until the sum of the absolute values of the two
largest features F1 + F2 exceeds a threshold tg which was
fixed at 4 for all that follows. This Is simply a means
of skipping over noise between events. When te is exceeded,
It is probably due to an event, and we compute the values
z (closeness) and Y (opinion) for all existing nodes.
Admittedly this Is very wasteful, since most nodes are

Inactive (z=0) at any time. Since we wished to direct
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attention to the node function and graph properties in
particular, and since the number of nodes involved in the
data at hand was economically small, the question of
computing only active nodes was set aside. We shall write
OP for Y,4 for convenience. OP is the sum of all Y vectors
taken over all nodes and over the duration of the event,
where any components of a Y which are less than some
threshold t,, are set to 0 in the sum. (This is a
heuristic, like most of the functions found in this program,
and was discovered by trial and error). The vector 0P
is printed at the end of each event along with an estimate
of the quality of OP, q, obtained as described in Section
3.4. q Is thus a large number if the OP is correct (i.e.,
the largest component of OP Is OP(j) after event j ).
A 4xh confusion matrix is maintained in which, at the end
of each event, the OP vector is added to the i-th row if
the event was of class i. An error matrix is also
maintained, in which 1 is added to the (i,j) element, where
i (the row) is the event class and j the index of the
largest OP component. |If more than one OP component has
the same value (or all are 0) then nothing is added to
the error matrix, but this is recorded in the total count
of all errors.

The formation of new nodes is handled identically
at all levels, except that distinct threshold values are
used for level 1 (which receives the features themselves

as Inputs). If Fl and F2 are the absolute values of the



two largest features at any moment then if F1>t and F2>t,,
and no level 1 node has a 2z value>t, then a new node is
formed at level 1 with weight values W determined as
explained in 3.3.2. The opinion or name vector V for this
node is set to (9,0,0,0) if the current event is class

1 (), (0,9,0,0) for D, etc, and V=0 if there is in fact

no event In progress at the moment. MNodes on higher levels
are formed in the same manner, using the thresholds t,
control

and t These four thresholds and the fifth, t

LY &

the density of nodes in the feature space. Separate
thresholds were introduced for tevel 1 so formation at
level 1 could be controlled independently of the other
levels. Many of the experimental results which follow
are concerned with the effects of these five thresholds.
The updating of a node occurs if the z value
exceeds the threshold t, and is experiencing a maximum
in time, as described in Section 3.3.3. It was found that
the number of updates allowed any node, n ,and the
precision of the weight vector W, were important aspects
of the updating, as will be seen in the examples which

follow.

L. 4 Program Performance and Discussion of Results

We now present a number of examples of the program
performance, which have been selected to illustrate various

aspects of the technique. To give the reader a better
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From Figure 7,



"feel" for the numerous cases to follow, we first present
in detail a simplified example of the program showing
explicitly in Figure 7, the feature inputs as a function
of time, the resulting graph response as a function of
time in Flgure 8, and in Figure 9 a schematic drawing of
the graph at one instant, from which we will manually (by
Iinspection) derive a fuzzy description of the data at that
moment,

Recall that trainlﬁg consists in inputting a
number of examples to the program and allowing it to
construct the graph according to the rules we have
discussed. Testing then consists in preventing any further
formation or updates of nodes, and examining how the graph
responds to additional similar cases. In our preliminary
case, 16 U and 19 D examples were used for training,
resulting In a graph with 18 first level and 5 second level
nodes. Three training errors occured, and the training
q was 61,

In Figure 7 we have selected several examples
of the output from the feature program, wvhere ﬁ* and fg
do not appear, since, the reader will recall, they wvere
added in the main program. They may be calculated from
the expressions given in Section 4.2. The time appears
at the left, followed by the teacher name input (U or D),
followed by the six features f, through Gz' The raw data
Is plotted using asterisk for channel 1 and dot for channel

2.
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Figure 8 shows the main program output
corresponding to the examples in Figure 7. The 8 columns
following the name are the accumulating OP vector, divided
by 10, 2 columns per category. Following the vertical bar
are the z outputs for the first level nodes, followed by
the second level nodes. The dot every five is to aid
reading, and values less than 1 are not printed. At the
end of each event is shown the full OP vector, the q and
the average q value up to this example.

Ve note that at a glance, the response appears
as a "flow" through the graph, as though it were a network,
with different flow patterns in the U and D cases, as one
would hope. The recognition Is taking place on the large
part of the wave only, since the features used do not
measure any of the more subtle properties of the later
parts of the waves. In the U example which begins at 227,
we see node 202 (the hundreds digit refers to the level)
and node 205 on simultaneously. The table of node weights
(not shown) reveals that 202 is primarily driven by 106
and 107. By examining other U examples in the same test
set, and by knowing that 106 is in decay, one may verify
that 202 is the result of the temporal sequence 106, 107.
Similarly, 205 is largely the simultaneity of 111 and 116,
with perhaps a slight lead by 111, While the node weights
themselves do not distinguish the temporal from the spatial
(simultaneous) cases, as pointed out in Chapter 3, we may

make the distinction for any input example by inspecting
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feature: f“ LI A fia fg foz fa fs % N
X vector: 5 -7 0 -6 3 -6 9 1 S
¥ {
-6 6 3 =3 6 6 -6 5 105-—1d
(3)
1 -1 8 =7 5 6 4 1l 106 —2d 4
6 -7 3 -4 5 -5 9 5 107—5 {7)
5 =7 1 1 -5 9 5 108—=5 (5]
L (5)
4 -3 -5 8 -3 6 3 4 109 (3) ™
s -7 -1 3 2 -3 9 4 111—4 (e)

3 -1 =7 3 6 -2 7 4 116 —2

Figure 9. Active Graph Structure at One Time Instant.

The X vector at time 230 from the previous fligures Is shown above the
welghts W, and i, (underlined) for each level 1 node involved. For level
2 nodes, only the W, welghts are shown in parentheses. d iIndicates a node
In decay. For discussion, see text.
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the z values, to note those which are in decay, as we note
106 to be here.

In Figure 9 we have selected the moment 230 from
this U example and drawn the active portion of the graph,
where the complete (8 component) feature vector is shown
above the input weights to tﬁe level 1 nodes involved,
so that one may compute the inner products if desired.

The level 2 nodes being driven from these are shown with
only their Wy weights beside the graph edges, to facilitate
drawing. We may make the following verbal fuzzy diagnosis
from this graph at this instant, by determining the regions
of feature space in which the input lies. Nodes 202 and
205 have directed our attention to the level 1 nodes shown,
which tell us, by taking their welghts as representative

of the input situation, that channel 1 has a value of about
+5 (f,,), with a very small slope, and a medium peak nearby.
(We are making guesses about the feature vector from the
weights of 107 and 108). The channel 2 signal Itself

(f'l) is about -7, with a slope between -4 and 0 (a wrong
guess) , and is also near a peak. By noting that 105 and
106 are in decay, we infer that there has just occured

a situation recognized by them. We leave it to the reader
to describe it.

For the sake of clarity we have chosen this
example to have only a few simple, small values. A careful

examination of the three figures will greatly assist the
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reader in understanding the examples of performance which

follow.

In the following pages are presented a number
of examples of the program performance, selected to
ITlustrate the effect of changing various parameters. The
examples are numbered for identification in the paragraphs
of discussion which follow, and are summarized in Table
1, where they are called cases. The order of the cases
in Table 1 is partially the order in which they were
studied, with some grouping of related results where
possible.

Before the dliscussion of cases begins, we list

the various symbols used, and their meanings:

Thresholds:
tOIand t,;: If the absolute value of the largest feature F1

is < t, , no new node is formed. If the absolute
value of the second largest feature F2 is < to;'
no new node is formed.

t, and t.: Similar function to t, and t,,, except for levels
>1. These pairs of values were found to be more
useful than the single threshold referred to in

Chapter 3.
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t.: If any z value Is above this value, no new nodes
are formed on that level at this instant.

t.: If a z value is above this value and is decreasing
as described in Chapter 3, update that node.

OP: Refers to the method of obtaining the opinion
from all nodes (see Section 3.3.4), as follows:
a: OP is the sum of the 3 largest {i.b : OP Is
the sum of the 2 largest Yj. c: OP is the sum
of all Y; > 1, as in 3.3.4, d: OP is the sum
of all fj >0

A : A collection of data examples with UD pairs
first, followed later by LR pairs, with some
unpaired events. There are 13 U, 12 D, 11 L
and 13 R.

B : Same data as A, only arranged in random order,

C : A collection of data from the same population
(a selection of good to medium quality examples
from all 5 subjects) as A, used for testing.
Contains 20 U, 21 D, 12 L and 13 R.

D,E : See cases 26 and 27.
q : The average quality factor over all examples,

computed for each example from eq. 5.

The following details pertain to the cases
discussed below, unless otherwise noted. The maximum
number of updates, m , counting the original (formation)

W as the first update, is limited to 5. The threshold for
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11
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opP NO. OF TRAINING

u NODES data errors
no 2

4 a 36,16 A 1 2
b b 36,16 A 1 2
a 37,8 B 4 8

4 c 36,16 A 3 6
b c 36,37,3 A 5 10
4 c 36,0 A 8 16
4 c 36,16 A 9 18
5 d 30,10 A 9 18
5 d 43,10 A 12 24
3 d 50,10 A 12 24
b d 36,16 A 8
u c u8,15 A 9 18
L4 c 31,12,2 A 4 8
4 c 37,8 B 10 20

Table 1. Program Performance.
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7
13
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26

2
10
20
12

9
10
15
39

9
12
14

9
21
10
14

34
38
19
32

16
10
24
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the inhibiting vector Woo t,, is fixed at 3. The Y values
from each node are divided by 10 to reduce printing space
for OP, and will be referred to on this scale. Thus a
typical value of z is 5, and the scaled Y values for a
v=(9,0,0,0) would be 5Y/10, which truncates to Y=(4,0,0,0).
We speak of this Y as a "vote'" of 4 for U, since the vectors

V and Y are ordered: U,D,L,R.

Case Discussion

1. The first few cases explore the various 0P
methods. Note the low values of q, compared with later
values. This Is because OP is the sum of only 3 Y values,
so that if even all three have a single 9 in their V vector,

the q will be about 15, since the typical z iIs about 5.

2. Like 1, only taking the 2 largest Y. The error

rate becomes about 50% If only the largest Y Is taken.

3. Like 1, only with random training data. Note
that only half as many second level nodes were formed,

though the first level Is almost the same.
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L, Here we use OP method ¢, the preferred method
below. This case is the result of much experimentation
with the thresholds, since formation thresholds too small
result in excess numbers of nodes which respond to "noise"
and essentially cover the feature space indiscriminantly.
Too few nodes only respond to large, good signals. These
values were found to be a reasonable compromise. Two of
the 3 training errors were missed (not classified) events,
being too small, Two test events were missed, and all U
and R were correct. Note the much more satisfactory q value
(34) from the earlier cases. This means that the average
example is given a correct vote at least 34 times more
certain than those in error, the average including the

erroneous examples.

5. Here we drop the second level threshold slightly
to see if additional nodes on this level will help. The
slight loss in performance is due to excessive level 2
nodes. This optimum number of nodes seems to be a general
principle: too many is as bad as too few. An unexplained
phenomenon may been seen here which reoccurs In various
trials: the error rate may be inversely related to the

quality of recognition,

6. This case is the opposite to 5, in that no second
level was allowed. We find that the first level is carrying

most of the responsibility for recognition, since the waves
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can be well separated by the features alone.

7. The program has been modified to function as
In 4, except the OP is taken from the second level only,
to better assess its contribution. One U and one L were
missclassified, with no R missclassified. Nearly all D
were missclassified, with the remaining errors being
omissions (OP=0)., The reason for the poor performance
on D was not investigated, but is probably due to a spatio-

temporal ambiguity.

8. Here we have reduced the degree of updating,
by raising the threshold tu slightly, We achieve an error
rate of 9% with only 40 nodes. The increase in error
rate during training over case 4 Is not understood. The
0P method has been changed to d, which results in a very
low q, since allowing votes of only 1 into OP will cause
votes in the wrong categories from nodes responding to

"noise".

9. Ve attempt to improve on 3 by increasing the

number of level 1 nodes, without success.

10. Another attempt to inmprove on 8 by increasing

the update rate (decreasing tu.), again without success,.
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11. Here we have returned to the parameters of case
L, except continuing with OP method d (summing all Y>0).
There is only a slight difference in error rate between

OP method ¢ and d.

12. We investigate the effect of the factor h, the
inhibition constant from equation 2. h was 2, and now
Is 3, causing feature vectors which have large coordinates
where they "should" have small ones (to be considered
similar to a W which had these coordinates small) to have

less effect. Otherwise the same as i,

13. Like 12, only h Is now 1. We conclude that h=2

is best.

14, Like 4, only with the training data rearranged

in random order. Note that this causes considerably more

tralning errors, due to nodes common to more than one class

updating alternately to one, then the other, rather than
many times successively to the same class. At the end of
the training however, the graph has almost adjusted itself
to the level of case 4, as seen by the test performance.
In case 19 we will see that with a second repetition of
the training data (before testing) the random training

case can be made as good as the non-random,
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27,3 B,B,B 24
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27,3 B,B 18
21,3 B 10
27,3 B,B 16
30,3 B,8,B 23
17,2 B 8
18,2,1 g,8 14
19,2,1 B,8,8 21
17,2 B 9
36,10 A 10
37,8,4 D 37
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9
14
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49
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51
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42
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35
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15, This is the first attempt to repeat the training
set in the hope that it would improve the performance.
Vle note that more than 50 nodes were required at level
1. It was decided that 50 was excessive, so no cases vere
allowed to exceed this limit., Apparently with thresholds
too low, node formation will continue beyond what is
necessary, Into excessive redundancy, with a loss in

performance, as seen in earlier cases.

16. An early attempt to stablize the graph so that
repeated training will not form excessive level 1 nodes.
The update threshold has been increased from case 15, so
that three passes of the training set B result in 38 level
1 nodes, only 2 of which were added in the third pass.

The second level has now become excessive, an unexplained

effect.

17. A better method of restricting the number of
nodes and achieving stability Is to decrease ta, the

redundancy threshold. Note the improvement over 16.

18. We begin here some experiments with the updating,
varying the maximum allowed number of updates, m, and the
precision of the weights, which has been 4 integer bits
and no fractional bits so far. This case retains precision

(4,0) but m=10.
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19, Like 18, only training set repeated once. Clearly

not a good case.

20. Like 18, only m=20, The slight improvement is

not sufficient to suggest that m is a crucial parameter.

21. In this case we add 4 fractional bits to the
weights, and repeat case 20, that is, m=20. We find a
considerable improvement, indicating a possible problem
with the roundoff error in updating the weights with
precision (4,0). This was then examined by inspecting all
updates of nodes with the (4,0) precision in some reruns
of earller cases. Some of the weights showed updates where
the roundoff did not take place, resulting in some loss
of magnitude in those weights updated frequently. This
effect was not always repeatable, and a bug in the PL/1
system Is suspected. Regretfully, some of the earlier
results may be affected by this problem, but it was
discovered too late to repeat them.Since only 5 updates
were involved, this problem should only affect the results

slightly.

22. Vie repeat 21 with the training set passed twice.
In this example we achieve the previous apparent limit
of 9% error rate once again, suggesting that it is limited
by the features or the data, a plausible conjecture, since

examination of the examples which were missed or

86



misciassified showed that the features were in most cases
not adequate for recognition, !ote that only 21 nodes
are formed, the best performance/size ratio found in this

study.

23. Attempting to improve further on 22, we find
that the system can be "overtrained". The precise cause
of this effect was not apparent from studying the output,
since it is a distributed effect over many nodes and time
steps, so that the two outputs appear qualitatively the
same. This is a3 decided problem In thils type of heuristic

programming.

24, Vlie repeat 21 with m=10, and discover m to be

more sensitive now that the precision Is increased.

25. This case breaks the above sequence. lle have
repeated case 4, only have halved the magnitude of fa #
to illustrate the sensitivity to the features. Several
other runs were made with similar slight changes in the
features, all with similar degradation in performance.

This indicates that the error rate is being limited by

the features, and of course, is dependent on the particular

selection of data used in the tests,.

26. Finally, we put through the program the complete

selection of data available on disk, consisting of 127
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training examples and 142 test examples, which include
many which are worse that those used above. For this and
the next case, the precision was (4,4) and m=10. The size
of the graph and the q were considerably better that

anticipated.

27. Vle dare to repeat the training set, enlarging
the graph somewhat but luckily improving the g without
sacrificing the error rate. Of the 28 cases in error, 18
were misclassified, and 10 were too small to be classified
at all, with no errors on U, which has been the c]éanést

category.
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General Discussion

These results demonstrate that the fuzzy graph
does indeed perform pattern recognition on noisy waveforms,
with error rates of the same order as other pattern
recognition programs, although this particular data type
has not been studied, to the best of the author's knowledge.
Not only does It assign a pattern to a category, but it
provides as well an estimate of the quality of the pattern,
Including its degree of similarity to other patterns,
and contains in the graph structure, should one wish to
access it, a fuzzy description of the pattern structure.

A note on the efficiency of the graph is in
order. Each node has an average of about 6 inputs (a W,
or W, ), each W a 4 bit weight, (in those cases where the
weight precision was not extended), and if the number of
nodes per level is limited to 32, a S bit pointer per
input. The V vector may be quite adequately 3 bits per
category (though here we had the range 0 to 9), making
tx3 bits., The z is of course 4 bits, and the other
constants may be accomodated In 20 bits. Thus 90 bits
per node Is sufficient for the present program (PL/1
certainly used more), and the 21 nodes of case 22 would
require 1890 bits of storage, which Is very little In

today's computer. A graph of 10's of thousands of nodes
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could be accomodated in core, with additional little-needed
nodes maintained on secondary storage. The speed is fairly
obvious from the arithmetic required in the node, and in
an assembly language version of the program would be of
the order of 50 to 100 memory cycles per node. Any
reasonable search scheme should be able to reduce the
number of nodes computed, in a graph of say 1000, to less
than 100, so that with such a scheme, most machines today
could process data 20 times as complex in 10,000 cycles
per time step. This machine could use reject memorles,
since the occurance of errors is tolerated due to the
distributed responsibility, though admittedly we haven't
demonstrated this.

On the other side of the ledger, the program
has several unexplained (though not as yet thoroughly
investigated) quirks, such as sometimes getting worse when
more highly trained (a possible human trait?), or sometimes
showing lower quality with higher error rates, and being
excessively sensitive tc the weight precision and number
of updates, an effect which could probably be overcome
with a more subtle update rule. A great problem in
diagnosing these phenomena has Iinvolved two of the very
qualities deliberately built into the program: the fuzziness
and the distributed responsibility for recognition.
Printing out -all the welghts and all the z values of all
the nodes at each time step is certainly a painful process,

since there is often no obvious qualitative difference
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in the appearance of the numbers in two different cases
which are nevertheless performing quite differently, as
exemplified by the weight precision problem. This is an
Iinherent danger in all heuristic programming, but doubly

so in fuzzy heuristlic programming.

91



92

Chapter 5, Conclusions

5.1 Contributions of This Thesis

The pattern recognition literature has not glven
much attention to large on-going multichannel time series
such as the EEG, preferring to study simpler two dimensional
images. This thesis offers a possible approach to
realistically handling such data, and though a full scale
EEG is much larger than the data recognized here, it is
felt that there are no other methods of waveform recognition
which would be as naturally sufted to such large-scale
expansion as the present one.

However, the author prefers not to attempt this,
but rather to consider the method of fuzzy graphs as
presented here as an introduction via a demonstration to
the general problem of bridging the considerable conceptual
and practical gap between complex fuzzy data In some feature
space and a sophisticated (and possibly intelligent)
description of that data in some description language.

Wle summarize the essential aspects of this work
as follows:

1. The introduction of the fuzzy graph concept
as a means of mapping a feature (visual) space into some
description (verbal) space is the primary contribution.

The graph structure reflects the Intent that the mapping

between a fuzzy situation and a sharp one (such as a
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syntactic description) should not occur abruptly, but

should occur in stages or hierarchically, with the structure
becoming sharper and more composite as the depth in the
structure increases, the responsibility for any description
being distributed over some part of the structure.

Apart from the fuzzy graph structure, the
introduction of the inner-product membership function and
its companion, the use of features with the magnitude-
significance property, Is believed to be new, and should
be useful in other fuzzy set applications.

2. The fuzzy graph Is a structure which admits
the following additional possibilities, which have not
been investigated here:

a) It is applicable to fixed images as well as
functions of time, by removing the time decays in

the node outputs.

b) It is suitable for incorporation Iinto heuristic
search algorithms to increase the speed of access

in large software graphs.

c) It is potentially implementable in large-scale
integrated circult technology, since the node functions
are simple, require low precision, and the distributed
responsibility for recognition makes a large system

failure tolerent,.



5.2 Discussion and Conclusions

The most salient lesson to be had from this
endeavour, at least from the author's point of view, Is
one already well known to more seasoned workers in the
field of Artificial Intelligence, pattern recognition and
heuristlic programming. The point is, of course, that
"heuristic programming" is in fact a euphemism for
"programming in Ilgnorance", and is at its best an unnerving
experience, since like flying at night without instruments,
one never knows if the runway or a mountain lies just
beyond.

B. Raphael has suggested that Al is just "those
problems which we don't yet know how to solve", and given
thls definition, the present work Is certainly Artificial
Intelligence. Almost all of the early work in Al and still
the majority of the current research is still heuristic

in nature, lacking precise theorems to guide the

programming. Even the most formal area of current research,

theorem proving, relies on clever guesses to improve a
program's performance, and there Is no formalization of
the notion of the "quality" of a proof, except for the
execution time. Pattern recognition based on statistical
methods enjoys a considerable theoretical foundation;
however the Iimportant questions in pattern recognition
are nov of the linguistic type, rather than statistical.

Yet though certainly a step in the right direction, the

gL
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computer programs which analyse a3 scene or picture and
report its structural relations (e.g. Guzman, 1968) are
still a collection of clever heuristics. In natural
language question-answering programs, there has been
recourse to theorem proving methods to determine logical
consequences, but the conversion from natural language

to predicate calculus is only easily accomplished when

the input sentences are of a kindergarten level of subtlety.
Why is it that in all the programs which deal with natural
language, no appearance of any of the elaborate mathematical
linguistic theories can be found?

The writer has come to the conclusion, partially
as a result of his experience with the present undertaking
and partially as a result of the general course of research
of this nature, that far more emphasis should be placed
on research into basic mathematical structures and methods
whose aim Is directed towards real problem areas such as
pattern recognition. The basic mathematical areas which
the author has in mind are automata and formal languages,
graph, category and topological algebraic theory, and the
newer notions such as fuzziness which are not yet properly
integrated into other theories. (c.f., Watanabe, 1969).
Automata theory is a well developed area (relatively
speaking), and should serve as a focal point. In this
regard, there have appeared recently several papers on
fuzzy automata (Wee, 1967, Santos, 1968 and 1970), and

papers on automata methods for pattern-recognition oriented
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languages (Feder, 1968, Brainerd, 1968, Montanari, 1970,
Steingrandt and Yau, 1970, S. K. Chang, 1971). The
important paper of Goguen (1967) which introduces the
language of category theory to fuzzy set theory, has begun
the incorporation of fuzziness into other mathematical
domains, although the emphasis on algebraic notions is
perhaps not as Iimportant as topological aspects. |If
fuzziness Is to have any traditional mathematical property,
it ought to be continuity, which is one of the glaring
shortcomings of sharp theories. From continuity we could
procede to limits, where the notion of abstraction (c.f.
Bellman and Zadeh, 1966) would be defined as a limit of

a collection of fuzzy examples, where the 1limit In the
language describing the examples is guaranteed by
continuity. The only paper merging fuzziness with set
theoretic topology known to the writer is that of C. L.
Chang (1968). It is based on the Zadeh assumptions that
the fundamental notions of set theory are those which
should be preserved in the fuzzy theory (e.g., strict
containment, complement, union, De Morgan and
distribuitivity laws). Only Watanabe (1969) has questioned
this premise, suggesting instead that the notion of
experimental verification and implication in the causal
sense are more fundamental. The writer considers these
worthwhile avenues of inquiry (which he intends to pursue)

but is unable to make any concrete suggestions at present.



The author wishes to venture the following
suggestions, which he intends to follow himself, on some
appropriate directions for continued research on these
matters. What is needed is a formal fuzzy language, for
pattern recognition or for general problem description,
since the latter should be considered the proper framework
for any particular problem such as pattern recognition,

Banerji (1968) has made some initial suggestions in this

regard, although without any fuzziness. It will be probably

found necessary to regard pattern recognitlon as a sort
of game against Mature, played with fuzzy information and
with costs for making observations, some of which may
change the state of Nature. To this end then, it will
prove useful to invent a formgl fuzzy game against MNature,
that is, a rigorously defined set of fuzzy situations and
rules for procedure, where the two protagonists (Nature
and the human who wouid know more about Her) have usually
different sets of rules (Hature often having advantage),
and neither having complete information about the other's
doings at any moment. Such a fuzzy game, like existing
recreational games used for research in problem solving
methods, will provide a laboratory for experimentation

on complex problems, and must be expressed in the fuzzy

language we have referred to, along with the algorithms

for playing It. Unlike existing recreational games however,

this game will adapt much more naturally and usefully to
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real world situations which it is our ultimate goal to

understand.
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