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ABSTRACT 

This study is an empirlcal Investigation 

concernlng automatic pattern recognition of "fuzzy" (not 

preclsely quantifiable) data, in partlcular, waveforms 

such as the electroencephalogram. Emphasls is placed on 

determinlng a method for representlng the data structure, 

both concePtually and ln a computer memory, which Interfaces 

easily between the raw feature space and any subsequent 

description. 

A graph-structured approach Is presented which 

is Intended to apply both to functions of time or fixed 

images. Low complexity and low precision computations 

are involved, whlch admit the posslbillty of large-scale 

hardware Implementation, whlle alternatively the graph 

structure can interface easily to heuristics of the variety 

found ln the artificlal intelligence llterature. 

Examples of the performance of the technique 

are glven uslng actual electroencephalic data. While no 

theory Is avallable as yet, the results are sufflciently 

promislng to warrant more formal investigation, and 

recommendations are made in this regard. 
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Chapter 1. 'ntroduct Ion 

1.1 Considerations Which Haye Motiyated This Study 

The work presented here is primarily an attempt 

to synthesize a varlet y of concepts and techniques Into 

a general approach to the problem of machine recognition 

and Interpretation of large, complex and apparently 

"qualitative" classes of data. The term "fuzzy" has been 

used for su ch data. In particular, several points may 

be listed as the primary motivations behlnd thls study: 

1) The problem of automatlc computer recognition 

of complex, extended, multlchannel functlons of tlme 

has recelved very llttle attention ln the pattern 

recognition literature. 

2) The rapidly growing field of Artlflclal 

Intelligence (AI) has glven Insufficlent attention 

to the problem of representlng "fuzzy" events, 

hlerarchlcal relations between them, and methods for 

accesslng them. The Introduction of graph techniques 

Is probably the most promlslng approach. 

3) The technology for the fabrication of very 

large arrays of special function modules by large­

scale Integration techniques Is progresslng rapldly. 

This poses the question of what should these modules 

be, and how ou,ht thev to be connected and used. 

1 
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It is felt that much simulation should be done now 

(via software) to explore the potential of such 

hardware approaches to certain pattern recognition 

problems, untll more sophisticated theoretlcal methods 

are developed. 

These very brlef objectives will be elaborated 

upon in Chapter 3. 

1.2 Cholce of Data 

For the reasons just descrlbed it was declded 

to select as an example of a fuzzy, multlchannel time 

series a simple two-channel record of human EEG dellberately 

filled with "artefacts", or cllnlcally unwanted signals. 

This data is of interest for at least two distinct reasons. 

Obviously one would llke an efficient automated method 

for routine cllnlcal evaluatlon (as Is presently becomlng 

possible for the electrocardlogram), and for research ln 

neurophysiology. However It is felt that it is far too 

early to undertake the development of a progra~ whose 

stated goal Is to replace the hUMan interpreter. It \'1111 

be at least ten years before such a tool can be perfected, 

due to the dlfflculty of the task. The more appropriate 

point of view at the present is to consider the general 

class of problems of whlch the EEG is only an example, 

in which it is deslred to relate certain events occuring 
4~ .. in a large nurnber of loosely defined, coarsely rneasurable 



functions of time to situations outside this data, for 

example, spike-wave patterns in an EEG of a patient 

suffering from epilepsy. (Sorne other examples from this 

class would include geophysical and socio-economic data). 

Hence rather than becoming exclusively involved with the 

individual peculiarities of the EEG per se, one should 

let it be used instead as an example of data from this 

class, so that hopefully the techniques developed would 

be equally appl icable throughout the class. The EEG was 

chosen because of the author's desir~ to learn more about 

real brains, which led him to this field, and hence his 

present association with the Montreal Neurological 

Institute. 

Note that there are two other types of 

neurological signaIs which have been extensively studied 

by standard statistical means: the individual neuron 

potential or "spike" recorded from a microelectrode, and 

the "evoked potential" recordable from a volume of tissue. 

Both of these can be studied with the ald of special purpose 

averaging computers, although a general purpose computer 

is needed for involved analysis. These data, being much 

smaller and more precisely Quantifiable, have received 

considerable attention from the available methods of 

engineering and statistics and do not belong to the class 

outlined above. Hence they will not be considered. 

3 



1.3 Sorne Important Concepts 

Four concepts which will be constantly in use 

in what follows will be verbally defined now. More precise 

definitions of each will occur later as they are 

incorporated in a computer program. 

The most fundamental notion is that of fuzziness, 

a term due to Zadeh (1965). A fuzzy set is one whose 

characteristic (membership) function is continuous onto 

the interval (0,1), Fuzziness is considered here to be 

a more appropriate representation of many real situations, 

when compared with binary-valued representations. Such 

situations have previously been handled either by 

statistical methods or by converting abruptly (say, by 

a threshold decision) to sharp (= not fuzzy) variables. 

This study attempts to overcome this problem. (We prefer 

the term "sharp" to the more popular but less descriptive 

" cr isp"). 

A second Important concept is that of Jearoing. 

Since the program to be presented here is capable of (1) 

improving its performance as it is presented with more 

data; (2) discoveririg events and relations between them 

ln the data which may not have been koown to the programmer 

and (3) being taught names of the se events in the saMe 

manner as one would teach a human student: it is felt that 

this program "learns". Considerable attention has been 

given 10 the artificlal intelligence literature to devlces 
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which 11earn" by the administration of a reward or 

punishment following a correct or incorrect (respectlvely) 

response. The present program does not do thisi rather 

It learns by elther (1) clusterlng the data so that a 

maximal response is obtalned from an Input which in some 

sense is the "average of the cluster" and (2) associating 

certain events in the data with additlonal data of a 

.conceptually different nature supplled through an additlonal 

channel. 

The-notlon of association, introduced above, 

is a very funaamental one in the psychological and 

physiological literature. Two variables are assoclated 

to the degree that many examples of them have similar 

spatial-temporal relatlonshlps. Inputs to an organism, 

devlce, or program whlch are processed through common 

pathways and similar algorithms will be said to be of the 

same~. (The term is borro\'/ed From physiology, where 

we have sensory modes such as vision, hearlng, etc.). 

Thus we may have Inter-mode assoctations where for example 

a human student studylng the EEG would learn that a certain 

waveform represents epileptlc activity because a teacher 

points to It and tells htm so. 

The fourth essential concept Is that of a 

hlerarchy. Any process whlch transforms an Input to an 

output in a series of stages, the processing belng slmilar 

at each stage but in sorne sense more reflned than the 

previous stage, may be termed hierarchical. 1 t \-/as pointed 

5 



. ~" 

out above that often.the transition from fuzzy variables 

to sharp variables is made too abruptly. The solution 

offered here is to do this in stages, or hierarchically. 

1.4 General Overyiew of the Thesis 

ln the fOllowing chapter, a brief review of 

various attempts at EEG analysis is given, followed by 

a more detailed account of the attitudes and approaches 

which are to be found in the "Artificial Intell igence" 

and "Pattern Recognition" literature. 

Chapter 3 develops the notion of a "fuzzy graph", 

and attemp~s to show how it is related to the ideas reviewed 

in Chapter 2, and how it satisfies certain criteria which 

are given at the beginning of the chapter. 

The details of a program written to gain 

experience with the fuzzy graph concept are presented in 

Chapter 4, and while many of the results are encouraging, 

they illustrate the need for a more formal approach. 

A summary of the contributions of this work 

beglns Chapter 5. The chapter concludes the thesis with 

a discussion of the general problem of "heuristic" versus 

formal methods, and suggests some avenues for more formal 

studies • 

6 
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Chaoter2. A Review of Work 

Contributing to This Study 

2.0 Plan of the Chapter 

A review of this chapter will indieate the variety 

of existing work eontributing to the present approach, 

sorne of it not previously eonsidered related. This variety 

ineludes most of what has appeared under the general title 

"pattern recognition" (PR), as a sub-category of the more 

i n e 1 u s ive te rm " art i fie i a 1 i n tel 1 i g en e e " ( AI), and ce r ta i n 1 y 

the various methods of EEG analysis eurrently in use. 

A more detailed exposition of our approaeh will be presented 

in the following ehapter. 

2.1 EEG Analvsis (As It Is Reported ln The EEG Journals) 

This topic, mentioned last above since it is 

least relevant to what is to follow, will be diseussed 

first, since this will not take long and will clear the 

way for the essential problems. 

There have been very few serious attempts to 

analyse the EEG, and of the se most have been the result 

of the Interest shown by the various persons assoeiated 

wlth MIT in the nineteen-fifties. This heritage is well 

documented in the books by Brazier (1961) and Rosenblith 

(1962). In this work, the EEG is rightful1y considered 

7 
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as a stochastic process and analysed as such by the methods 

developed in the engineering llterature, that Is, auto-

and cross-correlation and the assoclated frequency domain 

functions. This work put on a more rigorous basis the 

even earlier frequency analysis attempts uslng varlous 

hardware bandpass fllters. The more sophlsticated 

procedures merely added addltlonal evldence to the 

observation made years earlier by Grass and Gibbs (1947): 

"Much experlmentation wlth the data flnally leads to the 

conclusion that, although frequency analysis has advantages 

for reveallng certain general features of the EEG, It is 

not satisfactory for cllnlcal purposes. No index, elther 

simple or complex, based on one or many spectra from a 

given case, can express the highly speciflc detalled 

Information contained ln the EEG". 

Some early workers considered time domain and 

space domaln analysls. Amplitude hlstograms were obtalned 

by lonsdale (1952), King (1951), and others; basellne 

crossing was analysed by Young (1954), Burch (1955), 

and Saltzberg et al. (1957). Two techniques 

affordlng vlsual appreciation of the spatial aspects of 

the EEG \'Iere those of \-lalter and Remond. Walter (1951> 

constructed a "Toposcope", an Instrument consistlng of 

an array of small oscilloscopes, one per electrode, arranged 

ln a pattern that matched the electrode placements. The 

8 
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beams were swept synchronously in circles or spirals and 

were brightened and/or radially deflected by the EEG signal. 

Motion pictures were taken (the activity being too fast 

to follow in real time) and eventually some aesthetically 

pleasing results were undoubtedly obtained. Remond (1967) 

produced contour maps of potential along a line of 

electrodes (this spatial dimension becoming the ordinate) 

versus time plotted horizontally. Fascinating hill and 

dale patterns were obtained which of course were left to 

visual Interpretation. These attempts are all well 

summarized by Brazier (1961). 

With the availability of computers in the late 

nineteen-fifties the problem of handling quantities of 

data of sufficient size and with adequate mathematical 

detail at last became tractable. The interest of Norbert 

Weiner at MIT spurred investigators there to apply the 

latest engineering developments in time series analysis. 

These early developments are well summarized in the book 

by Rosenblith (1962). The need for treating the EEG as 

a statistical time series is flrmly established there, 

thus dating the non-mathematical approaches. Two techniques 

developed on the TX-O computer were landmarks (Farley, 

(1961). The first was a pattern detecting scheme to detect 

alpha wave bursts by accumulating statistfcs on pre-assl~ned 

parameters (such as peak-to-peak amplitude and zero-

crossing). Plottlng burst activity as a function of the 

parameter showed considerably greater inter- than intra-

9 
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subject variability, opening the question of how to 

interpret this finding. The second technique was the 

computation of auto- and cross-correlation for several 

minutes of data, which demonstrated a high degree of 

variability and made visual Interpretation difficult. 

During the sixties, probably due to the presence 

of Mary Brazier, Ross Adey and D. o. Walter, The University 

of California at Los Angeles developed an extensive and 

comprehensive set of programs for the analysis of large 

amounts of EEG data. This work was certainly the most 

detailed and mathematically sophisticated to appear in 

the literature during this time. Representative papers 

include Walter (1963) and Walter and Brazier (1969). The 

approach is once again statistical, considering the EEG 

as a time series in the Weiner tradition, and relying 

heavilyon the frequency domaine The output is nearly 

always a very complex looking plot (in many cases to the 

eye more complex than the raw data) and hopefully the 

mathematics have been such as to make obvious to visual 

inspection sorne aspect of the data, such as an enhanced 

degree of activity in SOMe frequency band, or a coupling 

between two areas previously thought unrelated. 

The essential point to be emphasized then is 

the following. All of thts work, (and alnost certainly 

the same situation exists in other areas like economics 

or physicsi, is directed solely at developing nathenatical 

methods which will transform one complex set of curves 

10 
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into another. The new set, it is hoped, will then "show" 

somethlng to the eye (or even allow it to be expressed 

ln the "cleaner" form as a number or set of numbers> which 

was not evldent previously. Thus the problem of 

Interpretation of the data, that is, of relating unusual 

events or situations to others within or external to the 

data, is left entlrely to human judgement. 

2.2 Contributions from Artificial Intelligence 

We shall now turn to a completely different area, 

'f,hich has come to be generally kno ... m as "ft.rtificlal 

Intelligence" (AI). It is doubtful that there has as yet 

been any cross-fertilization between AI and EEG processinr,. 

The history of AI, like other disciplines relying 

on computers, extends back only about fifteen years. 

During thls time there have been a number of "vogues", 

and fortunately, a few well-establlshed general prlnciples. 

Among the vogues, one appears as germain to the present 

undertaking, namely, the much-discussed perceptron. The 

essential lessons of this research will be reviewed brlefly 

no\". 

2.2.1 Perceotrons 

The Perceptron was originally introduced by 

Posenblatt (l962) and his colleagues at Cornell in the 

Il 
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late nineteen-fifties. It was viewed as a class of brain 

models and was a direct descendent of the original formal 

brain model of McCulloch and Pitts (1943). It will be 

assumed that the reader has sufficient faMiliarity with 

the Perceptron concept to forego the lengthy discussion 

which would be required to introduce the subject. (A very 

readable summary is that of Daly et al, (1965», It was 

hoped that the Perceptron \'Iould turn out to be a machine 

of great generality and power with which many of .the 

problems of pattern recognition and brain modeling could 

be solved with one comprehensive theory. A considerable 

effort during the period 1958 to 1965 (including the 

construction of a number of hardware devices) demonstrated 

that in fact the Perceptron was not as general or as 

powerful as had been hoped. Merely increasing the size 

or complexity did not seem to give adequate return in 

performance. The methods of analysis were essentially 

statistical, since it was hoped that large collections 

of elements would, "on the average" perform arbitrarily 

well. The metrics of performance were those suggested 

by the traditional mathematics of lfnear spaces. Nothing 

which could be called "algebrafc" or "topological" 

characterized the analysfs. Practfcal (yet essentfal) 

estimates of the amount of memory required or the execution 

time were few. Hence, when it was discovered Cmainly 

through computer simulation) that the performance left 
~" . 

much to be desired, the underlying causes were not certain. 



" '. .' 
.'~ 

Toward the late nineteen-sixties, the number 

of Perceptron papers appearing each year began to decrease. 

Finally in 1969 Marvin Minsky and Seymour Papert published 

a book entitled: Perceptrons. An Introduction to 

Computational Geometry. In this book they take a fresh 

appr9ach. No statistics, no multi-layer, cross-coupled 

machines are discussed. Instead, they take the most basic 

configuration of machine and examine the various algebraic 

and topological properties it must have. They introduce 

the notion of "order", which shows why earlier machines, 

lacking sufficient order, would be incapable of co~puting 

some of the simple predicates they were belng forced to 

attempt. They are concerned with the problem of geometric 

complexity, rather than the behavlour of large networks 

of elements whose basic computational properties were 

uncertaln. 

The conclusion to be taken is si~ply this: 

elementary machines of the Perceptron variety do not possess 

enough power to perform practically useful pattern 

recognition, while at the same time pose considerable 

mathematical dlfflcultles. (On page 102, Mlnsky and Papert 

admit that they "secretly advocate" syntactlc scene analysis 

procedures). The main deficiences appear to be these. 

The Perceptron suffers excessively from the restrictions 

Imposed by the use of Boolean variables (0 or l' to transMit 

information. Since the output of each elenent gives no 

Information about how near the input conditions are to 

13 



the threshold, but merely indicates on which side of the 

threshold the input lies, a tremendous loss occurs. This 

is perhaps the most succinct example of the general problem 

of excessively abrupt transitio~ from fuzzy to sharp 

variables referred to in the introduction. A further 

problem, related to the problems of reliable computation 

considered by Winograd and Cowan (1963) for example, is 

that the ultimate report of the device must eventually 

be channeled onto a single output line, which carrles too 

much responsibility. This is related as well to the point 

of view that a single declsion is the appropriate response, 

i.e. that in the case of classifying alphabetic characters, 

it would be meaningless to decide a letter was say, 30% 

A, 45% Band 25% C. The Perceptron is not Intended to 

handle this class of data. A thlrd criticism, most often 

heard from the AI communlty, is that the Perceptron Is 

not Intell igent at all. By thls they mean that It uses 

no heurlstics to shorten Its computational task, but simply 

computes all Quantltles whether or not a prevlous 

computation makes them lrrelevant. If Perceptron popularity 

had stayed high, a marriage with heurlstic search techniques 

would have undoubtedly taken place. Instead however, 

marriages are occurring between more po~,erful approaches. 

14 



2.2.2 Pattern Recognition 

Of all the areas being reviewed, that most 

frequently referred to as "pattern recognition" (PR) has 

by far the greatest bulk of published literature. No 

comprehensive survey of this literature can be attempted 

here; the reviews of Nagy (1968), levine (1969) and Nilsson 

(1970) are recommended. Instead, the general flavour will 

be indlcated, and the connection between this work and 

the present one established. 

2.2.2.1 "Classical" pattern Recognition 

Wha t we sha 11 term "cl ass i ca 1" PR i s we 11 

documented in the revlew by Nagy, and may be seen to bear 

the following earmarks. The problem is to desi~n a machine 

such that, when an example of a certain class of data is 

presented to it, the machine replies wlth a single "name" 

or number, indicating to which class the example belongs. 

More precisely, given a set of disjoint classes, CCi), 

1=1, ••• ,n, and an Input vector X(k), the machine is to 

reply with some number i, j-1, ••• ,n. Most often discussed 

is the case where the number of classes n is known in 

advance. A 1 te rna t ive 1 y, the mach i ne i s to "d i scove rIt hm·, 

many distinct classes there are, often terned "clustering". 

(The "classical" approach has also been terned the 

15 
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"recePtor/categorizer" model (RCt~», by t~aril and Green, 

1960), 

The classification process is always broken into 

tv/o stages which are Quite distinct, often called "feature 

extraction" (the first stage) and then the "classification" 

stage per se. The feature extraction process usual1y Is 

determined ad hoc, the bulk of attention being given to 

the classification. Levine (1969) has pointed out that 

in fact, feature extraction (the reduction of the raw data 

to a vector of considerably smaller dimension), is just 

as important as the classification algorithm to the overall 

performance. Some attempts (e.g., Watanabe, 1969) have 

been made to develop general automatic methods of feature 

extraction, but this process seems to reQuire more 

intelligence than can be programmed, and hence much more 

attention has been given to the classification stage 

assuming that adeQuate features have been determlned 

emp i r 1 ca 11 y • 

The classification stage receives the feature 

vector (usually having a dimension d less than say, 20) 

which It is hoped adeQuately represents the Input example. 

What Tt does with it depends on whether the machine has 

been "trained" yet or not. During training, the feature 

vectors serve to establish regions or boundaries in the 

d-dTmensicnal space they Inhabite If the training is 

"supervised", an additional input for the class of the 

input vector is provided, and the coefficients defining 

16 



the regions are updated. Often the output classification 

(the machine's "opinion") is "fed back" 50 that errors 

may be corrected. (Most of the Perceptrons functioned 

according to this paradigm). In "unsupervised" learning, 

the machine must find the class boundaries for itself. 

When the machine is considered sufficiently well 

trained, it is tested by inputting examples and recording 

the responses, right or wrong, in each case. Typically, 

a machine might be trained on several hundred examples 

of letters of the alphabet, tested on somewhat less, and 

with 10 classes (not all letters used, since a number are 

quite similar) achieve something like 95% correct response. 

The mathematical flavour of the classification 

stage is almost exclusively that of linear spaces and 

statistics. The boundaries between regions are usually 

simple functionals (linear or simple polynomials) ln the 

flxed space determlned in advance by the features. The 

training consists in finding suitable values for the 

coefficients in these functionals. Recognition then 

conslsts in evaluating the functionals and deciding the 

discrete class by the sign of the result. If statistical 

procedures are invoked, the estimation of parameters in 

an assumed distribution (the so-called "parametrlc" 

approach), or the estimation of the distributions themselves 

("non-parametric"), wlth the resultlng complexlty of 

arithmetlc (matrix operations, Iterative procedures) is 

the do~lnant preoccupation. Since usually the computatlonal 

17 



load increases as the square of the dimension, large 

dlmenslonality is unfeasible. 

\'le conclude then that these "classical" or ReM 

methods are applicable in the followlng situations only. 

The data must consist of a small number of sharp <in the 

sense defined in 1.3) disjoint classes. Any data example 

should be bounded in storage reQuirement, so as to be 

accomodated in core storage. The dimensionallty of the 

feature space must be "reasonable", and probably the 

features will be chosen by the Implementer intuitively, 

wlth sorne experimentation. The most llkely situation is 

one where there can be a short training perlod fol Jowed 

by an indeflnitely long operational period, in which the 

data is sure to retain the characterlstlcs already learned. 

CTwo good examples of this situation are probably the 

commercialJy available optical character readers, and the 

several electrocardlogram CEKG) analysis programs whlch 

are operational). 

2.2.2.2 The Semantic Approach 

Outside the more well-defined reglons in \'/hlch 

classical PR has had success, there lies a much larger 

and vlrtuaJly unexplored terrain. One area is the so-

called "linguistic", Cor "articular" or "syntactic") 
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approach. This phllosophy has been investigated by an 

increasing number of workers among whom Narasimhan (1962, 

1964, 1966) Is perhaps the best known. In his 1962 paper 

he makes the point: 

Categorlzatlon, clearly, is only one aspect of 

the recognition problem; not the whole of it by any 

means. It is our contention that the alm of any 

recognition procedure should not be merely to arrive 

at a IVes', 'No'; 'Oon't know' decislon but to produce 

a structured description of the input picture. Perhaps 

a good part of this confusion about aims mlght have 

been avolded If, hlstorically, the problem had been 

posed as not one of pattern recognition but of pattern 

analysls and description. 

Shaw (1968) has emphasized the essentlal phrase 

ln the above remark: "structured description of the Input 

plcture". This Is to say that the emphasls ought to be 

placed on the description of the data ln terMS of slmpler 

data types, rather than the slMplest of all descriptions, 

an assignment to a single class. Hence Shaw proceeded 

to develop a phrase structure grammar (Chomsky, 1959) with 

graph theoretic understructure. An advantage of this 

degree of formalism is the theoretical results which may 

be called upon to assist in the development. In addition, 

the class of describable pictures is easily and preclsely 
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deflned. On the negatlve slde, this degree of formalism 

requlres strong assumptions about the nature of the data 

and the processor so as to insure (in Shaw's case) the 

recognition of sharp primitives for input to the parser. 

(Shaw's primitives are picture elements which allow 1 to 

1 correspondence with graph edges. Thus it has a "natural" 

application to connected 1 ine drawings. It is difficult 

to see hO\'1 one mig~t select primitives in the case of more 

fuzzy data, such as aerlal photographs or microscope 

images). 

The work of Zahn (1970) is in a similar veln. 

The feature extraction must yield a set of points, which 

are then connected by llnes according to certain rules 

to form a graphe This graph is then processed by 

mathematlcally justifiable algorithms to yield what 

hopefully is a slmpler and more correct graph representlng 

the data as clusters. 

We now turn to an area of AI which at flrst 

glance does not seem very related to what we have been 

discussing. The writer feels however that not only is 

It related, but a more precise study of such relations 

Is greatly needed. We refer to computer "comprehension" 

of natural language. 

A sizable literature in computer processing of 

natural language has developed within the broad scope of 

AI. Earlier attempts at machine translation (between 

natural languages) using formal noéels as a Cr):1r10n base 
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have given way to what appears to be a less anbitious goal, 

that of fact retrieval or question-answering systens. 

(Some recent surveys are Simmons, 1970, Pirotte, 1970, 

and Palme, 1970). Among these the most successful have 

been those which abandon mathematical formalism entirely, 

invoking syntactic rules as little as necessary. Rather 

the attention is given to the semantics of the text, where 

there is even less hope of a formaI approach. Perhaps 

the best example of such a senantic network is the Teachable 

Language Comprehender (TLC) of Ross Quillian (1969). 

TLC is a program capable of learning the meaning 

of simple English as it progressively experiences the text. 

The meaning of "meaning" is not defined in \'lOrds or in 

mathematical formulae; rather it is a set of heuristics 

buried in the program for accepting each input word and 

making appropriate changes in the machine's memory to 

reflect the relation between the word and the rest of the 

text. The machin~ is under the constant supervision of 

a human teacher, so that both factual assertions and the 

capability for correctly relating the input to the existlny, 

contents of memory may be progressively taught. 

This progress results in the evolution of a large 

and complex network of Interrelated words and concepts. 

It Is this network which is termed the "semantlc memory". 

The details of how TLC constructs and modifies Its se~antic 

nemory are once again, not important here, since we are 

not about to deal with English text. The salient points 



for our purposes are the following: TlC uses a large and 

ever-growing network, arranged so that related things are 

connected by short paths, to represent its experience. 

Its knowledge is distributed fairly evenly throughout the 

network, though there is a heirarchical relationship between 

the more general and the more particular concepts. The 

input to the network may be thought of as its "surface", 

with more general concepts lying deeper. The system relies 

heavily on human assistance at first, though as it 

accumulates experience, the ability to make guesses and 

to generalize makes it less dependent. 

TlC cannot make use of the more sophisticated 

methods of heuristic search due to the lack of a feasible 

evaluation function (meaning is hard to Quantify): hence 

it is limited to a rather small vocabulary and slow breadth­

first search. The 1055 of reasoning procedures such as 

those available in a formal underpinning (usually first­

order predicate calculus) are also a priee paid for the 

semantic power. However these criticisms will be ignored 

slnce in \'lhat is to follow, we shal1 not be prevented From 

searching, and deductive reasoning is not a very likely 

reQuirement in fuzzy data descriptions. 

2.2.2.3 Graph Searching and Seguential Methods 

If there is one solidly established principle 

which has emerged From the body of research which mip,ht 
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be termed "hard core" Artlficial Intelligence (as opposed 

to the looser sense of AI in which the headlng for Section 

2.2 is meant) It is certalnly the technique of heuristic 

search (often called "tree" or "graph" searching). A good 

overview and bibliography is that by Slagle in the book 

edlted by Banerjl and Mesarovic (1970) or the recent books 

by Slagle (1971), and Nilsson (1971). The essence of these 

methods is the reductlon to a manageable size of an 

astronomically large number of possible combinations of 

situations which must be evaluated to make a useful decision 

in a complex envlronment. For example, in agame like 

checkers It is totally out of the question to compute all 

possible situations to find the best one before making 

a choice for a move. Hence, if all cannot be evaluated, 

then which? 

We will not become involved in a discussion of 

the details of these various algorithms, since no actual 

graph searching will take place in what follows. This 

Is because (1) time dld not permit and (2) the data used 

were sufficiently simple that very small graphs were 

involved, maklng exhaustive search perfectly feaslble. 

The point to emphaslze though, Is that If larger data sets 

are to be feasible, then any method Involving computation 

performed at the nodes of a graph must allow an efficient 

application of the established search methods. That is 

to say, the computation must be simple, it must depend 

only on a concise and easily accessible nunber of previous 
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computations, and the result should be obtainable (in any 

partlcular instance) after searching only a small portion 

of the total graph. 

A technique very closely related to the methods 

found in the AI literature is dynamic programming, though 

for some reason very few papers on graph searching methods 

from the AI communlty acknowledge this. There has recently 

been an increase in interest in such sequential pattern 

recognition methods, originating in the methods of Wald 

(1947), and currently studied by Fu (1967, 1968, 1970). 

The rationale in this approach is to reduce the expected 

cost of observations (feature measurements) by suitably 

planning the order in which they are made. The only paper 

from the AI community along these lines known to the writer 

is Slagle and Lee's, <1971>' Zahn (1970) uses graph­

theoretical methods (the Minimal Spanning Tree) to achieve 

Gestalt-like clustering, th us allowing searching as well 

as a graph description of the data structure. It is the 

opinion of this writer that such graph-based methods as 

these will prove to be very rewarding. 

2.3 Fuzzy Sets and Concepts 

It was pointed out in the introduction and again 

in this chapter that the notion of "fuzziness" is an 

essential property of many types of data, and that the 

abrupt transition from fuzzy data to sharp variables, 
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structures or concepts (without carrying along the 

fuzziness) ls a probable source of the poor performance 

of methods which do this. 

Zadeh has introduced the concept of a "fuzzy 

set" in several papers <1965, 1965a, 1966, 1968), in which 

he gave a number of basic fuzzy equivalents of conventional 

set-theoretic concepts. The central idea is that of the 

"membership" function, which allows an element of a set 

to have a contlnuously graded membership in the set, rather 

than an all-or-none (blnary) membership. He points out 

the need of the introduction of fuzzy concepts in the areas 

of pattern recognition and heuristlc programming ("It would 

be an advance of vast Importance when we learn how to 

design machines that can understand fuzzy concepts in nuch 

the same way as human belngs are capable of t1olng"). (968), 

Though there have been a number of papers (r-o~uen, 

1 9 6 7, C . l. Cha ne, 1 9 6 8, ~·1 a r i nos, 1 9 6 9 , l P. e , PH 1) 0 n 

various aspects of fuzzy set theory, to the best of the 

writer's knowledge there have been no atte~pts to dlrectly 

incorporate fuzziness in a machine representation scheme, 

with the possible exception of the thesis of W. G. Wee 

0967>' 

Since a proper introduction to the Zadeh fuzzy 

theory is best had by reading his original papers, we shall 

assume familiarity with them. Discussion and criticisn 

of various aspects of the theory will be found in subsequent 
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chapters where certain aspects of the present work suggest 

alternative points of view. 
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Chapter 3. Fuzzy Graphs 

3.0 Introduction 

This chapter will Introduce and dlscuss at length 

the centra 1 theme of th i s thes 1 s: the not i on of a "fuzzy 

graph". The term "fuzzy graph" has been chosen slnce the 

notions of "fuzzy" and "graph" are well known ln the 

llterature and suggest the essence of the Idea. We shall 

attempt to present the fuzzy graph concept as a synthesls 

of many of the Ideas revlewed ln the last chapter. 

3.1 A More DetalJed Statement of the Objectives 

of This Study 

ln Chapter 1 a number of criteria were given 

brlefly to Indicate the varlous objectives of thls study. 

These points will now be relterated in more detall, so 

that the development of thls chapter may be better 

appreclated. The order of their appearance only partially 

reflects the significance of the criteria. 
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3.1.1. The Central Problem 
,~-

This thesis is directed first of all at 

what may be termed the "Central Problem" of many areas 

of pattern recognition and artificial intelligence, 

which we shall express thus: "to design a schel71e 

which appropriately and efficiently represents, both 

concePtually and in sorne physlcal device, a large 

collection" of fuzzy objects, and fuzzy' relations 

bet\'/een them". This statement emphasizes that 

fuzziness must be accomodated in sorne appropriate 

or natural way; that the representation should he 

amenable both to some theoretical formulation and 

to hardware implementation; and that some form of 

abstraction of the relations involving these fuzzy 

objects should be provided for. The function of this 

representation scheme should be to provide an 

"Interface" or intermediate structural description 

between the raw data and sone final or output 

description, which May range in complexity from a 

simple binary dichotomy to sone type of "languap;e". 

3.1. 2 learnlng and the Problen of "'·~eaning" 

Since we shall be concerned with the desivn 

of a machine whose function is to learn to iéentify 

certain types of patterns presented to it, the attitu~e 



toward the machine as an lIapprenticell is to be 

encouraged. Thus it is desirable to build into the 

machine as little as possible a priori information 

about the data It is to encounter. That is, attention 

should be focused on how the machine is to discover 

for itself the nature of the data, and how It is to 

ascribe some IImeaning ll to this data. Let us then a~ree 

to regard the machine as a mechanical student of EEG 

Interpretation. Thus we shall call the EEr, data the 

IIvlsual ll data, since a human student would study an 

EEG by eye, and any additional information about the 

EEG will be termed IIverbal ll or lIauditoryll, since the 

human student would receive this information verbally. 

The notion of IIMeanin~" of the visual data 

then will be consldered to be the followlng. The data, 

consistlng of a number of fuzzy objects with fuzzy 

relations between them, will be input via some II v isual ll 

channel. The machine will be considered to have learned 

the meanlng of some item of this data when it can 

assoclate a sharp name, input via some "verbal" 

channel, with this partlcular item. The name will 

have been learned by repeated training examples 

considered by the teacher to be similar, each training 

example being accompanled by the same nane. The machine 

is thus able to attach naMes to what May be called 

"events" or II s ituations", consistlng of a number of 

sub-events, which may in turn be named. The eventual 
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goal is to have the machine report not only the event 

and its components, but the structural relations 

between them. To do this it must have sorne 

representation of its experience in its memory, and 

this is of course the Central Problem. 

The machine should possess both the ability 

to learn without supervision and, when supplied with 

verbal" input, to use the verbal information to assist 

the learning process. In classical pattern recognition, 

the learning usually consists ln adjusting a number 

of prescribed coefficients in some functionsof the 

features. This approach allows no interplay between 

any "intelligence" and the visual classifier. If the 

machine is to be endowed with the kind of artificial 

intelligence found in game-playing and Question­

answering systems, then the visual classifying 

mechanisms should be of a fundamentally different 

nature. Hence the method of representing the visual 

experience and of structuring it, and of interacting 

\'/ith it should be posed more as a general AI problem 

than as a pattern classification problem. 

3.1. 3 Temporal Versus rion-temporal Data 

For the reasons stated in Section 1.2 we 

\'Iould prefer to concern ourselves with "on-going" 

functions of time Ci. e., having no previously known 
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3.1. 4 

segmentation such as speech has words). We shall 

allow a partial segmentation (into "\-Jords") but shall 

specify no prior structure (ll phonemes ll
) within the 

words, which we shall take to be non-overlapplng EEG 

artefact signals. Since most pattern reco~nition 

\-Jork has been concerned with functions of two spatial 

coordinates only, and those dealing with functions 

of time have usually had known structures (e. g. 

speech or electrocardiograms), we are concerned here 

with a sornewhat different problem. We shall attempt 

however to develop a method which will be applicable 

to other data types as well (e.g., "retina" problems). 

The type of data considered here adds another 

restriction not found in many other more popular 

types. Since it is so extensive in tir.e, any form 

of random access is probably uneconomical. (A full 

clinical EEG of 1/2 hour duration and 16 channels 
~ 

contalns about 10 bits). Hence we should look for 

method which will allow a single scan of the data. 

This will have the additlonal advantage of allowing 

real-time operation of the ~achine, such as ln a 

robot. 

Implementation 

Clearly an appropriate way to consider the 

problem from the point of view of inplementation is 
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... as a program for a general purpose digital computer • 

The writer is of the opinion however (cf., Aleksander, 

1971) that the von Neumann machine organization is 

highly unsuited to this type of problen. Thus the 

conventional computer may be considered an 

experimenting ground in which one may dlscover the 

principles by which a radically different type of 

machine organization could be defined. This is what 

was alluded to in Section 3.1.1 when it was included 

in the "Central Problem" that a physical device \'las 

to be considered as well as conceptual devices. Too 

many conceptual devices are either physically. 

unrealistlc, or are cast in a form determined by sorne 

well-known physical device, such as the von Neumann 

machine. 

Hence the following point of view on 

Implementation will be adoPted. Since there exist 

a large number of von Neumann machines and software 

for making them relatively easy to use, an approach 

should be taken which attempts to function usefully 

in this environment. In addition, since ther~ exists 

a considerable development of software artiflcial 

intelli~ence techniques which may be employed, any 

advantage of then may only be han in this environnent. 

Hm'/ever, it should he kept in nind that the 

developnents in pure fabrication technolo~y will 

probably continue to outpace d~velop~ents in 
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theoretica1 areas. It May be safe1y assumed that by 

the end of the decade (if not a1ready) the capability 

to construct machines with billions of active e1ements 

will have advanced far beyond the theoretician's 

abi1ity to take full advantage of the hardware. Thus 

we should not fee1 that the von Neumann machine is 

to forever be the on1y machine which will perform 

inte11 igent tasks, but rather suspect, as A1eksander 

does, that it is a poor candidate for this ro1e. The 

Important Question then becomes: what are the 

alternatives? This study Is concerned as wel1 with 

this Question. 

Two addltional questions (for hardvlare 

particu1arly) are the degree of precision reQuired, and 

the re1iability. The demonstration of acceptable 

performance uslng very low precision, and a method which 

distributes responsibility for recognition, 50 that errors 

in individual e1ements May be tolerated, will therefore 

be additional design objectives. 

3.2 A-E!cgnosis 

Having reached this point, the know1edgable 

reader could not be b1amed for feeling somewhat skeptical 

that a11 the various work mentioned and the various criteria 

listed are about to be combined in one successful package. 

He should be assured right now that this is not about to 
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happen. Why then has such a variety of background and 

objectives been mentloned? Simply because they are in fact 

what the writer has ln mlnd as long-term goals, reallzlng 

that they will reQutre much more work than what has already 

been accompllshed, but hoplng that the Ideas and thelr 

feaslbllity could be adeQuately demonstrated here. 

Now we will state brlefly what does lie ahead, 

and what does not, to prevent any undue upset on the part 

of the reader. The program presented may be thought of 

as a form of clusterlng algorlthm (for a revlew of 

c1ustering, see Ball, 1970), and no Interaction between 

the visual and verbal data of the AI variety will be found. 

The data structure is nevertheless Intended to a110w such 

Interaction, though consideration of thls prob1em is beyond 

the scope of thls work. Since the size of the graphs is 

sma11, no searching algorlthms have been used, but the 

nodes compute a natural eva1uation function, and searching 

could be easily Introduced. The data Is extremely simple, 

conslstlngof only four categories to be distlnguished. 

Though no semantic reporting of the data structure is 

attempted, prlntout of the actual graph structure 

demonstrates that the data Is accurately and efflciently 

represented. 

The program attalns a recognitIon rate above 

90~ wlth about 20 nodes, maklng about 5 nodes per category, 

each node reQulrlng about 90 bIts of storage. The examples 

on whlch It makes mistakes are usually poor enough ln 
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Quality that the errors may be blamed on the features, 

which are not intended to handle distorted or small 

examples. 

3.3 Representing Fuzzlness 

ln Sections 1.3 and 2.3 we have reviewed briefly 

the concept of fuzziness, introduced originally by Zadeh. 

We assume familiarity with his definitions, and have not 

repeated them since we can offer no theoretical extension 

of them. To the best of the writer's knowledge, the only 

significant extension of Zadeh's original papers is that 

of Goguen (1967), in which he generalized the unit interval 

J to a complete multiplicative lattice l wlth certain 

restrictions on distributivity and the group operation. 

He makes the important ohservation that J is not suitahle 

in many instances (i.e., two fuzzy situations may not be 

comparable in any sense). He introduced as well hierarchies 

of fuzziness, 50 that two fuzzy sets may be compared for 

"degree of fuzziness", for example. Perhaps hls nost 

important addition is the use of category-theoretic language 

as a more general and flexible fornalism for fuzziness, 

along with his "Princlple of Fuzzification", a general 

rule for convertlng sharp mathenatlcal situations into 

corresponding fuzzy ones. He makes no atte~pt to consider 

topological Questions in this paper, promising the~ later . 
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The following attitudes toward theories of 

representing fuzziness are suggested by the works of Zadeh 

and Goguen. What is desired is a definition of mathematlcal 

relations between sorne input or feature space X, an internal 

(to the machine) representation scheme R, and an output 

space or language Y. In general, the space X is probably 

adequately structured as a vector space. The output space 

y may range over a wide number of possibilities, from a 

single binary decision to the English language, or sorne 

subset thereof which is mathematically tractable, say in 

the manner of Chomsky (1965). Given X and Y, the problem 

of course is to determine a suitable R, and the mappings 

between them. This is where the languaRe of cate~ory 

theory and topology should be most useful. Two levels 

of complexity may be distinguished in the possible 

structures for R: those RiS which have a fixed vocabulary 

and which learn the data structure in terms of adjustiny, 

values which define functions in this vocabulary; and those 

which are in some sense "extensible", in that a working 

vocabulary Is automatically developed froM sorne simpler 

set of primitives and production rules. ExaMples of the 

former include simple learning of coefficients in classical 

pattern recognizers, and scene analysis methods which 

express the data structure in a sharp language such as 

predicate calculus (the predicates being given by the 

designer ln advance), or in sone "picture" lanp;uagp. in 

the manner of Shaw or ~arislmhan. TLC May be an 

36 



37 

.,.- approximation to the latter case, though there the input 

is not a vector space, and the representation does not 

have a mathematlcal structure. A TlC-like program whlch 

looked at pictures as input and delivered an output in 

a Chomsky-like transformational grammar would be closer 

to the second situation. 

What kinds of structures are suitable candidates 

for R? Remember that we wish to incorporate fuzzlness, 

so that sharp structures per se are rejected. What about 

fuzzlfying a given sharp mathematical structure Ce.g. 

predlcate calcul us) using a Fuzzificatlon Prtnciple such 

as Goguen has proposed? The writer suspects that this 

is precisely \'/hat not to do, since as soon as sharpness 

is abandoned, most of the useful algebralc propertles will 

be lost as weIl. It is doubtful that a fuzzy group \-/ould 

be of much use for example, since the structure of groups 

is a very sharp situation. lee's fuzzy resolutton is 

sinplya "\·/orst case" theory. TopoloP,ical notions are 

nore naturally fuzzified, as C. L. Chang has pointed out. 

lt appears th en that fuzzification applies natural'y to 

sone mathenatical structures, and not to others, with set 

theory and basic point-set topology established as "good" 

candidates. 

When this study was be~un, the writer had no 

ideas on how to define a fornal fuzzy nathenatical structur~ 

adeQuate for P. It was decided therefore to employ the 

notion of a graph which has been widely applied in sharp 



situations. The notion of a collection of nodes, each 

representing sorne situation and cornputing sorne function, 

together with relations (weighted edges), between the nodes 

is sufficiently general so as to be adaptable to many 

situations. Here we will develop a graph-like structure" 

R which represents fuzzy clusters in a natural and 

hierarchical way, and which maps a feature (visual) vector 

space X of small dimension onto an output (verhal) space 

y which is also a vector space of smaller dimension. No 

attention will be glven to finding an optimum structure 

for X or Y, this question being data-dependent. Only the 

structure of R will be considered, since we are not 

concerned with the data (EEG) per se, but rather with the 

general problem of managing data of this type. 

3.3.1 Clustering at Nodes 

The clustering methods revlewed by Ball (1970) 

range from those which connect together every data point 

(e.g., Zahn's) to the more general techniques \'/hich 

partition the feature space into relatively large regions, 

such as discriminant, nearest-neighbour and mode-seeking 

methods. A trade-off between these two extremes would 

be to provide for a number of small regions where variations 

within the regions represent slight differences ln quality, 

so that the regions May he considered "fuzzy sets". If 

we then associate each of these regions with a no de in 
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a graph structure, we may add additional nodes to the graph 

whose functlon is to define relations between the original 

nodes. Thus the nodes assoclated directly with the fuzzy 

reglons of feature space may be called level 1 nodes, 

and the function of such anode is to report. for a given 

input situation (i.e. a given feature vector) how close 

the vector is to its region, or the degree of membership 

in its fuzzy sato 

Leaving for a moment the question of how to 

compute this closeness or membership function z, let us 

consider how we might connect such nodes in a graphe The 

usual method of connecting nodes which are intended to 

perform clustering is to connect with all-or-none (binary­

valued) edges all nodes belonging to the same category. 

When the certainty of category is in doubt at anode, 

elther through poor data or when the node quite properly 

belongs to more than one category, this method breaks down. 

Neither does it admit a hierarchical description of the 

data structure, where for example, one group of nodes 

represents one part of the data, another group of nodes 

another part, and these two groups are in turn connected 

to a node in a manner whlch represents the relation het~/een 

the two parts. If we can define a means for connecting 

nodes on the basis of thelr structural relation instead 

of their category, we will open the possibility of a graph 

structure which is capable of a deeper description of the 

data structure th an simply a binary assignment of 
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categories. The assignment of the category or 

description may then be effected by adding to the node 

"pointers" to the descriptions which apply to the region 

represented by the node. In the case of simple categories, 

which we consider here, the pointers may consist of a 

vector which we will call the "opinion" vector V, whose 

coordinates correspond to the categories. The node then 

defines a mapping between a fuzzy region of the feature 

space, X, and a direction in the category space Y given 

by the opinion vector V. Ey this mechanism very general 

transformations between situations in a feature space X 

and their descriptions in a space Y may be defined. 

.3.3.2 Closeness Function and the Node Structure 

ln this section we will develop the structure 

of a node (Figure 1), but first we must discuss membership 

functions for fuzzy sets. Closeness or membership functions 

for fuzzy sets are usually thought of as "hills", 

reminiscent of probability distributions, which are large 

over the region of interest and approach zero in all 

directions away from the region. Su ch functions tend to 

be very non-linear and require more computation th an one 

't/ould like if they are to be computed a large number of 

times. We May make a considerable simplification under 

the following conditions however. Suppose that we wish 

to select regions of a feature space as "interesting" or 
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"Important" where all the features (coordinates) have the 

property that thelr Interest or importance Is proportional 

to the 1 r magn i tude. ~/e sha 11 ca 11 th i 5 the "magn i tude­

slgniflcance" property. Suppose in addition that most 

of the time, less th an (say), half of the coordinates of 

an interesting region are large. Under these assumptions, 

we may choose a vector W somewhere in the middle of the 

region of interest. Then any given vector X will have 

a large inner product with W in the region, of magnitude 

proportional to X. The inner product z=X*W (lower case 

letters are scalars, upper case are vectors, and * indicates 

Inner product) may then serve as a membership function 

for features with the magnitude-signlficance property, 

and for regions limited to areas away from the origln, 

bounded by the hyperplane z=O. Our Initial closeness 

function 15 then: 

z = k ma x ( X * ~l , 0 ) 1) 

where \01 defines the regton by being a "typical" vector 

near the mtddle of the region, and W should have, say, 

at least two coordtnates greater th an sorne threshold, and 

preferably not all coordinates large, since the 

effectiveness of the inner product ln deter~ining a region 

ts reduced ln this case. k is a norMalizing "gain" factor, 

whose value will be given ln a moment. We choose the 

boundary z·O as convenient, since certainly negative inner 
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products are not in the region. Figure 2 indlcates sorne 

iriner product regions, and the advantage of keeping more 

than one coordinate large. 

This simple z will work in sorne cases but not 

others, however. Clearly, if W = (5,5,0,0,0) for example, 

any vector having the first two coordinates large will 

appear to be in the region, regardless of the other 

coordinates. The Inner product alone can tell nothlng 

about X coordinates whose corresponding W coordinate is 

o. To overcome this, we break W into two parts, those which 

are large, and those whlch are small. We may speak of these 

two parts W~ and Wt as though they add to form a vector 

W', but thls is not quite approprlate, as equatlon 3 will 

show. let t~ and h be small positive constants. Then 

If j is the coordlnate Index, then: 

If ~J(j~>tw,set W\(j) a ~I(j), and ~/t.(j) ·0 

1 f Iw (j * t"", set ~/ 1 (j) = 0, and W:r.. (j) a h ( t.., - 1\'1( j ) 1 ); for a 1 1 j. 

wlth slgn(W~(j» a sign(W(j» 2) 

The h and tvare selected approprlate to the scale of the 

W (j ). ( 1 n th 1 s wo r k, t"" '" 3 and h a 2 , sin cel ~I( j ) 1 < 16 ). 

W i 5 thus broken 1 n to an "exc 1 tory" pa r t ~/~ and an 

"inhibitory" part \"z. We may nO\'1 define the Z \'JÏth 

inhibition as: 

z .. k max(X*W. - r IX(j)W Cj)1 ,0) 3) •. z. 
J 
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Thus a vector X which gives a large X*W1 product but has 

components in the region defined by W1 will give as well 

a large absolute product with the \"1 vector, resulting 

in a small z as desired. 

The function of k is to insure that nodes may 

be assembled in levels, the outputs of one level becoming 

the inputs to the next (see below). For graphs of only 

a few levels depth, an acceptable estimate for k is 

k = 
average Iwo )1 

J 
-------

Thus an "average-s i gna 1" fea ture X \-Ii 11 resu 1 t 

in z values of this average value. 

Reference to Figure 1 shows the vlsual or feature 

data X as a vector entering the node and resulting in the 

closeness value z, and in addition, an opinion vector V(j), 

where j is the category index which determines the opinion 

output vector Y. The determination of V(j) will be 

described ln the next section. Here we note that the 

outp~t opinion Y of the node will be the scalar z times 

the vector V, i.e., Y = zV. Thus the output opinion of 

anode is the estimate Y of the category to which this 

node corresponds times the estimate z of the menbership 

of the input vector X ln this node's region. One could 

also think of z as the probability that X is in the node 
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region R, and V(j) as the condltional probabllity that 

the category is j given a vector X in R. 

3.3.3 Node Interconnections and the Graph Structure 

Given a sequence of feature vectors Xi' 'I/here 

1 is the "time" index, we 'Ilish to establish a graph 

structure which represents both the spatial and temporal 

behaviour of Xi' Recall that nodes whose inputs are feature 

vectors are termed level 1 nodes, and correspond to a fuzzy 

region of feature space. We add nodes to the graph 

inductively, starting with no nodes, and create or gQQ 

a level 1 node at time i If X~ has at least two coordinates 

Xi(j) and X,(k) say, greater than some threshold t and 

X~ is not in the region of sorne exlsting level 1 node, 

to avold redundancy. If the regions belonging to the level 

1 nodes are well separated, then not more than one level 

1 z should be large simultaneously. However, the inner 

product z function often results in considerable overlap 

of regions, and an Xi in the intersection region of node 

p and node q will result in zp and z~ being simultaneously 

non-zero. 

Keeping this possibility of intersectlng regions 

in mind, we ask: how are we to acconodate temporal relations 

between the regions, that is, if an event is characterized 

by the Xi vectors passing from region Rl to R
L 

to R
3

, how 

sha11 the graph ref1ect the fact that Zl 'IIi 11 be 1arr.e, 
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followed by ZL and then Z3? (We are using subscripts to 

indicate node or region here, and we also use them to 

indicate time, as in X~. Context should signify which 

is intended). We may do this as follows. As the sequence 

X~ leaves a region R, instead of the Z values being those 

given by equation 3), let them have a linear decay, with 

a time constant greater than the time normally taken for 

XL to pass between regions. That is, if i is the ti~e 

index and j the node index, then: 

1) Calculate Z~j From 2) as usual. 

2) If Z··(Z· . then set Z··=Z· ·-c, &.J &'-l'J lJ l-l..J 

where c is the decay constant. Otherwise do not change 

z" tlode z values thus decay for a time sufficient for 
~J • 

the X vector to pass into another region, and the following 

possibility presents itself. Form a ne~1 level 1 noGp. n 

If at least two level 1 nodes have z values exceeding SOMe 

threshold t. This will accomodate either the intersection 

case or the temporal case, although adMittedly n cannot 

distinguish the two cases. Often such a distinction is 

not required, since if a vector X~ is passing From Rl to 

R~, it usually goes through the intersection, and there 

is a continuum of cases between the extrenes: a) JUMping 

instantly between two disjoint regions, and b) entering 

and then leaving the intersection of Rl. and R~, without 

entering Rl or R~ alone. The only difficulty occurs if 
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the data does contain such possible ambiguities in different 

categories, or if it is required to represent the spatio­

temporal structure uniquely, for instance, when it is 

desired to have the machine reconstruct a waveform as it 

has learned it. Figures 3 and 4 indicate these two cases. 

~/e shall endow all nodes at all levels \'Ii th the 

same linear decay functions, and the general node formation 

rule becomes: 

FORMATION RULE: Form a new node on level n+l if at least 

two level n nodes have z values exceeding a threshold 

t, and no other level n+l node has a z value exceedlng 

sorne threshold t~. 

ln this definition, the features themselves are 

considered level o. The weights Hl. and W2. (the "exci tory" 

and "inhibitory" weights> are deterrnined, as an initial 

estlmate of the region, by taking the current XL as the 

vector W and applying the rule 2). 

The opinion vector V must be determined 

by the teacher, who provides an estimate of the category 

to which he wishes this Xl assigned. For example, if he 

is certain that Xl is category l, and there are 4 categories 

and the V(j) have a range of 0 to 9, then he may set 

V=(9,0,0,O), etc. 

Probably the first estlrnate W of the reglon R 

Is not the best, and as subsequent exarnples of the sar.e 

situation repeat themselves, the Xi sequence will again 

pass through the same region, though on varying 
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trajectorIes. ~/hen X,- again reaches a poInt "well In" 

the region of node n , we may obtain a new estimate of 

~I and V as fo 110\'/5. Let the "upda te" th resho 1 d be t"", 

and W be the vector recomputed From W~ and WL • 1 f z. 
" 

<zi_1.and z~ )t&4,. then X" is probably the closest to \'1 that 

this current sequence will get. Recompute \'1 and V by 

siliiply averaging the X, and whatever V~ Is avaIlable (the 

instantaneous teacher opinion Input) with the existIng 

~I and V. That 1 s: 

UPDATE RULE: 1) Reconstruct W from W. and W~ when the 

above condItIons on z are met. 

2) The new estImate of W Is just: 

W=(mH+X~)/(m+l) 

where the W on the rlght side Is the reconstructed 

W, and m is the number of prevIous updates. Recompute 

k from the new W. SImllarly: 

V=(mV+Vi.)/(m+l) 

3) Recompute w~ and W'Z., From equation 2) 

3.3.4 Obtaining an Output from the Graph 

Stnce we have many nodes, each offering an 

"opinIon", \Ole must obtain some consensus. Selfrldr,e (1959) 

was one of the fIrst to antIcIpate this problem and 

suggested taklng the largest opinion. This Is acceptable 

only if one can be assured that the largest is statlstlcal1y 

the most reliable. Frequently nethods ... lith statistical 
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underpinnings are se en in the literature (e.g., the so-

called Bayes estimates) which tell one similarly to choose 

the tlbesttl or tlleast risk" estimate. In practice however, 

one requires very large samples to obtain a good estimate 

of which is best, and any statistically based method 

requiring knowledge of distributions would undermine the 

objectives of the fuzzy approach. Tests using the greatest 

output or outputs Cwith the very low precision used, 4 

bits, several may be equal) showed that this method was 

not satisfactory. Averaging the greatest two was better 

and the greatest three again better. Since contlnually 

Cat each time step) ranking the outputs to obtain the 

largest n outputs begins to increase computation, an 

alternative method was sought. 

Another method which Is intultlvely appealing 

is to average all outputs whlch exceed sorne threshold t 

by simply adding them. This method was found superior 

to the ranking method, and offers more possibilities for 

theoretical development. Thus 

y out os r y . 
l ) 

, y.) t 
J -p 

4) 

where ~ is equal to z~ as usual, and j is an index over 
J J 1 

nodes. It will be useful in what follows to refer to this 

output opinion vector Yout as a vector of "votes" for the 

various categories. If category k is given the largest 

vote, (i.e., Y(k) is greater than all other Y(j» then 
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we will call k the opinion of the machine (the category 

assignrrJent). 

This output is of course, not a structural 

description of the data, but merely a single name 

assignment. The incorporation of mechanisms for more 

linguistic output spaces is beyond the scope of the present 

work; however, since one major aspect of the fuzzy graph 

is to obtain such descriptions, some indication of how 

this could be accomplished is in order. let us consider 

a fuzzy predicate such as "is a member (part) of". If the 

predicate is considered an ordered pair of fuzzy vectors 

(Vt'V~), where the ViS are name vectors exactly as before, 

and (V1 ,Vz.) means "V! is a part of V~ ", then the teacher 

may input in place of V alone, V~ and V
l 

' where V1 is 

the "name of the part which belongs to VL , the parent. 

Thus anode carries an estimate of the part nane and the 

parent name to be associated with a region of visual space. 

We may i llustrate hO\'1 the structure of the graph 

would be interrogated to yield a part-parent description 

of a category (which is the ultinate parent) by assunlng, 

for the sake of argument, the availability of an interactive 

graphics system. Since each node has a large number of 

weights associated with it, the systeM would not show any 

wei~ht values or graph ed~es until asked to. He select 

a category k, and the systen indicates the deepest level 

(=d) nodes \·,hose V
1 

votes are MOst certainly k. rtote that 

there ~ay be a number of these, correspondinp, to disjoint 
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regions of feature space which in various training examples 

have been designated as k. We th en choose one of these 

level d nodes, and the system displays its V~ and V~ 

vectors, where the V1 is of course the selected category, 

and V1 is any part description given to this node. Since 

this is a deep node, it will have been formed only as a 

result of many earlier nodes, which are in turn, parts 

of other structures. Thus the deep nodes would not be 

expected to possess much of a part vector V1 , since part 

vectors should only be input on small local regions. At 

deep 1 eve 1 s then, we expect 1 arge Vz. and sma 11 V1 , and 

analogously, at the first levels, which are relatively 

broad in their feature space associations and may well 

belong to many different categories, \fIe expect ... ,eak V~ 

vectors and sharper Vt vectors. 

We may proceed backward from level d, the system 

indicating which nodes are the major inputs to any selected 

node, obtaining both part and whole description, so that 

the parts, and parts-of-parts may be seen, as well as parts 

"'/hich are shared by other parents. T\'IO categories could 

be selected, with an indication (such as increased 

intensity) of those nodes belonging to both, 50 that the 

comman parts could be identified. 

This very brief description of a possible 

extention of the present work is admittedly not sufficient 

to satisfy the reader that the graph is provicing an 

adequate description of the data structure. ft is included 
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to Illustrate the manner in which one could extend the 

graph structure as it is presented here; a flexibillty 

not enjoyed by simpler pattern recognition schemes. In 

Chapter 4 an example will be given of a manual recovery, 

by printing of the graph z and Y values during an event, 

of the structure of the Input waveform. 

3.4 Why Has This Structure Been Chosen? 

At this point the reader should be wondering 

exactly what kind of function a graph such as we have just 

deflned computes. Let us for the moment consider the graph 

wlthout the time delays, i.e. as a function mapping a 

single point in feature space into a single point in the 

output space. The expression 3) Is hot very tractable 

From a mathem"atlcal point of view, since it contains the 

two non-llnearities (the max function and the absolute 

value) whlch defy slmpllcation. Why then use such a 

function? Why not use the more nanageable and popular 

max and min functions From Zadeh's theory, and obtaln a 

"Z adeh-type" fuzzy AND/OR graph? Certainly this would 

have the advantage of familiarlty since A~D/OP graphs and 

mlnimax nethods are well studled in the literature. 

The reason is that the writer feels that the 

minimax functions, while havlng good algebraic Qualities, 

are not as suitable for real fuzzy sets as one would like. 

Max and min functions are desirable for thelr algebraic 
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properties on the fuzzy domain (terMed L by Goguen, who 

generalized Zadeh's use of the unit interval to a completely 

distributive lattice wlth zero and infinity). However 

they are also "pessimistic" (see Santos (1968) and ~1izumoto 

et al. , (1969» in that they guarantee bounds by taklng 

worst case estimates. Such pessiMistic estimates have 

been seen to function poorly in game playing situations 

when pitted agalnst humans, since certainly humans do not 

make decisions based solely on the worst case (Slagle and 

Dixon, 1970). The problen of how much and what kind of 

algebraic structure to incorporate is one well famlliar 

to those working in computer methods for handling natural 

language. Chomsky's formalism for representlng language 

had to abandon the traditional structures of algebra, and 

still Qulllian was unable to use Chomsky's methods ln his 

TLC program. Until a theory of fuzziness can be developed 

whlch relinquishes sorne of the algebraic structure of L 

in favour of more flexible structures, 'Ile must be content 

~/ith elther the restrictions of formal fuzziness or the 

lack of rlgour of the present informal fuzzy approach. 

The graph structure which results from applying 

an algorlthm of the sort described here to sorne real data 

nay probably best be considered as a fuzzy parse, in the 

sense of a phrase structure gramnar. A given data structure 

is reflected in a corresponding graph structure as a 

hierarchlcal set of relations between parts and sub-parts. 

Since level 1 nodes represent regions of feature space, 
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two can be on simultaneously only if they are not far apart 

and the Input vector falls in their intersection, resulting 

ln a level 2 node for the occurence of this pair. In a 

lareer feature space, one \-lOuld not "/ant to -have nodes 

with large numbers of inputs - with this metric their 

performance decreases as the number of inputs increases. 

The number of inputs per node would have to be restrlcted 

to a small number (say 8), and hence a number of nodes 

would be on simultaneously to handle situations with more 

than this number of features. Nodes at the next level 

would then play the essential role of coupllng together 

these smaller nodes. Su ch large situations would be handled 

as indlcated earlier by a search algorlthn which mieht 

go something like thls. The most frequent (or important) 

features would be computed first, then the first level 

nodes involvlng them, then the second level nodes Involvlng 

these, etc. This \-lOuld require a change of pointers 

defining the inter-node (edee) relations From the sink 

node, as they are now, to the source node, where the edge 

is from source to sink. Additlonal features and nodes 

would be computed untll a sufflciently sharp outPut was 

obtained. 

This degree of sharpness, or quality, is defined 

as follows. If the category of an input X Is k, and the 

vote for category j i 5 Y{j), j =1, .•• , n, then the Qua 1 i ty 

i s: 
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q = Y(k) 

1. yu )+1 

j +k 

The 1 is in case the sum Y(j) is zero. 

5 ) 

Returning to the time function case (i.e., with 

decaying node outputs as described above), level n+1 nodes 

serve the main purpose of detecting time sequential 

relations between level n nodes, as Figure 4 shows. Due 

to the non-uniqueness pointed out above, two events occurlng 

closer in time than thelr prototypes will give a larger 

output than the prototypes, and similarly larger intervals 

will give smaller outputs, not an undesirable result. 

ln thfs chapter, we have trfed to show how the 

fuzzy graph is capable of both a visual and a verbal 

description of an event, acting as an interface between 

a feature space and a descr f pt ion space. 1 n the nex t 

chapter, the results of a program written to experfment 

with these ideas are to be presented. 
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Chapter 4. Program Details and Performance 

This chapter will present the detalls of the 

program whlch was written to gain some numerlcal experlence 

with the methods outlined ln the last chapter. Manyearly 

results obtalned during the period when the present form 

of the program was being evolved are not presented; rather 

onlya sample of the more revealing aspects of the current 

program's performance will be given. The main interest 

will center on the effect of changing the various 

parameters, most of which are thresholds. The two effects 

of most interest are of course the error rate and the size 

(number of nodes) of the graph. He begin wlth a description 

of the data and Its acquisition. 

4.1 Data Acqyisitlon 

Data was recorded from flve subjects, ranging 

from a male of 24 to a female in her sixties. Two channels 

of data were recorded, consisting of deliberately created 

eye motion artefacts. One channel was from an electrode 

pasted about 2 cm lateral and 2 cm above the eye, the other 

being 2 cm lateral and 2 cm below the eye. This arrangement 

gave a reasonable approximation to the four binary 

combinatlons of positive and negative-going waves in the 

two channels when the subjects were commanded to roll their 

eyes up, down, left or right. Originally it \'/as attempted 
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t 
to record more than four classes of signals by includlng 

eye bllnks, squints, and the four eye rolltng motions 

performed with the eyes shut. The experimenter however 

was unable to learn to classlfy these wlth any certainty; 

it was decided therefore not to ask a machine to do so. 

Even the four eye-open rolling motions showed su ch 

variability that the experimenter could not always identlfy 

the signals. Frequently one of the channels would seem 

to "drop out" ln that only a sl ight wave of unrecognlzable 

shape or polarlty was present. The EEG itself, origlnatlng 

in underlying braln tissue, served only as a source of 

noise added to the artefacts. Figure 5 shows a number 

of examples of the four signal classes. 

The recordlngs were made on an analog (FM) tape 

recorder with a bandwldth of 1 to 20 Hz., along wlth verbal 

Identification of the commands to roll the eyes. They 

were then dlgltized at 150 samples/sec with a PDP-12 

computer and stored on digital magnetic tape wlth a 

precision of 6 bits. This data was then edited vlsually 

uslng the PDP-12 dlsplay to select those examples which 

seemed acceptable. Many signals were unsultable due to 

low amplitude, super-imposed Jerks of the eye resultlng 

ln saw-tooth shaped signals, and strange waves due to the 

eyes taking a devlatlon or blinking whlle rolling. The 

edited data contalned 80 up CU), 69 down (0), 52 left CL) 

and 76 right CR) signals. CThe smaller number of lefts 

Indlcates that they were the poorest ln quallty). This 



selection included a number considered so poor that the 

machine was not expected to recognize them. This data 

was then transferred to the 2314 disk of the McGill 360/75 

on which the main programmlng was done ln Pl/1. A digital 

plot of the data was obtained by whlch each event (one 

of the four signal types) could be verified and correctly 

named by referrlng to the original analog tape. The events 

occurred in the edited data at random times, with no 

overlapping. The data was arranged in records of 512 

sample vectors (I.e. a vector of the two channels) per 

record so that records could be presented to the machine 

in any desired order. No events spanned two records to 

simplify the programming. Records contained either UD 

or lR events only, or a mixture of all four types of events. 

4.2 Feature Extraction 

Since the determination of good features is a 

difficult problem in itself and Is dependant on the 

particular data, and since it was not an objecttve of this 

study to analyze eye motion artefacts per se, little 

attention was given to feature extraction. A pre-program 

was prepared whlch accepted the raw data from dlsk, applled 

a simple four point low pass fil ter, of the form: 

y. = -2.x. + x· + x~+ x: •• 
'" Il (.-1- '-1. ~ • 

~ 6 
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and wrote back on dJsk, for each tlme sample, a six 

component feature vector, three for each channel, as 

follows. 

Let the smoothed signal ln one channel be denoted 

by xi' a scalar proportlonal to the electrode voltage at 

tlme 1, wlth 6 bit precision. Compute: 

, 
f. = x· - x - and '-2- ... , <.-, 
fi = f.' fi 
L3 '-~)4 - ~+2)2 

that Is, elementary fJrst and second derlvatlves. It was 

found that the signal and the f~j had an unsatlsfactory 

dynamlc range, since It was deslred to reduce them to 5 

bit features. Taklng a hInt from biologlcal systems whlch 

handle wlde dynamlc ranges ln a non-llnear way so that 

the "physlologlcal" range Is glven the greatest precision, 

and very small and very large slgnals are attenuated, the 
1 1 

three val ues xL' f~'1. and fi~ were subj ected to a memoryl ess 

piece-wise llnear transformation g, of the shape shown 

below, to emphaslze the Interestlng range and to suppress 

too small or too large values. The exact values of the 

functlon g need not concern us here. The three features 

for each channel whlch were recorded on dlsk then are: 
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g(x) 

f· = g(x~) '-1 

fLl. 
1 

:1 g(fc:,l. ) 

fi..,. 
1 = g(fi.3 ) 

where f'3 is given the sign of x~, and the slgn bit Is 

in addition to 4 magnitude bits. Thus the Input features 

have 5 bit precision, slnce they naturallyare signed 

values. AlI subsequent z values, whlch are non-negatlve, 

are only 4 bit numbers. It would be Interestlng to try 

features wlth only 3 bit magnitude, and the author suspects 

they would work. Certalnly the slgn Is the most srgnlfrcant 

bit. 

It was dlscovered some tlme after havlng used 

these features for the Initial development on the graph 

program that there were cases where the features dld not 

dlstlnguish categories sufflclently weIl. To properly 

test the graph performance, an Improvement was added as 

follows. Two new features were added, one proportlonal 

to the dlfference between the two signal channels, and 

the other Inversely proportlonal to thls: 

:1 !.Cx· -x· ) + 1.1. '-"L 

= si gn (f· ) 
,,~ 

16 

2 + 1-r" ... 1 
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Thus the feature vector has 8 components for 

each time i: the f L, fz' and f3 for each channel, and 

f+ and fS. 

The verbal information was recorded on dlsk along 

with the vlsual InformatIon as a number v~ at each tlme 

step 1, where v =0 if no event was occurring, and v =1,2,3 

or 4 if the event was U, D, L, or R, respectively. The 

beginnlng and end of the event was a subjectIve declsion 

by the author. These v~ were used to define the verbal 

Information used to create the vector Vi(durlng node 

formatIon) or for updatlng V, wlth no attempt to grade 

the teacher's opInion of the category, as follows: 

1 f v~ = 0, V\.= (0,0,0,0 ) 

1 f v~ =1, V~ =(9,0,0,0) 

1 f v· =2 
\. ' V,- =(0,9,0,0) ••• etc. 

The range 0 to 9 for the opInion coordlnates was arbitrarlly 

chosen to not exceed one column prlnting wldth. Thus nodes 

whlch are always updated on the same category wIll retain 

the sharpest opInion, 9 for that category and 0 for the 

others. Anode updated half the tlme on category U and 

the other half of the tlme on category R will have an 

opinIon (4,0,0,4), the truncation belng Insignlflcant. 

These features have been chosen to be 

mathematically simple, involving a minImum of computation, 

and reflect the criteria which the author found himself 
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read a record 
---' 

-1 
Increment t Ime 

1 
set FI & F2 = 2 largest l f.1 

1 
J 

no 
1 s Fl+F2 > t s? 

yes 

compute all node z values, and 
accumulate the sum of all opinion 
vectors Y for this tlme step. 

1 
end of event?----------~ 

Is Fl>t., 
z on 

no 
yes 

output OP and record 
error data. 

and F2> t o 2. and no-, 
level 1 > t

1
? yes 

no 

form a new node on 
level 1 uslng Xi. and v~ 

~------------------repeat above formation step 
for levels > 1 uslng tu and 
t,1. 1 n place of t o , and to~ • 

1 
update any nodes whose z > t~ 
and whlch are at a maximum 

1 n t 1 me. 
1 

...... ___ end of rei..,,:ord? 
no 

yes 

Figure 6. Flowchart of Main Program 



to be using ln recognlzlng the data types. They will be 

seen to sufflce for the larger and less distorted examples, 

but fail to give an adequate measure of the poor quallty 

waves. As we have stated earlier, this deficiency Is not 

the direct concern of this study. 

We have now specifled the action of the pre-

program whlch prepares on disks a set of features (vfsual 

Input) and teacher opinions (verbal input) which the main 

program accepts as input with which to build the fuzzy 

graphe 

4.3 The Main Program 

The main program, whlch performs the recognition, 

reads the features and the names of the events from the 

disk a record at a time, 50 that the records may be 

presented in any order. Figure 6 is a flowchart of the 

essential program details. 

We will explain Figure 6 briefly. A record Is 

scanned until the sum of the absolute values of the two 

largest features FI + F2 exceeds a threshold t s which was 

fixed at 4 for aIl that follows. This Is simply a means 

of skipping over noise between events. When t s is exceeded, 

it is probably due to an event, and we compute the values 

z (closeness) and Y (opinion) for aIl existing nodes. 

Admittedly this is very wasteful, since most nodes are 

inactive (z·O) at any tlme. Since we wlshed to direct 
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attention to the node function and graph properties in 

particular, and since the number of nodes involved in the 

data at hand was economically small, the Question of 

computing only active nodes was set aside. We shall write 

OP for Yoût for convenience. OP is the sum of aIl Y vectors 

taken over aIl nodes and over the duration of the event, 

where any components of a Y which are less than some 

threshold top are set to 0 in the sumo (This is a 

heuristic, like most of the functions found in this program, 

and was discovered by trial and error). The vector OP 

Is printed at the end of each event along with an estimate 

of the Quallty of OP, Q, obtained as described ln Section 

3.4. Q is thus a large number if the OP is correct (i.e., 

the largest component of OP is OPCJ) after event j ). 

A 4x4 confusion matrix Is maintained in which, at the end 

of each event, the OP vector is added to the i-th row if 

the event was of class 1. An error matrlx 15 also 

malntained, in which I 15 added to the (i,j) element, where 

i (the row) is the event class and j the index of the 

largest OP component. If more than one OP component has 

the same value (or aIl are 0) then nothing is added to 

the error matrix, but this is recorded ln the total count 

of all errors. 

The formation of new nodes is handled identlcally 

at all levels, except that distinct threshold values are 

used for level I (which receives the features themselves 

as Inputs). If FI and F2 are the absolute values of the 
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t\OIO largest features at any moment then if Fl>~,and F2>to~ 

and no level 1 node has a z value>t~ then a new node Is 

formed at level 1 with weight values W determlned as 

explained ln 3.3.2. The opinion or name vector V for this 

node Is set to (9,0,0,0) if the current event Is class 

1 (U), (0,9,0,0) for D, etc, and v=o if there 15 ln fact 

no event ln progress at the moment. Nodes on higher levels 

are formed ln the same manner, using the thresholds t" 

and t,1.. These four thresholds and the fifth, t .. , control 

the density of nodes ln the feature space. Separate 

thresholds were Introduced for level 1 50 formation at 

level 1 could be controlled Independently of the other 

levels. Many of the experimental results whlch follow 

are concerned with the effects of these five thresholds. 

The updating of anode occurs if the z value 

exceeds the threshold t~ and is experienclng a maximum 

ln tlme, as descrlbed in Section 3.3.3. It was found that 

the number of updates allowed any node, n ,and the 

precision of the weight vector W, were Important aspects 

of the updating, as will be seen ln the examples whlch 

fo 11 ow. 

4.4 Program Performance and Discussion of Results 

We now present a number of examples of the program 

performance, whlch have been selected to illustrate various 

aspects of the technique. To give the reader a better 
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...., 
T,~. of" ~1. f .. , ~n. ,\, ~~~ 

.... 
252U 7 -7 * 253U 2 -2 10 -10 * 254U 5 -5 10 -10 -3 * 255U 6 -7 -4 5 -7 * 256U 5 -8 -9 3 3 -6 * 257U 2 -6 -Il 10 * 258U -2 -Il Il * 259U -1 -8 10 -1 * • 
260 -2 -2 5 -1 * 
III -4 9 * 1120 -1 3 -7 10 * 
1130 -3 6 -5 9 4 * 
1140 -4 7 -1 6 * 
1150 -3 7 1 -6 1 * 1160 -2 4 5 -10 * 1170 -1 1- 5 -10 * 118D 4 -7 * 227U 7 -6 * 228U 2 -2 9 -10 * 229U 4 -5 6 -10 1 * 230U 5 -7 -6 3 -6 * 231U 4 -8 -5 -7 * 232U 2 -6 -10 8 -2 * 233U -4 -10 10 * 234U -1 -5 10 * 235 6 * 354 -2 6 * 3550 -1 2 -5 10 * 356D -2 5 -5 10 * 3570 -3 7 -1 5 5 * 3580 -3 7 -1 6 * 3590 -2 6 4 -10 * 3600 -1 3 5 -10 * 3610 3 -10 * 362 -5 * 

Figure 7. Feature Outputs. 
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~ 
.; 

.. - ri 1 0' r o 0 
~ - - = ri 2 OP 1 •••••••••••• 1 eve 1 1 .................... 1 • 1 eve 1 2 •• 

T .. U o L R 
252U 4 3 1 4. 2 1 1. 
253U 4 3 2 3. 4 1 1 1. 
254U 7 3 1 2. 4 3 2 · 3 
255U11 3 1. 3 5 5 · 5 • 2 1 4 2. 
256U17 3 · 2 4 4 · 5 • 5 1 3 3. 
257U18 3 2 · 1 3 3 3 · 4 • 5 1 1 2 3. 
258U21 3 3 1 2 2 4 · 3 • 4 " 2 
259U22 4 3 1 1 1 3 3. 2 • 3 3 2 
260 22 4 
U224 40 0 0 5.46 73.36 
111 1 1 1 3 · 1 1 
1120 1 1 1 4 2 2 1. 1 3 
1130 1 5 1 3 4 3 1 3 1 3 2 
1140 112 1 2 3 5 21 3 3 
1150 113 1 1 2 4 2 3 · 1 
1160 114 1 1 3 3 · 2 " 1. 
1170 117 1 2 3 · 2 3 4 • 
1180 117 1 1 2 3. 2 2 3. 
o 16178 0 0 10.47 83.92 
227U 1 1 4. 2 1 1. 
228U 1 2 3. 4 1 1 1. 
229U 1 1 2. 3 3 2 · 2 
HOU 4 1 1. 2 5 5 · 4 · 2 1 3 2. 
231U 9 1 · 1 " 5 · 5 • 4 1 3 3. 
232U11 1 1 3 4 2 • 4 • 5 1 2 3 • 
233U13 1 1 3 2 3 3 · 3 • 4 2 2 
234U14 1 1 2 1 2 3 · 2 · 3 2 1 
235 14 1 
U147 16 a a 8.65 78.13 
354 
3550 1 1 3 2 1 2. 1 3 
3560 2 1 3 3 2 1 1. 4 
3570 8 1 2 3 4 31 3 3 
3580 16 1 1 3 5 21 3 3 
3590 21 1 2 4 4 · 1 5 · 1 
3600 21 1 1 3 3 · 2 4 2. 
3610 21 1 2 2 4. 2 3 1. 
362 21 1 1 1 3. 1 2 
0 0218 0 0 218.00 88.12 

Figure 8. Graph Response to Examples 

From Figure 7. 



"feel" for the numerous cases to follow, we first present 

in detail a simplified exampte of the program showing 

expl icitly in Figure 7, the feature inputs as a function 

of time, the resulting graph response as a function of 

time in Figure 8, and in Figure 9 a schematic drawing of 

the graph at one instant, from which we will manually Cby 

inspection) der ive a fuzzy description of the data at that 

moment. 

Recall that training consists in inputting a 

number of examples to the program and allowing it to 

construct the graph according to the rules we have 

discussed. Testing then conslsts ln preventing any further 

formation or updates of nodes, and examining how the graph 

responds to additional similar cases. In our preliminary 

case, 16 U and 19 D examples were used for training, 

resulting in a graph with 18 first level and 5 se~ond level 

nodes. Three training errors occured, and the training 

Q was 61. 

ln Figure 7 we have selected several examples 

of the outPut From the feature program, \'/here f"" and f~ 

do not appear, since, the reader will recall, they were 

added in the main program. They may be calculated From 

the expressions given in Section 4.2. The time appears 

at the left, followed by the teacher name input CU or D), 

followed by the six features fil through f.n.. The ra\'/ data 

is plotted using asterisk for channel 1 and dot for channel 

2. 
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Figure 8 shows the main program output 

corresponding to the examples in Figure 7. The 8 columns 

following the name are the accumulating OP vector, divided 

by 10, 2 columns per category. Following the vertical bar 

are the z outputs for the first level nodes, followed by 

the second level nodes. The dot every five is to aid 

reading, and values less than 1 are not printed. At the 

end of each event is shown the full OP vector, the Q and 

the average Q value up to this example. 

We note that at a glance, the response appears 

as a "flow" through the graph, as though i t \'/ere a network, 

with different flow patterns in the U and 0 cases, as one 

would hope. The recognition is taking place on the large 

part of the wave only, since the features used do not 

measure any of the more subtle properties of the later 

parts of the waves. In the U example which begins at 227, 

we see node 202 (the hundreds digit refers to the level) 

and node 205 on simultaneously. The table of node weights 

(not shown) reveals that 202 is primarily driven by 106 

and 107. By examining other U examples ln the same test 

set, and by knowing that 106 Is in decay, one may verify 

that 202 is the result of the temporal sequence 106, 107. 

Slmilarly, 205 is largely the simultaneity of 111 and 116, 

wlth perhaps a slight lead by 111. While the node weights 

themselves do not distingulsh the temporal from the spatial 

(simultaneous) cases, as polnted out ln Chapter 3, we may 

make the distinction for any input example by inspecting 
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feature: f fI 'L f f 'l.1- f ;, f~2. f4 fs cu 
l' 1.. "" 0 N 

X vector: 5 -7 0 -6 3 -6 9 1 
c .. ~ 

-Q .2. 3 -3 .§. .2. -.2. 5 105 -Id 

1 -1 8 -7 2- Q. 1~ l 106 -2d 

6 -7 l -4 5 -5 9 2- 107- 5 

~273-
(lI 

5 -7 -Q -1 1 -5 9 2- 108 - 5 

-!i. -3 -5 8 -3 .§. 2- 4 109 

~~2-
5 -7 -1 l l -3 9 !i. 111- 4 

3 -7 -7 3 .§. -1- 7 !i. 116 - 2 

Fi~ure 9. Active Graph Structure at One Ti~e Instant. 

The X vector at time 230 from the previous figures is shown above the 
weights WI and N~ (underlined) for each level 1 node involved. For level 
2 nodes, only the W, weights are shown in parentheses. d indicates anode 
in decay. For discussion, see texte 

...... 
VI 
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the z values, to note those which are in decay, as we note 

106 to be here. 

ln Figure 9 we have selected the moment 230 from 

thls U example and drawn the active portion of the graph, 

where the complete (8 component) feature vector Is shown 

above the input weights to the level 1 nodes Involved, 

so that one may compute the Inner products if desired. 

The level 2 nodes belng driven from these are shown wlth 

only thelr W1 weights beside the graph edges, to facllitate 

drawing. We may make the following verbal fuzzy diagnosis 

from thls graph at this instant, by determlning the regions 

of feature space in which the Input lies. Nodes 202 and 

205 have directed our attention to the level 1 nodes shown, 

which tell us, by taklng their welghts as representative 

of the input situation, that channel 1 has a value of about 

+5 (f .. ), wlth a very small slope, and a medium peak nearby. 

(We are maklng guesses about the feature vector from the 

weights of 107 and 108), The channel 2 signal Itself 

(fit) is about -7, wlth a slope between -4 and 0 (a wrong 

guess) , and Is also near a peak. By noting that 105 and 

106 are ln decay, we Infer that there has just occured 

a situation recognlzed by them. He leave it to the reader 

to descrJ be i t. 

For the sake of clarlty we have chosen this 

example to have on1y a few simple, sma11 values. A carefu1 

examinatlon of the three figures will greatly asslst the 

76 



reader in understanding the examples of performance which 

follow. 

'* '* '* '* '* 

ln the followlng pages are presented a number 

of examples of the program performance, selected to 

illustrate the effect of changing various parameters. The 

examples are nurnbered for identification in the paragraphs 

of discussion which follow, and are summarized in Table 

l, where they are called cases. The order of the cases 

in Table 1 is partially the order in which they were 

studied, with sorne grouping of related results where 

possible. 

Before the discussion of cases begins, we list 

the various syrnbols used, and their meanings: 

Thresholds: 
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tOI and toi If the absolute value of the largest feature F1 

i s < tOI 1 no new node i s formed. 1 f the abso 1 ute 

value of the second largest feature F2 is < tOl.' 

no new node is formed. 

t,1 and t l 1.: Similar function to tOI and t o1 , except for levels 

>1. These pairs of values were found to be more 

useful than the single threshold referred to in 

Chapter 3. 
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t.: If any z value 15 above thls value, no new nodes 

are formed on that level at thls instant. 

t~: If a z value is above this value and is decreasing 

as described in Chapter 3, update that node. 

OP: Refers to the method of obtaining the opinion 

from a11 nodes Csee Section 3.3.4), as follows: 

a: OP is the sum of the 3 largest Yj. b: OP 15 

the sum of the'2 largest ~. c: OP 15 the sum 

of a 11 Y j > 1 , as i n 3. 3 • 4. d : OP i s the s um 

of all Yj > 0 • 

A A collection of data exarnples wlth UD pairs 

first, followed later by LR pairs, with sorne 

unpaired events. There are 13 U, 12 D, Il L 

and 13 R. 

B 

C 

Same data as A, only 

A collect ion of data 

Ca selection of good 

from all 5 subjects) 

Contains 20 U, 21 D, 

D,E See cases 26 and 27. 

arranged in random order. 

from the same population 

to medium Quality examples 

as A, used for testing. 

12 Land 13 R. 

Q The average Quality factor over all examples, 

computed for each example from eQ. 5. 

The following details pertain to the cases 

discussed below, un1ess otherwise noted. The maximum 

number of updates, m , counting the original (formation) 

W as the first update, is limited to 5. The threshold for 



..., 
ID 

CASE THRESHOlDS OP NO. OF TRAINING TEST 
01 02 Il 12 z u NODES data errors Q data errors Q 

no % no % 

1 7 5 5 544 a 36,16 A 1 2 2 C 7 10 1 

2 7 5 5 544 b 36,16 A 1 2 2 C 13 20 1 

3 7 5 5 544 a 37,8 B 4 8 2 C 8 12 1 

4 7 5 5 544 c 36,16 A 3 6 48 C 6 9 34 

5 7 5 5 344 c 36,37,3 A 5 10 70 C 7 10 38 

6 7 5 9 944 c 36,0 A 8 16 27 C 10 15 19 

7 i 5 5 544 c 36,16 A 9 18 38 C 26 39 32 

8 7 5 5 545 d 30,10 A 9 18 13 C 6 9 3 

9 7 4 5 545 d 43,10 A 12 24 14 C 8 12 2 

10 7 5 5 543 d 50,10 A 12 24 18 C 9 14 4 

Il 7 5 5 544 d 36,16 A 4 8 20 C 6 9 3 

12 7 5 5 544 c 48,15 A 9 18 29 C 14 21 16 

13 7 5 5 544 c 31,12,2 A 4 8 46 C 7 10 10 

14 7 5 5 544 c 37,8 B 10 20 23 C 9 14 24 

Table 1. Program Performance. 



the Inhlblting vector W1' tw' Is flxed at 3. The Y values 

from each node are dlvlded by 10 to reduce prlntlng space 

for OP, and will be referred to on thls scale. Thus a 

typlcal value of z Is 5, and the scaled Y values for a 

V=(9,0,0,0) would be SY/lO, which truncates to Y=(4,0,0,0). 

\ole speak of th 1 s Y as a "vote" of 4 for U, si nce the vectors 

V and Y are ordered: U,D,l,R. 

* * * * * 

Case Discussion 

1. The flrst few cases explore the various OP 

methods. Note the low values of Q, compared wlth later 

values. This Is because OP Is the sum of only 3 Y values, 

so that if even all three have a single 9 ln thelr V vector, 

the Q will be about 15, slnce the typlcal z Is about 5. 

2. like l, only taking the 2 largest Y. The error 

rate becomes about 50% If only the largest Y Is taken. 

3. llke l, only wlth random training data. Note 

that only half as many second level nodes were formed, 

though the flrst level Is almost the same. 
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4. Here we use OP method c, the preferred method 

below. This case is the result of much experimentation 

with the thresholds, since formation thresholds too small 

result in excess numbers of nodes which respond to "noise" 

and essentially cover the feature space indiscriminantly. 

Too few nodes only respond to large, good signaIs. These 

values were found to be a reasonable compromise. Two of 

the 3 training errors were mlssed (not classified) events, 

belng too small. Two test events were missed, and aIl U 

and R were correct. Note the much more satlsfactory Q value 

(34) from the earlier cases. This means that the average 

example Is glven a correct vote at least 34 times more 

certain than those in error, the average including the 

erroneous examples. 

5. Here we drop the second level threshold slightly 

to see if additlonal nodes on this level will help. The 

slight loss ln performance is due to excessive level 2 

nodes. This optimum number of nodes seems to be a general 

princlple: too many is as bad as too few. An unexplained 

phenomenon may been seen here which reoccurs ln various 

trials: the error rate may be Inversely related to the 

Quality of recognition. 

6. This case is the opposite to 5, in that no second 

level was allowed. We find that the first level is carrying 

most of the responsibllity for recognition, slnce the waves 
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can be well separated by the features alone. 

7. The program has been modified to function as 

in 4, except the OP is taken from the second level only, 

to better assess its contribution. One U and one L were 

missclassified, with no R missclassified. Nearly all 0 

were missclassified, with the remaining errors being 

omissions (OP=O). The reason for the poor performance 

on 0 was not investigated, but is probably due to a spatio-

temporal ambiguity. 

8. Here we have reduced the degree of updating, 

by raising the threshold t~ 51 ightly. We achieve an error 

rate of 9% with only 40 nodes. The increase in error 

rate during training over case 4 15 not understood. The 

OP method has been changed to d, which results ln a very 

10w q, since allowing votes of only 1 into OP will cause 

votes in the wrong categories from nodes responding to 

IInoise ll
• 

9. ~/e attempt to improve on 8 by increasing the 

number of level 1 nodes, without success. 

10. Another attempt to inprove on 8 by increaslng 

the update rate Cdecreasing tu..)' again \tdthout success. 
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Il. Here we have returned to the parameters of case 

4, except contlnulng wlth OP method d (summlng all Y>O). 

There 15 only a slight difference in error rate between 

OP method c and d. 

12. We Investigate the effect of the factor h, the 

inhibition constant from eQuation 2. h was 2, and now 

15 3, causing feature vectors which have large coordinates 

where they "should" have small cnes (to be considered 

similar to a W which had these coordinates small) to have 

less effect. Otherwlse the same as 4. 

13. Like 12, only h 15 now 1. We conclude that h=2 

is best. 

14. Llke 4, only with the training data rearranged 

ln random order. Note that this causes considerably more 

training errors, due to nodes common to more than one class 

updatlng alternately to one, then the other, rather than 

many tlmes successlvely to the same class. At the end of 

the training however, the graph has almost adjusted itself 

to the level of case 4, as seen by the test performance. 

ln case 19 we will see that wlth a second repetition of 

the training data (before testing) the random training 

case can be made as good as the non-random. 
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CASE THRESHOLDS 

15 

16 

17 

18 

19 

20 

21 

22 

21 

22 

23 

24 

25 

26 

27 

01 02 Il 12 z u 

7 5 5 544 

7 5 5 545 

7 5 6 434 

7 5 6 434 

7 5 6 434 

7 5 6 434 

7 5 6 434 

7 5 6 434 

7 5 6 4 3 " 

7 5 6 4 3 4 

7 5 6 "3 4 

7 5 6 4 3 4 

7 5 5 5"" 

7 4 5 5 3 4 

7 4 5 5 3 " 

OP 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

NO. OF 
NODES 

50+,19,3 

TRAINING 
data errors 

no t 
Q 

B,B 19 19 24 

38,40,6,3 B,B,B 26 17 15 

27,3 B,B,B 24 16 27 

21,3 

27,3 

21,3 

27,3 

30,3 

17,2 

18,2,1 

19,2,1 

B 10 20 32 

B,B 18 18 28 

B 10 10 33 

B,B 16 16 29 

B,B,B 23 15 29 

B 8 16 26 

B,B 14 14 23 

B,B,B 21 14 24 

17,2 B 9 18 26 

36,10 A 10 20 31 

37,8,4 0 37 29 20 

45,16,16,1 0,0 76 29 20 

Tabl e l, con' t. 

TEST 
data errors 

no % 
Q 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

E 

E 

15 23 30 

13 20 17 

Il 16 19 

13 20 49 

13 20 13 

Il 16 51 

Il 16 25 

15 23 29 

8 12 42 

6 9 30 

9 14 35 

8 12 41 

13 19 6 

28 20 47 

28 20 61 

co 
-'=" 



15. This is the first attempt to repeat the training 

set in the hope that it would improve the performance. 

We note that more than 50 nodes were required at level 

1. It was decided that 50 was excessive, so no cases were 

allowed to exceed this limite Apparently with thresholds 

too low, node formation will continue beyond what is 

necessary, Into excessive redundancy, wlth a loss in 

performance, as seen in earlier cases. 

16. An early attempt to stablize the graph so that 

repeated training will not form excessive level 1 nodes. 

The update threshold has been Increased from case 15, so 

that three passes of the training set B result in 38 level 

1 nodes, only 2 of which were added in the third paSSe 

The second level has now become excessive, an unexplained 

effect. 

17. A better method of restricting the number of 

nodes and achieving stability is to decrease t~, the 

redundancy threshold. ~ote the improvement over 16. 

18. We begin here some experlments with the updating, 

varylng the maximum allowed number of updates, m, and the 

precIsion of the weIghts, whlch has been 4 integer bits 

and no fractlonal bits so far. This case retains precision 

(4,0) but rn-la. 

85 



19. Llke 18, only training set repeated once. Clearly 

not a good case. 

20. Like 18, only m=20. The sllght Improvement 15 

not sufficlent to suggest that m Is a crucial parameter. 

21. In this case we add 4 fractlonal bits to the 

weights, and repeat case 20, that is, m=20. We find a 

considerable improvement, indlcatlng a possible problem 

wlth the roundoff error in updatlng the welghts wlth 

precision (4,0). This was then examined by inspectlng aIl 

updates of nodes wlth the (4,0) precision ln sorne reruns 

of earller cases. Sorne of the weights showed updates \l/here 

the roundoff did not take place, resultlng ln sorne loss 

of magnitude ln those welghts updated frequently. This 

effect was not always repeatable, and a bug in the PLll 

system 15 suspected. Regretfully, sorne of the earlier 

results may be affected by this problem, but It was 

discovered too late to repeat them.Since only 5 updates 

were involved, this problem should only affect the results 

slightly. 

22. We repeat 21 wlth the training set passed twice. 

ln this example we achieve the previous apparent limit 

of 9% error rate once again, suggesting that it is 1 imited 

by the features or the data, a plausible conjecture, since 

examinatlon of the examples which were missed or 
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mlsciasslfled showed th-at the features were ln most cases 

not adequate for recognition. fJote that only 21 nodes 

are formed, the best performance/slze ratio found ln thls 

study. 

23. Attemptlng to Improve further on 22, we flnd 

that the system can be "overtrained". The precise cause 

of thls effect was not apparent from studying the output, 

slnce It is a dlstrlbuted effect over many nodes and tlme 

steps, so that the two outputs appear qualltatlvely the 

same. This Is a declded problem ln thls type of heurlstlc 

progralTlTling. 

24. We repeat 21 wlth m=10, and dlscover m to be 

more sensitive now that the precision Is Increased. 

25. This case breaks the above sequence. He have 

repeated case 4, only have halved the magnitude of f+ ' 

to 111ustrate the sensltlvlty to the features. Several 

other runs were made with simllar sllght changes ln the 

features, all wlth stmllar degradation ln performance. 

This indlcates that the error rate Is belng llmited by 

the features, and of course, is dependent on the partlcular 

selection of data used in the tests. 

26. Flnally, we put through the program the complete 

selection of data available on disk, consisting of 127 
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training examples and 142 test examples, which include 

many which are worse that those used above. For this and 

the next case, the precision was (4,4) and m=10. The size 

of the graph and the Q were considerably better that 

anticipated. 

27. We dare to repeat the training set, enlarging 

the graph somewhat but luckily improving the Q without 

sacrificing the error rate. Of the 28 cases in error, 18 

were misclassified, and 10 were too small to be classified 

at all, with no errors on U, which has been the cleanest 

ca tegory. . 
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* * * * * 

General Discussion 

These results demonstrate that the fuzzy graph 

does Indeed perform pattern recognition on noisy waveforms, 

wlth error rates of the same order as other pattern 

recognition programs, although thi~ particular data type 

has not been studled, to the best of the author's knowledge. 

Not only does It assign a pattern to a category, but It 

provldes as well an estlmate of the quality of the pattern, 

Includlng Its degree of slmllarlty to other patterns, 

and contalns in the graph structure, should one wlsh to 

access It, a fuzzy description of the pattern structure. 

A note on the efficlency of the graph Is ln 

order. Each node has an average of about 6 Inputs (a W~ 

or W, ), each W a 4 bit welght, (In those cases where the 

weight precision was not extended), and If the number of 

nodes per level is limlted to 32, a 5 bit pointer per 

Input. The V vector may be quite adequately 3 blts per 

category (though here we had the range 0 to 9), maklng 

4x3 bits. The z is of course 4 bits, and the other 

constants may be accomodated ln 20 bits. Thus 90 bits 

per node Is sufflcient for the present program (Pl/l 

certalnly used more), and the 21 nodes of case 22 would 

require 1890 bits of storage, which is very little ln 

today's computer. A graph of 10's of thousands of nodes 
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, could be accomodated ln~, with additional little-needed 

nodes maintained on secondary storage. The speed is fairly 

obvious from the arithmetic required in the node, and in 

an assembly language version of the program would be of 

the order of 50 to 100 memory cycles per node. Any 

reasonable search scheme should be able to reduce the 

number of nodes computed, in a graph of say 1000, to less 

than 100, 50 that wtth such a scheme, most machines today 

could process data 20 ttmes as complex in 10,000 cycles 

per ttme step. Thts machine could use reject memortes, 

since the occurance of errors is tolerated due to the 

distrtbuted responsibility, though admittedly we havenet 

demonstrated this. 

On the other side of the ledger, the program 

has several unexplained (though not as yet thoroughly 

investtgated) quirks, such as sometimes getting worse when 

more highly trained (a possible human trait?), or sometimes 

showing lower qualtty with higher error rates, and being 

excessively sensittve te the weight precision and number 

of updates, an effect whlch could probably be overcome 

wlth a more subtle update rule. A great problem in 

diagnosing these phenomena has involved two of the very 

qualities deliberately bullt Into the program: the fuzziness 

and the distributed responsibillty for recognition. 

Printlng out·all the welghts and aIl the z values of all 

the nodes at each time step is certalnly a painful process, 

since there Is often no obvious qualitative dlfference 
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in the appearance of the numbers in two different cases 

which are nevertheless performing Quite differently, as 

exemplified by the weight precision problem. This is an 

Inherent danger in all heuristic programming, but doubly 

so in fuzzy heuristlc programmlng. 
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Chapter 5. Conclusions 

5.1 Contributions of This Thesis 

The pattern recognition literature has not given 

much attention to large on-going multichannel time series 

such as the EEG, preferring to study simpler two dimensional 

Images. This thesis offers a possible approach to 

realistically handling su ch data, and though a full scale 

EEG Is much larger than the data recognlzed here, it is 

felt that there are no other methods of waveform recognition 

which would be as naturally suited to such large-scale 

expansion as the present one. 

However, the author prefers not to attempt this, 

but rather to consider the method of fuzzy graphs as 

presented here as an introduction via a demonstration to 

the general problem of bridging the considerable conceptual 

and practical gap between complex fuzzy data ln sorne feature 

space and a sophisticated (and possibly Intelligent) 

description of that data in sorne description language. 

We summarize the essentlal aspects of this work 

as follows: 

1. The introduction of the fuzzy graph concept 

as a means of mapping a feature (visual) space Into sorne 

description (verbal) space is the primary contribution. 

The graph structure reflects the intent that the napplng 

between a fuzzy situation and a sharp one {such as a 
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syntactic description) should not occur abruptly, but 

should occur in stages or hierarchically, wlth the structure 

becoming sharper and more composite as the depth ln the 

structure increases, the responslbllity for any description 

being dlstrlbuted over sorne part of the structure. 

Apart from the fuzzy graph structure, the 

Introduction of the Inner-product membershlp function and 

Its companion, the use of features wlth the magnltude­

slgnlflcance property, Is believed to be new, and should 

be useful ln other fuzzy set applications. 

2. The fuzzy graph Is a structure whlch admlts 

the followlng addltlonal possibilitles, which have not 

been Investlgated here: 

a) It is applicable to flxed images as well as 

functlons of tlme, by removlng the time decays ln 

the node outputs. 

b) It is suitable for Incorporation Into heuristlc 

search algorlthms to increase the speed of access 

in large software graphs. 

c) It is potentially implementable ln large-scale 

integrated circuit technology, since the node functlons 

are simple, reQuire low precision, and the dlstrtbuted 

responslbllity for recognition makes a large system 

fallure tolerent. 
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5.2 Discussion and Conclusions 

The most salient lesson to be had from this 

endeavour, at least from the author's point of view, is 

one already well known to more seasoned workers in the 

field of Artlficial Intelligence, pattern recognition and 

heuristic programming. The point is, of course, that 

"heuristic programming" is in fact a euphemism for 

"programmrng in ignorance", and is at its best an unnerving 

experience, since llke flying at night wlthout instruments, 

one never knows if the runway or a mountaln lies just 

beyond. 

B. Raphael has suggested that AI is just "those 

problems which we don't yet know hO\l1 to solve", and given 

thls definitlon, the present work is certalnly Artlficial 

Intell igence. Almost all of the early work in AI and still 

the majority of the current research is still heurlstic 

ln nature, lacking precise theorems to guide the 

programming. Even the most formal area of current research, 

theorem proving, relies on clever guesses to Improve a 

program's performance, and there Is no formalizatlon of 

the notion of the "qual Ity" of a proof, except for the 

execution tlme. Pattern recognition based on statlstlcal 

methods enjoys a considerable theoretlcal foundatlon; 

however the Important questions ln pattern recognition 

are nowof the llngulstlc type, rather than statlstical. 

Yet though certainly a step in the rlght direction, the 
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computer programs which analyse a scene or picture and 

report i ts structural relations (e.g. Guzman, 1968) are 

still a collection of clever heuristics. In natural 

language question-answering programs, there has been 

recourse to theorem proving methods to determine logical 

consequences, but the conversion from natural language 

to predicate calculus is only easily accomplished when 

the )nput sentences are of a kindergarten level of subtlety. 

Why is it that ln all the programs which deal with natural 

language, no appearance of any of the elaborate mathematical 

llnguistic theories can be found? 

The writer has come to the conclusion, partlally 

as a result of his experlence wlth the present undertaklng 

and partially as a result of the general course of research 

of thls nature, that far more emphasis should be placed 

on research into basic mathematical structures and methods 

whose aim is dlrected towards real problem areas such as 

pattern recognition. The basic mathematlcal areas whlch 

the author has in mlnd are automata and formal languages, 

graph, category and topologlcal algebralc theory, and the 

newer notions su ch as fuzzlness whlch are not yet properly 

integrated Into other theorles. (c.f., Watanabe, 1969). 

Automata theory is a well developed area (relatlvely 

speaking), and should serve as a focal point. In thls 

regard, there have appeared recently several papers on 

fuzzy au toma ta (Nee, 1967, Santos, 1968 and 1971), and 

papers on automata methods for pattern-recognition oriented 
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languages (Feder, 1968, Bralnerd, 1968, Nontanarl, 1970, 

Steingrandt and Vau, 1970, S. K. Chang, 1971). The 

important paper of Goguen (1967) whlch introduces the 

language of category theory to fuzzy set theory, has begun 

the Incorporation of fuzziness into other mathematical 

domains, although the emphasls on algebraic notions is 

perhaps not as Important as topologlcal aspects. ff 

fuzziness is to have any traditlonal mathematical property, 

it ought to be contlnuity, which is one of the glaring 

shortcomlngs of sharp theories. From continuity we could 

procede to limits, where the notion of abstraction (c.f. 

Bellman and Zadeh, 1966) would be defined as a limlt of 

a collection of fuzzy examples, where the limlt ln the 

language descrlblng the examples is guaranteed by 

contlnulty. The only paper merglng fuzzlness with set 

theoretlc topology known to the wrlter Is that of C. l. 

Chang (1968). It Is based on the Zadeh assumptlons that 

the fundamental notions of set theory are those which 

should be preserved ln the fuzzy theory (e.g., strict 

containment, complement, union, De Morgan and 

distribultlvlty laws). Only Watanabe (1969) has Questloned 

this premlse, suggesting instead that the notion of 

experi~ental verification and Implication ln the causal 

sense are more fundamental. The wrlter conslders these 

worthwhlle avenues of inQuiry (which he Intends to pursue) 

but is unable to make any concrete suggestions at present. 
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The author wlshes to venture the followlng 

suggestions, whlch he Intends to follow hlmself, on sorne 

approprlate directions for contlnued research on these 

matters. What is needed is a formaI fuzzy language, for 

pattern recognition or for general problem description, 

since the latter should be considered the proper framework 

for any particular problem such as pattern recognition. 

BanerJi (1968) has made some initial suggestions in thls 

regard, although without any fuzzlness. It will be probably 

found necessary to regard pattern recognition as a sort 

of game against Nature, played with fuzzy information and 

with costs for making observations, sorne of which may 

change the state of Nature. To this end then, It will 

prove useful to invent a formal fuzzy ~ against Nature, 

that 15, a rlgorously defined set of fuzzy situations and 

rules for procedure, where the two protagonists (Nature 

and the human who would know more about Her) have usually 

different sets of rules (Nature often havlng advantage), 

and neither having complete Information about the other's 

dolngs at any moment. Such a fuzzy game, like exlsting 

recreatlonal games used for research in problem solving 

methods, will provide a laboratory for experlnentatlon 

on complex problems, and must be expressed ln the fuzzy 

language we have referred to, along wlth the algorithms 

for playing it. Unlike existing recreational games however, 

thls game will adapt much more naturally and usefully to 
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real world situations which it Is our ultlmate goal to 

understand. 
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