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ABSTRACT ¢

Z

This thesis documents the creation of rellx: relational database system on UNIX

an Interactive tool for exploring the concept of the “relation as a primitive data unit”.

»

Because relix was designed to provide a short response time, rtlations are as-

- y -

sumed to fit in primary memory.

v

Aldat, the language offered to the ﬁs‘er. is easy to use and algebraic In nature. It

was designed as a stand-alone language with the reiatlon as the unique unit of data. It offers ths
full power of the relational and domain algebras, including null values, to operate on relations.  Re-
lations can be deflned recursively in a natural way. A simple mechanism u; evaluate this type of
relation is pr;vlded.

The work included bullding a translator which takes Aldat statements as input

and produces intermediate code as owtput and an interpreter which performs the operations indicat-

ed by the code. &

<



<5 RESUME

1

‘ ’ Cétte thdse documente la création de relix: syst:me relationnel de base de

I3

données sur UNIX (relational database system on UNIX), un outll interactif pour explorer le con-
;¥ cept de “la relation comme unité de donnée’.
! Relix fut concu ‘de facon A fonctionner avec un court délal de réaction, aussi

nous présumons que les relations utilisées peuvent loger en zone primalre de mémoire.

N

~ Aldat, le langage offert i 1°usager, est facile d apprentissage, algébrique 'de na-

, ture et utilisé de manitre autonome avec la relation cpmme &lément atomique. I1 comporte tout le

( , .

pouvoir des algtbres des relations et des domaines, incluant divers é41é ments neutres, pour mani-

4
puler les relatiofs. Une relation peut etre définie récursivement. Nous présentons un mécanisme

o

simple pour évaluer ce genre de relation.

Notre travall inclut la construction des modules suivants: un prozran/xggmcrap
e

duction qui A partir d expressions en Aldat produit un code intermédlaire et un programme

~

T S
d ‘interprétation qui exécute les opérations indiquées par ce dernier code. TN

-

e
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. chapterI ~

INTRODUCTION “

~

The purpose of this work was to develop a new implementation of Aldat: the
algebraic data languagne. We wanted to provide the users with an cl‘nt.e)mcr.lve version of this high
level programming language for exploring the concept of the relation as the primitive unit of data.
As; well, we developed a prototype of view evaluation with the particular alm of provldl;m a simple
way to evaluate a special type of view: recursively defined relations.

Our main concerns were speed and ease of use. TI;e first concern dictated that
the relations on which the user wants to operate can fit Into main memory. The second goal re-
quired us to redesign Aldat as a stand-alone language obeying a natural syntax. The resulting Im-
plementation, n:;;ned relix, was Intended to be highly portable. That is, only minor modifications
should be required so that it can work on other machines running under UNDC

Q o

L\\ a) A HISTORICAL PERSPECTIVE

o~ Codd proposed relations as wmodels for flles and sets of relations as models for

data in databases in 1970 {CODD70]. One of his goals was to release the user from the-navigation

problems entatled by the hierarchical and network models. Since then much research has been car-

ried out in the ﬂgid of relat:lonal database systems. This research comprises, among others, the fol-

lowing areas: o o , .
1.- query languages (see below).

2.- implementation techniques: [KIM 79}. .

3.- knowledge bases and expert systems: [KERS84]. \,;A.(

4.- non-formatted data: (GARDS4], {BARBSS). A «




- 5.- distributed databases:- [CERIS84).

‘ 8.~ concurrency control: [BERNS3b). . .
7.—ltheory: [MAIES3b]. b ]

A query lanq;aze allows the user to retrieve or modify the lntor}natlon in a data-

base. Several(approaches have been suggested and developed. Among these are:

1.- Tuple at a time: relations are processed tuple by tuple, reminding us of record scan-

&

ning in earlier data processing. Theseus uses that type of processing [SHOP75].
2.- Algebra oriented: operations are deflned to take v«hc;lc relations as operands and yield
g a relatlon&as a result. The loops are hidden in the operator. A language using this ap-
proach is ISBL (Information System Base Language) on PRTV (Peterlee Relational
Test Vehicle) [TODD78). © /
’ - 8.- Calculus oriented: an expression is used to describe the data to be retrieved. The gx—-
pression may be formulated in a language similar to first order predicate calculus. The
system determines the means of finding the datoa. There are many implementations
using this approach.
a) QUEL (QUEry Lanzuauge) on INGRES (Interactive Graphics and Retrieval Sys-
tem) [STON76].
b) AilIEL (A RetrlEval Language) [MACG§5].
¢) For DRC (Domain Relational Calculus) and ILL (Intermediate Level Language)
domalns represent the sets of objects whereas relations are various l-dnds of as-
sociation among these.objects [LACR77].
{ We have presented these approaches in order of decreasing procedurality. A
language is less Fprocedural than an?t,her to the degree that the user can describe the result to be
achieved rather than specify the actions to perform in ordgr to achlevg&ic. Calcuius oriented
languages Intend to be less procedural than algebraic languages. There are languages half-way

between calculus and algebralc languages. SQL (a version of SEQUEL [CHAMY7S), itself a version

& of SQUARE) Is such a language [CHAMS0]. It has been shown that both algebraic and calculus

Ty



languages are equivalent in the }ollowlng sense: a query expressible in one language can also be ex-
pressed in the other language ‘(see (CODD7?1] or [ULLMS82])).

In calculus languages the user is still induced to think in: terms of tuples. On the
cont.raryi algebraic languages consider the relations as t,h; primitive unit of data and, thus, provide
a high level of abstraction. Furthermore, the result of any algebralc operation on relations is a rela-
tion. This closure propert;y guarantees that only one type of data need to be c;nsldered.

Aldat is such an algebraic language. Since Merrett [Mﬁ‘RR??] pro;osed it as a
programming language for which relations are the elements, difTferent implementations have been
realized at McGill as parts of what is now known as the Aldat project. Before the proposal of Al-
dat, the first relational database system developed at McGll was MRDS a data sub-language for
PL/1 [MERR76]. This system provided the user with proje;ct,, select and the complete array of set
theoretic relational functions called the y-join. This system was implemented in Pascal as MRDSP
[MERRS]1], with the addition of the o-join operation, an extension of Codd s diviston ([CODD79).

Up to this point, Implementations had been done on main frames. This proved
expensive e\fen if these systems were not Interactive. Many of the following implementations were
carried out on microcomputers. These were— believed to provide a less costly environment, suitable
to develop that type of software. MRDSA [CHIU82|, the UCSD Pa;cal version was implemented in
1982 as a data sub-language on an Apple II microcomputer. This system, because of {ts limited
resources, simplified data handling as much as possible. MRDSA directly imitates the relational
view of data at the storage level. Attribute values are stored as character data, tuple by tuple in a
contiguous physical location on the disk. No mechanisms ror‘data compll-esslon or optimized re-
trieval have been Implemented. -MRDSA s main purpose was to demonstrate the power of th; rela~
tlon as a model for data processing. This system provided the user with the extended set of rela-
tional operations, In particular, project, u-join, o-join, full screen relational editor and a QT-select
funct.ion an extension of the select operation [MERRS4a]. These operations are called from a Pascal

program via a system of llbrary subroutines. The user is required to specify which at.t.rlbutes Lo use

in the operation. MRDSA does not implement the concept of domalin ¢ypes. That is, each attribute

-
7
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is a character string and any attribute can be used with any other attribute in operations of the re-
lational algebra.

/,—/K/QRDS/FS [VANRS3], MRDS with functional syntax, useci MRDSA on an
IBM PC as the basis for an interactive relation manipulation system. It extended MRDSA by ad-
dm; a domalin algebra facility which allows the definition of new attributes as a function of already
- existing at,t.rlbur,es.( In addition, MRDS/FS has released the user from the burden of writing and
compiling Pascal programs. This, by creating a syst\em where relational expressions are entered In-
teractively, interpreted and evaluated through calls\t,o MRDSA procedures. It is noteworthy that
the relation is the only data structure available to the user. MRDS/FS is an interac®ive interpreter
for relational expressions. It provides the user with a complete set of relational programming func-

2 .
tions: relational algebra functions, domain algebra functions, conditional exécution functions,

branching functions and housekeeping functions. These functions allow the user to create views of

¥
)

the database, including recursive relations. With the conditional execution and branching functions
just mentioned the user can build loops to define views. This system comprises two modules. The
first one analyses the Input relational expressions, detects errors and converts these expressions into
MRDSA-procedure calls. The second module executes these procedure calls. MRDS/FS was
developed on an IBM PC after appropriate modifications to mDSA..the underlying system. This,
because the Apple II was taxed to its limits. The size of the relations handled by MRDS/FS Is

quite large, considering that It is not intended for commercial use. A database is constrained to fit

it
Vi

4

within a set of fifty diskettes.

The moving of MRDS rron—x the main frames to microcomputers did not fully
satisfy the need for a highly interactive system. MRDS/FS is judged too slow to be used intersc-
tively: response time increases rapldly with the complexity of the operations performed and the size

of relations involved in these operations. Moreover, its functional syntax, altboug}} theoretically

appealing, is not easily mastered and may not seem very intuitive in the context of data processing.

“We conclude now our review of the various MRDS implementations. They sup-

. ported the roﬁowlng view: the relation tagether with the relational and domain algebras provide the

\




A Y

-

-5

user with a éowertuf tool to query and modify the information present in a database. However, they
did not provide the user with a fast system or an easy to use query language,

#Thi microcomputer implementations were cheaper to develop and - use thanlihe
previous mainframe implementations, but they are too mugh slower. Thelir query language is either
embedded in a host programming language or uses a syntax which, at this point, Is difficult-to ex-
ploit even by sophlsticated users.

Flrally, there is an important consideration of completeness. Merrett [MERR77)
observed that the relational algebra was Incomplete because it had to be embedded in a program-
ming language with loop structures to solve some kinds of problem, especially least-fixed point

problems [AHO 79]. Kamel ‘s implementation of Aldat [KAMES0] embedded the relational algebra

in a Pascal-like language permitting loops. We saw above that MRDS/FS allowed the user to con-

struct loops. We aim for a version of Aldat which uses recursion to achlieve the same end.
These considerations motivate our goal stated above: provide the user with a
fast, easy to use implementation of Aldat,.' The main contributions of this thesis are:
1.- Aldat has been redesigned as a stand-alone programming language, providing means
to create views or recursively defined relations. The loop structures needed to evaluate
these 'v/l;ws are hidden in the implementation. The relation is the unique data struc- .
ture available to the user.
2.- Aldat has been implemented on a truly portable operating system, namely UNIX, run-
ning currently on the following machines: Cadmus, Masscomp and Vax-780. We re-
peat the following important restriction: relations must be small enough so that the
operands, at most two in any case, of any operation of the relational algebra can fit u
* into primary memory. Thls\ is in order to produce a system with as short a response
time as possible. It is also consistent with the way in which UNIX treats files. Furth-
ermore, relix has been designed so that features of Aldat not supplied by our imple-

mentation can be easily added. for example, a relational editor, QT-selectors, the

o-join and others.
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the course 308-573 on

o - , .

of this work constitute extensions to a project done with Geoff Forbes in

nicomputers [FORB8S5]. - .



b) THESIS OUTLINE
The development of the thesis followed the steps listed below. '

1.- An unambiguous L;:.LR—l Aldat grammar was produced. It follows as much as possi-
ble the notatlon and conventions presented in [MERRS84a]. The differences are
justified by the restrictions Imposed by the system on which we were working.

2.~ This grammar together with routines to perform semantic checking and code genera-
tion were fed Into a parser generator. This provided a t.rans;lat.or which takes as input
Aldat-statements and produces as its output intermediate code. |

3.- We bullt an interpreter which transforms that Intermediate code Into function or pro-
cedure calls In order to perform the operations of the relational or domain algebra.
We supplied the routines for the project, select and domain algebra operations. As
well, routines are provided to perform error checking and recovery where possible.

4.- On top of the 1n‘terpreter we added a mechanism to evaluate recursively defined rela-
tioms. - \‘\ J

5.- Producing a relational editor or lrp_plememlng the join operations were not part of "
this thesis. Facilities are supplied to overcome the first limitation. In particular, the
means we provided to escape to the host operating system permit us to use UNDX ed!-
tors for relations. Ann T. Chong implemented the u-joln [CHONSS).

With respect to the Aldat language described in appendix A, the implementation
is complete up to the code generation phase. Past this point, work remains to be done In order to
.bmvlde the o-joln and operations on domains of type real. \

This thesis will outline how the above steps were achieved. It is divided Into
nine chapters. The first one has sfar,ed objectives and placed the work in historical perspective.
Chapter II describes the terminology: relations, relational and domaln algebra, views

Chapter I constitutes the user”s manual It specifies the exact syntax mentioned

in step 1. That is, it shows how the user can enter Aldat statements or use the facilities deveéloped

in step 5. Chapter IV describes the parser and the semantic analyser required to bulld the transla-




tor mentioned in step 2. It also detalls the construction of the interpreter of step 3. Chapter V ex-

* plains the implementation of the domain algebra operatlons.( Chapter VI does the same for the rel;a-

tional algebra operations. Chapter VII describes the* view evaluation mechanism of step 4. Error
hmdimz la detalled in cha;ter V1. ,

Because this implementation was designed "as the basis on which one could

develop a more elabofavte system, Chapters IV through VII detail at length the implementation.

They can be seen as forming a programmer 's manual. Chapter IX, the conclusion, indicates some

directions for further research. <




&b “ chapter I
BASIC RELATIONAL CONCEPTS
I\Zany textbooks cover to some extent relational database systiems and query
languages: [DATES2], [I(OR:FSB], [MAIES3b], [MERRS4a}, {OZKAS86] and [ULLMS82|. In partlcular,
MIES:!b] and [MERRS4a] deal exclusively with these toples. The aim of this chapter Is to pro-

vide the user with general definitions of relations and of bo&h the relational and domain algebras.

a) DEFINITION OF RELATION
- »
which has its first element from Sl, veey 1ts N-th from Sn.

In other words, it i3 a subset of the cartesian product of Sl,....sn. It can be seen

V]

as a table with the following properties:
| 1.- all rows are distinct and thelr ordering Ls'lmmat.erlal:
2.~ each column s A;slgned a unique name; so, their ordering Is immaterial;
3. all entries In each row and under each column are at,omic‘.

Each row represents a tuple. A column is referred to as a domiln or attribute
and its underiying set as a domain type. A domain may occur only once in a relation whereas a
domain type may be used many times. Atomicity depends on the operations defined on the domaln__
type. ’I;he degree of a relatlon is taken to be the number of domains on which it 1s defined. A data-
base Is a set of time-varying relations. N

Throughout this thests, most of the examples are taken from SCHOOL, a small

database containing, among others, the following domains and relations.

Definition: a relation on N, not necessarily distinct, sets 51'""Sn s a set of N-tuples each of .

3
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’ DOMAINS

name type length

NAME  string 26

description

y
student name

STUD._} " 7 student id number
SEC o 2 section . w
YEAR ” 4 current year
Al integer 11 assignment 1 _
A2 - 11 assignment 2
MID - 11" midterm
FIN - 11 final |
FEES " 11 fees paid
CRED - 11 credlt.‘s fn current year
™ »
RELATIONS
MARKS_420 -
NAME STUID SEC Al A2 MID FIN
arrau, antonina 8192214 A 18 20 9 42
berard, paulette 8314201 C 23 21 11 40
brady, vivian 82302687 A 11 17 8 44
christos, marilou 8215291 B 13 19 11 38
giroux, aline 8314626 A 20 16 12 46
hart, terry 8317112 A 12 11 8 25
Jones, raymond 8215174 B 13 17 7 30
king, tam 8328521 C 17 22 12 a6
lamontagne, paul 7913295 B 20 20 11 43
rivet, maurice 8214512 C 16 21 9 41
CLASS
NAME STUID SEC FEES
arrau, antonina 8192214 . A 200
berard, paulette 8314201 C 452
brady, vivian 8230287 A 117
christos, marilou 8215291 B 398
giroux, aline 8314628 A 200
Jones, raymond 8215174 B -50
king, tam 8328521 C 34
lamontagne, paul 7913295 B 171 -




P s

-11-

DEPT
NAME YEAR CRED
brady, vivian 1984 13
brady, vivian 1985 15
Jones, raymond 1983 18
jones, raymond 1984 16
Jjones, raymond 1985 16
rivet, michel 1982 15
rivet, mich § 1983{ 12
rivet, miche 1984 14
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) b) RELATIONAL ALGEBRA

‘ S /
: Relations can be introduced as a new data type in a programming language ana
5 an extended relational algebra added as operations on that type. These operations take relations as

operands and yield a relation as a result. They include assigniment, projection and join on chosen

domalns, selection of different tuples.

o

Our examples do not fully illustrate the exact syntax described in chapter III.

‘ The complete grammar is found in appendix A.

X= { A, D} and Y= { B, C, E}.

ASSIGNMENT: this operation assigns a value to a relation name. It acts in the same way

Notice that a domain name can denote a list of domains. For example, if a rela-

7~ ——— .
v " + tion R Is defined on domains A, B, C, D, E then we can say that R Is defined on X and Y where

that assignment of values to variables acts In programming languages.

TEST <- MARKS_420

TEST

% , NAME STUID SEC Al A2 'MID FIN

arrau, antonina 8192214 A 18 20 9 42

berard, paulette 8314201 C 23 21 11 40

X brady, vivian 8230267 A 11 17 8 44

el christos, marilou 8215291 B 13 10 11 38

, ‘ , ' giroux, aline 8314626 A 20 18 12 46
' hart,-terry 8317112 A 12 11 8 25

jones, raymond 8215174 B 13 17 7 30

king, tam 8328521 C 17 22 12 38

’ lamontagne, paul 7913206 B 20 20 11 43
rivet, maurice . 8214512 C 18 21 9 4]

)
%

2
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} v
PROJECT: project creates a relation which is a vertical subset of the operand relation, that is,
' . . asubset of the attributes (columns) from the operand relation are copled to a new re-
“ lation. Any duplicates created in the process are eliminated. In other words, this

operation specifies a ansec of the attributes of a relation and the resulting relation is

defined on those, attributes.

-—

N 7 4
Definition: let R be a relation defined on the domains A and B; the projection ibl’ Ron A ls

deflned by ‘
R [A]= { a] a € A and (a,b) € R for some b € B}.

For example, let R be MARKS_420, A= { NAME, MID, FIN} and

. ; B== { STUID, SEC, Al, A2}. .
4
u . MARKS_420 [ NAME, MID, FIN] '
-
pe NAME MID FIN
arrau, antonina 9 42 '
berard, paulette 11 40
brady, vivian 8 44
v N . christos, marilou 11 38
giroux, aline 12 46
hart, terry - 8 25
. ° jones, raymond 7 30
’ king, tam 12 36
N lamontagne, paul 11 43
rivet, maurice 9 41
¢ {
S

YT
N

i




SELECT: select creates a relation which is a subset of the operand relation by tncluding only
‘ " those tuples which satisfy a given condition. It is required that each tuple of the
operand relation contains all the information necessary to decide the truth value of
the condition determining membership in the result relation.
- Definition: l;c R be the same relation as above; let o be a logical expression involving any
number of occurrences of the following elements only: ’ -
AN “" _A, B, constants of the same domain type as A or B
-logical operators: and, or ,not °
-comparison operators: =, 3%, <, >, <=, >==;

.

o+ the select of R based on ¢ is defined by
- R [ o)== { (a.b)| o is true}.

For example, let R be MARKS_420, A= {SEC,FIN} and '
o= FIN > 40 and SEC 5 "B"

- MARKS_420 [ o]

-

NAME STUID SEC A1 A2 MID FIN

v arrau, antonina 8192214 A 18 20 9 42

brady, vivian 8230287 A 11 17 8 44
giroux, aline 8314626 A 20 18 12 46 /

rivet, maurice 8214512 C 16 21 9 41

.
- : v
| g
(o]
¢ :
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JOI‘V: join performs generalized set operations (union, intersection, cartesian product and

- f

the like) on pairs of operand relations. In general, the operands have common attri-
butes which are used|to determine which of their tuples will be combined to partici-
pate in the result. We donsider first the p-join and then the o-join.

and C deflned on common

N
N

Definition: consldér two relations R( A, B) and S( C, D) with B
domain types; let DC be a constant representing irrelevant information, *‘don “t care”.
We deflne the u-join of R and S In union mode, denoted ujoin, by

R (B ujoin C] S == left_wing U center U right_wing .

where
’ lleft_wlnz= { (x.,y DC)| (x.¥} € R and for all z, (y.z) € S)}. N
center== {x.y.2) | (x¥) € R and (¥, z) € S}
5 right_wing= { (DC,y.z)| (v.z2) € S and for all x, (x.y) € R)}

the other modes of the u-join of R and S are:

natural R[BljoinC|]S = center ‘ ..

left join R[(BloinC}S = left_wing U center ;
right Join R[(BrjoinC] S = cent;x: U rizhb/__;lnz

symmetric } .

difference join R[BsjoinC)S = left_wing U right_wing

left_wing

left difference R(BdljoinC|] S =

right diferemce R [Bdrijoin C] $ = right_wing

MARKS_420 [ NAME ljoin NAME | DEPT

NAME STUID SEC Al A2 MID FIN  YEAR 'CRED
brady, vivian 8230267 A 117 8 44 1984. 13
() brady, vivian 8230267 A 1n 17 8 44 1985 15
e jones, raymond 8215174 B 13 17 7 30 , 1983 16
. Jones, raymond 8215174 B 13 4 7 30 1084 15 .
Jones, raymond 8215174 B 13 17 7. 30 1985 16
where {join ‘denotes the natural or intersection joln.
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Definition: le;, R( A, B) and S( C, D) be as in the previous definition. For a € A let R(a)==; { v]
(a,b) € R}. Observe that R(a) is a subset of b; it is the set.of values of B associated
with a given element of A. Similarly, for d € D let S(d)= { ¢| (¢,d) € S}. We define
the o-join of R and S as an extension of the division Arst proposed by Codd
([CODD71]. This family has six primitive modes based on the following set comparis-
ons:

mode description
eqjoin equal
o Itjoin proper subset

lejoin subset
. gtjoin proper superset

gejoin  superset o
tejoin empty intersection \_/-
which yleld the following:
R[Begoin C]S = {(a.d)] R(a) = S(d)}
R(Bltjoln C]S = { (a,d)] R(a) C S(d)}
R(Blejoin C}S = {(a,d)] R(a) C S(d)}
R(BgtloinC]S = {(a,d)| R(a) D S(d)}
R(Bgejoin C]S = { (a.d)] R(a) D S(d)} P
. R[Blejoin C]S = { (a,d)] R(a) N S(d) = 0} .

N

There are six compiementary modes obtained by prefixing each basic mode with

. >
NG

a negation. For example:
£

o ° : ) R([ B not eqjoin C | S == { (a,d)| R(a) % S(d)}.

i v

_In the next section we jllustrate the use of fcomp, the hatural or intersection

composition, which is not iejoin. That s,

v

v

R(BicompC|S =3 R[B notjejoin C] S .
Although powerful, the relational algebra cannot handle computations across tu-
ples or along domalins. Moreover, it is incomplete in the /sense that it does not include a loop Stmc-

ture and, hence, can not solve least fixed-point problems. ’ .
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function of existing attributés in a given relation. For example, a domain, say MID_FIN. can be

defined as the sum of two other ‘attributes, say MID and F ther domain, say

TOTAL_MID_FIN, can be defined as the sum of all the values in the attribute MID_FIN In a given

relation.

) R
The contents of a relation can therefore be transformed both horizontally, inside
a tuple, and vertically, across tuples to create new attributes which can be used like any other at-

tribute. The creation of a new relation with values for those attributes can be achieved using the

project operation.
Functions 'dennlnz virtual domains are composed of domain operations which fall

_lnco two categories: horizontal and vertical. Horizontal domain operations have operands which do
)

not cross tuple boundaries. That is, all the operands for that operatlpn are found in the same tuple.

For example, '
let MID_FIN be MID + FIN
where both MID and FIN are already defined attributes.
An actualudomain is an attribute which exists in a given relation. MID_FIN is
sald to be virtual because it does not presently exist in any relation. When MID_FIN is actualized,

again through a project operation, It will contain in each tuple the sum of the values of MID and

' FIN for that tuple.




MARKS_420[ NAME, MID, FIN, MID_FIN]

NAME MID FIN MID_FIN
arrau, antonina 9 42 51
berard, paulette. 11, 40 51
brady, vivian 8 44 52
christos, marilou 11 38 49
giroux, aline 12 46 58
harv, terry 8 25 33
Jones, raymond 7 30 37
king, tam 12 36 48
lamontagne, paul 11 43 54
o ' rivet, maurice 9 41 50

- l)

Assignment of a constgnt value to a domain is a special type of horizontal

/

let SPECIAL_FEE be 13 ’ -

domain operation.

creates a virtual domaln whose value is 13. A constant domain therefore is a domain which has the

same value for all relations, all tuples. | .

By comparison with horizontal domains, vertical domains have operands which
1

are a result of a function on values from one or more tuples. Four classes of vertical domain opera-

tors can be defined.

#
Reduction (RED) is a class of domain operators which perform some binary

operation on an attribute over every tuple in the relation In order to produce a single result. For ex-

-

ample,
let TOTAL_MID_FIN be red + of MID_FIN

produces a new attribute which is a sum of all the values in the MID_FIN attribute. Conceptually,

TOTAL_MID_FIN will have the same value for each tuple.

©

L.
——
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MARKS_420( NAME, MID_FIN, TOTAL_MID_FIN] v \
o NAME MID_FIN TOTAL_MID_FIN

arrau, antonina 51 483

berard, paulette 51 483 K
brady, vivian 52 483

christos, marilou 49 s 483

giroux, aline 58 483

hart, terry 33 483

jones, raymond 37 483

king, tam 48 483
lamontagne, paul 54 483

rivet, maurice 50 ' 483

Equivalence reduction (EQUIV) is a type of reduction by which a relation is first
stratified into sets o( tuples having the same value for one or more domains. A separate reduction

operation is then performed on each stratum or equivalence class.

Q

let REES_BY_SEC be equiv + of FEES by SEC

deflnes an attribute which will be calculated by first stratifying the relation by section and thew

performing the reduction operation on each stratum, that is, the summing up of fees paid by each

W

student.
/ . CLASS( SEC, FEES_BY_SEC]
SEC FEES_BY_SEC
A 517 -
B 519
C 486

Functional mapping (FUN) is another class of vertical domain operator. It acts

_upon a relation on which an ordering can be induced by one or more attributes, This allows the ex-

ploration of a relationship between successive tuples. A FUN operation performs some binary
b
operation, but unlike RED which produces a single value for the result attribute, it performs an

operation and stores the current result in the resulting attribute. That is,

value of the value of value of
result attribute =  attribute.for OP operand
for current tuple previous tuple domain

1

where OP Is some binary operator. If the current tuple is the first tuple, then the value of the attri-

bute for the previous tuple is taken to be the identity element for the operator OP.

N
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It is stressed that the ordering attribute must functionally determine the operand

v

attribute in order for the result to be meaningful. If there is a group of tuples with the same value

for the ordering attribute then this group of tuples will be treated as a single tuple. That i3, the

operation will be pcrfoﬁned only once for the group and the result attribute will have the same’g’

value for all tuplesin the group.

For example, given

let CUM_CRED be fun -L of CRED order YEAR

the result attribute represents the cumulative number of credits for each year. All tuples with the

same vafue for YEAR, were there any, would be treated as a single tuple, thereby entering into the

operation only once and having the same resylt value.

Suppose that JONES <- DEPT(NAME = "jones, raymond”].

JONES| YEAR, CRED, CUM_CRED)]

YEAR CRED CUM_CRED
1983 18 16
1984 15 31
1985 16 47

4

Partial Tunctional mapping (PAR) is an extension of functional mapping. The re-

lation is first stratified over speciflied domainé. A. separate functional mapping is then performed

over each of these strata. In other words, PAR is to FUN what EQUIV is to RED. For example,

let CUM_CRED_PER_STUDENT be par + of CRED order YEAR by STUDENT

DEPT( NAME~.YEAR, CRED, CUM_CRED_PER_STUDENT)]

NAME

YEAR CRED CUM_CRED_PER_STUDENT

brady, vivian
brady, vivian
jones, raymond
jones, raymond
jones, raymond
S rivet,._michel
rivet, michel
rivet, michel

1984
1985
1983
1984
1985
1982
1983
1984

t

13
15
18
15
16
15
12
11

13
28
16
31
47
15
27
41



«21-

S

d) VIEW DEFINITION AND RECURSIVE RELATIONS
Just as new domains can be ~deﬁm:d as a function of pr;vlously defined domains,
s0 can new relations. A view of a database is a relation derived from the given relations of the da-
tabase by some expr;asslon using the relatlonal and domaln algebra. Among other advantages,
v\iews offer the possibility of defining relations recursively which. in turn. allows least fixed-point
operations like com‘putlng the transitive closure of a graph.
Consider a relation called PARENT and defined on SENIOR anc; JUNIOR which

are domains of type string and length 18, If "edward IV

-~

ellzabeth of york ™ is a tuple of
PARENT it indicates that edward IV Is a parent of elizabeth of york. In order to find for any two
persons whether one is a descendant of the other, we compute the transitive closure of PARENT

and call thelrﬁult ANCESTOR deflned on SENIOR and JUNIOR. We have the following:

ANCESTOR is PARENT | ujoin ]

( ANCESTOR [ JUNIOR lcomp SENIOR| ANCESTOR)

1

where icomp is the natural composition and PARENT contalns:

PARENT
SENIOR JUNIOR -7
edward IV elizabeth of york ‘
elizabeth of york henry VIII
elizabeth of york margaret
henry VI henry VIOI
henry VI margaret
henry VII1 edward VI -
henry VII elizabeth I
henry VIII mary [

james IV stewart
james V stewart
margaret

james V stewart
mary stewart
james V stewart
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james IV stewart
James IV stewart
James V stewart
margaret
margaret

ANCESTOR
SENIOR JUNIOR »
edward IV edward VI
edward IV elizabeth I
edward IV elizabeth of york
- edward IV henry VIII
edward IV james V .stewart
- edward IV margaret
™ edward IV mary I
edward IV mary stewart
elizabeth of york edward VI
elizabeth of york  elizabeth I
elizabeth of york henry VIII -
v elizabeth of york  james V stewart ¢
elizabeth of york  margaret
elizabeth of york mary I
elizabeth of york  mary stewart
henry VII edward VI
henry VII elizabeth I
henry VII henry VIII ”
henry VII James V stewart
henry VII margaret '
henry VII mary I '
- henry VII mary stewart
- . henry VIl edward VI
henry VIII elizabeth I
henry VIII mary I

james V stewart
mary stewart
mary stewart
james V stewart
mary stewart

in this example we used an icomp. Observe that the same result can be obtalined

—

by performing an ijoin followed by a project which eliminates the Joining attributes.

Indeed, the set of operators described in this chapter is very rich. Some authors

ke [KORTS6], [MAIES3D] and [ULLMS82| define a set of elementary, non redundant operators and

then express the other operators in terms of the previocus. This is interesting from a theoretical

L d

. point of view. However, our goal is to supply the user with a simple conceptual framework.

The next chapter explains, among other things, the exact syntax used to enter

Aldat statements.
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chapter III
USER'S MANUAL .

*Relix Is an Aldat interactive emulator offering a way to experiment with both the
relational and domain algebras. It is assumed that there is enough room in maln memory for the
operancis and result, joln excepted, of any relational operation. It is interactive in the sense that it

/
accepts and executes one statement at a time, as opposed to collecting statements and walting for a
special instruction from the user to start executiox:x. A fair knowledge of the main characteristics of
an Aldat-like language, as described in [MERRS84al, constitutes a definite asset; also, the user
should be decently familiar with UNIX command l;xnguage: cp, rm, vi, not to mention login, etc.
Th::/ present manual comprises the following sections: -
a) Getting Started Using System Commands

b) Domain Algebra
. ¢) Relational Algebra

a) GETTING STARTED USING THE SYSTEM COMMANDS
Bear in mind the following:
-relix Is command drhi*en. as opposed to' menu driven .
-user input lines are in ltalic characters
- -relix output lines are in bold characters
Suppose you want to creatzz database named SCHOOL comprising the following
relations: MARKS_420 defined on NAME, STUID, SEC, A1, A2, MID and FIN, CLASS on NAME,
STUID, SEC and FEES. )

The type of the attributes NAME, STUID and others i3 specifled below. When

you have the UNIX prompt, say “% -, type In ‘}

% relix SCHOOL

You soon get the rellx prompt: "> . Let us inspect the current state of dom_table (respectively

- - <

rel_table and rd_table) with sd! (sr! and srd! respectively). At this point, they contain information

about the system relations only and _INNULL. This relation is attributeless but may contain one tu-
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ple. Among others, the o-join, to be discussed further, can make use of it.
t

ad!
/
Domain Table: SCHOOL a
Index Name Length Actual Type =
0 dom_name 20 T STRG
1 rel_name 20 T STRG
2 length 11 T INTG
3 type 11 T INTG
4 tuple_size 11 T INTG
° 5 ntuples 11 T INTG
6 count 11 T INTG
7 dom_pos 11 T INTG
8 sort_rank 11 T INTG
sr! ‘
_ Relation Table: SCHOOL
Index Name Tsize Ntuples Arity Domains
0 DOM 42 16 3 dom_name length type
1 REL 42 6 3 rel_name tuple_size
ntuples i
2: RD 73 20 5 rel_name dom_name
- count dom_pos sort_rank
3 _NULL 0 o 0 0
ard!
RD Table: SCHOOL
Relation Domain Count Position Rank
DOM domm_name UNKNOWN 0
DOM length UNKNOWN 20
T DOM type UNKNOWN 31 .
REL rel_name UNKNOWN 1]
REL tuple_size UNKNOWN 20 .
REL ntuples UNKNOWN 31
RD rel_name UNKNOWN 0
RD dom_name UNKNOWN 20 -
RD count UNKNOWN 40 :
RD dom_pos UNKNOWN 51
- RD sort_rank UNKNOWN 62
\7‘) When displaying the contents of rel_table we will not show the entries

corresponding to the system relations any more. To get on-line {nformation about the system com-

~

mands, type:



h

*s

(:\

&

k!
ar! —~>  append some tuples to an existing relation )
batch! >  switch mode to batch . )
ed! ~>  create a new domain ,
er! ~>  create a new relation
dd! —->  delete an existing domain
dr! ~>  delete an existing relation
h! ->  display the current table
input! -—>  redirect standard input to a UNIX file
man! -—>> display the manual on screen
pol ~>  display the code generated
pr!l - display a relation on the screen
q! —->  return to UNIX
sal -->  save existing relations
sd! ~>  display the contents of dom table
sh! —->  get a set of shell commands and execute
sr! ->  display the contents of rel table

. srd! —->  display the contents of rd table o
’ To get the on-line copy of the current manual through “more, a UNIX facllity,
type:
man/
. To add some domains use the command cd! (create domain),
ed!

enter domain name( or “el” to exit):

. . y ‘ )
NAME o
enter the number corresponding to the desired type
1.- boolean - -
2.~ integer
3.~ float
4.~ string .
number: . @

e

4 ' ) ' .
enter length of striné between (1 and 40):

26
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you continue this way to enter STUID, SEC, Al, A2, MID and FIN. When you are finished with

‘ “entering new domains, you exit using e! (exit).

-

enter domain name( or ‘el” to exit): - ' .

el .
Suppose you entered erroneously a2 and then A2 as desired. You can delete a2

using dd! (delete domain). You can remove unused domains only.
i

dd!

N

| .
enter ‘p!- if you want to be prompted with the name of )
domains that can be deleted ( “el” to exit): )

>

The option “p!~° is easier to use since you neeé not remember' the spelll.ng of the
' domains to be deleted. However, if there are only few domains to remove you are better off just hit-

ting ‘return’. In this case, you get:

' J

enter domain name( or ‘e!” to exit): a2 |

enter domain name( or “el’ to exit): e! | ‘ !
od!
- Domain Table: SCHOOL
Index Name Length  Actual Type :
ﬁ 0 dom_name 20 T STRG )
1 rel_name 20 T STRG
2 length 11 T INTG
'8 type 11 T INTG
, 4 tuple_size 11 T INTG
5 ntuples 11 T INTG
\ 6 count 11 T INTG
p . 7 dom_pos 11 T INTG
T 8 _sort_rank 11 T INTG
x 9 NAME 26 T STRG
. ’ . 10 STUID 7 T STRG
. : 11 SEC 2 T STRG
13 Al 11 T INTG
14 A2 11 T INTG -
15 MID 11 T INTG ¢
10 FIN 11 T INTG
3 - L]
‘ Observe that the twelfth entry is missing; it has been occupied by a2. That is,

‘ s
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no garbage collection Is performed on dom_table. Let us create a new relation

ples. This is done through crt (create relation),

er! v

-

enter relation nami( or “el” to exit):

©

MARKS_420

enter domain name( or “e!” to end):

NAME '

and then STUID, SEC, Al, A2, MID, FIN to finish with
enter domain name( or “e!” to end):

el

r;lation MARKS_420 is defined on 7 domains - ' -

- ise="7
_.~ tuple sizse 9 e

Observe that 79 Is the sum of the Avidth of

is deflne. It Is now possible to enter a few tiptes: ftellx prompts you thus: v

enter “a!” if you want to add a few tuples
or ‘f1° if a corresponding file already exists .
or ‘el” to exit: :

»
)

al

enter the maximum number of tuples to append:

.. e 9 . ‘\3
15 -

we may enter up to fifteen tuples

enter ‘el to end ( anything else to continue):

t

.

g

and enter some tu-

of

» '

the attributes on’ which MARKS_420



T
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v

(]

enter value for > NAME <: . L.

(de, dk or any string of length <= 26) . .
. '

rivet, maurice . o .

and then 8214512, 3, 16, 21, 9 and 41 for STUID, SEC, A1, A2, MID and FIN respectively. And so

on until you have entered fifteen different tuples or replied with e! to

enter “e!” to end ( anything else to continue):

Let us enter another tuple: paulette berard, 8314201, 3, 23, 21, 11, 40 apd then

2
el .
@:’) — 4 I3 y =
relation MARKS_420 contains 2 tuples . . '
- " -
- enter relation name( or “e!” to exit): e! i
) I D ¥
Notice: we are still in create rel. To exit, enter: --
! Hd
w el )
o Y We can look back at the tuples just input using pr! (print relabloh).
pr! .
ar LL\I. ’
enter relation name( or “e!” to exit): . g -
’ \ o T e
MARKS_420 - . . )
Iy ‘ ’
NAME STUID SEC A1 A2 MID FIN

Berard, paulette 8314201 C 23 21 11 40
rivet, maurice 8214512 C 18 21 9 41

-
v

o ' You can resume adding tuplés to MARKS_420 using ar! (append some tuples to

o °

an existing relation). . f

ar! L

4

& -

!
- o

0O
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enter relation name( or ‘¢!’ to exit): l\;IARKS_nle
enter the maximum number of tuples to append: 20

and entering appropriate values to each of NAME, STUID, SEC, Al, A2, MID and FIN. Assume

that the following have been input:

“a

% v
+
NAME STUID, SEC A1 A2 .MDD FIN
arrau, antonina 8102214 A 18 - 20 9 43
berard, paulette 8314200 C 23 '21. 11 40 .
brady, vivian 8230267 A 11 17 8 44
, christos, marilou 8215201 B 13 19 . 11 38 -
: . giroux, aline 8314626 A 20 16 12 46 .
hart, terry 8317112 A 12 11 8 25 L
N jones, raymond 8215174 B 13 17 7. 30
king, tam 8328521 c 17 22 12 36
lamontagne, paul 7913295 B 20 20 11 43 o
© .. rivet, maurice 8214512 C 16 21 41 _

1 o

L]

L

Alternatively, we can turn a.UNIX flle Into a relation using cr! apd f!. Let us

define a relation CLASS ¢h NAME, STUID, SEC and FEES. Assume FEES has been defined as an

integer domain and the file CLLASS created thus:

v

» brady, vivian
giroux, allne

lamontagne, paul

christos, marilou
arrau, a{lwnlna

king, tam

o

\ S
po ¥

2l

. teger fleld;,

TRUE.

© n The dialogue goes thus:

2

jones, raymond

berard, paulette

order specified when using cr!;

8230267
8314626
7913295
8215291
8192214
8215174
8328521
8314201

A00000000117
A00000000200
BQ0000000171
B00000000398
AA00000000200
B-0000000050
C00000000034
C00000000452

Observe: -the order in which domain values are entered in the fille must be the same as the

-

-domains of type string must be right-padded with blanks, those of type integer
len-pa;lded with zeroes, so that all the tuples have the same length;

-an optional minus sign appears in the leftmost position of the eleven-byte In-

°

-had we a boolean domalin, we would have entered “0° for FALSE and °1° for




enter “al’ if you want to add a few tuples u
t, or ‘f1’ if a.corresponding file already exists
or ‘el’ to exit:

Q
ﬁ ° - :
! “ enter (positive) number of tuples: ) —
20’

wid WARNING ##+ ladt.tl:: ic;rel 8ll: no more data to read

rd
A warning Is issued because the number of tuples is smaller than expected: hot a .

serfous offense (see error handling in chapter VIII). Using pr!, you get.:v

; NAME STUID SEC FEES

i arrau, antonina 8192214 A 200
. . ) berard, paulette 8314201 C 452 ’

' ‘ brady, vivian 8230287 A 117
L christos, marilou 8215291 B 398
giroux, aline W 8314626 A 200
jones, raymond 8215174 B -50
. king, tam 8328521 C 34
R r lamontagne, paul 7913295 B 171

Let us inspect rel_table with sr! assuming that some other relations have been

o

created with cr! or the relational algebra (agaln, see section c).

- : " Relation Table: SCHOOL

Index Name Tslze Ntuples Arity Domains i ¢
3 _NULL 0 0 0
4 MARKS_420 79 T 10 7 NAME STUID SEC A1
’ ' A2 MID FIN
5 CLASS 46 8 4 NAME STUID SEC FEES
s RESULT 29 10 3 STUID Al A2
I RES_SEC °13 3 2 SEC TOT_SEC

You may delete some relations. This carn be done with dr! (delete relation).

dr! N

S o
J

WARNING: if you delete any relation used in any view
. a it is safer to quit after execution of this command

: & . enter relation name( or “el’ to exit): L " »

Z
.
-~
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" salt

‘ stack machine. It may be useful for a programmer to display that code. This is done with po!

(display the code generated: mnemonics and operands).

-381-

—_—

entering RES_SEC and RESULT will cause. their removal from rel_table. The

same result can be achieved with sa! (prompt the user to find which relations to save).

[ v

for each relation enter y/n depending whether
you want to save it or not ( e to exit)
MARKS_420 (y/n/e): >

3]

y

entering y, n and n for CLASS, RESULT and RES_SEC respéctively would leave rel_table In, the

o
-

same state as dr! above, namely:

Relation Table: SCHOOL
Index Name Tsize Ntuples Arity Domains
8 NULL 0 0 1] :
. 4 MARKS_420 79 10 7 NAME STUID SEC A1l
° _ A2 MID FIN
5 CLA.SS 46 8 4 * NAME STUID SEC FEES

In section ¢) we explain how to enter relational expresslons. In chapter IV (Sys-

tem overview) we describe how these expressions are translated to some intermediate code'for a

-

For example, to

RESULT <-[ STUID, A1, A2}in MARKS_420;

3

. corresponds the following piece of code displayed after Invoking:




0: PUSHREL RESULT [
2: PUSHREL MARKS 420

4 PUSH.DOM STUID

. 6: PUSH_DOM A1l
- 8: PUSH_DOM _ A2 g
10: PUSH 3

'12: PROJECT .

e o

13: ASSIGN -
S //:/)
14: HALT !

:
— | , .

b Observe that the code is a collection of integers. Some of them are Indices in the

T
L

domain or relation table. However, we display the corresponding domain or relation names.

In chapter VIII, we describe how errors are handled. In a nutshell: we attempt to

- &

keep on processing as much as posstble unless a catastrophe occurs. You may impose that execution
is to be stopped after errors have been detected and a predefined threshold of IO operations has

been reached. This is done with batch! (switch mode to batch).

batch! : " g
While running relix, you may still execute UNIX commands. Suppose you want
to make changes to a copy of MARKS_420. named TEST, you can use either sh! (get a set -of shell

commands and execute) or the single line shell facility. The first one Is invoked thus:

a3

o

sh!
line consisting of “e!* terminates shell description
cp MARKS_420 TEST; : S ’ Qe

(¥ R , - . . 5 , .
vi TEST J u o i .

I : ~b !
¢!
o - ) ‘
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|
You return to relix when exiting from vi, after the copy has been made. For sucé}

a short sequence of commands, you may as well use the second possibility which is introduced by

% - and terminated by a carriage return, thus:

% cp MARKS_420 TEST; vi TEST

0

We will soon explain how to define domalns or relations. Although you may al-

‘ways enter these deflnltions Interactively, It may be convenlent to collect them in a flle, say

L]

* GOOD_DEF, and run it from relix using input! (redirect standard input to a UNIX file).

-

input/

‘..—_...—/

1 \
enter tty name (if unknown, exit and type: Z5tty)( ‘e!’to exit):

. ® A\
ttyl0 -~ e Yoy, :
enter file name ( or “e!’ to exit): : -
(=3
GOOD_DEF ” .

assuming that tty10 is the outcome of ““%tty”.

Four system commands can be invoked with a single garameter. \We present the

o
N «

relevant relix grammar rules (the complete grammar is in appendix A). Enclosed between angle,

brackets, " <° a.nd\ * > °, are syntactic categories.

N

<command-with-parameter> := <command-name> "1’ <identifler>

<command-name > si==dr | pr|sd|sr /
<1doent.me{> n== <letter> ( <letter> | <digit> | ")
<digit> | =0 (1] ... ]9

<letter> . ::—-=a|b|...|z|A'|B|...|Z i, o,

\

where dr Ldelete a relation), pr (print a relauon_), sd and sr (display an entry in dom_table, respec-

tively rel_table) have been discussed previously.

You can create new domains without using cd!. Similarly, you can declare a rela-

©

tion or turn a UNDg file into a relation without using cr!. The syntax is:

©
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<domain-declaration> ==  domain <identifier> <type>
<type> i z==  hboolean | bool | Integer | intg
v real | float

. . | (utdt;z | strg) <digit>+

<relation-declaration > e relation <<identifier> <domain-list>

“ N ('<~' ( <ldentifier> , »
| <non_dc_dk_string>) | €) ®
Ly , <domain-list> u=  <domain-list> '," <domain-expression>

- | <domain-expression>
<non_dc_dk_string> Hee (™ [**]0)] ™

As in many grammars, ¢ denotes the empty string. The rule deflning a string

P

constant is'tead: starting and ending with °"*, comprising no Intermediate » *\ " or carriage re-

-

turn. We could have obtained the same result as above with:

domain NAME strg 28;

?elat.lon MARKS_420 ( NAME STUID, SEC, A1, A2, MID: FIN)
<-"../MARKS";

relation VIEW_OF _420 ( NAME, STUID, SEC);

These relation declarations specify the attributes on which the relations are to be
defined. As well, the first declaration Indicates which UNIX file is to be assoclated with
MARKS_420. In this example, the file MARIKS, found in a sibling directory of the database, will
be copled under the name MARKS_420. Hence, no modification to the latter can affect the rormex-.i
The second declaration will not create a flle associated with VIEW_OF_420. This option mat be
used when defining views (see section ¢). Before moving on to domain definition, it is worth men-

«

tioning that starting up can follow a different course. The complete syntax is:




—
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<start-up > umx  rellx <options>

<options> ==  UNIX-path <other-options> | ¢
<other-options> n==  <number-of-pages> <page-size-option> | ¢
/<nﬁi?1behof-pages> t=  <Inteéger>

<page-size-option> iu=  <integer> |e

1’01‘. example, suppose

that yoy estimate that 100 pages of 2000 bytes each would

be more convenient than the currently implemented default of 40 pages of 4096 bytes. Suppose also

-

that you want to work in a database, say BANK, in a sibling directory of the current one. You ma:}

then enter:

. reliz ../BANK 100 2000

o

A

If you definitely do not like the default values but are also reluctant to type in relix ... 2000 repeat-*

edly, we suggest you looM up the UNIX aliasing facility.

(=]

K3
et 5
[
.

ALY
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b) DOMAIN ALGEBRA

Domain Table: SCHOOL

Index Name Length  Actual  Type
0] dom_name 20 T STRG
1 rel_name 20 T STRG
2 length 11 T INTG
, 3 type 11 T INTG
4 tuple_size 11 T INTG
5 ntuples 11 T INTG
8 count 11 T INTG
7 dom_pos 11 a T INTG
8 sort_rank 11 T INTGY, *
9 NAME 26 T STRG.
10 STUID 7 T STRG
11 SEC 2 T _ STRG
i3 Al 11 T . INTG
14 A2 11 T. INTG
“ 16 MID 11 T+ INTG
h . 18 FIN 11 T INTG
“17  YEAR 4 T STRG
¥ 18 CRED 11 T INTG
N
Relation Table: SCHOOL
Index Name Tsize Ntuples Arity Domalins
3 _NULL o 0 o
4 MARKS_420 79 10 7 NAME STUID SEC Al
_ A2 MID FIN
5 CLASS - 486 8 4 NAME STUID SEC FEES
6 DEPT Vo4l 8 3 NAME YEAR CRED

New domalns’ can be defined as the application of an operator or a function to
previously defined domains, through the let statement (for the rest of this chapter, bold type is

reserved for keywords, including relix): .

let <identifier> be <domaln-expression> " “

Four types of domain are available: boolean or bool (Bz)OL), int‘eger or intg
(INTG), real or float (REAL) and string or strg (STRG) (chain of characters). At present, no
operations on real domalns have been implemented further thrm the parsing phase.

We distinguish between horizontal and vertical domain expressions. The value of

a horlzontal doma}g expression for a given tuple depends only on values of domains within the

sanie tuple. On the other hand, a vertical domain expression Is a function of values from possibly

}&‘:




At
¥

EI

B

more than one tuple.

no operators. The baslc tokens are given by the following rules:

STV E MY

>

N

We present the operators in order of increasing arity, starting with domains using

<hoolean> -

<intedlr>

<real>

<string >

ot

Q -

5
==, , ‘true | false | dc bool | dk bool

.e

<digtt>+ | dc intg | dk intg

= ZdIgit>w 77 <dlgit> =

== <non_dc_dk_string> | dc strg | dk strg

£

The maximum value of an integer constant 13 machine dependent. On a 32-blt
3

machine typical values are: 2147483647 on the Masscomp and 2147418111 on the Cadmus. The

symbols de, for ‘*don ‘¢t care”’, and dk, for ““don’t know*’, represent null values. The first describes

frrelevant informatlion; the second, missing data. The length of any string must be between one

and forty.

*+ NO OPERATOR

L

A domaln can be déﬂned without using any operator, thus:

-< domain-expression >
|
I
<constant>

Examples:
let ONE
let TRUE
let DC_INT

‘(* < domain-expression> °})*
<constant>
<identifler>

<boolean> | <integer> | <real>

REA

be 1; I )
be true;

 be(dcintg), *

let STUDENT_ID ~.-be STUID;

The type of the expression following be determines the type of the new domain.




For example, ONE and DC_INT have type integer, TRUE type boolean and STUDENT_ID type

' L
‘ string. The third ¢ 'ample shows that superfluous parentheses can be used.

)

UNARY OPERATOR

<

-, Domains can also be defined in terms of unary operators:

"'<do§naln-exprmlon> == <unary-op> <domain-expression>

. | <vertlcal-expression > ‘ ,

<vertical-expression>:=
| red <asscom-op> ' of <domain-expression>
s | equiv <ass-con;-op> of <domain-expression>
) ' by <domain-list>
' | fun <fen-par-op> of <domaln-éxpresslon>
— order <domain-list> .
, | par <fen-par-op> of <domalin-expression>
& order <domain-list>
by <domain-list>
\ _
i < unary-op > SE TG BE N i
< fcn-par-op > u== < ass-com-op> | <other-bin-op> .
| pred | succ
< ass-com-0p> w= “+°|“%" | ‘& | "|"| max | min °
<other-bin-op> = ‘" | /" |mod | “xx" | *||"
< domalin-list> = < domain-list> *,” <domain-expression>
| < domalin-expression > '
) The less obvious operators have the followlng meanings: -




- }r . or ’ ‘&Z*  and
boolean negatlon “il*  string concatenation

exponentiation

~ mod integer remainder ‘s
pred predecessor succ  successor ;
Vertical o;)erawrs are obtalned by following one of red(uction), equiv(alence),
fun(::tion) and par(tial function) by a binary operator.
The outcome musb«tge mdependent. of the ordering of the tuples. Hence, the
binary operators allowed with red, equiv must be assoclative and commutative. '’
On the other hand, the operators following fun or par need not be associative or

commutative since an ordering of the tuples is specified by the order clause. The by and order

lists may not be empty and, in the case of par, the order list must precede the by list.

T

Examples:

let CLASS_FEES bered .+ of FEES;

let SEC_FEES be equiv  + of FEES by SEC;

let CUM_CRED be fun + of CRED order YEAR;

let CUM_CRED_N be par + of CRED order YEAR by NAME;

CLASS_FEES performs the addition of FEES over every tuple to produce a sin-

gle result, whereas SEC_FEES partitions the tuples among the different equivalence classes, here
the sections, and then computes a total for each section.’If there Is only one student, CUM_CRED
computes, for each year, the number of credits accumulated as of the first year during which the
student has completed some credits. The result would differ from one tuple to another as long as
‘they differ in the YEAR attribute. Were there more than one student, CUM_CRED_N would‘,

achieve the same goal since it would partition the tuples by NAME before computing the cumulaz.\

tive sums.




-

BINARY OPERATOR .

<domaln-expression > ::m= - p. ]
o . i
< domain-expression> < ass-com-op> <domain-expression> |
‘ ) : <domain-expression > <other-bin-op> <domain-expression> |

% <domain-expression > <comp-op> <domaln-expression>

?

<comp-op>imk *<°|°>° | ‘<="| “>=" | ‘=

Precedence-is given by the following table along with the rules:

-operators of lower precedence first
-operators on a given Hne have ga\me precedence

-associativity is specifled

left  assoclative °|° “&° ’ |

non » I<‘ l>l l<=‘ ‘>=0 ﬂ=l a-=ﬁ
N len » O+¢ '-ﬂ
, left " ‘s* °/° mod
right - Tamt
\. \.\‘ N
s non » cs
Examples: —

o let TOT be(Al+ A2)*7 /10+ MID + FIN;

.o ! let A be TOT >== 85;
I Y o 0 1] o
let B be TOT >=70 & TOT <= 84;
. let C be TOT >=55 & TOT <= 89;
< The marking scheme {s: 35 for the assignments, 15 for the midterm and 50 for

the final. The result of TOT will be truncated to the nearest lower integer. Although truncation is

avoidable, because it i3 not relevant in this case, this issue has not been dealt with at this time.

[
- 7 A, B and C have been defined so that we can assign grades according to the fol-

e?‘ lowing table:




\/—__\ e
A 86 - 100 § -
. B 70- 84
‘ “ e 56- 69 o ‘
F 0- 54 A
: L o |
)
I i &
U . TERNARY OPERATOR
- The single ternary operator provided is; . :
o - v o H @
< domaln-expréssion> := if <domaln-expression> ‘
8
- then < domain-expression >
& ® else <domain-expression> )

{l
The else clause may not be left out. The domalns in the then, else parts must

-

have the same type. The domain expression in the if part must have type boolean.

|
il

let GRADE be if A then "A”

else if B'then "B"
J

else if C then "C"

else "F~;’ v

GR.ADE would assign to a student a grade accordlhz to the table given above.

\
.
N v

N
o

| o

- ¢ Ia pn
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FUNCTION APPLIED TO DOMAIN (., -

‘ ‘
Ve 1 r

New domains can be-obtained by applying a function to existing ones:
'

@ ‘
<domain-expression>::== <function-name> ’(’ <domain-expression> *)’ o

<function-name> = ab;s | cos | isknown | log10 | log2
& \«Dﬁ ~ | In | sin | tan
Most of them yield a domain of type real and. hence;;are not fully implemented.
The first one in¥she list above, abs, gives the famillar absolute value. The third one, isknown, has

N

type boolean. It allows to check whether a given domain takes on value dk. Let us enter
&Y

let KNOWN_GRADE be isknown( GRADE); -

this domaln, be It actualized, will take on value TRUE wherever GRADE ls different from dk,

FALSE everywhere else.
E]

It is worth pointing out that any domain gas been deflned in terms of actual
» N
- domains, that is, domains already present in the database like Al and MID, or constant domains,

]

like 85 and "A", or previously defined dématns.
The current Implementation does not fully allow cyclic domains: that is, a

domain redefined In terms of itself. That is, entering:

. let A1 be A1 + A1;
¢ 4 )
would not gause any syntax or semantic error- messages. However, It cguld not be actualized in any

relatton. The next sectifon will explain why as well as describe how and when virtual domains are

actualized. A virtual domain may be the result of a sequenc; of virtual domain definitions. At the
r -

[

end of the sequence, a virtual domain must be exﬁ‘rased in terms of actual or constant domalns

a
13

only. With the restrittion on cyclic domains just mentioned, it is easy to see that any domain is o
a 4

<2

1, M - "
Y the root of an expression tree where the Teaves are the constant or actual dbmains or the operators. -
o

-
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¢) RELATIONAL ALGEBRA ! .

Just as new domalns can be expressed in terms of already deflned ones, new rela-
oio;ls,/can be described as the result of applying zero or one operator, either unary or binary, to al-
ready defined relations. Tlie occurrence of such a definition Is called a statement. The evaluation
mode allows us to distinguish between executable stat;menc: immediate evaluation, and view state-

ment: deferred evaluation. -

» s

<statement>::== <executable-statement> | <view-statement>

< executable-statement> ==

b \
<identifler> '<-’ <relational-expression> (1)
| <identifler> '< +4* <relat.ional-expr'$selop> (2) .

|  <identifier> '’ <domain-list> '<-* <domain-list> °|*
<relatlonal-expression>. (3)

|  <identifier> [’ <domaln—llsn>q'<+' <domain-list> ']’
<relational-expression> ' (4)

Executable statements are characterlzed.by an assignment sign:

\} 1) direct

2) incremental ' /D
(3) renaming direct . .

(4) renaming incremental
4 2 A ’
The rules to build relational expressions are given hereafter, starting with the no
& ’ :
operator case.

A
’

Pl .~

f) NO OPERATORS
QU '
[ o, " b

<relational-expression> = ‘(' <relational-expression> ')[ﬁ

T | <identifier>
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Examples: ‘ e )
“- - NEW_CLASS <- CLASS! ' » : L |
i L
. e
The name, here NEW_CLASS, Uaeed not be new. Had it been in use then the

v corresponding NEW_CLASS flle would be overwritten. In no case is the relation CL.ASS or the

S
-

., corresponding CLASS file modified. Rather, they are copied under new names.
This an example of direct assléﬁment.. We will see@many athers hereafter. Three

“ other types of assignment are avallablg: Inctemental, renaming direct and renaming incremental.

[
Examples are:

CLASS <+ OTHER_CLASS; ° (-5)

GRADE_305_R [ STUID, GRADE_305

-

<- STUID, GRADE|] GRADE_305_R;  (6)

BIG_CLASS { STUDENT_ID, SECTION, TUITION

2 <+ STUID, SEC, FEES | CLASS; (7)

_ ______ The first one results in adding to CLASS the tuples of OTHER_CLAS I
CLASS been a new name, then this would have been equivalent to a direct assignment. In any case,
) C -the domains of R In R <+ S must form a subset of the domains of S. S is projected over the

domains of R, the result appended to R and the duplicate tuples eliminated. For example, suppose

N N

'OTHER_CLASS .
) . ) NAME STUID SEC FEES COURSE
bonnallie, andre 8234187 2 152 PL/v
) . lucien, nicolas - 8423861 3 321  pascal
brady, vivian 8230267 1 145 cobol

! ) The result of ( 5) is:

s Y
L}



CLASS
NAME STUID SEC FEES
arrau, antonina 8192214 1 158 .

berard, paulette 8314201 3 233

bonnallie, andre 8234187 3 152

brady, vivian 8230267 1 145

christos, marilou 82152901 2 322

- giroux, aline 8314628 1 112
hart, terry 8317112 1 378

jones, raymond 8215174 2 163"

. - king, tam 8328521 3 244’
v lamontagne, paul 7913295 ‘2'/ 288
. lucien, nicolas 8423861 3 3z
rivet, maurice 8214512 3 364

Observe: the attribute COURSE has been eliminated as well as the duplicate tu-
Ple:
brady, vivian 8230267 1 145
In the renaming direct assignment two domalin lists are specified. As for the join,
not yet described in this section, both lists must have the same length and the domains must be

compatible. It is noteworthy that ( 6) could have been used to rename GRADE Instead of using the

. e

domain algebra.
The renaming incremental assignment combines the two previous. ‘The relation
CLASS Is first projected on STUID, SEC and FEES, these being renamed as indicated in (7).

Dep@ndinz on whether BIG_CLASS is new or not, then a direct or incremental assignment Is per-

formed. . /1

\ ‘ {I) UNARY OPERATORS

.

<relational-expression > sam

<project-clause> <where-clause> in < relational-expression>
“*




e e i o e 2

<preject-clause > e '(* <domain-option> '}’ | € (8)

‘ ’ <where-clause > ;== where <domain-expression> |¢ -(9)
<domain-option> = <domain-list> | ¢ ‘
‘Let R be the relational expression. We call ( 8) the project operator and ( 9) the

select. operator. Between the square brackets, *[* and ‘], is a po‘sslbly empty list of domaln
N\

names (as opposed to domain expressions) en which R is defined or which are actualizable in R.

i

Clearly, a domain, say D, is actualizable in R if the leaves of the expression tree rooted at D are ef-

ther constant domains or domains on which R is deﬁnéd. Project is tantamount to stripping off the
)

non mentioned domains and eliminating the duplicate tuples that this could have generated. A null

empty relation Is obtained when the list is empty. The domaln expression, say D, after where
must be boolean and actualizable in R. Only the tuples evaluating to true for D participate in the

.

result. Remember that MARKS_420 contains the following tuples:

) NAME
e __rivet, maurice-___ 8214612 3 18 21 9 41
: berard, paulette 8314201 3 23 21 11 40
Jones, raymond 8215174 2 13 17 7 30 '
brady, vivian 8230267 1 11 17 7 8 44 D
giroux, aline 8314626 1 20 16 12 46 ,
’ hart, terry 8317112 1 12 11 8 25
array, antonina 8192214 1 18 20 9 42 o
king, tam 8328521 3 17 22 12 36 :
’ : christos, marilou 8215201 2 13 19 11 38 .
\ lamontagne, paul 7913295 2 20 20 11 43 '

and that we defined the following domains: ' !

. —_—

Al

. N v
-! ki \\ ’
' ) ‘ t \

- f - [ o
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. . let TOT
let A
- let B

let C

let GRADE beif A then "A"

" We deflne a new

m}j

#

GRADE_420_R <- [ NAME, TOT, GRADE) in MARKS_420;

We can invoke pr! to display the result

\

s

—
"

Observe that the domains A, B and C, although actualized In order to evaluate

GRADE, do not appear in t.h?\ T

47

be (Al + A2) = 7 /10 + MID + FIN;
be TOT >=85;
be TOT >= 70 & TOT <== 84;

3

be TO-T >=55 & TOT <== 69;
ta
else if B then "B~
else if C then "C"
else "F~;

relation, GRADE_420_R, thus:

GRADE_420_R
NAME TOT GRADE
arrau, antonina 77 B )
berard, paulette 81 A
brady, vivian 71 B
christos, marilou - 71 B
giroux, aline ‘83 A
hart, terry 49 F N
jones, raymond 58 c . -
king, tam 75 B
lamontagne, paul 82 A
rivet, maurice 75 B R )

esult since they were not mentioned in the domain list which

_ defined GRADE_420_K. Indeed, using virtual domalns, for example in the domain list of a project,

i

fs a way to cause their actualization. However, a domaln already present In a relation is not

reevaluated, evenilf e il}ned through a let statement. This is why we mentioned in the previous
ot

(5]
section that cyclicity is not suppor

ted. .

Similarly, consider: . .




-~ * CLASS
‘ NAME STUID SEC FEES
arrau, antonina 8192214 1 155
. berard, paulette 8314201 3 233
brady, vivian 8230267 1 145
: christos, marilou 8215291 2 322
-, . giroux, altne 83146826 1 112
hart, terry 8317112 & 378
jones, raymond 8215174 2 163
kiq}. tam 8328621 3 244
lamontagne, paul 7913295 2 288
rivet; maurice 8214512 3 364
let CLASS_FEES be red + of FEES;
_let SEC_FEES be equiv + of FEES by SEC;
CLASS_FEES_R <- [ CLASS_FEES ] in CLASS;
ht
SEC_FEES_R <- [ SEC, SEC_FEES ] in CLASS;
* CLASS_FEES_R SEC_FEES_R
CLASS_FEES SEC SEC_FEES
. and T
, 2404 1 790
- 2 773
‘. 3 841
o DEPT
NAME YEAR CRED
. g brady, vivian 1984 13
‘ . brady, vivian 1085 16
jones, raymond 1983 16
jones, raymond 1084 15
Jjones, raymond 1985 16
rivet, michel 1982 15
rivet, michel 1083 12

let CUM_CRED_N be par + of CRED order YEAR by NAME;

DEPT_1 <- [ NAME, YEAR, CRED, CUM_CRED_N| in DEPT;

g

;™




DEPT_1

- NAME YEAR CRED CUM_CRED_N «
brady, vivian 1984 13 , 13
/ brady, vivian 1985 15 7 28

N jones, raymond 1983 16 16 ’

v Jones, raymond 1984 15 31
jones, raymond 1985 168 7
rivet, michel 1982 15 15
rivet, michel , 1983 12 27
rivet, michel 1984 14 41

The following illustrates the select operator.

o
i

- o
F
GOOD <- where TOT >== 75 in GRADE_420_R;
o«
* GOOD
NAME TOT GRADE
arrau, antonina 77 B
berard, paulette 81 A
giroux, aline 83 A
’ king, tam 75 B
lamontagne, paul 82 A
rivet, maurice 75 B
" .. —
W
L
N R ]
it
~. ‘ ’
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It
lit) BINARY OPERATORS

The unary operators depicted above generally trim down a relation horizontally

(select) or vertically (project) or both. On the other hand, relations can be bullt up using join; that
select

-

is, the result may be deflned on more domains or contain more tuples or both.

<rel§fional-expresslon >n=

’

, s <relational-expression>
\ L]
¥, ‘" <domaln-option> <join-op> < dqmain-option> °J’
o <<relational-expression>
<join-op> %= < mu-joln-op> | <sigma-join-op>
<mu-join-op > 2= ijoin | natjoin | ujoin | sjoin

’/] | ljoin | rjoin | drjoin | djoin

| dljoin
<sigma~join-op > HES < bas{c-sigma-~joln-op >
| <negation> <basic-sigma-join-op> .

| icomp | natcomp

]

I

<baslc-slzt.na—joln—op> eqjoin | Itjoin | lejoin | sub
] gtjoin | gejoin | sup | div
| gsep | iejoin
The foltowing rules apply:
-the domain lists must have the same number of elements and, hence, they may
be both empty;
-domains at the same position in both lists must be join-compatible, that is, have
the same type (boolean, integer or string); moreover, if they are of type string,
they must have the same length;

-if the lists are empty, the join is performed on all the domains common to both

relational expressions;
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-if there is no common domain special cases are considered (for example, an {join
o o - would result in a carteslan product).
» v The o-join 13 not implemented further than the parsing phase. In our examples,
we will use ijoin, the Intersection or naturat jcin, and dljoin, the left difference join.
Conslder the relation MARKS_305 to be deflned on the same domalns as

3

MARKS_420 and that actualizing GRADE In the former yiglds GRADE_305_R.

GRADE_305_R
L] -
A NAME STUID GRADE '

‘ arrau, antonina 8192214 B
berard, paulette 8314201 C
brady, vivian 8230287 B

\ giroux, aline 8314626 c ,

king, tam 8328521 F
lamontagne, paul 7913295 A
rivet, maurice 8214512 B L3

4

We want to join on STUID to obtain the marks of the students who completed

both courses, Before dolng so, we must rename GRADE since a domaln name can appear only once
- ' v

in a relation. Hence,

let GRADE_305 be GRADE; ' : -
let GRADE_420 be GRADE; )
GRADE_305_420 <- ( [ NAME, STUID, GRADE_+420] in GEADE_‘&O_R)
[ STUID ijoin STUID |
( [ STUID, GRADE_305] in GRADE_305_R),

- would produce

e




NAME

GRADE_306_420

STUID GRADE_420 GRADE_305

arrau, antonina
berard, paulette
brady, vivian
giroux, aline
king, tam
lamontagne, paul
rivet, maurice

8192214
8314201
8230267
8314626
8328621
7913295
8214512

WpwWwprwrw

wrQOWOW

whereas

ONLY_420 <- [NAME, STUID] in

( GRADE_l420_R [ STUID dljoin STUID] GR.ADE_SOS_:R):

produces \'\_—//

ONLY_420
NAME STUID
christos, marilou 8215291
hart, terry 8317112

jones, raymond 8215174

Notice that using virtual domains in the domain lists of a join is another way to

»

induce their actualjzation. R

¢

N
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VIEW STATEMENT
The assignment statements presented above are said to be executable because,
when entered, they trigger an immedlate evaluition of the relational expression. Nevertheless, it Is

o
possible to enter such expressions witlkdgerred evaluation. This is called view definition and has

2 the form

g <view-statement>::== <ldentifler>

( initial <relational-expression> l )

is <relational-expression >
For a given relational expression, relix generates almost the same intermediate
code whether the statement In which it occurs Is executable or not. When it is a view, the inter-
preter refrains from executing the code (see chapters VI and VII). The code for views Is kept In the
code array for further use. Notice that view definitions are lost between relix sessions and that dur-
ing a given session the code is evalugated each time the evaluation process is triggered.

The deferred evaluation mechanism is particularly handy when the user wants to

define relations in terms of each other. Suppose that R and S are existing relations and that T and

" U must be defilned as -

Tis R [ ujoin | U;

o’

Uis T [ ujoin ] S;
had we entered '<-' instead of is, a run time error would have occurred when the evaluation of the

first statement was attempted, since U was then stlll undefined.
-,

] As mentioned in chapter II, computing the transitive closure of a graph Is anoth-

7 !

er problem which can be solved using views. Recall that PARENT is a relation deflned on

SENIOR and JUNIOR which are domains , of type string and length 18. Let

"edward IV elizabeth of york ” be a tuple of PARENT to indicate that edward IV is a parent

of elizabeth of york.

=




» d -54. % .
T > PARENT

#
SENIOR JUNIOR
edward IV elizabeth of york
elizabeth of york  henry VIII

. elizabeth of york  margaret
henry VII henry VIII
henry VI margaret -—
henry VIII edward VI
henry VII elizabeth 1

" henry VII mary I

jameg IV stewart james V stewart
Ay

James V stewart mary stewart

margaret james V stewart

In order to find for any two persons whether one i3 a descendant of the other, we

<2

compute the transitive closure of PARENT and call the result ANCESTOR. We have the follow-

u{(_dennlr.lons:
g

relation ANCESTOR ( SENIOR, JUNIOR);
let SR1 be SENIOR; <

T}
let JR1 be JUNIOR; v

Here are two ways, among many, in which we can use relix to compute ANCES-

TOR:

. ANCESTOR is PARENT [ ujoin ] [ SENIOR, JUNTIOR)] in (
([ SENIOR, JR1] in ANCESTOR)

. [JR1 {join SR1] ([ SR1, JUNIOR| in ANCESTOR));

4 '

ANCESTOR initial PARENT
- is ANCESTOR [ ujoin ] [ SENIOR, JUNIOR] in (
([ SENIOR, JR1] in ANCESTOR)
,# [JR1 {join SR1] ([ SR1, JUNIOR] in ANCESTOR));
Notice the declaration of ANCESTOR as being defined on SENIOR and

JUNIOR. This is mandatory for recursively defined relations because the attributes of such a view

can not be determined by the parser. That is, it would be assumed that the view i3 attributeless.




An alternative is to use the Initial option as lllustrated by the second example. This option Involves
only base relations. The corresponding relational expression would be evaluated and produce a, pos-
sibly empty, list of attributes when the interpreter needs to know the attributes on which the view
1s defined. We stress that it is not an error to use attributelesy relations, as-long as all the St.her
rules are rollowe;:l.

The code corresl;ondlnz to the relational expressich Introduced by the keyword
initial is executed only once by the interpreter whenever the view has to be evaluated.

To trigger the evaluation of a view llke ANCESTOR, one has only to use It ina

$
relational expression within an executable statement or enter

pril ANCESTOR

W

We show again the contents of ANCESTOR after its evaluation.

L)




ANCESTOR

SENIOR

edward IV
edward IV
edward [V
edwird IV
edward IV
edward IV
edward IV
edward IV
elizabeth of york
elizabeth of york
elizabeth of york
elizabeth of york
elizabeth of york
elizabeth of york
elizabeth of york
henry VII

henry VII

henry VII

henry VI

henry VI

henry VII

henry VI

henry VIII

henry VII

henry VIO
james [V stewart
james IV stewart
james Vistewart .
margaret
margaret

elizabeth of york

james V stewart

kS

mary stewart

james V stewart

mary stewart
edward VI’

henry VIII. °
james V stewart

mary stewart

james V stewart
mary stewart
mary stewart
James V stewart
mary stewart



comprises two main modules: a parser, generated by a UNIX program called yacc [J.OHNML fm—
forms type checking on the statement and generates some intermediate code; an interpreter exe-
- cutes this code. Rel& internals can be divided between t,t;e data dictionary and the internal
storage for relations. An overview of the system is presented on the next two pages. Each module is

explained in the forthcoming pages. This chapter comprises the following sections:

«B7-

chapter IV

IMPLEMENTATION OF relix

Relix is interactive in that it accepts and executes one statement at a time. It

-

a) System Overview .

b) Data Dictionary !
¢) Relation Storage )

d) Sorting

e) Parser /. Code Generator

f) Interpreter, .

g) Programmer “s manual
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SYMBOLIC CONSTANTS |

The following symbolic constants are used:

’ v
name value

o NULL 0 \ -
FALSE -0 '
TRUE 1 » ’

. NEGATIVE -1

a® . MAX_REL 40 maximum number of relations in SCHOOL '
MAX_DOM 70 maximum number of domains in SCHOOL
MAX_ID 20 maximum length of an identifier
BOOL_LEN 1 width of a boolean domain in bytes
INTG_LEN 11 same for an integer domain
REAL_LEN 12 same for a real domain ' N
STRG_LEN 40 maximum width of a string domain "~
BUFFER_SIZE 512 size of input buffer In bytes
MAXINT 2147483647  biggest integer avallable on Masscomp
2147418111 same for the Cadmus

DT_BOOLEAN 257 boolean domain
DT_INTEGER 258 integer domain
DT_REAL’ 269 real domain
DT_STRING 260 string domain

'

The last four are mnemonlcs the va.lug}3 of which is set by yacc. We use string as
. 4
an abbreviation for sequence\or ASCII characters,

J

s FILE SYSTEM

2

Let us present some considerations about names which are used to Identify
domains, relations, databases etc. |
A namewls a character string beiinnlnz with a !}ecter and comprising only letters,
digits or underscores; unles; otherwlse specifled, letters may be lower case or upper case.
Tk : Due to UNIX limitations, database names must be no longer than fourteen bytes;
° relation names must be unique in the first fourteen bytes, Ocherwlse,’names may comprise as many

as twenty characters. A database is a directory contalning two types of flle.

The first type is the flle assoclated with any relation. For example, to a relation

¢ named abcdel234567890 corresponds the file abcde123456789. Again, the name has been truncated
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to its fourteen first bytes; however, relix records the full name and would not understand any ab-
breviation. It is noteworthy that even the system relations: DOM, REL and RD are treated the
same way as any other relation. They are described hereafter.

The second type has a single occurrence per database. It is-called TRACE and
contains user entered statements as well as messages issued by relix?—;;)szly about errors and their
severity. This file can be used for many purposes: it allows us to print a relation with some editing;
it produces a trace of a work session and supplies encugh documentation to report on any unexpect-
ed flaws in reliz'.

v So, to the database SCHOOL corresponds a UNIX directory with the same name.
This directory contains the hles: DOM, REL, RD, TRACE plus one flle for each relation in the da~

tabase. Hence, relations in different databases can share a given fame without Interfering with each

other. !

N

°
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b) DATA DICTIONARY

- ‘ : name type size

Y dom_table array of records MAX DOM
, rel_table * MAX_REL
- ! rd_table ” MAX_REL * MAX_DOM
X DOM_TABLE -

a~

o

Information about domalns is kept in che array dom_table. Each element of this

array is a record comprising the following flelds:

K ¥

name type .
name string user defined identifler, say D
length integer width of D in bytes
actual - flag indicating whether D -
N is virtual or not
type * v one of DT_BOOLEAN, DT_INTEGER, "
DT_REAL or DT_STRING
opndl, opnd2 P indexes of domains in terms of
i . which is defined a virtual
domain, say VD
o operator " d code of operator to
o - be applied to operands
when evaluating VD
by _list array of integer determine the equivalence
) clagses to evaluate VD
° order_list - determine the ordering of

tuples to evaluate VD.

The relation DOM is defined on the attributes name, length and type. Only
these, from dom_table, are stored in DOM. The tuples of DOM correspond to the domains of
SCHOOL that have been used by at least one relation at one point. It is left to the user to elim-~

@ inate those which are not used any more (see system command dd!)-
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The arrays by_list and order_list have variable size. The first entry contains the

number of other entries.

The main operations defined on dom_table are:

read_dom_table()
action: fill dom_table from the file DOM
return: TRUE iff no problems to read in DOM

" wrlce_doui_t.able()
action: write dom_table to the file DOM s
return: TRUE iff no problems to write out DOM

show_dom_table()
action: display dom_table on the screen

search_dom__table( NAME)
input: NAME
“type: string
return: index of domain NAME, NEGATIVE if not found

insert_dom_table( NAME)
input: NAME
type: string
action: Insert the domain NAME in the first
empty location of dom__table
-fnitialize all other entries to default values
return: index of entry where NAME has been inserted
NEGATIVE {f dom_table is full

dom_table_delete( D)
input: D
type: integer
action: flag domsain D as deleted
(name starting with null byte)

&

Information from dom_table is obtained through function calls. Thése functions

take as.argument an index, say D, in dom_table and return an integer unless otherwise specified.

—
"

is_deleted_dom( D)
return: ‘TRUE iff D has been deleted -

{s_intermediate_dom( D)
return: ‘TRUE {f D name starts with a digit

*a




”

is_legal_dom( D)
return: TRUE iff D 1s a valid index in dom_table
. (it 1s valid if positive and smaller than -
the number of domains in dom_table)

is_constant_dom( D) '
return; TRUE iff D s constant

dom_name( D)

return: name of D ' »
type: string !
dom_Jength( D) N .

return: length of D 7

dom_actual( D) ' ‘
return: TRUE {ff D is not virtual ; \

dom_type( D)
return: type of D

dom_opnd1{ D)
return:  index of first operand of D

dom_opnd2( D) - : .
return: fndex of second operand of D

dom_operator( D)
return: numeric value of operator of D

dom_:by_list( D)
return: list of domains in the by list of D

type: array of integers
dom_order_list( D)
———
return: list of domains in the order lst of D
type: array of integers

. Entries in dom_table can be modified through procedure calls. One of their argu-
ments is an index, say D, In dom_table. Unless otherwise specifled thelr second argument, NEW, is

an integer. They return no values.

4
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change_length( D, NEW)

change_actual( D, NEW) )
change_type( D, NEW) . N
change_opndi( D, NEW) )
change_opnd2( ° D, NEW)
change_operator{ D, NEW) ,
action:  as indicated by the name, replace by NEW . .

length of D (respectively actual, type,
opndl1, opnd2 or operator)

change_domname( D, NEW)
type: string
action: replace name of D by NEW

change_by_list( D, NEW) : ' s
type: linked list of integers . _
action: replace by_list of D by NEW

change_order_list( D, NEW) .
type: linked list of integers ; v
action: replace order_list of D by NEW .7

N 1
Q
, .
- v
o .
g}
4 -3
A 3 :




REL_TABLE

Information about relations Is kept in the array rel_table. Each element of this

array is a record comprising the following flelds:

name
name

tuple_size

‘ntuples

| s
domlist
softlist
' deflned_on

deflnes

type
string

integer

list of Integers

" number of bytes making up

user deflned identifier, say R

-

e

a tupleof R
number of tuples currently in R

base address of code to
evaluate a view

domains on which a relation
is deflned

domalins on which a relation
is sorted

relations on which a view
is defined

relations deflned by a view

The relation REL is defined on the attributes name, tuplé_slze and ntuples. Only

these, from rel_table, are saved in REL. Note that domlist and sortlist are saved, in normalized

form, in RD (see further). The operations defined on these linked lists (domlist, sortlist, defined_on

and defines) are detatled in section . The main operations defined on rel_tabie are:

read_rel_table()

action:  fll rel_table from the flle REL
return: TRUE iff no problems to read in REL

write_rel_table()

action:  write rel_table to the flle REL

return: TRUE iff no problems to write out REL

show_rel_table()

action: display rel_table on the screen

a2

ol
o

[y

2
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search_rel_table( NAME) *
Hnput: NAME
type: string

return: index of relation NAME, NEGATIVE if not found

- prefix_search_rel_table( NAME) ’
input: NAME ’
type: string
return: index of first entry such t,hat. its name has
NAME as prefix, NEGATIVE {f no such entry -

.-

~

insert_rel_table( NAME)

input: NAME

type: string

action: 1insert the relation NAME in the
first empty location of rel_table
-infitialize all other entries to default values

return: index of entry where NAME has .
been inserted, NEGATIVE if rel_table is l’uil ) . . }

rel_table_delete( R) . -

input: R
type: integer o -
action: flag R as deleted (name starting with null byte) o

remove the corresponding file

" Information from rel_table is obtalned through function calls. These functions
take as argument an index, say R, in rel_table and return an integer unless otherwise specified. Sec-
tion d, cn sorting, presents a discussion of allas relation (name beginning with “$°).

is_deleted_rel( R)
return: TRUE iff R has been deleted

~s

is_temp_rel( R) .
return: TRUE {f R s a temporary relation A\"
(its name begins with “$ or “mt.")

is_legal_rel( R)
return: TRUE {ff R is a valid index in rel_table~
(it is.valid if positive and smaller than
the number of relations in rel_table) « A

is_a_view( R) .
return: TRUE iff R start {s not NEGATIVE , °

is_alias_rel{ R) .
return: TRUE Iff R name begins with “$°




o

rel_ntuples( R) . \

. rel_gorted( R) '

68 »

rel_name( R)

return: nameof R

type: string
rel_tuple_size( R)

return:  size of a tuple of R

return: number of tuples in R

rel_arity( R) . ¢
Yreturn: number of domains on which R is defined

return: number of domains on which R is sorted

rel_;stxﬁ‘t( R)
return: base address of code to evaluate the view R

rel_domlist( R}
return: list of domains on which R is defined

type: linked list of Integers . . .
- < .
A
rel_gsortlist( R) '
return: list of domalns on which R is sort.gd :
type: linked 1ist of integers
rel_defines( R) $ ~ .
return: list of relations defined by view R . |
type: linked llst of Integers : - |

rel_defined_on( R)
return: list of relations on which view R is defined Y
type: linked list of integers

Entries in rel_table can bg modified through procedure calls. One of their argu-
ments is an Index, say R, in rel_table. Unless otherwise specified the second arzurﬁenc, NEW, is an

-

integer. They return no values.

change_relname( R, NEW)
type: string
action: replace name of R by NEW

change_tuple_size( R, NEW)
change_ntuples( R, NEW)
change_start( R, NEW) , )
action: replace by NEW tuple size of R . .
(respectively utuples and start) -

) !



e

.
[ ¢
change_domlist( R, NEW)
change_sortlist( R, NEW)
change_defines( R, NEW)

change_deflned_on( R, NEW)
type: linked list of integers .
action: replace domlist of R by NEW .

[

(respectively sortlist, defines or defined_on)

.

3O
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RD_TABLE
The remalnlng‘ links between domains and relations are found in rd_table. To

each domaln used In a relation and each relation in which that domain is used corréponds an entry

with the following fields:

name type N
count integer number of different values of a domain
_~ in a relation ’ '

dom_pos . index of first byte of a domatin
’ in a relation °

sort_rank "o position of domain In sortlist
The relation RD is defined on the following attributes: relation and domain name,
count, dom_pos and sort_orank. V\(e just saw that to a given relation is"associated a domlist (u;pec-
tively sortlist) stored in rel_table. At the beginning of a session we build domlist (rwpectlvefy sort-
list) from dom_pos (respectively sdn_ran}c) in RD. Symmetrically, at the end of the session we

convert the lnrormatioix in domlist to a set of normalized tuples of RD. The main opera:tions

a

defined on rd_table are: - ‘

read_rd_table() .
action:  fll rd_table from the file RD ) - -
return: TRUE {fl no problems (o read in RD: . o '

write_rd_table() ) ; - .
action:  write rd_table to the file RD
return: TRUE iff no problems to write out RD- o,
show_rd__table() . ce ,
~ action:  display rd_table on the screen ’ ‘ .

-
>

Information from rd_table is obtalned through function calls. These functions

L
-
-

take as a.rzument; two Indices, say R and D, in rd__t,zible and renui-n an lgtezer.

rd_count( R, D)
return: number of different values taken
by domain D in relation R



s 0711
pe——————— o
rd_dom_pos( R, D) \ .
return: index of first byte of domun D In relation R
rd_sort_rank( R, D) '\.. —
return: position of domain in sortlist !

A
Entries in rd_table can be¢ modified through procedure calls. Two of their argu-

» >

x'nqnt.a are indices, R and D, in rd_table. The third argument, NEW, is an integer. They return no

values. ¢ . o, : ,

change_count( R, D, NEW)

change_dom_pos( R, D, NEW)

change_sort_rank( R, D, NEW)

, actfon:  replace count ( respectively dom_pos,
: sort_rank) of D in R by NEW
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¢) RELATION STORAGE
Relations ard;stored on disk as pure character strings. At start up t.lm)e, memory

is set’aside to store relations. System calls are issued to obtain num_pages of page_size consecutive

\

bytes. These parameters may be changed by the user (see user’s manual), Suppose they have been
changed to 10 and 1024 respectively. To each group of page_size consecutive bytes corresponds a ,
record, called page and defined below. .Relix uses, aside from the zfobal variables num_pages and
page_size, the following data structures in order to manage the internal storage for relations (in-

denting is used to indlcate the flelds of a record):

'y

name type size

¢

frozen = array of booleans MAX_REL - Lo

- °

Each entry indicates whether the corresponding relation is an operand of the rela-

tional operation currently executed. Typically, operands and results must be frozen so as to avold

the preemption of the pages they occupy in memory.

° * page array of records num_pages
) base pointer °
rel_index Integer .
- next »

° To each physical memory, page corresponds a page record. Base is pointing to
the first birt.e of the (physical) page. Rel_index is the index in rel_table of thé relation stored in

2
* this page, If any. Next is the index of the next page used to store other tuples of the same relation,

if need be.
N ', w
terel array of records  num_pages
’ page_index array of integers num_pages
_ R ’ ‘rel_Index integer
‘ offset . N
tuples_per_page o m

A relation, say R, may occupy many pages in memory. A record named {crel (in
core relation) Is used to group those pages. Each non-negative entry of page_index contains the in-

dex of one of the pages used to store R. The index of R in rel_table is contained in rel_index. Offset

3
v
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indicates how many bytes separate the beginning of two consecutive tuples in a same page. The

number of tuples of R that can fit In a single page is given by tuples_per_page.

{cerel_for_rel array of integers MAX_REL

8

Each entry indicates whether the corresponding relqﬂon is presently in memory.

P M ’

If so, it also indicates in which icrel. 7T
. free_queue  record '
. front integer
- last hd
. ) The free pages are kept in a linked list. The next fleld of the pages constitutes o

the link. Front contains the {ndex of the first page in the queue. Last contains the index of the last

one. . ' ’ Ve

first_used_queue record ,
’ front Integer index of front cell -
last integer index of cell after rear
queue array of integers

A queue, called first_used. queue, is also used to keep track of pages that currently contain relations

1
%

or have not yet been returned to free_queue. However, their next fleld is already used to complete
the related icrel. i-lence.-the queue s implemented as a circular one. In other words, we merely
store tbi, Indexes of the pages in use on a least recently clapimed basis. Note that last is pointing
one cell after the actual rear one so as to easily distinguish between an empty queue an zt full one.
Hence, the queue must have room for an extra entry and addition is done modulo num i&, typi-
cal features of circular queues. On frozen, three operations are defined ( R is the index of a rela-
tion):

freeze( R) * ‘ ' .
action: set frozen| R] to TRUE '

unfreeze( R)
action: set frozen| R] to FALSE o

is_frozen( R)
return: TRUE Iff frozen| R} is set to TRUE ’ |

AW
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For each relation R, icrel_for_rel[ R} may be in either of two states:

NEGATNE iff R is not presently in memory .
positive, that is, the index of the icrel containing R.

On an icrel the operations are ( R is an index in rel_table, I an‘icrel number; oth-

er argument when needed Is also an integer)-
T ’

— -

-

fcrel_line( T, i) )
return: pointer to tuple number i of relation in icrel 1

fcrel_get( R, size) n i
action: - get the pages needed for as many tuples as in R, - %
) each comprising size bytes;
index of first page, say ICREL, is the icrel number

- -set icrel[ ICREL]. offset to size

-set icrel[ ICREL]. vuples_per_page
vo page_size / offset . |

-set icrel| ICREL]. page_index entries B ’ -
to page indexes
af

-link the pages together ) .
-enqueue the pages on nmn_uséd_queue
return: ICREL

fcrel_free( R, I) . . . ]
action: set all entries of icrel I ,
and those of corresponding pages to NEGATIVE — N

lerel_Al( R, I) )
action: read the relatlon R from disk h\\

into the icrel numbered I
=
{erel_flush( R, 1, ntuples) '
action: write up to ntuples from icrel numbered I to the
file associated with R, skipping those starting
with a null byte

jerel_show( R, I, ntuples)
action: display on the screen relation R, ) )
contained in icrel I ' : o

When a relation is brought into memory, the new line character is replaced by a

' i
¢ v . -




add_free_queue( BLOCK)
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o

null byt;. Hence, for each tuple we need tuple_size + 1 bytes. A page can accommodate a relation

1

only if ntuples » ( tupie_slze + 1) <== 1024,
After having been created or freed, pages are kept in free_queué defined above.
empty_free_queue() . ’ y
return: TRUE {ff free_queue Is empty
get_front_free_queue() o

return:  dequeued front page in free_queue

type: integer
action: enqueue page BLOCK

The operations on first_used_queue are as follows (thelr argument, where needed,
ifs an integer): N

enqueue_first_used( BLOCK)
action: add page BLOCK to the end of first_used_queue

dequeue_first_used()

, return: front page of first_used_queue

move_end_first_used_queue( R)
action: move {rom front to the end of first_used_queue
the chain of pages pertalning to the icrel
containing relation R

I
front_first_used_queue()
return: front page of first_used_queue
. (does not remove it from queue)
free_front_first_used_queue()
action: transfer from first_used_queue to free_queue
all the pages forming the front icrel
v -set icrel_for_rel[] of corresponding
relation to NEGATIVE ‘
£
-free corresponding icrel N . .
empty_first_used_queue() . \ : v ‘
return: TRUE Iff first_used_queue i3 empty L
\
N We defined the following routine to handle the transfer of pages between *

free_gueue and first_uscd_queue. It seems worthwhlle to give the algorithm underlying that func-

¢
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get_one_page() .

if free_queue is not empty _ T
~return the front page of free_queue

else » -
garbage collection:
-check whether in first_used_queue there are pages
that are not pointed to by an entry.of icrel_for_rel{]

-if 50, free the related icrel and chain of pages

if garbage collection has been successful .-
-return front page of free_queue

‘else ¢
-checlk whether all of the pages in first_used_queue v
belo to frozen relations

-if s0 .
-abdkt execution (no memory avallable)

else
&
-free the first not frozen icrel and chain of pages

-return the front page of°free_queuc

.

2
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Example:

Let R be a relation, of index 7 in rel_t,a.'ble. with 43 tuples, each tuple comprising
81 characters (the tuple size Is fixed for any glven relation). On disk, each group of 51 bytes is fol-
lowed by a new line character. To get enough pages it suffices to issue the following function call:

N

o I== fcrel_get( 7, 43).

This function determines that 1024 / 52 = 10 tuples can fit into a page and, so, that celling( 43 /

19 ), that is, 3 pages are necessary. It then gets three free such pages, links them together and re-

)
w

turns the number of the corresponding icrel which iIs always tﬁe index of the first page.
Assume that relation S, of Index 11, is frozen and that it Is stored in pages 4, 9
and 5. Assume also that relations U, index 3, and V, index 8, are stored in pages 6, 0, 2 and 1, 8

respectively. However, they are not frozen. Hence, we have:

relation  index  dcrel_for_rell]  page(s)

R 7 1
S 11 4 4,9, 5
U 3 8 6,0, 2
v 8 1 1,8
. 0 ..10 11 12 .. MAX _REL -1
frozenn. F .F T F . F
page rel_sndez next  base (address of storage base)
0 3 2 20000
1 8, 8 21024
2 3 -1 22048
3 -1 7 23072 note that consecutive
4 11 9 24096 -
5 11 -1 25120 bases are 1024 . {\,
6 3 (4] 26144 ' ;
7 -1 -1 27168 bytes apart
' 8 8 -1 28192 -
g 11 5 29216
free_queue . front= 3
. lasy = 7
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first_used_queue

4

2
. front==5

.last == 2

. queue

n

o 1 2 3
FEERENERE

5 &
|4 |o

7 8 9 10 ~
[ slefofc2 |

In order that Icrel_get() work properly, relations must be frozen beforehand. A

typlical sequence of instructions is:

%]

if (I== icrel_for_rel[ R]) is NEGATIVE

freeze( R);
I== icrel_get( R, tuple size of R);.
fcrel All( R, I);

perform some operationson R in I

&

icrel_flush( R, I, some number of tuples);

unfreeze( R);

5

o

Notice that pages 3, 7 and 8 are ret,qrned. Other structures are in the following

state (naturally, bases are unchanged and, hence, not repeated):

relation
R
S
U
v

frozen:

index  serel fo
7 3
11 4
3 -1
8 1
0o ..10 11 12
F .F T F .
page rel_index
o -1
1 8
2 -1
3 7
4 11
5 11
(] 7
7 7
8 8
9 11

r_rell|l page(s)
3,7,6
4,9, 5

1,8

. MAX _REL -1

F

next

&l



)

v

(i

o

f
)

icrel( 3]

. Iree_queue . front==0
! .last =2
Qrsb_used_queue . front== 0
'{r .last =7
@ N
. Queue
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. offset== 52

. tuples_per_page == 19

. rel_ladex== 7

2

. page_index[ 0] = 3

. pagéindex( 1] = 7

. page_index[ 2] = 6

. page_index[ 3] = -1

i
7

. page_index| 9] = -1

o

ba

1

0 .
r ]

01 2 3_4 5 68 17 8 9
Lilslsl7lafofsfa]r (2]

Y

13
N




d) SORTING

Many operations of the domain and relatfonal algebra have been implemented in

v
k]

a way that requires that relations be sorted. We call the allhs?t;r a relation, say R, another relation
-~ o

that is tdentical to R up to t,hé sort order.
9 , Our sort procedure sets up the environment and then cal_ls:o a standard quicksort
" routine to do the actual sorting. The procedure is invoked thus:
& sort( ptr_R, ptr_l, sortlist) =
~ name type description

ptr_R pointer to integer pointer to index
in rel_table of relation R

i

. ptr_I " pointer to index of the @
' lcrel containing R

sortlist  linkedlist of integers  ordered list of domalns
on which R must be sorted

The calling routine needs to know two things: the Index in rél_t,able of the allas,
13

say S, of the original relation sorted on sortlist and generated by sort; the number of the lcrel, say

J, where sort stored S. Slnce o function can return only one value, we use pointers, thus emulating

' T
Pascal call by variable, to pass back the Information. g
I~

The tuples are preprocessed so as to extract the keys which are kept In a new
fcrel. For each tuple of R a pair of polnters iIs set and placed in an array called ptrs, each element
comprising:

Iptr points to atupleof R
kper - the key extracted from that tuple

Sorting requires only that we swap pairs of pointers when tuples are out of order,

»

as opﬁbsed to swapping character strings. The Iptr polnbei‘s are then used to put the original data

in sorted order.

at
N
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' The algorithm goes as rollows
' 8 sort( ptr_R, ptr_I, sortlist)

if rel_sortlist( R) is a preflx of sortlist
return  ° ’ .

make an alias, say S, corresponding to R and sortlist
if S 1s presently In RAM, say in icrel J
' in the calling routine replace R by S, 1 by J; o1
(this is why parameters are passed through poim’,ers) ° )
return )

9

o

else ,
0 ( 1) allocate as many ptrs as R has tuples e

( 2) using icrel_get(), obtain a new icrel, say J,
to store the result ‘

( 3) for each integer domain in sortlist ..
-replace any negative value by its 9’s complement
s (so that Integers are sorted ‘properly) ) -
( 4) for each tuple, i, of R .
-gset ptrs| i]. Iptr to fcrel_line( I, 1) —

-set ptrs( i}. kptr to sort key extracted from
relation R In I and stored in icrel J

( 5) undo { 3) .
13 \
( 8) apply quicksort() on ptrs

( 7) for each tuple f of R
copy ptrs{ i]. Iptr to fcrel_line( J, 1) ¢

( 8) free the space qccupled by p;rs
(9)R <-S - . . P
(10)1 <= J ‘
It is worth mentioning that while we extract the keys, step ( 4), we also check
whether t.he‘ tuples are :;.lready in order and set a flag. At step {QG), we Inspect first this flag and,
hence, avold sorting an already sorted set of tuples.

Let us illustrate some of these steps through an example. Consider a relation

named ACCOUNT, of index 13, defined on the following attributes
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name indez type length  ¢comments
i NAME a3 STRG 10 customer’s name
‘ i BALANCE 9 INTG 11 current balance
LOAN 14 INTG 11 amount of loan

Assume also: ACCOUNT is sorted on NAME and LOAN, &ont._ainé 6 tuples and is

'st.ored in fcrel 7. Let sortlist be BALANCE and NAME. Let the tuples of ACCOUNT be as follows:

: NAME LOAN BALANCE

e 0 /
. andrew 8800 90 )
- - charles 470 330 ‘(Q.,
] . left 2350 500
Jerome 0 . =50
mark 100 800
steve 1500 =700

Let us consider the case where the allas, of Index 19, is not currently residing in

RAM but will be stored in icrel 5.

Relation Table

Index Name Tsize Ntuples Arity Domalins®
3 ' _NULL o] 0 8]
13 ACCOUN'}‘ 32 6 3. NAME LOAN BALANCE
b 10 $13#0433 32 8 3 NAME LOAN BALANCE

The name $13#9+33 contalns the following information: 13, the index of the rela-
’ f
tion of which it s an alias; 9 and 33, index of the domalns onwhich the alias Is sorted, that is BAL-

<

ANCE (9) and then NAME (33) within BALANCE:

ACCOUNT, of Index 13, Is found in icrel 7:

tuple # | address
"‘ 0 27168 andrew  0000008800000000000090
1 27201 charles 0000000047000000000330
3 27234 jefl 0000000235000000000500
3 27287 jerome 00000000000-00000000560
4 27300 mark 0000000010000000000800
5 27333 steve 000000015600-0000000700 .

A




@

v

pointers Iptr and kptr have been set.

‘

r

il ’ » ¢ N '
After step ( 4), the extracted keys are in'lcrel 5. The -

tuple # | ptrs.lptr | ptrs.kptr
0 27168 25120
1 27201 25142
2 ‘27234 25164
X 3 27267 25186
- 4 27300 25208
5 27333 .| 25230

}

The con?cnt,s of lerel 5 is:
i

tuple # gaddress
. 0 i 25120 | 00000000090andre

1 25142 00000000330charles
2 25164 00000000500]efl

T3 25186 -9990000948jerome
4 25208 00000000800mark
5 25230 -90009092909steve

e

After step ( 8), we would have:

)

tuple # { ptrs.lptr | ptrs.kptr
0 27333 25230
1 27287 - 25186
2 27168 25120
3 27201 25142
4 27234 25164
h 5 27300 25208

This permutation of the lines of icrel 5 yields the keys,

and hence the tuples, in order.

old tuple # { address
5 25230 | -0909999200steve
3 25186 | -9909999949)erome
0 25120 | 00000000080andre
1 25142 00000000330charles
° 2 25164 | 00000000500jefl
4 25208 00000000800mark
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After step ( 7) the relation is sorted as required:

tuple # | address ¥
o 25120 | steve 00000001 500-0000000700
1 25142 | jerome | 00000000000-0000000050
2 25164 | andrew | 0000008800000000000090
3 25186 | charles | 0000000047000000000330
4 25208 | jefl 000000023 5000000000500
5 - 26230 | mark 000000001 0000000000800
. .
\ ¥ ,
]
Y
* ) ‘ i -
v .
.)
1 * ’ ¥
y A
v t
.
Y )
bY
-~ 1 )
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¢) PARSER / CODE GENERATOR
The statements entered by the user fall into two broad categories: domain
definition and executable statement (strictly speaking, view statements constitute a third one, but

o

they differ only ~'ightly from the latter). For each statement 6r the first category,’ relix builds an ex-
pression tree in 0dom_tz‘lble (see escample below). For a statement of cheﬁ second, {t generates code. -
When compiling, it s generally easier to produce intermediate code, as oppae®d to rr:nchlne or as-
sembly code. Postfix code i such an lnte;medlate code. It Is characterized by the operator appear-
ing after all of its operands in an expression. For example, . %

. A+ B=xC(Infix)isread AB C;-%-(posmx) o ‘

This code is useful because a stack may be used to evaluate it. Hence, the relix

interpreter is a stack-based machine. In order to generate such code, the relix parser needs to store

the operands temporarily. ) ‘ .
OVERVIEW ) ‘ R
file wit.l:\descrlpnlon of tokens —> lex —> tokehizer (lex.yy.c) '
2 \ .. b ﬂ'
file with grammar rules | ) T . R
file with actions { ~> yacc —>> y.tab.c (parsing tables) .
file lex.yy.c { ) ) S
/ , ‘ - o

a

y.tab.c => cc =>> a.out (parser) . ;

In our “case the actions are grouped in a single C-function, named the

semantic_analyser. This function comprises many small blocks of code. Whenever it is ‘lnvoked. ex-"

: /3 .
actly one block is executed. Hence this function Is a mere big switch statement. Lex is 8 UNIX pro-
. ’ . ' ]
gram to generate a lexicalanalyser [LESK75). ¢ ) o
. % K c_.
- - . .
- PR 4
HOW TO USE YACC' R {
‘ 4 P Y

s )

- With an edjvor, say vi, create or modify a file (say’sou:‘cc.y)'that. coritains (see éx- %

H

° I >
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ample included):

~-description of symbolic tokens v

-speclﬂcati‘on of assoclativity rules for non unary operato;'s
-specification of precedence among operators

-complete set of grammar rules, complete in the sense that

- all non-terminals are defined )

-calls to user’s routines which perform semantic analysis, R
[N

! -

« type checking and code generation
|
- 4
In general, we would enter the following UNIX commands in order to produce a

parser:

yacce source.y creates a flle named y.tab.c
cc y.tab.c " a.out that is executable .

However, it Is more convenient to use the UNIX make facility and simply enter:

[y

make (which executes the list of commands in Makefile)

In order to perform its various tasks, the parser use the following data structures:

name type -
memory array of Integers  storage for generated code
WORD integer points Into memory one
lodhtion after the last
o ¢ filled -
operator_stack . ?M{Je below)

rd_stack ) - temporary storage for
) : domain or relation indices

The operator_stack is used to store the fligs indicating that a project has been
seen or the indexes of the domains on which select operations are to be performed. Note that
operator_stack and rd_stack are both of type integer_stack. No operations are gpnned on memory

or WORD, its associated-cursor; access {s performed directly, by array {ndexing
name type .
domain_list_stack array of index_list

_An occurrence of the type index_list is' a linked lst of records. Each record,
' 1

of




«

called an index_element, has two flelds:

index integer domain or relation indexes
next pq(pter link to next index_element

The header node contains the number of other elements in the list. Construction

or modification of lndex_llst instances is done through function calls (unless otherwise specified,

parameters are linked lists):

—build_Jist( I)

type: array.of integers
action: from I build an index_list
return: pointer to the head of the new index_list

cat_list( I_1, I_2) )
type: array of integers
action:  LIST 1== build_list( I_1); LIST_2= bulld_list( I_2)
removing header node , append LIST_2 to LIST_1;
update header node of LIST__1
return: LIST_1

copy._index_list( LIST) .
action:  traverse and copy the index_list pointed to by LIST
return;  pointer to the head of the new index_list

index_list_allocate()
return: a new index_element record
(its index and next flelds set to NULL)

index_list_append( LIST, INDEX)
actlon: add an index_element, its index fleld set to INDEX,
to the end of LIST (duplicates not allowed) .

index_list_change( LIST, INDEX_1, INDEX_2)
type: integer
action: In LIST replace INDEX_1 by INDEX_2

index_list_equal( LIST_1, LIST_2)
return: TRUE iff these two lists are fdentical: any given
index fleld value appearing in one list must appear
in the other list; moreover, index fleld values

must appear In the same order in both lists ' ' o -

index_list_free( LIST), '
action:  collect storage pointed to by LIST for latter use

\l"
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lndex_ua_membeil( LIST, INDEX)
0 _ return: TRUE iff INDEX is a member of LIST

index_list_prefix( LIST_t, LIST_2)
return: TRUE {ff LIST_11s a prefix of LIST_2 -

tndex_list_prepend( LIST, INDEX)
action: add &k index_element, its lndex ﬂeld set to INDEX, -
to the front of LIST ' - 7

nocheck_index_list_append( LIST, INDEX)
action: add an index_element, its index field set to INDEX,
to the end of LIST (do not eliminate duplicates)

pop_index_list() : .
action: -pop the run time stack into NDOM which then

contains the number of domz{lns making up
a domalin list; . ’ "
-pop the run time stack NDOM, tima and build an

-7 index_list using Index_list_prepend (so that the ! -
- order, reversed by stacking process, is restored) .

return:  pointer to the head of the thus built index_list

remove_from_{ndex_list( LIST, INDEX_1):
. action: find and remove the node with . . .
index fleld value equal to INDEX_1 )

trim_first_list_if langer{ LIST_A, LIST_B)
action:  If LIST_A. Is-longer than LIST_B remove enough
v trailing nodes from the former so that they have
the same number of elements -

' 4

? The stacks comprise the fields given below. Standard stack routines (push, pop,
top and is_empty) are supplied.
integer_stack
* . element " integer  flag or domain or relation index )
R . TOP " polnts to the last filled entry
\-\\ 0 ) _ of integer_stack  *
=~ < — domaln_list_stack ’ .
™~ Selement pointer  to linked list of Integers,
- . . TOP integer points to the last filled entry ¢ ' .

of domain_list_stack . .




4

AL

SAMPLE GRAMMAR (as a yacc source)

%( .
s#include <stdlo.h> /* system library =/
#include <math.h> ' /# system library */

#include "lc.h” /# All the defines =/
ginclude “lIs.h" /* The structures. =/
finclude “le.h” /% The externals.
$finclude ~l.h" /* The Lex externs */
%}

%token ASSIGN IDENTIFIER LET BE RED OF IN
%left i

%len -.v l/t l%l
%nonassoc 7.
%start program
%%

program:

(1) ™~  statement

{ semantic_analyser{ PROG_1); return( TRUE);}

-
o

statement: . ,
(2) - definition_statement *;’
(3) | executable_statement *;’
dennlclon_ptate;nenc: ) ’
( 48)- LET IDENTIFIER
‘ {senantic_analyser( LET);}
( 4b) BE domaln_expression .

{semantic_analyser( BE);}
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domain_expression: .
(5) domain_expression *'/’ domain_expression
< {semantic_analyser{ DIVIDE_HORIZONTAL);}
|

(8) RED '+’ OF domaln_exprésslon

{semantic_analyser( RED_PLUS);}

(7) *(’ domain_expression ')’
(8) | domain_id
; ~ “
domaln_id:
(9) IDENTIFIER ) 1 .

{semantic_analyser( DOMAIN_ID);}

.
’

domain_list:
(10) domain_list *,’ Ii)ENTIFIER
" {semantic_analyser( DOMAIN_LIST);}
(11) | IDENTIFIER El
{semantic_analyser( DOMAIN_LIST);}
executable_statement:
(12) , relation_id_left ASSIGf\I relational_expression.
{semantic_analyser( ASSIGN);}
relat.lon_ld_lert.:.,‘ ‘
(13) IDENTIFIER ;
{semantic_analyser{ RELATION_ID_LEFT);}

.

vy



relacl(ona.l_expresslon: .
( 14a) project_list wh;re_clause IN
{semantic_analyser( IN);}
( 14b) re_lanional_expresalon .
{semantic_analyser( PRC;JECT):}\) .
(15) IDENTIFIER ‘
{semantic_analyser{ RELATION_ID_RIGHT);}
project_list: q - '
( 18) /* null project =/
(173) T
{semantic_analyser( PRQJECT_ON);}
{ 17b) do;naln_ox;tlon ) '
~{semantic_analyser({ PROJECT_OFF);}

.
»

where_clause:
(18) /* null select s/

I ) '\
( 19a) WHERE C

{semantic_analyserl WHERE); }

( 19b) domaln_e_xpress’lon

domain_option: ’
( 20) /% empty »/

(21), domain_list



Assume that the database TEST is in the following state (from now on, thé attri-

‘butes Length and Type need not be always mentioned): '

_ Domaln Table: TEST o . - ¢
Index Name TLength  Actual  Type
"0 dom_name 20 T STRG

1 rel_name 20 T STRG
2 length 11 T, INTG N .
3 type 11 T INTG
4 tuple_size 11 T INTG
5 n“t.uples 11 T INTG®
8 count 11 T INTG
7 dom_pos 11 T INTG
8 sort_rank 11 T INTG
o 3 1 T BOOL |
10 X 11 T INTG o

} 11 ¢ 12 T STRG

) 12 v 11 T STRG
13 a 11 T INTG - , :
14 b 11 T INTG

Relation Table: TEST
Index ., Name Tsize  Ntuples Arity Domalns +
. 3 _NULL 0 ] 0 , i s
4 a 35 10 4 cvXs
] b - 45 17 5 abvxz

and that we enter the following domain definition:

letdbe(red +ofa)/b;
the actlons triggered by the parser and performed by the semantic analyser are indicated belovy. We

. use '1" to indicate the current token looked at by the parser.




1) letc td rule ( 4a) .

case LET: .
-get index of d In dom_tapl& (insert 1t If new): 15

-push index on rd_stack \ﬁ\
rd_stack

'

| 15 [ [ |
1
TOP

2) letdbe(red +off a rule ( 9)
case DOMAIN_ID:
-get Index of a: 13

;push index on rd_stack

rd_stack

g s 138 1]

T
TOP

—~

3) letdbe(red +ofat) rule ( 8)

case RED_PLUS:

-pop rd_stack into D




-check that dom_type( D = 13) = DT_INTEGER _

-make a descriptive name thus:
first operand, °[’, operator code, ’}’, second operand

result_dom== update_dorh_table( left_dom, code, NEGATIVE);

-insert it in dom_table and initialize appropriate entries

7

initialize_dom_table_entry( result_dom, length, type,
left_dom, NEGATIVE, code);

where result_dom= 16

length= INTG_LEN '

type= DT_INTEGER .
left_dom=— 13
! N
code= RED_PLUS
Domain Table: TEST
Index Name Actual Opndl  Opnd2 Operator
13 a T : .
14 b T
, 18 d F
16 13 [600] F 13 - 600

4
opserve:

-800 is the value of the constant RED_PLUS
-second operand has been left blank

-(temporary) default valyes have been assumed for length,

actual and type of d ,
-push on rd_stack the index of inserted domain: 16 N
;'d_nuk o
{15 | 18 | | -
1
TOP

4) let.dbe(red+ofa1‘)\ r,ule(“l)

. ~hothing to do




"i8) leiid be (red +ofa)/1b

case D(_)MAIN_ID:

-get index of b: 14

~-push index on rd_stack

{ 15 | 18 |

8) letdbe(red +ofa)/bt;

case DIVIDE_HORIZONTAL:

-pop rd_stack into right_dom

-pop rd_stack into left_dom

{ 15 [ 186 |14 |

~check that dom_type( right_dom = 14)

and dom_type( left_dom == 16) are both numeric

-make a descriptive name, insert it in dom_table and
initialize appropriate entries in dom_table to get

Index

13
14
15
16

17

Domain Table: TES’I: .

c.d

gt e

16 [ 510 14



"
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1

. observe that 510 is the value of
o * the constatit DIVIDE_HORIZONTAL ”

a . -push on rd_stack the index of inserted domain

Pd
rd_stack .

1s. ] 17 | 14 |

; i
.+ TOP

-

7) letdbe (red.+ofa)/ b-T ; rule ( 4b)
‘ case BE:
-pop rd_stack into I N ' s
-pop rd_stack into J

’ .rd_stack

= rF g ‘ T o
” TOP
/
=if domajin I = 15 is redeclared
‘-verlry that {ts type is not changed
-if its type Is STRG
- -verify that its length Is not changed
-set type of I to type of J == 17
-set length of I to léhgth of J
——— " -set operator of I to RENAME (2030) '
A ' ‘ §
} Domain Table: TEST |
\
I \
; Index Name Actual Opndl Opnd2 Operator
- { 13 a T
—~ 14 b T '
15 d F 17 M0
16 13 [ 600 ] F 13 600
17 16 [ 510 ] 14 F 186 14 510
v observe:
b o -length and type of d have been set properly
- L



-

#

8) letdbe(red+ofa)/bt;

=nothing to do

.

9) letdbe(red+ofa)/bt;

case PROG_1:

-generate HALT (0)

-ret

z <'[‘pb'd]lnb;

we consider all flags initially FALSE and all stacks empty.

1) 21 <-

TRUE

rule ( 2)

Tule ( 1)
memory
’ pu—
l o |l 171
t )
WORD

!

Our second example is a relational assignment

rule ( 13)

case RELATION_ID_LEFT:

-find Index of z In rel_table (insert it if new): 6

-generate PUSH_REL (2005) 6

-

-

memory

{ 2005_ |

e |

WORD

\

.

o

&
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08

2) 3 Y<- Tt /rule( 17a)

case PROJECT_ON:

<

-set project_flag to TRUE

-push on domain_list_stack a header node

domaln_list_stack

L1 :
1
TOP

/

3) 3<-[t1a rule ( 11)

case DOMAIN_LIST:
-get index of a in.dom_table: 13

-If virtual, subtract from index 2 * MAX_DOM (70)

-append it to the list on TOP of domaln_lizt._sca;:k /

domain_list_stack

TOP

n
a



- 4) z <-{a, TD rule ( 10)

‘ case DOMAIN_LIST:
=same 88 pr:vious —-

domain_list_stack

- T
2
d
v T )
l : TOP
{
b observe that the counter in the header node is incremented

each time a new node is appended

8) s <-[a,b,td rule ( 10)

* case DOMAIN_LIST:

" -same again; note that the index is negative since
E d is virtual
’ . domain_list_stack

13| — |14} — -126

oot

© 3 v

t .
TOP

; e):qk-[a.b.(}dn rule ( 21)

R -nothing to do

7) s <-[ab,d1] rule ( 17b) ?
. case PROJECT OFF:

-push TRUE on operator_stack
-,

4

o
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8)z<-[a.b,d]1‘li1 rule ( 18)
~nothing to do '
9) z2<-[a,b,d tin rule(14a)
. case IN':
-If select_flag = TRUE ¢
-pop rd_stack into select_dom ’ )
else
-set select_dom to NEGATIVE *

-push select_dom = NEGATIVE on operator_stack

-get ;;roject_ﬂag to FALSE

10) z<-{a,bdlinthb rule ( 15) -
case RELATION_ID_RIGHT:
-get index of b in rel_table: §

-push index on rd_stack

rd_stack
. s [ ]
o . t ’
TOP
11) z <-[a,b,d]inb {; rule (14b)

case PROJECT:
-pop rd_stack into rel_id
-if rel_id = 5 is not NEGATIVE
(it would have been, had we had a relational expression

instead of b, a relation name)

~generate PUSH_REL rel_id

A




g t
W TOP

-pop ;perabor _stack Into select_dom
-pop operator_stack into project_flag
(now select_dom = NEGATIVE and project_flag %= TRUE)
. -If select_dom == NEGATIVE

-nothing to do (otherwise, we would generate \
4 - code for SELECT)
ay)
-if project_flag == TRUE
{generate code for PROJECT; otherwise,. nothing to do)

“‘/-ror each dom_ld in the list at domaln_list_stack. TOP
-ir dom_id is negative

_ -add to it 2 * MAX_DOM

-set a flag, say virtual_on .

-generate PUSH_DOM dom_id. PUSH_DOM [2000)

-generate PUSH (2010) value of header x;ode -
at domain_Jist_stack. TOP

-if virtual_on is set
-generate ACTUALIZE (2025)
-réset. virtual_on
-for each dom_i{d in the list at domai_n—_llst_s&ack. TOP
-generaté PUSH_DOM dom_id ‘
_ «free the list at domain_ljst_stack. "I‘OP; pop the stack

-generate PROJECT (2020) 4

-push NEGATIVE on rd_stack




12) z <-[a,b,dlinb {;

- =11

case ASSIGN:

;+  -pop rd_stack Into rel_{d

-rel_id is NEGATIVE

. -nothing to do

8

1.
TOP

rule ( 12)

-generate ASSIGN (287) _

13) 2 <-[a,b,dlinb t;

K

-nothing to do

14) 2 <-{a,b,dinb T;

.

- case PROG_1:
~—— -generate HALT

+ -return TRUE

~

rule ( 3)

rule (- 1)

.~

0 & « -
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' 7]
, memory ’

o 2008 6 | 2008 5 | 2000 13
2000 14 2000 17 2025 2010

3 2000 13 2000 14 2000

17 2010 3 2020
T
d WORD
rd_stack




13

2010

2000

.



The code seems more meaningfui when symbolic constants and names, as op-

posed to indices in dom_table or rel_table, are used

>

OPERAND < .

LOCATION OPERATION )
0: PUSH_REL d C
2: PUSH_REL b
4 PUSH_DOM a Y
6: PUSH_DOM b
8: PUSH_DOM d - ’
"
10: PUSH 3
12: ACTUALIZE |
13: PU§H_DOM a ,
15: PUSH_DOM b
17: PUSH_DOM d
19: PUSH 3
21: PROJECT \/. .
22: ASSIGN s
23: HALT . ’




~
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f) INTERPRETER

The interpreter reads the code generated by the parser and executes it, emulating

- v

a standard computer, It operates on the memory arrayf an instruction counter: relix_IC (an Index in
the memory array), the relation registers (icrel), the data dictionary and a run time stack (STACK).

) Only the last one is new. It is defined as a record comprising the following fields:

name type
TOP, max integer
el array of integers

The classical stack operations are defined thus (S points to an occurrence of

S'I/‘.}CK. the other argument, when needed, is an integer):

5

¢

stk_init{ S, num_els)
action: allocate an array of num_els integers;
set max to num_els and TOP to NEGATIVE;

pop( S) .
return: the top element unless TOP is NEGATIVE;

decrement TOP

push( S, element) N
action:  check if the stack is full ( TOP = max); W
iIf not, increment TOP and insert element in N
that new position

a

| The Interpreter instruction set, internally a collection of integers,/comprises the
4

primitives given by the table below. The operators in the last five rows are referr.ed to as the

-

JOIN ‘s. ; ) /

ACTUALIZE  ASSIGN ASSIGN_OPTION DELR
HALT - INCREMENT INIT_VIEW s __—
PRINT_R PROJECT PUSH PUSH_DOM -
PUSH_REL  RENAME RENAME_INCREMENT - SELECT
SHOW_D SHOW_R e
DLJOIN  DR_JOIN EQ_IOIN [ GE_JOIN L
GT_JOIN IE_JOIN I_COMP-, - I_JOIN ‘
) LE_JOIN LT_JOIN L_jolN' . . NEQ_JOIN
' NGE_JOIN NGT_JOIN  NLE(JOIN NLT_JOIN
. * R_JOIN S_JOIN U_JON
//

e | \



-108-

=
1

The interpreter

-

~fetches the instruction pointed to by reltx_IC,
which Is incremented

-decodes the Instruction . .
-if necessary

~fetches operands from memory or

-pops them from the STACK
-invokes subroutines to perform operations on relations
-pushes the result on the STACK when appropriate
3 Instructions are of variable length and thus the decoding / rét.chlnz Bha.ses over-
lap. We group the instructions by the number of operands that they pop from or push on the stack.
In order to illustrate how each primitive works we consider various sbateme;t.s of the relational
algebra. We show the contents of the memory array as fllled in by the parser / code generator. We
show also the contents of STACK before'and after the execution of ‘t.he operation. TOT and

GRADE are the virtual domains deflned in chapter III.

Domain Table: SCHOOL

Index Name Length Actual Type
9 NAME - 26 T STRG
10 STUID 7 T STRG .
12 Al =1 T INTG
13 A2 11 T INTG
16 TOT 11 F INTG
17 GRADE 2 F STRG
36 TOT_305 11 T INTG
37 GRADE_305 2 T STRG
Relation Table: SCHOOL )
Index Name Tsize Ntuples Arity Dorgglns
4  MARKS_ 120 79 10 7 NAME STUID SEC
; Al MID FIN
13 GRADE_305_R 39 7 3 N, TOT_308
S0 GRADE_305




o

s

-

GRADE_420_R <- [ NAME, TOT, GRADE] in MARKS_-420; .

0: PUSH_REL GRADE_420_R
2: PUSH_REL  MARKS_420 N
4 PUSH_DOM NAME
6: PUSH_DOM TOT

: 8: PUSH_DOM GRADE

10: PUSH 3

12° ACTUALIZE

13: PUSH_DOM NAME

15: PUSH_DOM TOT

17: PUSH_DOM GRADE

19: PUSH 3 ,

PROJECT

ASSIGN ’ <
HALT “\
)

212

PUSH, PUéﬁ:_DOM and PUSH_REL -
pop none, push 1 (fetching from memory) ' (
relix IC— 0: PUSH_REL GRADE_420_R | ' - 3 '
2: PUSH_REL MARKS_420

(left corresponds to bottom of STACK) ' . ;

T - /
TOP , ,

-push a constant on the STACK /
(respectively a domain, relation index)
I

-operangd. is in the next location of the memory array

The parser determines from the grammar rule recognized whether the current

operand {s a scalar or an index in the domain or relation table. Similarly, the subroutines of the in-
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terpreter take as arguments a combination of scalars and indices. They are built to interpret
correctly the Integers with which they are fed. In particular, we do not need three different PUSH

primitives. However, the code is more readable this way. Assume that 8 s the index of,

0

v

GRADE_420_R in rel_table.

) 0: PUSH_REL GRADE_420_R ‘

relix_IC — 2: PUSH_REL MARKS_420

-

1 — !
TOP

<

PUSH and PUSH_DOM work similarly.

ACTUALIZE and PROJECT
pop variable number of operands, push 1

relix_IC — 12 ACTUALIZE

13: PUSH_DOM NAME ( .
‘2 " le |4 fo l1e {17 | 3 |
X 1 ) .

TOP ’

the STACK contains aﬁdomaln list and a relation index:
3 is the number of domains
9, 16 and 17 are the domaln indices 3
4 is the relation Index

-pop domain list into Dlist . ,
-pop relation index into R .
-S <- list_actualize( Dlist, R) ‘ .
-push S on STACK

The functions, like list_actualize, that are called by the interpreter to implement

different operations of the relational algebra will be explained in chapter VI. "Assume that 7 is the

-

index of the relation resulting from the actualizatvion of 9, 16 and 17 in 4.




el

12: ACTUALIZE

relix IC — 13: PUSH_DOM NAME

s | 7|
1
TOP
=5

PROJECT works similarly with the difference that project( Dlist, R) is called.

Assume that 8. Is the index of the relation resulting when we project relation 7 on domains 9, 18

and 17.

ASSIGN, ASSIGN_OPTION, INIT_VIEW, INCREMENT and IS

< pop 2 , push none

relix_IC — 22: ASSIGN

23: HALT

S

the STACK contains two relation indexes: 8 and 8

-pop relation indexes into S and R
-assign( R, S), that is Sto R

a

22: ASSIGN
)
~  relix_IC — 23: HALT
. L
w 1
TOP

° The -Gthers work sfmilarly. ASSIGN_OPTION, INIT_VIEW and IS invoke also

assign( R, S). INCREMENT invokes elther assign( R, S) or increment( R, S).

- T
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HALT, DEL_R, PRINT_R, SHOW_D and SHOW_R

' pop none, push none

dr!! MARICS_420

relix IC—- 0: DEL_R MARKS_420

——

3: HALT

-invoke \
rel_table_delete( 4) '

-the others invoke respectively
~print_one_rel( R)
: » -show_dom_tablé( D)
-show_rel_table( R)

0: DEL_R 'MARKS_420

N W relix_IC — 3: HALT

-no action Is performed; -
control is returned to the main driving routine

’ ~except in the case of HALT, the operand is in the next |
location of the memory array

S —

|
|
| -the STACK is not modified

SELECT
. pop 2,push 1
GOOD <- where TOT >= 75 In GRADE_420_R; '
. 6: PUSH_REL GOOD >
-~ 2: PUSH_REL GRADE_420_R -

4: PUSH_DOM 16{ 332 )20

6: SELECT :
7: ASSIGN '

—_— Ny o

8: HALT .

il -~
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relix IC — 6: SELECT

%‘ > 7.  ASSIGN ) .

o

to e | 48 | ]

. ' 1 L.
Ty TOP o
s P
; Domain Table: SCHOOL
- . Index Name Actual Opndl Opnd2 Operator
16 TOT T
20 $75 F 258
48 18{ 332 ]20 F 16 T20 332 .

the STACK contains a domain and a relation index:
48 {s the domaln and 6 the relation index

-pop domain index into D

-pop relation index into R

-S <-select{ D, R)

-push S on STACK :\\

Assunie that 10 Is the index of the relation resulting from the select operation.

v

6: SELECT . .

R ' ! -

, RENAME, RENAME_INCREMENT o

pop variable number of operands , pusix none
TO_BE_POSTED { STUID, ASSIGNMENT_1, ASSIGNMENT_2
<- STUID, Al1,A2] MARKS_420;

Relation Table: SCHOOL , s

! Index Name Tsize Ntuples Arity Domalns
9 GOOD 39 6 3 NAME TOT GRADE '
11 TO_BE_POSTED 29 10 3 STUID
- i ASSIGNMENT.1  ° -
P " ASSIGNMENT_2
18 GRADE_305_R 39 7 3 NAME TOT_305

“'_& | ” - P4 GRADE_306



&

Domain Table: SCHOOL -

Index Name . Length  Actual Type °
9 NAME 26 T STRG
10 STUID 7 T STRG
12 Al " 11 T INTG
13 A2 11 T INTG
16 TOT 11 T INTG
17 GRADE 2 T STRG
49 ASSIGNMENT_1 11 T INTG
50 ASSIGNMENT_2 11 T II:JTG
0 PUSH_REL TO_BE_POSTED
2: PUSH_DOM STUID v -
4; PUSH_DOM ASSIGINMENT_1
8: PUSH_DOM  ASSIGNMENT.2
8: PUSH 3
100 PUSH_REL MARKS_420
12: PUSH_DOM STUID
14: PUSH_DOM Al .
16: PUSH_DOM A2 :
18: PUSH 3 .
20 RENAME
21: HALT o,
relix_IC — 20: ! RENAME
0
o 21: HALT v

\
3

I11|10[49|50|‘3|4|10|12]13I‘5‘"*‘73 | .
= o >
. TOP

)




¥

the STACK contalgs two domain lists-and two relation indexes:
=10, 12 and 13 constitute the first domain list
=10, 49 " 850 the second one
-4 and 11 are the relation indexes

-pop domain list into DSlist
=pop relation index into S
~pop domain list into DRIist
-pop relatfon index into R
-rename_increment( R, DRIist, S, DSlist, opcode)
(where opcode is either RENAME or RENA&AE_INCREMENT)

- 20: RENAME

4

relix_IC - 21: HALT

: i
TOP

JOIN
)

pop variable number of operands , push 1V

o
GRADE_420_305 <- GRADE_420_R [ NAME ljoin NAME ] GRADI’B_:!OS_R: ,

-

.
~

0: PUSH_REL “ GRADE_420_305

an———

h . 2: PUSH_REL GRADE_420_R

4 PUSHDOM NAME

8: PUSH 1 s
. 8 PUSHREL GRADE_305_.R SRR
10: PUSHDOM NAME
12: - PUSH 1 )
14 J_JOIN
h 158: ASSIGN : " I
16: HALT
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relix_IC — 14 I_JOIN

A

35 ASSIGN ' \
[14 {6 [ o |1 s Jo [ 1 ] S,
“~ . f :
TOP . °
the STACK contalins two domaln lists and two relation indexes: v

-both domain llgt.s comprise a single domain: 9
-13 and 6 are the relation indexes

-pop domaln list into DSlist

-pop relation index into S

-pop domaln list into DRlist

-pop relation index into R

-T <= mu_join( R, DRIist, DSlist, S, mode)
-push T on STACK

where mode is any member of the family of JOIN“s. The p-join have been implemented and docu-

mented by Ann T. Chong; the o-Join remains to be implemented. Assume that 15 Is the index of

the result of the oin.

14: I_JOIN

relix_IC — 15:  ASSIGN

- 15

] : : e
- TOP
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g) PROGRAMMER ‘S MANUAL
@ How one would go about adding new features to relix? We give here some guide-
lines in the form of two examples. The first details the steps to follow in order to develop redit, a

relational editor. The second one, from the domain algebra, illlustrates how we Implemented the

isknown function.

IMPLEMENTATION OF REDIT

’ 1
- In order to recognize redit, a new token, we add the following rule to 1.1, the lex
source:”
redit {listing( PROGRAM_BUFFER, yytext); return( REDIT);}

and to ly.y, the yacc source, the declaration:

Z%token . REDIT

Suppose we want redit to obey the following syntax and semantic specifications.

syntax:

N

relational_expression::==
) { [ domain-list ] } redit { relational-expression } -
semantic:

-both [ domain-list ], arg-1, and relational-expression, arg-2,
are optional, but they may not be both omitted

-arg-1 specifies the sort order to be used by the editor;
if arg-2 is empty, it also supplies the domains on which
a new relation is to be definéd

" 2

-arg-2 is evaluated to yield a relation, say of index R,
. before invoking the editor; If arg-1is left out i
. ’ ¢ the domain list of R provides the sort order . ;

-the elements of arg-1 must be names, not_expressions .

© [
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We add the following grammar rules to ly.y: /\
relatlona.l_’expression: &
project_list REDIT
{semantic_analyser( REDIT_1);} -
relational_expression_option

{semantic_analyser( REDIT);}

-~ relational_expression_option:

/* empty =/ ,
{semantic_analyser( REDIT_NULL);}
| relational_expression

{semantic_analyser( REDIT_NO_NULL);} &

the rule for project_list has been given in section e. The semantic_analyger must be modified thus:
case REDIT_1:
-if arg-1 is present
-create a new index_list and push it on the stack;
push_domain_list_st ck( index_list_allocate());
case REDIT_NULL:

-push FALSE on operator_stack:
S_PUSH( operator_stack, FALSE);

case REDIT_NO_NULL: -

-push TRUE on operator_stack




case REDIT:

‘ =pop operator_stack into redit_flag

-if redit_flag is FALSE )
~-generate: PUSH_REL NEGATIVE

-pop domain_list_stack into right_ptr: /f\
right_ptr= pop_domalin_list_stack();
; L
-for each domain in the list right_ptr
-check that lr; is a valid domain name
<generate: PUSH_DOM domaln index: A .
generate_code( PUSH_DOM); '
! generate_code( right_ptr-> index);
-generate: REDIT

It remains to add the following code to the procedure interpreter() in lscc.c:

case REDIT:
pop relation id and number of domains from run-time stack: o

domlist_R== pop_index_list(});
R== pop_and_eval_Iif_view( &run_time_stk);
invoke the relational editor:
S== redit( domlist_R, R);
pulh( &run_time_stk, S);
—_ index_list_free( &domlist_R);
break;
The function pop_and_eval_if_view() is explained in chapter VII. The program-

mer must now supply the bady of the function redit() in order to perform the tasks of the editor.

a

function name: redit
arguments: ) -
' . domlist_R: (possibly empty) linked list of domain indices (
R: index (possibly NEGATIVE) of the relation to edit
return: ' N\

S: Index (possibly R) of the resulting relation

o

@ . Let us present, together with the intermediate code generated, a few examples of

el
¥
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relational expressions using redit.

22:

24:

26:

28:

30:

[ FIN, STUID) redit MARKS_420

22: PUSH_REL

24: PUSH_DOM

26: PUSH_D®BM

28: PUSH
30: REDIT
~

MARKS_420
FIN

STUID

redit MARKS_420

'14: PUSH_REL

16: PUSH

18: REDIT

MARKS_ 420

o

[ FIN, STUID) redit

PUSH_REL
PUSH_DOM
PUSH_DOM
PUSH

REDIT

UNKNOWN (NEGATIVE)

FIN
STUD

2

-

"
5



The next one would cause the following error message

&‘ ) . to be printed: domain list and relational expression can not be both €mp-
ty. Q é
. & a <- redit; o | .
) 32: PUSH_REL a B |
34: PUSH_REL UNKNOWN \ "
- ' — \
3e6: PQSH 0. :
| § REDIT T
. ;;— ASSIGN

IMPLEMENTATION OF ISKNOWN_

n.L
y 5
isknown {usting( PROGRAM_BUFFER, yytext);
return( ISKNOWN);} |
Iy.y:

%token ISKNOWN

domaln_expression: ISKNOWN '(* domaln_expression ')’

{semantic_analyser( ISKNOWN);}
Iz.c:
case ISKNOWN:

left_dom== S_POP( rd_stack);

type == DT _BOOLEAN:;

length === BOOL_LEN; )

result_dom= update_dom_table( left_dom, code, NEGATIVE);

initialize_dom_table_entry( result_dom, length, ,
type, left_dom, NEGATIVE, code);

S_PUSH( rd_stack, result_dom);

break;

Q let KNOWIN_ID be isknown( STUID);

lee@vise. in order to implement isknown we modify 111, ly.y and lz.c thus:

«©



would modify dom_table thus:

=

Domain Table: SCHOOL

Index Name » Length Actual - Type Opndl  Operator
10 STUID 7 T STRG
20 KNOWN_ID 1 F BOOL 21 2030
21 10 {271 ] 1 F BOOL 10 271
In is1_dom_op( o) (irdut.c) we replace
return( Is_vertical_op( o) || 0 == RENAME ||
0 === ABS || 0 == NOT || 0 == UNARY_PLUS ||
0 == UNARY_MINUS);
by .
return(  Is_vertical_op( o) || 0 === RENAME || 0 === ISKNOWN || '

3

0 === ABS || 0 === NOT || 0 == UNARY_PLUS ||

o === UNARY_MINUS);

we modify tuple_actualize() (ltact.c)
thus (* indicates additions):

if( 1s1_dom_op( op)){
if( is_vertical_op( op ))
_ evaluate_vertical_dom( posl, 11, op, ptr_R, D, p
else
switch( op )}{
case NOT:

er_l);

LN

case ISKINOWN: }
test for DK and append T or F:
for( § = 0;1 < rel_ntuples( R); i++){
strncpy{ tuple, &lcrel_line( I, 1){ posi), 11);
tuple( 11} =" *; )
streat( icrel_line( I, 1),

A

\

A}

% # # ¥ % # ® »

A4

/

7/

} end of switch »/
"} end of if( is1_dom_op( op)) */

tsknown( dom_type( dom_opndi( D)), tuple)};

In larith.c we add the function Isknown whlcn‘ returns a pointer to a string:

}

y

N
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isknown( type, s)
‘\ input: type is an integer, s a string - . -
return: result of comparing s with DK
(of appropriate type)

s | x DC DK
\ F | F T

switch( type){ \
case DT_BOOLEAN:
( #8 === »DK_BOOL_s)

— return( FALSE_s); (
else °
return{ TRUE_s); F
- similar case statements for the other types.
-
¢ ' § AN



" Ing R. As mentloned tefore, pointers are used slnt\:t\iituauz!nz vertical domains defined through

-122-

, CHAPTER V

DOMAIN AI;GEBRA IMPLEMENTATION
In this chapter, we describe the algorithms to actualize a domain D for each tuple
of a relation R contained in icrel I. The chapter comprises two sections:
a) Extraction of Domaln Values ul
b) Operations on Domain Values ~

a) EXTRACTION OF DOMAIN VALUES
.{ The domain D is defined as a function of some other domains. The rou;,lnes
described in this section locate these other domains in relation R, extract the corresponding values,

invoke the functions described in the next $ection in order to compute the value of D from these

operands and append the so obtained value for D to the appropriate tuples of R In icrel 1.
TUPLE_ACTUALIZE

The procedure actualize, described in the following chapter, calls tuple_actualize.
This one takes three parameters: D, the index of the domain to be actualized; ptr_R, a polnter to

7
the index, R, of the relation In which D ly'tG-be actualized; ptr_I, a pointer to the fcrel, I, contain-

N\,
A

-

equlv, fun or par requires us to invoke our sort proceduie described in the previous chapter.
Tuple_actualize determines whether D is a horizontal or a vertical domain. In the

first case, it performs the work described below. In the second case, it Invokes

2

evaluate_vertical_dom.

tuple_actualize( D, ptr_R, ptr_I)
input: D index of virtual domain
ptr_R pointer to relation index
ptr_I pointer to icrel



1- if D is a horizontal domain

4 a~ constant:
~extract value of constant froh dom_name( D)
. =append to each tuple

. b- unary:
-find position and length of operand domain
-extract value and store it in opndl

-select on dom_operator( D)

(;\f’s’

case NOT:
-append fleld swapping boolean value:
strcat{ LINE, negate_boolean( opnd1));

case UNARY_PLUS or RENAME:
-just copy attribute value:
strcat{ LINE, opndl);

case UNARY_MINUS:
-append negation of operand fleld

case ABS:
-put ‘0’ in first byte of opnd1l
7 -append to tuple

b- binary:
-find position and length of both operand domains
-extract values and store them in opndi and
opnd?2 respectively

3

-select on dom_operator( D)
case EQ, NE, LT, LE, GT or GE:

-compute and append boolean value using the
following functions depending on the type of
the operand domains:

compare_integer() or compare_scr!ng()
[ ]

. case CAT_HORIZONTAL: -
-append to tuple the concatenation of opndl and opnd2

case INTEGER operator:
-compute result using appropriate mncblon,
after conversion to integer: o
opndl to vall, opnd2 to val2:

, case PLUS_HORIZONTAL:
result== add( vall, val2) . ‘ ]

‘ case MINUS_HQRIZONTAL:
a result== subtract( vall, val2) ;

.
| 2N n
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case TIMES_HORIZONTAL:
result== multiply( vall, val2)

case DIVIDE_HORIZONTAL:
result== divide( vall, val2)

: case MODULO_HORIZONTAL:
result== modulo( vall, val2)

case MAX_HORIZONTAL:
result== max( vall, val2)

case MIN_HORIZONTAL:
result== min( vall, val2)

case EXP:
result== power{ vall, val2)

-
-convert result to string and append to typle

case BOOLEAN operator:
-compute and append boouican value:

case AND_HORIZONTAL:
strcat( LINE, and( opnd1, opnd2)

case OR_HORIZONTAL
strcat( LINE, or( opndl opnd")

. c- ternary:
-find position and length of the three operand domains

-extract values and store them in opndl,
opnd2 and opnd3 respectively

-select opndl

case TRUE:
-append opnd2 to tuple

case FQLSE: o
-append opnd3 to tuple

case DC:
-append DC to tuple

case DK:
-append DK to tuplc

-if opnd2 and opnd3 have différent lenzth
pad with blanks . _

N 4



-
i 2- iIf D Is a vertical domain g
: evaluate_vertical_dom( posl, 11, operator,
w ' ptr_R, D, ptr_lI);
&
»
N ) .
" .
N
N , .
. ' .
3
13 . ,
|
L) & o
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EVALUATE_VERTICAL_DOM >

. @
The following, called by tuple_actualize to evaluate a vertical domain D, deter-

, mines through which of red, equiv, fun and par is D defined. It makes sure-that the relation is sort-

. ‘ , 3 O -
ed correctly, as required by equlv, fun or par. It then invokes either reduction, forred and equiv, or

function, for fun or par, to complete the actualization proéess.

v .

evaluate_vértical_dom( posl, 11, operator, ptr_R, D, ptr 1)

»

input: posl and 11 integer position and length
of operand
operat;))r d code of operator “
. e deflning D
D » index in dom_table
ptr_R + pointer to  relation index
ptr_l » fcrel
£
~operator falls in one of the four groups ’ Y
RED_PLUS EQUIV_PLUS ' FUN_PLUS PAR_PLUS
RED_TIMES EQUIV_TIMES FUN_TIMES PAR_TIMES
RED_MAX EQUIV_MAX FUN_MAX PAR_MAX
RED_MIN EQUIV_MIN FUN_MIN PAR_MIN
RED_AND EQUIV_AND FUN_AND PAR_AND
RED_OR: EQUIV_OR FUN_OR PAR_OR ) !
FUN_MINUS PAR_MINUS
. & * FUN_DIVIDE PAR_DIVIDE
i FUN_MODULO PAR_MODULO
. FUN_EXP PAR_EXP ’
FUN_CAT PAR_CAT ‘
' FUN_SUCC PAR_SUCC
FUN_PRED PAR_PRED

v

-if operat.oi" bélpnzs to the first group G
reduction( operator, posi, 11, O, . '
! rel_ntuples( *ptr_R), *ptr_I);

-if operator belongs to the second group
-sort on by_list:
sort( ptr_R, ptr_I, bulld_list( dom_by _list( D));

-determine the strata or equivalence classes
-for each stratum R
reduction( operator, posl, 11, tfirst, tlast, sptr1);

(tfirst== first tuple of stratum,
tlast== last tuple of stratum)

0
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-If operator belongs to the third group
-sort according to the ordering attribute (on order_list)

-apply o
function( operator}/ posl, 11, 0, rel_ntuples( *ptr_R),
ﬂn?t.r_l, domlist, *ptr_R);

-if operator belongs to the {ourth group
-sort to get both the strata and the proper ordering
append order_list to by_list 50 as to get newlist

sort( ptr_R, ptr_I, newlist);
-determine the strata or equlvalexlce classes

-Tor each equivalence class
function( operator, post, 11, tfirst, tlast,
sptr_l, domlist2, »ptr_R);
(tfirst= first tuple of stratum,
tlast== last tuple of stratum)
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reduction( operator. posi, 11, t1, tap

o N

L=
S -
f K} o
! 1
. -
- o =
’ -~
. L
>
' 5
1~ o
-
- ¢
- Ir’\\’ 2
~ It ¢
o= o
- A
° o Q& &r/
\ r fipY
o ‘oo
P .
e b
o
b ! ;
Q - Eo
-

X . input: poslandll integer “bosition and. length
. , of operand
: joperator - N code of operator deﬂningD o
t1 and t2 .. first’ anddast, tuple * ° 9
of sbramm
I J' . " mdex of ferel o v P
S
o . -initialize accumulabor. according to 6pe@k}pn performed,
v ‘with appropriate nuil value or Identity elem@nﬁg k )
W [I ) Sy
o o N {
1By bt ) - f
" case RED_PLUS: accum= Q; - , Ca)) o%,
v - 2
N e RO
case RED_TIMES: accum==1%; :, (, AN~
’K\ \’\V - /‘} J\_,oc\
. case RED_MAX: accum== - MAXINT;> . T (S~ \O
y V)
‘ C A -
case RED_MIN: accum== MAXINT; t- /{\; )
case RED_AND: accum= TRUE;
case RED_OR: accum= FALSE; o
-for each tuple
- -extract opnd
-compute accum== accum operator opnd
v -append accum to each tuple
FUNCTION
function( operator, pos1, 11, t1, t2, I, domlist, R)
input: posl andll integer position and length
of operand
N qperator " code of operator deflning D
‘\ t1 and 2 " first and last tuple
3} I of stratum
g . R andl " index of relation and icrel
D " domain index
. domlist list linked list of domain indices

-any operator except PRED and SUCC

-initialize accumulator, according to operation performed,
with appropriate null value or identity element

D 5
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o

‘ : ~for each stratum ;
(all tuples with same value for the by attributes)

-from first tuple to last (backward if operator is EXP)
-if current tuple differ from previous
\ in ordering attribute S .

-extract opnd

s

-compute accum== opnd cperator accum ,
-append accum to current tuple J T
‘ -operator PRED or SUCC . -
-for each stratum
-from first tuple to last

-if current tuple differ from previous
in ordering attribute

-SUCC
-append value to previous from current
(first stratum follows the last one)

-PRED ‘ .
-append value from previous to current
(last stratum precedes the first one)

- |
"
o
PR Y o N R . e . . ) B o

0
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b) OPERATIONS ON DOMAIN VALUES

This section contains the functions which perform «the operations on the values
extracted from the relation R in which the domain D s actualized. They return the value of D in
R. These functions help isolating the tmplementation of the domaln algebra rrom- the rest of relix.

‘We handle here the operations on the null values DC and DK. We follow Lh; ap-

9

proach described in [MERRS84a]. Remember that DC represents Irrelevant information and means
“don‘t care”. DK describes missing data and means *‘don "t know".

In this implemencamgn/ each domain type is a set contalning DC and DK

represented thus:

DC DK
g
boolean | #h ! {
v ®

string’; # !

) integer -2147418111 -2147418112

N

-

These values have been chosen so that they are ordered the same way for all
domalp types: DK smaller than DC which Is smaller than all other values in the domain type. The
‘DC null value is taken to behave as a special value with properties similar to those™of non-null
values. With respect to operators the behavior of DC is best explained by the following tables. In a
nutshell: it acts like an identity element for operations like +, x, max and min. In other words, it is
ignored. The comparison x == DC (respectively x < DC) Ihas value true (respectively false) If x is
DC a;xd false (respectively DC) if x is non-null.

The DK null vaiue is more t,roubles;me. éoncepbually. lt.f is a variable ranging
over ail the non-null values of a domain type. That is, iIf an ex;;resslon involves DIC then all the
non-null values of the same domain type are substituted for DK. If the result is always the same,
this is the value of the expression. Otherwise, the expression has value DIK. However, having

chosen a speclal value from the domain type to represent it, we approximate the rule just described
i

with three-valued logic. DK is seen as a third logical value, the other two being true and false, that




a logical expression may take on. Any comparison between a non-null an'd DK has value DK. The
c tables below indicate how DK behave as an operémd or' the logical operators: and, or, negation. TEe

result of any arithmetic operation on DK Is DK. .
Noglce that this approach contains some inconsistencles: the tautology
((a < DK)or ( 8 >=DK)) evaluates to DI; similar problem occurs if DK is replaced by DC in
the preceding example. Our simplistic approach in handling DC and DK has the advantage of (sup-
plying the users with a way to experiment with null values. Thus, feedBack from those may indi-
cate better avenues to explore. Due to the high modularity ‘of this implementation, changes need to

i
be made only to some of the functions below in order w probe a dlﬁe‘rent. approach.

\ While executing the following functions, various errors may occur: arithmetic
overflow (absolute value of result is not smaller than MAXINT), division by zero, invalid operand
(for example, a boolean argument Is none of true, false, DC or DK) and so on. In such a case, we

signal an error of class SEVERE (see chapter VIII) and return DK of the appropriate domain type.

In each table below, x Is anything but DC or DK. .

< add( a, b) \
input: 3, b integers i \
“return: sumofaandb R

oy
.

a\ b x DC DK :

X a+b a DK .

DC b DC | DK . ' .

DK DK DK | DK

; multiply( a, b)
input: 8, b integers
return: product of a and b

a\ b x - DC DK :
X avb a DK
DC b DC DK

DK DK DK | DK




0

subtract( a, b)
Input: a, b integers

return: difference of a and b

«132-

- a\b x DC DK
x b | a DK
DC -b DC | DK
DK DK DK DK
divide( a, b)
input: a, b Integers
return: quotient of a by b
a\ b x DC DK
X a/b a DK
DC 1/b | DC DK
DK. | DK | DK |} DK

modulo( a, b)
input: a, b integers

return: remalnder of the dlvision of a by b

a\ b x DC DK
x "l amodb | a DK
DC imodb DC DK
DK ) DK DK DK
negate_integer( a)
input:  a integer '
return: product of a by -1
' a x DC DK
-a DC DK




max( a, b)
input: s, b integers .
return: biggest of aand b

a\ b 4 DC DK
x a max p a DK
DC b DC DK
¢ ) DK DK DK DK
min( a, b)
input: a, b integers
return: smallest of aand b
a\b X DC DK
x aminb a 'DK
DC b DC DK
DK DK DK DK
absolute( a)
fnput: a integer
return: . absolute value of a
a X DC DK
xj] | DC | DK
s
negate_boolean( a)
input: a boolean
return: negation of a
a x 'DC DK
T x DC DK




O

-184-

power( a, b) )
input: a, b integers
retura:  a raised to the power b
a\b «x DC DK
X axsb a DK
- DC DC DC DK
DK DK DK DK™
isknown( type, s)
* input: type is an integer, s a string
return: result of comp s with DK
(of appropriate {¥pe)
s x DC DK .
F F T
and( a, b)
fnput:  a, b booleans
return: logical and of a and b
a\b F T DC DK
F F |F F . F
: T F|T T DK
DC F|T DC DK
DK F | DK DK DK
or( a, b)
input: a, b booleans
return: logicalorof a and b
a\b F T DC DK
F F T F DK
1 T T T T T
\ oc |F |T |pc |pk
DK DK T DK DK

o




JF

compare( op, a, b)

lnput:

return:

s1\s2
X
DC

DK

s1\s2

DC

DK

s1\s2

DC

DK

s1\s2

DC

DK

a, b both integers or strings
op: one of EQ, NE, LT, GT, LE or GE
a op b according to the tables below

case EQ
X DC DK
s1EQs2 | F DK
~ F T F’
DK F DK
case NE
X DC DK
sl NE s2 T DK
T F T
DK T DK
ca\‘ae LT or GT
X DC DK
slops2 | DC DK
DC F DC
DK DC DK
case LE or GE
x  DC DK
s1 op s2 F DK
F T F
DK |F |DK

 mm
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CHAPTER VI

RELATIONAL ALGEBRA IMPLEMENTATION

In this chapter wg describe the implementation of the various operations of the

relational algebra in terms of the basic components introduced in chapter IV: System Overview.

1

These operations have been implemented as a collection of functions or procedures written in the
programming language C. We already saw how these functions or procedures were invoked by the
Interpreter. We give the malin lines of the algorithms underlying these functions or procedures inter-

mixed with statements in C so that it can be used as part of a programmer 's manual.

PROJECT

Project creates a ne:i' relation by projecting a relation, of Index R, on domlist, a

1

linked list of domain indexes. The parser has already checked that there is no expression among
’

these domains, but names only. It remains to check that R Is defined on these domains. Sort is
used to eliminate duplicates which may be produced when attributes are removed. So, the resuiting

relation is sorted on domlist. ]

Project is invoked not only by the Interpreter but also by the following routines

(described below): list_actualize, to remove the domains which have been created by the actualiza-

tion process but were not specified by the user in the project list; increment, to remove from the
right operand any domain not appéarlng in the left one; rename_increment, to trim down elther
operand according to the domaln lists specified by the user.

project( domlist, R)
input: domlist linked list of domain indexes
R relation index

return:
result_R, index of relation obtained
when projecting R on domlist

method:
if domlist is empty
return index of NULL relation (no domalns, no tuples),




»

else
( 1) create result_R, the resulting relation

( 2) set tuple_size of result_R to sum of length of
domains in domlist

( 3) set ntuples of reaplt_R to number of tuples of R

H

( 4) set domlist and sortlist of result_R to domlist
( 8) length== sum of the length of the domains in domlist

( 8) make an alias out of R and domlist;
rgl_lndex'is the index of that allas;
copy info in rd_ and rel_table from R to rel_index;

(7A) if neither relation rel_index nor R are in core
( a) get storage for R and read it in, thus:

freeze( R);
I== fcrel_get({ R, rel_tuple_size( R));
icrel AlI( R, I);
“»
( b) get memory for the pairs of 1ptr, kptr pointers;
one palr for each tuple of R

‘( c) get memory to store the result:
Jam fcrel_get( rel_index, length);

( d) at this point we are done with claiming storage;
we unlock the pages for R and rel_index:
unfreeze( R); unfreeze( rel_index);

( ¢) if domlist is a prefix of rel_sortlist{ R)
(no %0rt is needed)
-set each kptr to the key extracted
from the corresponding tuple:
- ptrs{ 1]. kptr== get_key( icrel_line( J, i),
R, 1, i, domlist, length);

else
-set each kptr to the key extracted from the
corresponding tuple as above; however convert
any negative integer to its g9-complement
before extracting the key and after sorting: '

~9_s_complement( R, I, domlist);

ptrs{ i]. kptr= get_key( lcrel_line( J, I}, R,
I, 1, domlist, length);

quick_sort( 0, rel_ntuples( R) - 1);

9_s_complement( res, J, domlist);
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-get the projected tuples in order:
strepy( icrel_lne( I, 1), ptrs{ 1). kptr);

C:g_’_

-free the pairs of kptr, lptr
-sev Icrel_for_rel[ R] o NEGATIVE

(7B) else v
(R or rel_index is In fcrel I)
get the projected tuple using get_key:
strepy( ferel _liné( I, 1), ©
get_key( tuple, R, I, 1, domlist, length));

. = (8)flag projected ich are duplicate;
~— —slcrel_line{ I, )= "\0"; 1
- N, ! ! .

( 9) let j be the number of non-duplicates:
chanzg_muples( res, §);

0 1

< 0

(10) write Fesult to disk: " ,
" ierel_flush( res, I, rel_ntuples( R));

(11) set icrel_for_rel[ rel_index] and
fcrel_for_rel[ res] to NEGATIVE

V]

Q-

Qe

§

0
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SELECT o

Select creates a new relation from a relation, of index R in rel_table, and a boole-

an domain of index'D in dom_table. Only the tuples evaluating to true for D in R participate In the

a2
result. D is a domain eltheﬁgn which R is defined or actualizable in R. The resulting relation is

defined on the same domains as R. When D must be actualized in R all domains, including D,

1

created through the actualizaticn process are removed once the select operation has been done.

. select( D, R)
fnput: D index of boolean domaln on which to select
R " operand relation

&

- return:

tempR Index of result relation .

method:
( 1) create tempR, the resulting relation

( 2) copy info in rd_ and rel_table fim R to tempR
( 3) tsize= rel_tuple_size( R) 9

( 4) ind _the size of a tuple once all the domains .
needed to evaluate D have been actualized:, - .
-mark all domains as unvisited ! ,
-for each domain reachable from D ‘ a
add exactly once its length to
tuple_size of tempR \

(5A) if D is a virtual domain in R .
-read In R: . _— _
freese( tempR);
I== jcrel_get( tempR, rel_tuple_size( tempR));
fcrel _All( R, I); ‘ .

-7

(9]
-actualize D in tempR: ,\;,
actualize( D, ZtempR, &£I); .

<D is the last domain actualized:
testpos== rel_tuple_size( tempR) - 1

¢

-tempR is now deflned on all the domains
initially in R plus those created to evalvate D;
ellminate these from domlist of tempR:

change_domlist( tempR,
copy_index_list( rel_domiist( R)));
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-

-sort order of tempR is undefined: —
’ change_sortlist( tempR, index_list_allocate());

(5B) else
(D is actual in R) - |
-If not already In core, read in R: ’
. freeze( R);

v if(( I== icrel_for_rel[ R]) === NEGATIVE){
I== icrel_get( R, rel_tuple_size( R)); ’ ' ! .
. ) . erel_AN( R, I); .

unfreeze( R); ‘ .
set icrel_for_rel[ R] to NEGATIVE o .

e

+ oget position of D in R: . .
’ testpos= rd_dom_pos( R, D); ' - .

( 6) for each tuple in fcrel I ' R
if D was virtual in R .
prune all the domains not originally in R: 2
fcrel_Jine( I, 1){ tsize]== "\0";

if D is not TRUE ¢
flag tuple as deleted:
*icrel_line(.], i)= °\0*;

¥
( 7) let j be the number of tuples satisfying the
selection criterion: .
change_ntuples( tempR, J); .

{ 8) write relation tempR to disk: )
terel_flush( tempR, I, rel_ntuples( R)); ~

-(9) set fcrel_for_rel[ tempR] to NEGATIVE ' : :

L
Y a0

@

[

el




- ( 4) set tuple_size of S to size
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1

LIST_ACTUALIZE E )

2 AN

List_actualize creates a new relation from aelation, of index R in x}-el_t,able, and
domlist, a linked list of domain indexes. The parser has detected that at least one domain in dom-
list may be virtual in R. We check first that, indeed, at least one domain is virtual in R. The result
relation, S, consists of all the tuples of R, each tuple augmented with the va{ges for the virtual

domains. Each domain must be actualizable in R. It may be seen as an inverse project operation.

As already mentioned, any domain may be seen as the root of an expression tree.

&

It a domain is constant or actual, the tree consists of a single node: the domain itself. Otherwise,

the tree is non-trivial and may overlap some other expression trees. Therefore, domlist may be seen

'

< as 8 forest of possibly overlapping expression trees. As the forest is visited, we mark the domains.

- 1
Hence, any domain !s actualized at most once. For each domain in domlist, list_actualize calls the
\’A
recursive procedure actualize.

y
Extra domains, i.e. domains not appearing in domlist, may be created by the ac-

tualization process. Hence, we return the result of the projection of S on domlist in order to elim-

inate these extra domains,

list_actualize( domlist, R) . .
Input: domlist  linked list of domain indexes
R relation index

return:
S, Index of relation obtained when actualizing domlist in R;

method: ! -
( 1),compute size: the width of a tuple of R augmented ! : -

with all the values obtained when acnua.llzihz
exactly once all the domains in the trees R
rooted in domlist: !

-mark unvisited all domains

-for each domain reachable from members of domlist
add exactly once {ts length to size b

( 2) create S, the resulting relation

( 3) copy Info in rd_ and rel_table from R to S . -

O

B T

()
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i 8) bring R into memory:

\ freeze( S); . .
. I== icrel_get( S, size); . . S
‘ ferel_ill( R, I); - .

( 8) for each virtual domain, DD, in domlist,
- actualize DDin Sin I
' actualize( DD, &S, &I);

( 7) eliminate intermediate domains obtained through the
actualization process and which appear nelther in ’ ‘
rel_domlist{ R) nor in domlist: '
-append to domlist all the domains on :
\\ _ which R is defined
¥ -S== project( domlist, S);

( 8) write result to disk:
icrel _flush( S, I, rel_ntuples( R));

( 9) unfreeze( S): : N \




B

ACTUALIZE

Given the virtual domaln of index D; chke relation of index R, pointed to by

¥

ptr_R and contained in the icrel pointed to by ptr_I, actualize computes for each tl,uple the value of
DinR. If B is defined on D then we return to the calling routine. Otherwise, we actualize the left
operand of D through a recumvg_call. If D is defined In terms of a binary or ternary operator or if
it is a vertical dt;maln associated with a by_li;st or an order_list, then recursive calls are also used
to actualize the other operands. The calls are issued so that the tree rooted at D Is visited in a
preorder fashion.

Polnters are used to pass the relation and icrel indexes since actualizing may re-
%

quire the sorting of R which may create an alias and store the alias in a new {crel.
1

oAl

actualize( D, ptr_R, ptr_I) ) —
fnput: D index of virtual domain . )
’ ptr_R  pointer to relation index - P
ptr_I pointer to icrel

(1A) if D is not virtual in *ptr_ R o
return . .

(1B) else
if D Is not a constant domain
actualize the first operand domain:
actualize( dom_opndi( D), ptr_R, ptr_l); -

(2A) It D is a 2-operand domain | , u
actualize the second domain: i
actualize( dom_opnd2( D), ptr_R, ptr_I); -

(2B) else
(3A) If D is a vertical domain
if dom_operator( D) is equlv or par
for #hch d in dom_by_list( D)
actualize( d, ptr_R. ptr_l);

» if dom_operator( D) is fun or par - *
for each d in dom_order_list( D)
actualize( d, ptr_R, ptr_l);
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(3B) else ' :
it D is a 3-operand domain - '
actualize the second domain:
actuallze( dom_opnd2( D), ptr_R, ptr_I);
actualize the third domain (stored in header
1 node of by_list):
actualize( *dom_by_list{ D), ptr_R, ptr_I);

.

«if D is defined through a RENAME In terms of
a constant domain
modify accordingly domlist in ptr_R:
index_list_change( rel_domlist( *ptr_R),
! dom_opndil( D), D); L
else [
compute }pd append value for D: ‘
tuple_actualize( D, ptr_R, ptr_I);

-append D to domlist of »ptr_R

P
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RENAME_INCREMENT

lr
>

After execution of the following routine, the domlist of R will have been replaced

by the domlist supplied by the user. The routine also completes a renaming or renaming incremen-
tal assignment. In the first case, the procedure rename is invoked. In the second case, if R is new a

n

mere assignment Is performed. Otherwise, the routine increment completes the work.

rename_increment( R, domlist_R, S, domlist_S, opcode)

fnput: R and S relation indexes
" domlist_R( or S) linked list of domain indexes :
opcode either RENAME or RENAME_INCREMENT !
method:

&

project S on domlist_S:
8= project{ domlist_S, S)

if-opcode == RENAME

change_domlist( R, domlist_R) - 4 -

rename( R, S)
else

if R is a new relation

assign( R, S)
| change_domlist( R, domlist_R)
change_sortlist( R, index_list_allocate())

else

project R on domlist_R - .
increment{ R, S) 9

I
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ASSIGN .

The following routine completes a simple assignment. The relation of iIndex R will

be identical to the relation of index S. S is deleted If i¢ is a temporary relation.

assign( R, S)
fnput: R and S relation indexes

method: . s
-copy all info in rd_ and rel_table from S to R
-make a copy of flle S under the name R
-reset icrel_for_rel[ R] to NEGATIVE

INCREMENT

The following completes an incremental assignment. The flle for R is replaced by
the concatenation of the cixrrent,\ file for R and the file for S. R is projected qn its domlist to elim-

inate any duplicates created by the concatenation operation.

increment( R, S) ‘ : -
input: Rand S relation indexes

method:
-append flle for S to the one for R
-project R on {ts domains to eliminate duplicates: '
T== project( rel_domlist( R), R);
-assign( R, T);



RENAME

The following, called by rename_increment, performs the book-keeping necessary

In order to complete a renaming operation. b
rename( R, S)
input: R and S relation indexes

A

method: .
-set ntuples of R based on ntuplesof S
-set tuple_size of R based on tuple_sizeof S

-reset rd_ and rel_table entries for R:
reset_count( R);
reset_dom_pos( R);

~change sortlist of R to its domlist
-make a copy of flle S under the name R
-reset icrel_for_rel[ R] to NEGATIVE

¥

&
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chapter VII
VIEW EVALUATION
- In this chapter we give the algorithms used to evaluate recursively defined rela-
* tlons. Our solution is general in that it works for all the vlews that a user can define in Aldat
whether they are recursive or not. A base relation is a relation currently existing in the database.
The evaluation of a view produces a base relation. We repeat here the syntax to deflne a view.
<view-statement>::=
<identifier> ( initlal <relatlonal-expression> Ie) s
is <relational-expression>
The rules for <idéntifier> and <relational-expression> have been llluszraut,ed
many times in chapter III. As well, the same chapter IIT explains the usefulness of the initial op-
tion. g .
Recall that the relation PARENT is defined on SENIOR and JUNIOR which are
domalns of type string and length 18. If ‘“edward IV elizabeth of york " is a tuple of
PARENT, it Indicates that edward IV is a parent of elizabeth of york. We already mentioned that

in order to find for any two persons whether one is a descendant’of the other it suffices to compute

ANCESTOR, the transitive closure of PARENT. We have the following:

relation ANCESTOR ( SENIOR, JUNIOR);
ANCESTOR is PARENT { ujoin |
( ANCESTOR [ JUNIOR lcomp SENIOR] ANCESTOR)
where icomp Is the natural composition. | )

Recall the deferred evaluation mode characterizing a view statement. That ls,
when the user enters such a statement intermediate code is generated. The Interpreter will evalu-
ate the code only when the user triggers the evaluation process. That s, whenever ANCESTOR s
used In an executable statement or the user enters pri!ANCESTOR. Notice the declaration of

ANCESTOR as being defined on SENIOR and JUNIOR. Recall that this Is mandatory for recur-

sively defined relations because the attributes of such a view can not be determined by the parser.
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An alternative is to use the initial option.

Merrett [MERRS84b] has suggested that ANCESTOR defined above is easily im-

plemented as the iterative loop:

ANCESTOR <- PARENT;

repeat

-3

TEST <- ANCESTOR;

ANCESTOR <- PARENT [ ujoin ]

( ANCESTOR [ JUNIOR Icomp SENIOR] ANCESTORY);

v

until( TEST = ANCESTOR);

[

Let us consider a more Involved example. We use a simplified syntax in order to
avold cluttering up the presentation with details frrelevant to the discussion. In particular, we do

not specify on which attributes the views are defined.

Visrel_exp( W, X); Wisrel_exp( A, 2, X);
Zisrel_exp( A, Y); Y isrel_exp( W, B);
Xisrel_exp( Q. B); Qs rel_exp( A, T);

Tisrel_exp( C, X); . Sisrel_exp( W, Q);

The first one indicates that V is deflned in terms of W and X, typically through a

w

p-joln or a o-join. Assume that A, B and C are base relations.

Observe that some views are defined in terms of each other. We already saw a re-

3,

lation, ANCESTOR, deflned in terms of itself. A closer loc;k at the example reveals that X is
defined In terms of Q, Q in terms of T and T in terms of X. That is, X is recursively defined and so
are Q and T. In such a case, we say that the recursion Is indirect whereas in the case of ANCES-
TOR we say that it Is direct.

A collection of view definitions determines a directed graph, say G, where the

vertices are the relations in the database and an edge, say RS, from vertex R to vertex S indicates
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that the vle‘w R is defined on S, or, more specifically, that S appears in the relational expression
defining R. If we are to use the iterative process described above, then X, Q and T must be
E evaluated simultaneously.
repeat
TEST X <-X;
TEST.Q <-Q;
TEST_T <- T,
X 1s rel_exp( Q, B);
Q is rel_exp( A, T);
T is rel_exp( C, X);
until{ TEST_X =X and TEST_Q = Q and TEST.T=T)
This would work fine, had one of X, Q and T been used in an executable state-
ment. Similarly, W, Y and Z are deﬂned\ in terms of each other and such a mechanism would be
> adequate. However, if the evaluation of V were triggered this would not quite work because V
depends on X (and indirectly on Q and T) but X does not depend on V.
Therefore, whenever a view appears In an executable statement we
1.- determine all the views on which it depends;
2.- determine which views are mutually recursive;

3.- determine in which order the views must be evaluated;

4.- repeat the iterative process given above for each view, evaluating simultaneously the

i
)

views which are mutually recurslve.

Step 1, 2 and 3 are achieved by finding the maximal components of G.

t

Deflnition: we call strongly connected component of a directed graph a maximal set of vertices

such that there is a path between any two vertices in the set.

Algorithm FSCC: find strongly connected components

1.- Perform a depth first search of G and number the vertices in order of completion of
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the recursive calls.

2.- Construct a new directed graph, GR, by reversing the direction o'r every arc in G.
3.- Perform a depth first search of GR starting from the highest numbered vertex and ac-
cording to the numbering found at step 2. If not all vertices are reached start the next

— depth first search from the highest nurﬁbered remaining vertex,

This alzorltﬂm is taken from [AHO 83]. Implementations of algorithms to per-
form depth first search and determine st.;ongly connected components are rather mundane. Hence,
we will not dwell much on ours. Recall that an entry of rel_table comprises the following flelds, the

first two are non-empty for views only:

start index in memory array of intermediate code;
! points to the beginning of the code corresponding
to the relational expression defining the view V.

3
defined_on linked list of relation indexes appearing in
the relational expression for the view V, .,,/

deflnes Iinked list of relation indexes defined by a
relational expression in which V appears
(in this case, V need not be a view).
The graph G is described by defined_on, GR by deflnes. GR, so obtained, Is ac-
tually bigger than needed but it contains as a subgraph all the vertices and edges of interest. This,
because we need to consider only the relations i'isit,ed during FSCC step 1 whereas GR may contain

some vertices whgch have not been visited during that step. The lists deﬂhed_on and defines ‘are

bullt at parse time. Let us pursue our example:

h
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defined_on  defines

o - A Qw2 .
B | XY .
c|T :
-Q AT S, X

’ S |Qw
T |CX Q :
\ .

vV | W, X
W | AXZ S, V.Y o
X | B.Q T, V, W |
Y |[BW A -
zZ |AY w

Each time FSCC step 3 Is performed, we build a list of the views revisited. Each
list is a strongly connected component of G. We store these lists in tree which is an array of
index_lisn, a data type described in chapter IV (section ¢). Suppose that chewevaluat.lon of V is trig-

gered. Tree would contain six lists.

V W X C B A )
) Y T
zZ Q '

1.- The graph G contains only the vertices appearing in tree. That is, the vertices which
) ca‘m be reached by following edges coming out of V. These are the relations on which
V depends. However GR contains also the view S since S is reached when we consider
the elements of the defines lists of W and Q.

2.- Base relatlons occur by themselves since they do not depend on any other relations.

1

o 3.- The ordering is not unique. However, the algorithm guarantees that all the relations

<
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defining, directly or not, a view appear on the right of the view {n tree.

- 4.- Since a list is a strongly connected component, If it comprises a view then %& contains

all the views which are mutually recursive with it and only these.
The following procedure completes the implementation of the mechanism to
evaluate views. It is called each time the Interpreter is about-to pop a relation from the run time

stack. It checks whether the top element of the run time stack is a view. If so, the strongly con-

nected components are determined. Step 4 described above is performed for each element of trée,
-

starting with the rightmost. .

The determination of the strongly connected components requires to mark the

vertices as visited, revisited and so on. We use for that purpose arrays of lnteqers, each comprising

MAX_REL entries. We mention rank_or_initial. It Is used to store the number assigned to a vertex

‘

" during FSCC ;iep 1. It is 1ater used to store the starting address of the code corresponding to the

relational expression in the initial option of the views. If S is a view deflned with the inltial option,

Al

the address of the corresponding code is saved in rank_or_initial[ S] and the start field of S changed

3

30 as to point to the code deflning the view. Ve restore the start fleld of S once S has been evaluat~ .

3

ed. Thus, each time the evaluation of S Is triggered, the initial code is reevaluated exactly once as
claimed in chapter II. We use test_rel, an array of MAX_REL integers, to store the index in

rel_table of the TEST relations, one per view, mentioned above. .

[\
-]

- »

POP_AND_EVAL_IF_VIEW() .

pop_and_eval_if_view( S) . .
input: S pointer to run_time_stack . '
return: top element of run_time_stack after popping it

and triggering its evaluation If it is a view

method: -
“R== pop( S)
if R is not a view or
we are already evaluating another view ’
return( R) ’

'
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»

else ) .
( 1) for each relation S in rel_table reset flag:
rank_or_initial{ S}= NEGATIVE;

( 2) rightmost== find_strongly_connected_components( R)

( 3) for each relation S in rel_table reset flags:
rank_or_initial{ S|= NEGATIVE;
test_rel| Sl== NEGATIVE;

T ( 4) for each T In tree starting with the rightmost
(a) current_'l‘_diine <- FALSE

—( b) for each relation S in T
if S is not a view »
current_T_done <- TRUE
go to ( 5)
else
test_pel[ S}== make_test_rel( S);

( ¢) repeat '
for each relation Sin T
TEST_.S <-S: )
. assign( test_rel[ S}, S);

for each relation S in T
evaluate S:
interpreter{ rel_start( $));

for each'relation S in T
' compare S with TEST_S:

if not relations_are_equal( test_rel[ S], S) °
- current_T_done== FALSE

until current_T_done= TRUE
( 5) already_evaluating= FALSE;
( ) restore start of view defined with initial
option for further use of the view:
) change_start( S, rank_or_{nitial[ S]);
¥

( 7) delete test rel

( 8) return{ R)

IO
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RELATIONS_ARE_EQUAL()

a
The following performs relation comparisons. Two re-

-~

lations, R-and S, are equal if and only if they are défilned on the same at-
Q

tributes and contalin the same tuples up to a reordering of the lines

and/or the columns.
4,
relations_are_equal( R, S)
input: R and S, indexes in rel_table

~

return: TRUE iff relations R and S are equal

method:
fR==§S -

return( TRgE)

return: TRUE iff relatlons R and S are equal —

3
it rel_ntuples( R) !== rel_ntuples( S)
return( FALSE)
!

if rel_arity( R) == rel_arity( S) .
_ return( FALSE)

if an; domain of R is not a domain of S or vice versa
return{ FALSE) -

project both R and S on a common ordering
of thelir attributes; say domlist of R:
assign( R,’project( rei_domlist{ R), R));
assign( S, project( rel_domlist( R), S));

if their corresponding files differ
return( FALSE)
dlse .
return{ TRUE) ) !

9

%

N
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'

MAKE_TEST_REL(R)

The following, given an index R in rel_table, makes 2

unique name, inserts it in rel_table and returns the corresponding Index.

make_test_rel( R)
input: R.ﬂ index in rel_table
4
return: index of a test.relation corresponding to R
method: -make a name llke (assume R== 17) test.17

: -insert it in rel_table and return its index

3}/

sy

{4
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chapter VIII \
‘ ERROR HANDLING ’ ‘
As mentioned previously, relix can operate in oelt.her one of two modes with
resx;ecc to errors: interactive or batch mode. Errors fall in one of the four following classes:
WARNING: relix has detected something which is not absolutely regular, but which is
" very unlikely to causeany problem.
Example: when entering a list of domains, a glven domain has been specified niore than

g .
,once; a file contains fewer tuples (or one of its cﬁples seems longer) than \expecb-

ed; operations are attempted on domt}lns of type real; a user-specifled Identifier is

too long and truncated. .

ERROR: relix is experiencing some difficulties. However, it expects to be able to resume
processing 'correctly. Some results may be lost, but operations not depending on
them can still be carried out.

uF.ixample: relix can not open a file roxf writing; relix can not redirect the standard linm to

<

a user-specified flle; the parser encounters an invalid token,

L SEVERE.: relix has encountered something which is clearly illegal. Continuing essing

4 the current statement, although physlcally possible, Is unlikely to produce any

o
o

valid result.
Example: division by zero; arithmetic overflow; mismatch of domain tg'pe in a domain ex-
pression; system table overflow; syntax error (see below). -
CATASTRdPHE: at this level, not only is keeping on processing meaningless, gut also,
D Ilmposslble: some relix data structures have probably been damaged, and
dangerous: some flles may get corrupted. '

Example: no memory available for result or operand relation; standard input can not be

redirected to the terminal; relix bugs (see below}
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Syntax errors constitute a major source of SEVERE errors. The parser used by

relix, although powerful in many respects, can just not handle any wrong statements like

b - i
let let (the first let must be followed by name);
AbeB + C (be must be preceded by let);

R<-[[A,BlinS ([is misplaced)

When compiling a multi-statement program and a serlous error occurs, compllers
operating In batch mode use the-following approach: no more code is generated, parsing of the
remaining statements i3 attempted in-order to produce as much usetu'l information as possible. In
our interactive setting, we adapt this as follows: ignore the current (erroneous statement), reset the
parser to its initial state and get the next statement. Changes made to external (to the parser), glo-
bal data structures like REL and DOM are not undone. Hence, the next statements may produce

results of dublous value. Last, but not least, a relix bug will generate, usually and hopefully, a CA-

H

TASTROPHE trap. The user may then report any such problems to the people in charge of

maintenance.

Relix keeps a tally of the IO (input/output) operations performed. Whenever an
er}or occurs relix issues an explanatory message and records the ‘most serfous level of error encoun-

1

tered. Whenever an IO request is issued, relix performs the following:

if mode Is interactive
~return 0

otherwise
. it level is ERROR or SEVERE
-abort if the threshold of 10 operations for
that level has been reached

The thresholds can not be changed by the user. They decrease with the severity

of the related errors. Relix tolerates many venial mistakes, more so than serious offenses.

ar o

Error messages have she form: ‘ .

-

»  “ladt.c: lerel_fill: no more data to read"’

where ladt.c’ls the name of a relix source code file, icrel_fill is the name of the function where the

[y

~~

s

<
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error has been detected and “no more data to read” is a tentative explanation of what most prob-

. \\“
& ‘' ably happened. In this case, the relation file contained fewer tuples than expected.
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CHAPTER KX .
' CONCLUSION

This thesis has outlined the design and implementation of a new version of Aldat.

The design is characterized by the following:

1.- Aldat is presented as a stand-alone programming language. The relation Is the unlque‘

2

data structure available to the user. The syntax is simple.

2.- The user can define views in a natural way. Only minor additions to the syntax, were
needed.

The resulting system, reiix, is characterized by the following:

1.- Relatlons must be small enough so that the opera.n;in of any operation of the relation-
al algebra can fit into primary memory.

2.- Relatlons are stored as character data: Attributes are of fixed-length. Hence, all thé ,
tuples of a given relation have the same length.

3.- The following domain types are available: boolean, Integer and string (array of char-
‘act.ers). The domain algebra, including null values, is implemented.

4.- The following features of the relational algebra are implemented: project and select
with acm\lallze; a wide range of assignments. These operations have been Implemented
using - sort techniques where appropriate. The u-join is also implemented, but by a
complementary work, not as a part of this thesis.

5.- Evaluation of recursively defined relations Is supported. In particular, one can easily
compute the transitive closure of a graph of which the edges are the tuples of a rela-

tion. The user need not, and can not, use loop structures. These are hidden In the

»implementation. ‘ P

8.- The system is interactive with a short response time as illustrated In the following

7
section. The implementation is highly portable from one UNIX system to another. -
4

L,
|, fr Jt

¢



a) SOME RESULTS ‘

We work with a database iamed CROSS_REF {n order to {llustrate the response

———

—

time that one can expect when using relix. These tests have been realized on the Cadmus operating

in single-user mode.

Domain Table; CROSS_REF <

_. Index Name Length  Actual Type .
10 CALLER 40 T STRG \
11 CALLEE 40 T STRG
! . /12 FILE 15 T STRG
P ) © 13 FTYPE 10 T STRG
N ’ FILE name of a flle containing C-functions
CALLER - ot function in the previous L
0 CALLEE - invoked by the previous
FTYPE type of the calling function
R
% ’ . For e'acl; example, we use three subsets of the same relation. They differ in the

number of tuples: 100, 500 and ‘'1611. To begin, we turn the UNIX flle XREF into a relation of the

<

same name defined on the following domlist: FILE, FTYPE, CALLER and CALLEE. A tuple like

attridute name  attribute value -

FILE “ladt.c -
FTYPE *int " "
- CALLER "bufler_get ; - ,
. CALLEE - 'enqueue_ﬁrs&_t,xsed " c Y

indicates that the function buffer_get returns an integer, calls the function enqueue_first_used and

is found in the file ladt.c.

E

. ) RELATIQN XREF ( FILE, FTYPE, CALLER, CALLEE) <- XREF;

>
Y

Y We consider two cases: first, the flle is ordered according to domlist; second, a

,single tuple is out of order. Recall that this is the worst case for our sort routine based on quick-

v

sort. Times are given in seconds.

o @
A
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100 500 - 1611

0 . sorted 1 13 45

one out of order 3 30 165

Let us consider the following select operations:

*

3

SMALLER <=~ where CALLER < CALLEE in XREF;
NOT_SMALLER <- where CALLER >== CALLEE in XREF;

100 500 1611

SMALLER (42)2 | (258)7 | (643) 30

NOT_SMALLER | (58)2 | (262)7 | (968) 30

: ' . . We indicate between parentheses the number of tuples in the resulting relation.
Observe that the columns add up to the number of tuples in XREF. The selectlon conditions being
qulte'simllar to each other explains why it takes the same time to perform either.

We consider now a project operation which requires us to sort the relation:
INV_XREF <- [ CALLEE, CALLER, FILE] in XREF;

100 600 1611 '

INV_XREF (100) 3 (500) 16 (1811) 85

We finish with a few virtual domain deflnitions and actualizations. The first actu-

alizatién Is very simple. It entalls a project operation which does not modify the sort order of the

relation.
°e . let FRILL_A be " /= ";
. let FRILL_B be " »/";
’ V3

FRILLS <- [ FRILL_A, FILE, FTYPE, CALLER, FRILL_B] in XREF; 0




® 100

FRILLS | (22) 4
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500 1611
(87) 15 | (279) 43

£2

The second actualization counts the number of tuples agreeing in the FILE attri-

. bute. This one does not require a different sort order either.

xen,
o

let COUNT be equiv + of 1 by FILE;

COUNT_R <- [ FILE, COUNT] In XREF;

s 100

500

1611 ,

COUNT_R | (1)8

(5) 30

(15) 105

The last actualization considered numbers the tuples using a different sequence

for each value of the FILE attribute. Notice that the attributes CALLER and CALLEE form to-

gether a key of XREF. That is, any tuple is uniquely identified by the values of these two attri-

butes. We permute them at will so that relix must perform many sorts in order to produce the rés

quested result.

O

-

let NUMBER be par + of 1 order CALLER, CALLEE by FILE;

NUMBER_R <- [ NUMBER, CALLEE, CALLER] in XREF;

100

500

1611

NUMBER_R (100) 11

(500) 55

(1811) 195

These results support our conclusion with respect to response time. That is, a re-

lation can be processed with very acceptable a response time on the Cadmus, provided it does not

I

comprise more than a few tens of kilobytes. Faster machines, like the Masscomp and the Vax-780,

should support the same response time for even bigger relatlons.
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b) LIMITATIONS AND FURTHER WORK

Some features of Aldat are not currently avallable. Furthermore, even If relix

presents a satisfying response time, some optimizations could be considered. Hence the following

points constitute areas where further work could be done.

1.- When evaluating relational expressions, intermediate results are written from memory

? :

-

pages to disk. This Is not necessary provided a mechanism is designed in order to
write out pages just before they are to be used for some other relations. Of course, be-
fore terminating execution some pages may need to be saved on disk. It seems howev-
er that the probability of losing results, say in the case of a system crash, is bigger

B

with such an approach than with ours.

| ; 2.~ A similar phenomenon occurs when evaluating recursive relations. However, the

8

volume of these temporary relations is quite impressive. Recall the relation PARENT
and the view ANCESTOR. When PARENT contains five consecutive generations,

nearly thirty such relations are generated in order to compute ANCESTOR. Since

~ this evaluation has been built on top of our Implementation of project, select and ac-

tualize, one could study how these can be modifled to reduce the bulk of such inter-

mediate results and improve the overall response time.

3.- As mentioned In various places, many features can be added to.the current implemen-

\u . \"\

\

tation. With respect to the domaln algebra, one could add procedures in order to: ful<’

ly support domains of type real! allow the user to define his own operations on

. domalns; allow new domain types like chronological, set, interval and others. Work ls

underway by other implementors to add a relational editor and QT-selector to the re-

K}

lational algebra. Some work remalins to be done to complete the implementation of

the o-join.

4.~ Relix depends heavily on the assumption that the operands of any relational operation

\
fit into main memory. One could study the changes to make in order to remove that

restriction. Only past the code generation phase are changes required. Naturally, the




AN

effect on the response time should be minirized.

b

5.- Attributes of variable length, ‘for example those of type string, would provide a more

flexible tool. In order to support these, the fixed-length tuple assumption must be

Qropped. It seéms that the modifications required are so significant that a new imple-

O

mentation should be cpnsidered.

6.- It is not clear what use can be made of recursively deflned domains. This is an area

(.‘\:

[
where more research is needed. As far as l;nplementat,lon is concerned, it seems that
only minor modifications are required in order to support, at least to some extent,

that type of recursion.

7.- Most of the facilities supplied by UNIX are accessible from within relix. The idea of

presenting relix as an operating system buflt on top of UNIX is appealing from user
)and programmer points of view. On the other hand, a cdsual datalgase user is lﬂcély to
d'eslre tools to manage the information in the database. The full power of UNIX i3 not
_Deeded and user’s needs may be better served in an environment specially tallored to

provide these tools.

W - - -

"

og
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APPENDIX A

ALDAT GRAMMAR

<program> = <command> | <statement>

Ecommgmd> u=  APPEND_REL,| BATCH | CREATE_DOM | CREATE_REL
z
| DEL_DOM | DEL_REL | HELP | INPUT_FROM
| LINE_SHELL | MANUAL | PRINT_OBJECT

| PRINT_REL | QUIT | SAVE | SHELL

|  SHOW_DOM | SHOW_RD | SHOW_REL

v

<statement> = < short_command> ’;’
Q

|  <domain-declaration> ;' L

a

| <relation-declaration> *;*

Q

i | = <defnition-statement> *;’

- 12 . e
|~ <executable-statement> *;’

| ' <view-statement> ', . ‘ 5

(/3

vy
- e M

-
.
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<short_command> :im=

b4

4 ’« :
( DEL_R | PRINT_R | SHOW_D | SHOW_R ) <identifier>

<domalin-declaration>::= B
. domain <identifler> <domain-type>
<identifler> ::==
<letter> [ <letter> | <digit> | *°_")* ) ‘
N ‘ \/f ( | N

boolean.| bool | integet | intg | real | float-

~

<domalin-type > ;1

| ( string | strg) <digit>+

<relation-declaration>> ::==_

S

.

relation <identifier> <domain-list>

(*<-'( <identifier> | <non_dc_dk_string>) | €

’
S
B
s
. .

o
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o

<definition-statement > == ' A

N

let <identifier> be <domain-expression>-= .

¥

%
¢

< domain-expression > n=

o —

| -

| red <ass-com-0p> of

| equiv  <ass-com-op> of

<< boolean-expression >
=}

<domain-expression> <asslcom-op> .<< domaln-expresglon>

< domﬂn-eirpression > <other-bin-op> < domain-expression>

-

_<function-name> '(’ <domun-expmeulon‘> °y

9

<unary-op> <domain-expression>

n

* <domatn-expression>
[\ ' <
< domain-expression >

by <&omaln-llst>

e

| tan <fen-par-op> of.” Y <<§oxqaln—expressloh> .
. Y « L . ~
E ' order <domain-list> -

?par <fen-par-op> of

»
¢

< domaln-expresston >

.

order <domaln-listS
by <domalin-list>
'<bmlean-exprmlong> then <don{aln-e3cpresslon>

' else <domaln-expression>

4

-7
S
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("’ <domaln-expression> ')’

< constant >

. <identifler>

{

< boolean-expression > :im=

.
x}?ﬁ
o

<domaln-expression> <comp-op> <domain-expression>

< ass-com-0op >

<other-bin-op>

< function-name>

<unary-op>

ﬂ<'fén-pa.r-op.>

|

1

o ‘] N
|
f

| v

|<0const.anr.> -

<#wlem>

L

<integer> ° -

<real>

‘

<domaln-list> <

@

.,
et

..
pes 3

tom

=

s

ttm= ~ <boolean> | <integer> | <real> | <string>

5

.
Mt ]

‘e
pet ]

i ’

,+.I."|.&.I'I.|mﬂxlmln
[ I ./v l mod I "k’ I t“’o

A ,
abs | cos | isknown | 10g10 | log2

In | sin | tan

,'-'|!+'|'-'IIIOI"

a

<ass-com-0p>> | <other-bin-op>

o

pred | succ

N
2

<domain-list> *," <domain-expression>

<domain-expression >

L}

b

“de bool | dk bool | false | true

<digit>+ | dc intg | dk intg
{

o

<digit>»* ' <digit>=»

-

A

S~

\y
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<string> i==  <non_dc_dk_string>> | dc strg | dk strg -

1

\ <non_dc_dk_string> = ™ [*(™" | |'0)] "

{
P o <diglit> = 0|1]..]® : .
L _ o i
<letter> sm= a|blu|z|AlB]..|2Z+ '
b ] ,

<comp-op> n=m > ] = | '$=' | '’ | T .

<executable~statement > == . - %
! < N e § ¢

<identifier> ’*<-* <relational-expression> * Lo ‘e .

|  <identifier> "<+’ <relational-expression>
|  <identifier> '[* <domain-list> '<-* <domain-list> °|*

<relational-expression >

| -<identifier> '[* <domain-list> '<+' <domain-list> ')’
<relationsi-expression >
' <1,rigw-statemeqt>::=:
! <ldent:lﬂer> ( initial <relational-expression> | ¢)

is  <relational-expression> . . .




<relational-expression > :;o=
<project-clause> <where-clause>
- - )

in <relational-expression>>

|4 <relational-expression> .
L-.'l
§
‘' <domain-option> <join-op> <domain-option> |’

\x
b < relational-expression >
| (" <relaginal-expression> ) -

| <identifier>

<projéct-clause> == [’ <domaln-option> '}’ | ¢

<where-clause> i==  where <domain-expression> | ¢
<domaln-option> == <domain-list> | ¢
' <joln-op> = < mu-join-op> | <sigma-join-op>

<mu-joln-op> u== fjoin | natjoln | ujoin L e

-

, | s,joln | ljoln’| rjoin ‘ S

| drjoin | djoin | dljoin . ,

<h¢ma-joln-op > = < basic-sigma~join-op >

[N
oy

| <negation> < baslc-sigma-join-op>

5

| icomp | natcomp 1

¢ -

pp

~




’ ’ -172-

<basic-sigma-join-op >
0 . ‘ : o | eqjoln | Itjoin | lejoin
“ \ e |  sub | gtioin | gejoin
~ ;
© TABLE OF PRECEDENCE

e
~operators of lower precedence first

-t -operators on a given line have same precedence

-associativity is specified

. left o
. S, nonassoe ‘<’ 'S’ ‘<=’ et e e F
Y - left max min ,
ok e ’ .
) ‘ ‘left * '/ mod
) s - . right g
| nonassoc NOT
. PARAMETERLESS COMMANDS
APPEND_REL Can , BATCH batch!
5 | CREATE_DOM  cd! CREATE_REL cr!
DEL_DOM dd! DEL_REL dr
HELP h! INPUT_FROM input!
’ LINE_SHELL '%'’.*\n MANUAL man!
. PRINT_OBJECT po! PRINT_REL pr!
3 —_— QUIT < q! SAVE | sa!\
SHELL sh! SHOW_DOM sdt
SHOW_RD srd! SHOW_REL sr!
o . .
¥ :
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4 .
[ 3
ONE-PARAMETER COMMANDS
DELR  drt PRINT_R prt .
SHOW_D  sd! SHOW_R  sr!f
#. ' RESERVEQ KEYWORDS
. A
abs be bool boolean by cos
de - div djoin dk dloin domain

O /
,drjoin else *  eqjoin equiv false float

fun ° gejoin gtjoin fcomp tejoin u H
join ln initial mteggr intg is |
{sknown lejoin et ljoin In loglo
lo¢_2 Itjoin  max min - mod natcomp
‘patjoin  not of order | par pred °
real red relation  rjoin sep sin |
sjoin strg string sub succ sup
tan then true ujoin where

,«'f\ . .



-174-

BIBLIOGRAPHY :

[AHO 79] Aho A. V.'and Ullman J. D., “Universality of Data Retrleval Languagés®™, Proc. of Sixth
ACM Symposium on Prlpclples of Programming Languages, January 1979, pp 110-120.

. [AHO 83] Aho A. V., Hopcroft J. E. and Ullman J. D., “Data Structures and Algorithms",

Addison-Wesley, 1983.

-

[BARBSS| Barbic F. and Rabitti F., *The Type Concelpt, In Office Document Retrleval”, Proc. of
eleventh Int. Conf. on VLDB, Aug. 1985, pp 34-48. ‘ ’
. 1%
[(BERNS83a] Bernstein P. A, ‘“Database Theory: Where Has it Been? Where Is it Going?”’, ACM
, SIGMOD Proc. Annual Meeting, May 1983, pa 2. O

{BERINS83b] Bernstein P. A and Goodman N., **Multiversion Concurrency Control-Theory and Algo-
rithms’’, ACM TODS-8-4, Dec. 1983, pp 465-483.

[CERI84] Ceri S. and Pelagatti G., “Distributed Databases: Principles and Systems’’, McGraw-HIll, |
1984, ,

)

[CHAKS82] Chakravarthy U., Minker J. and Tran D., ‘‘Interfacing Predlicate Loglc Languages and
. Relational Databases’, Proc. of first International Logic Programming Conf., Marsellle,

1982. ,

)

[CHAMT76] Chamberlin D. D. et al., “SEQUEL 2: a Unifled Approach to Data Definition, Manipu-
lation and Control”’, IBM Journal of Rwea‘rch and Development, Vol. 20, No. 6, Nov.
1976, pp 560-575.

t

[CHAMS80] Chamberlin D. D., “A Summary of User Experience with the SQL Data Sublanguage'’,
Proc. Int. Conf. on Data Bases, July 1980, pp 181-203. ' .

[CHAMS1] Chamberiin D. D., Gilbert A, M. and Yost R: A., "A History of System R and
SQL./Data System”’, Proc. of seventh Int. Conf. on VLDB, Sept. 1081, pp 456-464.

[CHANS1] Chang C., *'On Evaluation of Queries Containing Derived Relations in a Relatlonal Da~
tabase”. In Advances in Database Theory (Plenum Press, ed.), pp 235-260.
o}
[CHIUS2] Chiu G., “MRDSA User s Manual’’, SOCS-82-9, May 1982.
[CHONS6] Chong A. T., “Implementation of Mu-join in Relix"’, McGlil University, August 1986.

{CODD70] Codd E. F., “A Relational Model of Data for Large Shared Data Banks’, CACM, Vol.
3, No. 8, June 1970, pp 377-387

[CODD71] Codd E. F., “Relational Completeness of Data Base Sublanguages”, in Data Base Sys-
tems (R. Rustin, ed.), pp 65-98.

[CODD75] Codd E. F., “Understanding Relations”, (ACM) FDT 7:3-4, 1975, pp 23-28.

[CODD79] Codd E. F., “Extending the Database Model to Capture More Meaning”’, ACM TODS-
4-4, Dec 1979, pp 397-434.

[DATES2] Date C. J., **An Introductlon to Database Systems’, third ed., Addison-Wesley, 1982.




176~

[FERRS82] Ferrier A. and Stangret C., “Heterogeneity in the Distributed Database Management
System SIRTUS-DELTA"’, Proc of eighth Int. Conf. on VLDB, Sept. 1982, pp 45-53.

oy
- [FORBS85] Forbes G. and Laliberté N., “MINM: A Domain Algebra Implementation’’, McGill

University, April 1985.

[GAILLBI] Gallaire H., Minker J. and Nicolas J. M., ‘“Advances in Database Theory”, Vol. 1, Ple-
num Press, 1981. .

[GARDS4] Gardarin G. and Gelenbe E., *"New Applications of Data Bases”, Academic Press, 1984.

(GELES2] Gelenbe E. and Gardy D., “The Size of Projections of Relatlons Satisfying a Functional
Dependenc\y*", Proc of eighth Int. Conf. on VLDB, Sept. 1982, pp 325-333.

[HENSS83] Henschen L. H. and Nagqvi S,., “‘Synthesizing Least Fixed-Point Queries into Iterative
Programs”’, Proc. IJCAI, Karlsruhe, 1983.

[HENS84] Henschen L. H. and Nagvi S,., *‘On Compliling Queries In Recursive First-Order Data-
bases’, JACM, January 1984.

v
e

{IMIES3] Imielinski T. and Lipskt W. Jr., *‘Incomplete Information and Dependencies in Relatiénal
* Databases’, ACM SIGMOD Proc. Annual Meeting, May 1983, pp 178-184,

[JOHNTSI Johnson S. C., **Yace: Yet Another Compiler Compiler”, Computing Science Technical
‘Report No. 32, 1975, Bell Laboratories.

[JONGS83| de Jonge W., "Compromlslng Statistical Databases hesponding to Queries about
Means’, ACM TODS-8-1, March 1983, pp 60-80.

[KAMES0] Kamel R. F., “The Information Processing Language Aldat: Design and Implementa-
tlon’’, SOCS-80-14, August 1980.

[KENTS83) Kent W., ““The Universal Relation Revisited”, ACM ’fODS-S--i, Dec. 1983, pp 644-648.

[KERSS84] Kerschberg L., “Proceedings of the First International Workshop on Expert Database
Systems”, October 1084.

[KIM 79] Kim W., “Relational Database Systems"”, ACM Computing Survey, Vol. 11, No. 3, Sept.
1979, pp 185-211.

[KORTS8] Korth H. F. and Silberschatz A., “Database System Concepts’’, McGraw-Hill, 1988.

[KUNGS1} Kung H. T. and Robinson J. T., “On Optimistic Methods for Concurrency Control”,
ACM TODS-8-2, June 1981, pp 213-226.

[LACR77] Lacroix M. and Plrotte A., *Domain-Oriented Relational Languages”, Proc. of third Int.
Contf. on VLDB, Oct. 1977, pp 370-378.

(LESK75] Lesk M. E., “‘Lex-a Lexical A}lalyser Generator”, Computing Science Technical Report
No. 39, 1975, Bell Laboratories.



[LOUIS2] Louis G. and Pirotte A., “‘A Denotatlonal Definition of the Semantics of DRC. a Domain
Relational Caleulus”, ACM SIGMOD Proc. Annual Meeting, September 1982, pp 348-
356.

[MACG85] MacGregor R. M., ““ARIEL-a Semantic Front-End to Relational DBMSs’, Proc. of
eleventh Int. Conf. on VLDB, Aug. 1985, pp 305-315.

[MAIE83] Maler D. and Ullman J. D., “Fragments of Relatilons". ACM SIGMOD Proc. Annual |

Meeting, May 1983, pp 15-22.

{MAIE83a] Maler D. and Ullman J. D., *Maximal Objects and the Semantics of Universal Relation
Databases”™ ACM TODS-8-1, March 1983, pp 1-14. 5

[MAIE83b] Maler D., ‘*“The Theory of Relational Databases’”, Computer Science Press, 1083.
[MAIE84] Maler D., Vardi M. Y. and Uliman J. D., "On the Foundations of Universal Relation
Model”’, ACM TODS-9-2, June 1984, pp 283-308.

[MERR76] Merrett T. H.,, “MRDS: An Algebraic Relational Database System'’, Canadian Comput-
er Conference, May 1976, pp 102-124.

[MERR77] Merrett T. H., “Relations as Programming Language'.Elements”, Information Process-
ing Letters, Vol. 8, No. 1, Feb. 1977, pp 29-33.

[MERRS81] Merrett T. H. and Zaldi S. H. K., *"MRDSP User “s Manual”, SOCS-81-27, August 1981.

{MERRS84a] Merrett T. H., ‘‘Relational Information System®’, Reston, 1984.
)
[MERRS84b] Merrett 'T. H., ““The Relational Aigehra as a Typed Language for Loglc Programming®’,
Proc. of first Int. Workshop on Expert Database Systems, October 1984, pp 735-739..

[NILS79] Nilsson J., “Computational Scheme for Recursive Relational Languages”, Proc.

Workshop on Formal Basis for Databases, Toulouse, 1979. ~
. P

[OZKAS86] Ozkarahan e., “Database Machines and Database Management”, Prentice-Hall, 1088.

"[SACC82] Sacco G. M. and Schkolnick M., “A Mechanlsm for Managing the Buffer Pool in a Rela-
tional Database System Using the Hot Set Model”’, Proc of eighth Int. Conf. on VI,DB,

Sept. 1982, pp 267-262. . ) gl
L& '
[SAGI81] Saglv Y. and Yannakakis M., ‘Equivalence among Relational Expressions with the Union

and Difference Operators’’, JACM 27:4, 1981, pp 633-655. 1

[SCHM77) Schmidt 'J. W., “Some High Level Language Constructs for Data of Type Relation”,
ACM TODS-2-3, Sept 1977, pp 247-261.

[SHOP79] Shopiro J. E., “Theseus-a Programming Language for Relational Databases”, ACM
TODS-4-4, Dec 1979, pp 493-517.
;
[SICH83] Sicherman G., de Jonge W. and van de Riet R. P., "Answering Queries without Reveal-
ing Secrets’, ACM TODS-8-1, March 1983, pp 41-59.

~

4]

»

3




n\J‘
-

[AN

[

f «177-

[STON78] Stonebraker M, Wong E. and Kreps P., “The Design and Impléh&gnbation of INGRES",
ACM TODS-1-3, Sept 1976, pp 189-222, .

[SU 78] Su S. Y. W. and Eman A., “Casdal: CASSM Data Language”, ACM TODS-3-1, March
1978, pp 57-91. . i
6 v
[TODD76] Todd S. J. P., ““The Peterlee Relational Test Vehicle- a System Overview", IBM Sys-
tem Journal, Vol. 15, No. 4, 1976, pp 285-308.

[TURNSS5] Turner R. and Lowden B. G. T., “An Introduction to the Formal Specification of Rela-
tional Query Languages”, The Computer Journal, Vol. 28, No. 2, -May 1985, pp 162-
168, ° o

(ULLMS82] Ullman J. D., “Principles of Database Systems”, Computer Science Press, second edi-
tion, 1982. '

(ULLMS83] Ullman'J. D., ““On Kent°s * Consequences of Assuming a Universal Relation™ ", ACM
TODS-8-4, Dec. 1983, pp 637-643.

a

[ULLMS85] Ullman J. D., *‘Implementation of Logical Query Languages for Databases”, ACM
TODS-10-3, Sept. 1985, pp 289-321.

"

[VANRSS] Van Rossum T., ‘““Implementation of a Domain Algebra and a Functional Syntax’’,
SOCS-83-18, August 1983. v

[WONGS3] Wong E. and Katz R. H., “Distributing a Database for Parallelism”, ACM SIGMOD
Proc. Annual Meeting, May 1983, pp 23:29.

N

. O o
(ZANI85} Zaniolo C.: “The Representation and Deductive Retrieval of Complex Objects”, Proc. of
eleventh Int, Conf. on VLDB, Aug. 1985, pp 458-469.
. ~ s -
[ZLO077] Zloof M. M., ‘“‘Query-by-Example: a Data Base Language’, IBM System Journal, Vol.
16, No. 4, 1977, pp 324-343.

-
- 3

ol



