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Abstract 

 

Structure-borne noise generated by tire contact on road irregularities is a very 

important factor in interior vehicle noise. This kind of low-frequency noise can 

seriously affect the driver’s concentration and passenger comfort. In order to 

reduce this vibration-induced noise, an active vibration control of the vehicle 

suspension is proposed, as opposed to acoustic noise control. Since modeling 

uncertainties are inevitable in characterizing the dynamics of the vibration 

transmission path, robust feedback controllers are considered. In this thesis, an H-

infinity robust controller and a mu-synthesis robust controller are designed to 

reduce the vibrations using actuators acting directly on the suspension. First, 

closed-loop simulation results are obtained on a quarter-car suspension at the 

Université de Sherbrooke, showing a significant reduction in vibration. Second, 

simulation of the controllers is also conducted on a real car. Closed-loop test 

results are presented and the effectiveness of the robust feedback controllers is 

discussed.  
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Résumé 

 

Le bruit de vibration structurelle produit par le contact des pneus du véhicule sur 

la surface de la route est un facteur important du bruit à l’intérieur du véhicule. Ce 

type de bruit à basse fréquence peut affecter sérieusement la concentration du 

conducteur et le confort des passagers. De manière à réduire ce bruit de vibration, 

un contrôle actif de vibration dans la suspension du véhicule est proposé, en 

contraste avec la réduction active de bruit acoustique.  

 

Puisqu’il est inévitable d’avoir des incertitudes dans le modèle de la dynamique 

de transmission de la vibration, des contrôleurs rétroactifs robustes sont 

considérés. Dans cette thèse, un contrôleur robuste H-infini et un contrôleur à 

synthèse mu sont conçus pour réduire la vibration en utilisant des actionneurs 

agissant directement sur la suspension. En premier lieu, des résultats de 

simulation obtenus sur une suspension d’une seule roue à l’Université de 

Sherbrooke démontrent une réduction significative de la vibration. Puis, une 

simulation des contrôleurs est effectuée sur le modèle de la voiture. Les résultats 

des tests en boucle fermée sont présentés et l’efficacité des contrôleurs rétroactifs 

robustes est discutée.   
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Chapter 1 Introduction 

 
The automobile has developed into the most important means of transportation in 

our lives, and passenger’s comfort is one of the factors in assessing vehicle quality. 

Noise level inside the cabin must be considered and one of the noise sources is 

vibrations caused by a rough road surface.  

 

Some work has been done on acoustic control using microphones set up inside the 

vehicle [1]. Some other work proposed the active control of suspension by 

actuator to reduce the vibration and further reduce the noise. Today, actively 

controlled suspensions have been installed on many luxury cars such as the Audi 

A8L. With the development of electronics technology, the cost of a control system 

becomes lower and lower and the active controlled suspension will soon be ready 

to be installed in most vehicles. This is one of the motivations for us to do this 

research. 

 

In this thesis, a robust feedback controller is designed to suppress the vibrations in 

suspensions based on two different test equipments.  

 

In Chapter 2, previous work on flexible structure modeling, uncertainty modeling 

and robust controller design methods is discussed, giving readers a general review 

of these fields.  
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Experimental equipment is introduced in Chapter 3. There are two equipments 

included: one test bench which is a quarter-car suspension system. Another one is 

a BUICK test car with a type of McPherson suspension. Theoretically, controllers 

for all four suspension systems should be designed. However, due to the time 

limit, only front-right suspension is considered. 

 

Suspension Modeling is given in Chapter 4. Modal parameter identification 

method is used to model this dynamic system. Two equipments are modeled by 

different number of modes since the structures are not exactly the same. The 

transfer function of each mode is described by three parameters: natural frequency, 

damping ratio and output gains. The robust controller will be designed based on 

this model. 

 

In Chapter 5, two robust controllers are designed to reduce vibrations of the 

suspension at the resonant peaks. Two methods are considered: H-infinity robust 

controller design and  -synthesis robust controller. Simulation results and 

comparisons are given at the end.  

 

In Chapter 6, the disadvantage and future work are discussed. 
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Chapter 2 Literature Review 

 

Three major parts are included in this thesis: suspension system modeling, 

uncertainty modeling and active controller design. We will review the previous 

work on these three parts in the following. 

 

2.1 Dynamic  System Modeling 

 

Various modeling methods for dynamic systems have been developed in the fields 

of civil engineering and mechanical engineering. This section gives a review of 

dynamic system modeling work in recent years. 

 

Modal parameter identification is a very popular method used to identify flexible 

dynamic systems. This approach is important for the people dealing with vibration 

problems. In system identification, many approaches have been developed to 

achieve the parameter identification. 

 

Eigensystem Realization Algorithm (ERA) proposed by Juang and Pappa [2] has 

been applied for modal parameter identification for dynamic systems by many 

researchers. ERA procedures mainly include two parts: First, a linear model for a 

dynamic system is realized by the use of the generalized Hankel matrix and then 

this model is transformed to modal parameter form. Second, by truncating some 

of the modes, the model can be represented in the lower order. However, after the 

number of modes is reduced using some provided information, the truncated 
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model may no longer be accurate. More details about ERA are shown in reference 

[2]. Pappa, James and Zimmerman [3] proposed a new technology called 

Autonomous Modal Identification to improve ERA identification results. There is 

more algorithm parameters are used to implement the ERA analysis since the 

Hankel matrix used in [2] is varied. The Consistent Mode Indicator (CMI) can be 

applied to determine the confidence level for each mode. In this way, CMI 

effectively reduces the number of modes and improves the model accuracy. More 

details about CMI are found in [4]. 

 

Finite element technique is also used to extract vibration parameters from various 

dynamic systems. Rodriquez [5] has successfully applied this method on a 

rotating shaft system to model the cracked and uncracked shaft rotating. Vibration 

parameters of a transverse open crack on a rotating shaft are determined and 

vibrations of the crack are caused by the harmonic excitation force induced by an 

unbalanced disk. This dynamic system is divided into six elements. Narkis in [6] 

states that the only information required for accurate crack identification is the 

variation of the first two natural frequencies. Therefore, in reference [5], the first 

three natural frequencies of the shaft were estimated by the finite element model. 

The experimental results in [5] shows that the finite element method is able to 

describe the dynamic system within a degree of accuracy. The disadvantage of 

this method is that the modal parameters derived from finite element model are 

very sensitive to crack configuration such as crack depth and location. 
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2.2 System Uncertainty Modeling 

 

As we know, any model of a physical process needs approximation, which leads 

to model uncertainties. Thus, uncertainty modeling is an unavoidable problem 

with controller design for dynamic systems. Various kinds of uncertainty models 

have been developed and are briefly explained in the following sections. More 

explanations can be found in [7]. 

 

2.2.1 Additive Uncertainty 

 

Assume the nominal process transfer matrix is ( )G s , and the dynamic perturbation 

matrix is ( )a s . Then, the physical process transfer matrix ( )pG s can be 

represented by equation 2.1, 

 

( ) ( ) ( )p aG s G s s   .  (2.1) 

 

The Figure 2-1 can also be used to explain this model. 
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Figure 2-1: Additive Uncertainty 

 

2.2.2 Output Multiplicative Uncertainty 

 

Assume the nominal process transfer matrix is ( )G s , the dynamic perturbation 

matrix is ( )m s , and the physical process transfer matrix is ( )pG s , then the 

multiplicative uncertainty taken at the output of the system can be represented by 

equation 2.2, 

( ) ( ( )) ( )p p mG s I s G s   .  (2.2) 

 

Figure 2-2 shows this model. 

 

Figure 2-2: Multiplicative Uncertainty 
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2.2.3 Input Inverse Multiplicative Uncertainty 

 

When the uncertainty is in the denominators of the actuator transfer functions, the 

input inverse multiplicative uncertainty can be considered as shown in Figure 2-3. 

The mathematical representation is given by 

1( ) ( ( )) ( )p p isG s I s G s   . (2.3) 

 

 

Figure 2-3: Input Inverse Multiplicative Uncertainty 

 

2.2.4 Output Inverse Multiplicative Uncertainty 

 

The mathematical representation o fan output inverse multiplicative uncertainty is 

given by  

1( ) ( )( ( ))p m imG s G s I s    ,  (2.4) 

where ( )im s refers to the inverse multiplicative uncertainty. 

Figure 2-4 shows a block diagram representation of output inverse multiplicative 

uncertainty.  
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Figure 2-4: Output Inverse Multiplicative Uncertainty 

 

2.2.5 Feedback Uncertainty 

 

Assume that the nominal process transfer matrix is ( )G s , and the dynamic 

perturbation matrix is ( )f s . Then, the physical process transfer matrix ( )pG s can 

be represented by equation 2.5, 

 

1( ) [ ( ) ( )] ( )p p fG s I G s s G s   .  (2.5) 

 

Figure 2-5 shows the feedback uncertainty model. 

 

Figure 2-5: Feedback Uncertainty 
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2.2.6 Linear Fractional Uncertainty 

 

Assume that the nominal process transfer matrix is ( )G s , and the dynamic 

perturbation matrix is ( )l s . Then, the physical process transfer matrix ( )pG s can 

be represented by equations 2.6 & 2.7, 

 

1
22 21 11 12( ) [ ( ), ( )] ( ) ( ) ( )[ ( ) ( )] ( )p U l l lG s F P s s P s P s s I P s s P s       , (2.6) 

 

where 11 12

21 22

( ) ( )
( )

( ) ( )

P s P s
P s

P s P s

 
  
 

. (2.7) 

 

Figure 2-6 shows a representation of linear fractional uncertainty. 

 

 

Figure 2-6: Linear Fractional Uncertainty 
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2.3 Robust Controller Design 

 

Robust control is a control theory that explicitly deals with model uncertainty. 

This kind of controller can effectively achieve the tradeoff problem between 

performance and robustness, even if there exists, differences between the 

mathematical model and the true plant.  

 

A variety of robust controller design methods have been developed during the last 

several decades. Nyquist and Bode methods were used to design fairly robust 

controllers in the early days. Robertsor, Leithead and O’Reilly [8] state the robust 

controller design by means of Nyquist and Bode analysis. The neighborhood of 

the relative uncertainty is plotted on the inverse Nyquist diagram and the point (-1, 

0) on the inverse Nyquist plot is used to indicate the system’s robustness. 

Residual gain and phase margins are defined on the Nyquist plot and used to 

indicate gain and phase margin reduction, respectively. The gain and phase 

robustness curves can be made to indicate the stability margin for the nominal 

parameters. Gain and Phase margin plots on bode diagrams can be used to show 

the impact of the uncertainties on systems. More details about Nyquist and Bode 

method for multiple-input, multiple-output systems are in references [9] and [10]. 

 

H Control theory is another very interesting approach used to design the robust 

controller. Kar, Seto and Doi present a controller design based on H robust 

control theory to suppress vibrations of a flexible structure [11]. The experimental 
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results show that H controller can reduce the vibrations in the first five modes 

and the instability due to the high frequency modes can be avoided. 

Although H can effectively satisfy the robustness requirement in the frequency 

domain, it is hard to achieve the performance specification in the time domain. 

For this reason, Sato and Suzuki proposed an approach that combines H  design 

with eigenstructure assignment to reduce the vibrations of flexible structures in 

[12]. Eigenstructure assignment method can effectively attain the desired response 

in time domain by full state feedback law; however, it is hard to achieve the 

robustness requirement in frequency domain. Obviously, by combining these two 

methods mentioned in [12], not only can vibrations of the flexible structure be 

reduced, but also the instability phenomena can be effectively avoided.  

 

 -synthesis robust control design has been developed for robust control system 

design. The advantage of  -synthesis is that it is not only able to satisfy robust 

stability requirement but also achieve robust performance.  -synthesis has been 

widely applied on the flexible and suspension control system design. Fujita, 

Namerikawa, Matsumura and Uchida apply the  -synthesis theory to design an 

active robust controller for an electromagnetic suspension system in [13]. The 

additive uncertainty model is employed and a performance weighting function is 

defined. The goal is to find a controller to achieve both closed-loop system 

internal stability and a weighted sensitivity function that satisfies the performance 

requirement for all possible uncertainties. In this process, D-K iteration is used to 

compute the controller K . Moser [14] also propose the  -synthesis theory to 
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design a robust controller for flexible structures and do the experiment based on 

the Caltech Flexible Structure (CFS). As expected, the experimental results can 

effectively trade off both robust stability and performance characteristic.  
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Chapter3 Description of Experimental Systems 

 

The objective of this chapter is to present two equipments used in this project: a 

quarter-car suspension test bench and a test vehicle. Both of them are located at 

Université de Sherbrooke. 

 

3.1 Car Suspension Test Bench 

 

A quarter-car suspension test bench mounted on a rigid structure is used to 

simulate a real car suspension system, shown in Figure 3-1. This test bench 

includes one wheel, one spring, one damper and one A-arm. This type of 

suspension is usually called McPherson Suspension which is very popular in 

modern vehicle suspension designs. An electro-dynamic shaker, Figure 3-2, 

together with its power amplifier, is used to simulate a realistic rough road noise 

excitation and is located under the wheel spindle. The dynamic shaker is also used 

as an actuator for the control problem. Therefore, the signal to the dynamic 

shakers is the sum of the input disturbance and the control signal. Nine sensors are 

set at different locations of the test bench to collect the experimental data in time 

domain. These data are then used to do the modeling and identify the uncertainty 

in the system. Two 3-axial sensors are located at the position 1 and 2 on the base 

of the suspension. Three 1-axis sensors, Figure 3-3, are located on the top of the 

damper, and they are positioned in such a way to measure the forces in all three 

directions. 
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A dSPACE real-time system is used to receive the signals from nine sensors and 

compute the control signal for the actuator. One signal conditioner is applied to 

convert the outputs measured by force or acceleration to electrical voltages. 

Several filters are also used to prevent signal aliasing. These signal processing 

equipment is shown in Figure 3-4. 

 

 

Figure 3-1: Test Bench 
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Figure 3-2: Dynamic Shaker 
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Figure 3-3: Head of the Suspension 
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Figure 3-4: Signal Processing Equipment 

 

3.2 Test Vehicle 

 

To further verify the method of robust controller design on real vehicle suspension, 

a BUICK car, shown in Figure 3-5, is used to do the suspension modeling and 

controller design instead of the test bench at Université de Sherbrooke. The 

similar dynamic shaker, actuator and sensors are placed in each of four 

suspensions. At this moment, since there is no experimental data available for the 

other three suspensions, we only model and design the right passenger side 

suspension. In this process, the isolated actuator can be used to implement the 

control design. Due to the lack of experimental response data (secondary response) 

from the input of the actuator to the outputs at the time when this project started, 

there was no way to model the secondary path, therefore, we still used the same 
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control technology as the one used in test bench, i.e., the dynamic shaker is used 

for both input disturbance generator and actuator. The suspension type is still the 

McPherson Suspension. As shown in Figure 3-6, the dynamic shaker is placed on 

the top instead of bottom of the wheel spindle in order to reduce the vibration 

effect on the wood platform which could then further affect the wheel tire. Nine 

sensors are placed at the same locations as the Test Bench. Two 3-axial sensors 

are located at the position 1 and 2 on the base of the suspension. Three 1-axis 

sensors are located on the top of the damper, and they are positioned in such a 

way to measure the forces in all three directions. 

 

All of the signal processing equipment such as dSPACE system, signal 

conditioner and filters are also the same as the ones used for Test Bench and are 

shown in Figure 3-7. 
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Figure 3-5: Experimental Vehicle: BUICK 

 

 

Figure 3-6: Dynamic Shaker 
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Figure 3-7: Signal Processing Device 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 21

Chapter 4     State-Space Model Identification 

 

4.1 System Modeling 

 

We reduce the vehicle’s vibrations by reducing the vibration amplitude at each 

peak resonant frequency. Therefore, the suspension needs to be modeled at these 

resonant frequencies and the model at each resonant frequency is called a mode. A 

natural frequency ωn, a damping ratio ζ and amplitude R are used to define a 

mode of resonance. The transfer function applied to model a mode of resonance is 

called receptance transfer function (4.1). 

 

2 2
( )

2n n

R
H s

s s 


 
.  (4.1) 

 

Both the input and output signals are measured as forces. The number of modes 

needed is really dependent on the particular system. In our case, the test bench 

needs 22 modes and the test vehicle system needs 24 modes. 

 

4.2 Experimental Data Collection 

 

4.2.1 Data Collection in Time Domain 

 

For the test bench, the dynamic shaker generates white noise at a maximum 

frequency of 1000 Hz for 10 seconds. Only one trial is conducted. For the test 

vehicle, the dynamic shaker generates chirp signals at a frequency range of 20-

500 Hz for a period of 5 seconds. Also, one trial is conducted. For both, the output 
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data is collected from the sensors at a sampling frequency of 1000 Hz by the 

dSpace system.  

 

4.2.2 Data Collection in Frequency Domain 

 

The experimental data in the frequency domain is obtained from the time domain. 

The algorithm used to compute frequency response functions is the same for both 

the test bench and the test vehicle. The discrete time-domain data is converted to 

the discrete frequency domain through the Fast Fourier Transform (FFT). 

However, the FFT is only working for single-input and single-output system and 

our system is single-input and multiple-output. Fortunately, the nine sensors are 

working independently; therefore, we can compute the FFT for each sensor like 

nine single-input, single-output systems. Assume a discrete-time signal x[n] in the 

time domain, then the discrete Fourier transform of x[n] is given by: 
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0

( ) ( )
j ikN
N

i

X k x i e




   . (4.2) 

 

U(k), the input signal in the frequency domain and Y (k), the output signal in the 

frequency domain can be computed using equation (4.2). Power spectral densities 

and cross-spectral densities are derived from FFTs. Let   

 

2
:k

k

N

  , (4.3) 
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Input Auto-Spectrum: 
1ˆ ( ) ( ) ( )uu kS j U k U k
T

  ,                  (4.4)                

Output Auto-Spectrum: 
1ˆ ( ) ( ) ( )yy kS j Y k Y k
T

   ,              (4.5) 

Input Output Cross-Spectrum: 
1ˆ ( ) ( ) ( )uy kS j U k Y k
T

   ,      (4.6) 

Output Input Cross-Spectrum: 
1ˆ ( ) ( ) ( )yu kS j Y k U k
T

  .       (4.7) 

 

The FRFs can be obtained by equation (4.8): 

ˆ ( )
( )

ˆ ( )
yy k

k

yu k

S j
H j

S j





 .  (4.8) 

 

A measure of the accuracy of each individual frequency response at each discrete 

frequency is provided by the coherence function (4.9) as follows: 

2 ( )

( )
k

k

H j

H j




  , (4.9) 

where  

ˆ ( )
( )

ˆ ( )
uy k

k

uu k

S j
H j

S j





 .  (4.10) 

 

The value of coherence is between 0 and 1. When ( )H j and ( )H j are similar, 

the coherence is close to 1, signifying that the FRFs are accurate. In this project, 

we obtained the FRFs from the research team working on the same system at 

Université de Sherbrooke. 
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4.3 Model Identification 

 

An algorithm has been developed for model identification by Marie-Pierre 

Jolicoeur [15] and we further modified this algorithm to get a more accurate 

model for the test bench and real experimental car suspension system. We tried to 

find more accurate values for the modes, damping ratios and output gains for 

receptance transfer functions. This modified algorithm can be used to curve fit the 

experimental frequency responses more accurately and produces a complicated 

model such as a 24-mode suspension system in the form of a receptance transfer 

function. However, the disadvantage is that the new algorithm is more 

complicated and the computer needs longer time to run. The detailed procedure is 

as follows. 

  

4.3.1 Three Parameters Identification 

 

A frequency sweep based on the experimental frequency response is performed to 

identify dominant natural frequencies for each transmission path. By the previous 

work, the modes due to the suspension system can be distinguished from that of 

the rest of the test bench or vehicle such as wheels or windows. Based on this 

information, the frequency range that we are interested in can be defined. In this 

project, frequency range from 60 to 250 Hz is chosen for suspension modeling for 

both test bench and vehicle.  
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4.3.1.1    Natural Frequency Identification 

 

The modes are identified by visually observing the peak values of the FRFs based 

on the FRFs from all 9 output sensors for test bench and vehicle respectively. 

After many trials, the natural frequency found based on the Z axis of the base 

sensor 2 is acceptable for all nine transmission paths of the test bench and twenty 

two modes are shown in Table 4-1; the natural frequency found based on the Y 

axis of the head sensor is the best for all nine transmission paths of the 

experimental vehicle and twenty four modes are shown in Table 4-1. 

 

4.3.1.2  Damping Ratio and  Output Gains Identification 

 

As said before, we used the receptance function (4.1) to fit the experimental FRFs. 

Since twenty two and twenty four modes are used for test bench and vehicle 

respectively, the receptance functions can be expressed as   
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2 2
1

( )
2
i

i ni i ni

R
H j

j


    


   ,    (4.11) 

 

for the test bench and  
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2 2
1

( )
2
i

i ni i ni

R
H j

j


    


  .     (4.12) 
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for the test vehicle. Thus, our objective is to find three parameters: ni , i and iR  

to best approximate the experimental FRFs in each case. The experimental 

frequency response ( )E j  to be fitted is the average of all trials collected from 

each output. Since there is only one trial in our case, the average turns out to be 

the single FRF. 

 

The most accurate parameters are found by means of the trial and error. First, by 

trials, we set three ranges, one for each of three parameters respectively, and also 

three step sizes for each scale number. Therefore, a model candidate family 

( )cH j  has been setup, and then a Matlab program is run to test different 

parameters and compare the model obtained, ( )cH j  to the experimental 

response ( )E j . An accurate model would be obtained if the candidate family 

( )cH j  is defined properly. 

 

The error between the frequency response of each model in family ( )cH j  and 

the experimental frequency response ( )E j  is computed by the 2-norm to 

represent the difference between these two response. Our objective is to minimize 

the difference by the curve-fitting procedure. The error is defined by (4.13). 

 

2| ( ) ( ) |
last

first

i pError E j H j


 

 


    (4.13) 

where i is the ith experiment. 
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The curve-fitting procedure is run to find the minimum error between all 

candidate models and the experimental response as follows: 

 

In this thesis, the natural frequencies ni  are set to 22 modes for test bench and 24 

modes for test vehicle, and the damping ratios i  and gains iR  are initially set to 

0.01 and 30 respectively for both the test bench and the vehicle. If all 

combinations of parameters were used to compute models and compare them to 

the experimental FRFs, it would need a huge number of computations and take a 

long time to implement. For this reason, the whole curve-fitting procedure is 

processed mode by mode. For example, only the parameters for the first mode are 

varied and the error in the whole frequency range is computed for each set of 

parameters. The parameters corresponding to the smallest error for this particular 

mode are selected. Then, we move to the second mode, and the parameters for the 

second mode are chosen in the same way. The procedure is repeated from the first 

mode to the last mode and then from the last mode to the first mode. The 

parameters obtained from each mode are saved. 

 

The suspension system for either the test bench or vehicle is a single-input 

multiple-output system, and nine transmission paths are modeled at the same time.  

Therefore, all of them have the same natural frequencies and damping ratios, as 

shown in Table 4-1, but with different gains. The gains for the test bench and 

vehicle are shown in Table 4-2 and Table 4-3, respectively. However, the natural 
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frequencies and damping ratios might be different between the test bench and 

vehicle. 
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Natural Frequencies ( Modes) Damping Ratios 

Test Bench Test Vehicle Test Bench Test Vehicle 

70 69.82 0.3 0.02 

72.93 72.75 0.075 0.28 

75.38 78.61 0.13 0.145 

79.78 81.54 0.05 0.16 

82.72 86.43 0.08 0.055 

85.66 92.77 0.095 0.115 

89.08 94.73 0.05 0.04 

93.49 96.68 0.125 0.115 

95.94 106 0.035 0.035 

97.41 107.4 0.09 0.025 

99.36 111.8 0.07 0.07 

110.6 112.8 0.305 0.06 

131.2 131.3 0.31 0.145 

153.2 139.2 0.055 0.04 

156.6 141.6 0.065 0.045 

165.4 152.3 0.075 0.035 

180.6 158.7 0.08 0.035 

190.4 161.6 0.16 0.025 

213.9 174.3 0.055 0.36 

221.7 178.7 0.1 0.025 

230.1 180.7 0.03 0.02 

240 215.3 0.11 0.055 

 218.8  0.015 

 224.1  0.085 

Table 4-1: Natural Frequencies and Damping Ratios of the Suspension Model for 

Both Test Bench and Vehicle 
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Mode Oput1 Oput2 Oput3 Oput4 Oput5 Oput6 Oput7 Oput8 Oput9 
1 -270 705 -120 -90 -180 210 -360 255 -555 
2 -465 -195 -75 -210 -510 345 480 165 405 
3 900 -270 210 495 885 -870 -615 -480 -360 
4 -150 30 -45 -75 -165 135 60 90 30 
5 225 -300 120 225 255 -480 315 -105 180 
6 -135 705 -225 -435 -135 930 -465 135 -180 
7 0 -255 30 120 -30 -210 150 -15 105 
8 -855 -75 210 -225 -870 120 465 450 -120 
9 -15 195 -15 -45 0 135 -75 15 -75 
10 915 -870 -120 450 930 -870 -15 -585 555 
11 -270 420 15 -210 -300 495 -60 180 -255 
12 345 930 15 15 420 165 -645 -165 -105 
13 -180 -825 60 60 -615 -390 735 60 270 
14 -45 105 -15 120 0 -405 -165 -45 -30 
15 90 -30 30 -135 0 450 240 75 0 
16 -90 -90 0 45 -90 -195 -270 -120 30 
17 -75 225 45 60 -315 -510 45 -75 15 
18 45 -555 -15 15 375 930 0 375 -90 
19 -300 -165 315 690 -435 -870 -225 150 75 
20 405 225 -645 -870 645 735 120 -825 -105 
21 -315 -195 255 450 -315 -750 -120 195 -30 
22 825 930 180 -675 0 915 480 330 240 

Table 4-2: Gains ( iR ) for different sensors of the Test Bench Model 

Oput1: Base Sensor 1, X-Axis; Oput2: Base Sensor 2, X-Axis;  

Oput3: Base Sensor 1, Y-Axis; Oput4: Base Sensor 2, Y-Axis;  

Oput5: Base Sensor 1, Z-Axis; Oput6: Base Sensor 2, Z-Axis; 

Oput7: Head Sensor, X-Axis; Oput8: Head Sensor, Y-Axis; 

Oput9: Head Sensor, Z-Axis 
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Mode Oput1 Oput2 Oput3 Oput4 Oput5 Oput6 Oput7 Oput8 Oput9 
1 -30 -15 -15 -15 15 0 0 -30 30 
2 525 360 300 240 -405 15 75 1035 -885 
3 -1020 -840 -555 -405 240 -90 30 -1020 1080 
4 1080 930 630 465 -105 105 -90 645 -885 
5 0 -15 15 15 -135 -30 30 105 -165 
6 -660 -240 -390 -270 1080 30 -75 -1020 825 
7 30 60 45 45 0 -15 0 -15 -90 
8 -15 -390 -90 -120 -915 45 30 525 225 
9 90 90 45 45 0 -15 -15 -15 -90 
10 -75 -105 -60 -45 -60 15 15 -15 90 
11 540 990 330 240 1020 -75 0 600 -795 
12 -405 -795 -255 -195 -1020 60 0 -540 645 
13 -120 -255 150 150 435 -75 75 330 90 
14 165 135 30 15 -75 15 -30 -105 60 
15 -150 -135 -30 -30 -15 -15 15 15 15 
16 165 120 -105 -105 -150 60 75 285 -300 
17 30 0 75 60 105 -45 -30 0 195 
18 15 45 -45 -45 -45 15 30 45 -180 
19 -225 60 15 45 -60 90 -120 -1020 -585 
20 255 150 60 30 0 -15 0 45 90 
21 -240 -150 -60 -30 -15 15 0 0 -60 
22 735 270 510 300 60 75 45 315 420 
23 -105 -30 -15 15 -15 0 -15 -60 -60 
24 -1020 -510 -1020 -750 -75 0 15 0 30 

Table 4-3: Gains ( iR ) for different sensors of the Test Vehicle Model 

Oput1: Base Sensor 1, X-Axis; Oput2: Base Sensor 2, X-Axis;  

Oput3: Base Sensor 1, Y-Axis; Oput4: Base Sensor 2, Y-Axis;  

Oput5: Base Sensor 1, Z-Axis; Oput6: Base Sensor 2, Z-Axis; 

Oput7: Head Sensor, X-Axis; Oput8: Head Sensor, Y-Axis; 

Oput9: Head Sensor, Z-Axis 

 

The model for base sensor 1 in the X-Axis and the head sensor in the Y-Axis are 

compared to the experimental data for test bench in Figure 4-1 and 4-2 

respectively. 
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Figure 4-1: Model Response of Base Sensor 1 in the X-Axis Is Compared to the 

Experimental Data for Test Bench 
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Figure 4-2: Model Response of Head Sensor in the Y-Axis Is Compared to the 

Experimental Data for Test Bench 

 

The reason of more errors existing in Figure 4-2 is that the models for the sensors 

in different locations are built based on the resonant frequency, and the resonant 

frequencies are chosen in our case is more accurate for base sensor 1 other than 

the head sensor. 
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The model defined using the data from the base sensor 1 in the X-Axis and the  

head sensor in the Y-Axis are compared to the experimental data for test vehicle  

in Figure 4-3 and 4-4 respectively. 
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Figure 4-3: Model Response of Base Sensor 1 in the X-Axis Is Compared to the 

Experimental Data for Test Vehicle 
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Figure 4-4: Model Response of Head Sensor in the Y-Axis Is Compared to the 

Experimental Data for Test Vehicle 
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Four Figures above show that the system can be modeled properly. And similar 

results are obtained for the rest of the outputs as well. 

 

4.3.2 State-Space Form Identification 

 

According to the conversion formula  

 

1( ) ( )ssH s C sI A B D     (4.14) 

 

It is very easy to obtain the state-space form for the receptance transfer function. 

To make the problem easier, let us just think about the case of one mode and one 

output. In the case of one mode and one output, the dimension of the matrices 

are 2 2A  , 2 1B  , 1 2C  , 1 1D  . Matrix A, B and C are defined in equation (4.15), (4.16) 

and  (4.17), respectively. 

 

2

0 1

2n n

A
 

 
    

  ,               (4.15) 

 

 0
T

B b ,      (4.16) 

 

 0C c  ,                (4.17)          

0D  .      (4.18) 
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Therefore, by (4.14), ( )ssH s  is defined as   

2 2
( )

2ss
n n

c b
H s

s s 



 

.        (4.19) 

 

Recall that the receptance transfer function used to model the system can be 

expressed as  

2 2
( )

2 n n

R
H s

s s 


 
            (4.20) 

 

Obviously, transfer function (4.19) will be equivalent to (4.20) if 

 

 R b c  .                    (4.21) 

 
Case 1:  if B and D are defined as  

 

0

1

0

B

D

 
  
 



, (4.22) 

The C matrix will be  

 0C R ;              (4.23) 

 

Case 2: if B and D are defined as  
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0

0

B
R

D

 
  
 



, (4.24) 

The C matrix will be  

 1 0C  .              (4.25) 

 

Actually, case 1 is equivalent to case 2. In this thesis, we choose the case 1. 

 

For the test bench, the complete model with 22 modes and 9 outputs can be easily 

obtained as follows: 

2
1 1 1

44 44

2
22 22 22

0 1
0

2

0 1
0

2

n n

n n

A

  

  



  
     

  
 

   
   
  

     

 

 

                            44 1 0 1 0 1
T

B                                  (4.26)    

 

                          

1 1 1 22

9 44

22 1 22 22

0 0

0 0

R R

C

R R

 



 

   
        
        
        
    

 

0D  . 
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For the test vehicle, the complete model with 24 modes and 9 outputs can be 

easily obtained as follows: 

2
1 1 1

48 48

2
24 24 24

0 1
0

2

0 1
0

2

n n

n n

A

  

  



  
     

  
 

   
   
  

     

 

 

                            48 1 0 1 0 1
T

B                                  (4.27)    
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 


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   
        
        
        
    

 

0D  . 

4.4  Uncertainty Modeling 

 

Any mathematical representation (model) of a physical process needs 

approximations, which lead to model uncertainties. Due to these uncertainties, the 

nominal controllers may not stabilize or achieve the desired performance of the 

system. Hence, these uncertainties must be considered when designing the 

controllers. There are many ways to do the uncertainty modeling [18] such as 

additive uncertainty, output multiplicative uncertainty, and input multiplicative 
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uncertainty and so on. In this thesis, the parametric uncertainty based on three 

parameters n ,  and R is selected since it can offer good uncertainty bounds 

around the nominal model. Therefore, not only the controller needs to work for 

the nominal model but also for the new models with the uncertainty. However, the 

disadvantage of working for the model with uncertainty is that the performance is 

also decreased. This is also the tradeoff problem between robustness and 

performance. 

 

4.4.1  Parametric Uncertainty 

 

For the uncertainty problem, we only need to consider the worst case of the 

uncertainty, i.e., the maximum absolute values of uncertainties. Therefore, we are 

going to find uncertainty bounds on the modal parameters, n ,  and R for the test 

bench and the test vehicle. The frequency response of the system with parametric 

uncertainty can be represented by equation (4.28)  

 

2 2
( )

( ) 2 ( )( )
n n

R

n n

R
H j

j  


       




    
  (4.28) 

The variables
n

 ,  and R are the parameter uncertainties or perturbations and 

could be positive or negative. Obviously, there must be a family of the perturbed 

models called F due to different values of
n

 ,  and R . How large the perturbed 

family depends on the perturbation bounds. The set of the frequency responses of 

( )F j  is denoted as  
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 max, max, max2 2
: ( ) ,

( ) 2 ( )( ) n n

n n

R
R R

n n

R
F F j
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      
       


    

    

(4.29) 

The objective is to find the family ( )F j or max,n
 max, and maxR . Assume that 

all possible behaviours of the physical system are denoted as P . Ideally, set 

F should describe all of P  and P should be a subset of F . However, we only 

have finite number of experimental data and it is impossible to know the whole P .  

Therefore, in this thesis, the way to solve this problem is to find a family of 

perturbed models F which can describe most of the experimental frequency 

response within some tolerance. Since it is not possible to compare the 

experimental response to all behaviours in F (jω), we divide F to a finite number 

of subsets denoted by Fs  by choosing proper step size, and then Fs  is used to 

compare to experimental response E . Since the number of Fs  is finite, it is 

impossible to perfectly match the experimental responses and sampled perturbed 

response Fs . A trial and error method is used to minimize the error between each 

frequency response denoted by Fk(jω)  in family of Fs  and experimental response 

denoted by Ei(jω). The error is computed using 2-norm and the best response 

denoted by Fmin(jω) is the one which has the minimal error with the experimental 

response Ei(jω). The minimization equation is as follows: 

 

2
{ ( ) ( ) , 1,..., }i nMinimum E j F j n N   , N: the number of the candidate family 

 (4.30) 
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The minimum error is used to decide if Fmin(jω) is close enough to Ei(jω). A good 

step to define the proper minimum error is by starting with very small bounds
n

 , 

 and R  . With small bounds, no Fk(jω)’s may be able to represent the physical 

behavior of the system. Then, bounds should be increased and the minimum error 

is computed again. This step is repeated until the minimum error does not have a 

big change and the error will be regarded as an acceptable value. Once an 

acceptable error is obtained, the uncertainty bounds of three parameters for 

experimental response Ei(jω) are defined by min
expn i  , min

exp i  and min
expR i , and 

the acceptable model is defined as  

 

min
Re

min min 2 2 min
exp exp

( ) : ,
( ) 2 ( )( )

n n

xpi

n i i n

R
F j

j  



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


    

 (4.31) 

 

All possible behaviours of the physical system for the particular Ei(jω) can be 

represented by equation (4.32) in the following: 

 

exp

min min min
exp exp exp2 2

( ) : ,
( ) 2 ( )( ) n n i

n n

R
i i i R R

n n

R
H j
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       


   

    

 (4.32) 

 

The above procedure is repeated for all experimental responses Ei(jω) , i =1,…,M. 

The best uncertainty bounds for all M experimental responses are expressed in 

(4.33), (4.34) and (4.35). 
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min
max exp

1,...,n n i
i M

Maximum  


 , (4.33) 

min
max exp

1,...,
i

i M
Maximum  


 ,   (4.34) 

min
max exp

1,...,
R R i

i M
Maximum 


  .  (4.35) 

 

In order to reduce the number of comparisons between Fk(jω) and Ei(jω), we 

perform the above procedures mode by mode as in the curve fitting algorithm. 

Step size must be adjusted in the course of simulations. If the step size is too big, 

it will be hard to obtain an exact uncertainty bound. If the step size is too small, it 

takes a long time to simulate. Therefore, it is very important to find a balanced 

step size between accurate result and simulating time. 

 

By applying this algorithm on the test bench, the uncertainties obtained for the 

natural frequencies, damping ratios and gains are 0.5%, 2%, and 3%, respectively. 

The uncertainties for the test vehicle are 0.5%, 0.9% and 0.9%. 

 

 

4.4.2  Augmented State-Space Model 

 

 

There exist several ways to include uncertainty to the nominal model, however, 

linear fractional transformation (LFT) is chosen because small gain theory can be 

applied for this form in a straightforward manner.  
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From section (4.3.2), we know that the nominal model for single mode and single 

output can be defined as 

 

1 1
2

2 2

1

2

0 1 0

2 1

[ 0] .

n n

x x
u

x x

x
y R

x

 
      

              
 

  
 




    (4.36) 

 

The parameters with their uncertainties are  

 

                                                 
n nn n n         

                        (4.37) 

                                                  R RR R R    

 

where n   and R  are nominal values,
n

 ,  and R  are parameter uncertainty 

bounds and  absolute values of 
n

  R  and  are less or equal to 1, i.e. 1x  . 

In order to embed the parameter uncertainties into the state space model and also 

reduce the order of the controller and make it easier to synthesize, a new 

uncertainty form can be represented as follows 

 

2 2

2 2 2

n n

n n

n n n

n n n

R RR R R

 

   

   

     



  

  

  

          (4.38) 
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However, the square may increase the uncertainty bound and further affect the 

robust controller design in Chapter 5. 

 

Two signals w and z are defined in equation (4.39) in order to include uncertainty 

into the nominal model. 

w z  , (4.39) 

with 

2 0 0

0 0

0 0

n

n

R



 

 
 

   
  

, (4.40) 

 

and  

1   . (4.41) 

 

Based on this, we can augment the model G as follows [16]: 

 

1 2

1 11 12

2 21 22

x Ax B w B u

z C x D w D u

y C x D w D u

  
  
  


 (4.42) 

 

More details about equation (4.42) are shown in the following: 
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 
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     
   

 

   (4.43) 

 

Thus, model G has four inputs (u and w) and four outputs (z and y), which is 

shown in Figure 4-5. 

 

Figure 4-5: Plant G(s) 

 

 

 

According to equation (4.39), the closed loop figure is shown as follows: 

 

2
n

w


n
w 

 

Rw  

u

2
n

z


n
z 

Rz

y 

 
 
     G(s) 
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Figure 4.6: Plant P(s) =  ( ), ( )uF G s s  

 

This transformation form is known as the upper LFT and has the following 

notation. 

 

 ( ) ( ), ( )uP s F G s s  , (4.44) 

 

With 1
22 21 11 12( ( ), ( )) ( ) ( ) ( )( ( ) ( )) ( ).uF G s s G s G s s I G s s G s        (4.45) 

 

For the test bench, there are 22 natural frequencies, 22 damping ratios and 198 

gains. Hence, there are 242 parameters and 242 uncertainties. The state space 

system has the following dimensions: 44 44, 44 243, 251 44, 251 243A B C D    . Since 24 modes 

for the test vehicle system, there are 24 natural frequencies, 24 damping ratios and 

216 gains, 264 parameters and 264 uncertainties. The dimensions of the state 

space system are 48 48, 48 265, 273 48, 273 265A B C D     

 
G(s) 

 
( )s

2
n

w


2
n

z


u y 

P

n
z n

w 
 

Rz
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Chapter 5 Robust Controller Design 
 

In this chapter, we use an output feedback closed-loop technique to reduce the 

vibrations of the suspension systems caused by the rough road surface. As we 

know, there always exist differences between the physical model and 

mathematical model. Thus, the controller design should not only attain a high 

level of performance for the mathematical model but also achieve the 

performance requirement for the physical system. The difference between these 

two models is called uncertainty, which can be represented in different types of 

uncertainty models. To achieve this goal, H-infinity and  -synthesis methods are 

introduced in this chapter. H-infinity and  -synthesis methods have been 

developed and considered as good choices for robust control of flexible structures 

such as vehicle suspension systems.  

 

In the following sections, we introduce the H-infinity and  -synthesis theory 

background and also its application to our design. 

 
5.1 H-infinity Optimal Controller Design 
 
 
5.1.1 H-infinity Theory 
 
 
 Since the H-infinity technique considers the nominal model and modeling 

uncertainty, a state-space equation (5.1) is used to represent the whole system [17]: 
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1 2

1 11 12

2 21 22

x Ax B d B u

e C x D d D u

y C x D d D u

  
  
  


  (5.1) 

 

Where vectors d , u , e and y represent exogenous disturbances, control signals, 

regulated outputs and the measurements, respectively. 

 

The state-space description can be recast into the following transfer matrix form: 

 

11 12 1 2

1 11 1221 22

2 21 22

( ) ( )
( )

( ) ( )

P s P s B BA
P s

C D DP s P s

C D D

 
         
 
 

 (5.2) 

 

The block diagram can be shown in Figure 5-1. 

 

Figure 5-1: System Diagram with Robust Controller ( )K s  

 

In my system design, the output e represents the displacement of the suspension. 

Our goal is to reduce the magnitude of e when disturbance d  is applied to the 

system. The closed-loop transfer function from the disturbances to the error is edT . 

    P(s) 

 K(s) 

   d   e

u  y
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To prevent a saturation of the actuators, we should also limit the control signalu . 

edT  can also be written in lower LFT form such as  

( , )ed LT F P K . (5.3) 

 It can be shown using simple algebraic manipulations that the LFT equation is 

given by: 

1
11 12 22 21( , ) ( )LF P K P P K I P K P   . (5.4) 

The goal of H-infinity controller design is to design a stable controller ( )K s to 

minimize the H-infinity norm of the closed-loop transfer matrix, i.e., to minimize 

 

( , )ed LT F P K
 
 .  (5.5) 

 

The H norm of a transfer matrix is the maximum of its largest singular value 

over all frequencies. 

 : sup ( )T T j


 






      (5.6) 

And it can also be defined as the maximum power gain of the system. 

 

5.1.2 Suboptimal Controller 

 

Since the optimization of equation (5.5) is very difficult to compute theoretically 

and numerically, instead, most software solutions use a suboptimal controller 

design. The general way for computing H  output feedback controllers is 

formulated in the following way: 
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Given a reasonable value of , compute a controller K  such that ( , )LF P K  . 

The value of   is kept updating by iterative bisection procedure until reaching an 

acceptable error scale.  

 

We could approximate the equation 5.2 as:  

 

1 2

1 12

2 21

( )
0

0

B BA
P s

C D

C D

 
 
 
 
 
 

. (5.7) 

 

In order to simplify the computation, 11D and 22D  are assigned to zeros. 

 

We also define two Hamiltonian Matrices [18]: 

 

2
1 1 2 2

1 1

:
A B B B B

H
C C A

   

  

 
    

,  (5.8) 

 

  
2

1 1 2 2

1 1

:
A C C C C

J
B B A

   

 

 
    

.  (5.9) 

 

It is assumed that 

1. The pair  1,A B  is stabilized and the pair  1,A C  is detectable, 

2. The pair  2,A B  is stabilized and the pair  2,A C  is detectable, 
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3.    12 1 12 0TD C D I , 

4. 1
21

21

0TB
D

D I

   
   
  

 

 

The H controller theorem states that there exists an admissible controller such 

that zwT 

 if and only if the following three conditions hold [18]: 

 

1. ( )H dom Ric  and : ( ) 0X Ric H   ; 

2. ( )J dom Ric  and : ( ) 0Y Ric J   ; 

3. ( )X Y    (The spectral radius of the product X Y  ) 

 

When these conditions hold, one such controller is  

 

^

( )
0opt

A Z L
K s

F
  



  
 
 

.  (5.10) 

Where 

^
2

1 1 2 2

*
2

*
2

2 1

:

:

:

: ( )

A A B B X B F Z L C

F B X

L Y C

Z I Y X





 
    

 

 

 
  

   

 

 

 

     (5.11) 

 

The schematic diagram for the H-infinity closed loop can be shown in Figure 5-2: 
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Figure 5-2: H-infinity Controller in Closed Loop 

 

From Figure 5-2, we can see that H-infinity controller can internally stabilize the 

plant ( )P s  with the uncertainty ( )s , i.e. ( )K s  tries to minimize
1 1z wT


. However, 

( )K s  is only able to achieve the nominal performance but not robust performance, 

this is because it tries to minimize 
2 2z wT


which does not include any 

uncertainties. As we know, the goal is to minimize 

 1 1

2 2

( ), ( ) 1L

w z
F P s K s

w z 


   
    

   
 . Obviously, the ( )K s  not only makes 

1 1z wT


and 
2 2z wT


less or equal to 1 but also makes 

2 1z wT


and 
1 2z wT


less or 

equal to 1. Thus, H-infinity design makes the problem more conservative than 

necessary. This is also known as the Mixed-sensitivity robust H controller 

design problem. 

 

 

 

 

( )s

 
( )P s  

( )K s

1z

     2z  

1w

2w
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5.2  -synthesis Controller Design 

 

5.2.1   Analysis 

 

The structured singular value of a matrix is introduced as a tool which can be 

applied to analyze stability robustness with structured uncertainty in the frequency 

domain. The structured singular value of a complex matrix M  denoted  M  is 

defined in equation 5.12. 

 

_

1
( )

min{ ( ) : det( ) 0}
M

I M



 

   
, where   is structured uncertainty 

 (5.12) 

 

For each problem, this structure is different; it is dependent on the uncertainty 

 and performance objectives of the problem. If   were a full complex block, 

 M would be equal to the maximum singular value of M. If   were structured, 

 M would be upper bounded by the maximum singular value. Actually, the 

structured singular value is the reciprocal of the measure of the smallest 

perturbation   that destabilizes the system. 

 

The block structure n n    with n nM   is defined as  

 

  11 1: , , , , , : , j j

q

m m

s r q r l i jdiag I I                (5.13) 
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where 1 1, , , , ,q lr r m m  be positive integers such that 
1 1

S F

i j
i j

r m n
 

   .  

Function  is defined as 

 

  1
( ) : min : ,det( ) 0s s sM I M



            (5.14) 

 

With complex matrix n nM  and n n
  . 

 

( ) 0M   when no s makes det( ) 0sI M   . 

 

The framework for the structured singular value is the same as H-infinity design 

except that s is structured. The interconnection of inputs, output, uncertainties 

and controller is shown in Figure 5-3.  

 

Figure 5-3: Upper and Lower Linear Fractional Transformation for  -analysis 

 

 

 

( )s s

 
( )P s  

( )K s

1z

     2z  
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Robust stability with structured perturbation (Small-   theorem): 

 

Assume controller ( )K s is stabilizing for the nominal plant ( )P s . Then 

given 0  , the closed-loop system in the above figure is well-posed and 

internally stable for all s S  , s 


   if and only if 

 

   1
sup ( ), ( )LF P j K j


  






. (5.15) 

 

Normally, the structured uncertainty is normalized, i.e.  1  , the condition 

becomes  

 

  sup ( ), ( ) 1LF P j K j


  





. (5.16) 

 

 

As long as the condition (5.16) is achieved by  -synthesis controller design, the 

closed-loop system will be robust stable for all s . 

 

Robust Performance with structured perturbation 

 

It is necessary to define a fictitious uncertainty p in order to achieve the robust 

performance requirement. The augmented   structure is defined as follows 
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0
{ : , }

0
z ds n n

sa P
P

 
        

 ,  (5.17) 

 

where P  is a fictitious uncertainty which connect performance outputs to the 

exogenous disturbance input and it allows us to transform the robust performance 

problem in an equivalent robust stability problem. The configuration is shown in 

Figure 5-4, and this is one of the differences between  -synthesis design and H 

infinity design. 

 

Figure 5-4:  LFT Form with Augmented Uncertainty 

 

By the theorem of Robust Performance with Structured Perturbation, we know 

that robust performance is achieved if and only if: 

 

( ) 0

0 ( )
s

p

s

s

 
   




 
( )P s  

 
   ( )K s  

( )sa s
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  sup ( ), ( ) 1LF P j K j


  





.  (5.18) 

 

The computation of   is a very difficult problem. For this reason, it is more 

appropriate to approximate   by its upper and lower bound. The computation 

procedure is as follows. 

 

Complex structured perturbation can be defined as one unit open ball such as 

equation (5.19) 

 : : 1B      . (5.19) 

Then ( )M can be expressed as  

 

( ) max ( )
s

s
B

M M    
  , (5.20) 

 

where  is the spectral radius. 

 

Finally the ( )M can be characterized by its upper and lower bound in (5.21), 

the proof can be found in reference [18]. 

 

_
1( ) ( ) inf ( )

D DU U
Max UM M DMD   


  , (5.21) 
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where U is defined as  : : nU U UU I   , and D is defined 

as
 

1 11 1 1,..., , ,..., , :
:

, 0, , 0

F F

i i

s m F m m

r r
i i i j j

diag D D d I d I I
D

D D D d d



 

    
       

 . 

 

Although equation (5.21) cannot express ( )M ’s value directly, the lower and 

upper bounds are very close to each other. Thus, we can roughly 

compute ( )M by this inequality expression, more details given in [18].  

 

5.2.2       -synthesis 

  

 -synthesis is the robust control design counterpart of the theory of analysis  . 

It is a control synthesis methodology designed to minimize the structured singular 

value of the augmented closed-loop system ( , )lF P K in Figure 5-4. The 

controllers designed by  -synthesis technique can work not only for robust 

stability but also robust performance.  -synthesis is the solution to an 

optimization problem, equation (5.22), based on the structured singular value 

instead of the maximum singular value used in H-Infinity technique. Therefore, 

the simulation results from  -synthesis would be less conservative than that 

from H . 

  
( )

min sup ( ), ( )LK s stabilizing
F P j K j


  


 (5.22) 
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Recall equation (5.21), the upper bound of  can be represented as 

_
1inf ( ( , ) )L

D D
DF G K D 


. Therefore, the optimization problem can be changed to  

 

  1min ( ), ( )LD D
DF P j K j D   


. (5.23) 

 

The ‘dkit’ function in the Matlab Mu-Analysis and Synthesis Toolbox is used to 

compute equation (5.23), and the process is also called D-K iteration. Implied by 

its name, D-K iteration proceeds by performing D and K minimization in a 

sequential fashion and the detailed procedure is the following [18]: 

 

 Initialize D  

 minimize ( , )LF P K


and finding the minimizing controller denoted by 

minK  

 minimize 1
min( , )LDF P K D     over D  pointwise across the frequency 

based on the minK computed in step 2, and finding a minD  

 Compare minD  with D . Stop if they are close enough, or return to step 2  
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5.3  Weighting Functions and Matlab Setup 

 

One of the most important steps in the robust controller design process is to 

choose proper weighting functions , , ,d e y uW W W W . The weighting functions are 

included for the following reasons [18]: 

 

 To constrain the magnitude of the input signals for actuator to avoid actuator 

saturation such as uW  

 To enforce closed-loop performance specifications such as eW  

 To represent the frequency contents of disturbances and noises such as dW  

 

To simplify our design, we only focus on the disturbance weighting function dW , 

performance weighting function eW  and control signal weighting function uW . The 

Matlab setup is the same for both test bench and test vehicle, and shown in Figure 

5-5. 
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Figure 5-5: Open Loop Connections with Weighting Functions 

 

In Figure 5-5, we can see that the dynamic shaker is used for both disturbance 

generator and actuator [15].   

 

Disturbance weighting function 

 

Since the disturbance used on the experimental test bench and vehicle is a white 

noise signal of 1000Hz with amplitude of 100 N, we regard dW as a low-pass filter 

amplifying signals up to 1000 Hz with a gain of 40 dB.  

 

Performance weighting function 

 

eW  is a bandpass filter amplifying the signal in the frequency range (60-1000Hz) 

which needs to be controlled. For simplying design, we used a low pass filter 

 
   
   G(s) 

dW  

uW

eW
+

+

w

d  

d

u 

z

u  

e  

y 

( )sa s  



 61

instead. It means that we are interested at frequencies below 1000 Hz. The gain is 

dependent on the problem and will be discussed later. 

 

Control signal weighting function 

 

uW is used to reduce the controller effort at higher frequencies and ensures that the 

actuator does not saturate. The frequency shaping typically depends on the 

actuator’s specification. As mentioned above, the actuator only functions up to 

1000 Hz.  

 

The weighting functions and plots of  , ,e u dW W W  are shown in the following: 

3 2 250

2 250eW
s






 


 (5.24) 
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Figure 5-6: Bode Plot of eW  
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Figure 5-7: Bode Plot of uW  
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Figure 5-8: Bode Plot of dW  
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The weighting functions , ,e u dW W W  might need to be relaxed by trial-and-error to 

trade off the performance with robustness. 

 

5.4 Simulations Results of H and  -synthesis Controller 

 

Simulink is used to perform the simulations for both test bench and vehicle. The 

closed and open loop Simulink diagram is illustrated in Figure 5-9. 
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Figure 5-9: Closed and Open Loop System for Simulations 
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In the simulation model of Figure 5-9, the white noise signal is used as the 

exciting signal working on the wheel spindle. A low-pass filter follows to 

suppress the high-frequency noise. So what should be the bandwidth? We 

determine the cutoff frequency of the low-pass filter by simulating road bumps in 

the next section. 

 

Road Bump Simulation 

 

Assume a vehicle riding on a rough road with the velocity of 100 km per hour. 

The vehicle passes over a rectangular bump every 0.125 second; hence, the 

distance between two bumps is 3.47 m. The height of each bump is 3.16 cm. 

These data are reasonable in reality. 
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Figure 5-10: Bumps on Rough Road in Time Domain 
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The signal in Figure 5-10 is shown in the frequency domain in Figure 5-11. From 

Figure 5-11, we find that most of the power spectrum lies below 170 Hz. Based 

on this, we designed a low-pass filter which filters out the noise at frequencies 

higher than 170 Hz, as shown in Figure 5-12. 
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Figure 5-11: Effect of Bumps on Rough Road in the Frequency Domain 
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Figure 5-12: Exciting Signal after Lowpass Filtering 

 

5.4.1 Test Bench Performance Analysis 

 

5.4.1.1 Simulation Results in Frequency Domain 

 

For convenience, the simulation results for only three sensors are shown in the 

following and all other six sensors have similar results. 
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Figure 5-13: Simulation With H and   Synthesis Controller for Test Bench 

(Base Sensor 1, X-Axis) 
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Figure 5-14:  Simulation With H and   Synthesis Controller for Test Bench 

(Base Sensor 2, Y-Axis) 
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Figure 5-15:  Simulation With H and   Synthesis Controller for Test Bench 

(Head Sensor, Z-Axis) 

 

From Figure 5-13, 5-14 and 5-15, we can see that a reduction up to 6 dB is 

achieved between 60-80Hz for both H  and  synthesis controller. In the 

frequency range of 120-200 Hz, the reduction of the H design is up to 5 dB but 

the reduction obtained with the  synthesis design is up to 7 dB. Thus, the 

 synthesis controller offers better performance than H . The common drawback 

of these two controllers is that they are not working for frequency range of 100-

120 Hz and over 210 Hz. 
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5.4.1.2 Simulation Results in Time Domain 
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Figure 5-16: Simulation with H Infinity Controller for Test Bench in Time 

Domain (Head Sensor, Z-Axis) 
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Figure 5-17: Simulation with   Synthesis Controller for Test Bench in Time 

Domain (Head Sensor, Z-Axis) 

 

Figure 5-16 and 5-17 show the simulation results in time domain for Head Sensor 

in Z-Axis. The plots in time domain show the results in all frequencies. Both H-

Infinity and  -Synthesis controllers are able to reduce the vibration amplitude up 

to 20 N. Our design is based on the frequency domain and only considers the 

resonant frequencies below 250 Hz so the plot results shown in the figures are not 

as good as the ones shown in the frequency domain. 
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5.4.2       Test Vehicle Performance Analysis 

 

5.4.2.1 Simulation Results in Frequency Domain 

 

Like the test bench case, only three simulation results are selected in the following 

and all other six sensors have similar results. 
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Figure 5-18: Simulation With H and   Synthesis Controller for Test Vehicle 

(Base Sensor 1, X-Axis) 
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Figure 5-19: Simulation With H and   Synthesis Controller for Test Vehicle 

(Base Sensor 2, Y-Axis) 
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Figure 5-20: Simulation With H and   Synthesis Controller for Test Vehicle 

(Head Sensor, Z-Axis) 
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From Figure 5-18, 5-19 and 5-20, we can see that a reduction up to 5 dB is 

achieved for H  and 3.5 dB for  synthesis controller between 60-110Hz. Both 

of these two controllers do not have much effect in the frequency range for 120-

190 Hz. Although a reduction of 3.5 dB by the  synthesis controller is not as 

good as the reduction of 5 dB by the H controller, the closed-loop response from 

the  synthesis controller can almost be the same or less than the open-loop 

response. On the other hand, the closed-loop response from H controller is 

almost always higher than the open-loop response. This shows again that the 

closed-loop system designed by  synthesis is more robust than that of 

the H controller design. In the range above 190 Hz, both of the controllers can 

effectively reduce the magnitude of the frequency response.  The common 

drawback of these two controllers is that they are not working well for the 

frequency range of 110-140 Hz.  
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5.4.2.2 Simulation Results in Time Domain 
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Figure 5-21: Simulation with H Infinity Controller for Test Vehicle in Time 

Domain (Head Sensor, Z-Axis) 
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Figure 5-22: Simulation with   Synthesis Controller for Test Vehicle in Time 

Domain (Head Sensor, Z-Axis) 

 

Figure 5-21 and 5-22 show the simulation results of the test vehicle in time 

domain for Head Sensor in Z-Axis. The plots in time domain show the results at 

all frequencies. Both H-Infinity and  -Synthesis controllers are able to reduce the 

vibration magnitude up to 20 N. The same reason as test bench, our design is 

based on the frequency domain and resonant frequencies below 250 Hz are 

considered, therefore, the plot results shown on Figures are not as good as the 

ones shown in the frequency domain. In addition, since the order of the test 
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vehicle dynamics is higher than that of the test bench system, it is hard for the 

controller to achieve better performance for the test vehicle. 

 

5.4.3        Verifying Robust Control Theory 

 

As we said, a robust control system must trade off performance with robustness 

due to the plant uncertainties, i.e., the more robust the controller is, the worse the 

performance it is able to achieve. Thus, we have to find a balance between them 

in reality. This trade-off is verified by comparing Figure 5-18 with 5-23. These 

two figures are plotted for the same output sensor of test vehicle, and the 

difference is that less robustness is required in Figure 5-23. Therefore, it is very 

easy to find out that Figure 5-23 provides less robustness but better performance. 

In contrast, Figure 5-18 provides more robust but worse performance. How to 

choose the balance really depends on the actual control problem. 
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Figure 5-23: Simulation with H and   Synthesis Controller for Test Vehicle 

with a Higher Performance Requirement (Base Sensor 1, X-Axis) 

 

By observing the simulation results, we can also see that the  -synthesis 

controller is working better than the H Controller at most frequencies. However, 

in some small frequency range, the -synthesis controller is working worse than 

the H Controller. This may be because our system is large as it is of order 22 for 

the test bench and 24th order for the test vehicle. Adding the order of the weighting 

functions, unexpected numerical results may have appeared when doing the D-K 

iteration process.  
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Chapter 6 Conclusion and Future Work 

 

6.1   Conclusion 

 

In this thesis, two experimental equipments are modeled by the modal parameter 

identification. Both of them are single input nine outputs mechanical systems and 

the nine vibration transmission paths from input to outputs are independent to 

each other, thus, the modeling is done like nine different single input single output 

systems. The modal parameters include three parts: natural frequency, damping 

ratio and output gains for each output. These parameters are computed by 

minimizing 2-norms of the errors between the models and experimental frequency 

response.  

 

Parametric uncertainty is applied to model the difference between the model and 

the physical process. Perturbation of each parameter, i.e. natural frequency , 

damping ratio   and output gain R , is obtained by similar method to nominal 

plant modeling.  Afterwards, the nominal model is augmented by including the 

parametric uncertainties. The goal of this step is to ensure that the augmented 

model include all of the physical behaviors of the true plant. 

 

Two kinds of robust controllers have been designed to achieve both robustness 

and performance requirements. The first controller is designed by H-infinity 

technique and computed by the Matlab command ‘hinfsyn’ from Matlab toolbox. 

The second one is designed through  -synthesis technique and computed by 
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Matlab command ‘dkit’. An important procedure in this step is to find proper 

weighting functions to describe performance specifications, represent the 

frequency contents of disturbances and constrain the magnitude of the input 

signals for actuator to prevent actuator saturation. Usually, the weighting 

functions can be determined once, and need many trials to release and find a 

balance between robustness and performance.  

 

Simulation results in both frequency and time domains are shown by running 

Simulink in Matlab. For test bench, the H-infinity controller can reduce the 

magnitude of vibrations up to 5 dB and the reducing of  -synthesis controller is 

up to 7 dB in frequency domain. As expected,  -synthesis controller can achieve 

a better performance than H-infinity controller. For test vehicle, a reduction up to 

5 dB is achieved for H  and 3.5 dB for  -synthesis controller between 60-

110Hz. Since the order for test vehicle is very high and some unexpected results 

could appear when doing D-K iteration process. This is one of the reasons which 

make the  -synthesis controller have the worse performance than H-infinity 

controller. However, Figures 5-18 and 5-23 also show that  -synthesis controller 

can achieve a better performance by adjusting the weighting functions but the 

disadvantage is that the controller becomes less robustness. In time domain, the 

performance of both H-infinity and  -synthesis controller is not as good as that 

in frequency domain since the design is based on the frequency domain and only 

the low frequency range is considered. 
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6.2 Future Work 

 

Modeling and controller design for other three suspension systems should be 

finished. Since the structure of back two suspensions are different from the front 

ones, based on my experience, more modeling work might be needed for them. 

 

Disturbance and control signals are co-located in this thesis, however, this is not 

realistic and more ideal model is to use independent actuators for each 

suspensions. In this case, new transmission paths from input to actuator to output 

sensors should be modeled and the G(s) in Figure 5-5 should be a transfer matrix 

with a dimension two by one.  

 

Once the experimental car is finished setting up, the experiments can also be done 

to further verify the effectiveness of controllers on the real system.  As far as I can 

think, the factor of time delay must be considered.  

 

This thesis proves that H-infinity and  -synthesis robust controllers can achieve 

an acceptable tradeoff between robustness and performance for vehicle 

suspension systems. However, it still needs more efforts to make them work more 

effectively on the real system. 
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