
•

•

•

PARALLEL PROCESSING AND THE DYNAMICS
AND KINEMATICS OF A THREE DEGREE OF

FREEDOM PLANAR MANIPULATOR.

Ahmcd Helmy

B.Sc. Alexandria University 1980

Department of Mechanical Engineering

McGilI University, Montréal

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Masters in Engineering

Jan uary 1994

© Ahmed Helmy


~~~~~f~~'f~9q~~~!~g ~~p. !,ff.~ <RY~~M!9~ 
J OF A PLANAR MANIPULA.TOR. 

~'f 7t-/~ ft > 7 '~"'j)t--f".,., ~f( Lt'i 41l.fL(L('~l{/'-d:" ,;;'$ 51 

Ahmed Helmy 

B.Sc. Alexandria University 1980 

Department of Mechanical Engineering 

McGill University, Montréal 

93 

A thesis submitted to the Faculty of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 

M asters in Engineering 

Ma.rch 1994 

@) Ahmed Helmy 



• 

• 

• 

--------

Abstract 

The application of a parallel processing system (hardware and softwaf(~) in the solut.inll of 

the kinematics and dyuamics to control a thrce dCglCC of frccdolll parallcl lIlaniplllalor is 

the subject of this thesis. 

ParaUel processing systems are introduccd and analysC'd for this c1ppllicatiOl •. A pa.reLlIe! 

rnicrocomputer system is used and a new method of direct kincmatiC:i for displa('(·uwnt. 

analysis is implemented. The selected microcomputer sy i.,~m Îs intcgrat.eo il! an IBM 280 

compatible personal computer . 

Finally, a parallel softwaL'e program Îs implernented, which allows for efficient control of 

three actuators driving the three degree of freedom phnar manipulellor. Helice, int./'odllcillg 

a new processing rnethod for the control of this manipulat.or . 

11 

----------------------------------------------------------~--------------_.-------



• 

• 

• 

R ' , 
eSU.nle 

~ 1 .. 

L'applicat.ion d'un système à processus parallel (materiel et logiciel) dans la dynamique 

el la cynérnatique pour le contrôl d'un manipulateur a trois degré de liberté représente l'objet 

de cette thèse. 

Les systèmes à processus parallel sont introduit et analysé pour cette application. Un 

système parallel de microordinateur est ui,ilisé et une nouvelle méthode de dynamique direct 

pOUf l'analyse des déplacements est implementé. Le système de microordiIlateur est integré 

da.ns un IBM 286 compatible. 

Un logiciel parallei qui permet un contrôl éfficace des méchanismes qui communiquent 

le mouvement au manipulateur à trois degré de liberté est impleme.nté. Il represente une 

nouvelle méthode de contrôl du manipulateur . 

111 



• 

• 

• 

/' ", 
)' 

Acknowledgernents 

1 ~I)illd like to express my deepest gratitude and apprcciation (,0 Prof Cf ior P. Z. Murray 

and Professor L. J. Vroomen, for their excellent guidance and thcir hdp :n dcvcloping Illy 

abilities of clear, rational thought and disciplined rcsearch. 

1 would like to express my thanks to aIl my fellow studcnt.s in the robotini group al. 

MCRCIM with whom 1 spent a very good time. Also 1 would like 1.0 cxpress my Wilrlll t.hanks 

to Sophia Kounias, MCRCIM staff and computer ,;ysterns administrat.ion for IlUlllt'I'OIlS dis­

cussions on various topies related to the subject of this research work . 

1 am also grateful to Illy wife, Lila Madour for her underslanding, pat.i('I)(·(" cnCOIII­

agement and moral support throughout the course of my graduat.e study and for I.ranslal.ing 

the abstract of this thesis into French. 

Finally, 1 acknowledge the partial financial support from the J)cpartlIH'nt. of M(~dlélllicili 

Engineering through teaching assistantships. Furtherrnore, this research was made possihl(~ 

by NSRC (Natural Science and Engineering Research Council) Grant. No. A~219 and pat t.ial 

funding from IRIS (Institute for Robotics and Intelligent Systems) . 

IV 

f 
c 

f 
Î 



• 

• 

• 

List of symbols 

7': 

m: 

n: 

a.: 

Ct: 

0" t· 

c.: 

wt : 

w.: 

Ct: 

.. 
C. : 

Humber of movable rigid bodies. 

number of one-degrec of-freedom joints. 

number of degrccs of freedom of the system. 

The vedor connecting t.he ith joint Di to one of its neighboring joints. 

the center of mass of the ith link. 

The position vector of 0" in the X-Y frame. 

The position vector of C" in. the X-Y frame. 

Scalar dcnotes the angular velocity of the ith link. 

Scalar denotes the angular acceleration of the ith link. 

3-D vclocity vector of the center of mass of the ith body. 

3-D acccleration vector of the center of mass of the ith body . 

m,.: mass of the ith body. 

Ii: 3 x 3 inertia tensor of the ith body about its center of mass. 

ft: 3-D vector of the incrtia force of the ith body at its mass center. 

n;: 3-D vcctor of the incrtia moment of the ith body about its center of rr ass. 

w;: 6-D vcdor of the inertia wrench of the ith body. 

Tf: a 3-D vector friction torque acting on the ith joint. 

w!: 6-D vcctor of the friction wrench of the ith body. 

w;: 6-D vector of the gravit y wrench of the ith body. 

T.: a 3-D vcctor gcneralized deriving torque of the ith actuated joint. T, is a torque if the 

it.h joint. is rcvolute and a force if the ith Joint is prismatic. 

v 



• 

• 

• 

Ta: a 3-D vector generalized driving torque of thc wholc manipulator. 

n: is the twist-constraint matrix, which is of dimcnsion 18x21 and configmat.ion-dq)(·lld(·t.t.. 

0: is a 3 x 3 zero matrix, 

VI 



• 

• 

• 

Contents 

Abstract 

Résumé 

Acknow ledgements 

List of symbols 

1 Introduction 

2 

1.1 Parallel :>rocessing . . . . . . . . . . . . . 

1.1.1 Pn.rall':!l processing architectures 

1.1.2 Transputer-based architectures 

1.1.3 Transputer networks .. 

1.1.4 Reconfigurablc networks 

1.2 Kinl.!matics and dynamics of a planaI' 3-DOF ParaUel Manipulator 

1.3 Sllmmary ... . . . . . . 

1.'1 Organization of the Thesis 

The Transputer Architecture 

2.1 General description . . . . . 

2.1.1 Transputer support for concurrency 

2.1.2 

2.1.3 

Transputer communication . 

Transputer timer ..... 

VIl 

11 

iii 

iv 

v 

1 

1 

2 

7 

7 

9 

11 

12 

13 

16 

16 

18 

19 

21 



• 

• 

• 

2.1.4 The IMS T425 features and ovcrvicw ..... 

3 Introduction to the Transputer Language HOccam" 

3.1 Concurrency . 

3.2 Occam 

3.2.1 Processes 

3.2.2 Process sequences 

3.2.3 Parallel processes 

3.2.4 Arrays of proccsses 

3.2.5 Channel protocols . 

3.2.6 Tim~rs . . 

3.2.7 Placement 

4 Kinematics and Dynamics of the manipulator 

4.1 Direct kinematics analysis 

4.1.1 Joint Coordinates . 

4.1.2 Displacement analysis 

4.1.3 Velocity and acceleration analyses 

4.2 DynaIPics analysis ... 

4.2.1 Inverse Dynamics 

5 System integration 

5.1 Hardware integration 

5.1.1 Module architecture 

5.1.2 IMS B404 TRAM .. 

5.1.3 Integrating the B008 into the host personal computer 

5.2 Occam software integratior. strategy . 

5.2.1 Software examples ..... . 

5.2.2 Running the control program 

5.2.3 Technical considerations of the control program 

Vlll 

. ~2 

2,' 

.,~ _1 

.)~ _1 

~s 

~9 

~!) 

:n 
:I::~ 

:H 

:~!i 

38 

'10 

,10 

t12 

Il !J 

;'2 

;'2 

58 

!)!) 

fiO 

(;2 

(j11 

G7 

70 

77 

80 



• 

• 

• 

6 Performance 

6.1 The Whetstone benchmark . 

6.2 The Savage benchmark . . . 

6.3 The Dhrystone benchmark 

6.1 The implementcd parallel architecture performance experiment . 

6,4.1 Introduction..... ..... 

6.4.2 The simulation test program . 

7 Conclusions 

7.1 Suggestions for future research . . . . . . . . . . . . . . . . . . . . . . . . . . 

Bibliography 

Appendices 

A Schemes of N umerical Methods 

A.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B Program listings 

B.1 

8.2 

C Program subroutines overview 

C.l 

C.2 

C.3 

C.4 

C.5 

C.G 

C.7 

C.8 

C.9 

IX 

86 

86 

87 

88 

88 

88 

89 

93 

94 

95 

101 

101 

101 

102 

102 

140 

142 

142 

142 

143 

143 

143 

144 

144 

144 

144 



• C.lO 144 · · · · · · · · · · . . 
C.ll · · · · · . · · . 145 

C.12 · · · · · · · · . 146 

C.13 · · · · . · 146 

C.14 · · · · · · · · . . 146 

C.15 · · . · · · · · · · 146 

C.16 · · · · · · · . . · · · 147 

C.17 · · · · · · · · · 147 

C.IS · · · · · · · · 147 

D Peroformance Angle and Torque data 148 

D.I · · . · · . · · · · · 148 

D.2 · · · · · · . · · · 155 

• 

• 
x 



• 

• 

• 

List of Figures 

1.1 Flynn 's classification 3 

1.2 Memory topologies . 5 

1.3 Transputer networks 8 

1.4 Dynamic switching . 10 

1.5 A planar parallel manipulator 12 

2.1 Transputer architecture. 17 

2.2 Linked process list ... 18 

2.3 Link data and acknowledge formats 20 

2.4 Overlapped link acknowledge . 21 

2.5 IMS T425 block diagram . . . 22 

3.1 Host-server model: the host is connected to the transputer network by a single 

link ................... 24 

4.1 A 3-DOF Planar Parallel Manipulator 

4.2 Joint coordinates of the 3-DOF Planar Manipula.tOt' .. 

4.3 Position vectors . . . . . . . . . . . . . . . . . . , . . 

4.4 The dimensiona! notation of our 3-DOF Parallel Mani.pulator . 

4.5 Example of configuration solution branches. 

4.6 The system aCter the virtual cut ...... . 

4.7 The coupler curve of a four-bar linkage branches .. 

4.8 Dynamics analysis notations ..... . 

5.1 Block diagram of the complete project 

5.2 TRAM geometry . . . . . . . . . . . . 

Xl 

38 

41 

42 

43 

45 

46 

48 

50 

59 

60 



• 5.3 B008 block diagrarn. . 63 

5.4 B008 switch settings 64 

5.5 Manipulator control scherne 67 

5.Po Occam program flow chart . 68 

5.7 JOTRAJ and FORCE inner-structure . 70 

6.1 The 3-DOF Parallel Manipulator ... 89 

6.2 First joint. (a) Angle 01 versus time (b ) Torque versus time .. 91 

6.3 Second joint. (a) Angle O2 versus tirne (b)Torque versus tirnc. 91 

6.4 Third joint. (a) Angle 03 versus tirne (b)Torque versus timc .. 92 

• 

• 
XIl 



• 
List of Tables 

3.1 Occam and hardware addresses of link control words 36 

5.1 TRAM pinouts ...... 61 

5.2 TRAM subsystem pinouts 61 

5.3 INMOS TRAMs ...... 62 

5.4 The available DMA channel settings ' .. 64 

5.5 The available Interrupt channel settings . 65 

5.6 The available B008 address settings . . 65 • 5.7 The available B008 link speed settings 66 

6.1 Single-Precision Whetstone benchmark results 87 

6.2 Double-Precision Whetstone benchmark results 87 

6.3 Comparative Savage benchmark results ... 87 

6.4 Comparative Dhrystone benchmark results . 88 

D.1 Joint 1, 2 and 3 output angle data ...... 149 

0.2 Joint 1, 2 and 3 output angle data (continued) 150 

0.3 Joint 1, 2 and 3 output angle data (continued) 151 

0.4 Joint 1, 2 and 3 output angle data (continued) 152 

0.5 Joint 1, 2 and 3 output. angle data (continued) 153 

0.6 Joint 1, 2 and 3 output angle data (continued) 154 

0.7 Joint 1, 2 and 3 output torque data . . .... 156 

0.8 Joint 1, 2 and 3 output torque data (continued) 157 

0.9 Joint 1,2 and 3 output torque data (continued) 158 • 0.10 Joint 1,2 and 3 output torque data (continued) 159 

xiii 



• 

• 

• 

D.ll Joint 1,2 and 3 output torque data (continued) 

D.12 Joint 1, 2 and 3 output torque data (continucd) 

XIV 

160 

161 



• 

• 

• 

Chapter 1 

Introduction 

1.1 ParaHel processing 

Thcre appears to he an unwritten rule which .,tates that whenever a new program is debugged 

and running, som(:one always asks how it can be made to run faster or process more data. 

This demand for more processing power stems from systems designers having to meet ever 

higher performance requirements. Advances in technolcgy enables sens ors to acquire more 

data and algorithms get more sophisticated which demand higher performance computers. 

The conventional approach in the quest for higher performance has been to push the 

specd of sequential, or Von Neumann, architectures by using more advanced technology. 

An alternative to sequential processors is to develop parallel architectures wi~h data and 

algorithms being distributed over many processors. This approach offers crders of magnitude 

il1lprovcment in usable processor complexity by multiple repli cation of simply connected 

proccssors and memory elements and utilizing exist;'1g Very Large Scale Integration (VLSI) 

technology. 

The transputer (chapter 2) and its programming language, occam- (chapter 3), have 

bcrll designcd specifically to support multi-processor systems. Any number of transputers 

can CorrTI a network to build multi-processor systems. The performance is scalable giving a 

1 



• 

• 

• 

CHAPTER 1. INTRODUCTION 2 

substantial increase in performance as more processors are added to the net.work. 

Assuming that hiological systems got it right a few million years ago by cvolving highly 

paraUel nervous systems then highly parallel Multiple Instruction Multiple Dat.a. (MIMI)) 

architectures will hé:we significant advantages over other archit.ectures. MIM D IlUl( hin('s, snch 

as transputer systems, have the potential of high performance wilh the nexibility to suit a 

wide range of applications. Compared to single proccssor machines, hoUl prograllllllillg and 

control is more complicated in MIMD architectures. In the fol1owing chapt.('rs, W(' <ksCl ibe 

the transputer and its programming environment and show how il can be applied to li\(, 

computation of the dynamics éLnd kinematics necessary to control a 'l'Ince Degrcc of FJ ccdom 

ParaUel Manipulator. 

1.1.1 Parallel processing architectures 

Processors can he connected together in many ways to produce a wide variety of parallel 

processing architectures. Similarly, a variety of methods, or para<Jigms, have evolved to 

program these machines. Transputers can be used in many different topologies a.nd it Îs 

helpful to consider the different classes of architectures. Parallcl architectures are COHlIllOllly 

grouped according to Flynn's taxonomy [16], shown in figure 1.1, as: 

1) Multiple Instruction-stream Single Data-stream (MISD): seve raI processors simlllta.llc­

ously execute different instruction streams on a single data stwam. A pipeline system 

is a typical example of a MISD architecture. 

2) Single Instruction-stream Multiple Data-stream (SIMD): several processors simultane­

ously execute the same instruction on multiple data streams, such as Array Processors. 

3) Multiple Instruction-stream Multiple Data-stream (MIMD): in this case, (!ach processor 

may he simultaneously performing different instructions on different data . 



• 

• 

• 

CIIAPTER 1. INTRODUCTION 3 

Instruction Stream 1 
Cont roI Unit 1 Arlthmetic Processor 1 

Instruction Stream 2 
Cont roI Unit 2 1------...... Arithmetic Processor 2 

Instruction Stream n 
Control Unit n Arithmetic Processor n 

a) MISD-Multllo-Ie Instruction-stream Single Data-stream 

Data stream 1 
Ari thmetic Processor 1 

Data stream 2 
Arithmetic Processor 2 

Instruction Stre m 
Control Unit 

Data stream 3 
Arithmetic PrOl'essor n 

b) SIMD-Single Instruction-stream. Multiple Data-stream 

Instruction Stream 1 Data stream 1 1------...... Arithmetic Processor 1 Cont roI Uni t 1 

Instruction Stream 2 Data stream 2 
Control Unit 2 Arithmetic Processor 2 

Instru::tion Stream n Data stream 3 
Control Unit n Arithmetic Processor n 1+---

c) MIMD-Multlple Instruction-stream. Multipl' Data-stream 

Figure 1.1: Flynn 's classification 

MISD machines: 

MISD or pipeline machines are based on the partitioning of a complete algorithm into tasks 

that cach can be executed sequentially. Such a machine consists of elementary processors 

cach assigned to a task that is executed in parallel with other tasks in the other processors . 

Data is passed into a pipeline of processing stages. Within each stage the same operation is 



• 

• 

• 

----------

CHAPTER 1. INTRODUCTION 

performed on every element of the data with different stages operating on the dat.a sequŒ­

tially. Once the pipeline has been filled, each cycle produces a ncw rcsult irrcspcctivc of tlll' 

number of stages in the chain. The machine operates at the specd of the slowest proccssor 

and therefore effective partitioning of the algorithm is esscntial, as t.he slow('st, proc('ssor 

forms a bottleneck. MISD machines have the advantage of having rcglliar inl.ercollllcds 

between stages and are relatively easy to program. 

SIMD machines: 

The SIMD architecture consists of an array of identical proccssing clements (PEs), all op­

erating under the control of a single control unit. Ali PEs cxccute the saille prognuH in 

synchronism (lock-step) but on different data. The PEs arc llslIally connc('t,<'d in a t,wo di­

mensional array, each with its own local mcmory and with a ncarest neighbor COllnectioll 

network. In the majority of SIMD machines the PEs are I-bit arithmet.ic IInits (ALUs) with 

data paths being I-bit wide. This feature makes them eminently sllitable for impleJ1lcnlatioll 

where a simple cell can be replicated many times. 

An array of transputers cau be connected in a manner similar to SIM)). In ot.her wl)f(ls 

transputers can be connected to form a two-dimensional network wherc cach t.rans»ut.er 

executes a program block rather than a single instruction, with synchronization occllrrillg al. 

the end of each block. The term Single Program Multiple Data (SPrMD) has been coinecl 

for this mode of operation. 

MIMD machines: 

A MIMD machine is characterized by a set of independent proccssurs, cxecu ti/lg differcllt 

programs and communicating with each other. The proces::,ors invariably have sorne local 

memory, also have either access to common shared memoryor acccss to each other's rnemory, 

as shown in figure 1.2. The interconnection network may be fixed or non-fixed (swit.clJed). 

MIMD processors offer the promise of highly flexible architectures. U nt.i1 recently, 

they have been difficult to program efficiently and are orten used in a pseudo SIMD mode 



• 

• 

• 

ClIAPTER 1. INTRODUCTION 5 

SHARED ME MORY 

INTERCONNECTION NETWORK 

a) Shared Memory 

INTERCONNECTION NETWORK 

b) Local Memory 

Figure 1.2: Memory topologies 

(SPrMD) wherc aIl processors execute the same program. Transputers can be used in local 

memory MIMD architectUl/.; machines as shown in figure 1.2(b). 

More on architectures: 

Although Flynn 's classification is useful, it is not exhaustive. Systolic architectures are 

special-purpose architectures consisting of simple processors or ceUs locaUy and regularly 

int.crconnectcd. Data streams flow through these cells in such a way that they interact at 

cach connection. They can use both pipeline and parallel concepts. Again, an analogy 

with biology, where the word systol describes the heart contraction rhythm to pump blood, 

systolic arrays pump data to give a regular data flow in the network. Systolic arrays have 

the same disadvantage as pipeline processors in that they have to be clocked at the speed of 

the slowest processor . 

A closcly relatcd structure, the wavefront processor, is more relevant to transputer 



• 

• 

• 

----------------------

CHAPTER 1. INTRODUCTION 6 

applications [7]. The wavefront processor has the same connectivity as asystolie array hut 

is a data-flow-driven machine, therefore does not rcquire a synchrollous dock. 

Important characteristics of a parallel machine are the size and number of pIOC('SSl\I'S and 

the communication bandwidth betwecn them. Machines wiLh tCIlS or hllll<1l'l'ds of rclat.ivdy 

large processors are classified as coarse graincd, whcreas machines \Vith a thous,\Ild or 1lI01'l' 

small and simpler processors are c1assified as fine grained. 

Fine grained processors are potentially faster becallse t.he lm'ger 11111111)('1' o[ prO('('HHOI''' 

allows a higher degree of parallelism. The degree of parallclisIll t.hat cali hl' achieved il' Vt'I'y 

much dependent on the problem and the algorithms for solving that. pl'obl('1l1. For ('xamplt', 

an image of 1000 by 1000 pixels would map easily onto a million-proc('ssOi III,U hil\(, if 011<' 

were available. This is obviously an extreme ex ample but thcrc arc very few probl(,ll\s which 

cannot exploit a high degree of parallelism. 

Low level operations conveniently map onto fixed nct.works of plO('('SSOI'S COIlIl<'cf,t·d 

III regula~' square or rectangular arrays but there may he problems in trallsf('rri/lg d,tta 

to and from processors in the centre of the array, I1ighcr-levd op<'l'ctl.iolls Hlay \)(' IllOJ(~ 

efficiently implemented (ln tree or pyramid structures. Rcconfigurable lIetworks appt'ar 1.0 

have advantages for inputting and outputting data and arc capahl(' of dfiei('lIt eX('('utioll of 

a wider range of algorithms. MIMD processors with flexible interconned.iolls ap/H',U 1.0 hitv(~ 

advantages over the fixed topology of SIMD array proccssors, 

The mé!.in issue in choosing between SIMD or MIMD arehitccLurCH is progliurHllability. 

The programming language occam appears 1.0 solve the difficult.ies 1/1 p/OgrrLlIlmillg iLnd 

controlling MIMD machines and, given that a MIMD machine can cxccul,c ill iL SI M /) rrlod(· 

but not vice versa, then MIMD machines are worthy of further cOllsideration. It is int('reHting 

to note that more advanced biological nervous systems have evolvcd into ricldy cOllllcc;t,ed 

MIMD processors with a degree of reconfigurability . 



• 

• 

• 

CIlAPTER 1. INTRODUCTION 7 

1.1.2 Transputer-based architectures 

As outIincd previously, MIMD machines have a potentially widet range of applications than 

SIMD machines as SIMD operation is a subset of the MIMD mode. Until the advent of the 

trausputer, MIMD machincs were limited to a relatively smaU number of processors by the 

difficulties in programming and synchronizing such machines. The transputer and' occam, 

which cxplicitly controls concurrency, was designed to overcome these limitations. 

There are threc major classes of applications for transputers: accclerator boards for pes 

and workst.ations, embedded systems, and general purpose computers. The first transputer 

products wcre mostly accclerator boards to boost the performance of existing computers, as 

add-in boards [38]. The second class is the use of transputers in embedded systems sueh as 

laser printer controIIers. Image processing [21J and space-borne applications [13J are typical 

examples of ernbedded systems . 

1.1.3 Transputer networks 

Transputcrs have four links (links are described in chapter 2) allowing several interconnection 

topologies to be implemented (see figure 1.3). Many existing algorithms can be mapped into 

a pipel!nc or series of pipelines. An n-";" ge transputer constructed pipeline has 2n free (or 

ullused) links and therefore does not make optimum use of the transputer communication 

facilities and the disadvantages of MfSD machines apply. Trees are suitable for hierarchical 

proccsses such as data reduction with data being passed up, or sorting with data being 

passed down. 

Two-dimellsiollal arrays are suitable for array structured data. The 2-D array topology 

is the same as the SIMD array processors, fully utilizing the four transputer communication 

links. Mapping techniques developed for SIMD arrays apply. Pipelines and tree architec­

t1ll'CS can be mapped onto sueh an array. There are two potential problems associated with 

large 2D arrays: first, in transferring data in ano out of the array, and second in irregular 

communications . 



• 

• 

• 

CHAPTER 1. INTRODUCTION 8 

b)TREE 

c)2-D ARRAV 

d)5-NODE 
(No free links) 

e)SWITCHED 

Figure 1.3: Transputer networks 

I.e., if the processor in the top left corner of the 2-D array shown in figure 1.:3.c, is requin'd 

to communicate with the processor at the bot tom right al. the sarne time as the top right 

processor is communicating with the bot tom Ieft proccssor, then ail dat.a or rn,'HS(lp'(~S gel, 

routed through the centre proccssors Cf:!Using a bottlcneck. Communicat.ion kerrH'ls b,ulf'c! Oll 

message routing or packet switching techniques have bcen developed for more general com­

munication, al. the expense of bandwidth reduction and increased Iatency. A Bode of t.ot.ally 

connected transputers can overcome this problern but, with only four links per transputer, 



• 

• 

• 

CIIAPTER 1. INTRODUCTION 9 

the maximum node-size is five transputers (e.g., to make aIl node transputers connected 

togcther, in figure 1.3.d, if another transputer is added to the node, transputer A cannot be 

linked to that extra transputer as aIl nodes are totaIly connected). Data input and output 

is limitcd by the ratio of links connected to the external world to the number of internai 

connections. For a square array of size n, the number of processors is n2 with 4n links 

con nected externally and 2n( n - 1) links connected internally. As the size of the array in­

creases, the overhead in transferring data to the centre increases bya ratio of n : (n2 - 0)/2. 

'1'0 ovcrcome prohlems inherent in fixed networks and to provide maximum flexibility, a re­

~Oll figurahlc topology can be used. 

1.1.4 Reconfigurable networks 

The granularity, and hence, the ratio of communication time to compute time, is an Im­

portant issue in concurrent processors (concurrency is described in chapter 3). The use of 

reconfigurable networks allows a reduction in communication time by reducing the number 

of intcrmediate processors that messages or data have to travel through. A reconfigurable 

nctwork can he used for many applications and is particularly useful for large multi-processor 

dcvclopment systems. Reconfiguration also provides sorne degree of fault tolerance as faulty 

processors can he bypassed or switched out of the network. 

In case the configuration i5 implemented by a software controlled switch, the topology 

can be changed statically, quasi-statically or dynamically. In the case of static switching, 

the topology is fixed before programs are loaded and the application is run with that switch 

setting. The network configuration may be extracted by the Transputer Development Set 

('l'DS) configuration utility (described in chapter 3). Quasi-statie switehing is used when 

ail proccssors can be synehronized at predetermined points in the program. At the syn­

chronization point, aIl communication ceases and aIl processors wait for the Iink connections 

to be changed. Once the connections have been switched computation resumes. This is 

particularly applicable to image processing where the network may be configured to allow 

inputing images at the maximum data rates, for example, configured into multiple parallel 



• 

• 

• 

--- --------------

CHAPTER 1. INTRODUCTION 10 

pipelines with the maximum connectivity (sinee the two-dimensional array middle proccs­

sors have no Cree links to the outside world). Once the data is completcly loadcd into thl' 

system, it can be reconfigured into a two-dirnensional array for low-levcl operations whi('h 

can be executed in a SPrMD mode. ACter alllow-Ievel operations have b('cn comput,ed hy 

aIl processors, the array can be configured into e.g., a tree, for high-lcvd MIMD pwn'Hsillg. 

In a dynamic switching mode, any connection between any two proccssors can he chang('d 

at any time, provided that no communication is taking place on that connection. DYllamic 

switching allows new programming methods to be used, such as, dynamic load balancing 

and transputer networks which are control machines, can be used as data-drivcn, data flow 

or as reduction machines. 

Swltch 

Figure 1.4: Dynarnic switching 

There will be sorne overhead and inefficiencies to be ovcrcorne with dynamic switching. 

For example, consider the network shown in figure 1.4 where proccssor A is sending dat.a to 

two processors, Band C, through one link via a switch, with the switch bcing controllcd by 

processor D. At sorne instant, A will be sending data to B. If C bccomcs idle and requircs 

more data then the link needs to switched from A-B to A-C. Proccssor Chas to signal D 

that it requires data. D has to signal A and B that the link is going to he changed and 

then wait until A and B stop communicating. D then changes the link and signais A and U 

that the new connection is made and that both processors can commence communication . 

If switching is frequent then D will have a heavy work 10ad and may become a bottlcneck in 



• 

• 

• 

ClIAPTER 1. INTRODUCTION 11 

the system. 

If the ratio of computing to communication time is large, then the communication 

ovcrhead is ncgligible and the configuration is ir[elevant, regardless of which topology is used 

and reconfigllration is not necessary. Nevertheless, a switchable network can aid program 

dcvclopmcnt and debllgging and may give sorne degree of fault tolerance [20]. 

1.2 Kinematics and dynamics of a planar 3-DOF Par­

allel Manipulator 

8ascd on thcir kinernatic architecture, industriai manipulators faIl into two categories: seriaI 

and parallel. SeriaI manipulators have an open-chain kinematic architecture, aU of whose 

joints are actuated. On the contrary, parallel manipulators have a closed-chain kinernatic 

architecture, sorne of their joints being unactuated. SeriaI manipulators, in general, have the 

advantagcs of simpler kinernatic and dynamic models, larger work-spaces, higher dexterities, 

etc···, and have becn studied extensively [42], [6], [10]. However, because of their cantilever­

bearn-like architecture, seriaI manipulators inherently suffer from sorne drawbacks, such as 

Iow rnechanicai stiffness which leads to lower operation accuracy, or dynarnic characteristics, 

and lowcr loading capacity. These disadvantages can be overcorne by designing rnanipulators 

with doser! kincmatic loops, namely, parallel manipulators. 

The two major problems in kinernatics and dynamics of seriaI manipulators, narnely, 

the forward and inverse analysis, appear in parallel manipulators as weIl. In case of seriaI 

manipulators, forward kinematics is a straight for ward problern, which can be solved recur­

sively and on line because the relative motions of aIl joints are independent and available. 

However, the inverse kinematics of seriaI manipulators although well-developed now [1], [39], 

remains a rather challenging research topie. The inverse kinernatics of parallel manipula­

tors is straight forward, sirnilar to seriaI manipulators, because the problem can be solved 

independently with each individual kinematic loop and hence, the met ho dol ogy of inverse 

kincmatics of seriaI manipulators can be applied directly. However, the forward kinematics 



• 

• 

• 

CHAPTER 1. INTRODUCTION 

• AcIUlled joiat 

o U..-wcdjoial 

Figure 1.5: A planar paraUel manipulator 

12 

of paraUel manipulators i~ mu ch more complex than that of seriaI manipulators because of 

the presence of unactuated joints whose relative motions are dependent and not availablc. 

The motions of unactuated joints cannot be found from individualloops of the rnanipulator 

but from a set of simultaneous nonlinear equations involving aIl the loops of the manipula­

tor. The problem of direct kinematics is an active topie of currcnt rescarch. Moreover, for 

both manipulator control and simulation, as far as dynamics is conœrned, on-line for ward 

kinematics is inevitable (as the dynamics solution depends on for ward kinernatics data). 

The importance of developing efficient methods for analyzing dynarnics and kincmatics for 

parallel manipulators thus becomes apparent. 

1.3 Sutnmary 

Based on the foregoing two sectiolls, we present in this thesis a rncthod for solving the 

dynamics and kinematics as applied to the parallel manipulator shown in figure 1.5. This 

manipulator was introduced by Hunt [24], and eould be considered as a planar exarnplc oi 

the weIl known Stewart platform [49]. In recent years, becausc of thcir typical kincrnatic 



• 

• 

• 

Cl/APTER 1. INTRODUCTION 13 

architecture related to parallel manipulators, Stewart platforms have attracted the attention 

of many researchers. Yang and Lee [52] investigated the kinematic feasibility of this type of 

manipulators. Fichter [15J built several Stewart platforms and proposed their inverse kine­

matics and inverse dynamics models as weil as a discussion on singularities. Later, intensive 

studies on inverse kinematics and inverse rlynamics were presented by Do and Yang [12], Lee 

and Chao [33J. Merelet [40J and Behj [5J briefly discussed in their papers the nonlinear dis­

placement problem of Stewart platforms. Their approaches are rather straightforward, i.e., 

solving ail simultaneous constraint equations numerically. This type of approach is believed 

to be inefficient and does not provide a way of controlling the solution branches. In this 

thcsis wc apply the method proposed by Ma and Angeles [37J in which they remove one of 

the manipulator links, so that only one of the three kinematic loops remains. Consequently, 

the nonlinear constraint equations which must be solved for the determination of the un­

actuated joint displacements reduce to one. The remaining constraint equations are solved 

in c\osed form. Dased on the rigidity condition of the removed link, the resulting distance 

equation contains only one variable and heuce, cau be solved efficiently (chapter 4). 

1.4 Organization of the Thesis 

The thesÎs is organized as follows: 

Chapter 1 introduces parallel processing concept, highlighting parallel processing archi­

tectures, the transputer as a parallel building block, and the previous research (theoretical) 

presented by the researchers in the solution of the 3-DOF planar parallel manipulator kine­

maties and dynamics. 

Chapter 2 describes briefly the internaI architecture of the hardware selected and im­

plcmentcd in the current work, to ~)fesent the motivation for its selection and to show its 

adequacy for this work. Moreover, this chapter presents the reader the motivation for many 

of the desgin decisions taken in the course of the implementation discussed later. This chap­

ter conc\udes by explaining the main features of the processor selected by the author for the 



• 

• 

• 

CHAPTER 1. INTRODUCTION 

physical application part of this thesis. 

Chapter 3 st arts with a historie background on the devclopment of the trallSpllt('1' 

special programming language (occam), then proceeds with an overview of the importa.nt 

aspects of the transputer program development environmcnt llsed and occam progra.1lllllillg 

language. Moreover, this chapter explains the reasons for many of the prugram d('sign 

decisions taken dudng the software implementation phase of this study and shows (.owa.rds 

the end the physical configuration at the software implelllcnted. 

Chapter 4 describes the historie development of the mathematical algorit.hms in the 

solution of the kinematics and dynamics of the 3-DOF planaI' manipulat.or. Then, the 

solution developed by Ma is presented [36]. Ma's solution is adopted by t.he aut.hor in the 

implementation of the manipulator's prototype controller phase of titis thesis work. 

Chapter 5 deals with the control system integration. It explains in detail the cont.rol 

system that is implemented by the author from inception in both hardware and software. 

Furthermore, this chapter gives explanations of the integration decisiolls . 

In the hardware section of this chapter the hardware parts selection, the rclevancy of 

their selection, how they were integrated and the specifications of the whole system aftN 

integration are thoroughly discussed. 

In the software section, a thorough description of the control scheme design is gi ven. 

Furthermore, a thorough description is given of the software that is deve\oped lo provid(! 

real time interactive control of the manipulator utilizing the capabilities of the hardwan'. 

Comparative examples of actual parallel occam code used and FORTRAN code are giv(!lI to 

demonstrate the parallel concept implementation in the program. Moreover, sorne exarnpl('s 

of actual sequential occam code used are discussed to show the explicit IldtUff! of s('quential 

processing in the language used. The examplcs also providc the motivation for the sdection 

of the parallel and sequential parts in the program. 

Finally, an overview of the control program's technical considerations 18 provided. 

These include: 



• 

• 

• 

CHAPTER 1. INTRODUCTION 15 

• The timing constant (the cycle time) which control the control program's performance. 

• The specifications to provide the program its required run time inputs (the manipula­

tor's three actuator angles). 

• The specifications of the program'f1 outputs (the manipulator's three actuator torque 

valucs). 

Chapter 6, is concerned with the performance aspect of the controller. Comparative 

bcnchmark test results are presented to show the hardware capabilities and potentials. Fur­

thermore, a simulation of the control algorithm was developed on the basis of the main 

program to prove that it operates and the results of that simulation are presented and dis­

cussed. 

At this point the objectives set for this study are completed. 

Chapter 7 concludes the thesis by highlighting the significant contributions of the cur­

rent work, discussing the limitations of the present approach, and pointing out the directions 

for future research . 



• 

• 

• 

Chapter 2 

The Transputer Architecture 

The introduction of the transputer has been descrihed by Barton [4] as the most significant 

event in concurrent computing. 

The list of current transputer hased applications is growing almost daily and includcs: 

- Industrial controllers - robotics, manufacturing pro cesses aut.omation. 

- Telecommunications - switching and node controllers. 

- Image processing, pattern recognition and artificial intelligence. 

- Biomedical applications - body scanners. 

- Computer vision which includes computer graphie simulation. 

In this chapter, a brief description of the internai transput.er architecture is prcscnted. 

2.1 General description 

The transputer is a single chip microcomputer with its own 32 bit processor, local rnernory 

and links for connecting one transputer to another and communicating with the olltsidc 

world. Furthermore, each transputer contains special interface circuitry which can he Ilsed 

to adapt it to a particular application. For example, to use the transputer as a disk controller, 

see figure. 2 1. 

16 



• 

• 

• 

CHAPTER 2. THE TRAN8PUTER ARCHITECTURE 

Reset 
Analyse 
Error 
BootFromROM--" . y!.tem 
Clockln services 

VCC 
GND 

On-chip 
MM 

Processor 

Link 
interface 1--_'-

Link 
interface 1-_" 

Application specifie interface 

Figure 2.1: Transputer architecture 

LinkIn 

LinkOut 

LinkIn 

LinkOut 

LinkIn 

LinkOut 

LinkIn 

LinkOut 

17 

The 32 bit CPU transputer can have up to 4 Kbytes of on-chip memory for local fast 

access [9] [47]. The most powerful transputer available to date (T9000) is able to deliver a 

sustained performance of more than 70 Million program Instructions Per Second (MIPS) and 

more than 15 Million FLoating point Operations Per Second (MegaFLOPS) [46]. Moreover, 

the transputer architecture has the advantage of allowing one to increase the total system 

performance with the addition of more transputers to an existing transputer network. 



• 

• 

• 

CHAPTER 2. THE TRANSPUTER ARCHITECTURE 18 

2.1.1 'l'ransputer support for concurrency 

The proc:essor provides efficient support for the occam model of concurrency and commu­

nicat.ion. It has a microcoded scheduler, which enables any number of concurrent pro cesses 

to he eXtecuted together, sharing the processor time. This rem oves the nccd for a software 

kernel. The processor does not need to su;>port the dynamic allocation of st.orage sinee the 

occam compiler is able to perform the allocation of memory to concurrcn l processes. 

Regl".r. Local. rrogram 

tî Front - p 

Baok -
Q 

-- CL 
1 

A -- A 
B 

1 
c 

W- S 
Work.paoe 

N.xt ln •• 

Op.rand 

-

Figure 2.2: Linked process list 

At any time, a concurrent process can be: 

- Active: heing executed or on a list waiting to execute. 

- Inactive: ready for input, ready to output, or waiting until a spccified tirne. 

The scheduler operates in such a way that inactive pro cesses do not use any proccssor 

time. The active processes waiting to he executed are held in a list. This is a linked list 

of process workspaces implemented by using two registers one of which points 1.0 the fifst 

process in the list, the other to the last. In figure2.2, while process S is executing, P, Q and 

R are active awaiting execution. 

A process is executed until it is unahle to proceed and waits for an input from anothcr 

process, to output, or for a timer signal. Whenever a process is unable to proceed, its 



• 

• 

• 

ClIAPTER 2. THE TRANSPUTEJ~ ARCHITECTURE 19 

instruction pointer is saved in its workspace and the next process is taken from the Hst. 

Since it is not necessary to save the evaluation stack on a rescheduling oper:ttion, t.he actual 

proccss switch time is very smalI. 

The processor provides a number of special operations to support the process modeI. 

These include start process and end process. 

During the execution of a parallel construct, start process instructions are used to 

create the necessary concurrent processes. A start process instruction creates a new pro cess 

by adding a new workspace to the end of the scheduling list, euabling the new concunent 

process to be executed together with the ones already being executed. 

The concurrent termination of a parallel construct is assured by the use of the end 

process instruction. This uses a workspace location as a counter of the components of the 

parallel construct which still have to terminate. Initially, the counter is initialized to the 

number of components before the processes are started. Each component ends with an end 

process instruction which decrements and tests the counter. For all but the last component, 

the counter is non zero and the component is descheduled. For the last component, the 

counter is set to zero and the component continues. 

2.1.2 Transputer communication 

Communication between processes is achieved by means of channels. Occam communication 

procedures are point-to-point, synchronized and unbuffered. As a result, a channel does not 

need a ?roccss queue, a message queue, or a message buffer. 

A channel between two processes being executed on the same transputer is implemented 

by a single word in memory and this channel is called "internaI channel". However, a channel 

between processes executing on different transputers is implemented by point-to-point links 

and this type of channel is called "external channel". The processor provides a number of 

operations to support message passing, the most important being input message and output 

message [47] . 



• 

• 

• 

CHAPTER 2. THE TRANSPUTER ARCHITECTURE 20 

The input message and output message instructions use the address of the chaum'} to 

determine whether the channel is internaI or external. This means that the same instruction 

sequence can be used for both soft and hard cltannels, allowing a proccss t.o he '''riUt'll and 

compiled without knowledge ot where its channels are connectcd. 

As it will be shown later in chapter 3, the communication procedure tak('s place wh('n 

both the inputting and the outputting processes are ready. Conscqucntly, the proccss which 

first becomes ready must wait until the second one is also ready. 

A process performs an input or an output by loading the evaluation stack with (t point.er 

to a message, the address of a channel and a count of the number of bytes to he transr('rrl'd, 

then executes an input message or an output message instruction. 

Transputer communication links 

1 1 1 1 1 Data 1 0 1 
Data byte 

1 
1 1 0 1 

Acknowledge msssage 

Figure 2.3: Link data and acknowledge formats 

Communication between two transputers is established by connecting (hardwire) a "link" 

interface connection on one transputer using two uni-dircctional signal wires along which 

data is transmitted serially to the corresponding link interface on the oUler transputer. The 

two wires provide two occam channels, one in each direction. The presence of lhose t,wo 

channels require a simple protocol to multiplex data and control ils f1ow. McsHagml arc 

transmitted as a sequence of bytes, each message is acknowledged hefof(' t.he next olle is 

transmitted. A byte of data is transmitted 1n the following sequence; a one (high) st.art bit, 

one (high) bit, eight bits of data and a zero (low) sto[' bit. The receiving transputer s~!nds 

an acknowledgement indicating both that tA. process has reccived the data byte and it is able 

to receive another byte, see figure 2.3 . 

The protocol permits an acknowledgement to be gencrated by the receiver transputer 



• 

• 

• 

CllAPTER 2. THE TRANSPUTER ARCHITECTURE 21 

Input ink 

• 
lime 

Figure 2.4: Overlapped link acknowledge 

as 800n as it identifies a data packet. In this way, the acknowledgement can be received 

by the transmitting transputer before the whole data packet has been transmitted. Conse­

quently the transmitter can transmit the next data packet immediately. Sorne transputers 

do not implernent this overlapping and achieve a data rate of 0.8 Mbytes/sec, using the 

links to transfer data in one direction. However, by the overlapping method along with the 

availability of buffering in the link hardware, the rate can be increased to 1.8 Mbytes/sec in 

one direction, and 2.4 Mbytes/sec when the link carries data in both directions. Figure 2.4 

shows the signais that would be carried on the two wires wilen a data packet signal is in the 

same time frame with an acknowledgement . 

2.1.3 'l'ransputer timer 

The transputer has an internaI dock which generates a pulse every microsecond. The current 

value of the processor dock can be read by executing a read timer instructiùn by any process. 

A process can perform a limer input instruction, in which case it will become ready 

to execllte after a specified time (indicated by the timer input instruction) has elapsed sinee 

the limer input instruction requires a time to be specified. If this time is in the 'past' 

(i.e. ClockRf'g AFTER Specified Time) then the instruction has no effect. On the other 

hand if the time is in the 'future' (i.e. SpecifiedTime AFTER ClockReg or SpecifiedTime 

= ClockReg) then the process is de-scheduled. As soon as the specified time is reached, the 

proccss is scheduled again . 



• 

• 

• 

CHAPTER 2. THE TRANSPUTER ARCHITECTURE 22 

2.1.4 The IMS T425 features and overview 

For the application described in this thesis, the author of this thcsis uscd the IMS '1'425 

rnicrocomputer. The choice of this type of transputer was duc to the fad tha" it was, at th{' 

time of the implementation, the fastest available transputer. 

VCC 
GND 
CapPlus 
CapMinus 
Reset 
Analysp 
Errorln 
Error 
BootFromRDr. 
Clockln 

System 
services 

ProcSpeedSelectO-2 - ... '---_..1 

DisableRam 

P rocC lockOut 
notMemSO-4 
notMemWrBO-3 
notHemRd 
notMemRf 
RefreshPendinq 

MemWa it 
MernConfig 
MemReq 

MemGranted 

4 Kbytes 
of 
On-chip 
RAM 

32 

LinkSpccia 1 
I.i nkOSpcc la 1 
Llnkl23Spûcial 

LinklnO 

l.lnkOulO 

I.!nklnl 

!.lnkOull 

l.inkIn7 

LinOul7 

L!n~ln3 

1.1 nkOut3 

~
~:V(!ntRCq 

EvcntAck 
....... __ -' EvenlWaltlnq 

Figure 2.5: IMS T425 block diagram 

Features 

- 32 bit bus. 

- 33 ns internaI cycle time . 

- 30 MIPS (peak) instruction rate. 



• 

• 

• 

CIIAPTER 2. THE TRANSPUTER ARCHITECTURE 23 

- 4 Kbytes on-chip static RAM. 

- 120 Mbytes/sec sustained data rate to internai memory. 

- 4 Gbytes directly addressable external memory. 

- 40 Mbytes/sec sustained data rate to external memory. 

- 630 ns response to interrupts. 

- Four INMOS seriai links that can run on 5, 10 or 20 Mbits/sec operation speed. 

- IIigh performance graphies support with block move instructions. 

- Boot from ROM or communication links. 

The IMS 1'425 transputer (figure 2.5) has a configurable 32 bit wide memory interface. 

A configurable rnemory controller provides aIl timing, control and DRAM refresh signaIs for a 

wide variety of rnixed memory systems. The instruction set achieves efficient implementation 

of high levcllanguages and provides direct support for the occam model of concurrency when 

\Ising either a single transputer or a network. Procedure caUs, process switching, and typical 

interrupt latency are in the sub-microsecond range. 

The standard INMOS communication links allow networks of transputers to be con­

struded by direct point to point connections with no externallogic. Each link can transfer 

data in two directions (through each of its two wires) at up to 2.4 Mbytes/sec. However, 

only two links are available for this implementation. The T425 two remaining links are used 

by the transputcr mothcrboard to communicate with the host PC . 



• 

• 

• 

Chapter 3 

Introduction to the Transputer 

Language "Occam" 

....-- To Iransputer -_o:::w:l"--.... ,;:.~_4--.. TrBrll9Uler nelwork 

Keyboard 

Disk 

Figure 3.1: Host-server model: the host is connected to the transputer network by a single 
link 

During a program developrnent process it is necessary that sorne operating system facilities 

be available, such as access to a disk filing system, input devices and terminaIs, and that 

there should be facilities to run text editors, assemblers, high-Ievellanguage compilera and 

24 



• 

• 

• 

Cl/APTER .1. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 25 

debuggers. One way to provide these facilities is to use a host, running a server program 

t.hat communicates with the transputer system. Porting the embedded system to the host 

requires a server program to provide the communication between the host and the embedded 

system. The scrver mode} should be user frier,dly to allow developers to continue to use the 

facilitics of a familiar operating system with its command language and utility programs. 

Figure 3.1 demonstrates the transputer host-server model. The first transputer host 

scrver mode} introduced was the:INMOS Transputer Development System (TDS). The 

TDS included apart from a scrver, an integrated occam programming environment which 

includcs a compiler, an editor, a linker, and a configurer. The server ran on a PC host, 

communicating with an INMOS B~04 board containing a T414-15 with 2 Mbytes of RAM 

intcrfaced by a link adaptor to the PC bus. 

A successor to the TDS server is a more general pur pose server called the 'iserver'. This 

is also available with a number of stand alone tools such as compilers, editors, linkers, etc···. 

It cau run on any computer system providing that the transputer link can be interfaced 

with it. The server supports a protocol through the link to provide access to the screen, 

keyboard and t.he host file system. This protocol is used by the various tools that run on the 

transputer. Whenever the editor, for example, needs to read a file it caUs a set of occam 

routines which send a request to the server. The server locates the file by calling the host 

operating system and sends it through the link to the editor. The editor then uses other 

occam routines which interact. with the server to display characters on the host's screen and 

to take input from the keyboard. 

The principal language provided with the TDS is occam, a high-Ievel language that 

was specially designed for the transputer. Many INMOS documents describe occam as the 

bcst possible language for programming the transputer. For sever al years occam was the 

only one avai!able with the TDS. 

The name occam is derived from William of Occam (or Ockam,c. 1270-1349), an 

English scholar and philosopher. It was he who originated Occam's Razor, which states in 

its most familiar form, 'Entities are not to be multiplied without reason' [25]. The maximum 



• 

• 

• 

CHAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCJ\M" 26 

performance gained was never actually stated in this form by Occam, but he did say, lit is 

vain to do with more what can he done with fewer'. 

Occam 2 (version 2) provides most of the features that one can expect from a high­

levellanguage. However, many programmers used to Pascal or C will find occanl difft'l'f'llt; 

there are no recursions, structures, rec.ords (except in input and out.put), dynamic melll­

ory allocation or user-defined types. On the other hand, occam provides acœss to SOI11<' 

of the transputer's facilities in a very clear and simple way, in particular, it support.s mul­

tiple concurrent processes, multiple processors, inter-process communications and process 

scheduling. 

Although INMOS has been a very strong supporter of occam, many programmers ha.ve 

preferred to continue with the more widely used programming languag(\s, such as FORTHAN 

and C. This is due to the difficuIty that sorne programmers find in working with occam 

and TDS environment and mainly because of the lack of the exist.ing of occam soft.ware 

libraries. However, standard FORTRAN and C librarics contain litUe if any support. for 

parallel programming. 

Two main ways of adding parallel processing support to convention al languages ha.ve 

found favor with software developers: 

- Using the language unchanged and adding parallel prograrnming support. through 1'1111-

time lihraries. 

- Altering the semantics of the language to add parallel programming construds. 

Moreover, a compiler for a stand alone transputer system must support the server 

protocol, multi-tasking, internaI and external channels, timers, and the distributi()n of code 

over a network of transputers. The reader may find a brief description of occam in the 

following sections which is not intended to be a full tutorial on occam. INMOS provi<I('H il. 

detailed tutorial on occam [43] . 



• 

• 

• 

CIIAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 27 

3.1 Concurrency 

Hy performing certain operations according to a set of instructions, a traditional single 

proccssor computer executes theses instructions one at a time (sequentially). Even the 

simple operation such as the addition of 2 + 2 is a model of the real world, except when it is 

performed by or for a mathematician who is interested in the pure properties of numbers. Far 

more frequcntly this operation is a model f':>r the act of adding two pounds, dollars, apples or 

airplanes, to an existing stock of two. Certainly the major applications of computers, such 

as accounting, banking, process control and even word processing, are explicitly modeling 

objects, events and activities in the real world. 

The world which we live in is inherently concurrent. At the scale of human affairs, 

the world can be described as a union of time and space. Events are mapped in time and 

space. It is possible for two events to occur in the same place one after the other in time 

(sequentially), and equally possible events can occur in different places at the same time 

(concurrcntly, or in parallel). 

3.2 Occam 

Occam is a transputer programming language that allows the programmer to define a pro­

gram as a collection of parallel tasks. An occam program specifies each task, and task re­

quiremcnts without specifying the order of performing individual tasks. The occam model 

of computation is based on communicating processes [23]. Processes have distinct memory 

locations. In addition, a mild degree of memory sharing is allowed in case two or more con­

current processes are required to read the same memory location at the same time. However, 

if any proccss writes to a specific memory location, no concurrent process can read from that 

memory location at the same time. Messages are passed between processes via channels. A 

process sending a message, or a process attempting to receive a message, will wait until the 

transaction is complete. Thus messages inherently act to synchronize processes . 

As welI as explicit support for concurrent programming on a single transputer, the 



• 

• 

• 

CHAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 28 

occam language allows allocation of processes to processors (configuration) to allow the 

user to compile and configure a program that will run on a network of transputcrs. This 

chapter contains an outline description of the transputer language (occam 2) which wc used 

for the software part of this implementation study. If the rcadcr is intcrcstcd to lc~arn more 

about occam 2 he is encouraged to read [43] and [28]. 

3.2.1 Processe'3 

An occam program consists of one or more concurrently executing proccsses. Each process 

performs a sequence of actions, and then terminates. Each action may he an a..'i·,igumcllt 

(an assignment changes the value of a variable), an input (an input rcceives a value frolll a 

channel) or an output (an output sends a value to a channel). 

If no input is available from the channel, the pro cess will wait. Similarly, if the pr(){'('SH 

at the other end of the channel is unable to receive the output, the sending proceSH will wail. 

Thus input and output provide both data transfer between processcs and synchronizat.ion 

of processes. Both the sending and receiving process must be ready beforc the data trallsfer 

takes place. 

The syntax of the assignment process is the := operator: 

variable := expression 

Input, is designated by the? operator: 

channel ? variable 

and output by the ! operator: 

channel ! variable 

There are two special processes. The SKIP process starts to execute, docs nothing and 

then terminates. Thus it is equivalent to a NOP in assembly language programming. The 

STOP process st arts to execute, does nothing but never terminates thus effectivdy stOpH 

the processor from looking for another instruction. We will see in the Collowing scctiollR how 

these special pro cesses are used. 



• 

• 

• 

CIIAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 29 

3.2.2 Process sequences 

Most of the conventional languages assume that statements will be executed one after the 

other in sequence. However, in occam this is not necessarily so, and the sequential nature 

of a process must be stated explicitly by the SEQ construct: 

INT a: 

CHAN OF INT chanl, chan2: 

SEQ 

chanl ? a 

a:= a * 5 

chan2 ! a 

The ahove program fragment (a declaration in this example) declares a to he a variable, 

of type INT. It consists of a sequence of three pro cesses that input a value from channel 

1 into a (from sorne other process), multiplies it by the constant 5, and sends the output 

to another process through channel 2. The declarations have the scope of the immediately 

following construct (in occam a scope of a construct is identified by its indentation and can 

he a sequence or parallel construct), and are indented to the same depth. Indentation by 

two spaces is used to show the scope of the sequential construct; in aU cases occam uses 

indentation to show a grouping, where other languages might use hegin ..... end or { ••••••• }. 

3.2.3 Parallei processes 

Occam pro cesses may also be executed concurrently or "in parallel". This is denoted by 

the use of the PAR construd. 

INT a, h: 

CHAN OF INT chanl: 

PAR 

chanl ! a 



• 

• 

• 

CHAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 30 

chanl ? b 

This has the effect of copying the value of a into band is equivalent to the following 

assignment statement: 

- declarations 

SEQ 

b :=a 

The lexical order of the pro cesses within the PAR COIJstruct is not important sincc the 

pro cesses will start in an arbitrary order. Thus the following code fragment: 

- - declarations 

PAR 

chanl? b 

chanl ! a 

is exactly equivalent to the above. 

The PAR construct is a process that will terminate whcn aIl of its component proccsscs 

terminate. Thus a SKIP process may be added to the PAR construct with csscntially no 

effect. However, adding a STOP process would mean that the PAR construct would never 

terminate. 

Occam says nothing about which of the processes in the PAR construct will be ex­

ecuted first, or which will get a larger share of the processor tirnc. Whcn it is Ilcccssary 

to give one process priority over another, then the PRI PAR construct must be used as 

follows: 

PlU PAR 

process_a 

process_b 

This PRI PAR construct is limited to two way proccsses (two way proœSHCH arc 

any two processes 'Jr constructs that are independent of each other, in the abovc examplc 



• 

• 

• 

CllAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 31 

proccss_a is an independent process of process_b). Whenever the first process can execute it 

will, if both process are ready to execute simultaneously; the second process will only start 

to exccute after the first has completed or is waiting for an input or output. 

The Occam 2 PRI PAR is limited to two components (two constructs with the same 

indentation, and can be SEQ, PAR or PRI PAR constructs, two simple statements or any two 

combinations of the aforementioned), which map directly on to the high- and low-priority 

proccsses of the underlying hardware. If we want one set of processes to execute at high 

priori ty and another set at low, then PAR constructs must be nested in the PRI PAR as 

follows: 

PRIPAR 

PAR 

high_1 

high_2 

PAR 

In transputer implementation of Occam 2, a high-priority process will not be time 

sliccd but will execute until completion or waiting for input or output. Only wh en aIl high 

priority processes are unable to execute will the low-priority processes get their time slices. 

Because of the limitations of this mechanism, PRI PAR can only be used at the outermost 

level of the progl'am, not within any enclosing PAR constructs. 

3.2.4 Arrays of pro cesses 

The FOR construct creates an array of processes which can operate in sequence or in parallel. 

SEQ input = 1 FOR 3 

chan[input] ? buffer[input] 



• 

• 

• 

CHAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 32 

creates an array of three sequentially executing processes, each input from a channel in the 

array chan into a corresponding celI of the array buffer. This is cquivalent to: 

SEQ 

chan[l] ? buffer[l] 

chan[2] ? buffer[2] 

chan[3] ? buffer[3] 

Thus the SEQ ..... FOR construct aets in a similar fashion to the FOR loop in Pascal or 

other high-levellanguages. 

The FOR construct can also be used with PAR, such that: 

PAR input = 1 FOR 3 

chan[input] ? buffer[input] 

creates an array of three concurrently executing processes . 

The loop limits in PAR ....... FOR.. .... must be constant integers, as occam 2 does not 

allow the dynamic creation of processeSj the total number of processes must be known at 

compile time. 

3.2.5 Channel protocols 

A channel transfers data between two concurrent processes. The format and t.ype of this 

data is specified by the channel protocol. The channel protocol is specified when the channel 

is deci~.red. Each input and output must be compatible with the protocol of the channel 

used. Channel protocols enable the cûmpiler to check the usage of the channels. 

An occam 2 channel is declared with a PROTOCOL as in the following examplcs: 

CHAN OF BYTE a: 

CHAN OF INT a: 

CHAN OF REAL64 data: 



• 

• 

• 

ClIAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 33 

The above protocols decl~,re that the channels will be used only for input or output of a 

single variable of the appi'opriate type. 

A protocol can also be of array type: 

CHAN OF [20]INT data: 

which will receive or transmit streams of 20 INTs. 

When the size of the array to be transmitted is unknown, it is possible to declare a 

counted array protocol which consists of an integer describing the size of that array, followed 

by the number of that array elements: 

CHAN OF INT::[]INT counted.chan : 

INT vector : 

When data is transmitted, the first word must be the number of array elements to be sent. 

- - declarations 

SEQ 

counted.chan ! 2 :: vector 

The process in the above program fragment will send a count of 2, followed by the first two 

elements of the array vector. Similarly, the count is the first data item to be received. Thus, 

the following program fragment will rep'lace the number of data elements received in the • 
variable itemcount, and the number of elements in the array datain. 

INT itemcount 

[20] INT datain : 

SEQ 

counted.chan ? itemcount :: datain 

A protocol can be either a sequence of variables of the same or different types. This is 

achieved through the declaration of a sequential protocol, for example: 

PROTOCOL DataPacket IS BYTE; REAL32; REAL32; INT: 

is a protocol declaration in which the elements are separated by semicolons. The protocol 



• 

• 

• 

CHAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 34 

thus declareJ can be used in the channel initialization: 

CHAN OF DataPacket InStream : 

which can only be used for the input and output of streams of the sequence: 

BYTE, REAL32, REAL32, INT. 

3.2.6 Timers 

A timer in occam is treated as a channel. It is possible t.o declarc it singly: 

TIMER working : 

or as an array: 

TIMER [20}intervals : 

Each timer can be read as if it is a channel returning a single intcgcr value: 

INT start, end : 

SEQ 

working ? start 

intervals[2] ? end 

This process will read the value of the timer appropriate to the priority of thc proœss in 

which the timer input occurs. However: when comparing times rf!ad in this way, it must. be 

remembered that the numher of timer pulses is read as an unsigncd INT, with a Humber 

of bits equal to the word length of the transputer. Thus it is possible that t.he tirner will 

roll over during any timing interval. Occam for this reason providcs an AFTER operator 

which causes a process to wait until the timer reaches a particular valuc: 

working ? AFTER timeout 

where timeout contains the value of the timer which will he waitel for. Thus, 1.0 suspend 

execution for, e.g. 1000 pulses one can use the following code: 

TIMER s: 



• 

• 

• 

CllAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 35 

VAL INT wait IS 1000 : 

INT now : 

SEQ 

s? now 

s ? AFTER now PLUS wait 

wherc PLUS denotes unsigned addition. If the wait is required to be in seconds it must be 

computed using the number of pulses peT second of that particular timer. 

3.2.7 Placement 

Occam contains features that allow specifying the position that variables occupy in the 

proccssor's memory, and also on which processor a particular process will be executed. This 

is know as placement . 

The hardware memory map of the transputer is byte-addressed, with signed addresses 

running from Minlnt to Maxlnt. In the occam memory map, addresses are unsigned 

words, running from 0 to the top of the address space. One can use the PLACE keyword 

to assign a memory address to a variable. 

INT i: 

PLACE i AT 28 : 

The above code fragment will place the integer variable i in the hardware memory address 

Ox80000070 on a 32-bit processor, or Ox8038 on a l6-bit processor. This is useful in 

allocating variables to the on-chip fast RAM. The disadvantage of this method is it tends 

to compromise the security of occam, as two processes can place variables at the same 

address, and can access them with no control. 

This type of placement is most useful in associating channels with hardware links. The 

link control words lie in the bot tom eight words of the memory map, 



• 

• 

• 

CHAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" a6 

Control Word Occam address Hardwar<, addr('ss 
16-bit 32-bit 

LinkOOut 0 Ox8000 Ox80000000 
Linkl0ut 1 Ox8002 ûx80000004 
Link20ut 2 Ox8004 Ox80000008 
Link3ûut 3 Ox8006 Ox8000000c 
LinkOIn 4 Ox8008 Ox80000010 
Linklln 5 Ox800A Ox80000011 
Link2In 6 Ox800C Ox80000018 
Link3In 7 Ox800E Ox80()OOO 1 C 

Table 3.1: Occam and hardware addresscs of link cont.rol words 

as shown in Table 3.1. For example: 

CHAN OF INT chanin, chanout : 

PLACE chanin AT 7: 

PLACE chanout AT a: 

This set of instructions will place the channels chanin and chanout on hardware lillk :1 

input and output respectively. This is the actual input and output set up implclIIcnted by 

the author in the control program he wrote for the physical application phase of this t.lwsis. 

Placement of variables can also be used to gain access 1.0 memory-mapped periplwralH. 

However, this if: considered unsafe as more than one process can gain acœss Lo the J)('ripll(~ral 

in an uncontrolled manner. Occam standard givcs no guarantce that iL variable nalll<' 

appearing is an expression will only be accessed once. It is t.hcreforc TlIuch safer 1.0 I.n~at. 

memory-mapped devices as PORTs, which are extensions of thc occam channd concept 1.0 

locations in memory. If a PORT is declared and placed at an addrcss, il is rcad and writ.tclI 

using channel input aad output: 

PORT OF INT memloc: 

PLACE memloc al #10000000 : 

INT i : 

SEQ 



• 

• 

• 

CIIAPTER 3. INTRODUCTION TO THE TRANSPUTER LANGUAGE "OCCAM" 37 

memloc? i 

This code will read the contents C?f the specified memory location into i. It guarantees 

that only one read access will be made to memloc . 



• 

• 

• 

Chapter 4 

Kinematics and Dynamics of the 

rnanipulator 

• ACtualed joint 
o Unactualed joint 

Bue 

Figure 4.1: A 3-DOF Planar Parallel Manipulator 

38 



...---------------

• 

• 

• 

ClIAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 39 

A typical architecture of the manipulator which is the subject of our study is shown in figure 

4.1. ft is composed of seven movable links, i.e., r = 7, and nine revolute joints, i.e., m = 9. 

Th(! motions of aIl links are limited in one plane parallel to the plane of the manipulators 

base. According to the Chebyshev-Grübler-Kutzbach formula [22], it can be easily veriiied 

that the dcgree-of-freedom of this manipulator is three, namely, 

n = 3r -2m = 3 (4.1) 

As: 

r: number of movable rigid bodies. 

m: number of one-degree-of-free~om joints. 

n: number of degrees of freedom of the system. 

The three links connected to the base are considered as input links, while the one with 

threc joints is the end effector, which undergoes a 3-DOF planar motion. Moreover, the 

manipulator is driven by three mot ors which are located at the three fixed joints connecting 

the input links to the base. Hence, these three joints, the actuated joints, are independent 

joints, while the others, the unactuated joints, are dependent joints. This means that once 

the variables associated with thE:: former are assigned, those associated with the latter are 

fixcd. 

This manipulator, could be considered a typical example of planar multi-Ioop mechan­

ical systems. It was first introduced by Hunt [24] and afterwards attracted the attention of 

many researchers. Yang and Lee [52] investigated the kinematic feasibility of this type of 

manipulators based on fundamental mechanism theory. An optimum design method of this 

type of manipulators was presented by Gosselin and Angeles [18]. Later, studies on direct 

kincmatics and on inverse dynamics of parallel manipulators similar to our manipulator were 

reported by Do and Yang [12], Lee and Chao [33], Lee and Shah [31] [32] and Stoughton 

and Kokkinis [29]. The approach for direct kinematics presented in the above-mentioned 



• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNAMICS OF TllE MANIPULATOn 10 

works was rather straightforward by solving aIl simultaneous constraint equations tlunl<'ri­

cally. This type of approach was inefficienl for real-time computations and clo('s not, provicl<, 

any means of controlling the solution branches, which may lcacl to physically infcasiblc r('­

sults as indicated by Waldron [50]. In the work by Ma and Allgcl(>s [37] an efficient 1l1(>thod 

of direct kinematics \::,,1culation was introduced. In this method, one of Ul<' manipulat.or 

links is removed, so that only one of the three kinematic loops rernain. Thus, the nonlinear 

constraint equations which must be solved for the dctermination of the unactllat,('d joint 

displacements are reduced to one. This remaining constraint cquétt.ion could be solvt'd in a 

closed form. Based on the rigidity condition of the rcmoved link, t.he re\lloved nmstmint. 

is then recovered by introducing a scalar distance constraint. Dy étpplying a technique of 

four-bar linkage-performance evaluation, the resulting dist.ance const.raint collt.ainH only one 

variable and so could be solved very efficiently. The solution which lies in a physically 

unreachable branch can be avoided. 

The inverse dynamics of our manipulator has been studicd by Do and Yang [12], Lee 

and Chao [33], Williams and Reinholtz [51], but the direct dynamics of this manipulal,or was 

not published until Ma [36] int.roduced a method in which the equations of motion of the 

manipulator were formulated in terms of the actuatcd joint coordinal,es Ilsing the lIatural 

orthogonal complement, (Natural orthogonal complement was introduccd by Angeles and 

Lee [2], Angeles and Ma [3]). The dynamics model was derivcd in the form of tll<! Euler­

Lagrange equations. 

4.1 Direct kinematics analysis 

4.1.1 Joint Coordinat es 

For the kinematic modeling, the seven movable links are numbcred from 1 to 7, a.'i indicat(!d 

in figure 4.2. Each joint is assigned a joint coordinate, denoted by ql, Q2, ... , '19, as indi<:a.led 

in the same figure. In the figure, point P is a reference point dcfined al the centroid of the 

end-effector. In this case the vectors of the independent and dcpendcnt joint coordinatefl are 



• 

• 

• 

CHArTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 41 

given by: 

(4.2) 

qa consists of indcpendent generalized coordinates, which are associated with the actuated 

joints, and qU is a 6-dimensional vector of dependent generalized coordinates associated with 

the unactuated joints. 

• AClllaIcd joirl 

o Ul\IICwalcdjoirl 

Figure 4.2: Joint coordinates of the 3-DOF Planar Manipulator. 

It was assurned that the architecture of the manipulator has syrnmetric geornetry, (the 

three fixed joints are located at the three apexes of an equilateral triangle with edges of 

length 10 ; the three input links have the same length lt; the other three links following the 

input on es have length 12 , while the end effector is an equilateral triangle with edges of length 

13 ,), as shown in figure 4.1. 



• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULA1'OR 42 

o 

Figure 4.3: Position vectors 

4.1.2 Displacement analysis 

Since the manipulator under study contains nine joints, it requires nine gcneralizcd coordi­

nates, grouped in a 9-dimensional vector q, to represent the kinematic rclationship hctwecn 

individual links. Each generalized coordinate represents the rotational displacernent of a 

joint. Because of the presence of closed kinematic loops, sorne generalized coordinates de­

pend on the others. Hence, q can be partitioned as: 

q = [::] (4.3) 

These generalized coordinates are subjected to kinematic constraints which can be 

described by a set of holonomie constraint equations of the general form: 

(4.4) 

This system was found to have six nonlinear scalar constraint equations as the nurnbcr 

of independent equations should be equal to the dimension of qU, i.e. six, which wcre used 

to solve for the six dependent joint coordinates. A set of intermediate variables, ,pl, 1/;2 and 



• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOll 43 

Figure 4.4: The dimensional notation of our 3-DOF Parallel Manipulator 

.,p3, wcre introduced and shown in figure 4.4. In that figure, 0, denotes the ith joint, for 

i = 1, 2, "', 9. By the use of these three variables, three independent constraint equations 

were formulated which represent input-output equations of the three RRRR planar four-bar 

linkages, 0 .. 0 70 8 0 5 , 0 50 8 0 9 0 6 , and 0 60 9 0 7 0 .. , respectively. The positions of joints 4, 5 

and 6 are fixed if the three independent joint coordinates qt, q2 and q3 are given. The rest 

of the manipulator was considered as a structure consisting of three cou pIed four-bar pl anar 

linkages whose input angles are.,pt, .,p2 and .,p3, respectively. Using the notation shown in 

figure 4.4, the three constraint equations were formulated : 

4>1 = kl1 - k12 COStPl + klacoS(02 - tP2) + cOS(tPl + 02 - .,p2) = 0, 

4>2 = k21 - k2~ COStP2 + k2acos(oa - tPa) + cOS(tP2 + 03 - .,p3) = 0, 

(4 .. 5a) 

(4.5b) 

(4.5c) 



• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 44 

where 

k, - b~ + 2/~ - I~ k'2 = k,'3 = bi r' 1 2 3 
,1 - 2/~' 1

2 
' lOf t = , , j 

_ -1 [(XS - X4)(X6 - X4) + (Ys - Y4)(Y6 - Y4)] 
al - cos b

3
b) , 

_ -1 [(X6 - XS)(X4 - XS) + (Y6 - YS)(Y4 - YS)] 
a2 - cos b

l
b

2 
' 

_ -1 [(X4 - X6)(XS - X6) + (Y4 - Y6)(YS - Y6)]. 
a3 - cos b

2
b:J ' 

bl = J(X5 - X4)2 + (Ys - Y4)2, 

b2 = J(X6 - xs)2 + (Y6 - ys)2, 

b3 = J(X4 - X6)2 + (Y4 - Y6)2. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11 ) 

(4.12) 

In the equations above, Xi and y, are the Cartesian coordinates of joint 0" for i = 
4, 5, 6, which we could calculate. For example, if the Cartesian x-y frame is s.!t as shown 

in figure 4.4, we get, 

X4 = Il cosqb 

Xs = - ~(COSq2 - V3sinq2) + 10, 

11 rn . 10 
X6 = -'2(cos q3 + v3sm q3) + 2' 

Y4 = Il sinqh 

Ys = ~ (V3cos q2 - sin q2), 

11 rn . V3 
Y6 = -'2(cosq3 - v3smq3) + 2 /0' 

(4.13) 

(4.14 ) 

(4.15) 

It was found that once.,ph 'l/J2 and .,p3 were computed, the 3cpcndcnt joint coordinatcs 

q4, qs, . ", q9 could be found as weIl and also the position of the end effcdor. In such a 

method only three nonlinear equations are involved. The Newton-Raphson method was 

utilized to solve them numerically (the Newton-Raphson method is defined in appendix A) 

[1]. By numerically solving eq. (4.5), which involves the inversion of a 3 x 3 Jacobian matrix 

at each iteration, reduces the computational cost to approximately 1/8 of that rcquired for 

inverting the 6 x 6 Jacobian involved when solving the original constraint system. Although 

this improves the computational efficiency substantiaIly, the complexity involved is still high. 



----------------------~ 

• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 45 

• AcIUaIcd J0ÏDI 

o UDadlllledjoial 

.... 

F:gure 4.5: Example of configuration solution branches. 

Moreover, in solving the 6 x 6 system, the branches of solutions are still uncontrollable 

because the numerical procedure works without regard to the position of the end effector. 

An ex ample of branches of solutions to the direct displacement problem is shown in figure 

4.5. 

From that figure, we see that the end effector has two different configurations for a set of 

given input displacements qI! q2 and q3, and the number of solutions of eq. (4.4) can be up 

to six~y-four because eq. (4.4) can be formulated as a set of six simultaneous quadratic scalar 

equations. Of course, most of the sixt y-four solutions are not physically feasible for a given 

manipulator, because they belong to different configuration branches, white a motion from 

one bran dl-configuration to another may be impossible unless the mechanism is disassembled. 

Thus, it is important and practical to find a solution lying in a desired branch - control 

of solution branches. General numerical methods do not have the capability of controlling 

solution branches. 

Howcver, Garda de Jalon et al. [17], proposed il. model of constraint equations using 

natura} coordinates, which are defined as the Cartesian coordinates of one point of each joint 

axis and a unit vector parallel to that axis. Although the constraint equations based on such 



• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 46 

Figure 4.6: The system aCter the virtual cut 

coordinates are simpler, the numbers of equations and coordinates increase, and so does the 

dimension of the dynamics equations involved. Renee, solving this larger system nurnerical1y 

will be costlier. 

Ma [36], has introduced another method, which applies the technique of linkage­

performance evaluation introduced by Ma and Angeles [35]. This rnethod assumes virtually 

removing one link, figure. 4.6. This means eliminating one of the kinematic constraints, rc­

sulting in reducing the original system kinematic constraints to one. Which will rnake cq. 

(4.5a) the only effective equation. Then we would have the interrncdiate angle, 0, indieatcd 

in figure4.6, as: 

4>1 = k~l - k~2 COS.,pl - k~3 cos () + cos( tPl - 0) = 0 (4.16) 

where 

k' hl 
12 = 1

3
' 

k' hl 
13 = 1

2
' ( 4.17) 

Notice that variable .,p2 disappears in the new constraint equation, doncI angle 0 can he 



• 

• 

• 

CI-lAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 47 

solved from this equation in closed form. As weIl as the degree of freedom of the manipulator 

increases from 0 to 1, and joint 9 describes a trajectory, r(shown ln figure 4.6), which is the 

coupler curve of the four-bar linkage, discussed by Nolle [41], 0 40 10 8 0 5• 

A coordinate frame, e-TJ, (figure4.6), was defined and an angle .,pl was consideretl as 

the input angle of the four-bar linkage. Then the coupler curve was defined as : 

(4.18) 

in the local coordinate frame. where [.,pa, .,pb] is the mobility range of angle ?/JI! while 09 is 

the position vector (figure 4.3) of the 9th joint 0 9 : 

09(1/;1) == = . [ 
e9] [/2 cos ?/JI + 13 cos(() + 'Ir /3)] 
779 12 sin ?/JI + 13 sine () + 'Ir /3) 

And angle () computed from eq. (4.16), in terms of ang]e .,pl, as 

() 2 (
b + K v'b2 

- ac ) = arctan , 
a 

where 

b = sin ?/JI, 

(4.19) 

(4.20) 

(4.21 ) 

(4.22) 

(4.23) 

Parameter K, termed the branching index (by Ma and Angeles [35]) in eq. (4.20), 

is equal to either +1 or -1, depending on which configuration branch the linkage is in. 

figure4.7(a) shows two bran ch curves of a linkage. In this case, there are two output con­

figurations for one given input angle .,ph one corresponding to the branching index of +1 

and the other to -1. Figure4.7(b), also shows the situation when the two branching curves 

merge into one, which will cause a part of the curve to have the branching index + 1 and the 



• 

• 

• 

CIIAPTER 4. KINEMATICS AND D't'NAMICS OF THE MANIPULATOll 48 

. .... ~ .... ~ .. .. 

(a) 

•••• i ••• . . .. ... ~ ... 
(b) 

Figure 4.7: The coupler curve of a four-bar linkage branches 

other -1. In such a case, if the solution of '!/JI is equal to eithcr "pa or '!/Jb, (ci thcl' of the two 

bounds of the mobility range of "pd, we would have a singular configuration, as t.he output. 

motion of the linkage is uncertain. Two singular points Sa and Sb are shown in figure4.7(b) . 

We can find the other singular points of the other loops by removing othcr linkH. (More OH 

this manipulator singularity can be found in Gosselin and Angeles [19]). 

To recover the removed constraint, we find on the couplcr curvc a point whose distance 

to the 6th joint, 0 6, is equal to the length of the removed link : 

(4.21) 

where e6 and Tf6 are the coordinates of joint 6 in the local framee-Tf. By Holving cq. (4.21) 

numerically, one can find '!/JI. The numerical solution for "pl can be obtained more effidently 

than by solving eq. (4.4) or eq. (4.5) as eq. (4.24) is a single-variable scalar equatioll. 

The aforementioned coupler curve is only conceptual, bccause one actually <lOCH Ilot 

need to compute the whole coupler curve when solving tPl from eq. (4.21). Inst.ead, only the 

evaluation of eq. (4.20) is required wh en solving eq. (4.24), the branch of t he solution being 

controlled by specifying, based on the assembly configuration of the given manipulator, the 

index K of that equation . 



• 

• 

• 

CllAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 49 

By obtaining .,pl and (), the determination of the coordinat es of all rnoving joints is 

possible. (Furthcr details can he found in Ma [36]). 

4.1.3 Velocity and acceleration analyses 

Let: 

a,: The vector connecting the ith joint Oi to one of its neighhoring joints. 

CI: the center of mass of the ith link. 

Oi: The position vector of 0" in the X-Y frame. 

CI: The position vector of C" in the X-Y frame. 

W,: Scalar denotes the angular velocity of the ith link. 

W,: Scalar denotes the angular acceleration of the ith link. 

One can find the relation between the independent and the dependent angular velocities hy 

noting that the vclocity of the 9th joint, ~, (figure4.8), can be expressed in either of the 

following three different forms: 

(4.25) 

(4.26) 

(4.27) 

where E is an orthogonal matrix which rotates the vectors 900 counterclockwise, with­

out changing their magnitudes: 

= [0 -1] E_ . 
1 0 

(4.28) 

From the above equations we could deduce : 

(4.29) 



• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 50 

Figure 4.8: Dynamics analysis notations 

as: 

W4 

w"= El; [:1 Ws 
WU = 

W6 

( -1.:W) 

W7 

A; [: 
0 -é16 a'J. [ -:' 0 a3

] B= 
as -é16 a8 -a2 8a 

(-1.:U) 

To compute the angular accelerations, w" we can differcntiatc both sicles of eq. (-1.29) 

with respect to time: 

( 1.32) 



• 

• 

• 

CIIAPTEIl 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 51 

in which 

Ws 
(4.33) 

and 

A = i A = [W4Eaa 0 -w6Eas W7Ea7] 
dt 0 wsEas -W6EIl6 W7 Eas 

= PAdiag(w4' Ws, W6, W7), (4.34) 

• d [-WIEa1 
B=-B= 

dt 0 

o W 3 Ea3 ] 

-W2Ea2 W3Ea3 

( 4.35) 

In the above equations, P denotes a 4 x 4 permutation matrix defined as 

(4.36) 

and 0 is the 2 x 2 zero matrix. For simplicity of representation, let 

w2 
4 

w2 

U
U == 

S 

w2 
6 

(4.37) 

w2 
1 

'l'hen, we could rewrite eq. (4.32) : 

(4.38) 

Dy using the inverted matrix A when solving eq. (4.29) we could realize that not much 

additional computation is required. 

Once WU and WU are computed, the remaining part of direct kinematics, i.e., the com­

putation of the center of mass velocity, denoted as ëi , and the center of mass acceleration, 

dcnotC'd by ë" of the ith link, for i = 1, 2, "', 7, becomes a straightforward problem. 



• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 52 

4.2 Dynamics analysis 

4.2.1 Inverse Dynamics 

Let: 

Ci: 3-dimensional (3-D) position vector of the center of mass of the ith body. 

ë.: 3-D velocity vector of the center of mass of the ith body. 

ëi : 3-D acceleration vector of the center of mass of the ith body. 

mi: mass of the ith body. 

I· . . . 
f!" . 

1 • 

n'!" •• 
w'!" 1 • 

Tf . 
1 • 

w f . • • 

w fl . a • 

3 x 3 inertia tensor of the ith body about its center of mass. 

3-D vector of the inertia force of the ith body at its centcr of mass. 

3-D vector of the inertia moment of the ith body about its center of mass. 

6-D vector of the inertia wrench of the i th body. 

a 3-D vector friction torque acting on the ith joint. 

6-D vector of the friction wrench of the ith body. 

6-D vector of the gravit y wrench of the ith body. 

T. : a 3-D vector generalized deriving torque of the zth actuatcd joint. Ta is a torquc if thc 

ith joint is revolute and a force if the ith joint is prismatic. 

Ta: a 3-D vector generalized driving torque of the whole manipulator. 

The dynamics is analyzed in a three-D space, whose first dimension is the rotation 

about the axis perpendicular to the motion plane and the other two arc the translations in 

the motion plane. In this space, the twist of a link, say the ith link, is a ~J-D vector : 

[
Wi] 

t. = ë
i 

(4.39) 

where Wi is a scalar representing the angular velocity of the ith link and ë is the 2·D 

velocity vector of the center of mass of the same link. Moreover, the intended mass rnatrix 

reduces to a 3 x 3 diagonal matrix: 



• 

• 

• 

CIl A.PTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 53 

(4.40) 

where mi and l, are the mass and the po1ar moment of inertia about the center of mass 

of the ith link, respectively. The inertia wrench, w: is a 6-D vector by definition: 

(4.41) 

and w: of the ith link also reduces to: 

for i = 1, 2, "', 7 (4.42) 

whcrc 0, are 6 x 6 matrices is defined as in its general definition: 

. _ [Wi xl 0] 
{l,- . 

o 0 
(4.43) 

for this manipulator: 

• 0, tcrmed the twist-constraint matl"ix, which is of dimension 18 x 21 and configuration-

dependent. 

• 0 denotcs the 3 x 3 zero matrix, 

• 1 denotes the 3 x 3 identity matrix. 

• w, x 1 dcnotes the cross-product matrix associated with vector Wi. 

The generalized twist and wrench vectors are defined as : 

t = ft; 1, w' = [~:] , 
h. W 7 

(4.44) 

Since the term OjM,tj is always zero for planar motions, as for any holonomie me· 

chanica1 systems, the following set of t,wist constraint equations hold [3]: 



• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 54 

nt=o. (4,45) 

Also it can also be shown that t is a linear transformation of the vcctor of indcpcudent 

generalized velocities, qa, i.e., 

t=Tqa (4,46) 

From eq. (4.45) and eq. (4.46), we can show that OT = 0 and hencc, the 21 x:J mal.rix T 

is ~ermed the natural orthogonal complement of matrix O. Moreover, t can also he cxprcsscd 

as a linear transformation of the vector q, Le., 

(4,47) 

From eq. (4.46) and eq. (4.47) with eq. (4.4), we get 

(4,48) 

wh~re Ka and Ku are termed velocity Jacobian matrices, white J a and J u arc displacc­

ment Jacobian matrices, defined as 

K _ 8t(q, q) 
a - aqa ' K 

_ at(q, q). 
u - aqu ' (4.49) 

(4.50) 

Evaluation of the orthogonal complement matrix by eq. (4.48) is rather costly. Noticing 

that T depends on joint displacements only and also the jth column of T equals at/aq), for 

j = 1, 2, 3, one can compute T as follows: 



• 

• 

• 

CIlAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 55 

(4.51) 

i.e., the jth column of T is calculated as the generalized twist of the manipulator 

assuming that ail the actuated joints are locked but the jth one has a motion with unit y 

vclocity. For example, the second column of T is equal to t( qa, qa) where qa is set to 

[0, l, O]T and qa should be kept as is. It was found (Ma [37]) that using this method to 

compute T is more efficient and easier than using eq. (4.48) 

Let 1f'a and 1f'* den ote the power supplied by the actuators and the power associated 

with the gcneralizcd inertia force, respectively. Then we get: 

(4.52) 

(4.53) 

From the conservation of energy of the whole system, the following equation holds: 

(4.54) 

in other words: 

(4.55) 

By definition, all components of qa are independent and hence we derive from eq. (4.55) the 

Collowing: 

(4.56) 



• 

• 

• 

CHAPTER 4. KINEMATICS AND DYNI\MICS OF THE MANIPUIJATOR 56 

which is the dynamics model of the manipulator. In the formulation of this modcl, gravit y 

forces were not considered. However, gravity-effect can be implicitly includcd if wc ('onsid('r, 

when computmg ë, recursively, that the hase of the manipulator has an a('('('l('ratioll of -g 

where gis the gravit y acceleration vector, a technique introduccd by Luh ct al [34]. If friction 

is considered, the power dissipated by friction forces/torques must he includcd in cq. (4.51), 

which leads to the following dynamics model: 

(4.57) 

or 

(4.58) 

where w f is a 21-dimensional vector composed of ail friction wrenchcs cxcrting at. caeh 

link's center of mass, white Tf is a 9-dimensional vector composcd of ail friction t.orqucs 

exerted on each joint. Moreover, Ris the 9 x 3 joint-veJocity Jacobian rnat.rix, dcfincd a.s: 

(4.59) 

where 1 is the 3 x 3 identity matrix. Matrix R can also he calculat.ed in t.he SéLlIle 

wayas matrix T, i.e., the jth column of R is calculated as q assuming that ail the actuated 

joint~ are locked but the jth one has a motion with velocity unity. Friction forces/torques, 

as they act on joints, are usually modeled as Tf rather than w l and hence cq. (4.58) is more 

useful than eq. (4.57). However, the evaluation of eq. (4.57) is simpler. 

If we want to include the generalized gravit y wrench vector: 

[

W

f
] 

w
g

= ~~ , (4.60) 



CI-IAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 57 

• wc add the gravit y term to eq. (4.58) to become: 

(4.61 ) 

• 

• 



• 

• 

• 

Chapter 5 

System integration 

This chapter contains a description of the physical work done by the allthor of this tlwsis 

which deals with the transputer's hardware selection, and integration and the software de­

sign, implementation and integration to build the prototype controller for t.he 3·DOF plallar 

manipulator which was discussed earlier. 

This study is part of a larger project which is currently pllrsued in McRCIM (McGiIl 

Research Center for Intelligent Machines). The project's main objective is to achieve rea] 

time control of a 3-DOF Planar Manipulator (chapter 4). The algorithm to control this type 

of mechanism is different from seriaI manipulators, thus the utilization of paralld processillg 

is essential. 

A complete diagram of the project is shown in figure 5.1. The projed is divided into 

four sub-projeds: 

1. Development of a parallei architecture control system to control the maniplllators move­

ment through a pre-set trajectory (presented in this chapter). 

2. Design and manufacture of a 3-DOF parallel manipulator with revolute joints. 

3. Selection, design, and implementation of a closed-Ioop control circuit for the actuators 

installed on the manipulator . 

58 



• 

• 

• 

ClIAPTER 5. SYSTEM INTEGRATION 59 

4. Design and implementation of an interface to achieve total bidirectional communication 

between the manipulator and the control transputer board. 

The following section contains a description of the actual parallel architecture system 

(hardware and software), and how it was integrated to control the 3-DOF planar manipulator 

to complete the first sub-project. The remaining sub-projects are presently under research 

by Kounias [30] and Felton [14]. 

PC with a transputer board 

, 
InlBrlacs 

1 

DCMotor 
Control Circuit 

1 

3-00F P81al/el 
Manipulator Prototype 

Manipulator Plant 

Figure 5.1: Block diagram of the complete project 

5.1 Hardware integration 

The T425 transputer (chapter 2) needs to be mounted on a suitable printed circuit board 

(peB) equipped with power supply input and properly grounded at low impedance with 

sufficient dccoupling, and the memory interface properly designed. This is achieved by the 

use of transputer module or TRAM. A TRAM consists of one or more transputers mount.ed 

on a peB with memory and sometimes other interface circuitry (figure 5.2). 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 60 

The TRAM, in turn, is mounted on a motherboard that supplies power and is responsible 

for dock distribution. Many motherboards also have one or more COO,l link switchcs for 

reconfiguration of the TRAM-mounted transputer links . 

.... ---- ,:lM ... ------<-t 

f 

--+...I~'" 
Cm ... ) 

~ IM\ 

11 2 """ (", .. 1 

Motherboard PCB 

Figure 5.2: TRAM geometry 

5.1.1 Module architecture 

The standard size of a TRAM is a 2.667 x 9.296 cm (centi:neters). with &ixtccn connections 

divided in two groups of eight each at one side of the module. There are 16 main pins in the 



• 

• 

• 

Cl/APTER 5. SYSTEM INTEGRATION 61 

TRAM; the power supply pin (Vcc), the ground pin (GND); the reset pin (RESET); the 

analyse pin (ANALYSE) and the no error signal pin (notError); eight pins for four links (two 

pins per link)j and two link speed selection pins (LinkSpeedA and LinkSpeedB). To select the 

specd of the links, if both LinkSpeedA and LinkSpeedB are low the links will operate at 10 

Mbps, when both are high the links operate at 20 Mbps. Other combinat ions are reserved 

by the manufacturer. 

Link20ut 1 16 Link3In 
Link2In 2 15 Link30ut 
Vcc 3 14 GND 
Link10ut 4 13 LinkOln 
Linklln 5 12 LinkOOut 
LinkSpeedA 6 11 notError 
LinkSpeedB 7 10 Reset 
Clockln 8 9 Analyse 

Table 5.1: TRAM pinouts 

It is assumed that 5 Mbps will not be used. The Error pin of the transputer is inverted at 

the notError TRAM output and is driven by an open collector or an open drain circuit. 

Thus, the notError pin of several modules may be connected together through an OR gate. 

This means that the ErrorIn pin is not used on transputers mounted on modules, and should 

be short circuited with the ground pin. Table 5.1 give the TRAM pinouts. 

Pin Signal 
la Su bSystem not Error 
2a SubSystem Reset 
3a SubSystem Analyse 

Table 5.2: TRAM subsystem pinouts 

The three subsystem control signal pinouts, which are, SubSystem Reset, SubSystem 

A nalyse and SubSystem notError, are available on the TRAM to control another group of 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 62 

transputers or TRAMS. Table 5.2 shows these pin signal assignments to the inside posi­

tioned pins 1, 2 and 3 in a standa:d module. 

5.1.2 IMS B404 TRAM 

A B404 TRAM has been utilized in our application. Us memory sizes and Cycl(lS are 

included in the Table5.3 below. This is a size 1 TRAM, figure5.2, that ca.n cOIlt.ain a 

transputer and eight memory devices which corresponds to 1 Mbyte of dynarnic memo\'y, or 

256 Kbytes of static RAM. 

Part Transputer Memory SubSystem Size 
no. size/ cycles 
B401 T414-20, T425-25 or TSOO-25 32K/3 SRAM no 
B402 T222-20 SK/2 SRAM no 
B403 T414-20, T425-20 or TSOO-20 IM/3 DRAM ycs " B404 T414, T425 or T800 32K/3 SRAM, 2M/4 DRAM ycs 2 
B405 TSOO-20 SM/5 DRAM ycs 8 
B410 T801 160K/2 SRAM 110 2 
B411 T425-20 or TSOO-20 IM/3 DRAM no 1 
B416 T222 64K/2 SRAM no 1 
B417 T800 64K/3 SRAM, 4M/4 DRAM ycs " 

Table 5.3: INMOS TRAMs 

BOOS Motherboard 

The IMS B008 is the TRAM motherboard which has been integratcd in an IBM PC-AT 

for this particular application. It has the capacity of ten TRAMs on board. Links 1 and 2 

from each TRAM siots are hard wired on the IMS B008, to form a pipeline of pron'ssing 

elements among plugged in TRAMs. The remaining links can be "soft wircd" IIsing an 

INMOS IMS C004 programmable link switch, incorporated on the IMS BOOS. Figure .1.:1 

shows the complete block diagram of the B008. 

The IMS C004 device is controlled by an IMS T212 16-bit transputer. Configuration 

data for the IMS C004 is fed into link 1 of the IMS T212 which in-turn passes it to the 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 63 

IMS COOti on link 3. The same data is also fed through link 2 of the T212 to the 37-pin 

D-connector (DIN 37) on the edge of the board. 

An interface with an IBM PC is available such that a program runnmg on the PC 

can control the TRAMs mounted on the IMS B008 and passes data to or from them. Data 

communication can take place by either means of a software which uses polling, or via a 

Direct Memory Access (DMA) mechanism which gives a higher data flow rate. Different 

events on the IMS B008 can generate an interrupt signal which can be transmitted to the 

PC. This eIiminates the need for the processor in the PC to continuously poIl status registers 

on the IMS B008. Thus the PC can carry on with other tasks while programs are running 

on the IMS B008. 

_hUaIdI 
c::>----t.: ........... ~ .. ilolIIlI----4 

'MHZ -

__ ".1(1 __ 
.. n.AM.lae9 

_IMS1212 

Figure 5.3: B008 block diagram 

lIel , 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 

Figure 5.4: B008 switch settings 

5.1.3 Integrating the B008 into the host persona} conlputer 

Th~ switches and jumpers of the IMS B008 motherboard provide t.he user with a variety 

of operating modes. In the following segment, the significancc of t.hos(· st't.t.illgs will he ex­

plained. Moreover, the configuration used will be discussed (see figure 5,4 for swit,c!t sdtillgs 

utilized). 

DMA channel (switches 1, 2) 

Direct Memory Access (DMA) channel selection is done according to Table5,4 

SWI 
ON 
OFF 
ON 
OFF 

SW2 
ON 
ON 
OFF 
OFF 

DMA Channel 
0 
1 
DMA disablcd 
3 

Table 5.4: The available DMA channel settings 

For this particular application DMA channel 3 was selected. 

Interrupt channel (switch 3) 

The interrupt channel can be selected according to Table 5.5 



• 

• 

• 

CIIAPTER 5. SYSTEM INTEGRATION 

SW3 Interrupt Channel 
ON 3 
OFF 5 

Table 5.5: The available Interrupt channel settings 

during our implementation, the Interrupt channel is set for channel 5. 

Board address (switches 4, 5) 

65 

Switches 4 ... nd 5 are used to select the base location in the 1/0 address space at which the 

IMS B008 appear visible to the PC, or to disable the board from the PC bus aIl together. 

SW4 
ON 
OFF 
ON 
OFF 

SW5 
ON 
ON 
OFF 
OFF 

Address (hexadecimal) 
Not selected 
$150 
$200 
$300 

Table 5.6: The available B008 address settings 

Table5.6 present the address options available. Note that a $ sign indicates a hexadecimal 

numher. Address $150 is selecteà for our B008. 

Link speed selection (switches 6, 7 and 8) 

Ail the IMS C004 and TRAMs must have identicallink speeds. The IMS T212, however, 

can have its link 0 running at different speeds. Table 5.7 shows the possible combinations of 

lillk spccds . 



• 

• 

CHAPTER 5. SYSTEM INTEGRATION 66 

SW6 SW7 SW8 T212 Link 0 Ali Other Unks 
ON ON ON 10 Mbitsfs 10 Mbitsfs 
ON ON OFF 5 Mbitsfs 10 Mbitsfs 
ON OFF ON 10 Mbitsfs 10 Mbitsfs 
ON OFF OFF 20 Mbitsfs 10 Mbitsfs 
OFF ON ON NON-FUNCTIONAL NON-FUNCTIONAL 
OFF ON OFF NON-FUNCTIONAL NON FUNCTIONAL 
OFF OFF ON 10 Mbitsfs 20 Mbitsfs 
OFF OFF OFF 20 Mbitsfs 20 Mbitsfs 

Table 5.7: The available B008 link specd sctt.ings 

For this application, link speeds are set to be 20 Mbits/s for ail links including the IMS '1'212 

link O. 

Link configuration 

One T425 transputer mounted on a B404 TRAM was utilizcd. The IH01 is cOlln('df'd to 

the B008 motherboard in slot O. This connection configuration is dict.ated hy the BOOS de­

sign specifications [26]. Using slot 0 allows only two (links 3 and 2) of the '1'425 trallsput.('r 

four links to commUlllcate with the outside world, the other two links are used 1.0 (,OllllllIJrli­

cate with the host PC. The B404 communication links have bccn configured slIch thilt. the 

transputer links are connected to the DIN 37 (peripheral input and output porI. of the BOO~ 

motherboard) as follows: 

1) Transputer link 3 is connected to pins 3 and 22 of the DIN 37 for output and input 

signaIs respectively. 

2) Transputer link 2 is connected to pins 16 and 35 of the DIN 37 for input and output. 

signaIs respectively. 

The B008 enables software link configuration through its on-board JMS C004 link 

switch. The following program fragment was used to achieve the link configuration specified 

• in above (configuration item numbcr 1): 



• 

• 

• 

CI1APTER 5. SYSTEM INTEGRAT10N 67 

SOFTWIRE 

SLOT oJ LINK3 TO EDGE 0 

END 

The second configuration for link2 has been achieved via hard wire pipe jumpers (special 

8-pin plugs) to the pipetail, see figure5.:l, 

5.2 Occam software in"tegration strategy 

This section explains the software program designed and written by the author of this thesis . 

+ 
Robot Interface Plant 

-
'ta ft 

't
a
= TT(W + '" ) 

Figure 5.5: Manipulator control scheme 

The manoeuvre of the manipulator is described in terms of the coordinates of its three 

actuated joints using the following equation: 

for i = 1, 2, 3 . (5.1) 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 68 

Start 

Configure System 

9 

Yes 

No 
Stop 

JOTRAJ 

FORCE 

Figure 5.6: Occam program flow chart 

where T is the time period of the whole manoeuvre. Using the dired kincmatics 

described in chapter 4, it was possible to obtain the positions, vclocities and acœlcrations 

of aIl links for the whole manoeuvre. Substituting the results of the initial condition (it 

is assumed that the manipulator starts its manoeuvre from rcst) into the invcrse-dynarnics 

equation: 

(5.2) 



• 

• 

• 

CIlAPTER 5. SYSTEM INTEGRATION 69 

which is used to compute the driving torques needed by the three actuators in order to drive 

the manipulator through the given motion to move it from rest through the precalculated 

trajedory. The angles of the manipulator's three actuators are then used to calculate the 

velocities and accelerations of aU links for every trajectory step which are then used for the 

rernainder of the manoeuvre to generate the torques required. The resultant torques are 

piped from the transputer mounted on the BOOS slot 0 via link 3 through the DIN 37 to the 

outside world. 

Based on this configuration, the control algorithm was designed. 

Figure 5.5 represents the closed loop control scheme utilized. The prototype supplies 

adequate torque values to drive the manipulator's three actuators. These values are first 

changed to voltage by the mot or controllers [30] before they are fed to the manipulator. 

Furtherrnore, the occam program will keep updating those torque values, based on the motor 

angle values generated by the motor controllers, throughout the manipulator's manoeuvre. 

Figure 5.6 illustrates the structure and the relationship of the two main modules, "JO­

'rRA.)" and "FORCE", of the occam program. Starting from the manipulator's initial con­

dition, "JOTRAJ" calculates the position, velocity, and acceleration in joint space, knowing 

in advancc the final position and the required time to finish the manoeuvre. Then these 

values arc fed to the "FORCE" module which in-turn calculates the required torque values 

to stad muving the manipulator from the starting condition; thereafter, these values are sent 

to the designated output link, thus completing the first program loop. Subsequent program 

loops will follow the first program loop. At the beginning of each subsequent loop, "JO­

'J'RA.J" reads the actuators angle values from the manipulator and compares them with the 

final actuators angle values. If the actuators angle values at the beginning of each subsequent 

loop match the actuators angle values at the final position, the program stops; Otherwise, 

"JOTRAJ" will continue to calculate the velocities and accelerations and feeds them to 

"FORCE" . 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 

8 r·"·· .... · .. ···"·"·_··· .. ·· .. ·········I-··_·_ ...... · .. ···············_·1 
1 J011UJ 1 
1 1 

Il! 1 Evalulle InJCCIOI)' pomI 

1 1 
1 1 
1 Compile coordmllel of aIl movina jlmll 1 

q. Cori- l,. Il 1 

Compute vekx:JllellDd lCUIeraliOOI 
~.ë for .. lr. ,7 

1 
1 

1 
1 ............... _-... _ ..... _.................... . ............................................. ." , .................... _................... .. ..................................... . 

1 Cunpule inenia and graVlly wrenches 
w,.,w~forl-I, .7 

Evalulle the nalural onho&ooal complemml 
T 

Compute the ac\ualOr drivmg IaqUCI 

• f 

1 CE 1 ! FOR f i 
'"-..... _._-............................................................................ .. 

Figure 5.7: JOTRAJ and FORCE inner-structure 

70 

Figure 5.7 shows the inner-structure of "JOTRAJ" and "FORCE" modules. The for­

mulae corresponding to each block of the diagram have been discussed in chapter 4, thercfore, 

will not be presented here again. 

5.2.1 Software examples 

In this section, various comparative examples between actual paraUel occam code fragnwnts 

used in the implemented controller program and conventional FORTRAN code fragrnentfl 

to produce the same values will be presented to explain how the occam paralld code is 



• 

• 

• 

CllAPTER 5. SYSTEM INTEGRATION 71 

different from the sequential FORTRAN code. ParaUel code has the advantage of utilizing 

the transputer hardware and its occam language support for concurrency, thus executing 

the independent operations involved simultaneously which results in their faster execution. 

Other adual sequential occalD code fragments used in the program are presented to show 

the explicit nature of the occam language SEQ construct. In occam the sequential nature of 

a proccss must be stated explicitly by the SEQ construct. Occam PAR and SEQ constructs 

are discussed in chapter 3. 

Par aU cl occam code is used throughout the program to execute in parallel the indepen­

dent operations as they arise. However, in certain cases where the operations are dependent, 

occam sequential code is used. The full listing of the occaDl program can be found in 

Appendix B. 

FJxample 1, on occam parallel code versus FORTRAN code: 

---declarations 

VALOF 

SRT:= DSQRT(3.0(REAL64» 

PAR 

SEQ 

AO:= «L2*CP)+«CTH-(SRT3*STH»*(L3/2(REAL64»)-XQ) 

Al:= AO*AO 

SEQ 

A9:= «L2*SP)+«STH+(SRT3*CTH»*(L3/2(REAL64»)-YQ) 

A2:= A9*A9 

DPQ := Al+A2-(L2*L2) 

RESULT DPQ 

In FORTRAN: 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 

SRT3-0SQRT(3 . DO) 

Al=(L2*CP+(CTH-SRT3*STH)*L3/2-XQ) **2 

A2= (L2*SP+(STH+SRT3*CTH) *L3/2-YQ) **2 

DPQ=Al+A2-L2*L2 

RETURN 

72 

The above occam example function contains a PAR construct which calculates t.he 

two indented sequences in parallel, thus computes Al and A2 simultancously and rt'l.UrtlH 

the value of the function DPQ. In FORTRAN, the same equatiolls are cxccutcd scquentially. 

The parallel approach significantly reduces computation time. 

Example 2, on occam parallel code versus FORTRAN code: 

PAR l = 1 FOR 3 

SEQ 

STH[I] := DSIN(THETA [1]) 

P[l,I] : Ll *(STH[I]) 

SEQ 

eTH[I] := DCOS (THETA [I]) 

P[2,I] := Ll * (CTH[I]) 

In FORTRAN: 

10 

DO 10 1-1, 3 

STH (I)=DS1N(THETA (1) ) 

CTH (I) =DCOS (THET A (1) ) 

P (1, I)=Ll*CTH(I) 

P(2,1)=Ll*STH(I) 



• 

• 

• 

ClIAPTER 5. SYSTEM INTEGRATION 73 

In this example, the FORTRAN DO construct calculates P(l,I) and P(2,I) three execution 

tirncs to finish the task. However, in occam the PAR construct allows the parallel calculation 

of the two variables in only one execution. This considerably reduces the calculation time. 

Example 3, on occam parallel code versus FORTRAN code: 

PAR 

SEQ l .. 0 FOR 1 

A[I,O] := AA[I.3] 

A[I,l] := -AA[I.4] 

A[I,2] := O.0(REAL64) 

12 := l + 2(INT) 

A[I2,O] := AA[I.3] 

A[I2,l] := O.0(REAL64) 

A [I2, 2] := -AA [1 ,5] 

A [I2, 3] : ... RD [1 .6] - RD [I, 8] 

SEQ l • 0 FOR 1 

B[I,O] := -AA[I.O] 

B [I, 1] : = AA [1. 1] 

B[I,2] := O.0(REAL64) 

12 := l + 2(INT) 

B[I2,0) := -AA[I,l] 

B [I2, 1] : = 0.0 (REAL64) 

B[I2,2] ;'"' AA[I.2] 

In FORTRAN: 

DO 10 1=1, 2 

A(I ,l)=AA(I ,4) 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 

A(I ,2)--AA(I, 5) 

A(I,3)=0 

A(I,4)=RO(I,7)-RO(I,8) 

I2=I+2 

A(I2,1)=AA(I,4) 

A(I2,2)=0 

A(I2,3)=-AA(I,6) 

10 A(I2,4)=RO(I,7)-RO(I,9) 

20 

DO 20 1=1. 2 

B(I, 1)=-AA(I, 1) 

B(I,2)=AA(I,2) 

B(I,3)=0 

I2=I+2 

B(I2,1)=-AA(I,1) 

B(I2,2)=0 

B (12 ,3)=AA(I ,3) 

74 

Both code fragments build two matrices. However, in occam the two matrices arc <:011-

structed in parallel, thus reducing calculation time. 

Example 1, on occam sequential code: 

SEQ 

IF 

(DABS(U[(K-l(INT»,(K-l(INT») < (1.0E-40(REAL64») 

SKIP 



• 

• 

• 

CIlAPTER 5. SYSTEM INTEGRATION 

NOT (DABS(U[(K-l(INT»,(K-l(INT»]) < (1.0E-40(REAL64») 

X[(K-l(INT»] := (B[(K-l(INT»]) / (U[(K-l(INT»,(K-l(INT»]) 

SEQ J = l(INT) FOR (N-l(INT» -- First loop 

Jn FORTRAN 

K :- N - J 

SOM := 0.0 

SEQ I = (K+l(INT» FOR N --Second loop 

SUM := SUM + (U[(K-l(INT»,(I-l(INT»] * X[(I-l(INT»]) 

IF 

(DABS(U[(K-l(INT),(K-l(INT)]) < (1.0E-40(REAL64») 

SKIP 

X[(K-l(INT»]:=(B[(K-l(INT»]-SUM)/U[(K-l(INT»,(K-l(INT))] 

IF (DABS(U(K,K».LT.l.D-40) GOTO 30 

X(K)=B(K)/U(K,K) 

DO 20 J=l, N-l 

K=N-J 

SUM=O 

DO 10 I=K+l, N 

10 SUM=SUM+U(K,I)*X(I) 

IF (DABS(U(K,K».LT.l.D-40) GOTO 30 

20 X(K)=(B(K)-SUM)/U(K,K) 

RETURN 

30 next program statement 

75 

In the above occam exampleindented ifloops were utilized along with a SEQ construct 

to he able to solve the upper triangle system of a matrix. A SEQ construct had to be 

cxplicitly stated to execute the dependent mathematicaloperations sequentially. The occam 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 76 

sequential execution has no advantage over FORTRAN exccution, a.nd both have idcnt.iml 

performance and results. 

Example 2, on occam sequential code: 

SEQ 1 = O(INT) FOR 2(INT) 

COOT[O.I] := -RO[l,I] * WEI] 

COOT[l.I] := RO[O,I] * WEI] 

13 := 1 + 3(INT) 

COOT[0.I3] := COOT[O,I]':«AA[l,I] - RO[1,I])*W[I])-(RO[1.13]*W[r3]) 

COOT [1. I3] : = COOT [1,1]+ «AA [0,1] - RO [0.1] )*w [1] )+(RO [0.13] *W [r3]) 

COOT[O,6] := COOT[0,3] -«AA[1,3]-RO[1.3])*W[3])-(RO[1.6]*W[6]) 

COOT[1,6] := COOT[1,3] +«AA[0,3]-RO[O.3])*W[3])+(RO[O.6]*W[6]) 

SEQ 1 =0 (INT) FOR 6(INT) 

II := 1 * 3 

T[Il ,K] := W [1] 

T[(II+l(INT) ,K] := COOT[O.I] 

T[(II+2(INT) ,K] := COOT[l.I] 

W [K] : = 0.0 (REAL64) 

IN FORTRAN 

00 10 1=1. 3 

COOT(1.I)=-RO(2.I)*W(I) 

COOT(2,I)=RO(1.I)*W(I) 

13=I+3 

COOT(l. 13)=COOT(1, 1)- (AA (2,1) -RO(2. 1» *W(I) -RO(2, 13) *W(I3) 



• 

• 

• 

CIIAPTER .5. SYSTEM INTEGRATION 

10 

CDOT(2.13)=COOT(2.I)+(AA(1.I)-RO(1.I»*W(I)+RO(1.13)*W(13) 

CONTINUE 

COOT(1.7)=CDOT(1.4)-(AA(2.4)-RO(2.4»*W(4)-RO(2.7)*W(7) 

COOT(2.7)=CDOT(2.4)+(AA(1.4)-RO(1.4»*W(4)+RO(1.7)*W(7) 

00 20 I=l. 7 

1I=(I-1)*3 

T(II+l.K)=W(I) 

T(II+2. K)=CDOT(l. I) 

20 T(II+3. K)=CDOT(2. I) 

W(K) =0 

77 

In this example a SEQ construct was used to compute the velocities of the mass centers 

of the manipulators three links in hase coordinates. The occam and FORTRAN codes will 

produce the same results. However, in occam a SEQ construct had to be used to perform 

t.he depcndent mathematical operations sequentially as per occam language rules. 

5.2.2 Running the control pro gram 

The Lransputer control program, developed by the author, is called progl.occ and resides 

now in an IBM-AT compatible PC at the Measurement Lahoratory of McGili University. 

'1'0 rUII progl.occ the Collowing steps should he followed: 

Step 1: 

Edit thc file setup.inc USil1g any file editing program and enter the setup values as 

dcfincd. The file setup.inc should be placed in the same directory as the main program 

progl.occ. A typiClJ.I setup.inc file is presented below: 

--This file should contain setup and required performance data 

--fill in the data adhering to the specifl.ed format 



CHAPTER 5. SYSTEM INTEGRATION 78 

• --Time period to define trajectory in seconds 

TT := 003.000 

--Enter time to start in seconds in max three digit 

TS := 000.000 

--Enter the time step size in seconds 

TSTEP := 000.010 

--Enter the end time in seconds 

• TE := 003.000 

--Start angles in degrees in three digit format. 

--For actuator #1 

THO [0] := 060.000 

--For actuator #2 

THO[l] := 120.000 

--For actuator #3 

THO[2] := 090.000 

• 



• 

• 

• 

CHAPTER 5. SYSTEAf INTEGRATION 

--End angles in degrees in three digits. 

--For actuator #1 

1HT[0] := 120.000 

--For actuator #2 

1HT[1] : = 000.000 

--For actuator #3 

1HT[2] := 120.000 

Step 2: 

Compile the program as per the following steps: 

Type: 

occam progl.occ t5 

The result of this compilation (a file called "prog1.t5h") must he linked with t.he li­

braries it uses (hostio.lib and dhlmath.lih). 

Step 3: 

To link the program type: 

ilink prog1.t5h hostio.lib dblmath.lib 

The linked program will be written to the file prog1.c5h. 

Step 4: 

Before the program can run it must be made 'bootahlc'. This is donc by lIsing the hootstrap 

tool iboot. Type: 



• 

• 

• 

C/lAPTER 5. SYSTEM INTEGRATION 

iboot prog1. c5h 

This will generate the file prog1.b5h. 

Stcp 5: 

80 

'1'0 run the program it must be loaded onto the transputer board using the host file server 

tool iscrver. To loa.d and run the program type: 

iserver Isb prog1. b5h 

The program now is loaded into the transputer board and running. For detaHed de­

scription on the operation of the various commands requirerl to compile, link and run an 

occam program, rcfer to [27]. 

5.2.3 Technical considerations of the control program 

The control program is currently set for the following specifie operational and input/output 

specifications. These specifications are set to utilize the available transputer hardware fa­

cilitics and are compatible to the other phases of the prototype manipulator project of 

Kounias [30] and Felton [14]. 

Timing 

The control algorithm performance execution requirements are currently set to complete a 

3 second manipulator manoeuvre with a slow program cycle rate of 0.01 seconds per cycle. 

Once the manipulator's de mot ors used in the implementation of the motor controller system 

parameters [30] are known the control systems set cycle rate can be changed to achieve an 

optimum performance level. The performance execution requirements can be ehanged by 

inputing the new values in the input file of the program and by changing the value of the 

time st.ep (TSTEP). A typical input file example has been presented eartier . 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 81 

Actua~or angles input to the program 

The occam control pro~ram expects to receive the thrce actuator angles scquent,ially on 

link 3 through pin 22 in the DIN 37 at the BOOS motherboard. As tht:' 1',125 transput,('r, a .. 'l 

discussed earlier, only has two free links, it is not possible 1.0 <livide tlH' t.hrec input allgle 

signaIs equally between the two free links. If, howevcr, one dccid('s t.o St'I\(\ t.wo sigllals 011 

one link and the third on the other link, the design of the PC-de motor cont.roll<'1 int.el fan' 

should accommodate for this configuration by implementing a buffcring and synchroJli~at.i()1I 

technique. Those approaches are inefficient as thcy will slow down the COllllllllllica.t.ioll 1)('­

tween the dc motor controllers and the transputer board duc 1.0 t.he additiolla.l proc('ssillg 

involved. 

The current input angles configuration is set in the control program by the following 

code segment: 

Reading actuator angles originating from the manipulator 

Step 1- initializing the input channel 

PROTOCOL Theta. in IS REAL32 j REAL32 j REAL32: 

CHAN OF Theta. in RealtimeTheta: 

PLACE RealtimeTheta AT 7: 

-- Step 2- reading thetas sequential1y 

RealtimeTheta ? TH[O] j TH[l] j TH[2] 

The ab ove actual control program segment reads the actuator angle values according 

to occam 2 language definition [43] and to the transputer hardware Iink communication 

protocol (discu3sed in chapter 2). 

The control program expects to receive the three actuat.or angle valucs 10 REA L:i2 

type. According to occam 2 language definition, a value of type REAL32 is repreflcllted 

by a sign bit, an 8 bit exponent and a 23 bit fraction. The value is positive if the sign bit 

= 0 and negative if the sign bit = 1. A signcd real value of type REAL:n is rcpreHented 

according to ANSI/IEEE standard 754-1985. However) in this prograrn only positive angle 



• 

• 

• 

CIlAPTER 5. SYSTEM INTEGRATION 82 

values arc expected as per the manipulators design characteristics [30]. 

From the above discussion, the transputer control system expects to receive 3 x 32 bits 

represcnting actuator angles (in the order of: motor 1, motor 2 and motor3 aZways) via a 

hardwire connection between pin 22 in the B008 motherhoard DIN 37 and the motor control 

interface. 

1I0wever, the input angles configuration can he changed to paraIIel input through their 

perspective input statements in the program at a later stage, if the hardware uscd has three 

avaiIable input links. For example, if the transputer used has links 1, 2 and 3 free, one can 

writc: 

--Reading thetas from the manipulator from three links parallel 

-- step 1- initializing input channels 

PROTOCOL Theta1.in IS REAL32: 

PROTOCOL Theta2.in IS REAL32: 

PROTO COL Theta3.in IS REAL32: 

CHAN OF Theta1.1n RealtimeThetaA: 

CHAN OF Theta2.in RealtimeThetaB: 

CHAN OF Theta3.in RealtimeThetaC: 

PLACE RealtlmeThetaA AT 5: 

PLACE RealtimeThetaB AT 6: 

PLACE RealtimeThetaC AT 7: 

-- step 2- Reading the input in parallel 

PAR 

RealtimeThetaA ? TH[O] 

RealtimeThetaB ? TH[l] 

naaltimeThetaC ? TH[2] 

The above example code reads the three input angles in parallel through links 1, 2 and 

3. Protocol, channels and placement statements are presented in chapter 3. 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 83 

Actuator torque values output 

The T425 position in slot 0 in the BOOS (discussed earlier) leaves oIlly two links (2 and 3) fr<'c 

for data transfer. The control program is set to output the torque values scquenlially on lh(' 

1425 transputer link 3 through pin 3 of the llCOS motherboard's DIN :l7. This configurat.ion 

decision has been implemented as it was not possible to divide the threc t.orqll<' vah\('s eq llally 

between the two available links. One of the alternative possible configlll'ations is to Rend two 

torque values over one link and the remaining torque value over t.h(' s('cond link. This 

approach is inefficient as it willlead to manipulator actuator synchronization probll'Ills. TI\(' 

other alternative solution is by using a buffering technique in th(' PC-de Illot.ors illt.crfa('(~. 

This approach will slow down data transfer between the transputer board and the d<: IJlt>t.OI' 

controllers. 

The current output torque configuration is set in the control progmm by t.ll<' following 

program segment: 

-- Step 1- initializing output channel 

PROTOCOL Torque.out IS REAL32j REAL32j REAL32: 

CHAN OF Torque.out ResultTorqueMotor: 

PLACE ResutTorqueMot AT 3: 

-- Step 2- sending the output torque values 

ResultTorqueMotor ! TORQUE[O]; TORQUE[l]; TORQUE[2] 

This actual control program segment sends the three actuator torque vailles according 

to occam 2 language definition [43] and to the transputer l-.ardware link communicat.ion 

protocol (highlighted in chapter 2). 

The control program sends the three torque values in REAL32 type. From occam 2 

language definition (highlighted earlier), the torque values are sent in a 32 hit format with 

the least significant bit reprcsent a sign bit, the remaining bits represent an 8 bit exporH!nt. 

and a 23 bit fraction. The torque value is positive if the sign bit = 0 and negativc if t.he 

sign bit = 1. The sign bit is used in the control program to define the direction of the 



• 

• 

• 

CIIAPTER 5. SYSTEM INTEGRATION S4 

torque. If the sign bit is positive, this indicates that this torque should rotate its designated 

motor c1ockwise. If the sign bit is negative, this indicates that thjs torque should rotate its 

dcsignatcd motor counterclockwise. 

The transputer control system send., sequentially three torque values organized as: mo­

tor 1, 2 and 3 a/ways. These torque values are represented by 3 x 32 bits. The transputer 

control system scnds thcse torque values through pin 3 in the DIN n on the BOOS mother­

board. To the manipulator motor control circ~itry. A transputer-motor controllers interface 

proposaI, for the torque output signaIs, was submÎtted based on the above configuration by 

l'CUon [14]. 

If the transputer hardware has three free links, the torque values can be sent out of 

the transputer control system in parallel as per the following program segment example: 

The transputer in this example has links 1, 2 and 3 free. One can write: 

-- Step 1- Output channel initialization 

PROTOCOL Torque. outA 18 REAL32: 

PROTOCOL Torque. outB 18 REAL32: 

PROTOCOL Torque. outC 18 REAL32: 

CHAN OF Torque.outA ResultTorqueMotA: 

CHAN OF Torque.outB ResultTorqueMotB: 

CHAN OF Torque.outC ResultTorqueMotC: 

PLACE ResutTorqueMotA AT 1: 

PLACE ResutTorqueMotB AT 2: 

PLACE ResutTorqueMotC AT 3: 

-- Step 2- Sending the torque output out in parallel 

PAR 

ResutTtlrqueMotA TORQUE [0] 

R9sutTorqueMotB TORQUE [1] 

ResutTorqueMotC TORQUE [2] 

The above example code sends the three output torques out of the transputer in paral1el 



• 

• 

• 

CHAPTER 5. SYSTEM INTEGRATION 85 

over links 1, 2 I1nd 3. ProtocoI, channels and placement statements are highlightcd in chaptcr 

3 . 



• 

• 

• 

Chapter 6 

Performance 

In this chapter transputer performance is compared with an IBM-AT performance hased 

on standard benchmark tests. These performance comparisons are published in [48]. A 

benrhmark is a standard measure of performance that enables one computer to he compared 

with another. Three benchmark tests have established themselves as the industry standards: 

the Whctstone benchmark, the Savage benchmark and the Dhrystone benchmark. At the 

end of this chapter the implemented architecture periormance test is demonstrated. 

6.1 The Whetstone benchmark 

The Whetstone benchmark program [11] is used to compare processor power for scÎentific 

applications. Running the program is considered equivalent to executing (approximately) 

one million "Whetstone" instructions. Performance, as measured by the henchmark, is 

quoted in "Whetstones per second". In addition to floating-point operations, it includes in­

teger arithmetic, array indexing, procedure caUs, conditional jumps, and elementary function 

evaluations. 

Table 6.1 and Table 6.2 illustrate the performance of the transputer T425 used versus 

the performance of sorne INTEL processor chips . 

86 



• 

• 

• 

CHAPTER 6. PERFORMANCE 

6.2 

System Thousands of Single-Precision 
Whetstones per Second 

IMS T425-30 1056 
INTEL 286/287 300 

Table 6.1: Single-Precision Whetstone benchmark rcsults 

System Thousands of DO\1 blc-Precision 
Whetstones per Second 

IMS T425-30 242 
INTEL 286/287 Not available 
INTEL 808\~-8087 152 

Table 6.2: Double-Precision Whetstone benchmark results 

The Savage benchmark 

87 

The Savage benchmark is a benchmark of elementary function evaluation only [45]. The 

Savage benchmark tests both execution speed and accuracy. 

System 

IMS 1'425 
IBM PC-AT 

CPU FPP MHz Language 

30 
286 287 6.0 

occam 
turbo pascal 

Ti me Error 
(seconds) (absoJutc) 
4.2 1.2E-9 
7.4 1.2E-9 

Table 6.3: Comparative Savage benchmark resuHs 

From table 6.3, it is clear that the time required to complete the Savage test is almost 

half of that used by 286-287 PC . 



• 
CilAPTE.1l 6. PERFORMANCE 88 

6.3 The Dhrystone benchmark 

The Dhrystone benchmark [44] is a synthetic benchmark designed to test processor perfor­

mance on "Systems programs". 

System 

IMS T425-30 
INTEL 80286-9 

Dhrystones 
per Second 
13400 
1976 -----

Table 6.4: Comparative Dhrystone benchmark results 

From table 6.4, one can notice the performante increase wh en employing the IMS '1'425. 

6.4 The implemented parallel architecture performance 

• experiment 

• 

6.4.1 Introduction 

The main objective of this experiment is to demonstrate the ability of the control program 

to produce torque values which correspond to the manipulators three actuators positions to 

move the manipulator through a given trajectory. The author of this thesis modified the 

original control program to achieve this objective. 

The performance of the control system is governed by two aspects: 

1) A fast processor (IMS T425-30 is presented in chapter 2). 

2) The use of a paraUel programming language compatible with the aforementioned pro­

cessor (occam language highlighted in chapter 3) . 



• 

• 

• 

CHAPTER 6. PERFORMANCE 

6.4.2 

• Indcpeodenl JOIDt 

o DependcnIJolDl 

Figure 6.1: The 3-DOF Parallel Manipulator 

The simulation test progl'am 

89 

To test the program behaviour) the geometric dimens!ons of the 3-DOF planar manipulator 

illustrated in figure 6.1 are: 

10 = 0.8m, h = 0.44 m, 12 = 0.22m, [3 = 0.125 m. 

with mass and inertia properties of: 

777,1 = Tn2 = m3 = 2.765 kg, Il = 12 = 13 = 0.06 (kg· m2
), 

m4 = ms = m6 = 1.328 kg, 14 = Is = ls = 0.0066 (kg· m2
), 

m7 = 5.06 kg, 17 = 0.0132 (kg· m2
), 

(Ci.2) 

(6.:J) 

((iA) 

where ml, m2 and m3 are the masses of the three links of length 11 and /1, /'). and la arc 

their moments of inertia. 1n4,mS and m6 are the masses of the thrcc linKS of length /2 and /4, 

1s and 16 are their moments of inertia. It was assumed also that a 3 kg circular ohjed wa.r; 

placed at the center of the end effector, hence, m7 and 17 int! udc iLs ma.<;s and itH moment of 



• 

• 

• 

C/lAPTEll. 6. PERFORMANCE 90 

incrtia. The mass center of each link is located at its center. The manipulator's manoeuvre 

is dcscribed by the cycloidal equation: 

for i = 1, 2, 3 (6.5) 

'f is the time for the manipulator to complete the whole manoeuvre. For this test the whole 

manoeuvre was set to take 3 seconds, with a cycle time of 0.01 seconds (same as the pre-set 

values of the original control program). Using the direct kinematics describeo in chapter 

~, the positions, vclocities and accelerations of aIl of the links were obtahed for the whole 

manoeuvre. Substituting these results into the inverse dynamics equation: 

(6.6) 

the Î,orqlle values which the manipulators three actuators should provide throughout the 

whole manoeuvre were obtained. Direct substitution of trajectory calculation (position", ve­

locities and accelerations of ail links) was used in the computation of the torques throughout 

the manoeuvre. This setup was used instead of direct measurement due to lack of manip­

ulator real time data feedback (actuator angles) throughout the manoeuvre. The following 

figures illustrate the actuatcd joint angles throughout the manoeuvre and the actuators cor­

rC'sponding torques calculatcd to move the manipulator throughout its manoeuvre (the raw 

d'Jia. are Iistcd in Appcndix D) . 



• 

• 

• 

CHAPTER 6. PERFORMANCE 

III 

Il 

100 

(a) 

1 

~b~--~a'~~~--~"--~~--l~'--~ 
n..( ... , 

(h) 

Figure 6.2: First joint. (a) Angle 01 versus time (b )Torque versus lime. 

91 

Figure 6.2 illustrates t.he first joint angle starting from 90° to have a final valllc of 1 :mo and 

its required torque during the 3 seconds manoeuver. 

(a) 

~~~--~U~--~--~"~--~--~21~~ -, 

(h)

Figure 6.3: Second joint. (a) Angle (}2 versus time (b)Torquc versus lime.

In figure 6.3 the second joint angle motion to reach 120c starting from 60° and lhe rcC{uircd

computed torque values.

•

•

•

CIlAPTER 6. PERFORMANCE

1
t

(a)

i
1

, 'C

• .,

(b)

Figure 6.4: Third joint. (a) Angle (}3 versus time (b) Torque versus time.

Figure 6.4 represents the third joint angle and its required torque time histories.

92

The plots presented in figures 6.2, 6.3 and 6.4 plot the data represented in the above

tables versus elapsed time, thus showing the timing results for each of the manipulator's

actuated joints torq11e values. The values are plotted for each program cycle (0.01 seconds

per cycle) throughout the 3 second manoeuvre. One can notice the non-identical torque

behaviour for the three actuators as weIl as the smoothness of the torque curves as they

develop through time .

•

•

•

Chapter 7

Conclusions

This thesis contains a study of the application of parallel processing in the mcchanical anal­

ysis of 3-DOF parallel manipulators, to control the movemcnt of that type of manipulators

in real time. As an application of this study, a parallel control seheme was devcloped and

implemented to control the motion of a prototype 3-DOF Planar Parallel Manipulat,ür in

real time.

The hardware used (transputer) was specially designed to support parallcl proccssing.

This processor was integrated in an IBM-AT and used as the hardware controllcr for the

parallel manipulator.

Since the transputer operation requires a special high lcvcl programming language

(occam), a computer program was developed using occam to compute the torques rcquireù

for the parallel manipulator providing the positions of each actuated link are givcl!. This

program is considered the software part of the controller.

Using the facilities provided by the transputer (mainly parallel proeessing), the prograrn

can provide more than one output torque value at the same time for the 3-DOF planar

manipulator to meet its three actuators requirements.

Both hardware and software were implemented in a modular design to allow for ap­

plication versatility and future improvements. From the hardware perspective, the BOOS

93

•

•

•

ClIAPTER 7. CONCLUSIONS 94

transputer motherhoard used can carry up to 13 processor TRAMs. In-addition each traus­

puter TRAM allow stacking. On the other-hand, the integrated occam program can be

used for any similar 3-DOF planar manipulator of different dimensions by changing the de­

sign specifications constants. AIso, the program is modular and structurally modifiable to

facilitatc the use of more than one transputer.

Due to the lack of adequate r.umber of transputers, only one transputer is used for this

controller scheme implementation. AIso, to simplify the interface design sub-project (under

dcvclopment [14]) and to achieve fast transputer-motor controllers communication, only one

of the two transputer's free links is used. The utilization of only one link forced the originally

calculated and produced torque values in parallel to be sequmtially sent out through the

37-pin D connector at the B008 board edge.

7.1 Suggestions for future research

This project concludes the first phase of the main project. In order to obtain real time

control, the controller system need to he interfaced with the existing prototype presented by

Kounias [30]. An interface proposaI was presented by Felton [14] as a first step towards a iully

bidirectional interface implementation. That leaves the main project remaining completion

stcps to he:

1. Design and implement a bidirectional interface to acr.omplish the desired communi­

cation betwccn the B008 transputer motherboard and the prototype 3-DOF Planar

Manipulator.

2. Extcnd the paraUeI architecture to include three transputers. Thus allocating one

transputer to generate the torques for each of the manipulators three actuators. This

approach promises a full parallel control of the manipulator in real time .

•

•

•

Bibliography

[1] Angeles, J., "On the numerical solution of the inverse kmemalic p7'Oblem".

The Int. J. Robotics Research, Vol. 4(2), pp.21-37, 1985.

[2] Angeles, J. and Lee, S. K., "The formulation of dynamical cquations of

holonomie mechanical systems using a natural orthogonal comlJlcment",

Trans. ASME, Journal of Applied Mechanics, Vol. 55(1), pp.243-244, H)88.

[3] Angeles, J. and Ma, O., "Dynamic simulation of n-axis seriai mbollc ma­

nipulators using a natural orthogonal complement ", The Inlernalional.Jour­

nal of Robotics Research, Vol. 7(5), pp. 32-47, 1988.

[4] Barton & Elliot, "A transputer review". Smith Associalcs, 1988.

[5] Behi, F., "[(inematic analysis for a six degree-of frccdom tl-PRS paraUd

mechanism", IEEE Journal of Robotics and Automation, Vol. 4(5), pp.

561-565, 1988.

[6] Brady, M. et al, "Robot Motion: Planning and control", MIT Press, Cam­

bridge, MA., 1983.

i7] Broornhead, D. S., et al., "A practical comparison of the systo/ic and wavc­

front array processing architectures", Proc. IEEE Int. Conf. on Acoustics,

Speech and Image Processing, Tampa, March 1985.

[8] Carling, A., "Paralle! Processing, The transputer and Occam", Sigma press,

Wilmslow, 1988.

95

•

•

•

Bibliography 96

[9] Chesney, Miles, "The transputer spawns a radically new computer", Elec­

tronics, McGraw Hill Inc. N.Y., N.Y., pp. 43-45, Oct. 7, 1985.

[10] Craig, J. J., "Introduction to robotics, mechanics and control", Addison­

Wesly, Redding, 1986.

[11] Curnow H.J., and Wichmann B.A., UA synthetic benchmark", Computer

Journal 19(1), pp. 43-49, Feb. 1976.

[12] Do, D. Q. W. and Yang, D. C. H., "Inverse dynamic analysis of a platform

type of robot", Journal of Robotic Systems, Vol. 5(3), pp. 210-227, 1988.

[13] Elliot C., Armstrong R., "Transputer applications: Transputers on board

spacecraft", Smith Associates Ud., chapter 11, pp. 237-253, 1991.

[14] Felton, P., "The design of a transputer interface", internai report, McGill

University, 1992 .

[15] Fichter, E. F., "A Stewart platform-based manipulator: general theory and

practical construction", The Int. J. Robotics Research, Vol.. 5(2), pp. 157-

182, 1986.

[16] Flynn, M. F., "Some computer organizations and their effectiveness", IEEE

Trans. Computer C- 21, pp. 948-960, 1972.

[17] Garcia de Jalon, J., Unda, J., Avello, A. and Jimenez, J. M., "Dynamic

analysis of three-dimensional mechanisms in "natural" coordinates", Trans.

ASME, Journal of Mechanisms, Transmission and Automation in Design,

Vol. 109, pp.460-465, 1987.

[18] Gosselin, C. and Angeles, J., "A new performance index for the kinematic

optimization of robotic manipulators", Proceedings of ASME 20th Biennial

Mechanisms Conference, Sept. 25-28, Kissimmee, FI., pp.441-447, 1988 .

•

•

•

Bi bliography 97

[19] Gosselin, C. and Angeles, J., "Singularity analysis of closed-loop kinematic

chains", IEEE Trans. Robotics and Automation, Vol. 6(3), pp. 281-2~)0,

1990.

[20) Harp, G., "Transputer Applications: Pm'allel processing", Pitman Publish­

ing, St. Mutaine, pp. 1-10, 1991.

[21] Harp, G., Baker S., Webber H., "Transputer applications: Image l"'O<:CSS­

ing", Pitman Publishing, Chapter 9, pp. 204-220, 1991.

[22] Hartenberg, R. S. and Denavit, J., "I<inematic Synlhesi:J of Linkllges",

McGraw-Hill, New York, 1964.

[23] Hoare, C. A. R., "Communicating sequential processes", Prcntiœ Il ail ,

Hemel Hempstead, 1985.

[24] Hunt, K. H., "Structural kinematics of in-parallcl-acluatcd robot-anus",

Trans. ASME, Journal of Mechanisms, Transmission a.nd Automation in

Design, Vol. 105, pp. 705-712, 1983.

[25] lan Graham and Tim King, "The tran3'jJuter handbook", Prelltiœ Il ail ,

Hemel Hempstead, Second edition, 1991.

[26] INMOS "IMS B008 user guide and reference manua/", Inmos LTD., tech­

nical document, pp. 2-6, 1988.

[27] INMOS "Occam 2 toolset user manua/", Illmos L'rD., technical documcllt,

1989.

[28] Jones, G. and Goldsmith W., "Programming in occam 2", Prcntiœ lIall,

Hemel Hempstead, 1988.

[29] Kokkinis, T. and Stoughton, R., "Dynamics and control of closed-Ioop spa­

tial 5-bar linkages", ASME paper No. 89AMR-9B-I, pp. 1-7, 1989 .

•

•

•

Bib/iography 98

[30] Kounias, S., Design, manufacture and control of a planar three degree of

freedom paraUel manipulator, M. Eng. Thesis, McGill University, Aug. 1993.

[31] Lee, K. M. and Shah, D. K., "Kinematic analysis of a three-degrees-of­

freedom in-paraUd actuated manipulator", IEEE Journal of Robotics and

Automation, Vol. 4(3), pp. 354-360, 1988a.

[32] Lee, K. M. and Shah, D. K., "Dynamic analysis of a three-degrees-of­

freedom in-paraUel actuated manipulator", IEEE Journal of Robotics and

Automation, Vol. 4(3), pp. 361-367. 1988b.

[33] Lee, K. M. and Chao, A., "On the analysis of a three-degree-of-freedom

manipulator", International Journal of Robotics and Automation, Vol. 3(2),

pp. 90-96, 1988.

[34] Luh, J. Y. S., Walker, M. W. and Paul, R. P. C, "On-Une computational

scheme for mechanical manipulators", Trans. ASME, J. Dyn. Syst., Meas.,

and Control, Vol. 102, pp. 103-110, 1980.

[35] Ma, O. and Angeles J., "Performance evaluation of path-generating planar,

spherical and spatial four-bar linkages", ASME Journal of Mechanism and

Machine TJleory, Vol. 23(4), pp. 257-268, 1988.

[36] Ma, O., "Mechanical Analysis of ParaUel Manipulators with Simulation,

Design and Control". Ph. D. Thesis, Mechanical Engineering Department,

McGill University, Montrea.l, 1991.

[37] Ma, O. and Angeles, J., "Direct kinematics and dynamics of a planar three­

dof paraUd manipulator". Tra.ns. ASME, J. Mech., Trans. and Automation

in Design, volume 3, pp 313-320, 1989.

[38] Manuel, T., "As the world turns paraUd, transputer applications explode",

Electronics, VNU Business Publication Inc., Hasbrouck Heights, N.J., pp .

110-112, Dec., 1988.

•

•

•

Bi bliography 99

[39] McCarthy, J. M., "[(inematics of robot manipulalo1"s", a collection of pa­

pers published in The International J. Robotics Rescarch, MIT Press, Ca.m­

bridge. MA., 1987.

[40] Merlet, J-P., "Force-feedbr-ck control ofparallel manipulalors", Procccdings

of IEEE International Conference, Rohotics a.nd Automation, IEEE Com­

puter Society Press, Vol. 3, pp. 1484-1489, 1988.

[41] NoUe, H., "Linkage coupler curve synthesis: A histol'ical rctJictIJ- lU. Spa­

tial synthesis and optimization", Mechanism and Machine Theory, Vol. 10,

pp. 41-55, 1975.

[42] Paul, R. P., "Robot manipulators: mathematics, p1'Ogramming and cont1'01",

The MIT Press, Cam!)ridge, MA., 1981.

[43] Pountain, D. and May, D., "A tutorial introduction to occam p1'Ogramming",

BSP Profession al Books. An INMOS LTD. document, BSP Professional

Books, Marco, 1988.

[44] Reinhold P. Weicker, "Dhrystone: a synthetic systems programming bench­

mark", Communications of the ACM, Vol. 27(10), Oct. 1984.

[45] Savage B., "The Savage benchmark", Dr. Dobb's Journal, pp. 120, Sep.

1983.

[46] SGS-TtlOMSON "The T9000 transputer products ovcrvzcw manual", In­

mos LTD., First edition, Consolidated Printers, Berkeley, pp. 55, 1991.

[47] SGS-THOMSON "The transpùtp.r data book", Inmos LTD., second cdition,

Consolidated Printers, Berkeley, 1989.

[48] SGS-THOMSON "Transputer technical notes", Inmos L'fD., second edi­

tion, Prentice Hall International(U.K.) Ltd., Hemel Hempstead, pp. 205-

227, 1989.

•

•

•

Bibliography 100

[49] Stewart, R. P., "A platform with six degrees of freedom", Proc. of the In­

stitution of Mechanical Engineers, VoI.180(1), pp. 371-386, 1965.

[50] Waldron, K. J., "Elimination of braneh problem in graphical Burmester

mechanism synthesis for four finitely separated positions", ASME Trans.,

Journal of Engineering for Industry, Vol. 98, No. l, pp. 176-182, 1976.

[51] Williams II, R.L. and Reinholtz, C.F., " Forward dynamic analysis and

power requi"'ement comparison of pcrallel robotie mechanisms", Proceed­

ings of ASME Design Technology Conference, 20th Biennial Mechanical

Conference, Sept. 25-28, Kissimmee, Florida, pp. 71-78, 1988.

[52] Yang, D. C. and Lee, T. W., "Feasibility study of a platform type of roboUe

manipulators from a kinematic view-point", Trans. ASME, J. Mech., Trans.,

and Auto. in Design, 1984, Vol. 106, pp. 191-198 .

•
Appendix A

Schemes of N umerical Methods

A.1

Newton-Raphson Method.

• Given an initial guess of variables x, say Xo •

(A.t)

where

~Xk = - [F(X)]
x=x"

(A.2)

until ~Xk becomes less than a given tolerance .

•
101

•

•

•

Appendix B

Program listings

B.I

Main program

--PROGAM prog1.occ (first go at cracking the robot torque and

--trajectory calculations)

#include "hostio.inc"

PROC occam.program (CHAN OF SP fs, ts, []INT memory)

#USE "hostlO.lib"

REAL64 B,C,O,E,F,H,P,R,S,T,U,V,W,Y,Z

REAL64 M,IM,OO :

[3]REAL64 THO

[3]REAL64 THT

[3]REAL64 TH :

--when start movement start angles .

--wheu end movement end angles required

[3]REAL64 THDOT : --to have angular velocity variable.

[3]REAL64 THDDOT :--to have angular acceleration variable.

[3]REAL64 TORQUE :--toque variable.

[3]REAL64 THO :

102

•

•

•

APPENDIX B. PROGRAM LISTINGS

[3] REAL64 THOO :

[3]REAL64 A --commmon variables correspond to robot.

[3]REAL64 K --commmon variables correspond to robot constants

[3]REAL64 L --commmon variables correspond to robot l1nk lengthes

[2,3]REAL64 0 :--matrix of coordinates of fixed joints

[3]REAL64 THETA :--angle from X_(i-l) to X_i in the direction of Z_i.

[2,2,9]REAL64 Q

REAL64 TS, TE, TSTEP:

[7]REAL64 M :--scalar m_i(mass of the i-th link)

[7]REAL64 lM :--moment of inertia about mass center of Link i.

[2,9]REAL64 RO :--vector directed to the mass center of the i-th link

INT IND: --index of initial guess-searching for subroutine POSITN.

[2]REAL64 G : --commmon variables correspond to gravit y

#INCLUDE "datain.inc"

#INCI.UDE "setup. inc"

DD := (DACOS(-1.0(REAL64» / (180.0(REAL64»)

PROC JOTRAJ (REAL64 T,TT, [3]REAL64 THO,THETA,THDOT,THDDOT)

--look for TT declaration

--compute postions, velocities, and accelerations in joint space

--with arbitrary time t.

REAL64 B, C , D , E , F ,G ,H, L , K , 0 , P , R, S , T, U , V , W , ,r , Z

REAL64 PI,DD,BT:

[3]REAL64 A, TO, THT:

SEQ

PI:= DACOS(-1.00(REAL64»

DD:=(PI)/ (180.00(REAL64»

13:= (PI+PI) /TT

SEQ

10:1

•

•

•

APPENDIX B. PROGRAM LISTINGS

PAR

TO[O] :=THO[O] * DO

A[O] :=«THT[O] -THO[O]) * DO)/ (PI + PI)

TO[l];=THO[l] * DO

A[l] :=«THT[l] -THO[l]) * DO)/ (PI + PI)

TO[2] :=THO[2] * DD

A[2] :=«THT[2] -THO[2]) * DO)/ (PI + PI)

SEQ

BT:= B*T

PAR

THETA[O] :=TO[O]+(A[O] * (BT - DSIN(BT»)

THDOT[O] :=A[O] * B * (1.0(REAL64» -DCOS(BT)

THDDOT[O] := A[O] * B * B * (DSIN(BT»

THETA[l] :=TO[l]+(A[l] * (BT - DSIN(BT»)

THDOT[l] :=A[l] * B * (1.0(REAL64» -DCOS(BT)

THDDOT[l] := A[l] * B * B * (DSIN(BT»

THETA[2]:=TO[2]+(A[2] * (BT - DSIN(BT»)

THDOT[2] :=A[2] * B * (1.0(REAL64» -DCOS(BT)

THDDOT[2]:= A[2] * B * B * (DSIN(BT»

104

PROC LUOECP ([NA,N]REAL64 A,INT NA, N, [NL,N]REAL64 L,INT NL,[NU,NJREAL64 U,

INT NU)

-- Decomposing of a gicen n by n matrix using Crout's method as follows:

-- A = L * U

-- Where L and U are lower and upper matrices, respectively

Input:

A --- given N * N matrix

NA --row dimension of array A in the caller

•

•

•

APPENDiX B. PROGRAM LISTINGS

N -- dimensi~n of matrix A

NL,NU -- row dimensions of arrays L and U 1n the Caller

-- outputs:

L-- N * N lower triangular matrix

U-- N* N upper triangular matrix

REAL64 SUM :

INT J, K , I. N :

-- INT NA.N,NL.NU,J,K:

--[NA,N]REAL64 A:

--[NL,N]REAL64 L:

--[NU,N]REAL64 U:

SEQ l = 1 FOR N

SEQ J = 1 FOR N

L[(I-l(INT».(J-l(INT»] := A[(I-l(INT»).(J-l(INT»]

SEQ K = 1 FOR N

SEQ l = K FOR N

SUM := 0.0

SEQ J = 1 FOR (K-l(INT»

lO5

SUM := SUM + (L[(I-l(INT»,(J-l(INT»] * L[(J-l(INT»,(K-l(INT»])

L[(I-l(INT».(K-l(INT»]:= L[(I-l(INT»,(K-l(INT»]- SUM

SEQ J := (K+l(INT» FOR N

SUM := 0.0

SEQ l = 1 FOR (K-l(INT»

SUM := SUM + (L[(K-l(INT»,(I-l(INT)] * L[(I-l(INT»,(J-l(INT»])

L[(K-l(INT».(J-l(INT»]:=(L[(K-l(INT»,

(J-l(INT»]-SUM)/(L[(K-l(INT»,(K-l(INT»])

SEQ l = 1 FOR N

U[(I-l(INT».(I-l(INT»] := 1.0(REAL64)

SEQ J = (1 + l(INT» FOR N

•

•

•

APPENDIX B. PROGRAM LISTINGS

U[(I-1(INT», (J-1(INT»] := L [(I-1(INT», (J-1(INT»]

SEQ 1 • 1 FOR N

SEQ J • (I+1(INT» FOR N

L[(I-1(INT», (J-1(INT»] := 0.0

U[(J-1(INT»,(I-1(INT»] := 0.0

PROC LINERL ([NL, N] REAL64 L, INT NL, N , [N] REAL64 B, X)

-- This procedure solves a lover triangle linear system

-- L(l, 1) * X(l) =B(1)

-- L(2,1) * X(l) + L(2,2) * X(2) -B(2)

-- L(N,l) * X(l) + L(N,2) * X(2)+ ... +L(N,N)*X(N)=B(N)

106

-- for N-dimensional vector X ,Argument NL is the row dimension of array

-- L which should be the same as that in the caller

REAL64 SUM:

INT J, 1:

1 :- 1

SEQ

IF

(DABS(L[(I-l(INT»,(I-l(INT»]» ((1.0E-40(REAL64»

SKIP

NOT (DABS(L[I,I]» ((1.0E-40(REAL64»

X [1] : = B [I] / L [1 , 1]

SEQ 1 • 2 FOR N

SOM := O.O(REAL64)

SEQ J • 1 FOR (I-l(INT»

SUM :- SUM + (L[(I-l(INT»,(J-l(INT»] * X[(J-l(INT»])

IF

•

•

•

APPENDIX B. PROGRAM LISTINGS

(DABS(L[(I-1(INT» , (I-1(INT»]» < (1.0E-40(REAL64»

SKIP

NOT (DABS(L[(I-l(INT»,(I-l(INT»]» < (1.0E-40(REAL64»

X[I] :- (B[I] - SUM) 1 L[I,I]

PRce LINERU ([NU,N]REAL64 U,INT NU,N,[N]REAL64 B,X)

-- Solves a upper triangle linear system, Le.

-- U(l,l)*X(l) + U(l,2) * X(2) +

U(2,2) * X(2) +

+U(l,N) * X(N) = B(l)

+U(2,N) * X(N) = B(2)

U(N,N) * X(N) = B(N)

107

--For N-dimensional vector x.argument NU is the raw dlmension of array U .

REAL64 SUM :

INT K,J, 1:

K :- N

SEQ

IF

(DABS (U[(K-l (INT» , (K-1(INT»]) < (1.0E-40(REAL64»)

SKIP

NOT (DABS(U[(K-l(INT»,(K-l(INT»]) < (1.0E-40(REAL64»)

X[(K-l(INT»] : - (B[(K-l (INT»]) 1 (U [(K-1(INT», (K-1 (INT»])

SEQ J • 1(INT) FOR (N-l(INT» -- First loop

K := N - J

SOM := 0.0

SEQ 1 = (K+1(INT» FOR N --Second loop

SOM :- SUM + (U[(K-1(INT»,(I-l(INT»] * X[(I-l(INT»])

IF

•

•

•

APPENDIX B. PROGRAM LISTINGS

(OABS(U[(K-1(INT),(K-1(INT)]) < (1.0E-40(REAL64»)

SKIP

X[(K-1(INT»] :-(B[(K-1(INT»]-SUM)/U[(K-1(INT»,(K-1(INT»]

PRoe FDISSP ([3] REAL64 THETA, THDOT, [21] REAL64 WO)

-- This procedure is used to evaluate the dissipative forces and

-- torques exerting on each link.

INT 1:

PAR 1 = O(INT) FOR 20(INT)

WO[I] := 0.0

PRoe VTOU ([N] REAL64 V, INT N, [N] REAL64 U)

-- This procedure is to assign Vector VeN) to Vector U(N) .

INT 1:

PAR 1· O(INT) FOR (N-l(INT»

U[I] := VEIl

PRoe AMLV ([NA,N]REAL64 A,INT NA,M,N,[N]REAL64 V, [M]REAL64 U)

-- This Procedure computes the product of an m by n matr":'x A

-- and an m-dimension vector V, i.e.

-- U • A * V

INT I,J :

SEQ 1 = 1 FOR M

U[(I-l(INT»] :- 0.O(REAL64)

SEQ J • 1 FOR N

108

U[(I-1 (INT»] :-U[(I-1(INT))]+(A[(I-1(INT», (J-1 (INT»] *V[(J-l (INT»])

PRoe QTMLV ([2,2]REAL64 Q,[2]REAL64 V,U)

•

•

•

APPENDIX B. PROGRAM LISTINGS

-- This procedure computes the product of the transpose mat.rix Q'

-- 2 by 2

-- and a 2-dimension Vector V i.e.

-- u,. Q * V

INT 1

PAR 1 - O(INT) FOR 1(INT)

U[I] :- (Q[O,I] ... V[O]) + (QU,I] ... V[l])

PROC QMLV ([2,2]REAJ.64 Q, [2]REAL64 V,U)

-- This procedure computes the product of a 2 by 2 matrix Q

-- and a 2-dimension Vector V i.e.

-- u,. Q * V

INT 1

PAR 1 - O(INT) FOR 1(INT)

U[I] :- (Q[I,O] ... V[O]) + (Q[I,l] ... V[l])

PROC VECTOP ([2] REAL64 U, V , W , BYTE M)

-- This Procedure calculates two 2-Dimension vectors U t V

-- As follows :-

-- if M = '+' then W = U + V

-- if M - ,-, then W • U - V

IF

(M : =- "+")

PAR l = O(INT) FOR 1

W[I] :- U[I] + V[I]

NOT (H := "+")

PAR 1 = O(INT) FOR 1

W[I] :- U[I] - V[I]

109

•

•

•

APPENDIX B. PROGRAM LISTINGS 110

PRoe EVALUT ([2,9]REAL64 AA,[2.9]REAL64 RO.[21,3]REAL64 T)

-- This procedure is used to evaluate the Natural Orthogonal Complement

-- namely, the 21 by 3 matrix T. The evaluation is done as follows :-

-- the j-th column of T i scomputed as teh 21-dimension generalized twist

assuming that aIl the actuated joints are locked but the j-th one has

a unit velocity . the reasulting T is represented in the base

-- coordinate frame.

Input :-

AA ---Translational vectors represented in the i-th coordinates.

RD ---RO(l,i) t RO(2,*) are the components of teh relative

position vect\.lr of mass center of teh i-th link in i-th coordinates.

G ---G(l,k) t G(2,k) are the components of the gravit y acceleration

represented in the k-th base coordinate frame.

Output :-

T ---21x3 matrix of the natural orthogonal complement in the base

coordinates.

InternaI variables

WDOT ----7-dimension vector of angular acceleratins in the iTh

coordinates .

eDOT ----CDOT(l.i) t CDOT(2,i) are components of the acceleration of

the mass center of the iTh link in the iTh coordinates.

O(*,i)---Position vector of teh iTh fixed joint in the base frame.

PE(*,i)--Position vector of the iTh moving joint in E frame.

X ---4 Dimension working vector.

-- First step forming the 4x4 matrix A and the 4x3 matrix B:

[4,4]REAL64 A,L,U:

[4,3]REAL64 B:

[4] REAL64 X:

[7] REAL64 W:

•

•

•

APPENDIX B. PROGRAM LISTINGS

[2,7]REAL64 CDOT:

INT I,12,I3,II,K:

PAR

SEQ 1 = ° FOR 1

A [I, 0] : = AA [1 ,3]

A[I,1] := AA[I,4]

A[I,2] :- O.0(REAL64)

A[I,3] := RO[I,6] - RO[I,7]

12 := 1 + 2(INT)

A[I2,0] := AA[I,3]

A[12,1] := 0.0(REAL64)

A[12,2] := -AA[I,5]

A[12,3] := RO[I,6] -RO[I,a]

SEQ 1 - ° FOR 1

B[I,O] := -AA[[I,O]

B [I , 1] : = AA [1 , 1]

B[I,2] :- 0.0(REAL64)

12 := 1 + 2 (INT)

B[I2,0] := -AA[I,1]

B[I2,1] := 0.0(REAL64)

B [12 , 2] : = AA [1 ,2]

-- Decomposition of A using Crout's Rule.

LUDECP(A,4,4,L,4"U,4)

Hl

-- Solving for (absolute) angular velocities Wei) from A*W = B*THDOT

PAR 1 - ° FOR 2

W[I] := 0.0(REAL64)

SEQ K = 0 FOR 2

W[K] := 1(REAL64)

LINERL(L,4,4,B[O,K],X)

------------------- -

•

•

•

APPENDIX B. PROGRAM LISTINGS

LINERU(U,4,4,X,W[3 FOR 6])

--Computation of the velocities of mass centers in base coordinates

SEQ 1 = O(INT) FOR ?(iNT)

COOT[O,I] :- -aO[l,I] * WeI]

COOT[l,I] :- RO[O,I] * weI]

13 :- 1 + 3(INT)

112

COOT[O,I3] := COOT[O,I]-«AA[l,I] - RO[l,I])*W[I])-(RO[l,I3]*W[I3])

COOT[l,I3] := COOT[l,I]+«AA[O,I] - RO[O,I])*W[I])+(RO[O,I3]*W[I3])

COOT[O,6] :- COOT[O,3] -«AA[1,3]-RO[l,3])*W[3])-(RO[l,6]*W[6])

COOT[1,6] := COOT[1,3] +«AA[O,3]-RO[O,3])*W[3])+(RO[O,6]*W[6])

SEQ 1 -O(INT) FOR 6(INT)

II := 1 * 3

T[Il ,K] : = W [1]

T[(II+l(INT),K] := COOT[O,I]

T[(II+2(INT),K] := CDOT[1,I]

W[K] := O.O(REAL64)

PROC CPANGO (REAL64 Kl,K2,K3,PSI,STH,CTH,INT KTH, JROOT)

"-This procedure is used to compute the sine and cosine of the coupler

--angle "theta" of an arbitrary RRRR planer four-bar linkage in terms of

--the given input angle "PSI" and the branch index K.

--Formulation:

--Solving the Input-coupler function:

--Kl+(K2*COS(PSI»+(K3*COS(TH»-COS(PSI-TH)=O

--AS

COS(TH)- (1-T**2)/(l+T**2)

SIN(TH)= 2*T / (1+T**2)

--Where

•

•

•

APPENDIX B. PROGRAl\l LISTINGS

T=TAN(TH/2) • (B-KTH*SQRT(B**2-A*C»/A

A=Ki+(K2+1)*COS(PSI)-K3

B=SIN(PSI)

C=Ki+(K2-t)*COS(PSI)+K3

--INPUT:

Ki,K2.K3 Linkage parameters

PSI input angles (in rads.)meaning angle between the fixed and

the input links

KTH branch index.

if KTH = 1 (or KTH >= 0),then T=(B+OSQRT(B**2-A*C»/A

if KTH=-l (or KTH < 0),then T=(B-SQRT(B**2-A*C»/A

--OUTPUT

THi coupler angel (in rads.) corresponding to KTH.

TH2 coupler angle (in rads.) corresponding to -KTH .

JROOT output status index: JROOT=O no real solution.

=1, solutions are OK.

IN! KTH, JROOT:

REALL64 Ki, K2, K3, PSI, STH,CTH, KA, KB, A,C,B, T. Q. TT:

JROOT := 1.0(REAL64)

KA := Kt +(K2 *(OCOS(PSI»)

KB :- K3 - (OCOS(PSI»

A :- KA - KB

C := KA + KB

B := (OSIN(PSI»

IF

(OABS(A) < (1.0E-12(REAL64»)

T := C / (B+B)

NOT (OABS(A) < (1.0E-12(REAL64»)

--COS(THi /2) AND COS (TH2/2) ARE ROOTS OF QUAORATIC EQUATION

113

•

•

•

APPENDIX B. PROGRAM LISTINGS

-- A*T •• 2 - 2 *B*T+C-O

Q :- (B * B) - (A * C)

IF

(Q < (O(RE!.L64»

114

JROOT :- O.O(REAL64)--NEED TO MAKE THE PROGRAM NICE TO PRINT

SKIP -- REMARK,THERE IS NO REAL ROOTS OF THE QUADRATIC EQUATION

-- ENVOLVED .

NOT (Q < (O(REAL64»

T :- (8 + «DSQRT(Q»*(KTH(REAL64»» 1 A

TT :- T • T

CTH :- (1 -TT) /(1 + TT)

STH :- (T + T) /(1 + TT)

PROC RRRR48 (REAL64 Al,A2,A3,A4,A5,BETA,PSIO,THO)

--this procedure is used to precompute some basic data, su ch as, linkage

--parameters, bounds of mobility range, etc., of a RRRR planer four-bar

--linkage. The data computed will be put in a common block named DATA4B

--which may be accessed by other routines for further computations

--Input

Al,A2,A3,A4 ===lengthes of the base, input and output links

respectively. (link diimensions)

A5 ====Distance from the second joint to the coupler point.

8ETA ==Angle defining the shape of the coupler (in deg.)

input angle of the initial congfiguration (deg).

--OUTPUT : (aIl the following output data are outputted to the main

pro gram so they can be accessed by other procedures

when neccessary).

A ---5 members vector array containing [Al,A2,A3,A4,AS]

K ---3 members vector array containing linkage parameters

•

•

•

APPENDIX B. PROGRAM LISTINGS

PSIB1-- lower bound of the mobility range(in rad.) of input

angle.

PSIB2-- upper bound of the mobility range(in rad.) of input

angle .

MFLAG-- if MFLAG=l, the input link is crank, otherwise it is

a rocker.

115

INDEX-- Value of the branch index corresponding to PSIO t THO.

REAL64 PI,DD,BT,PSIB1,PSIB2,:

INT MFLAG,INDEX:

BOOL LOG 1, LOG2:

[5] REAL64 A:

[3] REAL64 K:

A[O]:= Al

A[l]:= A2

A[2]:= A3

A [3] := A4

A[4]:- A5

PI :- DACOS(-1.0(REEAL64»

DD := PI /(180(REAL64»

BT := BETA * DD

--CALCULATION OF THE LINKAGE PARAMETERS:

PAR

K[O] :-«A4*A4)-(Al-A2)-(A2*A2)-(A3*A3»/(2 * A2 * A3)

K[1] := A1/A3

K[2] := Al/A2

--CALCULATION OF THE BOUNDS OF MOBILITY RANGE OF THE INPUT LINK:

MFLAG:= 0

LOG1 := (Al+A2) < (A3 +A4)

LOG2 :- «Al-A2) * (Al-A2» > «A3-A4)*(A3-A4»

•

•

•

APPENDIX B. PROGRAM LISTINGS 116

IF

(LOGl AND LOG2) --IF THE LINK IS A CRANK THE ROTATION SHOULD BE 360 DEG.

PSIBl :- 0

PSIB2 :- PI

MFLAG := 1

SKIP ---LINK IS A CRANK

NOT (LOGl AND LOG2)

IF

«NOT LOG1) AND (LOG2»

PSIB2 :=«Al*Al)+(A2*A2)-«A3+A4)*(A3+A4»)/(Al *A2 *2(RREAL64»

IF

(DABS(PSIB2) > 1(REAL64»

SKIP --Al,A2,A3,A4 ARE INCONSISTANT!!!!

PSIB2 :- DACOS(PSIB2)

PSIBl :- -PSIB2

NOT «NOT LOG1) AND (LOG2»

IF

(LOGl AND (NOT LOG2»

PSIBl :=«Al*Al)+(A2*A2)-«A3-A4)*(A3-A4»)/(2(REAL64)*Al*A2)

IF

(DABS (PBSIl) > 1(REAL64»

SKIP --A'S ARE NOT CONSISTANT

PSIBl := DACOS (PSIB1)

PSIB2 := (PI*2(REAL64» -PSIBl

NOT (LOGl AND (NOT LOG2»

PSIBl :-«Al*Al)+(A2*A2)-«A3-A4)*(A3-A4»)/(2(REAL64)*Al*A2)

IF

(DABS(PSIB1) > 1)

SKIP --Al,A2,A3,A4 ARE INCONSISTANT!!!!

•

•

•

APPENDIX B. PROGRAM LISTINGS llï

PSIBl :- DACOS(PSIB1)

PSIB2 :=«Al*Al)+(A2*A2)-«A3+A4)*(A3+A4»)/(Al*A2*2(REAL64»

IF

(DABS(PSIB2) > 1(RREAL64»

SKIP --Al,A2,A3,A4 ARE INCONSISTANT!!!!

PSIB2 :=DACOS(PSIB2)

PSIBl :- PSIBl + (1.0E-6(REAL64»

PSIB2 := PSIB2 - (1,OE-6(REAL64»

TO := (THO*DD)

CPANGO(K [0] .K [1] .K [2] • (PSIO*OO). ST ,CT, 1. JROOT)

Tl := OATAN2(ST.CT)

CPANGO(K[O],K[l].K[2].(PSIO*00),ST,CT,-1,JROOT)

T2 :- DATAN2(ST,CT)

IF

(DABS(Tl-TO) (DABS(T2-TO»

INDEX := 1

NOT (OABS(Tl-TO) < OABS(T2-TO»

INDEX :- -1

REAL64 FUNCTION OPQ(SP.CP,STH.CTH,XQ,YQ)

-- This is a function defined as

-- (distance between Q and P)**2 - (given constant 0)**2

input:

SP.CP --sine and cosine of the input angle PSI

STH,CTH --sin and ~osin of the coupler angle theta

XQ.YQ --ccordinates off the glven point Q.

L2---dimension of the ~nput and output links ..

L3 --dimension of the coupler link .

o --given constant.

•

•

•

APPENDIX B. PROGRAM LISTINGS

REAL64 SRT,AO,Al,A2,A9,DPQ:

VALOF

SRT:K DSQRT(3.0(REAL64»

PAR

SEQ

AO:= «L2*CP)+«CTH-(SRT3*STH»*(L3/2(REAL64»)-XQ)

A1:- AO*AO

SEQ

A9:= «L2*SP)+«STH+(SRT3*CTH»*(L3/2(REAL64»)-YQ)

A2:= A9*A9

DPQ := Al+A2-(L2*L2) --NOTICE HERE THE CONSTANT D=L2**2

RESULT DPQ

PROC CONF(REAL64 XQ,YD,D,TOL,DPSI,INT KTH,REAL64 PSI,STH,CTH)

-- THIS PROCEDURE IS USED TO FIND THE CONFIGURATION

118

-- This subroutine is used to find the configuration of an RRRR four-bar

--linkage at vhich the distance of linkage's coupler point, P, to a

--specified point, Q, is equal to a gi ven constant D.

--INPUT:

XQ, YQ ---- coordinates of the given point Q.

D ---- distance between points P and Q.

TOL ---- tolerance used to control the numerical method.

DPSI ---- step size of input angle PSI while searching for the root.

NOTE: if DPSI=O, then no searching is required.

KTH ---- branch index K which equals ei ther 1 or -1.

PSI ---- initial guess of the input angle PSI (in rads.), which is

useful only when DPSI=O .

--OUTPUT:

•

•

•

APPENDIX B. PROGRAM LISTINGS lH>

PSI input angle defining the desired configuration (in rads.).

eTH, STH ---- cosine and sine of the coupler angle correaponding to PSI.

REAL64 Gl,G2,Pl,P2,SP2,CP2:

INT l, IJ:

L2 := A[l]

L3 := A[2]

DIS := D

--Settting the initial staus in order to search for ~nitial guess:

Pl := PSI

IF

(DSPI > (1.OE-7(REAL64»)

Pl := PSIBl

SPi := DSIN(Pi)

CPi := DCOS(P1)

CPANGO(K[O],K[l] ,K[2] ,Pl,stl,CT1,KTH,JROOT)

IF

(JROOT : = 0 (REAL64))

SKIP --skip if

Gl:= DPQ(SP1,CP1,ST1,CT1,XQ,YQ)

IF

(DPSI < (1.OE-7(REAL64»

P2 := Pl + (O.02(REAL64»

IF

(P2 > PSIB2)

P2 := Pl - (O.2(REAL64»

NOT (DPSI < (1.0E-7(REAL64»

BOOL going2, goingl:

going2 := TRUE

•

•

•

APPENDIX B. PROGRAM LISTINGS

WHILE going2

IJ := 1

KT :- KTH

SEQ 1 - 1 FOR 2 -- the 1 loop

P2 :- PSIBi + OPSI

goingi := TRUE

WHILE goingi

IJ

IF

IF

(P2 > PSIB2)

goingl :- FALSE

SP2 : .. DSIN(P2)

CP2 := OCOS(P2)

CPANGO(K[O],K[1],K[2],P2,STH,CTH,KTH,JROOT)

IF

• (JROOT := O(REAL64»

SKIP

G2:-0PQ(SP2,CP2,ST2,CT2,XQ,YQ)

IF

«Gi*G2) < O(REAL64»

going2 :- FALSE

Gl :- G2

Pl := P2

SPi := SP2

CPi :- CP2

STi :- ST2

CTi :- CT2

: .. IJ + 1(INT)

NOT (IJ > 2)

120

•

•

•

APPENDIX B. PROGRAM LISTINGS

SKIP

KT :- -KTH

STOP --CONFIG: No solution found in both branches!exit!! 1

BOOL going:

INT I:

go ing : = TRUE

WHILE going

I :- 0

SP2 :.. DSIN (P2)

CP2 := DCOS(P2)

CPANGO(K[O],K[1],K[2],P2,STH,CTH,KTH,JROOT)

G2 := DPQ(SP2,CP2,STH,CTH,XQ,YQ)

IF

(DABS(G2) < TOL)

SKIP

NOT (DABS(G2) < TOL)

PSI := «Pl*G2)-(P2*Gl»/(G2-Gl)

Pl := P2

P2 := PSI

Gl :- G2

l : = I+1

IF

(l >= 99)

going := FALSE

DD := 180.0(REAL64) 1 DACOS(-1(REAL64»

PSI :- PSI * DO

THETA := (STH ICTH) *00

G2 := 02

121

•

•

•

APPENDIX B. PROGRAM LISTINGS

PROC POSITN(INT IND, [3]REAL64 THETA,REAL64 LO,L1,L2,L3,

[2.3]REAL64 0, [2.7]REAL64 P)

-- This Procedure is used to solve the position problem of the direct

-- kinematics for the 3-DOF planar manipulator.

--INPUTS:

122

IN If IND=O, required to search for the initial configuration;

if IND=other, the previous configuration is taken as the

initial guess in the iterative procedure. (NOTE: after each

calI to this Procedure, IND is increased by 1 automatically)

THETA ---- 3-D vector of independent input angles (in rad).

LO.L1,L2,L3 ---- dimensions of links.

O(*,i) ---- position vector of the i-th fixed joint in base frame .

OUTPUTS:

AA translational vectors represented in the base frame.

P(*.i) ---- position vector of the i-th moving joint in base frame.

INTERNAL VARIABLES:

PE(*,i)---- position vector of the i-th moving joint in E frame.

X ---- 2-D working vector.

REAL64 CA,SA,PI,B,UB1,UB2,thO,CP,SP:

[2,7]REAL64 PE:

[3]REAL64 STH,CTH:

[2,2]REAL64 Q02,Q03,Q:

[2] REAL64 X:

PI :- OACOS(-1(REAL64»

•

•

•

APPENDIX B. PROGRAM LISTINGS

CA :- O.5(REAL64)

SA := DSQRT(3(REAL64» 1 (2(REAL64»

Q02[O,O] := -CA

Q02[O ,1] := -SA

Q02[1,O] :- SA

Q02 [1,1] :- -CA

Q03[O,O] := -CA

Q03[O,1] := SA

Q03[1,O] :'"' -SA

Q03[1,1] := -CA

--Position vectors of the first three moving joints:

INT 1:

PAR 1 -= 1 FOR 3

SEQ

STH[I-l(INT)] := DSIN(THETA[I-l(INT)])

P[l,I-l(INT)] : Ll *(STH[I-l(INT)])

SEQ

CTH[I-l(INT)] :- DCOS(THETA[I-l(INT)])

P[O,I-l(INT)] := Ll • (CTH[I-l(INT)])

QMLV(Q02,P[O,l],X)

VECTOP(O[O,l],X,P[O,l],'.')

QMLV(Q03,P[O,2],X)

VECTOP(O[O,2] ,X,P[O,2],'+')

--Determination of PSI and PHI using numerical method:

123

•

•

•

APPENDIX B. PROGRAM LISTINGS

UBI :- «P[o,O)-P[O,I) • (p[o,O)-P[O,l]»

UB2 :- «P[l,O]-P[l,l) • (P[1,O)-P[1,1]»

B :- DSQRT(UBI + UB2)

thO :- 1(REAL64)

RRRR4B(B,L2,L3,L2,L3,(PI/3),PSIO,thO)

Q[O,O] := (P[O,1]-P[O,O])/ B

Q[O,l] := -((P[1,1)-P[1,O)/ B)

Q[1,O] := -Q[O,1]

Q[1,1] := Q[O,O]

VECTOP(P[O,2] ,P[O,O] ,X, ,-,)

QTHLV(Q,X,PE[O,2)

IF

(IND : = ° (INT»

CONFG(PE[O,2],PE[1,2],L2,(1.0E-l0(REAL64»,

(1.7E-2(REAL64),l,PSI,SPHI,CPHI)

NOT (INO := 0 (INT»

CONFG(PE[O,2],PE[1,2],L2,(1.0E-l0(REAL64»,

(O.O(REAL64»,1,PSI,SPHI,CPHI)

--Increases index of the initial-configuration-searching by one:

INO := INO + 1

124

--Coordinates of moving joints in E frame which depends on the positions of

--the first and second moving joints:

CP :. DCOS (PSI)

SP :- DSIN(PSI)

PE[O,3] := L2 • CP

PE[1,3] := L2 • SP

PE[O,4] :- PE[O,3] + (L3 • CPHI)

•

•

•

APPENDIX B. PROGRAM LISTINGS

PE [1,4] := PE[1,3] + (L3 * SPHI)

PE[O,5] := PE[O,3] + (L3 * (CPHI - (DSQRT(3.0(REAL64» * SPHI»/2)

PE[1,5] := PE[1,3] + (L3 * (SPHI + (DSQRT(3.0(REAL64»

PE[O ,6] := (PE[O,3] + PE[O.4] + PE[O,5]) / 3(REAL64)

PE[1,6] :z (PE[1.3] + PE[l,4] + PE[1,5]) / 3(REAL64)

--Coordinates of moving joints in the base frame:

INT 1:

SEQ 1 := 3 FOR 6

QMLV(Q,PE[O,I],X)

VECTOP(P[O.O],X,P[O,I],'+')

* CPHI»/2)

PROC KINETO([3]REAL64 THDOT,THDDOT,[2]REAL64 G,[2,9]REAL64 AA.RO,

[7]REAL64 W,WOOT,[2,7]REAL64 CDOT,CDDOT)

125

-- This procedure is used to solve the velocity- and acceleration-problem

of the direct kinematics for the 3-00F planar manipulator. AlI the output

results are represented in the base coordinate frame.

INPUT:

THOOT 3-D vector of independent input angular rates (in rad).

THODOT ---- 3-D vector of independent input angular accelerations

(in rad'/s**2).

G 2-D vector of the gravit y acceleration in base coordinates.

AA translational vectors represented in the base frame.

RO --- RO(l,i) t RO(2,*) are the components of the relative position

vector of mass center of the i-th link in base coordinates.

OUTPUT:

WOOT ---- 7-0 vector of angular accelerations in base coordinates.

COOT ---- COOT(1,i) t COOT(2,i) are the components of the velocity of

•

•

•

APPENDIX B. PROGRAM LISTINGS 126

the mass center of the i-th link in base coordinates.

--CDDor ---- CDDOT(l,i) t CDDOT(2,i) are the components of the acceleration

of the mass center of the i-th link in base coordinates.

INTERNAL VARIABLES:

O(*,i) ---- position vector of the i-th fixed joint in base frame.

PE(*,i) ---- position vector of the i-th moving joint in E frame.

X ---- 2-D vorking vector.

[4,4]REAL64 A,L,U:

[4,3]REAL64 B:

[7]REAL64 WW:

[4]REAL64 X,Y,Z:

INT 1,12,13:

REAL64 BUD1,BUD2,BUD3,BUD4,BUD5,BUD6,BUD7,BUD8:

PAR

SEQ l = ° FOR 1

A[I,O] := AA[I,3]

A[I,l] :- -AA[I,4]

A[I,2] := 0.0(REAL64)

12 := l + 2(INT)

A[I2,0] := AA[I,3j

A[I2,1] :- 0.0(REAL64)

A[I2,2] := -AA[I,5]

A[I2,3] := RO[I,6] - RO[I,8]

SEQ l .. ° FOR 1

B[I,O] := -AA[I,O]

B [1,1] : - AA [1,1]

B[I,2] :- 0.0(REAL64)

12 := l + 2(INT)

B[I2,0) := -AA[I,l]

•

•

•

APPENDIX B. PROGRAM LISTINGS

B[I2,1] :- O.O(REAL64)

B[I2,2] :a AA[I,2]

--Decomposition of A using Crout·s rule:

LUDECP(A,4,4,L,4,U,4)

--Solving for (absolute) angular velocities Wei) from: A*W=B*THDOT:

VTOU(THDOT,3,W)

PAR 1 -= 0 FOR 3

127

XCI] :- (B[I,O]*THDOT[Ol) + (B[I,1] * THDOT[1]) + (B[I,2] * THDOT[2])

LINERL(L,4,4,X,Y)

LINERU(U,4,4,Y,W[3])

--Computation of the velocities of mass centers in base coordinates:

SEQ 1 - 0 FOR 2

CDOT[O,I] := -RO[1,I] * WeI]

CDOT[1,I] :- RO[O,I] * WeI]

13 := 1 + S(INT)

CDOT[O,I3] :- CDOT[O,I] - «AA[1,I]-RO[l,I]) * WU]) - (RO[l,I3]*W[I3])

CDOT[1,I3] := CDOT[1,I] + «AA[O,I]-RO[O,I]) * WU]) + (RO[O,I3]*W[I3])

CDOT[O,6] :- CDOT[O,3] - «AA[1,3] - RO[1,3]) * W[3]) - (RO[1,6] * W[6])

CDOT[l,6] := CDOT[1,3] + «AA[O,3] - RO[O,3]) * W[3]) + (RO[O,6] * W[6])

--Computation of (absolute) angular accelerations:

PAR 1 = 0 FOR 6

•

•

•

APPENDIX B. PROGRAM LISTINGS

WW[I] :- WeI] * WeI]

VTOU(THDDOT,3,WDOT)

AMLV(B,4,4,3,WW[O],X)

AMLV(B,4.4.3,THDDOT,Y)

AMLV(A,4,4.4,WW[3],Z)

y[o] := -X[l] + y[o] + Z[l]

Y[l] :- X[O] + Y[l] - Z[O]

y [2] : - -X [3] + y [2] + Z [3]

Y[3] := X[2] + Y[3] - Z[2]

LINERL(L,4,4,Y,X)

LINERU(U.4,4,X,WDOT[3])

--Computation of accelerations of mass cent ers in base coordinates:

SEQ 1 - 0 FOR 2

CDDOT[O,I] :- G[O] - (ROU,I] * WDOT[I]) - (RO[O,I] * WW[I])

CDDOT[l,I] : - G [1] + (RD [0, I] * WDOT[I]) - (RD [1,1] * WW[I])

13 : - 1 + 3 (INT)

BUD1:= CDDOT[l,I]-«AA[O,I]-RO[O,I])*WW[I])-(RO[O,13]*WW[13])

BUD2 := «AA[l,I]-RO[l,I])*WDOT[I])-(RO[1,I3]*WDOT[13])

CDDOT[O,13] :- BUDl - BUD2

BUD3 := CDDOT[l,I]-«AA[l,I]-RO[l,I])*WW[I]) - (RO[l,I3]*WW[I3]

BUD4 := «AA[O,I]-RO[O,I])*WDOT[I])+(RO[O,I3]*WDOT[I3])

CDDOT[l,I3] :- BUDS + BUD4

BUDS :- CDDOT[O,3]-«AA[O,3]-RO[O,3])*WW[3])-(RO[O,6]*WW[6])

BUD6 :- «AA[1,3]-RO[1,3])*WDOT[3])- (RO[1,6]*WDOT[6])

CDDOT[O,6] :- BUDS - BUD6

BUD7 :- CDDOT[1,3]-«AA[l,3]-RO[l,3])*WW[3]) - (RO[1,6]*WW[6])

BUD8 :- «AA[O,3]-RO[O.3])*WOOT[3]) + (RO[O,6]*WDOT[6])

CDDOT[l,6] :- BUD7 + BUDS

128

•

•

•

APPENDIX B. PROGRAM LISTINGS

#INCLUDE "datain. inc"

PROC EVALQA([3]REAL64 THETA,[2,9]REAL64 AA,RHO)

INPUT:

THETA ---- 3-D vector of independent input angles (in rad).

OUTPUT:

AA ---- translational vectors represented in the base frame.

INTERNAL VARIABLES:

129

P(*,i) ---- position vector of the i-th moving joint in base frame.

O(*,i) ---- position vector of the i-th fixed JOInt ln ba;~e frame.

PE(*,i) ---- position vector of the i-th moving Joint in E frame.

X ---- 2-D working vector.

INT 1,13,16:

REAL64 STH,CTH,RHO:

--Determination of the configuration corresponding ~o the input THETA:

POSITN(IND,THETA,L[0],L[1],L[2],L[3],0,P)

--Calculation of the translational vectors in base coordinate frame:

SEQ 1 • 0 FOR 2

VECTOP(P[O,I] ,0[0,1] ,AA[O ,1] ,'-')

13 :- 1 + 3(INr)

VECTOP(P[0,I3] ,P[O,I] ,AA[O,I3], ,-,)

16 := 1 + 6(INT)

VECTOP(P[O,6],P[O,I6],AA[O,I6],'-')

--calculation of the relative position vector of mass center of each link:

SEQ 1 • 0 FOR 2

•

•

•

APPENDIX B. PROGRAM LISTINGS

STH : - (p [1. I] -0 [1. I])IL [1]

CTH :- (P[O.I] -O[O.I])/L[l]

RHO[O,I] :- (CTH * RO[O,I]) - (STH * RO[l,I])

RHO[l,I] :- (STH * RO[O,I]) + (CTH * RO[l,I])

SEQ l - 3 FOR 5

13 :- l - 3(INT)

STH :z (P[1,I]-P[1.I3])/L[2]

CTH := (P[O,I]-P[O,I3])/L[2]

RHO[O,I] := (CTH * RO[O.I]) - (STH * RO[l,I])

RHO[l,I] :- (STH * RO[O,I]) + (CTH * RO[l.I])

SEQ 1 = 6 FOR 8

RHO[O,I] :- (P[O,6]- P[O,(I-3(INT»])

RHO[l,I] := (P[1,6] - P[1,(I-3(INT»])

PROC INVOYN([3]REAL64 THETA,THOOT,THOOOT,FORCE)

130

--This procedure is used to compute the generalized driving force acting

--on the three input links in terms of the three independent input joint

--positions, velocities and accelerations, as the following:

FORCE = T' * M * TOOT + T' * WD

where T' ---- transpose of the 21x3 orthogonal ~omplement matrix.

M ---- 21x21 generalized mass matrix in base frame.

TOOT ---- time derivative of the 21-0 generalized twist.

WD ---- 21-0 vector-function of the dissipative force.

REAL64 BUDY

INT I,II,J

[7]REAL64 W,WDOT:

[2,7]REAL64 CDOT,CDDOT:

•

•

•

APPENDIX B. PRO GRAM LISTINGS

[21,3]REAL64 TT:

[21]REAL64 MTDOT:

--Although vritng to a file here viII casue a lot delays it is

--a good idea to vrite the folloving kinematic analysis to a file

--later.

-- Direct kinematic analysis

EVALQA(THETA,AA,RHO)

KINETO(THDOT,THDDOT,G,AA,RHO,W,WDOT,CDOT,CC90T)

EVALUT(AA,RHO,TT)

--Evaluation of the dynamic equations

SEQ 1 = 0 FOR 6

II := 1 * 3(INT)

MTDOT[II] := IM[I] * WDOT[I]

MTDOT[II+l(INT)] := M[I] * CDDOT[O,I]

MTDOT[II+2(INT)] :5 M[I] * CDDOT[l,I]

FDISSP(THETA,THDOT,WD)

SEQ 1 • 1 FOR 3

FORCE[(I-l(INT)] := O.O(REAL64)

SEQ J := 1 FOR 21

131

BUDY := TT[(J-l(INT),(I-l(INT»]*(MTDOT[(J-l(INT»]-WD[(J-l(INT»])

FORCE[(I-l(INT)]:= FORCE[(I-l(INT)] + BUDY

PROC EVATDD([3]REAL64 THETA,THDOT,FORCE,THDDOT)

-- This subroutine is used to compute the angular accelerations of the three

-- independent input links in terms of the given angular positions and

•

•

•

APPENDIX B. PROGRAM LISTINGS 132

-- velocities of the same links as weIl as the generalized driving force

exerting on the three input links.

INPUT:

THETA

THDOT

angular positions of the three input links (in rad).

angular velocities of the three input links (in radIs).

FORCE ---- generalized driving force acting on the input links.

OUTPUT:

THDDOT -- angular accalerations of the three input links (in rad/sIs).

REAL64 BILL.BUN:

INT I. II. J • K :

[7]REAL64 W,WDOT:

[2,7]REAL64 CDOT.CDDOT:

[21,3]REAL64 TT:

[21]REAL64 MM.MTDOT:

[3,3]REAL64 H.L:

[3] REAL64 PHI:

--Evaluation of the time derivatives of the generalized twists

--such that the input angular accelerations are set to zero.

PAR l = 0 FOR 2

THDDOT[I] := O.O(REAL64)

EVALQA(THETA,AA,RHO)

KINETO(THDOT,THDDOT,G.AA,RHO.W,WDOT,CDOT,CDDOT)

--Evaluation of the 21 by 3 orthogonal complement matrix

EVALUT(AA,RHO,TT)

•

•

•

APPENDIX B. PROGRAM LISTINGS

--Evaluation of the dynamics equations excluding the inertia terms.

SEQ I = 0 FOR 6

II := I * 3(INT)

MTDOT[II] := IM[!] * WDOT[I]

MTDOT[II+1(INT)] := M[I] * CDDOT[O.I]

MTDOT[II+2(INT)} := M[I] * CDDOT[1.I]

FDISSP(THETA.THDOT.WD)

SEQ I = 1 FOR 3

PHI[(I-1(INT»] := FORCE[(I-1(INT»]

SEQ J = 1 FOR 21

BILL := (TT[(J-1(INT».(I-1(INT»]*(WD[(J-1(INT»]-MTDOT[(J-1(INT»])

PHI[(I-1(INT»]:= PHI[(I-1(INT»]+ BILL

--Evaluation of the generalized inertia matrix H.

SEQ I = 0 FOR 6

II := I * 3(INT)

MM [II] : = lM [1]

MM[II+1(INT)] : = M[I]

MM[II+2(INT)] : = M[l]

SEQ I = 1 FOR 3

SEQ J = 1 FOR 3

H[(I-1(INT».(J-1(INT»] := 0.0(REAL64)

SEQ K = 0 FOR 20

BUN := (TT[K.(I-1(INT»] * (MM[K] * TT[K.(J-1(INT»]»

H[(I-1(INT».(J-l(INT»]:=H[(I-1(INT».(J-1(INT»] + BUN

H[(I-1(INT».(J-1(INT»] :

•

•

•

APPENDIX B. PROGRAM LISTINGS

--Solving the linear equations (dynamics model) for the angular

--accelerations using Cholesky decomposition, namely, H • L'*L.

SEQ

L[2,2] :- OSQRT(H[2,2])

PAR

L[2,1] :'"" H[2,1] / L[2,2]

L[2,0] : - H[2,0] / L[2, 2]

L[l,l] :- OSQRT(H[l,l] - (L[2,1]*L[2,t]»

L[t,O] :- (H[1,O] - (L[2,l] * L[2,O]» / L[l,l]

L[O,O] :- OSQRT(H[O,O] - (L[l,O] * L[t,O]) - (L[2,0] * L[2,0]»

THOOOT[2] := PHI[2] / L[2,2]

THOOOT[l] :& (PHI[l] - (THOOOT[2] * L[2,1]» / L[l,l]

THOOOT[O] : -(PHI [0] - (THOOOT[l]*L[l ,0])- (THOOOT[2] * L [2 ,0]» /L[O ,0]

THOOOT[O] :- THDOOT[O] / L[O,O]

THOOOT[1] :- (THOOOT[l] - (THOOOT[O]*L[l,O]»/L[1,l]

134

THOOOT[2] :- (THOOOT[2]-(THODOT[0]*L[2,0])-(THOOOT[1]*L[2,1]»/L[2,2]

PROC FORCE(REAL64 T, [3] REAL64 TORQUE)

--This procedure provides the generalized input tauque ta each input link

--as a function of time.

[3]REAL64 THETA,THOOT,THDDOT:

JOTRAJ(T,tt,thO,tht,THETA,THDOT,THOOOT)

INVOYN(THETA,THDOT,THOOOT,TORQUE)

PROC RUNKT(REAL64 TO, Tt, [3]REAL64 THETA, THOOT ,INT IN)

--This procedure solves the first-order differential equations of motion

--for 6-dimensional state-variable vector [THETA',THDOT'], vhere ' stands

--for transpose. The integral technique used is the 4th arder Runge-Kutta

--method vith the given step size of TI-TO.

•

•

•

APPENDIX B. PROGRAM LISTINGS 135

--INPUT:

TO ---- initial time when the initial conditions are given,

Tl ---- final time "hen the output is desired',

THETA ---- initial values of the first three components of state

variables (joint angles).

THDOT ---- initial values of the last three components of state

variables (joint rates).

IN ---- counter of calls. IN must be set to zero in the first

calI to this subroutine. while it could be any value

in the subsequential calls,

OUTPUT:

THETA ---- final values of the first three components of the state

variables (joint angles),

THDOT ---- final values of the last three components of the state

variables (joint rates).

REAL64 H:

[3]REAL64 THDDOT. TAU.X,XDOT:

[4.3]REAL64 K.KD:

H := Tl -TO

FORCE(T,TAU)

PAR l = 0 FOR 2

IF

X [1] : = THETA [1]

XDOT [1] : = THDOT [1]

(IN () 0 (INT»

EVATDD(X,XDOT.TAU,THDDOT)

PAR l = 0 FOR 2

K[O,I] := (H * XDOT[I])

KD[O.I] :- (H * THDDOT[I])

•

•

•

APPENDIX B. PROGRAM LISTINGS

-- Computation of K2's:

T :- TO +(H/2(REAL64»

FORCE(T , TAU)

PAR FOR 1 = 0 FOR 2

X[I] :- THETA[I] + (K[O,I]/(2(REAL64»)

XDOT[I] :- THOOT[I] +(KD[O,I]/(2(REAL64»)

EVATDD(X,XDOT,TAU,THDDOT)

PAR 1 -0 FOR 2

K[I,I] := (H * XOOT[I])

KD[I,I] :- (H * THDOOT[I])

--Computation of K3's:

T :- TO +(H/2(REAL64»

FORCE(T, TAU)

PAR 1 :. 0 FOR 2

X [1] : ... THETA [1] + (K [1,1] / (2 (REAL64»)

XDOT[I] := THOOT[I] + (KO [1,1]/(2(REAL64»)

EVATDO(X,XDOT,TAU,THDDOT)

PAR 1 • 0 FOR 2

K[2,Il :- (H * XOOT[I])

KD[2,Il := H * THDDOT[I]

--Computation of K4' s:

T :- TO + H

FORCE(T, TAU)

136

•

•

•

APPENDIX B. PROGRAM LISTINGS

PAR 1 ... 0 FOR 2

xCI] :- THETA[I] + K[2,I]

XDOT[I] := THDOT[I] + KD[2,I]

EVATDD(X,XDOT,TAU,THDDOT)

PAR I = 0 FOR 2

K[3.I] :- H • XDOT[I]

KD[3,I] := H * THDDOT[I]

--Evaluation of the state variables at time Tl:

PAR I = 0 FOR 2

137

THETA[I] := THETA[I]+«K[O.I]+(K(1,I)*2)+(K[2,I]*2)+K[3,I])/(6(REAL64»)

THDOT[I]:- THDOT[I]+«KD[O,I]+(KD[1,I]*2)+KD[2,I]*2)+KD[3,I])/(6(REAL64»)

-- icreasing the index

IN :- IN + 1(INT)

PROC FOWDYN(REAL64 TS,TE,STEP,[3]REAL64 THETA,THDOT,THDDO,INT IN)

--This subroutine is used to simulate the motion of the 3-DOF planar

--manipulator for the three supplied independent driving torques

--(generalized forces) acting on the three input links from given initial

--angles and angular veloci ties of the three input links.

INPUT:

TS ---- initial time associated vith the initial conditions.

TE ---- final time at which the output result is desired.

STEP ---- time step of integration.

THETA ---- initial values of the first three components of state

variables (joint angles).

•

•

•

APPBNDIX B. PROGRAM LISTINGS 138

THOOT ---- initial values of the last three components of state

variables (joint rates).

OUTPUT:

IN ---- counter of calls. IN must be set to zero in the first

calI to this subroutine, while it could be any value

in the subsequential calls.

THETA ---- input angles obtained by simulation (in rad).

THOOT ---- angular velocities obtained by simulation (in rad/s).

THOOOT ---- angular accelerations obtained by simulation (in rad/ss)

[3]REAL64 TAU,TOO:

REAL64 TO,Tl

INT 1:

TO :- T5

Tl :- (TS + STEP)

WHILE Tl < TE

RUNKT(TO,Tl,THETA,THOOT,IN)

FORCE(Tl, TAU)

EVATDD(THETA,THDOT,TAU,THOOOT)

TO := Tl

Tl :- Tl + STEP

PAR 1 .. 0 FOR 2

TOO[I] :- THOOOT[I]

#INCLUOE "setup. inc"

--CHAN OF REAL64 ResutTorqueMotl

--CHAN OF REAL64 ResutTorqueMot2

--CHAN OF REAL64 ResutTorqueMot3

--CHAN OF REAL64 ResultMotlTheta

•

•

•

APPENDIX B. PROGRAM LISTINGS

--CHAN OF REAL64 ResultMot2Theta

--CHAN OF REAL64 ResultMot3Theta

PRoTOCOL Torque.out IS REAL64; REAL64j REAL64:

CHAN OF Torque.out ResultTorqueMotor :

-- sending torques via link 3 transputer at slot 0 out to manipulator

PLACE ResutTorqueMot AT 3 :

--reading thetas from manipulator remove comment marks if needed

--PROTOCOL Theta.in IS REAL64; REAL64; REAL64:

--CHAN OF Theta.in RealtimeTheta

--PLACE RealtimeTheta AT 7 :

--RealtimeTheta? TH[O]; TH[l]; TH[2]

--Computation of the initial conditions:

JOTRAJ (TS,TT,THO ,THT,THETA,THDOT,THODOT)

--calculation of torques and thetas at a given time t

IN :- O(INT)

T := TS

WHILE T < (TE + (TSTEP/(10(REAL64»»

FoWDYN(TO ,T,TSTEP,THETA,THDOT,THDDOT, IN)

JOTRAJ(T,TT,THO,THT,TH,THD,THDD)

FORCE (T, TORQUE)

ResultTorqueMotor

--ResultMotlTheta

--ResultMot2Theta

--ResultMot3Theta

--ResutTorqueMotl

--ResutTorqueMot2

--ResutTorqueMot3

T :- T + TSTEP

TORQUE[O]; TORQUE[l]; TORQUE[2]

TH [0]

TH[l]

TH [2]

TORQUE [0]

TORQUE [1]

TORQUE [2]

139

APPENDIX B. PROGRAM LISTINGS 140

•
B.2

Data input file

--This file should contain setup and required performance data

--fill in the data adhering to the specified format

--Time period to define trajectory in seconds

• TT :-

--Enter time to start in seconds in max three digit format no decimal points.

TS :-

--Enter the time step size

TSTEP :-

--Enter the end time

TE :-

• --Start angles in degrees three digits only allowed, no decimal points allowed

APPENDIX B. PROGRAM LISTINGS 141

• --For actuator .1

THO [0] :=

--For actuator .2

THO [1] :=

--For actuator .3

THO [2] :=

--End angles in degrees three digits only allowed, no decimal points allowed

• --For actuator .1

THT[O] :-

--For actuator .2

THT[l] :=

--For actuator .3

THT[2] :-

•

•

•

•

Appendix C

Program subroutines overview

The following is a brief description of the program subroutines which construct its main

building blocks, a detailed program listing is prc"vided in Appendix B. For full description of

the program's mathematical solution, please refer to chapter 4 .

C.I

LUDECP

Dccomposing of a given n by n matrix using Crout's method by A = Lx U, where L

and U are lower and upper matrices, respectively

C.2

LINERL

This procedure solves a lower triangular linear system

L(l,l) • X(O

L(2,1) • X(l) + L(2,2) * X(2)

=B(O

-B(2)

L(N,l) • X(l) + L(N,2) * X(2)+ ... +L(N,N)*X(N)=B(N)

142

•

•

•

APPENDIX C. PROGRAM SUBROUTINES OVERVIEW 143

for N-dimensional vector X. Argument NL is the row dimension of array L which ShOllld he

the same as that in the caller procedure.

C.3

LINER

Solves a upper triangular linear system, i.e.

U(l,l)*X(l) + U(1,2) * X(2) +

U(2,2) * X(2) +

+U(l,N) * X(N) • B(l)

+U(2,N) * X(N) = B(2)

U(N,N) * X(N) = B{N)

For N-dimensional vector X. Argument NU is the row dimension of array U.

C.4

FDISSP

This procedure is used to evaluate the dissipative forces and torques excrting on caeh

link.

C.5

VTOU

This procedure is to assign Vector VeN) to Vector U(N) .

•

•

APPENDIX C. PROGRAM SUBROUTINES OVERVIEW 144

C.6

AMLV

This procedure computes the product of an m by n matrix A and an rn-dimension

vector V, i.e. U = A x V.

c:r
QTMLV

This procedure computes the product of the transpose matrix Q' (2 by 2) ant1 a vector

of 2-dimcnsions V i.e. U = Q x V.

C.s

QMLV

This procedure computes the prodllct of a 2 by 2 matrix Q and a vector of 2-dimensions

V i.e. U = Q x V

C.9

VECTOP

This procedure calculates two 2-Dimension vectors U and V as follows:­

if M = '+' then W= U + V

jf M = '-' thfln W= U - V

C.I0

EVALUT

This procedure is used to evaluate the Natural Orthogonal Complement namely, the

• 21 by 3 matrix T. The evaluation is done as follows:

•

•

•

APPENDIX C. PROGRAM SUBROUTINES OVERVIEW 145

The j-th column of T is computed as the 21-dimension generalized twist a.'lsuming that ail

the actuated joints are locked but the j-th one has a unit velocity. The resulting T is

represented in the base coordinate frame.

C.11

, CPANGO

This procedure is used to compute the sine and cosine of the coupler angle "tllcta" of

an arbitrary RRRR pl anar four-bar linkage in terms of the given input angle "PSI" and the

branch index K.

Formulation; by solving the Input-coupler function:

K1+(K2*COS(PSI»+(K3*COS(TH»-COS(PSI-TH)=Q

as

COS(TH)= (1-T**2)/(1+T**2)

SIN(TH)= 2 * T j (1+T**2)

where

T=TAN(TH/2) = (B-KTH * SQRT(B**2-A * C»/A

A=K1+(K2+1) * COS(PSI)-K3

B=SIN(PSI)

•

•

•

APPENDIX C. PROGRAM SUBROUTINES OVERVIEW 146

C-Kl+(K2-1) • COS(PSI)+K3

C.l2

RRRR4B

This procedure is used to precompute sorne basic data, such as, linkage parameters,

bounds of mobility range, etc., of a RRRR planar four-bar linkage. The data computed may

be acccssed by other routines for further computations.

C.l3

CONF

This subroutine is used to find the configuration of an RRRR four-bar linkage .

C.l4

POSITN

This procedure is used to solve the position problem of the direct kinematics for the

3-DOF pJanar manipuJator.

C.l5

KINETO

This procedure is used to solve the velocity- and acceleration-problem of the direct

kinematics for the 3-DOF pl anar manipulator. AlI the output results are represented in the

base coordinate frame .

•

•

•

APPENDIX C. PROGRAM SUBROUTINES OVERVIEW 147

C.16

INVDYN

This procedure is used to compute the generalized driving force acting on t.he t,)lf(~(\ in­

put links in terms of the three independent input joint positions, vclocit.ies and an·dc'rat.ions,

as the following:

FORCE = T' x M x TDOT + T' x WD

where

T': is the transpose of the 21x3 orthogonal complement matrix.

M: is the 21x21 generalized mass matrix in base frame.

TDOT: is the time derivative of the 21-D generalized twist.

WD: is a 21-D vedor-function of the dissipative force.

C.17

EVATDD

This procedure is used to compute the angular accelerations of t.he thr('c indcpelldcnt.

input links in terms of the given angular positions and velocities of the same links as w('1I as

the generalized driving force exerting on the three input links.

C.18

RUNKT

This procedure solves the first-order differential equations of motion for 6-dimcllsiollal

state-variable vector [THETA' ,THDOT']' where ' stands for. transposc. The illtegral tech­

nique used is the 4th order Runge-Kutta method with a givcn time stcp size fixcd (input by

user) .

•
Appendix D

Peroforlllance Angle and Torque data

D.I

Output angle data

•

•
148

APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA }tin

• Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Dcg.)
0.000 90.0000 60.0000 120.0000
0.010 90.0000 60.0000 120.0000
0.020 90.0001 60.0001 119.9998
0.030 90.0002 60.0004 119.9992
0.040 90.0005 60.0009 119.9981
0.050 90.0009 60.0018 119.9963
0.060 90.0016 60.0032 119.9937
0.070 90.0025 60.0050 119.9900
0.080 90.0037 60.0075 119.9850
0.090 90.0053 60.0106 119.9787
0.100 900073 60.0146 1199708
0.110 90.0097 60.0194 119.9612
0.120 90.0126 60.0252 119.9496
0.130 90.0160 60.0320 119.9360
0.140 90.0200 60.0399 119.9201
0.150 90.0246 60.0491 119.9018
0.160 90.0298 60.0596 119.8809
0.170 90.0357 60.0714 119.8572
0.180 90.0423 60.0847 119.8307
0.190 90.0497 60.0995 119.8010
0.200 90.0580 60.1160 119.7681
0.210 90.0671 60.1341 119.7318

• 0.220 900770 60.1540 1196919
0.230 90.0879 60.1758 119.6183
0.240 90.0998 60.1996 119.6008
0.250 90.1127 60.2254 119.5493
0.260 90.1266 60.2532 119.4936
0.270 90.1416 60.2832 119.4335
0.280 90.1577 60.3155 119.3690
0.290 90.1750 60.3501 119.2998
0.300 90.1935 60.3871 119.2259
0.310 90.2133 60.4265 119.1470
0.320 90.2342 60.4685 1190fi30
0.330 90.2565 60.5130 118.9739
0.340 90.2801 60.5603 118.8794
0.350 90.3051 60.6103 118.7795
0.360 90.3315 60.6631 1186739
0.370 90.3594 60.7187 1185626
0.380 90.3886 60.7773 118.4454
0.390 90.4194 60.8389 118.3223
0.400 90.4517 60.9035 118 1930
0.410 90.4856 60.9712 118.0575
0.420 90.5211 61.0421 117.9157
0.430 90.5581 61.1163 117.7674
0.440 90.5968 61.1937 117.6126
0.450 90.6372 61.2745 117.4511
0.460 90.6793 61.3586 117.2828

0.470 90.7231 61.4462 117 1076

• 0.480 90.7686 61.5373 1169255

0.490 90.8159 61.6319 116.7363

Table D.l: Joint 1, 2 and 3 output angle data

APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 150

• Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Deg.)

0.500 90.8650 61.7301 116.5399

0.510 90.9159 61.8319 116.3362

0.520 90.9687 61.9374 116.1252

0.530 91.0233 62.0466 115.9068

0.540 91.0798 62.1595 115.6809

0.550 91.1381 62.2763 115.4474

0.560 91.1984 62.3969 115.2063

0.570 91.2606 62.5213 114.9574

0.580 91.3248 62.6496 114.7008

0.590 91.3909 62.7819 114.4363

0.600 91.4590 62.9181 114.1638

0.610 91.5291 63.0583 113.8835

0.620 91.6012 63.2025 113.5951

0.630 91.6754 63.3507 113.2986

0.640 91.7515 63.5030 112.9940

0.650 91.8297 63.6594 112.6812

0.660 91.9099 63.8198 112.3603

0.670 91.9922 63.9844 112.0311

0.680 92.0766 64.1531 111.6937

0.690 92.1630 64.3260 111.3480

0.700 92.2515 64.5030 110.9940

0.710 92.3421 64.6842 110.6316

• 0.720 92.4348 64.8695 110.2609

0.730 92.5295 65.0591 109.8818

0.740 92.6264 65.2528 109.4944

0.750 92.7254 65.4507 109.0986

0.760 92.8264 65.6528 108.6944

0.770 92.9295 65.8591 108.2818

0.780 93.0348 66.0695 107.8609

0.790 93.1421 66.2842 107.4316

0.800 93.2515 66.5030 106.9940

0.810 93.3630 66.7260 106.5480

0.820 93.4766 66.9531 106.0937

0.830 935922 67.1844 105.6311

0.840 93.7099 67.4198 105.1603

0.850 93.8297 67.6594 104.6812

0.860 93.9515 67.9030 104.1940

0.870 94.0754 68.1507 103.6986

0.880 94.2012 68.4025 103.1951

0.890 94.3291 68.6583 102.6835

0.900 94.4590 68.9181 102.1638

0.910 94.5909 69.1819 101.6363

0.920 94.7248 69.4496 101.1008

0.930 94.8606 69.7213 100.5574

0.940 94.9984 69.9969 100.0063

0.950 95.1381 70.2763 99.4474

0.960 95.2798 70.5595 98.8809

0.970 95.4233 70.8466 98.3068

• 0.980 95.5687 71.1374 97.7252

0.990 95.7159 71.4319 97.1 ~62

Table D.2: Joint 1, 2 and 3 output angle data (continued)

APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 151

• Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Deg.)
1.000 95.8650 71.7301 96.5399
1.010 96.0159 72.0319 95.9363
1.020 96.1686 72.3373 95.3255
1.030 96.3231 72.6462 94.7076
1.040 96.4793 72.9586 94.0828
1.050 96.6372 73.2745 93.4511
1.060 96.7968 73.5937 92.8126
1.070 96.9581 73.9163 92.1674
1.080 97.1211 74.2421 91.5157
1.090 97.2856 74.5712 90.8575
1.100 97.4517 74.9035 90.1930
1.110 97.6194 75.2389 89.5223
1.120 97.7886 75.5773 88.8454
1.130 97.9594 75.9187 88.1626
1.140 98.1315 76.2631 87.4739
1.150 98.3051 76.6103 86.7795
1.160 98.4801 76.9603 86.0794
1.170 98.6565 77.3130 85.3739
1.180 98.8342 77.6685 84.6630
1.190 99.0133 78.0265 83.9470
1.200 99.1935 78.3871 83.2259
1.210 99.3750 78.7501 82.4998

• 1.220 99.5577 79.1155 81.7690
1.230 99.7416 79.4832 81.0335
1.240 99.9266 79.8532 80.2936
1.250 100.1127 80.2254 79.5493
1.260 100.2998 80.5996 78.8008
1.270 100.4879 80.9758 78.0483
1.280 100.6770 81.3540 77.2919
1.290 100.8671 81.7341 76.5318
1.300 101.0580 82.1160 75.7681
1.310 101.2497 82.4995 750010

1.320 101.4423 82.8847 74.2307

1.330 101.6357 83.2714 73.4572
1.340 101.8298 83.6596 72.6809
1.350 102.0246 84.0491 71.9018

1.360 102.2200 84.4399 71.1201

1.370 102.4160 84.8320 70.3360

1.380 102.6126 85.2252 69.5496

1.390 102.8097 85.6194 68.7612
1.400 103.0073 86.0146 67.9708

1.410 103.205!! 86.4106 67.1787

1.420 103.4037 86.8075 66.3850

1.430 103.6025 87.2050 65.5900
1.440 103.8016 87.6032 64.7937
1.450 104.0009 88.0018 63.9963

1.460 104.2005 88.4009 63.1981

1.470 104.4002 88.8004 62.3992

• 1.480 104.6001 89.2001 61.5998

1.490 104.8000 89.6000 60.8000

Table D.3: Joint 1,2 and 3 output angle data (continucd)

APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 152

• 'rime (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Deg.)

1.500 105.0000 90.0000 60.0000

1.510 105.2000 90.4000 59.2000

1.520 105.3999 90.7999 58.4002

1.530 105.5998 91.1996 57.6008

1.540 105.7995 91.5991 56.8019

1.550 105.9991 91.9982 56.0037

1.560 106.1984 92.3968 55.2063

1.570 106.3975 92.7950 54.4100

1.580 106.5963 93.1925 53.6150

1.590 106.7947 93.5894 52.8213

1.600 106.9927 93.9854 52.0292

1.610 107.1903 94.3806 51.2388

1.620 107.3874 94.7748 50.4504

1.630 107.5840 95.1680 49.6640

1.640 107.7800 95.5601 48.8799

1.650 107.9754 95.9509 48.0982

1.660 108.1702 96.3404 47.3191

1.670 108.3643 96.7286 46.5428

1.680 108.5577 97.1153 45.7693

1.690 108.7503 97.5005 44.9990

1.700 108.9420 97.8840 44.2319

1.710 109.1329 98.2659 43.4682

• 1.720 109.3230 98.6460 42.7081

1.730 109.5121 99.0242 41.9517

1.740 109.7002 99.4004 41.1992

1.750 109.8873 99.7746 40.4507

1.760 110.0734 100.1468 39.7064

1.770 110.2584 100.5168 38.9665

1.780 110.4423 100.8845 38.2310

1.790 110.6250 101.2499 37.5002

1.800 110.8065 101.6129 36.7741

1.810 110.9867 101.9735 36.0530

1.820 111.1658 102.3315 35.3370

1.830 111.3435 102.6870 34.6261

1.840 111.5199 103.0397 33.9206

1850 111.6949 103.3897 33.2205

1.860 111.8685 103.7369 32.5261

1.870 112.0406 104.0813 31.8374

1.880 112.2114 104.4227 31.1546

1.890 112.3806 104.7611 30.4777

1.900 112.5483 105.0965 29.8070

1.910 112.7144 105.4288 29.1425

1.920 112.8789 105.7579 28.4843

1.930 113.0419 106.0837 27.8326

1.940 113.2032 106.4063 27.1874

1.950 113.3628 106.7255 26.5489

1.960 113.5207 107.0414 25.9172

1.970 113.6769 107.3538 25.2924

• 1.980 113.8314 107.6627 24.6745

1.990 113.9841 107.9681 24.0637

Table D.4: Joint l, 2 and 3 output angle data (continued)

APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 153

• Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint, auglt' (Deg.)
2.000 114.1350 108.2699 23.4601
2.010 114.2841 108.5681 22.8638
2.020 114.4313 108.8626 22.2748
2.030 114.5767 109.1534 21.6932
2.040 114.7202 109.4405 21.1191
2.050 114.8619 109.7237 20.5526
2.060 115.0016 110.0031 19.9937
2.070 115.1394 110.2787 19.4426
2.080 115.2752 110.5504 18.8992
2.090 115.4091 110.8181 18.3637
2.100 115.5410 111.0819 17.8362
2.110 115.6709 111.3417 17.3165
2.120 115.7988 111.5975 168049
2.130 115.9246 111.8493 16.3014
2.140 116.0485 112.0970 15.8060
2.150 116.1703 112.3406 153188
2.160 116.2901 112.5802 148397
2.170 116.4078 112.8156 14.3689
2.180 116.5234 113.0469 13.9063
2.190 116.6370 113.2740 13.4520
2.200 116.7485 113.4970 13.0060
2.210 116.8579 113.7158 12.5684

• 2.220 116.9652 113.9305 12.1391
2.230 117.0705 114.1409 11.7182
2.240 117.1736 114.3472 11.3056
2.250 117.2746 114.5493 10.9014
2.260 117.3736 114.7472 10.5056
2.270 117.4705 114.9409 10.1182
2.280 117.5652 115.1305 9.7391
2.290 117.6579 115.3158 9.3684
2.300 117.7485 115.4970 9,0060
2.310 117.8370 115.6740 8.6520
2.320 117.9234 115.8469 8.3063
2.330 118.0078 116.0156 7.9689
2.340 118.0901 116.1802 7,6397
2.350 118.1703 116.3406 7.:U88
2.360 118.2485 116.4970 7.0060
2.370 118.3246 116.6493 67014
2.380 118.3988 116.7975 6.4049
2.390 118.4709 116.9417 6.1165
2.400 118.5410 117.0819 5.8362
2.410 118.6091 117.2181 5.5637
2.420 118.6752 117.3504 5,2992
2.430 118.7394 117.4787 5.0426
2.440 118.8016 117.6031 4.7937
2.450 118.8619 117.7237 4.5526
2.460 118.9202 117.8405 4,3191

2.470 118.9767 117.9534 4.0932

• 2.480 119.0313 118.0626 38748
2.490 119.0841 118.1681 3.6638

Table D.5: Joint 1, 2 and 3 output angle data (continucd)

APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 154

• Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Deg.)

2.500 119.1350 118.2699 3.4601

2.510 119.1841 118.3681 3.2637

2.520 119.2314 118.4627 3.0745

2.530 119.2769 118.5538 2.8924

2.540 119.3207 118.6414 2.7172

2.550 119.3628 118.7255 2.5489

2.560 119.4032 118.8063 2.3874

2.570 119.4419 118.8837 2.2326

2.580 119.4789 118.9579 2.0843

2.590 119.5144 119.0288 1.9425

2.600 119.5483 119.0965 1.8070

2.610 119.5806 119.1611 1.6777

2.620 119.6114 119.2227 1.5546

2.630 119.6406 119.2813 1.4374

2.640 119.6685 119.3369 1.3261

2.650 119.6949 119.3897 1.'l205

2.660 119.7199 119.4397 1.1206

2.670 119.7435 119.4870 1.0261

2.680 119.7658 119.5315 0.9370

2.690 119.7867 119.5735 0.8530

2.700 119.8065 119.6129 0.7741

2.710 119.8250 119.6499 0.7002

• 2.720 119.8423 119.6845 0.6310

2.730 119.8584 119.7168 0.5665

2.740 119.8734 119.7468 0.5064

2.750 119.8873 119.7746 0.4507

2.760 119.9002 119.8004 0.3992

2.770 119.9121 119.8242 0.3517

2.780 119.9230 119.8460 0.3081

2.790 119.9329 119.8659 0.2682

2.800 119.9420 119.8840 0.2319

2.810 119.9503 119.9005 0.1990

2.820 119.9577 119.9153 0.1693

2.830 119.9643 119.9286 0.1428

2.840 119.9702 119.9404 0.1191

2.850 119.9754 119.9509 0.0982

2.860 119.9800 119.9601 0.0799

2.870 119.9840 119.9680 0.0640

2.880 119.9874 119.9748 0.0504

2.890 119.9903 119.9806 0.0388

2.900 119.9927 119.9854 0.0292

2.910 119.9947 119.9894 0.0213

2.920 119.9963 119.9925 0.0150

2.930 119.9975 119.9950 0.0100

2.940 119.9984 119.9968 0.0063

2.950 119.9991 119.9982 0.0037

2.960 119.9995 119.9991 0.0019

2.970 119.9998 119.9996 0.0008

• 2.980 119.9999 119.9999 0.0002

2.990 120.0000 120.0000 0.0000
3.000 120.0000 120.0000 0.0000

Table D.6: Joint 1, 2 and 3 output angle data (continued)

APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 155

• D.2

Output torque data

•

•

APPENDIX D . PEROFORMANCE ANGLE AND TORQUE DATA 156

• Time (Sec.) First joint torque (Nm) Second joint torque (Nm) Third joint torque (Nm)

0.000 -3.9739 -37.8192 41.8956

0.010 -3.9729 -37.7904 41.8531

0.020 -3.9719 -37.7616 41.8106

0.030 -3.9710 -37.7329 41.7682

0.040 -3.9701 -37.7044 41.7261

0.050 -3.9692 -37.6762 41.6842

0.060 -3.9684 -37.6482 41.6426

0.070 -3.9677 -37.6206 41.6014

0.080 -3.9670 -37.5933 41.5607

0.090 -3.9665 -37.5665 41.5205

0.100 -3.9660 -37.5402 41.4809

0.110 -3.9657 -37.5144 41.4420

0.120 -3.9655 -37.4892 41.4037

0.130 -3.9653 -37.4647 41.3663

0.140 -3.9654 -37.4409 41.3296

0.150 -3.9655 -37.4179 41.2938

0.160 -3.9658 -37.3957 41.2589

0.170 -3.9663 -37.3743 41.2251

0.180 -3.9669 -37.3539 41.1922

0.190 -3.9676 -37.3344 41.1605

0.200 -3.9685 -37.3159 41.1299

0.210 -3.9696 -37.2984 41.1005

• 0.220 -3.9709 -37.2821 41.0723

0.230 -3.9723 -37.2669 41.0454

0.240 -3.9739 -37.2529 41.0199

0.250 -3.9756 -37.2401 40.9957

0.260 -3.9776 -37.2285 40.9730

0.270 -3.9797 -37.2183 40.9517

0.280 -3.9821 -37.2094 40.9318

0.290 -3.9846 -37.2019 40.9136

0.300 -3.9873 -37.1959 40.8968

0.310 -3.9902 -37.1913 40.8817

0.320 -3.9933 -37.1881 40.8682

0.330 -3.9966 -37.1865 40.8564

0.340 -4.0001 -37.1865 40.8463

0.350 -4.0038 -37.1880 40.8378

0.360 -4.0078 -37.1911 40.8311

0.370 -4.0119 -37.1959 40.8262

0.380 -4.0163 -37.2023 40.8230

0.390 -4.0209 -37.2104 40.8216

0.400 -4.0258 -37.2202 40.8221

0.410 -4.0309 -37.2317 40.8243

0.420 -4.0362 -37.2449 40.8284

0.430 -4.0419 -37.2599 40.8343

0.440 -4.0477 -37.2766 40.8421

0.450 -4.0539 -37.2951 40.8517

0.460 -4.0604 -37.3154 40.8631

0.470 -4.0671 -37.3375 40.8764

• 0.480 -4.0742 -37.3613 40.8915

0.490 -4.0816 -37.3870 40.9085

Table D. 7: Joint 1, 2 and 3 output torque data

APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 157

• Time (Sec.) First joint torque (Nm) Second joint torque (Nm) Third joint torque (Nm)
0.500 -4.0894 -37.4144 40.9273
0.510 -4.0976 -37.4436 40.9479
0.520 -4.1061 -37.4746 40.9703
0.530 -4.1150 -37.5074 40.9945
0.540 -4.1244 -37.5420 41.0205
0.550 -4.1342 -37.5783 41.0482
0.560 -4.1445 -37.6164 41.0776
0.570 -4.1553 -37.6561 41.1087
0.580 -4.1666 -37.6976 41.1415
0.590 -4.1785 -37.7408 41.1759
0.600 -4.1910 -37.7857 41.2118
0.610 -4.2042 -37.8322 41.2494
0.620 -4.2180 -37.8803 41.2884
0.630 -4.2325 -37.9300 413290
0.640 -4.2478 -37.9813 41.3709
0.650 -4.2639 -38.0341 41.4143
0.660 -4.2808 -38.0884 41.4590
0.670 -4.2987 -38.1441 41.5049
0.680 -4.3175 -38.2012 41.5521
0.690 -4.3373 -38.2597 41.6004
0.700 -4.3581 -38.3195 416499
0.710 -43801 -38.3806 41.7004

• 0.720 -4.4033 -38.4429 41.7518
0.730 -4.4278 -38.5063 41.8042
0.740 -4.4536 -38.5709 41.8575
0.750 -4.4808 -38.6365 41.9115
0.760 -4.5094 -38.7031 41.9662
0.770 -4.5397 -38.7706 42.0215
0.780 -4.5715 -38.8391 42.0774
0.790 -4.6051 -38.9083 42.1338
0.800 -4.6406 -38.9783 42.1906
0.810 -4.6779 -39.0489 42.2477
0.820 -4.7172 -39.1201 42.3050
0.830 -4.7586 -39.1919 42.3625
0.840 -4.8023 -39.2641 42.4200

0.850 -4.8482 -39.3367 42.4775
0.860 -4.8965 -39.4096 425349

0.870 -4.9474 -39.4827 42.5921

0.880 -5.0008 -39.5559 42.6491
0.890 -5.0570 -39.6292 42.7056
0.900 -5.1161 -39.7025 42.7617
0.910 -5.1781 -39.7756 42.8172

0.920 -5.2432 -39.8486 42.8720
0.930 -5.3115 -39.9212 42.9261
0.940 -5.3830 -39.99a5 42.9794

0.950 -5.4581 -40.0653 43.0317

0.960 -5.5367 -40.1365 43.0830

0.970 -5.6189 -40.2071 43.1332

• 0.980 -5.7050 -40.2769 43.1821

0.990 -5.7949 -40.3459 43.2297

Table 0.8: Joint 1, 2 and 3 output torque data (continucd)

APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 158

• Tirne (Sec.) First joint torque (Nrn) Second joint torque (Nm) Third joint torque (Nm)

1.000 -5.8889 -40.4139 43.2758

1.010 -5.9871 -40.4809 43.3205

1.020 -6.0895 -40.5467 43.3635

1.030 -6.1963 -40.6113 43.4047

1.040 -6.3076 -40.6745 43.4441

1.050 -6.4235 -40.7362 43.4816

1.060 -6.5441 -40.7964 43.5169

1.070 -6.6695 -40.8550 43.5501

1.080 -6.7998 -40.9118 43.58lO

1.090 -6.9352 -40.9667 43.6094

1.100 -7.0757 -41.0196 43.6353

1.110 -7.2213 -41.0705 43.6584

1.120 -7.3723 -41.1191 43.6787

1.130 -7.5286 -41.1655 43.6960

1.140 -7.6903 -41.2094 43.7102

1.150 -7.8574 -41.2508 43.7209

1.160 -8.0301 -41.2896 43.7282

1.170 -8.2084 -41.3257 43.7318

1.180 -8.3923 -41.3589 43.7314

1.190 -8.5819 -41.3891 43.7268

1.200 -8.7771 -41.4163 43.7178

1.210 -8.9780 -41.4403 43.7042

• 1.220 -9.1846 -41.4610 43.6855

1.230 -9.3969 -41.4784 43.6616

1.240 -9.6148 -41.4922 43.6320

1.250 -9.8383 -41.5025 43.5965

1.260 -10.0675 -41.5090 43.5545

1.270 -10.3021 -41.5117 43.5057

1.280 -10.5423 -41.5105 43.4496

1.290 -10.7878 -41.5053 43.3857

1.300 -11.0386 -41.4959 43.3134

1.310 -11.2947 -41.4824 43.2321

1.320 -11.5558 -41.4645 43.1412

1.330 -11.8219 -41.4422 43.0401

1.340 -12.0929 -41.4153 42.9280

1.350 -12.3685 -41.3838 42.8040

1.360 -12.6486 -41.3476 42.6675

1.370 -12.9330 -41.3066 42.5174

1.380 -13.2216 -41.2606 42.3529

1.390 -13.5141 -41.2096 42.1730

1.400 -13.8103 -41.1534 41.9766

1.410 -14.1100 -41.0919 41.7627

1.420 -14.4129 -41.0251 41.5301

1.430 -14.7187 -40.9527 41.2777

1.440 -15.0273 -40.8747 41.0042

1.450 -15.3383 -40.7910 40.7084

1.460 -15.6514 -40.7013 40.3891

1.470 -15.9663 -40.6055 40.0449

• 1.480 -16.2827 -40.5035 39.6745

1.490 -16.6002 -40.3951 39.2767

Table D.9: Joint 1, 2 and 3 output torque data (continued)

APPENDIXD. PEROFORMANCE ANGLE AND TORQUE DATA 159

• Time (Sec.) First joint torque (Nm) Second joint torque (Nm) Third joint torqul' (Nm)
1.500 -16.9187 -40.2801 38.8501
1.510 -17.2376 -40.1583 38.3935
1.520 -17.5567 -40.0296 37.9055
1.530 -17.8757 -39.8937 37.3849
1.540 -18.1941 -39.7504 368307
1.550 -18.5116 -39.5995 362416
1.560 -18.8279 -39.4408 35.6166
1.570 -19.1427 -39.2740 34.9549
1.580 -19.4555 -39.0990 34.2555
1.590 -19.7661 -38.9155 33.5177
1.600 -20.0742 -38.7232 32.7409
1.610 -20.3794 -38.5221 31.9247
1.620 -20.6814 -38.3117 31.0688
1.630 -20.9800 -38.0921 30.1729
1.640 -21.2748 -37.8630 29.2370
1.650 -21.5657 -37.6242 28.2614
1.660 -21.8524 -37.3757 27.2463
1.670 -22.1346 -J7.1173 26.1923
1.680 -22.4123 -36.8489 25.1000
1.690 -22.6852 -36.5705 23.9703
1.700 -22.9533 -36.2822 22.8042
1.710 -23.2163 -35.9838 21.6028

• 1.720 -23.4742 -35.6756 20.3676
1.730 -23.7270 -35.3576 19.1000
1.740 -23.9746 -35.0299 17.8016
1.750 -24.2169 -34.6927 16.4741
1.760 -24.4541 -34.3463 15.1195
1.770 -24.6862 -33.9908 13.7396
1.780 -24.9132 -33.6267 12.3365
1.790 -25.1352 -33.2543 10.9124
1.800 -25.3523 -32.8738 9.4693
1.810 -25.5646 -32.4857 8.0096
1.820 -25.i124 -32.0905 6.5353
1.830 -25.9758 -31.6886 5.0489
1.840 -26.1749 -31.2804 3.5524
1.850 -26.3700 -30.8666 2.0482
1.860 -26.5613 -30.4475 0.5:185
1.870 -26.7490 -30.0237 -0.9747
1.880 -26.9334 -29.5958 -2.4891
1.890 -27.1146 -29.1643 -4.0028
1.900 -27.2931 -28.7298 -5.51:17
1.910 -27.4690 -28.2927 -7.0199
1.920 -27.6425 -27.8537 -8.5197
1.930 -27.8140 -27.4133 -10.0112
1.940 -27.9838 -26.9721 -11.4929
1.950 -28.1520 -26.5305 -12.9631
1.960 -28.3190 -26.0890 -14.4204
1.970 -28.4851 -25.6483 -15.8636

• 1.980 -28.6504 -25.2086 -172912

1.990 -28.8152 -24.7706 -18.7021

Table D.lO: Joint 1, 2 and 3 output torque data (continucd)

APPENDIX D . PEROFORMANCE ANGLE AND TORQUE DATA 160

• Time (Sec.) First joint torque (Nm) Second joint torque (Nm) Third joint torque (Nm)

2.000 -28.9798 -24.3346 -20.0953

2.010 -29.1443 -23.9011 -21.4699

2.020 -29.3091 -23.4705 -22.8248

2.030 -29.4743 -23.0431 -24.1594

2.040 -29.6402 -22.6193 -25.4730

2.050 -29.8068 -22.1995 -26.7649

2.060 -29.9745 -21.7839 -28.0346

2.070 -30.1433 -21.3728 -29.2817

2.080 -30.3133 -20.9666 -30.5058

2.090 -30.4848 -20.5654 -31.7066

2.100 -30.6578 -20.1694 -32.8839

2.110 -30.8325 -19.7790 -34.0374

2.120 -31.0089 -19.3941 -35.1672

2.130 -31.1871 -190151 -36.2730

2.140 -31.3671 -18.6420 -37.3550

2.150 -31.5490 -18.2750 -38.4131

2.160 -31.7329 -17.9142 -39.4475

2.170 -31.9187 -17.5597 -40.4583

2.180 -32.1064 -17.2114 -41.4456

2.190 -32.2960 -16.8696 -42.4097

2.200 -32.4876 -16.5342 -43.3508

2.210 -32.6810 -16.2053 -44.2691

• 2.220 -32.8762 -15.8829 -45.1650

2.230 -33.0731 -15.5669 -46.0387

2.240 -33.2717 -15.2575 -46.8906

2.250 -33.4718 -14.9545 -47.7211

2.260 -33.6735 -14.6580 -48.5304

2.270 -33.8765 -14.3679 -49.3190

2.280 -34.0808 -14.0842 -50.0873

2.290 -34.2862 -13.8069 -50.8357

2.300 -34.4927 -13.5358 -51.5645

2.310 -34.7000 -13.2710 -52.2742

2.320 -34.9080 -13.0123 -52.9652

2.330 -35.1166 -12.7598 -53.6379

2.340 -35.3256 -12.5132 -54.2928

2.350 -35.5350 -12.2727 -54.9302

2.360 -35.7444 -12.0380 -55.5505

2.370 -35.9537 -11.8091 -56.1542

2.380 -36.1628 -11.5860 -56.7417

2.390 -36.3716 -11.3685 -57.3133

2.400 -36.5797 -11.1565 -57.8695

2.410 -36.7872 -10.9500 -58.4107

2.420 -36.9937 -10.7489 -58.9371

2.430 -37.1991 -10.5531 -59.4493

2.440 -37.4032 -10.3625 -59.9475

2.450 -37.6060 -10.1770 -60.4321

2.460 -37.8072 -9.9966 -60.9035

2.470 -38.0066 -9.8211 -61.3619

• 2.480 -38.2041 -9.6504 -61.8078

2.490 -38.3995 -9.4845 -62.2413

Table D.11: Joint 1, 2 and 3 output torque data (continued)

APPENDIXD. PEROFORMANCE ANGLE AND TORQUE DATA 161

• Time (Sec.) First joint torque (Nm) Second joint torque (Nm) Third joint torque (Nm)
2.500 -38.5927 -9.3233 -62.6629
2.510 -38.7835 -9.1666 -630728
2.520 -38.9718 -9.0145 -63.4713
2.530 -39.1575 -8.8668 -63.8587
2.540 -39.3404 -8.7234 -64.2351
2.550 -39.5204 -8.5843 -64.6010
2.560 -39.6973 -8.4493 -64.9565
2.570 -39.8712 -8.3184 -65.3019
2.580 -40.0417 -8.1916 -65.6374
2.590 -40.2090 -8.0686 -659632
2.600 -40.3728 -7.9495 -66.2796
2.610 -40.5331 -7.8342 -66.5867
2.620 -40.6898 -7.7225 -66.8848
2.630 -40.8429 -7.6145 -67.1740
2.640 -40.9923 -7.5100 -67.4545
2.650 -41.1380 -7.4089 -67.7266
2.660 -41.2798 -7.3112 -67.9905
2.670 -41.4179 -7.2168 -68.2462
2.680 -41.5521 -7.1257 -68.4940
2.690 -41.6825 -7.0376 -68.7341
2.700 -41.8090 -6.9527 -68.9666
2.710 -41.9317 -6.8707 -69.1917

• 2.720 -42.0506 -6.7917 -694096
2.730 -42.1656 -6.7155 -696205
2.740 -42.2769 -6.6420 -69.8245
2.750 -42.3845 -6.5712 -70.0219
2.760 -42.4884 -6.5030 -70.2128
2.770 -42.5888 -6.4374 -70.3973
2.780 -42.6855 -6.3741 -70.5758
2.790 -42.7789 -6.3132 -70.7483
2.800 -42.8688 -6.2545 -70.9151
2.810 -42.9555 -6.1980 -71.0764
2.820 -43.0389 -6.1436 -71.2323
2.830 -43.1194 -6.0912 -71.3832
2.840 -43.1968 -6.0407 -71.5291
2.850 -43.2715 -5.9920 -71.6704
2.860 -43.3434 -5.9449 -71.8073
2.870 -43.4128 -5.8995 -71.9400
2.880 -43.4797 -5.8556 -72.0687
2.890 -43.5444 -5.8131 -72.1938
2.900 -43.6070 -5.7719 -72.3154
2.910 -43.6677 -5.7318 -72.4338
2.920 -43.7266 -5.6929 -72.5494
2.930 -43.7838 -5.6549 -72.6624
2.940 -43.8397 -5.6177 -72.7731
2.950 -43.8944 -5.5814 -72.8818
2.960 -43.9480 -5.5456 -72.9889
2.970 -~".0008 -5.5103 -73.0945

• 2.980 ·44.0529 -5.4754 -73.1991
2.990 -44.1046 -5.4408 -73.3031
3.000 -44.1561 -5.4062 -73.4066

Table D.12: Joint 1, 2 and 3 output torque data (continucd)

