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Abstract

The application of a parallel processing system (hardware and software) in the solution of
the kinematics and dynamics to control a three degice of freedom parallel manipulator is
the subject of this thesis.

Parallel processing systems are introduced and analysed for this application. A parallel
microcomputer system is used and a new method of direct kinematics for displacement,
analysis is implemented. The selected microcomputer sy i2m is integrated in an IBM 286
compatible personal computer.

Finally, a parallel softwa.e program is implemented, which allows for eflicient control of
three actuators driving the three degree of freedom planar manipulator. lence, introducing

a new processing method for the control of this manipulator.
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Résumé

L’application d’un systéme & processus parallel (materiel et logiciel) dans la dynamique
¢l la cynématique pour le contrdl d’'un manipulateur a trois degré de liberté représente l'objet
de cette these.

Les systémes & processus parallel sont introduit et analysé pour cette application. Un
systeme parallel de microordinateur est uiilisé et une nouvelle méthode de dynamique direct
pour 'analyse des déplacements est implementé. Le systéme de microordinateur est integré
dans un IBM 286 compatible.

Un logicicl parallel qui permet un control éfficace des méchanismes qui communiquent
le mouvement au manipulateur a trois degré de liberté est implementé. 1l represente une

nouvelle méthode de contrél du manipulateur.
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List of symbols

m:
n:

a,:

0;:
C,:

Wy:

¢, :
C,:

m,:

number of movable rigid bodies.

number of one-degree of-freedom joints.

number of degrees of freedom of the system.

The vector connecting the Zth joint O; to one of its neighboring joints.
the center of mass of the ¢th link.

The position vector of O,, in the X-Y frame.

The position vector of C,, i the X-Y frame.

Scalar denotes the angular velocity of the :th link.

Scalar denotes the angular acceleration of the ith link.

3-D velocity vector of the center of mass of the ith body.

3-D acccleration vector of the center of mass of the zth body.

mass of the :th body.

: 3 x 3 inertia tensor of the ith body about its center of mass.

: 3-D vector of the inertia force of the ith body at its mass center.

*: 3-D vector of the inertia moment of the :th body about its center of 1 ass.
: 6-D vector of the inertia wrench of the ith body.

: a 3-D vector friction torque acting on the zth joint.

: 6-D vector of the friction wrench of the :th body.

: 6-D vector of the gravity wrench of the 7th body.

: a 3-D vector generalized deriving torque of the ith actuated joint. 7, is a torque if the

tth joint is revolute and a force if the 7ih joint is prismatic.




‘ 7%: a 3-D vector generalized driving torque of the whole manipulator.
2 : is the twist-constraint matrix, which is of dimension 18x 21 and configuration-dependetd.

O: is a 3 x 3 zero matrix,
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Chapter 1

Introduction

1.1 Parallel processing

"There appears to be an unwritten rule which states that whenever a new program is debugged
and running, someone always asks how it can be made to run faster or process more data.
"This demand for more processing power stems from systems designers having to meet ever
higher performance requirements. Advances in technolegy enables sensors to acquire more

data and algorithms get more sophisticated which demand higher performance computers.

The conventional approach in the quest for higher performance has been to push the

speed of sequential, or Von Neumann, architectures by using more advanced technology.

An alternative to sequential processors is to develop parallel architectures wich data and
algorithms being distributed over many processors. This approach offers crders of magnitude
improvement in usable processor complexity by multiple replication of simply connected
processors and memory elements and utilizing exist'ng Very Large Scale Integration (VLSI)

technology.

The transputer (chapter 2) and its programming language, occam- (chapter 3), have
been designed specifically to support multi-processor systems. Any number of transputers

can form a network to build multi-processor systems. The performance is scalable giving a
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substantial increase in performance as more processors are added to the network.

Assuming that biological systems got it right a few million years ago by evolving highly
parallel nervous systems then highly parallel Multiple Instruction Multiple Data (MIMD)
architectures will have significant advantages over other architectures. MIMD machines, such
as transputer systems, have the potential of high performance with the flexibility to suit a
wide range of applications. Compared to single processor machines, both programming and
control is more complicated in MIMD architectures. In the following chapters, we describe
the transputer and its programming environment and show how it can be applied to the
computation of the dynamics and kinematics necessary to control a Three Degree of Ficedom

Parallel Manipulator.

1.1.1 Parallel processing architectures

Processors can be connected together in many ways to produce a wide varicty of parallel
processing architectures. Similarly, a variety of methods, or paradigms, have evolved to
program these machines. Transputers can be used in many diffcrent topologics and it is
helpful to consider the different classes of architectures. Parallel architectures are commonly

grouped according to Flynn’s taxonomy [16}, shown in figurc1.1, as:

1) Multiple Instruction-stream Single Data-stream (MISD): several processors siinultane-
ously execute different instruction streams on a single data stream. A pipeline system
is a typical example of a MISD architecture.

2) Single Instruction-stream Multiple Data-stream (SIMD): several processors simultane-
ously execute the same instruction on multinle data streams, such as Array Processors.

3) Multiple Instruction-stream Multiple Data-stream (MIMD): in this case, cach processor

may be simultaneously performing different instructions on different data.
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Instruction Stream 1
Control Unit 1 %t Arithmetic Processor 1 [€

Instruction Stream 2
Control Unit 2 Arithmetic Processor 2 [®

Daja stream
| ST

Instruction Stream n

Control Unit n Arithmetic Processor n [+

8) MISD-Multis.se Instruction-stream Single Data-stream

Data stream 1
Arithmetic Processor 1 pl———

Data stream 2

Arithmetic Processor 2 |

Instruction Streqm

Control Unit

Data stream 3
e

Arithmetic Processor n

b) SIMD-Single Instruction—stream, Multiple Data-stream

Instructlon Stream 1 Data stream 1
Control Unit 1 Arithmetic Processor 1 e
Instruction Stream 2 Data stream 2
Control Unit 2 Arithmetic Processor 2 &
H H
. [
Instruction Stream n Data stream 3
Control Unit n Arithmetic Processor n e————

¢) MIMD-Multiple Instruction-stream, Multiple Data-stream

Figure 1.1: Flynn’s classification

MISD machines:

MISD or pipeline machines are based on the partitioning of a complete algorithm into tasks
that each can be executed sequentially. Such a machine consists of elementary processors
cach assigned to a task that is executed in parallel with other tasks in the other processors.

Data is passed into a pipeline of processing stages. Within each stage the same operation is
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performed on every element of the data with different stages operating on the data sequen-
tially. Once the pipeline has been filled, each cycle produces a new result irrespective of the
number of stages in the chain. The machine operates at the speed of the slowest processor
and therefore effective partitioning of the algorithm is essential, as the slowest processor
forms a bottleneck. MISD machines have the advantage of having regular interconnects

between stages and are relatively easy to program.

SIMD machines:

The SIMD architecture consists of an array of identical processing elements (PEs), all op-
erating under the control of a single control unit. All PEs execute the same program in
synchronism (lock-step) but on different data. The PEs arc usnally connected in a two di-
mensional array, each with its own local memory and with a ncarest neighbor conncction
network. In the majority of SIMD machines the PEs are 1-bit arithmetic units (ALUs) with
data paths being 1-bit wide. This feature makes them eminently suitable for implementation

where a simple cell can be replicated many times.

An array of transputers can be connected in a manner similar to SIMD. In other words
transputers can be connected to form a two-dimensional network where cach transputer
executes a program block rather than a single instruction, with synchronization occurring at
the end of each block. The term Single Program Multiple Data (SPrMD) has been coined

for this mode of operation.

MIMD machines:

A MIMD machine is characterized by a set of independent processors, executing different
programs and communicating with each other. The processors invariably have some local
memory, also have either access to common shared memory or access to each other’s memory,

as shown in figure 1.2. The interconnection network may be fixed or non-fixed (switched).

MIMD processors offer the promise of highly flexible architectures. Until recently,

they have been difficult to program efficiently and are often used in a pseudo SIMD mode
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SHARED MEMORY

|

INTERCONNECTION NETWORK

Processor Processor Processor

a) Shared Memory

INTERCONNECTION NETWORK

Processor Processor Processor

Memory Memory Memaory

b) Local Memory

Figure 1.2: Memory topologies

(SPrMD) where all processors execute the same program. Transputers can be used in local

memory MIMD architectut~ machines as shown in figure 1.2(b).

More on architectures:

Although Flynn’s classification is useful, it is not exhaustive. Systolic architectures are
special-purpose architectures consisting of simple processors or cells locally and regularly
interconnected. Data streams flow through these cells in such a way that they interact at
cach conncction. They can use both pipeline and parallel concepts. Again, an analogy
with biology, where the word systol describes the heart contraction rhythm to pump blood,
systolic arrays pump data to give a regular data flow in the network. Systolic arrays have

the same disadvantage as pipeline processors in that they have to be clocked at the speed of

the slowest processor.

A closely related structure, the wavefront processor, is more relevant to transputer
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applications [7]. The wavefront processor has the same connectivity as a systolic array but

is a data-flow-driven machine, therefore does not require a synchronous clock.

Important characteristics of a parallel machine are the size and number of processors and
the communication bandwidth between them. Machines with tens or hundreds of relatively
large processors are classified as coarse grained, whereas machines with a thousand or more

small and simpler processors are classified as fine grained.

Fine grained processors are potentially faster because the larger munber of processors
allows a higher degree of parallelism. The degree of parallelism that can be achieved is very
much dependent on the problem and the algorithms for solving that problem. For example,
an image of 1000 by 1000 pixels would map easily onto a million-processor machine if one
were available. This is obviously an extreme example but there are very few problems which

cannot exploit a high degree of parallelism.

Low level operations conveniently map onto fixed networks of processors connected
in regular square or rectangular arrays but there may be problems in transferring data
to and from processors in the centre of the array. Higher-level operations may be moie
efficiently implemented on tree or pyramid structures. Reconfigurable networks appear to
have advantages for inputting and outputting data and are capable of efficient execution of
a wider range of algorithms. MIMD processors with flexible interconnections appear to have

advantages over the fixed topology of SIMD array processors.

The mein issue in choosing between SIMD or MIMD architectures is progiaminability.
The programming language occam appears to solve the difficulties in programming and
controlling MIMD machines and, given that a MIMD machine can execute in a SIMD mode
but not vice versa, then MIMD machines are worthy of further consideration. It is interesting
to note that more advanced biological nervous systems have evolved into richly connected

MIMD processors with a degree of reconfigurability.
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1.1.2 Transputer-based architectures

As outlined previously, MIMD machines have a potentially wider range of applications than
SIMD machines as SIMD) operation is a subset of the MIMD 1node. Until the advent of the
transputer, MIMD machines were limited to a relatively small number of processors by the
difficulties in programming and synchronizing such machines. The transputer and occam,

which explicitly controls concurrency, was designed to overcome these limitations.

There are three major classes of applications for transputers: accelerator boards for PCs
and workstations, embedded systems, and general purpose computers. The first transputer
products were mostly accelerator boards to boost the performance of existing computers, as
add-in boards [38]. The second class is the use of transputers in embedded systems such as
laser printer controllers. Image processing [21] and space-borne applications [13] are typical

examples of embedded systems.

1.1.3 Transputer networks

Transputers have four links (links are described in chapter 2) allowing several interconnection
topologiecs to be implemented (see figure 1.3). Many existing algorithms can be mapped into
a pipcline or series of pipelines. An n--.. ge transputer constructed pipeline has 2n free (or
unused) links and therefore does not make optimum use of the transputer communication
facilities and the disadvantages of MISD machines apply. Trees are suitable for hierarchical
processes such as data reduction with data being passed up, or sorting with data being
passed down.

Two-dimensional arrays are suitable for array structured data. The 2-D array topology
is the same as the SIMD array processors, fully utilizing the four transputer communication
links. Mapping techniques developed for SIMD arrays apply. Pipelines and tree architec-
tures can be mapped onto such an array. There are two potential problems associated with
large 2D arrays: first, in transferring data in and out of the array, and second in irregular

communications.
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a)PIPELINE |
| P, b !
b)TREE | T |
| I |
I | 1 ] ]
c)2-D ARRAY
_— - - - ] -

d)5-NODE 4 A -
(No free links) — T

©)SWITCHED

Switch

Figure 1.3: Transputer networks

Le., if the processor in the top left corner of the 2-D array shown in figure 1.3.c, is required
to communicate with the processor at the bottom right at the same time as the top right
processor is communicating with the bottom left processor, then all data or mossages get
routed through the centre processors causing a bottleneck. Communication kernels based on
message routing or packet switching techniques have been developed for more general com-
munication, at the expense of bandwidth reduction and increased latency. A node of totally

connected transputers can overcome this problem but, with only four links per transputer,
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the maximum node-size is five transputers (e.g., to make all node transputers connected
together, in figure 1.3.d, if another transputer is added to the node, transputer A cannot be
linked to that cxtra transputer as all nodes are totally connected). Data input and output
is limited by the ratio of links connected to the external world to the number of internal
connections. For a square array of size n, the number of processors is n? with 4n links
connected externally and 2n(n — 1) links connected internally. As the size of the array in-
creases, the overhead in transferring data to the centre increases by a ratioof n : (n? — n)/2.

To overcome problems inherent in fixed networks and to provide maximum flexibility, a re-

éonﬁgurablc topology can be used.

1.1.4 Reconfigurable networks

The granularity, and hence, the ratio of communication time to compute time, is an im-
portant issue in concurrent processors (concurrency is described in chapter 3). The use of
reconfigurable networks allows a reduction in communication time by reducing the number
of intermediate processors that messages or data have to travel through. A reconfigurable
network can be used for many applications and is particularly useful for large multi-processor
development systems. Reconfiguration also provides some degree of fault tolerance as faulty

processors can be bypassed or switched out of the network.

In case the configuration is implemented by a software controlled switch, the topology
can be changed statically, quasi-statically or dynamically. In the case of static switching,
the topology is fixed before programs are loaded and the application is run with that switch
setting. The network configuration may be extracted by the Transputer Development Set
(TDS) configuration utility (described in chapter 3). Quasi-static switching is used when
all processors can be synchronized at predetermined points in the program. At the syn-
chronization point, all communication ceases and all processors wait for the link connections
to be changed. Once the connections have been switched computation resumes. This is
particularly applicable to image processing where the network may be configured to allow

inputing images at the maximum data rates, for example, configured into multiple parallel
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pipelines with the maximum connectivity (since the two-dimensional array middle proces-
sors have no free links to the outside world). Once the data is completely loaded into the
system, it can be reconfigured into a two-dimensional array for low-level operations which
can be executed in a SPrMD mode. After all low-level operations have been computed by
all processors, the array can be configured into e.g., a tree, for high-level MIMD processing.
In a dynamic switching mode, any connection between any two processors can be changed
at any time, provided that no communication is taking place on that conncction. DDynamic
switching allows new programming methods to be used, such as, dynamic load balancing
and transputer networks which are control machines, can be used as data-driven, data flow

or as reduction machines.

Switch D

Figure 1.4: Dynamic switching

There will be some overhead and inefficiencies to be overcome with dynamic switching.
For example, consider the network shown in figure 1.4 where processor A is sending data to
two processors, B and C, through one link via a switch, with the switch being controlled hy
processor D. At some instant, A will be sending data to B. If C becomes idle and requires
more data then the link needs to switched from A-B to A-C. Processor C has to signal D
that it requires data. D has to signal A and B that the link is going to be changed and
then wait until A and B stop communicating. D then changes the link and signals A and C
that the new connection is made and that both processors can commence cornmunication.

If switching is frequent then D will have a heavy work load and may become a bottleneck in
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the system.

If the ratio of computing to communication time is large, then the communication
overhead is negligible and the configuration is irrelevant, regardless of which topology is used
and reconfiguration is not necessary. Nevertheless, a switchable network can aid program

development and debugging and may give some degree of fault tolerance [20].

1.2 Kinematics and dynamics of a planar 3-DOF Par-

allel Manipulator

Based on their kinematic architecture, industrial manipulators fall into two categories: serial
and parallel. Serial manipulators have an open-chain kinematic architecture, all of whose
joints are actuated. On the contrary, parallel manipulators have a closed-chain kinematic
architecture, some of their joints being unactuated. Serial manipulators, in general, have the
advantages of simpler kinematic and dynamic models, larger work-spaces, higher dexterities,
etc - - -, and have been studied extensively [42], [6], [10]. However, because of their cantilever-
beam-like architecture, serial manipulators inherently suffer from: some drawbacks, such as
low mechanical stiffness which leads to lower operation accuracy, or dynamic characteristics,
and lower loading capacity. These disadvantages can be overcome by designing manipulators

with closed kinematic loops, namely, parallel manipulators.

The two major problems in kinematics and dynamics of serial manipulators, namely,
the forward and inverse analysis, appear in parallel manipulators as well. In case of serial
manipulators, forward kinematics is a straight forward problem, which can be solved recur-
sively and on line because the relative motions of all joints are independent and available.
However, the inverse kinematics of serial manipulators although well-developed now [1], [39],
remains a rather challenging research topic. The inverse kinematics of parallel manipula-
tors is straight forward, similar to serial manipulators, because the problem can be solved
independently with each individual kinematic loop and hence, the methodology of inverse

kinematics of serial manipulators can be applied directly. However, the forward kinematics
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Figure 1.5: A planar parallel manipulator

of parallel manipulators is much more complex than that of serial manipulators because of
the presence of unactuated joints whose relative motions are dependent and not available.
The motions of unactuated joints cannot be found from individual loops of the manipulator
but from a set of simultaneous nonlinear equations involving all the loops of the manipula-
tor. The problem of direct kinematics is an active topic of current rescarch. Morcover, for
both manipulator control and simulation, as far as dynamics is concerned, on-line forward
kinematics is inevitable (as the dynamics solution depends on forward kinematics data).
The importance of developing efficient methods for analyzing dynamics and kinematics for

parallel manipulators thus becomes apparent.

1.3 Summary

Based on the foregoing two sections, we present in this thesis a method for solving the
dynamics and kinematics as applied to the parallel manipulator shown in figure 1.5. This
manipulator was introduced by Hunt [24], and could be considered as a planar example of

the well known Stewart platform [49]. In recent years, because of their typical kinematic
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architecture related to parallel manipulators, Stewart platforms have attracted the attention
of many researchers. Yang and Lee [52] investigated the kinematic feasibility of this type of
manipulators. Fichter [15] built several Stewart platforms and proposed their inverse kine-
matics and inverse dynamics models as well as a discussion on singularities. Later, intensive
studies on inverse kinematics and inverse dynamics were presented by Do and Yang [12], Lee
and Chao [33]. Merelet {40] and Behi [5] briefly discussed in their papers the nonlinear dis-
placement problem of Stewart platforms. Their approaches are rather straightforward, i.e.,
solving all simultaneous constraint equations numerically. This type of approach is believed
to be incflicient and does not provide a way of controlling the solution branches. In this
thesis we apply the method proposed by Ma and Angeles [37] in which they remove one of
the manipulator links, so that only one of the three kinematic loops remains. Consequently,
the nonlinear constraint equations which must be solved for the determination of the un-
actuated joint displacements reduce to one. The remaining constraint equations are solved
in closed form. Based on the rigidity condition of the removed link, the resulting distance

equation contains only one variable and hence, can be solved efficiently (chapter 4).

1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 1 introduces parallel processing concept, highlighting parallel processing archi-
tecturcs, the transputer as a parallel building block, and the previous research (theoretical)
presented by the researchers in the solution of the 3-DOF planar parallel manipulator kine-

matics and dynamics.

Chapter 2 describes briefly the internal architecture of the hardware selected and im-
plemented in the current work, to present the motivation for its selection and to show its
adequacy for this work. Moreover, this chapter presents the reader the motivation for many
of the desgin decisions taken in the course of the implementation discussed later. This chap-

ter concludes by explaining the main features of the processor selected by the author for the
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physical application part of this thesis.

Chapter 3 starts with a historic background on the development of the transputer
special programming language (occam), then proceeds with an overview of the important
aspects of the transputer program development environment used and occam programming
language. Moreover, this chapter explains the reasons for many of the program design
decisions taken during the software implementation phase of this study and shows towards

the end the physical configuration at the software implemented.

Chapter 4 describes the historic development of the mathematical algorithms in the
solution of the kinematics and dynamics of the 3-DDOF planar manipulator. Then, the
solution developed by Ma is presented [36]. Ma’s solution is adopted by the author in the

implementation of the manipulator’s prototype controller phase of this thesis work.

Chapter 5 deals with the control system integration. It explains in detail the control
system that is implemented by the author from inception in both hardware and software.

Furthermore, this chapter gives explanations of the integration decisions.

In the hardware section of this chapter the hardware parts sclection, the relevancy of
their selection, how they were integrated and the specifications of the whole system after

integration are thoroughly discussed.

In the software section, a thorough description of the control scheme design is given.
Furthermore, a thorough description is given of the software that is developed to provide
real time interactive control of the manipulator utilizing the capabilitics of the hardware,
Comparative examples of actual parallel occam code used and FORTRAN code are given to
demonstrate the parallel concept implementation in the program. Moreover, some examples
of actual sequential occam code used are discussed to show the explicit nature of sequential
processing in the language used. The examples also provide the motivation for the selection

of the parallel and sequential parts in the program.

Finally, an overview of the control program’s technical considerations is provided.

These include:
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. o The timing constant (the cycle time) which control the control program’s performance.

e The specifications to provide the program its required run time inputs (the manipula-

tor’s three actuator angles).

o The specifications of the program’s outputs (the manipulator’s three actuator torque
p 8 P

values).

Chapter 6, is concerned with the performance aspect of the controller. Comparative
benchmark test results are presented to show the hardware capabilities and potentials. Fur-
thermore, a simulation of the control algorithm was developed on the basis of the main

program to prove that it operates and the results of that simulation are presented and dis-
cussed.
At this point the objectives set for this study are completed.

Chapter 7 concludes the thesis by highlighting the significant contributions of the cur-

. rent work, discussing the limitations of the present approach, and pointing out the directions

for future research.



Chapter 2

The Transputer Architecture

The introduction of the transputer has been described by Barton [4] as the most significant

event in concurrent computing.

The list of current transputer based applications is growing almost daily and includes:

Industrial controllers - robotics, manufacturing processes automation.

Telecommunications - switching and node controllers.

Image processing, pattern recognition and artificial intclligence.

Biomedical applications - body scanners.

Computer vision which includes computer graphic simulation.

In this chapter, a brief description of the internal transputer architecture is presented.

2.1 General description

The transputer is a single chip microcomputer with its own 32 bit processor, local memory
and links for connecting one transputer to another and communicating with the outside
world. Furthermore, each transputer contains special interface circuitry which can be used
to adapt it to a particular application. For example, to use the transputer as a disk controller,

see figure. 2 1.

16



CHAPTER 2. THE TRANSPUTER ARCHITECTURE 17

Reset >
Analyse e
Error -—
Boot FromROMe———pni . YSLEM /I_,\
ClockIn =i services \l——V Processor
vce emnsom—
GND [EES———
1 r < LinkIn
Link
N~V interface}l . LinkOut
LinkIn
—
oncnip = AN
RAM \J—_V \I‘"—V interfacel g LinkOut
Link
\I—Vinterface - LinkOut
Link
W interface fome—pe Linkout

Application specific interface

Figure 2.1: Transputer architecture

The 32 bit CPU transputer can have up to 4 Kbytes of on-chip memory for local fast
access [9] [47). The most powerful transputer available to date ('T'9000) is able to deliver a
sustained performance of more than 70 Million program Instructions Per Second (MIPS) and
more than 15 Million FLoating point Operations Per Second (MegaFLOPS) [46]. Moreover,
the transputer architecture has the advantage of allowing one to increase the total system

performance with the addition of more transputers to an existing transputer network.
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2.1.1 Transputer support for concurrency

The processor provides efficient support for the occam model of concurrency and commu-
nication. It has a microcoded scheduler, which enables any number of concurrent processes
to be executed together, sharing the processor time. This removes the need for a software
kernel. The processor does not need to support the dynamic allocation of storage since the

occam compiler is able to perform the allocation of memory to concurrent processes.

Registers Locals Prograny
Front P
Back I
Q
— 1
A s
ptr———— r——— - R
B8
c S
Workspaoce —r-
Next ins.
Operand

Figure 2.2: Linked process list

At any time, a concurrent process can be:

- Active: being executed or on a list waiting to execute.

- Inactive: ready for input, ready to output, or waiting until a specified time.

The scheduler operates in such a way that inactive processes do not use any processor
time. The active processes waiting to be executed are held in a list. This is a linked list
of process workspaces implemented by using two registers one of which points to the first
process in the list, the other to the last. In figure2.2, while process S is exccuting, P, Q and

R are active awaiting execution.

A process is executed until it is unable to proceed and waits for an input from another

process, to output, or for a timer signal. Whenever a process is unable to proceed, its
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instruction pointer is saved in its workspace and the next process is taken from the list.
Since it is not necessary to save the evaluation stack on a rescheduling operation, the actual
process switch time is very small.

The processor provides a number of special operations to support the process model.
These include start process and end process.

During the execution of a parallel construct, start process instructions are used to
create the necessary concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurient
process to be executed together with the ones already being executed.

The concurrent termination of a parallel construct is assured by the use of the end
process instruction. This uses a workspace location as a counter of the components of the
parallel construct which still have to terminate. Initially, the counter is initialized to the
number of components before the processes are started. Each component ends with an end

process instruction which decrements and tests the counter. For all but the last component,

the counter is non zero and the component is descheduled. For the last component, the

counter is set to zero and the component continues.

2.1.2 Transputer communication

Communication between processes is achieved by means of channels. Occam communication
procedures are point-to-point, synchronized and unbuffered. As a result, a channel does not
need a process queue, a mwessage queue, or a message buffer.

A channel between two processes being executed on the same transputer is implemented
by a single word in memory and this channel is called “internal channel”. However, a channel
between processes executing on different transputers is implemented by point-to-point links
and this type of channel is called “external channel”. The processor provides a number of
operations to support message passing, the most important being input message and output

message [47].
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The input message and output message instructions use the address of the chaunel to
determine whether the channel is internal or external. This means that the same instruction
sequence can be used for both soft and hard channels, allowing a process to be rvritten and

compiled without knowledge ot where its channels are connected.

As it will be shown later in chapter 3, the communication procedure takes place when
both the inputting and the outputting processes are ready. Consequently, the process which

first becomes ready must wait until the second one is also ready.

A process performs an input or an output by loading the evaluation stack with a pointer
to a message, the address of a channel and a count of the number of bytes to be transferred,

then executes an input message or an oulput message instruction.

Transputer communication links

1 1 Data [+

Data byte

1 0

Acknowledge messago

Figure 2.3: Link data and acknowledge formats

Communication between two transputers is established by connecting (hardwire) a “link”
interface connection on one transputer using two uni-directional signal wires along which
data is transmitted serially to the corresponding link interface on the other transputer. The
two wires provide two occam channels, one in each direction. The presence of those two
channels require a simple protocol to multiplex data and control its flow. Messages are
transmitted as a sequence of bytes, each message is acknowledged before the next one is
transmitted. A byte of data is transmitted in the following sequence; a one (high) start bit,
one (high) bit, eight bits of data and a zero (low) stop bit. The receiving transputer sends
an acknowledgement indicating both that « process has received the data byte and it is able

to receive another byte, see figure2.3.

The protocol permits an acknowledgement to be gencrated by the receiver transputer
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Figure 2.4: Overlapped link acknowledge

as soon as it identifics a data packet. In this way, the acknowledgement can be received
by the transmitting transputer before the whole data packet has been transmitted. Conse-
quently the transmitter can transmit the next data packet immediately. Some transputers
do not implement this overlapping and achieve a data rate of 0.8 Mbytes/sec, using the
links to transfer data in one direction. However, by the overlapping method along with the
availability of buffering in the link hardware, the rate can be increased to 1.8 Mbytes/sec in
one direction, and 2.4 Mbytes/sec when the link carries data in both directions. Figure 2.4
shows the signals that would be carried on the two wires when a data packet signal is in the

same time frame with an acknowledgement.

2.1.3 Transputer timer

The transputer has an internal clock which generates a pulse every microsecond. The current

value of the processor clock can be read by executing a read timer instruction by any process.

A process can perform a timer inpul instruction, in which case it will become ready
to execute after a specified time (indicated by the timer input instruction) has elapsed since
the timer input instruction requires a time to be specified. If this time is in the 'past’
(i.c. ClockReg AFTER Specified Time) then the instruction has no effect. On the other
hand if the time is in the future’ (i.e. SpecifiedTime AFTER ClockReg or Specified Time
= ClockReg) then the process is de-scheduled. As soon as the specified time is reached, the

process is scheduled again.
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2.1.4 The IMS T425 features and overview

For the application described in this thesis, the author of this thesis used the IMS T425
microcomputer. The choice of this type of transputer was due to the fact that it was, at the

time of the implementation, the fastest available transputer.
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Figure 2.5: IMS T425 block diagram

Features

- 32 bit bus.
- 33 ns internal cycle time.

- 30 MIPS (peak) instruction rate.
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- 4 Kbytes on-chip static RAM.

- 120 Mbytes/sec sustained data rate to internal memory.
- 4 Gbytes directly addressable external memory.

- 40 Mbytes/sec sustained data rate to external memory.

630 ns response to interrupts.

Four INMOS serial links that can run on 5, 10 or 20 Mbits/sec operation speed.

High performance graphics support with block move instructions.

Boot from ROM or communication links.

The IMS T425 transputer (figure 2.5) has a configurable 32 bit wide memory interface.
A configurable memory controller provides all timing, control and DRAM refresh signals for a
wide variety of mixed memory systems. The instruction set achieves efficient implementation
of high level languages and provides direct support for the occam model of concurrency when
using cither a single transputer or a network. Procedure calls, process switching, and typical

interrupt latency are in the sub-microsecond range.

The standard INMOS communication links allow networks of transputers to be con-
structed by direct point to point connections with no external logic. Each link can transfer
data in two directions (through each of its two wires) at up to 2.4 Mbytes/sec. However,
only two links are available for this implementation. The T425 two remaining links are used

by the transputer motherboard to communicate with the host PC.



Chapter 3

Introduction to the Transputer

Language “Occam?”
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Figure 3.1: Host-server model: the host is connected to the transputer network by a single

link

During a program development process it is necessary that some operating system facilities
be available, such as access to a disk filing system, input devices and terminals, and that

there should be facilities to run text editors, assemblers, high-level language compilers and

24
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debuggers. One way to provide these facilities is to use a host, running a server program
that communicates with the transputer system. Porting the embedded system to the host
requires a server program to provide the communication between the host and the embedded
system. The server model should be user friendly to allow developers to continue to use the

facilities of a familiar operating system with its command language and utility programs.

Figure3.1 demonstrates the transputer host-server model. The first transputer host
server model introduced was the:INMOS Transputer Development System (TDS). The
TDS included apart from a server, an integrated occam programming environment which
includes a compiler, an editor, a linker, and a configurer. The server ran on a PC host,
communicating with an INMOS B204 board containing a T414-15 with 2 Mbytes of RAM
interfaced by a link adaptor to the PC bus.

A successor to the TDS server is a more general purpose server called the ‘iserver’. This
is also available with a number of stand alone tools such as compilers, editors, linkers, etc- - -.
It can run on any computer system providing that the transputer link can be interfaced
with it. The server supports a protocol through the link to provide access to the screen,
keyboard and the host file system. This protocol is used by the various tools that run on the
transputer. Whenever the editor, for example, needs to read a file it calls a set of occam
routines which send a request to the server. The server locates the file by calling the host
operating system and sends it through the link to the editor. The editor then uses other
occam routines which interact with the server to display characters on the host’s screen and
to take input from the keyboard.

The principal language provided with the TDS is occam, a high-level language that
was specially designed for the transputer. Many INMOS documents describe occam as the
best possible language for programming the transputer. For several years occam was the
only one available with the TDS.

The name occam is derived from William of Occam (or Ockam,c. 1270-1349), an

English scholar and philosopher. It was he who originated Occam’s Razor, which states in

its most familiar form, ‘Entities are not to be multiplied without reason’ [25]. The maximum
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performance gained was never actually stated in this form by Occam, but he did say, ‘it is

vain to do with more what can be done with fewer’.

Occam 2 (version 2) provides most of the features that one can expect from a high-
level language. However, many programmers used to Pascal or C will find occam different;
there are no recursions, structures, records (except in input and output), dynamic mem-
ory allocation or user-defined types. On the other hand, occam provides access to some
of the transputer’s facilities in a very clear and simple way, in particular, it supports mul-
tiple concurrent processes, multiple processors, inter-process communications and process

scheduling.

Although INMOS has been a very strong supporter of occam, many programmers have
preferred to continue with the more widely used programming languages, such as FORTRAN
and C. This is due to the difficulty that some programmers find in working with occam
and TDS environment and mainly because of the lack of the existing of occam software
libraries. However, standard FORTRAN and C libraries contain little if any support for
parallel programming.

Two main ways of adding parallel processing support to conventional languages have

found favor with software developers:

- Using the language unchanged and adding parallel programming support through run-
time libraries.

- Altering the semantics of the language to add parallel programming constructs.

Moreover, a compiler for a stand alone transputer system must support the server
protocol, multi-tasking, internal and external channels, timers, and the distribution of code
over a network of transputers. The reader may find a brief description of occam in the
following sections which is not intended to be a full tutorial on occam. INMOS provides a

detailed tutorial on occam [43].
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3.1 Concurrency

By performing certain operations according to a set of instructions, a traditional single
processor computer executes theses instructions one at a time (sequentially). Even the
simple opcration such as the addition of 2 + 2 is a model of the real world, except when it is
performed by or for a mathematician who is interested in the pure properties of numbers. Far
more frequently this operation is a model for the act of adding two pounds, dollars, apples or
airplanes, to an existing stock of two. Certainly the major applications of computers, such
as accounting, banking, process control and even word processing, are explicitly modeling

objects, events and activities in the real world.

The world which we live in is inherently concurrent. At the scale of human affairs,
the world can be described as a union of time and space. Events are mapped in time and
space. It is possible for two events to occur in the same place one after the other in time

(sequentially), and equally possible events can occur in different places at the same time

(concurrently, or in parallel).

3.2 Occam

Occam is a transputer programming language that allows the programmer to define a pro-
gram as a collection of parallel tasks. An occam program specifies each task, and task re-
quirements without specifying the order of performing individual tasks. The occam model
of computation is based on communicating processes [23]. Processes have distinct memory
locations. In addition, a mild degree of memory sharing is allowed in case two or more con-
current processes are required to read the same memory location at the same time. However,
if any process writes to a specific memory location, no concurrent process can read from that
memory location at the same time. Messages are passed between processes via channels. A
process sending a message, or a process attempting to receive a message, will wait until the

transaction is complete. Thus messages inherently act to synchronize processes.

As well as explicit support for concurrent programming on a single transputer, the
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occam language allows allocation of processes to processors (configuration) to allow the
user to compile and configure a program that will run on a network of transputers. This
chapter contains an outline description of the transputer language (occam 2) which we used
for the software part of this implementation study. If the reader is interested to learn more

about occam 2 he is encouraged to read [43] and [28].

3.2.1 Processes

An occam program consists of one or more concurrently executing processes. Each process
performs a sequence of actions, and then terminates. Each action may bc an assignment
(an assignment changes the value of a variable), an input (an input receives a value from a
channel) or an output (an output sends a value to a channel).

If no input is available from the channel, the process will wait. Similarly, if the process
at the other end of the channel is unable to receive the output, the sending process will wait.
Thus input and output provide both data transfer between processes and synchronization
of processes. Both the sending and receiving process must be ready before the data transfer

takes place.
The syntax of the assignment process is the := operator:
variable := expression
Input, is designated by the ? operator:
channel ? variable
and output by the ! operator:
channel ! variable

There are two special processes. The SKIP process starts to execute, does nothing and
then terminates. Thus it is equivalent to a NOP in assembly language programming. The
STOP process starts to execute, does nothing but never terminates thus effectively stops
the processor from looking for another instruction. We will see in the following sections how

these special processes are used.
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3.2.2 Process sequences

Most of the conventional languages assume that statements will be executed one after the
other in sequence. However, in occam this is not necessarily so, and the sequential nature

of a process must be stated explicitly by the SEQ construct:
INT a:
CHAN OF INT chanl, chan2:
SEQ
chanl ? a
a:=a*bh
chan2 ! a

The above program fragment (a declaration in this example) declares a to be a variable,
of type INT. It consists of a sequence of three processes that input a value from channel
1 into a (from some other process), multiplies it by the constant 5, and sends the output
to another process through channel 2. The declarations have the scope of the immediately
following construct (in occam a scope of a construct is identified by its indentation and can
be a sequence or parallel construct), and are indented to the same depth. Indentation by
two spaces is used to show the scope of the sequential construct; in all cases occam uses

indentation to show a grouping, where other languages might use begin.....end or {....... }.

3.2.3 Parallel processes

Occam processes may also be executed concurrently or “in parallel”. This is denoted by

the use of the PAR construct.
INT a, b:
CHAN OF INT chanl:
PAR

chanl ! a
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chanl ? b

This has the effect of copying the value of a into b and is equivalent to the following

assignment statement:

— declarations
SEQ
b:=a

The lexical order of the processes within the PAR construct is not important since the

processes will start in an arbitrary order. Thus the following code fragment:
- - declarations
PAR
chanl ? b
chanl! a
is exactly equivalent to the above.

The PAR construct is a process that will terminate when all of its component processes
terminate. Thus a SKIP process may be added to the PAR construct with essentially no

effect. However, adding a STOP process would mean that the PAR construct would never

terminate.

Occam says nothing about which of the processes in the PAR construct will be ex-
ecuted first, or which will get a larger share of the processor time. When it is necessary
to give one process priority over another, then the PRI PAR construct must be used as

follows:
PRI PAR
process.a
process_b

This PRI PAR construct is limited to two way processes (two way processes arc

any two processes or constructs that are independent of each other, in the above example
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process_a is an independent process of process_b). Whenever the first process can execute it
will, if both process are ready to execute simultaneously; the second process will only start

to execute after the first has completed or is waiting for an input or output.

The Occam 2 PRI PAR is limited to two components (two constructs with the same
indentation, and can be SEQ, PAR or PRI PAR constructs, two simple statements or any two
combinations of the aforementioned), which map directly on to the high- and low-priority
processes of the underlying hardware. If we want one set of processes to execute at high

priority and another set at low, then PAR constructs must be nested in the PRI PAR as

follows:

PRI PAR
PAR
high.1
high_2
PAR
low_1
low_2

In transputer implementation of Occam 2, a high-priority process will not be time
sliced but will execute until completion or waiting for input or output. Only when all high
priority processes are unable to execute will the low-priority processes get their time slices.
Because of the limitations of this mechanism, PRI PAR can only be used at the outermost

level of the program, not within any enclosing PAR constructs.

3.2.4 Arrays of processes

The FOR construct creates an array of processes which can operate in sequence or in parallel.
SEQ input =1 FOR 3

chan[input] ? buffer[input]
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creates an array of three sequentially executing processes, each input from a channel in the

array chan into a corresponding cell of the array buffer. This is equivalent to:
SEQ
chan(1] ? buffer(1]
chan([2] 7 buffer[2]
chan(3] ? buffer(3]
Thus the SEQ ..... FOR construct acts in a similar fashion to the FOR loop in Pascal or
other high-level languages.
The FOR construct can also be used with PAR, such that:
PAR input =1 FOR 3
chan[input] ? buffer[input]
creates an array of three concurrently executing processes.

The loop limits in PAR....... FOR...... must be constant integers, as occam 2 does not
allow the dynamic creation of processes; the total number of processes must be known at

compile time.

3.2.5 Channel protocols

A channel transfers data between two concurrent processes. The format and type of this
data is specified by the channel protocol. The channel protocol is specified when the channel
is deciared. Each input and output must be compatible with the protocol of the channcl

used. Channel protocols enable the compiler to check the usage of the channels.
An occam 2 channel is declared with a PROTOCOL as in the following examples:
CHAN OF BYTE a:
CHAN OF INT a:
CHAN OF REALG64 data:
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The above protocols declare that the channels will be used only for input or output of a
single variable of the appropriate type.

A protocol can also be of array type:

CHAN OF [20]INT data:
which will receive or transmit streams of 20 INTs.

When the size of the array to be transmitted is unknown, it is possible to declare a
counted array protocol which consists of an integer describing the size of that array, followed
by the number of that array elements:

CHAN OF INT::[JINT counted.chan :
INT vector :
When data is transmitted, the first word must be the number of array elements to be sent.
- - declarations
SEQ
counted.chan ! 2 :: vector

The process in the above program fragment will send a count of 2, followed by the first two
elements of the array vector. Similarly, the count is the first data item to be received. Thus,
the following program fragment will replace the number of data elements received in the

variable itemcount, and the number of elements in the array datain.
INT itemcount
[20] INT datain :
SEQ
counted.chan ? itemcount :: datain

A protocol can be either a sequence of variables of the same or different types. This is

achieved through the declaration of a sequential protocol, for example:
PROTOCOL DataPacket IS BYTE; REAL32; REAL32; INT:

is a protocol declaration in which the elements are separated by semicolons. The protocol
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thus declared can be used in the channel initialization:
CHAN OF DataPacket InStream :
which can only be used for the input and output of streams of the sequence:

BYTE, REAL32, REAL32, INT.

3.2.6 Timers

A timer in occam is treated as a channel. It is possible to declare it singly:
TIMER working :
or as an array:
TIMER [20]intervals :
Each timer can be read as if it is a channel returning a single integer value:
INT start, end :
SEQ
working 7 start
intervals{2] ? end

This process will read the value of the timer appropriate to the priority of the process in
which the timer input occurs. However, when comparing times read in this way, it must be
remembered that the number of timer pulses is read as an unsigned INT, with a nuinber
of bits equal to the word length of the transputer. Thus it is possible that the timer will
roll over during any timing interval. Occam for this reason provides an AFTER opcrator

which causes a process to wait until the timer reaches a particular value:
working 7 AFTER timeout

where timeout contains the value of the timer which will be waitel for. Thus, to suspend

execution for, e.g. 1000 pulses one can use the following code:

TIMER s:
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VAL INT wait IS 1000 :
INT now :
SEQ
s 7 now
s ? AFTER now PLUS wait

where PLUS denotes unsigned addition. If the wait is required to be in seconds it must be

computed using the number of pulses per second of that particular timer.

3.2.7 Placement

Occam contains features that allow specifying the position that variables occupy in the
processor’s memory, and also on which processor a particular process will be executed. This
is know as placement.

The hardware memory map of the transputer is byte-addressed, with signed addresses

running from MinInt to MaxInt. In the occam memory map, addresses are unsigned

words, running from 0 to the top of the address space. One can use the PLACE keyword
to assign a memory address to a variable.

INTi:

PLACE i AT 28 :
The above code fragment will place the integer variable 1 in the hardware memory address
0x80000070 on a 32-bit processor, or 0x8038 on a 16-bit processor. This is useful in
allocating variables to the on-chip fast RAM. The disadvantage of this method is it tends
to compromise the security of occam, as two processes can place variables at the same
address, and can access them with no control.

This type of placement is most useful in associating channels with hardware links. The

link control words lie in the bottom eight words of the memory map,
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Control Word Oeccam address Hardware address
16-bit 32-bit

Link0Qut 0 0x8000 0x80000000
Link10ut 1 0x8002 0x30000004
Link20ut 2 0x8004 0x80000008
Link3Out 3 0x8006 0x8000000¢
Link0OIn 4 0x8008 0x80000010
LinklIn 5 0x800A 0x80000014
Link2In 6 0x800C 0x80000018
Link3In 7 0x800E 0x8000001C

Table 3.1: Occam and hardware addresses of link control words

as shown in Table 3.1. For example:
CHAN OF INT chanin, chanout :
PLACE chanin AT T7:
PLACE chanout AT 3:

This set of instructions will place the channels chanin and chanout on hardware link 3
input and output respectively. This is the actual input and output set up implemented by

the author in the control program he wrote for the physical application phase of this thesis.

Placement of variables can also be used to gain access to memory-mapped peripherals.

However, this ic considered unsafe as more than one process can gain access to the peripheral

in an uncontrolled manner. Occam standard gives no guarantce that a variable name

appearing is an expression will only be accessed once. It is therefore much safer to treat
memory-mapped devices as PORTSs, which are extensions of the occam channel concept to

locations in memory. If a PORT is declared and placed at an address, it is recad and written

using channel input aad output:

PORT OF INT memloc :
PLACE memloc at #10000000 :
INTi:

SEQ
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. memloc ? i

This code will read the contents of the specified memory location into i. It guarantees

that only one read access will be made to memloc.



Chapter 4

Kinematics and Dynamics of the

manipulator
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Figure 4.1: A 3-DOF Planar Parallel Manipulator
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A typical architecture of the manipulator which is the subject of our study is shown in figure
4.1. It is composed of seven movable links, i.e., r = 7, and nine revolute joints, i.e., m = 9.
The motions of all links are limited in one plane parallel to the plane of the manipulators
base. According to the Chebyshev-Griibler-Kutzbach formula [22], it can be easily veriiied

that the degree-of-freedom of this manipulator is three, namely,

n=3r—-2m=23 (4.1)

r: number of mcvable rigid bodies.
m: number of one-degree-of-free‘lom joints.

n: number of degrees of freedom of the system.

The three links connected to the base are considered as input links, while the one with
three joints is the end effector, which undergoes a 3-DOF planar motion. Moreover, the
manipulator is driven by three motors which are located at the three fixed joints connecting
the input links to the base. Hence, these three joints, the actuated joints, are independent
joints, while the others, the unactuated joints, are dependent joints. This means that once

the variables associated with the former are assigned, those associated with the latter are
fixed.

This manipulator, could be considered a typical example of planar multi-loop mechan-
ical systems. It was first introduced by Hunt [24] and afterwards attracted the attention of
many researchers. Yang and Lee [52] investigated the kinematic feasibility of this type of
manipulators based on fundamental mechanism theory. An optimum design method of this
type of manipulators was presented by Gosselin and Angeles [18]. Later, studies on direct
kinematics and on inverse dynamics of parallel manipulators similar to our manipulator were
reported by Do and Yang [12], Lee and Chao [33], Lee and Shah [31] [32] and Stoughton

and Kokkinis [29]. The approach for direct kinematics presented in the above-mentioned
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works was rather straightforward by solving all simultaneous constraint equations numeri-
cally. This type of approach was inefficient for real-time computations and docs not provide
any means of controlling the solution branches, which may lead to physically infeasible re-
sults as indicated by Waldron [50]. In the work by Ma and Angeles [37] an efficient method
of direct kinematics calculation was introduced. In this method, one of the manipulator
links is removed, so that only one of the three kinematic loops remain. Thus, the nonlincar
constraint equations which must be solved for the determination of the unactuated joint
displacements are reduced to one. This remaining constraint equation could be solved in a
closed form. Based on the rigidity condition of the removed link, the removed constraint
is then recovered by introducing a scalar distance constraint. By applying a technique of
four-bar linkage-performance evaluation, the resulting distance constraint contains only one
variable and so could be solved very efficiently. The solution which lies in a physically

unreachable branch can be avoided.

The inverse dynamics of our manipulator has been studied by Do and Yang [12], Lee
and Chao [33], Williams and Reinholtz [51], but the direct dynamics of this manipulator was
not published until Ma [36] introduced a method in which the equations of motion of the
manipulator were formulated in terms of the actuated joint coordinates using the natural
orthogonal complement, (Natural orthogonal complement was introduced by Angeles and
Lee [2], Angeles and Ma [3]). The dynamics model was derived in the form of the Kuler-

Lagrange equations.

4.1 Direct kinematics analysis

4.1.1 Joint Coordinates

For the kinematic modeling, the seven movable links are numbered from 1 to 7, as indicated
in figure 4.2. Each joint is assigned a joint coordinate, denoted by q1, g2, - -, ¢, a8 indicated
in the same figure. In the figure, point P is a reference point defined at the centroid of the

end-effector. In this case the vectors of the independent and dependent joint coordinates are
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given by:
qQ qa
qQ*=|q]|, q‘=1:]. (4.2)
q3 qs

q° consists of independent generalized coordinates, which are associated with the actuated

joints, and q" is a 6-dimensional vector of dependent generalized coordinates associated with

the unactuated joints.

Figure 4.2: Joint coordinates of the 3-DOF Planar Manipulator.

It was assumed that the architecture of the manipulator has symmetric geometry, (the
three fixed joints are located at the three apexes of an equilateral triangle with edges of
length ly; the three input links have the same length [;; the other three links following the
input ones have length I3, while the end effector is an equilateral triangle with edges of length

l5.), as shown in figure 4.1.
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Figure 4.3: Position vectors
4.1.2 Displacement analysis

Since the manipulator under study contains nine joints, it requires nine generalized coordi-
nates, grouped in a 9-dimensional vector q, to represent the kinematic relationship between
individual links. Each generalized coordinate represents the rotational displacement of a
joint. Because of the presence of closed kinematic loops, some generalized coordinates de-

pend on the others. Hence, q can be partitioned as:

q= [q:} (4.3)
q

These generalized coordinates are subjected to kinematic constraints which can be

described by a set of holonomic constraint equations of the general form:

¢(q®, q*) = 0. (4.4)

This system was found to have six nonlinear scalar constraint equations as the number
of independent equations should be equal to the dimension of q*, i.e. six, which were used

to solve for the six dependent joint coordinates. A set of intermediate variables, 1), ¥, and
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Os(xs. yg)

Figure 4.4: The dimensional notation of our 3-DOF Parallel Manipulator

3, were introduced and shown in figure4.4. In that figure, O, denotes the ith joint, for
1=1,2,---,9. By the use of these three variables, three independent constraint equations
were formulated which represent input-output equations of the three RRRR planar four-bar
linkages, 04070505, 05080406, and 0030704, respectively. The positions of joints 4, 5
and 6 are fixed if the three independent joint coordinates ¢1, g2 and g3 are given. The rest
of the manipulator was considered as a structure consisting of three coupled four-bar planar
linkages whose input angles are 1, %, and 13, respectively. Using the notation shown in

figure4.4, the three constraint equations were formulated :

é1 = k11 — k12 cos Py + kyzcos(az — ;) + cos(hy + az — 9P2) = 0, (4.5a)
¢2 = ka1 — kag cos bz + ka3 cos(az — th3) + cos(yp2 + a3 — 3) =0, (4.5b)

#3 = kay — kag cos i3 + kazcos(ay — 1) + cos(¥p3 + a3 — ) = 0, (4.5¢)
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where

B2 4012 — 2 ._
k,’l = ,_'*‘21_3___3, k,z = k.‘g = E, fori = 1, 2, 3; (4.6)
213 Iy

—— [(z5 = z4) (26 — T4) + (y5 — Y4) (s — ¥4) ] ’ (4.7)
] b3b, ]

ag = cos™! (26 — z5)(24— =5) + (¥6 — ¥5)(y4 — ¥s)| , (4.8)
| bibs _

oy = cos™! (24 — 6)(T5 ~ T6) + (v4 — Ye)(ys — ¥s)] : (1.9)
| bzbs _

b = \/(1‘5 — z4)2 + (y5 —v4)%, (4.10)

by = /(26 — z5)2 + (¥6 —~ ¥s5)?, (4.11)

bs = \/(z4 — 76)? + (y4 — o)?- (4.12)

In the equations above, z; and y, are the Cartesian coordinates of joint O,, for i =
4, 5, 6, which we could calculate. For example, if the Cartesian z-y frame is s2t as shown

in figure 4.4, we get,

z4 =l cosqy, Ya = lising, (4.13)
l ) l .
T5 = ——21(cos g2 —V3sing) +lo, ys= -2l(x/§cos g2 — sin q3), (4.14)

l ] l l . 3
zg = —El(cos g3 + V3sin g) + ?;-, Yo = —-21-(60S gs — V3sing) + %’o- (4.15)

It was found that once ¥, 1, and 3 were computed, the dependent joint coordinates
4, g5, -+, go could be found as well and also the position of the end effector. In such a
method only three nonlinear equations are involved. The Newton-Raphson method was
utilized to solve them numerically (the Newton-Raphson method is defined in appendix A)
[1). By numerically solving eq. (4.5), which involves the inversion of a 3 x 3 Jacobian matrix
at each iteration, reduces the computational cost to approximately 1/8 of that required for
inverting the 6 x 6 Jacobian involved when solving the original constraint system. Although

this improves the computational efficiency substantially, the complexity involved is still high.
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F:gure 4.5: Example of configuration solution branches.

Moreover, in solving the 6 x 6 system, the branches of solutions are still uncontrollable
because the numerical procedure works without regard to the position of the end effector.
An example of branches of solutions to the direct displacement problem is shown in figure

4.5.

From that figure, we see that the end effector has two different configurations for a set of
given input displacements ¢;, g2 and ¢3, and the number of solutions of eq. (4.4) can be up
to sixiy-four because eq. (4.4) can be formulated as a set of six simultaneous quadratic scalar
equations. Of course, most of the sixty-four solutions are not physically feasible for a given
manipulator, because they belong to different configuration branches, while a motion from
one branch-configuration to another may be impossible unless the mechanism is disassembled.
Thus, it is important and practical to find a solution lying in a desired branch — control
of solution branches. General numerical methods do not have the capability of controlling

solution branches.

However, Garcia de Jalén et al. [17], proposed a model of constraint equations using
natural coordinates, which are defined as the Cartesian coordinates of one point of each joint

axis and a unit vector parallel to that axis. Although the constraint equations based on such
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B

O (xg,¥g)

UJ
Oy(xg, ¥s)

Figure 4.6: The system after the virtual cut

coordinates are simpler, the numbers of equations and coordinates increase, and so does the
dimension of the dynamics equations involved. Hence, solving this larger system numerically
will be costlier.

Ma [36), has introduced another method, which applies the technique of linkage-
performance evaluation introduced by Ma and Angeles [35]. This method assumnes virtually
removing one link, figure.4.6. This means eliminating one of the kinematic constraints, re-
sulting in reducing the original system kinematic constraints to one. Which will make ¢q.
(4.5a) the only effective equation. Then we would have the intermediate angle, 8, indicated

in figure4.6, as:

¢1 = ky; — kj; cos iy — kjzc080 + cos(p, — 0) =0 (4.16)
where
b+ 12 b, b,
' - 113 . k.= —. 4.17
kll 21213 9 12 13 ? 13 12 ( )

Notice that variable 1, disappears in the new constraint equation, and angle 0 can be



CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 47

solved from this equation in closed form. As well as the degree of freedom of the manipulator
increases from 0 to 1, and joint 9 describes a trajectory, I'(shown n figure 4.6), which is the

coupler curve of the four-bar linkage, discussed by Nolle [41], 0,0;050:s.

A coordinate frame, £-5, (figure4.6), was defined and an angle y; was considered as

the input angle of the four-bar linkage. Then the coupler curve was defined as :

I'= {og(¥1) : 1 € [, Y]} _ (4.18)

in the local coordinate frame. where [1,, ] is the mobility range of angle ,, while og is

the position vector (figure 4.3) of the 9th joint Oy:

_[é B I3 cos ¢y + I3 cos(0 + 7/3)
oslvh) = [1,9] B [12 sin ¢ +l3sin(0+7r/3)] ' (#19)

And angle 8§ computed from eq. (4.16), in terms of angle 1, as

/-
0 = 2 arctan (b+ K ab s ), (4.20)

where

a = —kj, + (ki + 1) cosyp; — ki, (4.21)
b = sin ¢, (4.22)
c=—kj, + (k1 — 1) cos ¥ + ki5. (4.23)

Parameter K, termed the branching index (by Ma and Angeles [35]) in eq.(4.20),
is equal to either +1 or —1, depending on which configuration branch the linkage is in.
figure4.7(a) shows two branch curves of a linkage. In this case, there are two output con-
figurations for one given input angle ;, one corresponding to the branching index of +1
and the other to —1. Figure4.7(b), also shows the situation when the two branching curves

merge into one, which will cause a part of the curve to have the branching index +1 and the
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0] )

Figure 4.7: The coupler curve of a four-bar linkage branches

other —1. In such a case, if the solution of ¥, is equal to either 1, or ¥, (cither of the two
bounds of the mobility range of 1;), we would have a singular configuration, as the output
motion of the linkage is uncertain. Two singular points S, and S, are shown in figure4.7(b).
We can find the other singular points of the other loops by removing other links. (More on

this manipulator singularity can be found in Gosselin and Angeles [19]).

To recover the removed constraint, we find on the coupler curve a point whose distance

to the 6th joint, Og, is equal to the length of the removed link :

V(€ —€&6)2 + (o —16)? = i (1.24)

where £g and 7 are the coordinates of joint 6 in the local frame €-. By solving eq. (1.24)
numerically, one can find ;. The numerical solution for #; can be obtained more cfficiently
than by solving eq. (4.4) or eq. (4.5) as eq. (4.24) is a single-variable scalar cquation.

The aforementioned coupler curve is only conceptual, because one actually does not
need to compute the whole coupler curve when solving ¥, from eq. (4.24). Instead, only the
evaluation of eq. (4.20) is required when solving eq.(4.24), the branch of the solution bcing
controlled by specifying, based on the assembly configuration of the given manipulator, the

index K of that equation.



CHAPTER 4. KINEMATICS AND DYNAMICS OF THE MANIPULATOR 49

By obtaining 1, and 8, the determination of the coordinates of all moving joints is

possible. (Further details can be found in Ma [36]).

4.1.3 Velocity and acceleration analyses

LCt M

a,: The vector connecting the ith joint O; to one of its neighboring joints.
C,: the center of mass of the zth link.

0;: The position vector of O,, in the X-Y frame.

¢,: The position vector of C,, in the X-Y frame.

w,: Scalar denotes the angular velocity of the zth link.

w,: Scalar denotes the angular acceleration of the ith link.

One can find the relation between the independent and the dependent angular velocities by
noting that the velocity of the 9th joint, dg, (figure4.8), can be expressed in either of the

following three different forms:

69 = leal + w4Ea4 + w7Ea7 (425)
69 = szag + w5Ea5 + UJ7E8.3 (426)
09 = w3Ea3 + wgEag (4.27)

where E is an orthogonal matrix which rotates the vectors 90° counterclockwise, with-

out changing their magnitudes:

0 -1
EE[ }. (4.28)

From the above equations we could deduce :

Aw* = Bw® (4.29)
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Figure 4.8: Dynamics analysis notations

- . Fw4
w1 31
ws
w? = wal = (jg ) w" = , (4.30)
- w6
[ W3 q3
| W7
ay 0 —ag ar -—ap 0 as
A= , B= . (1.31)
I 0 as; —ag ag 0 —3ay Ay

To compute the angular accelerations, w,, we can differentiate both sides of eq. (4.29)

with respect to time:

A" = Bw® + Bo® — Aw®, (4.32)
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in which .
- - w4
Wi U} )
ws
wt = Lb2 = 62 3 w" = . ’
. - We
w3 VE] )
| W7 |
and
. d wsEay 0 —w¢Eag wrEaz
A=-—-A=
dt 0 QJ5E85 —-wsEas L«J7Eas

= PAdiag(ws, ws, we, wr),
. d -w1Ea; 0 waEay
B=-—-B=
dt 0 -—ngaz waEaS

= PBdiag(w,, wa, w3).

In the above equations, P denotes a 4 x 4 permutation matrix defined as
E O
O E

P=

and O is the 2 x 2 zero matrix. For simplicity of representation, let

€

i

€ €

W B e
(=]
i

Then, we could rewrite eq. (4.32) :

A&* = P(Bu® - Au*) + B&®

51

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

By using the inverted matrix A when solving eq. (4.29) we could realize that not much

additional computation is required.

Once w* and w* are computed, the remaining part of direct kinematics, i.e., the com-

putation of the center of mass velocity, denoted as ¢;, and the center of mass acceleration,

denoted by ¢, of the ith link, for i =1, 2, .-+, 7, becomes a straightforward problem.
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4.2 Dynamics analysis

4.2.1 Inverse Dynamics
Let:

c;: 3-dimensional (3-D) position vector of the center of mass of the ith body.
&, : 3-D velocity vector of the center of mass of the ith body.

¢;: 3-D acceleration vector of the center of mass of the ith body.
m; : mass of the ith body.

I;: 3 x 3 inertia tensor of the ith body about its center of mass.
£* . 3-D vector of the inertia force of the ith body at its center of mass.
n*: 3-D vector of the inertia moment of the ith body about its center of mass.
w?: 6-D vector of the inertia wrench of the ith body.
: a 3-D vector friction torque acting on the ith joint.
: 6-D vector of the friction wrench of the ith body.
w? : 6-D vector of the gravity wrench of the zth body.

T, : a 3-D vector generalized deriving torque of the ith actuated joint. 7, is a torque if the

ith joint is revolute and a force if the ith joint is prismatic.

7°: a 3-D vector generalized driving torque of the whole manipulator.

The dynamics is analyzed in a three-D space, whose first dimension is the rotation
about the axis perpendicular to the motion plane and the other two are the translations in

the motion plane. In this space, the twist of a link, say the ith link, is a 3-1) vector :

Wi
(= [ ] (1.39)

C
where w; is a scalar representing the angular velocity of the ith link and € is the 2-D
velocity vector of the center of mass of the same link. Moreover, the intended mass matrix

reduces to a 3 x 3 diagonal matrix:
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I, 0 O
M,=|0 m; O (4.40)
0 0 mg

where m; and I, are the mass and the polar moment of inertia about the center of mass

of the ith link, respectively. The inertia wrench, w} is a 6-D vector by definition:

n; .
w; = [f" ] = —M;t; — Q;M;t; (4.41)

and w; of the ith link also reduces to:

. —TLw,
w, = —-M;t; = , forz=1, 2, ---,7 (4.42)
-m;&;
where §2, are 6 x 6 matrices is defined as in its general definition:
w; X 1 O
Q; = . (4.43)
O O

for this manipulator:

e 2, termed the twist-constraint matrix, which is of dimension 18 x 21 and configuration-
dependent.

e O denotes the 3 x 3 zero matrix,

e 1 denotes the 3 x 3 identity matrix.

e w, x 1 denotes the cross-product matrix associated with vector w;.

The generalized twist and wrench vectors are defined as :

t=1]:1], w'=|:], (4.44)
tr. Wz
Since the term ;M,t; is always zero for planar motions, as for any holonomic me-

chanical systems, the following set of twist constraint equations hold [3]:
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Qt = 0. (4.45)

Also it can also be shown that t is a linear transformation of the vector of independent

generalized velocities, qa, i.€.,

t=Tq, (4.46)

From eq. (4.45) and eq. (4.46), we can show that QT = 0 and hence, the 21 x3 matrix T
is iermed the natural orthogonal complement of matrix 2. Moreover, t can also be expressed

as a linear transformation of the vector q, i.e.,

t =Tq (4.47)

From eq. (4.46) and eq. (4.47) with eq. (4.4), we get

T=K,-K,J;'], (4.48)

where K, and K, are termed velocity Jacobian matrices, while J, and J, are displace-

ment Jacobian matrices, defined as

_0t(q,9) _ 0t(q,q). (
Ka - aqa ) Ku - aqu ) (4.4))
_ 0¢(q) _ 94(q) .
J, = 3q, Jy = 9q, (4.50)

Evaluation of the orthogonal complement matrix by eq. (4.48) is rather costly. Noticing
that T depends on joint displacements only and also the jth column of T equals dt/dq,, for

Jj =1, 2, 3, one can compute T as follows:
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,t (4.51)

d1=1

, b

da=1

T

é;:l]other ¢!s of 4, are zero

i.e., the jth column of T is calculated as the generalized twist of the manipulator
assuming that all the actuated joints are locked but the jth one has a motion with unity
velocity. For example, the second column of T is equal to t(q,, §,) where q, is set to

[0, 1, 0]" and q, should be kept as is. It was found (Ma [37]) that using this method to
compute T is more efficient and easier than using eq. (4.48)
Let 7% and #* denote the power supplied by the actuators and the power associated

with the generalized inertia force, respectively. Then we get:

7 =q r°, (4.52)

 =tTw* = {TTTw". (4.53)

From the conservation of energy of the whole system, the following equation holds:

=0 (4.54)

in other words:

q’rt = —qTTTw". (4.55)

By definition, all components of q, are independent and hence we derive from eq. (4.55) the

following:

T8 = -TTw" (4.56)
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which is the dynamics model of the manipulator. In the formulation of this modcl, gravity
forces were not considered. However, gravity-effect can be implicitly included if we consider,
when computing €, recursively, that the base of the manipulator has an acceleration of —g
where g is the gravity acceleration vector, a technique introduced by Luh et al [34]. If friction
is considered, the power dissipated by friction forces/torques must be included in eq. (4.54),

which leads to the following dynamics model:

=TT (w* + w/) (4.57)

or

7 = -TTw* - RT+/ (4.58)

where w/ is a 21-dimensional vector composed of all friction wrenches exerting at cach
link’s center of mass, while 7/ is a 9-dimensional vector composed of all friction torques
) 1

exerted on each joint. Moreover, R is the 9 x 3 joint-velocity Jacobian matrix, defined as:

04 1
R=——= 4.59
04, [”JJIJajI ( )

where 1 is the 3 x 3 identity matrix. Matrix R can also be calculated in the same
way as matrix T, i.e., the jth column of R is calculated as q assuming that all the actuated
joints are locked but the jth one has a motion with velocity unity. Friction forces/torques,
as they act on joints, are usually modeled as 7/ rather than w/ and hence eq.(4.58) is more

useful than eq. (4.57). However, the evaluation of eq. (4.57) is simpler.

If we want to include the generalized gravity wrench vector:

wi=|:|, (4.60)
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. we add the gravity term to eq.(4.58) to become:

=TT (w" + w!+w/) = -TT(w*" + w?) - RT+/ (4.61)




Chapter 5

System integration

This chapter contains a description of the physical work done by the author of this thesis
which deals with the transputer’s hardware selection, and integration and the software de-
sign, implementation and integration to build the prototype controller for the 3-DOF planar
manipulator which was discussed earlier.

This study is part of a larger project which is currently pursued in McRCIM (McGill
Research Center for Intelligent Machines). The project’s main objective is to achicve real
time control of a 3-DOF Planar Manipulator (chapter 4). The algorithm to control this type

of mechanism is different from serial manipulators, thus the utilization of parallel processing
is essential.
A complete diagram of the project is shown in figure 5.1. The project is divided into

four sub-projects:

1. Development of a parallel architecture control system to control the manipulators move-

ment through a pre-set trajectory (presented in this chapter).
2. Design and manufacture of a 3-DOF parallel manipulator with revolute joints.

3. Selection, design, and implementation of a closed-loop control circuit for the actuators

installed on the manipulator.

58
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4. Design and implementation of an interface to achieve total bidirectional communication

between the manipulator and the control transputer board.

The following section contains a description of the actual parallel architecture system
(hardware and software), and how it was integrated to control the 3-DOF planar manipulator
to complete the first sub-project. The remaining sub-projects are presently under research

by Kounias [30] and Felton [14].

PC with a transputer board

Interface

DC Motor
Control Circuit

3-DOF Parallel
Manipulator Prototype

Manipulator Plant

Figure 5.1: Block diagram of the complete project

5.1 Hardware integration

The T425 transputer (chapter 2) needs to be mounted on a suitable printed circuit board
(PCB) equipped with power supply input and properly grounded at low impedance with
sufficient decoupling, and the memory interface properly designed. This is achieved by the
use of transputer module or TRAM. A TRAM consists of one or more transputers mounted

on a PCB with memory and sometimes other interface circuitry (figure5.2).
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The TRAM, in turn, is mounted on a motherboard that supplies power and is responsible

for clock distribution. Many motherboards also have one or more C004 link switches for

reconfiguration of the TRAM-mounted transputer links.

9298 an
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E “‘ 3s e
2067 om s e
H 18
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[} ’ @
4 7 mm (max )
2.7 mm
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I 1 7 mm (max.)

37 mm {(max )

16 2 mm (max )

gap = 0 2 mm (min.)

TRAM PCB

Components to 3 Tmm
including PCB.

gap = 0.6 mm (min.)

Motherboard PCB

Figure 5.2: TRAM geometry

5.1.1 Module architecture

The standard size of a TRAM is a 2.667 x 9.296 cm (centimeters). with sixteen connections

divided in two groups of eight each at one side of the module. There are 16 main pins in the
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TRAM:; the power supply pin ( Vec), the ground pin (GND); the reset pin (RESET); the
analyse pin (ANALYSE) and the no error signal pin (notError); eight pins for four links (two
pins per link); and two link speed selection pins (LinkSpeedA and LinkSpeedB). To select the
speed of the links, if both LinkSpeedA and LinkSpeedB are low the links will operate at 10
Mbps, when both are high the links operate at 20 Mbps. Other combinations are reserved

by the manufacturer.

Link20ut 1 16 Link3In
Link2In 2 15 Link3Out
Vce 3 14 GND
Link10ut 4 13 LinkOIn
Link1In 5 12 Link0Out
LinkSpeedA 6 11 notError
LinkSpeedB 7 10 Reset
ClockIn 8 9 Analyse

Table 5.1: TRAM pinouts

It is assumed that 5 Mbps will not be used. The Error pin of the transputer is inverted at
the notError TRAM output and is driven by an open collector or an open drain circuit.
Thus, the notError pin of several modules may be connected together through an OR gate.
This means that the ErrorIn pin is not used on transputers mounted on modules, and should

be short circuited with the ground pin. Table5.1 give the TRAM pinouts.

Pin Signal

la  SubSystem not Error
2a  SubSystem Reset

3a  SubSystem Analyse

Table 5.2: TRAM subsystem pinouts

The three subsystem control signal pinouts, which are, SubSystem Reset, SubSystem
Analyse and SubSystem notError, are available on the TRAM to control another group of
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transputers or TRAMS. Table5.2 shows these pin signal assignments to the inside posi-

tioned pins 1, 2 and 3 in a standa~d module.

5.1.2 IMS F404 TRAM

A B404 TRAM has been utilized in our application. Its memory sizes and cycles are
included in the Table5.3 below. This is a size 1 TRAM, figure5.2, that can countain a
transputer and eight memory devices which corresponds to 1 Mbyte of dynamic memory, or

256 Kbytes of static RAM.

Part Transputer Memory SubSystem  Size
no. size/cycles

B401 T414-20, T425-25 or T800-25 32K/3 SRAM no 1
B402 T222-20 8K/2 SRAM no 1
B403 T414-20, T425-20 or T800-20 1M/3 DRAM yes 4
B404 T414, T425 or T800 32K/3 SRAM, 2M/4 DRAM yes 2
B405 T800-20 8M/5 DRAM yes 8
B410 T801 160K/2 SRAM no 2
B411 T425-20 or T800-20 1M/3 DRAM no 1
B416 T222 64K/2 SRAM no 1
B417 T800 64K/3 SRAM, 4M/4 DRAM yes 4

Table 5.3: INMOS TRAMs

B008 Motherboard

The IMS B008 is the TRAM motherboard which has been integrated in an 1BM PC-AT
for this particular application. It has the capacity of ten TRAMs on board. Links 1 and 2
from each TRAM slots are hard wired on the IMS B008, to form a pipeline of processing
elements among plugged in TRAMs. The remaining links can be “soft wired” using an
INMOS IMS C004 programmable link switch, incorporated on the IMS B008. Figure5.3
shows the complete block diagram of the B008.

The IMS C004 device is controlled by an IMS T212 16-bit transputer. Configuration
data for the IMS C004 is fed into link 1 of the IMS T212 which in-turn passes it to the
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IMS C004 on link 3. The same data is also fed through link 2 of the T212 to the 37-pin
D-connector (DIN 37) on the edge of the board.

An interface with an IBM PC is available such that a program running on the PC
can control the TRAMs mounted on the IMS B008 and passes data to or from them. Data
communication can take place by either means of a software which uses polling, or via a
Direct Memory Access (DMA) mechanism which gives a higher data flow rate. Different
cvents on the IMS B008 can generate an interrupt signal which can be transmitted to the
PC. This eliminates the need for the processor in the PC to continuously poll status registers

on the IMS B008. Thus the PC can carry on with other tasks while programs are running
on the IMS B008.

IBM PC bus
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Figure 5.3: B008 block diagram
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[asl T

Figure 5.4: B008 switch settings

5.1.3 Integrating the B008 into the host personal computer

The switches and jumpers of the IMS B008 motherboard provide the user with a varicty
of operating modes. In the following segment, the significance of those settings will be ex-
plained. Moreover, the configuration used will be discussed (see figure 5.4 for switch settings

utilized).

DMA channel (switches 1, 2)

Direct Memory Access (DMA) channel selection is done according to Table 5.4

SW1 SW2 DMA Channel

ON ON o0
OFF ON 1
ON OFF DMA disabled
OFF OFF 3

Table 5.4: The available DMA channel settings

For this particular application DMA channel 3 was selected.

Interrupt channel (switch 3)

The interrupt channel can be selected according to Table 5.5
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SW3 Interrupt Channel
ON 3
OFF 5

Table 5.5: The available Interrupt channel settings

during our implementation, the Interrupt channel is set for channel 5.

Board address (switches 4, 5)

Switches 4 and 5 are used to select the base location in the I/O address space at which the

IMS B0O08 appear visible to the PC, or to disable the board from the PC bus all together.

SW4 SW5 Address (hexadecimal)
ON ON Not selected

OFF ON 8150

ON OFF $§200

OFF OFF $300

Table 5.6: The available BO0O8 address settings

Table 5.6 present the address options available. Note that a § sign indicates a hexadecimal

number. Address $150 is selectea for our B00S.

Link speed selection (switches 6, 7 and 8)

All the IMS C004 and TRAMs must have identical link speeds. The IMS T212, however,

can have its link O running at different speeds. Table 5.7 shows the possible combinations of

link speeds.
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SW6 SW7 SW8 T212 Link 0 All Other Links

ON ON ON 10 Mbits/s 10 Mbits/s

ON ON OFF 5 Mbits/s 10 Mbits/s

ON OFF ON 10 Mbits/s 10 Mbits /s

ON OFF OFF 20 Mbits/s 10 Mbits/s

OFF ON ON NON-FUNCTIONAL NON-FUNCTIONAL
OFF ON OFF NON-FUNCTIONAL NON FUNCTIONAL
OFF OFF ON 10 Mbits/s 20 Mbits/s

OFF OFF OFF 20 Mbits/s 20 Mbits/s

Table 5.7: The available B008 link speed scttings

66

For this application, link speeds are set to be 20 Mbits/s for all links including the IMS T'212

link 0.

Link configuration

. One T425 transputer mounted on a B404 TRAM was utilized. The B404 is connected to

the B008 motherboard in slot 0. This connection configuration is dictated by the B008 de-

sign specifications [26]. Using slot 0 allows only two (links 3 and 2) of the T425 transputer

four links to communicate with the outside world, the other two links are used to communi-

cate with the host PC. The B404 communication links have been configured such that the

transputer links are connected to the DIN 37 (peripheral input and output port of the BO0S

motherboard) as follows:

1) Transputer link 3 is connected to pins 3 and 22 of the DIN 37 for output and input

signals respectively.

2) Transputer link 2 is connected to pins 16 and 35 of the DIN 37 for input and output,

signals respectively.

The B0O08 enables software link configuration through its on-board IMS C004 link

switch. The following program fragment was used to achieve the link configuration specified

. in above (configuration item number 1):
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SOFTWIRE
SLOT O, LINK3 TO EDGE 0

END

The sccond configuration for link2 has been achieved via hard wire pipe jumpers (special

8-pin plugs) to the pipetail, see figure 5.3.

5.2 Occam software integration strategy

This section explains the software program designed and written by the author of this thesis.

+
@ Robot Interface Plant

T=T'W+wW)

Figure 5.5: Manipulator control scheme

The manoeuvre of the manipulator is described in terms of the coordinates of its three

actuated joints using the following equation:

q:(t) = ¢:(0) + (q,(T) - q,(O)) [-;—, — sin (2#%)], for 1=1, 2, 3. (5.1)
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JOTRAJ
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Figure 5.6: Occam program flow chart
where T is the time period of the whole manoeuvre. Using the direct kinematics
described in chapter 4, it was possible to obtain the positions, velocities and accelerations
of all links for the whole manoeuvre. Substituting the results of the initial condition (it
is assumed that the manipulator starts its manocuvre from rest) into the inverse-dynamics

equation:

T° = —TT(W' + wf) (5.2)
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which is used to compute the driving torques needed by the three actuators in order to drive
the manipulator through the given motion to move it from rest through the precalculated
trajectory. The angles of the manipulator’s three actuators are then used to calculate the
velocities and accelerations of all links for every trajectory step which are then used for the
remainder of the manoeuvre to generate the torques required. The resultant torques are
piped from the transputer mounted on the B008 slot 0 via link 3 through the DIN 37 to the
outside world.

Based on this configuration, the control algorithm was designed.

Figure 5.5 represents the closed loop control scheme utilized. The prototype supplies
adequate torque values to drive the manipulator’s three actuators. These values are first
changed to voltage by the motor controllers [30] before they are fed to the manipulator.
Furthermore, the occam program will keep updating those torque values, based on the motor

angle values generated by the motor controllers, throughout the manipulator’s manoeuvre.

Figure 5.6 illustrates the structure and the relationship of the two main modules, “JO-
TRAJ” and “FORCE”, of the occam program. Starting from the manipulator’s initial con-
dition, “JOTRAJ” calculates the position, velocity, and acceleration in joint space, knowing
in advance the final position and the required time to finish the manoeuvre. Then these
values are fed to the “FORCE” module which in-turn calculates the required torque values
to start moving the manipulator from the starting condition; thereafter, these values are sent
to the designated output link, thus completing the first program loop. Subsequent program
loops will follow the first program loop. At the beginning of each subsequent loop, “JO-
TRAJ” reads the actuators angle values from the manipulator and compares them with the
final actuators angle values. If the actuators angle values at the beginning of each subsequent
loop match the actuators angle values at the final position, the program stops; Otherwise,

“JOTRAJ” will continue to calculate the velocities and accelerations and feeds them to

“FORCE".
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JOTRAJ

Evaluate trajectory point

Compute coordmates of all moving jomts
q, fori=1,. 9

Compute velociies and accelerations
‘i':i for=l,. |7

Compute inertia and gravity wrenches
wl‘,w: for1=1, .7

Evaluate the natural orthogonal complement
T

Compute the actuator driving torques

a
T

FORCE T

Figure 5.7: JOTRAJ and FORCE inner-structure

Figure 5.7 shows the inner-structure of “JOTRAJ” and “FORCE” modules. The for-
mulae corresponding to each block of the diagram have been discussed in chapter 4, therefore,

will not be presented here again.

5.2.1 Software examples

In this section, various comparative examples between actual parallel occam code fragments
used in the implemented controller program and conventional FORTRAN code fragments

to produce the same values will be presented to explain how the occam parallel code is
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different from the sequential FORTRAN code. Parallel code has the advantage of utilizing
the transputer hardware and its occam language support for concurrency, thus executing
the independent operations involved simultaneously which results in their faster execution.
Other actual sequential occam code fragments used in the program are presented to show
the explicit nature of the occam language SEQ construct. In occam the sequential nature of
a process must be stated explicitly by the SEQ construct. Occam PAR and SEQ constructs
are discussed in chapter 3.

Parallel occam code is used throughout the program to execute in parallel the indepen-
dent operations as they arise. However, in certain cases where the operations are dependent,

occam sequential code is used. The full listing of the occam program can be found in

Appendix B.

txample 1, on occam parallel code versus FORTRAN code:

---declarations
VALOF
SRT:= DSQRT(3.0(REAL64))
PAR
SEQ
A0:= ((L2%CP)+ ((CTH-(SRT3*STH))*(L3/2(REAL64)))-XQ)
Al:= AO*AO
SEQ
A9:= ((L2*SP)+ ((STH+(SRT3*CTH))*(L3/2(REAL64)))-YQ)
A2:= A9*A9

DPQ := A1+A2-(L2*L2)
RESULT DPQ

In FORTRAN:
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SRT3=DSQRT(3.D0)
A1=(L2*CP+(CTH-SRT3*STH)*L3/2-XQ) **2
A2=(L2*SP+(STH+SRT3*CTH)*L3/2~YQ) **2

DPQ=A1+A2-L2%L2
RETURN

The above occam example function contains a PAR construct which calculates the
two indented sequences in parallel, thus computes Al and A2 simultancously and returns
the value of the function DPQ. In FORTRAN, the same equations are exccuted sequentially.

The parallel approach significantly reduces computation time.

Example 2, on occam parallel code versus FORTRAN code:

PAR I =1 FOR3
SEQ
STH[I] := DSIN(THETA[I])
P[1,1] : L1 *(STH[I])

SEQ
CTH[I] := DCOS(THETA[I])
P[2,I] :=L1 * (CTH[I])
In FORTRAN:

DO 10 1I=1, 3
STH(I)=DSIN(THETA(I))
CTH(I)=DCOS (THETA(I))
P(1,I)=L1*CTH(I)

10 P(2,I)=L1*STH(I)
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In this example, the FORTRAN DO construct calculates P(1,I) and P(2,I) three execution
times to finish the task. However, in occam the PAR construct allows the parallel calculation

of the two variables in only one execution. This considerably reduces the calculation time.

Example 3, on occam parallel code versus FORTRAN code:

PAR
SEQI = O FOR 1

A[1,0] := AAlI,3]
A[I,1] := -AA[I,4]
Al1,2] := 0.0(REAL64)
I2 := I + 2(INT)
A[12,0] := AA[I,3]
A[12,1] := 0.0(REAL64)
A[12,2] := -AA[1,5]

A[12,3] :=RO[I,6] - RO[I,8]
SEQ I = O FOR 1

B[I,0] := -AA[I,o0]
B[I,1] := AA[I,1]
B[I,2] := 0.0(REAL64)
I2 := I + 2(INT)
B[I2,0) := -AA[I,1]
B[12,1] := 0.0(REAL64)
B[12,2] := AA[I,2]

In FORTRAN:
DO 10 I=1, 2

A(I,1)=AA(1,4)
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A(I,2)=-AA(1,5)
A(1,3)=0
A(1,4)=R0(1,7)-RO(I,8)
I12=I+2
A(I2,1)=AA(I,4)
A(12,2)=0
A(12,3)=-AA(1,6)

10 A(12,4)=R0(I,7)-R0O(I,9)

DO 20 I=1, 2
B(I,1)=-4A(I,1)
B(I,2)=AA(1,2)
B(I,3)=0
I2=I+2
B(I2,1)=-AA(1,1)
B(I2,2)=0

20 B(I12,3)=AA(I,3)

Both code fragments build two matrices. However, in occam the two malrices are con-

structed in parallel, thus reducing calculation time.

Example 1, on occam sequential code:

SEQ
IF
(DABS(UL(K-1(INT)), (K-1(INT))]) < (1.0E-40(REAL64)))
SKIP
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NOT (DABS(U[(K-1(INT)), (K-1(INT))]) < (1.0E-40(REAL64)))
X[(K-1(INT))] := (BL(K-1(INT))]1) / (U[(K-1(INT)), (K-1(INT))])
SEQ J = 1(INT) FOR (N-1(INT)) -- First loop

K :=N-1J
SUM := 0.0
SEQ I = (K+1(INT)) FOR N -~-Second loop

SUM := SUM + (U[(K-1(INT)),(I-1(INT))] * X[(I-1(INT))1)
IF
(DABS(UL(K-1(INT), (K-1(INT)]) < (1.0E-40(REAL64)))

SKIP
X[(K-1(INT))]:=(BL(K-1(INT))]-SUM)/UL(K-1(INT)), (K-1(INT))]

In FORTRAN

IF (DABS(U(K,K)).LT.1.D-40) GOTO 30
X(K)=B(K) /U(K,K)
DO 20 J=1, N-1
K=N-J
SUM=0
DD 10 I=K+1, N
10 SUM=SUM+U(K, I)*X(I)
IF (DABS(U(K,K)).LT.1.D-40) GOTO 30
20 X(K)=(B(K)-SUM) /U(K,K)
RETURN

30 next program statement

In the above occam exampleindented if loops were utilized along with a SEQ construct
to be able to solve the upper triangle system of a matrix. A SEQ construct had to be

explicitly stated to execute the dependent mathematical operations sequentially. The occam
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sequential execution has no advantage over FORTRAN execution, and both have identical

performance and results.

Example 2, on occam sequential code:

SEQ I = O(INT) FOR 2(INT)
cpOT[0,I] := -RO[1,I] * W[I]
cDOT[1,I] := RO[0,I] * W[I]
I3 := I + 3(INT)
cDOT[0,13] := CDOTLO,I]-((AA[1,I] - RO[1,I1)*W[I])-(RO[1,I3]+W[I3])
cDOT[1,I3] := CDOT[1,I1+(CAA[0,I] - RO[0,I1)*WLI1)+(RO[O,I3]+W[I3])
cpoT[0,6] := CDOT[0,3] -((AAL[1,3]-R0O[1,3]1)*W[3]1)-(RO[1,6]*W[6])
CDOT[1,6] := CDOT[1,3] +((AA[0,3]1-R0O[0,3]1)*W[3])+(RO[0,6] *W[6])
SEQ I =0(INT) FOR 6(INT)
IT := I 3
T[II,K] := W[I]
TL(II+1(INT) K] :
T[(II+2(INT) K] :
WIK] := 0.0(REAL64)

cpoT[o,I]
CDoT(1,1]

IN FORTRAN

DO 10 I=1, 3
CDOT(1,I)=-R0O(2,I)*W(I)
CDOT(2,I)=R0O(1,I)*W(I)
I3=I+3
CDOT(1,13)=CDOT(1,I)-(AA(2,I)-R0O(2,I))*W(I)-R0O(2,13)*W(I3)
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CDOT(2,13)=CDOT(2,1)+CAA(1,I)-RO(1,I))*W(I)+R0O(1,I3)*W(I3)
10 CONTINUE
CDOT(1,7)=CDOT(1,4)-(AA(2,4)-RO(2,4))*W(4)-R0O(2,7)*W(7)
CDOT(2,7)=CDOT(2,4)+(AA(1,4)-R0O(1,4) )*W(4)+R0O(1,7)*W(7)
DO 20 I=1, 7
II=(I-1)*3
T(II+1,K)=W(I)
T(1I+2,K)=CDOT(1,I)
20 T(II+3,K)=CDOT(2,I)
W(K)=0

In this example a SEQ construct was used to compute the velocities of the mass centers
of the manipulators three links in base coordinates. The occam and FORTRAN codes will
produce the same results. However, in occam a SEQ construct had to be used to perform

the dependent mathematical operations sequentially as per occam language rules.

5.2.2 Running the control program

The transputer control program, developed by the author, is called progl.occ and resides

now in an IBM-AT compatible PC at the Measurement Laboratory of McGill University.
To run progl.occ the following steps should be followed:

Step 1:
lidit the file setup.inc using any file editing program and enter the setup values as

defined. The file setup.inc should be placed in the same directory as the main program

progl.occ. A typical setup.inc file is presented below:

--This file should contain setup and required performance data

--fill in the data adhering to the specified format
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--Time period to define trajectory in seconds

TT := 003.000

--Enter time to start in seconds in max three digit

TS := 000.000

--Enter the time step size in seconds

TSTEP := 000.010

--Enter the end time in seconds

TE := 003.000

~-Start angles in degrees in three digit format.

--For actuator #1

THO[0] := 060.000

--For actuator #2

THO[1] := 120.000

~-For actuator #3

THO[2] := 090.000
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--End angles in degrees in three digits.
--For actuator #1
THT[0] := 120.000
--For actuator #2
THT[1] := 000.000
--For actuator #3

THT[2] := 120.000

Step 2:
Compile the program as per the following steps:
Type:
occam progl.occ tb
The result of this compilation (a file called “progl.t5h”) must be linked with the li-
braries it uses (hostio.lib and dblmath.lib}.
Step 3:
To link the program type:

ilink progl.tSh hostio.lib dblmath.1lib

The linked program will be written to the file progl.c5h.
Step 4:
Before the program can run it must be made ‘bootable’. This is done by using the bootstrap

tool iboot. Type:
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iboot progl.cbh

'This will generate the file progl.b5h.

Step 5:
To run the program it must be loaded onto the transputer board using the host file server

tool iserver. To load and run the program type:

iserver /sb progl.bSh

The program now is loaded into the transputer board and running. For detailed de-

scription on the operation of the various commands required to compile, link and run an

occam program, refer to [27].

5.2.3 Technical considerations of the control program

The control program is currently set for the following specific operational and input/output
specifications. These specifications are set to utilize the available transputer hardware fa-

cilities and are compatible to the other phases of the prototype manipulator project of

Kounias [30] and Felton [14].

Timing

The control algorithm performance execution requirements are currently set to complete a
3 sccond manipulator manoeuvre with a slow program cycle rate of 0.01 seconds per cycle.
Once the manipulator’s dc motors used in the implementation of the motor controller system
parameters [30] are known the control systems set cycle rate can be changed to achieve an
optimum performance level. The performance execution requirements can be changed by
inputing the new values in the input file of the program and by changing the value of the

time step (TSTEP). A typical input file example has been presented earlier.
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Actuator angles input to the program

The occam control program expects to receive the three actuator angles sequentially on
link 3 through pin 22 in the DIN 37 at the BO08 motherboard. As the T425 transputer, as
discussed earlier, only has two free links, it is not possible to divide the three input angle
signals equally between the two free links. If, however, one decides to send two signals on
one link and the third on the other link, the design of the PC-dc motor controller interface
should accommodate for this configuration by implementing a buflering and synchronization
technique. Those approaches are inefficient as they will slow down the communication be-

tween the dc motor contrellers and the transputer board due to the additional processing

involved.

The current input angles configuration is set in the control program by the following

code segment:

—- Reading actuator angles originating from the manipulator
-~ Step 1- initializing the input channel

PROTOCOL Theta.in IS REAL32; REAL32; REAL32:

CHAN OF Theta.in RealtimeTheta:

PLACE RealtimeTheta AT 7:

-~ Step 2- reading thetas sequentially

RealtimeTheta 7 TH[0]; TH[1]; TH[2]

The above actual contrel program segment reads the actuator angle values according
to occam 2 language definition [43] and to the transputer hardware link communication

protocol (discussed in chapter 2).

The control program expects to receive the three actuator angle values in REAL32
type. According to occam 2 language definition, a value of type REAL32 is represented
by a sign bit, an 8 bit exponent and a 23 bit fraction. The value is positive if the sign bit
= 0 and negative if the sign bit = 1. A signed real value of type REAL32 is represented
according to ANSI/IEEE standard 754-1985. However, in this program only positive angle
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. values are expected as per the manipulators design characteristics [30].

From the above discussion, the transputer control system expects to receive 3 x 32 bits
representing actuator angles (in the order of: motor 1, motor 2 and motor3 always) via a
hardwire connection between pin 22 in the B008 motherboard DIN 37 and the motor control
interface.

However, the input angles configuration can be changed to parallel input through their
perspective input statements in the program at a later stage, if the hardware used has three

available input links. For example, if the transputer used has links 1, 2 and 3 free, one can

write:

--Reading thetas from the manipulator from three links parallel
-- step 1- initializing input channels
PROTOCOL Thetal.in IS REAL32:
PROTOCOL Theta2.in IS REAL32:
. PROTOCOL Theta3.in IS REAL32:
CHAN OF Thetal.in RealtimeThetaA:
CHAN OF Theta2.in RealtimeThetaB:
CHAN OF Theta3.in RealtimeThetaC:
PLACE RealtimeThetad AT 5:
PLACE RealtimeThetaB AT 6:
PLACE RealtimeThetaC AT 7:

-- step 2- Reading the input in parallel
PAR

RealtimeThetaA ? TH[O]

RealtimeThetaB ? TH[1]

RealtimeThetaC ? TH[2]

The above example code reads the three input angles in parallel through links 1, 2 and

‘ 3. Protocol, channels and placement statements are presented in chapter 3.
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Actuator torque values output

The T425 position in slot 0 in the B008 (discussed earlier) leaves only two links (2 and 3) free
for data transfer. The control program is set to output the torque values sequentially on the
7425 transputer link 3 through pin 3 of the BS08 motherboard’s DIN 37. This configuration
decision has been implemented as it was not possible to divide the three torque values equally
between the two available links. One of the alternative possible configurations is to send two
torque values over one link and the remaining torque value over the second link. This
approach is inefficient as it will lead to manipulator actuator synchronization problems. The
other alternative solution is by using a buffering technique in the PC-dc motors interface.
This approach will slow down data transfer between the transputer board and the de maotor

controllers.

The current output torque configuration is set in the control program by the following

program segment:

-- Step 1- initializing output channel

PROTOCOL Torque.out IS REAL32; REAL32; REAL32:

CHAN OF Torque.out ResultTorqueMotor:

PLACE ResutTorqueMot AT 3:

-- Step 2- sending the output torque values
ResultTorqueMotor ! TORQUE[0]; TORQUE[1]; TORQUE[2]

This actual control program segment sends the three actuator torque values according
to occam 2 language definition [43] and to the transputer Lardware link communication

protocol (highlighted in chapter 2).

The control program sends the three torque values in REAL32 type. From occam 2
language definition (highlighted earlier), the torque values are sent in a 32 bit format with
the least significant bit represent a sign bit, the remaining bits represent an 8 bit exponent,
and a 23 bit fraction. The torque value is positive if the sign bit = 0 and negative if the

sign bit = 1. The sign bit is used in the control program to define the direction of the
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torque. If the sign bit is positive, this indicates that this torque should rotate its designated

motor clockwise. If the sign bit is negative, this indicates that this torque should rotate its
designated motor counterclockwise.

The transputer control system sends sequentially three torque values organized as: mo-
tor 1, 2 and 3 always. These torquc values are represented by 3 x 32 bits. The transputer
control system sends these torque values through pin 3 in the DIN 37 on the B008 mother-
board. To the manipulator motor control circuitry. A transputer-motor controllers interface
proposal, for the torque output signals, was submiuvced based on the above configuration by
Felton [14].

If the transputer hardware has three free links, the torque values can be sent out of

the transputer control system in parallel as per the following program segment example:

The transputer in this example has links 1, 2 and 3 free. One can write:

-- Step 1- Output channel initialization
PROTOCOL Torque.outA IS REAL32:
PROTOCOL Torque.outB IS REAL32:
PROTOCOL Torque.outC IS REAL32:
CHAN OF Torque.outA ResultTorqueMotA:
CHAN OF Torque.outB ResultTorqueMotB:
CHAN OF Torque.outC ResultTorqueMotC:
PLACE ResutTorqueMotA AT 1:
PLACE ResutTorqueMotB AT 2:
PLACE ResutTorqueMotC AT 3:
-- Step 2- Sending the torque output out in parallel
PAR
ResutTorqueMotA ! TORQUE[0]
ResutTorqueMotB ! TORQUE[1]
ResutTorqueMotC ! TORQUE[2]

The above example code sends the three output torques out of the transputer in paraliel
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. over links 1, 2 and 3. Protocol, channels and placement statements are highlighted in chapter
3.




Chapter 6

Performance

In this chapter transputer performance is compared with an IBM-AT performance based
on standard benchmark tests. These performance comparisons are published in [48]. A
benrhmark is a standard measure of performance that enables one computer to be compared
with another. Three benchmark tests have established themselves as the industry standards:
the Whetstone benchmark, the Savage benchmark and the Dhrystone benchmark. At the

end of this chapter the impleinented architecture pertormance test is demonstrated.

6.1 The Whetstone benchmark

The Whetstone benchmark program [11] is used to compare processor power for scientific
applications. Running the program is considered equivalent to executing (approximately)
onc milbon “Whetstone” instructions. Performance, as measured by the benchmark, is
quoted in “Whetstones per second”. In addition to floating-point operations, it includes in-
teger arithmetic, array indexing, procedure calls, conditional jumps, and elementary function
evaluations.

Table 6.1 and Table 6.2 illustrate the performance of the transputer T425 used versus

the performance of some INTEL processor chips.
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System Thousands of Single-Precision
Whetstones per Second

IMS T425-30 1056

INTEL 286/287 300

Table 6.1: Single-Precision Whetstone benchmark results

System Thousands of Double-Precision
Whetstones per Second
IMS T425-30 242

INTEL 286/287  Not available
INTEL 808:3-8087 152

Table 6.2: Double-Precision Whetstone benchmark results

® 6.2 The Savage benchmark

The Savage benchmark is a benchmark of elementary function evaluation only [45). The

Savage benchmark tests both execution speed and accuracy.

System CPU FPP MHz Language Time Error
(seconds) (absolute)

IMS T425 30 occam 4.2 1.2E-9

IBM PC-AT 286 287 6.0 turbo pascal 7.4 1.2E-9

Table 6.3: Comparative Savage benchmark results

From table 6.3, it is clear that the time required to complete the Savage test is almost

half of that used by 286-287 PC.
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6.3 The Dhrystone benchmark

The Dhrystone benchmark [44] is a synthetic benchmark designed to test processor perfor-

mance on “Systems programs”.

System Dhrystones
per Second

IMS T425-30 13400

INTEL 80286-9 1976

‘able 6.4: Comparative Dhrystone benchmark results

From table 6.4, one can notice the performance increase when employing the IMS T425.

6.4 The implemented parallel architecture performance

experiment

6.4.1 Introduction

The main objective of this experiment is to demonstrate the ability of the control program
to produce torque values which correspond to the manipulators three actuators positions to

move the manipulator through a given trajectory. The author of this thesis modified the

original control program to achieve this objective.

The performance of the control system is governed by two aspects:

1) A fast processor (IMS T425-30 is presented in chapter 2).
2) The use of a parallel programming language compatible with the aforementioned pro-

cessor (occam language highlighted in chapter 3).
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L Independent joint
o] Depeadeat jount

Figure 6.1: The 3-DOF Parallel Manipulator
6.4.2 The simulation test program

To test the program behaviour, the geometric dimensions of the 3-DOF planar manipulator

illustrated in figure 6.1 are:

lo =08m, li = 0.44m, [, =0.22m, [ = 0.125 m. (6.1)

with mass and inertia properties of:

my =mg = mg = 2.765kg, I} = Iz = I = 0.06 (kg - m?), (6.2)
mg =ms = mg = 1.328kg, L= Is = Iy = 0.0066 (kg - m?), (6.9)
my = 5.06 kg, I; = 0.0132 (kg - m?), (6.4)

where m;, m; and m3 are the masses of the three links of length ¢, and [y, I and Iy are
their moments of inertia. im4,ms and mg are the masses of the three links of length {; and Iy,
I5 and I are their moments of inertia. It was assumed also that a 3 kg circular object was

placed at the center of the end effector, hence, m7 and I incjude its mass and its moment of
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inertia. The mass center of each link is located at its center. The manipulator’s manoeuvre

is described by the cycloidal equation:

a(t) = a(0) + (q,(T) —q;(O)) [-;-—sin (2%)] for i=1,2,3  (65)

T is the time for the manipulator to complete the whole manoeuvre. For this test the whole
manocuvre was set to take 3 seconds, with a cycle time of 0.01 seconds (same as the pre-set
values of the original control program). Using the direct kinematics described in chapter
4, the positions, velocities and accelerations of all of the links were obtained for the whole

manoeuvre. Substituting these results into the inverse dynamics equation:

7 = —~TT(w" 4+ w¥) (6.6)

the vorque values which the manipulators three actuators should provide throughout the
whole manoeuvre were obtained. Direct substitution of trajectory calculation (positions, ve-
locities and accelerations of all links) was used in the computation of the torques throughout
the manoeuvre. This setup was used instead of direct measurement due to lack of manip-
ulator real time data feedback (actuator angles) throughout the manoeuvre. The following
figures illustrate the actuated joint angles throughout the manoeuvre and the actuators cor-
responding torques calculated to move the manipulator throughout its manoeuvre (the raw

daia are listed in Appendix D).
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13
Thme (Se)

(a) (b)

Figure 6.2: First joint. (a) Angle 8; versus time (b)Torque versus time.

Figure 6.2 illustrates the first joint angle starting from 90° to have a final value of 120° and

its required torque during the 3 seconds manoecuver.

1204
10+
nop .
15+
00 .
201
H |0
0 i
o} 4
s
0} - .
401
[] 0:! 1 13 2 as 3 [] I:! ) 19 2 11 3
Tims(Sec) Timelpec)
(a) (b)

Figure 6.3: Second joint. (a) Angle 8, versus time (b)Torque versus time.

In figure 6.3 the second joint angle motion to reach 120° starting from 60° and the required

computed torque values.
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Temgpe (M)
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Figure 6.4: Third joint. (a) Angle 63 versus time (b)Torque versus time.

Figure 6.4 represents the third joint angle and its required torque time histories.

The plots presented in figures 6.2, 6.3 and 6.4 plot the data represented in the above
tables versus elapsed time, thus showing the timing results for each of the manipulator’s
actuated joints torque values. The values are plotted for each program cycle (0.01 seconds
per cycle) throughout the 3 second manoeuvre. One can notice the non-identical torque

behaviour for the three actuators as well as the smoothness of the torque curves as they

develop through time.



Chapter 7

Conclusions

This thesis contains a study of the application of parallel processing in the mnechanical anal-
ysis of 3-DOF parallel manipulators, to control the movement of that type of manipulators
in real time. As an application of this study, a parallel control scheme was developed and
implemented to control the motion of a prototype 3-DOF Planar Parallel Manipulator in
real time.

The hardware used (transputer) was specially designed to support parallel processing.
This processor was integrated in an IBM-AT and used as the hardware controller for the
parallel manipulator.

Since the transputer operation requires a special high level programming language
(occam), a computer program was developed using occam to compute the torques required
for the parallel manipulator providing the positions of each actuated link are given. This
program is considered the software part of the controller.

Using the facilities provided by the transputer (mainly parallel processing), the program
can provide more than one output torque value at the same time for the 3-DOF planar
manipulator to meet its three actuators requirements.

Both hardware and software were implemented in a modular design to allow for ap-

plication versatility and future improvements. From the hardware perspective, the B008
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transputer motherboard used can carry up to 19 processor TRAMs. In-addition each traus-
puter TRAM allow stacking. On the other-hand, the integrated occam program can be
used for any similar 3-DOF planar manipulator of different dimensions by changing the de-
sign specifications constants. Also, the program is modular and structurally modifiable to
facilitate the use of more than one transputer.

Due to the lack of adequate r.umber of transputers, only one transputer is used for this
controller scheme implementation. Also, to simplify the interface design sub-project (under
development [14]) and to achieve fast transputer-motor controllers communication, only one
of the two transputer’s free links is used. The utilization of only one link forced the originally
calculated and produced torque values in parallel to be sequ:ntially sent out through the

37-pin D connector at the B008 board edge.

7.1 Suggestions for future research

This project concludes the first phase of the main project. In order to obtain real time
control, the controller system need to be interfaced with the existing prototype presented by
Kounias [30]. An interface proposal was presented by Felton [14] as a first step towards a fully
bidirectional interface implementation. That leaves the main project remaining completion

steps to be:

1. Design and implement a bidirectional interface to accomplish the desired communi-

cation between the B008 transputer motherboard and the prototype 3-DOF Planar

Manipulator.

2. Extend the parallel architecture to include three transputers. Thus allocating one
transputer to generate the torques for each of the manipulators three actuators. This

approach promises a full parallel control of the manipulator in real time.
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Appendix A

Schemes of Numerical Methods

Al

Newton-Raphson Method.

Given an initial guess of variables x, say Xo.

Xig41 = Xk + AXy (Al)

where

Axy = — [F(x)] (A.2)

X=X

until Axx becomes less than a given tolerance.
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Appendix B

Program listings

B.1

Main program

--PROGAM progl.occ (first go at cracking the robot torque and
--trajectory calculations)
#include "hostio.inc"
PROC occam.program (CHAN OF SP fs, ts, []JINT memory)
#USE "hostio.1lib"
REAL64 B,C,D,E,F,H,P,R,S,T,U,V,W,Y,Z :
REAL64 M,IM,DD :
[3]REAL64 THO : --when start movement start angles .
[3]REAL64 THT : --when end movement end angles required
[3]REAL64 TH :
[3]JREAL64 THDOT : --to have angular velocity variable.
[3]JREAL64 THDDOT :--to have angular acceleration variable.
[{3]REAL64 TORQUE :--toque variable.
[3]IREAL64 THD :
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[31REAL64 THDD :

[3]REAL64 A : --commmon variables correspond to robot.
[3JREAL64 K : --commmon variables correspond to robot constants
[3]JREAL64 L : --commmon variables correspond to robot link lengthes

[2,3]REAL64 0 :--matrix of coordinates of fixed joints

[3]REAL64 THETA :--angle from X_(i-1) to X_i in the direction of Z_i.
[2,2,9]REAL64 Q :

REAL64 TS, TE, TSTEP:

[7JREAL64 M :--scalar m_i(mass of the i-th link)

[7JREAL64 IM :--moment of inertia about mass center of Link i.
[2,9]REAL64 RO :--vector directed to the mass center of the i-th link
INT IND: --index of initial guess-searching for subroutine POSIIN.
[2]REAL64 G : --commmon variables correspond to gravity

#INCLUDE '""datain.inc"

#INCI.UDE "“setup.inc"

DD := (DACOS(-1.0(REAL64)) / (180.0(REAL64)))

PROC JOTRAJ (REAL64 T,TT, [3]REAL64 THO,THETA,THDOT,THDDOT)

--look for TT declaration

--compute postions, velocities, and accelerations in joint space
--with arbitrary time t.
REALS4 B,C,D,E,F,G,H,L,K,0,?,R,S,T,U,V,¥,",Z :
REAL64 PI,DD,BT:
[3]REAL64 A, TO, THT:
SEQ
PI:= DACOS(-1.00(REAL64))
DD:=(PI)/ (180.00(REAL64))
B:= (PI+PI) /TT
SEQ
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PAR
TO[0] :=THO[0] * DD
A[0] :=((THT[0] -THO[0]) * DD )/ (PI + PI)
TO[1] :=THO[1] * DD
A[1] :=((THT[1] -THO[1]) * DD )/ (PI + PI)
To[2] :=THO[2] * DD
A[2] :=((THT[2] -THO[2]) * DD )/ (PI + PI)
SEQ
BT:= B*T
PAR
THETA[0] :=To[0]+(A[0] * (BT - DSIN(BT)))
THDOT[0] :=A[0] * B * (1.0(REAL64)) -DCOS(BT)
THDDOT[0] := A[0] * B * B * (DSIN(BT))
THETA[1]:=T0[1]+(A[1] * (BT - DSIN(BT)))
THDOT[1] :=A[1] * B * (1.0(REAL64)) -DCOS(BT)
THDDOT[1]:= A[1] * B * B * (DSIN(BT))
THETA[2] :=T0[2]+(A[2] * (BT - DSIN(BT)))
THDOT[2] :=A[2] * B * (1.0(REAL64)) -DCOS(BT)
THDDOT[2]:= A[2] * B * B * (DSIN(BT))

PROC LUDECP ([NA,NJREAL64 A,INT NA, N, [NL,NJREAL64 L,INT NL,[NU,NJREAL64 U,
INT NU)
-- Decomposing of a gicen n by n matrix using Crout’s method as follows:
-~-A=L=x*x1U
-- Where L and U are lower and upper matrices, respectively
== Input:
-- A --- given N * N matrix

-- NA --row dimension of array A in the caller
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-- N -- dimensicn of matrix A
-- NL,NU -- row dimensions of arrays L and U in the Caller
-= outputs:
- L-- N * N lower triangular matrix
- U-- N* N upper triangular matrix
REAL64 SUM :
INT J,K,I.N:
-- INT NA,N,NL,NU,J,K:
--[NA,N]REAL64 A:
-~ [NL,N]REAL64 L:
--[NU,N]REAL64 U:
SEQ I =1FORN
SEQ J =1FOR N
LI(I-1(INT)),(J-1(INT))] := A[(I-1(INT)), (J-1(INT))]
SEQ K = 1 FOR N
SEQ I = K FOR N
SUM := 0.0
SEQ J = 1 FOR (K-1(INT))
SUM := SUM + ( LL(I-1(INT)),(J-1(INT))] * LL(J-1(INT)), (K-1(INT))]1)
L{(I-1(INT)),(K-1(INT))]:= LL(I-1(INT)), (K-1(INT))]- SUM
SEQ J := (K+1(INT)) FOR N
SUM := 0.0
SEQ I = 1 FOR (K-1(INT))
SUM := SUM + (L[(X-1(INT)),(I-1(INT)] * L[(I-1(INT)), (J-1(INT))])
LL(K-1(INT)), (J-1(INT))] :=(L[(K-1(INT)),
(J-1(INT))]1-sUM)/ (LL(K-1(INT)) , (K-1(INT))])
SEQ I = 1FORN
UL(I-1(INT)), (I-1(INT))] := 1.0(REAL64)
SEQ J = (I + 1(INT)) FOR N
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L{(I-1(INT)), (J-1(INT))]

UL(I-1(INT)), (J-1(INT))] :
SEQ I =1 FORN
SEQ J = (I+1(INT)) FOR N
LI(I-1(INT)), (J-1(INT))] :
U[(J-1(INT)), (I-1(INT))] :

0.0
0.0

PROC LINERL ([NL,NJREAL64 L,INT NL,N, [NJREAL64 B, X)
-~ This procedure solves a lower triangle linear system
-- L(1,1) * X(1) =B(1)
-- L(2,1) * X(1) + L(2,2) * X(2) =B(2)
-- L(N,1) * X(1) + L(N,2) * X(2)+...+L(N,N)*X(N)=B(N)
-~ for N-dimensional vector X ,Argument NL is the row dimension of array
== L which should be the same as that in the caller
REAL64 SUM:
INT J,I:
I:=1
SEQ
IF
(DABS(L[(I-1(INT)),(I-1(INT))]1)) < (1.0E-40(REAL64))
SKIP
NOT (DABS(L[I,I])) < (1.0E-40(REAL64))
x{1] := B[1] / L[1,I]
SEQ I = 2FORN
SUM := 0.0(REAL64)
SEQ J = 1 FOR (I-1(INT))
SUM := SUM + (LL(I-1(INT)),(J-1(INT))] * X[(J-1(INT))])
IF
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(DABS(L[(I-1(INT)),(I-1(INT))])) < (1.0E-40(REAL64))
SKIP

NOT (DABS(LL(I-1(INT)),(I-1(INT))])) < (1.0E-40(REAL64))
X[1] := (B[I] - suM) / LI[1,1]

PROC LINERU ([NU,NJREAL64 U,INT NU,N, [NIREAL64 B,X)

—-=- Solves a upper triangle linear system, i.e.

=~ U(1,1)*X(1) + U(1,2) * X(2) + ... +U(1,N) * X(N) = B(1)
- U(2,2) * X(2) + ... +U(2,N) * X(N) = B(2)
_— U(N,N) * X(N) = B(N)

--For N-dimensional vector x.argument NU is the raw dimension of array U.
REAL64 SUM :
INT K,J,I:
K :=N
SEQ
IF
(DABS (U[(K-1(INT)), (K-1(INT))]) < (1.0E~40(REAL64)))
SKIP
NOT (DABS(UL(K-1(INT)),(K-1(INT))]1) < (1.0E-40(REAL64)))
X[(K-1(INT))] := (BL(K-1(INT))]) / (UL(K-1(INT)),(K-1(INT))])
SEQ J = 1(INT) FOR (N-1(INT)) -- First loop

K:=N-1J
SUM := 0.0
SEQ I = (K+1(INT)) FORN -~-Second loop

SUM := SUM + (U[(K-1(INT)),(I-1(INT))] *= X[(I-1(INT))])
IF
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. (DABS(U[(K~-1 (INT) , (K-1(INT)]) < (1.0E-40(REAL64)))

SKIP
X[(K-1(INT))] :=(BL[(K-1(INT))]-SUM) /U[(K-1(INT)), (K-1(INT))]

PROC FDISSP ([3]REAL64 THETA,THDOT, [211REAL64 WD)

-~ This procedure is used to evaluate the dissipative forces and

-- torques exerting on each link.

INT I:
PAR I = O(INT) FOR 20(INT)
WD[I] := 0.0

PROC VTOU ([N]REAL64 V,INT N,[N]JREAL64 U)
-- This procedure is to assign Vector V(N) to Vector U(N).
. INT I:
PAR I = O(INT) FOR (N-1(INT))
ul1] := v[1]

PROC AMLV ([NA,NJREAL64 A,INT NA,M,N,[N]REAL64 V,[MIREAL64 U)
-- This Procedure computes the product of an m by n matrix A
-- and an m-dimension vector V, i.e.
-~ U=A4kA %YV
INT I,J :
SEQI=1FORM
UL(I-1(INT))] := 0.0(REAL64)
SEQJ=1FOR N
UL(I-1(INT))] :=U[(I-1(INT) )] +(AL(I-1(INT)), (J-1 (INT))1*V[(J-1(INT))])

‘ PROC QTMLV ([2,2]REAL64 Q, [2]REAL64 V,U)
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-- This procedure computes the product of the transpose matrix Q’
-- 2 by 2
-- and a 2-dimension Vector V i.e.
-~ U=Q=*xV
INTI :
PAR I = O(INT) FOR 1(INT)
ul1] := (QCfo,I] = v[0]) + ( Q[1,I] = V[1] )

PROC QMLV ([2,2]REAL64 Q, [2]REAL64 V,U)
-- This procedure computes the product of a 2 by 2 matrix Q
-- and a 2-dimension Vector V i.e.
~-- U=Q=x*V
INTI :
PAR I = O(INT) FOR 1(INT)
Ul1] := (q[1,0] = Vv[0]) + ( Q[I,1] * V[1] )

PROC VECTOP ([2]REAL64 U,V,W,BYTE M)
-~ This Procedure calculates two 2-Dimension vectors U & V
=~ As follows :-
--if M="'4" then W=U +V
--if M ='-’ then W=U-V

M := "4")
PAR I = O(INT) FOR 1
wl1] := Ul1] + v(I1l
NOT (M := *+")
PAR I = O(CINT) FOR 1
W[I] := Ul1] - V[I]
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. PROC EVALUT ([2,9]REAL64 AA, [2,9]REAL64 RO, [21,3]REAL64 T)
-- This procedure is used to evaluate the Natural Orthogonal Complement
-- namely, the 21 by 3 matrix T. The evaluation is done as follows :-
-- the j-th column of T i scomputed as teh 21-dimension generalized twist
-- assuming that all the actuated joints are locked but the j-th one has

-- a unit velocity . the reasulting T is represented in the base

-~ coordinate frame.

-=- Input :-

-- AA ---Translational vectors represented in the i-th coordinates.

-- RO ---R0O(1,i) & RO(2,%*) are the components of teh relative

- position vecter of mass center of teh i-th link in i-th coordinates.

-- G ---G(1,k) & G(2,k) are the components of the gravity acceleration

-- represented in the k-th base coordinate frame.

== Qutput :-
. - T ---21x3 matrix of the natural orthogonal complement in the base
-- coordinates.

~- Internal variables :

-~ WDOT ----7-dimension vector of angular acceleratins in the iTh

-- coordinates .

-- CDOT ----CDOT(1,i) & CDOT(2,i) are components of the acceleration of
-~ the mass center of the iTh link in the iTh coordinates.
-- 0(*,i)---Position vector of teh iTh fixed joint in the base frame.
-- PE(*,i)--Position vector of the iTh moving joint in E frame.

-- X ---4 Dimension working vector.

-- First step forming the 4x4 matrix A and the 4x3 matrix B:
[4,41REAL64 A,L,U:

[4,3]REAL64 B:

[41REAL64 X:

' [7JREAL64 W:
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[2,7]REAL64 CDOT:
INT I,I12,I13,I1,K:

PAR
SEQ I = 0 FOR 1

A[1,0] := AA[1,3]
A[I,1] := AA[I,4]
A[1,2] := 0.0(REAL64)
A[1,3] := RO[I,6] - RO[I,7]
I2 := I + 2(INT)
A[12,0] := AA[I,3]
A[12,1] := 0.0(REAL64)
A[12,2] := -AA[I,S]
A[12,3] := RO[1,6] -RO[I,8]

SEQ I = O FOR 1
B[1,0] := -AA[[I,0]
B[I,1] := AA[I,1]
B[I,2] := 0.0(REAL64)
I2 := I + 2 (INT)
B[12,0] := -AA[I,1]
B[12,1] := 0.0(REAL64)
B[12,2] := AA[I,2]

-- Decomposition of A using Crout’s Rule.
LUDECP(A,4,4,L,4,,U,4)
-- Solving for (absolute) angular velocities W(i) from : A*W = B*THDOT
PAR I =0 FOR 2
wWl1] := 0.0(REAL64)
SEQ K = 0 FOR 2
WlK] := 1(REAL64)
LINERL(L,4,4,B[0,K],X)



APPENDIX B. PROGRAM LISTINGS 112

LINERU(U,4,4,X,W[3 FOR 6])
--Computation of the velocities of mass centers in base coordinates
SEQ I = O(INT) FOR 2{INT)
cpoT[0,I] := -RO[1,I] * W[I]
cpoT([1,1] := RO[0,I] * W[I]
I3 := I + 3(INT)
cpoT[0,13] := cDOT[0,I]-((AA[1,I] - RO[1,I]))*W[I])-(RO{1,I3]*W[I3])
CDOT[1,I3] := CDOT[1,I]+((AA[0,I] - RO[0,I])*W[I])+(RO[O,I3]*W[I3])
cpoT[0,6] := CcDOT[0,3] -((AA[1,3]-RO[1,3])*W([3])-(RO[1,6]*W[6])
cDOT[1,6] := CDOT[1,3] +((AA[0,3]-R0O[0,3])*W[3])+(RO[0,6]*W[6])
SEQ I =0(INT) FOR 6(INT)
II := I %3
T[II,K] := W[I]
TI(II+1(INT) ,K] :
T[(II+2(INT) ,K] :
W[K] := 0.0(REAL64)

cpoT[0,I]
CDOT[1,I]

PROC CPANGO (REAL64 K1,K2,K3,PSI,STH,CTH,INT KTH, JROOT)
~-This procedure is used to compute the sine and cosine of the coupler
--angle "theta" of an arbitrary RRRR planer four-bar linkage in terms of
--the given input angle "PSI" and the branch index K.
--Formulation:
--Solving the Input-coupler function:
~--K1+(K2*COS(PSI) )+(K3*COS(TH))~C0OS(PSI-TH)=0
--AS
-- COS(TH)= (1-T*%2)/(1+T**2)
-- SIN(TH)= 2%T / (1+T*%2)

~--Where
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--  T=TAN(TH/2) = (B-KTH*SQRT(B#**2-A*C))/A

-- A=K1+(K2+1)*C0S (PSI)-K3

- B=SIN(PSI)

-- C=K1+(K2-1)*C0S (PSI)+K3

--INPUT:

- K1,K2,K3 Linkage parameters

-- PSI input angles (in rads.)meaning angle between the fixed and
-- the input links

-- KTH branch index.

-- if KTH = 1 ( or KTH >= 0 ),then T=(B+DSQRT(B**2-A*C))/A
-- if KTH=-1 (or KTH < 0 ),then T=(B-SQRT(B*#*2-AxC))/A
--0UTPUT

-- TH1 coupler angel (in rads.) corresponding to KTH.
-- TH2 coupler angle (in rads.) corresponding to -KTH.
- JROOT output status index: JROOT=0 no real solution.
- =1, solutions are OK.
INT KTH, JROOT:

REALL64 K1, K2, K3, PSI, STH,CTH, KA, KB, A,C,B, T, Q, TT:
JROOT := 1.0(REAL64)

KA := K1 +(K2 *(DCOS(PSI)))

KB := K3 - (DCOS(PSI))

A := KA - KB

C := KA + KB

B := (DSIN(PSI))
IF

(DABS(A) < (1.0E-12(REAL64)))
T := C/ (B+B)
NOT (DABS(A) < (1.0E-12(REAL64)))
--COS(TH1 /2 ) AND COS (TH2/2) ARE ROOTS OF QUADRATIC EQUATION

113
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. -- A®T#*2 — 2 *B*T+C=0
Q :=(B*B) - (A*C)
IF
(Q < (0(RE:L64))
JROOT := 0.0(REAL64)--NEED TO MAKE THE PROGRAM NICE TO PRINT
SKIP -- REMARK,THERE IS NO REAL ROOTS OF THE QUADRATIC EQUATION
-- ENVOLVED .
NOT (Q < (O(REAL64))
T := (B + ((DSQRT(Q))*(KTH(REAL64)))) / A
TT := T * T
CTH := (1 -TT) /(1 + TT)
STH := (T + T) /(1 + TT)

PROC RRRR4B (REAL64 A1,A2,A3,A4,A5,BETA,PSIO,THO)
' --this procedure is used to precompute some basic data, such as, linkage
--parameters, bounds of mobility range, etc., of a RRRR planer four-bar
--linkage. The data computed will be put in a common block named DATA4B

--which may be accessed by other routines for further computations

-=Input :

-- A1,A2,A3,A4 ===1lengthes of the base, input and output links
-- respectively. (link diimensions)

-- A5 ====zDistance from the second joint to the coupler point.
-- BETA ==Angle defining the shape of the coupler (in deg.)
-- input angle of the initial congfiguration (deg).

-~0UTPUT :(all the following output data are outputted to the main

- program so they can be accessed by other procedures
-- vhen neccessary).
-- A ---5 members vector array containing [A1,A2,A3,A4,AS]

. -- K ---3 members vector array containing linkage parameters
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-- PSIBi-~ lowver bound of the mobility range(in rad.) of input
-- angle.

- PSIB2-- upper bound of the mobility range(in rad.) of input
-- angle .

- MFLAG-- if MFLAG=1, the input link is crank, otherwise it is
-- a rocker.

-- INDEX-- Value of the branch index corresponding to PSIO & THO.
REAL64 P1,DD,BT,PSIB1,PSIB2,:

INT MFLAG,INDEX:

BOOL LOG1, LOG2:

[S]REAL64 A:

[3]REAL64 K:

A[0]:= A1
A[1]:= A2
A[2]:= A3
A[3]:= A4
Al4]:= A5
PI := DACOS(-1.0(REEAL64))
DD := PI /(180(REAL64))
BT := BETA * DD
--CALCULATION OF THE LINKAGE PARAMETERS:
PAR
K[0] :=((A4*A4)-(A1-A2)-(A2%A2)-(A3%A3))/(2 * A2 * A3)
K[1] := A1/A3
K[2] := A1/A2

--CALCULATION OF THE BOUNDS OF MOBILITY RANGE OF THE INPUT LINK:
MFLAG := O

LOGL := (A1+4A2) < (A3 +A4)

LOG2 := ((A1-A2) * (A1-A2)) > ((A3-A4)*(A3-A4))
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IF
(LOG1 AND LOG2) --IF THE LINK IS A CRANK THE ROTATION SHOULD BF 360 DEG.
PSIB1 := 0
PSIB2 := PI
MFLAG := 1
SKIP ---LINK IS A CRANK
NOT (LOG1 AND LDG2)
IF
((NOT LOG1) AND (L0OG2))
PSIB2 :=((A1%A1)+(A2%A2)-((A3+A4)*(A3+A4))) /(A1 *A2 *2(RREAL64))
IF
(DABS(PSIB2) > 1(REAL64))
SKIP --A1,A2,A3,A4 ARE INCONSISTANT!!!!
PSIB2 := DACOS(PSIB2)
PSIB1 := -PSIB2
NOT ((NOT LOG1) AND (LO0G2))
IF
(LOG1 AND (NOT LOG2))
PSIB1 :=((A1*A1)+(A2%A2)-((A3-A4)*(A3-A4)))/(2(REAL64)*A1%A2)
IF
(DABS (PBSI1) > 1(REAL64))
SKIP --A’S ARE NOT CONSISTANT
PSIB1 := DACOS (PSIB1)
PSIB2 := (PI*2(REAL64)) -PSIB1
NOT (LOG1 AND (NOT L0G2))
PSIB1 :=((A1%A1)+(A2*A2)-((A3-A4)*(A3-A4)))/(2(REAL64)*A1%A2)
IF
(DABS(PSIB1) > 1)
SKIP ~-A1,A2,A3,A4 ARE INCONSISTANT!!!!
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PSIB1 := DACOS(PSIB1)
PSIB2 :=((A1%A1)+(A2%A2)-((A3+A4)*(A3+A4)))/(A1*A2*2(REAL64))
IF
(DABS(PSIB2) > 1(RREAL64))
SKIP --A1,A2,A3,A4 ARE INCONSISTANT!!!!
PSIB2 :=DACOS(PSIB2)
PSIB1 := PSIB1 + (1.0E-6(REAL64))
PSIB2 := PSIB2 - (1.0E-6(REAL64))
TO := (THO*DD)
CPANGO(K[0],K[1],K[2], (PSIO+*DD),ST,CT,1, JROOT)
T1 := DATAN2(ST,CT)
CPANGO(K[0] ,K[1],K[2], (PSIO*DD),ST,CT,~1,JROOT)
T2 := DATAN2(ST,CT)
IF
(DABS(T1-TO) < DABS(T2-TO0))
INDEX := 1
NOT (DABS(T1-T0) < DABS(T2-T0))
INDEX := -1

REAL64 FUNCTION DPQ(SP,CP,STH,CTH,XQ,YQ)
-- This is a function defined as
-- (distance between Q and P)**2 - (given constant D)*%2
-~ input:
- SP,CP --sine and cosine of the input angle PSI
-- STH,CTH -~-sin and cosin of the coupler angle theta
- XQ,YQ --ccordinates off the given point Q.
-- L2---dimension of the .nput and output links..
-- L3 --dimension of the coupler link.

-- D --given constant.
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REAL64 SRT,AQ,Al
VALOF

,A2,A9,DPQ:

SRT:= DSQRT(3.0(REAL64))

PAR
SEQ
AO:
Al:= AQO*AO

SEQ
A9:
A2:

A9*A9

((L2%CP)+((CTH-(SRT3*STH) ) *(L3/2(REAL64)) ) -XQ)

((L2*SP)+((STH+(SRT3*CTH)) * (L3/2(REAL64))) -YQ)

DPQ := A1+A2-(L2+%L2) --NOTICE HERE THE CONSTANT D=L2%*2

RESULT DPQ

PROC CONF(REAL64 XQ,YD,D,TOL,DPSI,INT KTH,REAL64 PSI,STH,CTH)

-- THIS PROCEDURE IS USED TO FIND THE CONFIGURATION

-- This subroutine is used to find the configuration of an RRRR four-bar

~-linkage at which the distance of linkage’s coupler point, P, to a

--specified point, Q, is equal to a given constant D.

- Xq, YQ ----

-- TOL ----
- DPSI ~---

-- KTH ----
-- PSI =----

~~0UTPUT:

coordinates of the given point Q.

distance between points P and \|.

tolerance used to control the numerical method.
step size of input angle PSI while searching for the root.
NOTE: if DPSI=0, then no searching is required.

branch index K which equals either 1 or -1.

initial guess of the input angle PSI (in rads.), which is

useful only when DPSI=0.
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-- PSI ---- input angle defining the desired configuration (in rads.).

-- CTH,STH ---- cosine and sine of the coupler angle corresponding to PSI.

REAL64 G1,G2,P1,P2,5P2,CP2:

INT I, 1J:
L2 := A[1]
L3 := A[2]
DIS :=D

--Settting the initial staus in order to search for initial guess:
P1 := PSI
IF
(DSPI > (1.0E-7(REAL64)))
P1 := PSIB1
DSIN(P1)
DCOS(P1)

SP1

CP1 :
CPANGO(K [0],k[1] ,K[2],P1,st1,CT1,KTH, JROOT)
IF
(JROOT := 0(REAL64))
SKIP --skip if
G1:= DPQ(SPt,CP1,ST1,CT1,XQ,YQ)
IF
(DPSI < (1.0E-7(REAL64))
P2 := P1 + (0.02(REAL64))
IF
(P2 > PSIB2)
P2 := P1 - (0.2(REAL64))
NOT (DPSI < (1.0E-7(REAL64))
BOOL going2, goingl:
going2 := TRUE
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WHILE going2

I1J := 1

KT := KTH

SEQ I =1 FOR 2 -- the I loop

P2 := PSIB1 + DPSI

gcingl := TRUE

WHILE goingl

IF

(P2 > PSIB2)

SP2
CP2

CPANGO(K[0],K([1],K[2],P2,STH,CTH,KTH, JROOT)

IF

L
(JROOT := O(REAL64))

G2:=DPQ(SP2,CP2,ST2,CT2,XQ,YQ)

IF

((G1*G2) < 0(REAL64))
going2 := FALSE

G1

P1

SP1

CP1

ST1

CT1
1) :=
IF

goingl := FALSE

:= DSIN(P2)
:= DCOS(P2)

SKIP

1= G2
1= P2

:= SP2

:= CP2

1= ST2

:= CT2

1J + 1(INT)

NOT ( I1J > 2)
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SKIP
KT := -KTH
STOP --CONFIG: No solution found in both branches!exit!!!
BOOL going:
INT I:
going := TRUE
WHILE going

I:=0
SP2 := DSIN(P2)
CP2 := DCOS(P2)

CPANGO(K[0] ,K[1],K[2],P2,STH,CTH,KTH, JROOT)
G2 := DPQ(sP2,CP2,STH,CTH,XQ,YQ)
IF
(DABS(G2) < TOL)
SKIP
NOT (DABS(G2) < TOL)
PSI := ((P1%G2)-(P2%G1))/(G2-G1)
P1 := P2
P2 := PSI
Gi := G2
I :=1I+1
IF
(1>99)
going := FALSE
DD := 180.0(REAL64) / DACOS(-1(REAL64))
PSI := PSI * DD
THETA := (STH /CTH) *DD
G2 := G2

121
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‘ PROC POSITN(INT IND, [3JREAL64 THETA,REAL64 LO,L1,L2,L3,
[2,3]REAL64 0,[2,7]REAL64 P)

-~ This Procedure is used to solve the position problem of the direct

-- kinematics for the 3-DOF planar manipulator.

--INPUTS:

-- IN ---- If IND=0, required to search for the initial configuration;

-- if IND=other, the previous configuration is taken as the

-- initial guess in the iterative procedure. (NOTE: after each

- call to this Procedure, IND is increased by 1 automatically)

-- THETA ---- 3-D vector of independent input angles (in rad).

- Lo,L1,L2,L3 ---- dimensions of links.

-- 0(*,i) ---- position vector of the i-th fixed joint in base frame.
. --  OUTPUTS:

== AA ---- translational vectors represented in the base frame.

-- P(*,i) ---- position vector of the i-th moving joint in base franme.

-~ INTERNAL VARIABLES:

-- PE(*,i)---- position vector of the i-th moving joint in E frame.
- X -~-= 2-D vorking vector.

REAL64 CA,SA,PI,B,UB1,UB2,th0,CP,SP:

[2,7]REAL64 PE:

[3]REAL64 STH,CTH:

[2,2]REAL64 Q02,Q03,Q:

[2]REAL64 X:

PI := DACOS(-1(REAL64))

. -- Rotation matrices [Q_02]_0 and [Q_03]_0:
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CA := 0.5(REAL64)

SA := DSQRT(3(REAL64)) / (2(REAL64))
Qo2[0,0] := -CA

Qo2[0,1] := -SA

Qo2[1,0] := SA

Qo2[1,1] := -CA

Qo3[0,0] := -CA
Qo3[o,1] := SA
Qo3[1,0] := -SA
Qo3[1,1] := -CA

--Position vectors of the first three moving joints:

INT I:
PARI =1 FOR 3
SEQ
STH[I-1(INT)] := DSIN(THETA[I-1(INT)])
P[1,I-1(INT)] : L1 *(STH[I-1(INT)])
SEQ
CTH[I-1(INT)] := DCOS(THETA[I-1(INT)])
P[0,I-1(INT)] := L1 * (CTH[I-1(INT)])
QMLV(Qo2,P[0,1],X)
VEcTOP(0[0,1],X,P[0,1],’+’)
QMLV(Qo03,P[0,2],X)
VECTOP(0[0,2],X,P[0,2],7+’)

--Determination of PSI and PHI using numerical method:

123
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‘ UB1 := ((P[0,0)-P[0,1]) * (P[0,0)-P[0,1]))
UB2 := ((P[1,0]-P[1,1]) * (P[1,0]-P[1,1]))
B := DSQRT( UB1 + UB2 )
th0 := 1(REAL64)
RRRR4B(B,L2,L3,L2,L3, (PI/3) ,PSIO0,thO0)
qlo,0] := (p[0,1]-P[0,0])/ B

qlo,1] := -( (P[1,1]-P[1,0])/ B)
Ql1,0] := -Qfo,1]

q[1,1] := Q[o,0]
VEcTopP(P[0,2],P[0,0],X,’~*)
QTMLV(Q,X,PE[0,2])

IF

(IND := 0 (INT))
CONFG(PE[0,2],PE[1,2],L2,(1.0E-10(REAL64)),
‘ (1.7E-2(REAL64),1,PSI,SPHI,CPHI)
NOT (IND := O (INT))
CONFG(PE[0,2],PE[1,2],L2,(1.0E-10(REAL64)),
(0.0(REAL64)),1,PSI,SPHI ,CPHI)

--Increases index of the initial-configuration-searching by one:

IND := IND + 1

--Coordinates of moving joints in E frame which depends on the positions of
--the first and second moving joints:
CP := DCOS(PSI)
SP := DSIN(PSI)
PE[0,3] := L2 * CP
PE[1,3] := L2 * SP
. PE[0,4] := PE[0,3] + (L3 * CPHI)
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‘ PE[1,4] :

PE[1,3] + (L3 * SPHI)

PE[0,5] := PE[0,3] + (L3 * (CPHI - (DSQRT(3.0(REAL64)) * SPHI))/2)
PE[1,5] := PE[1,3] + (L3 * (SPHI + (DSQRT(3.0(REAL64)) * CPHI))/2)
PE[0,6] := (PE[0,3] + PE[0,4] + PE[0,5]) / 3(REAL64)
PE[1,6] := (PE[1,3] + PE[1,4] + PE[1,5]) / 3(REAL64)

~-Coordinates of moving joints in the base frame:

INT I:

SEQ I := 3 FOR 6
QMLV(Q,PE[0.I],X)
VECTOP(P[0,0],X,P[0,1],’+")

PROC KINETO([3]REAL64 THDOT,THDDOT,[2]REAL64 G, [2,9]REAL64 AA,RO,
. [(7JREAL64 W,WDOT, [2,7]REAL64 CDOT,CDDOT)
-- This procedure is used to solve the velocity- and acceleration-problem
-- of the direct kinematics for the 3-DOF planar manipulator. All the output
-~ results are represented in the base coordinate frame.
~= INPUT:

-- THDOT =---- 3-D vector of independent input angular rates (in rad).

- THDDOT ---- 3-D vector of independent input angular accelerations

-- (in rad./s**2).

-- G  ---- 2-D vector of the gravity acceleration in base coordinates.
-~ AA  ---- translational vectors represented in the base frame.

-- RO --- RO(1,i) & RO(2,*) are the components of the relative position
- vector of mass center of the i-th link in base coordinates.
-- OUTPUT:

- WDOT ---- 7-D vector of angular accelerations in base coordinates.

. - CDOT ---- CDOT(1,i) & CDOT(2,i) are the components of the velocity of
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- the mass center of the i-th link in base coordinates.
--CDDOT ---- CDDOT(1,i) & CDDOT(2,i) are the components of the acceleration

- of the mass center of the i-th link in base coordinates.

-- INTERNAL VARIABLES:

- 0(*,i) ---- position vector of the i-th fixed joint in base frame.
-- PE(*,i) ---- position vector of the i-th moving joint in E frame.
-- X ~==-- 2-D working vector.

[4,4)REAL64 A,L,U:
[4,3]REAL64 B:

(7IJREAL64 WW:

[4]REAL64 X,Y,Z:

INT I,12,13:

REAL64 BUD1,BUD2,BUD3,BUD4,BUDS,BUD6,BUD7,BUDS:

PAR
SEQ I = 0 FOR 1
A[1,0] := AA[1,3]
A(I,1] := -AA[I,4)
Al1,2] := 0.0(REAL64)

I2 := I + 2(INT)
AlI2,0] := AA[I,3]

A[I12,1] := 0.0(REAL64)

A[12,2] := -AA[1,5]

A[12,3] := RO[1,6] - RO[I,8]
SEQI = 0 FOR 1

B[I,0] := -AA[I,0]

B(I,1] := AA[I,1]

B[I,2] := 0.0(REAL64)

12 := I + 2(INT)
B[I2,0) := -AA[I,1]
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B[I2,1] := 0.0(REAL64)
B[I2,2] := AA[I,2]

~-Decomposition of A using Crout’s rule:
LUDECP(A,4,4,L,4,U,4)

--Solving for (absolute) angular velocities W(i) from: AxW=B+THDOT:

VTOU(THDOT,3,W)
PARI = 0 FOR 3
X[1] := (B[I,0l*THDOT[01) + (B[I,1] * THDOT[1]) + (B(I,2] * THDOT[2])
LINERL(L,4,4,X,Y)
LINERU(U,4,4,Y,W[3])

--Computation of the velocities of mass centers in base coordinates:

SEQ I = 0 FOR 2
cboT[0,1] := -RO[1,I] * W[I]
cpoT[1,I] := RO[0,I] * W[I]
I3 := I + 3(INT)
CDOT[0,I3] := cDOT[0,I] - ((AA[1,I]J-RO[1,I]) * W[I]) - (RO[1,I3]*W(I3])
CDOT[1,I3] := cDOT[1,I] + ((AA[0,I]-RO[0,I]) * W[I]) + (RO[O,I3]*W[13])
cDoT[0,6] := CDOT[0,3] - ((AA[1,3] - RO[1,3]) * W[3]) - (RO[1,6] * W[6])
cpoT[1,6] := cDOT[1,3] + ((AA[0,3] - RO[0,3]) * W[3]) + (RO[0,6] * W[6])

--Computation of (absolute) angular accelerations:

PARI =0 FOR 6
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wWlIl := wlI] » w([I]

VTOU (THDDOT, 3, WDOT)

AMLV(B,4,4,3,WW[0],X)

AMLV(B,4,4,3, THDDOT,Y)

AMLV(A,4,4,4,WW[3],2)

Y[0] := -X[1] + Y[0] + 2[1]

Y[1] := x[0] + Y[1] - z[o0]

Y[2] := -X[3] + Y[2] + Z[3]

Y[3] := X[2] + Y[3] - Z[2]

LINERL(L,4,4,Y,X)

LINERU(U,4,4,X,WDOT[31)

--Computation of accelerations of mass centers in base coordinates:

SEQ I = 0 FOR 2
cbpoT[0,I] := G[0] - (RO[1,I] * WDOT[I]) - (RO[O,I] * WW[I])
copoT(1,1] := G[1] + (RO[0,I] * wpOT[I]) - (RO[1,I] * WW[I])
I3 := I + 3(INT)
BUD1:= CDDOT[1,I]-((AA[0,I]-RO[0,I])*WW[I])-(RO[0,I3]*WW[I3])
BUD2 := ((AA[1,I]-RO[1,1])*WDOT[I])-(RO[1,I3]*WDOT[I3])
cpDOT([0,I3] := BUD1 - BUD2
BUD3 := cDDOT([1,I]-((AA[1,I]-RO[1,I])*WW[I]) - (RO[1,I3]+WW[I3]
BUD4 := ((AA[0,I]-R0O[0,I])*WDOT[1])+(ROL0,I3]*WDOT[13])
CDDOT[1,I3] := BUDS + BUD4

BUDS := CDDOT[0,3]-((AA[0,3]-RO[0,3])*wW[3])-(RO[O,61*WW[6])

BUD6 := ((AA[1,3]-RO[1,3])*WDOT[3])- (RO[1,6]1*WDOT[6])

CDDOT[0,6] := BUDS - BUD6

BUD7 := CDDOT([1,3]-((AA[1,3]-R0O[1,3])*wW[3]) - (RO[1,6]1*wWW[6])

BUD8 := ((AA[0,3]-R0O[0,3])*WDOT[3]) + (RO[0,6]+WDOT[6])

CDDOT([1,6] := BUD7 + BUD8
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‘ #INCLUDE "datain.inc"
PROC EVALQA([3]JREAL64 THETA,[2,91REAL64 AA,RHO)
-~ INPUT:
-~ THETA ---- 3-D vector of independent input angles (in rad).
~= OUTPUT:
-- AA  ---- translational vectors represented in the base frame.

~= INTERNAL VARIABLES:

-- P(*,i) ---- position vector of the i-th moving joint in base frame.
-- 0(*,i) ---- position vector of the i-th fixed joint in base frame.
-- PE(*,i) ---- position vector of the i-th moving joint in E frame.
-- X -=-= 2-D working vector.

INT I,I3,16:
REAL64 STH,CTH,RHO:

--Determination of the configuration corresponding <o the input THETA:
POSITN(IND,THETA,L[0],L[1],L[2],L[3],0,P)

--Calculation of the translational vectors in base coordinate frame:

SEQ I = 0 FOR 2
VECTOP(P[0,1],0[0,1],AA[0,1],"-")
I3 := I + 3(INT)
VEcTOP(P[0,13],P[0,I],AA[0,1I3],’~")
16 := I + 6(INT)
VECTOP(P[0,6],P[0,16],AA[0,16],’~")

--Calculation of the relative position vector of mass center of each link:

. SEQ I = 0 FOR 2
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STH := (P[1,1]-0[1,1]1)/L[1]

CTH := (p[0,I1]-C(0,I])/L[1]

RHO[0,I] := (CTH * RO[0,I]) - (STH * RO[1,I])

RHO[1,I] := (STH * RO[0,I]) + (CTH * RO[1,I])
SEQ I = 3 FOR 5

I3 := I - 3(INT)

STH := (P[1,1]-P[1,I3])/L[2]

CTH := (P[0,1]-P[0,13])/L[2]

RHO[0,I] := (CTH * RO[0,I]) - (STH * RO[1,I])

RHO[1,I] := (STH * RO[0,I]) + (CTH * RO[1,I])
SEQ I = 6 FOR 8

RHO[0,I] := (P[0,6]- P[0,(I-3(INT))])

RHO[1,I] := (P[1,6] - P[1,(I-3(INT))])

PROC INVDYN([3]REAL64 THETA,THDOT,THDDOT,FORCE)
--This procedure is used to compute the generalized driving force acting
--on the three input links in terms of the three independent input joint

--positions, velocities and accelerations, as the following:

-- FORCE = T’ * M * TDOT + T’ * WD

-~ where T’ ---- transpose of the 21x3 orthogonal complement matrix.
-- M ---- 21x21 generalized mass matrix in base frame.

-- TDOT ---- time derivative of the 21-D generalized twist.

-- WD ---- 21-D vector-function of the dissipative force.

REAL64 BUDY
INT I,1I,J

[7JREAL64 W,WDOT:
[2,7]REAL64 CDOT,CDDOT:
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. [21,3]REAL64 TT:
[21JREAL64 MTDOT:

--Although writng to a file here will casue a lot delays it is

--a good idea to write the following kirematic analysis to a file

--later.

-- Direct kinematic analysis

EVALQA(THETA, AA,RHO)
KINETO(THDOT, THDDOT,G,AA ,RHO,W,WDOT,CDOT,CCNOT)
EVALUT(AA,RHO,TT)

--Evaluation of the dynamic equations

SEQ I = 0 FOR 6
. II := I * 3(INT)
MTDOT[II] := IM[I] * wWDOT[I]
MTDOTLII+1(INT)] := M[I] * cDDOT([0,I]
MTDOT[II+2(INT)] := M[I] * cDDOT[1,I]
FDISSP(THETA, THDOT, WD)

SEQ I = 1 FOR 3
FORCE[(I-1(INT)] := 0.0(REAL64)
SEQ J := 1 FOR 21
BUDY := TT[(J-1(INT),(I-1(INT))]*(MTDOT[(J-1(INT))]-WD[(J-1(INT))])
FORCE[(I-1(INT)]:= FORCE[(I-1(INT)] + BUDY

PROC EVATDD([3]REAL64 THETA,THDOT,FORCE, THDDOT)

-- This subroutine is used to compute the angular accelerations of the three

. -- independent input links in terms of the given angular positions and
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‘ -- velocities of the same links as well as the generalized driving force

exerting on the three input links.

-- INPUT:

-- THETA ---- angular positions of the three input links (in rad).

-- THDOT ---- angular velocities of the three input links (in rad/s).
-- FORCE ---- generalized driving force acting on the input links.

-- QOUTPUT:

THDDOT -- angular accalerations of the three input links (in rad/s/s).
REAL64 BILL,BUN:

INT I, II,J,K:
[7JREAL64 W,WDOT:
[2,7]REAL64 CDOT,CDDOT:
[21,3]REAL64 TT:
[21]JREAL64 MM,MTDOT:
. [3,3]REAL64 H,L:
(3]REAL64 PHI:

--Evaluation of the time derivatives of the generalized twists

--such that the input angular accelerations are set to zero.

PAR I = 0 FOR 2
THDDOT[I] := 0.0(REAL64)

EVALQA (THETA , AA,RHO)

KINETO (THDOT, THDDOT,G,AA ,RHO,W,WDOT, CDOT , CDDOT)

~--Evaluation of the 21 by 3 orthogonal complement matrix

EVALUT(AA,RHO,TT)
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--Evaluation of the dynamics equations excluding the inertia terms.

SEQ I = 0 FOR 6
II := I = 3(INT)
MTDOT[II] := IM[I] * WDOT[I]
MTDOT[II+1(INT)] := M[I] * cpDOT{0,1]
MTDOT[II+2(INT)} := M[I] * CDDOT[1,I]
FDISSP(THETA, THDOT,WD)

SEQ I = 1 FOR 3
PHI[(I-1(INT))] := FORCE[(I-1(INT))]
SEQ J = 1 FOR 21
BILL := (TT[(J-1(INT)), (I-1(INT))I1*(WD[(J-1(INT))]-MTDOTL(J-1(INT))])
PHI[(I-1(INT))]:= PHI[(I-1(INT))]+ BILL

--Evaluation of the generalized inertia matrix H.

SEQ I = 0 FOR 6
II := I * 3(INT)
MM[II] := IM[I]
MM[II+1(INT)] := M[I]
MMIII+2(INT)] := M[I]

SEQ I = 1 FOR 3

SEQ J = I FOR 3
H[(I-1(INT)),(J-1(INT))] := 0.0(REAL64)
SEQ K = 0 FOR 20
BUN := (TT[K,(I-1(INT))] * (MM[K] * TTI[K, (J-1(INT))]1))
HL(I-1(INT)), (J-1(INT))] :=H[(I~-1(INT)), (J-1(INT))] + BUN
H[(I-1(INT)), (J-1(INT))] :
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--Solving the linear equations (dynamics model) for the angular
--accelerations using Cholesky decomposition, namely, H = L’#L.
SEQ
L[2,2] := DSQRT(H[2,2])
PAR
L[2,1] := H[2,1] / L[2,2]
L[2,0] := H[2,0] / L[2,2]
L[1,1] := DSQRT(H[1,1] - (L([2,11*L[2,1]))
L[1,0] := (H[1,0] - (L[2,1] * L[2,0])) / L[1,1]
L[0,0] := DSQRT(H[0,0] - (L[1,0] * L[1,0]) - (L[2,0] = L[2,0]))
THDDOT(2] := PHI[2] / L[2,2]
THDDOT[1] := (PHI[1] - (THDDOT(2] * L[2,1])) / L[1,1]
THDDOT [0] : = (PHI [0] - (THDDOT[1]*L[1,0])-(THDDOT[2] * L[2,0]))/L[0,0]
THDDOT([0] := THDDOT[0] / L[0,0]
THDDOT([1] := (THDDOT[1] - (THDDOT([0]*L[1,0]1))/L[1,1]
THDDOT(2] := (THDDOT[2]-(THDDOT[0]*L[2,0])-(THDDOT[1]*L[2,1]))/L[2,2]

PROC FORCE(REAL64 T, [31REAL64 TORQUE)
--This procedure provides the generalized input tauque to each input link
--as a function of time.
(3JREAL64 THETA,THDOT ,THDDOT:
JOTRAJ(T,tt,th0,tht,THETA, THDOT, THDDOT)
INVDYN (THETA , THDOT , THDDOT,, TORQUE)

PROC RUNKT(REAL64 TO,T1, [3]JREAL64 THETA,THDOT,INT IN)
~-This procedure solves the first-order differential equations of motion
--for 6-dimensional state-variable vector [THETA’,THDOT’]’ where ’ stands
~--for transpose. The integral technique used is the 4th order Runge-Kutta

--method with the given step size of T1-TO.
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-=INPUT:

-- T0O =--- initial time when the initial conditions are given.

-- T{ ---- final time when the output is desired.

-- THETA ---- initial values of the first three components of state
-- variables (joint angles).

- THDOT -=--- initial values of the last three components of state

-- variables (joint rates).

-- IN ---- counter of calls. IN must be set to zero in the first

-- call to this subroutine, while it could be any value

-- in the subsequential calls.

-- OUTPUT:

-- THETA -~-- final values of the first three components of the state
-- variables (joint angles).

-- THDOT ---- final values of the last three components of the state
-- variables (joint rates).

REAL64 H:

(3]REAL64 THDDOT, TAU,X,XDOT:
[4,3)REAL64 K,KD:
H:=T1 -TO
FORCE(T,TAU)
PARI =0 FOR 2
X[1] := THETA[I]
XDOT[I] := THDOT[I]
IF
(IN <> O(INT))
EVATDD (X, XDOT, TAU, THDDOT)
PAR I = 0 FOR 2
K[0,I] := ( H * XDOT[I])
KD[0,I] := ( H * THDDOT[I])
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-- Computation of K2'’s:

T := T0 +(H/2(REAL64))
FORCE(T, TAU)
PAR FOR I = 0 FOR 2
X[1] := THETALI] + (K[0,I]/(2(REAL64)))
XDOT[I] := THDOT[I] +(KD[0,I]/(2(REAL64)))
EVATDD(X , XDOT,TAU, THDDOT)
PAR I =0 FOR 2
K[1,I] := (H *= XDOT[I])
KD[1,I] := (H * THDDOT[I])

-—Computation of K3’s:

T := T0 +(H/2(REAL64))
FORCE(T, TAU)
PAR I = 0 FOR 2
X[1] := THETAL[I] + (K[1,I]/(2(REAL64)))
XDOT[I] := THDOT[I] + (KD [1,I1/(2(REAL64)))
EVATDD(X, XDOT,TAU, THDDOT)
PAR I = O FOR 2
K[2,I] := (H * XDOT[I])
KD[2,I] := H * THDDOT[I]

--Computation of K4’s:

T :=T0+ H
FORCE(T,TAU)
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PARI = 0 FOR 2
X[1I) := THETA[I] + K[2,1]
XDOT[I] := THDOT[I] + KD[2,I]

EVATDD (X, XDOT, TAU, THDDOT)

PARI = 0 FOR 2
K[3,I] := H = XDOT[I]

KD[3,I] := H * THDDOT[I]

--Evaluation of the state variables at time T1:

PARI = 0 FOR 2
THETA[I] := THETA[IJ+((K[0,I]+(K(1,I]*2)+(K[2,1]*2)+K[3,1])/(6(REAL64)))
THDOT[I]:= THDOT[I]+((KD[O,I]+(KD[1,1]*2)+KD[2,1]*2)+KD[3,1])/(6(REAL64)))

-- icreasing the index
IN := IN + 1(INT)

PROC FOWDYN(REAL64 TS,TE,STEP, [3]JREAL64 THETA,THDOT,THDDO,INT IN)
--This subroutine is used to simulate the motion of the 3-DOF planar
--manipulator for the three supplied independent driving torques
--(generalized forces) acting on the three input links from given initial

--angles and angular velocities of the three input links.

-- INPUT:

- TS ---- initial time associated with the initial conditions.
- TE ---- final time at which the output result is desired.

-- STEP ---- time step of integration.

-- THETA ---- initial values of the first three components of state

-- variables (joint angles).
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-- THDOT ---- initial values of the last three components of state
-- variables (joint rates).

- IN ---- counter of calls. IN must be set to zero in the first
-- call to this subroutine, while it could be any value

-- in the subsequential calls.

-- OUTPUT:

-- THETA ~--- input angles obtained by simulation (in rad).

-- THDOT ---- angular velocities obtained by simulation (in rad/s).

-- THDDOT ---- angular accelerations obtained by simulation (in rad/ss)

[3]REAL64 TAU,TDD:

REAL64 TO,T1

INT I:

TO := TS

T1 := (TS + STEP)

WHILE T1 < TE
RUNKT(TO,T1,THETA, THDOT, IN)
FORCE(T1,TAU)
EVATDD(THETA, THDOT, TAU,, THDDOT)

TO := T1
T1 := T1 + STEP
PARI = 0 FOR 2

TDD[I] := THDDOT[I]

#INCLUDE '"setup.inc"

--CHAN OF REAL64 ResutTorqueMot1l :
--CHAN OF REAL64 ResutTorqueMot2 :
--CHAN OF REAL64 ResutTorqueMot3 :
--CHAN OF REAL64 ResultMotiTheta :
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‘ --CHAN OF REAL64 ResultMot2Theta :
-=CHAN OF REAL64 ResultMot3Theta :
PROTOCOL Torque.out IS REAL64; REAL64; REAL64:
CHAN OF Torque.out ResultTorqueMotor :
-- sending torques via link 3 transputer at slot 0 out to manipulator
PLACE ResutTorqueMot AT 3 :
--reading thetas from manipulator remove comment marks if needed
--PROTOCOL Theta.in IS REAL64; REAL64; REAL64:
~-CHAN OF Theta.in RealtimeTheta :
-~PLACE RealtimeTheta AT 7 :
--RealtimeTheta ? TH[0]; TH[1]; TH[2]

--Computation of the initial conditions:
JOTRAJ(TS,TT,THO, THT, THETA , THDOT , THDDOT)
. --calculation of torques and thetas at a given time t
IN := O(INT)
T :=TS
WHILE T < (TE + (TSTEP/(10(REAL64))))
FOWDYN(TO, T, TSTEP,THETA , THDOT, THDDOT, IN)
JOTRAJ(T,TT,THO, THT,TH, THD, THDD)

FORCE(T,TORQUE)

ResultTorqueMotor ! TORQUE[0]; TORQUE(1]; TORQUE(2]
--ResultMotiTheta ! TH[0]

--ResultMot2Theta ! TH[1]

--ResultMot3Theta ! TH[2]

--ResutTorqueMot1 ! TORQUE[0]

~-ResutTorqueMot2 ! TORQUE[1]

--ResutTorqueMot3 ! TORQUE([2]

. T := T + TSTEP
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B.2

Data input file

--This file should contain setup and required performance data

--fill in the data adhering to the specified format

--Time period to define trajectory in seconds

TT :=

--Enter time to start in seconds in max three digit format no decimal points.
TS :=

--Enter the time step size

TSTEP :=

--Enter the end time

TE :=

--Start angles in degrees three digits only allowed, no decimal points allowed
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-=-For actuator #1

THO[0] :=

--For actuator #2

THO[1] :=

--For actuator #3

THO[2] :=

--End angles in degrees three digits only allowed, no decimal points allowed

--For actuator #1

THT[0] :=

--For actuator #2

THT[1] :=

-~-For actuator #3

THT([2] :=



Appendix C

Program subroutines overview

The following is a brief description of the program subroutines which construct its main
building blocks, a detailed program listing is prcvided in Appendix B. For full description of

the program’s mathematical solution, please refer to chapter 4.

® C.1

LUDECP

Decomposing of a given n by n matrix using Crout’s method by A = Lx U, where L

and U are lower and upper matrices, respectively

C.2

LINERL

This procedure solves a lower triangular linear system

L(1,1) * X(1) =B(1)
L(2,1) * X(1) + L(2,2) * X(2) =B(2)
. L(N,1) * X(1) + L(N,2) * X(2)+...+L(N,N)*X(N)=B(N)
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for N-dimensional vector X. Argument NL is the row dimension of array L which should be

the same as that in the caller procedure.

C.3

LINER

Solves a upper triangular linear system, i.e.

U(1,1)*X(1) + U(1,2) * X(2) + ... +U(1,N) = X(N) = B(1)
U(2,2) * X(2) + ... +U(2,N) * X(N) = B(2)
U(N,N) * X(N) = B(N)

For N-dimensional vector X. Argument NU is the row dimension of array U.

C4

FDISSP
This procedure is used to evaluate the dissipative forces and torques exerting on cach

link.

C.5

VTOU
This procedure is to assign Vector V(N) to Vector U(N).
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C.6

AMLV

This procedure computes the product of an m by n matrix A and an m-dimension

vector V,i.e. U= A x V.

C.7

QTMLV

This procedure computes the product of the transpose matrix Q’ (2 by 2) and a vector

of 2-dimensions Vie. U=Q x V.

C.8

QMLV

This procedure computes the product of a 2 by 2 matrix Q and a vector of 2-dimensions

Vie U=Q x V

C.9

VECTOP

This procedure calculates two 2-Dimension vectors U and V as follows:-
ifM=‘4"then W=U+V
ifM=‘“"then W=U -V

C.10

EVALUT

This procedure is used to evaluate the Natural Orthogonal Complement namely, the

21 by 3 matrix T. The evaluation is done as follows:
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The j-th column of T is computed as the 21-dimension generalized twist assuming that all
the actuated joints are locked but the j-th one has a unit velocity . The resulting T is

represented in the base coordinate frame.

C.11

CPANGO

This procedure is used to compute the sine and cosine of the coupler angle “theta” of
an arbitrary RRRR planar four-bar linkage in terms of the given input angle “FSI” and the
branch index K.

Formulation; by solving the Input-coupler function:

K1+ (K2*C0S (PSI))+(K3+C0S(TH))-C0S(PSI-TH)=0

COS(TH)= (1-T*%*2)/(14T*%2)

SIN(TH)= 2 * T / (1+4T%x2)

where

=TAN(TH/2) = (B-KTH * SQRT(B#**2-A * C))/A

A=K1+(K2+1) * COS(PSI)-K3

B=SIN(PSI)
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C=K1i+(K2-1) * COS(PSI)+K3

C.12

RRRR4B

This procedure is used to precompute some basic data, such as, linkage parameters,
bounds of mobility range, etc., of a RRRR planar four-bar linkage. The data computed may

be accessed by other routines for further computations.

C.13

CONF
This subroutine is used to find the configuration of an RRRR four-bar linkage.

C.14

POSITN
This procedure is used to solve the position problem of the direct kinematics for the

3-DOF planar manipulator.

C.15

KINETO

This procedure is used to solve the velocity- and acceleration-problem of the direct

kinematics for the 3-DOF planar manipulator. All the output results are represented in the

base coordinate frame.
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C.16

INVDYN

This procedure is used to compute the generalized driving force acting on the three in-
put links in terms of the three independent input joint positions, velocities and accelerations,

as the following:

FORCE =T'x M x TDOT + T° x WD

where

T’: is the transpose of the 21x3 orthogonal complement matrix.

M: is the 21x21 generalized mass matrix in base frame.

TDOT: is the time derivative of the 21-D generalized twist.

WD: is a 21-D vector-function of the dissipative force.

C.17

EVATDD

This procedure is used to compute the angular accelerations of the three independent
input links in terms of the given angular positions and velocities of the same links as well as

the generalized driving force exerting on the three input links.

C.18

RUNKT

This procedure solves the first-order differential equations of motion for 6-dimensional
state-variable vector [THETA’,THDOT’]’ where ’ stands for transpose. The iutegral tech-
nique used is the 4th order Runge-Kutta method with a given time step size fixed (input by

user).



Appendix D

Peroformance Angle and Torque data

D.1

Output angle data
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Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Deg.)
0.000 90.0000 60.0000 120.0000
0.010 90.0000 60.0000 120.0000
0.020 90.0001 60.0001 119.9998
0.030 90.0002 60.0004 119.9992
0.040 90.0005 60.0009 119.9981
0.050 90.0009 €0.0018 119.9963
0.060 90.0016 60.0032 119.9937
0.070 90.0025 60.0050 119.9900
0.080 90.0037 60.0075 119.9850
0.090 90.0053 60.0106 119.9787
0.100 90 0073 60.0146 119 9708
0.110 90.0097 60.0194 119.9612
0.120 90.0126 60.0252 119.9496
0.130 90.0160 60.0320 119.9360
0.140 90.0200 60.0399 119.9201
0.150 90.0246 60.0491 119.9018
0.160 90.0298 60.0596 119.8809
0.170 90.0357 60.0714 119.8572
0.180 90.0423 60.0847 119.8307
0.190 90.0497 60.0995 119.8010
0.200 90.0580 60.1160 119.7681
0.210 90.0671 60.1341 119.7318
0.220 90 0770 60.1540 119 6919
0.230 90.0879 60.1758 119.6483
0.240 90.0998 60.1996 119.6008
0.250 90.1127 60.2254 119.5493
0.260 90.1266 60.2532 119.4936
0.270 90.1416 60.2832 119.4335
0.280 90.1577 60.3155 119.3690
0.290 90.1750 60.3501 119.2998
0.300 90.1935 60.3871 119.2259
0.310 90.2133 60.4265 119.1470
0.320 90.2342 60.4685 119 0630
0.330 90.2565 60.5130 118.9739
0.340 90.2801 60.5603 118.8794
0.350 90.3051 60.6103 118.7795
0.360 90.3315 60.6631 118 6739
0.370 90.3594 60.7187 118 5626
0.380 90.3886 60.7773 118.4454
0.390 90.4194 60.8389 118.3223
0.400 90.4517 60.9035 118 1930
0.410 90.4856 60.9712 118.0575
0.420 90.5211 61.0421 117.9157
0.430 90.5581 61.1163 117.7674
0.440 90.5968 61.1937 117.6126
0.450 90.6372 61.2745 117.4511
0.460 90.6793 61.3586 117.2828
0.470 90.7231 61.4462 117 1076
0.480 90.7686 61.56373 116 9255
0.490 90.8159 61.6319 116.7363

Table D.1: Joint 1, 2 and 3 output angle data
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Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Deg.)

0.500 90.8650 61.7301 116.5399
0.510 90.9159 61.8319 116.3362
0.520 90.9687 61.9374 116.1252
0.530 91.0233 62.0466 115.9068
0.540 91.0798 62.1595 115.6809
0.550 91.1381 62.2763 115.4474
0.560 91.1984 62.3969 115.2063
0.570 91.2606 62.5213 114.9574
0.580 91.3248 62.6496 114.7008
0.590 91.3909 62.7819 114.4363
0.600 91.4590 62.9181 114.1638
0.610 91.5291 63.0583 113.8835
0.620 91.6012 63.2025 113.5951
0.630 91.6754 63.3507 113.2986
0.640 91.7515 63.5030 112.9940
0.650 91.8297 63.6594 112.6812
0.660 91.9099 63.8198 112.3603
0.670 91.9922 63.9844 112.0311
0.680 92.0766 64.1531 111.6937
0.690 92.1630 64.3260 111.3480
0.700 92.2515 64.5030 110.9940
0.710 92.3421 64.6842 110.6316
0.720 92.4348 64.8695 110.2609
0.730 92.5295 65.0591 109.8818
0.740 92.6264 65.2528 109.4944
0.750 92.7254 65.4507 109.0986
0.760 92.8264 65.6528 108.6944
0.770 92.9295 65.8591 108.2818
0.780 93.0348 66.0695 107.8609
0.790 93.1421 66.2842 107.4316
0.800 93.2515 66.5030 106.9940
0.810 93.3630 66.7260 106.5480
0.820 93.4766 66.9531 106.0937
0.830 93 5922 67.1844 105.6311
0.840 93.7099 67.4198 105.1603
0.850 93.8297 67.6594 104.6812
0.860 93.9515 67.9030 104.1940
0.870 94.0754 68.1507 103.6986
0.880 94.2012 68.4025 103.1951
0.890 94.3291 68.6583 102.6835
0.900 94.4590 68.9181 102.1638
0.910 94.5909 69.1819 101.6363
0.920 94.7248 69.4496 101.1008
0.930 94.8606 69.7213 100.5574
0.940 94.9984 69.9969 100.0063
0.950 95.1381 70.2763 99.4474

0.960 95.2798 70.5595 98.8809

0.970 95.4233 70.8466 98.3068

0.980 95.5687 71.1374 97.7252

0.990 95.7159 71.4319 97.1262

Table D.2: Joint 1, 2 and 3 output angle data (continued)
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Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.)

Third joint angle (Deg.)

1.000 95.8650 71.7301 96.5399
1.010 96.0159 72.0319 95.9363
1.020 96.1686 72.3373 95.3265
1.030 96.3231 72.6462 94.7076
1.040 96.4793 72.9586 94.0828
1.050 96.6372 73.2745 93.4511
1.060 96.7968 73.5937 92.8126
1.070 96.9581 73.9163 92.1674
1.080 97.1211 74.2421 91.51567
1.090 97.2856 74.5712 90.8575
1.100 97.4517 74.9035 90.1930
1.110 97.6194 75.2389 89.5223
1.120 97.7886 75.5773 88.8454
1.130 97.9594 75.9187 88.1626
1.140 98.1315 76.2631 87.4739
1.150 98.3051 76.6103 86.7795
1.160 98.4801 76.9603 86.0794
1.170 98.6565 77.3130 85.3739
1.180 08.8342 77.6685 84.6630
1.190 99.0133 78.0265 83.9470
1.200 99.1935 78.3871 83.2259
1.210 99.3750 78.7501 82.4998
1.220 99.5577 79.1155 81.7690
1.230 99.7416 79.4832 81.0335
1.240 99.9266 79.8532 80.2936
1.250 100.1127 80.2254 79.5493
1.260 100.2998 80.5996 78.8008
1.270 100.4879 80.9758 78.0483
1.280 100.6770 81.3540 77.2919
1.290 100.8671 81.7341 76.5318
1.300 101.0580 82.1160 75.7681
1.310 101.2497 82.4995 75 G010
1.320 101.4423 82.8847 74.2307
1.330 101.6357 83.2714 73.4572
1.340 101.8298 83.6596 72.6809
1.350 102.0246 84.0491 71.9018
1.360 102.2200 84.4399 71.1201
1.370 102.4160 84.8320 70.3360
1.380 102.6126 85.2252 69.5496
1.390 102.8097 85.6194 68.7612
1.400 103.0073 86.0146 67.9708
1.410 103.2052 86.4106 67.1787
1.420 102.4037 86.8075 66.3850
1.430 103.6025 87.2050 65.5900
1.440 103.8016 87.6032 64.7937
1.450 104.0009 88.0018 63.9963
1.460 104.2005 88.4009 63.1981
1.470 104.4002 88.8004 62.3992
1.480 104.6001 89.2001 61.5998
1.490 104.8000 89.6000 60.8000

Table D.3: Joint 1, 2 and 3 output angle data (continued)
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Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Deg.)

1.500 105.0000 90.0000 60.0000
1.510 105.2000 90.4000 59.2000
1.520 105.3999 90.7999 58.4002
1.530 105.5998 91.1996 57.6008
1.540 105.7995 91.5991 56.8019
1.550 105.9991 91.9982 56.0037
1.560 106.1984 92.3968 55.2063
1.570 106.3975 92.7950 54.4100
1.580 106.5963 93.1925 53.6150
1.590 106.7947 93.5894 52.8213
1.600 106.9927 93.9854 52.0292
1.610 107.1903 94.3806 51.2388
1.620 107.3874 94.7748 50.4504
1.630 107.5840 95.1680 49.6640
1.640 107.7800 95.5601 48.8799
1.650 107.9754 95.9509 48.0982
1.660 108.1702 96.3404 47.3191
1.670 108.3643 96.7286 46.5428
1.680 108.5577 97.1153 45.7693
1.690 108.7503 97.5005 44.9990
1.700 108.9420 97.8840 44.2319
1.710 109.1329 98.2659 43.4682
1.720 109.3230 98.6460 42.7081
1.730 109.5121 99.0242 41.9517
1.740 109.7002 99.4004 41.1992
1.750 109.8873 99.7746 40.4507
1.760 110.0734 100.1468 39.7064
1.770 110.2584 100.5168 38.9665
1.780 110.4423 100.8845 38.2310
1.790 110.6250 101.2499 37.5002
1.800 110.8065 101.6129 36.7741
1.810 110.9867 101.9735 36.0530
1.820 111.1658 102.3315 35.3370
1.830 111.3435 102.6870 34.6261
1.840 111.5199 103.0397 33.9206
1 850 111.6949 103.3897 33.2205
1.860 111.8685 103.7369 32.5261
1.870 112.0406 104.0813 31.8374
1.880 112.2114 104.4227 31.1546
1.890 112.3806 104.7611 30.4777
1.900 112.5483 105.0965 29.8070
1.910 112.7144 105.4288 29.1425
1.920 112.8789 105.7579 28.4843
1.930 113.0419 106.0837 27.8326
1.940 113.2032 106.4063 27.1874
1.950 113.3628 106.7255 26.5489
1.960 113.5207 107.0414 25.9172
1.970 113.6769 107.3538 25.2924
1.980 113.8314 107.6627 24.6745
1.990 113.9841 107.9681 24.0637

Table D.4: Joint 1, 2 and 3 output angle data (continued)
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Time (Sec.) First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Deg.)
2.000 114.1350 108.2699 23.4601
2.010 114.2841 108.5681 22.8638
2.020 114.4313 108.8626 22.2748
2.030 114.5767 109.1534 21.6932
2.040 114.7202 109.4405 21.1191
2.050 114.8619 109.7237 20.5526
2.060 115.0016 110.0031 19.9937
2.070 115.1394 110.2787 19.4426
2.080 115.2752 110.5504 18.8992
2.090 115.4091 110.8181 18.3637
2.100 115.5410 111.0819 17.8362
2.110 115.6709 111.3417 17.3165
2.120 115.7988 111.5975 16 8049
2.130 115.9246 111.8493 16.3014
2.140 116.0485 112.0970 15.8060
2.150 116.1703 112.3406 15 3188
2.160 116.2901 112.5802 14 8397
2.170 116.4078 112.8156 14.3689
2.180 116.5234 113.0469 13.9063
2.190 116.6370 113.2740 13.4520
2.200 116.7485 113.4970 13.0060
2.210 116.8579 113.7158 12.5684
2.220 116.9652 113.9305 12.1391
2.230 117.0705 114.1409 11.7182
2.240 117.1736 114.3472 11.3056
2.250 117.2746 114.5493 10.9014
2.260 117.3736 114.7472 10.5056
2.270 117.4705 114.9409 10.1182
2.280 117.5652 115.1305 9.7391
2.290 117.6579 115.3158 9.3684
2.300 117.7485 115.4970 9.0060
2.310 117.8370 115.6740 8.6520
2.320 117.9234 115.8469 8.3063
2.330 118.0078 116.0156 7.9689
2.340 118.0901 116.1802 7.6397
2.350 118.1703 116.3406 7.3188
2.360 118.2485 116.4970 7.0060
2.370 118.3246 116.6493 67014
2.380 118.3988 116.7975 6.4049
2.390 118.4709 116.9417 6.1165
2.400 118.5410 117.0819 5.8362
2.410 118.6091 117.2181 5.5637
2.420 118.6752 117.3504 5.2992
2.430 118.7394 117.4787 5.0426
2.440 118.8016 117.6031 4.7937
2.450 118.8619 117.7237 4.5526
2.460 118.9202 117.8405 4.3191
2470 118.9767 117.9534 4.0932
2.480 119.0313 118.0626 3 8748
2.490 119.0841 118.1681 3.6638

Table D.5: Joint 1, 2 and 3 output angle data (continued)
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Time (Sec.)  First joint angle (Deg.) Second joint angle (Deg.) Third joint angle (Deg.)

2.500 119.1350 118.2699 3.4601
2.510 119.1841 118.3681 3.2637
2.520 119.2314 118.4627 3.0745
2.530 119.2769 118.5538 2.8924
2.540 119.3207 118.6414 2.7172
2.550 119.3628 118.7255 2.5489
2.560 119.4032 118.8063 2.3874
2.570 119.4419 118.8837 2.2326
2.580 119.4789 118.9579 2.0843
2.590 119.5144 119.0288 1.9425
2.600 119.5483 119.0965 1.8070
2.610 119.5806 119.1611 1.6777
2.620 119.6114 119.2227 1.5546
2.630 119.6406 119.2813 1.4374
2.640 119.6685 119.3369 1.3261
2.650 119.6949 119.3897 1.2205
2.660 119.7199 119.4397 1.1206
2.670 119.7435 119.4870 1.0261
2.680 119.7658 119.5315 0.9370
2.690 119.7867 119.5735 0.8530
2.700 119.8065 119.6129 0.7741
2.710 119.8250 119.6499 0.7002
2.720 119.8423 119.6845 0.6310
2.730 119.8584 119.7168 0.5665
2.740 119.8734 119.7468 0.5064
2.750 119.8873 119.7746 0.4507
2.760 119.9002 119.8004 0.3992
2.770 119.9121 119.8242 0.3517
2.780 119.9230 119.8460 0.3081
2.790 119.9329 119.8659 0.2682
2.800 119.9420 119.8840 0.2319
2.810 119.9503 119.9005 0.1990
2.820 119.9577 119.9153 0.1693
2.830 119.9643 119.9286 0.1428
2.840 119.9702 119.9404 0.1191
2.850 119.9754 119.9509 0.0982
2.860 119.9800 119.9601 0.0799
2.870 119.9840 119.9680 0.0640
2.880 119.9874 119.9748 0.0504
2.890 119.9903 119.9806 0.0388
2.900 119.9927 119.9854 0.0292
2.910 119.9947 119.9894 0.0213
2.920 119.9963 119.9925 0.0150
2.930 119.9975 119.9950 0.0100
2.940 119.9984 119.9968 0.0063
2.950 119.9991 119.9982 0.0037
2.960 119.9995 119.9991 0.0019
2.970 119.9993 119.9996 0.0008
2.980 119.9999 119.9999 0.0002
2.990 120.0000 120.0000 0.0000
3.000 120.0000 120.0000 0.0000

Table D.6: Joint 1, 2 and 3 outpui angle data (continued)
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D.2

Output torque data
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Time (Sec.) First joint torque (Nm) Second joint torque (Nm) Third joint torque (Nm)
0.000 -3.9739 -37.8192 41.8956
0.010 -3.9729 -37.7904 41.8531
0.020 -3.9719 -37.7616 41.8106
0.030 -3.9710 -37.7329 41.7682
0.040 -3.9701 -37.7044 41.7261
0.050 -3.9692 -37.6762 41.6842
0.060 -3.9684 -37.6482 41.6426
0.070 -3.9677 -37.6206 41.6014
0.080 -3.9670 -37.5933 41.5607
0.090 -3.9665 -37.5665 41.5205
0.100 -3.9660 -37.5402 41.4809
0.110 -3.9657 -37.5144 41.4420
0.120 -3.9655 -37.4892 41.4037
0.130 -3.9653 -37.4647 41.3663
0.140 -3.9654 -37.4409 41.3296
0.150 -3.9655 -37.4179 41.2938
0.160 -3.9658 -37.3957 41.2589
0.170 -3.9663 -37.3743 41.2251
0.180 -3.9669 -37.3539 41.1922
0.190 -3.9676 -37.3344 41.1605
0.200 -3.9685 -37.3159 41.1299
0.210 -3.9696 -37.2984 41.1005
0.220 -3.9709 -37.2821 41.0723
0.230 -3.9723 -37.2669 41.0454
0.240 -3.9739 -37.2529 41.0199
0.250 -3.9756 -37.2401 40.9957
0.260 -3.9776 -37.2285 40.9730
0.270 -3.9797 -37.2183 40.9517
0.280 -3.9821 -37.2094 40.9318
0.290 -3.9846 -37.2019 40.9136
0.300 -3.9873 -37.1959 40.8968
0.310 -3.9902 -37.1913 40.8817
0.320 -3.9933 -37.1881 40.8682
0.330 -3.9966 -37.1865 40.8564
0.340 -4.0001 -37.1865 40.8463
0.350 -4.0038 -37.1880 40.8378
0.360 -4.0078 -37.1911 40.8311
0.370 -4.0119 -37.1959 40.8262
0.380 -4.0163 -37.2023 40.8230
0.390 -4.0209 -37.2104 40.8216
0.400 -4.0258 -37.2202 40.8221
0.410 -4.0309 -37.2317 40.8243
0.420 -4.0362 -37.2449 40.8284
0.430 -4.0419 -37.2599 40.8343
0.440 -4.0477 -37.2766 40.8421
0.450 -4.0539 -37.2951 40.8517
0.460 -4.0604 -37.3154 40.8631
0.470 -4.0671 -37.3375 40.8764
0.480 -4.0742 -37.3613 40.8915
0.490 -4.0816 -37.3870 40.9085

Table D.7: Joint 1, 2 and 3 output torque data
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Time (Sec.)  First joint torque (Nm) Second joint torque (Nm) Third joint torque (Nm)
0.500 -4.0894 -37.4144 40.9273
0.510 -4.0976 -37.4436 10.9479
0.520 -4.1061 -37.4746 40.9703
0.530 -4.1150 -37.5074 40.9945
0.540 -4.1244 -37.5420 41.0205
0.550 -4.1342 -37.5783 41.0482
0.560 -4.1445 -37.6164 41.0776
0.570 -4.1553 -37.6561 41.1087
0.580 -4.1666 -37.6976 41.1415
0.590 -4.1785 -37.7408 41.1759
0.600 -4.1910 -37.7857 41.2118
0.610 -4.2042 -37.8322 41.2494
0.620 -4.2180 -37.8803 41.2884
0.630 -4.2325 -37.9300 41 3290
0.640 -4.2478 -37.9813 41.3709
0.650 -4.2639 -38.0341 41.4143
0.660 -4.2808 -38.0884 41.4590
0.670 -4.2987 -38.1441 41.5049
0.680 -4.3175 -38.2012 41.5521
0.690 -4.3373 -38.2597 41.6004
0.700 -4.3581 -38.3195 41 6499
0.710 -4 3801 -38.3806 41.7004
0.720 -4.4033 -38.4429 41.7518
0.730 -4.4278 -38.5063 41.8042
0.740 -4.4536 -38.5709 41.8575
0.750 -4.4808 -38.6365 419115
0.760 -4.5094 -38.7031 41.9662
0.770 -4.5397 -38.7706 42.0215
0.780 -4.5715 -38.8391 42.0774
0.790 -4.6051 -38.9083 42.1338
0.800 -4.6406 -38.9783 42.1906
0.810 -4.6779 -39.0489 42.2477
0.820 -4.7172 -39.1201 42.3050
0.830 -4.7586 -39.1919 42.3625
0.840 -4.8023 -39.2641 42.4200
0.850 -4.8482 -39.3367 42.4775
0.860 -4.8965 -39.4096 42 5349
0.870 -4.9474 -39.4827 42.5921
0.880 -5.0008 -39.5559 42.6491
0.890 -5.0570 -39.6292 42.7056
0.900 -5.1161 -39.7025 42.7617
0.910 -5.1781 -39.7756 42.8172
0.920 -5.2432 -39.8486 42.8720
0.930 -5.3115 -39.9212 42.9261
0.940 -5.3830 -39.9935 42.9794
0.950 -5.4581 -40.0653 43.0317
0.960 -5.5367 -40.1365 43.0830
0.970 -5.6189 -40.2071 43.1332
0.980 -5.7050 -40.2769 43.1821
0.990 -5.7949 -40.3459 43.2297

Table D.8: Joint 1, 2 and 3 output torque data (continued)
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APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA

Time (Sec.) First joint torque (Nm)

Second joint torque (Nm) Third joint torque (Nm)

1.000 -5.8889 -40.4139 43.2758
1.010 -5.9871 -40.4809 43.3205
1.020 -6.0895 -40.5467 43.3635
1.030 -6.1963 -40.6113 43.4047
1.040 -6.3076 -40.6745 43.4441
1.050 -6.4235 -40.7362 43.4816
1.060 -6.5441 -40.7964 43.5169
1.070 -6.6695 -40.8550 43.5501
1.080 -6.7998 -40.9118 43.5810
1.090 -6.9352 -40.9667 43.6094
1.100 -7.0757 -41.0196 43.6353
1.110 -7.2213 -41.0705 43.6584
1.120 -7.3723 -41.1191 43.6787
1.130 -7.5286 -41.1655 43.6960
1.140 -7.6903 -41.2094 43.7102
1.150 -7.8574 -41.2508 43.7209
1.160 -8.0301 -41.2896 43.7282
1.170 -8.2084 -41.3257 43.7318
1.180 -8.3923 -41.3589 43.7314
1.190 -8.5819 -41.3891 43.7268
1.200 -8.77171 -41.4163 43.7178
1.210 -8.9780 -41.4403 43.7042
1.220 -9.1846 -41.4610 43.6855
1.230 -9.3969 -41.4784 43.6616
1.240 -9.6148 -41.4922 43.6320
1.250 -9.8383 -41.5025 43.5965
1.260 -10.0675 -41.5090 43.5545
1.270 -10.3021 -41.5117 43.5057
1.280 -10.5423 -41.5105 43.4496
1.290 -10.7878 -41.5053 43.3857
1.300 -11.0386 -41.4959 43.3134
1.310 -11.2947 -41.4824 43.2321
1.320 -11.5558 -41.4645 43.1412
1.330 -11.8219 -41.4422 43.0401
1.340 -12.0929 -41.4153 42.9280
1.350 -12.3685 -41.3838 42.8040
1.360 -12.6486 -41.3476 42.6675
1.370 -12.9330 -41.3066 42.5174
1.380 -13.2216 -41.2606 42.3529
1.390 -13.5141 -41.2096 42.1730
1.400 -13.8103 -41.1534 41.9766
1.410 -14.1100 -41.0919 41.7627
1.420 -14.4129 -41.0251 41.5301
1.430 -14.7187 -40.9527 41.2777
1.440 -15.0273 -40.8747 41.0042
1.450 -15.3383 -40.7910 40.7084
1.460 -15.6514 -40.7013 40.3891
1.470 -15.9663 -40.6055 40.0449
1.480 -16.2827 -40.5035 39.6745
1.490 -16.6002 -40.3951 39.2767

Table D.9: Joint 1, 2 and 3 output torque data (continued)
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APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA

Time (Sec.) First joint torque (Nm)

Second joint torque (Nm)

Third joint torque (Nm)

1.500 -16.9187 -40.2801 38.8501
1.510 -17.2376 -40.1583 38.3935
1.520 -17.5567 -40.0296 37.90565
1.530 -17.87567 -39.8937 37.3849
1.540 -18.1941 -39.7504 36 8307
1.550 -18.5116 -39.5995 36 2416
1.560 -18.8279 -39.4408 35.6166
1.570 -19.1427 -39.2740 34.9549
1.580 -19.4555 -39.0990 34.2555
1.590 -19.7661 -38.9155 33.5177
1.600 -20.0742 -38.7232 32.7409
1.610 -20.3794 -38.5221 31.9247
1.620 -20.6814 -38.3117 31.0688
1.630 -20.9800 -38.0921 30.1729
1.640 -21.2748 -37.8630 29.2370
1.650 -21.5657 -37.6242 28.2614
1.660 -21.8524 -37.3757 27.2463
1.670 -22.1346 -37.1173 26.1923
1.680 -22.4123 -36.8489 25.1000
1.690 -22.6852 -36.5705 23.9703
1.700 -22.9533 -36.2822 22.8042
1.710 ~23.2163 -35.9838 21.6028
1.720 -23.4742 -35.6756 20.3676
1.730 -23.7270 -35.3576 19.1000
1.740 -23.9746 -35.0299 17.8016
1.750 -24.2169 -34.6927 16.4741
1.760 -24.4541 -34.3463 15.11956
1.770 -24.6862 -33.9908 13.7396
1.780 -24.9132 -33.6267 12.3365
1.790 -25.1352 -33.2543 10.9124
1.800 -25.3523 -32.8738 9.4693
1.810 -25.5646 -32.4857 8.0096
1.820 -25.7724 -32.0905 6.5353
1.830 -25.9758 -31.6886 5.0489
1.840 -26.1749 -31.2804 3.5524
1.850 -26.3700 -30.8666 2.0182
1.860 -26.5613 -30.4475 0.5385
1.870 -26.7490 -30.0237 -0.9747
1.880 -26.9334 -29.5958 -2.4891
1.890 -27.1146 -29.1643 -4.0028
1.900 -27.2931 -28.7298 -5.5137
1.910 -27.4690 -28.2927 -7.0199
1.920 -27.6425 -27.8537 -8.5197
1.930 -27.8140 -27.4133 -10.0112
1.940 -27.9838 -26.9721 -11.4929
1.950 -28.1520 -26.5306 -12.9631
1.960 -28.3190 -26.0890 -14.4204
1.970 -28.4851 -25.6483 -15.8636
1.980 -28.6504 -25.2086 -17 2912
1.990 -28.8152 -24.7706 -18.7021

Table D.10: Joint 1, 2 and 3 output torque data (continued)
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APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 160

Time (Sec.)  First joint torque (Nm) Second joint torque (Nm)  Third joint torque (Nm)

2.000 -28.9798 -24.3346 -20.0953
2.010 -29.1443 -23.9011 -21.4699
2.020 -29.3091 -23.4705 -22.8248
2.030 -29.4743 -23.0431 -24.1594
2.040 -29.6402 -22.6193 -25.4730
2.050 -29.8068 -22.1995 -26.7649
2.060 -29.9745 -21.7839 -28.0346
2.070 -30.1433 -21.3728 -29.2817
2.080 -30.3133 -20.9666 -30.5058
2.090 -30.4848 -20.5654 -31.7066
2.100 -30.6578 -20.1694 -32.8839
2.110 -30.8325 -19.7790 -34.0374
2.120 -31.0089 -19.3941 -35.1672
2.130 -31.1871 -19 0151 -36.2730
2.140 -31.3671 -18.6420 -37.3550
2.150 -31.5490 -18.2750 -38.4131
2.160 -31.7329 -17.9142 -39.4475
2.170 -31.9187 -17.5597 -40.4583
2.180 -32.1064 -17.2114 -41.4456
2.190 -32.2960 -16.8696 -42.4097
2.200 -32.4876 -16.5342 -43.3508
2.210 -32.6810 -16.2053 -44.2691
2.220 -32.8762 -15.8829 -45.1650
2.230 -33.0731 -15.5669 -46.0387
2.240 -33.2717 -15.2575 -46.8906
2.250 -33.4718 -14.9545 -47.7211
2.260 -33.6735 -14.6580 -48.5304
2.270 -33.8765 -14.3679 -49.3190
2.280 -34.0808 -14.0842 -50.0873
2.290 -34.2862 -13.8069 -50.8357
2.300 -34.4927 -13.5358 -51.5645
2.310 -34.7000 -13.2710 -52.2742
2.320 -34.9080 -13.0123 -52.9652
2.330 -35.1166 -12.7598 -53.6379
2.340 -35.3256 -12.5132 -54.2928
2.350 -35.5350 -12.2727 -54.9302
2.360 -35.7444 -12.0380 -55.5505
2370 -35.9537 -11.8091 -96.1542
2.380 -36.1628 -11.56860 -66.7417
2.390 -36.3716 -11.3685 -57.3133
2.400 -36.5797 -11.1565 -57.8695
2.410 -36.7872 -10.9500 -58.4107
2.420 -36.9937 -10.7489 -58.9371
2.430 -37.1991 -10.5531 -59.4493
2.440 -37.4032 -10.3625 -69.9475
2.450 -37.6060 -10.1770 -60.4321
2.460 -37.8072 -9.9966 -60.9035
2.470 -38.0066 -9.8211 -61.3619
2.480 -38.2041 -9.6504 -61.8078
2.490 -38.3995 -9.4845 -62.2413

Table D.11: Joint 1, 2 and 3 output torque data (continued)




APPENDIX D. PEROFORMANCE ANGLE AND TORQUE DATA 161

Time (Sec.) First joint torque (Nm) Second joint torque (Nm) Third joint torque (Nm)

2.500 -38.6927 -9.3233 -62.6629
2,510 -38.7835 -9.1666 -63 0728
2.520 -38.9718 -9.0145 -63.4713
2.530 -39.1575 -8.8668 -63.8687
2.540 -39.3404 -8.7234 -64.2351
2.550 -39.5204 -8.5843 -64.6010
2.560 -39.6973 -8.4493 -64.9565
2.570 -39.8712 -8.3184 -656.3019
2.580 -40.0417 -8.1916 -65.6374
2.590 -40.2090 -8.0686 -65 9632
2.600 -40.3728 -7.9495 -66.2796
2.610 -40.5331 -7.8342 -66.5867
2.620 -40.6898 -7.7225 -66.8848
2.630 -40.8429 -7.6145 -67.1740
2.640 -40.9923 -7.5100 -67.4545
2.650 -41.1380 -7.4089 -67.7266
2.660 -41.2798 -7.3112 -67.9905
2.670 -41.4179 -7.2168 -68.2462
2.680 -41.5521 -7.1257 -68.4940
2.690 -41.6825 -7.0376 -68.7341
2.700 -41.8090 -6.9527 -68.9666
2.710 -41.9317 -6.8707 -69.1917
2.720 -42.0506 -6.7917 -69 4096
2.730 -42.1656 -6.7155 -69 6205
2.740 -42.2769 -6.6420 -69.8245
2.750 -42.3845 -6.6712 -70.0219
2.760 -42.4884 -6.5030 -70.2128
2.770 -42.5888 -6.4374 -70.3973
2.780 -42.6855 -6.3741 -70.5758
2.790 -42.7789 -6.3132 -70.7483
2.800 -42.8688 -6.2545 -70.9151
2.810 -42.9555 -6.1980 -71.0764
2.820 -43.0389 -6.1436 -71.2323
2.830 -43.1194 -6.0912 -71.3832
2.840 -43.1968 -6.0407 -71.5291
2.850 -43.2715 -5.9920 -71.6704
2.860 -43.3434 -5.9449 -71.8073
2.870 -43.4128 -5.8995 -71.9400
2.880 -43.4797 -5.8556 -72.0687
2.890 -43.5444 -5.8131 -72.1938
2.900 -43.6070 -6.7719 -72.3154
2.910 -43.6677 -5.7318 -72.4338
2.920 -43.7266 -5.6929 -72.51494
2.930 -43.7838 -5.6549 -72.6624
2.940 -43.8397 -5.6177 -72.7731
2.950 -43.8944 -5.5814 -72.8818
2.960 -43.9480 -5.6456 -72.9889
2.970 -44.0008 -5.5103 -73.0945
2.980 -44.0529 -5.4754 -73.1991
2.990 -44.1046 -5.4408 -73.3031
3.000 -44.1561 -5.4062 -73.4066

Table D.12: Joint 1, 2 and 3 output torque data (continued)





