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Abstract 

Ph.D. Alan W. Seed Agricultural 
Engineering 

statistlcal Problems in Measuring Convective Rainfall 

Simulations based on a month of radar data from Florida, 

and a summer of radar data from Nelspruit, South Africa, vere 

used to quantify the errors in the measurement of mean areal 

ralnfall vhich arise simply as a result of the extreme 

variability of convective rainfall, even vith perfect remote 

sensing instruments. The raingauge netvork measurement errors 

vere established for random and regular network configurations 

using daily and monthly radar-ralnfall accumulations over large 

areas. A relationship to predict the mcasurement error for mean 

areal rainfall using sparse netvorks as a function of raining 

area, number of gauges, and the variability of the rainfield 

vas developed and tested. The manneI in vhich the rainfield 

probability distribution is transformed under increasing 

spatial and temporal averaging vas investigated from tvo 

perspectives. Firstly, an empirical relationship vas developed 

to transform the probability distribution based on sorne 

measurement scale, into a distribution based on a standard 

measurement length. Secondly, a conceptual model based on 

multiplicative cascades vas used to der ive a scale independent 

probability distribution. 
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Résu.~ 

Ph.D. Alan W. Seed Génie agricole 

Probléaes statistiques pour la mesure des pluies convectives 

Des simulations numériques basées sur un mois de données 

radar de Floride et un été de données de Nelspruit, Afrique du 

Sud, ont été utilisées pour quantifier les erreurs dOes a 

l'extréme variabilité des pluies convectives dans la mesure de 

la pluie surfacique moyenne en supposant des instruments de 

télédétection parfaits. Les erreurs de messures ont été 

etab11es pour des réseaux p1uviometriques à configuration 

aléatoire ou régulière en utilisant les accumulations 

journalières et mensuelles de pluie estimées par radar sur de 

grandes surfaces. Une méthode pour prévoir les erreurs sur les 

mesures sur la pluie surfacique moyenne utilisant des réseaux 

épars en fonction de la surface où il pleut, du nombre de 

pluviomètres et de la variabilité du champ de pluie a été 

developpée et testée. La facon dont laquelle la distribution de 

probabilité du champ de pluie est transformée en augmentant 

l'étendue spatiale et temporelle de la moyenne a été etudiée de 

deux perspectives: Premièrement, une relation empirique a été 

développée pour transformer la distribution de probabilité 

basée sur une echelle de mesures quelconque en une distribution 

basée sur une autre échelle de mesures. Deuxièmement, un model 

conceptual basée sur des cascades multiples a été utilisé pour 

déterminer une distribution de probabilité indépendante de 

l'échelle. 
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Contributions to Knovledqe 

Many stud1es have been undertaken to est1aate the sampling 

errors in the use of raingauge, radar, and satellite 

aeasurement of mean areal ra1nfall. Hovever, vhat has not been 

addressed ta date, is the lover liait of the measurement error 

that exists as a result of the extreme varlabllity ln the 

rainfields, even vith a perfect instrument. The followlng 

contributions have been made for the three instruments: 

a) Radar 

1. The effect of the various dlgitizlng algorithme 

currently in use to estlmate the mean refJectlvity from 

a number of fluctuating signaIs has been re-evaluated. 

It vas found that the exponential averaging algorithm, 

although one of the .ost common in commercial 

applications, vas the Ieast effective in reducing the 

estimation variance. 

2. The reduction in the estimation variance after 

averaging in space and accuaulating ln time vas 

assessed. Geostatlstical techniques vere used to 

calculate the estimation variance for Mean areal 

rainfall. It vas found that it i5 more efficient to 

re.ove the measurement noise during the polar to 

xiv 
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Cartesian transformation and accu.ulation in time , than 

to use a large number of sa.pIes during signal 

dlgitization. 

b) Raingauges 

3. For mean areal rainfall, over large areas, it vas 

found that the mean stand~rd errors for regular gauge 

netvorks vere approximately the same as those for random 

gauge netvorks. The difference betveen the two 

configurations vas that the errors for the random 

netvork had a larger spread about the mean standard 

error than the regular networks, particularly for sparse 

netvorks. 

4. A relationship to predict the Mean measurement error 

for sparse gauge netvorks vas developed using the number 

of gauges, raining fraction of the area, and the 

ralnfield varlability as predictors. 

c) Satellite 

5. Heasurement errors as a function of the nu.ber of 

satellite over-passes per day vere estimated for the 

Florlda area. The large sampling errors associated vith 

orbiting satellites havlng tvo passes per day vere 

quantifled. 

xv 
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The transformation of the probability distribution of a 

rainfield under increasing averaging is an efficient 

characterization of the spatial organization and varlability of 

the ralnfleld. Furthermore, a great _any practical hydrological 

probleas depend on the transformation of point ralnfall 

statistlcs to mean areal ralnfall statistlcs. The second 

section of the thesis contrlbuted the followlng ln this topic: 

6.It vas found that it is possible to characterlze the 

vay the rainfall probabillty distributions are 

transformed under spatial averaglng by means of a tvo 

parameter power lav. This can be applled to the problem 

of comparing rainfall estimates from techniques vith 

dlfferent space-time sampling characterlstlcs. 

7. A resolutlon independent probability distribution vas 

developed using the concept of multiplicative cascades 

and vas fitted to space and time averaged data. 

8. Parameter estimation techniques vere developed for 

the estimation of the parameters used ln the conceptual 

.odel. 

xvi 



Chapter 1 

Introduction 

The hydrological cycle makes i t possible for man to exist 

on this planet, controlling the avallabi 11 ty of water and 

vegetation as ~ell as driving the global atmospher lc 

1 

circulation that distributes the heat from the tropics to the 

hlgher latitudes. Water vapour ls able to transport the energy 

rece i ved dur i ng evaporat i on over large distances and then ta 

release the latent heat Into the atmosphere ln local regions of 

intense precipitation. This implies that a knowledge of mean 

areal rainfall over large areas is a prerequisite to modelling 

global climate. It ls for this purpose that the joint U.S.A. -

Japan Tropical Rainfall Measuring Mission satellite (TRMM) is 

scheduled to be launched during 1994. 

Concerns over the impact of possible changes in climate due 

to incr€'ased cO.lcentrations of carbon-dioxide in the atmosphere 

have increased ùver the past few years. One possible, although 

by no means certain, scenario is that the increasing 

concentrations of carbon-dioxide ~ill result in global warming, 

the so·called green house effect. While this ~ould not 

necessarily be a bad thing for aIl regions, Quebec winters 
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could usefully be warmed resulting in a longer growing season 

for example, increased seasonal variability in the rainfall 

could seriously affect agriculture in regions where the water 

supply is marginal, even if the long term mean rainfall 

remained constant. The total annual runoff out of a large river 

catchment in a semi-arid region depends critically on a handful 

of days of widespread rain over the eatchment. Therefore, water 

supply in semi-arid regions vould also be seriously affeeted by 

even small changes in the number of widespread rain days per 

ralny season. 

The rapidly expanding populations in semi-arid reglons are 

placing increasingly heavy demands on the scarce water 

resourees in the se areas. This in turn implies that Water 

Resouree Engineers need to be more certain about bath the 

long-term mean areal rainfall, which de termines the rnean vater 

supply, and the temporal and spatial variability of the 

rainfields which determines the reliability of the vater 

supply. The optimal operation of inereaslngly complex vater 

resource systems is being achieved through the use of real-time 

ralnfall estlmates and short-term stream flow foreeasts. 

Man's aetivities ln a river eatehment ean have a 

significant impact on the rainfall-runoff relationship in the 
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catchment. For example, deforestation of a catchment's uplands 

could Increase the variability of the stream flow, increasing 

3 

the probability of both floods and drought. Hydrological models 

are being used ta predict the impact of variaus land-use 

changes on the stream flow. Although research into the next 

generation of detailed, spatially distributed hydrological 

models is currently underway, historical rainfall data with a 

commensurate level of detail are scarce. 

Agriculture of course, is another major user of rainfall 

data. Crop yield prediction models are routinely used to 

forecast harvests and in semi-arid reglons depend on the total 

moi5ture budget for the growing season. Satellite rainfall 

estimation schemes are used to monitor the famine potential and 

locust population in the Sahel region of Africa, for example. 

Ralnfall provides a key input into a large, diverse set of 

applications that directly or Indlrectly affect the majority of 

the Earth's population. It is interesting to note therefore, 

that despite seven centuries of rainfall measurement, we are 

still not able to measure mean areal rainfall with good 

accuracy. This i5 due to the highly intermittent, variable 

nature of the rainflelds, and instruments that either measure 

the rainfall at a point with good accuracy or over an area with 
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mediocre accuracy. 

Hydrologists have been aware of the importance of the spaual and temporal vanablhty of romfall an hydrology 

for sorne time. Thiessen (1911) was possibly the first ta explicilly accoum for the spa liai vanahlilly 01 rWllfall whcn 

estimalwg areal ramfaU amounlS. The usual measure of the spatial vanabilily of raanfallis to express tJ1l' çorrclatlon 

belween IWO gauges as a function of the distance separalmg the gauges, for examplc Sharon (1972), Zawad/lo (197 :tl), 

and is used by virtually all the currenl models l!scd to generate symheuc ramfields, Eagleson, Fcnncs\cy, Qlllh.lIlg .\llli 

Rodriguez-lturbe (1987) for ex ample. 

The minimum correlation betwccn neighbounng ramgauges has becn uscd extenslvcly ln dClt'mlllllllg Ihe 

spacing between gauges in a gauge network. Hcrshfcld (1965) was probably the first 10 ProIX)"C lhalthc mlllllTllllll 

correlation belWeen adjacent ramgauges ma nClwork should be 0.9. A tYPlcal sludy of a nClwork \pacmg rcqUirCIlIL'IlI 

for dady rainfall was made by Hendnck and Comcr (1970). The error of the ramgauge CSUmal10n 01 areallially r.1I111.111 

was obtained by companng the arlthmeuc mcan dcnved from a nctwork of 23 gauge,> Wlth lhc mcan\ dcnvcd lrom '>lIh­

networks. They concluded that If the minimum allowablc crror for the partlcular clay or cvcnl mml bc known, Illen 

sorne criteria other that the correlauons would he rcqulred_ 

HulChmson (1972) pointed out that the use of a correlation cnlena in Its simplesl farm could only glvc a 

relative assessment of the standard error. ZawadLki (1973b) assumed an exponenual decorrclauon wllh dl\Lancc ami 

derived a formula 10 estima te the error m the arca-averaged ramfall as esumatcd by a rcgular gnd of ram gaugc\ 

The error ln estimating Ûle mean areal ramfallis not only a functJOn of the gauge network, bUI aho lkpelHh 10 

sorne extent on the method used ta esumatc the arcaJ ralOfall from a set of gaugc ramfall depth,>. Exccllent LOrnpamuvc 

studies may be found m Creuun and Obled (1982) and Tablos and Salas (1985). Sm<..e mcasunng arcal IOcan ramfaU 

is rarely an end m itself, but rather to provide mput lOlO hydrological models, the Impacl of the arc al ramfall 

measurement error on the modcl output IS of conccm. Eaglc!>on (1967) assumed !hal the caLchmcnl bchavc\ a\ a (ow­

pass filter thus reducmg the effect of the mput measurcmcnt crrors. Indccd, Eaglewn (1967) conducJcd Lhal only four 

gauges (correctly posluoned) would be sufficlent to estlmatc peak runoff from a catchmenl arca of 3200 km2 WI!<,on. 

Valdes and Rodriguez - Iturbe (1979) uscd a staml modcllO generate syntheuc r.lmfall and ~Imul.atcd the effe<.L of 
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ancreased measuremenl error by sampling the ramfield in two different manners. The ground-truth was established by 

samphng the raanfield Wlth 20 gauges. These ramfaJl data were than used la generate the true runoff from a calchmenl 

by mcans of a ramfaJl runoff model. The second data set was generated usmg only one gauge 10 sample the rainfield, 

whlch was then passed through the catchment mode/. The catchment was found ta amphfy the mput errors, for 

example a 12% mean depth over-estimate resulted m a 24% runoff volume over-esumate and a 9% mean depth over­

estlmalc resultcd JO a 52% peak Ilow over-csumate. More reccntly, Milly and Eagleson (1988) showed that hydrological 

models of catchments that are potcntlally larger than the storm size must give explicit consideration to the effeet of the 

ralnIng arca on the runoff proce~s. 

ln gcnerJI. the rJlnfall data at the dISposai of hydrologISts are derived from ram gauge measurements WhICh are 

cssenuaJly poInt mcasuremcnts. Thercfore. ail cstimatcs of ramfaIl exceedance probabililles or relum penods are (lnly 

i 
~ valtd lor poInt ramfaJl. However. whcn SIZIng a culvcrt or dram, the engmeer needs the retum penod for areal ram over 

-;ome arca and for ~mc pcnod of accumulauon 50 the transfonnauon of point-ramfaU stallsucs into eqUlvalent areal 

ralllfall ~taUsucs has !:,Tfcat pracucallmportance. Correction factor to transform poInt rainfall lOto area averaged 

precIpItatIon wcre fir~t dcvclopcd by thc U S Wcather BUIeau In 1957 and updated In 1980 by Myers and Zehr (1980). 

Rodnguc/-HUIbc and MCJia (1974) dcvclopcd an altcmal1vc melhod to transfonn pomt rainfall lOto mean areal ramfaU 

that ll\cd an cxponcnl1al corrclaiton structure togcthcr Wlth an esùmate of the mcan dIstance separaung two point wlùun 

tllC arca. Other mcthods have becn proposcd by Nguycn (1984) and Niemczynowlcz (1984). However, Amell et al 

( 191{4) III thcu revlcw of thcsc mcthods for urban hydrology concluded thal there was a lack of sUltable, expenmentally 

Ju~ulïl'd models to lmnsforrn pomt-ramfall lOto arcu 3veragcd ramfaIl. 

Throughoul I.fllS thCSIS thc tcrms "convccuvc" and "wldesprcad" in descrbing rainfall events 10 thlS thesis. 

CllllVCl'lIVC IS u~d 10 mcan arcas of rJmfaII of small honzontal estent and large cloud height, generaJly synonymous 

Wlth ~howcrs (Amcncan Meteomloglcal Soclely, 1959) wldespread ram on the other hand IS taken to mean areas of 

ramlall of large honzontal CXlCnl and shallow dcpth Wlth low rainfaU mtensities and weak gradIents. For a particular 

~asc. both of thesc r.unfall types may CXISl slmultancously, but the predominate type is usually clearly evidenL 
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The thesis has been written as a collection of manuscripts of papers that have been, or will shonly be submmcd for 

publication in a Journal. The contributions by the various co-authors has becn to provlde gUidancc dunng the rC1ICarch. 

and ta give edltorial comment during the preparation of the manuscripts. The specifie rcgulauons govcrnmg such a 

thesis format are reproduced below. 

"The candidate has the option, subJect to the approval of the Dcpartment, of mcludmg as part of the thesls the 

text, or duplicated published texl (see below), of an onginal paper, or papcrs. ln thlS case the the~ls must sull 

conform ta all other requircments explained ln Gwdelilles Conceming Thcsis Prcpamuon. AddlllOnal matcnal 

(procedural and deSign data as weil as descnptions of cqulpment) must be provldcd ln sufficlcnt demll (e g. III 

appendices) ta allow a c1ear and precise judgement to be made of the Importance and ongmailly 01 the rcs~\!d\ 

reported. The theslS should be more than a mere collecuon of manuscnpts pubhshed or to be puhllshcd Il must 

irIclude a general abstraet. a full muoductlOn and litcrature re'/lew and final overall conclusion ConneclIllg texts 

which provide logical bridges belween dlfferent manuscnpts are USUally dCSlnlble ln Ille mlcrCSl\ of LOhcsHm. 

Il is acceptable for theses to include as chapters authentic copies of papcrs already pubhshed, prc)VIdctl tJlc~e arc 

duplicated clearly on regulation thCSIS stationery and bound as an integraJ part of the thesls. Photogmphs or 

other materials which do not duplicate weil must be IDcludcd ID their origmal publishable lorm ln ,>ueh 

irIstances, connecting texts are mandatory and supplementary explanatory matenalls almo~t alway-; nccc,;wy 

1be inclusion of manuscripts co-authored by the candidate and others IS acceptable but. the candidate IS rcqUlrcd to 

make an explicit statement on who contnbuted to such work and to what extent. and SUpervlSOrs must altc'it to 

the accuracy of the clalms before the Oral Commlttce. Smce the msk of thc ExamlOcr'i 15 madc more dlflieuIt ln 

these cases, it is in the Candidate's mtcrest to make the rcsponslbllilles of authors pcrfcclly c1car Candldatc~ 

following thlS option must IOfonn the Department berore 1t submlls the thCSlS for revlew." 
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This thesis will attempt to evaluate the limitations that 

the hlghly variable nature of convective rainfall places on the 

measurement of areal rainfall even with perfect instruments. 

Three measurement devices, viz. the raingauge, radar and 

satellite will be examined using simulation techniques and a 

data base comprislng of 21 days of continuous radar data of 

tropical rainfall recorded during August 1987 at the Kennedy 

Space Center located in Florida. The second chapter of the 

thesis is a paper co-authored vith Prof Austin that has been 

accepted by the Journal of Geophysical Research, and was 

jointly presented by the two authors ~t a conference at M.I.T. 

during 1988. This paper evaluated the measurement error for the 

rddar in sorne detail, and estimated measurement errors in 

estimatlng mean areal rainfall over large areas using gauge 

networks and satellites. The third chapter returns to the use 

of raingauge networks ta measure daily mean areal rainfall over 

various size areas. The effects of network geometry, random or 

regular are considered. A new method to predict the mean 

standard estimation error for large area mean areal daily 

rainfall i5 pre5ented and evaluated. The text in this chapter 

substantlally represents a paper co-authored with Profs. Austin 
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and Broughton to be submitted to the Journal of Hydrology. 

stochastic simulation of rainfields is an important tool 

for hydrological studies evaluating the effects of changlng 

land-use and climate. Unfortunately, the characterlstics of the 

rainfields change under increasing spatial and temporal 

smoothing. The fourth and fifth chapters therefore deal vith 

the dependenee of the rainfall probability distribution on the 

sensor resolution. Chapter four, co-authored vith Prof. Nguyen, 

15 a paper that explores the transformation of the probability 

distribution under spatial smoothing. It presents an empirical 

method to transform the probability distribution representing 

the rainfield at one scale into the distribution at a different 

seale. The recent advances in the theory of fractals, a theory 

that explicltly models the effects of changes in scale, raise 

interesting posslbilities in their use as rainfield simulation 

modela. However, more empirical evldence that ralnfields do 

indeed behave in a fractal-like fashion is needed. Chapter 

flve, a paper c~-authored vith Profs. Lovejoy and Austin, 

therefore Investigates a method to derlve a resolutlon 

independent probabillty distribution that 15 based on the 

theory of multifractal multiplicative cascades. It aiso 

develops a nev method to estimate the parameters needed by a 
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multiplicative cascade model for rainfield slmulauon, and as such is a rUSl step in the application of fractal theory to 

ramfield SlmulaUon. 
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Prolegomenon to Chapter 2. 

An csltmate of the mean arcal ramfall ln the tr0ples is an important input in10 numerical weather models partieularly of 

chmate change. Unfortunately, much of \Jus nunfall occurs over the ocean and therefore can only be measured from 

space plaûonns. The major objccltve of the Jom1 U.S.A. - Japan Tropical Rainfall Measuring Mission Satellite is 10 

provldc csltmatcs of ITIean monthly ramfall over large areas. Earlier studies into the ltkely error ID such estimates are 

b~ largely on SlatlstlCaJ ramfield models 1,2_ These models were caJibrated on data coUected dunng the 1974 GA TE 

cxpcrimcnt wherc the Inter-Tropical Convergence Zone off the coast of Senegal was being observed. It was therefore 

appmpnatc 10 conduct a somcwhat slmllar study based on radar data taken from other tropical regions and compare the 

~ results. To thlS end. a momh of contmuous radar data was collected al the Patrick Alrforce Base, Florida dunng August 

19K7 Chapter 2 reports on the findings ln thls lOvcstigation and attempts to explain the differenees between the results 

b:'L~cd on the <!ab from GA TE and Ronda. The senous Impact of these findings on the satellite temporal sampling error 

IS also dlscusscd. 

MaeConncll, A., and G.R. North, 1987: Sampling errors in satellite estimates of tropical rain. J. of Geophysical 

Rcscarch. 92(08): 9567-9570. 

2 Shm, K-S. and G.R. North. 1988: Samplmg error sludy for rainfall estimate by satellite using a stochastic model. 

J of Apphcd Melcorology, 27 (4): 1218-1231. 
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List of Symbols in Chapter 2 

Radar reflectivlty (mm6/ m3) 

Rainfall intensity (mm/hr) 

Measured radar reflectivity (mm6/ m3) 

Mean radar reflectivity in a radar bin (mm6/ m3) 

Number of measurements of radar rellcctivity in a radar bm 

Seml-variogram (mm2) 

Point value of the ramfield at the position x (mm) 

Point variance of the field Z(x) (mm2) 

Point mean of the Z(x) (mm) 

True areal mean of Z(x) for the region A (mm) 

Estimated areal mean of Z(x) for the reglOn A (mm) 

Covariance between two points X and Y on the field Z(x) ln the reglon A (mm2) 

Mean distance seperating lwo points ln a reglOn 

6c 



Chapter 2 

On the Variability of Summer Florida Rainfall and it's 

Significance for the Estimation of Rainfall by Gauges, Radar 

and Satellite
' 

2.1 Abstract 

7 

Simulations based on a month of radar data from the Patrick 

Airforce Base radar ln Florida give the following results for 

the estimation of daily rainfall amounts over the 124,000 km2 

area covered by the radar: 

1) 30-minute sampling by a perfect satellite sensor 

will increase the rainfall measurement error by 7% 

compared with 5-minute radar sampling 

2) If the instrument is only able to determine the 

raining area and a good climatological rainfall rate is 

available, then the measurement error is increased to 

35%. 

1 By A.W. Seed and G.L. Austin. Accepted for publication by the 
Journal of Geophysical Research. 
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3) Exceptionally dense gauge networks are needed ta 

estimate daily convective rainfall. For example, a 

network with 625 km2 per gauge would be requlred to 

equal a 30-minute rain-area only instrument. 

8 

For monthly areal mean rainfall, the proposed Tropical Rain 

Measuring Mission (TRMM) sampling strategy wlth a perfect 

satellite sensor gives an error of 22\. A 30-minute raln-area 

only technique combined with a good cllmatological rainfall 

rate yields an error of at least 3%. It would seem then that 

the main contribution of TRMM cou Id be to provide good 

estimates of the mean climatological rainfall rate (glven that 

it is raining) which could then be used with the geostationary 

weather satellite to provide the requlred monthly area rainfall 

estimates. 

2.2 Introduction 

There have been many attempts to estimate the accuracy ~ith 

which daily and monthly areal averaged rainfall amounts can be 

estimated by various satellite techniques (see Barrett and 

Martin, 1981, for example). These techniques may be broadly 

divided into two classes - those based on geostationary 

satellites which typically have a 1/2-hour time resolutlon and 

a few kilometers spatial resolution, and those whlch operate 
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from lov orbitlng platforms vith a high spatIal resolution, but 

have a temporal resolution of a fev overpasses per day. The 

major thrust of this paper 15 to investigate the statistical 

propertie5 of convective rainflelds in Flo~lda, and to use 

these statistics to simulate the sampling problems for 

raingauge, radar, and satellite rainfall measurement systems. 

This has been done partly to compliment the earlier studies of 

tropical rainfall undertaken for the Tropical Rain Measuring 

Mission (TRMM) satellite, since they were largely based on data 

collected during the 1974 GATE experiment where the 

Inter-Tropical Convergence Zone vas being observed. 

Many authors have recognized oV,er the years that the major 

problem to be faced in the estimation of area-averaged rainfall 

amounts 15 the extreme variability and intermittency of the 

rainfield in both space and time. Systematic study of this 

variability has been advocated by Schertzer and Lovejoy (1987) 

within the theoretical framevork of fractals. Manyempirical 

studies have been described in the hydrological literature 

( e . g. Damant etaI. ( 1983) and the re ferences there in). Bellon 

and Austin (1986) estimated mean pOint total storm accumulation 

differences from raingauges at different spacings, and obtained 

60% dl f ferences at a dIstance of 10 km, and 100% di fferences at 
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a separation of 100 km for rainfields in the mid-latitudes. 

l t is pree isely this var iabi li ty that Il mi ts the accuracy 

of the rainfall measuring systems, even assuming that the 

measurements, when and where they are taken, have no error. 

This paper will attempt to evaluate the lower bound of the 

measurement error for various rain measuring systems resulting 

from the Inherent variability of the rainfield being measured. 

2.3 Analysis Scheme 

If a rainfield in space and time which COULD HAVE existed 

were simulated stochastically, then simulated rainfall 

estimates based on the known physics of the measuring system 

could be generated. This idea accounts, in part a t leas t, for 

the great deal of aetivity in recent years directed toward the 

stochastic modelling of rainfall patterns. An alternative 

strategy, which ta some extent avoids the difficulties 

associated with producing stochastic ralnfall models with not 

only the correct mean and variance, but also higher order 

statistical properties, is ta take a series of 3-D radar data 

sets, and argue that although they DO NOT represent the actual 

rainfield at the indicated time, they DO represent a rainfield 

that COULD HAVE existed. 

It is clear that no further assumptions need ta be made 
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about the statlstlcal propertles of the ralnflelds except at 

space and time scales that are smaller than the resolution of 

the measur Ing system, perhaps 1 km and 5 minutes. Sorne would 

argue, however, that much of the observed discrepancy between 

radar and gauge data is due to real sub-resolution variability. 

Radar data archi ved at the Patr 1ck Airforce Base (PAFB), 

Florida, U.S.A., during the period 8th to 30th August, 1987, 

have been processed to form a single data base of approximately 

1000 CAPPIS at 3 km altitude. The raw data tapes were first 

read to produce a data base consisting of raw digitized radar 

reflectivities for each 5-minute CAPPI in polar coordinates. 

These data were then transformed into rainfall intensities by 

means of the Marshall-Palmer relationship 

Z-200R"· 

The ralnfall amounts were then mapped onto a Cartesian 

coordinate system with a grld spacing of 2 km. 

(2.1 ) 

Each polar data point falling within a Cartesian pixel was 

first converted into the equivalent rain rate before the mean 

ra in ra te over the pi xe 1 was ca lculated. The resul t ing maps 

were interpreted as if they were true rainfall rates based on 

the electrical calibration of the radar without being 
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calibrated against the existing gauge network. This was mainly 

due to the difficulty in obtaining historical raingauge data 

for that periode For the present study we will argue that while 

the radar data may not represent the actual rainfall that fell 

during August 1987, it is a plausible realization of the same 

process, and therefore has the same statistical structure. 

An interactive editing program was written 50 as to enable 

strict quality control on the 5-minute CAPPI data. After 

inspecting the CAPPI's at higher altitudes and watching 

tlme-lapse sequences on a graphies system, a significant amount 

of echo was determined to be ground echo, anomalous propagation 

and Interference. During this phase of the work, it became 

apparent that an average of 15 minutes of data were missing per 

hour recorded. This turned out to be due to a routine Airforce 

procedure which has been eliminated for later data sets. The 

approximate translation of the rainfield during the period of 

missing data was calculated by locating the position of the 

maximum cross-correlation coefficient between the images at 

either end of the missing periode This translation was evenly 

distributed over the period, with the image at the start of the 

missing period being offset by an appropriate amount for each 

of the missing images. 
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2.4 Accuracy of the Radar Rainfall Data 

There can be no doubt that a weather radar does not measure 

the rainfall rate with perfect accuracy. The literature is 

replete vith examples of radar-rainfa11 calibration exercises 

designed to find the optimum Z/R relationship for particular 

weather radars in different climatic conditions throughout the 

world (e.g. Battan, 1973). Slnce radar measured rainfall will 

form the basis for this research, i t is appropr iate to first 

investigate the effect that the radar induced measurement error 

will have on the derived statistics. 

The causes of radar measurement error may be broadly 

categorized lnto rain process dependent errors and radar 

sampling errors. These sources of error have received wide 

attention in the literature over the years (e.g Zawadski, 1984 

and Austin, 1987). Briefly, the sources of error include: 

1. Uncertainty ln the Z-R re1ationshlp 

2. Accretion or evaporation of rain droplets at low altitude 

3. Variability in the drop-size distribution 

4. Hall 

5. Vertical air motions in convective cells 

6. Gradients in the rainfields withln the sampled volume 
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Austin (1987) investigated the effect of various physical 

factors that influence the relationship between measured radar 

reflectlvltyand surface ralngauge measurements. She found that 

the natural variability in drop-size spectra was not a major 

factor once the storms had been classified into intense, 

moderate and stratiform events, each with a separate Z-R 

relationship. 

After comparing raingauges vith the radar for 20 storms, 

Austin concluded that the tvo major causes of radar-raingauge 

measurement errors vere: 

1. Down-drafts reducing the radar reflectivity for a given 

rainfaii rate and 

2. The presence of hail in the intense convective cells. 

In her conclusion, Austin states 

" We conclude that for research and operational 

applications where there is a need to know the spatial 

distribution of surface rainfali or areal rainfali amounts, 

these quantities can often be measured by radar with 

sufficient accuracy. In highly convective storms, radar rnay 

weIl be the most (or the only) reliable data source for the 

desired information". 
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Whlle thls conclusion is encouraging, Austin assumed that 

the accuracy in the measured reflectance value returned by the 

radar vas of the order of 1.0 to 1.5 dBZ. This accuracy 15 only 

attainable if other radar var lables are compromised, for 

example bin length, antenna rotation speed and beam width. It 

can also only be achleved by means of an intelligent digltizing 

and averaging scheme. If operational constraints are such that 

non-optimal radar parameters are chosen, or if an Indifferent 

ditig1zation scheme 15 used, these errors may be considerably 

ln excess of 1. 5 dBZ. 

The opera t 1 ana 1 constra ints vere such that the radar 

parameters selected at the Patrick Airforce Base were believed 

to yleld errors in excess of 1.5 dBZ due largely to unusual 

radio Interference regulations enforced for safety reasons. 

Therefore, 1 t i5 relevant to re-examine the impact of radar 

measurement error on accumulated statistics derived from radar 

data. This sect:ion will therefore investigate the impact of 

var i ous radar d ig i t i zat i on schemes on the resul ting 

radar-measured probability distributions. Thereafter, the 

geostatistical technique of variograms will be used, after sorne 

as sumpt ions, to direct Iy estima te the measurement error for 
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various rainfall accumulations. Finally, the estimation 

variance of mean areal rainfall after averaglng in time and 

space will be estimated. 

2.4.1 The Observer's Problem 

The problem of inferring the mean reflectivity of a volume 

of space given a limited number of randomly fluctuating signaIs 

15 known as the Observer's Problem. The intensity of a signal 

received by a radar is simply the sum of the signaIs received 

from each individual water droplet in the volume being sampled 

(Marshall and Hi tschfeld, 1953). The signa l there fore 

fluctuates as the droplets (or scatterers) move relative to 

each other in a random fashion. Marshall and Hitschfeld derived 

the probability distribution of independent echoes from a 

random array of scatterers and showed that : 

1 -! 
PreZ ~ z) = -g Il 

P. 
(2.2) 

where 

z = the measured radar reflectivity, and 

~ = mean radar reflectivity for that volume. 
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This exponential distribution of z implies that several 

lndependent measurements of z required before the rnean 

reflectivity ~ can be estlmated with any degree of confidence. 

However, in practice, the measurements are not of the same 

volume of space, but from successive pulses down or cross 

range. It is obvious that steep gradients in the reflectivity 

field increases the measurement error. Smith (1964) was able to 

show from probabilistic considerations that the optimum method 

for obtalning the Mean value of Z was to average the intensity 

values and not the logarlthm of the intensity values. 

In general, this method has not been implemented on radar 

digitizers in the past mainly because the dynamic range of Z 

extends over 6 orders of magnitude, therefore the amplifier 

used prior to the digitizer returns the logarithm of the 

returned signal and not the signal itself. The current popular 

methods for estimating the Mean reflectivity from a number of 

logarithmic signaIs include averaging, peak reading, and 

exponential averaging whère the next value is averaged with the 

Mean of the previous values. Modern electronics have removed 

Many of the constraints that restrict the choice of a 

digitizing algorithm sa that a digitizer that averages in Z is 

now feasible. 
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Smith's 1964 vork examined the measurement error in terms 

of dBZ and assumed that each dBZ intensity level had an equal 

probabl11ty of occurrence. It would be Interestlng therefore to 

repeat sorne of this early vork using an assumed rainfall 

probabil1ty distribution to examine the relationship between 

measurement error and the nurnber of samples (k) for the various 

digitizing algorlthms. 

"True rainfall rates" vere generated assuming that 

instantaneous rainfall rates are drawn from a population of 

exponential independent random variables. Using the 

Marshall-Palmer Z-R relationship, 50,000 "true rainfall rates" 

were generated and converted into an equivalent Z. 

Marshall and Hitschfeld (1953) showed that the intensity of 

independent echoes from a random array of scatterers fluctuates 

randomly with an exponential distribution. Therefore, each 

"true val ue" of Z was used to generate k observat ions, z i, 1 = 

l,k, drawn from an exponential distribution with a rnean Z. In 

reality, the radar does not sample the same volume of space k 

times, but rather k pulses either down or cross range. 

Therefore, the results of this simulation will be sornewhat 

optimistic sinee the srnall-seale gradients in the Z field have 

not been explieitly taken into aceount. 



1 

l 

The "observed" z vere then passed through the following 

algorithms 

1) Mean z 

2) Mean dBz 

3) Mean rainfall 

4) Exponential smoothing dBZ,+.-O.S(dB%,+.+dBZ,) 

5) Peak reading dBZ-max(dB%,)-O.I(I+log2k),i-l.k 

19 

The mean and variance of the "observed" rainfall, the 

population distribution, the chi squared goodness of fit 

statlstlc and the mean standard error expressed as a percentage 

of the mean were calculated for k = 2 to 64 using the five 

algorithms. 

Table 2.1 lists the mean standard error for the various k 

and algorithms. It is immediately apparent from this table that 

the exponential smoothing algorithm has the largest mean square 

error for k greater than two. The mean standard error for 

exponential smoothing does not decrease after k greater than 

four, and therefore if the radar achieves a large k through 

exponential azimuthal smearing, which is the most commonly used 

technique, the net result i5 a radar vith both poor spatial 

re501ution and accuracy. The second feature of this table is 

that the accuracy of instantaneous radar-rainfall measurements 
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can be rather depressing when k is less than four. The optimum 

algorithm, as expected, was to average the Intensity values 

themselves. The peak-reading technique was nearly as good for k 

less than four although the dlfference widens conslderably for 

large k. 

The chi squared goodness of fit statistic is tabulated in 

Table 2.2. This statlstic was calculated to determine if the 

probability distribution of the input rainfall and the 

distribution of the measured rainfall were slgniflcantly 

different. The chi squared statistlc for 17 degrees of freedam 

at the 95% level of significance Is 27.6, and therefore the 

radar slgnificantly modifies the rainfall probabllity 

distribution that it samples, even with a perfect Z-R 

relationship. 

The ratios of input mean verses output mean and input 

variance verses output variance are found in Tables 2.3 and 2.4 

respectively. These Tables show that the technique of averaging 

the dBz introduces a bias in bath the mean and variance, that 

gets progressively larger as k increases. This would account 

for the fact that the mean standard error for this technique 

does not decrease rapidly with increasing k. 
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Table 2.1 Mean standard error expressed as a percentage of the 
mean rainfa11 rate using mean reflectivity (Z), mean 
dBZ, mean rainfall (R), exponential averaging (Exp), 
and peak reading (Pr) for various sample sizes (k). 

,.-' --
k Z dbZ R Exp Pr 

-
2 57 61 56 60 58 

---~ 
M_w_M __ -

4 42 51 42 54 47 

8 30 46 31 53 40 

16 21 44 24 53 32 
----1------ ------

32 14 43 20 53 26 
- ----

64 10 42 17 54 22 

Table 2.2 Chi squared goodness of fit statistic for mean 
reflectivity (Z), mean dBZ, mean rainfal1 (R), 
exponential averaging (Exp), and peak reading (Pt) 
for various sample sizes (k). 

1 1 

-
k Z dbZ R Exp Pr 

-
2 508 1573 627 1505 612 

4 141 1435 327 1605 150 

8 84 1585 235 1690 68 

16 40 1615 190 1510 64 

32 27 1694 172 1478 53 
1----- ~----

64 36 1608 149 1416 75 
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Table 2.3 Ratio of the estimated Mean and actual mean rainfall 
for mean reflectivity (Z), mean dBZ, mean rainfall 
(R), exponent ial averag i ng (Exp), and peak read i ng 
(Pr) for various sample sizes (k). 

k Z dbZ R Exp Pr 

2 0.94 0.80 1.16 0.80 0.91 
-- ------

4 0.97 0.75 0.90 0.76 0.99 

8 0.99 0.70 0.90 0.76 1.02 --- --------
16 0.99 0.70 0.90 0.76 1.02 

32 1.00 0.70 0.90 0.76 1.00 _ -... _" 
64 1.00 0.70 0.90 0.76 0.96 

-----

Table 2.4 Ratio of the estimated standard devlation and actual 
deviation for mean reflectivity (Z), mean dBZ, Mean 
rainfall (R), exponential averaging (Exp), and peak 
reading (Pr) for various sample sizes (k). 

--r------------
k Z dbZ R Exp Pr --
2 1.13 1. 02 1.08 1. 00 1.10 

4 1.08 0.87 1.00 0.91 1.11 

8 1.04 0.79 0.95 0.90 1.16 
-

16 1.02 0.75 0.92 0.90 1.08 

32 1.00 0.72 0.90 0.90 1.04 
--_._---

64 1.00 0.71 0.90 0.90 0.99 
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2.4.2 Emplrlcal Determination of Heasurement Error for the 

Polar Radar Data 

The Observer's Problem ls not the only source of 

measurement errors in the radar data as noted previously. This 

section will use the geostatistical technique of varlograms to 

attempt to determine the approximate measurement erIor ln the 

raw radar data. After examining the radar data available for 21 

days in August 1987, the data extending from 1500h August. 21 

to 2400h August 22, sorne 220 five-minute rainfall maps, vere 

selected as being representative of heavy convective activity 

in that area. 

A variogram is a geostatistical technique used ta uncovcr 

the basic structure of a random spatial variable. Using the 

notation of Journell and Huijbregts (1978), the variogram is 

defined as 

2V(x. h)- E ([Z(x)- Z(x + h)12} (2.3) 

vhere V(x,h) ls the semi-variogram and 

Z(x), Z(x+h) are the values assumed by the random 

function at the points x and xth. 

'1 ... 
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Assuming the intrinsic hypothesis, viz. the semi-variogram 

depends only on the separation vector h and not on the location 

x, it is possible to estimate the semi-variograrn by means of 

(2.i) 

where z(x,).z(x,.~) are the exper imental values separated 

by the vector h. 

Figure 2.1 shows the variogram for the raw polar radar 

data. The variogram was calculated at 0.5km intervals from 

0.5km to 10.0km using all pairs of data. The entire data set 

was used in the analysis since it was assumed that the Mean and 

variance of the randorn spatial process was constant over the 

220 rnaps. Only points that had non-zero rainfall at positions x 

and x+h were used in the analysis. The variogram vas thus 

calculated using 130,000 data points. The sample mean for the 

data vas 1.19mm and the sample variance was 3.4mm2 . A straight 

line was fitted to the first two points on the variogram 

intersects the or1g1n at about 1.0mm~ or 29% of the variance. 

The variogram reached a maximum value at about 4km, therefore 

the Mean rainfall averaged over the area of a radar hln 15 

independent after this distance. 

In this study, it i5 assumed that the rneasured raintields 
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derived from the radar data represent fields that could have 

happened, thus removing from the discussion errors resulting 

from the very real sources arising from the Z-R conversion and 

other phys Ica l processes, for example evaporat i on and 

accretion. Therefore, it \s not unreasonable to make the 

further assumption that the errors in the radar-rainfall 

measurement process are Independent and additive. The 

measurement error predicted by the variogram could then be 

thought of as being comprised of errors inherent in the radar 

measurement of ralnfall and would be the lower bound for the 

actual measurement error which includes aIl the sources of 

error. 

From Table 2.1, the mean standard error for k = 2, using 

the peak reading algorithm is 58\ of the mean. This implies a 

measurement error variance of O.48mmL or 48% of the error 

variance. Therefore, the Observer's problem alone could account 

for about half of the observed radar-dependent measurement 

error in the Patrick Airforce Base radar. Since the operating 

parameters for thls radar are unusual, the error variance for 

other radars with a larger k would be expected ta be less than 

the 29\ of the total variance ln this case. 

Instantaneous rainfall rates are rarely used in 
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hydrological model11ng. Rather, ralnfall accumulations of 

between one hour and one month are used. Therefore, the 

measurement error of radar-based hourly rainfall 15 probably of 

more Interest than the Instantaneous measurement error. The 

five-mlnute polar rainfall maps were accumulated to form hourly 

ralnfall totals, and were siml1arly processed to form the 

hourly-rainfall varlogram for polar data of Figure 2.2. The 

first two points in the variogram vere used to extrapolate a 

straight line back to the origine The radar-dependent 

measurement error was lO.5mm2 or 15% of the measured variance 

of the polar data. 

40 
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1 0 
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Figure 2.1 Variogram for five minute polar data 
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In conclusion then, the Pat~ick Airfo~ce Base 

over-estimates the five-minute polar variance by 29% and the 

one-hour polar accumulation by 15%. These should be considered 

ta be the lower bounds for the total measurement error since 

they are estimates for the radar-derlved measurement error 

only, and do not include the other weIl known sources of error. 

It 15 clear however, that for the purposes of operational 

hydrology, climatology and as verlfying data sets for satellite 

rainfall estimates, rainfall estimates over larger areas are 

required. The mapping of the polar data into the Cartesian grid 

involves further averaging and it is therefore fluctuations in 

these areal estimates that are of concern. The following 

section will investigate the effect of further averaging and 

accumulation on the radar-derived measurement errors. 

2.4.3 Variance of the Estimate of Mean Areal Rainfall 

In general, rainfall maps based on radar data have 

undergone two further stages in data processing. Firstly, the 

data have been transformed from polar to Cartesian coordinate 

space, and secondly, the data have been accumulated over a 

period of time. This section develops a technique ta estimate 

the variance of the estimate of the mean areal rainfall rates 

for 5-mlnute and hourly accumulations and assesses the relative 
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Figure 2.2 Variogram for hourly polar data 

,.' 
importance of the averaging during these tvo steps. 

The variograms in the previous section show that the polar 

data are significantly correlated over distances of less than 

two kilometers. If Z(x) is a realization of a homogeneous 

stochastic process vith covariance function C, with 

IL. E(Z(x)} and aZ -uar[Z(x)] 
" 

Ripley (1981) showed that 

r-;iZ(x,) could be used te estimate 
C-I 

Z(A)- r z(x)~ 
)4 a 

vhere a 15 the area of A. 

The variance of this estimation vas shown by Ripley to be 

1 
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uar{Z - t(A)}- ![O' 2_ E (CCX. Y)}] 
n 

(2.5) 

where 

X,Yare independent uniformly distributed points in A. 

The var i ogram 2y(h). c(O)- c(h)- a2 -c(h) 

for aIl points h apart. From Figure 2.1 it is apparent that the 

variogram is plausibly stralght for 0 ~ Ihl ~ 2km. Therefore 

2y(h). 0'2_ E {CCX. Y)} 

where h is the Mean distance between the polar bins for all 

(X,Y) positions of the centers of the polar bins within the 

Cartesian pixel. The following steps were required to evaluate 

the Mean estimation variance 

1. The Mean distance between bins in the same Cartesian 

pixel was calculated for the particular pixel size, bin 

length, beam width and number of bins per pixel (n). 

2. This Mean distance was then used in the polar 

variogram to estimate 2Veh) and hence the estimation 

variance for each n. 

3. The frequencies for the various n in the Cartesian 

map were calculated and hence the Mean estimation 

variance over the entire map. 
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Using this method, it was found that the mean error 

variance for the estimation of the mean areal ralnfall over 2 

km pixels is approximately 75\ of the variance of the polar 

data for 5-minute and 71\ for the hourly rainfall. The maIn 

reason for the rather high error variance 15 that 82\ of the 

pixels in the map have 1 or 2 polar bins per pixel. The 

analysis vas repeated for 4 km pixels. The mean error variance 

for the Mean areal rainfall in this case WaS 36% of the 

variance of the polar data for 5-minute and 26% for the hourly 

ralnfall. 

From the above analysis, it i5 evident that for the Patrick 

Airforce Base radar, there is not much to be gained by mapplng 

the five-minute rainfall at 2km resolutlon out to 120km Erom 

the radar. At the hourly accumulation level, the radar i5 able 

to provide somewhat better rainfall measurements at the 2km 

resolution, but even 50 a 4km re50lution would be more 

appropriate. 

The Mean error variance is inversely proportlonal to the 

Mean number of polar bins per pixel, whereas there is only a 

30% decrease in the error attributable to the Observer's 

Problem as the number of samples per volume is doubled from 4 

to 8. Therefore, it 15 more effective to use the polar to 

f 
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Cartesian transformation to smooth the data, rather than to 

se lect a large number of samples per volume vi th a commensurate 

increase in bin size. 

The error variance estimated in this section 15 based on 

the assumption that the radar-rainfall maps are exactly 

cor rect, and thus once aga 1 n repr esent the error Inherent in 

sampling such a random field with a perfect Z-R conversion. The 

figures quoted here should therefore be considered as the lower 

bound far the errar var iance, a more complete analys is would 

have ta i nclude the Z-R conversion error structure. Gi ven the 

non-trivial errers in the radar-rainfall measurement, even 

under aptimlstic assumptions, it would be worth w~ile ta use 

this data set te develop a feel for the magnitude of the errors 

arising simply as a result of the different space and time 

sampling strategies of raingaugp. networks and satellite 

rainfall estimation schemes. The following tvo sections briefly 

simu1ate the sampling strategies of the raingauge network and 

sate 111 te measurement systems. 
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2.5 Raingauge Sampling Errors 

1 t was thought a pr ior i that sorne form of Kr iging .... ould be 

the most suitable method to interpolate the random 5catter of 

rain gauges onto the Cartesian gr id. The average var i ogram for 

the daily accumulations and the var iogram for the monthly 

accumulation i5 shown in Figure 2.3. From this figure i t ls 

apparent that daily convective rainfall has a correlation 

length of 14 km and monthly rainfall decorrelates over a 

distance of approximately 20 km. Therefore Kriging, vhich 

relies heavily on inter-station correlations will not yield 

anything more obviously useful than say, Thiessen polygons, 

which at least have the virtue of be ing easy to compute. 

Uniform random raingauge networks vere generated for 

networks of 25 through to 1,000 gauges cover ing an area of 

125,000 km2 . Twenty such networks were generated for each 

network 5 i ze. The val ue ot the 2km pi xe l that caver ed the ga uge 

position was assigned to each gauge. The Mean standard error 

was calculated for the areal rnean, Mean rain depth, rain area 

and rainfall variance for each network denslty using dally and 

monthly data. The rain variance was calculated using the 

"gauge" data only. 
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Figure 2.3 Average var iograrn for daily and monthly ralnfall 
expressed as a fraction of the measured var lance 

The mean standard errors as a function of gauge densi ty for 

dal1yand monthly ralnfall are shown in Figures 2.4 and 2.5 

respectively. Of the four statistics calculated, the rain 

var iance had the largest standard error. For example, the error 

in the var lance measurement of da i ly ra 1 nfall 1s 30% for the 

network of one gauge per 140 km~. It \iould seern therefore, that 

ralngauge networks have difficulty estimatlng the second 

moment, as pred 1 cted by Schertzer and Lovejoy (1987) who 

postulate that the second moment 15 not defined. The mean areal 

monthly rainfall estimated using only 100 gauges had an error 
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of approximately 8%. Therefore, sparse ra 1 ngauge net .. orks are 

able to provide reasonable est imates of mean areal monthly 

rainfall, partlcularly ln areas where the ralnfall 15 not 

affected by strong local processes. 
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Figure 2.4 Mean standard error for dally mean areal ralnfall 
over 125,000 km', mean rain depth, area, and 
var lance vs ra ingauge network dens i ty 

2.6 Satellite Sampling Errors 

The 1000 radar rainfall maps ln the data base were 

accumulated lnto hourly, daily and monthly totals of ralnfall. 

There .. ere t .. o days in the data set vI th no radar data and 

these .. ere assumed to have had no ra 1 n. Th i sIs probably not 

true, but in the s plr 1 t of th Is slmulati on clear ly could have 

happened. For each number of overpasses per day, equally spaced 

34 
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5-mlnute maps vere selected, startlng from midnlght. These maps 

vere then used to calculate the areal daily rainfall over the 

480 km dlameter area covered by the radar. The simulation vas 

repeated by startlng the sequence 5 minutes later untll the 

second time-slot of the original sequence was reached. The 

dal1y totals for each simulation vere accumulated over the 20 

days ln the set to yield a nurnber of "monthly" rainfall totals 

fOI each sampling frequency. The mean standard monthly error 

vas calculated using these monthly totals. 
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Figure 2.5 Mean standard error for monthly Mean areal ralnfall 
over 125,000 krn2 • mean rain depth, area and variance 
vs raingauge network density 
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It is weIl known that existing satellite ralnfall-measuring 

techniques have more success in delineating the rain ared than 

estimating the instantaneous rain rates. The infra-red and 

visible data can estimate respectively cloud height and optical 

thiekness, which can be used to predict whether the cloud 15 

ralning. Although there 15 sorne correlation between height and 

ralnfall rate for raining elouds, it turns out to be 

insufficient to determine partieularly high rainfall rates, 

sinee many elouds that are just as high as the raining cloud 

show either light or no rain ( Lovejoy and Austin, 1979). 

Therefore, the simulation was repeated uSlng the mean 5-minute 

rainrate for the 670,000 instantaneous radar rain measurements 

in the data set. 

Figure 2.6 shows the 25, 50, and 75 percentiles for the 

daily errors using the 20 days. The proposed TRMM sampllng 

frequeney is two visits per day. For daily rainfall, the TRMM 

will have a 130\ error. The mean standard error for 30 minute 

sampling inereases from 7\ to 32\ if the satellite measures 

rain area only. It would seem then, that there i5 little to be 

gained by measuring the mean areal rainfall more frequently 

than at 90 minute intervals if the sensor can measure raining 
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area only. However, for a perfect instrument, the error 

approximately halves when the frequency 15 increased from 16 to 

32 vls1ts per day. 
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Figure 2.6 The 25, 50, and 75 percentiles of the errors for 
daily areal rainfall vs number of overpasses per day 

Figure 2.7 shows the 25, 50, and 75 percent11es of the 

errors for monthly totals. The TRMM error for th1s data wou1d 

be approximately 22% if the entire area was covered by the 

satellite at each overpass. It is interesting to note the large 

spread in the estimation error for fewer than eight overpasses 

per day. This compares rather unfavourably with the 8% reported 

by Shin and North (1988) using the GATE data set. It was 
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thought that the difference was probably due to the fact that 

Florida rainfall is more intermittent than that observed dur1ng 

the GATE exper iment, s Ince the GATE expe riment was conducted 1 n 

the Inter-tropical Convergence Zone (ITCZ) which 15 known ta 

have less intermittent rainfall than Florida. The 

auto-correlation function for mean areal rainfall over a (360 x 

360) km area was calculated and is shown in Figure 2.8. It 15 

evident from this Figure that the decorrelation time 1s of the 

order of 3 hours if the zero rain rates are included and 2 

hours if they are excluded fram the analysis. The mean areal 

rainfall for the period 8th August to 30th August was 0.1 mm/hr 

with a standard deviatian of 0.3 mm/hr. The probabllity of zero 

5-minute rainfall over the area was 0.86 for the period. Theflf' 

statistics are quite different from those calculated for the 

GATE data where the decorrelation time for a (280 x 280) km 

area was found to be 7.7 hours (Bell et al, 1988). 

Decreasing sensor resolut ion was simulated using the 2 km 

resolution radar data to calculate the Mean areal rainfal lover 

4, 8, 16, 32 and 64 km pixels. These hourly and daily rainfall 

maps were then resampled at the 2 km resolutlon, and used to 

calculate the rain variance, mean depth and area withjn a 

portion of the original rainfall map. The results for hourly 



39 

and dally accumulations are shawn in Figures 2.9 and 2.10 

respectively. The 64 km pixel data introduces a seriaus bias in 

the rain area, 700% for hourly and 300\ for daily data, with a 

commensurate drop in the mean areal rain rate. 
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Figure 2.7 The 25, 50, and 75 percentiles of the errors for 
manthly areal rainfall vs number of overpasses per 
day 
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ralnfall using a 4, 8, 16, 32, 64 km resolution 
sensor, expressed as a percentage of the statistic 
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2.7 Conclusions 

Exarnination of the statist1cal and sampling prob1ems 

assoclated with weather radars in general, leads us ta be11eve 

that the data from the Patrick Airforce Base radar, when 

combined to give hourly accumulations on a Carteslan grid of 4 

km, estlmates the actual mean areal rainfall over a pixel with 

a variance equal to 26~ of the variance of the hourly polar 

data. The analysis also suggests that the optimum recording 

strategy for radar data 1s to record at high spatial and 

temporal resolution, with few independent samples if necessary, 

and then average during the polar-to-Cartesian conversion and 
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time integration using an appropriate pixel size. The usual 

strategy of comblning a large number of polar data w1th 

exponential averaging not only produces 10"" spatial resolut10n 

data, but also does not remove the majority of the statist1cal 

fluctuations. 

The random sampling error of the radar is substantlally 

reduced if the data are accumulated over perlods as short as 

one ho ur provided the radar sampling per10d 15 set at five 

mi nutes. The systema t lc b i as w i th range 1s potent 1 ally more 

serious and can be reduced by restrictlng the effective range 

of the radar. 

Convective ra1nfall in FIor ida 1s intermi ttent even when 

averaged over 124,000 km2 . Therefore, the measurement error for 

perfect instruments increases sharply as the frequency of 

observation decreases. Exceptionally dense raingauge netwarks 

are required to measure daily convective rainfall. For example, 

a random net...,ork with a gauge dens1ty on one gauge per 625 km2 

would yield estimates equivalent to the 3D-minute area-only 

instrument. The 3D-minute perfect instrument 15 equivalent ta a 

gauge densi ty as high as one gauge per 150 km 2 . 

The picture improves somewhat for monthly areal mean 

ralnfall. The proposed TRMM sampling frequency of twlce per day 
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vould be expected to give errors of the order of 22\ if the 

satellite covered the entire area with each overpass. Rainfall 

patterns tend to be clustered in space and therefore the 

measurement errors for a system that only partially samples the 

area v1 th each overpass are 1 ikely to be larger than this. A 

30-mi nute area-only instrument vould have an error equal to 

approximately 3\ assuming that the climatological mean rainfall 

rate g1ven that i t is raining i5 knovn for that area. 

The ra i ngauge netvork vi th a dens 1 ty of one gauge per 2,500 

km 2 estimated monthly mean areal rainfall vith an error of only 

8\. This could be partially due to the fact that the monthly 

rainfield is fa1rly smooth since there is no significant 

topography in the radar coverage area and apparently fev local 

dr l vi ng mechanisrns. l t i 5 clear the betveen 8 and 16 v i5i ts per 

day are required to meet the stated TRMM objective of measuring 

monthly mean areal rainfall vi th better than 10\ error over a 

(500 x 500) km area. The ma1n contr 1bution from the TRMM 

exper iment would then be ta est1mate the climatolog1cal mean 

ralnfall rate (given that it 1s raining) vhich could then be 

u5ed in conjunction vith the geostationary veather satellites 

to provlde the required estimates. 
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Prolegomenon to Chapter 3 

Esumal.C\ of mcan areal rrunfaJl arc rcqUlrcd as basIc mpul lOLO hydrological models used LO model Ibe transformauon of 

ralOfallmlO river n{)w. The bulk of the sc areal ramfaJl esumatcs are based on effecuvely point ramgauge measurements 

and thercfore the arcal raJnf..t.lll~ anly known la wltlun same faIrly large error margm. A major problem LO be 

ovcrcome when a!ùc~\lOg the errar ln an e!>tlmalC of areaJ ramfall, IS thal the truc areal rrunfallls nol known. Two 

corn mon .tppro:lLhl''> to Lhl'> probJem ruve been to clther usc a dense rrungauge network 1 la eSlJmate the true areal 

ramfall, or to U'>C ..1 \toLha\UL modeiLo gcneralC a \ynthcuc ramfield2. Damant, et al 19833 were posslbly the first to 

u'>C radar c,>tllllate\ of Jfeal fJ.lIlf .. J11 J~ mput data ta such a slmulallon. Chapter 3 will bUild on mis work and will 

Il1vc!>tJgalC the rnllucnlc of the gcomelI)' of VanOU$ rawgaugc networks and ramfield characICnsucs on the mcasurcment 

l'rror 11\ areal ramJall c\uIlIJte.., ba...,~d on gJ.uge\ aver large arcas. 

Hcndm:k, R C., and G.M Corner, 1970: Spacc vannuons of precipitauon and implications for ramgauge network 

dc.\rgn J of H ydrology 10' 151·163. 

., 
- Wlbon, C B , J il V.lJtb . .Inti 1 Rodrrgucz-Iturbe, 1979' On the lOt1uence of the spaual dlstnbuUon of nunfall on 

~LOrlll runntf W.lter Rc~ùurcc, Res IS {2) 321-238. 

3 Damanl, C . G L Au\un, A Bellon, and R S Broughton 1983. Errors 10 the Thlessen techmques for esumalmg 

..ln' al ram amounl3 u~1I1g wc.ILher rau..lr data J. of Hydrology, 62, 81-94. 
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List of symbols in Chapter 3 

Radar reflectivity (mm6, m3) 

Rainfall intensity (mm/hr) 

Mean standard errar (mm) 

Estimated mean areal rainfall (mm) 

Actual mean aceal rainfall (mm) 

Nonnalized error for esumalCd mcan areal ramfall 

Distance weighung funclIon for a gauge at a dIstance d 

Average nearest nelghbour dlstancc for the gauge network (km) 
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Chapter 3 

Sampllng Errors for Raingauge Derived Mean Areal Daily and 

Monthly Rainfal~ 

3.1 Abstract 

Radar data from two geographical locations are used ta 

simulate the mean standard error in using a sparse raingauge 

network ta estlmate daily and monthly mean areal convective 
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'2. 
rainfall aver dreas ranging from 45,000 to 180,000 km . It was 

found that a network with a regular configuration gave somewhat 

less variable errors than the uniform random raingauge network, 

although the mean errors were very sirnilar. The difference 

became more pronounced for the very sparse networks. The mean 

standard error for a particular network and rainfield was found 

to be a funct ion of the number of gauges in the network, the 

raining fraction of the area and the ratio of the standard 

deviat ion over the mean of the non-zero portion of the 

rainfield. A simple three parameter relationship was proposed 

to re late the mean standard error, expressed as a percentage of 

the mean areal rainfall, ta these variables. It was faund that 

1 By A.W. Seed, G.L. Austin and R.S. Broughtan 
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a single relationship was able to explain 63\ of the 

variability in the estimated Mean standard estimation errar, 

combining data from bath regions. Finally, the domain over 

which the relationship is able to make reasonable predictions 

is discussed, the principal constraint being that the raining 

fraction of the area should not exceed 0.5 for networks wlth 

more than 200 raingauges. 

3.2 Introduction 
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In spite of the heavy emphasis that the modern literature 

places on various exotic rainfall measuring systems, the old 

fashioned raingauge still provldes the bulk of the rainfall 

data ta practlsing hydrologists and cllmatologlst~ throug~Jut 

the world, and will inevitably have a major role to pldy in 

calibrating the new generation of rainfall estimatlng 

satellites as weIl as weather radars. This lS slmply dup ta the 

length of record that exists for the raingauge as compared with 

the radar for example. The accuracy of raingauge derived rnean 

areal rainfall needs ta be understood before gauge data can bp 

used as ground truth for satellite or radar rainfall measurlng 

systems and operational stream flow forcasting. A funddm~ntal 

question that has ta be asked therefore, 15 how weIl can a 

raingauge network with a particular geornetrical configuratlon 
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measure Mean areal ralnfall over fairly large areas. 

Given the long history of the raingauge, it is surprising 

that we are as yet unable to measure rainfall with high 

accuracy, even at a point. Rainfall measured by a .r::aingauge is 

strongly dffected by small scale wind effects and local 

turbulence around the ltp of the gauge. The local topography 

surrounding the gauqe, particularly the slope and aspect aiso 

affect the gauge measurement e.g .. Rodda (1971). Rodda compared 

the annual rainfall measured by pit gauges and standard gauges, 

and found that the standard gauge measured up to 30% less 

rainfall in sorne parts of Britain. It is interesting that this 

Is the arder of dlscrepancies between gauges and "weIl 

ca 1 ibrated radars" (Bellon and Austin, 1984). Once the gauge 

desIgn and sltlng guidelines have been established, the best we 

can hope for lS sorne relative measure of rainfall. 

The accuracy with which a gauge network can measure 

rainfall depends on the variability of the rainfleld and the 

geometric organization of the network. In areas where 

physiographlc factors, distance from the sea, alticude and 

rain-shadow effects, for example, influence the rainfield, the 

network configuration should be analyzed in the space of these 

variables rather than the more usual Cartesian space. Seed 
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(1987) used multidimensianal cluster analysis ta Identify 

homogeneous physiographic regions when mapping convective 

rainfall in a physiographically complex reglon of Natal, South 

Africa. The gauge network as it exists in Natal has the cinssie 

problem that it i5 the mountainous areas that have the hlghe~t 

rainfall and river runoff, and therefore are hydrologlcally the 

most signiflcant areas, but a]so have virtually no ralngaugeR 

due ta the practical prablems involved in sitlng and 

maintaining the gduges. 

This study uses a large quantity of radar data from both 

Florida and South Africa to estimate the measurement error for 

da lly and rnonth ly ra i nfa Il aecumu la ti. ons ove r l,n'je area sa:, d 

function of the network organizatlon and denslty. In partlculdr 

two questions will be addressed, viz. 

a) To what extent do the errors in estlmating mean areal 

rainfall ovel large areas depend on the network configuration 

as a random or rectangular array? and 

b) What are the network and rainfield characteristics that 

influence the estimation error? 

3.3 Basic Data Processing 

Radar data continuously archived at the Patrick Air l 0rce Base 

(PAFB), Flortda, U.S.A. during the period from the 8th to 30th 
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August 1987 and a SVlTIDier of radar data from Ne lspru i t 1 South 

Africd were processed into 5-minute rainfall maps. The raw data 

tapes were read and the digltized radar reflectlvities were 

transformed into rainfaJl intensities by means of the 

Marshall-Palmer relationship 

Z :: 20 OR1 6 

The ralnfall amounts were then mapped ont a a Cartesian 

coordinate system with a 2km pixel. 

Each polar data pojnt falling wjthin a Cartesian pixel was 

converted into the equivalent rain rate before the mean rain 

rate over the pixel was calculated. The resulting maps were 

lnterpreted as if they vere true rainfall rates based only on 

the eleclrical calibration of the radar without being 

ralibrated against the existing gauge network. For the present 

study we will argue that while the radar may not represent the 

actual rainfall that {ell during the lwo periods, ie i5 a 

plausible realiz~tion of the same random process, and therefore 

has the same statistical structure. 

Tva types of raingauge networks vere generated for this 

study, regulaI, and uniferm random networks. The uniform randem 

networks were q~nerated using a uniform random distribution for 

the two coordtnates of the gauge lucation. The locations were 
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constralned 5uch that the distance to the nearest neighbour vas 

at least akm. Each gauge vas assigned the value of the map 

pixel at the gauge position, vith no attempt ta simulate 

sub-resolutlon va~lability. These "gauge measurements" were 

then used ta re-create the rainfields and the original and 

estimated fields were compared. 

3.4 Selection of the Raingauge Interpolation Scheme 

A large variety of methods are available when interpolatlng 

from a random scatter of data points in an area onta a regular 

grid. Perhaps the first ûf such methods vas published by 

Thiessen (1911) and Thiesspn polygons are still wide]y used in 

hydrology today. There are basically twa types of intprpolation 

schemes, local estimation where only the known points in a 

re5tricted neighbourhood are used ta interpalate onta an 

unmeasured point, and global estimation techniques whtre the 

entire set of points are u5ed, often by means of a lea5t 

squares regression. 

T~end surface and multiple reqression techniques are 

commonly applied to annual, mean monthly, and me~n annual 

rainfall where the rainfield 15 non-zero at aIl pOlnts ln the 

map area. Examples of such methods include Hutchlnson (1968) 

vho rnapped mean annual precipitation ln New Zealand and storr 
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and Ferguson (1973) who mapped mean annual precipitation in 

British Columbia, Canada. AIl these ~egression methods are 

fairly sensitive to the spatial distrIbution of the rain 

gauges, partlcularly near the edges of the map area, see 

Whitten (1975) Eor a discussion on this problem. 

Local estimation techniques use the known values withln a 

smdll neighbourhood ôround the point ot Interpolation. There 

are a great number of operational schemes in use, particularly 

in the field of computer generated contour mapping. McLaio 

(1974) Ijgts a number of schernes that were common at that time. 

l The underlYlog assumption of these techniques is tha~ data are 

more llkely ta be useful if they vere measured near the point 

of interpolation. Delfiner and Delhomme (1975, p~6) made the 

follo~ing interesting comment vith reg~rd to distance weighting 

schemes: 

"Clearly, no general rule can be derived from 

experiment on particular data and point configurations. 

Consequently, the choice of a distance weighting 

function i5 morè or less a matter of personal belief, 

o[ tradition or of confidence in the advice of 

'influentlal dl.n:horities' " 
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Although distance weighting schemes suffer from a certain 

arbitrariness in the selection of parameters, Ripley (1980) was 

able to show that in order for the interpo1ated surface te be 

smooth ln the nelghbourhood of the data points the derlvative 

of the weighting function must tend to zero as the dIstance te 

the pOint tends ta zero, and that the function sheuld dpcay at 

a rate faster than the inverse square of the distance. DistJnce 

weighting schemes also do not cope weIl wlth clustered dQtA 

although ad hoc solutions can be used ta remedy the sltu~tinn. 

The so called optimal interpolation techniques wh!ch ar~ 

deslgned te mlnlmize the variance of the interpolation error 

are another major class of local interpolators. This class oL 

interpolation techniques include the varlOUS fldvours of 

Kriging, and methods proposed by Gandin (1965) and Ripley 

(1980). These techniques do in fact out-perform most of the 

other interpolation techniques, see Creutjn and Obled (1982) 

and Tablas and Salas (1985) for comparative studies. Howevel 

problems are experienced when the rainfield has zero rain 

rates, the "hale effect" in Kriging parlance, which re4uires 

special treatment e.g. Creut!n (1988) and they are far more 

expensive in computer time than the other techniques. 

The validity of any interpolation scheme has to be seen 
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against the extrerne variability in the short-duration 

accurnulated rainfields. The observed existence of extrerne 

gradients and a generally discontinuous behaviour with rain 

often falling over less than 10\ of the area, leads te the 

conclusion that any interpolation technique will not show great 

accuracy in these cases. It i5 only recently that the 

Meteoroloqical cornmunity has started to deal with the extreme 

interrnittency of rainfall and cloud fields as cornpared with the 

more traditjonal variables of ternperature, pressure and wind. 

The underlying cause for this extreme variab1lity 15 the 

drastlc non-linearlty involved in cloud and rain formation. The 

response from a hydrological point of view 15 to exercise 

extreme caution about the likely accuracy of any interpolation 

sch~me, including those of great mathematical complexlty. 

So then, a method must be selected out of this plethora of 

competing interpolation schemes. Since a large nurnber of maps 

will be generated, over 100 for each network density and 

configuration, using up to 1000 gauges, the method must be 

above aIl fast. This more or less restrlcts the selection to 

fairly crude distance weighting and Thiessen polygons. However, 

it Is interesting ta note that both Tabies and Salas (1985) and 

Cleutin and Obled (1982) found that these crude rnethods did not 
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perform much vorse than the more sophisticated ~ethods, and 

gave falrly satisfactory results for interpolation accuracies 

at a point. Hore recently, Lebel, Bastin, Obled and Creutln 

(1987) 1 est imated the accu-racy of the va ri cus techniques in 

measuring mean areal Iainfall ovez: several hundreds of square 

kilometers for hourly data, and found that Krlging had 

approximately 25\ less measurement error variance than Thiessen 

polygons for a catchment of 545 km2 and a dense raingauge 

netvork, 

A casual examjnation of a rainfield interpolated by meall~ 

of Thiessen polygons will be sufficient te convince one that 

the technique does not produce aesthetically pleasing 

rainfields. The comparative analysis between regular dnd random 

gauge netverks will be done using Thiessen polygons, in the 

interests of reducing the computer time. Thereafter, a distance 

welghting techntque will be used to estjmate the measurement 

error variance as a function of network density and averaging 

area. Finally, a relationship using raining area, number of 

gauges, and the variability of the raintield will be used to 

predict the mean standard error in mean area) daily rainfall 

estimates. 



1 57 

3.5 Random vs Regular Raingauge Networks 

Since this study was exploratory in nature, and the 

computer time requirements were substantlal if the entire data 

set ~ere to be analyzed, seven 24 hour accumulations were 

chosen as the "truth" for the study. The maps Included one day 

of intpnse convective rainfall, but with a small rain drea 

WhlCh was expected to provide the largest errars. The mean 

standard erlor 

mse = (3.1 ) 

where 

Y, 1S the estimated mean areal rainfall l1sing the i th 

gauge network and 

Y, is the actual mean area1 rainfall for that day, 

was calculated for each of the 7 days in the data set using 

nlne ralngauge networl<s. Figure 3.1 shows the maximum, median 

and minimum ruse as a function of networK density using random 

and regular network confjgurations. The random network gave a 

1 arger meù ldn and ma x Imum mse f or the 7 days analyzed. 1 n 

particular, the maximum mse for the random netw-ork 

conflguration increëlsed more quickly than the maximum mse for 
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the regular network as the network dens i ty 'Was decreased. 

The errors for each of the n ine networks for each of the 7 

days were normalized by means of 

The cumulative distribution of € for the 900 km per gauge 

dellsity network i5 shown in Figure 3.2. From this figure lt 15 

clear that the random net ... ork configuration producE's longer 

tails, particuli3r1y on the over--estimation tail. The 

under-estimation taïl is constrained by -100 by construction, 

the worst underestimation posl:.ible is to m~asure none of the 

rain that fell on that day. 

It is interesting ta note that the rate at \rIhich the 

maximum mse decreases \rIith increasing gauge density is 

noticf:ably faste! after 400 km 2 per gauge, a mean spaclng of 20 

km. The probat..ility of the raingauge nebrork making cl drasUe 

error rapldly decreases once the network dens l ty exceecis 400 

km 2 . Therefore, although the rate at WhlCh the Inse decreases 

with increasing gauge density i5 depressingly slo...,; thE' dense 

network at 1east has a f.a i r ly constant error from one day to 

the 



next, in contrast wilh the sparse net'Mork situation where the 

max unum et r or can eas J ly be tw i ce the mean error for a 

particular rainfield and network. 

An examinatlon Ot the mse for the various days and gauge 

densitjes revealeà that the days "jth a large rain area in 

genera l had a 10'"' errer and thase wi th small rain areas had 

h\gh errors. Figure 3.3 shows a plot Ot errar versus rain area 

for network densities of 100, 200 and 900 kma per gauge using a 
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regular network design and Thlessen polygon interpolation. The 

dependence of error on rain area Is stril<ing. Therefore, the 

rain gauge network would tend to have lower €3timatlon errors 

on the days of heavy mean areal rainfall sinee raln area alone 

is able to account for most of the mean areal ralnrall ViHtanCp 

(Rosenfeld, Atlas and Short, 1988). The denst' net'Nork I.'d~; les::> 

sensitive to the rain area since t.he network was able to sample 

even very sparse rajnfields with good probability. 

3.6 Mean Standard Error vs Network Density 

The distance we\ghting function 

where 

w(d,) Is the weighl of the l th gauge a distance dl 

away ç and 

(3.3) 

a 15 the average nearest neighbour distance for th!:' 

network 

vas used to generate daily and monthly riiinfaii maps fo~ thp. 

Florida and Nelspruit data. ThE" Nelspruit data had cl mèlximum 

range of 120 km 50 the areal mean rainfall rOl 44,000 km 2 was 

calculated using 16 days for Nelspruit, and 7 days for Florida, 
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Ft gure 3.2 Cumulative distribut10n of norrnallzed errOIS ln the 
estimation of mean areal rainfall over 180,000 km2 
uslng Thlessen polygons vith regular and ran~om 
ralngauge networks 
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Figure 3.3 Estimation errar as a function of rain area far 
various network densities 
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Figure 3.4 Erro~s in the estimation of mean areal daily 
rainfall over 45,000 km 2 using distance weighting 
interpolat ion 
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and nlne different gauge networks. The entire simulation took 

six hours of CPU time on a super-mini computer. Figures 3.4 and 

3.5 show the error dS a functlon of qauge network denslty for 

ddlly and monthly data regpectively. From these Figures It 1.S 

apparent that Nelspruit has intE'Ipolation erro!"s that are 

approxlmatelya factor of 2 higher for monthly ralnfall and d 

factor 4 hlgher f0! daiIy rainfall. The ratio of standard 

dcviation over the mean 2 km mean areal rainfall was 1.5 for 

Florida and 2.47 tor Nelsprult, the mean number of rainlng 

pixels per day 'Jas 2500 for F'lorida and 3000 tor Nelspruit. lt 

sepms then, that the raingauge net1Jork error 15 quite sensitive 

ta the relative variabj lit Y of the rainfield, not an unexpected 

resul t. 

3.7 Mean Standard Error vs A ver ag i ng Area 

'rhe Florjda data were used ta determine the error for 

mùnthly mean areal rainfalJ over: 4:',OOOp 1001'000, dnd 180 .. 000 

Km2 as a fl1liction of network density. For sparse networks, the 

correlation between any two raingauges 15 likely ta be 51ight, 

and therefore the measurement error 1 expressed as the mean 

stdndard error, would be expected ta be inversely proportional 

te the square- root of the number of gauges ~ independent of the 

averaging area. Figure 3.6 sho1JS a log-lJg plot of measurement 

1 
.1 
1 
1 

: 
l 

j 
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etIOr verses number of gauges for the three averaging areas. 

Unfortunately, the maximum range of the radar at Nelsprult 

limited the coverage area to 44,000 krn2 and therefore it vas 

not possible to repeat the analysis for those data. Whlle the 

resul ts fr om an ana lys i s us i ng onl y one monthl y mean area l 

rainfall map can hardly be considered cOllclu3ive~ Figure 3.6 

5uggests that errer 15 indeec't independent of averaglng att~a, 

provided the net,.,ork 15 sparse j/1 the sense that the IO€'<1n 

correlation between any t'JO gauges j S small. rt should also be 

noted that the q'auges in the various net'Norks Viere deployed 

over the entire averaging area. 
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3. $3 Mean Standard Estimation Errol: for Daily Mean Areal 

Rainfall 

From the above analysis, it 15 apparent that the estimation 

errar tor mean areal ralnfall over large areas dnd sparse 

net",orks, the mast commun kind of net'\:lork. 1s a function of the 

number of gauges, the fdlnlng area and the variabllity of the 

non-zero fraction of the ralnf1eld. A function of the forl1l 

-06 F=(cz4-bV)N ·-cA (3.4) 

where 

E == mean standard errar expressed as a perc:entage of 

the areal rnean rainfall 

v =- !3tandard devldtion ,1 mean 

A -- ralning area / total area 

N = the number of gauges in the network, and 

a, b, c are emp i r lca 1 constants to be est ima ted tr om the 

data 

W'ould seem a reasonable first guess, assuming that N and V have 

no lnfluence on c. 

t\ least-squares fit \Vas undertaken for the 16 days of 

Nelspruit dala and 7 days of Florida data fi~st separately and 

then using the combined ddta set. Table 3.1 gives a summary of 



the three sets of parameters and Figure 3.7 plots the estlmated 

vs predicted E using the combined data set parameters. 

From Table 3.1 It can be seen that the a and c parameter!3 

were very s imi lar for all three data sets. The second 

parameter, b, vas posslbly badly estimated in the Florlda ri'i~)e 

since the 7 days used in the analysis al! han very ::;imilar, 

relatively 10\1, variabllity. Since the re<)ref'slon \lias based on 

estirnates of the mean standard error, which itself ha& a large 

variance, the regression w.as able to estimate E surprisingly 

weIl in explalnjng 63% of the variance of E. The model has the 

interesting property of predicting negative errors when thE' 

raining fraction exceeds 0.5, the relative variability of thf' 

field is 10w, 1.4 say, and N 18 of the orùer :200 or greater. 

Clearly, the errar function is not able tü make predlctlow; Hl 

this domain. 'l'he lover limit for the raining fractIon (A) 

appears to be somewhat Jess than 0.05. the lover limit for A in 

the combined data set. The data set to hand only bad blo days 

vith A greater than 0.5, makinq it impossible to explore thls 

domain more thoroughly. 

Of course, the actual measurement el ror f or agi ven 

rainfield and netvork can ratheI easily be very much higher 

than the mean measureIl'\ent errar, the var: lance of E 1 ncreas ing 
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as the mean jncr.eases. A complete description of E must 

therefore include an estimate of the variance OI preferably a 

descrjption of the probability distribution. 

Table 3.1 Summary of the model fit ta the Nelspruit, Florida 
and combined data sets 
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Figure 3.7 Predicted vs estimated mean standard error 

2 Influential authoritles, e.g. Adams (1979) cla!m that this 
value has a deep slgnificance 
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3.9 Conclusions 

In conclusion then, it has been tound that the regular 

networks were s ome..,hat better than the un i form rand om ne t wor kg, 

in 50 far as the variance of the estimation err.or tenclE'cI t.o be 

loyer for regular networks, particularly for the more 5pal~\!' 

networ){s. As the number. of gauges increased, the di f ff'r~nce 

between the two configurations, as expected, diminishprl. 

The mean standard esUrnatiofi erl'or is independent ot th" 

averaging ar.ea if the gauge density ls expressed as the nurnber 

of gauges in the network and not in square kllometers pel' 

gauge. This only holds true when the density of the net..,ork is 

less than one gauge per 15 Km, in which case the inter-station 

cot:relations can be ignored. Since thjs Is of the arder of the 

correlation length for convective rain[ields f one cou Id 

speculate that thi3 result, suitably scaled by the correlatIon 

length, can be applied to shorter rainfall accumulations over 

smaller dreas. 

After the number of gauges in the net'j/ork, the raining 

fraction of the area covered by the network Y/as found ta 

significantly affect the network measurement error. In gencra], 

the sma11 rain are'lS gave the largest rnean measurement errar, 

once again this effect is greatest fOl the more sparse 

68 
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networks. A simple model to predlct the mean standard 

measurement error given the variability of the rainfi~ld, 

nurnber ot gauges in the network and, the raining fraction of 

the a r ea covered by the net"-,or k "-,as proposed. The mode 1 "-,as 

able ta expIa in 63% of the var iance in a combined data set 

using data from South Africa and Florida. Two of the th.ree 

parameters were qui te s imilar vhen estimated from the South 

Afr ican and FloT. J.da data separately. 'fhe nature of the model i5 

such that i t is unable to predict measurement errors for 

raining tract ions that exceed about 0.5, except when the number 

of raingauges less t.han about 200. 
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Prolegomenon to Chapter 4 

Since the conversion of ramfall into runoff by a river catchment is a spatially averaging process, and since point-rainfall 

measuremcnL'i in gcncraJ are the only data available to hydrologists, the transfonnation of pomt-rainfall statistics into 

equlvalent areal-rainfall staUStlcs Îs of fundamental concem 10 hydrologists. This concem is particularly important ln 

the case of cstJmaling exrtreme events for the design of drainage systems. The normal situation is 10 know for example 

the 50 ycar rclum pcnod for 1 hour accumulation at a poInt from raingauge data. What the designer requires IS the 50 

year rctum pcnod accumulation aver the catchmcnt arca of the culvert Empirica1 methods to effect such a 

transformauon have ln the past becn based on raingauge nctwork data usually from geographical regions located far from 

the locatIOn of the lI1~tallaUon 1. Il would secm that radar data, wllh Its excellent spatial resolution. is a ralher natural 

data source for such a sludy Chapter 4 uses radar data as a basis for an emptricaJ investigation into the sensitlVlty of 

the ramfall probahllJly dl~tnbuLJon to averagmg arca. 

U.s Wcathcr Bureau. 1957-60: Ramfall inlensity-frequency regime, Part 1; the Ohio Valley; Part 2; southeastern 

Umted States, Tech. Paper No 29, U.S. Departmenl of Commerce, Washington, D.C. 

, 
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a,b 

List of symbols in Chapter 4 

Mean areal rainfall depth over (2 x 2) km area (mm) 

Mean areal rainfall depth over (n x n) km area (mm) 

Empirical constants 
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Chapter 4 

On the Sensitivity of the Rainfall Probability Distribution to 

Averaging Are~ 

4.1 Abstract 

An empirical investigation on how the probability 

distribution of mean areal rainfall responds to varying degrees 

of spatial averaging was undertaken. Twenty one days of 

5-minute radar rainfalI data were collected at the Patrick Air 

Force Base, Florida, U.S.A. During August 1987. These data were 

processed into maps of 5-minute, hourly and daily rainfall. The 

maps were then successively averaged, and the probability 

distributions for the varlous scales of spatial smoothing vere 

calculated. These distributions were then used ta estirnate the 

raln-rate for various levels of exceedance probability. A 

function was fitted to describe the rnapping of mean areal 

rainfall from one scale ta the next whilst keeping the 

exceedance probability constant over the scale change. The 

analysis was repeated for two meteorologically different 

1 By A.W. Seed, V.T.V. Nguyen, and G.L. Austin 
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events, namely 12 consecutive hours of general rain and 12 

consecutive hours of heavy convective rainfall. It vas found 

that a pover-lav closely f1ts the mapping of the probabillty 

distribution over changes in the scale of measurement. The 

parameters for the transformation vere found to be dependent on 

the characteristics of the meteorological system that produced 

the ra1nfields. This approach 1s believed to be more convenient 

for practical applications than previously available 

techniques. 

4.2 Introduction 

A knowledge of the point to area transformation of the 

rainfall distribution is essential to the hydrologist when 

attempting to apply statistics derived from point rainfdll 

measurements to Mean ar.eal rainfall. This situation arises 

frequently since Most rainfall estimates are made from sparse 

gauge networks. The question to be ansvered in pOlnt to areal 

rainfall transformations is: "Given the point rainfall for a 

certain level of probability at an arbitrary point on the area 

, what is the average rainfall over the area for the same level 

of probability?" (Raudkivi, 1979, and Nguyen, 1984). For many 

years areal reduction factors (ARFs) have been used to 

transform the point rainfall depth into an equivalent Mean 



74 

areal rainfall. Perhaps the most widely used of these have been 

the U.S. Weather Bureau (1957) curves, details of which can be 

found in Bras and Rodriguez-Iturbe (1985). 

More recently , Rodriguez-Iturbe and Mejia (1974) developed 

a methad that used either an expanential or Bessel correlation 

structure together vith an estimate of the mean distance 

separatlng two random points within the area to calculate the 

ARF. Myers and Zehr (1980) fitted surfaces in area-duration 

space ta five different gauge-pair statistics to estimate the 

upper and lower bounds of the first and second moments of the 

annual maXImum mean areal rainfall series. These moments were 

then used to estimate the mean areal rainfall depth for various 

return periods, and hence the ARF for each return period used. 

Nguyen (1984) assumed that hourly rainfall accumulations had a 

mixed dIstribution vith the non-zero rainfall values 

dlstributed as exponentlal, non-identical, non-independent 

random variables. Nguyen was able to derive an expression for 

the dIstrIbution of the areal mean rainfall and hence the ARF 

for any exceedance probabillty. Niemczynowicz (1984) developed 

ARFs for short duration, l to 40 minutes, and small areas, up 

to 25 km2 using 12 gauges to cover an area of 25 km2 in the 

central part of Lund, Sweden , over a period of three years. 
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Previous stud ies ( see e. g. Myers and Zehr, 1980; 

Niemczynowicz, 1984) have found that the ARF depended on the 

ralnfall duratlon, exceedance probabl11ty and area. 
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Many of the current methoas are nct sui ted to short 

duration, smal1 area rainfall typica1 of most urban hydrology 

prob1ems since they are based on long durat i on, large area 

data. This lead Arne11 et al (1984) in their revie .... of rainfal1 

data for urban hydrology to state that "there is a lack of 

fu1ly developed and experimentally justified models for 

transferring point rainfa11 to areal rainfall". However, any 

method to der ive the ARF for short durations and smdll aredS 

using rain gauge data ..,i11 first have ta dea1 ..,ith thp prnblf'm 

of estimating the mean areal rainfall using the pOint data. 

Radar da ta on the other hand, a 110..,5 one to esti ma te the mean 

areal rainfall rather more easi1y, assuming a ..,ell behaved Z-R 

re1ationship. Whlle radar data have excellent space-time 

coverage, it measures rainfal1 neither directly nor perfectly. 

Austin (1987) found the radar gave 15% errors for storm totals 

over a number of gauges, therefore the radar 1s expected to 

measure instantaneous rain rates over small areas .... i th a far 

higher error var iance. Ra in gauges measure the ra in fall a t a 

point with a better, but not perfect, accuracy. Exceptionally 
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dense networks, hOlrlever, are requl red to measure short duration 

convective areal rainfall. Huff (1979), cited by Arnell et al 

(1984) for example found that a network with a Mean spacing of 

1.8 km 'Jas required ta explain 90% of the rainfield variance. 

None of the current techniques have taken the meteorology 

that produced the rainfields expilcitly into account, although 

the impor tance 0 f a synopt i c Meteor olog i ca 1 appraisal was noted 

by Myers and Zehr, (1980). It seems quite plausible that 

ra i n fields produced by large sca le genera l ra i n events 'Jould 

respond quite differently to spatial and temporal smoothing 

than lrIould rainfields resulting from small scale isolated 

convective storms, for example. Furthermore, since the scale of 

the area over which the rainfie1d 1s averaged varies from 

hectares in the case 0 f urban hydr 0 Iogy ta thousands 0 f square 

kilo rn ete r s for the cas e 0 f \ri a ter r e sou r c e h yd r 0 log y, i t 5 e e ms 

l1kely that extreme run-off events could be caused by different 

types of meteorological events, depending on the scale of the 

catchment in question. 

This paper '071 Il use radar rainfall data to provide sorne 

experimental insight on hOIrl the probability distributions of 

shor t dura tian ra i nf ie Ids are trans f ormed under spat i a 1 

averag Ing over the range 2 km to 64 km. An empir ical method to 
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model the transformation of the probability distribution under 

spatial averaging will be tested. The model will then be used 

to determlne if the rainfields resulting from ",idespread 

general rain and convective rain respond differently ta spatial 

averaging. 

Weather radar data archived over 21 days during August 1987 

at the Patrick Airforce Base, Florida, U.S.A. ",ere pror.ess~d to 

form a data base of sorne 1000 5-minute rain maps at 2 km 

resolution. These maps "'ere then carefully inspected and ed 1 Led 

to remove echoes resul t i ng fr om anomalous propaga ti on, 

electrical Interference and ground clutter. The maximum range 

of the radar was restr icted to 240 km 50 as to reduce rnc],U 

range effects. 

4.3 Method 

The region covered by the radar was subdivided lnto 

non-overlapping square regions, 64 km on a side. The data 

within these squares ",ere then successively averaged ta produce 

distributions of 4 km through to 64 km mean areal rainfall. The 

d istr i but i ons for 5-mi n ute 1 hour ly and da i ly mea n non -zero 

areal rainfall are sho",n in Figures 4.1,4.2, and 4.3 

respectively. The rain rates for various levels of exceedance 

probabllity ",ere then estimated from the empir ical 
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d Istr 1 but 10ns and plot ted aga 1 nst one another. Figures 4. 4, 

4.5, and 4.6 sho\ll sorne of these plots for 5-minute, hourlyand 

daily rain rates respectively. Based on the straightness of the 

log-log plots the fo11owing relatlonshlp \lias assumed 

(4.1 ) 

P 
r 
0 
b 
a 
b 
1 
1 
1 
t 
y 

where 

R 2 km and Rn km are the mean area 1 ra i nfall over 2 km 

and n km respective 1y, and 

a,b are the fitted parameters for n = 4, 8, 16, 32, and 

64 km. 

1.0E-01 

1.0E-02 
2 km 

4km 
1.OE-OS 

8 km 

1. OE - 04 L---L-....L..J...L.LL.J..U_..L...LJ..J..UJ.lL_.L.....J.-L.J...U..JUJ....---IL.....L....LJ..u.uJ 

0.01 0.1 1 
ralnfall (mm) 

10 100 

Figure 4.1 Probability distributions for 5-minute rainfall 
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Figure 4.6 Daily mean areal rainfall over 4 km, 16 km, and 64 
km plotted against mean areal rainfall over 2 km at 
equal probabili ty 

This equation is identical to that pr.oposed by Lin (1976) ta 

transform 60-minute rainfall probability distributions into 

shorter rainfall accumulation distributions. 

Least squares regression was used ta estimate the two 

parameters a and b in (4.1) for each transformatlon. Figs 4.4, 

4.5 and 4.6 also show the best fit for the var i ous 

transformations, supporting the power law assumpti on. Figures 

4.7 and 4.8 show the "a" and "b" parameters as functions of the 

averaging area and ra i nfall accumulati on per i od when 

transforming the 
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probability distributions to 2 km. Tables 4.1 and 4.2 show the 

"a" and "bU parameters for hourly rainfall under various 

spatial transformations. 

It is interesting to note that the transformation from say 

64 km to 32 km is more severe than the transformation from 4 km 

to 2 km. This fact is also apparent from the probablilty 

distributions in Figure 4.2, where the lines converge as the 

scale is systematically decreased. Thls would lead one ta 

assume that the point distributions as derived from rain gauge 

data are not too different from the 2 km data, partlcularly for 

the hourly and daily rainfall accumulations. 

To investigate the stability of the "a" and "b" parameters 

over various meteorological conditions, the analysis was 

repeated using hourly data for two 12 hour periods in thp 

Florida record. The rainfall on the 14th August 1987 was light 

and widespread whereas the rainfall on the 22nd August 1987 was 

intense isolated thunderstorms. Figures 4.9 and 4.10 show "a" 

and "bIt as functions of scale for both 12 hour periods. The 

curves are derlved from the entlre record of 21 days 
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Table 4.1: Table of "a" coefficients for mean areal hourly 

rainfall for various transformations. 

R _M __ 

Me asured 

Transformed 
Rain 

2 km 

4 km 

8 km 

16 km 

Rain 

-----

--
-----_._-- -

32 km 

64 km 
-

-

2 km 4 km 

1. 000 

1.198 1. 000 

1. 440 1.199 

1. 862 1. 546 

12.60512.155 
3.757 3.097 

8 km 16 km 32 kl 4 km 

---1------ --

-- _M ____ -
1. 000 

l- f-

1. 281 1. 000 

1. 772 1. 364 1. 000 
-

2.527 1. 915 1. 374 1 
----

is included for reference. From these figures it is quite 

apparent that the tvo sets of rainfields respond to spatial 

averaging in different ways. Not unexpectedly, the widespread 

rain day had coefficients which vere close to unit y over the 
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range of scales investigated. The convective case, on the other 

hand showed coefficients that vere strongly dependent on scale. 

Indeed, the significant gradient in the curves for the 

convective case would suggest that care should be taken in 

maklng the possibly incorrect assumption that the probability 

distributions for point raingauges are the same as areal 

averaged radar data. 



1 85 

6.0r.=========:::;----------. 
- "Idata 6.0 -f- oon*'tI~ only 

~ w'delP'.~ onIy 

4.0 

8 3.0 

2.0 

1.0 

0.0 
0 10 20 30 40 60 80 70 

soala (km) 

Figure 4.9 "a" coefficients vs scale using hourly rainfal1 
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accumulations for convective and widespread rainfall 



Table 4.2: Table of b coefficients for mean areal hourly 
rainfall for various transformations. 

- - -- - T--' r-
Measured 

Rain 
2 km 4 km 8 km 16 km 32 k 

Transformed 
Rain 

------- -------- f----- --_ .. -.. _- ----- r-- - ---
2 km 1.000 

-
4 km 1.012 1. 000 

-
8 km 1. 034 1.023 1.000 

-- ----1----- -

m 1.080 1. 069 1. 044 1. 000 1 ___ 

~---~-----+ ;~t:~ ~:~~~ 1 ~::;J}~~~f_ ---------

16 k 
-------

32 km 

64 km 

4.4 Conclusions 

It 15 possible to character1ze the way the rainfall 

probability distributions are transformed under spatial 

66 

averag1ng by means of a two parameter power law. The parameters 

are sensitive to the meteorology that produced the rainfields, 

the magnitude of the scale change, and the scale itseJf. It is 

clear that the spatial organization of the widespread rain type 

of rainfield is quite different from that of the convective 

rainfield, and responds differently to spatial averaging. It is 

therefore not possible to produce only one set of parameters 

for aIl weather types, but at least twoi one for widespread 
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rain and another for convective events. It is also possible 

that these transformations depend on the local climatology as 

weIl as rain type. This method is more convenient than previous 

methods because it relates the entire probability distribution 

at one scale to the distribution at some other scale, and not 

just particular, convenient, return periods. The method 15 also 

remarkably simple, in contrast with the Meyers and Zehr (1980) 

method, for example, and involves no assumptions about the 

underlying form of the probability distribution or the 

correlation structure of the field. 
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Prolegomenon to Chapter 5 

A more appealing approach to the resoluuon dependence of ramfaU SlatISùcs than the empmcal approach of Chapter 4 

would bc to derive a scale-tndependent dlStnbuùon which could then be used over a range of measurement scales. Il IS 

hkely that ramfields respond dlfferently to spaual and temporal averagmg from one realizauon of the field to the next, 

hlghly J01enmUCnt mm fields. ansmg from rur mass thunderslOrrns for example. would he expec1ed 10 be qwte dlffcrent 

from a large scale general (".un evenL A parametenzauon of thcse dlfferences could be qUlte useful in the machme 

c1a'isific.allon of dlfferenl r.un cvents. Recently. the conceplual model of muluphcallve cascades has becn studied 1 and 

many of the propertics of th cascade type models arc now known to sorne extenl These models could he of great 

tn1erest 10 hydrologlslS smc.: they dcal dtrcctly Wlth the resoluuon dependence of the field belOg modeled. Chapter 5 

mtroduces solne of the concepts in the cascade type of models and uses mdar data 10 tes1 emptncally sorne of the 

relaLion~hlp" denvcd from the thcory. 

SchcrtJ.er. D .• and S. Lovc)oy. 1987: Physical modeling and analysis ofrain and clouds by anisotropie scaling 

muillplcauvc proccsses. J. of GeophysicaJ Rescarch 92 (08): 9693-9714. 
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List of symbols in Chapter 5 

Z 

y Order of singularity 

ZL Radar retlectivtty averaged over an (L x L) km area (mm6, m3) 

Lo Effec~lve outer length scale of the cascade process 

ZLo Ensamble average of Z over the scale Lo (mm6, m3) 

c(y) Co-dimension associated Wlth the order of smgularity y 

h Order of the moment 

C(h) Co-dimension assoclated Wlth the moment h 

Zob Observed radar rctleCl1vlly (mm6, m3) 

MAD Mean absolute dIffercncc 

TO Effecùve outer l1rne scale of the cascade proce~ 

RTo Ensamble average of the ramficld R ovcr the ume ~ale TO 

a, a', Cl, cO, 'YO, ô:y, Yc Empirical constants 
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Chapter 5 

A Multifractal Approach to Scale Independent Rainfall 

Probability Distributions 1 

5.1 Abstract 

A fundamental problem in exploiting both remotely sensed 

and in situ network ralnfall measurements is that the 

statistlcal characteristics of the resulting rainfield depend 

strongly on the resolution of the measuring device. In this 

paper we dlscuss a method to produce resolution independent 

ralnfall probabillty distributions. The model, conceptually 
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based on multiplicative cascades, uses 6 parameters ta describe 

the transformation of the probability distribution during 

averaglng over various scales of measurement. Four periods of 

12 hours of 5-minute data were used in the analysis, three of 

the periods represented periods of moderate to heavy convective 

rainfall whereas the fourth represented widespread rainfall. 

The model was able to predict the distribution of the radar 

reflectivity (2) field for a resolution greater than the 

highest resolution used to estimate the pararneters with good 

1 By A.W. Seed, S. Lovejoy and G.L. Austin 
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accuracy. It was found that the four days had somewhat 

different parameters, particularly for the widespread rain day. 

The method successfully modelled the transformation of the 

probability distribution of mean rain rate under increased 

averaging in time whilst keeping the space resolution fixed ùt 

2 km. Two simpler methods involving four and three parameters 

vere tested against the six parameter model. It was Eound lhat 

the four parameter model was nearly as good as the full model, 

but was easier ta calibrate. The three parameter model gave 

significantly less accurate predictions of the probability 

distributions over changes in the scale of measurement, even 

though the nurnerical values of the parameters did not vary 

greatly from one rneteorological situation to another. 

5.2 Introduction 

A major problem with the use of rainfall statistlcs lS that 

the probability distribution depends significantly on the 

space-time resolution of the data used to obtain the 

distribution. The problems are particularly acute when 

attempting to obtain the areal rainfall distribution uSlng 

raingauge data. The way that a rainfield responds to spatial 

and temporal averaging has pr~found implications for the 

estimation of areal mean rainfall required for hydrological 
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modelling, extreme event analysis and the calibration of 

rainfall remote sensing systems. It is also possible that 

rainfields respond differently to spatial and temporal 

averaging from one realization of the field to the next, highly 

intermittent rainfields, arising from airmass thunder storms 

for example, might be expected to be quite different from a 

large scale general rain event. The behaviour of the rainfield 

under various levels of temporal and spatial averaging limits 

the usefulness of many stochastic rainfield models which often 

ignore the resolution dependence problem, and are calibrated 

around a narrow band in space-time, see Rodriguez-Iturbe (1986) 

for a discussion on the limitations of various models. 

This paper will use radar-derived rainfields to observe how 

the rainfall probability distribution is transformed under 

spatial and temporal averaging. A conceptual model based on 

multifractal multiplicative cascades will be used to develop a 

scale independent probability distribution. Models of this sort 

vere orlginally developed to study the problem of intermittency 

ln turbulence, particularly in an attempt to obtain log-normal 

dIstributions for turbulent energy fluxes. The generic form of 

the probability distributions resulting from multiplicative 

cascades, their 50 called "universality classes", can then be 
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used to predict the probability distribution for a given 

spatial or temporal resolution. The paper has two major 

sections: 1) introduction to multifractal measures and, 2) 

application to spatial averaging at a fixed temporal resolution 

and an application to temporal averaging at a fixed spatial 

resolution. 

5.3 Data 

Weather radar data archived during August 1987 at the 

Patrick Airforce Base, Florida, U.S.A., were processed to form 

a data base of sorne 1000 5-minute rain maps at 2 km resolution. 

These maps were then carefully inspected and edited to remove 

echoes resulting from anomalous propagation, electrlcal 

interference and ground clutter. Four 12-hr periods of 

continuous 5-minute data were selected for this study. Three of 

the periods, taken from the 12th, 22nd and 29th August 1987 

represented convective rainfall with varying degrees of 

intensity and spatial organization. The the four th period, 

taken from the 14th August 1987, represented widespread, 

non-convective rainfall. The maximum range of the radar was 

restricted to 240 km. The area covered by the radar was further 

reduced to an area covered by non-overlapping 64 km pixels 

falling within the 240 km radius. Radar reflectivity maps at 2 

• 
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km resolution were generated using the rainfal1 data, which 

were then successively averaged over 4, 8, 16, 32, and 64 km 

94 

pi xe 15. His tograms of the frequency of the dBZ values for each 

12-hour period were built up for each resolution using aIl of 

the 144 maps in each sequence, a sample size of 4,320,000 per 

histogram for the 2 km data. The histograms were then converted 

lnto probability distributions. The minimum detectable signal 

for the data der i ved from the rainfall data base was 24 dBZ 

since the minimum rain rate recorded in the rainfall data base 

\Vas 1.2 mm/hr. This is sorne 10 dBZ higher than the minimum 

detectable signal for the raw data. The 2km resolution rain 

rate data f0r the 22nd August were averaged over 5, 10, 20, 40, 

80, and 160 mLlUtes, and the probability distributions were 

derived for each averaging period. 

5.4 Multifractal measures 

The extreme variability and intermittency of the atmosphere 

results from the concentration of various conserved fluxes, 

energy for example, into smaller and smaller regions through 

the action of non-linear interactions and instabilities 

operating over a wide range of scales. Even when the exact 

dynam i cal equat ions, and correspond i ng conserved quant i ties, 

are not known, it 1s still likely that such cascades are 
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respons ible for much of the observed var iabil i ty. Fa i r ly 

recent ly, research has shown that cascades of th i 5 sor: t 1 whe r: e 

the large scale multiplicatively modulates the small, when 

carried out with a repeating scale invariant mechanism over a 

wide enough range of scales, generally leads to multifractal 

measures (Schertzer and Lovej Dy, 1987). In thls paper we w111 

investigate empirically how weIl rainfields can be described by 

sùch mui tipI i cat ive cascade pr Deesses. The ana lys i S 0 E the da ta 

presented in the paper will be seen to lend sorne crede nce ta 

this hypothesis since the probability distributions over the 

entire range of scales availabIe, fit into the theoretically 

predicted functional forms. Fields resulting trom such cilsCdde 

processes can be regarded as superpos i tians oE si ngular i ties 0 E 

order 'i, each distributed over sets with fractal dimension de,,). 

One way of expressing this is by considering the probability 

distribution of a muitifractai field ZI, radar reflectivity for 

example, when averaged over sorne scale L, as a function of the 

scale 
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(
ZL (L)-V) (L )c(Y> Pr -> - ... -
lLo Lo Lo 

(6,1) 

where 

ZL is the value of the multifractal field, when 

averaged over the scale L, 

Z Lo 1s the ensamble average, 

Lo is the "effective" external scale of the data, and 

c(V)-d-à(V), d is the dimension of the space in which the 

pr ocess occur s . 

The above equation shows that the basic scale invariant 

"co-dlmens ion" function cCV) is really just an appropr iately 

normallzed probability distribution: 

(5.2) 

where the second order terms in Eqn (5.1) for equal i ty have 

been ignored. 

This formula has an equivalent statement in terrns of the 

stat lstical moments of Zl : 

(~;.3) 
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A great simplification in multifractal analysis and 

modelling occurs because for quantlties conserved by the 

cascade, the c(y) function ls characterized by the followlng two 

parameter functlonal form or universality class: 

yI·' 
cCV) -C,(--,+-) 

Cla. a. 

with 

(5.7) 

C,~d, the dimension of the space in which the process 

occurs, 

O~a~2 

1 1 
-+-= 1 
a a' 

The corresponding universal K(h) function is given by 

(Schertzer and Levejoy, 1987) 

The above functions are for conserved, stationary 

(5.8) 

quantities and are the multiplicative analogues of the standard 

central limit theorem for the addition of random variables, the 

case a - 2 corr espol1d i ng te (log) gauss ian 9rocesses, and a <2 to 
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(log) Levy processes. For other quantities, related to these by 

either dimensional and/or power law relations, the 

corresponding c(y) functions can be obtained by the linear 

transformation y~a~+b. If we regard cascade processes as 

concrete Implementations of the idea of proportional effects 

e.g. Lopez, 1978), then we see that the latter generally do not 

yield log-normal distributions, but only approximately 

log-normal distributions. 

For example, in turbulent cascades, the energy fl ux € i s 

conserved, and the fluctuations in components of the velocity 

field are obtained by àu_e"3lI/3 hence a = b = 1/3. For passive 

scalar clouds ( see Schertzer and Lovejoy, 1987, and Wilson et 

al, 1989 for details on these multifractal cloud and rain 

models), the corresponding quantities are ~p.~"3lI/3 where 

",_x,Zl3e-1I2 and X is the variance flux of the passive scalar 

concentration p. Allowing for these linear transformations of 

V, we obtain the following more general three parameter 

universality classes: 

c(y)= c.( :. + 1 r (5.9) 
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An equivalent, more convenient form for the three parameter 

class is obtained by taking y·y+AV in Eqn. (5.7): 

( 
fly I)CI' c .. e -+-

o 1 C
1
(1' (1 

(5.10) 

These relationships are useful, since as will be seen, co,Ay 

and Clare much eas i er to est ima te than <l,CI' which are 

essent la lly measures of the concav 1 ty of cCV) which wi 11 only be 

pronounced for large y. The three parameter uni versali ty 

classes can then be written: 

CI a' .. 
K(h)- --Ch -h)-hfly 

a 

(5.11 ) 

Be fore d iscuss ing the analys i 5 of radar data us ing the 

above formalism, we must first discuss a complication which 

arises because of a basic distinction between "bare" and 

"dressed" cascade quant iti es. The "bare" quant i t ies are 

esse nt ia lly theoreti ca 1: they are obta i ned after a cascade 

process has proceeded only over a finite range of scales; 
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strtctly speaking, Egn. (5.11) applies only to these 

quanti ties. The exper imenta lly accessibl e quan t i t 1 es are 

different; they are obtained by integratlng the multifractal 

fields, usually by means of the measuring device, over scales 

much larger than the i nner scale 0 f the cascad e, .... h i ch in the 
• 

atmosphere i 5 0 f the order 0 f Imm. The pr oper t i es 0 f s uch 

spat ial (and/or) temporal averages are a ppr ox i ma ted by those of 

the "dressed" cascades i.e. those in .... hich the cascade has 

proceeded do .... n to the small scale l imi t and then in tegrated 

over a finite scale. The small scale limit of these 

multiplicatjve processes i5 singular and 15 responsible for 

th isba 5 i c dis tin c t ion . 

Unlike the bare cascade, the dressed cascade displays the 

1nterest i ng phenomenon of divergence of h 1 gh order s ta t i s t i ca l 

moments, that 1s: 

(5.12) 

for all h~ he 

where he is the crit1cal exponent for divergence. The precise 

condition for divergence 15 given by : 

1 
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C(hfJ· d(A) (S.13) 

where 

d(A) is the dimension of the averaging set ( e.g. 11ne, 

plane, or fracta 1 in the case of measur i ng networks) 

over which the process is averaged ( Schertzer and 

Lovejoy, 1987). 

The phenomenon of divergence of h1gh arder statistical 

mornen ts ar i ses di rectly from the fact that C (h) is generally 

unbounded, and hence for any averag i ng set A, for large enough 

h, C(h) > d(A). In the un1versality classes above, the only 

exception occurs wh en (1< l, which yields 

Cl 
max(C(h)) = -- t1y 

}-(I 

wh ich can be S d(A) ( Schertzer and Lovejoy, 1983, 1985 d iscuss 

another mode 1 , the "a" model in which this also occurs). Note 

that in the latter case, divergence will still occur if the set 

A 15 sufflciently sparse 50 that d(A) 1s small enough. 

Rewr i t 1 ng the above, we obta in the follo\1ling equat i on for 

J 
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(5.14 ) 

corresponding to hCf there is a critlcal singularity Vt 

such that h.·c'(y.). The functional farms for the three parameter 

unlversality classes are therefore valid for the observable 

(dressed) quantities only for h~hc' V~Vc with Vc written 

explicitlyas: 

(5.15) 

For V>Ve' cCV) is a straight Une with slope he. For h ) he , 

the moments <Z·>~- hence, strictly speaking, K(h) is no longer 

defined. However, experimentally, since finite sample sizes are 

used to estimate the moments, we obtain the phenamenon of 

"pseuda-scaling"- see Schertzer and Lavejoy, 1987 and Lavallée 

et al 1989. Like a, estlmat1ng 'le from the data i5 difficult 

because it too 1s very sensitive to the lov-probability, large 

'Y, cCV) part of the function. It 15 therefore of interest to 

develop approximate graphical methods for it's estimation. See 

Fig. 5.1 for details of this construction. 
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Figure 5.1 Graphical construction to estimate Co and Cl. 

5.5 The Impact of Radar Induced Measurement Errar 

Slnce this study relies heavily on radar derived rain and 

reflectivity fields, and it is weIl known that the radar 

introduces a signiflcant measurement error in the estimation of 

the mean Z over sorne small volume in space, the likely impact 

of such measurement error on any conclusions reached in this 

study must be assessed. As was pointed out by Zawadzki (1987) 

these statistical fluctuations added to the Z, caused by the 

shuffllng of the raindrops, may serve to enhance the extreme 

values in the data sets, causing spurious hyperbolic 
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distributions. The standard theory for radar measurement of 

rain seeks to relate the observed "effective radar reflectlvlty 

factor" Z~ with the "radar reflectivity factor Zn, and from Z, 

via various assumptions, to the rain rate R. This step involves 

making assumptions about the probability distribution of drop 

volumes as weIl as their correlation structure. The usual 

approach assumes the drops to be independently distributed with 

finite variance distributions; this leads to Incoherent 

scattering and the following conditional probability 

distribution for ZN given Z: 

(5.16 ) 

If we now assume that Z i5 the resul t of a cascade pr ocess, 

wi th an assoc i ated cz(y), we seek to know the re la t ion be t 'Ween 

cz(y) and the rneasured c~(Y .. ) for the "effecti ve radar 

reflectivity factor". This is a case of the "Observer '5 

Problem" applied to the probability distributions. In terms of 

multlfractals, the problem may be posed as follows: 
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(5.17) 

..,here 

t- -lnL 

Si nce Vie are typ i cally inte rested in small sca les, we take 

t» 1. We now obtain: 

oc f: p(Z ob 1 Z)a -C(V)t.dy 

·i ;, 

" 

(S.18) 

where in the last step we have again used the method of 

steepest descents. 

In the case of interest, 'Mhere t i5 large, cCv) is algebraic, 

and we obta in to w i thin high arder correct ions in t 

(5.19) 

hence 'Me obta in 
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1. e. the co-dimension function and probabillty distributions 

for effective reflectivity are the same as those of Z as long 

as c(V) is algebraic and L is small. The exponential relation 

between the Z and Z .. therefore will not affect the form of thf' 

probability distribution if the distribution 1s "long" or "[at" 

tailed. These results vere tested by Monte Carlo slmulatlon 

where it was found that the shuffling fluctuations, although 

they change the shape of the distr ibution for the extreme 

values, the effects are essentially exponential in form and dre 

not capable of turning an exponential distribution into a 

hyperbolic distribution. Thus the concerns of Zawadski (1987) 

mentioned earlier do not appear to be weIl founded. 

5.6 The PDMS Method of Estimating c('() 

According to our univ~rsality formula for c('f), the latter 

are generally unbounded. However, in single reallzatlons or 

multiplicative processes - no matter how much resolution Is 

available - singularities vith co-dimensions greater than d are 

not observable since they would have negative dimensions. The 

statistical properties of chese rare extreme evp.nts can only !:Je 

studied with large samples and with the help of the concept oi 

sampling co-dimension (see Schertzer and LoveJoy, 1383). 
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Physlcally, it irnplies that with no matter how many data, 

Individual realizations give only limited statistical 

information about the process. This i5 quite different fram 

many standard stochastlc pracesses, and 1s also different fram 

"microcanonical" cascades (e. g. Sereeni vasan and Meneveau, 

1987) for which, in principle, aIl the statistical properties 

can be obtained from a single realization. 

That extremely large sample sizes are necessary has been 

stressed and studied in detail by Lavallée et al (1989). This 

fact alone makes exper imental determination of cCV) qui te 

difficult. An additlona1 problem, mentioned earlier, is that 

the baslc probability distributions will generally have log 

corrections which are difficult ta estimate: cCV) is only the 

leading exponential part of the scaling. Early techniques for 

estlmating the scaling exponents (see Schertzer and Lovejay, 

1985, and Halsey, 1986) warked direetly with the moments -

yit~ld ing K (h), and ln the latter case cCV) by Legendre 

t r.l ns format ion. More recent techniques est imate cCV) d irectly, 

"lther by "functional box-counting" ( Lovejoy et al 1987, 

\~ .. 1hrit'1 et al 1988), or via the Probability Distribution / 

MultIple Scaling (PDMSI technique ( Lavallée et al 1989). This 

technIque directly exploIts the fundamental equation (5.1) by 
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systematically degrading the resolution of the data throuqh 

averaging over increasing scales L. The iield i5 normalized by 

dividing by an ensamble averaged (climatological) value Zt., dlld 

the length scales are normall zed by Lü, the exte rnal SCA j" .) f 

the data. When the data are correlated rather than independ p n t 

samples, for example arising from time-series that hav~ beC'!l 

degraded ln s pace, but accumulated ln time, LO mus t be p laCt!d 

byan "effective" Lü which takes these correlations lnto 

account. Empirically, it i5 simplest ta abtain both Lü and Z~ 

fram regressions. The cCv) function can be estimated by means of 

log CPr) 
cCV) = log (LI Lo) 

and 

logeZ LI Z Lo) 

V = - log(LI Lo) 

5.7 Estimation of La and Z'. 

(5.16) 

Since it vas by no means clear that the Z and rainfields 

could in fact be conceptualized as multiplicative cascades, the 

first step in the analysis vas ta determine whether or not a 24 

and Lo could be found for each data sequence. If i t ..,r::ts round 
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to be possible to select a lLa and Lo such that the cCV) function 

~as invariant over changes in the measurement scale, the second 

step in the analysis would be to empirically determine the 

other parameters in Eqns. (5.9) and (5.10). 

A measure of how closely two lines lie on top of each other 

ls the mean minimum distance between any point on the first 

curve and sorne point on the second curve. Since there were six 

curves in this analysis representing the scales from 2 km up to 

64 km, it was decided to measure the mean minimum distance 

between successive curves, the objective function was then to 

minimlze the sum of the mean minimum distances between 

success i ve curves. S Ince both cCV) and '( have log(f.) as a 

denominator, the mean distance between curves will always 

decrease with increasing Lo. Therefore the mean minimum 

distance ~as normalized by expressing it as a percentage of the 

mean length of the two lines. The downhill simplex method ( see 

Press, Flannery, Teukolsky and Vetterling (1988) for details) 

'*'d!-; used to est imate the opt imum Z L. and Lo. The resul ts f or the 

(nUI' periods analyzed, found in Table 5.1, and Figure 5.2 for 

th~ 14th August case, were rnuch better than expected. The 2, 

and 64 km resolution distributions vere not used in any of the 

parameter estimation procedures, but were retained as reference 
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to determlne whether the model could predict the distributions 

for scales larger and smaller than those used during the model 

calibration. 

3.00 

2.50 

2.00 

C(y) 1. 50 

1.00 

0.50 

0.00 

-3.00 -2.50 -2.00 -1.50 -LOO -0.50 0.00 0.50 1.00 1.50 2.00 

"( 

Figure 5.2 cCv) us V curves using L = 2, 4, 8, 16, 32, and 64 km 
for 14th August data 
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Table 5.1 ZLo and Lo est imated using the mean mln~mum distance 
between cCV) for success ive scales of measurement, 
expressed as a percentage of the mean length of the 
two cCv) curves 

[
------- --

Date ZLo( 
~-~ - -- -"~" _ .. -----
29/8/87 
"----- -------

mm6 m 3
) Lo (km) Mean Min Distance ('\ ) 

----- -
225 312 4.9 
----f--

r
~~/8!87 

14/8/87 

L12/8/~~_ 

423 273 4.8 

510 929 4.6 

644 1114 4.3 
---
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5.8 Parameter estimation 

Since it was possible to find ZLo and Lo such that the 

var ious c(y) curves vere at least approxima te ly sca le i nvar le nt 

over the range of scales used in the analysis, It 15 reasonable 

to estimate the parameters for the proposed model. If the 

relations betveen the various parameters ln Eqn. (5.9) ëlre not 

assumed, and alloving for the extra parameter Yef we havp at 

most six pararneters that need to be estimated. Hovever, if the 

relations in Eqns (5.9), (5.10), and (5.13) hold, and 6.y 15 

constant, vhich is plausible since it is a basic dimensionally 

determined quantity, the number of parameters 15 reduced to 

four. A further assumption could be that a 15 constant, which 

would be theoretically appealing since a is the fundamental 

parameter characterizing the generator of the process, the 

number of parameters is reduced to three. Each of these three 

models viII be fitted to the data ln the following 

sub-sections, starting vith the 6 parameter model. Thereafter, 

the 4 and 3 parameter models will be fitted, and the 

theoretical values for the remaining parameters compared wlth 

the empirical values found for the six parameter model. 
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5.8.1 Six Parameter Model 

At least two strategies are possible when attempting to 

determine the Co. YOI Y •• al parameters, the first would be to use 

a least squares scheme to fit the parameters ta the mean c('f) 

curve having first determined the Z~ and LO parameters. The 

second 15 to use the probability distributions to estimate aIl 

six parameters directly. The objective funct10n for the second 

method was chosen ta be 

rn 1 ~ 
MAD= I-L Ilog(Pr)-log(P'r)1 

/-1 n"_1 
(5.17) 

l where 

ID = the number of probability distributions 

nI = the number of po ints on the j th probab i li ty 

distribution above the minimum detectable signal at 

that resolution, 

Pr - PreZ / > Z L), and 

Pr ls the Pr predicted by the model for the same value 
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The minimum detectable signal at each scale was simply assumed 

to be the first class in the dBZ frequency histogram greater 

than zero that was non-zero. The cCy) for y>Yc is a straight 

line with a slope m such that 

m-~ l+~ c ( y )œ'-l 
YoŒ Yo 

(S.18) 

It was decided to evaluate aIl six parameters 

simultaneously using the MAD statistic with ~he probabillty 

distributions and as a check, the co. Yo. Yc' œ' pal_ameters using 

the Z~ and La evaluated earlier. 

Two data sets were used for this analysls, radar 

reflectivity data for instantaneous radar images, averaged ln 

space, and rainfall data averaged over 5, 10, 20, 40 and 80 

minutes, but at a fixed spatial resolution of 2km. 

5.8.1.1 spatial Averaging 

The results of the analysis of the four sets of Z data, 

using both techniques are summarized in Table 5.2 and the 

predicted and measured probability distributions are plotted in 

Figures 5.3 to 5.6. The figures aiso show the 95% confidence 

limits for the experimentai probability distributions using the 
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Kolmogorov-Smirnov one sample two-sided statistic for samples 

sizes larger than 40 (Daniel 1978, Table A.17). The 

distribution at the 2 km scale of measurement has very narrow 

confidence limits since the sample size Is very large. Never 

the less, the predicted probability distributions for scales 

larger than 2 km are aIl within the 95% confidence limits of 

the experimental distribution for intensities greater than the 

minimum detectable signal for that scale. The method was able 

to extrapolate down ta the 2 km scale as weIl as up ta the 64 

km scale, see August 14th distributions in Figure 5.4 for 

example. The parameters estlmated by the two methods proved to 

be within about 10% of each other for two of the four days. 

However, on the 29th and 22nd August the methad using the 

prabability distributions directly gave different results for 

LO. These two days also gave the smallest LO, and hence had the 

greatest sensitivlty ta spatial averaging. The analysis was 

repeated for the 29th August using only the 16 km ta 64 km 

scales ln the parameter estimation and the probability 

distribution method. The results for this analysis are found in 

Figure 5.7 and Table 5.3. The 2 km probability distribution 

still fits remarkably well considering the small sample size 

for the 64 km distribution and the extent of the extrapolation. 
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Once again, the parameters are wlthln 10% of the value 

estimated uslng the 4 km to 32 km data, with the exception of 

the LO parameter whlch 15 approxlmately 25% less for the 16 km 

to 64 km data. 

Table 5.2 Best fit parameters for four 12 hour sequences using 
radar reflectlvlty (Z) 

Vc 

Vo 

Co 

(J' 

Z Lo 

Lo 

29th 
August 

MAD LS 

-1.69 -1. 73 

-2.02 -2.02 

0.88 0.88 

-0.42 -0.36 

210 225 

430 312 

--
MAD LS 

---
-1 ,70 -2.15 

-1.98 -1. 84 
-- --

0.80 0.91 

-0.48 -0.52 

372 423 

375 273 

- ---
MAD LS MAD LS 

-~-- r- --
-2.01 -2 .02 -1.42 -1.38 

-2.18 -2 .08 -1.87 -1.75 
'- --

0.50 0 .52 0.61 0.63 
---

-1.26 -1 -0.68 -0.60 _. 
531 5 666 644 

--- - - - -

915 9 
. 11~.~_ J.Jl?5. j 
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Table 5.3 Best fit parameters for the 29th August using the 16 
km ta 64 km scales only 

----
Parameter 4 k m - 32 km 16 km - 64 km 

---------
Yc -1. 69 -1.91 

Vo -2.02 -2.24 
---- ------- -------

Co 0.88 0.96 

a: -0.423 -0.457 
-

210 234 
-

430 335 
---- . 

5.8.1.2 Temporal Averaglng 

Since the analysis of the Z data was successful, it was 

declded to attempt a similar analysis on short duration mean 

raln rates. Ta this end probability distributions for the mean 

ralnfall Intensities over 5, la, 20, 40, 80 and 160 minutes 

were estimated using the 22nd August case with 2 km resolution. 

The I60-minute distribution was not included in the data set 

used to estimate the model parameters. The summary of the 

parameter values is found in Table 5.4 and the predlcted and 

measured probability distributions are plotted in Figure 5.8. 

From this Figure it Is apparent that the model is able to fit 

data for the 5 to 80 minute tlme resolution, as weIl as 
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extxapolate outside the calibration range to give a prediction 

for the 160-minute distribution that is within the 95% 

confidence limits for the empirical distribution. 

Table 5.4 Summary of two possible sets of parameter values for 
temporal averaging using 2 km resolution data 

a: 
1---1 

vc vo Co Rr.(mm/hr) 1 To(min) 1 

-0.75 -0.85 0.37 -0.41 0.129 79373 ------- ---_._-- ----____ R ___ 

-0.95 -1. 05 0.36 -0.46 0.044 79640 

The most striking difference between this set of parameters 

and those for the spatial smoothing case is the very large 

value for T o as compared with Zoo This arises from the fact 

that the probability distributions resulting from temporal 

averaging are much closer to each other than is the case for 

the distributions resulting from spatial smoothing. It lS clear 

that much of the temporal variability has already been smoothed 

out after spatial averaging over a few kilometers. The 

closeness of the probability distributions made the estimation 

of the various parameters less precise. A second, nearly 

optimal local minimum is also listed as the second set of 

parameters in Table 5.4. This solution somewhat over-estimated 
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the Increase ln the rainfield variability with decreasing time 

resolution although it fitted the lower temporal resolutions 

rather well. 

5.6.2 Four and Three Parameter Models 

Using the Z~ and LO values found previously for the four 

series of radar reflectivity data, the graphical analysis 

discussed earlier was used to estimate 6y = 0.1, and Cl = 1.2, 

1.2,1.3, and 1.4 for the data from August 12,14, 22, and 29 

respectively. This simple graphical technique indicates that 

the parameter l1y i5 nearly independent of the meteorological 

situation, as we had hoped. If we allow and Co to vary, 

estimating them graphically, the other parameters can be 

calculated using Eqn. (5.10). Table 5.5 shows a comparison of 

these parameters wlth those obtained from the full 

multi-parameter regression used for the six parameter model. 

There 15 no divergence of moments for the 12th August since 

CI 
---lly<2 
1- (1 

Figures 5.9 and 5.10 show the empirical probability 

distributions and the distributions predicted by the four 

parameter model for the 14th August and 22nd August 

respectively. 
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Table 5.5 A comparison between the parameters estimated by the 
four parameter model and those estimated by the six 
parameter model 

Date 12 14 22 29 
- -

Cl 1.2 1.2 1.4 1.4 
-- ----------

Co 0.61 0.50 0.80 0.88 
+------ ---~_ .. - -- --

60. 0.02 0.01 0.03 0.02 

Ayo 0.07 0.02 0.02 0.04 
-

6y. - 0.07 0.30 0.35 
~----~---

The two parameter model was tested by assuming that the a 

parameter was equal to 0.4 over the four days in the data spr. 

Once again Eqn (5.10) was used to estimate the other 

parameters. Table 5.6 lists a comparison between these 

parameters and those obtained for the six parameter model. 

Figures 5.11 and 5.12 show a comparison between the emplrlcal 

distributions and those predicted by the model using the 14th 

and 22nd August cases. rt is readily apparent that the two 

parameter model does not fit the probability distributions over 

the range of scales for the 14th August case, although the flt 

1s somewhat better for the 22nd August case. Therefore a single 

a is not able to reproduce the richness and variety found in 
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real ralnrate or Z field probabllity distributions. 

Table 5.6 A compar i son between the parameters est imated by the 
three parameter mode1 compared and those estimated 
by the six parameter mode1 

- _ .. ~------ -- --..... 
Date 12 14 22 29 

--
1.2 1.2 1.4 1.4 

- -------
0.06 0.17 0.07 0.10 

- - .------
0.03 0.18 0.09 0.21 

1---------
- - 0.34 0.42 

--

5.9 Conclusions 

A method to produce resolution independent short duration 

ralnfall accumulations and instantaneous radar reflectivity 

pr oba b i 1 j ty dl str i but ions has been developed and tested. The 

conceptual madel using multiplicative cascades ta describe the 

concentration of flux into smaller, more intense regions was 

found to provide good predictions of the probability 

distributions extrapolated outside the range of data used to 

callbrate the model. This lends sorne credibility to the initial 

hypothesls that the rainfields may usefully be described by 

multiplicative cascade type of models. Three flavours of the 
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mode! were tested, having six, four and three parameters. The 

six parameter model was ca 1 ibrated from the probab i li ty 

distributions directly, using the do..,nhill simplex method in 

the parameter estimation. The four and three parameter model::; 

we:re calibrated in two steps, the first step ..,as to estimate 

the values for Z 'o' Lo that minimi zed the norma li zed mean 

distance between successive co-dimension curves. Thereafter, a 

graphica 1 construct i on was used on the resu l t i ng curve t 0 

estimate the other parameters. l t was found that the four 

pa:rameter model ..,as nearly as good as the full six parameter 

model and lias easier te calibrate, and therefere should be u.'Jed 

in preference to the full model in practical applications. The 

three paramete r mode 1 was unabl e ta pr oduce a good fit t 0 the 

probability distributions. We believe that ...,e have demonstraled 

a general method for obtaining resolution independent 

probabl1 i ty dis tr ibut ions, thus a 110..., i ng the cons t r ucti on 0 f 

probability distributions at other time and space scales. 

Fu:rthermore, these results could be the first step towards the 

use of multiplicative cascade type of models in stochastic 

rainfield simulations. 
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Figure 5.5 Estlmated and predicted probability 
distributions for instantaneous 22nd August 
Z fields averaged over 2, 4, 8, 16, 32, and 
64 km, 6 parameter model calibrated using 4 

32 km data 
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Chapter 6 

Conclusions 

An investigation into the extent to vhlch the variabllity 

of observed rainfields limits the accuracy vith vhich gauge 

netvorks, radar, and satellite rainfall measurernents can 

estimate mean areal rainfall over large areas vas undertaken. 

The radar introduced further measurernent errors resultlng from 

the fact that the measured radar reflectivity fluctuates 

randomly as the rain droplets rnove relative to each other in 

the volume of space being sampled. Honte Carlo simulations of 

this fluctuation, assuming no sub-resolution varlability, 

together vith an analysls of one month of radar data from 

Florida, shoved that it vas possible to minimize the combined 

effects of these errors and those caused by the variabillty of 

the ralnfield by accumulating the rainfield in tlme and 

averaging in space. For example, a cholce of 4 km pixel size 

for hourly rainfall accumulations vould result in estimates of 

Mean areal rainfall over a pixel vith a variance equal to 26\ 

of the variance of the hourly polar data. It vas found that It 

vas more efficient to deal vith the radar measurement errors by 



accumulatlng in tlme and averaglng over larger areas than to 

Increase the number of samples used to estimate the mean 

reflectivlty of a single radar bin. 
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The measurement errors for raingauge network estimates of 

mean areal ralnfall over large areas were simulated uslng daily 

and monthly radar rainfall accumulations of the Florida data 

and a summer of radar rainfall from Nelspruit, South Africa. It 

vas found that the difference betveen the mean standard error 

from regular and random gauge netvorks vas slight, particularly 

for the more dense networks. However, the random netvorks gave 

errOIS that vere more widely distributed about the Mean 

standard error, becoming more apparent vith decreasing netvork 

density. A relationship vas found to predict the mean standard 

error given the number of gauges, the raining fraction of the 

area, and the variab~iity of the rainfield being sampled. This 

relationship vas able to explain 63\ of the variance ln the 

data set comprlsing of both Nelspruit and Florida data. 

Satellite measurement errors vere simulated using the 

Florida data. Tvo types of sensors vere used, a perfect 

instrument, and an instrument that cou Id measure rain area 

only. It was found that there was little to be gained us1ng an 

area-only instrument vith a samplillg frequency greater than 16 
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vlsits a day when measurlng mean areal dally rainfall. However, 

if the instrument has skill ln measurlng the rainrates, the 

mean standard error ls approximately halved when the frequency 

is doubled from 16 to 32 vislts per day. It was also found that 

estimates of the ralning area were very sensitive to the 

resolution of the instrument. For example, a 64 km resolutlon 

sensor over-estimated the area by 300\ of the area estimated by 

the 2 km sensor. The monthly areal Mean rainfall .... as much 

easier to estimate, with a two visits-per-day sampling giving 

22\ errors. 

The second part of the thesis investigated the 

transformation of the rainfail probability distribution under 

spatial and temporal averaging. This has Immediate applications 

in a number of hydrological problems, for example using gauge 

data to estimate the statistics for mean areal rainfall. It 

aIso i5 relevant when attempting to compare statistics from 

rainfields with different spatial resolutions. An empirical 

method was deve loped tù transform the entire probab ill ty 

distribution based on some mea5urement scale into a 

distribution for another measurement scale. It was found that 

the transformation of a rain rate at sorne probability level and 

5cale, i nto a rate \i i th an equa 1 probab i 11 ty but over a 
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dlfferent scale vas vell described by a pover lav. The tvo 

parameters for the transformation vere dependent on the type of 

rainfield, the magnitude of the change in scale, and the scale 

Itself. 

A more general approach to the resolution dependence of the 

probability distribution vould be to develop a resolution 

independent distribution. A conceptual model based on the 

theory of multiplicative cascades to describe the concentration 

of rain flux into smaller, more intense regions, was used to 

derive a resolution independent distribution. The good fit 

obtained by the model when used to predict the distribution 

outside the range of scales used to calibrate the model 

provides empirical evidence that rainfields may be usefully 

described by such a class of models. 

Durlng the latter part of the research it became apparent 

how sensitive rainfall statlstics are to the space-time 

resolution of the data used in their estimation. It is 

Imperative therefore to account for differences in resolution 

when comparing sets of rainfall fields based on different 

resolutions. It ls also evident that the extreme intermittency 

and variability of short accumulation rainfields precludes 
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accurate estlmates of mean areal ralnfall, even over large 

areas, using sparse networks. This emphaslzes the important 

role of remote senslng in the estlmatlng of rainfall amounts. 


