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Abstract

Ph.D. Alan W. Seed Agricultural
Engineering

Statistical Problems in Measuring Convective Rainfall

Simulations based on a month of radar data from Florida,
and a summer of radar data from Nelspruit, South Africa, were
used to quantify the errors in the measurement of mean areal
rainfall vhich arise simply as a result of the extreme
variability of convective rainfall, even vith perfect remote
sensing instruments. The raingauge network measurement errors
were established for random and regular network configurations
using dalily and monthly radar-rainfall accumulations over large
areas. A relationship to predict the mcasurement error for mean
areal rainfall using sparse netvorks as a function of raining
area, number of gauges, and the variability of the rainfield
was developed and tested. The manner in wvhich the rainfieid
probability distribution is transformed under increasing
spatial and temporal averaging was investigated from two
perspectives. Firstly, an empirical relationship was developed
to transforr the probability distribution based on some
measurement scale, into a distribution based on a standard
measurement length. Secondly, a conceptual model based on
multiplicative cascades was used to derive a scale independent
probability distribution.
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Résumé

Ph.D. Alan W. Seed Génie agricole

Problémes statistigues pour la mesure des pluies convectives

Des simulations numériques basées sur un mois de données
radar de Floride et un été de données de Nelspruit, Afrigque du
Sud, ont été utilisées pour quantifier les erreurs dQes a
ltextréme variabilité des pluies convectives dans la mesure de
la pluie surfacique moyenne en supposant des instruments de
télédétection parfaits. Les erreurs de messures ont été
etablles pour des réseaux pluviometriques A& configuration
aléatoire ou réguliédre en utilisant les accumulations
journaliéres et mensuelles de pluie estimées par radar sur de
grandes surfaces. Une méthode pour prévoir les erreurs sur les
mesures sur la plule surfacique moyenne utilisant des réseaux
épars en fonction de la surface od il pleut, du nombre de
pluviométres et de la variabilité du champ de pluie a été
developpée et testée. La facon dont laquelle la distribution de
probabilité du champ de plule est transformée en augmentant
1'étendue spatiale et temporelle de la moyenne a été etudiée de
deux perspectives: Premiérement, une relation empirique a été
développée pour transformer la distribution de probabilité
basée sur une echelle de mesures quelconque en une distribution
basée sur une autre échelle de mesures. Deuxiémement, un model
conceptual basée sur des cascades multiples a été utilisé pour
déterminer une distribution de probabilité indépendante de

1'échelle.
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Contributions to Knowledge
Many studies have been undertaken to estimate the sampling

errors in the u;e of raingauge, radar, and satellite
measurement of mean areal rainfall. However, what has not been
addressed to date, is the lowver limit of the measurement error
that exists as a result of the extreme variablility in the
rainfields, even with a perfect instrument. The following
contributions have been made for the three instruments:
a) Radar

1. The effect of the various digitizing algorithms

currently in use to estimate the mean reflectivity from

a number of fluctuating signals has been re-evaluated.

It was found that the exponential averaglng algorithm,

although one of the most common in commercial

applications, was the least effective in reducing the

estimation variance.

2. The reduction in the estimation varlance after

averaging in space and accumulating in time wvas

assessed. Geostatlstical techniques were used to

calculate the estimation variance for mean areal

rainfall. It was found that it is more efficient to

remove the measurement noise during the polar to
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b)

c)

Cartesian transformation and accumulation in time, than
to use a large number of samples during signal
digitization.

Raingauges

3. For mean areal rainfall, over large areas, it was
found that the mean standard errors for regular gauge
netvorks vere approximately the same as those for random
gauge netwvorks. The difference between the two
configurations was that the errors for the random
netvork had a larger spread about the mean standard
error than the regular networks, particularly for sparse
netvorks.
4. A relationship to predict the mean measurement error
for sparse gauge netwvorks was developed using the number
of gauges, raining fraction of the area, and the
rainfield variability as predictors.

Satellite
5. Measurement errors as a function of the number of
satellite over-passes per day vere estimated for the
Florida area. The large sampling errors associated with
orbiting satellites having two passes per day were

quantified.
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The transformation of the probability distribution of a
rainfield under increasing averaging is an efficlent
characterization of the spatial organization and variability of
the rainfield. Furthermore, a great many practical hydrological
problems depend on the transformation of point rainfall
statistics to mean areal rainfall statistics. The second
section of the thesis contributed the following in this topic:

6.1t vas found that it is possible to characterize the
way the rainfall probability distributions are
transformed under spatial averaging by means of a two
parameter power law. This can be applied to the problem
of comparing rainfall estimates from techniques with
different space-time sampling characteristics.

7. A resolution independent probability distribution was
developed using the concept of multiplicative cascades
and vas fitted to space and time averaged data.

8. Parameter estimation technigques were developed for

the estimation of the parameters used in the conceptual

model.
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Chapter 1

Introduction

The hydrological cycle makes it possible for man to exist
on this planet, controlling the availability of water and
vegetation as well as driving the global atmospheric
circulation that distributes the heat from the tropics to the
higher latitudes. Water vapour is able to transport the energy
received during evaporation over large distances and then to
release the latent heat Into the atmosphere in local regions of
intense precipitation. This implies that a knowledge of mean
areal rainfall over large areas is a prerequisite to modelling
global climate. It is for this purpose that the joint U.S.A. -
Japan Tropical Rainfall Measuring Mission satellite (TRMM) is
scheduled to be launched during 1994.

Concerns over the impact of possible changes in climate due
to increased co.centrations of carbon-dioxide in the atmosphere
have increased over the past few years. One possible, although
by no means certain, scenario is that the increasing
concentrations of carbon-dioxide will result in global warming,
the so~called green house effect. While this would not

necessarily be a bad thing for all regions, Quebec winters
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could usefully be warmed resulting in a longer growing season
for example, increased seasonal variability in the rainfall
could seriously affect agriculture in regions where the wvater
supply is marginal, even i{f the long term mean rainfall
remained constant. The total annual runoff out of a large river
catchment in a semi-arid region depends critically on a handful
of days of widespread rain over the catchment. Therefore, water
supply in semi-arid regions would also be seriously affected by
even small changes in the number of widespread rain days per
ralny season.

The rapidly expanding populations in semi-arid reglons are
placing increasingly heavy demands on the scarce water
resources in these areas. This in turn implies that Water
Resource Engineers need to be more certain about both the
long-term mean areal rainfall, which determines the mean water
supply, and the temporal and spatial variability of the
rainfields which determines the reliability of the water
supply. The optimal operation of increasingly complex water
resource systems is being achieved through the use of real-time
rainfall estimates and short-term stream flow forecasts.

Man's activities in a river catchment can have a

significant impact on the rainfall-runoff relationship in the
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catchment. For example, deforestation of a catchment's uplands
could increase the variability of the stream flow, increasing
the probability of both floods and drought. Hydrological models
are being used to predict the impact of various land-use
changes on the stream flow. Although research into the next
generation of detailed, spatially distributed hydrological
models is currently underway, historical rainfall data with a
commensurate level of detall are scarce.

Agriculture of course, is another major user of rainfall
data. Crop yield prediction models are routinely used to
forecast harvests and in semi-arid regions depend on the total
molsture budget for the growing season. Satellite rainfall
estimation schemes are used to monitor the famine potential and
locust population in the Sahel region of Africa, for example.

Rainfall provides a key input into a large, diverse set of
applications that directly or indirectly affect the majority of
the Earth's population. It is interesting to note therefore,
that despite seven centuries of rainfall measurement, we are
still not able to measure mean areal rainfall with good
accuracy. This is due to the highly intermittent, variable
nature of the rainfields, and instruments that either measure

the rainfall at a point with good accuracy or over an area with




mediocre accuracy.

Hydrologists have been aware of the importance of the spaual and temporal vanability of ramfall in hydrology
for some time. Thiessen (1911) was possibly the first o explicitly account for the spatial varubility of rumniall when
estimaty:¢ areal rainfall amounts. The usual measure of the spatial vaniability of ramnfall 1s to express the correlation
between two gauges as a function of the distance separating the gauges, for example Sharon (1972), Zawadsk (19734),
and is used by virtually all the current models uscd to generate syntheuc ramnficlds, Eagleson, Fennessey, Qunliang and
Rodriguez-Iturbe (1987) for example.

The minimum correlauon between neighbouring raingauges has been used extensively tn determunng the
spacing between gauges in a gauge network. Hershfcld (1965) was probably the first to propose that the mimimum
correlation between adjacent raingauges 1n a nctwork should be 0.9. A typical study of a network spacing requircment
for daily rainfall was made by Hendnck and Comer (1970). The error of the rangauge esumauon of areal daly ramtall
was obtained by companng the anthmetic mecan derived from a network of 23 gauges with the means denved from sub-
networks. They concluded that 1f the mmmimum allowable crror for the partcular day or event must be known, then
some criteria other that the correlations would be required.

Hutchinson (1972) pointed out that the usc of a corrclation critena in its simplest form could only give a
relative assessment of the standard error. Zawadzki (1973b) assumed an exponential decorrelauon with distance and
derived a formula to estimate the error 1n the arca-averaged rainfall as esumated by a regular grid of rain gauges

The error 1n estimating the mean arcal rarnfall 1s not only a function of the gauge network, but also depends to
some extent on the method used to estimate the arcal rainfall from a set of gauge ranfall depths. Excellent comparauve
studies may be found in Creuuin and Obled (1982) and Tabios and Salas (1985).  Since measuring areal mean rainfall
is rarely an end 1n itself, but rather to provide input into hydrological models, the impact of the areal rainfall
measurement error on the model output 1s of concemn. Eagleson (1967) assumed that the catchment behaves as a low-
pass filter thus reducing the effect of the input measurcment errors. Indeed, Eagleson (1967) concluded that only four
gauges (correctly posiuoned) would be sufficient 1o esimate peak runoff from a cawchment area of 32(X) km2 Wilson,

Valdes and Rodriguez - Iturbe (1979) used a storm model 1o generate synthetic rainfall and simulated the effect of
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increased measurement error by sampling the rainfield in two different manners. The ground-truth was established by
sampling the rainfield with 20 gauges. These rainfall data were than used to generate the true runoff from a catchment
by means of a rainfall runoff model. The second data set was generated using only one gauge to sample the rainfield,
which was then passed through the catchment model. The catchment was found to amplify the input errors, for
cxample a 12% mean depth over-estimate resulted 1n a 24% runoff volume over-esumate and a 9% mean depth over-
estumate resulted in a 52% peak flow over-csumate. More recently, Milly and Eagleson (1988) showed that hydrological
models of caichments that are potentally larger than the storm size must give explicit consideration to the effect of the
raining arca on the runoff process.

In general, the rnfall data at the disposal of hydrologists are derived from rain gauge measurements which are
essentially point measurements. Thercfore, all estimates of rainfall exceedance probabilities or return periods are only
valid for point rainfall. However, when sizing a culvert or drain, the engineer needs the return peniod for areal rain over
some arca and for some period of accumulauon  So the transformaton of point-ratnfall staustics into equivalent areal
rainfall stausucs has great pracucal importance. Correction factor to transform point rainfall into area averaged
precipitation were first developed by the U S Weather Bureau in 1957 and updated 1n 1980 by Myers and Zehr (1980).
Rodrigues-lturbe and Mejia (1974) developed an altemative method to transform point rainfall into mean areal ranfall
that used an exponential correlation structure together with an estimate of the mean distance separating two point within
the arca. Other methods have been proposcd by Nguyen (1984) and Niemczynowicz (1984), However, Amell et al
(1984 n therr review of these methods for urban hydrology concluded that there was a lack of suitable, expenmentally
Justified modcels to transform pomnt-rainfall into arca averaged ranfall.

Throughout this thesis the terms “"convecuve” and "widespread™ in descrbing rainfall events in this thesis.
Convective 1s used to mean areas of runfall of small honzontal estent and large cloud height, generally synonymous
with showers (Amencan Meteorological Society, 1959) widespread rain on the other hand 1s taken 1o mean areas of
ramntall of large honzontl extent and shallow depth with low rainfall intensities and weak gradients. For a particular

case, both of these runfall types may exist simultancously, but the predominate type is usually clearly evident.



The thesis has been written as a collection of manuscripts of papers that have been, or will shortly be subnutted for
publication in a Journal. The contributions by the various co-authors has becn to provide guidance during the rescarch,
and to give editorial comment during the preparation of the manuscripts. The specific regulanons goverming such a
thesis format are reproduced below.
"The candidate has the option, subject to the approval of the Department, of including as part of the thesis the
text, or duplicated published text (see below), of an onginal paper, or papers. In this case the thesis must sull
conform to all other requirements explained in Gudelines Concerning Thesis Preparauon. Addiional matenial
(procedural and design data as well as descnptions of equipment) must be provided in sufficient detul (¢ g. in
appendices) to allow a clear and precise judgement to be made of the importance and oniginality of the rescarch
reported. The thesis should be more than a mere collection of manuscripts published or 1o be published It must
include a general abstract, a full introduction and literature review and final overall conclusion Connecung texts

which provide logical bridges between different manuscripts are usually desirable 1n the interests of cohesion,

It is acceptable for theses to include as chapters authentic copies of papers already published, provided these are
duplicated clearly on regulation thesis stationery and bound as an integral part of the thesis. Photographs or
other materials which do not duplicate well must be included in their original publishable form In such

instances, connecting texts are mandatory and supplementary explanatory matenial 1s almost always necessary

The inclusion of manuscripts co-authored by the candidate and others 1s acceptable but, the candidate 15 required to
make an explicit statement on who contnbuted to such work and to what extent, and supervisors must attest 10
the accuracy of the claims before the Oral Commitice. Since the task of the Examiners 1s made more difficult in
these cases, it is in the Candidate's interest to make the responsibilities of authors perfectly clear Candidatey

following this option must inform the Department before 1t submits the thesis for review.”



This thesis will attempt to evaluate the limitations that
the highly variable nature of convective rainfall places on the
measurement of areal rainfall even with perfect instruments.
Three measurement devices, viz. the raingauge, radar and
satellite will be examined using simulation techniques and a
data base comprising of 21 days of continuous radar data of
tropical rainfall recorded during August 1987 at the Kennedy
Space Center located in Florida. The second chapter of the
thesis is a paper co-authored with Prof Austin that has been
accepted by the Journal of Geophysical Research, and was
Jointly presented by the two authors at a conference at M.I.T.
during 1988. This paper evaluated the measurement error for the
radar in some detail, and estimated measurement errors in
estimating mean areal rainfall over large areas using gauge
networks and satellites. The third chapter returns to the use
of raingauge networks to measure daily mean areal rainfall over
various size areas. The effects of network geometry, random or
regular are considered. A new method to predict the mean
standard estimation error for large area mean areal daily
rainfall is presented and evaluated. The text in this chaptex

substantially represents a paper co-authored with Profs. Austin

"y
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and Broughton to be submitted to the Journal of Hydrology.

Stochastic simulation of rainfields is an important tool
for hydrological studies evaluating the effects of changing
land-use and climate. Unfortunately, the characteristics of the
rainfields change under increasing spatial and temporal
smoothing. The fourth and fifth chapters therefore deal with
the dependence of the rainfall probability distribution on the
sensor resolution. Chapter four, co-authored with Prof. Nquyen,
is a paper that explores the transformation of the probability
distribution under spatial smoothing. It presents an empirical
method to transform the probability distribution representing
the rainfield at one scale into the distribution at a different
scale. The recent advances in the theory of fractals, a theory
that explicitly models the effects of changes in scale, raise
interesting possibilities in their use as rainfield simulation
models. However, more emplrical evidence that rainfields do
indeed behave in a fractal-like fashion is needed. Chapter
five, a paper co-authored with Profs. Lovejoy and Austin,
therefore investigates a method to derive a resolution
independent probability distribution that is based on the
theory of multifractal multiplicative cascades. It also

develops a nev method to estimate the parameters needed by a



multiplicative cascade model for rainfield simulation, and as such is a first step in the application of fractal theory to

rainfield ssmulation.
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Prolegomenon to Chapter 2.

An estimate of the mean arcal rainfall in the tropics is an important input into numerical weather models particularly of
chmate change. Unfortunately, much of this rasnfall occurs over the ocean and therefore can only be measured from
space platforms. The major objective of the jownt U.S.A. - Japan Tropical Rainfall Measuring Mission Satellite is to
provide esumates of mean monthly rainfall over large areas. Earlier studies into the likely error in such estimates are
based largely on staustical rainfield models 1> 2_These models were calibrated on data collected duning the 1974 GATE
experiment where the Inter-Tropical Convergence Zone off the coast of Senegal was being observed. It was therefore
appropriate to conduct a somewhat simular study based on radar data taken from other tropical regions and compare the
results. To this end, amonth of conttnuous radar data was collected at the Patrick Arrforce Base, Florida during August
1987 Chapter 2 reports on the findings 1n this 1investigation and attempts to explain the differences between the results
based on the data from GATE and Florida, The serious impact of these findings on the satellite temporal sampling error

15 also discussed.

I MacConnell, A., and G.R. North, 1987: Sampling errors in satellite estimates of tropical rain. J. of Geophysical

Research, 92(D8): 9567-9570.

2 Stun, K-S, and G.R. North, 1988: Sampling error study for rainfall estimate by satellite using a stochastic model.

J of Applicd Meteorology, 27 (4): 1218-1231.




List of Symbols in Chapter 2

y/ Radar reflectivity (mm6/ m3)

R Rainfall intensity (mm/hr)

A Measured radar reflectivity (mm6/ m3)

m Mean radar reflectivity in a radar bin (mm®/ m3)

k Number of measurements of radar reflectivity in a radar bin
¥(x,h) Semi-variogram (mm2)

Z(x) Point value of the rainfield at the position x (mm)

a2 Point variance of the field Z(x) (mm?2)

i Point mean of the Z(x) (mm)

ZA) True areal mean of Z(x) for the region A (mm)

Z(A) Estimated areal mean of Z(x) for the region A (mm)
cX,Y) Covariance between two points X and Y on the ficld Z(x) in the region A (mm2)

h Mean distance seperating two points mn a region
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Chapter 2

On the vVariability of Summer Florida Rainfall and it's
Significance for the Estimation of Rainfall by Gauges, Radar

and Satellité

2.1 Abstract

Simulations based on a month of radar data from the Patrick
Airforce Base radar in Florida give the following results for

the estimation of daily rainfall amounts over the 124,000 km2

area covered by the radar:

1) 30-minute sampling by a perfect satellite sensor
will increase the rainfall measurement error by 7%
compared with S5-minute radar sampling

2) If the instrument is only able to determine the
raining area and a good climatological rainfall rate is

available, then the measurement error is increased to

35%,

1 By A.W. Seed and G.L. Austin. Accepted for publication by the
Journal of Geophysical Research.



3) Exceptionally dense gauge networks are needed to
estimate daily convective rainfall. For example, a

2 per gauge would be required to

network with 625 km
equal a 30-minute rain-area only instrument.

For monthly areal mean rainfall, the proposed Tropical Rain
Measuring Mission (TRMM) sampling strategy with a perfect
satellite sensor gives an error of 22%. A 30-minute raln-area
only technique combined with a good climatological rainfall
rate yields an error of at least 3%. It would seem then that
the main contribution of TRMM could be to provide good
estimates of the mean climatological rainfall rate (given that
it is raining) which could then be used with the geostationary
veather satellite to provide the required monthly area rainfall
estimates.

2.2 Introduction

There have been many attempts to estimate the accuracy with
wvhich daily and monthly areal averaged rainfall amounts can be
estimated by various satellite techniques (see Barrett and
Martin, 1981, for example). These techniques may be broadly
divided into two classes - those based on geostationary
satellites which typically have a 1/2-hour time resolution and

a few kilometers spatial resolution, and those which operate



from lov orbiting platforms with a high spatial resolution, but
have a temporal resolution of a few overpasses per day. The
major thrust of this paper is to investigate the statistical
properties of convective rainfields in Flozrida, and to use
these statistics to simulate the sampling problems for
raingauge, radar, and satellite rainfall measurement systems.
This has been done partly to compliment the earlier studies of
tropical rainfall undertaken for the Tropical Rain Measuring
Mission (TRMM) satellite, since they were largely based on data
collected during the 1974 GATE experiment whexe the
Inter-Tropical Convergence Zone was being observed.

Many authors have recognized over the years that the major
problem to be faced in the estimation of area-averaged rainfall
amounts is the extreme variability and intermittency of the
rainfield in both space and time. Systematic study of this
variabllity has been advocated by Schertzer and Lovejoy (1987)
within the theoretical framework of fractals. Many empirical
studies have been described in the hydrological literature
(e.qg. Damant et al. (1983) and the references therein). Bellon
and Austin (1986) estimated mean point total storm accumulation
differences from raingauges at different spacings, and obtained

60% differences at a distance of 10 km, and 100% differences at
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a separation of 100 km for rainfields in the mid-~latitudes.

It is precisely this wvariability that 1limits the accuracy
of the rainfall measuring systems, even assuming that the
measurements, when and where they are taken, have no error.
This paper will attempt to evaluate the lower bound of the
measurement error for various rain measuring systems resulting
from the inherent variability of the rainfield being measured.
2.3 Analysis Scheme

If a rainfield in space and time which COULD HAVE existed
were simulated stochastically, then simulated rainfall
estimates based on the known physics of the measuring system
could be generated. This idea accounts, in part at least, for
the great deal of activity in recent years directed toward the
stochastic modelling of rainfall patterns. An alternative
strategy, which to some extent avoids the difficulties
associated with producing stochastic rainfall models with not
only the correct mean and variance, but also higher order
statistical properties, is to take a series of 3-D radar data
sets, and argue that although they DO NOT represent the actual
rainfield at the indicated time, they DO represent a rainfield
that COULD HAVE existed.

It is clear that no further assumptions need to be made
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about the statistical properties of the rainfields except at
space and time scales that are smaller than the resolution of
the measuring system, perhaps 1 km and 5 minutes. Some would
argue, however, that much of the observed discrepancy between
radar and gauge data is due to real sub-resolution variability.
Radar data archived at the Patrick Airforce Base (PAFB),
Florida, U.S.A., during the period 8th to 30th Augqust, 1987,
have been processed to form a single data base of approximately
1000 CAPPIS at 3 km altitude. The raw data tapes were first
read to produce a data base consisting of raw digitized radar
reflectivities for each 5-minute CAPPI in polar coordinates.
These data were then transformed into rainfall intensities by

means of the Marshall-Palmer relationship
Z=200R'* 2.1)

The rainfall amounts were then mapped onto a Cartesian
coordinate system with a grid spacing of 2 km.

Each polar data point falling within a Cartesian pixel was
first converted into the equivalent rain rate before the mean
rain rate over the pixel was calculated. The resulting maps
vere interpreted as if they were true rainfall rates based on

the electrical calibration of the radar without being
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calibrated against the existing gauge network. This was mainly
due to the difficulty in obtaining historical raingauge data
for that period. For the present study we will argue that while
the radar data may not represent the actual rainfall that fell
during Auqust 1987, it is a plausible realization of the same
process, and therefore has the same statistical structure.

An interactive editing program was written so as to enable
strict quality control on the 5-minute CAPPI data. After
inspecting the CAPPI's at higher altitudes and watching
time-lapse sequences on a graphics system, a significant amount
of echo was determined to be ground echo, anomalous propagation
and interference. During this phase of the work, it became
apparent that an average of 15 minutes of data were missing per
hour recorded. This turned out to be due to a routine Airforce
procedure which has been eliminated for later data sets. The
approximate translation of the rainfield during the period of
missing data was calculated by locating the position of the
maximum cross-correlation coefficient between the images at
either end of the missing period. This translation was evenly
distributed over the period, with the image at the start of the
missing period being offset by an appropriate amount for each

of the missing images.
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2.4 Accuracy of the Radar Rainfall Data

There can be no doubt that a weather radar does not measure
the rainfall rate with perfect accuracy. The literature is
replete with examples of radar-rainfall calibration exercises
designed to find the optimum Z/R relationship for particular
weather radars in different climatic conditions throughout the
world (e.g. Battan, 1973). Since radar measured rainfall will
form the basis for this research, it is appropriate to first
investigate the effect that the radar induced measurement error
wvill have on the derived statistics.

The causes of radar measurement error may be broadly
categorized into rain process dependent errors and radar
sampling errors. These sources of error have received wide
attention in the literature over the years (e.g Zawadski, 1984
and Austin, 1987). Briefly, the sources of error include:

1. Uncertainty in the Z-R relationship

2. Accretion or evaporation of rain droplets at low altitude
3. Variability in the drop-size distribution

4. Hail

5. Vertical air motions in convective cells

6. Gradients in the rainfields within the sampled volume
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Austin (1987) investigated the effect of various physical
factors that influence the relationship between measured radar
reflectivity and surface raingauge measurements. She found that
the natural variability in drop-size spectra was not a major
factor once the storms had been classified into intense,
moderate and stratiform events, each with a separate Z-R
relationship.

After comparing raingauges with the radar for 20 storms,
Austin concluded that the two major causes of radar-raingauge

measurement errors wvere:

1. Down-drafts reducing the radar reflectivity for a given
rainfall rate and
2. The presence of hail in the intense convective cells.

In her conclusion, Austin states
" We conclude that for research and operational
applications where there is a need to know the spatial
distribution of surface rainfall or areal rainfall amounts,
these quantities can often be measured by radar with
sufficient accuracy. In highly convective storms, radar may

well be the most (or the only) reliable data source for the

desired information".
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While this conclusion is encouraging, Austin assumed that
the accuracy in the measured reflectance value returned by the
radar was of the order of 1.0 to 1.5 dBZ. This accuracy is only
attainable if other radar variables are compromised, for
example bin length, antenna rotation speed and beam width. It
can also only be achieved by means of an intelligent digitizing
and averaging scheme. If operational constraints are such that
non-optimal radar parameters are chosen, or if an indifferent
ditigization scheme is used, these errors may be considerably
in excess of 1.5 dBZ.

The operational constraints were such that the radar
parameters selected at the Patrick Airforce Base were believed
to yleld errors in excess of 1.5 dBZ due largely to unusual
radio interference regulations enforced for safety reasons.
Therefore, it is relevant to re-examine the impact of radar
measurement error on accumulated statistics derived from radar
data. This section will therefore investigate the impact of
various radar digitization schemes on the resulting
radar-measured probability distributions. Thereafter, the
geostatistical technique of variograms will be used, after some

assumptions, to directly estimate the measurement error for
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various rainfall accumulations. Finally, the estimation
variance of mean areal rainfall after averaging in time and
space will be estimated.
2.4.1 The Observer's Problem

The problem of inferring the mean reflectivity of a volume
of space given a limited number of randomly fluctuating signals
is known as the Observer's Problem. The intensity of a signal
received by a radar is simply the sum of the signals received
from each individual water droplet in the volume being sampled
(Marshall and Hitschfeld, 1953). The signal therefore
fluctuates as the droplets (or scatterers) move relative to
each other in a random fashion. Marshall and Hitschfeld derived
the probability distribution of independent echoes from a

random array of scatterers and showved that :

e

TIN

Pr(Z2z)= (2.2)

T |-

where

the measured radar reflectivity, and

4

Ty mean radar reflectivity for that volume.
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This exponential distribution of z implies that several
independent measurements of z required before the mean
reflectivity u can be estimated with any degree of confidence.
However, in practice, the measurements are not of the same
volume of space, but from successive pulses down or cross
range. It is obvious that steep gradients in the reflectivity
field increases the measurement error. Smith (1964) was able to
shov from probabilistic considerations that the optimum method
for obtaining the mean value of Z was to average the intensity
values and not the logarithm of the intensity values.

In general, this method has not been implemented on radar
digitizers in the past mainly because the dynamic range of 2
extends over 6 orders of magnitude, therefore the amplifier
used prior to the digitizer returns the logarithm of the
returned signal and not the signal itself. The current popular
methods for estimating the mean reflectivity from a number of
logarithmic signals include averaging, peak reading, and
exponential averaging where the next value is averaged with the
mean of the previous values. Modern electronics have removed
many of the constraints that restrict the choice of a

digitizing algorithm so that a digitizer that averages in Z is

now feasible.
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Smith's 1964 work examined the measurement error in terms
of dBZ and assumed that each dBZ intensity level had an equal
probablility of occurrence. It would be interesting therefore to
repeat some of this early work using an assumed rainfall
probability distribution to examine the relationship between
measurement error and the number of samples (k) for the various
digitizing algorithms.

"True rainfall rates" were generated assuming that
instantaneous rainfall rates are drawn from a population of
exponential independent random variables. Using the
Marshall-Palmer Z-R relationship, 50,000 "true rainfall rates"
wvere generated and converted into an equivalent Z.

Marshall and Hitschfeld (1953) showed that the intensity of
independent echoes from a random array of scatterers fluctuates
randomly with an exponential distribution. Therefore, each
"true value" of Z was used to generate k observations, zi, 1| =
l,k, drawn from an exponential distribution with a mean Z. In
reality, the radar does not sample the same volume of space k
times, but rather k pulses either down or cross range.
Therefore, the results of this simulation will be somewhat
optimistic since the small-scale gradients in the Z field have

not been explicitly taken into account.
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The "observed" z were then passed through the followving

algorithms
1) Mean z

2) Mean dBz

3) Mean rainfall

4) Exponential smoothing dBZ,,=0.5(dBz.,+dBZ,)
5) Peak reading dBZ=max(dBz)~0.1(1+logzk),i=1,k

The mean and variance of the "observed" rainfall, the
population distribution, the chi squared goodness of fit
statistic and the mean standard error expressed as a percentage
of the mean were calculated for k = 2 to 64 using the five
algorithms.

Table 2.1 lists the mean standard error for the various k
and algorithms. It is immediately apparent from this table that
the exponential smoothing algorithm has the largest mean square
error for k greater than two. The mean standard error for
exponential smoothing does not decrease after k greater than
four, and therefore if the radar achieves a large k through
exponential azimuthal smearing, which is the most commonly used
technique, the net result is a radar with both poor spatial
resolution and accuracy. The second feature of this table is

that the accuracy of instantaneous radar-rainfall measurements




20

can be rather depressing when k is less than four. The optimum
algorithm, as expected, was to average the intensity values
themselves. The peak-reading technique was nearly as good for k
less than four although the difference widens considerably for
large k.

The chl squared goodness of fit statistic is tabulated in
Table 2.2. This statistic was calculated to determine 1if the
probability distribution of the input rainfall and the
distribution of the measured rainfall were significantly
different. The chl squared statistic for 17 degrees of freedom
at the 95% level of significance is 27.6, and therefore the
radar significantly modifies the rainfall probability
distribution that i1t samples, even with a perfect Z-R
relationship.

The ratios of input mean verses output mean and input
variance verses output variance are found in Tables 2.3 and 2.4
respectively. These Tables show that the technique of averaging
the dBz introduces a bias in both the mean and varlance, that
gets progressively larger as k increases. This would account
for the fact that the mean standard error for this technique

does not decrease rapidly with increasing k.
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Table 2.1 Mean standard error expressed as a percentage of the
mean rainfall rate using mean reflectivity (2Z), mean
dBZ, mean rainfall (R), exponential averaging (Exp),
and peak reading (Pr) for various sample sizes (k).

k zZ dbz R Exp | Pr
2 57 61 56 60 58
4
8

42 51 42 54 47
30 46 31 53 40

16 21 44 24 53 32

32 14 43 20 53 26
64 10 42 17 54 22

Table 2.2 Chi squared goodness of fit statistic for mean
reflectivity (Z), mean dBZ, mean rainfall (R),
exponential averaging (Exp), and peak reading (Pr)
for various sample sizes (k).

k y/ dbz R Exp Pr ]
2 508 1573 627 1505 612
4 141 1435 327 1605 150
8 84 1585 235 1690 68
16 40 1615 190 1510 64
32 27 1694 172 1478 53
64 36 1608 149 1416 75
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Table 2.3 Ratio of the estimated mean and actual mean rainfall

for mean reflectivity (Z), mean 4dBZ, mean rainfall
(R), exponential averaging (Exp), and peak reading
(Pr) for various sample sizes (k).

k Z dbz R Exp Pr

2 0.94 0.80 1.16 0.80 0.91

4 0.97 0.75 0.90 0.76 0.99

8 0.99 0.70 0.90 0.76 1.02

16 0.99 0.70 0.90 0.76 1.02 |

32 1.00 0.70 0.90 0.76 1.00

64 1.00 0.70 0.90 0.76 0.9;Mi

Table 2.4 Ratio of the estimated standard deviation and actual

deviation for mean reflectivity (Z), mean d4BZ,
rainfall (R), exponential averaging (Exp), and peak
reading (Pr) for various sample sizes (k).

k A dbZ R Exp Pr N

2 1.13 1.02 1.08 1.00 1.10

4 1.08 0.87 1.00 0.91 1.11

8 1.04 0.79 0.95 0.90 1.16

16 1.02 0.75 0.92 0.90 1.08

32 1.00 0.72 0.90 0.90 1.04

64 1.00 0.71 0.90 0.90 0.99
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2.4.2 Empirical Determination of Measurement Error for the
Polar Radar Data

The Observer's Problem is not the only source of
measurement errors in the radar data as noted previously. This
section will use the geostatistical technique of variograms to
attempt to determine the approximate measurement error in the
rav radar data. After examining the radar data available for 21
days in August 1987, the data extending from 1500h August. 21
to 2400h August 22, some 220 five-minute rainfall maps, were
selected as being representative of heavy convective activity
in that area.

A variogram is a geostatistical technique used to uncover
the basic structure of a random spatial variable. Using the
notation of Journell and Huijbregts (1978), the wvariogram is
defined as

2v(x, h)= E{[Z(x)-Z(x + h)]"} (2.3)
wvhere vy(x,h) is the semi-variogram and
Z(x), Z(x+h) are the values assumed by the random

function at the points x and x+h.
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Assuming the intrinsic hypothesis, viz. the semi-variogram
depends only on the separation vector h and not on the location

x, it is possible to estimate the semi-variogram by means of

2y(0)= 1 [2(x)- 2(x,+ R (2.4)

i1
where 2z(x,),z(x.,) are the experimental values separated
by the vector h.

Figure 2.1 shows the variogram for the raw polar radar
data. The variogram was calculated at 0.5km intervals from
0.5km to 10.0km using all pairs of data. The entire data set
was used in the analysis since it was assumed that the mean and
variance of the random spatial process was constant over the
220 maps. Only points that had non-zero rainfall at positions x
and x+h were used in the analysis. The variogram was thus
calculated using 130,000 data points. The sample mean for the
data was 1.19mm and the sample variance was 3.4mm2. A straight
line was fitted to the first two points on the variogram
intersects the origin at about l.Omm2 or 29% of the variance.
The variogram reached a maximum value at about 4km, therefore
the mean rainfall averaged over the area of a radar bin is
independent after this distance.

In this study, it is assumed that the measured railntields



derived from the radar data represent fields that could have

happened, thus removing from the discussion errors resulting
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from the very real sources arising from the Z-R conversion and

other physical processes, for example evaporation and
accretion. Therefore, it is not unreasonable to make the
further assumption that the errors in the radar-rainfall
measurement process are lndependent and additive. The
measurement error predicted by the variogram could then be
thought of as being comprised of errors inherent in the radar
measurement of rainfall and would be the lowexr bound for the
actual measurement error which includes all the sources of
error.

From Table 2.1, the mean standard error for k = 2, using
the peak reading algorithm is 58% of the mean. This implies a
measurement error variance of 0.48mmz or 48% of the error
variance. Therefore, the Observer's problem alone could accou
for about half of the observed radar-dependent measurement
error in the Patrick Airforce Base radar. Since the operatin
parameters for this radar are unusual, the error variance for
other radars with a larger k would be expected to be less tha
the 29% of the total variance in this case.

Instantaneous rainfall rates are rarely used in

nt

9

n
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hydrological modelling. Rather, rainfall accumulations of
betwveen one hour and one month are used. Therefore, the
measurement error of radar-based hourly rainfall is probably of
more interest than the instantaneous measurement error. The
five-minute polar rainfall maps wvere accumulated to form hourly
rainfall totals, and vere similarly processed to form the
hourly-ralnfall variogram for polar data of Figure 2.2. The
first two points in the variogram were used to extrapolate a
straight line back to the origin. The radar-dependent

measurement error was 10.5mm2 or 15% of the measured varlance

of the polar data.
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Figure 2.1 Variogram for five minute polar data



In conclusion then, the Patrick Airforce Base

over—-estimates the five-minute polar variance by 29% and the

one-hour polar accumulation by 15%. These should be considered

to be the lower bounds for the total measurement error since
they are estimates for the radar-derived measurement error
only, and do not include the other well known sources of error.
It is clear however, that for the purposes of operational
hydrology, climatology and as verifying data sets for satellite
rainfall estimates, rainfall estimates over larger areas are
required. The mapping of the polar data into the Cartesian grid
involves further averaging and it is therefore fluctuations in
these areal estimates that are of concern. The following
section will investigate the effect of further averaging and
accumulation on the radar-derived measurement errors.
2.4.3 Variance of the Estimate of Mean Areal Rainfall

In general, rainfall maps based on radar data have
undergone two further stages in data processing. Firstly, the
data have been transformed from polar to Cartesian coordinate
space, and secondly, the data have been accumulated over a
period of time. This section develops a technique to estimate
the variance of the estimate of the mean areal rainfall rates

for 5-minute and hourly accumulations and assesses the relative
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mm sq

Figure 2.2 Variogram for hourly polar data
importance of the averaging during these two steps.

The variograms in the previous section show that the polar
data are significantly correlated over distances of less than
twvo kilometers. If Z(x) is a realization of a homogeneous
stochastic process with covariance function C, with
w=E{Z(x)} and a?=var[Z(x)]

Ripley (1981) showed that

Z-agZ(xo could be used to estimate
dx
2¢4) f‘ z2()%

where a is the area of A.

The variance of this estimation was shown by Ripley to be
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var{Z-2(A)}= ’-l;[a'-E{C(X.Y)}] (2.5)

wvhere
X.,Y are independent uniformly distributed points in A.
The variogram 2y(h)=c(0)-c(h)=a*-c(h)
for all points h apart. From Figure 2.1 it is apparent that the

variogram is plausibly straight for 0 £ |h| € 2km . Therefore

2y(R)wa?- E{C(X.Y)}

wvhere h is the mean distance between the polar bins for all
(X.Y) positions of the centers of the polar bins within the
Cartesian pixel. The following steps were required to evaluate

the mean estimation variance

1. The mean distance between bins in the same Cartesian
pixel was calculated for the particular pixel size, bin
length, beam width and number of bins per pixel (n).

2. This mean distance was then used in the polar
variogram to estimate 2y(R) and hence the estimation
variance for each n.

3. The frequencies for the various n in the Cartesian
map were calculated and hence the mean estimation

variance over the entire map.
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Using this method, it was found that the mean error
variance for the estimation of the mean areal rainfall over 2
km pixels is approximately 75% of the variance of the polar
data for S5-minute and 71% for the hourly rainfall. The main
reason for the rather high error variance is that 82% of the
pixels in the map have 1 or 2 polar bins per pixel. The
analysis was repeated for 4 km pixels. The mean error variance
for the mean areal rainfall in this case was 36% of the
variance of the polar data for 5-minute and 26% for the hourly
rainfall.

From the above analysis, it is evident that for the Patrick
Airforce Base radar, there is not much to be gained by mapping
the five—-minute rainfall at 2km resolution out to 120km from
the radar. At the hourly accumulation level, the radar is able
to provide somewhat better rainfall measurements at the 2km
resolution, but even so a 4km resolution would be more
appropriate.

The mean error variance is inversely proportional to the
mean number of polar bins per pixel, whereas there is only a
30% decrease in the error attributable to the Observer's
Problem as the number of samples per volume is doubled from 4

to 8. Therefore, it is more effective to use the polar to
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Cartesian transformation to smooth the data, rather than to
select a large number of samples per volume with a commensurate
increase in bin size.

The error variance estimated in this section is based on
the assumption that the radar-rainfall maps are exactly
correct, and thus once again represent the error inherent in
sampling such a random field with a perfect Z-R conversion. The
figures guoted here should therefore be considered as the 1lower
bound for the error variance, a more complete analysis would
have to include the Z-R conversion error structure, Given the
non-trivial errors in the radar-rainfall measurement, even
under optimistic assumptions, it would be worth while to use
this data set to develop a feel for the magnitude of the errors
arising simply as a result of the different space and time
sampling strategies of raingauge networks and satellite
rainfall estimation schemes. The following two sections briefly
simulate the sampling strategies of the raingauge network and

satellite measurement systems.
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2.5 Raingauge Sampling Errors

It was thought a priori that some form of Kriging would be
the most suitable method to interpolate the ranéom scatter ot
rain gauges onto the Cartesian grid. The average variogram for
the daily accumulations and the variogram for the monthly
accumulation is shown in Figure 2.3. From this figure 1t is
apparent that daily convective rainfall has a correlation
length of 14 km and monthly rainfall decorrelates over a
distance of approximately 20 km. Therefore Kriging, which
relies heavily on inter-station correlations will not yield
anything more obviously useful than say, Thiessen polygons,
which at least have the virtue of being easy to compute.

Uniform random raingauge networks were generated fo}
networks of 25 through to 1,000 gauges covering an area of
125,000 kmz. Tventy such networks were generated for each
network size. The value ot the 2km pixel that covered the gauge
position was assigned to each gauge. The mean standard error
was calculated for the areal mean, mean rain depth, rain area
and rainfall variance for each network density using daily and

monthly data. The rain variance was calculated using the

"gauge" data only.
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Figure 2.3 Average variogram for daily and monthly rainfall
expressed as a fraction of the measured variance

The mean standard errors as a functlion of gauge density for
daily and monthly rainfall are shown in Figures 2.4 and 2.5
respectively. Of the four statistics calculated, the rain
variance had the largest standérd error. For example, the error
in the variance measurement of daily rainfall is 30% for the
network of one gauge per 140 kmg. It wvould seem therefore, that
raingauge networks have difficulty estimating the second
moment, as predicted by Schertzer and Lovejoy (1987) who
postulate that the second moment is not defined. The mean areal

monthly rainfall estimated using only 100 gauges had an error
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of approximately 8%. Therefore, sparse ralngauge netwvorks are
able to provide reasonable estimates of mean areal monthly
rainfall, particularly in areas where the rainfall is not

affected by strong local processes.
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Figure 2.4 Mean standard error for daily mean areal rainfall
over 125,000 km?, mean rain depth, area, and
variance vs raingauge network density

2.6 Satellite Sampling Errors

The 1000 radar rainfall maps in the data base were
accumulated into hourly, daily and monthly totals of rainfall.

There were two days in the data set with no radar data and

these were assumed to have had no rain. This is probably not

true, but in the spirit of this simulation clearly could have

happened. For each number of overpasses per day, equally spaced
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S-minute maps wvere selected, starting from midnight. These maps

were then used to calculate the areal dalily rainfall over the

480 km diameter area covered by the radar. The simulation wvas

repeated by starting the sequence 5 minutes later until the
second time-slot of the original sequence was reached. The
dalily totals for each simulation were accumulated over the 20
days in the set to yield a number of "monthly" rainfall totals

for each sampling frequency. The mean standard monthly erxror

was calculated using these monthly totals,
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Figure 2.5 Mean standard error for monthly mean areal rainfall
over 125,000 km2, mean rain depth, area and variance

vs raingauge network density
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It is well known that existing satellite rainfall-measuring
techniques have more success in delineating the rain area than
estimating the instantaneous rain rates. The infra-red and
visible data can estimate respectively cloud height and optical
thickness, which can be used to predict whether the cloud is
raining. Although there is some correlation between height and
rainfall rate for raining clouds, it turns out to be
insufficient to determine particularly high rainfall rates,
since many clouds that are just as high as the raining cloud
show either light or no rain ( Lovejoy and Austin, 1979).
Therefore, the simulation was repeated using the mean 5-minute
rainrate for the 670,000 instantaneous radar rain measurements
in the data set.

Figure 2.6 shows the 25, 50, and 75 percentiles for the
daily errors using the 20 days. The proposed TRMM sampling
frequency is two visits per day. For daily rainfall, the TRMM
will have a 130% error. The mean standard error for 30 minute
sampling increases from 7% to 32% if the satellite measures
rain area only. It would seem then, that there i1s little to be
gained by measuring the mean areal rainfall more frequently

than at 90 minute intervals if the sensor can measure raining



area only. However, for a perfect instrument, the error

approximately halves when the frequency is increased from 16 to

32 visits per day.
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Figure 2.6 The 25, 50, and 75 percentiles of the errors for
daily areal rainfall vs number of overpasses per day
Figure 2.7 shows the 25, 50, and 75 percentiles of the
errors for monthly totals. The TRMM error for this data would
be approximately 22% if the entire area was covered by the
satellite at each overpass. It is interesting to note the large
spread in the estimation error for fewer than eight overpasses
per day. This compares rather unfavourably with the 8% reported

by Shin and North (1988) using the GATE data set. It was
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thought that the difference was probably due to the fact that
Florida rainfall is more intermittent than that observed during
the GATE experiment, since the GATE experiment was conducted iIn
the Inter-troplcal Convergence Zone (ITCZ) which is known to
have less intermittent rainfall than Florida. The
auto-correlation function for mean areal rainfall over a (360 x
360) km area was calculated and is shown in Figure 2.8. It is
evident from this Figure that the decorrelation time is of the
order of 3 hours if the zero rain rates are included and 2
hours if they are excluded from the analysis. The mean areal
rainfall for the period 8th August to 30th August was 0.1 mm/hr
with a standard deviation of 0.3 mm/hr. The probability of zero
5-minute rainfall over the area was 0.86 for the period. These
statistics are quite different from those calculated for the
GATE data where the decorrelation time for a (280 x 280) km
area was found to be 7.7 hours (Bell et al, 1988).

Decreasing sensor resolution was simulated using the 2 km
resolution radar data to calculate the mean areal rainfall over
4, 8, 16, 32 and 64 km pixels. These hourly and daily rainfall
maps were then resampled at the 2 km resolution, and used to
calculate the rain variance, mean depth and area within a

portion of the original rainfall map. The results for hourly



and dalily accumulations are shown in Figures 2.9 and 2.10

respectively. The 64 km pixel data introduces a serious bias in

the rain area, 700% for hourly and 300% for daily data, with a

commensurate drop in the mean areal railn rate.
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Figure 2.9 The variance, mean depth and rain area for hourly
rainfall using a 4, 8, 16, 32, 64 km resolution
sensor, expressed as a percentage of the statistic

for the 2 km map
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Figure 2.10 The variance, mean depth and rain area for gdaily
ralnfall using a 4, 8, 16, 32, 64 km resolution
sensor, expressed as a percentage of the statistic
for the 2 km map

2.7 Conclusions

Examination of the statistical and sampling problems
assoclated with weather radars in general, leads us to believe
that the data from the Patrick Airforce Base radar, when

combined to give hourly accumulations on a Cartesian grid of 4

km, estimates the actual mean areal rainfall over a pixel with

a variance equal to 26% of the variance of the hourly polar

data. The analysis also suggests that the optimum recording

strategy for radar data is to record at high spatial and

temporal resolution, with few independent samples if necessary,

and then average during the polar~to-Cartesian conversion and

41
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time integration using an appropriate pixel size. The usual
strategy of combining a large number of polar data with
exponential averaging not only produces low spatial resolution
data, but also does not remove the majority of the statistical
fluctuations.

The random sampling erxror of the radar is substantially
reduced if the data are accumulated over periods as short as
one hour provided the radar sampling period is set at five
minutes. The systematic bias with range is potentially more
serious and can be reduced by restricting the effective range
of the radar.

Convective rainfall in Florida is intermittent even when
averaged over 124,000 kmz. Therefore, the measurement error for
perfect instruments increases sharply as the frequency of
observation decreases. Exceptionally dense raingauge networks
are required to measure daily convective rainfall. For example,
a random network with a gauge density on one gauge per 625 km2
would yield estimates equivalent to the 30-minute area-only
instrument. The 30-minute perfect instrument is equivalent to a
gauge density as high as one gauge per 150 km?.

The picture improves somevhat for monthly areal mean

ralinfall. The proposed TRMM sampling frequency of twice per day
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would be expected to give errors of the order of 22% if the
satellite covered the entire area with each overpass. Rainfall
patterns tend to be clustered in space and therefore the
measurement errors for a system that only partially samples the
area with each overpass are likely to be larger than this. A
30-minute area-only instrument would have an error egual to
approximately 3% assuming that the climatological mean rainfall
rate given that it is raining is known for that area.

The raingauge network with a density of one gauge per 2,500
km? estimated monthly mean areal rainfall with an error of only
8%. This could be partially due to the fact that the monthly
rainfield is fairly smooth since there is no significant
topography in the radar coverage area and apparently few local
driving mechanisms. It is clear the between 8 and 16 visits per
day are required to meet the stated TRMM objective of measuring
monthly mean areal rainfall with better than 10% error over a
(500 x 500) km area. The main contribution from the TRMM
exper iment would then be to estimate the climatological mean
rainfall rate (given that it is raining) which could then be
used in conjunction with the geostationary weather satellites

to provide the required estimates.
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Prolegomenon to Chapter 3

Esumates of mean areal ranfall are required as basic input into hydrological models used to model the transformauon of
rasnfall 1nto nver flow, The bulk of these arcal rainfall esumates are based on effectively point ramngauge measurements
and therefore the arcal ranfall 1s only known to withun some faurly large error margin. A major problem to be
overcome when assessing the error in an estimate of arcal rainfall, 15 that the true areal rainfall 1s not known. Two
common approaches to this problem have been to cither use a dense raingauge network ! to esumate the true arcal
raunfall, or w use a stochastic model to generate a syntheuc rainfield?. Damant, et al 19833 were possibly the first to
use radar estimates of areal ramnfall as nput data to such a simulaton. Chapter 3 will build on this work and wil
invesugate the mfluence of the geometry of varous raingauge networks and ramnfield charactenstcs on the measurement

crror m arcal ramtall estmates based on gauges over large areas.

' Hendnek, R €., and G.M Comer, 1970: Space vanatons of precipitauon and implications for raingauge network

design J of Hydrology 10- 151-163.

to

Wilson, C B .1 B Valdes, and I Rodniguez-lerbe, 1979° On the influence of the spatal distribution of rainfall on

storm runot!  Water Resources Res 15 (2) 321-238.

3 Damant, C,GL Ausun, A Bellon,and R S Broughton 1983. Errors in the Thiessen techniques for esumating

areal cun amounts using weather radar data J, of Hydrology, 62, 81-94.
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List of symbols in Chapter 3

Radar reflectivity (mm9S/ m3)

Rainfall intensity (mm/hr)

Mean standard error (mm)

Estimated mean areal minfall (mm)

Actual mean areal rainfall (mm)

Normalized error for esumated mean areal rainfall

Distance weighting function for a gauge at a distance d

Average nearest neighbour distance for the gauge network (km)

Mean standard error expressed as a percentage of the areal mean ramnfall

Ratio of the standard deviauon of the ranfield at a point over the mean rin depth at a pont
Ratio of the area with non-zero rainfall over the total arca covered by the gauge network
Number of gauges i the gauge network

Empincal constants
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Chapter 3
Sampling Errors for Raingauge Derived Mean Areal Daily and

Monthly Rainfalf

3.1 Abstract

Radar data from two geographical locations are used to
simulate the mean standard error in using a sparse raingauge
network to estimate daily and monthly mean areal convective
rainfall over areas ranging from 45,000 to 180,000 km . It was
found that a network with a regular configuration gave somewhat
less variable errors than the uniform random raingauge network,
although the mean errors were very similar. The difference
became more pronounced for the very sparse networks. The mean
standard error for a particular network and rainfield was found
to be a function of the number of gauges in the network, the
raining fraction of the area and the ratio of the standard
deviation over the mean of the non-zero portion of the
rainfield. A simple three parameter relationship was proposed
to relate the mean standard error, expressed as a percentage of

the mean areal rainfall, to these variables. It was found that

1 By A.W. Seed, G.L. Austin and R.S. Broughton
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a single relationship was able to explain 63% of the
variability in the estimated mean standard estimation error,
combining data from both regions. Finally, the domain over
which the relationship is able to make reasonable predictions
is discussed, the principal constraint being that the raining
fraction of the area should not exceed 0.5 for networks with
more than 200 raingauges.

3.2 Introduction

In spite of the heavy emphasis that the modern literature
places on various exotic rainfall measuring systems, the old
fashioned raingauge still provides the bulk of the rainfall
data to practising hydrologists and climatologists throughout
the world, and will inevitably have a major role to play in
calibrating the new generation of rainfall estimating
satellites as well as weather radars. This 1s simply due to the
length of record that exists for the raingauge as compared with
the radax for example. The accuracy of raingauge derived mean
areal rainfall needs to be understood before gauge data can bn
used as ground truth for satellite or radar rainfall measuring
systems and operational stream flow forcasting. A fundamental
gquestion that has to be asked therefore, 1s how well can a

raingauge network with a particular geometrical confiquration
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measure mean areal rainfall over fairly large areas.

Given the long history of the raingauge, it is surprising
that we are as yet unable to measure rainfall with high
accuracy, even at a point. Rainfall measured by a raingauge is
strongly affected by small scale wind effects and iocal
turbulence around the lip of the gauge. The local topography
surrounding the gauge, particularly the slope and aspect also
affect the gauge measurement e.g.. Rodda (1971). Rodda compared
the annual rainfall measured by pit gauges and standard gauges,
and found that the standard gauge measured up to 30% less
rainfall in some parts of Britain. It is interesting that this
is the order of discrepancies between gauges and "well
calibrated radars" (Bellon and Austin, 1984). Once the gauge
desi1gn and siting guidelines have been established, the best we
can hope for 1s some relative measure of rainfall.

The accuracy with which a gauge network can measure
rainfall depends on the variability of the rainfield and the
geometric organization of the network. In areas where
physiographic factors, distance from the sea, altitude and
rain-shadow effects, for example, influence the rainfield, the
network configuration should be analyzed in the space of these

varlables rather than the more usual Cartesian space. Seed
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(1987) used multidimensional cluster analysis to identify
homogeneous physiographic regions when mapping convective
rainfall in a physiocgraphically complex reaion of Natal, Scouth
Africa. The gauge network as it exists in Natal has the classic
problem that it is the mountainous areas that have the highest
rainfall and river runoff, and therefore are hydrolcegically the
most significant areas, but also have virtually no raingauges
due to the practical problems involved in siting and
maintaining the gauges.

This study uses a large quantity of radar data from both
Florida and South Africa to estimate the measurement error for
daily and monthly rainfall accumulations over large areas au a4
function of the network organization and density. In particular
two questions will be addressed, viz.

a) To what extent do the errors in estimating mean areal
rainfall over large areas depend on the network configuration
as a random or rectangular array? and

b) What are the network and rainfield characteristics that
influence the estimation error?

3.3 Basic Data Processing

Radar data continuously archived at the Patrick Air:nrce Base

(PAFB), Florida, U.S.A. during the period from the 8th to 30th



August 1987 and a summer of radar data from Nelspruit, South

Africa were processed into S-minute rainfall maps. The raw data

tapes were read and the digltized radar reflectivities were
transformed into rainfall intensities by means cf the
Marshall-Palmer relationship

z = 20080

The ralnfall amounts were then mapped ontoc a Cartesian
coordinate system with a 2km pixel.

Each polar data point falling within a Cartesian pixel was
converted into the equivalent rain rate befcore the mean rain
tate over the pixel was calculated. The resulting maps were
interpreted as if they were true rainfall rates based only on
the electrical calibration of the radar withouft being
ralibrated against the existing gauge network. For the present
study we will argue that while the radar may not represent the
actual rainfall that fell during the Lwo periods, it is a
plausible realization of the same random process, and therefore
has the same statistical structure.

Two types of raingauge networks were generated for this
study, regular, and uniform random networks. The uniform random

networks were generated using a uniform random distribution for

the two cooxdinates of the gauge location. The locations were



constrained such that the distance to the nearest neighbour was
at least 8km. Each gauge was assigned the value of the map
pixel at the gauge position, with no attempt to simulate
sub-resolution variability. These "gauge measurements" were
then used to re-create the rainfields and the original and
estimated fields were compared.
3.4 Selection of the Raingauge Interpolation Scheme

A large variety of methods are available when interpolating
from a random scatter of data points in an area onto a regular
grid. Perhaps the first of such methods wvas published by
Thiessen (1911) and Thiessen peclygons are still widely used in
hydrology today. There are basically two types of interpolation
schemes, local estimation where only the known points in a

restricted neighbourhcod are used to interpolate onto an

ct
=
s

unmeasured point, and global estimation techniques where
entire set of points are used, often by means of a least
squares regression.

Trend surface and multiple regression techniques are
commonly applied to arnual, mean monthly, and mean annual
rainfall where the rainfield is non-zero at al!l points in the
map area. Examples of such methods include Hutchinson (1968)

who mapped mean annual precipltation in New Zealand and Storr
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and Ferguson (1973) who mapped mean annual precipitation in
British Columbia, Canada. All these regression methods are
fairly senzitive to the spatial distribution of the railn
gauges, particularly near the edges cf the map area, see
Whitten (1975) for a discussion on this problem.

Local estimation technigues use the known values within a
small neighbourhood sxound the point of interpolation. There
are a great number of operational schemes in use, particularly
in the field of computer generated contour mapping. McLain
(1974) lists a number of schemes that were common at that time.
The underlying assumption of these techniques is that data are
more likely to be useful if they were measured near the point
of interpolation. Delfiner and Delhomme (1975, p96) made the
following interesting comment with regard to distance weighting
schemes :

"Clearly, no general rule can be derived from

experiment on particular data and point configqurations.

Consequently, the choice of a distance weighting

functicn is more or less a matter of personal belief,

of tradition or of confidence in the advice of

"influential authorities' ",
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Although distance weighting schemes suffer from a certain
arbitrariness in the selection of parameters, Ripley (1980) was
able to show that in order for the interpolated surface to be
smooth in the neighbourhood of the data peoints the derivative
of the weighting function must tend to zero as the distance to
the point tends to zero, and that the function should decay at
a rate faster than the inverse square of the distance. Distuance
veighting schemes also do not cope well with clustered data
although ad hoc solutions can be used to remedy the situation.

The so called optimal interpolation techniques which are
designed to minimize the variance of the interpolation error
are another major class of local interpolators. This cless of
interpolation techniques include the various flavours of
Kriging, and methods proposed by Gandin (1965) and Ripley
(1980). These techniques do in fact out-perform most of the
other interpolation technigues, see Creutin and Obled (1982)
and Tabios and Salas (1985) for comparative studies. However
problems are experienced when the rainfield has zero rain
rates, the "hole effect" in Kriging parlance, which regyuires
special treatment e.g. Creutin (1988) and they are far more
expensive in computer time than the other techniques.

The validity of any interpclation scheme has to be seen
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against the extreme variability in the short-duration
accumulated rainfields. The observed existence of e;treme
gradients and a generally discontinuous behaviour with rain
often falling over less than 10% of the area, leads to the
conclusion that any interpolation technique will not show great
accuracy in these cases. It is only recently that the
Meteorological community has started to deal with the extreme
intermittency of rainfall and cloud £fields as compared with the
more traditional variables of temperature, pressure and wind.
The underlying cause for this extreme variability is the
drastic non-linearity involved in cloud and rain formation. The
response from a hydrolegical point of view i1s to exercise
extreme caution about the likely accuracy of any interpolation
scheme, including those of great mathematical complexity.

So then, a method must be selected out of this plethora of
competing interpolation schemes. Since a large number of maps
will be generated, over 100 for each network density and
configuration, using up to 1000 gauges, the method must be
above all fast. This more or less restricts the selection to
fairly crude distance weighting and Thiessen polygons. However,
it is interesting to note that both Tabios and Salas (1985) and

Creutin and Obled (1%82) found that these crude methods d4id not
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perform much worse than the more sophisticated methods, and
gave falrly satisfactory results for interpolaticon accuracles
at a point. More recently, Lebel, Bastin, Obled and Creutin
(1987), estimated the accuracy of the varicus techniques in
measur ing mean areal rainfall over several hundreds ¢f square
kilometers for hourly data, and found that Kriging had

approximately 25% less measurement exrror variance than Thiessen

2

polygons for a catchment of 545 km*® and a dense raingauge

network.

A casual examination of a rainfield interpolated by means
of Thiessen polygons will be sufficient to convince one that
the technique does not produce aesthetically pleasing
rainfields. The comparative analysis between regular and random
gauge networks will be done using Thiessen polygons, in the
interests of reducing the computer time. Thereafter, a distance
welghting technique will be used to estimate the measurement
error variance as a function of network density and averaging
area. Finally, a relationship using rainlng area, number of
gauges, and the variability of the raintlield will be used to
predict the mean standard error in mean areal daily rainfall

estimates.
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3.5 Random vs Regular Raingauge Networks

Since this study was exploratory in nature, and the
computer time requirements were substantial if the entire data
set were to be analyzed, seven 24 hour accumulations were
chosen as the "truth" for the study. The maps included one day
of intense convective rainfall, but with a small rain area

which was expected to provide the largest errors. The mean

standard error

n

mse= /1) (9,702 (3.1)

=1

where

Y. 1s the estimated mean areal rainfalil using the i th

gauge network and

¥, is the actual mean areal rainfall for that day,
was calculated for each of the 7 days in the data set using
nine raingauge networks. Figure 3.1 shows the maximum, median
and minimum mse as a function of network density using random
and regular network configurations. The random network gave a
larger median and maximum mse for the 7 days analyzed. In
particular, the maximum mse for the random network

configuration increased more quickly than the maximum mse for
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the regular network as the network density was decreased.
The errors for each of the nine networks for each of the 7

days were normalized by means of

e=(9‘"y‘)xloo (3.2)
Y.

The cumulative distribution of € for the 900 km per gauge
density network is shown in Figure 3.2. From this figure 1t s
clear that the random network configuration produces longer
tails, particularly on the over-estimation tail. The
under-estimation tail is constrained by -100 by construction,
the worst underestimation possible is to measure none of the
rain that fell on that day.

It is interesting to note that the rate at which the

3

maximum mse decreases with increasing gauge density is

noticeably faster after 400 kn? per gauge, a mean spacing of 20
km. The probakbkility of the raingauge network making a drastic
error rapidly decreases once the network density exceeds 400
km2, Therefore, although the rate at which the mse decreases
with increasing gauge density is depressingly slow, the dense

network at least has a fairly constant error from one day to

the
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Figure 3.1 Errors in the estimation of mean areal dally

rainfall over 180,000 km2 using Thiessen polygons
with regular and random railngauge networks

next, in contrast with the sparse network situation where the
maximum error can easily be twice the mean error for a
particular rainfield and network.

An examination of the mse for the various days and gauge
densities revealed that the days with a large rain area in
general had a lowv error and those with small rain areas had
high errors. Figure 3.3 shows a plot of error versiys rain area

for network densities of 100, 200 and 900 kmd per gauge using a
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reqgular network design and Thiessen polygon interpolation. The
dependence of error on rain area is striking. Therefore, the
rain gauge network would tend to have lower eztimation errors
on the days of heavy mean areal rainfall since rain area alone
is able to account for most of the mean areal rainfall variance
(Rosenfeld, Atlas and Short, 1988). The dense network vas less
sensitive to the rain area since the network was able to sample
even very sparse rainfields with good probability.

3.6 Mean Sstandard Errcr vs Network Density

The distance welghting function

w(d:)w(_f) (3.3)

where
w(d,) is the weight of the 1 th gauge a distance d,
avay, and
a 1s the average nearest neighbour distance for the
network
was used to generate daily and monthly rainfall maps for the
Florida and Nelspruit data. The Nelspruit data had a maxiaum
range of 120 km so the areal mean rainfali for 44,000 kme vas

calculated using 16 days for Nelspruit, and 7 days for Florida,
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and nine different gauge networks. The entire simulaticn took
six hours of CPU time on a super-mini computer. Figures 3.4 and
3.5 show the error as a function of gauge network density for
daily and monthly data respectively. From these Figures it is
apparent that Nelspruit has interpolatien errors that are
approximately a factor of 2 higher for monthly rainfall and a
factor 4 higher f£oy dally rainfall. The ratio of standard
deviation over the mean 2 km mean areal rainfall was 1.5 for
Florida and 2.47 for Nelspruit, the mean number of raining
pixels per day was 2500 for Florida and 3000 for Nelspruit. 1t
seems then, that the raingauge network error is quite sensitive
to the relative variability of the rainftield, not an unexpected
result.
3.7 Mean Standard Error vs Averaqing Area

The Florida data were used to determine the error tor
monthly mean areal rainfall over 45,000, 100,006, and 180,000
km2 as a function of network density. For sparse networks, the
correlation between any two raingauges is likely to be slight,
and therefore the measurement error, expressed as the mean
standard error, would be sexpected to be inversely proportional
to the square-root of the number of gauges, independent of the

averaging area. Figure 3.6 shows a log-15g plot of measurement

e
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error verses number of gauges for the three averaging areas.
Unfortunately, the maximum range of the radar at Nelspruit
limited the coverage area to 44,000 km2 and therefore it was
not possible to repeat the analysis for those data. While the
results from an analysis using only one monthly mean areal
rainfall map can hardly bLe considered conclusive, Flgure 3.6
suggests that error is indeed independent of averaglng area,
provided the network is sparse jn the sense that the mean
correlation between any tve gauges i3 small. It should also be
noted that the gauges 1n the varlous networks were deployed

over the entire averaging area.

100
- Natwork area {8q km)
- [ » 45000 + 100,000 ¥ 180,000
= !
=
2 10k *
5 - o
(3]
CR g
= ¥ o+x
3 i '+*4
1k *
® ? ¥
g -
5 X
L] -
83}
01 ] ] it 1 1113 1 i b L g i dt 1 1 W .
10 100 1000 10000

Number of gauges

Figure 3.6 Estimation error for mean areal monthly rainfall
over 45,000, 100,000, and 180,000 km2 as a function
ot the number of gauges
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3.8 Mean Standard Estimation Erxrror for Daily Mean Areal

Rainfall

From the above analysis, it is apparent that the estimation
error fcr mean areal rainfall over large areas and sparse
netvorks, the most commoen kind of network, is a function of the
number of gauges, the ralning azrea and the varxiability of the

non-zero fraction of the rainfield. A function of the fornm

EF=(a+bV)N °%-c4 (3.4)

where

E = mean standard error expressed as a percentage of
the areal mean rainfall

V = standard deviation / mean

A = raining area / total area

N = the number ot gauges in the network, and

a,b,c are empirical constants to be estimated from the

data

vould seem a reasonable first guess, assuming that N and V have

no 1nfluence on ¢.
A least-squares fit was undertaken for the 16 days of
Nelspruit data and 7 days of Florida data first separately and

then using the combined data set. Table 3.1 gives a summary of
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the three sets of parameters and Figure 3.7 plots the estimated
vs predicted E using the combined data set parameters.

From Table 3.1 1f can be seen that the a and ¢ parameters
were very similar for all three data sets. The second
parameter, b, was possibly badly estimated In the Florida case
since the 7 days used in the analysis all had very similar,
relatively low, variabllity. Since the reqression was based on
estimates of the mean standard exror, which itself has a large
variance, the regression was able to estimate E surprisingly
well in explaining 63% of the variance of E. The model has the
interesting property of predicting negative errors when the
raining fraction exceeds 0.5, the relative variability of the
field is low, 1.4 say, and N is of the order 200 or greater.
Clearly, the error functicn is not able to make predictions in
this domain. The lower limit for the raining fraction (A)
appears to be somewhat less than 0.05, the lower limit for A in
the combined data set. The data set to hand only had two days
with A greater than 0.5, making it impossible to explore this
domain more thoroughly.

0f course, the actual measurement error for a given
rainfield and network can rather easily be very much higher

than the mean measurement error, the variance of E increaslng
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as the mean increases. A complete description of E must
therefore include an estimate of the variance or preferably a

description of the probability distribution.

Table 3.1 Summary of the model f£it to the Nelspruit, Florlida
and combined data sets

a b c r2

Nelspruit |461.6) 25.0 [44.510.50

Florida 416.51 75.8 | 44.6 10.66

Combined [411.7/42.0%[39.110.63
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2 Influential authorities, e.g. Adams (1979) claim that this

L
value has a deep significance
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3.9 Conclusions

In conclusion then, it has been found that the xregularx
networks were somewhat better than the uniform random networks,
in so far as the variance of the estimation error tended to be
lower for regular networks, particularly for the more sparse
networks. As the number of gauges increased, the difference
between the two configurations, as expected, diminished.

The mean standard estimation error is independent of the
averaging area 1f the gauge density Is expressed as the number
of gauges 1in the network and not in square kilometers per
gauge. This only holds true when the density of the network is
less than one gauge per 15 km, in which case the inter-station
cortrelations can be ignored. Since this is of the order of the
correlation length for convective rainfields, one could
speculate that this result, suitably scaled by the correlation
length, can be applied to shorter rainfall accumulations over
smaller areas.

After the number of gauges in the network, the raining
fraction of the area covered by the network was found to
significantly affect the network measurement error. In general,
the small rain areas gave the largsst mean measurement error,

once again this effect is greatest for the more sparse
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networks. A simple model to predict the mean standard
measurement errcr given the variability of the rainfield,
number ot gauges in the network and, the raining fraction of
the area covered by the network was proposed. The model was
able to explain 63% of the variance in a combined data set
using data from South Africa and Florida. Two of the three
parameters were qulte similar when estimated from the South
African and Florida datz separately. The nature of the model is
such that it is unable to predict measurement errors for
raining fractions that exceed about 0.5, except when the number
of raingauges less than about 200.
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Prolegomenon to Chapter 4

Since the conversion of rainfall into runoff by a river catchment is a spatially averaging process, and since point-rainfall
measurements in general are the only data available 10 hydrologists, the transformation of point-rainfall statistics into
equivalent areal-rainfall staustcs is of fundamental concern to hydrologists. This concem is particularly important in
the case of csumating exrtreme cvents for the design of drainage systems. The normal situation is to know for example
the 50 year return period for 1 hour accumulation at a pornt from raingauge data. What the designer requires 1s the 50
year retum period accumulation over the catchment arca of the culvert. Empirical methods to effect such a
transformation have in the past been based on raingauge network data usually from geographical regions located far from
the location of the installauon!. It would scem that radar data, with its excellent spatial resolution, is a rather natural
data source for such astudy Chapter 4 uses radar data as a basis for an empirical investigation into the sensitivity of

the ramnfall probability distnbution to averaging area.

1 U.S Weather Burcau, 1957-60: Ranfall intensity-frequency regime, Part 1; the Ohio Valley; Part 2; southeastern

United States, Tech. Paper No 29, U.S. Department of Commerce, Washington, D.C.

| e
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List of symbols in Chapter 4

R2km Mean areal rainfall depth over (2 x 2) km area (mm)
Rnkm Mean areal rainfall depth over (n x n) km area (mm)

ab Empirical constants



72

Chapter 4

On the Sensitivity of the Rainfall Probability Distribution to

Averaging Area!

4.1 Abstract

An empirical investigation on how the probability
distribution of mean areal rainfall responds to varying degrees
of spatial averaging was undertaken. Twenty one days of
5-minute radar rainfall data were collected at the Patrick Air
Force Base, Florida, U.S.A. During August 1987. These data were
processed into maps of 5-minute, hourly and daily rainfall. The
maps were then successively averaged, and the probability
distributions for the various scales of spatial smoothing were
calculated. These distributions were then used to estimate the
rain-rate for various levels of exceedance probability. A
function was fitted to describe the mapping of mean areal
rainfall from one scale to the next whilst keeping the
exceedance probability constant over the scale change. The

analysis was repeated for two meteorologically different

1l By A.W. Seed, V.T.V. Nguyen, and G.L. Austin
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events, namely 12 consecutive hours of general rain and 12
consecutive hours of heavy convective rainfall. It was found
that a power-law closely fits the mapping of the probability
distribution over changes in the scale of measurement. The
parameters for the transformation were found to be dependent on
the characteristics of the meteorological system that produced
the rainfields. This approach is believed to be more convenient
for practical applications than previously available
techniques.
4.2 Introduction

A knowledge of the point to area transformation of the
rainfall distribution is essential to the hydrologist when
attempting to apply statistics derived from point rainfall
measurements to mean areal rainfall. This situation arises
frequently since most rainfall estimates are made from sparse
gauge networks. The question to be answered in point to areal
rainfall transformations is: "Given the point rainfall for a
certain level of probability at an arbitrary point on the area
, what is the average rainfall over the area for the same level
of probability?" (Raudkivi, 1979, and Nguyen, 1984). For many
years areal reduction factors (ARFs) have been used to

transform the point rainfall depth into an equivalent mean
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areal rainfall. Perhaps the most widely used of these have been
the U.S. Weather Bureau (1957) curves, details of which can be
found in Bras and Rodriguez-Iturbe (1885).

More recently , Rodriguez-Iturbe and Mejia (1974) developed
a method that used either an exponential or Bessel correlation
structure together with an estimate of the mean distance
separating two random points within the area to calculate the
ARF. Myers and Zehr (1980) fitted surfaces in area-duration
space to five different gauge-pair statistics to estimate the
upper and lower bounds of the first and second moments of the
annual maximum mean areal rainfall series. These moments were
then used to estimate the mean areal rainfall depth for various
return periods, and hence the ARF for each return period used.
Nguyen (1984) assumed that hourly rainfall accumulations had a
mixed distribution with the non-zero rainfall values
distributed as exponentlal, non-identical, non-independent
random variables. Nguyen was able to derive an expression for
the distraibution of the areal mean rainfall and hence the ARF
for any exceedance probability. Niemczynowicz (1984) developed
ARFs for short duration, 1 to 40 minutes, and small areas, up
to 25 km2 using 12 gauges to cover an area of 25 km2 in the

central part of Lund, Sweden , over a period of three years.
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Previous studies ( see e.g. Myers and Zehr, 1980;
Niemczynowicz, 1984) have found that the ARF depended on the
rainfall duration, exceedance probability and area.

Many of the current methods are not suited to short
duration, small area rainfall typical of most urban hydrology
problems since they are based on long duration, large area
data. This lead Arnell et al (1984) in their review of rainfall
data for urban hydrology to state that "there is a lack of
fully developed and experimentally justified models for
transferring point rainfall to areal rainfall". However, any
method to derive the ARF for short durations and small areas
using rain gauge data will first have to deal with the problem
of estimating the mean areal rainfall using the point data.
Radar data on the other hand, allows one to estimate the mean
areal rainfall rather more easily, assuming a well behaved Z-R
relationship. While radar data have excellent space-time
coverage, it measures rainfall neither directly nor perfectly.
Austin (1987) found the radar gave 15% errors for storm totals
over a number of gauges, therefore the radar is expected to
measure instantaneous rain rates over small areas with a far
higher error variance. Rain gauges measure the rainfall at a

point with a better, but not perfect, accuracy. Exceptionally
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dense networks, however, are required to measure short duration
convective areal rainfall. Huff (1979), cited by Arnell et al
(1984) for example found that a network with a mean spacing of
1.8 km was required to explain 90% of the rainfield variance.

None of the current techniques have taken the meteorology
that produced the rainfields explicitly into account, although
the importance of a synoptic meteorological appraisal wvas noted
by Myers and Zehr, (1980). It seems quite plausible that
rainfields produced by large scale general rain events would
respond quite differently to spatial and temporal smoothing
than would rainfields resulting from small scale isolated
convective storms, for example. Furthermore, since the scale of
the area over which the rainfield is averaged varies from
hectares in the case of urban hydrology to thousands of square
kilometers for the case of water resource hydrology, it seems
likely that extreme run-off events could be caused by diiferent
types of meteorological events, depending on the scale of the
catchment in guestion.

This paper will use radar rainfall data to provide some
exper imental insight on how the probability distributions of
short duration rainfields are transformed under spatial

averaging over the range 2 km to 64 km. An empirical method to

A
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model the transformation of the probability distribution under
spatial averaging will be tested. The model will then be used
to determine if the rainfields resulting from widespread
general rain and convective rain respond differently to spatial
averaging.

Weather radar data archived over 21 days during Augqust 1987
at the Patrick Airforce Base, Florida, U.S.A. were processed to
form a data base of some 1000 5-minute rain maps at 2 km
resolution. These maps were then carefully inspected and edited
to remove echoes resulting from anomalous propagation,
electrical interference and ground clutter. The maximum range
of the radar was restricted to 240 km so as to reduce radar
range effects.

4.3 Method

The region covered by the radar was subdivided 1nto
non-overlapping square reglons, 64 km on a side. The data
within these squares were then successively averaged to produce
distributions of 4 km through to 64 km mean areal rainfall. The
distributions for 5-minute, hourly and daily mean non-zero
areal rainfall are shown in Figures 4.1, 4.2, and 4.3
respectively. The rain rates for various levels of exceedance

probability were then estimated from the empirical
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distributlions and plotted against one another. Figures 4.4,

4.5, and 4.6 show some of these plots for 5-minute, hourly and

dally rain rates respectively. Based on the straightness of the

log-log plots the folloving relationship was assumed

]

thm=aRnkm

where

(4.1)

R2 km and Rn km are the mean areal rainfall over 2 km

and n km respectively, and

a,b are the fitted parameters for n = 4, 8, 16, 32,
64 km.
1.0E+00 ¢
i
-
P LOE-01E
[ 4 -
-
b i 04 k
a
? 1.0E-02 ¢
| E 32 km 2 km
] l 18 km
t 4 km
Y 10E-08F ,
- 8 km
s
-
1-OE_O4 o | 1o 1 a4l i I NEEENT] L i B tteigs A1 i 1 1411
0.01 0.1 1 10 100
rainfall {(mm)

Figure 4.1 Probability distributions for 5-minute rainfall
accumulations
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This equation is identical to that proposed by Lin (1976} to

transform 60-minute rainfall probability distributions into

shorter rainfall accumulation distributions.

Least squares regression was used to estimate the two
parameters a and b in (4.1) for each transformation. Figs 4.4,
4.5 and 4.6 also show the best fit for the various
transformations, supporting the power law assumptlon. Figures
4,7 and 4.8 show the "a" and "b" parameters as functions of the
averaging area and rainfall accumulation period when

transforming the
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probability distributions to 2 km. Tables 4.1 and 4.2 show the
"a" and "b" parameters for hourly rainfall under various

spatial transformations.

It is interesting to note that the transformation from say
64 km to 32 km is more severe than the transformation from 4 km
to 2 km. This fact is also apparent from the probability
distributions in Figqure 4.2, where the lines converge as the
scale is systematically decreased. This would lead one to
assume that the point distributions as derived from rain gauge
data are not too different from the 2 km data, particularly for
the hourly and daily rainfall accumulations.

To investigate the stability of the "a" and "b" parameters
over various meteorological conditions, the analysis was
repeated using hourly data for two 12 hour periods in the
Florida record. The rainfall on the 14th August 1987 was light
and widespread whereas the rainfall on the 22nd August 1987 was
intense isolated thunderstorms. Figures 4.9 and 4.10 show "a"
and "b" as functions of scale for both 12 hour periods. The

curves are derived from the entire record of 21 days
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Table 4.1: Table of "a" coefficients for mean areal hourly
rainfall for various transformations.

Measured
Rain
2 km |4 km |8 km |16 km{32 km |64 km

Trans f ormed

Rain i .
2 km 1.000 ]
4 km 1.1981.000

B 8 km 1.440(1.1991.000 L

o 16 km 1.862(1.546 {1.281!1.000 |

) 32 km 2.605(2.155)1.772)1.364{1.000
64 km 3.75713.0972.527}11.915(1.374]1.000

is included for reference. From these figures it is quite
apparent that the two sets of rainfields respond to spatial
averaging in different ways. Not unexpectedly, the widespread
rain day had coefficlents which were close to unity over the
range of scales investigated. The convective case, on the other
hand showed coefficients that wexre strongly dependent on scale.
Indeed, the significant gradient in the curves for the
convective case would suggest that care should be taken in
making the possibly incorrect assumption that the probability
distributions for point raingauges are the same as areal

averaged radar data.
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Table 4.2: Table of b coefficlents for mean areal hourly
rainfall for various transformations.

Measured
Rain
2 km 4 km 8 km |16 km |32 km}64 km

Transformed
Rain ~“M o

2 km 1.000

4 km 1.012 {1.000

8 km 1.034 [1.023}1.000

16 knm 1.080 [1.069(1.044 :1.000

32 km 1.152 11.140(1.1151(1.067 (1.000

64 knm 1.277 {1.263(1.234(1.182{1.107 {1.000

4.4 Conclusions

It is possible to characterize the way the rainfall
probability distributions are transformed under spatial
averaging by means of a two parameter power law. The parameters
are sensitive to the meteoroloqy that produced the rainfields,
the magnitude of the scale change, and the scale itself. It is
clear that the spatial organization of the widespread rain type
of rainfield is guite different from that of the convective
rainfield, and responds differently to spatial averaging. It is
therefore not possible to produce only one set of parameters

for all veather types, but at least two; one for widespread




-

817

rain and another for convective events. It is also possible

that these transformations depend on the local climatology as

well as rain type. This method is more convenient than previous
methods because it relates the entire probability distribution
at one scale to the distributlion at some other scale, and not
just particular, convenient, return periods. The method is also

remarkably simple, in contrast with the Meyers and Zehr (1980)

method, for example, and involves no assumptions about the

underlying form of the probability distribution or the
correlation structure of the field.
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Prolegomenon to Chapter 5

A more appealing approach to the resolution dependence of rainfall statstics than the empuncal approach of Chapter 4
would be 10 derive a scale-independent disinbution which could then be used over a range of measurement scales. It1s
likely that rainficlds respond differently to spaual and temporal averaging from one realization of the field to the next,
highly intermuttent rainfields, ansing from air mass thunderstorms for example, would be expected to be quute diffcrent
from a large scale general rain event. A parametenization of these differences could be quite useful in the machine
classification of different raun cvents. Recently, the conceptual model of muluplicauve cascades has been studied! and
many of the properties of th cascade type models are now known to some extent. These models could be of great
wnterest to hydrologists since they deal directly with the resoluton dependence of the field being modeled. Chapter §
introduces some of the concepts in the cascade type of models and uses radar data to test empincally some of the

relationships denived from the theory.

I Scheruzer, D.. and S. Lovejoy, 1987: Physical modeling and analysis of rain and clouds by anisotropic scaling

multiplcauve processes. J. of Geophysical Research 92 (D8): 9693-9714,
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List of symbols in Chapter 5

Radar reflectivity (mm6/ m3)

Order of singularity

Radar reflectivity averaged over an (L x L) km area (mm6/ m3)
Effective outer length scale of the cascade process

Ensambile average of Z over the scale Ly (mm6/ m3)
Co-dimension associated with the order of singularity ¥

Order of the moment

Co-dimension associated with the moment h

Observed radar reflecuvity (mm6/ m3)

Mean absolute differcnce

Effective outer ume scale of the cascade process

Ensambile average of the rainficld R over the ume scale T

a, o', C1,c0, Y0, Ay, ¢  Empirical constants
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Chapter 5
A Multifractal Approach to Scale Independent Rainfall

Probability Distributions?

5.1 Abstract

A fundamental problem in exploiting both remotely sensed
and in situ network rainfall measurements is that the
statistical characteristics of the resulting rainfield depend
strongly on the resolution of the measuring device. 1In this
paper we discuss a method to produce resolution independent
rainfall probability distributions. The model, conceptually
based on multiplicative cascades, uses 6 parameters to describe
the transformation of the probability distribution during
averaging over various scales of measurement. Four periods of
12 hours of 5-minute data were used in the analysis, three of
the periods represented periods of moderate to heavy convective
rainfall whereas the fourth represented widespread rainfall.
The model was able to predict the distribution of the radar
reflectivity (Z) field for a resolution greater than the

highest resolution used to estimate the parameters with good

1 By A.W. Seed, S. Lovejoy and G.L. Austin
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accuracy. It was found that the four days had somewhat
different parameters, particularly for the widespread rain day.
The method successfully modelled the transformation of the
probability distribution of mean rain rate under increased
averaging in time whilst keeping the space resolution fixed at
2 km. Two simpler methods involving four and three parameters
were tested against the six parameter model. It was found that
the four parameter model was nearly as good as the full model,
but was easier to calibrate. The three parameter model gave
significantly less accurate predictions of the probability
distributions over changes in the scale of measurement, even
though the numerical values of the parameters did not vary
greatly from one meteorological situation to another.
5.2 Introduction

A major problem with the use of rainfall statistics 1s that
the probability distribution depends significantly on the
space-time resolution of the data used to obtain the
distribution. The problems are particularly acute when
attempting to obtain the areal rainfall distribution using
raingauge data. The way that a rainfield responds to spatial
and temporal averaging has profound implications for the

estimation of areal mean rainfall required for hydrological
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modelling, extreme event analysis and the calibration of
rainfall remote sensing systems. It is also possible that
rainfields respond differently to spatial and temporal
averaging from one realization of the field to the next, highly
intermittent rainfields, arising from airmass thunder storms
for example, might be expected to be gquite different from a
large scale general rain event. The behaviour of the rainfield
under various levels of temporal and spatial averaging limits
the usefulness of many stochastic rainfield models which often
ignore the resolution dependence problem, and are calibrated
around a narrow band in space-time, see Rodriguez-Iturbe (1986)
for a discussion on the limitations of various models.

This paper will use radar-derived rainfields to observe how
the rainfall probability distribution is transformed under
spatial and temporal averaging. A conceptual model based on
multifractal multiplicative cascades will be used to develop a
scale independent probability distribution. Models of this sort
were originally developed to study the problem of intermittency
in turbulence, particularly in an attempt to obtain log-normal
distributions for turbulent energy fluxes. The generic form of
the probability distributions resulting from multiplicative

cascades, their so called "universality classes", can then be
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used to predict the probability distribution for a given
spatial or temporal resolution. The paper has two major
sections: 1) introduction to multifractal measures and, 2)
application to spatial averaging at a fixed temporal resolution
and an application to temporal averaging at a fixed spatial
resolution.
5.3 Data

Weather radar data archived during August 1987 at the
Patrick Airforce Base, Florida, U.S.A., were processed to form
a data base of some 1000 5-minute rain maps at 2 km resolution.
These maps were then carefully inspected and edited to remove
echoes resulting from anomalous propagation, electrical
interference and ground clutter. Four 12-hr periods of
continuous S5-minute data were selected for this study. Three of
the periods, taken from the 12th, 22nd and 29th August 1987
represented convective rainfall with varying degrees of
intensity and spatial organization. The the fourth period,
taken from the 14th August 1987, represented widespread,
non-convective rainfall. The maximum range of the radar was
restricted to 240 km. The area covered by the radar was further
reduced to an area covered by non-overlapping 64 km pixels

falling within the 240 km radius. Radar reflectivity maps at 2



km resolution were generated using the rainfall data, which

vere then successively averaged over 4, 8, 16, 32, and 64 km

pixels. Histograms of the frequency of the dBZ values for each
12-hour period were built up for each resolution using all of
the 144 maps in each sequence, a sample size of 4,320,000 per
histogram for the 2 km data. The histograms were then converted
into probability distributions. The minimum detectable signal
for the data derived from the rainfall data base was 24 dBZ
since the minimum rain rate recorded in the rainfall data base
was 1.2 mm/hr. This is some 10 dBZ higher than the minimum
detectable signal for the raw data. The 2km resolution rain
rate data fcr the 22nd August were averaged over 5, 10, 20, 40,
80, and 160 mianutes, and the probability distributions were
derived for each averaging period.
5.4 Multifractal measures

The extreme variability and intermittency of the atmosphere
results from the concentration of various conserved fluxes,
energy for example, into smaller and smaller regions through
the action of non-linear interactions and instabilities
operating over a wide range of scales. Even when the exact
dynamical equations, and corresponding conserved quantities,

are not known, it is still likely that such cascades are
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responsible for much of the observed variability. Fairly
recently, research has shown that cascades of this sort, where
the large scale multiplicatively modulates the small, when
carried out with a repeating scale invariant mechanism over a
wide enough range of scales, generally leads to multifractal
measures (Schertzer and Lovejoy, 1987). In this paper we will
investigate empirically how well rainfields can be described by
sach multiplicative cascade processes. The analysis of the data
presented in the paper will be seen to lend some credence to
this hypothesis since the probability distributions over the
entire range of scales available, £fit into the theoretically
predicted functional forms. Fields resulting from such cascade
processes can be regarded as superpositions of sinqularities of
order y, each distributed over sets with fractal dimension d(y).
One wvay of expressing this is by considering the probability
distribution of a multifractal field Z, radar reflectivity for

example, when averaged over some scale L, as a function of the

scale
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Pr(%’(é)-v)"(il?)cm (5.1)

where
Z, is the value of the multifractal field, when
averaged over the scale L,

Z.,, is the ensamble average,

Lo is the "effective" external scale of the data, and
c(y)=d-d(y), d is the dimension of the space in which the
process occurs.
The above equation shows that the basic scale invariant
"co-dimension" function ¢(y) is really just an appropriately
normalized probability distribution:

log Pr{(Z./Z,,)>(L/Ly)")

c(v)= 10g(L/Lg) (5:2)

where the second order terms in Egqn (5.1) for equality have

been ignored.

This formula has an equivalent statement in terms of the

statistical moments of 2Z, :

<Z','.'>=L""C")=fl_,"\'dp,-=fl_('w-<=(v))dV (5.3)
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A great simplification in multifractal analysis and

modelling occurs because for quantities conserved by the

cascade, the c(y) function is characterized by the following two

parameter functional form or universality class:

Y .

C(Y)"Cn(claﬁé) (5.7)

with

C,$d, the dimension of the space in which the process

occurs,

O<a<2

+—l;=l
a

[~ R

(wa’22forl<a<2, a’<0for0sa<l])

The corresponding universal K(h) function is given by :
C,a’
K(h)=——(h*-h) (5.8)

(Schertzer and Lovejoy, 1987)

The above functions are for conserved, stationary
guantities and are the multiplicative analogues of the standard
central limit theorem for the addition of random variables, the

case a=2 corresponding to (log) gaussian processes, and a<2 to
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(log) Levy processes. For other quantities, related to these by
either dimensional and/or power law relations, the
corresponding c(y) functions can be obtained by the linear
transformation y-2ay+b. If we regard cascade processes as
concrete implementations of the idea of proportional effects (
e.qg, Lopez, 1978), then we see that the latter generally do not
yield log-normal distributions, but only approximately
log-normal distributions.

For example, in turbulent cascades, the energy flux € is
conserved, and the fluctuations in components of the velocity
field are obtained by Avu=¢'*!'® hence a = b = 1/3. For passive
scalar clouds ( see Schertzer and Lovedioy, 1987, and Wilson et

al, 1989 for details on these multifractal cloud and rain

|/3[|/3 where

models), the corresponding gquantities are Ap=y
y=x%%"""2 and x is the variance flux of the passive scalar
concentration p. Allowing for these linear transformations of
Y, we obtain the following more general three parameter
universality classes:

C(v)=co(vl+ 1) (5.9)

0
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An equlivalent, more convenient form for the three parameter

class is obtained by taking y=y+Avy in Eqn. (5.7):

Ay 1YY
C°=C‘(C,a'+a) (5.10)

C,a’
YomAy+——

These relationships are useful, since as will be seen, cy Ay
and C, are much easier to estimate than a,a’ which are
essentially measures of the concavity of c¢(y) which will only be
pronounced for large y. The three parameter universality

classes can then be written:

y+Ay 1}*
c(y) Cl( Ca +a) (5.11)

K(h)=£%?%h'-h)-hAv
Before discussing the analysis of radar data using the
above formalism, we must first discuss a complication which
arises because of a basic distinction between "bare" and
"dressed" cascade quantities. The "bare" quantities are
essentially theoretical: they are obtained after a cascade

process has proceeded only over a finite range of scales;
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strictly speaking, Egqn. (5.11) applies only to these
quantities. The experimentally accessible quantities are
different; they are obtained by integrating the multifractal
fields, usually by means of the measuring device, over scales
much larger than the inner scale of the cascade, which in the
atmosphere is of the order of 1lmm. The properties of such
spatial (and/or) temporal averages are approximated by those of
the "dressed" cascades i.e. those in which the cascade has
proceeded down to the small scale limit and then inteqgrated
over a finite scale. The small scale limit of these
multiplicative processes is singular and is responsible for
this basic distinction.

Unlike the bare cascade, the dressed cascade displays the
interesting phenomenon of divergence of high order statistical

moments, that is:
<Z'>9m (5.12)
for all hzk,

vhere h. is the critical exponent for divergence. The precise

condition for divergence is given by :
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C(h.)=d(A) (5.13)
vhere

d(A) is the dimension of the averaging set ( e.g. line,
plane, or fractal in the case of measuring networks)
over which the process is averaged ( Schertzer and
Lovejoy, 1987).

The phenomenon of divergence of high order statistical
moments arises directly from the fact that C(h) is generally
unbounded, and hence for any averaging set A, for large enough
h, C(h} > d(A). In the universality classes above, the only

exception occurs when a<l, which yields
C,
max(C(h))= T=e Ay

which can be £ d(A) ( Schertzer and Lovejoy, 1983, 1985 discuss
another model , the "a" model in which this also occurs). Note
that in the latter case, divergence will still occur if the set
A is sufficiently sparse so that 4(A) is small enough.

Rewriting the above, we obtain the following equation for
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K(h,)=d(A)(h,-1)= (5.14)

Cla’

—;—h:m,(—av-du)—c :

2!
—;—)+d(A)=O

Corresponding to h,, there is a critical singularity v,
such that A.=c¢’(y,). The functional forms for the three parameter
universality classes are therefore valid for the observable
(dressed) quantities only for hsh,. vySy, with vy, written

explicitly as:
o 1
vc-C.a’(h‘: '—;)-Av (5.15)

For ¥>y., ¢(y) is a straight line with slope h.. For h > h. ,
the moments <Z*>+® hence, strictly speaking, K(h) is no longer
defined. However, experimentally, since finite sample sizes are
used to estimate the moments, we obtain the phenomenon of
"pseudo-scaling"- see Schertzer and Lovejoy, 1987 and Lavallée
et al 1989. Like @, estimating y. from the data is difficult
because it too is very sensitive to the low-probability, large
¥, ¢(y) part of the function. It is therefore of interest to
develop approximate graphical methods for it's estimation. See

Fig. 5.1 for details of this construction.
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Figure 5.1 Graphical construction to estimate c¢o and C,.

5.5 The Impact of Radar Induced Measurement Error

Since thls study relies heavily on radar derived rain and
reflectivity fields, and it is well known that the radar
introduces a significant measurement error in the estimation of
the mean Z over some small volume in space, the likely impact
of such measurement error on any conclusiocns reached in this
study must be assessed. As was pointed out by Zawadzki (1987)
these statistical fluctuations added to the Z, caused by the
shuffling of the raindrops, may serve to enhance the extreme

values in the data sets, causing spurious hyperxrbolic
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distributions. The standard theory for radar measurement of
rain seeks to relate the observed "effective radar reflectivity
factor" Z,, with the "radar reflectivity factor 2", and from 2,
via various assumptions, to the rain rate R. This step involves
making assumptions about the probability distribution of drop
volumes as well as their correlation structure. The usual
approach assumes the drops to be independently distributed with
finite variance distributions; this leads to incoherent
scattering and the following conditional probability
distribution for Z,, given Z:

14

P(ZulZ) « e 7 (5.16)
If we now assume that Z is the result of a cascade process,
with an associated c:(y), we seek to know the relation between
cz(y) and the measured c,(Y..) for the "effective radar
reflectivity factor". This is a case of the "Observer's
Problem" applied to the probability distributions. In terms of

multifractals, the problem may be posed as follows:
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Zy « L7 ~ o"F
Z « LY ~ g™ (5.17)
vhere
te=lInl

Since we are typically interested in small scales, we take

t®» 1. We now obtain:

P(Za) = [ p(Zo|Z)e My

o f‘e(-o;('“-y)-c(v)t)dy

- max (7™M, )

x g 7 (5.18)

vhere in the last step we have again used the method of
steepest descents.
In the case of interest, where § is large, c(y) is algebraic,

and we obtain to within high order corrections in ¢

mgnx(e““"’w(v)t)- (Yot (5.19)

hence we obtain

CalYa)=c(Y)

3
&
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i.e. the co-dimension function and probability distributions
for effective reflectivity are the same as those of 2 as long
as c(y) is algebraic and L is small. The exponential relation
between the Z and Z, therefore will not affect the form of the
probability distribution if the distribution is "long" or "fat"
tailed. These results were tested by Monte Carlo simulation
where it was found that the shuffling fluctuations, although
they change the shape of the distribution for the extreme
values, the effects are essentially exponential in form and are
not capable of turning an exponential distribution into a
hyperbolic distribution. Thus the concerns of Zawadski (1987)
mentioned earlier do not appear to bhe well founded.

5.6 The PDMS Method of Estimating c(y)

According to our universality formula for c(y), the latter
are generally unbounded. However, in single realizations of
multiplicative processes - no matter how much resolution is
available - singularities with co-dimensions greater than d are
not cbservable since they would have negative dimensions. The
statistical properties of these rare extreme events can only be
studied with large samples and with the help of the concept of

sampling co-dimension (see Schertzer and Lovejoy, 1283,
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Physically, it implies that with no matter how many data,
individual realizations give only limited statistical
information about the process. This is quite different from
many standard stochastic processes, and is also different from
"microcanonical" cascades (e.g. Screenivasan and Meneveau,
1387) for which, in principle, all the statistical properties
can be obtained from a single realization.

That extremely large sample sizes are necessary has been
stressed and studied in detail by Lavallée et al (1989). This
fact alone makes experimental determination of c(y) quite
difficult. An additional problem, mentioned earlier, is that
the basic probability distributions will generally have log
corrections which are difficult to estimate: c(y) is only the
leading exponential part of the scaling. Early techniques for
estimating the scaling exponents (see Schertzer and Lovejoy,
1985, and Halsey, 1986) worked directly with the moments -
vielding K(h), and in the latter case c¢(y) by Legendre
transformation. More recent techniques estimate c(y) directly,
»1ther by "functional box-counting" ( Lovejoy et al 1987,
Gabriel et al 1988), or via the Probability Distribution /
Multiple Scaling (PDMS) technique ( Lavallée et al 1%89). This

technigque directly exploits the fundamental equation (5.1) by
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systematically degrading the resolution of the data through
averaging over increasing scales L. The field is normalized by
dividing by an ensamble averaged (climatological) value Zyy, and
the length scales are normalized by LO, the external scale of
the data. When the data are correlated rather than independent
samples, for example arising from time-series that have been
deqraded In space, but accumulated in time, LO must be placed
by an "effective"™ LO which takes these correlations 1nto
account. Empirically, it is simplest to obtain both LO and Z,,

from regressions. The c¢(y) function can be estimated by means of

_ log(Pr)
c(v)-l————og(L/Lo) (5.16)
and

log(Z./72.,,))

Y= " Teg(L7Ly)

5.7 Estimation of Lo and Z,,

Since it was by no means clear that the Z and rainfields
could in fact be conceptualized as multiplicative cascades, the
first step in the analysis was to determine whether or not a 4,

and L, could be found for each data sequence. If it was found
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to be possible to select a 7z, and [, such that the ¢(y) function
was invariant over changes in the measurement scale, the second
step in the analysis would be to empirically determine the
other parameters in Eqns. (5.9) and (5.10).

A measure of how closely two lines lie on top of each other
is the mean minimum distance between any point on the first
curve and some point on the second curve. Since there vere six
curves in this analysis representing the scales from 2 km up to
64 km, it was decided to measure the mean minimum distance
between successive curves, the objective function was then to
minimize the sum of the mean minimum distances between
successive curves. Since both c¢(y) and y have hm(i) as a
denominator, the mean distance between curves will always
decrease with increasing L,. Therefore the mean minimum
distance was normalized by expressing it as a percentage of the
mean length of the two lines. The downhill simplex method ( sece
Press, Flannery, Teukolsky and Vetterling (1988) for details)
vas used to estimate the optimum Z,, and L,. The results for the
frur periods analyzed, found in Table 5.1, and Figure 5.2 for
the 14th Augqust case, were much better than expected. The 2,
and »4 km resolution distributions were not used in any of the

parameter estimation procedures, but wvere retained as reference

s ot o
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to determine whether the model could predict the distributions
for scales larger and smallexr than those used during the model

calibration.

3.00

2.50 L

2,00 L

C(«{) .50 |

.00 |
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I i | ] T I I i I T
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1

Figure 5.2 c¢(y) vs y curves using L. = 2, 4, 8, 16, 32, and 64 km
for l4th August data
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Table 5.1 Z,, and Lo estimated using the mean minimum distance
between c(y) for successive scales of measurement,
expressed as a percentage of the mean length of the
two c¢c(y) curves

Date Z, (mm*m?) Lo (km) Mean Min Distance (%)
“2_9;;;8*7 225 312 4.9
};78/87 423 273 4.8
14/8/87 510 929 4.6
_12/8/87 644 1174 4.3
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5.8 Parameter estimation

Since it was possible to f£ind Z,, and L, such that the

various c¢(y) curves were at least approximately scale invarlent
over the range of scales used in the analysis, it is reasonable
to estimate the parameters for the proposed model. If the
relations between the various parameters in Egn. (5.9) are not
assumed, and allowing for the extra parameter vy., we have at
most six parameters that need to be estimated. However, If the
relations in Eqns (5.9), (5.10), and (5.13) hold, and Ay is
constant, which is plausible since it is a basic dimensionally
determined quantity, the number of parameters is reduced to
four. A further assumption could be that @ is constant, which
would be theoretically appealing since a is the fundamental
parameter characterizing the generator of the process, the
number of parameters is reduced to three. Each of these three
models will be fitted to the data in the following
sub-sections, starting with the 6 parameter model. Thereafter,
the 4 and 3 parameter models will be fitted, and the
theoretical values for the remaining parameters compared with

the empirical values found for the six parameter model.
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5.8.1 Six Parameter Model

At least two strategies are possible when attempting to
determine the ¢y, Yo» Y., @’ parameters, the first would be to use
a least squares scheme to fit the parameters to the mean c(y)
curve having first determined the Z,, and L0 parameters. The
second is to use the probability distributions to estimate all
six parameters directly. The objective function for the second

method was chosen to be

MAD=>'L:-]—- |log(Pr)-log (Pr)| (5.17)
J=1 Ryt

where

m = the number of probability distributions

n, = the number of points on the j th probability

distribution above the minimum detectable signal at

that resolution,

Pr=Pr(Z,>Z,;), and

Pr is the Pr predicted by the model for the same value

of 2Z,.
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The minimum detectable signal at each scale was simply assumed
to be the first class in the dBZ frequency histogram greater
than zero that was non-zero. The c(y) for y>y. is a straight

line with a slope m such that

a'-1
m'yc;'(l*z_c) (5.18)
0 0

It was decided to evaluate all six parameters
simultaneously using the MAD statistic with the probability
distributlions and as a check, the cs Yo Y. @’ parameters using
the Z,, and L, evaluated earlier.

Two data sets were used for this analysls, radar
reflectivity data for instantaneous radar images, averaged Iin
space, and rainfall data averaged over 5, 10, 20, 40 and 80
minutes, but at a fixed spatial resolution of Z2km.
5.8.1.1 Spatial Averaging

The results of the analysis of the four sets of Z data,
using both techniques are summarized in Table 5.2 and the
predicted and measured probability distributions are plotted in
Figures 5.3 to 5.6. The figures also show the 95% conflidence

limits for the experimental probability distributions using the
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Kolmogorov-Smirnov one sample two-sided statistic for samples
sizes larger than 40 (Daniel 1978, Table A.17). The
distribution at the 2 km scale of measurement has very narrow
confidence limits since the sample size is very large. Never
the less, the predicted probability distributions for scales
larger than 2 km are all within the 395% confidence limits of
the experimental distribution for intensities greater than the
minimum detectable signal for that scale. The method wvas able
to extrapoclate down to the 2 km scale as well as up to the 64
km scale, see August 14th distributions in Figure 5.4 for
example. The parameters estimated by the two methods proved to
be within about 10% of each other for two of the four days.
However, on the 29th and 22nd August the method using the
probability distributions directly gave different results for
LO. These two days also gave the smallest LO, and hence had the
greatest sensitivity to spatial averaging. The analysis was
repeated for the 29th August using only the 16 km to 64 km
scales i1n the parameter estimation and the probability
distribution method. The results for this analysis are found in
Figure 5.7 and Table 5.3. The 2 km probability distribution
still fits remarkably well considering the small sample size

for the 64 km distribution and the extent of the extrapolation.
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Once again, the parameters are within 10% of the value

estimated using the 4 km to 32 km data, with the exception of

the L0 parameter which is approximately 25% less for the 16 km

to 64 km data.

Table 5.2 Best fit parameters for
radar reflectivity (2)

four 12 hour sequences using

14th August [ 12th August

MAD LS MAD LS

-2.01|-2.02|-1.42{-1.38

-2.181-2.081-1.87{~-1.75

0.50 | 0.52 { 0.61 | 0.63

-1.26(-1.17{-0.68(-0.60

531 510 666 6414

29th 22nd August
August R
MAD LS MAD LS s

Ye -1.69{-1.73|-1.70 (-2.15
Yo -2.02|-2.02{-1.98|-1.84 -2.08 -1
Co 0.88 [ 0.88 0.80 | 0.91
a’ -0.42}-0.36 |-0.48 |-0.52
2y, 210 225 372 423
Lo 430 312 375 273

915 930 1180 1175J
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Table 5.3 Best fit parameters for the 29th August using the 16
km to 64 km scales only

Parameter |4 km - 32 km {16 km - 64 km

Ye -1.69 -1.91

Yo -2.02 -2.24

Co 0.88 0.96

a’ -0.423 -0.457
PSRV NN

Lo 210 234

Z,, 430 335

5.8.1.2 Temporal Averaging

Since the analysis of the Z data was successful, it was
decided to attempt a similar analysis on short duration mean
rain rates. To this end probability distributions for the mean
rainfall intensities over 5, 10, 20, 40, 80 and 160 minutes
were estimated using the 22nd August case with 2 km resolution.
The 160-minute distribution was not included in the data set
used to estimate the model parameters. The summary of the
parameter values is found in Table 5.4 and the predicted and
measured probability distributions are plotted in Figure 5.8.
From this Figure it is apparent that the model is able to fit

data for the 5 to 80 minute time resolution, as well as
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extrapolate outside the callbratlion range to give a prediction
for the 160-minute distribution that is within the 95%

confidence limits for the empirical distribution.

Table 5.4 Summary of two possible sets of parameter values for
temporal averaging using 2 km resolution data

Y. Yo Co a’ Ry, (mm/hr) | To(min)
-0.75|~-0.8510.37 {-0.41 0.129 79373
-0.95]|-1.05|0.36}|-0.46 0.044 79640

The most striking difference between this set of parameters
and those for the spatial smoothing case is the very large
value for T, as compared with Z,. This arises from the fact
that the probability distributions resulting from temporal
averaging are much closer to each other than is the case for
the distributions resulting from spatial smoothing. It 1s clear
that much of the temporal wvariability has already been smoothed
out after spatial averaging over a few kilometers. The
closeness of the probability distributions made the estimation
of the various parameters less precise. A second, nearly
optimal local minimum is also listed as the second set of

parameters in Table 5.4. This solution somewhat over-estimated
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the increase in the rainfield variability with decreasing time
resolution although it fitted the lower temporal resolutions
rather well.

5.8.2 Four and Three Parameter Models

Using the Z,, and LO values found previously for the four

series of radar reflectivity data, the graphical analysis
discussed earlier wvas used to estimate Ay = 0.1, and C, = 1.2,
1.2, 1.3, and 1.4 for the data from Augqust 12, 14, 22, and 29
respectively. This simple graphical technique indicates that
the parameter Ay Is nearly independent of the meteorological
situation, as we had hoped. If we allow and ¢, to vary,
estimating them graphically, the other parametexrs can be
calculated using Egn. (5.10). Table 5.5 shows a comparison of
these parameters with those obtained from the full
multi-parameter reqression used for the six parameter model.

There ls no divergence of moments for the 12th August since

Cs Ay<2
l-a Y

Figures 5.9 and 5.10 show the empirical probability
distributions and the distributions predicted by the four
parameter model for the 14th August and 22nd August

respectively.
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Table 5.5 A comparison between the parameters estimated by the
four parameter model and those estimated by the six

parameter model

Date 12 14 22 29
C, 1.2 1.2 1.4 1.4
Co 0.61 0.50 0.80 0.%?
Aa 0.02 0.01 0.03 0.02
Ay, 0.07 0.02 0.02 0.04
Ay, - 0.07 0.30 0.35

The two parameter model was tested by assuming that the «

parameter was equal to 0.4 over the four days in the data set.

Once again Egn (5.10) was used to estimate the other
parameters.

parameters and those obtained for the six parameter model.

Table 5.6 lists a comparison between these

Figures 5.11 and 5.12 show a comparison between the empirical

distributions and those predicted by the model using the 14th

and 22nd August cases.

It is readily apparent that the two

parameter model does not fit the probability distributions over

the range of scales for the 14th Augqust case, although the fit

is somewhat better for the 22nd August case. Therefore a single

a is not able to reproduce the richness and variety found in
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real ralnrate or Z field prohability distributions.

Table 5.6 A comparison between the parameters estimated by the
three parameter model compared and those estimated
by the six parameter model

u-Date 12 14 22 29
C, 1.2 1.2 1.4 1.4

~—mAr:o - 0.06 0.17 0.07 0.10

“ ;;o 0.03 0.18 0.09 0.21
Ay, - - 0.34 0.42

5.9 Conclusions

A method to produce resolution independent short duration
rainfall accumulations and instantaneous radar reflectivity
probability distributions has been developed and tested. The
conceptual model using multiplicative cascades to describe the
concentration of flux into smaller, more intense regions was
found to provide good predictions of the probability
distributions extrapolated outside the range of data used to
calibrate the model. This lends some credibility to the initial
hypothesis that the rainfields may usefully be described by

multiplicative cascade type of models. Three flavours of the
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model were tested, having six, four and three parameters. The
six paramgter model was calibrated from the probability
distributions directly, using the downhill simplex method in
the parameter estimation. The four and three parameter models
were calibrated in two steps, the first step was to estimate
the values for Z,,L, that minimized the normalized mean
distance between successive co-dimension curves., Thereafter, a
graphical construction was used on the resulting curve to
estimate the other parameters. It was found that the four
parameter model was nearly as good as the full six parameter
model and was easier to calibrate, and therefore should be used
in preference to the full model in practical applications. The
three parameter model was unable to produce a good fit to the
probability distributions. We believe that we have demonstrated
a general method for obtaining resolution independent
probablility distributions, thus allowing the construction of
probability distributions at other time and space scales.
Furthermore, these results could be the first step towards the
use of multiplicative cascade type of models in stochastic

rainfield simulations.
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Chapter 6

Conclusions

An investigation into the extent to which the variability
of observed rainfields limits the accuracy with vhich gauge
networks, radar, and satellite rainfall measurements can
estimate mean areal rainfall over large areas was undertaken.
The radar introduced further measurement errors resulting from
the fact that the measured radar reflectivity fluctuates
randomly as the rain droplets move relative to each other in
the volume of space being sampled. Monte Carlo simulations of
this fluctuvation, assuming no sub-resolutlion variability,
together with an analysis of one month of radar data irom
Florida, showed that it was possible to minimize the combined
effects of these errors and those caused by the variability of
the rainfield by accumulating the rainfield in time and
averaging in space. For example, a cholce of 4 km pixel size
for hourly rainfall accumulations would result in estimates of
mean areal rainfall over a pixel with a variance equal to 26%
of the variance of the hourly polar data. It was found that it

vas more efficlent to deal with the radar measurement errors by
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accumulating in time and averaging over larger areas than to
increase the number of samples used to estimate the mean
reflectivity of a single radar bin.

The measurement errors for raingauge network estimates of
mean areal rainfall over large areas were simulated using daily
and monthly radar rainfall accumulations of the Florida data
and a summer of radar rainfall from Nelspruit, South Africa. It
was found that the difference between the mean standard error
from regular and random gauge networks was slight, particularly
for the more dense networks. However, the random networks gave
errors that were more widely distributed about the mean
standard error, becoming more apparent with decreasing network
density. A relationship was found to predict the mean standard
error given the number of gauges, the raining fraction of the
area, and the variab.iiity of the rainfield being sampled. This
relationshlp vas able to explain 63% of the varlance in the
data set comprising of both Nelspruit and Florida data.

Satellite measurement errors were simulated using the
Florida data. Two types of sensors were used, a perfect
instrument, and an instrument that could measure rain area
only. It was found that there wvas little to be gained using an

area-only instrument with a sampling frequency greater than 16
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visits a day when measuring mean areal daily rainfall. Howvever,
if the instrument has skill in measuring the rainrates, the
mean standard error is approximately halved when the frequency
is doubled from 16 to 32 visits per day. It was also found that
estimates of the raining area vere very sensitive to the
resolution of the instrument. For example, a 64 km resolution
sensor over-estimated the area by 300% of the area estimated by
the 2 km sensor. The monthly areal mean rainfall was much
easier to estimate, with a two visits-per-day sampling giving
22% errors.

The second part of the thesis investigated the
transformation of the rainfall probability distribution under
spatial and temporal averaging. This has immediate applications
in a number of hydrological problems, for example using gauge
data to estimate the statistics for mean areal rainfall. It
also is relevant when attempting to compare statistics from
rainfields with different spatial resolutions. An empirical
method was developed to transform the entire probability
distribution based on some measurement scale into a
distribution for another measurement scale. It was found that
the transformation of a rain rate at some probability level and

scale, into a rate with an equal probability but over a
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different scale was well described by a power law. The two
parameters for the transformation were dependent on the type of
rainfield, the magnitude of the change in scale, and the scale
itself.

A more general approach to the resolution dependence of the
probability distribution would be to develop a resolution
independent distribution. A conceptual model based on the
theory of multiplicative cascades to describe the concentration
of rain flux into smaller, more intense regions, was used to
derive a resolution independent distribution. The good fit
obtalned by the model when used to predict the distributlion
outside the range of scales used to calibrate the model
provides empirical evidence that rainfields may be usefully
described by such a class of models.

During the latter part of the research it became apparent
how sensitive rainfall statistics are to the space-time
resolution of the data used in their estimation. It is
imperative therefore to account for differences in resolution
vhen comparing sets of rainfall fields based on different
resolutions. It is also evident that the extreme intermittency

and variability of short accumulation rainfields precludes
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accurate estimates of mean areal rainfall, even over large
areas, using sparse networks. This emphasizes the important

role of remote sensing in the estimating of rainfall amounts.



