\ .
. S
- [4
a . .
1

MEMBERSHIP TESTING IN TRANSFORMATION.MONOIDS

1
‘ L]

by
. / . Martin Beaudry | Kl’
THESIS

(x submitted to the faculty of graduate studies angi research,
: _in partial fulfillment of the requirements for the degree of !

' PHILOSOPHIAE DOCTOR i
1 4 . -“ o - - y ‘ :

‘\J ' School of Computer Science

M(;Gt.u University

Montreal

) ‘
. © Marti} Besudry, 1987 ~

v
¥

< ”

Etant donnés un ensemble fini X*de points; un ensemble de transformations de X
(générateurs) et une autre transformation f de X,:on analyse la complexité du
problkme de P'appartenance, qui consiste & décider si f# peut étre obtenu par compo-
sitions' successives des générateurs. Ce probléme est tudié pour diverses clase;es
(pseudovariétés) de monoides. Sa complexité est NP-difficile pour les monoides de
seuil 2 ou plus, en particulier NP-complet pour les monoides commutatifs, J- et R-
triviaux. Pour les monoides idempotents (apériodiques de seuil 1), le probléme de
l’appartenance est NP-complet dans le cas général. On identifie également la plus
grande classe de monoides ap ériodiques pour laquelle le probléme appartient & FL, de
méme que la plus grande classe pour laquelle le probléme de I'appartenance n’est pas
NP-difficile. ‘ :

Le probléme qui consiste & caractériser un monSide idén?potent est également étudié:
étant donné un ensemble de transformations, on peut décider en NC? si le monoide
qu’il engendre est idempotent. Des tests similaires sont donnés pour les classes de
monoides idempotents R, et Ly, dont ¥ complexité est NC'*.

Une borne supérieure dans le modéle séquentlel clasanue est fournie pour chacune des
¥omplex1tés en paralléle susmentionn ées.

4

lf | °
' s 1 !

i

Lo - "

-iii- —

Abstract ' e -

)) N
-Given a finite set X of states, a finite set of transformations of X (generators), and

another transformation f of X, we analyze the com‘plexitzy of the membership prob-
lem, which consists in deciding whether f can be obtained by composition of the gen-
erators. This problem is studied for various classes (pseudovarieties) of monoids. It is
shown that the complexity is NP-hard for monoids of threshold 2 or more, and NP-
complete in commutative, J- and R-trivial monoids. For idempotent monoids
(aperiodic of threshold one), the problem is NP-complete in the general case; subcases
are analyzed, and a largest class of aperiodic monoids is iden tified for which. the prob-
lem is in FL, as well as a largest class for which the problem is not NP-hard.

The problem which gonsists in characterizing an idempotent monoid is also addressed:
given a set of transformations, it can be decided in NC? whether the monoid they
generate is icfempotent. ‘Similar tests are given for the classes of idempotent monoids

Ry, and L;. In these cases, the complexity i§ NC!.

A sequential upper bound is also given for each of the parallel complexities given
B

above.
L 4

E]

AN

‘ : Remerciements

2 -
s

" J'adresse mes principaux remerciements & Denis Thérien, lo mérite de cette these lui

revenant tout autant qu’a moi. Il y a contribué avec de nombreuses suggestions et
critiques, et aussi avec tout I'enthousiasme, la confiance et I’érudition qui 'on‘t pu étre
n écessaires.))
Je tiens aussi & remercier Pierre McKenzie, dont I'apport én-id ées et en commentaires
fut également inestimable. .

Les remarques et commentaires des meanreg du comité d’examen, MM. Avis, Bar-
rington, De Mori, Friedman et Styan, ont également été appréciés.

Je remercie enfin ma famille et mes collégues, dont John Kirkpatrick et Ryan Hay-
ward, qui, au cours de ces longues années, m’ont encouragé, aidé, et aussi enduré.

v

Au cours de mes études & McGill, j'ai bénéficié de 'aide financidre des organismes
suivants: le Conseil de recherches en sciences naturelles et génie, le Fonds de forma-
tion de chercheurs et d’aide & la recherche et la Fondation McConnell.

@

— _——

. (] .
. bl
S .
Contents -
' i
!
¢ .7
. . I “
' * v \\A e .
- ' "Résuméccocvveveennn. vresmerensrerisres B sreresdicsisnueiessaees trrterreseessnieressaeneees ii
i Abstract......cccoverenns Frreirerennenssmisensenssnarsessssreses R Meeresre e eeseseaes voees diI
Remerciements.............. creres *~%& feoener iv
: Cont_ents...............'....‘,.................‘ rieereanes f, RUT |
T List Of GUTES .vvcuvveerrmvrinsieseeiiiiiseeseseniriiianess . \‘f ... vi
1. INrodUCtion .coveeeeeeeier et errens Yeverrvasmenineeenennnned R |
2. Backgroundcorvvemrieierinnriicensninrninnienecesens Lroeervnnes feveretiesrreasasneartenansseen 4
“a 2.1. Monoids and their representations............ bveereene s s 4"
e 2.2. Complexity Theory.......cccvvvveiiiriisiiininninnins eeererebesemessa e sesesersenees . 8
. 2.3. Evaluating computational complexities......c...cccceee Dveirinnenenicvennvannnnes 10
i \ 24 Dual classes....cccuriiiiireveiiieirrc et s s e s s e s freeerans serrrnseseens 12
2.5 Pseudovarieties discussed in the thesisc.ccooeveevemmnevinnnn rerrraeerees 14
3. Commutative MONOIABuveviirieeeeeiiriiieee e ceretre e e eeensrsr e s sanr e eveeans 16
) 3.1. A general algorithm for membership testing..........ccccvieeenvinnnns vreneses 16
’ . 3.2. Membership in aperiodic commutative monoids.....c..ccoceeeneninerernanees 20
. 3.3. Commutative monoids of threshold One ... v.....ersveeereerrrreesens SRR) |
‘ 3.4: Restrictions on the monoids.........cceevviiriiininiirennnnnn. Prrrvenessisninieenaenns 22
(4. Idempotent monoids............iviiemniiniin e porereneseens 24
4.1, Testing for IdempPotenCy.....c..covvvirimnieriiiiiiiiiiie e e reree s e erverr s e one 24
\5 - ' s 4.2. The M?mbership Problem belongs to NPccuue..... ree e eeas 25
4.3. Alphabets, J-classes and strongly connected components 27
, 4.4. An intuitive look at idempotent transformation monoids....... Nreeeeenens 29
. 4.5. The lattice of idempotent pseudovarieties........... veesesiiraene PN 32
- 4.6. NP-completeness of the Membership Problem.........cc.co.leevuenionecaeene. 39
) 5. Other pseudovarieties.........ccocvveeeeiiirnienecciiiincrinnnenens e 43
- 5.1, Other aperiodic PSEUdOVAIEHIESe.cveererireasseeeeeririrreeseesssreneseseee. 43
5.2. Non-aperiodic pseudOVAIIEties ... yuuevvveeivieeieeeeiee st e ssassssicessens 46
6. Transformation SEMIgroUPScccvverveererecreererirrirensennean, feerrereeae e aeennes 48
6.1. Idempotent SeMigroups........cccvevrvveneen. frerenneenns Fereree e s eeen e ee e 49
6.2. Non-idempotent aperiodic Semigroupscoocosueetenmnmiunerainninnnnans 52
7. Related Problems.....coviiiieeeeiiiiiiieiiii et cas snsereber e e e esaeresaes enns 58
7.1. Intersectioh of regular languages...........cccoviierinecevvcninenenenn. e 58
7.2. Reduction of finite automata ferereeerenesriaen et 60
BADHOGIADIY c1vvuvveeevevecsitseeeseseriesseseseoseesesesesemesessesssss eaeesesssesas eatmseesassesene 63
Appendix: Abelian Group Membership in sequential.........cccoveieennriinieennnne. 67
€)
' -

- Vi

o
L

| . ' List of figures °

J {
4.1. Pseudovanetles of idempotent monoids... TRTOT IR AP & I

4.2, Conneoted components for the proof of Theorem 4. 18 JETTPUUUTRRPRRTRR: 1.
4.3. Connected component for the proof, of Theorem 425,Q.{0’

5.1. Some pseudovarietiés of monoids..................: e SRR |- S
6.1. Pseudovarieties of idempotent semigroups........... revereerees orrreerens veennees D1
-~ 6.2. Connected component for the proof of Theorem 6.5.....c...cccoeeviirerrrinnn 54
7.1. Automaton built for thé proof of Fact 7.1 ...ccovvsiticrirenen crernsressvanrennes D9
7.2. Automaton built for the proof of Fact 7.2 "_\t cerererenns e, 60
\ I Lo 3 A !
.) s) 4

~ .
® .
-
°
» L . (,
‘
s ‘< g o, 2 '
o e
2
e .
IQ -
. ‘ -
. -
¢
. .
>
-~ .
-
{ / -
»
! ‘g .
-
. ’
" -~
® L
® A T)
"
“

I " Introduétion : %

[N
-

. .
This thesis analyses the computational complexity of the Membership Problem,
defined as follows:

©. Qiven a set A of transformations of a set*X (both finite), and another transformatton
f, decide whether f belongs to the monozd generated by A.

The input for “an mstance of this problem is a description of the actlon of the n
transformations of A on the m elements of X, plus a similar description for f . The
size of the input and the computational complexity of the problem are measured in
terms of the two parameters m and n.

This complexity ranges from next-to-trivial (a monoid can have as little as one ele-
ment), up to complete for PSpace in the general case, a result proved by Kozen [Koz].
The Problem can be restricted to a given class of monoids, in which case its com{plexi-

"ty may end up somewhere between these two extremes.

The -Membership Broblem was first studied in the context of Hpermutation groups

(Group Membership), as a part of the already well-established field of computational
group theory; its study was particularly motivated by the linksJbetween problem on
permutation groups and the Graph Isomorphism Problem (see [Hof]). A first result
was Sims’ algorithm [Sims], which provided a polynomnal-tlme seguentlal membership

test [FHL,Jer]. More regént research has been directéd at finding the parallel compu-

tational complexity of the Membership Problem, which was shown to be feasible in .

polylog time on a polynomial number of processors, first for Abelian groups by
McKenzie and Cook, who provided an algorithm later completed by Mulmuley
[McC,Mul], then for solvable groups [LMK], and recently for the general case of arbi-
trary permutation groups [BLS].

The purpose of this thesis is to partially fill the void which remained between this
successful work on! groups- and Kozen’s result. It deals primarily with aperiodic

nionoxds, and studies how the complexity of the Problem rises when ascending theg

hlerarchy of mononds classes.

ship Problem: problems such as finding the order of \the group, computing generators
for certain subgroups (pointwise and setwise stabilizers, intersections), or testing for
isomorphism have also been studied [FHL,McC,BLS;Hof]. Similarly, other pfoblems
on monoids have been looked at, such as the complexity of computing the monoid ele-

))
The above-q\lentloned ‘research on groups has not betiw'stricted to the sole Member- -

ment corresponding to a given expression [CFL,BP], and characterizing semiautomata .

~ by their transformation monoids (and conversely) [GBB,Stei,Ste2].

The theory of monoids is closely linked to the theories of languages and of autonrata

\
\

—

@
'
.

——

-2-
. i

(EilJall], so that classes of automata can be defined and described in terms of their

transformation monoids or of the type of languages they recognize. Transformation ¢

monoids can therefore be related to modgls of-computation and, bey®nd, to classes of
computational complexity., Work is currently being done with the intention of estab-
lishing more precise links between these theories, and possibly gain more knowledge
on the theory of computational complexity. For instance, recent research has been

" concerned with classes of non-uniform Boolean circuits, such as NC!, defined by cir-
cuits of polynomial size ‘and logarithmic depth with gates of constant fan-in and un-

boundéd fan-out, and Ns subclass AC® where the circuits have constant depth and
the gates unbounded fan-in. The results obtained so far include the proof that the

. languages belonging to non-uniform NO1 are exactly those recognized by polynomml-

sized branching programs of width five [Bar], similar relationships established between
AC? and its subclasses and polynhomial-sized non-uniform tleterministic finite automa-
ta onParious classes of monoids [BTJ, and a characterization of non-uniform AC® in
terms of the complexity of corixput.mg the prodict of a list of elcments of .a monoxd
[CFL] — : ’

These results actually establish strict inclusions between these complexity classes. A
natural extension of this work is therefore to look for a similar kind of characteriza-
tion for other models of computational cbmplexity and their associated classes, in an
attempt to solve open questions such as the well-known NP -problem, or the relation—
ship between NC and FP . =

. The Membership Problem has advantages which could makeit useful for research in

this vein: it is defined for all classes of monoids, including groups, and its computa~

- tional complexity covers a wide range of complexity classes, while not rising as rapidly

as that of other problems on monoids, to which the Membership Problem reduces (see
chapter Seven).

The data for the Membership Problem include a list of generators for a transforma-
tion monoid; verifying whether this monoid belongs to a given class is an important
problem by itself [Ste1,Ste2]. In this thesis, it is identified as the Class Test, and will
be discussed for most of the classes in which the Membership Problem is donsidered.

-)

‘It has been chosen in this thesis to work within those models of computation already

used for the study of Group Membership, that is, the usual one-processor sequential
model and the synchronous uniform Boolean circuit, introduced by Borodin [Bor|.
Given this choice, the approach preferred has been to explore the lattice of classes of
monoids, looking for upper bounds or completeness results, with a particular em-
phasis on those classes where polynomial-time sequential compiexitiep;, can be ob-
tained. In such cases, both a parallel and a sequential algorrthm were sought. The
upper bounds thus obtained are not known to be tight. Techniques to find lower~
bounds are still to be developed; furthermore, in the context of a first look at a yetZ

) e, :
~ l * /

s

3

I} .3-
/ B AR B -
- unexplored area, it seemed reasonable to leave aside a search for lower bounds , until

research done on a wide enough range of monoid classes would allow to decide where
a more detailed analysis is worth doing. A
N o

13

Overview of the thesis: The rest of this thesis is divided into six chapters, the three
central ones dealing with different classes of monoids. With the exception of more spe-
" cialized data, all the necessary background and definitions have been gathered in
chapter Two. In chapter Three, it is shown that testing membership in arbitrary
commutative transformation monoids can be reduced to testing in aperiociic commu-
tative monoids and Abelian permutation groups. The other results of this chapter
open the way for the discussion which follows in the rest of the thesis: it is proved
‘that membership testing in monoids of threshold 2 or more is NP-hard, and in NC3
for commutative monoids of threshold one. Chapter Four explores the direction of
idempotent monoids (aperiodic of threshold onme); its main results are that the
Membership Problem, for such monoids in general, is NP-complete, and that there is
a u’nique largest class of aperiodic monoids for which the Membership Problem is in
FL , and another largest class for which it is feasible in polynomial sequential time.
The thesis is concluded with comments on other classes of monoids, in which the
Membership Problem is intractable, but in some cases possibly not in NP (chapter
Five), a discussion of the consequences of considering transformation semigroups in-
stead of monoids (chapter Six), and an application of the methods used in this thesis
to other problems in the gheory of automata (chapter Seven).

i

e

The standard nomenclpture for statements (‘Theorem’, ‘Lemma’, ‘Proposition’,
‘Co‘rollary’) will be reserved for mew results, although the reader will observe that
some propositions and corollaries have been obtained by merely looking at known
facts from a diflerent perspective; the name ‘Fact’ will be used to designate data tak-

en from the literature, with the reference given, or to results for ‘which no originality
is claimed. ’ '

—‘i

v"»_"‘)‘

- 4:,1“ LJ:-"'
’ . ,
-4- 53
‘II Background '
s % ' o

2.1 Monoids and their representations

Most of this section is based on the standard referenc:s in the field of semigroup
theory [CP,Lall,Eil] and in the closely related theories of finite automata (LP,HU| and
of formal languages "[Pin]. I¢ is assumed that the reader is familiar with all three
fields. More specialized background will be introduced in the other chapters, immedi-
ately before it is needed.

A semigroup is a set equipped with an associatiVe binary operation. Given aset X, a
transformation of X is a mappini; from X to X. A set of transformations, with the or-
dinary composition of functions as the binary operation, will be a semigroup whenev-
er it is stable ¥nder this operation. In particular, given a set A of transformuaiions of
X (generators), the smallest semigroup containing A (the semigroup generated by A,
denoted <A>), will coincide with the setLof all transformations of X expressible as
composition of elements of A.

A monoid is a semigroup S containing a neutral element, that is, an element 1 such

~that g1 = 1g = g for every ¢ €S. The identity transformation 1, which maps every

element of X on itself, will be the neutral element in all the monoids considered in
this thesis.

Throughout the thesis, the wordsﬂ‘semigroup’ and ‘monoid’ will always be understood
to mean ‘transformation\semigroup’ and ‘monoid’; whenever abstract monoids are
considered, this will be specified explicitly. i

Here are some definitions related to a semigroup <A> of transformations of X:
- the elements of X shall be called states; .)
- the image of state z by transformation g is denoted zg ;

-forYC X andg € <A>, defineYg = {yg |y €Y };

-forzeX and ¢ € <A>, define g l'=({yeX|y =2};

- similarly, with Y C X, define Yg~'= {2 €X |zg €Y }.

All sets considered in this thesis are finite, with the exception of the free semigroup -

on A, denoted A*, and the free monoid A* = A* U {1}.

In a finite semigréup, if an element g is composed with i&self, then eventually
gtt? = g¢* for some ¢t > 0 and ¢ > 1; the smallest such integers are called the thres-
hold and the period of g. An element with period ¢ = 1 is called aperiodic, while a
transformation with threshold ¢ = 0 is a permutation: Furthermore, an element ¢
for which t = ¢ = 1, that is, such that g? = g, is called idempotent.

These definitions extend to the semigroup as a whole: a (transformation) semigroup
whose elements all have threshold zero is a (permutation) group; a semigroup whose

n

. /4) - 50 - °
elements all have period one js called aperiodic, or g;o\j/free A semigroup is said to
be of threshold ¢ if the largest threshold its glements can have is t. An 1dempotent
semlgroup is therefore defined as being apenodlc of threshold one. ’

v

o

As far as the Membership Problem: is concerned, there is no difference between work-
ing in a given emighayp S or in the monoid SuU {1} whether the data. given
-represents a semigroup’or a monoid can be easily tested”

Fact;2.1: Semigroup <A> contains the identity transformation iff at least one
element of A is a permutation. . , .

4
Proof: For any permutation g of m states, one has ¢ ™'= 1. Conversely, permtta-

tions are the only transformations for which the sets X/ and X have the same cardi-
nality, so that 1 can be generated by nothing but permutations. a .

In the rest of this thesis, with the exception of chapter Six, it will exclusively be ques-
tion of monoids; given a set A of generating transformations, the notation <A> will
be understood to !C;)resenh the union of the semigroup generated by A and of the sin-
gleton {1}, this addition being redundant if A contains a permutation. The definitions
and facts which follow in this chapter are given in terms of monoids; however, they
can be applied to semigroupé as well, with but minor modifications in some cases.

Greeén's relations [Gre| are equivalence relations inside monoids, defined as follows: for
every elements f and g of a monoid S, on¢ has . *
"f L g iff thereareu,y € Ssuchthatuf = g and f = vg;
J R g iff there are u,v €Ssuch that-fu = g and f = gv;
J Hg if f Rg and f L g;
/ Jg iff thereareu,v,u’,0' €S such thatufu' =g and / = vp';
f D g iff thereisan h € Ssuch that f L h and h R g, or conversely.
Relations D and J coincide in finite monoids; the label J will therefore be used to
represent both. Equivalence classes for these relations are called L-, R-, J-, and H-
classes. Notice that, in an aperiodic monoid, the H-classes are trivial, that is, they all
consist of a unique element [Pin). \
Green’s relations induce the following conditions on transformations.

v ~=

- Fact 2.2: [CP,Lall] In any mopoid of transformatlons of a finite set X, one has’

S dgonlyil |Xf|= [Xg|} -
f LgonlyifXf = Xg. s
/ R g onlyifforally € X/, thereisan z € Xg such that yf ~' = 29!,

A monoid of transformati0}§ of a set X given by a set A of generators can be

o

ey

N

L4

- QJD“ .
M a ,

A

—
“B- .

/

represented as a semiautomaton, denoted (X,A), which is-a-directed graph with a ver-
tex for every state of X, and an edge labelled 4 from vertex z to vertex za , for every
¢z € X and ¢ € A. The monoid <A> of transformations of X is the transformation
monoid of the semiautc;maton,(X,A). Definitions related to this representation are:

- & source: a state is a source for <A> if the corresponding vertex in (X,A) is of inde-
gree zero, disregarding trivial loops;

- a confiected component, or CC: semiautomaton (X A) is partmonecﬂmto CCs by»{ﬁ‘e“
following relation of equivalence: two states belong to the same CC Iff there is a’
path between them in Ehe semiautomaton, disregarding the ‘direction of the edges;

- a strongly connected component, or SCC: semiautomaton (X,A) is partitioned into
SCCs by the folloxlving relation of equivalence: two states z and y belong to the same
SCC iff there arean f and a g in <A> such thatzf = y and yg = z;

- a sub-SCC of a strongly connected component K of (X,A) is an SCC of the semiauto-
maton (K,B), where B is a subset of A;”

- a mazimal state (resp. SCC): state z will be maximal for a subset B of A if, for every
a €B, za = z (resp. an SCC K is maximal for B when Ka C K for all s € B);

- a state of (X,A) is called a sink if it is maximal for A; » «

- 2 SCC is said to dominate the connected component of (X,A) it is included in, if it is
the only SCC of this CC to be maximal for A.

r

In the context of the theory of languages, the generators of A can be seen as charac-
ters, and an expression can be regarded as a word, that is, an element of the free
monoid A’, with the empty word denoted ¢. More formally, an abstract monoid 8,
defined as S = (E ,o-,l), whete E is the set of monoid elements, o the operation, and 1
the identity, is said to be generated by a set A of characters under the mapping
¢:A—E if ¢ can be extended to the freeﬁ monoid A’ in order to have
d(ay---a,)= ¢(a))e - ef(a,) for every word a,- - - a, ezi*', and ¢(e) = 1, 80
that ¢ is a surjective homomorphism.

This mapping defines a relation of equivalence on A’ (the kernel of ¢, denoted Ker ¢,
see [Lall, chapter One, Proposition 4.2): words w, and w, are equivalent Iiff
¢(w1) = ¢(wy). This relation is a congruence, in that it satisfies the property that, if
words v and v, are equivalent by the relation, then so are wv,w and wv,w, for every
u,w €A’ ‘ : .

In the rest of this thesis, given a monoid generated by a set A, the notation ¢ will be

reserved for the homomorphism which maps A° onto tlhie abstract monoid isomorphie
to <A >, and by extension, onto <A> itsell (canonical homomorphism).

The mazimal alphabet of a transformation f € <A> is defined as the set of all those
characters which can appear in an expression of f :

-

)

-7-

¢

k]

/
aG(f)= {a €A | f = gah for some g ,h € <A> }.
This shall not be confused with the alphabet of a word w € A°, denoted a(w), which

is the set of those characters which appear in‘w. An equivalent definition for a(f)
is therefore: @ (f)= | ¢&(w). ‘
1 = d(w)

L]

‘ TheJexpression ‘class of monoids’ used up to now means the set of all those monoids
sharing some set of properties. These ‘classes’ are formally defined as pseudovarieties,
that is, collections of finite monoids, closed under homomorphism, t;a.kir;g of sub-
monoids, and under finite direct products [EilLall] (a submonoid is a subset of a
monoid which is itself a monoid). Throughout this thesis, the words ‘class’ and ‘pseu-
dovariety’ will be considered synonymous.

A monoid belongs to a given class iff it satisfies to a set of conditions, which define
the pseudovariety. These conditions can be given in terms of defining identities, a set
of equations which all the elements in the monoid must satisfy to. For instance, the
class of the aperiodic monoids of threshold ¢ is defined by the two identities
f9=gf and g** = g*.

Pseudovarieties can also be defined in terms of congruences. A monoid generated by
an alphabet A defines a relation of equivalence between the words of A*, as explained
above. A pseudovariety can also be defined by a relation on A*, which every monoid
belonging to it must satisfy: if the class P defines relation R on A”, then the monoid
S, defined by the congruence T, will belong to P iff R C T. It can happen that
R = T, in which case S is called the free monoid on A for class P. It is worth notic-
ing that the cardinality of the free monoid coincides with the index (number of
equivalence classes) of the congruence R, which is not always finite.

This section is completed by two examples which illustrate the notion of pseudo-

variety.

Fact 2.3: Let t‘{e semiautomaton (X,A), with transformation monoid S, be parti-
tioned into connedted components Kj, - - - K;, and let 'S, be the transformation
monoid of (K;,A). Then S belongs to a given pseudovariety iff each S; belongs to
this same class, so that the Class Test can -be q:i‘ormed on,each connected com-

ponent separately.)

Proof: Each monoid S; is generated by the alphabet A, through its individual canon-
ical homomorphism, denoted ¢;. Assume that each S; belongs to the pseudovariety
P, and consider the direct product S, ---x$§,, whose elements are of the form
(ds(wy), « - ",\¢,-(w,-)). Observe that S is isomorphic to { (§,(w), - -+ ,4;(w)) |w €A" },
a submonoid of S;x -+ x S;. Therefore, if Sy, ..., S; belong to P, then so does S. In
the other direction, it suffices to observe that if (‘/ery element of S satisfies to the
defining identities of P, then so do the elements of every S;. [J

By

“A

-8-

. L .
Ezxample: In the pseudovariety A, of all finite idempotent monoids, which defines

relation.~ on A°, the defining identity g2 = ¢; (idempotency) implies that a:ny word
of A’ containing a square, that is, of the shape wvvw, will be equivalent to the same
word where the square vv has been reduced, that is, to wow. In every idempotent
monoidegenerated by the alphabet A, the words usww and wvew will remain equivalent;
this is an example of the inclusion Sf ~ in the relation R defined by ‘the monoid.

*The canonical homomorphism ¢ by which the free idempotent monoid generated by

-

alphabet A is obtained from A® is such that Ker¢ = =; this congruence is of finite
index [GrR).

2.2 ‘Complexity Theory

4

As was mentioned in ::haptelj One, this thesis analyses problems whose computational
complexity covers quite a wide range, and is aimed at discovering where these prob-
lems are located on the lattice of complexity classes. In what follows, it is expected
that the reader is familiar with the theories of sequential complexity and of intracta-
bility [AHU1,HU,GJ]. In particular, the reader is referred to [GJ] for definitions of
the notions of NP -completeness and NP -hardness, which will be used in this, thesis,
and for a comprehensive survey of the open problem concerning the relationship
between the complexity classes FP and NP .

The Membership Problem and the Class Test satisfy to the definition of a decision
problem, which can be characterized by a total functionfrom {0,1}"* (the input) onto
{0,1} (one-bit answer). However, other p‘roblems used in this thesis require a descrip-
tion in termis of a search problem, described by partial, ﬁlultiple-valued functions
from {0,1}* (the input) to {0,1}™; a circuit is said to compute this function if it
returns one of the possibly many m-bit long solutions in the case there is at least ons,
and reports the non-existence of solutions otherwise. Classes of sequential complexity
can be defined in terms of search problems: for example, the class FP is the set of -
those sea{ch problems solvable by a sequential processor in polynomial time. Similar
definitions apply for FL (search problems feasible in deterministic logarithmic space)

and for NL (non-deterministic log-space).

For parallel complexity, the model used in this thesis is the Synchronous Boolean Cir-
cuit; it is discussed in Cook’s survey [Cook], on which the rest of this section is based.
A Boolean circuit consists of a directed acyclic graph whose edges are wires and whose
nodes are gates with fan-in zero (data gates), one (NOT gates) or two (other Boolean
gates). Of the data gates, n of them actually provide the input, while the others give
constant values (O or 1). ’Pan-out is unrestricted.zWith m gates labelled ouzput gates,

\\\\ 3 <\ ™

~n

wy

-9-
the circuit will be computing a function from {0,1}* to {0,1}™. The size of the circuit
js the mumber of gates it contains, and its depth is the longest path from an input

node to an output node.

The Boolean circuits designed to solve a given problem are defined in terms of circuit
families <a, >,,of which the 2" member o, computes the same function for all
inputs of size zl/t most g (n), with ¢ a polynomially-bounded, monotonic ‘increasing
function. Circuit families are required to be uniform, so that the n* circuit can be
constructed in a realistic fashion. The definition of uniformity adopted in this thesis is

® that of log-space uniformity, for which circu t\a,, must be constructible by a deter-

ministic Turing machine with -value n as an input (in binary notation), and O (logn)
storage space at its disposal.

Complexity classes for paraﬁel computation are defined in the following fashion. The

class NC* is the class of all problems solvable by a (log-space) uniform circuit family
<a, >, with" Size (@,)= n°® and Depth(x,)= O(log*n). The class NC is the
union of all classes NC*, and is included in FP . .

The class NC can be defined in terms of several other models of parallel computation;
a paralle] algorithm written within the above model can be translated in terms of, for
example, Parallel Random Access Machines (with protocols such as Concurrent-Read,
Exclusive-Write), at a cost of possibly increasing the exponent of logn in the depth,
but still retaining polynomial-size and polylog-depth.

Proving upper bounds on parallel boolean circuits can be done using NC'-reducibility:
a problem f is NC'-reducible to a set S of problems, denoted f <8, iff f can be
¢computed by a uniformi family of circuits of size n©() and depth O (logn) using oracle
gates for problems of S. In counting the depth of this circuit, an oracle node g counts
%s depth [log(r+4)1, where r and s are the size of the input and output of 4.
In all cases considered in this thesis, oracle gates will count for depth O (logn), and
the NC'! reductions will follow a similar pattern: they will consist in rearranging the
data in order to put it in a form acceptable as an input for the oracle gates, an opera-
tion done by a log-depth circuit; the output of the oracle will then be taken as such
“or fed into a circuit for some boolean operation, so that there is no more than one
oracle gate along any path from input to output. In the case of an algorithm consist-
ing of several steps, the output from one step is fed into the next step, at the cost of
possibly some NC! data reorganization, so that the overall depth of the cireuit for the
whole algorithm remains logarithmic.
Here follow some facts from the theory of NC!-reducibility.

\Fact 2.4: The rglatio’n of NC! reducibility is transitive. If f is a problem and S a
set of problems, if SC NC*, and f < S, then f € NC*. The class NC* is closed

(9

-10-

L

under < for any k.. . S

The class FL * (resp. NL °) is the set of all sea;gh problems NC!-reducible to problems
in FL (resp. NL).

Fact 2.56: Given below are the classes of computational complexity considered in
this thesis. There -are problems in FP which are complete for NC!-reducibility
(‘inherently sequential’ problems [Cook,JL]); there are also problems in NL * and FL *
which are complete for NC'-reducibility [Jon].

" NC'C FL* C NL* C NC2C NC*C -+ C NC C FP C NP C Papace

4 4
- ¥ “’(Lj
3 .
f * ! oy, {

%

2.3 'Evaluating computational complexities” l] \ ’ -

°

Whenevar a problem is not intractaple, one looks Tor both ‘a parallel and a sequential
algorithm to solve it. In only one case (Section 4.6) is the sequential algorithm the
only one available. The complexity analysis of these algorithms is based on con-
siderations developed in this section.

<

Transformations on a set X of m states can be represented as 2 X m matrices, with
the first row enumerating the states, and their image given underneath on the second

row. If the states are always given in the same order, the first row becomes redun-
{

~
5 p)

]q5(34143) LA

dant, as seen in this example:

[12345
34143

In either case, this means O (mlogm) bits to represent a transformation in binary
notation, and O(nmlogm) bits to encode the input for the Membership Problem,
which consists of n generators plus one test-transformation. Q

The basic operations on these transformations consist of comparing and composing
them. In sequential computation, the choice is made to count as taking O (1) steps
basic operations such as comparison, data transfer, addition and substraction of
indices. Therefore, comparing or composing two transformations takes O (m) time.
In parallel, this can be done with m -fold Boolean operations, hence NC'.

Whenever upper bounds for the complexity of a problem belonging to NC' are given,
the results in parallel and in sequential are stated together, separated by a slash,
Example: NC! / O(mn) . Parallel complexities do not take into account the size of
the circuit, otherwise than specifying that it is polynomial. Sequential complexities

.-

- 11 -

§ A

are measured in terms of m and n, the cardinalities of the sets X and A.
. 3
Fact 2.8: The algorithms discussed in this thesis take the following problems as

N building blocks: : o
-taking the product of n transforma,m%s/of m statess NC2/0 (mn) [McK]; more

precisely, this belongs to FL;
- accessibility problem in a directed graph with m vertices and e edges:

NC?/0 (max{m ,c}) [Bor,Jon,AHU2J;

- decomposition of a directed graph wjith m vertices and e edges into connected or

strongly connected components N02/0 (max{m ,e })' [Bor Jo

system of linear congruences modulo an integer, as explained in the appendix.

Ezample: Some of the problems encountered in this thesis reduce to testing the
inclusion of a regular language in another, with the following restrictions: the
languages are accepted by finite automata constructed on the same semiautomaton
(X,A), with the same set of final states, and different initial states. In this example, a
routine to perform this test is presented.

® For z € X and F C X, define the set L, = { w € A* |2¢(w)€ F}. This is a regular
language, ’accepted by the deterministic finite automaton M = (X, A, z,§, F), where
z is the initial state, F the set of ﬁnal states, and the transition function
6§ C XX AXX is given by é(p,e) ; g iff p¢(a)= ¢. The language L, is defined
similarly.
To decide whether L, C L,, the equivalent condition’ L, NL, = ¢ will be tested,
where L, = A*—L, is the complement of L,, and is accepted by the automaton

' = (X, Az, §X-F).
By a classical construction ([LP], exercise 2.4.3), the intersection of L, NL, is
accepted by an automaton M, with set of states XXX, initial state (z,z), and
Fx (X-F) a8 a set of final states. Its transition function A is given by
Allp,r)a)=(g,0) iff §p,a)=¢q and &r,a)= s.

The language accepted by M will be empty iff none of its final states 1s accessible
from the initial state (z,2z). The test for inclusion is therefore reduced to a set of
accessibility tests in a deterministic finite automaton, which can be regarded, for this
purpose, as a directed graph with labelled edges.

- Parallel algorithm
1. Build M. .
2. For every state (p,q) of M, p €F, ¢-¢F, in parallel, test whether (p,q) is

&

-12.

_accessible from (z,z). If not, let +(p ,¢) = True, else False .
et B(z,z) be the AND of all o(p,q). One hasL, C L, iff S(z,z) = Truc.

AnalysiM(X,A) have m states and n generators. The automaton M is built in a
straightforward fashion (depth O (1)). Step 2 consists in performing m —1 accessibility
tests (NC?) in parallel, the results of which are fed into an O (m?)-fold AND operation
(NC') at Step 3. Therefore, testing whether L, C L, is NC'-reduced to problems

* belonging to NC2.

Sequential algorithm
1. Build M. .
2. If there are p € F and ¢°¢ F for which (p ,g) can be reached from (z,z) in the
semiautomaton,-then L, ¢ L,.

Analysis: ‘Step I is 0 (m®n), while Step 2 can be executed by doing a depth-first

search from the state (z,2), which is linear in the number of edges in the graph

formed by the semiautomaton, that is, O (m?2n).

Fact 2.7::“ Let languages L, and L, be defined as-above.
The inclusion of L, in L, can be tested in NC? / O(m?a). O

<

2.4 Dual classes

An abstract monoid has been defined as a set equipped with an associative binary
operation and containing a neutral element for this operation: S = (E,s,1). The dual

. of Sis the monoid S® = (E,*,1), where * is defined by r*s = s er for every r,s € E.

Let A be a set of generators of S, and ¢ the canonical homomorphism which maps the
free monoid A’ onto S. Then S* can also be obtaimed from A°. Let the mapping ¢
be defined as follows: ¢(e)= 1, ¥(a) = ¢(a) for every a € A, and

Yoy an) = Wlay)* - *(a,)

for every word a; ---a, €A°. It can be verified that this implies

Yay - a,)= ¢(az)e - - - od(a,). = ¢(a, - a,)

Fact 2.8: Mapping ¢ is surjective, and the image of A by ¢ is the monoid §*, O

Fors €E, let ¢7'(s)= {w €A’ [d(w)= 6}, and -y} s)= {w €A’ |Y(w)= s};

as a consequence of the definition of ¢, one has ¢™'(s) = {w € A* [$(w®) = 4}.

&

-13-

Denote R the kernel of 4, and R¥ the kernel of ¢. For all u,v € A°, u R v iff
#(u) = ¢(v). By the above, this is equivalent to having Wu®)= ¢(v?), that is,
u® R? B Equivalently, ¥ R® v iff «® R oR.

" The definition* of dual monoids can be extended to pseudovarieties: if class P is'

defined by relation T, let PR be defined by T®, such that « T® v iff «® T oF:
it can be verified that P® = {SF |S€P }. Notice that a class or a monoid can be
its own dual. For instance, a commutative monoid defines a relation R on A° which
’ does not take into account the order of characters in a word, so that w R w® for

every w € A”.

A way of representing the dual of a transformation mondid is to use inverse transfor-
mations. Let (X,A) be a semiautomaton, and S= <A> its transformation monoid;
denote 2% the power set of X, and for f € <A>, define f ™! as in section 2.1. Then
S'm <A™'> = <{a~'|a € A}> is the transformation monoid of (2X,A™%).

Fact 2.9: Monoids S and S™! are dual. O .

It is tempting to start from (X,A) and work with its dual (2X,A7!). This, however,
means an exponential increase in the size of the semiautomaton, so that some argu-
ment must be used which allows to restrict the work on a polynomial-sized subgraph
of (2%,A™!). Fact 2.10 and Theorem 2.11 are an example of this. -

Fact 2.10:, Let (X,A) be partitioned into j connected components: K, -+ K;.
Then the transformation monoid of (2X,A™!) is isomorphic to the monoid of (Y,A™Y),

K
where Y = 2, “
lSUS J

Proof: It will suffice to prove that f ' ¢~ in (2XA™) #f f~'% ¢~'in (Y,A™Y).
The (if) part is trivial, sinc® Y C 2%X. For the (only if} part, notice that f 7' % ¢~ in
(2%,A7Y) iff there is an E C X such that Ef ~! Eg~. This implies the existence
" of an z € E for which there is a y € X such that yf = 2 and yg # z. Since the
states z, y and yg must belong to the same connected component K, of (X,A), one
gets (E A K)/~ % (E NK;)g~%. O
\

In the case where every connected component has a number of states bounded by
some constant k, an instance of the Membership Problem in (X,A) can therefore be
transformed into a polynomial-sized instance in its dual monoid, by building semiau-
tomaton (Y,A™!), which has O(|X|) states, and taking f ' as’the test
transformation. This reduciion can be done in parallel in a straightforward fashion. ~

i
L¥s

w3

\

. ate class can be directly transferred to its dual. It is worth noticing that no similar

«

-14- -

Theorem 2.11: If every connected component of (X,A) contains at most k states, s
with k a constant, then an instance of the Membership Problem in (X,A) can be
NC!-reduced to an instance in (v, A7), O A .
Most of the proofs of ‘completeness’ and ‘hardness’ appearing in this thesis consist in
building an instance of the Membership Problem in a semiautomaton which satisfies :
to the conditions of this theorem; in such cases, the result obtained for the appropri-

method exists yet, which would allow to transfer,upper bounds between dual classes. -

¢ .
\ - ~ {

»

2.5 Pseudovarieties discussed in the thesis P

In order to give the reader a global overview of the pseudovarieties treated in the -
next three chapters, their definitions are given here, more or less in the same order 2s
the one in which they will later be discussed. Their- inclusion relationships are
represented in Figures 4.1 and 5.1.

J;: Commutative and idempotent monoids.) A .

Defining equations: fg = gf and g?= g. Congruence: u = v ff a(u)= a(v).
Self-dual. - :

»
A\

N * & -
AC: all aperiodic and commutative monoids. ' . .
Defining equations: fg = gf and g**' = g* for some ¢ > 0.
Subclass: J;. Self-dual. . - x . oo

R;: idempotent: R-trivial monoids.
Defining equations: fgf = fg and g2 = ¢.
Subclass: J,. Dual class: L,.

Mg a class of idempotent monoids.

Defining equations: fghf = fgfhf [Fen]and g2= 4.
Subclasses: R, and L;. Self-dual. ‘

Ny: a class of idempotent monoids. 4

Defining equations: fghkhgf = fghfhkhfhgf [Fen] and g%= g. Congruence: =,

(see section 4.5). , |
Subclass: My. Self-dual. b - |

’ »

as®

+

4

XR: a-class of idempotent monoids. > .
Defining'equations: fgh = fghfhgh [Fen]and ¢2=g. SN !
Subclass: N,. Not self-dual. . !

‘ L]

A,: all idempotent monoids.
Defining equation: g2 = g. Congruence: =~ (see Fact 4.15). ‘
Subclasses: N,, XR. Self-dual.

»J: J-trivial monoids. .
Defining equations: f "*' = f* and (fg)* = (¢/)* for some n > 0. ~
Subclass: AC. Self-dual.

R: R-trivial monoids. .
Defining equatiop: (f¢)*f = (fg)* for some n > 0 "[Fich]. . '
Subclasses: J and R,. Dual class: L. e ~

A: all aperiodic monoids. .
Defining equation: f **' = f* for some ¢ > 0,) }
Subclasses: R, L, A;. Self-dual. . ’

Y
Th,: all monoids of threshold one.
Defining equation: f * = f for some r 2> 0. —

Subclass: A,. Self-dual. , ' -)

' . - 18- - -

III Commutative monoids

L]

»

e ¢

The class of commutative transformation monoids was the first to be considered [Be],
as it was rightfully expected that it would be the easiest to deal with, and that its
study would provide information to sm orientation forkfurther work. Indeed, the
main result of this chapter, the NP-completeness result of Theorem 3.10, gave the
demonstration of how rapidly the Membership Problem could become computation-
ally hard whe/ﬁ one left Vhe realm of groups, as well as a first case for Which the com-
plexity of this problem lies between NC and PSpace .

Identifying a monoid as comrhutative is easy, as wed as finding its threshold and

period, as shown by t\he/ﬁlowing. '

Fact 3.1: Let A be a set of transformations on X. The elements of A commute with
one another iff <A> is commutative. Further, if element ¢; of A has threshold
and period p;, and if <A> is commutative, then every element of <A> has a thres—
hold ¢ < max(#) and a period p which divides lcm(v.) a

s

14

It can be shown directly that thd Membership Problem in_commutative monoids
belongs to NP. The argument goes as follows, (Juess an eypression for the test-
transformatlon f: by commutativity, all the occurenees of a generator can be
grouped together so that an expression can be given as a list of the number of
" becurrences (exponent) of each generator. Although these numbers can be exponent,ml
bounded above by m™, each can be represented with a polynomial number of bits.
Then, for/ every generator ¢ with exponent a, compute ¢?%, by first computing
g2 g* ¢%® .., and then taking the appropriate product of these powers of ¢, a method

which takes a polynomial amount of time. Finally, compute the transformation

. corresponding to the whole expression, and compare it wizij, S .

=,

k4 4

" 3.1 A general algorithm for n;embership testing

In this section, an algorithm is built, which decomposes an instance of the Problem ift
an arbitrary commutative monoid into a test in an aperiodic transformation monoid
and a test in an Abelian group of permutatlons This algorithm is based on simple
observations on’ithe structure of semiautomata having commutative transformation
monoids. These observations have to do with the SCCs of semiautomaton (X,A), and
are valid for any transformation which’commutes with the monoid.

Let S be the transformation monoid of semiautomaton (X,A). For z €X, denote 7

-17 -

L]

Yoy

~the SCC containing z, and let X be the set of all SCCs of (X,A). Next, let transforma-
tion g commute with S, and define Zg = { yg Iy €7 }.

I

* Proposition 3.2: In a commutative monoid S, zg C Zj. Therefore, for any ¢

which commutes with S, a well-defined transformation § on X can be built, such that
7 § = #j; the function which maps g to § can also be defined; it is a homomor-

phism.)

7

. Praof In order to prove the first statement, let states 2 and v belong to the same
SCC, with za =y and yb = z, for some a,b € 8. Then for any gy which commutes
with S, one has zg = (zab)g = (za)gb = ygb, so that =zg = ygb. Similarly,
yg = zga. To show that the mapping from g to 7 is a homomorphism, let ¢ and &
be two transformations commuting with S. "For any =z, one has
Z(F k)= (F 7)b = %5 h by definition of 7 since g can be regzlmrded as the SCC of
state gg , one gets 77 k = (zg)h = z(gh); which is T gh, by definition of go O

Fact\3.3: If o transformation monoid is commutative, then it will be aperiodic iff
its SCCs are trivial, that is, they all consist of a single state.

"This fact is a restriction of a result by I.Simon [Simon] to the commutative monoids,
swhich is stated in full as Fact 5.1. For the purpose of this discussion, a proof for the

commutative case is given here. ¢ '
Proof: The (if) part is trivial. For the other part, suppose that & is aperiodic and has
a non-trivial SCC containing states z = y, so that there exist a,b € S such that
za = y and yb = z. Notice that aperiad%city\ implies the existence of a smallest k& for
which za®**!' = za* # za*~'. If k = 0, so that za' = ze%°= z, then z = y; there-
fore, k > 1. Next, observe that (za*)ab = (za**')b =.(za*)b = (za*~')ab. Using-
commutativity and zab = =z, this give’é za® = za*~!, a contradiction with the

hypothesis on k. O

Corollary 3.4: The sht § = {7]lg € S} is an aperiodic commutative monoid,
generated by A= {7 |a € A}. O

An aperiodic monoid S is therefore obtained out of S, by collapsing the SCCs bex
into states of X. Call S the aperiodic part of S, and it will soon appear how appropri-
ate this name is. Now look inside the SCCs of S. Given an SCC 7z, say that a
transformation g € S stabilizes 7 if ¥ § = %, and call the stabilizer of# the set S(7)
“of all such transformations.

.4‘1

-18 -

Proposition 3.6: The restriction of S(7) to ¥ is a transitive Abelian group gen-
erated by the restriction of S(Z)n A to z.

Proof: S(z) is obviously a set closed under composition. Further, @k‘g\ and z be
elements of z, with g, A4, b €5(Z) such that y = 2g, z = yh, s = za, 2 - b,
One has 2gh = zagh = 2zgha = za = z = zhg, hence gh acts as the identity on 7, '
and therefore is a neutral element in S(7'), and every transformation ¢ in S(z) has an
inverse h. A permutation group is transi(ive iff its semiautomaton consists of a
unique connected component [Wie], which is the case here.

The second part of the proposition is shown by contradiction. Let a transformation
¢ in S(z') be expressed as

Mo M,ooB #
g=a,’-'-a,-'bl‘ ...b}./

so that thg generators labelled a are in S(z) and those labelled b aren’t. Lety
h o= b."‘_l v b,-"’. Making the ¢;’s act first, oné gets 7 § = 7 b,h. But 7 b, p ':r':1
while 7 7 = Z, which means a non-trivial SCC in S, hence a contradiction with

Corollary 3.4. O ' ,

As a result, if g stabilizes 7, then g acts as a permutation on 7, and

Corollary 3.8: For any g € S, the thresholds of ¢ and g are equal. O

Notice that, as a consequence of Fact 3.3, an aperiodic commutative transformation
monoid over a finite set of states has at least one source; if the monoid is non:

’ aperiodic, it has at least one source-SCC (source of S). The next proposition can be
sl}%awn by simple use of commutativity, and implies that membership testing can be
restricted to a subset of X, the sources of the monoid.

-
kS

Fact 3.7: Let S be commutZtive and let /[and g commute*with S. If every state in

every source-SCC has the same image by f and by g, then f = 4. 0

For the remainder of this chapter, f will denote the transformation on which the
‘membership test is applied. Let Y be the union of all source-SCCs. Observe that the
restriction of () S(z) on Y7, that is, the restriction on Y / of the set of all thasr"“\

.3 €Y/ —
. "-'tx;gnsformatiogx”g' g €S such that 7 §j = z for every SCC 7 in Y[, is a group gen-
erated by thGSe g, € A which }ndividuall¥ stabilize every SCCin Y/ .
: For any transformation ¢ which commutes with S, let § be a transformation of X
defined as follows: zj = zg if 7 ¢ Yr and g stabilizes every SCC of Y[, and

z§j = z otherwise. Further, de‘gne S={j |ge€ M_S() }. This set is a group,
¢ s €Y/ .

]

-19 -

momorphlc to M _ S(7), and generated by the set A= { d | a € A}. It can now be
s €Y/f
shown how the test for membershlp is split into a test in S a.nd a test in S.

Lemma.63 8: Let f commute with commutative transformation monoid S.

@en / €S iff thereexist g, €S and j, €S such that / = g, and zf = zg,§.

for every state z € Y..

Proof (o\y if) Trivial: take g, = f and §, = L.

“(i]) (Notice that, in general, g, will not cdbmmute with g,). For any z €Y, one
has zZf = 7 §,, and (5f)7, = #f , since g, has been taken among those transforma-
tions of S which stabilize every SCC of Yf . Hence zg,¢9, = z9,9. = zf . This is
true for all states in the source-SCCs, and can be extenided to every-state of X by
Fact 3.7. And since g, and g, are elements of S, it follows that f es. 0O

This lemma gives the proof of correctness for the following algorithm, which tests
membership- in arbitrary commutative monoids of transformations.

Algorithm
0. Test whether fa = af for every generator ¢ € A._If not so, f ¢8S.
1. Build X, Y, A and A; the latter two sets generate the-monoids S and §.
2. Test whether f €8. If so, find an expression for f, that is, build g, € S such
that 7 = 7,. Else,¥f ¢S.
8. Build §, so that for every z in Y, (zg,). = zf*
4. Test whether j, €S§. If so, then f €8. ' WP
o -

Analysis and remarks: Step O belongs to NC! /'O(mn). Step 1, through the con-
struction of the SCCs, is NO?/ O(mn). Step 2 is an instance of the Membership
Problem in aperiodic commutative menoids; the complexity of this step is the topic of
the next sections. Step 3 has built-in the condition f = g, §. - Further, since the
restriction of § to any SCC of Y/ is a transitive Abelian group, it suffices to define
the action of j, on but one state of the SCG, such as some zg,, z €Y, to totally
determine its action over the whole SCC-([Wie], chapter One, Proposition 4.4). This
step is NC¥/ O(m). Step 4 is an instance of the Membership Problem in an Abelian
permutation grc;up: NC3 |/ O (SLC(mn)). If this test fails, f does not belong to S.

Some facts can be observed from this algorithm. For instance, since aperiodic commu-
matlve monoids have the property that every J-class consists of a unique element (1t

~ suffices to verify that, by gommutatnwty, f J g implies f Hy, whxgh means f =

ir an aperiodic monoid), and since the transformation §, of the decom“position
J = g;§. scts as a permutation on the SCCs in which Xf is included, it follows

— N

) - 20 -

&
that f R g,, hence f J g,, so that Step 2 of the algorithm consists in finding the
J-class of f . Furthermore, it can be seen that the NP -completeness of the Member- \
ship Problem in commutative monoids resides entirely in the aperiodic part (Step 2).

\ L)

3.2 Membership in aperiodic commutative monoids

In this section, the work is restricted to aperiodic monoids. The complexity of the
Membership Problem in this case is shown to depend on the threshold of the monoid,
that is, the largest threshold a transformation of this monoid can have. In the case of
monoids of threshold 2 or more, it is related to the pro_lllem of solving a system of
linear: equations under a threshold, which recalls the NC'-equivalence established by
McKenzie and Cook [McC] between testing membership in Abelian p\ermutation
groups and solving systems of linear equations over the ring of integers modulo g.
Lemma 3.9: Testing membership in an aperiodic commutative monoid of threshold
two is NP-complete. .

Theorem 3.10: ¢Testing membership in arbitrary commutative transformation
monoids is NP -complete.

Proof: By the argument which followed Fact 3.1, the Problem belongs to NP. This
reasoning can actuall'y be simplified, since every element of an hperiodic commutative
monoid has at least one expression of linear length, due to the fact that no transfor-
mation of m states can have a threshold greater than rhf-l, so that no more than
that number of instantces of a generator $h an expression is non-redundant.

The rest of the proof is done by reducing to the Membership Problem a variant of the
zero-one Integer Programming Problem [GJ], with only equalities involved.

The reduction consists in bujlding a transformation monoid out ‘of the following sys-
tem, whoere all a;’s, b; ’s and c;; ’s are eityer O or 1:

]
cua,.,_..._,_cl,.a,., bl

s R . M
IS . CmiB1+ "'+ Cmpaly = by

The construction is as follows: / ne W

-For each line ¢, 1< ¢ < m, define states %0, Zi 1, %i2. The set X contains 3m states.
-For each column 5, J < j < n, define a generator g;, whose action is 24 g; = 2z,
"with | = k+cy for k = 0,1 and | = 2 for k = &, for all 5. Generator g; is therefore

s -

[

-21- V/
B o < .)

either the identity transformation, in the trivial case where all the ¢;’s are zero, or

aperiodic of threshold 2. Let A= { g,,..., g }. ’
-Finally, define the test-transformation f , such that =z, f = z; with | = 2 for
k = 2, and! = k+b for k = 0,1. This transformation is aperiodic of threshold 2.

Proposition 3.11: The monoid- <A> is commutative, aperiodic of threshold 2,
with sources z g ,..., Zmo. H '

Lemma 3.12: System (I) has a solution iff test-transformation f belongs to <A>.

Proof: Without,lass of gen:eraliﬁy, assume that §; = 1for all .

(only if) Let the system {I) have a solution a,,.,s.. Construct t}le product
g - g:‘- ce g,,"; its action on the source z;; will be z;09 = 24, whqre ! =11f
aiciy +ot Oycin =1, and =2 if a¢ 4.4 a4 = 2. By the;hypothesis,
8161 +..F 0, cin = b;, With b; = 1, so that [= I for all {, which means z;o9 = z;0f .
And since f ‘and g have the same action on the sources of <A>, 'by Fact 3.7 they
are equal.

ﬁf) That f € <A> implies the existence of an expression for f of the form
J =m*gr? g-*; this means that for every source z;o, Que has z;of = zg with
l = b, and ajye;y +..+ Gy sy = b = 1. Source z;o defines i&:\efo}e a condition on
the coefficients b,-, 1< 5 < n, which corresponds to the i** line of system (I). O

Lemma 3.9 generalizes to all pseudovarieties of aperiodic commutative monoids of
threshold ¢ > 2. This lemma has consequences on arbitrary aperiodic monoids as’
well, since every pseudovariety of monoids of threshold ¢ contains the class of com-

-

mutative aperiodic monoids of threshold ¢. }

Corollary 3.13: The Membership Problem in transformation mononds of threshold
2 or more is NP -hard, O

3.3 Commutat}ve monoids of threshold one

The above discussion leaves open the threshold-1 case, which is now shown to belonig'
to NC by use of the following algorithm, which tests membershlp in a commutative
monoid, aperiedic-of threshold one (idempotent). '

i

\

Algorithm '
1. Compute the maximal alphabet @ (f);
- generator @ belongsto a(f) .iff of = fa = f; -

£, compute the product g of all generators of'a(/), in any order; . g
8 f e€<A> If f =g¢.
™,
*The algorithm can be seen to be valid as follows. First, notice that a € @ (/f) implies -
that af = / , since commutativity allows-to bring the extra ¢ at the left of af next
" to the nearest occurence of a in the expression of f ; it can then be eliminated by
idempotency (¢2 = a). The converse is trivial, and so is the rest of the algorithm. In
sequential, this can be done in O(mn); in parallel, Steps 1 and 3 are NC?, while Step

2:is in FL (NC?).

Proposition 3.14: The Membership Problem in idempotent commutative transfor—
mation monoids has complexity NC2 / O (mn). a ¢

As a consequence, the complexity of the Membership Problem in arbitrary commuta-
* tive monoids of threshold one is dommated by Step 4, that is, membership in Abelian

- B}

permutatlon groups. n

" Theorem 3.15: The Membership Problem in commutative transformation monoids
of threshold one has complexity NC® / O (SLC (mn)). O3

This result opens the possibility of finding other types of aperiodic monoids for which
the Membership Problem is not NP -hard, namely cases where the constraint of hav-
ing threshol one is retained, while the monoid no longer has to be commutative. ,
This is the subject of the next chapter,

@

3.4: -Restrictions on the monoid

Finally, restrictions of another kind are mentioned. The first one consists in setting a
constant upper bound on the number of sources in the aperiodic part of S. For exam-
ple, let a commutative aperiodic monoid S have but one source. Since every state of X
can be reached from it, using a transformation of S, it suffices by Fact 3.7 that a
transformation commute with S and map this source to a state of X to make it belong.
to the monoid. This implies that the only transformations of X that can commute

with such a monoid are its own elements. _
This reasoning can be extended to the case where S is aperiodic and has k& sources, &

-93-

a constant. Build the Cartesian product X* and let transformation g act on X* as

(Wiseoor W) =(v19,..., wag)

This brings the problem down to the one-source case, by testing whether (z,,..., z;)f
" can be reached from (z,,..., 2), with |X |* states in total. The sequential complex-

ity of the Membership Problem is therefore dominated by the accessibility test in
" (X*,A), which is O (m*#), and by the test for Abelian Group Membership, which is

O (SLC(mn)). In parallel, this is an instance of the Accessibility Problem in a

directed graph, which lies in NC? so that the complexity in the general case is dom-

inated by Step 4 of the general algorithm of section 3.1 (NC?®).

A~

Theorem 3.16: Tésting membership in a commutative monoid whose aperiodic

part has a number of sources "bounded by a constant k can be done in

NC®/0 (max{m*n, SLC(mn)}). O

2
-

Another restriction worth mentioning is derived from the observation that every ele-
ment of an aperiodic commutative monoid has an expression of length at most
n (m —1) (see the proof of Lemma 32)) There are m™ such expressions, taking intoy "
. account that commutativity allows to specify only the number of occurences for every
generator. If there is a constant upper bound on n, then all these expressions can be
tried by a brute-force search, leading to a polynomial-time sequential complexity,
(dominatedTa{the search, which is O (m**'), and by Abelian Group Membership. In
parallel, the test in the aperiodic part consists in first generating simultaneously all
the m*® possible expressions, and then, for each expression, computing the correspond-
iflg transformation and compﬁng it with / . All three steps are NC!, so that the
complexity is dominated by step 4 of the general algorithm (NC3).

Theorem 3.17: Testing membership in a commutative transformation monoid with
a number of generators bounded by a constant k can be done in
NC3/0 (max{m**, SLC(m)}). O

Notice that the first restriction corresponds to an instance '(I) where the number of
lines in the system is bounded by a constant; the second means a constant upper
bound on the number of columns.
It is also worth observing that a result analogous to Theorem 3.17 can be proved in
. any pseudovariety which defines a congruence of finite index: Indeed, in this case, the
(— number of equivalence classes, which is the cardinality of the monoid, depends only
on the number of generators. If the latter is bounded by a constant, then so is the

former. .

-24-

IV Idempotent monoids

4

As was proved in the previous chapter, the.Membyership Problem is intractable for all
monoids of threshold 2 or more, excluding special restrictions such as the ones men-
tioned in section 3.4. An obvious action to take is to stay with threshold one, and to
relax instead the condition that the monoid he commutative, in order to look for pos-
sibilities of other pseudovarieties where membership could be tested in FP or NC.
This chapter reports therefore on the research done on idempotent monoids, that is,
aperiodic monoids of threshold one, which can be described as satisfying to the
defining identity ¢2= g¢.

The chapter is divided into two main parts. In sections 4.1, 4.2 and 4.3, results are
described which hold for any idempotent monoid, namely an NC? test for idempoten-
cy, an NC! test for J-class, and the main result of this chapter, the fact that the
Membership Problem is NP-complete in idempotent monoids. The remaining sections
can be seen as a more detailed look at the lattice of pseudowtgeties of idempotent
monoids, whose structure is known precisely [Ger,Fen], with proofs that, in some of
them, the Membership Problem is not intractable, as well as an attempt to under-
stand how the Problem evolves from feasible in NC!, in the case of the trivial
monoid, up to NP:complete.

Remark: As was mentioned in chapter Two, the generators of the monoid can be re-
garded as characters (elements of A), and expressions as words (elements of A’); there
is also a canonical homomorphism ¢ which maps A* onto <A>. In order to facilitate
reading, the distinction between an expression (word w of A”) and its corresponding
transformation (element ¢(w) of <A>) will be made by a systematic use of the

canonical homomorphism, whenever the word consists of more than one character.
\ [

4.1 Testing for idempotency

Quite remarkably, idempotency can be tested with little knowledge of the inner strue-
ture and properties of idempotent monoids. The algorithm takes the definition of
idempotency and translates it into a question on regular languages. ’

Theorem 4.1: Testing whether the transformation monoid of a semiautomaton is
idempotent can be done in NC?/0 (m*n).

Let z and y be two stjtes of X. DefineL,, = { w €A’ [z¢(w) = y }, where obvi-

*
- ©

- 25- N
ously L,, = ¥ if there is no ¢ € <A> such that zg = y.

Lemma 4.2: Monoid S = <A> is idempotent iff L, C L, foreveryz,y €X

Proof: The (only if) part is trivial. For the (if) part, let w € A’. For any z,y €X, one
has wel, iff zé(w)=y. That L, C L, implies yé(w)= y, and thus
zd(w)p(w)= y = z4(w); this has to be true for every z, y and w. Hence
($(w))? = ¢(w) for all $(w), that is, for all elements of the monoid. O

This lemma gives the proof of validity of the following algorithm.
Algorithm \

1. For every pair { 2,y }, test whether L,, C L,, andL,, CL,,.

2. <A>'is idempotent iff the above tests are successful for every pair { z,y }.
Analysis: Let (X,A) have m states and n generators. Step 1 consists in O (m?).calls
to the routine presented in Fact 2.7, which tests inclusion of regular languages, and
has complexity NC?/ O (m2n). In sequential, the loop on all pairs increases the com-
plexity of this step to O (m*n), while Step 2 consists mere}y in testing the value of
the answer-bit, whose value has been updated at each iteration of the loop of Step 1.
In parallel, Step 2 consists in an O (m?%)-fold AND operation, which is NC!, so that
the problen{ as a whole belongs to NC2. O
4.2 The Membership Problem belongs to NP)

To set the context for the discussion which follows in the next sections, the main
result of this chapter is stated here. The reduction for the proof of NP -completeness
requires a more detailed knowledge of idempotent monoids, and will be done in a
later section (Theorem 4.25), However, the proof that the Problem belongs to NP

can be given now; it consisbg in demonstrating the existence of a polynomial upper
bound on the length of an expression, for any element of an idempotent monoid.

Theorem 4.3: The Members}gp Problem in arbitrary ider\mgotent transformation
monoids is NP -complete.

Lemma 4.4: Every element of a monoid of idempotent transformations over m
states has at least one expression of length at most m —1.

The proof of this lemma requires the following result.

3 - 96 -

Proposition 4.5: Let the transformation monoid of (X,A) be idempotent. For any
J .9.h,k € <A>, with f = ghk and y € Xf ,one has (yf “Y)gh C yf ~' N y(hk)™

Proof: The inclusion of (yf ~!)gh in yf ~! is demonstrated by observing that

(vf ~Vghf = (vf ~")oh (ghk) = (vf "ghk = (y/ ~)f = {y}.
The other inclusion is proved in a similar fashion. [N
Proof of Lemma 4.4: Given a transformation f € <A>, with expression w € A*, the
prbof consists in eliminating enough redundant characters in w to obtain an expres-
sion of length at most m —1. Let y € X/ ; for each decomposition of w into w = wy,
with ¥ ,v € A’, define the sets (yf "ggb(u = {zd(u)|2f = y} and

Fa)=""U f "(w))

v m "'2

iwhere‘ the union is on every possible way of cutting v into two fac{oré v,va € A By

Proposition 4.5, Fy(u)C yé(v)™".
Isolate the last character of w, so that v = w,a, a € A, and consider the set’
(v He(uy). If (yf ~)p(uy) C Fy(u), then, since F,(u)C y#(v)™, one gets

(v N(urv) C (9f 7V = {9}
Therefore, with w = u;ev, having (yf ~")¢(u,) C F,(ua) is a sufficient condition for
character a to be superfluous in bringing the states of yf ~! to their image y. If
(vf “Dp(u,) C Fy(u,d) for every y €Xf, then a is redundant in w and can be
deleted from the expression.
To complete the proof, consider an algorithm, which reads an expression w from right
to left, looking first at w = wua, and starting with F,(w)= {y)} for every y € X/ .
At every iteration, it is verified whether (yf ~)¢(u,) & F,(ux:a) for some y € X/ .
If so, then character a is retajned, and the sets F,(u;a) are updated into
Fy(u))= F,(uya) U (yf ")¢(u,). Otherwise, a is redundant and is deleted from w.
Notice that, for a character to be retained, at least one Fy{u,a) must be enlarged by
the union with (yf ~")é(s,). As Fy(us;a)C yf ™' for every y- € X/ and every ua,
and since the sets yf ~! partition X, a state of X can contribute to enlarge only one
set F,(u,a), and this onl; once, which means that there cannot be more characters

retained than there are states available in X—Xf. With |X | = m and |Xf |21,
this means an upper bound of m—1. O '

4.3 Alphabets, J-classes and strongly connected components

In this section, it is shown that the intractability of "the Membership Problem in
idempotent monoids does not lie in the identification of the J-class of the test-
transformation, as is the case in commutative monoids of threshold two or more.
Indeed, the results of this section give a method to identify this J-class, which is a
first step in the algorithms for membership testing developped in this chapter. The
discussion in this section is based on two facts taken from [GrR]. -

Fact 4.6: Let f and g belong to the same J-class of an idempotent monoid. Then,
for any u,v,w,z belonging' to the same J-class as f and g, and such that f = wv
and g = wr,onehas fg = uz and gf = wv.

Fact 4.7: For any two elements f and g in an idempotent monoid,

f Jg iff a(f)= a{y).
As a consequence, one has

Proposition 4.8: Foralle € A, f € <A>, these three conditions are| equivalent:
ST fa i |Xf | = [Xfa| i eca(f). | :
]

Proof: The first condition implies the second by Fact 2.2.

The second implies the third, by observing first that Xfaf C Xf, and that
|IXfafa| = |Xfa| = |Xf |, s0 that Xfaf = Xf . Therefore, af acts as a per-
mutation on X/, and aperiodicity forces it to act as the identity, so that zaf = z
for every z € X/, hence faf = f . In terms of the maximal alphabet of f, this

meansa € @ (f). \ -
The third implies the first: that ¢ € a(f) implges that there are v,y € <A> such
that f = wav. Now, fuaf = fua(uav)= f (uaua)v = fuar = f2=|f by idempo-
tency. This means af L [, since f = (fv)af,and of L f impliesef J f. O

Corollary 4.9: Forevery f ,g € <A>, if @(9)C a(f), then f J|fg. O

3

Proposition 4.16: The maximal alphabet @(f) which a transforfation f would -
havé if it were element of an idempotent monoid] <A> can/be computed in

NC!/0(mn). /
Proof (algorithm): : ’ / ‘
0. Set @(f)= @ snd compute |X/f |.

1. Foreach a €A,add s to @(f)if |Xfa| = |X/ |.

! *

-28- !

»

The next two theorems are direct consequences of Proposition 4.8. They show that,
as is the case in commutative monoids, the J-classes are closely lmked to"the decom-
position of thé semiautomaton into strongly connected components

Theorem 4.11: Let (X,A) be idempotent. For every SCC K of (X,A), there is a sub-
set B of A such that, for every ¢ € <A>: .

a/if @a(g)C B, then Kg C K;
b/if @(s) Z B, then Kg N K= &
c/if a(g)= B, then |Kg| = 1. .

Define the alphabet of a state ¢ € X to be

, @(z)={a €A |ae€a(y)forsomeg:2g = z }.
There is at least one f € <A> such that @(f)= @(z) and 2f ‘= z: just compose
together all the y € <A> for which zg = 2. The following proposition allows to
define the alphabet @ (K) of an SCC K as the alphabet of its states, "

‘e

Proposition 4.12: All the states inside an SCC have the same alphabet. o

9

" Proof of Theorem {.11: It'is first shown that, if K is an SCC, z € K, and g € <A>
such that a(g)C a(z), then zg € K. To see this, notice that, by Corollary- 4.9, for

all J € <A> "such that a(f)= a(z), one has fgf = f .In particular, thereisa f
such that zf = z, which means zfgf = z = z9f; therefore zg and z belong to the

same SCC. This proves part a/ of the Theorem. i’ O

Part b/ is demonstrated ab absurdo with a similar argiment.

For part ¢/, assume the existence of two distinct states z and y in Kf, with
G(f)= a(K). There is an h € <@&(K)> such that jh = z; then one has
yfhf = (vf)hf = yhf =2f =z. But @(h)C a(f) implies fhf,= f by
Corollary 4.9, hence yfhf = yf = y, a contradiction. O

Notice that the set B of Theorem 4.11 is the'alphabet of the SCC, a (K).

Recall Fact 4.6, the decomposition of an f into f = wv, with f J u J v. Theorem
4.11 allows to decompose the action of transformation / into two parts, the action of
‘a prefiz (a transformation s satisfying to the conditions of Fact 4.6), and that of a
suffiz (a v defined as in Fact 4.6). The reader will notice that this definition of prefix
and sufflix allows for a vast choice, up to taking u = v = f.

*

\
[

o™

"\

\ -29 - Y

Theorem 4.13: Any prefix ¥ and suffix v of f € <A> with @(f)= A, acton a

state z € X as follows: the prefix selects the SCC into which z will be mapped; the

_&m then maps this whole SCC onto the image-state zf . Therefore v comcxdes
<f inside the image-SCC.

Notice that. the condition @(f) = A does not mean a loss of generality: if @(f) C A,
then work with the SCCs of the semiautomaton (X, a.(f)).

Proof: The second part is a direct consequence of part ¢/ of theorem 4.11, since for
an SCC K with a(K)= a(f) one has |Kjf | = |Kv|=1from f Jv (by Fact

2.2), and Kf C Kv from f = uv.
For the first part, 1t suffices to show that for any z €'X, zu and zf arelin the same

SCC. This is obtamed by observing that a(f)=a(u)C a(zu), applying
Theorem 4.11, part a/. O] .

This result suggests a decomposition of the membership test into three main steps:

1. Find the maximal alphabet a(f), lising Proposition 4.10; from then on, work
in(X,a(f) © '

2. Test the suflix of f in the¥semiautomaton (X;,a(f)), where X, is the union of
all SCCs in (X, @ (f) having alphabet a (f).

3. Test th'e, prefix in (X,,@ (f)), where X, = X-X; U {k; | K; C X, }, that is,
where each one of the SCCs retained at Step 2 has been replaced by a single
sink state, for which k;a = k; for every a € @(f).

- E \ Q
N
.

4.4 An intuitive look at idempotent transformation monoids

‘ “
The aim of this section is to introduce definitions which will be used in the rest of
this chapter, and to describe the action of -a transformation jf 4 semiautomaton with
an idempotent monoid, in order to give the reader an intyitive idea of what makes
the Membership Problem in such monoids intractable.
These definitions apply to a word w € A*, and are as follows ’
A left pivot of a word is the first occurence of a given character in this word, when
reading it from left to right; pivots are ordered: first pivot, second, etc...
To a left pivot is associated a left factor, which is merely that part of the word which
lies to the left of the pivot.
This vocabulary is local to this thesis. However, it can be related to the nomenclature

- used in [GrR] as follows: the last left pivot is the initial mark, and the last left factor,

P

-80-

that is, that part of the word which lies to the left of the initial mark, is the snitial of

the word.
x Dual definitions apply for right pivots, right factors, terminal and terminal mark.

Example: Expression abcacdacbdacdabsb has its left pivots a,b, ¢, d marked with
dots, and its right pivots b, a, d, ¢ marked with double dots. Its left factors are: ¢,
a, ab, abcac, and its right factors ¢, b, abab, dabab. Its initial is abcae, and its
terminal dabab . '

These definitions are used in theAdescription of the congruence ~ defined on" A* by
the pseudovariety A, of idempotént monoids on the alphabet A.

¢ ¢ . .
Fact 4.15: |[GrR] For any two words w,,w, € A’, w; ™ wy, if they satisly either
~of a/ or b/: ‘
a/ wy= wy= ¢ - *

b/ -a(w,) = a(wy), and
' -wy and w, have the same initial and terminal marks, and
-the initials of w, and w, are equivalent under ~, and
-the terminals of w, and w, are equivalent under ~.

Notice that this description ignores whatever lies between the initial mark and the
terminal mark, provided that the former lies to the left of the latter. Furthermore,
since w = ww, an expression can always be squared in ordeg to make the initial mark
appear to the left of the terminal mark. A word w can therefore be decomposed
canonically into an initial u, an initial mark a4, a terminal mark &, and a terminal v,
with the initial "and the terminal themselves decomposed canomcally, so that
w & uabv. Notice also that the relation = implies that w, and wy must have the
same sequences of left and right pivots.
With these definitions, observe that the image #(ua) of the coricatenatidn of the ini-
tial and of the initial mark of a word w by the canonical homomorphism fsa prefix of
é(w), as defined by Fact 4.6. A similar observation appliés for the suffix.

y
Ezample: The expression abéacdacbdacdabdb from the previous example’ can be re-
duced to an equivalent word by first taking away whatever lies between the initial
and terminal marks, to give w &~ abcacdédabab. Work can then be done on the ini-
tial and the terminal, in order to obtain a canonical decomposition for each of them.
For the initial abcac r?t;his gives abcbecac, and its\own initial and terminal cogld then
be transforghied similarly.
Oupe can als§ try to obtain a shortest equ1valent expression for w 5y directly apply-
ing the hing identity f %= 1, whlch trapslates here into z?~ z forall z €A’
For this, start from the already simplified expression w =~ abcacdcdabab, obtained

/J,

s

' -31- 7 Y

above, and notice that the last four characters form a square, which can be reduced
to give w = abeacdcdab. The central edcd can also be simplified, to give abgacdab .
Monoid elements ¢(abcacd) and ¢(cdab) are valid prefix and suffix of ¢(w).

The recursive decomposition of expressions given by Fact 4.15 leads to a ‘recursive’

, way of analyzing how a transformation f, whose expression w admits a canonical

decomposition ueby , maps a state z_to its image 2/ . In what follows, work is done in
(X,A), with f = ¢(w); it is assumed, without loss of generality, that w = uaby, and '
that a(fw) = A.) ‘ s ° ‘

¢ u g ,
By Theorem 4.13, the prefix ¢(ua) maps z into the SCC'K of alphabet @(K) =
which contains zf . With a(u) = A—{a}, one has A-{a} C &(z ¢(u)), so that either
z ¢{u) € K, and then the action of character ¢ ou " is redundant, as the whole SCC
K will be mapped anywagis dnto zf by the suflix, 50, that z¢(ubv) = 2f,
zd(u)e K, » K, with a(K;) = A—{a} In this case, the passage from K, to K is dope
through an edge labelled a, going f m stafe z é(v) €K, to a:¢(ua) 1n(K
Still analyzing this second case, observe that u can itself be canomcally decomposed
into w= ua,;b;v,, with z¢4(u,a,;) € K;, and ¢(b,v;) mapping K, onto a:q.‘o(u) that is,
selecting that state ¢ = z4(u) of{ K, for which ga = z d(ua) € K.
Meanwhlle the action of suffix ¢(bv) on SCC K can be described as ftélows genera.tor
“b maps K onto a subset Kb C K, and{g(v) then fhapd Kb onto Ka(by) = {y} Since °

b ¢ a(v), the action of ¢(v) can be seen as taking place in the semiautomaton

‘ (K,A-—}b}). With v l;eing canonically decompogd? into v =, ugaybyv, observe that

#(u 2a5) maps Kb intothe correct maximal SCC K, of (K,A—{b}) which conbains zf ,

that is, a sub-SCC of K in (X, ALWlth alphabet A—{b}), and that ¢(byv 2) then maps

this sub-SCC onto the image-state z{ :
\

- N N\ ' [
From this description, a rr@nber of possible causes for intractability of the Member-

N

’ ship Problem become apparent The reader is remmded at this point, that the Prob-

lem consists ‘in giving a one»blt answer to a question about membership of f in
<A>, and that, t.heoretxcally, this could be done without having to explicitly _corﬁ-
pute an expression for the test-transformation. The following considgrations should
be therefore regarde.d as pertaining to a test to verify'whether the action of f in the
semiautomaton is ‘compatible’ with membership in <a>. " -

1

. First, recall that ¢(¢) maps SCC K, onto one of its states ¢, whigh is itself mapped

by a into the maximal SCC K. Fc}x/every such SCC K,, there can be several states
¢ € K, such that s E*j(; to a given ¢ corresponds a set of possible suffixes ¢(b,v,) of

#(u), and the number of possible choices of ¢, when combined between all these
Y ™~ ’
1 '{: ‘&

rd

-

, -32-
SCCs 8f alphabet A-{a }, can become exponentlal /n\the size=of the s?utomaton
‘Inside & maximal SCC K (where the suffix is tested), the decompositiod of the suffix
into ¢(bv) can also lead to an exponential number of possibilities to look at, as fol-
lows. Assumfirst that the terminal mark b is.known, so that only the terminal v
has to be tested for. With the canonical decomposition v = ugagbgv,, the action of
#(bsvo) is already defined: it maps the sub-SCC K, onto the image-state zf .
Meanwhile, the action of ¢(uzaz) is krown for certain subsets of K: it maps K, into it-
' seflL and siniilarly for every sub-SCC of alphabet a(v) = A—{b}, and it maps Kb into
K;. However, there remain states of K which belong to none of these subsets o'f‘K,
and for which the actfon of ¢(uqas) is undefined. Again, the number of possible
choices, deciding which sub-SCC each sucly state !S mapped mto can become ex-
ponential. | s ;
Finding the initial and terminal marks séems to be less of a problem: just take one
among the n generators and verify that it is.the right choice; but this ‘choice cannot
quite be verified until it has been decided whether there is a valid corresponding ini-
tial (or terminal), which ‘brmgs the problem back to the above considerations.

» ' >

’

%) -
] / . &

4.5 The lattice of idempotent pseudovarieties
In section 4.6, the proof of Theorem 4.3 is c’ompleted, which will provide a formal
support for the intuitive argument of the previous section. However, the lattice of
classes of idempotent monoids will first be described and explored, in order 'to show
where the passéxge from NC! to NP-completeness occurs. It will be demonstrated
- , chat, upon climbing this lattice up to A,, the Problem first belongs to FL, then’be-
. comes hard for NL, and therefore at least NC?, while still feasible in polynomial .
sequential time (this section), and then reaches NP -completeness (section 4.8). -

The lattice of pseudovarieties of idempotent monoids is represented in Figure 4.1; it
is based on the work of Gerhard [Ger| and Fennemore [Fen], who gave a description

of the whole lattice in terms of semigroup classes. In this figure, cach arrow
° represents a relation of strict inclusion. The lattice starts at the left with a class con-
agxstmg only of the trivial monoid; it is dominated at mﬁmty (to the right) by the class
A, of all idempotent monoids. All pseudovarieties lying on the middle row are self-
dual. Each class on the top row is dual to its counterpart on the bottom row: The
data used in the following sections is taken from [Ger) and [Fen), although some nota~
tions and vocabulary are local to this thesisy In particular, the labels M, N, and XR
are non-standard. In Gerhard’s notatlon, these classes are identified as Ry Ry Byfy °

Ry and Ts Ry %

0 ®
- 5

-

FIGURE 4.1: Pseudovarieties of ide%potent monoids V)

.

Already seen in section 3.3 is the class J, of commutative idempotent monoids. It will
now be demonstrated that this is the unique largest class of idempotent, and there-
fore aperiodic, monoids for which the Membership Problem belongs to FL, provided
that the complexity classes FL and NL differ. To do so, the first two classes not in-
cluded in Jy are looked at: these are R, and L.

-Definition: A monoid S belongs to R, iff every g,h € S satisfy the equations
ghy = gh and g% = g. Similarly, the class L, is defined by the identities ghg = hg -

and g2 = ¢.

Fact 4.16: Two words of”A* are expressions of the sameé element of the free R,
monoid on A iff they have the-same sequence of left pivots (right pivots for L,).

Proposition 4.17: The class test in R, and L; belorigs to NC! / 6 (mn?).

Proof: The algorithm for R, consists.in testing that the conditions g?= g and
ghy = gh are satisfied by the generators: NO'/O (mn%> That this ensures that
ghy = gh for every g,h € <A> is proved by induction on the length of an expression

for . With length 1, which means g €A, leth = 4,005 - 4,, and do

ghy = ga,azay° " - a,9 = (981)agas -+ 8,9 = gaygagag- ‘a9
T = gaggaggag” CC ga, g = (a1gdaggas’ C " g4y
© = ga6ga3° " 6, = gh. .

Wii;lh length greater that 1, let g = kb, with b € A. Then

- kbhkb = kbkhkb = kbkhb = kbhb = kbh.
That g% = g is demonstrated in a similar fashion. The proof’ for L, is identical.
Notice that this Class Test bypasses the test for idempotency of section 4.1, which
has complexity NC?/ O (m*n). O k

The existence of a jump in the complexity of the ;Membership Problem is now

° 4

o}

-84 -

demonstrated, by proving a ‘hardness’ result for the first two pseudotariegies of idem-
potent rhonoids not included in J,.

Theorem 4.18: The Membéship Problem in*R, is non-deterministic log-s
hard, relative to NC'-reducibility.

Proof: The demonstration consists in doing a NC! reduction from the Accessibility
Problem in a directed graph (DGAP).

5}

Fact 4.19: [Jon] . DGAP is complete for NL via NC? reducibility.

Reduction: Let an instance of DGAP be given as a list of nodes and edges: sets V of
vertices and E € VXV of edges, plus the name of the start and arrival nodes.
Assume that these are v, and v, , with the graph having m vertices, m > 1. '
First, weed out trivial loops (NC!), since they have no influence on the outcome of
DGAP. Then, for each node v;, construct the sets B; of edges incoming to v; and C;
of edges Ieaving v; . This is feasible in NC!, and consists merely in enlarging the input
for the same instance of DGAP. ’

An instance of the Membership Problem in a semiautomaton (X,A) is now built by
defining a connected component K; for every vertex v; of V, a generator of A for
every edge of -E, plus one extra generator d, and by redefining the sets B; and C, as
subsets of A. The connected components of (X,A) are constructed as follows: (The
one-line matrix notation is used for transformations, with states of origin given in
alphabetic order, so that the identity in {p,g ,r ,2} is denoted (p ¢ r z))

K= {py1 g1, 2;}, Wwith every generator a € C, acting as (g, ¢, z,), and every
a ¢Cras (219121); o

K; = {p;, q,r,% }; for 1 <i < m, with every a €B; acting as (r ¢; r; z),
every ¢ € C; acting as (z; ¢; ¢; z;), gefférator d as (¢; ¢; ¢; J, and every other
generator as the identity; .

Kp=1{Pm)Imsm,n }, With every a € B, acting as (r, g, rm 2n), every
a éC,,, acting as (2, Gm Tm Zm), generator d a8 (Z,, ¢n gm 2z,), and every other

\

generator as the identity.

~

Define test-transformation f as follows: for all i, 1 < i< m, let z,f = z;, and
%J = ¢ forall y; % £)

Connected components K;, K; (for some i, 1 < i < m), and K,, are drawn in Figure
4.2. In each of these connected comyponents, only. those generators not acting as the
identity are represented. The arrows are labelled with the set, of those generators
whose action they correspond to.

- 35 -

P¢ Pm
B‘J C(. Bml/ Cm U{ J}
r;) z; B, m —QE.- T Ty
A . A
ciu{d A {d} A -
a9 °| 9m Q
A N A
A A
K, ° K N Kn

FIGURE 4.2: Connected components for the proof of Theorem 4.18

Lemma 4.20: There is a pathfrom v, tov, iff f € <A§.\/

Proof: (only if) Let the vertices encountered along a path from v, to v, be
4y, ,u, with v;= u; and v, = 4 ; without loss of gerierality, the path can be
assumed to be cycle-free. It can be described by a word of AZ"‘ built from the charac-
ters corresponding to the edges traversed, listed in the same left-to-right order, so
that w = (u,ug)(ugus) - - (ty—pux). It is claimed that ¢(wd) acts in (X, A) exactly as
S does. This is verified separately on every connected component.
In K,, since w starts with (v ,uz) € C, thisis immediate.
In every K; corresponding to a node u; along the path, one has (u;_,,4;) € B;, and
(u;,Y; 41) € C;, with those edges appearing eatlier on the path belonging to neither,
and therefore acting as the identity on this component, so that the sequence of an ele-
ment of B; followed by an element of C; acts as f on K;.
In K,, , one has (u,_;,4;) € B,,, followed by d. .
In those K; corresponding to a node not traversed by the path, every character of w
acts as the identity; then, d acts as f on K;.
Therefore, ¢(wd) acts ex{a,ctly as f on every connected component of (X,A).

&

(tf) Let f € <A> with expression w. Connected component K,, imposes three con-
ditions: 1/ that w contains at least one d; 2/ that at least one of the left pivots
which precede the first occurence of d be a character from B,,, corresponding to an
edge entering vertex v., and 3/ that no element of C, (edges leaving v,) appear
before the first occurence of d.

e

\/ L
- 38- .

It is now claimed that the sequence of left pivots, up to the one which is the first
occurence of d, gives a list of edges, the endpoints of which are vertices accessible
from v, without passing through v, . The proof is by induction on the pivots encoun-
tered while reading the expression from the left.

Component K, imposes that the first character of w, that is, its first left pivot, belong
to 0,, which means an edge leaving from v,.

Assume that the sequence (vy,%g) * -+ (uy—),u) is such that every node u;,2< ¢ < &,
is accessible from vertex v,. Then either the next pivot is d, which implies w; = v,
for some { < k, a constraint imposed by component K,,, or the next pivot is another

-edge (u;,u;). If vertex u; has not been encountered so far, then all the characters to

the left of the one considered now have acted as the identity on the connected com-
ponent K; associated with vertex u;; since the new edge (u;,u;) belongs to O;, the
corresponding generator maps state p; on z;, which is not compatible with the action
of f on K;. Therefore, vertex v; must have already been encountered, and, by the
induction hypothesis, is accessible from v;, which implies that the endpoint of the
new edge, vertex u;, can also be reached from v,. -

Semiautomaton (X,A) is of size linear in the size of the original graph, it has a
transformation monoid belonging #0 R;, which can be tested using Proposition 4.17,
and its construction can be done in N¢C'. O

8

Corolla:ry 4.21: The Membership Problem in L, is also hard for NL .

Proof: Every connected component of the R, semiautomaton built for the proof of
Theorem 4.18 has at most four states. By Theorem -2.11, this instance of the Member-
ship Problem can therefore be NC!-reduced to an instance in an L, monoid. O

It is shown below that membership in R; and L, monoids ,c‘an be tested in p‘olynomial
time. However, the question as to whether this problem belongs to NC or is complete

for FP (‘inherently sequential’) is still open. Yet, this represents a jump in complex-

ity, therefore an intermediate step between FL (J; monoids) and NP -completeness.

The pattern of having a unique maximal class of aperiodic monoids in which the
Membership Problem belongs to some complexity class is repeated once more, this
time with the class FP of problems solvable in polynomial time. The pseudovarieties
ﬁfl and L, are contained in the class N,, defined by the relation ~,.

Definition: [Ger] Forp >3-4 for all w,wo€A’, w, =, w, iff they satisly all of
1/ w, and w, have the same\sequence of left pivots \
2/ w, and w, have the same gequence of right pivots
3/ every left factor u, of w, satisfies relation = ,_, with the corresponding left

“"

factor ugof wg: 4, ®, .y up;
4/ the same is true for right factors.

In the case p = 4, this means: for all w,,w, € A*, w, =, w, iff they satisfy all of
1/ w, and w; have the same sequence of left pivots
2/ w; and w; have the same sequence of right pivots ,
3/ every-left factor u; of w, satisfies relation ~; with the correspondmg left fac-
tor u, of wy: 4, =3 uy two words are equivalent under the relation ~,; iff they
have the same alphabet and the same initial and final characters;
4/ the same is true for right factors. ‘

Ezample: The followingiﬂvo words are equivaleht under ~,. In these words, the
left pivots have been marked with dots, and the right pivots with double dots.

ibaéabecdidbaboadad ~, abaédcdbadid

f
- /
Testing membership in an N, monoid can be done as follows.
. 1 4
Sequential algorithm .

0. Find the maximal alphabet A = @ (/); from then on, work in (x,4).
1. Compute a prefix of f :
1.1. Find an a € A such that /] = af . LetB= {a} and v = a.
1.2, WhileB» Ado .
Look for b € B and ¢ ¢ B such that ¢(ubc)f = f . If none is found, then
HALT: f ¢ <A>.Else, do v = ube and B = Bu{c}
2. Compute a suffix of f :
2.1, Findan a € Asuch that f = fa. LetB= {a} and v = a.
2.2. While B A do .
Look/for b € B and ¢ ¢ B such that f ¢(cbv) = f . If-none is found, then
HALT: f ¢ <A>.Else}do v = ¢bv and B= BU {c }.

8 f = ¢g iff f e <A>S
Prgpoaition 4.22: f = ¢(uwv) iff f € <A>.

Proof: The (¢nly if) part is trivial. The (if) part is demonstrated by showing that
J € <A> infiplies that the algorithm goes through Step 1 without halting; the same
can be proved for Step 2 in a similar fashion.

The proof j& by induction, showing that every iteration in the loop of Step 1.2 gives
as a result a v which is the concatenation of a valid left factor of f and of its associ-
ated left pivot. The basis is clear: start with v = a, then b = a4 ad f = acf for
some ¢ € A. At the induction step, one, has in hands a u, with a(u)= B. If

: 1

. -38 -
, [

J € <A> and ¢(u)f = [, then the sequences of left pivots in the expressions of f
and ¢(v)f are the same, and their initial factors have the same alphabet and last
character, by relation ~g3. If f € <A>, then its next left factor u! will be such
that «’ = ut, for some t € <a(u)>. Since u contains at least one instance of
every characl‘:er in a(u), however, all the characters of ¢ are redundant, except the
very last, so that u! ~g ub for some b, ?;The next left pivot is looked at (the ¢ of
Step 1.2), and this completes the induction. ”
Remark that it is important to look for b and ¢ simultaneously, since ¢(ub)f = f is
true for any b € o{u), while this is not the case for ¢(ubc)f = 7. O

Theorem 4.23: Membership in an N, transformation monoid can be tested in
" O (mn®) sequential time.

Proof: The algorithm, shown to be valid in Proposition 4.22, has its complexity dom-
inated by Steps 1 and 2, each consisting of a loop over A in which pairs of generators
are tested on, hence O (n) iterations at k cost of O(mn?) each. O

Corollary 4.24: Membership in an A or an L, transformation monoid can be
__tested in O (mn? sequential time. ¥
Proof: In an R, monoid, all that is looked for is the sequence of left pivo.t,s, 80 that
Step 2 is ignored, and Step 1.2 simplifies to ‘
1.2, While B# A do
look for ¢ & B such that ¢(ue)f = f .If none is found, then HALT; else do
v = yc and B= BU {¢}.
This lowers the complexity down to O (mn?. A similar argument applies for L,. O

The class M is the first idempotent pseudovariety to contain both R, and L, (Figure
' 4.1); in the relation defined by M,, two words are equivalent iff they have the same
sequences of left and right pivots. It can be observed that Corollary 4.24 extends to
this-class, so that membership testing in M; can be done in O (mn?2).

At this point, it might be of interest to verify whether the upper bounds obtained for
M; and N, are tight. If so, then M3 would be the unique largest class for which the
Membership Problem would be feasible in O (mn?), that is, yet another step as the
complexity of the Prpblem rises to NP -completeness.

-39-

4.6 NP-completeness of the Membership Problem

In this sectlon the proof of Theorem 4.3 is completed: it is shown that the pseudo-
variety N4 is the unique largest class of aperiodic monoids for which the Membership

Problem is not intractable.

Theorem 4.25: The Membership Problem in aperiodic transformation monoids not
belonging to N, is NP-hard. ‘
‘ :

Proof: The demonstration is a reduction of the problem ‘one-in-three 3SAT’ with no
negated variable [GJ] to an instance of the Membership Problem in a monoid belong-
ing to the pseudovariety XR, a subclass of A, defined by the identities g2 = ¢ and
ghk = ghkgkhk [Fen]. Along with its dual, XR is the smallest class of id'em'potent
monoids containing N, (see Figure 4.1).

Reduction: Lét an instance of ‘one-in-three 3SAT’ with no negated variables be given
as a set U of Boolean variables and a set of clauses of the form (uugug), with
U ugug€U; a clause C; will be satisfied iff exactly one of the three variables it
involves has value True .
Define two generators ¢; and b; for every variable u;, plus an extra generator called
d. For every.clause C; = (uuzug), a connected component K; of (X,A) is built as
follows. * .
The connected component consists of ten states: two sinks, designated z and y, and
an SCC whose eight states are labelled with the eight possible combinations of one
generator of index 1, 2, and 3: a,aqa3, b 0083, 6,boas, ete...
The action of generator 8, on a state a, @, @, of the component K;, where o, is one
of a, or b,,and 8, € {a;,b,}, is defined as follows.

-If ¢ ¢ {r,s,t}, then 8, acts on K; as the identity;

-if B, = a,, then 8, maps the state , a, o, onto itself;

-if ¢ = r and 8, # a,, that is, if a, is one of a, or b, and B, is the other, then

the state «, a, a; is mapped to 8, a, o, .
A connected component K, is represented in Figure 4.3. In this figure, those genera-
tors acting as the identity on K; are ignored, the action of generator d is represented
with dotted arrows, and trivial loops are not drawn: instead, for every state of the
SCC, represented by a box, the generatdérs which map the state onto itself are listed
inside the box; this list coincides with the label of the state. %

’

- 40 -

' aha?,as saevsesesanttienita s usseres

52““2
b . 1)

a,

a,bg,a,

bs as “hamba ~
59““2
b‘ -
4 ﬂx»bmba

FIGURE 4.3: Connected component for the proof of Theorem 4.25

&

A transformation with expression udv, where d e_fa(u‘), will act on K; as follows.
Assume that u contains at least one instance of a character of index 1 (that is,
a(u)N {a,b} #), and at least one of index 2 and 3, and consider the sequence of
right pivots in u: the last occurences of characters of index 1, 2 and 3 will give the
label of the state onto which the SCC will be mapped by ¢(u). Then, generator d
maps this image-state onto one of the two sinks: to y if the label contains exactly one
a, and to z otherwise. The last part of the word, v, acts trivially on the sinks.

Ezample: Consider the words

wy= 8;a90a3b;bybga;bybybsd

Wwo= ayapa3b, bybgbya;bybyd. (
The last characters of same indices to occur are b, .bg, by for w,, and ay, bg, by for
wo, 30 that the states of the SCC are mapped by ¢(w,) onto z, and onto y by ¢(w,).

- 41 -

.
L3

Proposition ‘4.26: The transformation monoid of the semiautomaton thus built
belongs to the class XR, and does not belong to N,.

Proof: To show that the monoid belongs to XR, it suffiges to prove that the
transformation monoid of every connected component belongs to this class. This is
demonstrated by showing that the condition ghk = ghkgkhk holds for every three ele-

ments g b,k of the monoid.
First, let at least one of g, A or k¥ have an expression containing an instance of d.:

dea(g)uah)u a(k) This means that the SCC is mapped onto the sinks by
ghk , and gkhk then acts as the identity on them, so that the condition is satisfied. In
the other case where d ¢ @a(g)u a(lT)u a(k), since the SCC takes into account
only the last occurences of characters of index 1, 2, and 3, and since these last
occurences are the same in ghk and ghkgkhk , the condition is also satisfied.
To show that the monoid does not belong to N, consider the following two expres-
sions: "

wy= ayad9agbybybga,bybobsgd ajagagh; bobs

woe= a,apagb; bybsbia,bybyd a;az85b; bsbs
First, verify that w, =, w,. Then, by looking at the initials (everything up to the d), .
verify that transformation ¢(w,) will map the SCC of K; onto sink z, while ¢(w,) will
map it onto y, thus distinguishing between the two expressions, which shouldn’t be

in an N, monoid. (1 ,

Define now the action of the test-trs}n;f—(bnation J/ on K; as follows: 2f = =z, and
zf = y for every state z # z. Transformation f maps every connected component

onto sink states, so that fa = f for any a € A; therefore, a(f) = A.

With the interpretation that the value of the affectation to variable ; is determined
by the last occurence of a character of index ¢ in an expression before the first
occurence of d, with a; meaning u; = True, and b, meaning u; = False, one gets the
following. . (i

\ .) A
.Lemma 4.27: Transformation f belongs to the monoid iff the instance of ‘one- -
in-three 3SAT’ admits a solution.

Proof: (if) If there is a solution to the instance of ‘one-in-three 3SAT’, then one can
build an expression of the form a, : + - @, B, - - * B, d = wd, where f; is the generatér
of index «+ which corresponds to the value affected to variable u;, and «; is the other
generator of index ¢. It is claimed that ¢(wd) acts as f .

For every state p in the SCC of K, the state g?é\gw) will also be inside the SCC, and
its label will correspond to the last occurences of characters of each index in w. By
the hypothesis, the label consists of one a and two b ’s, so that this image-state is

- 42

then mapped by d onto the sink y. . °
(only if) If § belongs to the monoid, then there is an expression f = wdv’ with
a(wdv) C A and d ¢ a(w). It is claimed that a(w)n {ay,b,} ¥ &, and similarly for
the indices 2 and 3. To see this, consider that in the connected component built for .
clause C;, every state p of the SCC is mapped onto the sink y: this implies that p is
mapped by ¢(w) on a state q of the SCC whose label contains exactly one a. If p is
the state aasas, then w must contain at least two of the characters b,, b3 and by,
Meanwhile, for state &,b,bs, the condition is that w contains at least one of the a’s.
If these two b’s and one a are such that all three indices are not represented, for
example, if o(w)N {asbs} = &, then observe that no* transformation of
<{ aa3b,b,}> can simultaneously map states a,agzag and b,bybs onto states
whose image by d is y. Therefore, all three indices are represented in w. This means
that every variable u; is assigned a value, and the condition on the last occlirences of
characters of a given index make this assignment consistent with the satisfaction of
clause C;. O -

-~

Proposition 4.28: The Membership Problem is NP-complete for the pseudovariety
of monoids XR and for its dual.

\

Proof: The Problem for XR belongs to NP by Lemma 4.4, while'the above reduction
and Lemma 4.27 prove, NP-hardness. For the dual class of XR, it suffices to observe
that the number of states in every connected component built in the above reduction
is a constant, so that Theorem 2.11 can be applied. ['

—— .
This result completes the proof of Theor(am 4.3 (NP -completeness of the Membership

Problem in arbitrary idempotent monoids); the proof of Theorem 4.25 is also com-
pleted, recalling that the Problem is NP-hard in all monoids of threshold two or
more, by Corollary 3.13. O

There is no Class Test available yet for the classes M ar}d N,

~

- 43 -

Yooe

vV : Other pseudovarieties

In this thesis, the emphasis has been put on the classes of corpmutativ‘e and idempo-
tent monoids, since it was there that polynomial-time membership tests could be

found. Other pseudovarieties are now discussed, in order to give an idea of what can -

be expected from further research in this field. The main relationships between these
classes are depicted in Figure 5.1.

FIGURE 5.1: Some pseudovarieties of monoids .,)

-

r

5.1 Other aperiodic pseudovarieties

-

A first direction in which further research on the Membership Problem can be orient-
‘ed is the study of pseudovarieties of aperiodic monoids lying beyond the classes of

commutative and idempotent monoids. Many of them are of particular interest be-
cause of their relationships with well-discussed classes of regular languages:/ﬁ?riviql
monoids (associated with piecewise-testable languages [Simon]), R- and L-trivial
monoids [Fich|, and, further beyond, the class of all aperiodic monoids (related to
star-free languages [Sch]). Given the results of chapters Three and Four, the

* Membership Problem in these pseudovarieties must be intractable, the question being,

for which classes it remains NP -complete.

Walking up the lattice of these pseudovarieties, one encounters a class containing the
aperiodic commutative monoids (denoted AC in Figure 5.1), the class J of J-trivial

“

Ll

)‘\

‘ ponent of (X,B) is dominated by a unique state.

- 44- |
</

moﬁoids, for which a Class Test has been found by Stern [Stel]. It is based on the fol-
lowing property of semiautomata with J-trivial transformation monoid.

Fact 5.1: [Simon] The transformation monoid of semiautomaton (X,A) is J-trivial
iff (X,A) is a acyclic directed graph and for every B C A, every connected com-

— '\)(
<

Stern’s observation is that every (X,B) does not need to be computed; instead of
working on every subalphabet, notice that there cannot be more SCCs than_there are
states in X, regardless of the alphabet, as a consequence of the acyclicity of (X,A).

Stern’s sequential algorithm
1. Verify that (X A) is acyclic;
2. for every z € X, compute the set B(z)& { o eAIxa = z}; /
8. for every pair z % y of states, do -/
3.1, build M = (X,E(z) N E(y)); ' !
8.2. compute the transitive closure M of M;
8.8. for every z € X, verify that (z,2) and (z ,y) are not both edges of M.
/ ’ ¥ [
Step 3.2 uses Warshall’s algorithm [AHUZ2] to compute the transitive clc;su#e\of a
graph with m vertices and mn edges, which takes O((mn)®) time; this gives an

overall complexity of O (m®s®). This algorithm can be run in paralle], after some
B L)

3

minor ‘ad justients.

Parallel algorithm
1. Compute the SCCs of (X,A); verify that they are trivial; -
2. for every z € X in parallel, compute theset E(z) = {a €A|2a = z };
8. for every pair z % y of states in parlallel, do
¥ 8.1. build M = (X,E(z)n E(y));
8.2. for every z € X, check that z and y are not both accessible from z in M.

4
1

Proposition 5.2: The Class Test in J belongs to NC2,
Proof: Steps 1 and 3.2 are instances of problems'in NC? the rest is in NO'. O

The pseudovariety J is the intersection of R and L, the classes of R- and L-trivial
monoids. This is made clear by these two facts, taken from [Fich].

Fact 5.3: A transformation monoid is R-trivial iff its semiautomaton is acyclic.

‘Fact 5.4: The transformation monoid of a semiautomaton (X,A) isvbtrivi;l iff its

2

o ' /

L}

_ monoid.

inverse semiautomaton (2X,A™!) is acyclic. .

Corollary 5.5: The Class Test in R belongs to NC? / O(ma). O

Whether the Slass Test for L-tfcl)vial monoids can be done in NC is not known.

.

Proposition 5.6: The Membership Problemgél R is NP-complete.

Proof: By Corollary 3.13, all that is needed i a proof that the Problem in this case
belongs to NP . For thigﬂt suffices to show that<eyery f € <A> has an expression w
of length at most m(m —1), withem = |X|, a consequence of the acyclicity of the
semiautomaton. To see this, notice that, upon applying ¢(w) character-by-character
on some state z, a cycle-free path from z to zf is defined. Now, if w = wav for
some a € A, then either z ¢(ua)= z¢(u) for all z € X, so that a is redundant, or a
brings an z one step nearer to its image zf , with state z ¢(u) never to be revisited
again on the path from z to zf . With one path per state and a maximal length of
m —1 for each path, this gives the desired upper bound on the length of w. O

The complexity of the Membership Problem in L-trivial monoids is unknown; if the
Problem for this class were not NP-complete, this would be a first case where the
computat}ional complexity of the Membership Problem for a given class would not be
patched by a similar complexity for its dual. The conservative attitude is therefore to
conjecture that the Problem is NP-complete also for L-trivial monoids. Notice that,
here too, it suffices to prove that the Problem is in NP, for example by establishing a
polynomial upper bqt}_n‘d_\on the length of the eﬁression of the eleménts of the
~

4

Further.above is the pseudovariety of all aperiodic monoids, denoted A in Figure 5.1.
A look at the monoid used by Kozen to prove the PSpace-completeness of the
Membership Problem in the general case [KKoz] reveals that this ‘monoid is aperiodic,
so that the highest possible complexity can be reached without having to introduce
groups. An interesting open problem is therefore to verify whether there is a unique
largest class of aperiodic monoids in which the Membership Problem is in NP, a pat-
tern similar to the one encountered in this thesis for the complexity classes FL and
FP. . ‘ -

Notice that testing whether a transformation monoid is aperiodic is already coNP-
hard,,with the possibility still open that it'be PSpace -complete [Stel).

8 :

. - 46 -
5.2 Nén-aperiodic pseudovarieties

Another direction of research is to look at how iore complex the M'embership Prob-
lem becomes when the monoid ceases to be group-free. This question has been settled
for commutative monoids in chapter Three. Another non-aperiodic class worth being
investigated is the pseudovari:ety of monoids of threshold one, denoted Th, in Figure

© 5.1. They have several properties in common with idempotent monoids, so that the

action of a transformation in the semiautomaton of such a monoid can be described
quite well. Here are some facts about this class, taken from [GrR]. -

~Fact 5.7: In the free monoid of threshold one on alphabet A, for every w,wy€ A’,

one has ¢(w;) H ¢(wy) iff o(w,)= a(wy) and there exist ‘decompositions

" wy = uezr,bv, and w,= ugazgbvy, with a,b € A (possxbly the same), such that

a(u;) = aluy) = a(w,)~{a}, ’ -
afv)) = a(vy) = a(w)—{b},
B(uy) = #(ug), and' 4(v)) = ¢(vy).

S+

4 Q
3 Y

Remark: The conditions for having ¢(w) = #(w;) are here more stringent than in
idempotent monoic%s, where every H-class consisted of exactly one element, so that the
above conditions sufficed to ensure that ¢(w,) = ¢(wy). s

* ’

Fact 5.8: Every H-class-in a monoid of threshold one is a group. These groups are .
isomorphic within the same J-class (a J-class is a disjoint union of H-classes).

Fact 5.9: For any two elements f and g of a monoid of threshold one,
f Jg iff a(f)= a(yg)

o

This last Fact is analogous to Fact 4.7. Actually, results similar to those of, section 4.3
exist for all monoids of threshold one. ‘

Fact 5.10: Any elemen/ / in a monoid of threshold one cap be decomposed into
J = uzv,with f JuJov Iff Jg withg = uzvy, 9 J u;J v, then ngH uy;

and gf H u,v.

w

Proposition 5.11: Let the transformation monoid of (X,A) be of threshold one, For
e.very SCC K of (X,A), there is a subset B = @ (K) such that, for every y € <A>: =
a/ if @(g) C Bythen Kg C K; . - "
b/ifa(g)Z B,thenKg nK="(3; =~
¢/ there is a ¢ > 1 such that, forall ¢, a(g)== B, one has |Ky | -c.

r

-

/°

Proof: The detiionstration for parts b/ and ¢/ is identical to the idempotent case.
For part a/, let a('g)_c_ a{K); for any z € K, there is a transformation I
a(f)= a(K), such that z € Xf . Observe that f H/f7 for all ; > 1, and that
there is an integer r- for which f" = f. Consider now the transforr_x_xations
[= ff"Vand h = gf = gf -f !, with @(g) Qg a(K), and observe that &4 J f .
Applying Fact 5.10 on the product ﬁu, with ¢ = f and v, = f '}, one gets
fh= fgf HS-f"= s, which implies fgf R f, and therefore there exists a
transformation A such that f = fgfk. Hence, for any state z EBC for which zf €K,
one has ;,:fg € K as well. O)

The questions relative to the Membership Problem in this class would therefore be:

1/ Whether it is possible to break the membership test intp a test inside an idempo-
tent monoid and a test inside a group of permutations. It\ig not excluded that there
actually be more that one of either type of test: for example} if there definitely is a
group-membership test to be done to see whether the actiomof/f on Xf, which is
that of a permutation, is compatible with membership in the monoid, there could’@lso
be other group membership tests involved.

2/ If this decomposition is feasible, whether it does notmlead to an exponential or’in—
trgctable‘c?mplexity. In the éommut}@case (the algorithm of Section 3.1), both
the aperiodic part and the stabilizer (the Abelian group) were generated by subsets of
the initial generating set; this is not likely to remain the case: the decomposition
might lead to instances with an exponentin! nuinber of generators, or it fnight involve
by itself some intractable computations.

3/ There remains also the problem of identifying a monoid of threshold one: the Class
Test for this pseudovariety is stjll an open problem.

- 48 -
0 Qe

VI Transformation semigroups

The previous chapters have been concerned with transformation mBnoids, instead of
semigrqups. Although the difference secems negligible when it comes to testing

membership in a given semigroup, it becomes significant when the discussion involves

pseudovarieties. .

This difference comes from the existence of classes which differ when defined in terms

of semigroups, and not when defined in terms of monoids. This can be seen by ob-

serving that pseudovarieties are characterized with defining identities, which must be
satisfied by every element of the semigroup, including the element 1 in the case of a
monoid; introducing 1 in the identity may then lead to a condition on the other ele-

ments which is more stringent than desired. For instance, consider the idempotent
pseudovariety of semigroups N;, defined by the identities g2 = g and fghk == fhgk

[Fen,Ger]:’ If S is a monoid, then the second identity must be satisfied in particular
when f = k = 1, which implies gh = hy for all g ,A €8; in other words, this means
that all monoids belonging to N3 must be commutative, and therefore belong to the
class J;. .

This discrepancy does not extend to all types of classes, however: all pseudovarieties
of commutative semigroups and of monoids coincide, and the same applies to the
classes discussed in chapter Five. There remain two cases where this makes a
difference. First, the results of chapter Four have to be revisited, since the lattice of
idempotent semigroup pseudovarieties is much richer than with monoids. Second,
there exist classes of threshold-¢ semigroups which do not have to contain all the
threshold-t commutative semigroups, which means that Corollary 3.13 does not apply
to them, and that there may therefore exist classes of non-idempotent aperiodic semi-
groups where the Membership Problem is not NP-hard.

It is also worth noticing that an operation done at some poixits in this thesis, namely
ignoring generators and working in the semiautomaton (X,B) instead of the original
(X,A)4 with BC A, corresponds to applying a homomorphism such that y— g if
g (e‘gB> and g —1if g € . This implies that must be a monoid.

Hénce, the choice of writing this thesis in terms of monoids meant working with a
simpler lattice of pseudovarieties, and allowed to reason in terms of ignoring charac-
ters and working in a subgraph of the original semiautomaton, an operation concep-.
tually convenient, but which can be done without.

]

6.1 Idemﬁotent semigroups

8

Idempotent pseudovarieties were originally studied in terms of semigroups [GerFen};
the lattice of monoid classes used in chapter Four has been obtained by applying a
reasoning similar to the one used above for the class N;. The full lattice for semi-
groups is represented in Figure 6.1, where the dotted lines are drawn between those
pseudovarieties which collapse together upon passing from semigroups to monoids.
Two new clas€ names are introduced, M, and Ny, while the other labels indicate the
pseudovarieties of semigroups whose definitions coincide with those ‘used in chapter
Four, and for which the results proved in that chapter remain valid.

The class M, is defined by the identities g 2=¢ and ghg = g . Replacing ¢ by 1 in the
latter shows that all the monoids of M; belong to J,. It can alse be seen that a semi—
group of this ¢lass coincides with the set { ab |s,b € A}, so that both the Class Test
and the Membership Problem have an easy solution.

Already discussed in the mtroductlon to this chapter is the class Ng, defined by the

congruence Xg .

Definition: For all w;,w, € A,

wiNgw, ff olw)= a(w) and w;= au;b and wy= cuyzb
for some a,b € A which do not'have to be different. There are no further restrictions
on u, and u, as long as they allow w, and w, to satisfy to the first condition. This

is equivé,lent to the defining identity fghk = fhgk.

Proposition 8.1: The ClasgyFest for N5 belongs to NC'/ O (mn®).

_

Proof: The demonstra}/{(/)n consists in showing first that testing for the condition
fghk = fhgk on the generators suffices. Let [g| = 1,let A = a,- * - a,, and notice
that f and ¥ do not move, and play a role only through their last and first charac-
ter, respectively, so that no assumption has to be made on them, other that they
differ from the ,identity. Then

Johk = fga - -ank = fgajay: - ank = fagag- - ank
©= fejeg ang k = [hek,
, X
by operating a sequence of commutations on single characters. For |g¢ | > 1, notice

that ¢ can be transferred to the right character by character. The first step of the
algorithm consists therefore in testing whether abcd = acbd for every a,b,c ,d eA

~ which is NC' / O'(mnY).

The sequential upper bound can be brought down to O(mn %) by verifying mstead the
two &dnditions abeb = achb and abac = abe. If they are satisfied by all the genera-
tors, then one has A ’

i . 4 80 - (

2 roxm A ’\)
{ .

abcd = abched = acbed = achd -
by first applying idempotency, then using each of the two identities.
The condition abcd = acbd does not imply idempotency, however, so that- this pro-
perty has to be verified separately, It is claimed that testing a%m= a, abeb = ach,
and abac = abc suffices. Indeed, if the generators satisfy this, then any element of the
~ semigroup with expression awb, where s ,b € A, w € A’, is idempotent: one gets
‘ swbawd = qwabwd = gawdwd = aawwdd = aquwwd
by commuting w across ¢ and b character by character. The inside of awwb can then
be simplified in a similar fashion. Testing the n generators for idempotency is

NC'/0o (mn). O
Theorem 6.2: The Membership Problem in Ngsemigroups is in NC2 / O (mn).

Proof: From the definition of =, it can be seen that the following algorithm tests
for m’gmbership in an N3 semigroup.

Algorithm _
1. Compute the maximal alphabet @ (f);
Find the first-character, s € @(/f) such that af = [;
Find the last character, b € @(f) such that f = fb; -
Compute the product g of all generatorsof @ (f), in any order;
f €<A> iff [="ag. " :

IR SN

Analysis: Step 1 is NC!' / O (mn).by Proposition 4.10; Steps 2,3, and 5 are trivially
NC'/ O (mn); Step 4is NC? / O (mn) by Fact 2.6. O

There is therefore a unique largest class of idempotent semigroups for which _the
Memb%rship Problem belongs to,FL, a result identical to the one obtained for
monoids, where J, played this role. o

Further above, it can be seen that the class N, remains the largest one where the
Membership Problem is not NP-hard, since the m‘onoid constructed for Theorem 4.25
. belongs to the pseudovariety of semigroups XR, one of the first two classes not
included in N,. It is important to notice, however, that N, is no longer the largest
class of aperiodic semigroups in which the Problem is not NP -hard, since Corollary
3.13 holds only for monoids. Indeed, in the next \section, pseudovarieties of non-
idempotent semigroups are discussed, where membership can be tested in polynomial
time.

m)

csevan

2

wsssv e

5

FIGURE 6.1: Pseudovarieties of idempotent semigroups

-52-
6.2 Non-idempotent aperiodic semigroups

This section discusses cases of pseudovarieties of aperiodic semigroups of threshold
t > 1, which do not include the class of commutative aperiodic semigroups of thres-
hold ¢, and in which the NP-hardness result of chapter Three therefore does not
apply. The first exaniple is the pseudovariety Nil of nilpotent semigrotps, included in
the class J of J-trivial semigroups [Eil]. -

. , . ¢
Definition: The class Nil, is defined by the identities g, -+ gy = h, -+ A;. This
means that all the words of length ¥ or more are expressions of the same semigroup
element. The pseudovariety Nil is the union of all classes Nil,, ¥ > 1. '

In terms of trarisformations, this definition has the following equivalent.

Fact 6.3: The transformation semigroup of semiautomaton (X,A) belongs to the
class Nil, iff the following holds:) -
* -the semiautomaton is acyclic; b
-every connected component of (X,A) is dominated by a unique sink state;
-there are no trivial loops elsewhere than on the sinks;
-for any state, all the directed paths of length k¥ starting from this state lead to a
sink state. .) B .

Proof: The first two conditions express that the semigroup is J-trivial (Fact 5.1). For
the next two, the (if) part is trivial, and the (only if) part is shown as follows, If
<A> € Nil,, then for every state z and words v,w € A* with |w | = k, one has
z¢(wv) = z¢(w). If z4(w) is not a sink, which means a loop for ¢(v) on this state,
then the acyclicity of the graph implies the existence of a word u &€ A* for which
zéfwu) is a sink. But then ¢(w)# ¢(wu) with |w | = k, a contradiction with
<A>e¢eNil,. O

Notice that the fourth condition is the only one to mention the parameter &, so that
the first three suffice to determine membership in Nil. Observe also that this proposi-
tion implies an upper bound on k: if |[X|=m and <A>€ENil, then
<A> € Nil,,_;. The Class Test in Nil; is done as follows. '

Algorithm
1. Test whether (X,A) is acyclic;
2. find the sinks: states y such that ya = y for all ¢ € A;
3. verify that there are no trivial loops on non-sink states;
4. partition (X,A) into connected components and verify that each contains
exactly one sink; :

« 53 -

5. compute the longest path length between two states, and verify that it is at
most k. '

Proposition 8.4: The Class Test in Nil, belongs to NC? / O (mn).

Proof: The wvalidity of the algorithm is immediate by Fact 6.3. Step 1 is
NO?/0 (mn), while Steps 2 and 3 are NC'!/O (mn). In Step 4, once the partition into
* CCs has been done, it suffices to verify that there are as many connected components
as there are sinks: by acyclicity of the graph, each CC must contain at least one sink.
This step is therefore NO?/O(mn). Step 5 is done in sequential using a breadth-first
search starting from the sinks and working against the direction of the edges: O (mn).
In parallel, the test works as follows. Let a CC K contain sink P , and assume without
loss of generality that & = 27. '
For every z € Kin parallel, let L(z) = {za ja €A};
for p = 0to ¢ do

for every z € K in parallel], let M(z) = L(y);
’ vy €L(s)

foreveryz € K, let L(z) = M(z);
‘if L(z)= {z} for every z, then return True, else False .
Since each step is NC! and k is O (m), this gives NC2 O

Theorem 8.5: The Membership Problem in Nil, is feasible in polynomial time
whenever k is a constant; it is NP -complete in the general case.

Proof: Observe that every element of a semigroup belonging to Nil, has an expres-
sion of length at most k; with | A | = n, this means for the semigroup a cardinality
of O(n"), so that membership can be tested by a brute-force enumeration of all the
elements: NC'/O (mn*).

For the second part of the theorem, observe first that the Membership Problem is in
NP, since Nil C J. The proof is completed by a reduction from the ‘minimum cover’
problem [GJ]. An instance of this problem is a set T, a collection U of subsets of T,
and an integér m < | T |; the question is to decide whether there is a collection U’

of m or less elements of U such that Ue«e=T.
v €U’

First, reduce trivially to a test for the existence of a U’ of size exactly m.
Next, construct the semiautomaton (X,A) as follows. For each u € U, define a gen-
erator a € A. For each element ¢; of T, build a connected component

K; = {‘W;Ph'":?m;Ql;"'ﬂm }

and partition A into two subsets B; = { ¢ €A |t € v } and C; = A-B;.
The generators act on K; as follows:
-if @ €B;, let 2;3 = ¢,; otherwise, let z; 0 = p;

-54-

for1< r<m—1,let p,a = g4, if a €B;, and p, a = p, 4, if 4 € C;; meanwhile,
let g,a = g 4 foralls € A;

~finally, foralla € A, ppa = ¢na = p,.

Define the test-transformation f as: z;f = g¢,, and p,f = ¢,f = p, for all the *
other states p,, g, of the connected component K;.

A connected component K; is represented on Figure 6.2. In this picture, the arrows
are labelled with the set of those generators whose action they correspond to. ‘

C; C; C C.
z; Ll Py L pg Lgm o v Pt [Pn)A
B; B, B, . B; ‘|‘A
A A ‘ A
¢ > gg > *°° , dm— ™ (m

FIGURE 6.2: Connected component for the proof of Theorem 6.5

Proposition 6,8: The transformation semigroup of this semiautomaton beloﬁgs to
the class Nil,, whefe k = m +1. D

Lemma 6.7: f € <A> iff the instance of ‘minimum cover’ admits a solution.

Proof: (if) Let a solution of ‘minimum cover’ be a list uy, - - - ,u of elements of U,
with | < m. For every i € T, this implies that at least one of the subsets in the list,
say u, contains ¢, which means that the corresponding generator a belongs to B;, It
can then be verified that z; a;' > a = ¢q.If | <m, then append enough generators
to give an expression of length m:let ¢ = a; - g b4, ' ' b, , With no conditions on
the & ’s, and verify that ¢ acts as f«on every connected component of the semiauto-

maton, .,

(only if) Let f € <A>, with expression a, - - - 4. The condition ¢,/ = p,, implies
{ = m, while z; f = ¢, means that at least one of a,, -+ ,s; must belong to By, so
that element ¢ of T is covered. Therefore, uy, ‘- ,u, is a list of m elements of U

which cover 7. O

The discussion continues with two more pseudovarieties, which both contain the class
Nil. These are D, associated with definite languages [Eil, PRS], and its dual D?,

Definition: The class D, is defined by the identity z, - - - 2, = y z,- - - z,. In other
words, for all expressions v,w € A* such tfat |w | = &, one has $(vw) = $(w). The
pseudovariety D is the union of all classes D, , k > 1; it is itself included in the class
L of all L-trivial semigroups.

- 55 -

Considered first is the dual class D¥ | included in the class R of R-trivial semigroups.
The characterization of this pseudovariety is analogous to the one of Nil, and is
demonstrated in a similar fashion. '

Fact 6.8: The transformation semigroup of semiautomaton (X,A) belongs to the
class D iff the following holds:

-the semiautomaton is acyclic;

-there are no trivial loops elsewhere than on the sinks;

-for any state, all the directed paths of length k¥ starting from this state lead to a

sink state.
Fact 8.9: “The Class Test.in\l)\.’;belongs to NC?/ O(mn). O /

Observe that the acyclicity condition implies that, if the transformation semigroup of
2 semiautomaton with m states belongs to D? , then it is in D, forsome k¥ <m . A
result analogous to Theorew therefore be demonstrated for D;*.

Theorem 6.10: The Membership Problem in D is feasible in polynomial time
whenever k is a constant; it is NP-complete in the general case. [J

Similar results can be demonstrated for the class D. First, the equivalent of Theorem
6.10 is proved directly from the inclusion of Nil in D, and the following fact.

Fact 6.11: ([PRS] If the transformation semigroup of a semiautomaton with m
states belongs to D, then it is in D, , for some k¥ < m .

" The Class Test in D has been done in polynomial time [PRS]. A test in parallel can
be done in NC? based on the following observation.

Fact 6.12: [PRS] The transformation semigroup of (X,A) belongs to D, iff for
-every word w € A" of length k, every connected component of the semiautomaton is
mapped by ¢(w) onto a unique state.

Proposition 8.13: The Glass Test in D belongs to NC2.

Proof: For every two states a:‘,y, define the language

L(z,y)={we€A" |zg(w)=yand |w | =k };
the condition that L (z,y)= L(z,y) for every state z belonging to the same con-
nected component as z is equivalent to having <A> €D,. Observe that, since
L(x,y)= J when y is not in the CC of z, the test can be restricted to states
belonging to the same connected component.

- 56 -

The algorithm works as follows: for every connected component { x,, e 135 }, 886t
Y= { Tyt FLAT20 T S)

is defined, on which the semiautomaton (Y,A) is built, as follows. For all ¢ < 5 and

|l <k, every a €A, if za = 2, in the original semiautomaton, then let

%4 = 2,41 Dext, let z; a0 = x;, for all a € A.

For every 1 < h,i < 5, the deterministic finite automaton built on (Y,A) with z;¢ as

initial state and 2, , as final state accepts the language L, = L (2,7,)A°. For any

‘other g # ¢, one has Ly = L, iff L(#,2)="L(z,,5) The characterization .

reduces therefore to testing, for every 1 < g,h < 5, whether L;, = L,,. -

Parallel algorithm
1. Partition the semiautomaton into connected components; in each of them, dis-
tinguish a stateé z;.
2. For every connected component in parallel, do
£.1. construct the semiautomaton (Y,A); .
22 for 2 ¢g<j and 1< h <4, test by mutual inclusion. whether
Liy = La. ' - S

Analysis: Step 1is NC2 Step 2 is a NC! reduction to the test for inclusion of regu-
lar languages (Fact 2.7), which is also NC2. O

This' chapter is completed with a discussion of the class Dy.which is associated with
generalized-definite languages [Eil].
’L) -
Definition: ~The class D, is defined by the identity
F PERRE R PERRN AN TRERE 'Y TR
In other words, for all expressions u,v,w € A° suchthat |u | = |w | = k, one has
#(uvw) = $(uw). This class includes both D, and D,

In terms of transformation semigroups, this definition translates into the following.
v

¢ 3

~ Fact 8.14: The transformation semigroup of (X,A) belongs to D iff
-the transformation semigroup of (Y,A) is in D®, where Y is the original set, in
which each SCC has been replaced by a sink state, and
-the transformation semigroup of (Z,A) is in D, where Z is the set X, minus the
states from which more than one SCC is accessible.

Proof: (only if) Let <A> belong to D, for some k > 1, and consider the word uv,
with |u| = |v| = k. Then, for any state z and for any w € A’, one has
z ¢(uvwy) = @(uv), which implies that z ¢(uv) and 2z 4(uvvw) belong to the same SCC
By a reasoning analogous to the one used for Fact 6.3, this implies that all the

4

- 57 - ; °

strongly connected components of the semiautomaton must be maximal for A. The
first condition comes as a direct consequence of this. The second condition is proved
by considering that a state 2 € Z will be mapped by all ¢(uv), « and v of length &,
into the same SCC of (Z,A). The condition ¢(uwv)= ¢(uv) implies then that the
image of the SCC by ¢(v) corgists of a single state. Therefore, the transformation,
semigroup of (Z,A) is in Dy . ~

(1f) The second condition implies the existence of a parameter ! such that, for every
word u of length [, every state is mapped by #(u) onto a sink of (Y,A), that is, into
an SCC of the original semiautomaton. Meanwhile, the third condition.implies the
existence of a 5 such that, for every word v_of length 5, ¢(v) maps each SCC onto a
single state. As a consequence, the semigroup belongs to D, , where k is the larger of
sand . O ' ; ,

Observe that both parameters y and { are at most m, where m is the cardinality of
X. This upper bound allows to state a result identical to Fhgorem 6.5.

Theorem 6.15: The Membership Problem \L‘.\ agible’/in polyromial time for

-8

v \) Related Problems

. ‘ N s -
7.1 . Intergection of regular languages
It has been argued in chaptex&)ne that the complexity of the Mempbership Problem
Kdies not rise as fast as that of many common computational problems on transforma-
_tion monoids. Here are three such problems; the Membership Problem reduces to
each one of them.

Intersection of two regular languages:
given n deterministic finite automata, decide whether the intersection of the
languages they accept is non-empty.
Reduction: Testing membership of f in (X,A) can be transformed into testing
whether the languages L,, z € X, have a non-empty intersection, where L, is the
language accepted by the deterministic finite automaton built from (X,A) by marking
= . states z a8 lmtlal and zf as final. ‘ to
Order of a monoid:
given a transformation monoid, compute the number of its elements,
Reduction: Transformation f belongs to <A> iff monoids <A> and
<A U {f }> have the same cardinality. -
Monoid isomorphism:
given .two semiautomata, decxd‘o whether their transformation monoids are iso-
_morphiec. ‘
Reductioni! Transformation f belongs to <A> iff monoids <A> and
<AU{f }> are isomorphic.

The latter two problems have been shown to be in NC* for Abelian permutation
groups [McCJ; finding the order of an arbitrary permutation group is also in NCO
[BLS].

The first of these problems is now discussed in more detail, as it was of instrumental
use in Kozen’s proof of the PSpace -cimpleteness of the Membership Problem [Koz).

-« In the general case, both problems hdve the same complexity. This is also the case
everywhere where the Membership Problem is NP -complete, since an element of the
intersection of the languages can be guessed in the same way as an expression for the
test-transformation in the Membership Problem. Here are two cases, however, where
the language intersection problem is strictly harder.

J

P

. -59 -

Fact 7.1: Testing for intersection of regulafr languages whose syntactic monoid is an
Abelian permutation group is NP-complete. .

Proof: Reduce from ‘one-in-three 3SAT’, with no negated variables involved [GJ)].
For every clause (u,u,uj), construct an eight-state auntomaton over alphabet
{a,aqa3}, as follows. Label a state (the initial state) as FFF, and FFFa, as TFF,
FFFa,88 FTF, FFFa 0y 38 TTF, and so on, so that there is a state for every com bi-
nation of truth values for the three variables, and a generator maps a state to the one
where the value of the corresponding Boolean variable has been flipped, so that each
generator is a permutation of period two. It can be verified that <A> is Abelian.

'Label states TFF, FTF, and FFT as final, and take the following interpretation:
given an expression, start with all three Boolean variables at False , and flip the value

- of variable u; each time character a; is read. Variable u; will therefore have value

True iff generator g; appears an odd number of times in the word being read. An
automaton built according to this construction is represented i Figure 7.1. O

FIGURE 7.1: Automaton built for the proof of Fact 7.1

-

Fact 7.2: Testing for intersection of regular languages whose syntactic monoid is
idempotent and commutative, that is, belongs to J;, is NP -complete.

Proof: The reduction is from the same problem. For every variable u;, define a gen-
erator ¢;. For each clause, define an automaton with five states, as follows. The ini-
tial state is FFF. Define FFFa, as TFF, FFFa, as FTF, and FFFag4 as FFT. These
three states are final. For everyone of them, the generators which did not map FFF
to it will map- it to the fifth state, which is a sink. For instance:
TFFay= TFFay= SINK. With the interpretation that all variables are initially set

-60 -
b 4
to False, and that variable u; is set to True as soon as generator a; appears at least
once, the rest of the proof is straightforward. An automaton built according to this
construction. is represent;d in Figure 7.2. Notice that trivial loops are not represented
on this diagram: one has TFFa, = TFF, FTFa, = FTF, and FFTay= FFT .-0

FIGURE 7.% Aﬁ(omaton built for thé proof of Fact 7.2

’

7.2 Reduction of finite automata . ;

&

¢ 0

A computational problem related to the topic of this thesis consists, given a deter-
ministic finite automaton M, in building another automaton which accepts the same
language as M with a miiimal number of states. This problem is already known to
have a sequentlal solution [LP,HUJ; this section presents an algonthm which does this
in parallel. 5 .

The sequential algorithm is based on the 1dea of mergmg together states that could
not be distinguished between one another. An equivalent definition for-indistingui-
shability is introduced, which can be tested for in parallel. Define first a deterministic
finite automaton as M = (X, A, §, ¢p, F).

Lemma 7.3: Let M_be as above. Two states ¢; and ¢; are indistinguishable, in the
sense defined in {i?%{U], iff the automata M and M' accept exactly the same
language, where M' = (X, A, & ,¢, F), with, for a €A, & (g,0)= §¢;,a),
¥ (g;,8)= &gq;,6),and & (g,a) = &g,a) otherwise. In other words, indistinguishable
states are interchangeable.

Proof: Let w be a word in A’, and-define

a

}

£

—t

: ' - -81-

1 if (91“’) I':" (pie) and p € F
Thdg,w) = {o if (4,9) |— (p,¢) and p ¢ F

.
States ¢ and j, are defined to be indistinguishable iff for every word w € A*,
reading w on M starg;ing at g will lead to a final state iff reading w from g¢; also
leads to a final state, that is, in this notation: TIly(g; ,w) = Tly(g;,w). It is claimed
that this is equivalent to having (g, ,w) = Iy (¢ ,w).
The proof is by induction on the number of occurences of .¢; or g; on the path
travelled along from ¢; (resp. g;) while reading w. With no such 'occurencé‘ one has
Iy (g,w) = Tly(g;,w), since & (g;,a) = &g;,6), and the rest is unchanged. Similarly,
one has Iy (¢;,w) = Ily(q,w), and therefore

I (Qj,w) == nM('I.'»'”) = Iy (giyw) = HM(qj»w)

' < . ” 3 ~
whenever ¢; and ¢; cannot be distinguished by the word w.
With k occurences of ¢; or g; , let the path be decomposed into

(g,0) 1= (@) 1= (p,e),

" where g is the first occurence of ¢; or g; encountered along the path, and u is the

appropriate suffix of w. Then there are k-1 such occurences between ¢ and p, and,
by the induction hypothesis, this implies

Ty (gj,v) = The (q,v) = Thy(q,v) = Thu(gj,w);
Similgrly, Ty (g5 ,w) = Thy(gs,w), " when starting from g5 . Hence,
HM" a4 ,!l)) = nM(Qt' w) whenever HM(qj ,tl)) = HM(qo' sW)‘ a

-«

Now let ¢; and ¢; be indistinguishable. If the path traversed while reading w doesn’t
pass through eilther g org;, then w €LM) iff we€ L(M'); else K

, w €LM) i (ww) = (a8) I () e
where p € F and ¢ is the first occurence of 'g; or ¢; met along the path. This is
equivalent to hﬁving - ‘

a o) 1= (g,v) and Thfg,s)= 1,

that is, . ‘

: (9ow) |- (q8) and Thy(au) =1,
which means w € L(M) if w €L(M).) ‘
Parallel algorithm ’ \\/; ‘ S

1. For ‘every pair of states { ¢, ¢; } in parallel, construct the automaton M' , as
specified in the lemma. (<
2. For every such automaton M , test whether L(M) = L(M').
8. Construct a graph with n nodes, each labelled with a state of M. Draw an edgt-a
1 ’

-62-

o
L=}

between-nodes g; and ¢; ‘whenever the corresponding states .are indistinguish-
able. Each connected component of the resulting graph corresponds to a state
of the minimal automaton. '

Analysis: At Step 1, each of the %n(n—1) aut.omat‘a. M' is built in constant depth.
Step 2 is done by testing mutual inglusion of the languages, using a variant of the
algorithm presented in Fact 2.7: NC%. Step 3 consists in identifying the -CCs in a
graph, a problem also in NC2. The construction of the transition table for.the

minimal automaton is done in ﬂxstant‘ depth in a straightforward fashion. /\f‘

Theorem 7.4: A deterministic finite automaton can be minimized in No?2. O

-63-

Bibliography r ~J

[AHUl] A.Aho, JHopcroft, J.Ullman The Design and Analysis of Computer Algo-

rithms, Addisén-Westey (1974). .

[AHU2] A.Aho, J.Hoperoft, J.Ullman Data structures and algorithms, Addison-
Wesley (1983). :

[BLS] L.Babai, EM.Luks, ASeress Permutation groups in NC, Proc. 19th ACM
STOC Symposium (1987) pp. 409-420. y

[Be] M.Beaudry Testing Membership in Commutative Transformation Semigroups,
in Automata, Languages and Programming, Lecture notes on Computer Science
267, Springer-Verlag (1987) pp. 542-549.

.

[Bar] D.Barrington Bounded-width Branching Programs, Ph.D. Thesis, M.IT.

(19886).

[BT] D.Barrington, D.Thérien Finite monoids and the Fine Structure of NC', Proc.
19th ACM STOC Symposium (1987) pp. 101-109.
4

[BP] G.Bilardi, F.P.Preparata Size-time com?)lexity of Boolean networks for prefix
computation, Proc. 19th ACM STOC Symposium (1987) pp. 436-442.

S

[Bor] A.Borodin On relating time and space to size and depth, SIAM J. Comp. 8
(1977) pp. 733-744. .

4

[CFL] A.K.Chandra, S.Fortune, R.Lipton Unbounded fan-in circuits and asspciative
functions, J. Comput. System Sci. 30 (1985) pp. 222-234. -

[CP] A.H.Clifford, G.B.Preston The Algebraic Thco‘ry of Semigroups, Volume 1, nd.
ed, Amer. Math. Soc. Mathematical Surveys no.7 (1964).

[Cook] S.A.Cook The Taxonomy of Problems with Fast Parallel Algorithms, Infor-
* mation and Control 84 (1985) pp. 2-22. ’

0

b

-064:

[CW] D.Coppersmith, S.Winograd Matrix Multiplication via Arithmetic Prt.agres-
sions, Proc. 19th ACM STOC Sympossum (1987) pp. 1-6. :

[Eil] S.Eilenberg Automata, Languages and Machines, Vol. B, Academic Press (1976).

[Fen] C. Fennemore All varieties of bands LI, Mathematische Nachrichten 48 (1971)
pp: 237—252 and 253-262.
C.Fennemore All varieties of bands, Scmtgroup Forum 1 (1970) pp. 172-177.

[Fich) F.Fich Languages of R-Trivial and related Monoids, MSc Thesis, University of
Waterloo (1979).

[FHL) M.Furst, J.Hopcroft, E.M.Luks Polynomial-Time Algorithms for Permutation
Groups, Proc. 21st. IEEE FOCS Symposium (1980) pp. 36-41.

[GJ] M.Garey, D.Johnson Oomputers and Intractability, a Guide to the Theory of
NP-Completeness, Freeman (1979) .

[Ger] J.A.Gerhard The Lattice of Equational Classes of Idempotent Semigroups,
J.Algebra 15 (1970) pp. 195-224.

[Gre] J.A.Green On the structure of Semigroups, Ann. Math. 54 (1951) pp.-163-172,

-

[GrR] J.A.Green, D.Rees Semigroups such that z" = 2, Proc. Camb. Phil. Soc 48

(1952) pp. 35-40.

. [GBB] J.W.Grzymala-BuQse, Z.Bavel Characterization of state-independent auto-

mata, Theoretical Computer Science 43 (1986) pp. 1-10.

[Hof] C.M.Hoffmann Group-Theoretical Algorithms and Graph Isomorphism, Lectul:e
. -Notes in Computer Science 136 Springer-Verlag (1982), " ‘

[HU] J.Hoperoft, J.Ullmann Introduction to Automata Theory, Languages and Com-

putation, Addison-Wesley (1979).

[Jer] M.Jerrum A Compact Representation for Permutation Groups, Proc. ' t4vd

I

-85 ~

IEEE FOCS symposium (1982) pp. 126-133.
[Jon] N.D.Jones Space-bounded Reducibility among ComDbjnatorial Problems, J.
Comput. Syitem Sci. 11 (1975) pp. 68-75. ’)

.

[JL) N.D.Jones, W.T.Laaser Complete Problems for deterministic polynomial time,
Theoretical Computer Science 3 (1977) pp. 105-117. '

[Koz] D.Kozen Lower Bounds for natural proof systems, Proc. 18th. IEEE FOCS
sympossum, (1977) pp. 254-266. '

[Lall] G.Lallement Semigroups and combinatorial applications, Addison-Wesley
(1979). ' ‘

Q

[LP] H.Lewis, C.Papadimitriou Elements of the Theory of Computation, Prentice-Hall
(1981). ‘

[LMK] EMM.Luks, P.McKenzie Fast Parallel Computation with Permutation Groups,
Proc. 26th. IEEE FOCS symposium (1985) pp. 505-517.

[McK] P.McKenzie Parallel Complezity and Permutation Groups, Ph.D. Thesis,
University of Toronto (1984). . .

McC] P.McKenzie, S.A.Cook The parallel complexity of the Abelian permutation
group membership problem, Proc. 24th. IEEE FOCS Sympossum (1983) pp.154-
161.

’ ¢

" [Mul] KMulmuley A Fast Parallel Algorithm To Compute The Rank Of A Matrix

- Over An Arbitrary Field, Proc. 18th ACM STOC Symposium (1986) pp. 338-339.

) /m] V.Pan How to Multiply Matrices Faster, ‘Lecture Notes on Computer Science

179, Springer-Verlag (1984).

[PRS] M.Perles, M.O.Rabin, E.Shamir The theory of definite automata, JEEE Trans.
Elec. Comp. EC-12, (1963) pp. 233-243.

-66 -

[Pin] J-E. Pin Variétés de langages formels, Masson (1984). \
{Sch] M.P.Schutzenberger On finite monoids having only trivial subgroups, Informau-
tion and Control 8 (1965) pp. 190-194.

[Simon] I.Simon Piecewise testable events, in Automata Theory and Formal
Languages, Lecture Notes in Computer Science 38 Sprmger-Verlag (1975) pp.
214-322.

[Sims] C.Sims Computational methods in the study of permutation groups, in Com-
putational Problems in Abstract Algebra (John Leech, Ed,), Pergamon Press (1970)
pp. 169-183. '

~ [Stel] J.Stern Compl;axity of some Problems from, the Theorypof Automata, Informa-
tion and Conirol 66 (1985) pp. 163-176. :
[Ste2] J.Stern Characterization of some classes of regula.r events, Theoretical Com-
puter Science 35 (1985) pp. 17-42.

I

[Wie] H-Wielandt Finite Permutation Groups, Academic Press (1964).

()

APPENDIX Abelian Group Membership in sequential

- 87 -

The sequential complexity of the Membership Problem in an Abelian group of per-
mutations has not yet been studied; all the available results are valid for arbitrary
groups [FHL,Sims]. In this Appendix, a translation into a sequential algorithm of
the parallel algorithm of McKenzie and Cook [McC] is sketched. It is seen that the

complexity thus obtained is dominated by the resolution of a system of linear

. congruences, a problem to which Abelian Group Membership is NC! equivalent

[McC]. In what follows, it is assumed tl‘at the reader is familiar with McKenzie
and Cook’s paralle]l algorithm.

The algorithm consists first in computing a tentative expression f; for f in every
orbit (SCC) of (X,A). If-f € <A>, then 'f = f;1;, where 1; is a permutation
which acts as the identity on theforbit K;. Finding f; amounts {0 collecting the
edge labels on any path from ate z of K; to its image zf = zf; (O(mn)), and
to identifying the conditions for a permutation to act on K; as the identity. These
conditions can be expressed as a system of linear congruences on the.exponents of
the generators, modujo the period of ;;he group, which is the least common multi-
ple of the periods of the generators.

Let B; be the vector of exponents of the generators in a tentative e;gpression I fpr
/ on the orbit K;, and X; a vector of exponents for an expression of 1;. Let the
matrix M’ define the conditions on X; to represent an expression for the identity
on K;. Denote Y the vector of the exponents of the generators in the final expres-
sion of f. Then Y and X; must satisfly to Y = B; +M'X; (modgq), where ¢ is'the
period of the group.

M’ can be given as a lower triangular matrix for which every column (M');
represents an expression of 1;, with coefficients M;; = 0 for all ¥ < y. This is
done as follows: for every generator a;, find the smallest ¢ such that af restricted
on orbit K; can be expressed in terms of generators a;,,, - - - ,a,. To do so, verify
whether there is a path from some z to za in the graph (K;,{ a;.41," - - ,a,}), and
keep the labels encountered on this path as an expression. Then one will have
M/J; = g;~¢t where g; is the perioq of a;, and the entry My;, ¥ > j is the number

of occurences of generator g, in the expression thus computed. This implies an

accessibility test for every generator and every possible value of ¢, 1 < é £,

where r; is the number of states in K;. The accessibility test can actually be dong.

+ -B8-

>

~/

_using a depth-first search, which gives O (r;?n?®) inside an orbit, O (mn%) over the

whole semiautomaton. ’
A

The-sequential complexity will be dominated by the next step, which consists i;l
deciding whether these systems have a solution. There are as many such nXxn
systems a3 there are orbits, the number of orbits being counted as O (m), and they
can be mérged into a unique O (mn)x O(mn) system. The problem of solving a
dx d system of linear congruences modulo ¢ ,whose complexity is denoted SLC(d),
has a complexity of at most O (d3), if arithmetic operations modulo ¢ are counted
for O (1), and reduces in the case of ¢ prime to the multiplication of matrices over
a field [Pan], which is O ((d)**") [CW].

77

23

Vo

