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Abstract

Calcium ions (Ca?") are highly regulated signaling molecules involved in many aspects of
cellular physiology. Transient localized Ca®* signals, also referred to as flickers, are generated
upon calcium influx through the mechanosensitive calcium channels located at the plasma
membrane such as Piezo 1. In live cell fluorescence imaging, achieving a satisfactory signal-to-
noise ratio (SNR) while maintaining cell health often requires a sacrifice in temporal and/or
spatial resolution. Since calcium flickers are highly dynamic and they rise and fall within tens of
milliseconds, traditional imaging protocols that use 200 ms exposure time to achieve an optimal
SNR may miss some small or short-lived flickers. This study aimed to develop an optimized fast
calcium image acquisition protocol for the precise identification and characterization of calcium
flickers. There are multiple ways of image denoising: mathematical methods including Gaussian
and median filters, and deep learning denoising algorithms including NIDDL, Deep Interpolation
and DeepCAD. We used widefield imaging to capture calcium flickers in cultured cell
monolayers expressing a membrane anchored GCaMP6s fluorescent calcium sensor with stream
camera acquisition and different camera exposure times. Manual flicker counts served as ground
truth data while an automated flicker detection script was developed to detect and characterize
calctum flicker properties. Deep learning denoising models outperformed traditional
mathematical filters with less image blurring and higher SNR. Among the three selected deep
learning models, DeepCAD was the optimal one. NIDDL generated large square artifacts within
the images while Deep Interpolation over corrected images resulting in the loss of low intensity
information. DeepCAD achieved the highest SNR, detected the highest number of flickers
relative to 200ms flicker counts, was able to detect the highest number of dim calcium flickers,
maintained the flicker area relative to long exposure images, allowed more accurate
determination of flicker durations and did not generate any apparent image artifacts. The
temporal resolution of DeepCAD can be pushed to effectively measure Ca?* flickers at 100
frame per second. It is also straightforward to install, train and implement, making it accessible
to life scientists without the need for extensive computer science expertise. Overall, the new
calcium image acquisition and analysis protocol developed during this thesis work enables rapid
image acquisition for more precise identification and characterization of Ca?" flickers with high
spatial and temporal resolution. This work provides an effective protocol and tools to effectively

measure and understand the dynamics and characteristics of calcium flickers.



Abrégé

Les ions calcium (Ca?") sont des molécules de signalisation hautement régulées
impliquées dans de nombreux aspects de la physiologie cellulaire. Les signaux de calcium
localisés et transitoires, appelés scintillements, sont générés par 1’influx de calcium a travers les
canaux calciques mécanosensibles, tels que Piezo 1, situés dans la membrane plasmique. En
imagerie par fluorescence avec des cellules vivantes, atteindre un rapport signal/bruit satisfaisant
tout en maintenant la santé des cellules nécessite souvent un sacrifice en termes de résolution
temporelle et/ou spatiale. Etant donné que les scintillements de calcium sont trés dynamiques et
qu'ils apparaissent et disparaissent en quelques dizaines de millisecondes, les protocoles
d'imagerie traditionnels utilisant un temps d'exposition d’environ 200 ms pour atteindre un
rapport signal/bruit optimal peuvent manquer certains scintillements petits ou de courte durée.
Cette étude visait a développer un protocole optimisé d'acquisition rapide d'images de calcium
pour l'identification et la caractérisation précises des scintillements de calcium. Il existe plusieurs
méthodes de débruitage d'image : des méthodes mathématiques incluant les filtres gaussiens et
médians, et des algorithmes de débruitage par apprentissage profond incluant NIDDL, Deep
Interpolation et DeepCAD. Nous avons utilisé I'imagerie en épifluorescence pour capturer les
scintillements de calcium dans des cellules en culture exprimant un capteur de calcium
fluorescent GCaMP6s ancré a la membrane, avec une acquisition de caméra en flux et différents
temps d'exposition. Le compte manuel de scintillements a servi comme données de référence
puis un script automatisé de détection de scintillements a été¢ développé pour détecter et
caractériser les propriétés des scintillements de calcium. Les modeles de débruitage par
apprentissage profond ont surpassé les filtres mathématiques traditionnels produisant des images
moins floues et des rapport signal/bruit plus élevés. Parmi les trois modeles d'apprentissage
profond sélectionnés, DeepCAD était le meilleur. NIDDL a généré de grands artefacts carrés
dans les images tandis que Deep Interpolation a corrigé les images de maniére excessive,
entrainant la perte d'informations de faible intensité. DeepCAD a atteint le rapport signal/bruit le
plus élevé, a détecté le plus grand nombre de scintillements par rapport au données de références,
a été capable de détecter le plus grand nombre de scintillements de calcium faibles, a maintenu la
zone de scintillement par rapport aux images a longue exposition, a permis une détermination
plus précise de la durée des scintillements et n'a généré aucun artefact visible dans les images. La

résolution temporelle de DeepCAD peut étre poussée pour mesurer efficacement les



scintillements de Ca?* a 100 images par seconde. Cet algorithme est également simple a installer,
a entrainer et a mettre en ceuvre, le rendant accessible aux scientifiques des sciences de la vie
sans nécessiter de compétences profondes en informatique. Dans I'ensemble, le nouveau
protocole d'acquisition et d'analyse d'images de calcium développé au cours de cette thése permet
une acquisition rapide des images pour une identification et une caractérisation plus précises des
scintillements de Ca”" avec une haute résolution spatiale et temporelle. Ce travail fournit un
protocole efficace et des outils pour mieux mesurer et comprendre la dynamique et les

caractéristiques des scintillements de calcium.
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1 Introduction

The study on the function, dynamics and downstream binding proteins of calcium flickers
is ongoing and constrained by the limit of spatiotemporal resolution of the current calcium
imaging protocols. The objective of this study was to develop an optimized calcium imaging
protocol with enhanced spatial and temporal resolution and apply denoising to enable the

detection and characterization of calcium flickers in a more accurate way.

Rapid calcium imaging with a shorter camera exposure time results in an increased
amount of noise in the image data, often making flickers indistinguishable from background
making it impossible to measure and interpret calcium signals. To remove the noise and restore
the true calcium signals in the sample, three state-of-the-art deep learning-based denoising
methods were selected. All of them were designed based on neuronal calcium imaging and have
not been tested using endothelial cell monolayer calcium imaging data. Each of them belongs to
a different deep learning category (supervised or unsupervised) and is designed based on a

separate deep learning model.

The aims of the thesis were to: 1) train the three denoising algorithms with low signal-to
noise ratio (SNR) calcium image data from human umbilical vein endothelial cells (HUVECsS)
(for high SNR calcium image data pseudo high exposure time images were created by adding
together consecutive images within a time series); 2) test the three selected denoising algorithms
for accuracy of image denoising; 3) validate the best denoising algorithms by testing them on

image data and counting and characterizing calcium flickers.

Further exploration of the limit of temporal resolution was tested on the selected optimal
denoising algorithms, to determine the temporal limits and determine if ultrafast calcium
imaging is possible with the new calcium imaging protocol. By achieving high speed calcium
imaging, those fast calcium flickers that are otherwise missed because of time delays between
image frames or they are averaged out over long exposure times can be captured. The
hypothesize is that application of denoising deep learning algorithms will enable rapid calcium

imaging and greater accuracy in detecting and characterizing calcium flickers in cell monolayers.
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2 Literature Review
2.1 Overview of calcium signalling in cell migration

Calcium (Ca?") is one of the key chemical elements that is involved in many biological
functions. For example, at the organismic level, calcium is the major component of the bone,
supporting skeleton mineralization'. At the tissue level, Ca®* triggers synaptic vesicle exocytosis,
leading to the release of neurotransmitters and thereby initiating neuronal signal transmission.
Ca’* also regulates contraction of multiple types of muscle including striated and smooth muscle
via different signaling pathways>. At the cellular level, Ca>" regulates cell proliferation, migration
and invasion*>, Dysregulated Ca?" signaling has been linked to cancer through the induction of
calcium channel alterations, interactions with receptors and remodeling of the extracellular

matrix®.

Cells can migrate as single cells or as a collective of cells. Migrating cells can move in a
directional way in response to diffusible chemicals or ligands’, mechanical cues®, and substrate-
bound chemo-attractants®. In single cells, two modes of migration are amoeboid and
mesenchymal. Amoeboid migration is mainly characterized by gliding and rapid migration
through morphological expansion and contraction, primarily seen in highly motile cells including
neutrophils, dendritic cells and lymphocytes!?. These amoeboid cells usually have weak integrin-
mediated adhesions and some are even integrin-independent'!!2, On the other hand,
mesenchymal migration involves multiple steps including protrusion at the cell front, adhesion
formation, force generation by stress fibers, movement of the cell body forward, disassembly of
adhesions at the cell rear and detachment at the rear end. Cells can also move together
collectively as a group, remaining connected throughout the process. Leader cells in the front
senses the environmental stimuli and follower cells respond to the guidance cues from the leader
cells or neighboring cells'3. In fact, leader cells function in a similar way as the cell front in

individual cell migration.

Cell migration involves temporal and spatial coordination of multiple structural
components such as actin and myosin!4!> and regulatory proteins such as Rac, RhoA and
Cdc42!3:1617, Calcium signals regulate directed cell movement through a spatially and temporally
regulated dynamic architecture of intracellular calcium dynamics. In migrating cells, cytosolic

Ca?" levels are low in the cell front (~30 nM) and high in the cell back (~70 nM)'8. The gradient
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is maintained by plasma membrane Ca?'-ATPase pumping Ca?" to the extracellular space with an
increased activity in the cell front'® and voltage-gated L-type Ca®" channels in the cell back to
maintain a high level of Ca**?. Sarcoplasmic/endoplasmic reticulum Ca?" ATPase (SERCA)
pumps cytosolic Ca?" into the internal Ca®* storage, endoplasmic reticulum (ER) (~100 uM), to
maintain low cytosolic Ca®* at the cell front. But SERCA is not responsible for maintaining the
calcium gradients because dysfunction of SERCA activities results in paradoxical increase of

Ca?" gradients'.

The front of the cell protrudes first by forming lamellipodia and/or filopodia and then can
retract slightly introducing tension that leads to new adhesions growing or new adhesions
forming and stabilizing?! their link to the actin cytoskeleton and extracellular matrix (ECM)
mediated through myosin contraction??. Local calcium pulses are generated by rapid Ca®" influx
into the cell through stretch-activated channels (SACs), e.g. stretch-activated transient receptor
potential channels (TRP) and Piezo channels. Polarized cell surface receptors including G-
protein coupled receptors and receptor tyrosine-kinases activate phospholipase C enzyme and
generates diacylglycerol (DAG) and inositol triphosphate (IP3) by hydrolysis of PI (4,5) P»??
through IP3 kinase (IP3K). IP3 diffuses and activates IP3 receptors (IP3R) located at the ER, which
are ligand gated cation channels, to release Ca?* signals from ER. Calcium induced Ca?* release
(CICR) is triggered by IP3R and ryanodine receptors?* (Fig. 1). DAG is a lipid second messenger
that recruits protein kinase C (PKC) at the plasma membrane. DAG and Ca®* activates PKC and
it plays an important role in modulating actin dynamics® and multiple signal transduction

cascades with different cellular responses ranging from cell migration to division.

The calcium pulses at the front can modulate lamellipodia retraction and adhesion by
activation of myosin light chain kinase (MLCK) and myosin II1?°. Myosin IT molecules assemble
into bipolar filaments and bind to actin filaments through head domains, which enables
conformational changes via ATPase activity to move actin filament and generate force required
for protrusions?”-?%, The cyclic Ca*" channel opening may be triggered by Ca?*-induced Ca**
release (CICR), generated by TRPs such as TRPM72° upon the change of membrane tension'®.
Since the affinity between Ca?*-calmodulin complexes and MLCK are extremely high®° and the
basal cytosolic Ca®* level is extremely low, tiny local Ca?* signals in nanomolar scales are

sufficient to regulate myosin activities.
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The calcium pulse is depleted by removing calcium signals either back to ER by SERCA
or to ECM by PMCA'3. In addition to SERCA, store-operated Ca®* entry replenishes internal
Ca?" storage by activating STIM1!%2!, which is transported to the ER-plasma membrane junction
and open the Ca?" influx channel ORAI1'%32, The Ca?" influx activates the GTPase Arf5 via
Ca*"-activated guanine nucleotide exchange factor IQSecl, which forms a complex with lipid
transfer protein ORP3 and modulate FA disassembly by translocating to ER-plasma membrane

contact site close to FAs33.

In the back, in order to move forwards cells, detach through adhesion disassembly and
can move in a directional way. The rear-end retraction is also mediated by myosin II-based
actomyosin contraction through Ca?" dependent MLCK. Ca?" dependent protease, calpain 2,
cleaves adhesion complex proteins such as FAK, paxillin and talin 1, leading to adhesion
complex disassembly and detachment of the cell rear®*. Calpain also modulates a-actinin
localization into focal contacts and complexes, which is essential in disassembly or translocation
of zyxin-containing contact sites*. L-type voltage-gated Ca®" channels have been implicated to
support increased Ca?" levels at the trailing edge?’, but the detailed regulating mechanism

remains unknown.

~100 mM

Ca? Leading lamella

Piezo 1

e

Ca?* Flicker

~100 nM P;R2

Ca2+
ER
~100 uM

SERCA

Figure 1: Calcium signaling at the front of the cell. Adapted with permission from Elsevier: Current Opinion in Cell
Biology, Calcium gradients underlying cell migration, Chaoliang Wei et al., 2012.

15



2.2 Calcium waves and calcium flickers

There are two types of calcium signals in migrating cells: calcium waves and calcium
flickers. Calcium waves represent the propagation of increases in intracellular Ca®* levels across
the cell by Ca?* release through IP3Rs with amplification from RyRs. They involve coordination
of cell communication and multicellular responses®. Calcium flickers, also referred to as
calcium pulses®®, are generated by Ca?" influx into the cytosol through SACs at the plasma
membrane and/or IP3-mediated Ca?* release from the ER Ca?" storage in response to mechanical
force or guidance cues. The widespread Ca?* waves usually last 0.5-1.5 s while transient Ca**

flickers rise and fall within 20 ms to 100 ms>’.

In migrating human embryonic lung fibroblasts, calcium flickers are generated by
TRPM7 channels and are most active at the leading lamella, promoting the turning of
fibroblasts3®. Calcium release from the ER increases the amplitude of calcium flickers but does
not contribute to the frequency of calcium formation®®. In human umbilical vein endothelial cells
(HUVEC:S), local calcium flickers at the front regulate retraction of lamellipodia and strengthen
local adhesion. These calcium pulses were found to activate MLCK and myosin II behind the
leading edge and generate force to retract nearby lamellipodia membranes?®. The internal, cell-
generated traction forces can in turn generate Ca" flickers mediated by Piezol channels™.
Piezol is one of the SACs expressed in endothelial cells that transduce mechanical stimuli into
electrical, osmotic and chemical intracellular signals*’. Piezol channels are located at the plasma
membrane and allow cations including Ca®* to enter the cytoplasm on a millisecond time scale
once activated by mechanical stimuli. Besides mechanical forces, Piezol can also be activated by
micromolar concentrations of a small chemical compound Yodal that lowers the mechanical

threshold for activation*!.

Recent studies in our collaborator Dr. Arnold Ludwig Hayer’s group have found that in
HUVECs, Piezol channels are the main source of calcium flickers. Calcium flickers are enriched
at cell-cell junctions in HUVEC monolayers while calcium waves are predominant in sub-
confluent cell cultures (unpublished observation). The physiological function of calcium flickers
and how they propagate inside the cell and binds to downstream calcium-binding proteins
remains unclear. In addition, the characterization of the dynamics of calcium flickers such as the

rise and decay times are less well-studied. The details about the relationships between calcium
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flickers and waves and if flickers originate from waves are not well understood. A better
characterization of the dynamics, propagation and evolution of calcium flickers and waves would

help us to better understand how Ca?* regulates cellular processes.
2.3 Calcium imaging

2.3.1 Calcium reporter: GCaMP6s

Calcium imaging uses calcium reporters to optically reflect Ca?* status inside the cells.
There are two main types of calcium indicators: chemical indicators such as chemical dyes fura-2
and fluo-4, and genetically encoded calcium indicators such as GCaMPs. Fura-2 is a ratiometric
fluorescent dye that the maximum fluorescence shifts from 380 nm to 340 nm once binding
calcium and the ratio of the fluorescence excited by light of those wavelengths directly reflects
the amount of intracellular calcium ions. Fura-2 has a rise time ti2 of 1.4 seconds and a decay
time of ti2 12 seconds*?, which is slow for calcium flickers but absolute calcium concentrations
can be calculated. Fura-2 is also problematic for live imaging because the excitation light is in
near ultraviolet and can cause phototoxicity. Fluo-4 is also used to measure cellular Ca**
concentrations in the range of 100 nM to 1 uM. It has increased fluorescence intensity when
compared to Fluo-3 and the acetoxymethyl ester forms are cell-permeable. It is shown that the
peak concentration of calcium flickers is typically below 80 nM?®, which is lower than the Fluo-4
detection range making it a poor sensor for this application. The rise and decay time t20-s0 of

Fluo-4 are much faster than Fura-2 at 90 ms and 170 ms.

Genetically encoded calcium reporters don’t need to be loaded into the cells, instead they
are introduced into the cells by various transfection methods and expressed by the cells. GCaMP
is a single-fluorescent protein system that consists of a calcium-binding protein calmodulin
(CaM), circularly permuted enhanced green fluorescent protein (EGFP) and a calcium-CaM-
binding motif M13 from the MCLK. GCaMPs have multiple versions and are the most widely
used fluorescent protein-based calcium reporters. The ultrasensitive GCaMP6 developed by
Chen, et. al. outperforms other sensors®’ and has three versions: 6s, 6m, 6f. GCaMP-6s is the
most sensitive form but has slower kinetics. GCaMP-6m represents medium kinetics and
GCaMP-6f has fast kinetics and shorter rise and decay times. GCaMP-6s is brighter and has a
higher signal-to-noise ratio (SNR) compared to -6m and -6f. It has a rise time of 110 ms and

decay time of 800 ms. The rise time is similar to Fluo-4 but the decay time is longer, allowing for
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a prolonged binding and a more sustained signal. The extended duration of binding to calcium

makes it easier to detect subtle changes in calcium levels. However, this can also act as a calcium

buffer and impact downstream signaling. Fast kinetics may also introduce variability in the

calcium signal because rapid binding to calcium and oscillations between the bound and

unbound states is frequent. GCaMP-6s was chosen as the preferred calcium indicator because it

offers a balance between binding kinetics, sensitivity and SNR. A GCaMP-6s conjugated with a

CAAX motif for targeting to the plasma membrane was used to improve sensitivity to calcium

flickers generated by Piezol by localizing the sensor to the plasma membrane!®. This is due to

the fact that unlike a cytoplasmic sensor, the membrane anchored sensor cannot rapidly diffuse

away from the sight of calcium release.

Name Fura-2 Fluo-4 GCAMP-6s | GCAMP-6m | GCAMP-6f
Type Fluorescent Dyes Fluorescent Proteins
Rise Time 14s 90 ms 110 ms 90 ms 70 ms
Decay Time 1.2s 170 ms 800 ms 700 ms 600 ms
BIr{ifgl}?‘tril\;zs Data not available +++ ++ ++

Table 1: Summary of the General Properties of some Different Calcium Indicators.
2.3.2 Limit of current calcium imaging methods

Since calcium flickers are transient activities that rise and fall on the time scale of
milliseconds, an imaging protocol with high temporal and spatial resolution is needed to achieve
accurate identification and characterization. To visualize calcium flickers in live cells,
fluorescence microscopy is the method of choice. It involves using fluorescent protein tags or
live cell dyes to track the protein or indirectly measure the signal (e.g. ions, phosphorylation) of
interest to observe biological phenomena temporally and spatially. In live cell fluorescence
imaging, there are a few factors that needs to be considered: sample health, temporal resolution,
spatial resolution, SNR*. To collect meaningful live cell image data, the main challenge is to
achieve an optimal SNR while maintaining a healthy environment for cells to replicate
physiological cell dynamics. Cells need to be exposed to adequate light to achieve a good SNR
but excess light exposure causes photobleaching® and light-induced cell damage*!. High

temporal and spatial resolution are needed to precisely characterize calcium flickers because
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some calcium flicker signals can be rapid and thus dim. In addition, if the temporal resolution is

lower than the duration of calcium flickers, it may be too slow to capture some flicker activity.

Current calcium flicker imaging and identification protocols developed by Baishali
Mukherjee can automatically identify and characterize calcium flicker duration, area and
intensity. The protocols were established based on image time series of HUVEC cell monolayers
expressing GCaMP-6s where images were captured every second with a 200 ms exposure time
for 100 seconds. One aim of this project is to determine if these imaging conditions are sufficient
to capture all calcium flickers. It could be that some fast flickers are missed and the 200 ms
exposure time may average out some fast flickers with rapid rise and decay times. The aim here

is to develop a new method with higher temporal and spatial resolution.

2.3.3 Problems with fast live cell calcium imaging

In fluorescence microscopy, there are multiple factors affecting the image quality
including but not limited to: limited spatial resolution, limited signal, uneven illumination,
autofluorescence, out-of-focus light and noise. Every image inevitably has noise. There are two
major types of noise: shot noise and detector noise*®. Shot noise is due to the discrete nature of
light and the randomness associated with discrete photons arriving at the detector. It is more
predominant in low-light conditions and exists in every image. Shot noise usually follows a
Poisson distribution, which scales with the pixel intensity. Detector noise is associated with the
electronics of the detector and heat (e.g., digital camera readout noise and thermal dark current or
photomultiplier tube thermal noise) and often follows a Gaussian distribution and impacts each
pixel independently*’. Here the focus will be on camera-based detectors with shot noise, dark

current and readout noise being the main contributors.

On camera-based microscopes, to achieve rapid imaging with high temporal resolution,
camera exposure time is reduced to a minimum and camera readout speed is set to a maximum.
Reduced exposure time mean that fewer photons are collected by the camera, and the relative
contribution from Poisson shot noise and read noise can become significant. Thus, short
exposure times lead to a low SNR because of a high level of noise, making it hard to identify

objects within images, interpret and quantify biological processes from the image data.
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2.4 Calcium Denoising algorithms

2.4.1 Conventional denoising algorithms

Denoising refers to the procedure that aims to remove noise from noisy images while
retaining real signal and restore the original images as accurately as possible. It is a fundamental
task in image processing. As mentioned above, noise can arise from multiple sources: camera
sensing limitations, light conditions and shot noise. The most frequently discussed noises are
additive white Gaussian noise, Poisson noise and impulse noise (also known as salt and
pepper)*®. Spatial domain filtering is one of the conventional ways of denoising. It directly
estimates each pixel using the information from surrounding pixels. The most popular local
filters are the median filter which is effective at removing impulse noise. It picks a window (or
kernel) of a certain size (e.g. 3x3) and ranks the pixel values within the window. It takes the
median of all the values and assigns the median value to the central pixel in that 3x3 kernel or
window. The window is moved iteratively across the entire image. The main disadvantage of this
method is that it loses edge information and can impact spatial resolution. There is also 2D

Gaussian filter which is based on Gaussian function defined as follows:

_x2+y?
e 202

Glxy) = 2mo?

where x and y represent the coordinate of the pixel and o decides the extent of smoothing. A
larger o results in more blurring. It first selects a window of a certain size and then redistribute
the pixel value based on Gaussian function, giving more weights on the central pixels. The
window slides over each pixel of the image. Gaussian filter preserves edge better because the
pixels away from the center have less weight. The low pass filters retain signals with a frequency
lower than the selected cutoff frequency and attenuates signals with higher frequencies. The
lowpass filter can result in blurring and difficulty segmenting features of interest in denoised
images. Over the years, more complicated filtering methods such as non-local means*, block-
matching 3D°° have emerged but simple filtering methods are much more widely used. Most
conventional denoising methods using spatial domain filtering impairs the spatial resolution of
the original image, making them not an ideal approach to denoise fast calcium flickers videos

because it loses the spatial information of the flickers.
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2.4.2 Deep learning calcium denoising algorithms

In reality, noise is more complicated and images can have multiple types of noise. It is
difficult to apply simple Gaussian or median filter to remove all types of noise, retain resolution
and quantitative aspects of images and maintain good quality images. In recent years, deep
learning, a subset of machine learning designed to solve more sophisticated problems, has
emerged as a powerful tool in multiple fields for multiple applications including denoising>°.
Compared to conventional denoising algorithms, deep learning algorithms learn from data rather
than applying an unchanging mathematical model. The deep learning network gains knowledge
about what to expect during iterations of learning, also referred to as content-aware image
restoration*’. Deep learning is highly adaptive to the specific datatype but can also generalize to
other similar unseen data. The deep learning denoising algorithms can handle more complex
noise patterns and retain and emphasize image features when compared to traditional

mathematical denoising methods.

The general principle of deep learning denoising algorithms is to estimate the real
intensity for a pixel based on background information. It mimics how we interpret noisy images
as humans. For example, there is a high intensity pixel in a region without any labelling and at all
other time points it has a value close to zero, then we as humans can recognize this outlier is
probably due to a falsely detected photon and is not a true signal. Similarly, if all the surrounding
pixels have a high intensity but there is a dark point inside that structure, i.e. nucleus, actin
filaments, cell membrane, we can say that is a false negative signal. The convolutional neural
network (CNN) is the basic architecture of many deep learning algorithms in image analysis,
such as image restoration, deconvolution, image segmentation and classification. It processes
images by breaking them into small pieces and recognizes the patterns like edges and structures.

It then combines these patterns to learn about more high-level features.

There are two phases in developing a deep learning denoising model: training and testing.
Training is to build a model that learns the underlying patterns or features in the data so it can
make predictions based on the input data. The model is usually trained on a large dataset, known
as the training dataset. The training process typically has three steps: forward propagation, loss
calculation, backpropagation. Forward propagation refers to the procedure that the model makes

predictions based on input data. Then the difference between the model’s predicted values and
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the real values is calculated using a loss function, evaluating the performance of the model. The
model optimizes its parameters to minimize the loss. The process is then repeated over many

iterations, also known as epochs, to minimize the loss and improve the performance.

Testing is to evaluate the model’s performance using new, unseen data so that the model
can be tested to ensure that it does not overfit with the training data and that it can also be
generalized to new inputs. The dataset that has not been seen by the model and is used for testing
is called the testing dataset. Based on the results from the test dataset, various evaluation metrics
are used to assess the model’s performance and accuracy. In some cases, a validation dataset,
separate from training and testing dataset but more unbiased, is used to facilitate the training of
the model. The loss on the validation set will be small because the model is trained to minimize
the loss during validation. The training dataset can be used multiple times while the test dataset

is only used once.

There are three main classes of machine learning models: supervised learning,
unsupervised learning and reinforcement learning®!. In supervised learning, the model is trained
using labeled data pairs. In the case of denoising, the training dataset consists of noisy and low
noise image pairs. The low noise images are also referred as ground-truth data. It is named
supervised because the model is provided with image pairs and is told one image is noisy and the
other image is ground truth and represents what the image should ideally look like. This
information is provided by someone so this method is termed supervised. The model then learns
to map from the noisy images to low noise images and minimizes the loss functions. Supervised
learning is widely used for image classification discriminative tasks. Unsupervised learning, in
contrast, uses a training dataset without any labelling. Only noisy images are required to train an
unsupervised denoising model. The model learns to find patterns and features without any other
external inputs. It is widely used in clustering algorithms and generative tasks. It is more
preferrable in live cell imaging because it is often hard to obtain low noise ground truth images.
Reinforcement learning learns to make decisions by interacting with the environments. The
model receives feedback (rewards or penalties) during training and improves its behavior to
maximize cumulative rewards. Supervised and unsupervised learning algorithms have
applications in denoising while reinforcement learning is predominantly used in robotics, video

games and autonomous vehicles, which is not appropriate for denoising.
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Many deep learning based denoising methods have been developed using supervised
learning>>>3 or unsupervised learning®*>%. Content-aware image restoration (CARE)? uses image
pairs of high SNR and low SNR to train the model based on U-Net architecture with a per-pixel
similarity loss. U-Net is primarily designed for biomedical image segmentation with a “U-
shaped” architecture and can be recognized a specialized adaption of CNN architecture. U-Net
consists of a contracting path containing encoder layers to capture contextual information and an
expansive path containing decoders layers that use the information from the contracting path via
skip connections. Skip connections connect between layers that skips over one or more
intermediate layers to retain the spatial information that might be lost as the image passes
through convolutional layers. Noise2Noise>® and Noise2Void>* are both based on CNNs.
Noise2Noise trains on independent pairs of noisy images of the same field of view. The model
predicts one noisy image based on the other as input, assuming the images are obtained
independently with different random noise but the same structures. Noise2Void takes one step
further and it only needs single corrupted data. It estimates the value of a pixel from its
surrounding pixels in the same noisy images. Noise2Self>® works under the assumption that the
noise is statistically independent across different dimensions of the measurement and the true
signal has some correlation. It is based on self-supervision, training the denoising model based
on single noisy images. DivNoising™ is based on fully convolutional variational autoencoders
and requires noisy images and a suitable description of the noise distribution. Hierarchical
DivNoising (HDN) *7 developed by the same team introduces hierarchical Variational
Autoencoder architecture and gives the probability distribution of the high SNR images. It
generates multiple possible denoised images, allowing users to choose the best one or average
them to improve accuracy. The hierarchical structure and probabilistic nature make HDN
computationally intensive and hard to set up because there are many parameters that need to be
tuned. Among all these models, only CARE is originally designed for fluorescence microscopy
images. Most of the denoising algorithms mentioned above are not designed for calcium
imaging, so instead of picking those methods, we selected the following denoising algorithms

that is adapted for calcium imaging but based on those models.

For deep learning denoising algorithms in calcium imaging, most are based on two-
photon calcium imaging of neurons in the intact brain of mice>%°. To our knowledge, there are

no existing denoising algorithms that have specifically been developed for endothelial calcium
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imaging. Two photon calcium imaging in neurons also suffer from low SNR problems because
images are collected deep in brain tissue, up to 500 um below the cortical surface® and a lot of
fluorescence signal is lost due to scattering within the tissue. As mentioned aforehand, calcium
ions activate the release of neurotransmitter at synapses and are essential for the propagation of
electrical signals. Most neurons have an intracellular calcium concentration of about 50-100 nM
at rest. The calcium level can increase 10 to 100 times above baseline in the event of electrical
activity®!. The peak calcium concentrations in calcium activity in neurons is much higher than
the peak calcium level of calcium flickers in HUVECs (~80 nM)?®. Also, the focus of calcium
imaging in the brain is on high temporal resolution to monitor fast calcium dynamics on a few
hundreds of millisecond timescale®?. In endothelial cells, spatial resolution is also important
because calcium signals are not physically localized within small neuronal structures or synapses
and it is required to reveal how calcium flickers propagate as calcium waves. Since deep learning
denoising algorithms are generalizable and can be retrained with similar datasets and adapted to
specific datatype, it is possible to apply current promising calcium denoising algorithms to low

SNR calcium images of calcium flickers in HUVEC monolayers.

For this study, we selected three of the most commonly used state-of-the-art calcium
denoising algorithms: Neuro Imaging via Deep Learning (NIDDL)3, Deep Interpolation® and
DeepCAD>. Each of them is based on a different deep learning model and all of them show
satisfactory results when applied to low SNR laser scanning confocal or two-photon microscopy

images of calcium signals in images of neurons.

2.4.3 Neuro Imaging via Deep Learning (NIDDL)

Neuro Imaging via Deep Learning is a supervised denoising method trained with whole-
brain data, ventral coed neurons data and neurite structures in C. elegans imaged using a Bruker
Opterra II Swept field confocal microscope with an EMCCD camera’3. It requires only a small
set of training image pairs (~500) acquired independently and can be non-temporally sequential,
making it easier to acquire the training data because images can be acquired from fixed samples
at different times. The general principle of NIDDL is to train the network to predict high SNR
image stacks given low SNR (can be low laser-power or short exposure time) image stacks (Fig.
2). Subsequently, in the testing phase, trained models are applied to denoise video data by

independently denoising each volume in the video. It optimizes CNN by using a 20-30x smaller
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memory footprint and is about 3 times faster in training and testing than other similar algorithms.

NIDDL is flexible, users can choose and test many parameters based on the dataset including the

training mode and the loss function. The training mode is one of three types, the 2D, 2.5D, or 3D

mode. The 2D mode is used when the input and output are 2D images. The 2.5D mode is used

when the input is a 3D stack consisting of z-plane above and below the in-focus image to be

denoised and the output is the designated denoised image from the middle of the stack. For 3D

mode, both the input and the output are 3D stacks. The loss function is one of two types, L1 loss

or L2 loss. L1 loss, also known as mean absolute error, is the sum of the absolute differences

between the predicted
and actual image
intensity values. L2
loss, referred to as least
squares error or mean
squared error when
averaged over a dataset,
is defined as the sum of
squared differences
between the predicted
and actual image
intensity values.
NIDDL has been
implemented in the
open-source software
platform napari
(https://napari.org/)
with pretrained models
using multiple
datatypes (e.g. whole
brain, ventral cord,

neurite, synthetic

Data acquisition
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Figure 2: The architecture of NIDDL. Reused with permission from Creative Commons
license (https://creativecommons.org/licenses/by/4.0/): Nature Communications, Fast, efficient,
and accurate neuro-imaging denoising via supervised deep learning, Shivesh Chaudhary et al.,

2022
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images). Napari is a Python library for n-dimensional image visualization, annotation, and

analysis.

Compared to unsupervised methods, supervised methods are expected to achieve higher
accuracy and should be more generalizable. But there are a limited number of supervised
denoising methods because it is often difficult to acquire ground-truth data. In calcium imaging,
not all microscopes can collect high SNR and low SNR videos simultaneously. If the
unsupervised method is trained with non-temporally linked data, it is not clear if temporal

structural features can be preserved from independently denoised images.

2.4.4 Deeplnterpolation

Deeplnterpolation is an unsupervised denoising method that was trained using low SNR
two-photon calcium data with GCaMP-6f as the calcium reporter®®, The images were obtained in
visual or somatosensory cortex in brains using live or anesthetized mice®. It can also be applied
to functional magnetic resonance imaging (fMRI) image datasets and extracellular
electrophysiology recordings. Deeplnterpolation uses a low SNR image to predict a high SNR
image. It enhances SNR by up to 15-fold and is able to identify and segment up to 6 times more
neuronal features in two-photon image datasets. For extracellular electrophysiology recordings, it
detects up to 25% more spiking events and with fMRI image datasets there is a 1.6-fold increase

in SNR. In neurons, it is hard to image pairs of sample images with identical signals but different
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Figure 3: The architecture of Deep Interpolation. Reused with permission from Springer Nature: Nature Methods, Removing
independent noise in systems neuroscience data using Deeplnterpolation, Jérome Lecoq et al., 2021.
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noise (Noise2Noise) because the dynamics are so rapid. Therefore, DeepInterpolation adopts an
approach based on the Noise2Self and Noise2 Void frameworks. It learns the spatiotemporal
relationship between each data point and its spatial and temporal neighbours to minimize the
reconstruction loss function. The architecture of DeeplInterpolation is based on a UNet-inspired
architecture and follows the two principles (Fig. 3): a single pixel shares information or is
correlated with surrounding pixels within a fixed local region; based on the decay dynamics of
GCaMP-6f, frames up to 1s away from the target frame may carry useful information. During
training, one frame is omitted, and the network learns to predict the omitted frame using the
information from its neighboring frames in time, i.e., 10 frames before and after the omitted
frame. DeepInterpolation must work under the theory that the noise present in the target sample
image is independent from adjacent sample images, otherwise it may lead to overfitting. The
framework eliminates overfitting by omitting the target image frame only once, therefore there
are no iterations over the whole dataset that would require huge datasets (~10,000 image frames).
Since the training image dataset is large, it is computationally demanding. For all three datatypes,
training on a single GPU can take 2-3 days with continuous processing. L1 loss was used for
both two-photon imaging and fMRI image datasets and L2 loss was used for electrophysiological

datasets.

2.4.5 DeepCAD

DeepCAD is a self-supervised deep learning denoising method that enhances the
spatiotemporal resolution of images by more than tenfold. It is based on the Noise2Noise
denoising method. DeepCAD works under the assumption that a deep neural network can
converge to a mean estimator even it is trained using another corrupted image of the same scene
and the optimal network parameters are similar to those trained with ground truth images>>. It
separates a time lapse video into two sub-stacks consisting of interlaced frames from the input
image dataset and then trains the model to predict one stack from the other (Fig. 4). DeepCAD
requires a high imaging rate (~30 Hz) so that two consecutive frames have essentially the same
structures but different noise patterns and can be considered as two independent images of the
sample. The two sub-stacks are corresponding and the corresponding image frames have the
same structure but different noise, so the network can learn what structures to expect despite the
random noise. The minimum data required to achieve satisfactory denoising results is a single

low SNR video of 3,500 image frames. A higher image sampling rate and more training frames
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can lead to better '
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3D U-Net that uses the Figure 4: Architecture of DeepCAD. Reused with permission from Springer Nature: Nature
Methods, Reinforcing neuron extraction and spike inference in calcium imaging using deep

Spathtemporal self-supervised denoising, Xinyang Li et al, 2021.

correlation of calcium

images and it is composed of a 3D encoder module, a 3D decoder module and three skip
connections. Regarding the loss functions, the average of a L1-norm loss and a L2-norm loss
term were used. DeepCAD also reinforces the accuracy of neuron extraction and segmentation.
Recently, the new real-time version (DeepCAD-RT) was developed for real-time denoising® and
it has been implemented as a Fiji plugin with pretrained models. Since imaging systems,
experimental conditions, model systems (e.g. whole brain, brain slices, isolated neurons) cell
types and morphology (e.g. large, rounded cells versus elongated branching neurons) all vary in
different research projects, it is highly recommended to train a customized DeepCAD model
using experiment specified image data for optimal performance. It should be noted that the
training of a customized model is computationally demanding and needs to be implemented

using TensorFlow packages, which requires the users to have some coding background.
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3 Methodology
3.1 Cell Culture

hTERT-immortalized HUVECs (HT73)%, were cultured in Endothelial Cell Growth
Medium 2 (PromoCell, Cat# C-22011), supplemented with hygromycin B (InvivoGen, Cat# ant-
hg-1) at a working concentration of 10 pg/ml and blasticidin at a working concentration of 50
pug/ml (InvivoGen, Cat# ant-bl-1) to maintain expression of transduced products (hnTERT). HT73
cells transfected with GCaMP6s-CAAX' to report cytosolic Ca?* levels at the plasma membrane
were provided by Dr. Hayer’s laboratory.

3.2 Preparation of imaging slides

Glass bottom 8-well imaging slides (Ibidi, Cat# 80827) were coated with 3.2 mg/ml type
I collagen solution (Advanced BioMatrix, Cat# 5005) diluted 1:100 in phosphate buffered saline
(PBS) (Gibco, Cat# 10010-023/10010-049) at 37°C with 5% COx2 for 4-24 hours before use.
Cells were cultured to maintain an 80% confluency in 60-mm dishes before subculturing. Cells
were washed with PBS before adding 1 mL of 0.05% trypsin-EDTA (Gibco, Cat# 25300-054).
Trypsin was aspirated after 2 minutes, leaving only a thin layer at the cell dish. The plate was
incubated for 2 minutes at 37°C with 5% COz. Cells were resuspended with 4-5 ml medium to
neutralize the trypsin and 10 puL of the solution was used for cell counting. Approximately
20,000 cells in 200 uL cell growth medium were plated in each well of the imaging slides and
were kept at 37°C overnight to form a uniform monolayer. On the following day, the medium in
each well was replaced with 200 uL Live-cell Imaging Solution (LIS). The LIS solution was
prepared with 125 mM NacCl, 5 mM KCl, 20 mM HEPES solution (pH 7.4), 1.5 mM MgCl.,
1.5 mM CaClz, 10 mM D-glucose, 1% fetal bovine serum (Fisher Scientific, Cat# 35077CV) and
5 ng/ml basic fibroblast growth factor (Cedarlane Labs, Cat# CL104-02-50UG). The plate was
left to settle in the microscope mounted live cell environmental control chamber (Live Cell
Instrument, Cat# CU-501) for about 10 minutes to stabilize the cells at 37°C and 5% COx. Right
before imaging, 100 uL LIS solution supplemented with Yoda 1 (Sigma-Aldrich, Cat#
SML1558) at a working concentration of 0.1 uM was added to each well.
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3.3 Cell fixation

The cells were fixed after live cell imaging in order to collect identical image pairs with
fixed cells. The volume of each well was first reduced to 100 uL. Then 100 uL of 16%
paraformaldehyde (Electron Microscopy Sciences, 15710) diluted 1:3 in PBS was added for 15
minutes at 37°C. Cells were immersed in PBS for 5 minutes and then washed three times with
PBS. The fixed plate was stored in PBS with 2% sodium azide in the 4°C fridge for up to three

weeks.

3.4 Setup of Widefield Calcium Imaging

Widefield imaging was accomplished using a Leica DM 1600B microscope (Leica
Microsystems) with a Leica HC Plan Apochromat 20x/0.7 NA objective lens. The illumination
was provided with an X-Cite 120 LED (370-700nm, 100 W) light source. The emitted
fluorescence passed through an EGFP filter cube with an ET470/40x excitation filter, T4951pxr
dichroic mirror and an ET 525/50m emission filter and was imaged with a digital scientific
CMOS camera (C13440-20CU, Hamamatsu, Japan). This microscope is part of a Total Internal
Reflection Fluorescence (TIRF) system but all controls for TIRF were disabled including the
laser excitation and only the widefield imaging stand was used for all experiments. MetaMorph
(Molecular Devices Inc., Version 7.10.5.476) software interface was used to achieve stream

acquisition with minimum delays. Pixel size was 0.401 um when the 20x objective was used.

3.5 Calcium Imaging Experiments

Live cells and fixed cells were imaged with the same conditions. Before each imaging
session the fluorescence lamp intensity was measured using the 20x/0.7 NA objective lens and a
laser power meter (Coherent FieldMax II, 1098579) and was maintained at ~175-180 uW as the
baseline lamp intensity for low SNR images. Stream acquisition was used to collect images
continuously with minimum delay. The MetaMorph software keeps delays between frames of
stream acquisition at a minimum of ~1 ms over ~200 images. Time lapse datasets of low SNR
ratio images were captured at 20 ms, 10 ms or 5 ms exposure times, 20% lamp intensity (~175-
180 uW) with 2x2 pixel binning. More images were captured with shorter exposure time
experiments to ensure the total experiment duration was constant. For example, the videos
captured at 20 ms exposure time had 200 image frames while the videos captured at 10 ms

exposure time had 400 image frames. High SNR ratio image datasets were captured at 200 ms
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exposure time with no delay, 20% lamp intensity with 2x2 pixel binning. The high SNR and low
SNR image stacks were captured of the same field-of-view (FOV) to compare the frequency of
calcium flickers for the same cells but were not synchronous (the time interval between two
stacks were ~20 s). For the fixed cell image pairs, they were imaged at the same FOV at 20 ms or
200 ms exposure time. At the end of the imaging sessions, the cell slide was removed, and a time
lapse video of background and noise was captured and used to correct for black “dead” and

saturated “hot” camera pixel artifacts and camera noise, keeping all other parameters the same.

To evaluate the influence of lamp intensity and potential phototoxicity on the number of
calcium flickers, timelapse videos were captured at 200 ms exposure time. The lamp intensity
was variable among experiments. The same baseline intensity (~175-180 uW) was used. Then
images were taken by doubling and tripling the lamp intensity until it reached 100%. For
example, the baseline intensity was at 25%, then images were captured using 50%, 75% and

100% lamp power.

3.6 Model training

Since the training procedure of the deep learning methods is often computationally
demanding and requires graphics processing units (GPUs) to accelerate the training, all the
trainings were done remotely through the cloud platform Digital Research Alliance of Canada
(DRAC) (previously known as Compute Canada, https://alliancecan.ca/en) or Google Colab. The
general procedure to train a published deep learning method is: 1. Download the whole
repository to the cloud service. 2. Install the virtual environment on the cloud service. 3. Train a
new model with a new dataset. 4. If needed, adjust the code or parameters to achieve better

performance.

3.6.1 NIDDL

There are two versions of NIDDL: one was implemented using TensorFlow and the other
was implement using pytorch. The version using TensorFlow was outdated and could not be
installed on the cloud service so the pytorch version was used. The training of NIDDL was
completed on the cloud platform DRAC. The training dataset was composed of 524 matched
image pairs of high SNR and low SNR images. To ensure matched pairs, the cells were fixed
before imaging and the same field of view was imaged with different conditions. The high SNR

images were captured with a 200 ms exposure time and the low SNR images were captured with
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a 20 ms exposure time. Each image (1024x1024) was cropped to generate four sub stacks
(512x512) to match the original network design to operate with images of 512x512 pixels. The
basic model used is UNet fixed. The architecture is the same as UNet, which has 4 down-
sampling layers with non-linear activation (ReLLU) and 4 up-sampling layers (Fig. 2). The first
feature map is 512x512x32 and the depth of the feature maps doubled after each down-sampling
layer and reduced to half after each up-sampling layer. UNet fixed has a fixed depth of all
feature maps of 32 compared to UNet which has a varying depth (it begins with 32 channels and
doubles after each down-sampling and halves after each up-sampling), reducing the model size
and decreasing the training and testing time>3. There are also other architectures to select from
that were tested: UNet, hourglass  wores, hourglass wres. Based on the original dataset,

UNet fixed and hourglass wres achieved higher accuracy and required smaller memory
footprint compared to hourglass wores. For our datasets, UNet fixed outperformed
Hourglass_wres so this was chosen moving forward. Adam optimizer®® was used for training
with a learning rate of 0.001, which is a key hyperparameter that determines how much the
model’s parameters are adjusted at each step. The model uses a 2D model and L1 loss is used.
The model was trained for 500 epochs using one GPU (Nvidia V100SXM?2, 16G memory) and
took about 1 hour (Refer to the table here).

3.6.2 Deep Interpolation

The training of Deep Interpolation was performed on Google Colab because the version
of TensorFlow required was incompatible with DRAC. The denoising network is designed to
train on a single input dataset because the original training dataset is one single or multiple
continuous videos. So, one low SNR video of 1000 image frames captured with a 20 ms
exposure time was used to train the denoising neural networks. The video was cropped to
512x512 pixels for compatibility with the model. The architecture of the model is also based on
UNet, with a learning rate of 0.0001. The model consists of 3x3 2D convolutional layers
followed by rectified linear activation function (ReLU), 2x2 max pooling (down sampling)
layers and 2x2 up sampling layers (Fig. 3). The L1 loss function was used. Temporal information
was collected using 10 frames before and after the target frames. The model was trained for 19

epochs using a high-RAM 16GB T4 GPU (Tesla 4) and it took 4 hours to complete the training.
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3.6.3 DeepCAD

The training of DeepCAD was conducted on the cloud platform of DRAC. The training
dataset of DeepCAD consisted of 20 low SNR videos from two independent experiments. Each
video was made up of 1024x1024 pixel 1000 image frames collected with a 20 ms exposure
time. The 3D encoder has three encoder blocks and each block consists of two 3x3x3
convolutional layers, followed by a leaky rectified linear unit (LeakyReLU) and a 2x2x2 max
pooling layer. There are three decoder blocks in the decoder module: two 3x3x3 convolutional
layers followed by LeakyReLU and a 3D nearest interpolation. Adam optimizer®® was used for
training with an initial learning rate of 0.00005 and exponential decay rates of 0.500 for the first
moment (betal) and 0.999 for the second moment (beta2). The number of feature maps is 16.
The width and height of 3D patches is 150 and the time dimension of 3D patches is 150. The
overlap factor between two adjacent patches is 0.25. The model was trained using one GPU
(Nvidia V100SXM2, 16G memory) for 20 epochs and took about 18 hours to complete the
training. Training time could be shortened with a more powerful GPU or parallel computing
using multiple GPUs. Multiple trainings were done with different datasets (first trained with 10-
15 low SNR videos) and fewer epochs. The model trained with 20 videos and 20 epochs

achieved good performance based on the loss function and manual inspection of the images.

3.7 Model testing

All the testing of the three denoising models were performed on DRAC platform but it
could be done locally on a personal laptop if needed. The same testing datasets were used for all
three models so that the results were comparable across different models. The testing dataset was
separate from the training dataset. It was composed of 30 low SNR videos imaged with a 20 ms
exposure time from three independent experiments (10 videos per experiment). Each video had
200 frames and all test images were preprocessed to remove camera noise. Camera noise
reduction was done by subtracting the averaged image of a time lapse image data series captured
without any sample on the microscope. Since some denoising models work with 512x512 image
size while the original images obtained on the microscope are 1024x1024, all result images with
the size of 512x512 were concatenated with other sub stacks from the same original video to the

uniform size of 1024x1024. All the output time lapses images are in 32-bit.
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3.7.1 NIDDL

The general testing procedure of NIDDL consists of the following steps: 1) Crop the
original 1024x1024 testing dataset to generate four 512x512 sub stacks and convert the video
stacks to 8-bit. 2) Feed the images into the pretrained model. 3) Recombine the sub stacks to
generate 1024x1024 images. 4. Convert the individual images to video stacks. The testing time
was fast and only took about 1 minute per video of 200 frames, but the preprocessing and

postprocessing work was tedious.

3.7.2 Deep Interpolation

Similar to NIDDL, deep interpolation also needs to streamline the image size. The testing
procedure was as follow: 1) Crop the testing dataset to 512x512 and convert to 8-bit. 2) Feed the
videos into the pretrained model. 3) Convert the output videos from h5 to tiff files. 4) Combine
the substacks (top right, top left, bottom right, bottom left) into one video of size 1024x1024.

The testing time was about 2-3 minutes for each video.

3.7.3 DeepCAD

The testing phase of DeepCAD was straight forward: 1) Convert the testing dataset to 8-
bit. 2) Use the pretrained model to generate denoised videos. It took about 3 minutes to generate

each denoised video.

Model NIDDL Deep Interpolation DeepCAD
Difficulty to set up +++ A+ +
Computationally demanding + -+ -+
Training time + +++++ -+
Testing time + + +
Test image Output Format | 512x512, .tiff 512x512, .h5 1024x1024, .tiff

Table 2: Comparison on difficulty of usage and time required for training and testing among selected denoising algorithms.

3.8 Quantification Methods

3.8.1 Generation of pseudo high exposure time videos

To validate the denoising results, pseudo high exposure time videos were generated by

summing together n consecutive frames to mimic video images captured with longer exposure
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times. For example, 10 sequential image frames in a video imaged with a 20 ms exposure time
were added together to generate 1 image frame imaged with a pseudo 200 ms exposure time. At
the same time, using this method resulted in the total number of image frames being reduced by

ten-fold.

3.8.2 Analysis of the intensity plot

The measurement of intensity along a straight line was done using ImageJ/Fiji software.
The frame of interest was first selected. Then the same frame from three different denoised
models were extracted from the original video and combined as a stack. A straight line was
drawn across the area of interest using the straight-line drawing tool, and measurements of the
intensity along the same line were taken using Analyze->Plot Profile, which generates a plot of
the intensity over distance (in pixels). The plot from different denoising results were normalized
to 0-255. To plot the flicker intensity change over time, an area of interest was selected with
Freehand Selections and the following steps were taken to plot the mean intensity change over

time: Image->Stacks->Plot Z-axis Profile.

To plot the histogram of the pixel intensity in Deep Interpolation denoised video images,
the Analyze->Histogram feature in Imagel/Fiji was used to analyze the distribution of pixel

intensities.

3.8.3 Manual counting the number of calcium flickers

The number of flickers was manually counted by eye to validate the denoising results. If
the image size was 1024x1024, it was cropped to four 512x512 sub stacks for the convenience of
counting. The counting was done manually by watching the time-lapse image stacks multiple
times to avoid missing flickers. Calcium flickers were identified as localized transient calcium
activity that occurred mostly at cell-cell junctions. The change of intensity in calcium signals was
checked to make sure the flicker activity was dynamic and if so, it was counted. If the calcium
signal diffuses to more than 1/4 size of the cell, it was recognized as a calcium wave and not
counted. If there was a constantly bright object present in the majority of the image series, it was
considered as an artifact, perhaps a stationary piece of debris. Similarly, if it was a moving bright

object, it probably was a piece of debris, and it was not counted.
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3.8.4 Automated detection of calcium flickers in denoised videos

71,
~ 910

a'': 306.9158415841584,
rage Inter y": 49.15515633426333

1. Convert to 8-bit first

2. Background Subtraction

6. Final output flicker
information

3. Convert to binary 4. Filter validate flickers by
and Find Contours size, duration, presence of
intensity change
5. Label Flickers

Figure 5: Illustration of automated detection of calcium flickers.

In order to better characterize the calcium flicker, automated detection of calcium flickers
was developed to measure the duration, average intensity and area of flicker activity. The
automated detection in denoised image videos or in high SNR conditions was achieved using the
following steps (Fig. 5): 1) Convert to 8-bit images. 2) Subtract the background information
(e.g., autofluorescence, cell shape) by taking the average of the whole image video stack and
subtracting it from each image frame. 3) Convert the corrected image stacks to a stack of binary
images and find the contours of calcium flickers from the binary images using the OpenCV
library®’. 4) Use the OpenCV library to detect the contours of calcium flickers and detected
flickers were then filtered by adjusting the size/duration of flickers, intensity threshold, minimum

neighbor flicker distance to ensure only “real” flickers of interest were identified in the corrected
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images. The intensity threshold was fine-tuned according to different imaging conditions. Other
parameters used to detect calcium flickers were as follows: min_size = 3.2 um? (20 pixel?),
max_size = 160 um? (1000 pixel?), min_duration = 1 frame, max_duration = total number of
frames, minimum distance between neighbouring flickers =4 um (10 pixels). 5) Validated
flickers were labelled and a rectangle was drawn around the validated flicker for better
visualization. 6) The output .json file was created and exported and contained information about
all the detected flickers including the total number, duration, location, area and average intensity.
The script was implemented using Python. For denoised data, it reached an accuracy of about

92% and for raw data, the accuracy was about 78%.

3.8.5 Calculation of SNR

The SNR was defined as the ratio of signal to noise. For this study, we calculated the
SNR for each detected calcium flicker by taking the maximum intensity of the flicker divided by
the standard deviation of the intensities for the entire duration when the flicker was active. We
first used the automated detection script to identify calcium flickers, and then extract the location
information for each flicker. Within the flicker region, the SNR was calculated by taking the
intensities from the original video stack. The SNR of each video stack was the average SNR of
all detected calcium flickers. This reflects the SNR more accurately because we were interested
in the noise present in calcium signals, rather than the shot noise in the background signals that
do not have calcium activity. The two tailed, equal variance, pairwise T-test was used as a

statistical approach to evaluate the significance of difference between dataset pairs.

3.8.6 Generation of simulated calcium data

Simulated calcium data was generated by adding Poisson and Gaussian noise to the 200
ms exposure time high SNR videos. The Poisson noise was generated using NumPy library®
with a scaling factor of 30 and the Gaussian noise was generated with a standard deviation of 15

times the mean intensity of the original video images.

The performance of denoised models was evaluated by determining if the detected
flickers in denoised results overlapped in time with the original 200 ms exposure time data.
Automated flicker detection as described in Sec 3.8.4 was used. The start and end frame of each
detected flicker in the denoised results were compared to the same detected flicker in the original

200 ms exposure time videos. Flickers were, identified by mapping the x,y information of the
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flickers, with a tolerance of + 2 frames. Precision value was reported as the fraction of true
positive detected flickers among all the detected flickers, reflecting the accuracy of the
algorithms. Recall value was defined as the fraction of true positive detected flickers among all
detected flickers in the original 200 ms exposure time image data, indicating how many ‘real’

flickers were retrieved.
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4 Results
4.1 Deep learning denoising algorithms enhance image SNR better than traditional methods

Calcium flickers were imaged with a higher temporal resolution by setting the exposure
time to 20 ms. This is 10x faster than previous conditions where the SNR was optimized with a
200 ms exposure time (Fig. 6A). Calcium images collected with a 20 ms exposure time were
noisier and it was difficult to distinguish calcium flickers from background (Fig. 6B). Several
methods including mathematical and deep learning denoising approaches were selected to

enhance the SNR and generate images that were more representative of “true” calcium signals.

As mentioned in the introduction section, three different types of deep learning calcium

denoising algorithms were selected and their characteristics are summarized in Table 3.

Exposure time: 200ms

Exposure time: 20ms

A 3 3

Figure 6: More noise is observed in calcium images captured with a short exposure time compared to a long exposure time.
Representative widefield images of HUVEC monolayers treated with Yoda 1 imaged with different exposure times imaging
conditions. The green arrow points toward a calcium wave and the blue arrows point towards calcium flickers. The lower panel are
zoom-in versions of the green/yellow square boxes. (A) Images were obtained with a 200 ms exposure time, 5 fps and 20% lamp
intensity. (B) Images were obtained with a 20 ms exposure time, 50 fps and 20% lamp intensity. The images are of the same field
of view at different time points. Brightness and contrast were auto adjusted for better visualization purposes. Image size:
1024x1024. Scale bar: 40 um.
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NIDDLS3 (2022) Deeplnterpolation® (2021) DeepCAD (2021)

Based on confocal images of the Based on two-photon images of the mouse brain
mouse brain

Supervised Unsupervised
e 512x512 e 512x512 o 1024x1024
e Higher accuracy and e Adapts from Noise2Self and e Based on Noise2Noise model
generalizable Noise2Void models e Increase SNR by 10-fold
e Requires ground-truth data e Increase SNR by 15-fold e A training dataset of ~3500
(supervised) o Takes temporal information frames with high-speed
e  Arelatively small training from pre and post frames imaging is needed
datasets (~500 image pairs) is e Trained on a huge dataset
needed ~10,000 frames

Table 3: Three selected deep learning calcium denoising algorithms and a summary of their different characteristics.

The algorithms were only trained with low SNR 20 ms exposure time calcium images
and tested with a different set of calcium images. Each calcium flicker is unique, and it is not
possible to set up the microscope to image simultaneously at a shorter and longer exposure time
in live cells. Also, since two of the denoising algorithms are unsupervised and do not require
ground-truth data, it is difficult to validate the results. To overcome these issues 10 consecutive
image frames were added together to generate pseudo 200 ms long exposure time. This also
meant that the test data was composed of exactly the same images as for the raw data and all
denoising approaches including the representative traditional mathematical denoising approaches

of Gaussian and median filtering.

The rolling shutter feature of the scientific CMOS (sCMOS) sensor scans the image from
the center to the top or the bottom, resulting in slightly different noise and background properties
within the two halves of the images and a horizontal line in the middle of the image (Fig. 7A). In
addition, uneven illumination was more obvious in shorter exposure time images (Fig. 7A). To
remove the background, uneven illumination and fixed the camera pattern, the test images were
preprocessed by subtracting a camera correction image collected with the same conditions but

with no sample on the microscope and no lamp illumination (Fig. 7A).
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Figure 7: Median filter improves SNR in noisy images. Representative test images with HUVEC monolayers treated with Yodal.
(A)Test images were preprocessed by subtracting a camera correction image to eliminate the fixed pattern artifact from the rolling
shutter (horizontal line in the middle of the image). (B) Time lapse images of the test data. The images were captured with a 20ms
exposure time, 50 fps, 20% lamp intensity. The right panels represent zoomed-in regions of interest from the time series images shown
in the yellow and blue boxes. (C) Denoised test images with the application of a Gaussian filter with a sigma of 1, which corresponds to
a 3x3 kernel. The right panels are zoomed-in versions of the same areas at the same time points in B. Brightness and contrast were auto
adjusted for better visualization purposes. Image size: 1024x1024. Scale bar: 40 um.

By applying different denoising methods, the SNR was improved to a different extent
(Fig. 7, 8) when compared to the raw test image data (Fig. 7B). The Gaussian filter (Fig. 7C) and
median filter (Fig. 8 A) removed noise, but the resulting images are slightly blurred. The

background was reduced but the images were still somewhat pixelated (Fig. 7, 8).

The NIDDL deep learning algorithm corrupted the test image, key features in the data
disappeared and black rectangular blocks were randomly introduced after image processing (Fig.

8B). SNR was not calculated for NIDDL denoising results because this was not meaningful
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Figure 8: DeepCAD and Deep Interpolation enhances the image SNR. Denoised images following the (A) Median Filter
with radius of 1pixel, (B) NIDDL algorithm, (C) Deep Interpolation algorithm, (D) DeepCAD algorithm. (E) Pseudo 200ms
exposure time images from videos by adding 10 consecutive image frames using test data. The starting time in the pseudo
200ms exposure time was the same as other panels but the video had a longer duration. The right panels are zoomed in
versions of the same areas at the same time points in Fig. 8. Brightness and contrast were auto adjusted for better visualization
purposes. Image Size = 1024x1024. Scale bar: 40 um.



considering the excessive image artifacts generated by image processing with the algorithm.
Deep Interpolation (Fig. 8C) improved the SNR ~ 2.5-fold compared to the raw data (Fig. 7B)
and was ~40% better than the mathematical denoising (Fig. 7C, Fig. 8A).

Following processing with the Deeplnterpolation algorithm the calcium signals in the
denoised images appeared to be saturated, making the images look almost like binary masks
(Fig. 8C). DeepCAD denoised results enhanced the SNR (Fig. 8D) by ~2-fold compared to the
raw image data and the SNR was about ~20% higher than for the mathematical denoised
approaches. The DeepCAD denoised result mostly closely matched the pseudo 200 ms high

exposure time images (Fig. 8E).

To further explore the problem of the random blocks present in NIDDL denoised results,
the three denoising algorithms were tested with 512x512 cropped and corrected images of
camera noise (Fig. 9A). The NIDDL algorithm still produced these block artifacts in the denoised
images (Fig. 9B). There were no artifacts generated or false positive calcium signals in the

denoised images following processing with the Deep Interpolation (Fig. 9C) or the DeepCAD

A D
- . el
gy ~‘u§1 Ty
Nojge Image NIDDL Denoised Deep Interpolation Denoised DeepCAD Denoised
[
15.870 173.5°
N: 262144 Min: 15.870
Mean: 18.289 Max: 173.578
StdDev: 4.726 Mode: 17.447 (2523
Deep Interpolation denoised Deep Interpolation denoised Raw Image fins: 50 B Widthe 3,154

Auto brightness and contrast Brightness and Contrast Adjusted

Figure 9: Deep Interpolation denoised results appear as a binary image with default image display properties and
NIDDL denoised results corrupted with pure noise. (A) Camera correction image captured with no imaging slide and no
illumination. Results based on the image in panel E using the (B) NIDDL algorithm, (C) Deep Interpolation algorithm, and
(D) DeepCAD algorithm. (E) Denoised Deep Interpolation image displayed with auto brightness and contrast. (F) Same
image in panel A but the image display settings were manually adjusted for brightness and contrast to accurately reflect the
calcium flicker signals. (G) The image used to test Deep Interpolation. (H) Histogram of panel A/B. Image size: 512x512.
Scale bar: 40 um.
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(Fig. 9D) algorithm, confirming their reliability. Based on these results, we concluded that

NIDDL did not work well with our training and test image datasets and resulted in the generation
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Figure 10: SNR ratio among different denoising methods. (A) and (B) were the same plot. (A) The violin plot of SNR
among raw data and different denoising methods without significance for better visualization of the violin shape. (B) The
same violin plot as (A) with significance. Each gray point represents SNR value of one image video stack, in (B) each data
point was randomly displaced along the x-axis to prevent overlapping. The horizontal line within the violin plot represents
75% quartile, median and 25% quartile from top to bottom respectively. N=30 videos for each method and t-test. **
represents p-value < 0.01, *** represents p-value < 0.001, and N.S represent not significant.
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of significant image artifacts. Due to the artifacts, NIDDL was not carried forward for the SNR

analysis. Based on advice from international experts (Al4Life program -

https://ai4life.eurobioimaging.eu/) in the Al image denoising field it was decided to focus on the
other two denoising algorithms that worked well. Spending significant time modifying code and
adapting the NIDDL algorithm would not be a productive use of time when the other two

algorithms were working well.

To examine whether DeeplInterpolation denoised image results were indeed saturated or if
this was only an image display issue, the images were further analyzed by adjusting the
brightness and contrast and plotting an image histogram. The images only visually appeared to
be saturated, and binary based on the automated image display after performing denoising. The
automatic brightness and contrast were adjusted to show the background information, resulting
in apparent saturation of calcium signals (Fig. 9E). If the brightness and contrast were adjusted
manually to show the calcium flicker intensities accurately, the background was close to black
(i.e. zero intensity) but the calcium flicker intensity signals were not saturated as no white pixels
were seen in the image (Fig. 9F). Compared to the raw image intensity data (Fig. 9G), the Deep
Interpolation denoised results preserved the calcium signals and lowered the background signal,
leading to an improved signal-to-background ratio. The Deep Interpolate image intensity
histogram demonstrates that the flicker intensity data is not saturated on the 8-bit scale (0-255)
(Fig. 9H).

To further quantify the denoised image results, SNR values were calculated using 30
time-lapse image stacks acquired from 3 independent experiments. The SNR was calculated for
each image stack including the raw test images, mathematical denoising (Gaussian, median),
deep learning algorithms (DeeplInterpolation, DeepCAD) and the pseudo 200 ms exposure time.
Overall, the deep learning algorithms improved SNR significantly compared to the raw data,
mathematical denoising approaches or pseudo 200 ms image data (Fig. 10). There was no
significant difference between the SNR for Deep Interpolation and DeepCAD. However, Deep
Interpolation showed a broader more disperse distribution of SNRs and had a few data points
that had poor SNRs close to that of the raw images. The median filter achieved higher SNR
compared to the Gaussian filter. Pseudo long exposure time image stacks showed enhanced SNR

compared to raw data, which makes sense because it mimicked the imaging condition of 200 ms
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exposure time. Based on the more in-depth SNR analysis, DeepCAD appears to provide the most

robust denoising result (Fig. 10).

4.2 DeepCAD is the optimal denoising algorithm
The denoised results from Deep Interpolation and DeepCAD both looked promising, to

further analyze the denoised data and determine if one algorithm was superior to the other,

quantitative methods needed to be established. One direct way to compare the flickers and
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Figure 11: Deep CAD denoised calcium signals aligned well with pseudo high exposure time videos while Deep
Interpolation showed slightly smaller calcium signals. (A) The intensity plot along the and line 2 in the raw image, (B)
Deep Interpolation, (C) DeepCAD denoised images, (D) pseudo long exposure time (200 ms) image. Brightness and contrast
were auto adjusted for better visualization purposes. Scale bar: 20um.
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observe the peaks and background is by using intensity line plot profiles. Based on the intensity
line plot profiles, raw data showed frequent fluctuations in the signal and the background that
were often similar in magnitude (Fig. 11A). This made it difficult to characterize calcium flicker
peaks (size, duration) and to distinguish calcium flicker activity from background. This also
made it difficult to determine the start and end points of the flicker intensity increase and
decrease representing signal initiation and signal end across the image stacks. Deep Interpolation
and DeepCAD both had smoother intensity plots with higher signal and lower intensity
fluctuations across the flickers and in the background (Fig. 11B, C). Following deep learning
denoising algorithm image processing, it is straight forward to identify calcium flickers based on
the intensity line plot profiles (Fig. 11). Deep Interpolation (Fig. 11B) had low background
signals compared to DeepCAD that still showed relatively significant background intensity
values (Fig. 11C). This suggests that Deep Interpolation denoised results may over correct the
low intensity signals. Note that following Deep Interpolation denoising, the second peak along
the shoulder on the yellow intensity plot profile is filtered out and the low intensity peak in the
blue intensity plot is significantly reduced (Fig. 11B). Pseudo 200 ms exposure time intensity
plot profiles showed enhanced SNRs in comparison with raw image intensity data (Compare Fig.

11A, D), with moderate fluctuations in the flicker and background intensity signals.

Since the deep learning denoising methods may change the absolute flicker intensity
during denoising processes, the intensity plots were normalized to intensity values of 0-255 to
enable direct comparisons among the different methods. Compared to the raw flicker intensity
data, the Deep Interpolation and DeepCAD denoised data was smoother and had less fluctuations
in the intensity signals (Fig. 12A, B). When compared to the pseudo 200 ms exposure time
intensity data, Deep Interpolation showed lower intensity values for dimmer signals making it
possible that the second calcium flicker on the blue reference line may be missed (Fig. 12C). As
mentioned above, the shoulder of the calcium flicker on the yellow reference line was filtered out
making the flicker appear truncated and much smaller in area (Fig. 12D). In contrast, the
normalized intensity plot of DeepCAD denoised results aligned well with intensity plot data
from pseudo high exposure time image intensities, confirming its accuracy of the intensity and

spatial information characterizing calcium flickers (Fig. 12C, D).
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Figure 12: Normalized intensity plots among raw and multiple denoised methods. Normalized intensity plot (0-255)
along (A) and (B) line2 among raw data, Deep Interpolation and DeepCAD. Normalized intensity plot (0-255) along
©) and (D) line2 among pseudo long exposure time, Deep Interpolation and DeepCAD. The intensity plots were
based on Fig. 11.

In addition to measuring and comparing the intensity profile plots across selected calcium
flickers, another quantitative method for comparison of the different denoising methods was to
manually count the number of calcium flickers present in timelapse image datasets. Since the
aim of this study was to determine if deep learning denoising algorithms could detect fast
calcium flickers missed by current calcium imaging protocols, we hypothesized that more
flickers would be detected by denoising the images captured with high temporal resolution. It is
difficult to apply automated scripts to count the number of flickers present in the raw image data
because of the low SNR. This made the automated process to distinguish calcium signals from
the background error prone. Therefore, to ensure the consistency of the results, manual flicker
counting was performed on all videos from three independent experimental replicates for all raw

and denoised image data sets (Table 4).

Three experimental replicates of calcium image flicker data imaged with 20 ms exposure
time were collected. The total number of calcium flickers present in each video was normalized

to the number of flickers counted in the raw image data set. Deep Interpolation and DeepCAD
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showed an increase in the number of flickers compared to the raw data (Table 4, Fig. 13A).
DeepCAD denoising resulted in slightly more flickers compared to Deep Interpolation.
Regarding the pseudo long exposure time data, it had significantly fewer calcium flickers
compared to DeepCAD denoised data but a similar number of flickers compared to raw data,
indicating that some low intensity flickers were missed. This is expected with long exposure time
as dim intensity flickers could fade into the background with the long exposure time. Videos with
200 ms exposure times were obtained as a reference and a similar number of flickers was
measured as with the pseudo 200 ms exposure time data but the 200 ms exposure data showed a
much boarder distribution of numbers of flickers (Fig. 13A, B). It is not unexpected that the 200
ms image stacks had more flickers compared to the raw image data because the videos were
captured at different times and the frequency of calcium flickers might be different for the same
set of cells. In some cases, the 20 ms exposure time videos were captured in the same field of
view but after the 200 ms exposure time videos were captured. Thus, the number of flickers in
the raw 20 ms exposure time videos could have been reduced due to phototoxicity. However,
control experiments on fixed cells using the same imaging conditions did not show any evidence
of fluorescence photobleaching making high levels of phototoxicity unlikely (data not shown).
Overall, the 200 ms exposure time video data had a very broad distribution with some videos

having much fewer flickers and others many more (Fig. 13B).

. . Deep % of Raw % of Raw
Denoising methods | Raw Data el Data DeepCAD Data
Total # of flickers 662 772 117% 865 131%
# of flickers with a o o
duration <200 ms 103 64 62% 108 105%

Table 4: Number of total and fast flickers in different videos. Total number of flickers was counted manually and the number of
flickers with a duration less than 200ms was counted using automated scripts.

To further explore the characteristics of the detected flickers in the raw versus denoised

timelapse videos, an automated detection script was developed and used to extract the duration,

intensity and area information of each detected flicker. In this case, the total number of flickers

was lower than the number counted manually but this enabled automated segmentation and

measurement of flicker properties. Automatically detected flickers with a duration <200 ms

accounted for 15.6%, 8.3% and 12.5% of the total number of flickers for the raw, Deep

Interpolation or DeepCAD denoised data respectively (Table 4). When looking only at the fast
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Figure 13: Denoising methods detect more dim calcium flickers with longer durations. (A) Violin plot of the number of
flickers present in each image video stacks normalized to raw data. Each dot inside the violin plot represents the mean of
each experiment. N=30 for each method. (B) Same plot as panel (A) but includes individual data points for each video. (C)
Violin plot of the area of calcium flickers detected by the automated detection script. The plot was filtered to show flickers
with an area smaller than 50 um? for better visualization. (D) Violin plot of the duration of calcium flickers detected by the
automated detection script. The plot was filtered to show flickers with a duration shorter than 3000 ms for better
visualization. The horizontal line within the violin plot represents 75% quartile, median and 25% quartile from top to bottom
respectively. N.S. represents not significant, * represents p-value <0.05, ** represents p-value < 0.01 and *** represents p-
value < 0.001. Individual data points were randomly displaced along the x-axis to prevent overlapping. Scatter plot of
duration and intensity of calcium flickers detected by the automated detection script in (E) raw data (F) Deep Interpolation,
(G) DeepCAD. Each blue point represents a single flicker. The intensity was normalized to 0-255.
flickers, Deep Interpolation missed ~38% of them while DeepCAD detected essentially the same
number as in the raw data. The loss of flickers following Deep Interpolation denoising is likely
due to the over correction of the background and loss of low intensity flickers. Interesting, this
indicated that most fast flickers can be captured without denoising so they must be bright enough
to be distinguished from the noisy background and the extra flickers detected by DeepCAD

might be low intensity flickers with slower dynamics.

The area of the automatically detected calcium flickers from the 30 videos was measured
for the raw and denoised image data sets. Deep Interpolation were the only images that had a
large populations of calcium flickers with a smaller size (Fig. 13C). This further confirms the
previous finding that Deep Interpolation denoising results in dim flickers disappearing and large
flickers appearing much smaller than they really are (Figs. 11, 12). This is expected as the Deep
Interpolation algorithm resulted in a dark image background indicating low intensity data
clipping. DeepCAD had a similar distribution of flicker area as pseudo and actual 200 ms
exposure time videos and all three captured more flickers with a size larger than 20 um? (Fig.
13C). Deep Interpolation and DeepCAD denoising also resulted in the detection of more flickers
with a duration greater than 2000 ms (Fig. 13D). This aligns with the previous conclusion that
the low SNR in raw image data can cause inaccurate identification of the starting and ending

timepoints of the flicker signal, leading to a truncated or shorter calcium flicker duration.

Scatter plots were made using raw, Deep Interpolation and DeepCAD denoised data to
further explore the distribution of the flicker data and any relationship between different flicker
characteristics. A Duration versus Normalized Intensity plot of the Raw flicker data shows a
scatter plot with flicker durations up to ~3000 ms (3 s) and normalized intensities from 0-255
(Fig. 13E). The majority of flickers had a duration of less <1000 ms. Interestingly, the longest

duration flickers also correspond to lower intensity flickers. Deep Interpolation shows a shift to
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lower normalized intensities with a large number below 20 intensity units demonstrating that the

denoising algorithm clips the low intensity data from the images (Fig. 13F). DeepCAD showed

B C
Maximum Intensity Projection Maximum Intensity Projection Maximum Intensity Projection of
of calcium flickers in raw data of calcium flickers corrected calcium flickers in Deep Interpolation
for background and cell shape denoised results
D F =%
Wit inmuis Intensity Projection of Maximum Intensity Projection of Automated counting of number of flickers

calcium flickers in DeepCAD

denoised results calcium flickers in pseudo 200 ms

exposure time videos

200 ms exposure time data Simulated noisy calcium
flicker data

Figure 14: Denoising algorithms detect more calcium flickers compared to raw data. Maximum intensity projection
(MIP) of (A) raw data, (B) raw data corrected for background and cell shape, (C) Deep Interpolation, (D) DeepCAD
denoised results and (E) pseudo long exposure time videos. (B) was the MIP for the first 20 frames for better visualization
and all other MIPs were for the entire test image stacks. Yellow boxes in (C) highlight some examples of low intensity
flickers that were detected by DeepCAD and not detected in raw and pseudo 200 ms exposure time videos. (F) Mask of
automated counting the number of flickers present in time lapse images. Each blue box represents a detected calcium
signal in DeepCAD denoised data. (G) 200 ms exposure time high SNR data, served as ground truth data for simulated
noisy calcium flicker data. (H) Simulated noisy calcium flicker data by adding Poisson and Gaussian noise to 200 ms
exposure time data. Brightness and contrast were auto adjusted for better visualization purposes. Image Size = 1024x1024.
Scale bar: 40um.
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more flickers in the upper left corner of the plot which represents the long duration and low
intensity flickers (Fig. 13G). There was a portion of bright flickers lost in the DeepCAD data that
could be the result of an artifact caused by the change of intensity during the denoising process
(Fig. 13G). Overall, DeepCAD denoising improves the detection of low intensity long duration
flickers likely due to the ability to detect the flickers early and late in their dynamic process
when they are dim. These long duration flickers of variable intensity are not detected in the raw

data and the low intensity ones are filtered out with the DeepInterpolation denoising algorithm.

Maximum intensity plots were used to visualize all the flicker activities present
throughout the entire timelapse videos. Looking back at the data, the small dim flickers were
easily missed in the raw data because the background was noisy, and it was difficult to
distinguish whether it is a true signal or random noise (Fig. 14A-E). Automated counting of
calcium flickers was developed to facilitate the counting process and visualized the detected

flickers by drawing a blue box around each detected flicker (Fig. 14F).

Simulated low SNR 200 ms calcium data was generated by adding Poisson and Gaussian
noise to 200 ms exposure time videos to further validate the denoised results (Fig. 14G, H). For
each detected flicker in the original 200 ms exposure image data. Time overlaps for individual
flickers according to the start and end frame were checked by comparing the same flicker in the
original 200 ms exposure time image with the denoised results of simulated low SNR images.
Deep Interpolation achieved 61% precision in detecting flickers and recovered 26% of the
flickers while DeepCAD had a precision value of 60% and retrieved 78% of the flickers (Table
5).

Methods Deep Interpolation DeepCAD
# of flickers in 200 ms exposure 211
time videos in 5 seconds
# of flickers in denoised videos 88 276
# of matched flickers 54 164
Precision Value 0.61 0.60
Recall Value 0.26 0.78

Table 5: Accuracy and recall value of Deep Interpolation and DeepCAD denoised results. The precision and recall value were
calculated using 3 independent videos.
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Figure 15: DeepCAD denoises images captured at a short exposure time of 10ms. (A) Test raw data imaged at 10 ms, 100
fps. Denoised image using (B) Deep Interpolation, (C) DeepCAD denoising models and (D) Pseudo 200 ms exposure time
videos by adding together 20 consecutive image frames using the test data. The second frame in the pseudo 200 ms exposure
time was at the same time point as other panels but has a longer duration. The right panels are zoomed in images of the blue
box region. Image Size = 512x512. Scale bar: 40 um. Normalized mean intensity of the area of interest, the calcium wave
originated from localized calcium activity, illustrated by the yellow annotations in panel (D), in (E) raw data,
Deeplnterpolation, DeepCAD denoised results and pseudo 200 ms exposure time videos. (F) Box plot of number of flickers
present in each video using different denoising methods. N=10 videos. The upper and lower bounds of the box indicate 75%
and 25% percentiles respectively and the middle line inside the box indicated 50%. The whiskers represent the maximum and
minimum values of each box plot. Each gray dot represents the number of flickers in one video. Data points outside the box
were outliners. N.S. represents not significant.
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4.3 DeepCAD can push the temporal limit of calcium imaging to 10 ms or 100 fps

To further test the temporal limit of the denoising algorithms, timelapse images with an
even shorter exposure time of 5 or 10 ms were obtained as additional test datasets for Deep
Interpolation or DeepCAD denoising. Since there were few calcium flickers present in the raw
data, it was not possible to quantify the SNR in the raw data with 5 and 10 ms exposure time
image videos. Comparing to images captured at 20 ms exposure time (Fig. 7B), images at 10 ms
exposure time were much nosier and it was difficult to visualize the flicker intensity signals
relative to the background (Fig. 15A). Deep Interpolation denoised images had a slightly lower
SNR compared to raw data (Fig. 15B) while DeepCAD was able to denoise images and improve
SNR by ~2-fold (Fig. 15C). The flicker on the top left of the 10 ms denoised images (Fig. 15B,
C) clearly showed the propagation of the calcium flicker in space and time. In comparison, the
pseudo 200 ms exposure time images (Fig. 15D) that do not resolve the flicker dynamics with
high precision. Based on the plots of normalized mean intensity over time, raw data showed the
propagation and diffusion of calcium waves with moderate fluctuations while DeeplInterpolation
and DeepCAD denoised results had minor fluctuations (Fig. 15E). Deep Interpolation denoised
results showed clipped calcium activity as the flicker intensity started to decrease earlier after the
peak compared to other methods (Fig. 15E). For bright flickers, pseudo 200 ms exposure time
videos had a similar temporal flicker shape of the plot compared to raw image data and
DeepCAD denoised results, but the points were dispersed, leading less well-defined flicker
intensities over time (Fig. 15E). The total number of flickers present in raw and denoised videos
were manually counted and there was an increase in denoised videos compared to raw data but
the difference was not significant (Fig. 15F). There was no significant change in the total number
of flickers in raw and pseudo long exposure time videos. Perhaps with additional data collection

there could be a significant difference in flicker detection with denoising.

Calcium flickers were not visible in raw images captured with a 5 ms exposure time (Fig.
16A) and were barely visible with Deep Interpolation (Fig. 16B) or DeepCAD (Fig. 16C)
denoising. Even with the pseudo long exposure time images, both the calcium flicker and the
background were hard to distinguish due to the noise contribution from adding together 40 short
exposure images (Fig. 16D) when compared to a single image captured with a 200 ms exposure

time (Fig. 16E). It would be difficult to study the localization of the flickers with 5 ms exposure
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time data because the cell shape is not visible. Deep Interpolation and DeepCAD restored the

" i
h i
" “

calcium signals from the raw data but they are still difficult to detect.
g ' B
" "
Raw Data Deep Interpolation
S5ms Denoised

" “ D
h "
Deep CAD Pseudo 200ms
Denoised Exposure Time
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Raw Data
200ms

Figure 16: Deep Interpolation and Deep CAD recover the signal from noisy images captured with a S ms exposure
time but cell shape and background information is not revealed. (A) Test raw data imaged at 5 ms, 200 fps, center camera
quadrant. (B) Denoised image using Deep Interpolation, (C) Denoised image using DeepCAD and (D) Pseudo 200ms
exposure time image created by adding together 40 consecutive image frames using the test data. The starting time point in
the pseudo 200 ms exposure time was the same as other panels but has a longer duration. The right panels are zoom in
images of the data within the blue box. Brightness and contrast were auto adjusted differently for each image panel for better
visualization purposes. Image Size =512x512. Scale bar: 40 um.

56



5 Discussion

This project aimed to develop a fast calcium imaging protocol with optimal spatial and
temporal resolution using deep learning denoising algorithms. There are many denoising
algorithms mentioned in the introduction section, but most of them are not based on calcium
imaging. Three calcium denoising algorithms of different types including supervised and
unsupervised algorithms were chosen and compared to determine the performance of these
different deep learning models (Table 3). Based on several factors it was determined that
DeepCAD was the best algorithm for denoising the calcium imaging data collected during this

project.

DeepCAD was easiest to install and had clear instructions. Many problems were
encountered with NIDDL and Deep Interpolation in terms of setting up the environment. For
NIDDL, the instructions were confusing and difficult to follow, and some scripts are hard coded
for reading and processing the image files, so the users need to either follow the name
restrictions in the code or directly modify the scripts. This makes this algorithm difficult for non-
experts to install and use. NIDDL did have a clear and complete explanation for TensorFlow, but
it is built on an out-dated TensorFlow version that cannot be installed on the DRAC advanced
computing resource. Only limited instructions were available for the PyTorch version of the
algorithm but that did work. Deep Interpolation requires a large amount of training data and
powerful advanced computing units. Based on the training experience for this work, even when it
was trained with a powerful GPU (Tesla 4) it was slow. It took about 4 hours for Deep
Interpolation to train on a single video while DeepCAD took less than 1 hour for the same video.
This is a major limiting factor for implementing Deep Interpolation and especially for research

groups that do not have access to advanced computing resources and expert computer scientists.
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Most deep learning denoising models are designed for mouse brain images captured with
a multi-photon microscope>~%%, In neuroscience, live cell imaging sometimes needs multi-
photon infrared imaging to go deep into the tissue and some neurons are sensitive to visible
light>3-%60, Scattering in tissue and the need to minimize excitation light can lead to insufficient
illumination conditions and low signal to noise images. For all live cell imaging experiments
there is a desire to reduce the illumination light power and/or exposure time to minimize
photobleaching and phototoxicity and maintain sample health®. By applying denoising methods,
the illumination light power and/or duration can be decreased to reduce phototoxicity and keep
cells healthy throughout the imaging session. These methods can also improve the SNR for
images collected deep within tissue. As discussed in this thesis, denoising can make rapid
imaging possible by reducing the necessary camera exposure time while maintaining a
satisfactory SNR to identify objects or events of interest. Previous studies obtained their low
SNR images by using low laser power on a confocal microscope®?>%%, Here the images had low
SNRs because the exposure time was short. The goal of this work was to apply denoising
methods to improve the SNR allowing high speed imaging of calcium signals with cultured cell

monolayers.

All the denoising methods including mathematical filters and deep learning denoising
algorithms enhanced SNR significantly but deep learning models outperformed traditional
mathematical methods. Among the selected deep learning algorithms, NIDDL did not work for
our training and testing datasets because it introduced many artifacts in denoised images that
interfered with imaging of calcium flickers. So, we focused on comparing Deep Interpolation
and DeepCAD denoising to improve calcium flicker detection and characterization. Both of them

detected more flickers compared to raw data, but Deep Interpolation reduced the flicker size,
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clipped low intensity flickers and only detected ~62% of fast flickers. DeepCAD retrieved dim

flickers without altering the biological structures.

Traditional mathematical filters like Gaussian and median filters improve the SNR of the
image but they caused image blur at the same time. This can impact the flicker characteristics by
possibly changing the flicker area and under or overestimating it relative to raw data. Although
the mathematical filters are relatively easy to use, the processing time is nearly instantaneous and
ImagelJ/Fiji has the built-in function of different mathematical filters, they didn’t improve SNR

as much as deep learning algorithms (Fig. 10) so they were not pursued further.

Unfortunately, NIDDL resulted in many image artifacts after training and testing with our
image datasets. One possible reason for this is the difference in the training dataset relative to the
original study. The original low and high SNR dataset®® used by Chaudhary et al. was obtained
with calcium signals in live mouse brains and the time differences between the two stacks was
short (~100 ms) compared to the dynamics of calcium signal in neurons. So, the paired images
used for training contained similar temporal information. In our case, we used fixed cells to
generate paired images with the same signals for training the algorithm. This is because there
would have been significant changes in the calcium flicker signals in the HUVEC monolayers
with a 100 ms time difference between images. However, the original live cell data used to train
NIDDL could have had temporal features in the image data that were critical for algorithm
training. So some of the image artifacts could be a result of training on static calcium flicker
image data with only the noise varying. After careful discussion with international Al image
analysis experts from the Euro Bio-Imaging Al4Life program, it was decided to move on with
the two other denoising algorithms that were working well and not to try to resolve, recode or

retrain NIDDL.
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Based on the Deep Interpolation results, it is tempting to recognize the denoised results as
a binary image. After checking the histogram, it determined that this was only an image display
problem, resulting from the fact that the Deep Interpolation algorithm reduces background so
much that many pixels are black and read zero intensity units (Fig. 9E, F). This benefits
segmentation tasks and increases the image SNR since there is minimum background signals.
Deep Interpolation enhanced the image SNR significantly compared to raw data (Fig. 10), but by
looking at the intensity plot of flickers following Deep Interpolation denoising, it was clear that
the algorithm clips low intensity data from the images, minimizes the size and peak intensity of
the flickers and changes their spatial (Fig. 11, 12 and 15E) and temporal shape. This then alters
the biological features that are being measured and resulted in many low intensity flicker signals
being removed from the images and the analysis as they were below the detection range for both
manual and automated flicker detection and counting (Table 4). Based on the results of simulated
low SNR calcium flicker data, Deep Interpolation only detects about 26% flickers compared to

200 ms exposure time image data (Table 5).

DeepCAD was the best denoising approach for the datasets under study during this thesis
work for many reasons. The flicker sizes were similar to those in the pseudo long exposure time
or 200 ms exposure time image data sets (Fig. 14B). It gives the best SNR without any apparent
image artifacts (Fig. 16C, D) and DeepCAD denoised images resulted in the detection of the
highest number of calcium flickers from the test dataset (Table 4, Fig 13). The original
hypothesis for this thesis was that with faster imaging rates and deep learning-based image
denoising more fast calcium flickers would be detected. It turned out that the fast flickers were
bright enough to be identified in raw image data with 20 ms exposure times (Table 4). However,

DeepCAD denoising resulted in the detection of additional flickers that corresponded to dim
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flickers with a long duration (Fig. 14B-F). In principle, with fast imaging at 100 fps the
DeepCAD denoising models can capture fast flickers that could otherwise be missed by current
imaging protocols and low intensity flickers occurring on any timescale that would normally be
lost in the noisy background of short exposure images. In addition, the flicker duration is more
accurate because when the flickers are dim at the start and end of the flicker event are
determined more accurately. DeepCAD seems to generate a small intensity periodic intensity
peak across the data. This phenomenon needs further investigation to determine how this artifact
arises and find ways to mitigate it (Fig. 15E). Although in some cases Deep Interpolation shows
higher SNR this is due to the fact that it is clipping low intensity data resulting in loss of features
within the images. In addition, DeepCAD retrieved 78% of flickers while Deep Interpolation
only recovered 26% when tested with simulated low SNR calcium image data (Table 5). The fact
that that 22% of flickers remain undetected demonstrates that more work needs to be done to
improve DeepCAD denoising. Thus, DeepCAD is preferred as it detected dim flickers that are
missed in the raw 200 ms exposure time data, it does not clip low intensity data like Deep

Interpolation but further improvements are needed.

The automated calcium flicker detection script detects ~80% calcium flickers for raw
image data and achieving an accuracy of ~90% for denoised data. This reduced manual labor
efforts and allowed for the detailed measurement of flicker numbers, area and duration. It is
always tricky to quantify the effectiveness of an unsupervised model because it does not have
ground truth data to compare to. In live cell imaging, each cellular event is random and unique so
it is impossible to capture the exact same event twice with different imaging conditions. In this
study, we generated pseudo-long exposure time videos so that the performance of different

denoising methods could be evaluated.
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For deep learning denoising methods, the denoised images are generated from the input
data. It is possible that the deep learning model generates something that does not exist or is not
reflected in the raw data (like what was observed with the NIDDL algorithm), also known as a
false positive. Vice versa, there can also be false negatives which refer to the situation when the
model removes signals that are present in the raw data. To ensure that the denoised results were
accurate with no extra synthetic signals and no signals missing, simulated calcium data is the
optimal method to choose. By using simulated calcium data, the exact number, intensity, area,
duration and location of calcium flickers would be known. The denoised results could then be
examined to determine its accuracy and if any false flickers are generated or real flicker signals
are removed in the denoised images. Current simulated calcium data are mostly based on
calcium signals in neurons’®, and there is no existing synthetic calcium flicker data for cultured
cell monolayers. Future work can be done to generate simulated calcium flicker data similar to
what is seen in the HUVEC cell models and it could be used to evaluate the performance of

denoising algorithms.

The main goal is that DeepCAD detects low intensity flickers that are missed otherwise.
It more accurately captures the temporal flicker characteristics including accurate identification
of flicker initiation and flicker duration. With the 20 ms resolution we can more accurately
characterize the flicker area and temporal signal and duration, while minimizing phototoxicity
and photobleaching in live samples by reducing light exposure. Based on the current denoising
results, using the imaging set up and conditions developed during this project, the temporal
resolution of calcium flicker imaging can be optimized for rapid 100 fps live cell imaging. This
is 20x faster than the current optimized protocol being used for the system. One possible reason

that the denoising models didn’t work well for images captured with 5 ms exposure time was that
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the input image was so noisy that there are no obvious calcium signals that the model can refer to
and predict on (Fig. 17A). It is possible that retraining DeepCAD with 5 ms exposure time
training data from fixed and/or live samples could improve its performance. Other possibilities to
improve temporal resolution could include: 1) increased excitation light power to improve the
image SNR with short exposure times improving the image quality to determine if the denoising
model can generate high SNR denoised images, 2) use of a more efficient microscope light
emission light path, or 3) use of a more sensitive camera detector. Interestingly, it was not rapid
flickers but low intensity flickers that DeepCAD was able to pull out of the noise of raw images.
In the future, the ability to image rapidly could be used to multiplex and add 1) a second or third

fluorescence channel, 2) rapid tiling of large sample areas or 3) z-stacks for 3D imaging.

From the perspective of the biological sample and the calcium sensor, these experiments
were conducted with the GCAMP-6s calcium indicator. Recently, a faster and more sensitive
family of GCAMP-8[f,m,s] calcium indicators were developed’!, with enhanced brightness and
faster rise and decay times with ti2 of 10 ms and 100 ms, respectively. This will improve the
spatial and temporal resolution because of improved brightness and help with the detection of
fast and low intensity flickers while minimizing phototoxicity to ensure sample health. These
new sensors will also reflect the calcium dynamics more accurately and help improve
measurements of the dynamics and characteristics of calcium flickers. Further studies can be
done using the fast calcium imaging protocol developed here to investigate the origin of calcium
waves and better identify the characteristics (e.g. size, rise time, decay time, frequency, duration)
of calcium flickers, which should help understand the fundamental biological functions of

calcium flickers.
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6 Conclusion

In summary, we have accomplished our goal of developing an optimized calcium
imaging protocol with enhance temporal resolution using deep learning denoising methods.
Among the selected denoising algorithms, DeepCAD outperformed the other two in enhancing
SNR. It also retrieved the highest number of dim flickers from the raw videos and the structure
of detected flickers were accurate and similar to pseudo high exposure time images. Using
denoising algorithms, fast calcium imaging can be achieved and fast and/or dim calcium flickers
that are missed by current calcium imaging protocol can be identified and characterized. With
DeepCAD, the temporal resolution limit can be pushed up to at least 100 fps. The new protocol
enables rapid calcium imaging while maintaining optimal spatial resolution and SNR with no
evidence of phototoxicity. In the future, it can be used as a power tool to perform fast calcium
imaging to study transient cellular events. It could also be applied to study other rapid cellular

events or characterize low intensity features within biological samples.
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