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Abstract 

Calcium ions (Ca2+) are highly regulated signaling molecules involved in many aspects of 

cellular physiology. Transient localized Ca2+ signals, also referred to as flickers, are generated 

upon calcium influx through the mechanosensitive calcium channels located at the plasma 

membrane such as Piezo 1. In live cell fluorescence imaging, achieving a satisfactory signal-to-

noise ratio (SNR) while maintaining cell health often requires a sacrifice in temporal and/or 

spatial resolution. Since calcium flickers are highly dynamic and they rise and fall within tens of 

milliseconds, traditional imaging protocols that use 200 ms exposure time to achieve an optimal 

SNR may miss some small or short-lived flickers. This study aimed to develop an optimized fast 

calcium image acquisition protocol for the precise identification and characterization of calcium 

flickers. There are multiple ways of image denoising: mathematical methods including Gaussian 

and median filters, and deep learning denoising algorithms including NIDDL, Deep Interpolation 

and DeepCAD. We used widefield imaging to capture calcium flickers in cultured cell 

monolayers expressing a membrane anchored GCaMP6s fluorescent calcium sensor with stream 

camera acquisition and different camera exposure times. Manual flicker counts served as ground 

truth data while an automated flicker detection script was developed to detect and characterize 

calcium flicker properties. Deep learning denoising models outperformed traditional 

mathematical filters with less image blurring and higher SNR. Among the three selected deep 

learning models, DeepCAD was the optimal one. NIDDL generated large square artifacts within 

the images while Deep Interpolation over corrected images resulting in the loss of low intensity 

information. DeepCAD achieved the highest SNR, detected the highest number of flickers 

relative to 200ms flicker counts, was able to detect the highest number of dim calcium flickers, 

maintained the flicker area relative to long exposure images, allowed more accurate 

determination of flicker durations and did not generate any apparent image artifacts. The 

temporal resolution of DeepCAD can be pushed to effectively measure Ca2+ flickers at 100 

frame per second. It is also straightforward to install, train and implement, making it accessible 

to life scientists without the need for extensive computer science expertise. Overall, the new 

calcium image acquisition and analysis protocol developed during this thesis work enables rapid 

image acquisition for more precise identification and characterization of Ca2+ flickers with high 

spatial and temporal resolution. This work provides an effective protocol and tools to effectively 

measure and understand the dynamics and characteristics of calcium flickers. 
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Abrégé 

Les ions calcium (Ca2+) sont des molécules de signalisation hautement régulées 

impliquées dans de nombreux aspects de la physiologie cellulaire. Les signaux de calcium 

localisés et transitoires, appelés scintillements, sont générés par l’influx de calcium à travers les 

canaux calciques mécanosensibles, tels que Piezo 1, situés dans la membrane plasmique. En 

imagerie par fluorescence avec des cellules vivantes, atteindre un rapport signal/bruit satisfaisant 

tout en maintenant la santé des cellules nécessite souvent un sacrifice en termes de résolution 

temporelle et/ou spatiale. Étant donné que les scintillements de calcium sont très dynamiques et 

qu'ils apparaissent et disparaissent en quelques dizaines de millisecondes, les protocoles 

d'imagerie traditionnels utilisant un temps d'exposition d’environ 200 ms pour atteindre un 

rapport signal/bruit optimal peuvent manquer certains scintillements petits ou de courte durée. 

Cette étude visait à développer un protocole optimisé d'acquisition rapide d'images de calcium 

pour l'identification et la caractérisation précises des scintillements de calcium. Il existe plusieurs 

méthodes de débruitage d'image : des méthodes mathématiques incluant les filtres gaussiens et 

médians, et des algorithmes de débruitage par apprentissage profond incluant NIDDL, Deep 

Interpolation et DeepCAD. Nous avons utilisé l'imagerie en épifluorescence pour capturer les 

scintillements de calcium dans des cellules en culture exprimant un capteur de calcium 

fluorescent GCaMP6s ancré à la membrane, avec une acquisition de caméra en flux et différents 

temps d'exposition. Le compte manuel de scintillements a servi comme données de référence 

puis un script automatisé de détection de scintillements a été développé pour détecter et 

caractériser les propriétés des scintillements de calcium. Les modèles de débruitage par 

apprentissage profond ont surpassé les filtres mathématiques traditionnels produisant des images 

moins floues et des rapport signal/bruit plus élevés. Parmi les trois modèles d'apprentissage 

profond sélectionnés, DeepCAD était le meilleur. NIDDL a généré de grands artefacts carrés 

dans les images tandis que Deep Interpolation a corrigé les images de manière excessive, 

entraînant la perte d'informations de faible intensité. DeepCAD a atteint le rapport signal/bruit le 

plus élevé, a détecté le plus grand nombre de scintillements par rapport au données de références, 

a été capable de détecter le plus grand nombre de scintillements de calcium faibles, a maintenu la 

zone de scintillement par rapport aux images à longue exposition, a permis une détermination 

plus précise de la durée des scintillements et n'a généré aucun artefact visible dans les images. La 

résolution temporelle de DeepCAD peut être poussée pour mesurer efficacement les 
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scintillements de Ca2+ à 100 images par seconde. Cet algorithme est également simple à installer, 

à entraîner et à mettre en œuvre, le rendant accessible aux scientifiques des sciences de la vie 

sans nécessiter de compétences profondes en informatique. Dans l'ensemble, le nouveau 

protocole d'acquisition et d'analyse d'images de calcium développé au cours de cette thèse permet 

une acquisition rapide des images pour une identification et une caractérisation plus précises des 

scintillements de Ca2+ avec une haute résolution spatiale et temporelle. Ce travail fournit un 

protocole efficace et des outils pour mieux mesurer et comprendre la dynamique et les 

caractéristiques des scintillements de calcium. 
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1 Introduction 

The study on the function, dynamics and downstream binding proteins of calcium flickers 

is ongoing and constrained by the limit of spatiotemporal resolution of the current calcium 

imaging protocols. The objective of this study was to develop an optimized calcium imaging 

protocol with enhanced spatial and temporal resolution and apply denoising to enable the 

detection and characterization of calcium flickers in a more accurate way.  

Rapid calcium imaging with a shorter camera exposure time results in an increased 

amount of noise in the image data, often making flickers indistinguishable from background 

making it impossible to measure and interpret calcium signals. To remove the noise and restore 

the true calcium signals in the sample, three state-of-the-art deep learning-based denoising 

methods were selected. All of them were designed based on neuronal calcium imaging and have 

not been tested using endothelial cell monolayer calcium imaging data. Each of them belongs to 

a different deep learning category (supervised or unsupervised) and is designed based on a 

separate deep learning model.  

The aims of the thesis were to: 1) train the three denoising algorithms with low signal-to 

noise ratio (SNR) calcium image data from human umbilical vein endothelial cells (HUVECs) 

(for high SNR calcium image data pseudo high exposure time images were created by adding 

together consecutive images within a time series); 2) test the three selected denoising algorithms 

for accuracy of image denoising; 3) validate the best denoising algorithms by testing them on 

image data and counting and characterizing calcium flickers.  

Further exploration of the limit of temporal resolution was tested on the selected optimal 

denoising algorithms, to determine the temporal limits and determine if ultrafast calcium 

imaging is possible with the new calcium imaging protocol. By achieving high speed calcium 

imaging, those fast calcium flickers that are otherwise missed because of time delays between 

image frames or they are averaged out over long exposure times can be captured. The 

hypothesize is that application of denoising deep learning algorithms will enable rapid calcium 

imaging and greater accuracy in detecting and characterizing calcium flickers in cell monolayers. 
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2 Literature Review 

2.1 Overview of calcium signalling in cell migration 

Calcium (Ca2+) is one of the key chemical elements that is involved in many biological 

functions. For example, at the organismic level, calcium is the major component of the bone, 

supporting skeleton mineralization1. At the tissue level, Ca2+ triggers synaptic vesicle exocytosis, 

leading to the release of neurotransmitters and thereby initiating neuronal signal transmission2. 

Ca2+ also regulates contraction of multiple types of muscle including striated and smooth muscle 

via different signaling pathways3. At the cellular level, Ca2+ regulates cell proliferation, migration 

and invasion4,5. Dysregulated Ca2+ signaling has been linked to cancer through the induction of 

calcium channel alterations, interactions with receptors and remodeling of the extracellular 

matrix6. 

Cells can migrate as single cells or as a collective of cells. Migrating cells can move in a 

directional way in response to diffusible chemicals or ligands7, mechanical cues8, and substrate-

bound chemo-attractants9. In single cells, two modes of migration are amoeboid and 

mesenchymal. Amoeboid migration is mainly characterized by gliding and rapid migration 

through morphological expansion and contraction, primarily seen in highly motile cells including 

neutrophils, dendritic cells and lymphocytes10. These amoeboid cells usually have weak integrin-

mediated adhesions and some are even integrin-independent11,12. On the other hand, 

mesenchymal migration involves multiple steps including protrusion at the cell front, adhesion 

formation, force generation by stress fibers, movement of the cell body forward, disassembly of 

adhesions at the cell rear and detachment at the rear end. Cells can also move together 

collectively as a group, remaining connected throughout the process. Leader cells in the front 

senses the environmental stimuli and follower cells respond to the guidance cues from the leader 

cells or neighboring cells13. In fact, leader cells function in a similar way as the cell front in 

individual cell migration. 

Cell migration involves temporal and spatial coordination of multiple structural 

components such as actin and myosin14,15 and regulatory proteins such as Rac, RhoA and 

Cdc4213,16,17. Calcium signals regulate directed cell movement through a spatially and temporally 

regulated dynamic architecture of intracellular calcium dynamics. In migrating cells, cytosolic 

Ca2+ levels are low in the cell front (~30 nM) and high in the cell back (~70 nM)18. The gradient 
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is maintained by plasma membrane Ca2+-ATPase pumping Ca2+ to the extracellular space with an 

increased activity in the cell front19 and voltage-gated L-type Ca2+ channels in the cell back to 

maintain a high level of Ca2+20. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) 

pumps cytosolic Ca2+ into the internal Ca2+ storage, endoplasmic reticulum (ER) (~100 𝜇M), to 

maintain low cytosolic Ca2+ at the cell front. But SERCA is not responsible for maintaining the 

calcium gradients because dysfunction of SERCA activities results in paradoxical increase of 

Ca2+ gradients19. 

The front of the cell protrudes first by forming lamellipodia and/or filopodia and then can 

retract slightly introducing tension that leads to new adhesions growing or new adhesions 

forming and stabilizing21 their link to the actin cytoskeleton and extracellular matrix (ECM) 

mediated through myosin contraction22. Local calcium pulses are generated by rapid Ca2+ influx 

into the cell through stretch-activated channels (SACs), e.g. stretch-activated transient receptor 

potential channels (TRP) and Piezo channels. Polarized cell surface receptors including G-

protein coupled receptors and receptor tyrosine-kinases activate phospholipase C enzyme and 

generates diacylglycerol (DAG) and inositol triphosphate (IP3) by hydrolysis of PI (4,5) P2
23 

through IP3 kinase (IP3K). IP3 diffuses and activates IP3 receptors (IP3R) located at the ER, which 

are ligand gated cation channels, to release Ca2+ signals from ER. Calcium induced Ca2+ release 

(CICR) is triggered by IP3R and ryanodine receptors24 (Fig. 1). DAG is a lipid second messenger 

that recruits protein kinase C (PKC) at the plasma membrane. DAG and Ca2+ activates PKC and 

it plays an important role in modulating actin dynamics25 and multiple signal transduction 

cascades with different cellular responses ranging from cell migration to division.  

The calcium pulses at the front can modulate lamellipodia retraction and adhesion by 

activation of myosin light chain kinase (MLCK) and myosin II26. Myosin II molecules assemble 

into bipolar filaments and bind to actin filaments through head domains, which enables 

conformational changes via ATPase activity to move actin filament and generate force required 

for protrusions27,28. The cyclic Ca2+ channel opening may be triggered by Ca2+-induced Ca2+ 

release (CICR), generated by TRPs such as TRPM729 upon the change of membrane tension18. 

Since the affinity between Ca2+-calmodulin complexes and MLCK are extremely high30 and the 

basal cytosolic Ca2+ level is extremely low, tiny local Ca2+ signals in nanomolar scales are 

sufficient to regulate myosin activities.  
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The calcium pulse is depleted by removing calcium signals either back to ER by SERCA 

or to ECM by PMCA18. In addition to SERCA, store-operated Ca2+ entry replenishes internal 

Ca2+ storage by activating STIM119,31, which is transported to the ER-plasma membrane junction 

and open the Ca2+ influx channel ORAI118,32. The Ca2+ influx activates the GTPase Arf5 via 

Ca2+-activated guanine nucleotide exchange factor IQSec1, which forms a complex with lipid 

transfer protein ORP3 and modulate FA disassembly by translocating to ER-plasma membrane 

contact site close to FAs33. 

In the back, in order to move forwards cells, detach through adhesion disassembly and 

can move in a directional way. The rear-end retraction is also mediated by myosin II-based 

actomyosin contraction through Ca2+ dependent MLCK. Ca2+ dependent protease, calpain 2, 

cleaves adhesion complex proteins such as FAK, paxillin and talin 1, leading to adhesion 

complex disassembly and detachment of the cell rear34. Calpain also modulates -actinin 

localization into focal contacts and complexes, which is essential in disassembly or translocation 

of zyxin-containing contact sites35. L-type voltage-gated Ca2+ channels have been implicated to 

support increased Ca2+ levels at the trailing edge20, but the detailed regulating mechanism 

remains unknown. 

 
Figure 1: Calcium signaling at the front of the cell. Adapted with permission from Elsevier: Current Opinion in Cell 

Biology, Calcium gradients underlying cell migration, Chaoliang Wei et al., 2012. 
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2.2 Calcium waves and calcium flickers 

There are two types of calcium signals in migrating cells: calcium waves and calcium 

flickers. Calcium waves represent the propagation of increases in intracellular Ca2+ levels across 

the cell by Ca2+ release through IP3Rs with amplification from RyRs. They involve coordination 

of cell communication and multicellular responses36. Calcium flickers, also referred to as 

calcium pulses26, are generated by Ca2+ influx into the cytosol through SACs at the plasma 

membrane and/or IP3-mediated Ca2+ release from the ER Ca2+ storage in response to mechanical 

force or guidance cues. The widespread Ca2+ waves usually last 0.5-1.5 s while transient Ca2+ 

flickers rise and fall within 20 ms to 100 ms37.  

In migrating human embryonic lung fibroblasts, calcium flickers are generated by 

TRPM7 channels and are most active at the leading lamella, promoting the turning of 

fibroblasts38. Calcium release from the ER increases the amplitude of calcium flickers but does 

not contribute to the frequency of calcium formation38. In human umbilical vein endothelial cells 

(HUVECs), local calcium flickers at the front regulate retraction of lamellipodia and strengthen 

local adhesion. These calcium pulses were found to activate MLCK and myosin II behind the 

leading edge and generate force to retract nearby lamellipodia membranes26. The internal, cell-

generated traction forces can in turn generate Ca2+ flickers mediated by Piezo1 channels39. 

Piezo1 is one of the SACs expressed in endothelial cells that transduce mechanical stimuli into 

electrical, osmotic and chemical intracellular signals40. Piezo1 channels are located at the plasma 

membrane and allow cations including Ca2+ to enter the cytoplasm on a millisecond time scale 

once activated by mechanical stimuli. Besides mechanical forces, Piezo1 can also be activated by 

micromolar concentrations of a small chemical compound Yoda1 that lowers the mechanical 

threshold for activation41. 

Recent studies in our collaborator Dr. Arnold Ludwig Hayer’s group have found that in 

HUVECs, Piezo1 channels are the main source of calcium flickers. Calcium flickers are enriched 

at cell-cell junctions in HUVEC monolayers while calcium waves are predominant in sub-

confluent cell cultures (unpublished observation). The physiological function of calcium flickers 

and how they propagate inside the cell and binds to downstream calcium-binding proteins 

remains unclear. In addition, the characterization of the dynamics of calcium flickers such as the 

rise and decay times are less well-studied. The details about the relationships between calcium 
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flickers and waves and if flickers originate from waves are not well understood. A better 

characterization of the dynamics, propagation and evolution of calcium flickers and waves would 

help us to better understand how Ca2+ regulates cellular processes. 

2.3 Calcium imaging 

2.3.1 Calcium reporter: GCaMP6s 

Calcium imaging uses calcium reporters to optically reflect Ca2+ status inside the cells. 

There are two main types of calcium indicators: chemical indicators such as chemical dyes fura-2 

and fluo-4, and genetically encoded calcium indicators such as GCaMPs. Fura-2 is a ratiometric 

fluorescent dye that the maximum fluorescence shifts from 380 nm to 340 nm once binding 

calcium and the ratio of the fluorescence excited by light of those wavelengths directly reflects 

the amount of intracellular calcium ions. Fura-2 has a rise time t1/2 of 1.4 seconds and a decay 

time of t1/2 12 seconds42, which is slow for calcium flickers but absolute calcium concentrations 

can be calculated. Fura-2 is also problematic for live imaging because the excitation light is in 

near ultraviolet and can cause phototoxicity. Fluo-4 is also used to measure cellular Ca2+ 

concentrations in the range of 100 nM to 1 𝜇M. It has increased fluorescence intensity when 

compared to Fluo-3 and the acetoxymethyl ester forms are cell-permeable. It is shown that the 

peak concentration of calcium flickers is typically below 80 nM26, which is lower than the Fluo-4 

detection range making it a poor sensor for this application.  The rise and decay time t20-80 of 

Fluo-4 are much faster than Fura-2 at 90 ms and 170 ms.  

Genetically encoded calcium reporters don’t need to be loaded into the cells, instead they 

are introduced into the cells by various transfection methods and expressed by the cells. GCaMP 

is a single-fluorescent protein system that consists of a calcium-binding protein calmodulin 

(CaM), circularly permuted enhanced green fluorescent protein (EGFP) and a calcium-CaM-

binding motif M13 from the MCLK. GCaMPs have multiple versions and are the most widely 

used fluorescent protein-based calcium reporters. The ultrasensitive GCaMP6 developed by 

Chen, et. al. outperforms other sensors43 and has three versions: 6s, 6m, 6f. GCaMP-6s is the 

most sensitive form but has slower kinetics. GCaMP-6m represents medium kinetics and 

GCaMP-6f has fast kinetics and shorter rise and decay times. GCaMP-6s is brighter and has a 

higher signal-to-noise ratio (SNR) compared to -6m and -6f. It has a rise time of 110 ms and 

decay time of 800 ms. The rise time is similar to Fluo-4 but the decay time is longer, allowing for 
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a prolonged binding and a more sustained signal. The extended duration of binding to calcium 

makes it easier to detect subtle changes in calcium levels. However, this can also act as a calcium 

buffer and impact downstream signaling. Fast kinetics may also introduce variability in the 

calcium signal because rapid binding to calcium and oscillations between the bound and 

unbound states is frequent. GCaMP-6s was chosen as the preferred calcium indicator because it 

offers a balance between binding kinetics, sensitivity and SNR. A GCaMP-6s conjugated with a 

CAAX motif for targeting to the plasma membrane was used to improve sensitivity to calcium 

flickers generated by Piezo1 by localizing the sensor to the plasma membrane19. This is due to 

the fact that unlike a cytoplasmic sensor, the membrane anchored sensor cannot rapidly diffuse 

away from the sight of calcium release.  

Name Fura-2 Fluo-4 GCAMP-6s GCAMP-6m GCAMP-6f 

Type Fluorescent Dyes Fluorescent Proteins 

Rise Time 1.4 s 90 ms 110 ms 90 ms 70 ms 

Decay Time 1.2 s 170 ms 800 ms 700 ms 600 ms 

Relative 

Brightness 
Data not available +++ ++ ++ 

Table 1: Summary of the General Properties of some Different Calcium Indicators. 

2.3.2 Limit of current calcium imaging methods 

Since calcium flickers are transient activities that rise and fall on the time scale of 

milliseconds, an imaging protocol with high temporal and spatial resolution is needed to achieve 

accurate identification and characterization. To visualize calcium flickers in live cells, 

fluorescence microscopy is the method of choice. It involves using fluorescent protein tags or 

live cell dyes to track the protein or indirectly measure the signal (e.g. ions, phosphorylation) of 

interest to observe biological phenomena temporally and spatially. In live cell fluorescence 

imaging, there are a few factors that needs to be considered: sample health, temporal resolution, 

spatial resolution, SNR44. To collect meaningful live cell image data, the main challenge is to 

achieve an optimal SNR while maintaining a healthy environment for cells to replicate 

physiological cell dynamics. Cells need to be exposed to adequate light to achieve a good SNR 

but excess light exposure causes photobleaching45 and light-induced cell damage41. High 

temporal and spatial resolution are needed to precisely characterize calcium flickers because 
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some calcium flicker signals can be rapid and thus dim. In addition, if the temporal resolution is 

lower than the duration of calcium flickers, it may be too slow to capture some flicker activity.   

Current calcium flicker imaging and identification protocols developed by Baishali 

Mukherjee can automatically identify and characterize calcium flicker duration, area and 

intensity. The protocols were established based on image time series of HUVEC cell monolayers 

expressing GCaMP-6s where images were captured every second with a 200 ms exposure time 

for 100 seconds. One aim of this project is to determine if these imaging conditions are sufficient 

to capture all calcium flickers. It could be that some fast flickers are missed and the 200 ms 

exposure time may average out some fast flickers with rapid rise and decay times. The aim here 

is to develop a new method with higher temporal and spatial resolution.  

2.3.3 Problems with fast live cell calcium imaging 

In fluorescence microscopy, there are multiple factors affecting the image quality 

including but not limited to: limited spatial resolution, limited signal, uneven illumination, 

autofluorescence, out-of-focus light and noise. Every image inevitably has noise. There are two 

major types of noise: shot noise and detector noise46. Shot noise is due to the discrete nature of 

light and the randomness associated with discrete photons arriving at the detector. It is more 

predominant in low-light conditions and exists in every image. Shot noise usually follows a 

Poisson distribution, which scales with the pixel intensity. Detector noise is associated with the 

electronics of the detector and heat (e.g., digital camera readout noise and thermal dark current or 

photomultiplier tube thermal noise) and often follows a Gaussian distribution and impacts each 

pixel independently47. Here the focus will be on camera-based detectors with shot noise, dark 

current and readout noise being the main contributors. 

On camera-based microscopes, to achieve rapid imaging with high temporal resolution, 

camera exposure time is reduced to a minimum and camera readout speed is set to a maximum. 

Reduced exposure time mean that fewer photons are collected by the camera, and the relative 

contribution from Poisson shot noise and read noise can become significant. Thus, short 

exposure times lead to a low SNR because of a high level of noise, making it hard to identify 

objects within images, interpret and quantify biological processes from the image data.  
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2.4 Calcium Denoising algorithms 

2.4.1 Conventional denoising algorithms 

Denoising refers to the procedure that aims to remove noise from noisy images while 

retaining real signal and restore the original images as accurately as possible. It is a fundamental 

task in image processing. As mentioned above, noise can arise from multiple sources: camera 

sensing limitations, light conditions and shot noise. The most frequently discussed noises are 

additive white Gaussian noise, Poisson noise and impulse noise (also known as salt and 

pepper)48. Spatial domain filtering is one of the conventional ways of denoising. It directly 

estimates each pixel using the information from surrounding pixels. The most popular local 

filters are the median filter which is effective at removing impulse noise. It picks a window (or 

kernel) of a certain size (e.g. 3x3) and ranks the pixel values within the window. It takes the 

median of all the values and assigns the median value to the central pixel in that 3x3 kernel or 

window. The window is moved iteratively across the entire image. The main disadvantage of this 

method is that it loses edge information and can impact spatial resolution. There is also 2D 

Gaussian filter which is based on Gaussian function defined as follows: 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2  

where x and y represent the coordinate of the pixel and 𝜎 decides the extent of smoothing. A 

larger 𝜎 results in more blurring. It first selects a window of a certain size and then redistribute 

the pixel value based on Gaussian function, giving more weights on the central pixels. The 

window slides over each pixel of the image. Gaussian filter preserves edge better because the 

pixels away from the center have less weight. The low pass filters retain signals with a frequency 

lower than the selected cutoff frequency and attenuates signals with higher frequencies. The 

lowpass filter can result in blurring and difficulty segmenting features of interest in denoised 

images. Over the years, more complicated filtering methods such as non-local means49, block-

matching 3D50 have emerged but simple filtering methods are much more widely used. Most 

conventional denoising methods using spatial domain filtering impairs the spatial resolution of 

the original image, making them not an ideal approach to denoise fast calcium flickers videos 

because it loses the spatial information of the flickers.  
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2.4.2 Deep learning calcium denoising algorithms 

In reality, noise is more complicated and images can have multiple types of noise. It is 

difficult to apply simple Gaussian or median filter to remove all types of noise, retain resolution 

and quantitative aspects of images and maintain good quality images. In recent years, deep 

learning, a subset of machine learning designed to solve more sophisticated problems, has 

emerged as a powerful tool in multiple fields for multiple applications including denoising50. 

Compared to conventional denoising algorithms, deep learning algorithms learn from data rather 

than applying an unchanging mathematical model. The deep learning network gains knowledge 

about what to expect during iterations of learning, also referred to as content-aware image 

restoration47. Deep learning is highly adaptive to the specific datatype but can also generalize to 

other similar unseen data. The deep learning denoising algorithms can handle more complex 

noise patterns and retain and emphasize image features when compared to traditional 

mathematical denoising methods.  

The general principle of deep learning denoising algorithms is to estimate the real 

intensity for a pixel based on background information. It mimics how we interpret noisy images 

as humans. For example, there is a high intensity pixel in a region without any labelling and at all 

other time points it has a value close to zero, then we as humans can recognize this outlier is 

probably due to a falsely detected photon and is not a true signal. Similarly, if all the surrounding 

pixels have a high intensity but there is a dark point inside that structure, i.e. nucleus, actin 

filaments, cell membrane, we can say that is a false negative signal. The convolutional neural 

network (CNN) is the basic architecture of many deep learning algorithms in image analysis, 

such as image restoration, deconvolution, image segmentation and classification. It processes 

images by breaking them into small pieces and recognizes the patterns like edges and structures. 

It then combines these patterns to learn about more high-level features.  

There are two phases in developing a deep learning denoising model: training and testing. 

Training is to build a model that learns the underlying patterns or features in the data so it can 

make predictions based on the input data. The model is usually trained on a large dataset, known 

as the training dataset. The training process typically has three steps: forward propagation, loss 

calculation, backpropagation. Forward propagation refers to the procedure that the model makes 

predictions based on input data. Then the difference between the model’s predicted values and 
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the real values is calculated using a loss function, evaluating the performance of the model. The 

model optimizes its parameters to minimize the loss. The process is then repeated over many 

iterations, also known as epochs, to minimize the loss and improve the performance. 

Testing is to evaluate the model’s performance using new, unseen data so that the model 

can be tested to ensure that it does not overfit with the training data and that it can also be 

generalized to new inputs. The dataset that has not been seen by the model and is used for testing 

is called the testing dataset. Based on the results from the test dataset, various evaluation metrics 

are used to assess the model’s performance and accuracy. In some cases, a validation dataset, 

separate from training and testing dataset but more unbiased, is used to facilitate the training of 

the model. The loss on the validation set will be small because the model is trained to minimize 

the loss during validation. The training dataset can be used multiple times while the test dataset 

is only used once. 

There are three main classes of machine learning models: supervised learning, 

unsupervised learning and reinforcement learning51. In supervised learning, the model is trained 

using labeled data pairs. In the case of denoising, the training dataset consists of noisy and low 

noise image pairs. The low noise images are also referred as ground-truth data. It is named 

supervised because the model is provided with image pairs and is told one image is noisy and the 

other image is ground truth and represents what the image should ideally look like. This 

information is provided by someone so this method is termed supervised. The model then learns 

to map from the noisy images to low noise images and minimizes the loss functions. Supervised 

learning is widely used for image classification discriminative tasks. Unsupervised learning, in 

contrast, uses a training dataset without any labelling. Only noisy images are required to train an 

unsupervised denoising model. The model learns to find patterns and features without any other 

external inputs. It is widely used in clustering algorithms and generative tasks. It is more 

preferrable in live cell imaging because it is often hard to obtain low noise ground truth images. 

Reinforcement learning learns to make decisions by interacting with the environments. The 

model receives feedback (rewards or penalties) during training and improves its behavior to 

maximize cumulative rewards. Supervised and unsupervised learning algorithms have 

applications in denoising while reinforcement learning is predominantly used in robotics, video 

games and autonomous vehicles, which is not appropriate for denoising. 
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Many deep learning based denoising methods have been developed using supervised 

learning52,53 or unsupervised learning54-58. Content-aware image restoration (CARE)52 uses image 

pairs of high SNR and low SNR to train the model based on U-Net architecture with a per-pixel 

similarity loss. U-Net is primarily designed for biomedical image segmentation with a “U-

shaped” architecture and can be recognized a specialized adaption of CNN architecture. U-Net 

consists of a contracting path containing encoder layers to capture contextual information and an 

expansive path containing decoders layers that use the information from the contracting path via 

skip connections. Skip connections connect between layers that skips over one or more 

intermediate layers to retain the spatial information that might be lost as the image passes 

through convolutional layers. Noise2Noise55 and Noise2Void54 are both based on CNNs. 

Noise2Noise trains on independent pairs of noisy images of the same field of view. The model 

predicts one noisy image based on the other as input, assuming the images are obtained 

independently with different random noise but the same structures. Noise2Void takes one step 

further and it only needs single corrupted data. It estimates the value of a pixel from its 

surrounding pixels in the same noisy images. Noise2Self58 works under the assumption that the 

noise is statistically independent across different dimensions of the measurement and the true 

signal has some correlation. It is based on self-supervision, training the denoising model based 

on single noisy images. DivNoising56 is based on fully convolutional variational autoencoders 

and requires noisy images and a suitable description of the noise distribution. Hierarchical 

DivNoising (HDN) 57 developed by the same team introduces hierarchical Variational 

Autoencoder architecture and gives the probability distribution of the high SNR images. It 

generates multiple possible denoised images, allowing users to choose the best one or average 

them to improve accuracy. The hierarchical structure and probabilistic nature make HDN 

computationally intensive and hard to set up because there are many parameters that need to be 

tuned. Among all these models, only CARE is originally designed for fluorescence microscopy 

images. Most of the denoising algorithms mentioned above are not designed for calcium 

imaging, so instead of picking those methods, we selected the following denoising algorithms 

that is adapted for calcium imaging but based on those models.  

For deep learning denoising algorithms in calcium imaging, most are based on two-

photon calcium imaging of neurons in the intact brain of mice59,60. To our knowledge, there are 

no existing denoising algorithms that have specifically been developed for endothelial calcium 



 

 24 

imaging. Two photon calcium imaging in neurons also suffer from low SNR problems because 

images are collected deep in brain tissue, up to 500 𝜇m below the cortical surface60 and a lot of 

fluorescence signal is lost due to scattering within the tissue. As mentioned aforehand, calcium 

ions activate the release of neurotransmitter at synapses and are essential for the propagation of 

electrical signals. Most neurons have an intracellular calcium concentration of about 50–100 nM 

at rest. The calcium level can increase 10 to 100 times above baseline in the event of electrical 

activity61. The peak calcium concentrations in calcium activity in neurons is much higher than 

the peak calcium level of calcium flickers in HUVECs (~80 nM)26. Also, the focus of calcium 

imaging in the brain is on high temporal resolution to monitor fast calcium dynamics on a few 

hundreds of millisecond timescale62. In endothelial cells, spatial resolution is also important 

because calcium signals are not physically localized within small neuronal structures or synapses 

and it is required to reveal how calcium flickers propagate as calcium waves. Since deep learning 

denoising algorithms are generalizable and can be retrained with similar datasets and adapted to 

specific datatype, it is possible to apply current promising calcium denoising algorithms to low 

SNR calcium images of calcium flickers in HUVEC monolayers.  

For this study, we selected three of the most commonly used state-of-the-art calcium 

denoising algorithms: Neuro Imaging via Deep Learning (NIDDL)53, Deep Interpolation60 and 

DeepCAD59. Each of them is based on a different deep learning model and all of them show 

satisfactory results when applied to low SNR laser scanning confocal or two-photon microscopy 

images of calcium signals in images of neurons. 

2.4.3 Neuro Imaging via Deep Learning (NIDDL)  

Neuro Imaging via Deep Learning is a supervised denoising method trained with whole-

brain data, ventral coed neurons data and neurite structures in C. elegans imaged using a Bruker 

Opterra II Swept field confocal microscope with an EMCCD camera53. It requires only a small 

set of training image pairs (~500) acquired independently and can be non-temporally sequential, 

making it easier to acquire the training data because images can be acquired from fixed samples 

at different times. The general principle of NIDDL is to train the network to predict high SNR 

image stacks given low SNR (can be low laser-power or short exposure time) image stacks (Fig. 

2). Subsequently, in the testing phase, trained models are applied to denoise video data by 

independently denoising each volume in the video. It optimizes CNN by using a 20-30x smaller 
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memory footprint and is about 3 times faster in training and testing than other similar algorithms. 

NIDDL is flexible, users can choose and test many parameters based on the dataset including the 

training mode and the loss function. The training mode is one of three types, the 2D, 2.5D, or 3D 

mode. The 2D mode is used when the input and output are 2D images. The 2.5D mode is used 

when the input is a 3D stack consisting of z-plane above and below the in-focus image to be 

denoised and the output is the designated denoised image from the middle of the stack. For 3D 

mode, both the input and the output are 3D stacks. The loss function is one of two types, L1 loss 

or L2 loss. L1 loss, also known as mean absolute error, is the sum of the absolute differences 

between the predicted 

and actual image 

intensity values. L2 

loss, referred to as least 

squares error or mean 

squared error when 

averaged over a dataset, 

is defined as the sum of 

squared differences 

between the predicted 

and actual image 

intensity values. 

NIDDL has been 

implemented in the 

open-source software 

platform napari 

(https://napari.org/) 

with pretrained models 

using multiple 

datatypes (e.g. whole 

brain, ventral cord, 

neurite, synthetic 

 

 

Figure 2: The architecture of NIDDL. Reused with permission from Creative Commons 

license (https://creativecommons.org/licenses/by/4.0/): Nature Communications, Fast, efficient, 

and accurate neuro-imaging denoising via supervised deep learning, Shivesh Chaudhary et al., 

2022 
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images). Napari is a Python library for n-dimensional image visualization, annotation, and 

analysis. 

Compared to unsupervised methods, supervised methods are expected to achieve higher 

accuracy and should be more generalizable. But there are a limited number of supervised 

denoising methods because it is often difficult to acquire ground-truth data. In calcium imaging, 

not all microscopes can collect high SNR and low SNR videos simultaneously. If the 

unsupervised method is trained with non-temporally linked data, it is not clear if temporal 

structural features can be preserved from independently denoised images. 

2.4.4 DeepInterpolation 

DeepInterpolation is an unsupervised denoising method that was trained using low SNR 

two-photon calcium data with GCaMP-6f as the calcium reporter60. The images were obtained in 

visual or somatosensory cortex in brains using live or anesthetized mice63. It can also be applied 

to functional magnetic resonance imaging (fMRI) image datasets and extracellular 

electrophysiology recordings. DeepInterpolation uses a low SNR image to predict a high SNR 

image. It enhances SNR by up to 15-fold and is able to identify and segment up to 6 times more 

neuronal features in two-photon image datasets. For extracellular electrophysiology recordings, it 

detects up to 25% more spiking events and with fMRI image datasets there is a 1.6-fold increase 

in SNR. In neurons, it is hard to image pairs of sample images with identical signals but different 

 

Figure 3: The architecture of Deep Interpolation. Reused with permission from Springer Nature: Nature Methods, Removing 

independent noise in systems neuroscience data using DeepInterpolation, Jérôme Lecoq et al., 2021. 

 



 

 27 

noise (Noise2Noise) because the dynamics are so rapid. Therefore, DeepInterpolation adopts an 

approach based on the Noise2Self and Noise2Void frameworks. It learns the spatiotemporal 

relationship between each data point and its spatial and temporal neighbours to minimize the 

reconstruction loss function. The architecture of DeepInterpolation is based on a UNet-inspired 

architecture and follows the two principles (Fig. 3): a single pixel shares information or is 

correlated with surrounding pixels within a fixed local region; based on the decay dynamics of 

GCaMP-6f, frames up to 1s away from the target frame may carry useful information. During 

training, one frame is omitted, and the network learns to predict the omitted frame using the 

information from its neighboring frames in time, i.e., 10 frames before and after the omitted 

frame. DeepInterpolation must work under the theory that the noise present in the target sample 

image is independent from adjacent sample images, otherwise it may lead to overfitting. The 

framework eliminates overfitting by omitting the target image frame only once, therefore there 

are no iterations over the whole dataset that would require huge datasets (~10,000 image frames). 

Since the training image dataset is large, it is computationally demanding. For all three datatypes, 

training on a single GPU can take 2-3 days with continuous processing. L1 loss was used for 

both two-photon imaging and fMRI image datasets and L2 loss was used for electrophysiological 

datasets. 

2.4.5 DeepCAD 

DeepCAD is a self-supervised deep learning denoising method that enhances the 

spatiotemporal resolution of images by more than tenfold59. It is based on the Noise2Noise 

denoising method. DeepCAD works under the assumption that a deep neural network can 

converge to a mean estimator even it is trained using another corrupted image of the same scene 

and the optimal network parameters are similar to those trained with ground truth images55. It 

separates a time lapse video into two sub-stacks consisting of interlaced frames from the input 

image dataset and then trains the model to predict one stack from the other (Fig. 4). DeepCAD 

requires a high imaging rate (~30 Hz) so that two consecutive frames have essentially the same 

structures but different noise patterns and can be considered as two independent images of the 

sample. The two sub-stacks are corresponding and the corresponding image frames have the 

same structure but different noise, so the network can learn what structures to expect despite the 

random noise. The minimum data required to achieve satisfactory denoising results is a single 

low SNR video of 3,500 image frames. A higher image sampling rate and more training frames 
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can lead to better 

performance. The 

original algorithm was 

trained with images of 

calcium spikes in the 

brains of live mice 

activated by action 

potentials in neurons 

using transgenic mice 

(Ai148D/Rasgrf2-

dCre) imaged with a 

two-photon laser 

scanning microscope. 

DeepCAD deploys a 

3D U-Net that uses the 

spatiotemporal 

correlation of calcium 

images and it is composed of a 3D encoder module, a 3D decoder module and three skip 

connections. Regarding the loss functions, the average of a L1-norm loss and a L2-norm loss 

term were used. DeepCAD also reinforces the accuracy of neuron extraction and segmentation. 

Recently, the new real-time version (DeepCAD-RT) was developed for real-time denoising64 and 

it has been implemented as a Fiji plugin with pretrained models. Since imaging systems, 

experimental conditions, model systems (e.g. whole brain, brain slices, isolated neurons) cell 

types and morphology (e.g. large, rounded cells versus elongated branching neurons) all vary in 

different research projects, it is highly recommended to train a customized DeepCAD model 

using experiment specified image data for optimal performance. It should be noted that the 

training of a customized model is computationally demanding and needs to be implemented 

using TensorFlow packages, which requires the users to have some coding background.  

 

Figure 4: Architecture of DeepCAD. Reused with permission from Springer Nature: Nature 

Methods, Reinforcing neuron extraction and spike inference in calcium imaging using deep 

self-supervised denoising, Xinyang Li et al, 2021. 
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3 Methodology 

3.1 Cell Culture  

 hTERT-immortalized HUVECs (HT73)65, were cultured in Endothelial Cell Growth 

Medium 2 (PromoCell, Cat# C-22011), supplemented with hygromycin B (InvivoGen, Cat# ant-

hg-1) at a working concentration of 10 𝜇g/ml and blasticidin at a working concentration of 50 

𝜇g/ml (InvivoGen, Cat# ant-bl-1) to maintain expression of transduced products (hTERT). HT73 

cells transfected with GCaMP6s-CAAX19 to report cytosolic Ca2+ levels at the plasma membrane 

were provided by Dr. Hayer’s laboratory.  

3.2 Preparation of imaging slides 

Glass bottom 8-well imaging slides (Ibidi, Cat# 80827) were coated with 3.2 mg/ml type 

I collagen solution (Advanced BioMatrix, Cat# 5005) diluted 1:100 in phosphate buffered saline 

(PBS) (Gibco, Cat# 10010-023/10010-049) at 37℃ with 5% CO2 for 4-24 hours before use. 

Cells were cultured to maintain an 80% confluency in 60-mm dishes before subculturing. Cells 

were washed with PBS before adding 1 mL of 0.05% trypsin-EDTA (Gibco, Cat# 25300-054). 

Trypsin was aspirated after 2 minutes, leaving only a thin layer at the cell dish. The plate was 

incubated for 2 minutes at 37℃ with 5% CO2. Cells were resuspended with 4-5 ml medium to 

neutralize the trypsin and 10 𝜇L of the solution was used for cell counting. Approximately 

20,000 cells in 200 𝜇L cell growth medium were plated in each well of the imaging slides and 

were kept at 37℃ overnight to form a uniform monolayer. On the following day, the medium in 

each well was replaced with 200 𝜇L Live-cell Imaging Solution (LIS). The LIS solution was 

prepared with 125 mM NaCl, 5 mM KCl, 20 mM HEPES solution (pH 7.4), 1.5 mM MgCl2, 

1.5 mM CaCl2, 10 mM D-glucose, 1% fetal bovine serum (Fisher Scientific, Cat# 35077CV) and 

5 ng/ml basic fibroblast growth factor (Cedarlane Labs, Cat# CL104-02-50UG). The plate was 

left to settle in the microscope mounted live cell environmental control chamber (Live Cell 

Instrument, Cat# CU-501) for about 10 minutes to stabilize the cells at 37℃ and 5% CO2. Right 

before imaging, 100 𝜇L LIS solution supplemented with Yoda 1 (Sigma-Aldrich, Cat# 

SML1558) at a working concentration of 0.1 𝜇M was added to each well. 
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3.3 Cell fixation 

The cells were fixed after live cell imaging in order to collect identical image pairs with 

fixed cells. The volume of each well was first reduced to 100 𝜇L. Then 100 𝜇L of 16% 

paraformaldehyde (Electron Microscopy Sciences, 15710) diluted 1:3 in PBS was added for 15 

minutes at 37℃. Cells were immersed in PBS for 5 minutes and then washed three times with 

PBS. The fixed plate was stored in PBS with 2% sodium azide in the 4℃ fridge for up to three 

weeks. 

3.4 Setup of Widefield Calcium Imaging 

Widefield imaging was accomplished using a Leica DM1600B microscope (Leica 

Microsystems) with a Leica HC Plan Apochromat 20x/0.7 NA objective lens. The illumination 

was provided with an X-Cite 120 LED (370-700nm, 100 W) light source. The emitted 

fluorescence passed through an EGFP filter cube with an ET470/40x excitation filter, T495lpxr 

dichroic mirror and an ET 525/50m emission filter and was imaged with a digital scientific 

CMOS camera (C13440-20CU, Hamamatsu, Japan). This microscope is part of a Total Internal 

Reflection Fluorescence (TIRF) system but all controls for TIRF were disabled including the 

laser excitation and only the widefield imaging stand was used for all experiments. MetaMorph 

(Molecular Devices Inc., Version 7.10.5.476) software interface was used to achieve stream 

acquisition with minimum delays. Pixel size was 0.401 𝜇m when the 20x objective was used. 

3.5 Calcium Imaging Experiments 

Live cells and fixed cells were imaged with the same conditions. Before each imaging 

session the fluorescence lamp intensity was measured using the 20x/0.7 NA objective lens and a 

laser power meter (Coherent FieldMax II, 1098579) and was maintained at ~175-180 𝜇W as the 

baseline lamp intensity for low SNR images. Stream acquisition was used to collect images 

continuously with minimum delay. The MetaMorph software keeps delays between frames of 

stream acquisition at a minimum of ~1 ms over ~200 images. Time lapse datasets of low SNR 

ratio images were captured at 20 ms, 10 ms or 5 ms exposure times, 20% lamp intensity (~175-

180 𝜇W) with 2x2 pixel binning. More images were captured with shorter exposure time 

experiments to ensure the total experiment duration was constant. For example, the videos 

captured at 20 ms exposure time had 200 image frames while the videos captured at 10 ms 

exposure time had 400 image frames. High SNR ratio image datasets were captured at 200 ms 
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exposure time with no delay, 20% lamp intensity with 2x2 pixel binning. The high SNR and low 

SNR image stacks were captured of the same field-of-view (FOV) to compare the frequency of 

calcium flickers for the same cells but were not synchronous (the time interval between two 

stacks were ~20 s). For the fixed cell image pairs, they were imaged at the same FOV at 20 ms or 

200 ms exposure time. At the end of the imaging sessions, the cell slide was removed, and a time 

lapse video of background and noise was captured and used to correct for black “dead” and 

saturated “hot” camera pixel artifacts and camera noise, keeping all other parameters the same.   

To evaluate the influence of lamp intensity and potential phototoxicity on the number of 

calcium flickers, timelapse videos were captured at 200 ms exposure time. The lamp intensity 

was variable among experiments. The same baseline intensity (~175-180 𝜇W) was used. Then 

images were taken by doubling and tripling the lamp intensity until it reached 100%. For 

example, the baseline intensity was at 25%, then images were captured using 50%, 75% and 

100% lamp power. 

3.6 Model training 

Since the training procedure of the deep learning methods is often computationally 

demanding and requires graphics processing units (GPUs) to accelerate the training, all the 

trainings were done remotely through the cloud platform Digital Research Alliance of Canada 

(DRAC) (previously known as Compute Canada, https://alliancecan.ca/en) or Google Colab. The 

general procedure to train a published deep learning method is: 1. Download the whole 

repository to the cloud service. 2. Install the virtual environment on the cloud service. 3. Train a 

new model with a new dataset. 4. If needed, adjust the code or parameters to achieve better 

performance. 

3.6.1 NIDDL 

There are two versions of NIDDL: one was implemented using TensorFlow and the other 

was implement using pytorch. The version using TensorFlow was outdated and could not be 

installed on the cloud service so the pytorch version was used. The training of NIDDL was 

completed on the cloud platform DRAC. The training dataset was composed of 524 matched 

image pairs of high SNR and low SNR images. To ensure matched pairs, the cells were fixed 

before imaging and the same field of view was imaged with different conditions. The high SNR 

images were captured with a 200 ms exposure time and the low SNR images were captured with 
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a 20 ms exposure time. Each image (1024x1024) was cropped to generate four sub stacks 

(512x512) to match the original network design to operate with images of 512x512 pixels. The 

basic model used is UNet_fixed. The architecture is the same as UNet, which has 4 down-

sampling layers with non-linear activation (ReLU) and 4 up-sampling layers (Fig. 2). The first 

feature map is 512x512x32 and the depth of the feature maps doubled after each down-sampling 

layer and reduced to half after each up-sampling layer. UNet_fixed has a fixed depth of all 

feature maps of 32 compared to UNet which has a varying depth (it begins with 32 channels and 

doubles after each down-sampling and halves after each up-sampling), reducing the model size 

and decreasing the training and testing time53. There are also other architectures to select from 

that were tested: UNet, hourglass_wores, hourglass_wres. Based on the original dataset, 

UNet_fixed and hourglass_wres achieved higher accuracy and required smaller memory 

footprint compared to hourglass_wores. For our datasets, UNet_fixed outperformed 

Hourglass_wres so this was chosen moving forward. Adam optimizer66 was used for training 

with a learning rate of 0.001, which is a key hyperparameter that determines how much the 

model’s parameters are adjusted at each step. The model uses a 2D model and L1 loss is used. 

The model was trained for 500 epochs using one GPU (Nvidia V100SXM2, 16G memory) and 

took about 1 hour (Refer to the table here). 

3.6.2 Deep Interpolation 

The training of Deep Interpolation was performed on Google Colab because the version 

of TensorFlow required was incompatible with DRAC. The denoising network is designed to 

train on a single input dataset because the original training dataset is one single or multiple 

continuous videos. So, one low SNR video of 1000 image frames captured with a 20 ms 

exposure time was used to train the denoising neural networks. The video was cropped to 

512x512 pixels for compatibility with the model. The architecture of the model is also based on 

UNet, with a learning rate of 0.0001. The model consists of 3x3 2D convolutional layers 

followed by rectified linear activation function (ReLU), 2x2 max pooling (down sampling) 

layers and 2x2 up sampling layers (Fig. 3). The L1 loss function was used. Temporal information 

was collected using 10 frames before and after the target frames. The model was trained for 19 

epochs using a high-RAM 16GB T4 GPU (Tesla 4) and it took 4 hours to complete the training. 



 

 33 

3.6.3 DeepCAD 

The training of DeepCAD was conducted on the cloud platform of DRAC. The training 

dataset of DeepCAD consisted of 20 low SNR videos from two independent experiments. Each 

video was made up of 1024x1024 pixel 1000 image frames collected with a 20 ms exposure 

time. The 3D encoder has three encoder blocks and each block consists of two 3x3x3 

convolutional layers, followed by a leaky rectified linear unit (LeakyReLU) and a 2x2x2 max 

pooling layer. There are three decoder blocks in the decoder module: two 3x3x3 convolutional 

layers followed by LeakyReLU and a 3D nearest interpolation. Adam optimizer66 was used for 

training with an initial learning rate of 0.00005 and exponential decay rates of 0.500 for the first 

moment (beta1) and 0.999 for the second moment (beta2). The number of feature maps is 16. 

The width and height of 3D patches is 150 and the time dimension of 3D patches is 150. The 

overlap factor between two adjacent patches is 0.25. The model was trained using one GPU 

(Nvidia V100SXM2, 16G memory) for 20 epochs and took about 18 hours to complete the 

training. Training time could be shortened with a more powerful GPU or parallel computing 

using multiple GPUs. Multiple trainings were done with different datasets (first trained with 10-

15 low SNR videos) and fewer epochs. The model trained with 20 videos and 20 epochs 

achieved good performance based on the loss function and manual inspection of the images. 

3.7 Model testing 

All the testing of the three denoising models were performed on DRAC platform but it 

could be done locally on a personal laptop if needed. The same testing datasets were used for all 

three models so that the results were comparable across different models. The testing dataset was 

separate from the training dataset. It was composed of 30 low SNR videos imaged with a 20 ms 

exposure time from three independent experiments (10 videos per experiment). Each video had 

200 frames and all test images were preprocessed to remove camera noise. Camera noise 

reduction was done by subtracting the averaged image of a time lapse image data series captured 

without any sample on the microscope. Since some denoising models work with 512x512 image 

size while the original images obtained on the microscope are 1024x1024, all result images with 

the size of 512x512 were concatenated with other sub stacks from the same original video to the 

uniform size of 1024x1024. All the output time lapses images are in 32-bit. 
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3.7.1 NIDDL 

 The general testing procedure of NIDDL consists of the following steps: 1) Crop the 

original 1024x1024 testing dataset to generate four 512x512 sub stacks and convert the video 

stacks to 8-bit. 2) Feed the images into the pretrained model. 3) Recombine the sub stacks to 

generate 1024x1024 images. 4. Convert the individual images to video stacks. The testing time 

was fast and only took about 1 minute per video of 200 frames, but the preprocessing and 

postprocessing work was tedious.  

3.7.2 Deep Interpolation 

 Similar to NIDDL, deep interpolation also needs to streamline the image size. The testing 

procedure was as follow: 1) Crop the testing dataset to 512x512 and convert to 8-bit. 2) Feed the 

videos into the pretrained model. 3) Convert the output videos from h5 to tiff files. 4) Combine 

the substacks (top right, top left, bottom right, bottom left) into one video of size 1024x1024. 

The testing time was about 2-3 minutes for each video.  

3.7.3 DeepCAD 

 The testing phase of DeepCAD was straight forward: 1) Convert the testing dataset to 8-

bit. 2) Use the pretrained model to generate denoised videos. It took about 3 minutes to generate 

each denoised video.  

 

3.8 Quantification Methods 

3.8.1 Generation of pseudo high exposure time videos 

 To validate the denoising results, pseudo high exposure time videos were generated by 

summing together n consecutive frames to mimic video images captured with longer exposure 

Model NIDDL Deep Interpolation DeepCAD 

Difficulty to set up +++ +++++ + 

Computationally demanding + +++++ +++ 

Training time + +++++ ++++ 

Testing time + + + 

Test image Output Format 512x512, .tiff 512x512, .h5 1024x1024, .tiff 

Table 2: Comparison on difficulty of usage and time required for training and testing among selected denoising algorithms.  
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times. For example, 10 sequential image frames in a video imaged with a 20 ms exposure time 

were added together to generate 1 image frame imaged with a pseudo 200 ms exposure time. At 

the same time, using this method resulted in the total number of image frames being reduced by 

ten-fold. 

3.8.2 Analysis of the intensity plot 

 The measurement of intensity along a straight line was done using ImageJ/Fiji software. 

The frame of interest was first selected. Then the same frame from three different denoised 

models were extracted from the original video and combined as a stack. A straight line was 

drawn across the area of interest using the straight-line drawing tool, and measurements of the 

intensity along the same line were taken using Analyze->Plot Profile, which generates a plot of 

the intensity over distance (in pixels). The plot from different denoising results were normalized 

to 0-255. To plot the flicker intensity change over time, an area of interest was selected with 

Freehand Selections and the following steps were taken to plot the mean intensity change over 

time: Image->Stacks->Plot Z-axis Profile.  

 To plot the histogram of the pixel intensity in Deep Interpolation denoised video images, 

the Analyze->Histogram feature in ImageJ/Fiji was used to analyze the distribution of pixel 

intensities. 

3.8.3 Manual counting the number of calcium flickers 

 The number of flickers was manually counted by eye to validate the denoising results. If 

the image size was 1024x1024, it was cropped to four 512x512 sub stacks for the convenience of 

counting. The counting was done manually by watching the time-lapse image stacks multiple 

times to avoid missing flickers. Calcium flickers were identified as localized transient calcium 

activity that occurred mostly at cell-cell junctions. The change of intensity in calcium signals was 

checked to make sure the flicker activity was dynamic and if so, it was counted. If the calcium 

signal diffuses to more than 1/4 size of the cell, it was recognized as a calcium wave and not 

counted. If there was a constantly bright object present in the majority of the image series, it was 

considered as an artifact, perhaps a stationary piece of debris. Similarly, if it was a moving bright 

object, it probably was a piece of debris, and it was not counted.  
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3.8.4 Automated detection of calcium flickers in denoised videos 

 In order to better characterize the calcium flicker, automated detection of calcium flickers 

was developed to measure the duration, average intensity and area of flicker activity. The 

automated detection in denoised image videos or in high SNR conditions was achieved using the 

following steps (Fig. 5): 1) Convert to 8-bit images. 2) Subtract the background information 

(e.g., autofluorescence, cell shape) by taking the average of the whole image video stack and 

subtracting it from each image frame. 3) Convert the corrected image stacks to a stack of binary 

images and find the contours of calcium flickers from the binary images using the OpenCV 

library67. 4) Use the OpenCV library to detect the contours of calcium flickers and detected 

flickers were then filtered by adjusting the size/duration of flickers, intensity threshold, minimum 

neighbor flicker distance to ensure only “real” flickers of interest were identified in the corrected 

 

Figure 5: Illustration of automated detection of calcium flickers. 
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images. The intensity threshold was fine-tuned according to different imaging conditions. Other 

parameters used to detect calcium flickers were as follows: min_size = 3.2 𝜇m2 (20 pixel2), 

max_size = 160 𝜇m2 (1000 pixel2), min_duration = 1 frame, max_duration = total number of 

frames, minimum distance between neighbouring flickers = 4 𝜇m (10 pixels). 5) Validated 

flickers were labelled and a rectangle was drawn around the validated flicker for better 

visualization. 6) The output .json file was created and exported and contained information about 

all the detected flickers including the total number, duration, location, area and average intensity. 

The script was implemented using Python. For denoised data, it reached an accuracy of about 

92% and for raw data, the accuracy was about 78%.  

3.8.5 Calculation of SNR 

 The SNR was defined as the ratio of signal to noise. For this study, we calculated the 

SNR for each detected calcium flicker by taking the maximum intensity of the flicker divided by 

the standard deviation of the intensities for the entire duration when the flicker was active. We 

first used the automated detection script to identify calcium flickers, and then extract the location 

information for each flicker. Within the flicker region, the SNR was calculated by taking the 

intensities from the original video stack. The SNR of each video stack was the average SNR of 

all detected calcium flickers. This reflects the SNR more accurately because we were interested 

in the noise present in calcium signals, rather than the shot noise in the background signals that 

do not have calcium activity. The two tailed, equal variance, pairwise T-test was used as a 

statistical approach to evaluate the significance of difference between dataset pairs. 

3.8.6 Generation of simulated calcium data 

 Simulated calcium data was generated by adding Poisson and Gaussian noise to the 200 

ms exposure time high SNR videos. The Poisson noise was generated using NumPy library68 

with a scaling factor of 30 and the Gaussian noise was generated with a standard deviation of 15 

times the mean intensity of the original video images.  

The performance of denoised models was evaluated by determining if the detected 

flickers in denoised results overlapped in time with the original 200 ms exposure time data. 

Automated flicker detection as described in Sec 3.8.4 was used. The start and end frame of each 

detected flicker in the denoised results were compared to the same detected flicker in the original 

200 ms exposure time videos. Flickers were, identified by mapping the x,y information of the 
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flickers, with a tolerance of ± 2 frames. Precision value was reported as the fraction of true 

positive detected flickers among all the detected flickers, reflecting the accuracy of the 

algorithms. Recall value was defined as the fraction of true positive detected flickers among all 

detected flickers in the original 200 ms exposure time image data, indicating how many ‘real’ 

flickers were retrieved. 
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4 Results 

4.1 Deep learning denoising algorithms enhance image SNR better than traditional methods 

 Calcium flickers were imaged with a higher temporal resolution by setting the exposure 

time to 20 ms. This is 10x faster than previous conditions where the SNR was optimized with a 

200 ms exposure time (Fig. 6A). Calcium images collected with a 20 ms exposure time were 

noisier and it was difficult to distinguish calcium flickers from background (Fig. 6B). Several 

methods including mathematical and deep learning denoising approaches were selected to 

enhance the SNR and generate images that were more representative of “true” calcium signals.  

 As mentioned in the introduction section, three different types of deep learning calcium 

denoising algorithms were selected and their characteristics are summarized in Table 3.  

 

Figure 6: More noise is observed in calcium images captured with a short exposure time compared to a long exposure time.  

Representative widefield images of HUVEC monolayers treated with Yoda 1 imaged with different exposure times imaging 

conditions. The green arrow points toward a calcium wave and the blue arrows point towards calcium flickers. The lower panel are 

zoom-in versions of the green/yellow square boxes.  (A) Images were obtained with a 200 ms exposure time, 5 fps and 20% lamp 

intensity. (B) Images were obtained with a 20 ms exposure time, 50 fps and 20% lamp intensity. The images are of the same field 

of view at different time points. Brightness and contrast were auto adjusted for better visualization purposes. Image size: 

1024x1024. Scale bar: 40 𝜇m. 
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Table 3: Three selected deep learning calcium denoising algorithms and a summary of their different characteristics. 

The algorithms were only trained with low SNR 20 ms exposure time calcium images 

and tested with a different set of calcium images. Each calcium flicker is unique, and it is not 

possible to set up the microscope to image simultaneously at a shorter and longer exposure time 

in live cells. Also, since two of the denoising algorithms are unsupervised and do not require 

ground-truth data, it is difficult to validate the results. To overcome these issues 10 consecutive 

image frames were added together to generate pseudo 200 ms long exposure time. This also 

meant that the test data was composed of exactly the same images as for the raw data and all 

denoising approaches including the representative traditional mathematical denoising approaches 

of Gaussian and median filtering.  

The rolling shutter feature of the scientific CMOS (sCMOS) sensor scans the image from 

the center to the top or the bottom, resulting in slightly different noise and background properties 

within the two halves of the images and a horizontal line in the middle of the image (Fig. 7A). In 

addition, uneven illumination was more obvious in shorter exposure time images (Fig. 7A). To 

remove the background, uneven illumination and fixed the camera pattern, the test images were 

preprocessed by subtracting a camera correction image collected with the same conditions but 

with no sample on the microscope and no lamp illumination (Fig. 7A). 

 

NIDDL53 (2022) DeepInterpolation60 (2021) DeepCAD59 (2021) 

Based on confocal images of the 

mouse brain 

Supervised 

Based on two-photon images of the mouse brain 

 

Unsupervised 

• 512x512 

• Higher accuracy and 

generalizable 

• Requires ground-truth data 

(supervised) 

• A relatively small training 

datasets (~500 image pairs) is 

needed 

• 512x512 

• Adapts from Noise2Self and 

Noise2Void models 

• Increase SNR by 15-fold 

• Takes temporal information 

from pre and post frames 

• Trained on a huge dataset 

~10,000 frames 

• 1024x1024 

• Based on Noise2Noise model 

• Increase SNR by 10-fold 

• A training dataset of ~3500 

frames with high-speed 

imaging is needed 
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By applying different denoising methods, the SNR was improved to a different extent 

(Fig. 7, 8) when compared to the raw test image data (Fig. 7B). The Gaussian filter (Fig. 7C) and 

median filter (Fig. 8A) removed noise, but the resulting images are slightly blurred. The 

background was reduced but the images were still somewhat pixelated (Fig. 7, 8).  

The NIDDL deep learning algorithm corrupted the test image, key features in the data 

disappeared and black rectangular blocks were randomly introduced after image processing (Fig. 

8B). SNR was not calculated for NIDDL denoising results because this was not meaningful  

 

 

Figure 7: Median filter improves SNR in noisy images. Representative test images with HUVEC monolayers treated with Yoda1. 

(A)Test images were preprocessed by subtracting a camera correction image to eliminate the fixed pattern artifact from the rolling 

shutter (horizontal line in the middle of the image). (B) Time lapse images of the test data. The images were captured with a 20ms 

exposure time, 50 fps, 20% lamp intensity. The right panels represent zoomed-in regions of interest from the time series images shown 

in the yellow and blue boxes. (C) Denoised test images with the application of a Gaussian filter with a sigma of 1, which corresponds to 

a 3x3 kernel. The right panels are zoomed-in versions of the same areas at the same time points in B. Brightness and contrast were auto 

adjusted for better visualization purposes. Image size: 1024x1024. Scale bar: 40 𝜇m. 
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Figure 8: DeepCAD and Deep Interpolation enhances the image SNR.  Denoised images following the (A) Median Filter 

with radius of 1pixel, (B) NIDDL algorithm, (C) Deep Interpolation algorithm, (D) DeepCAD algorithm. (E) Pseudo 200ms 

exposure time images from videos by adding 10 consecutive image frames using test data. The starting time in the pseudo 

200ms exposure time was the same as other panels but the video had a longer duration. The right panels are zoomed in 

versions of the same areas at the same time points in Fig. 8. Brightness and contrast were auto adjusted for better visualization 

purposes. Image Size = 1024x1024. Scale bar: 40 𝜇m. 
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considering the excessive image artifacts generated by image processing with the algorithm. 

Deep Interpolation (Fig. 8C) improved the SNR ~ 2.5-fold compared to the raw data (Fig. 7B) 

and was ~40% better than the mathematical denoising (Fig. 7C, Fig. 8A). 

Following processing with the DeepInterpolation algorithm the calcium signals in the 

denoised images appeared to be saturated, making the images look almost like binary masks 

(Fig. 8C). DeepCAD denoised results enhanced the SNR (Fig. 8D) by ~2-fold compared to the 

raw image data and the SNR was about ~20% higher than for the mathematical denoised 

approaches. The DeepCAD denoised result mostly closely matched the pseudo 200 ms high 

exposure time images (Fig. 8E).  

To further explore the problem of the random blocks present in NIDDL denoised results, 

the three denoising algorithms were tested with 512x512 cropped and corrected images of 

camera noise (Fig. 9A). The NIDDL algorithm still produced these block artifacts in the denoised 

images (Fig. 9B). There were no artifacts generated or false positive calcium signals in the 

denoised images following processing with the Deep Interpolation (Fig. 9C) or the DeepCAD 

 

Figure 9: Deep Interpolation denoised results appear as a binary image with default image display properties and 

NIDDL denoised results corrupted with pure noise. (A) Camera correction image captured with no imaging slide and no 

illumination. Results based on the image in panel E using the (B) NIDDL algorithm, (C) Deep Interpolation algorithm, and 

(D) DeepCAD algorithm. (E) Denoised Deep Interpolation image displayed with auto brightness and contrast. (F) Same 

image in panel A but the image display settings were manually adjusted for brightness and contrast to accurately reflect the 

calcium flicker signals. (G) The image used to test Deep Interpolation. (H) Histogram of panel A/B. Image size: 512x512. 

Scale bar: 40 𝜇m. 
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(Fig. 9D) algorithm, confirming their reliability. Based on these results, we concluded that 

NIDDL did not work well with our training and test image datasets and resulted in the generation 

 

Figure 10: SNR ratio among different denoising methods. (A) and (B) were the same plot. (A) The violin plot of SNR 

among raw data and different denoising methods without significance for better visualization of the violin shape. (B) The 

same violin plot as (A) with significance. Each gray point represents SNR value of one image video stack, in (B) each data 

point was randomly displaced along the x-axis to prevent overlapping. The horizontal line within the violin plot represents 

75% quartile, median and 25% quartile from top to bottom respectively. N=30 videos for each method and t-test. ** 

represents p-value < 0.01, *** represents p-value < 0.001, and N.S represent not significant. 
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of significant image artifacts. Due to the artifacts, NIDDL was not carried forward for the SNR 

analysis. Based on advice from international experts (AI4Life program - 

https://ai4life.eurobioimaging.eu/) in the AI image denoising field it was decided to focus on the 

other two denoising algorithms that worked well. Spending significant time modifying code and 

adapting the NIDDL algorithm would not be a productive use of time when the other two 

algorithms were working well. 

To examine whether DeepInterpolation denoised image results were indeed saturated or if 

this was only an image display issue, the images were further analyzed by adjusting the 

brightness and contrast and plotting an image histogram. The images only visually appeared to 

be saturated, and binary based on the automated image display after performing denoising. The 

automatic brightness and contrast were adjusted to show the background information, resulting 

in apparent saturation of calcium signals (Fig. 9E). If the brightness and contrast were adjusted 

manually to show the calcium flicker intensities accurately, the background was close to black 

(i.e. zero intensity) but the calcium flicker intensity signals were not saturated as no white pixels 

were seen in the image (Fig. 9F). Compared to the raw image intensity data (Fig. 9G), the Deep 

Interpolation denoised results preserved the calcium signals and lowered the background signal, 

leading to an improved signal-to-background ratio. The Deep Interpolate image intensity 

histogram demonstrates that the flicker intensity data is not saturated on the 8-bit scale (0-255) 

(Fig. 9H). 

To further quantify the denoised image results, SNR values were calculated using 30 

time-lapse image stacks acquired from 3 independent experiments. The SNR was calculated for 

each image stack including the raw test images, mathematical denoising (Gaussian, median), 

deep learning algorithms (DeepInterpolation, DeepCAD) and the pseudo 200 ms exposure time. 

Overall, the deep learning algorithms improved SNR significantly compared to the raw data, 

mathematical denoising approaches or pseudo 200 ms image data (Fig. 10). There was no 

significant difference between the SNR for Deep Interpolation and DeepCAD. However, Deep 

Interpolation showed a broader more disperse distribution of SNRs and had a few data points 

that had poor SNRs close to that of the raw images. The median filter achieved higher SNR 

compared to the Gaussian filter. Pseudo long exposure time image stacks showed enhanced SNR 

compared to raw data, which makes sense because it mimicked the imaging condition of 200 ms 

https://ai4life.eurobioimaging.eu/
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exposure time. Based on the more in-depth SNR analysis, DeepCAD appears to provide the most 

robust denoising result (Fig. 10). 

4.2 DeepCAD is the optimal denoising algorithm 

 The denoised results from Deep Interpolation and DeepCAD both looked promising, to 

further analyze the denoised data and determine if one algorithm was superior to the other, 

quantitative methods needed to be established. One direct way to compare the flickers and 

 

Figure 11: Deep CAD denoised calcium signals aligned well with pseudo high exposure time videos while Deep 

Interpolation showed slightly smaller calcium signals. (A) The intensity plot along the line 1 and line 2 in the raw image, (B) 

Deep Interpolation, (C) DeepCAD denoised images, (D) pseudo long exposure time (200 ms) image. Brightness and contrast 

were auto adjusted for better visualization purposes. Scale bar: 20𝜇m. 
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observe the peaks and background is by using intensity line plot profiles. Based on the intensity 

line plot profiles, raw data showed frequent fluctuations in the signal and the background that 

were often similar in magnitude (Fig. 11A). This made it difficult to characterize calcium flicker 

peaks (size, duration) and to distinguish calcium flicker activity from background. This also 

made it difficult to determine the start and end points of the flicker intensity increase and 

decrease representing signal initiation and signal end across the image stacks. Deep Interpolation 

and DeepCAD both had smoother intensity plots with higher signal and lower intensity 

fluctuations across the flickers and in the background (Fig. 11B, C). Following deep learning 

denoising algorithm image processing, it is straight forward to identify calcium flickers based on 

the intensity line plot profiles (Fig. 11). Deep Interpolation (Fig. 11B) had low background 

signals compared to DeepCAD that still showed relatively significant background intensity 

values (Fig. 11C). This suggests that Deep Interpolation denoised results may over correct the 

low intensity signals. Note that following Deep Interpolation denoising, the second peak along 

the shoulder on the yellow intensity plot profile is filtered out and the low intensity peak in the 

blue intensity plot is significantly reduced (Fig. 11B). Pseudo 200 ms exposure time intensity 

plot profiles showed enhanced SNRs in comparison with raw image intensity data (Compare Fig. 

11A, D), with moderate fluctuations in the flicker and background intensity signals.  

Since the deep learning denoising methods may change the absolute flicker intensity 

during denoising processes, the intensity plots were normalized to intensity values of 0-255 to 

enable direct comparisons among the different methods. Compared to the raw flicker intensity 

data, the Deep Interpolation and DeepCAD denoised data was smoother and had less fluctuations 

in the intensity signals (Fig. 12A, B).  When compared to the pseudo 200 ms exposure time 

intensity data, Deep Interpolation showed lower intensity values for dimmer signals making it 

possible that the second calcium flicker on the blue reference line may be missed (Fig. 12C). As 

mentioned above, the shoulder of the calcium flicker on the yellow reference line was filtered out 

making the flicker appear truncated and much smaller in area (Fig. 12D). In contrast, the 

normalized intensity plot of DeepCAD denoised results aligned well with intensity plot data 

from pseudo high exposure time image intensities, confirming its accuracy of the intensity and 

spatial information characterizing calcium flickers (Fig. 12C, D).  
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In addition to measuring and comparing the intensity profile plots across selected calcium 

flickers, another quantitative method for comparison of the different denoising methods was to 

manually count the number of calcium flickers present in timelapse image datasets. Since the 

aim of this study was to determine if deep learning denoising algorithms could detect fast 

calcium flickers missed by current calcium imaging protocols, we hypothesized that more 

flickers would be detected by denoising the images captured with high temporal resolution. It is 

difficult to apply automated scripts to count the number of flickers present in the raw image data 

because of the low SNR. This made the automated process to distinguish calcium signals from 

the background error prone. Therefore, to ensure the consistency of the results, manual flicker 

counting was performed on all videos from three independent experimental replicates for all raw 

and denoised image data sets (Table 4).  

Three experimental replicates of calcium image flicker data imaged with 20 ms exposure 

time were collected. The total number of calcium flickers present in each video was normalized 

to the number of flickers counted in the raw image data set. Deep Interpolation and DeepCAD 

 

Figure 12: Normalized intensity plots among raw and multiple denoised methods. Normalized intensity plot (0-255) 

along (A) line1 and (B) line2 among raw data, Deep Interpolation and DeepCAD. Normalized intensity plot (0-255) along 

(C) line1 and (D) line2 among pseudo long exposure time, Deep Interpolation and DeepCAD. The intensity plots were 

based on Fig. 11. 
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showed an increase in the number of flickers compared to the raw data (Table 4, Fig. 13A). 

DeepCAD denoising resulted in slightly more flickers compared to Deep Interpolation. 

Regarding the pseudo long exposure time data, it had significantly fewer calcium flickers 

compared to DeepCAD denoised data but a similar number of flickers compared to raw data, 

indicating that some low intensity flickers were missed. This is expected with long exposure time 

as dim intensity flickers could fade into the background with the long exposure time. Videos with 

200 ms exposure times were obtained as a reference and a similar number of flickers was 

measured as with the pseudo 200 ms exposure time data but the 200 ms exposure data showed a 

much boarder distribution of numbers of flickers (Fig. 13A, B). It is not unexpected that the 200 

ms image stacks had more flickers compared to the raw image data because the videos were 

captured at different times and the frequency of calcium flickers might be different for the same 

set of cells. In some cases, the 20 ms exposure time videos were captured in the same field of 

view but after the 200 ms exposure time videos were captured. Thus, the number of flickers in 

the raw 20 ms exposure time videos could have been reduced due to phototoxicity. However, 

control experiments on fixed cells using the same imaging conditions did not show any evidence 

of fluorescence photobleaching making high levels of phototoxicity unlikely (data not shown). 

Overall, the 200 ms exposure time video data had a very broad distribution with some videos 

having much fewer flickers and others many more (Fig. 13B). 

To further explore the characteristics of the detected flickers in the raw versus denoised 

timelapse videos, an automated detection script was developed and used to extract the duration, 

intensity and area information of each detected flicker. In this case, the total number of flickers 

was lower than the number counted manually but this enabled automated segmentation and 

measurement of flicker properties. Automatically detected flickers with a duration <200 ms 

accounted for 15.6%, 8.3% and 12.5% of the total number of flickers for the raw, Deep 

Interpolation or DeepCAD denoised data respectively (Table 4). When looking only at the fast  

Denoising methods Raw Data 
Deep 

Interpolation 

% of Raw 

Data 
DeepCAD 

% of Raw 

Data 

Total # of flickers 662 772 117% 865 131% 

# of flickers with a 

duration <200 ms 
103 64 62% 108 105% 

Table 4: Number of total and fast flickers in different videos. Total number of flickers was counted manually and the number of 

flickers with a duration less than 200ms was counted using automated scripts.  
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flickers, Deep Interpolation missed ~38% of them while DeepCAD detected essentially the same 

number as in the raw data. The loss of flickers following Deep Interpolation denoising is likely 

due to the over correction of the background and loss of low intensity flickers. Interesting, this 

indicated that most fast flickers can be captured without denoising so they must be bright enough 

to be distinguished from the noisy background and the extra flickers detected by DeepCAD 

might be low intensity flickers with slower dynamics. 

 The area of the automatically detected calcium flickers from the 30 videos was measured 

for the raw and denoised image data sets. Deep Interpolation were the only images that had a 

large populations of calcium flickers with a smaller size (Fig. 13C). This further confirms the 

previous finding that Deep Interpolation denoising results in dim flickers disappearing and large 

flickers appearing much smaller than they really are (Figs. 11, 12). This is expected as the Deep 

Interpolation algorithm resulted in a dark image background indicating low intensity data 

clipping. DeepCAD had a similar distribution of flicker area as pseudo and actual 200 ms 

exposure time videos and all three captured more flickers with a size larger than 20 μm2 (Fig. 

13C). Deep Interpolation and DeepCAD denoising also resulted in the detection of more flickers 

with a duration greater than 2000 ms (Fig. 13D). This aligns with the previous conclusion that 

the low SNR in raw image data can cause inaccurate identification of the starting and ending 

timepoints of the flicker signal, leading to a truncated or shorter calcium flicker duration.  

Scatter plots were made using raw, Deep Interpolation and DeepCAD denoised data to 

further explore the distribution of the flicker data and any relationship between different flicker 

characteristics. A Duration versus Normalized Intensity plot of the Raw flicker data shows a 

scatter plot with flicker durations up to ~3000 ms (3 s) and normalized intensities from 0-255 

(Fig. 13E). The majority of flickers had a duration of less <1000 ms. Interestingly, the longest 

duration flickers also correspond to lower intensity flickers. Deep Interpolation shows a shift to 

Figure 13: Denoising methods detect more dim calcium flickers with longer durations. (A) Violin plot of the number of 

flickers present in each image video stacks normalized to raw data. Each dot inside the violin plot represents the mean of 

each experiment. N=30 for each method. (B) Same plot as panel (A) but includes individual data points for each video. (C) 

Violin plot of the area of calcium flickers detected by the automated detection script. The plot was filtered to show flickers 

with an area smaller than 50 𝜇m2 for better visualization. (D) Violin plot of the duration of calcium flickers detected by the 

automated detection script. The plot was filtered to show flickers with a duration shorter than 3000 ms for better 

visualization. The horizontal line within the violin plot represents 75% quartile, median and 25% quartile from top to bottom 

respectively. N.S. represents not significant, * represents p-value <0.05, ** represents p-value < 0.01 and *** represents p-

value < 0.001. Individual data points were randomly displaced along the x-axis to prevent overlapping. Scatter plot of 

duration and intensity of calcium flickers detected by the automated detection script in (E) raw data (F) Deep Interpolation, 

(G) DeepCAD. Each blue point represents a single flicker. The intensity was normalized to 0-255. 
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lower normalized intensities with a large number below 20 intensity units demonstrating that the 

denoising algorithm clips the low intensity data from the images (Fig. 13F). DeepCAD showed 

 

 

Figure 14: Denoising algorithms detect more calcium flickers compared to raw data. Maximum intensity projection 

(MIP) of (A) raw data, (B) raw data corrected for background and cell shape, (C) Deep Interpolation, (D) DeepCAD 

denoised results and (E) pseudo long exposure time videos. (B) was the MIP for the first 20 frames for better visualization 

and all other MIPs were for the entire test image stacks. Yellow boxes in (C) highlight some examples of low intensity 

flickers that were detected by DeepCAD and not detected in raw and pseudo 200 ms exposure time videos. (F) Mask of 

automated counting the number of flickers present in time lapse images. Each blue box represents a detected calcium 

signal in DeepCAD denoised data. (G) 200 ms exposure time high SNR data, served as ground truth data for simulated 

noisy calcium flicker data. (H) Simulated noisy calcium flicker data by adding Poisson and Gaussian noise to 200 ms 

exposure time data. Brightness and contrast were auto adjusted for better visualization purposes. Image Size = 1024x1024. 

Scale bar: 40𝜇m. 
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more flickers in the upper left corner of the plot which represents the long duration and low 

intensity flickers (Fig. 13G). There was a portion of bright flickers lost in the DeepCAD data that 

could be the result of an artifact caused by the change of intensity during the denoising process 

(Fig. 13G). Overall, DeepCAD denoising improves the detection of low intensity long duration 

flickers likely due to the ability to detect the flickers early and late in their dynamic process 

when they are dim. These long duration flickers of variable intensity are not detected in the raw 

data and the low intensity ones are filtered out with the DeepInterpolation denoising algorithm. 

Maximum intensity plots were used to visualize all the flicker activities present 

throughout the entire timelapse videos. Looking back at the data, the small dim flickers were 

easily missed in the raw data because the background was noisy, and it was difficult to 

distinguish whether it is a true signal or random noise (Fig. 14A-E). Automated counting of 

calcium flickers was developed to facilitate the counting process and visualized the detected 

flickers by drawing a blue box around each detected flicker (Fig. 14F).   

 Simulated low SNR 200 ms calcium data was generated by adding Poisson and Gaussian 

noise to 200 ms exposure time videos to further validate the denoised results (Fig. 14G, H). For 

each detected flicker in the original 200 ms exposure image data. Time overlaps for individual 

flickers according to the start and end frame were checked by comparing the same flicker in the 

original 200 ms exposure time image with the denoised results of simulated low SNR images. 

Deep Interpolation achieved 61% precision in detecting flickers and recovered 26% of the 

flickers while DeepCAD had a precision value of 60% and retrieved 78% of the flickers (Table 

5).  

Methods Deep Interpolation DeepCAD 

# of flickers in 200 ms exposure 

time videos in 5 seconds 

211 

# of flickers in denoised videos 88 276 

# of matched flickers 54 164 

Precision Value 0.61 0.60 

Recall Value 0.26 0.78 

Table 5: Accuracy and recall value of Deep Interpolation and DeepCAD denoised results. The precision and recall value were 

calculated using 3 independent videos. 
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Figure 15: DeepCAD denoises images captured at a short exposure time of 10ms. (A) Test raw data imaged at 10 ms, 100 

fps. Denoised image using (B) Deep Interpolation, (C) DeepCAD denoising models and (D) Pseudo 200 ms exposure time 

videos by adding together 20 consecutive image frames using the test data. The second frame in the pseudo 200 ms exposure 

time was at the same time point as other panels but has a longer duration. The right panels are zoomed in images of the blue 

box region. Image Size = 512x512. Scale bar: 40 𝜇m. Normalized mean intensity of the area of interest, the calcium wave 

originated from localized calcium activity, illustrated by the yellow annotations in panel (D), in (E) raw data, 

DeepInterpolation, DeepCAD denoised results and pseudo 200 ms exposure time videos. (F) Box plot of number of flickers 

present in each video using different denoising methods. N=10 videos. The upper and lower bounds of the box indicate 75% 

and 25% percentiles respectively and the middle line inside the box indicated 50%. The whiskers represent the maximum and 

minimum values of each box plot. Each gray dot represents the number of flickers in one video. Data points outside the box 

were outliners. N.S. represents not significant. 
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4.3 DeepCAD can push the temporal limit of calcium imaging to 10 ms or 100 fps  

To further test the temporal limit of the denoising algorithms, timelapse images with an 

even shorter exposure time of 5 or 10 ms were obtained as additional test datasets for Deep 

Interpolation or DeepCAD denoising. Since there were few calcium flickers present in the raw 

data, it was not possible to quantify the SNR in the raw data with 5 and 10 ms exposure time 

image videos. Comparing to images captured at 20 ms exposure time (Fig. 7B), images at 10 ms 

exposure time were much nosier and it was difficult to visualize the flicker intensity signals 

relative to the background (Fig. 15A). Deep Interpolation denoised images had a slightly lower 

SNR compared to raw data (Fig. 15B) while DeepCAD was able to denoise images and improve 

SNR by ~2-fold (Fig. 15C). The flicker on the top left of the 10 ms denoised images (Fig. 15B, 

C) clearly showed the propagation of the calcium flicker in space and time. In comparison, the 

pseudo 200 ms exposure time images (Fig. 15D) that do not resolve the flicker dynamics with 

high precision. Based on the plots of normalized mean intensity over time, raw data showed the 

propagation and diffusion of calcium waves with moderate fluctuations while DeepInterpolation 

and DeepCAD denoised results had minor fluctuations (Fig. 15E). Deep Interpolation denoised 

results showed clipped calcium activity as the flicker intensity started to decrease earlier after the 

peak compared to other methods (Fig. 15E). For bright flickers, pseudo 200 ms exposure time 

videos had a similar temporal flicker shape of the plot compared to raw image data and 

DeepCAD denoised results, but the points were dispersed, leading less well-defined flicker 

intensities over time (Fig. 15E). The total number of flickers present in raw and denoised videos 

were manually counted and there was an increase in denoised videos compared to raw data but 

the difference was not significant (Fig. 15F). There was no significant change in the total number 

of flickers in raw and pseudo long exposure time videos. Perhaps with additional data collection 

there could be a significant difference in flicker detection with denoising. 

Calcium flickers were not visible in raw images captured with a 5 ms exposure time (Fig. 

16A) and were barely visible with Deep Interpolation (Fig. 16B) or DeepCAD (Fig. 16C) 

denoising. Even with the pseudo long exposure time images, both the calcium flicker and the 

background were hard to distinguish due to the noise contribution from adding together 40 short 

exposure images (Fig. 16D) when compared to a single image captured with a 200 ms exposure 

time (Fig. 16E). It would be difficult to study the localization of the flickers with 5 ms exposure 
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time data because the cell shape is not visible. Deep Interpolation and DeepCAD restored the 

calcium signals from the raw data but they are still difficult to detect. 

 

  

 

Figure 16: Deep Interpolation and Deep CAD recover the signal from noisy images captured with a 5 ms exposure 

time but cell shape and background information is not revealed. (A) Test raw data imaged at 5 ms, 200 fps, center camera 

quadrant. (B) Denoised image using Deep Interpolation, (C) Denoised image using DeepCAD and (D) Pseudo 200ms 

exposure time image created by adding together 40 consecutive image frames using the test data. The starting time point in 

the pseudo 200 ms exposure time was the same as other panels but has a longer duration. The right panels are zoom in 

images of the data within the blue box. Brightness and contrast were auto adjusted differently for each image panel for better 

visualization purposes. Image Size =512x512. Scale bar: 40 𝜇m.   

 



 

 57 

5 Discussion 

 This project aimed to develop a fast calcium imaging protocol with optimal spatial and 

temporal resolution using deep learning denoising algorithms. There are many denoising 

algorithms mentioned in the introduction section, but most of them are not based on calcium 

imaging. Three calcium denoising algorithms of different types including supervised and 

unsupervised algorithms were chosen and compared to determine the performance of these 

different deep learning models (Table 3). Based on several factors it was determined that 

DeepCAD was the best algorithm for denoising the calcium imaging data collected during this 

project. 

DeepCAD was easiest to install and had clear instructions. Many problems were 

encountered with NIDDL and Deep Interpolation in terms of setting up the environment. For 

NIDDL, the instructions were confusing and difficult to follow, and some scripts are hard coded 

for reading and processing the image files, so the users need to either follow the name 

restrictions in the code or directly modify the scripts. This makes this algorithm difficult for non-

experts to install and use. NIDDL did have a clear and complete explanation for TensorFlow, but 

it is built on an out-dated TensorFlow version that cannot be installed on the DRAC advanced 

computing resource. Only limited instructions were available for the PyTorch version of the 

algorithm but that did work. Deep Interpolation requires a large amount of training data and 

powerful advanced computing units. Based on the training experience for this work, even when it 

was trained with a powerful GPU (Tesla 4) it was slow. It took about 4 hours for Deep 

Interpolation to train on a single video while DeepCAD took less than 1 hour for the same video. 

This is a major limiting factor for implementing Deep Interpolation and especially for research 

groups that do not have access to advanced computing resources and expert computer scientists.  
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 Most deep learning denoising models are designed for mouse brain images captured with 

a multi-photon microscope53,59,60. In neuroscience, live cell imaging sometimes needs multi-

photon infrared imaging to go deep into the tissue and some neurons are sensitive to visible 

light53,59,60. Scattering in tissue and the need to minimize excitation light can lead to insufficient 

illumination conditions and low signal to noise images. For all live cell imaging experiments 

there is a desire to reduce the illumination light power and/or exposure time to minimize 

photobleaching and phototoxicity and maintain sample health69. By applying denoising methods, 

the illumination light power and/or duration can be decreased to reduce phototoxicity and keep 

cells healthy throughout the imaging session. These methods can also improve the SNR for 

images collected deep within tissue. As discussed in this thesis, denoising can make rapid 

imaging possible by reducing the necessary camera exposure time while maintaining a 

satisfactory SNR to identify objects or events of interest. Previous studies obtained their low 

SNR images by using low laser power on a confocal microscope53,59,60.  Here the images had low 

SNRs because the exposure time was short. The goal of this work was to apply denoising 

methods to improve the SNR allowing high speed imaging of calcium signals with cultured cell 

monolayers.  

 All the denoising methods including mathematical filters and deep learning denoising 

algorithms enhanced SNR significantly but deep learning models outperformed traditional 

mathematical methods. Among the selected deep learning algorithms, NIDDL did not work for 

our training and testing datasets because it introduced many artifacts in denoised images that 

interfered with imaging of calcium flickers. So, we focused on comparing Deep Interpolation 

and DeepCAD denoising to improve calcium flicker detection and characterization. Both of them 

detected more flickers compared to raw data, but Deep Interpolation reduced the flicker size, 
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clipped low intensity flickers and only detected ~62% of fast flickers. DeepCAD retrieved dim 

flickers without altering the biological structures. 

Traditional mathematical filters like Gaussian and median filters improve the SNR of the 

image but they caused image blur at the same time. This can impact the flicker characteristics by 

possibly changing the flicker area and under or overestimating it relative to raw data. Although 

the mathematical filters are relatively easy to use, the processing time is nearly instantaneous and 

ImageJ/Fiji has the built-in function of different mathematical filters, they didn’t improve SNR 

as much as deep learning algorithms (Fig. 10) so they were not pursued further. 

 Unfortunately, NIDDL resulted in many image artifacts after training and testing with our 

image datasets. One possible reason for this is the difference in the training dataset relative to the 

original study. The original low and high SNR dataset53 used by Chaudhary et al. was obtained 

with calcium signals in live mouse brains and the time differences between the two stacks was 

short (~100 ms) compared to the dynamics of calcium signal in neurons. So, the paired images 

used for training contained similar temporal information. In our case, we used fixed cells to 

generate paired images with the same signals for training the algorithm. This is because there 

would have been significant changes in the calcium flicker signals in the HUVEC monolayers 

with a 100 ms time difference between images. However, the original live cell data used to train 

NIDDL could have had temporal features in the image data that were critical for algorithm 

training. So some of the image artifacts could be a result of training on static calcium flicker 

image data with only the noise varying. After careful discussion with international AI image 

analysis experts from the Euro Bio-Imaging AI4Life program, it was decided to move on with 

the two other denoising algorithms that were working well and not to try to resolve, recode or 

retrain NIDDL. 
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 Based on the Deep Interpolation results, it is tempting to recognize the denoised results as 

a binary image. After checking the histogram, it determined that this was only an image display 

problem, resulting from the fact that the Deep Interpolation algorithm reduces background so 

much that many pixels are black and read zero intensity units (Fig. 9E, F). This benefits 

segmentation tasks and increases the image SNR since there is minimum background signals. 

Deep Interpolation enhanced the image SNR significantly compared to raw data (Fig. 10), but by 

looking at the intensity plot of flickers following Deep Interpolation denoising, it was clear that 

the algorithm clips low intensity data from the images, minimizes the size and peak intensity of 

the flickers and changes their spatial (Fig. 11, 12 and 15E) and temporal shape. This then alters 

the biological features that are being measured and resulted in many low intensity flicker signals 

being removed from the images and the analysis as they were below the detection range for both 

manual and automated flicker detection and counting (Table 4). Based on the results of simulated 

low SNR calcium flicker data, Deep Interpolation only detects about 26% flickers compared to 

200 ms exposure time image data (Table 5).  

DeepCAD was the best denoising approach for the datasets under study during this thesis 

work for many reasons. The flicker sizes were similar to those in the pseudo long exposure time 

or 200 ms exposure time image data sets (Fig. 14B). It gives the best SNR without any apparent 

image artifacts (Fig. 16C, D) and DeepCAD denoised images resulted in the detection of the 

highest number of calcium flickers from the test dataset (Table 4, Fig 13). The original 

hypothesis for this thesis was that with faster imaging rates and deep learning-based image 

denoising more fast calcium flickers would be detected. It turned out that the fast flickers were 

bright enough to be identified in raw image data with 20 ms exposure times (Table 4). However, 

DeepCAD denoising resulted in the detection of additional flickers that corresponded to dim 
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flickers with a long duration (Fig. 14B-F). In principle, with fast imaging at 100 fps the 

DeepCAD denoising models can capture fast flickers that could otherwise be missed by current 

imaging protocols and low intensity flickers occurring on any timescale that would normally be 

lost in the noisy background of short exposure images. In addition, the flicker duration is more 

accurate because when the flickers are dim at the start and end of the flicker event are 

determined more accurately. DeepCAD seems to generate a small intensity periodic intensity 

peak across the data. This phenomenon needs further investigation to determine how this artifact 

arises and find ways to mitigate it (Fig. 15E). Although in some cases Deep Interpolation shows 

higher SNR this is due to the fact that it is clipping low intensity data resulting in loss of features 

within the images. In addition, DeepCAD retrieved 78% of flickers while Deep Interpolation 

only recovered 26% when tested with simulated low SNR calcium image data (Table 5). The fact 

that that 22% of flickers remain undetected demonstrates that more work needs to be done to 

improve DeepCAD denoising. Thus, DeepCAD is preferred as it detected dim flickers that are 

missed in the raw 200 ms exposure time data, it does not clip low intensity data like Deep 

Interpolation but further improvements are needed. 

The automated calcium flicker detection script detects ~80% calcium flickers for raw 

image data and achieving an accuracy of ~90% for denoised data. This reduced manual labor 

efforts and allowed for the detailed measurement of flicker numbers, area and duration. It is 

always tricky to quantify the effectiveness of an unsupervised model because it does not have 

ground truth data to compare to. In live cell imaging, each cellular event is random and unique so 

it is impossible to capture the exact same event twice with different imaging conditions. In this 

study, we generated pseudo-long exposure time videos so that the performance of different 

denoising methods could be evaluated.  
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 For deep learning denoising methods, the denoised images are generated from the input 

data. It is possible that the deep learning model generates something that does not exist or is not 

reflected in the raw data (like what was observed with the NIDDL algorithm), also known as a 

false positive. Vice versa, there can also be false negatives which refer to the situation when the 

model removes signals that are present in the raw data. To ensure that the denoised results were 

accurate with no extra synthetic signals and no signals missing, simulated calcium data is the 

optimal method to choose. By using simulated calcium data, the exact number, intensity, area, 

duration and location of calcium flickers would be known. The denoised results could then be 

examined to determine its accuracy and if any false flickers are generated or real flicker signals 

are removed in the denoised images. Current simulated calcium data are mostly based on 

calcium signals in neurons70, and there is no existing synthetic calcium flicker data for cultured 

cell monolayers. Future work can be done to generate simulated calcium flicker data similar to 

what is seen in the HUVEC cell models and it could be used to evaluate the performance of 

denoising algorithms.  

The main goal is that DeepCAD detects low intensity flickers that are missed otherwise. 

It more accurately captures the temporal flicker characteristics including accurate identification 

of flicker initiation and flicker duration. With the 20 ms resolution we can more accurately 

characterize the flicker area and temporal signal and duration, while minimizing phototoxicity 

and photobleaching in live samples by reducing light exposure. Based on the current denoising 

results, using the imaging set up and conditions developed during this project, the temporal 

resolution of calcium flicker imaging can be optimized for rapid 100 fps live cell imaging. This 

is 20x faster than the current optimized protocol being used for the system. One possible reason 

that the denoising models didn’t work well for images captured with 5 ms exposure time was that 
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the input image was so noisy that there are no obvious calcium signals that the model can refer to 

and predict on (Fig. 17A). It is possible that retraining DeepCAD with 5 ms exposure time 

training data from fixed and/or live samples could improve its performance. Other possibilities to 

improve temporal resolution could include: 1) increased excitation light power to improve the 

image SNR with short exposure times improving the image quality to determine if the denoising 

model can generate high SNR denoised images, 2) use of a more efficient microscope light 

emission light path, or 3) use of a more sensitive camera detector. Interestingly, it was not rapid 

flickers but low intensity flickers that DeepCAD was able to pull out of the noise of raw images. 

In the future, the ability to image rapidly could be used to multiplex and add 1) a second or third 

fluorescence channel, 2) rapid tiling of large sample areas or 3) z-stacks for 3D imaging. 

From the perspective of the biological sample and the calcium sensor, these experiments 

were conducted with the GCAMP-6s calcium indicator. Recently, a faster and more sensitive 

family of GCAMP-8[f,m,s] calcium indicators were developed71, with enhanced brightness and 

faster rise and decay times with t1/2 of 10 ms and 100 ms, respectively. This will improve the 

spatial and temporal resolution because of improved brightness and help with the detection of 

fast and low intensity flickers while minimizing phototoxicity to ensure sample health. These 

new sensors will also reflect the calcium dynamics more accurately and help improve 

measurements of the dynamics and characteristics of calcium flickers. Further studies can be 

done using the fast calcium imaging protocol developed here to investigate the origin of calcium 

waves and better identify the characteristics (e.g. size, rise time, decay time, frequency, duration) 

of calcium flickers, which should help understand the fundamental biological functions of 

calcium flickers.  
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6 Conclusion 

 In summary, we have accomplished our goal of developing an optimized calcium 

imaging protocol with enhance temporal resolution using deep learning denoising methods. 

Among the selected denoising algorithms, DeepCAD outperformed the other two in enhancing 

SNR. It also retrieved the highest number of dim flickers from the raw videos and the structure 

of detected flickers were accurate and similar to pseudo high exposure time images. Using 

denoising algorithms, fast calcium imaging can be achieved and fast and/or dim calcium flickers 

that are missed by current calcium imaging protocol can be identified and characterized. With 

DeepCAD, the temporal resolution limit can be pushed up to at least 100 fps. The new protocol 

enables rapid calcium imaging while maintaining optimal spatial resolution and SNR with no 

evidence of phototoxicity. In the future, it can be used as a power tool to perform fast calcium 

imaging to study transient cellular events. It could also be applied to study other rapid cellular 

events or characterize low intensity features within biological samples. 
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