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Abstract 

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common 

neurodegenerative disorders, and they are characterized by clinical heterogeneity and multiple 

pathological processes. There is therefore a critical need to understand how the interactions 

between the various disease-related processes engender symptom manifestation and 

heterogeneity. Recent scientific advances have facilitated the measurement of disease-

associated biological processes using RNA-sequencing and neuroimaging methods. 

Leveraging these advances, this thesis aimed to study the multiscale and multifactorial 

processes underlying AD and PD.  Chapter 1 provides the motivation for this thesis and reviews 

relevant literature on the pathological processes underlying AD and PD. Various disease 

progression modelling methods used in studying those pathological processes are also 

discussed. Chapter 2 develops a novel data-driven dynamical systems model to study 

multiscale brain changes in aging and AD, which were observed to share some underlying 

biological mechanisms, with AD having more dysregulated processes. Chapter 3 further 

applies the developed model to study PD pathological processes and their relation to clinical 

presentations and physical activity. We found that different biological mechanisms underlie 

heterogeneity in PD symptom manifestation. Furthermore, the clinical utility of the model is 

demonstrated via in silico perturbation to reveal putative PD drugs. Chapter 4 investigates AD 

pathological changes across 6 different brain cell types by leveraging dynamical systems model 

of single-cell transcriptomics. Accelerated cell changes were observed in AD compared to 

normal aging. Chapter 5 discusses the contributions of this thesis, the limitations of its 

approach, and the suggestions for future work. Together, this work constitutes a disease-

agnostic and multiscale data-driven approach that provides comprehensive insights into the 

complex multifactorial pathogenesis of AD and PD, unravels key biological modulators of 
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physical activity and clinical deterioration, and serves as a computational tool for personalized 

drug discovery. 
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Résumé 

La maladie d’Alzheimer (MA) et la maladie de Parkinson (MP) sont les deux troubles 

neurodégénératifs les plus courants et se caractérisent par une hétérogénéité clinique et de 

multiples processus pathologiques. Il existe donc un besoin crucial de comprendre comment 

les interactions entre les différents processus liés aux maladies engendrent la manifestation et 

l’hétérogénéité des symptômes. Les progrès scientifiques récents ont facilité la mesure des 

processus biologiques associés aux maladies à l’aide de méthodes de séquençage d’ARN et de 

neuroimagerie. Tirant parti de ces avancées, cette thèse visait à étudier les processus multi-

échelles et multifactoriels sous-jacents à la MA et à la PD.  Le chapitre 1 fournit la motivation 

de cette thèse et passe en revue la littérature pertinente sur les processus pathologiques sous-

jacents à la MA et à la MP. Diverses méthodes de modélisation de la progression de la maladie 

utilisées dans pour etudier ces processus pathologiques sont également discutées. Le chapitre 

2 développe un nouveau modèle de systèmes dynamiques basé sur des données pour étudier 

les changements cérébraux multi-échelles liés au vieillissement et à la MA, qui partagent 

certains mécanismes biologiques sous-jacents, la MA ayant des processus plus dérégulés. Le 

chapitre 3 applique en outre le modèle développé pour étudier les processus pathologiques de 

la MP et leur relation avec les présentations cliniques et l'activité physique. Nous avons 

constaté que différents mécanismes biologiques sont à l'origine de l'hétérogénéité de la 

manifestation des symptômes de la MP. De plus, l’utilité clinique du modèle est démontrée via 

une perturbation in silico pour révéler des médicaments putatifs contre la MP. Le chapitre 4 

étudie les changements pathologiques de la MA dans 6 types de cellules cérébrales différents 

en tirant parti du modèle de systèmes dynamiques de transcriptomique unicellulaire. Des 

changements cellulaires accélérés ont été observés dans la MA par rapport au vieillissement 

normal. Le chapitre 5 discute des contributions de cette thèse, des limites de son approche et 

des suggestions de travaux futurs. Ensemble, ces travaux constituent une approche 
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indépendante de la maladie et basée sur des données multi-échelles qui fournit des informations 

complètes sur la pathogenèse multifactorielle complexe de la MA et de la MP, dévoile les 

principaux modulateurs biologiques de l'activité physique et de la détérioration clinique et sert 

d'outil informatique pour la découverte de medicaments personnalisés. 
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Chapter 1: Introduction and Literature Review 

1.1 Rationale and Objectives 

1.1.1 Rationale 

Over the last two centuries, the life expectancy of humans has increased steadily, thanks 

to healthcare innovations.  However, increased lifespan is associated with greater disposition 

to neurodegenerative diseases (Guerreiro & Bras, 2015; Singh et al., 2019). Hence, as the world 

populations skews towards the elderly, the prevalence of age-related neurodegenerative 

disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal 

dementia, and amyotrophic lateral sclerosis (ALS) is increasing. The World Health 

Organization (WHO) also forecasts that neurodegenerative disorders will overtake cancer to 

become the second leading cause of death in developed countries by 2040 (Gammon, 2014; 

Heemels, 2016). AD and PD are the two most common forms of neurodegenerative disease. 

Unfortunately, the currently available non-controversial treatments are at best symptomatic. 

Understanding these two diseases and developing disease-modifying treatments have therefore 

become a pressing research need. 

Reductionist approach has traditionally enhanced medical practice, making it easy to 

classify and understand diseases at the basic level. Consequently, the sporadic forms of many 

neurodegenerative disorders are characterized by the deposition of abnormal proteins 

(Jellinger, 2010; Jucker & Walker, 2013; Taylor et al., 2002). A typical case is AD whose 

pathophysiology is linked to the intracellular and extracellular depositions of β-amyloid and 

tau proteins, respectively. Similarly, PD is genetically and neuropathologically linked to the 

misfolding of presynaptic α-synuclein protein. While this proteinopathy paradigm is relevant, 

the complexity and heterogeneity of these diseases are becoming acknowledged (Armstrong, 
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2020; D. M. Wilson et al., 2023). The diseases are now considered multifactorial, involving 

dysregulations in various biological processes that interact in a complex manner.  

A major translational advancement in the last two decades is the identification of 

various biomarkers to study different disease-associated biological processes. Transcriptomics 

analysis have paved the way for deciphering the genetic underpinnings of neurodegeneration 

at the microscopic level (Dillman et al., 2017; Iturria-Medina et al., 2020; Johnson et al., 2020; 

Mostafavi et al., 2018; Tanaka et al., 2018). Specifically, single-cell RNA sequencing 

technologies enables the study of transcriptomic changes across different cell types (Conte et 

al., 2024). In parallel, molecular positron emission tomography (PET) scans, single-photon 

emission computed tomography (SPECT) scans, and magnetic resonance imaging (MRI) are 

facilitating the detailed characterization of macroscopic disease-related changes, such as 

dopaminergic loss, Aβ deposition, tau accumulation, glucose hypometabolism, altered 

cerebrovascular flow and atrophy (Booth et al., 2015; Dukart et al., 2013; Jack et al., 2018; 

Rodrigue et al., 2012; Zhang et al., 2017). Harnessing these multiple biomarkers may therefore 

hold clues to understanding how different processes interact in a complex manner to drive 

disease progression and heterogeneity in AD and PD. 

 

1.1.2 Objectives 

The content of this thesis focuses on using dynamical systems analysis to integrate 

whole-brain gene expression with multimodal neuroimaging to characterize multiscale 

interactions between various biological processes that underlie AD and PD. The overall 

objective is driven by the critical need to advance the understanding of neurodegenerative 

diseases using available multiscale biological measures. This understanding will also facilitate 

the development of suitable computational tools for drug discovery and patient screening. 
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The objective of Chapter 1 is to discuss the motivation behind this thesis and its goals. 

Another objective is to review relevant literatures of AD and PD pathogenesis from a 

multifactorial perspective. The third objective is to critically examine the classes of models 

currently used in staging the two diseases and build a theoretical foundation for the data-driven 

models employed in this thesis. 

The objective of Chapter 2 is to develop a data-driven multiscale model for studying 

disease progression. A second objective is to apply this model to understand multifactorial 

brain changes in normal aging and AD by incorporating multiple disease-related neuroimaging 

and transcriptomic measures. The final objective is to investigate how these multifactorial 

changes are related to clinical symptoms, and then uncover the similarities and differences 

between normal aging and AD. 

Disentangling the heterogeneity of PD remains a research priority. Hence, the primary 

objective of Chapter 3 is to understand the multifactorial changes underlying PD and how those 

changes engender diverse clinical symptoms. A secondary objective is to identify the biological 

substrates of physical activity in PD. The last objective is to test the clinical utility of the 

developed data-driven model for drug discovery. 

Neurons are notably affected in AD, but research suggests the roles of other brain cell 

types in the disease’s development. The objective of Chapter 4 is to investigate the dynamic 

molecular changes occurring to the AD brain across various cell types and describe the 

biological processes driving these changes. 

Lastly, the objective of Chapter 5 is to summarize the main findings in this thesis and 

discuss their implication for a better understanding of normal aging and neurodegeneration, 

and the development of computational tools for drug discovery. 
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1.2 Alzheimer’s disease as a multifactorial disorder 

Alzheimer’s disease was first discovered in 1906 by Alois Alzheimer after carrying out 

an autopsy on Auguste Deter, a patient who had suffered from an unusual form of dementia 

antemortem (Stelzmann et al., 1995). Alois found the deposition of two peculiar substances in 

the cortex of this patient, and the substances were later identified as amyloid plaques and 

neurofibrillary tangles. Alois termed the disease presenile (early-onset) dementia because the 

patient developed the disease before 65 years. Indeed, some 10-15% of early-onset forms of 

AD are familial, and they have strong causal link with the two hallmark proteins (Ayodele et 

al., 2021). However, the sporadic forms of both early- and late-onset AD display a much 

complex biology that suggests the involvement of multiple mechanisms in the disease’s 

aetiology.  

1.2.1 The role of amyloid 

The first major hallmark of AD pathology is the deposition of extracellular amyloid. 

Following the observation of a pathogenic mutation in amyloid precursor protein (APP) gene 

on chromosome 21, John Hardy and colleagues formulated the amyloid cascade hypothesis 

which posits that the aggregation and deposition of amyloid causes neurodegeneration and 

cognitive impairment in AD (J. A. Hardy & Higgins, 1992; J. Hardy & Allsop, 1991).  In 

familial AD, mutations in genes that encode presenilin 1 (PSEN1), presenilin (PSEN2) or 

amyloid precursor protein (APP) disrupts the metabolism of ß-amyloid (Borchelt et al., 1996; 

Citron et al., 1997; Scheuner et al., 1996). These genes display perfect penetrance as the 

mutation carriers almost certainly develop cognitive problems.  However, familial AD accounts 

for less than 1% of AD cases, with the majority being sporadic (Bekris et al., 2010) . The failure 

or minimal efficacy of many anti-amyloid therapies have further raised questions on the 

simplicity of the causal relationship between amyloid and neurodegeneration (Kim et al., 

2022). As a result, the amyloid cascade hypothesis has faced criticisms over the years, and 
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there are constant calls for the incorporation of other factors with likely causal roles (Alawode 

et al., 2022; Morris et al., 2014).   

Over the last two decades, a large body of evidence has pointed to influence of many 

risk factors for developing AD. More than 29 risk genes have been identified including APOE, 

ABCA7, GAB2, and PICALM (Bertram & Tanzi, 2019). Consequently, a probabilistic model 

of the amyloid cascade hypothesis was recently proposed to account for genetic risks (Frisoni 

et al., 2021).  The authors posit three variants of AD, namely autosomal dominant AD, sporadic 

AD with APOE ε4 penetrance, and sporadic AD without APOE influence. However, this 

probabilistic model still identifies amyloid as the main causal driver of AD. 

1.2.2 The role of tau 

The second hallmark of AD pathology is the presence of intracellular neurofibrillary 

tangles made of hyperphosphorylated tau. Tau is a microtubule associated protein (MAPT) and 

it is highly expressed in neurons (Terwel et al., 2002). The primary function of tau is to stabilize 

microtubules, which are cytoskeletal filaments that maintain neuronal structure organization 

and aid axonal transport of organelles such as lipids, proteins, and synaptic vesicles (Muralidar 

et al., 2020). Tau comprises four domains, namely N-terminal region, proline-rich region, 

microtubule-binding repeat region, and C-terminal region (Y. Chen & Yu, 2023). To stabilise 

microtubules, tau’s microtubule-binding repeat region binds to the interior of microtubules 

while the proline-rich region binds to the surface of microtubules. Alternative splicing of tau’s 

MAPT gene yields isoforms comprising of 3 or 4 binding repeat regions (3R or 4R). The tau 

aggregates in AD is a mixture of 3R and 4R, whereas other tauopathies such as progressive 

supranuclear palsy, corticobasal degeneration and Pick’s disease contain only 3R or 4R 

aggregates (Buchholz & Zempel, 2024). 

Tau undergoes several post-translational modifications including phosphorylation, 

acetylation, methylation, and O-glycosylation (Congdon & Sigurdsson, 2018). 
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Phosphorylation is the most studied because it is found in many tauopathies and can 

independently cause tau aggregation. Tau is hyperphosphorylated by about 4 folds in AD brains 

compared to controls (Köpke et al., 1993). While phosphorylation of tau enhances neuronal 

plasticity, hyperphosphorylation weakens the interaction of tau with microtubules, thereby 

facilitating tau dissociation and aggregation. The aggerated tau is believed to spread in a prion-

like and stereotypical manner from the entorhinal cortex to the hippocampus and eventually to 

the entire cortex (Braak & Braak, 1991; Braak & Del Tredici, 2015).  

1.2.3 The role of vascular changes 

There is an important link between vascular function and AD (Cortes-Canteli & 

Iadecola, 2020; Dodge et al., 2017). In fact, a data-driven study suggested that vascular 

dysregulation may precede amyloid deposition in AD pathogenesis (Iturria-Medina et al., 

2016). Signs of vascular pathology are observed in more than 50% of AD cases (Sweeney et 

al., 2019). Both AD and vascular dementia have overlapping symptoms, even though the latter 

is defined as a clinical entity where patients must present neurocognitive problem and aetiology 

consistent with vascular cerebrovascular event or impaired attention and frontal-executive 

function. The definition of pure AD and pure vascular dementia remains controversial, and 

either of the diseases rarely occur in isolation (Groves et al., 2000; Jellinger & Attems, 2010).  

A major vascular problem that has been consistently associated with AD is reduced 

blood flow (hypoperfusion) (Wolters et al., 2017). Accelerated cognitive decline is observed 

in AD patients having hypoperfusion (Duncombe et al., 2017). Furthermore, white matter 

hyperintensity which is observed is AD and other neurological conditions is caused (among 

other factors) by reduced blood flow (Garnier-Crussard et al., 2023; C. J. Huang et al., 2022). 

Hypoperfusion can trigger many neurodegenerative pathological cascades such as hypoxia-

induced oxidative stress, mitochondrial dysfunction, and inflammation (Inoue et al., 2023). 



7 

 

1.2.4 The role of glucose metabolism 

The brain, like other body parts, requires adequate energy for proper functioning. 

Although weighing a meagre 2% of the total body mass, the resting brain consumes about 20% 

of the total body glucose-derived energy (Rink & Khanna, 2011). In AD, dysregulation in 

glucose metabolism is detected at various stages in a region-specific manner. At the early stage, 

hypometabolism is found in the anterior cingulate cortex and hippocampus (P. Chen et al., 

2021; Ferrari et al., 2019) . Later disease stage involves hypometabolism in frontal, occipital, 

and parietal regions (Ferrari et al., 2019). Impaired glucose uptake may even precede amyloid 

plaque deposition (J. Huang et al., 2024).    

Glucose dysregulation is triggered in several ways. One way is the impaired action of 

glucose transporters (GLUT) which are responsible for moving glucose into the brain via the 

vasculature.  Reduced expressions of GLUT1 and GLUT3 at the blood brain barrier have been 

shown to reduce glucose uptake by the brain (J. Huang et al., 2024). Another causal mechanism 

of glucose hypometabolism is insulin dysregulation. Insulin receptors are expressed throughout 

the brain and the highest densities are found in regions mainly implicated in AD such as the 

entorhinal cortex and hippocampus (Sedzikowska & Szablewski, 2021). Whenever glucose is 

needed by a cell, insulin signals the cell to obtain glucose via the blood stream.  Insulin also 

facilitates the movement of glucose transporters across membranes. The movement of the 

insulin-regulated transporter GLUT4 into hippocampal neurons affects spatial memory, which 

is consistent with high metabolic demands during cognitive tasks (McNay et al., 2010; Pearson-

Leary & McNay, 2016). 

1.2.5 The role of neuronal activity 

While at rest, neurons in the brain fire spontaneously and continuously, forming the 

basis of brain circuit and computation (Newbold et al., 2020; Papadimitriou et al., 2020). This 

spontaneous activity depends on intrinsic excitability of the neurons as determined by their 
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connections and synaptic characteristics, incoming signals from other connected brain regions, 

and functional connectivity (Radulescu et al., 2023). One theory posits that the spontaneous 

neuronal activity is related to learning and memory, as demonstrated in learning replay in the 

hippocampus for memory consolidation during slow wave sleep (Buzsáki, 1989; Cannon & 

Miller, 2016; Ólafsdóttir et al., 2018). This explains why aberrant neuronal activities are 

strongly associated with cognitive and memory impairments.   

Spontaneous neuronal activity is altered in some brain regions of AD patients (Liu et 

al., 2014). In fact, the default mode network comprising brain regions that are mostly active 

during wakeful rest have been particularly affected. These regions include the medial temporal 

lobe, posterior cingulate cortex, medial prefrontal cortex, temporoparietal areas and the 

precuneus, most of which experience a high load of amyloid and tau pathology in AD (Buckner 

et al., 2005; Jacobs et al., 2013). Furthermore, landmark studies of human and animal models 

of AD suggested that dysregulation of spontaneous neuronal activity is an early sign of AD 

(Hall et al., 2015; Šišková et al., 2014). In CA1 pyramidal neurons of the hippocampus of AD 

mouse, intrinsic hyperexcitability was observed before amyloid plaque deposition (Busche et 

al., 2012). However, it appears that hyperactivity occurs at early disease stage while 

hypoactivity occurs later as the disease progresses (Dickerson et al., 2005; O’Brien et al., 

2010). 

1.2.6 The role of atrophy 

A principal hallmark of almost all neurodegenerative diseases is neuronal loss. Atrophy 

is used to describe the loss of neuronal cells and their connections which results in 

morphological changes and reduction in brain volume. Atrophy is commonly regarded as part 

of normal aging, but the changes are more pronounced in neurodegenerative diseases 

(Blinkouskaya et al., 2021; Kesidou et al., 2023). Neurons are susceptible to atrophy because 

their axons and dendrites run over long distances, making the requirement for structural 
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maintenance particularly costly.  Also, neurogenesis in the adult human brain is limited, hence 

the damages caused by aging are not easily replaced (D. M. Wilson et al., 2023) .  

Atrophy is observed at various stages of AD in a region-specific manner. The pattern 

of atrophy in the neocortex closely recapitulates the pattern of tau distribution, especially at the 

later disease stage (Joie et al., 2020; Planche et al., 2022; Thompson et al., 2003). Neuronal 

atrophy starts from the hippocampus and entorhinal cortex, spreads to the temporal, parietal 

and frontal areas, and then to the motor areas (Whitwell, 2010). Hippocampal atrophy 

correlates with memory deficits in AD patients (Gosche et al., 2002; Jack et al., 2002; 

McDonald et al., 2012). Thus, it is considered one of the most validated and consistent 

biomarkers of AD, even though it is observed in other forms of dementia (Jack et al., 2011).   

1.3 Parkinson’s disease as a multifactorial disorder 

In 1817, Dr James Parkinson observed physical features of 6 six patients in his 

monograph – An Essay of the Shaking Palsy. In what he termed as paralysis agitans, patients 

presented predominantly motor symptoms such as tremor, slowness of movement 

(bradykinesia), rigidity and postural imbalance (Parkinson, 2002). It was in 1912 that Dr 

Friedrich Heinrich Lewy found clumps of proteins in brains of people who had died of PD 

symptoms. This protein was later called Lewy bodies and found to contain misfolded α-

synuclein (Holdorff, 2002). α-synuclein in the midbrain and cortex has since then become a 

pathological hallmark of PD (Dijkstra et al., 2014; Olanow & Brundin, 2013).  The second 

pathophysiological hallmark of PD is the depletion of dopamine in the midbrain (Cramb et al., 

2023; Ramesh et al., 2023). Mutations in specific genes such SNCA (encoding α-synuclein), 

LRRK2, PINK1, and PRKN are found in familial forms of PD. However, about 85% - 90% of 

PD cases are sporadic (Schulze et al., 2018; Tran et al., 2020). Similar to AD, atrophy and 

neuronal activity dysfunction are observed in PD (Heo et al., 2020; Zeighami et al., 2015). 

Other mechanisms include oxidative stress, mitochondrial dysfunction, and excitotoxicity 
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(Dong-Chen et al., 2023; Maiti et al., 2017). Nevertheless, the subsequent subsections will 

focus on the biological factors that were not previously discussed under AD or whose 

biomarkers are used in this thesis.  

1.3.1 The role of dopamine 

Dopamine is a neurotransmitter produced in several parts of the brain including the 

basal ganglia and ventral tegmental area (Juárez Olguín et al., 2016). The basal ganglia are 

comprised of a group of nuclei that control motor function. These nuclei include the striatum, 

globus pallidus, substantia nigra, and subthalamic nucleus. It is believed that loss of 

dopaminergic neurons in the substantia nigra pars compacta are responsible for motor 

symptoms in PD.  Indeed, dopamine deficit is observed at early disease stage and about 80% 

of dopaminergic neurons are lost at the time of PD diagnosis (Halliday & McCann, 2010). 

Levodopa, the mainstay of PD treatment, alleviates PD motor symptoms by converting to 

dopamine (Mi et al., 2007). 

The dopamine-dependent circuit in the basal ganglia is dysregulated in PD (McGregor 

& Nelson, 2019). This circuit consists of two pathways for motor control, namely direct and 

indirect pathways (Figure 1.1). The spiny projection neurons of the striatum express D1 and 

D2 types of dopamine receptors, which are associated with the direct and indirect pathways, 

respectively. The direct pathway promotes movement while the indirect pathway opposes 

movement, suggesting that dopamine has both excitatory and inhibitory effects. Hyperactivity 

of the direct pathway and hypoactivity of the indirect pathway are believed to underlie motor 

impairments in PD (Gerfen et al., 1990; Obeso & Lanciego, 2011). Also, this circuit 

dysregulation might be responsible for the abnormal neuronal activity observed in PD patients 

(McGregor & Nelson, 2019). However, some human studies of PD suggested that abnormal 

neuronal activity could emanate from downstream of the striatum or even outside the basal 

ganglia (Gerfen & Surmeier, 2011; Valsky et al., 2020). 



11 

 

 

Figure 1.1: Basal ganglia circuit of direct and indirect pathways of motor control in health and disease. Original 

figure reproduced with permission from (Gerfen & Surmeier, 2011). 

1.3.2 The role of white matter changes 

The cell body and dendrite of neurons form the brain’s grey matter while their 

myelinated axons make up the white matter. Due to the role of myelination in efficient 

transmission of signals across neurons, loss of myelin or axons could impair normal brain 

function (Baumann & Pham-Dinh, 2001). Although PD is primarily considered a disease of 

grey matter, white matter alterations are observed even before grey matter atrophy (Rektor et 

al., 2018). It is hypothesized that these white matter changes may represent an adaptive 

compensatory mechanism of the brain to preserve normal motor and cognitive functions.  

Typical white matter changes in PD include alterations to the structure and composition 

of oligodendrocytes that form the myelinating cells of axons (Annese et al., 2013).  Glial 

cytoplasmic inclusions is observed in the oligodendrocytes of PD patients carrying α-synuclein 

mutations (Pasanen et al., 2014). Other neuroimaging studies identified white matter 

hyperintensities and microstructural changes in PD (Patriat et al., 2022; Vercruysse et al., 

2015). Fractional anisotropy (FA) is a diffusion tensor imaging (DTI) measure that detects 
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axonal or myelin alterations through directional constraint of transmission of water molecules 

within the axon. Mean diffusivity is another DTI measure that captures overall cellular changes 

of the axon. Motor symptom severity is correlated with lower FA and higher MD in the nucleus 

basalis of Meynert of PD patients (Nazmuddin et al., 2021). Other studies pointed to damage 

of white matter tracts in PD patients with cognitive symptoms (Agosta et al., 2014; Nakanishi 

et al., 2012).  

1.4 Cellular vulnerability in Alzheimer's and Parkinson’s disease 

The presentation of diverse clinical symptoms spanning several domains (e.g., 

cognitive, psychiatric, motor) in AD and PD patients suggests that certain brain regions and 

cell types might be preferentially vulnerable to pathological processes. The pattern of spread 

of atrophy and proteinaceous deposits in these neurodegenerative diseases also supports region- 

and cell-type-specific vulnerability to pathology (Braak et al., 2003; Braak & Braak, 1991; Cho 

et al., 2016). Thus, the traditional Braak stagings of AD and PD provide a sequential ordering 

of selective vulnerability. Beyond broad-class cell types (e.g., neuron versus glia) (Zimmer et 

al., 2024), different classes of a particular cell type might be differently susceptible to disease 

process or death because of triggers (Lee et al., 2021). These triggers could be unknown as in 

the case of sporadic forms of diseases or due to mutation as in the familial forms (Kampmann, 

2024). Brain cells are selectively vulnerable via either cell autonomous or non-cell autonomous 

mechanisms (Gonzalez-Rodriguez et al., 2020; Wang et al., 2020). Cell autonomous 

mechanisms involve processes that affect a particular cell irrespective of the surrounding cell 

type or tissue. Some cell-autonomous mechanisms include genetic effects, cytoarchitecture, 

and cell type. Non-cell autonomous mechanisms include vascular or anatomical network, and 

cell-cell communication. Hence, vulnerability is both driven innately within the cell and by the 

spread of pathological proteins via cell-cell connections and communication. 
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Transcriptomic analysis of neurotypical brain may reveal the innate vulnerability of a 

cell to pathological stress (Sepulcre et al., 2018). Regional expression patterns of MAPT are 

associated with neuronal dysregulation in PD (Rittman et al., 2016). In AD, regions that are 

vulnerable to amyloid plaque showed under-expression of certain genes involved in protein 

synthesis and mitochondrial functions (Grothe et al., 2018). Conversely, regions that are 

vulnerable to atrophy displayed under-expression of genes involved in neuronal plasticity. 

However, due to the complexities in tissue processing and other technical limitations, most of 

the foregoing studies have focused on specific brain regions. Brain-wide gene expression 

analysis can better elucidate the influence of cell-autonomous processes on neurodegenerative 

cascades. Single-cell sequencing technologies also provides an unprecedented opportunity to 

study the genes and processes driving selective regional vulnerability in glial cells.  

1.5 Neurodegenerative disease progression modelling 

1.5.1 Neuropathological staging 

Traditionally, neurodegenerative disease progression is assessed by neuropathological 

studies of post-mortem brain tissues, based on the frequency of affected regions across 

individuals (Braak et al., 2003; Braak & Braak, 1991; Josephs et al., 2014; Thal et al., 2002). 

The extent of disease progression is often indicated by the topography of abnormal protein 

deposition and neuronal loss. Pioneering works by Braak and Thal staged AD into five and six  

phases based on ß-amyloid and tau depositions, respectively (Braak & Braak, 1991; Thal et al., 

2002). As shown in Figure 1.2, the six Braak stages are defined by tau inclusions in the 

transentorhinal and entorhinal cortex (stage 1-II), subcortical limbic regions (stage III-IV),  
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Figure 1.2 : Braak neuropathological staging for tau in Alzheimer's disease. Original figure reproduced from 

(Braak & Braak, 1996). 

 

and the neocortex (stage V-VI). Thal stages of ß-amyloid deposition is comprised of phase 1 

for major parts of the neocortex, phase 2 involving the limbic areas, phase 3 for subcortical 

regions especially the basal ganglia, phase 4 for midbrain and basal forebrain, and phase 5 for 

pons and cerebellum. Braak and colleagues also proposed six stages for PD, based on the 

regions affected by Lewy bodies as disease progresses (Braak et al., 2003). The stages include 



15 

 

1-II for brainstem and olfactory bulb, II-IV for the midbrain and allocortex, and V-IV from 

thalamus to isocortex. 

Disease staging based on post-mortem pathological studies neglects heterogeneity by 

assuming that neuropathology progresses stereotypically across regions in all subjects. In 

addition, it doesn’t account for comorbidity, despite that more than 60% in older adults display 

co-pathology (Wennberg et al., 2019). Nevertheless, neuropathological staging forms the basis 

of other modelling methods discussed subsequently. 

1.5.2 Hypothetical models 

Hypothetical models are used to suggest expected timelines of disease progression 

without incorporating much computation. Landmark study by Jack and colleagues drew upon 

evidence from in vivo and autopsy studies of AD to propose pathology ordering based on 

biomarker abnormalities (Jack et al., 2010). This hypothetical model assumes that biomarkers 

become abnormal sequentially and the abnormalities are associated with clinical symptoms. 

Using five well studied biomarkers (cerebrospinal fluid (CSF) Aß-42, CSF tau, 

fluorodeoxyglucose PET, amyloid PET, and structural MRI), 2 phases were hypothesised for 

AD progression.  The early phase involves abnormality of amyloid biomarkers before the 

occurrence of neurodegeneration and clinical symptoms. The later phase involves 

abnormalities of biomarkers of neuronal dysfunction, neuronal injury (mediated by tau) and 

neurodegeneration. Similar hypothetical model has been proposed for Lewy body diseases 

wherein α-synuclein deposition is followed by cell death and clinical symptoms (Donaghy & 

McKeith, 2014). As observable from Figure 1.3, hypothetical models generally base disease 

cascade on proteinopathy, implying that abnormal protein deposition is followed by cell 

damage and dysfunction, and then functional decline. 

One of the main drawbacks of hypothetical models is their partial dependence on 

autopsy studies for biomarker ordering. Disentangling the sequence between tissue changes 
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and clinical symptoms at autopsy is challenging (R. S. Wilson et al., 2019).  Hypothetical 

models have been continuously revised, with recent iterations accounting for individual 

differences in response to AD pathology, possibility of concurrent biomarker change, and the 

contributions of stochastic events such as genetics and environmental factors (Frisoni et al., 

2021). However, there is still a need to incorporate inter-patient differences in terms of 

sequence of biomarker abnormality. Possible interactions between the different pathological 

processes should also be considered. 

 

 

Figure 1.3: Hypothetic models of Alzheimer's disease and Lewy body disease progression. Original figure 

reproduced with permission from (Fields et al., 2011). 

 

1.5.3 Mathematical models 

Mathematical models use data-driven approach to characterize disease progression. 

They are grouped into empirical, semi-mechanistic and mechanistic models. Empirical models 

form the simplest form of data-driven modelling methods as they do not make any assumptions 

about the underlying biological process of the disease. Regression models generally fall under 

this category; they have been used to estimate response to treatment, and chart the timeline of 
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disease progression (Fleisher et al., 2015; Vu et al., 2012). In most regression models, the 

disease state at a particular time is defined as a function of the disease state at baseline. More 

advanced forms of regression such as linear mixed effects models are used to capture individual 

variabilities, where population level effects are fixed, and individual variabilities are captured 

as random effects representing deviation from population value (Guerrero et al., 2016). 

Although simple, empirical models do not account for biological constraints and may therefore 

miss important mechanistic processes. In addition, they do not account for possible interactions 

between different biomarkers.  

Semi-mechanistic models involve more data-driven approach, and they also afford 

basic mechanistic explanation. Event-based models are one of the most common semi-

mechanistic methods used in neurodegenerative disease modelling (Fonteijn et al., 2012; 

Venkatraghavan et al., 2019; Young et al., 2014). By drawing inspiration from 

neuropathological staging, event-based models apply probabilistic methods to order 

biomarkers (or symptoms) as a sequence of irreversible events that transition from normal 

(healthy) to abnormal (disease) states. While foremost event-based models assumed specific 

event sequence, recent improvements have attempted to capture concurrent event (biomarker) 

changes (Tandon et al., 2023). Besides event-based modelling, deep generative learning have 

been used to jointly model the spatiotemporal ordering of biomarker changes (Abi Nader et al., 

2020; Martí-Juan et al., 2023). Nevertheless, the biological insights from semi-mechanistic 

models are limited, and they still do not account for the possible interactions between disease-

related processes.  

Mechanistic models characterize disease progression by leveraging what is known 

about the pathophysiological mechanism. As many neurodegenerative diseases are believed to 

spread between brain areas, network spreading models are the foundation of mechanistic 

models of neurodegenerative diseases. The spread of disease between brain regions are posited 
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to result from selective vulnerability or prion-like propagation (Jucker & Walker, 2013; Leng 

et al., 2021). Pioneering network spread models used graph theory metrics to capture disease 

spread  (Raj, 2021; Zhou et al., 2012).  However, graph theory metrics produce static measures 

which may change as disease progresses. As a result, other studies employed dynamical 

systems models to better capture evolving disease processes mechanistically. Early dynamical 

system models include network diffusion models and epidemic spreading models, which have 

been used to recapitulate the pattern of production and propagation of ß-amyloid and tau 

proteins (Iturria-Medina et al., 2014; Raj et al., 2012; Vogel et al., 2020). Most of these 

dynamical systems model considered one biomarker or disease process at a time. An effort to 

look at multiple biomarkers combined different topological profiles and graph metrics to 

mechanistically explain the appearance and spread of pathology (Garbarino et al., 2019). 

 A general limitation of most models we have considered up until now is that they did 

not consider the possible interactions between the various pathological process or biomarkers, 

e.g., influence of dopaminergic loss on neuronal activity. Lee and colleagues improved on this 

limitation by accounting for the influence of tau on ß-amyloid (Lee et al., 2022). A 

multifactorial causal model (MCM) was also proposed by Iturria Medina and colleagues 

(Iturria-Medina et al., 2017). The MCM is a dynamical system model that accounts for 

mechanistic interactions between multiple disease-related processes. However, the processes 

considered by MCM are mainly macroscopic neuroimaging measures derived from PET and 

MRI. The influence of microscopic effects such as genetics or transcriptomics was not 

considered.  

1.6 Conclusion 

Neurodegenerative diseases are complex and multifactorial disorders with 

heterogenous clinical presentation. Because current drugs only alleviate symptoms with limited 

success, there are more recent trends towards biological definitions of these diseases in a bid 
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to develop disease-modifying therapies (Höglinger et al., 2024; Simuni et al., 2024). 

Biomarkers are invaluable tools that can facilitate the understanding of disease biology. It is 

therefore important to harness as much available biomarkers as possible to puzzle out disease 

complexity. Mathematical models play important roles by incorporating biomarkers to chart 

disease progression timelines. Particularly, mechanistic models are used to confirm different 

hypotheses and draw insights from the underlying disease biology. Nevertheless, using 

multiple biomarkers in mechanistic models of disease progression is challenging.  Hence, many 

mechanistic models only incorporate a few biomarkers at a single spatial resolution and do not 

assess causal mechanisms. This thesis seeks to utilize mechanistic models to study normal 

aging and neurodegenerative processes considering multiple biological factors and spatial 

resolutions.  
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Chapter 2: Integrated transcriptomic and neuroimaging 
brain model decodes biological mechanisms in aging and 
Alzheimer’s disease 

2.1 Preamble 

In this chapter, we develop a novel data-driven dynamical systems model called gene-

expression multifactorial causal model (GE-MCM) which we applied to characterize the 

multifactorial changes in aging and AD. Using gene expression patterns of a thousand genes, 

six different neuroimaging modalities (capturing amyloid, tau, neuronal activity, atrophy, 

cerebral blood flow and glucose metabolism) and multiple clinical evaluations from 

longitudinal multicentre study, we identified genes underlying normal aging and AD. In 

addition, we revealed which of the six neuroimaging-derived biological processes are modified 

by these genes, providing mechanistic insights into the possible roles of the genes in healthy 

aging and disease. Furthermore, we unravelled the biological mechanism that differently and 

jointly drive normal aging and AD.  

 

This work has been published as: 

Adewale, Quadri, Ahmed F Khan, Felix Carbonell, and Yasser Iturria-Medina. 2021. 

“Integrated Transcriptomic and Neuroimaging Brain Model Decodes Biological Mechanisms 

in Aging and Alzheimer’s Disease.” eLife 10 (May). https://doi.org/10.7554/eLife.62589 
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2.2 Abstract 

Both healthy aging and Alzheimer’s disease (AD) are characterized by concurrent 

alterations in several biological factors. However, generative brain models of aging and AD 

are limited in incorporating the measures of these biological factors at different spatial 

resolutions. Here, we propose a personalized bottom-up spatiotemporal brain model that 

accounts for the direct interplay between hundreds of RNA transcripts and multiple 

macroscopic neuroimaging modalities (PET, MRI). In normal elderly and AD participants, the 

model identifies top genes modulating tau and amyloid-β burdens, vascular flow, glucose 

metabolism, functional activity, and atrophy to drive cognitive decline. The results also 

revealed that AD and healthy aging share specific biological mechanisms, even though AD is 

a separate entity with considerably more altered pathways. Overall, this personalized model 

offers novel insights into the multiscale alterations in the elderly brain, with important 

implications for identifying effective genetic targets for extending healthy aging and treating 

AD progression. 

2.3 Introduction 

Innovations in healthcare and drug delivery have led to increase in human life 

expectancy. However, increased lifespan is accompanied by more predisposition to frailty and 

late-onset Alzheimer’s disease (AD) (Guerreiro and Bras, 2015; Singh et al., 2019). Both 

healthy aging and AD are complex multifactorial processes, and understanding their molecular 

mechanisms is crucial for extending longevity and improving the quality of life (Alkadhi and 

Eriksen, 2011; Kowald and Kirkwood, 1996). Indeed, at the microscopic scale (~10−6 m), 

transcriptomics and proteomics analyses of the brain have paved the way for deciphering the 

mechanistic underpinnings of healthy aging and AD (Dillman et al., 2017; Iturria-Medina et 

al., 2020; Johnson et al., 2020; Mostafavi et al., 2018; Tanaka et al., 2018). In parallel, 
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macroscopic (~10−2 m) imaging phenotypes from PET and MRI are facilitating the detailed 

characterization of brain changes, such as amyloid-β (Aβ) and tau accumulation, glucose 

hypometabolism, altered cerebrovascular flow, and atrophy (Dukart et al., 2013; Jack et al., 

2018; Rodrigue et al., 2012; Zhang et al., 2017). However, in both aging and disease research, 

most studies incorporate brain measurements at either micro- (e.g., transcriptomics) or 

macroscopic scale (e.g., PET imaging), failing to detect the direct causal relationships between 

several biological factors at multiple spatial resolutions. 

Although AD is characterized by the accumulation of amyloid plaques and 

neurofibrillary tangles, many other biological aberrations have been associated with the disease 

(neuroinflammation, vascular abnormalities, white matter hyperintensities), leading to changes 

in diagnostic criteria in recent times (DeTure and Dickson, 2019). The complexity of AD is 

further compounded by the interplay between these multiple biological factors. A growing 

body of evidence points to the synergistic interaction between Aβ and tau in driving neuronal 

loss, functional dysregulation, and glucose hypometabolism in AD (Iaccarino et al., 2017; 

Ittner and Götz, 2011; Pascoal et al., 2017; Pickett et al., 2019). Also, cerebral blood flow 

(CBF) promotes Aβ clearance, suggesting that vascular dysregulation could impact neuronal 

function and facilitate Aβ deposition (Qosa et al., 2014; Zlokovic, 2011). To account for the 

synergy between multiple biological factors, we previously introduced a multifactorial causal 

model (MCM) (Iturria-Medina et al., 2017), which uses multimodal imaging data to 

characterize the macroscale intra-regional interactions among any pair of biological factors 

(e.g., tau, Aβ, CBF) while accounting for the inter-regional spreading of the pathological 

alterations across axonal and/or vascular connections. However, this multifactorial model did 

not consider the microscopic properties of the modelled brain regions. 

In an initial attempt to integrate brain variables at multiple scales, a few recent studies 

have used the regional expression patterns of pre-selected genes as complementary information 
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in intra-brain disease-spreading models (Freeze et al., 2018; Freeze et al., 2019; Zheng et al., 

2019). Applied to Parkinson’s disease (PD), improvements in the capacity to explain regional 

brain atrophy patterns were observed, based on each brain region’s genetic predisposition to 

the disease. However, most of these studies have selected very specific genes already known 

for their crucial role in disease (e.g., SNCA, TMEM175, GBA), while disregarding the 

individual and combined roles of several other relevant gene candidates. Moreover, the 

analyses have focused on the influence of transcriptomics on a single biological factor at a 

time, without accounting for the multiplicity of biological alterations and interactions that occur 

at different spatial scales. As a result, we continue to lack brain generative models integrating 

a large set of genetic activities with multimodal brain properties. 

An integrated multiscale and multifactorial brain model (from genes to neuroimaging 

and cognition) may be critical to further our understanding of both healthy aging and 

neurodegeneration, and engender the development of inclusive biomarkers for personalized 

diagnoses and treatment. Driven by this motivation, here we combine whole-brain 

transcriptomics, PET, and MRI in a comprehensive generative and personalized formulation, 

which we successfully validated in healthy aging and AD progression. This novel approach 

concurrently accounts for the direct influence of hundreds of genes on regional macroscopic 

multifactorial effects, the pathological spreading of the ensuing aberrations across axonal and 

vascular networks, and the resultant effects of these alterations on cognition. The proposed 

framework constitutes a promising technique for identifying effective genetic targets to prevent 

aging-related disorders and ameliorate existing neurodegenerative conditions. 
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2.4 Results 

2.4.1 Capturing gene and macroscopic factor interactions in the human 

brain 

Genes control many biological functions, and their dysregulation can cause abnormal 

development, accelerated aging, or disease (Kuintzle et al., 2017; Lee and Young, 2013). 

Aiming to characterize the direct influence of genes on multiple brain processes, here we have 

developed a multiscale and multifactorial spatiotemporal brain model (Figure 2.1A–C) linking 

whole-brain gene expression with multiple macroscopic factors typically quantified via 

molecular PET and MRI modalities (i.e., Aβ and tau proteins, CBF, glucose metabolism, 

neuronal activity, and grey matter density). This novel approach, called Gene Expression 

Multifactorial Causal Model (GE-MCM; see 'Methods'), enables the quantification of gene-

specific impacts on the longitudinal changes associated with each local macroscopic factor 

considered and gene-mediation effects on pairwise factor interactions (e.g., negative tau effects 

on neuronal activity) while accounting for the simultaneous spreading of the aberrant effects 

across physical brain networks (e.g., tau and Aβ region-region propagation via anatomical and 

vascular connectomes). By using standardized gene expression (GE) maps (Hawrylycz et al., 

2012), longitudinal multimodal imaging data, and a robust optimization algorithm, the GE-

MCM identifies individual transcriptomic-imaging parameters controlling the dynamic 

changes observed in the macroscopic biological factors considered (Figure 2A–C). These 

personalized parameters are assumed to be the gene-specific deviations required for model 

fitting and, thus, they quantitatively measure individual gene dysregulation patterns. We 

hypothesized that the post-hoc analysis of these transcriptomic-imaging parameters will reveal 

essential pathogenetic mechanisms in health and disease. 
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Figure 2.1: Modelling the gene-imaging interactions driving healthy aging and AD progression. (A) The 

longitudinal alteration of macroscopic biological factors in healthy and diseased brain due to gene-imaging 

interactions and the propagation of the ensuing alterations across brain network. (B) Regional multifactorial 

interactions between six macroscopic biological factors/imaging modalities are modulated by local gene 

expression. (C) Causal multifactorial propagation network capturing the interregional spread of biological factor 

alterations through physical connections. (D) By applying a multivariate analysis through singular value 

decomposition (SVD), the maximum cross-correlation between age-related changes in cognitive/clinical 

evaluation and the magnitude of genetic modulation of imaging modalities are determined in a cohort of stable 

healthy subjects (for healthy aging), mild cognitive impairment (MCI) converters, and Alzheimer’s disease (AD) 

subjects (for AD progression). The key causal genes driving healthy aging and AD progression are identified 

through their absolute contributions to the explained common variance between the gene-imaging interactions 

and cognitive scores. 

Next, with the complementary interest of further clarifying the genetic mechanisms 

underlying healthy aging and AD development, the GE-MCM framework was applied to a 

cohort of 151 healthy and 309 diseased subjects from Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) (see 'Methods' and Figure 2.1). The standardized transcriptomic data was 
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derived from six neurotypical brains from Allen Human Brain Atlas (AHBA) (Hawrylycz et 

al., 2012), comprising RNA intensities of 976 landmark genes with leading roles in central 

biological functions. These genes correspond to a set of universally informative transcripts, 

previously identified as ‘Landmark Genes’, based on their capacity to cover most of the 

information in the whole human transcriptome across a diversity of tissue types (Subramanian 

et al., 2017). 

 

Figure 2.2:  Reconstruction of individual multifactorial alteration patterns across all subjects in the AD continuum. 

Plots are shown for the 𝑅2 obtained across all six biological factors in the healthy control (HC) (n=151), early 

mild cognitive impairment (EMCI) (n=161), late mild cognitive impairment (LMCI) (n=113), and Alzheimer’s 

disease (AD) (n=35) cohorts. Points are laid over a 2.58 standard error of the mean (SEM) (99% confidence 

interval) in red and at 1 SD in blue. Notice that model performance improves with disease progression. We 

attribute this effect to the typical larger variation in longitudinal biological factor alterations with disease 

evolution, which provides the optimization algorithm with further biological information and results in a more 

accurate data fitting and parameter identification. 

The predictive performance of the model across different clinical categories is shown 

in Figure 2.2. We calculated the coefficient of determination (𝑅2) of the model for the six 

longitudinal PET and MRI modalities, and averaged them across all subjects in each clinical 

group. The 𝑅2 was highest for AD (0.80 ± 0.20), followed in order by late mild cognitive 
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impairment (LMCI) (0.59 ± 0.23), early mild cognitive impairment (EMCI) (0.57 ± 0.21), and 

healthy control (HC) (0.51 ± 0.24). The improvement observed in model performance with 

disease progression could be due to the larger variation in biological factor alteration in the 

later stages of the AD continuum. Nevertheless, these results support the capacity of the GE-

MCM approach to reproduce the longitudinal observations in the six molecular PET and MRI 

modalities. 

2.4.2 Identifying genes driving biological and cognitive changes in healthy 

aging 

Age is a significant risk factor for developing many complex disorders. Even though 

lifestyle and environmental factors contribute to healthy aging, understanding the genetic basis 

of aging will offer valuable biological insights with implications for disease prevention and 

longevity (Niccoli and Partridge, 2012; Rodríguez-Rodero et al., 2011). Hence, we sought to 

identify causal genes underlying longitudinal cognitive changes in healthy aging. We analysed 

the predictive relationship between the obtained transcriptomic-imaging parameters and 

multiple cognitive evaluations in 113 HC subjects who remained clinically stable within 7.8 

years (SD = 2.9 years). The cognitive changes were obtained as the age-related slopes of Mini-

Mental State Examination (MMSE), Alzheimer’s Disease Assessment Scale (ADAS), 

executive function (EF), and memory composite score (MEM) over an average of 7.2 time 

points (SD = 2.6). For this analysis, we only used 68 stable transcriptomic-imaging parameters, 

the 99% CI of which excluded zero across the HC non-converters ('Model evaluation' 

subsection in 'Methods'). Using a multivariate singular value decomposition (SVD), we found 

the common latent variables between the gene-imaging parameters and the slopes of multiple 

cognitive measures, and the variances explained by the principal components (PCs) are shown 

in Figure 2.3A. Running 10,000 permutations, we identified the first PC as the only significant 

component (explained variance = 50.3%; p=0.0074). 
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Figure 2.3: Identification of top genetic modulators of cognitive change in healthy aging.  (A) Common variance 

(and associated p-values) captured by the top five principal components (PCs) of the singular value decomposition 

(SVD) in explaining the rate of change of cognitive scores due to healthy aging. Only the first PC is significant 

(p<0.05). (B) Genetic contributions (and 99% CI) on the first PC, depicted only for the eight highly stable aging-

related genes, the bootstrap ratios of which are above 2.58. (C) Top genetic determinants of multifactorial 

alterations in healthy aging. The innermost ring shows the longitudinal biological factor altered with aging, the 

middle ring displays the interacting biological factors driving the longitudinal alteration, and the outermost ring 

represents the causal genes modulating the interactions among biological factors (e.g., SESN1 directly modulates 

blood flow to drive age-related alteration in neuronal activity). 

Next, we calculated the contribution of each gene-specific parameter on this significant 

PC ('Model evaluation') and assessed the statistical reliability of the genetic contributions by 

running 10,000 bootstrap iterations. A bootstrap ratio threshold of 2.58 (approximately 
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equivalent to p<0.01; Efron and Tibshirani, 1986) was applied, revealing eight genes with 

stable causal contributions to the multimodal imaging dynamics and associated cognitive 

changes in healthy aging (Figure 2.3B). Notice that the saliences of some genes are negative, 

implying that their modulation effects are negatively associated with the rate of cognitive 

change. Specifically, as shown in Figure 2.3C, TSKU modulates Aβ while tau is modulated by 

GNA15 and LSM6 to drive age-related alterations in Aβ. Also, BIRC5, SESN1, and PLSCR3, 

respectively, modulate tau, CBF, and Aβ in driving alterations in neuronal activity. Similarly, 

age-related changes in tau are driven by C5 and CASP10 through their direct effects on 

functional activity and CBF, respectively. 

2.4.3 Revealing top genes and molecular pathways controlling 

multifactorial alterations and clinical deterioration in AD 

A crucial challenge for the early detection and prevention of AD is the development of 

cheap and non-invasive biomarkers (such as genes) as well as the understanding of the 

molecular mechanisms underlying its pathogenesis (Iturria-Medina et al., 2020). Here, we 

proceed to identify genes driving neuropathological progression in the AD spectrum, restricting 

our analysis to 129 participants who were either diagnosed with AD (35) at baseline or 

converted to AD (94) after baseline diagnosis (7 HC and 87 MCI). Like the aging analysis, we 

only kept 993 statistically stable transcriptomic-imaging parameters, the 99% CI of which 

excluded zero ('Model evaluation' subsection in 'Methods'). We used SVD to obtain the 

common latent variables (variance) between the gene-imaging parameters and slopes of 

multiple cognitive measures (MMSE, ADAS, EF, and MEM across 6.3 ± 3.0 longitudinal time 

points). After 10,000 permutation runs, the first PC was significant (p=0.009) and explained 

63.8% of the variance between the gene-imaging interaction parameters and the slopes of 

cognitive evaluations (Figure 2.4A). A bootstrap ratio threshold of 2.58 (approximately 

equivalent to p<0.01; Efron and Tibshirani, 1986) was applied, identifying 111 genes (Figure 
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2.4B) with stable causal contributions to the macroscopic factor interactions and associated 

cognitive changes in AD. The factors directly modulated by these causal genes and the ensuing 

factorial alterations are shown in Figure 2.4C. 

 

Figure 2.4:  Uncovering the top genetic determinants of AD progression. (A) The common variance captured by 

the principal components (PCs) of the singular value decomposition (SVD) in explaining how clinical evaluations 

change with Alzheimer’s disease (AD) evolution. P-values after 10,000 permutations are also shown. (B) 

Contributions of top AD causal genes (with 99% CI) to the first PC. Top causal genes are identified by selecting 

those genes whose bootstrap ratios of saliences are above 2.58. (C) Multifactorial interactions between the 

identified genes and imaging modalities. The innermost ring shows the longitudinal biological factor changes with 

AD, the middle ring displays the interacting biological factors driving the longitudinal alteration, and the 

outermost ring represents the causal genes modulating the interactions among biological factors. A gene directly 

influences how a biological factor interacts with other factors to cause a factorial alteration along the disease’s 

course. 
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Finally, we performed a large-scale gene functional analysis with PANTHER (Mi et 

al., 2013) to uncover the molecular pathways and biological functions associated with the 111 

identified disease-driving genes. Sixty-five functional pathways were identified and most of 

them, including the Alzheimer disease-presenilin pathway, are highly representative of the 

biological processes commonly associated with neuropathology and cognitive decline (Table 

2.S2). The pathways with the leading number of genes are apoptosis, cholecystokinin receptor 

signalling, inflammation mediated by chemokine and cytokine, and gonadotropin-releasing 

hormone receptor (see 'Discussion'). 

2.5 Discussion 

2.5.1 Gene expression patterns modulate multifactorial interactions in 

healthy aging and AD progression 

An unprecedented attribute of this study is the insight it provides into the multiscale 

interactions among aging and AD-associated biological factors, and the possible mechanistic 

roles of the identified genetic determinants. In concordance with our results in healthy aging 

(see Figure 2.3C), BIRC5 have been shown to regulate microtubule dynamics and interact with 

tau (Zhao et al., 2003). Sestrins, including SESN1, preserve blood brain barrier integrity and 

serve a neuroprotective effect after cerebral ischemia (S.-D. Chen et al., 2019; Li et al., 2016; 

Shi et al., 2017) C5 belongs to the complement immune system, and it modulates synaptic 

pruning and plasticity by interacting with microglia. (Wang et al., 2020). 

Several animal and biostatistical studies also corroborate the functional relationships 

observed in AD results. In agreement with the interactions driving longitudinal alteration in 

blood flow (see Figure 2.4C), FKBP4 encodes the FKBP52 protein which has been 

demonstrated to alter tau phosphorylation pattern and stimulate its abnormal aggregation 

(Giustiniani et al., 2015). FKBP52 also decreased significantly in brains of AD patients 

(Giustiniani et al., 2012). A bioinformatic and functional validation study identified the role of 
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GNAS in glucose metabolism through insulin regulation (Taneera et al., 2019). Notably, several 

GWAS and animal studies have consistently linked MEF2C to AD and its associated cognitive 

decline (Beecham et al., 2014; Davies et al., 2015; Lambert et al., 2013, (Sao et al., 2018)).  

Knocking out MEF2C in mice induced glucose metabolism impairment (Anderson et al., 

2015). PLSCR1 could drive atrophy due to its apoptotic effect and interaction with calcium ion 

in maintaining the organization of phospholipid bilayers of membranes (Sahu et al., 2007). 

CXCR4 also regulates apoptosis and neuronal survival through glial signalling and the Rb/E2F 

pathway, respectively (Bezzi et al., 2001; Khan et al., 2008) . Nitric oxide synthase interacting 

protein (NOSIP) controls the expression of nitric oxide synthase (NOS), the major source of 

nitric oxide in the brain (Dreyer et al., 2004).  In brain endothelial cells, downregulating NOS 

upregulates APP (amyloid precursor protein) and BACE1 (β-site APP-cleaving enzyme1) both 

of which control amyloid dynamics (Austin et al., 2010).   

We also found congruous functional associations for the genes driving longitudinal 

alterations in Aβ. Apart from its apoptotic role, CASP3 has been shown to regulate synaptic 

plasticity and functional activity in vivo (D'Amelio et al., 2010). TRIB3 controls glucose 

metabolism, insulin signalling and the expression of other glucose metabolism genes 

((Prudente et al., 2012; W. Zhang et al., 2013; W. Zhang et al., 2016). Among the genes altering 

tau with AD progression, nuclear factor of activated T cells (NFAT) overexpression in animal 

model increased Aβ production and promoted BACE1 transcription (Mei et al., 2015).  

TIMELESS (TIM) is a gene with central role in controlling circadian neuronal activity (Kurien 

et al., 2019). Interestingly, dysregulated circadian rhythm is causally associated with AD 

(Homolak et al., 2018). Furthermore, our results on glucose metabolism dysregulation align 

with previous functional studies. RAB21 may induce atrophy through apoptosis and cell growth 

inhibition (Ge et al., 2017). Due to its function in detoxifying reactive aldehydes produced from 

lipid peroxidation, the carbonyl reductase enzyme CBR1 could prevent oxidative stress-
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induced atrophy (Maser, 2006). DNAJ proteins belong to the group of chaperones that regulate 

protein homeostasis, and an earlier study implicated DNAJB6 in α-synuclein aggregation 

(Aprile et al., 2017). Investigating the effect DNAJB6 on tau processing as suggested by our 

result could provide further insight into the roles of the gene in AD. 

Supporting our results for longitudinal alterations in functional activity, downregulating 

EIF4EBP1 prevents toxin-induced neuronal atrophy in PD model by blocking the action of 

apoptotic caspsase-3 (Xu et al., 2014).  The gene also mediates synaptic reorganization and 

refinement, independent of post synaptic activity (Chong et al., 2018). Even though APBB2 

(amyloid beta A4 precursor protein-binding, family B, member 2) primarily binds to APP, 

knocking out APBB2 in mice causes glucose intolerance and β cell dysfunction (Ye et al., 

2018). In transgenic mice, deleting STAT3 in β cells and neurons impaired glucose metabolism  

(Cui et al., 2004). STAT3 also regulates liver glucose homeostasis by modulating the expression 

of gluconeogenic genes (Inoue et al., 2004). A gene co-regulatory network analysis identified 

RAB11FIP2 as a differentially expressed gene in axon regeneration, suggesting its possible role 

in atrophy (Su et al., 2018). Correspondingly, a growing body of evidence supports the gene-

imaging interactions we found in longitudinal alterations in atrophy.  CAST overexpression was 

shown to reduce amyloid burden due to its effect on BACE1 processing of APP (Liang et al., 

2010; Morales-Corraliza et al., 2012). FHL2 prevents inflammatory angiogenesis and regulates 

the function of vascular smooth muscle cells, suggesting its role in blood flow (C. Y. Chen et 

al., 2020; Chu et al., 2008).  IGF2R (insulin-like growth factor 2 receptor) interacts with insulin 

receptors for energy homeostasis, and the dysregulation of the gene is associated with type 2 

diabetes (Chanprasertyothin et al., 2015). RUVBL1 is an ATPase which modulates insulin 

signalling, and RUVBL1 knock-out mice displayed impaired glucose metabolism (Mello et al., 

2020).  
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2.5.2 Aging and Alzheimer’s disease have both common and distinct 

mechanisms 

In this study, we used a single gene expression template for all the subjects due to the 

unavailability of individual whole-brain gene expression. However, notice that even though 

this template has spatial but no temporal variation, for each gene, a model parameter controls 

its interaction (at the individual level) with each time-varying neuroimaging modality (i.e. the 

estimated transcriptomic-imaging parameters). At the individual level, the fitted gene-imaging 

parameters are assumed to reflect the gene-specific deformations required to fit the data. 

Consequently, these parameters represent quantitative measures of the individual dysregulation 

or deviation in gene expression patterns; and when analyzed across the entire population (e.g. 

via SVD analysis), the parameters can be used to detect cognitive/clinical related genetic 

associations.” Thus, under normal aging, the parameters obtained from the model optimization 

should be close to zero. Interestingly, it was observed that only ~70 parameters (out of over 

35000 gene-imaging interaction parameters) were significantly different from zero across the 

healthy aging population. Conversely, ~1000 parameters significantly differed from zero 

across the diseased population. We attribute the greater number of significant parameters in 

AD to more genetic dysregulations and biological mechanism alterations in the disorder (Y. 

Iturria-Medina et al., 2020; Mostafavi et al., 2018).  

The mechanisms of healthy aging and AD substantially overlap even though AD-

related alterations are often accelerated, and the regions of alteration could be different 

(Toepper, 2017; Xia et al., 2018).  Among the aging-associated genes, CASP10, BIRC5, and 

PLSCR3 are involved in caspase-dependent apoptosis. Interestingly, apoptotic genes were also 

found in AD including CASP3, CASP7, PLSCR1, CREB1, RELB, IGF2R, DFFB. Sestrin 

(SESN1) is implicated in oxidative signalling, aging inhibition, and exercise mediation 

(Budanov et al., 2010; M. Kim et al., 2020; Yang et al., 2013). Correspondingly, some AD 

causal genes including MEF2C, CBR1 and NOSIP are known for their roles in oxidative stress, 
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supporting the relevance of this pathway to both normal and pathological aging (Y. N. Kim et 

al., 2014; Rochette et al., 2013). Given that G-protein coupled receptors (GPCR) mediate the 

cellular response to most hormones/neurotransmitters (de Oliveira et al., 2019; Thathiah et al., 

2011), it is unsurprising that GPCR-related genes converge on normal aging (GNA15) and 

Alzheimer’s disease (GNAS, GNB5). Having found some inflammation-associated genes in AD 

and the complement component C5 in aging suggests that immune/inflammatory response 

change is part of both healthy aging and AD. Indeed, apart from the overlapping pathways, 

LSM6 was the only gene common to both normal aging and AD. LSM6 regulates gene 

expression and mRNA splicing, and a proteomic study linked its expression level to aging in 

human muscle cells (Ubaida-Mohien et al., 2019). Although altered mRNA splicing is 

associated with AD (Erik C. B. Johnson et al., 2018; Koch, 2018; Twine et al., 2011), a 

functional validation can further reveal the exact role of LSM6 in the disease. 

2.5.3 Towards a genetic approach to extending healthy aging and treating 

Alzheimer’s disease 

The complexity of aging and the mixed aetiology of neurodegeneration necessitate an 

integrative multifactorial paradigm. In this study, we advanced the understanding of aging and 

AD pathology through the mechanistic modelling of how gene activity modulates relevant 

biological factors (e.g. tau, Aβ, CBF, neuronal activity) to drive the cognitive alterations 

typically observed in the associated populations. The obtained results, in line with relevant 

molecular and imaging literature, highlight the strength of our approach by confirming 

previously identified aging- and AD-associated genes and uncovering new genes with relevant 

pathophysiological roles. In essence, this flexible formulation directly decodes the genetic 

mediators of spatiotemporal macroscopic brain alterations with aging and disease progression. 

Consequently, this work has important implications for the mechanistic understanding of aging 
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and AD pathogenesis and, importantly, for the implementation of a biologically defined patient 

stratification for personalized medical care. 

Current approaches to AD treatment do not account for patient heterogeneity and such 

non-personalized methods may not only be ineffective but also cause undesired secondary 

effects in patients (Iturria-Medina et al., 2018). In a previous study, we used a similar imaging-

based framework to show that some patients may need interventions targeting either tau, Aβ, 

CBF or metabolism, while others can require a combinatorial therapy (e.g. concurrently 

targeting tau, Aβ, and metabolic dysregulation) (Iturria-Medina et al., 2018). Based on this 

extended approach (GE-MCM), a gene therapy could replace the single and combinatorial 

treatment fingerprints described, by targeting highly influential genes modulating those factors 

in individuals. Many of the gene-imaging relationships found in our study have been previously 

reported in vivo, and the novel associations can be validated through experimental models. 

Understanding these relationships is crucial for effective drug development and administration. 

For instance, we found that APBB2 is mediator of glucose metabolism. Thus, metabolic side 

effects may be considered when selecting APBB2 as a therapeutic target of amyloid processing.  

We have used inferred mRNA values for unobserved regions due to the unavailability 

of high-spatial resolution GE data. Nevertheless, the correlations between observed and 

predicted mRNA values are very high for majority of the genes (see Figure 2.S2), further 

supporting the feasibility of interpolating mRNA values based on spatial dependence 

(Gryglewski et al., 2018). It is however noteworthy that some genes with low correlation values 

might have low spatial dependence or error in the assay. There is inherent bias in the merged 

gene expression data from AHBA due to individual variability, and the AHBA subjects are not 

very representative of the typical age range in the ADNI cohort. Nevertheless, animal and 

human studies have reported large concordance between peripheral and brain gene expression, 

implying that blood gene expression may be used as a surrogate for gene expression in brain 
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tissue (Y. Iturria-Medina et al., 2020; Jasinska et al., 2009; Sullivan et al., 2006; Witt et al., 

2013). Thus, our future work will focus on using personalized gene expression data from blood 

samples. The applicability and generalizability of the current formulation would also be tested 

in other neurological conditions (e.g. Parkinson’s disease and frontotemporal dementia). 

2.6 Materials and methods 

2.6.1 Data description and processing 

Study participants 

This study involved 944 individuals with six multimodal brain imaging from ADNI 

(RRID:SCR_003007) (http://adni.loni.usc.edu/; Figure 2.S1). First, for each imaging modality, 

a multivariate outlier identification was performed based on the Mahalanobis distance, with a 

significant squared distance (p<0.05) denoting an outlier (Iturria-Medina et al., 2016). From 

the 911 subjects that survived outlier detection, we chose 509 subjects having at least four 

imaging modalities (between amyloid PET, tau PET, glucose metabolism PET, resting-state 

fMRI, cerebral blood flow ASL, and structural MRI). Then, 460 subjects with at least three 

time points in any of the imaging modalities were selected for our analyses. Next, for each of 

these subjects (N = 460), missing imaging modalities at each time point having actual 

individual data were automatically imputed using the trimmed scores regression with internal 

PCA (Folch-Fortuny et al., 2016). The accuracy of the imputation was validated with a leave-

one-out cross-validation (e.g., tau imaging data can be significantly recovered for each subject 

with actual data, p<10−6). Hence, all the 460 subjects used in subsequent analyses have 

completed all six neuroimaging modalities and an average of 4.7 (±2.5) longitudinal time 

points. Please see Figure 2.S1 for a detailed flowchart of subject selection and Table 2.S1 for 

demographic characteristics. Among the 460 participants, 151 were clinically identified as 

asymptomatic or HC, 161 with EMCI, 113 with LMCI, and 35 with probable AD. 
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Whole-brain gene expression data and brain parcellation 

Microarray data was downloaded from the AHBA (RRID:SCR_007416) website 

(http://www.brain-map.org) (Hawrylycz et al., 2012). The AHBA data consists of mRNA 

expression in 3702 tissue samples obtained from six neurotypical adult brains. The data were 

preprocessed by the Allen Institute to reduce the effects of bias due to batch effects. Description 

of the processing steps can be found in the technical white paper (Allen Human Brain Atlas, 

2013). For each brain, there are 58,692 probes representing 20,267 unique genes. 

Transcriptome shows spatial dependence, with adjacent regions having similar expression 

pattern values (Gryglewski et al., 2018). Gaussian kernel regression affords a method of 

predicting gene expression values for unobserved regions based on the mRNA values of 

proximal regions. The regression is done as a weighted linear combination of unobserved 

mRNA, with the weight decreasing outward from proximal to distal regions. In order to select 

a representative probe for genes with multiple probes, Gaussian kernel regression was applied 

to predict the mRNA intensity in each of the 3702 samples in MNI space (Evans et al., 1994) 

using leave-one-out cross-validation. The probe with the highest prediction accuracy (among 

the multiple probes for a gene) was chosen as the representative probe for that gene. Next, 

because GE values were not available for all the grey matter voxels of the brain, Gaussian 

kernel regression was also used to predict the GE for the remaining MNI coordinates without 

mRNA expression intensity. Thus, the whole-brain GE data was obtained for the selected 

20,267 probes/genes. It was infeasible to use these ~20,000 AHBA genes for modelling, we 

therefore selected 976 AHBA genes that can be found in the list of 978 landmark genes 

identified by Subramanian et al., 2017. These landmark genes are universally informative 

transcripts with the capacity to cover most of the information in the whole human transcriptome 

across a diversity of tissue types (Table 2.S2). 
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The brain was parcellated into 144 grey matter regions, and the average expression 

value of each gene was calculated for each region. The brain parcellation was derived from a 

combination of two atlases: 88 regions were identified through cytoarchitecture from Julich 

atlas (Palomero-Gallagher and Zilles, 2019) and 56 regions were derived from Brodmann atlas. 

Six regions were excluded due to zero or strong outlier PET imaging signals in their volumes. 

The remaining 138 regions were used for analyses (Table 2.S3). 

Cognitive and clinical evaluations 

The participants were characterized cognitively using MMSE, MEM, EF (Gibbons et 

al., 2012), and ADAS-Cognitive Subscales 11 and 13 (ADAS-11 and ADAS-13, respectively). 

They were also clinically diagnosed at baseline as HC, EMCI, LMCI, or probable AD patient. 

Multimodal imaging modalities 

ASL MRI 

Resting arterial spin labeling (ASL) data were acquired using the Siemens product 

PICORE sequence (N = 213) with acquisition parameters TR/TE = 3400/12 ms, TI1/TI2 = 

700/1900 ms, FOV = 256 mm, 24 sequential 4-mm-thick slices with a 25% gap between the 

adjacent slices, partial Fourier factor = 6/8, bandwidth = 2368 Hz/pix, and imaging matrix size 

= 64 × 64. The data were processed in six steps as follows: (1) motion correction, (2) perfusion-

weighted images (PWI) computation, (3) intensity scaling, (4) CBF image calculation, (5) 

spatial normalization to MNI space (Evans et al., 1994) using the registration parameters 

obtained for the structural T1 image with the nearest acquisition date, and (6) the mean CBF 

calculation for each of the considered brain regions. Details of the processing can be found at 

http://www.adni.loni.usc.edu under ‘UCSF ASL Perfusion Processing Methods’. 

Amyloid-β PET 
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A 370-MBq bolus injection of AV-45 was administered to each subject and, after about 

50 min, 20-min continuous brain PET imaging scans were acquired (N = 459). The images 

were reconstructed immediately after the scan and, when motion artifact was detected, another 

20-min continuous scan was acquired. The acquired PET scans were then preprocessed using 

the following four main steps as described in Jagust et al., 2010: (1) dynamic co-registration to 

reduce motion artifacts, (2) across-time averaging, (3) re-sampling and reorientation of scans 

from native space to a standard voxel image grid space (‘AC-PC’ space), and (4) spatial 

filtering to convert the images to a uniform isotropic resolution of 8 mm FWHM. Finally, using 

the registration parameters obtained for the structural T1 image with the nearest acquisition 

date, all Aβ scans were transformed to the MNI space (Evans et al., 1994). Using the cerebellum 

as an Aβ non-specific binding reference, standardized uptake value ratio (SUVR) values were 

calculated for the 138 brain regions under consideration. 

Resting-state fMRI 

Resting-state fMRI scans were acquired using an echo-planar pulse sequence on a 3.0T 

Philips MRI scanner (N = 148) with the following parameters: 140 time points, repetition time 

(TR) = 3000 ms, echo time (TE) = 30 ms, flip angle = 80°, number of slices = 48, slice thickness 

= 3.3 mm, spatial resolution = 3×3×3 mm3, and in-plane matrix size = 64 × 64. The scans were 

corrected for motion and slice timing. Then, they were spatially normalized to MNI space 

(Evans et al., 1994) using the registration parameters obtained for the structural T1 image with 

the nearest acquisition date. Signal filtering was performed to retain only low-frequency 

fluctuations (0.01–0.08 Hz) (Chao-Gan and Yu-Feng, 2010). Fractional amplitude of low-

frequency fluctuation (fALFF) was calculated as a regional quantitative indicator of the brain’s 

functional integrity. fALFF has been shown to be highly sensitive to disease progression 

(Iturria-Medina et al., 2016). 

Fluorodeoxyglucose PET 
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A 185-MBq (5 + 0.5 mCi) bolus injection of [18F]-FDG was administered to each 

subject and brain PET imaging data were obtained approximately 20 min after injection (N = 

455). The images were attenuation-corrected and then preprocessed as follows Jagust et al., 

2010: (1) dynamic co-registration of frames to reduce the effects of patient motion, (2) across-

time averaging, (3) reorientation from native space to a standard voxel image grid (‘AC-PC’), 

and (4) spatial filtering to convert the images to a uniform isotropic resolution of 8 mm FWHM. 

Next, using the registration parameters obtained for the structural T1-weighted image with 

nearest acquisition date, the FDG-PET images were normalized to the MNI space (Evans et 

al., 1994). The cerebellum was then used as a reference to calculate SUVR values for the 138 

regions (Klein and Tourville, 2012). 

Structural MRI 

Structural T1-weighted 3D images were obtained for all subjects (N = 460) as described 

in http://adni.loni.usc.edu/methods/documents/mri-protocols/. The images were corrected for 

intensity nonuniformity using the N3 algorithm (Sled et al., 1998). Next, they were segmented 

into grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) probabilistic maps, 

using SPM12 (http://www.fil.ion.ucl.ac.uk/spm). The grey matter segmentations were 

transformed into the MNI space (Evans et al., 1994) using DARTEL (Ashburner, 2007). To 

preserve the initial amount of tissue volume, each map was corrected for the effects of the 

spatial registration. Mean grey matter density and determinant of the Jacobian (DJ) (Ashburner, 

2007) values were calculated for the 138 grey matter regions (Klein and Tourville, 2012). The 

grey matter density was used in this study as a measure of structural atrophy. 

Tau PET 

A 370-MBq/kg bolus injection of tau-specific ligand 18F-AV-1451 ([F- 18] T807) was 

given to each subject, and 30-min (6 × 5 min frames) brain PET scans were acquired at 75 min 

after injection (N = 233). As previously described (Jagust et al., 2010), the images were 
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preprocessed as follows: (1) dynamic co-registration, (2) across-time averaging, (3) resampling 

and reorientation from native space to a standard voxel image grid space (‘AC-PC’ space), and 

(4) using ion parameters obtained for the structural T1 image with the nearest acquisition date, 

all tau images were normalized to the MNI space (Evans et al., 1994). The cerebellum was 

used as a reference to calculate SUVR values for the 138 grey matter regions. 

Anatomical connectivity estimation 

The connectivity matrix was constructed in DSI Studio (http://dsi-studio.labsolver.org) 

using a group average template from 1065 subjects (Yeh et al., 2018). A multi-shell high-

angular-resolution diffusion scheme was used, and the b-values were 990, 1985, and 2980 

s/mm2. The total number of sampling directions was 270. The in-plane resolution and slice 

thickness were 1.25 mm. The diffusion data were reconstructed in the MNI space using q-space 

diffeomorphic reconstruction to obtain the spin distribution function (Yeh and Tseng, 2011; 

Yeh et al., 2010). The sampling length and output resolution were set to 2.5 and 1 mm, 

respectively. The restricted diffusion was quantified using restricted diffusion imaging (Yeh et 

al., 2017) and a deterministic fibre tracking algorithm was used (Yeh et al., 2013). Using the 

brain atlas previously described under 'Methods' ('Whole-brain gene expression data and brain 

parcellation'), seeding was placed on the whole brain while setting the QA threshold to 0.15. 

The angular threshold was randomly varied from 15 to 90 degrees and the step size from 0.5 

to 1.5 voxels. The fibre trajectories were smoothed by averaging the propagation direction with 

a percentage of the previous direction, which was randomly selected from 0 to 95%. Tracks 

with lengths shorter than 30 mm or longer than 300 mm were then discarded. A total of 100,000 

tracts were calculated, and the connectivity matrix was obtained by using count of the 

connecting tracks. 
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2.6.2 Gene Expression Multifactorial Causal Model 

In the basic MCM formulation (Iturria-Medina et al., 2017), the brain is considered as 

a dynamic multifactorial causal system, where: i) each variable represents a relevant 

macroscopic biological factor at a given brain region (e.g. tau and amyloid proteins, CBF, 

neuronal activity at rest, grey matter density), and ii) alterations in each biological factor are 

caused by direct factor-factor interactions, the intra-brain propagation of factor-specific 

alterations (e.g. tau and amyloid spreading), and external inputs (e.g. drugs). Here, we extend 

this approach to incorporate GE at the regional level. Specifically, we examine how 

macroscopic biological alterations at each brain region, and the associated macroscopic factor-

factor interactions, are controlled by the regional genetic activity.  

The GE-MCM is therefore defined by: (i) the influence of each gene on the local direct 

interactions among all the macroscopic factors, constrained within each brain region, and (ii) 

the potential spreading of macroscopic factor-specific alterations through anatomical and/or 

vascular networks. Mathematically, these processes can be described as: 

𝑑𝑆𝑖
𝑚

𝑑𝑡
=  ∑ (𝛼𝑜

𝑛→𝑚 + ∑ 𝛼𝑘
𝑛→𝑚𝐺𝑖

𝑘𝑁𝑔𝑒𝑛𝑒𝑠

𝑘=1  ) 𝑆𝑖
𝑛𝑁𝑓𝑎𝑐𝑡𝑜𝑟𝑠

𝑛=1 +  ∑ 𝐶𝑗𝑖
𝑚(𝑆𝑗

𝑚 −  𝑆𝑖
𝑚)

𝑁𝑟𝑜𝑖𝑠
𝑗=1
𝑗≠𝑖

𝑆𝑚    (1) 

𝑁𝑔𝑒𝑛𝑒𝑠  = 976 is the number of genes. Each gene was normalized by z-score across 

𝑁𝑟𝑜𝑖𝑠 =  138 brain grey matter regions of interest (a gene i is denoted as 𝐺𝑖; for region names, 

see Table 2.S3). 𝑁𝑓𝑎𝑐𝑡𝑜𝑟𝑠 = 6 is the number of biological factors measured at the same brain 

regions (i.e. Aβ deposition, tau deposition, CBF, glucose metabolism, functional activity at 

rest, and grey matter density). Each node, corresponding to a given biological factor 𝑚 and 

region i, is characterized by 𝑆𝑖
𝑚 ∈ ℝ.  

In the equation, 
𝑑𝑆𝑖

𝑚

𝑑𝑡
 is the local longitudinal alteration of a macroscopic factor 𝑚 at 

region i, because of the foregoing multiscale interactions. The first term on the right models 

the local direct influences of multiple macroscopic biological factors on the given factor 𝑚. 
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The interaction parameters ( 𝛼𝑜
𝑛→𝑚,  𝛼𝑘

𝑛→𝑚 ) and gene expression (𝐺𝑖
𝑘)  modulate the direct 

within-region impact of the factor 𝑛 on 𝑚, including intra-factor effects, i.e. when 𝑛 = 𝑚. 

∑ 𝐶𝑗𝑖
𝑚(𝑆𝑗

𝑚 − 𝑆𝑖
𝑚)

𝑁𝑟𝑜𝑖𝑠
𝑗=1
𝑗≠𝑖

𝑆𝑚 reflects the resultant signal propagation of factor 𝑚 from region 𝑖 to 

other brain regions through the physical network 𝐶𝑗𝑖
𝑚. 

The GE-MCM model can advance our mechanistic understanding of the complex 

processes of aging and neurodegeneration. Its ability to map a healthy gene expression template 

to each subject allows us to model how the spatial distribution of transcriptome drives the 

multifactorial alteration observed in the brain. The interaction parameter 𝛼𝑘
𝑛→𝑚 is an implicit 

quantitative measure of dysregulation or deviation of gene expression from normal patterns. 

By fitting the model at the individual level, it is possible to identify subject-specific genetic 

targets for personalized treatment of AD and enhancing healthy aging.  

2.6.3 Model evaluation 

The GE-MCM differential equation (1) was solved for each participant. For each 

subject j and biological factor m, 
𝑑𝑆𝑖

𝑚(𝑗)

𝑑𝑡
 was calculated between each pair of consecutive time 

points, and the regional values obtained were concatenated into a subject- and factor-specific 

vector (
𝑑𝑆𝑚(𝑗)

𝑑𝑡
) with 𝑁𝑟𝑜𝑖𝑠 ∙ (𝑁𝑡𝑖𝑚𝑒𝑠 − 1) unique values. This concatenation allowed us to 

express the evaluation of the model parameters ( 𝛼𝑜
𝑛→𝑚,  𝛼𝑘

𝑛→𝑚 ) as a regression problem (with 

𝑑𝑆𝑚(𝑗)

𝑑𝑡
 as dependent variable). We applied a Bayesian sparse linear regression with horseshoe 

hierarchy to identify the distribution of the model parameters (Carvalho et al., 2010; Makalic 

et al., 2016). Due to high dimensionality of the data, a computationally efficient algorithm was 

used to sample the posterior Gaussian distribution of the regression coefficients (Bhattacharya 

et al., 2016), and the algorithm was implemented in MATLAB (Makalic et al., 2016). Through 

Markov chain Monte Carlo, we generated 500 samples of each regression coefficient after 
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discarding the first 1000 burn-in simulations. All 500 samples were averaged, and 5863 

coefficients were obtained for every subject and biological factor. For subsequent analysis, we 

used 5856 coefficients (transcriptomic-imaging parameters) that corresponded to the measure 

of transcriptomic effect on the interaction of a macroscopic imaging-based factor with the other 

macroscopic factors, in driving a longitudinal biological factor alteration.  

Next, we sought to identify the top genes mediating cognitive and behavioural changes 

in healthy aging and AD progression. First, we identified 113 clinically stable HC subjects who 

did not convert to MCI or AD stage within 7.8 ± 2.9  years. In addition, we selected 129 

diseased subjects diagnosed with AD at baseline or AD converters (i.e. HC and MCI subjects 

that advanced to AD within 3.7 ± 2.9 years). For each independent subset of subjects (i.e. stable 

HC or diseased subjects), we combined the transcriptomic-imaging parameters across the six 

longitudinal biological factor alterations (see Figure 2.1D). We then evaluated the across-

population stability of these model parameters via their 99% confidence intervals (99% CI). 

Next, rate of change of cognitive scores were calculated for each subject (7.2±2.6 time points 

for HC and 6.3±3.0 time points for AD). We applied singular value decomposition (SVD) 

multivariate analysis to evaluate how the stable transcriptomic-imaging interactions mediate 

group-specific changes in cognitive/clinical scores (age-related slopes of MMSE, ADAS-11, 

ADAS-13, EM, and EF). For each group (i.e. HC or AD), SVD identified a few pairs of 

“principal components” that maximize the cross-correlation between the two sets of variables 

(Carbonell et al., 2020; Worsley et al., 2005). Then it mapped the gene-imaging parameters 

onto the obtained principal components (PC). This mapping provides a score (or contribution) 

of a gene-imaging parameter to a PC. Next, the significant PC were identified by running 10000 

permutations. To identify the genes (gene-imaging parameters) with large and reliable 

contributions on the significant PC, we drew 10000 bootstrap samples and calculated the 

bootstrap ratio of the gene-imaging parameters. The bootstrap ratio is obtained by dividing the 
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gene-imaging saliences (contributions) by their respective bootstrap standard errors. It allowed 

us to assess the reliability of the genetic contributions (McIntosh et al., 2004). Hence, top aging- 

or AD-related causal genes were identified by selecting the parameters with bootstrap ratio 

above 2.58, which is approximately equivalent to a z-score for 99% CI if the bootstrap 

distribution is normal (Efron et al., 1986). 

2.7 Data availability 

All data used in this study are publicly available at the Allen Human Brain Atlas website 

(Hawrylycz et al., 2012. Nature, 489:391-399; http://human.brain-map.org/static/download) 

and the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (Peterson et al., 2010. 

Neurology, 74(3): 201-209; http://adni.loni.usc.edu/data-samples/access-data/). While AHBA 

data do not require any registration for download, ADNI data can be accessed by creating an 

account and submitting an online application form. The application includes the investigator's 

institutional affiliation and the proposed uses of the ADNI data (scientific investigation, 

teaching, or planning clinical research studies). ADNI data may not be used for commercial 

products or redistributed in any way. 

The following previously published data sets were used:  

Hawrylycz et al. (2012) Allen Human Brain Atlas ID RRID:SCR_007416. The Allen 

Human Brain Atlas. http://human.brain-map.org/static/download 

Petersen et al. (2010) Alzheimer’s Disease Neuroimaging Initiative ID 

RRID:SCR_003007. The Alzheimer’s Disease Neuroimaging Initiative. 

http://adni.loni.usc.edu/data-samples/access-data/ 

http://adni.loni.usc.edu/data-samples/access-data/
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2.8 Supplementary Figures 

 

Figure 2.S1:Subject selection. A multivariate outlier identification was performed based on 944 subjects. From 

the 911 subjects that survived outlier detection, 509 subjects having at least four imaging modalities were chosen. 

Then, 460 subjects with at least three time points in any of the imaging modalities were selected. Next, for each 

of the 460 subjects, missing imaging modalities at each time point having actual individual data were 

automatically imputed using the trimmed scores regression with internal PCA. 
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Figure 2.S2: Correlation of predicted mRNA expression with actual mRNA expression across 976 genes. Using 

the actual mRNA values of 3702 samples from AHBA, Gaussian kernel regression was used to reproduce the 

mRNA intensities through a leave-one-out cross-validation, and the Pearson correlation coefficient between the 

actual and reproduced values was calculated for each gene.  

 

2.9 Supplementary Tables 

Table 2.S1: Main demographic characteristics of the included ADNI subjects. 

Variable 
HC 

(N=151) 

EMCI 

(N=161) 

LMCI 

(N=113) 
AD (N=35) 

Stable HC 

(N=113) 

AD + converters 

(N=129) 

Female 76(50.3%) 68(42.2%) 51(45.1%) 16(45.7%) 59(52.2%) 58(45%) 

Mean age 

(years) 
74(5.5) 70.1(6.8) 71.7(7.1) 74.7(8.1) 73.7(5.6) 73.2(7.1) 

Mean 

education 

(years) 

16.5(2.7) 16.3(2.7) 16.2(2.9) 15.2(2.6) 16.8(2.5) 15.8(2.7) 

Data are number (%) or mean (std). 
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 Table 2.S2: List of 976 genes used in this study. Please see Excel file. 

 Table 2.S3: Brain regions used in this study. 

Number Julich Atlas Number Brodmann's Atlas 

1 hOc1 44 Brodmann's area 1 

2 hOc2 45 Brodmann's area 2 

3 hOc4d 46 Brodmann's area 3 

4 hOc3d 47 Brodmann's area 4 

5 hOc3v 48 Brodmann's area 5 

6 hOc4v 49 Brodmann's area 6 

7 1 50 Brodmann's area 7 

8 2 51 Brodmann's area 10 

9 †3a 52 Brodmann's area 11 

10 3b 53 Brodmann's area 17 

11 FG1 54 †*Brodmann's area 18 

12 FG2 55 Brodmann's area 19 

13 Brodmann's area 37 56 Brodmann's area 24 

14 Te1 57 Brodmann's area 25 

15 Te2 58 Brodmann's area 26 

16 Brodmann's area 20 59 Brodmann's area 27 

17 Brodmann's area 21 60 Brodmann's area 29 

18 Brodmann's area 22 61 †*Brodmann's area 30 

19 Brodmann's area 36 62 Brodmann's area 32 

20 Brodmann's area 38 63 Brodmann's area 34 

21 5L 64 Brodmann's area 35 

22 5M 65 Brodmann's area 39 

23 PGa 66 Brodmann's area 40 

24 PGp 67 †Brodmann's area 41 

25 PFt 68 Brodmann's area 42 

26 PFm 69 Brodmann's area 43 

27 p24ab 70 Brodmann's area 44 

28 p32 71 Brodmann's area 45 

29 Brodmann's area 23 72 Brodmann's area 48 

30 6 
  

31 4p 
  

32 Brodmann's area 8 
  

33 Brodmann's area 9 
  

34 Fp1 
  

35 Fp2 
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Number Julich Atlas Number Brodmann's Atlas 

36 Fo1 
  

37 44 
  

38 45 
  

39 Brodmann's area 46 
  

40 Brodmann's area 47 
  

41 7A 
  

42 CA+dentate 
  

43 Brodmann's area 28 
  

 

 

Table 2.S4: Distribution of stable gene-imaging interaction parameters in healthy aging and AD progression (99% 

CI). 

 

 

Table 2.S5: Identified molecular pathways underlying AD progression. 

Pathway No of genes 

CCKR signaling map  8 

Inflammation mediated by chemokine and cytokine signaling pathway  6 

Apoptosis signaling pathway  5 

Gonadotropin-releasing hormone receptor pathway  5 

Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha 

mediated pathway  

3 

FAS signaling pathway  3 

p38 MAPK pathway  3 

Enkephalin release  3 

Beta3 adrenergic receptor signaling pathway  2 

Beta2 adrenergic receptor signaling pathway  2 

Beta1 adrenergic receptor signaling pathway  2 

5HT4 type receptor mediated signaling pathway  2 

Healthy AD Healthy AD Healthy AD Healthy AD Healthy AD Healthy AD

CBF 0 17 5 34 3 28 2 19 0 13 3 31

Aβ 0 74 4 40 4 20 0 19 1 15 2 17

Functional activity 1 41 2 14 0 17 0 15 1 11 2 30

Glucose metabolism 2 78 3 35 1 24 1 33 1 10 2 28

Grey matter density 1 53 2 37 5 36 2 30 1 21 1 39

Tau 1 10 4 17 3 15 0 9 0 10 8 53

Total 5 273 20 177 16 140 5 125 4 80 18 198

Grey matter density Tau

Longitudinal biological factor alterations
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Angiogenesis  2 

Alzheimer disease-presenilin pathway  2 

Ubiquitin proteasome pathway  2 

Wnt signaling pathway  2 

N-acetylglucosamine metabolism  2 

Cytoskeletal regulation by Rho GTPase  2 

Histamine H2 receptor mediated signaling pathway  2 

Cell cycle  2 

B cell activation  2 

Cortocotropin releasing factor receptor signaling pathway  2 

Axon guidance mediated by netrin  1 

Axon guidance mediated by Slit/Robo  1 

Metabotropic glutamate receptor group III pathway  1 

JAK/STAT signaling pathway  1 

Interleukin signaling pathway  1 

Interferon-gamma signaling pathway  1 

5HT2 type receptor mediated signaling pathway  1 

Coenzyme A biosynthesis  1 

5HT1 type receptor mediated signaling pathway  1 

Insulin/IGF pathway-protein kinase B signaling cascade  1 

Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP 

kinase cascade  

1 

Huntington disease  1 

Heterotrimeric G-protein signaling pathway-rod outer segment 

phototransduction  

1 

p53 pathway  1 

p53 pathway feedback loops 2  1 

Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha 

mediated pathway  

1 

p53 pathway by glucose deprivation  1 

O-antigen biosynthesis  1 

Xanthine and guanine salvage pathway  1 

Transcription regulation by bZIP transcription factor  1 

Thyrotropin-releasing hormone receptor signaling pathway  1 

Toll receptor signaling pathway  1 

Ras Pathway  1 

Adenine and hypoxanthine salvage pathway  1 

T cell activation  1 

Oxytocin receptor mediated signaling pathway  1 

Endothelin signaling pathway  1 

EGF receptor signaling pathway  1 

Parkinson disease  1 

DNA replication  1 

PI3 kinase pathway  1 

Opioid proopiomelanocortin pathway  1 

PDGF signaling pathway  1 

Opioid prodynorphin pathway  1 
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Oxidative stress response  1 

Opioid proenkephalin pathway  1 

Cholesterol biosynthesis  1 
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Chapter 3: Patient-centered transcriptomic and 
multimodal neuroimaging determinants of clinical 
progression, physical activity, and treatment needs in 
Parkinson’s disease 

3.1 Preamble 

In the previous chapter, we developed a dynamical systems model and successfully 

applied it to study normal aging and AD. In this chapter, we examined the applicability of the 

model to PD. By incorporating the expression of a thousand genes with changes in dopamine, 

grey matter, and white matter, we identified the biological mechanisms underlying PD 

progression. We first confirmed if the model could successfully identify PD as the principal 

underlying neurodegenerative disease. Then using multiple clinical evaluations, we 

disentangled the distinct biological mechanisms underlying heterogeneity in clinical profiles. 

The model was also used to identify important biological pathways that mediate physical 

activity in PD. Finally, we demonstrated the translational utility of the model by using it to 

identify putative PD drugs through in silico gene perturbation. 

 

This work is current under review in npj Parkison’s Disease journal as: 
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Felix Carbonell, Daniel Ferreira, Yasser Iturria-Medina. “Patient-centered Transcriptomic and 

Multimodal Neuroimaging Determinants of Clinical Progression, Physical Activity and 

Treatment Needs in Parkinson’s Disease”. 
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3.2 Abstract 

Parkinson’s disease is a complex and multifactorial disorder, but how its biological and 

clinical complexity emerge from molecular to macroscopic brain interactions remains poorly 

understood. Here, we use a personalized multiscale generative brain model to characterize 

direct spatiotemporal links between genes and multimodal neuroimaging-derived biological 

factors in PD. We identified a set of genes modulating PD-associated longitudinal changes in 

dopamine transporter level, neuronal activity, dendrite density and tissue atrophy. Inter-

individual heterogeneity in the gene-mediated biological mechanisms is associated with five 

distinct configurations of PD motor and non-motor symptoms. Although characterized by 

distinctive biological pathways, all the symptom configurations are associated with cell cycle 

processes. Notably, the protein-protein interaction networks underlying these configurations 

revealed distinct hub genes including MYC, CCNA2, CCDK1, SRC, STAT3 and PSMD4. We 

also uncovered the biological mechanisms associated with physical activities performance in 

PD, and observed that leisure and work activities are principally related to neurotypical 

cholesterol homeostasis and inflammatory response processes, respectively. Finally, patient-

tailored in silico gene perturbations revealed a set of putative disease-modifying drugs with 

potential to effectively treat PD, most of which are associated with dopamine reuptake and 

anti-inflammation. Our study constitutes the first self-contained multiscale approach providing 

comprehensive insights into the complex multifactorial pathogenesis of PD, unravelling key 

biological modulators of physical and clinical deterioration, and serving as a blueprint for 

optimum drug selection at personalized level. 

3.3 Introduction 

Parkinson’s disease (PD) is a pervasive neurodegenerative disorder that presents with 

a variety of clinical manifestations such as motor (e.g., rigidity, resting tremor, bradykinesia), 
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psycho-cognitive (e.g., cognitive decline, depression, anxiety) and autonomic symptoms (e.g., 

constipation, hyposmia, sleep disorder). However, patients display heterogeneous 

combinations of symptoms, severity, and disease progression. Therefore, the etiopathogenesis 

of PD points to multiple probable causes including genetics, environment, and lifestyle (Simon 

et al., 2020). But the complex interplay between these biological factors is not clearly 

understood.  Moreover, the pathological processes leading to the disease recruit many 

biological pathways at different cellular and molecular levels (Dong-Chen et al., 2023). Thus, 

a comprehensive framework incorporating several disease-associated variables is crucial for 

advancing the understanding of the disease. This is further supported by the recent efforts in 

transitioning towards a biological definition of PD (Höglinger et al., 2024; Simuni et al., 2024)  

Current PD treatments are only symptomatic, and no single drug addresses the wide 

range of symptoms seen in patients. The mainstay of PD treatment, dopamine replacement 

therapy, relieves motor symptoms for a considerable number of patients, especially at the early 

stage of disease (Armstrong & Okun, 2020). However, 9-16% of patients do not respond to 

dopamine-based therapies, suggesting that patient heterogeneity plays a pivotal role in 

treatment response. Disappointingly, even hitherto responsive patients subsequently 

experience medication dose wear off and drug-associated worsening of symptoms, including 

drug-resistant tremor and medication-induced dyskinesias. As an adjuvant non-pharmacologic 

intervention, physical therapy helps improve a broad range of symptoms (Armstrong & Okun, 

2020; Mak et al., 2017). However, the biological mechanisms underpinning the interaction of 

physical activity with PD are not fully understood. Furthermore, despite the perceived benefits 

of physical activity, sedentariness is still found among PD patients due to debilitating motor 

symptoms and other barriers such as perceived low expected benefit, lack of time, fear of 

falling, etc., that prevent patients from conducting exercise regimens (Ellis et al., 2013). 

Understanding the biological substrates of physical activity in PD can facilitate the discovery 
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of pharmacological alternatives, especially for those patients in advanced stages of the disease 

when physical activities are almost impractical. 

Neuroimaging measures offer standard tools for routine clinical diagnosis of 

neurodegenerative diseases, further enabling the elucidation of disease pathogenesis and 

progression. Initial attempts integrating several neuroimaging modalities with either gene 

expression or receptor densities provided insights into the multiscale interactions in healthy 

aging and Alzheimer's disease (Adewale et al., 2021; Khan et al., 2021). This approach, called 

multifactorial causal modelling (MCM) (Iturria-Medina et al., 2017), affords a mechanistic 

way of understanding how the longitudinal changes in a biomarker emerge from the complex 

interplay between several biomarkers. Unified multimodal neuroimaging and expression of 

hundreds of genes revealed critical genetic determinants of healthy aging and Alzheimer's 

disease, as well as biological mechanisms separating the two processes (Adewale et al., 2021). 

The applicability of such unified multifactorial approach to subject-level modelling offers the 

unprecedented opportunity to harness inter-patient heterogeneity for better treatment plans and 

clinical trial design.   

In this study, we extend the multiscale characterization of PD in four fundamental ways: 

(i) integrating whole-brain gene expression with longitudinal molecular, functional and 

(micro)structural neuroimaging-derived biological factors to infer gene-mediated brain 

reorganization in 89 PD patients from the Parkinson's Progression Markers Initiative (PPMI) 

cohort, (ii) linking different configurations of PD symptoms to distinct biological mechanisms 

and protein-protein interaction networks, (iii) identifying molecular mediators of the interplay 

between PD progression and physical activity, and (iv) using patient-level in silico gene 

perturbations to identify putative disease-modifying drugs for PD. This work represents a 

pioneering attempt to unify multiple aspects of PD-associated biomarkers and physical 
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activities at different resolutions, paving the way for a deeper understanding of PD biological 

mechanisms and identifying effective personalized treatments.  

3.4 Results 

3.4.1 Whole-brain multiscale transcriptomic-neuroimaging model of 

Parkinson’s disease 

To characterize widespread molecular, functional and structural brain changes in PD 

patients at the individual level, we fit a whole brain model with gene expression and six 

longitudinal neuroimaging-derived biological factors. These imaging modalities 

macroscopically capture typical neurodegenerative changes, namely, dopaminergic loss (DAT-

SPECT), neuronal activity (fALFF), directed microstructural changes (fractional anisotropy), 

undirected microstructural damage (mean diffusivity), dendrite density (t1/t2 ratio (Righart et 

al., 2017)), and atrophy (gray matter density). They are acquired over multiple scans in 89 PD 

patients from the PPMI cohort. The transcriptomic data was derived from 6 neurotypical brains 

from the Allen Human Brain Atlas (AHBA) (Hawrylycz et al., 2012) across 976 landmark 

genes, which have been shown to be central to biological functions and recapitulate about 89% 

of the whole human transcriptome (Subramanian et al., 2017). Anatomical connectivity was 

estimated from the high-resolution Human Connectome Project template (HCP-1065; 

Methods: Anatomical connectivity estimation).  

Our mathematical framework, named gene expression multifactorial causal model (GE-

MCM; Figure 3.1A), is formulated to capture the influence of gene expression on a particular 

biological factor and accounts for the network-mediated spreading of the subsequent aberrant 

changes across the brain (see Methods: Gene Expression Multifactorial Causal Model). Using 

a robust Bayesian optimization technique, we estimated regression coefficients (gene-imaging 

parameters) that capture the modulation effect of each gene on the dynamic changes and 

interactions of the individual imaging derived biological factor. Even though we used a single 
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fixed neurotypical gene expression template across the population (AHBA), the personalized 

gene-imaging parameters quantify individual gene dysregulation patterns and serve as proxies 

for gene-specific deviations needed for individual model fitting. Indeed, when applied to the 

studied PD population, the model showed a good predictive ability to reproduce the six disease-

affected longitudinal imaging-derived biological factors (R2 = 0.71±0.2). Notably, the model 

parameters demonstrated the capacity to (i) correctly unravel the biological mechanisms 

underlying inter-patient variability in clinical manifestations or physical activity (Figure 3.1B) 

and (ii) infer patient-specific complete model for in silico drug discovery via gene perturbation 

(Figure 3.1C).  

 

 

Figure 3.1: Transcriptomic-neuroimaging multifactorial causal modeling of PD.  A) Patient’s temporal disease 

evolution captured by multimodal neuroimaging is decomposed into i) local transcriptome-mediated interactions 

between neuroimaging measures  disease-related biological factors , namely dopaminergic loss, neuronal activity, 

directed microstructural changes, undirected microstructural damage, dendrite density, and neuronal atrophy     ii) 
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network-mediate propagation of pathological effects between brain regions. The patient-specific gene-imaging 

parameters {α} are obtained by robust Bayesian regressions optimizing the differential equations (Methods). B) 

Covariance between the gene-imaging parameters and slopes of clinical evaluations or physical activities are 

resolved along multiple principal axes to unveil the underlying biological pathways. C) In silico bidirectional 

perturbation of genes identifies putative PD drugs. The perturbation of a therapeutic gene is expected to cause a 

slower disease progression when compared to progression without perturbation. 

3.4.2 Identifying transcriptomic mechanisms mediating behavioural and 

cognitive deterioration in PD 

We sought to identify genetic drivers of multifactorial brain reorganization due to PD 

progression, particularly those genes controlling direct spatiotemporal interactions among 

dopaminergic loss, neuronal activity, directed microstructural changes, undirected 

microstructural damage, dendrite density, and atrophy. First, out of a total of 35,136 gene-

imaging parameters, we identified 953 stable parameters whose 95% confidence intervals (CI) 

exclude zero. Singular value decomposition (SVD) was then used to find the shared latent space 

between these stable parameters and 11 different clinical evaluations (Methods: Clinical and 

Physical Activity Measures). Five of the eleven principal components are significant following 

permutation tests (p < 0.05). However, the first principal component accounts for a notable 

proportion (43.7%) of the explained covariance. Projection of the gene-imaging interactions 

and clinical evaluations on this first latent component showed a very high correlation of r = 

0.93 (p = 0.001: Figure 3.2A). Furthermore, we discovered 85 genes with significant 

contributions to the axis (bootstrap ratio > 1.96). Interestingly, querying the diseases associated 

with the genes in DisGeNET database revealed PD as the leading disorder (q<0.05; Figure 

3.2B). The identification of esophageal carcinoma, medulloblastoma and shigella disease 

corroborates bodies of evidence associating cancers and gut disorders with PD. Shigella and 

Escherichia coli are major causes of diarrhea, and Shiga toxins is linked to damage in blood-

brain barrier, microvasculature, astrocytes and neuron with characteristic motor symptoms 

(Pinto et al., 2017). Similarly, α-synuclein (SNCA) has been suggested as a biomarker for 

medulloblastoma (Y.-X. Li et al. 2018). The results support the relevance of the identified 

genes to PD pathogenesis and its systemic interaction with other disorders. 
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Figure 3.2: Genes underlying clinically-relevant spatiotemporal vulnerability in PD overlap with cancer and 

infection pathways. A) High correlation (r=0.93; p=0.001, FWE-corrected) between projections of gene-imaging 

pathological interactions and rates of clinical deterioration on the first latent component of SVD. The first latent 

component accounts for 43.7% (p=9.99×10-4, FWE-corrected) of the explained covariance between clinical 

evaluations andthe pathological interactions of gene expression and neuroimaging measures . B) DisGeNET 

disease-gene associations of the genes contributing to the pathological interactions on the first latent component. 

The hierarchical relationship shows the significant cognate diseases and their shared genes (q<0.05). C) 

Multifactorial interactions between identified genes and neuroimaging-derived biological factors. A gene directly 

influences how a neuroimaging-quantified biological factor interacts with other factors to cause a factorial 

alteration along the disease’s course. Notably, the outermost ring represents the genes modulating the interactions 

among biological factors, the middle ring displays the biological factor directly influenced by a gene, and the 

innermost ring shows the biological factor undergoing longitudinal changes because of the interactions. 

We further investigated the specific structural, functional, microstructural, or 

dopaminergic changes that are modulated by the 85 genes. Since each optimized gene-imaging 

parameter associates a gene with a biological factor, we retrieved the biological factors of the 

significant parameters associated with the 85 genes. We observed a broad range of interactions 

between the genes and the six disease-related biological factors (Figure 3.2A). Among the PD-

related genes, we observed that TPM1 modulates dopamine level in driving longitudinal 

changes in atrophy, which is consistent with the gene’s role in controlling striatal dopamine 

release (Downs et al., 2021; Wakabayashi-Ito et al., 2011). Our results further suggested that 

TPM1 also modulates dendrite density to drive longitudinal alterations in neuronal activity, in 
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agreement with the gene’s activity of regulating actin filament and neurite growth (Brettle et 

al., 2016). Similarly, we found that CXCR4 modulates mean diffusivity (a measure of myelin 

or axon integrity) to drive dopamine change longitudinally. Activation of CXCR4 promotes the 

development of oligodendrocytes for remyelination of injured adult central nervous system 

(Patel et al., 2010). Overall, our findings transcend traditional single-scale transcriptomic or 

neuroimaging analysis by considering biologically plausible complex interactions underlying 

PD progression. 

3.4.3 Uncovering the protein-protein interaction networks underlying PD 

phenotypic landscapes 

To understand how the model-derived pathological interactions might be related to the 

different clinical manifestations of PD, we analysed all the five significant latent components 

of the SVD. The explained co-variance of these components are 43.7%, 14.5%, 10.2%, 7.1% 

and 6.3%, respectively. Projecting the 11 clinical scores onto these components allowed us to 

disentangle the contributions of psychiatric, motor, cognitive and other PD symptoms to each 

latent component.  Using a high confidence score (cut-off=0.7), we then retrieved the protein-

protein interaction (PPI) networks of the genes associated with each component from STRING 

database (Szklarczyk et al., 2021). The biological pathways (q<0.05) relevant to PPI networks 

were also obtained from Wikipathways. 

In contrast to other components, the first latent component, whose genes were earlier 

associated with PD in Figure 3.2, shows a balanced contribution from the four groups of 

symptoms (Figure 3.3A). This observation indicates that the leading biological mechanisms 

underlying PD engender a wide range of clinical symptoms. Nevertheless, the largest 

individual symptomatic contribution comes from motor signs (UPDRS-III), the principal 

hallmark of PD. The associated PPI network points to the active roles of cell cycle, DNA 

damage, and rapamycin signaling. The second component is dominated by cognitive  
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Figure 3.3: Associations of patterns of PD clinical symptoms with biological mechanisms.  Left: Five significant 

latent components were identified based on permutation analysis (FWER<0.05) of shared covariance between 

gene-imaging pathological interactions and clinical evaluations. Bar graph shows the relative contributions of 

each clinical evaluations, grouped by symptom types, on each latent component. Middle:  Protein-protein 

interaction networks (PPI) of significant genes associated (bootstrap ratio>1.96) with each latent component. PPPI 

networks were retrieved from STRING with a high confidence score ≥ 0.7. Right: Top biological pathways 

(q<0.05) associated with the genes in the PPI networks. Colored nodes in the PPI networks correspond to genes 

implicated in the top biological pathways.   
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symptoms, which supports why the biological pathways include Alzheimer’s disease, in 

addition to insulin signalling, cell cycle, and gastrin signalling. The largest contributions to the 

third component come from motor, cognitive and other non-motor symptoms of daily living 

(e.g., pain, fatigue, and autonomic dysfunctions.). Notably, the implicated pathways include 

ferroptosis, unfolded protein response, cell cycle and oxidative stress. The fourth and fifth 

components are predominantly psychiatric and motor symptoms, with suggested roles of 

inflammation, leptin signalling, cell cycle, DNA damage response, and oxidative stress. 

Despite the varied symptom profiles and underlying PPI networks, we observe a common 

association of cell cycle processes with all the latent components. 

As hub genes are believed to play central roles in biological processes and gene 

regulatory networks (Yu et al., 2017), we sought to identify the leading hub genes in the PPI 

networks. Interestingly, each latent component has at least one dense PPI sub-network which 

could be prioritized for biomarker or drug discovery.  We therefore selected the hub genes as 

those with the highest node degrees. We identified 3 hubs genes, namely, MYC, CCNA2 and 

PSMD4 in the first component due to a tie in their rankings. CDK1, SRC, and STAT3 were 

ranked highest for the second, third and fourth components, respectively. The PPI network of 

the of fifth component was not queried because its enrichment PPI value was not significant (p 

= 0.194; Figure 3.3). Apart from PSMD4, other genes have been previously identified as hub 

genes in PD. Our results however suggests that different hub genes might be associated with 

different patterns of clinical symptoms in PD. 

3.4.4 Molecular pathways associated with physical activity in PD 

Physical activity reduces the risk of developing PD and ameliorates  s both motor and 

non-motor PD symptoms (Amara et al., 2019; Langeskov-Christensen et al., 2024; Paul et al., 

2019). Conversely, the symptomatology of PD presents many barriers (such as motor 

dysfunction, cognitive impairment, depression and apathy) to engaging in physical activities, 
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(Amara et al. 2019). Molecular pathways modulating the relationship between PD and physical 

activity may therefore shed light onto key neuroprotective mechanisms. We therefore 

investigated possible biological mechanisms associated with physical activity in PD by 

applying SVD to identify axes of covariance between the stable gene-neuroimaging parameters 

and three different domains of physical activity, namely household, work, and leisure activities. 

The individual scores for the different domains were derived from PASE, a self-reported 

questionnaire commonly used to quantify physical activity levels in older adults (Washburn et 

al., 1999). Two SVD principal components were relevant based on permutation tests (p<0.05), 

and they separately explained 47% and 37% of the data covariance. Leisure activities (e.g., 

resistance training, jogging, swimming) account for about half (49%) of the first axis (Figure 

4. Conversely, work-related activities (e.g., walking and lifting) contribute (54%) principally 

to the second axis (Figures 3.4C). Nevertheless, household activity account for 27% and 40% 

of first and second axes, respectively. 

Next, using the genes with significant contributions to each axis (bootstrap ratio>1.96), 

we queried the associated biological pathways from Reactome and WikiPathways. The two 

pathway databases were combined to ensure the robustness of our findings and avoid database 

bias. The first component is principally associated with cholesterol biosynthesis (q<0.05) while 

the second component is largely implicated in immune-related processes such as toll-like 

receptor and B cell signalling. Even though reverse causation cannot be disregarded (as reduced 

activity levels may accelerate PD progression, and vice versa), the identified biological 

pathways may be partly explaining individual predisposition/variation to physical activity 

under PD effects. 
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Figure 3.4 : Distinct molecular pathways are associated with leisure and work activities. Contributions of the three 

domains of the Physical Activity Scale for the Elderly (PASE) towards the first and second principal axes. The 

corresponding biological pathways mediating the interactions between physical activity and PD in each axis are 

pointed by the arrows.  The primary and secondary axes were obtained from the singular value decomposition 

(SVD) of the covariance matrix of the gene-neuroimaging parameters and slopes of physical activity scores. The 

relevant biological pathways were queried from Reactome and Wikipathways (q<0.05). 

3.4.5 Virtual Gene Perturbations Reveal Potentially Effective Drug 

Candidates 

Finally, we used a multifactorial-causal perspective to predict potential therapeutic 

drugs candidates for PD. For this, we utilized the individually fitted GE-MCM to simulate the 

disease’s subsequently progression for 2 years after the last evaluated time point. We then up- 

and down-perturbed each gene and quantified the influence of each perturbation on the brain’s 

multiregional and multifactorial imaging descriptors associated with disease progression 
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(Methods: Gene Perturbation for Drug Discovery). A gene was considered therapeutic if the 

perturbation-induced brain changes implied a slower disease progression than the actually 

observed within the two years under consideration. We then ranked the genes based on the 

number of subjects for which they have a therapeutic effect and selected the top genes in the 

90th percentile. Next, using the CMap database in EnrichR, we queried the inverse-drug 

relationship between selected genes and several drugs. CMap allowed us to map previous drug-

induced transcriptomic perturbations to our in silico perturbation profiles. We checked for the 

alignment between the genes up- and down-regulated by drugs in CMap and our up- and down-

perturbed therapeutic genes, respectively. We then retrieved the associated disease and 

pharmacological classification of these drugs from PubChem.  

Figures 3.5A and 3.5B show the list of the top respective drug candidates ranked by 

combined score (product of odds ratio and negative natural log of the p-value). Three of the 

drugs are associated with dopamine, the principal neurotransmitter implicated in PD. The first 

among the list of drugs associated with the upwardly perturbed genes is nomifensine, a drug 

that increases synaptic dopamine availability by inhibiting dopamine reuptake (Figure 3.5A). 

Similarly, the fourth drug is Levodopa, the most commonly used drug for treating PD 

symptoms. Among the top drugs identified through the in silico down-perturbation is pergolide, 

an ergoline-based dopamine receptor agonist still being used to treat PD in some countries. 

Furthermore, we found a notable number of drugs currently used to treat infections, hinting at 

the potential of repurposing anti-infectives for PD treatment. Other drugs are implicated in 

cardiovascular disease, insomnia and inflammation. In sum, the identification of some of the 

current dopamine-base PD drugs demonstrates the potential of our in silico perturbation 

method to discover prospective drugs for PD treatment.  
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Figure 3.5 : Top drugs for PD identified by our virtual perturbation framework. A) The top 10 drugs identified by 

upward perturbation of genes. The therapeutic genes were discovered by increasing their expressions by 10% and 

observing the effect of disease progression within 2 years. The drugs were obtained by comparing the identified 

therapeutic genes with the transcriptomic effect of drugs from CMAP database. The drugs are ranked by the 

combined score (odds ratio × -log(p-value)). B) The top 10 drugs identified by downward perturbation of genes. 

3.5 Discussion 

Parkinson’s disease (PD) is a highly complex and heterogenous disease involving 

various biological mechanisms. We developed a novel computational approach that 

incorporates multimodal neuroimaging data, averaged template of bulk gene expression, 

clinical evaluations, and physical activities to unravel the multifactorial changes accompanying 

the disease process. We validated the relevance and informativeness of the personalized models 

by identifying PD as the primary neurodegenerative disease associated with the molecular 
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pathways and clinical symptoms. We further unravelled the biological substrates underpinning 

the relevance of physical activity to the disease course. Finally, we demonstrated the usefulness 

of our approach for drug discovery and repurposing via in silico transcriptomic perturbations. 

This first of its kind study presents a self-contained bottom-up causal approach for advancing 

the understanding of complex multilevel disease processes and identifying potential disease-

modifying therapeutic targets. 

The roles of genes in maintaining healthy aging and contributing to neurodegenerative 

diseases are not completely known. In this work, we modelled mechanistic interactions 

between imaging-derived longitudinal biological factors and spatial variability in gene 

expression. This modelling approach allowed us to uncover PD-relevant genes and the 

biological processes they interact with. For instance, among the genes identified are PIN1, 

SKP1, TRAP1, TOR1A (Figure 3.2A).  PIN1 is expressed in neurons and found play active 

roles in neuronal cell death and apoptosis (Ghosh et al., 2013; Zhang et al., 2022). Mice lacking 

PIN1 displayed neuronal degeneration including motor and behavioral dysfunctions (Liou et 

al., 2003). Concordantly, our result suggests that PIN1 directly modulates gray matter density 

in PD (Figure 3.2A). Similarly, decreased expression of SKP1 homolog (SKPA) and TRAP1 

have been shown to cause loss of dopamine in flies, accompanied by motor symptoms (Butler 

et al., 2012; Dabool et al., 2020).  We found that the two genes directly interact with dopamine 

to drive longitudinal change in neuronal activity and directed microstructure, respectively. 

TOR1A is highly expressed in the substantia nigra, a key region in the pathogenesis of PD, and 

is responsible for primary hereditary form of dystonia, partly due to its effect on striatal 

dopamine (Wakabayashi-Ito et al., 2011). Concordantly, our findings suggest that TOR1A 

modulates dopamine to drive the longitudinal alterations in dopamine integrity. Overall, many 

of the gene-imaging relationships identified in our study of PD patients have also been reported 

in vivo in animal models. Hence, the novel gene-neuroimaging associations can be further 
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validated through experimental models. The insights afforded by these relationships can 

advance our mechanistic understanding of the disease and help to streamline the identification 

of possible off-targets when targeting genes for drug development. 

Although the hallmark signs of PD are motor complications, dysregulation of multiple 

clinical domains including cognition, memory, mood, behavior, and autonomic functions 

supports the complex and multisystem view of the disease. Moreover, heterogeneity in 

patients’ symptoms and response to treatment has led to the definition of various PD subtypes 

(Mestre et al., 2021). Even though our study did not subtype patients because of the small 

sample size, we uncovered five distinct axes of association between biological mechanisms of 

PD and clinical symptoms. Interestingly, we observed qualitive differences in the relative 

involvement of symptom types to these axes. Network biology approach also revealed different 

PPI topology and biological pathways underlying these symptom distribution profiles. Despite 

the association of numerous pathological processes such as protein aggregation, oxidative 

stress, ferroptosis, and neuroinflammation with PD, the link between these processes and 

heterogenous symptom manifestations are lacking. Our study aligns symptom profiles with 

biological pathways. We found that inflammation, leptin signalling DNA damage response and 

oxidative stress may be associated with predominant motor and psychiatric symptoms while 

insulin and gastrin signalling could be implicated in pronounced cognitive symptoms. 

Nevertheless, we observed a general involvement of G1/S cell cycle control (or its associated 

processes) with all the symptom distributions. Cell cycle re-entry in post-mitotic neurons might 

cause neurodegeneration by triggering response to oxidative stress, DNA damage, and other 

pathological processes (R. Sharma et al., 2017). Concordantly, rotenone-based model of PD 

showed that lowering the amount of rotenone reduces endoreplication-induced 

neurodegeneration by blocking cell cycle progression at G1/S phase (Frade & López-Sánchez, 

2010; H. Wang et al., 2014). We further prioritized 6 hub genes related to these symptom 
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profiles. Interestingly, five of these genes (MYC, CCNA2, CCDK1, SRC and STAT3) have been 

previously identified as PD hub genes from different cohort studies of gene expression in 

substantia nigra and peripheral blood (Banerjee et al., 2021; Elango et al., 2023; George et al., 

2019; Liu et al., 2019; M. Wang et al., 2023). The novel hub gene, PSMD4, is a receptor of the 

26S proteosome which is responsible for protein degradation (Collins & Goldberg, 2017). 

Given the relevance of proteosome homeostasis to intracellular accumulation of α-synuclein 

(Bi et al., 2021), this novel hub gene may play a key role in PD pathogenesis. The hub genes 

in this study can guide the identification of druggable targets and biomarkers for heterogenous 

PD symptom profiles. 

The benefits of physical activity to PD symptoms and progression are widely 

acknowledged.  Even though the biological mechanisms mediating these benefits are fully 

understood, physical activity may promote neuronal plasticity and survival of dopaminergic 

neurons by simulating the expression of neural growth factors (Da Silva et al., 2016). Here, we 

found that physical activity is associated with PD through two principal pathways, namely, 

cholesterol biosynthesis and inflammation via toll-like receptors. A previous study of animal 

model of PD showed that MPTP-bearing mouse had reduced α-synuclein and downregulation 

of toll-like receptors after eight weeks of treadmill exercise (Koo et al., 2017). Although the 

results on the association of cholesterol with PD are mixed, several PD-related genes are 

involved in cholesterol homeostasis (García-Sanz et al., 2021; Jin et al., 2019). Moreover, 

cholesterol biosynthesis has been shown to decrease in the fibroblasts of PD patients (Musanti 

et al., 1993). The most compelling insights into the tripartite association between PD, 

cholesterol and physical activity was demonstrated recently (Dutta et al., 2022). The authors 

found that physical activity activates PPARα in the dopaminergic neurons of PD mouse model. 

Activation of PPRAα alone suppressed the aggregation and spreading of α-synuclein in the 

mouse. As PPRAα is a transcription factor that regulates the expression of genes involved in 
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fatty acid oxidation, the mouse was treated with fenofibrate, a PPRAα medication for abnormal 

cholesterol level. The authors observed that one month of daily treatment with fenofibrate 

conferred similar benefits as two months of regular exercise. Despite that our analysis does not 

rule out the bidirectional relationship between PD and physical activity, our results are 

consistent with the foregoing studies.  However, the mode and intensity of exercise remains an 

open question. A meta-analysis of 19 randomized human clinical trials showed that different 

modes and regimens of exercise provide different forms of benefits to PD symptoms (Tang et 

al., 2019). Indeed, our findings could guide a more personalized prescription of physical 

activity in PD. Perhaps, leisure-related activities (likely shorter duration, higher intensity) 

would be more beneficial to patients having abnormal cholesterol levels while home- or work-

related activities (likely repetitive and lower intensity) could help with neuroinflammation-

induced PD pathogenesis. Furthermore, personalized physical activity regimen can be 

prescribed by comparing the gene-neuroimaging parameters of a patient with the parameters 

of other patients who have benefited from a particular exercise regimen.  

Current treatments for PD are symptomatic, hence the search for disease-modifying 

treatments addressing the underlying pathology is a priority. While the mainstay of PD 

treatment are dopamine-based drugs, their effectiveness largely varies with disease subtype and 

stage (Armstrong & Okun, 2020). Interestingly, among the top 20 putative PD drugs identified 

in our study, there are three dopamine-based drugs, including levodopa, the current first line 

treatment for PD (Figures 3.4A and B). However, we also identified multiple immune-related 

and anti-inflammatory drugs, including naproxen (a non-steroidal anti-inflammatory drug) and 

tetracycline. Other drugs such as vinpocetine, chlorogenic acid and melatonin have also been 

reported to modulate inflammation. Although vinpocetine is typically prescribed for treating 

memory loss in aging and dementias (including PD patients with dementia), it has been 

demonstrated to regulate the circulation of inflammatory molecules in PD patients (Ping et al., 
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2019). Chlorogenic acid, found in coffee, is suggested to offer neuroprotective roles in animal 

models of PD  (He et al., 2021; N. Sharma et al., 2022; Singh et al., 2018). This latter finding 

may partially explain why coffee confers reduced risk on PD development. Similarly, 

melatonin, which may improve sleep disturbance in PD (Srinivasan et al., 2011), has also been 

shown to reduce neuroinflammation (Li et al., 2022). The convergence of these medications on 

immune system/inflammation highlights the need to consider this pathway for drug discovery 

and repurposing. Even though we performed our drug query using therapeutic genes across the 

patient population, personalised treatment can be designed by querying the drug database with 

patient-level therapeutic genes.  

The lack of patient-specific gene expression data constrained us to use a single 

neurotypical gene expression template. Nevertheless, we previously demonstrated that the 

interaction of the static transcriptomic information with patient-specific longitudinal 

neuroimaging measures provides a proxy for patient-specific genetic deformation in healthy 

aging and Alzheimer's disease (Adewale et al., 2021). Furthermore, the static gene expression 

data was obtained by combining the mRNA values of six different subjects and inferring the 

gene expression for the brain regions with missing values (Adewale et al., 2021). Despite the 

inherent variability and bias that could arise from inter-subject variability and mRNA 

interpolation, the identification of PD as the underlying neurodegenerative disease 

demonstrates the validity of our approach (Figure 3.2B). Subject-specific gene expression may 

help refine the derived gene-imaging parameters and better facilitate personalized treatments.  

Overall, our universal mathematical formulation can be used to study other 

multifactorial and progressive disorders such as frontotemporal dementias and amyotrophic 

lateral sclerosis. As subtyping often requires a large number of subjects and raises a question 

of within-subtype homogeneity, the gene-imaging parameters provide a way to mechanistically 

capture biological and clinical variability for better treatment plans in heterogenous diseases. 
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Future work will also consider how these parameters can predict patient response to treatment 

in clinical trials.  

3.6 Methods 

3.6.1 Ethics statement 

This article does not contain any studies with human participants performed by any of 

the authors. The neuroimaging and clinical data were acquired from the multicenter 

Parkinson’s Progression Markers Initiative (PPMI; ppmi-info.org). As per PPMI protocols, 

study participants and/or authorized representatives gave written informed consent at the time 

of enrollment for sample collection and completed questionnaires approved by each 

participating site Institutional Review Board (IRB). The authors obtained approval from the 

PPMI for data use and publication, see documents https://www.ppmi-

info.org/documents/ppmi-data-use-agreement.pdf and https://www.ppmi-

info.org/documents/ppmi-publication-policy.pdf, respectively.  

3.6.2 Data description and processing 

Study participants 

This study involved 89 individuals from PPMI (RRID:SCR_006431) (http://ppmi-

info.org/). The subjects have at least three imaging modalities out of the following: structural 

MRI, resting functional MRI, diffusion MRI, dopamine SPECT; for at least three visits. The 

PPMI was launched in 2010 as an observational study of longitudinal changes in volunteer 

subjects with and without PD. PPMI is led by Principal Investigator Kenneth Marek, MD and 

sponsored by the Michael J. Fox Foundation, with the goal of understanding the onset and 

progression of PD. 

 

https://www.ppmi-info.org/documents/ppmi-data-use-agreement.pdf
https://www.ppmi-info.org/documents/ppmi-data-use-agreement.pdf
https://www.ppmi-info.org/documents/ppmi-publication-policy.pdf
https://www.ppmi-info.org/documents/ppmi-publication-policy.pdf
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Structural MRI 

Structural T1- and T2-weighted 3D brain images were acquired as described in PPMI 

manuals (http://www.ppmi-info.org/). The images were corrected for intensity 

nonuniformity using the N3 algorithm (Sled et al., 1998). They were segmented into grey 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF) probabilistic maps, using 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm). The gray matter segmentations were standardized 

to MNI space (Evans et al., 1994) using DARTEL (Ashburner, 2007). Each map was corrected 

for the effects of spatial registration to preserve the initial amount of tissue volume. Mean gray 

matter density values of the T1- and T2-weighted images were calculated for a total of 163 

grey matter regions described in Methods: Gene Expression and Brain Parcellation. 

Resting-state fMRI 

Resting-state functional images were acquired using an echo-planar pulse sequence on 

a 3.0T Philips MRI scanner with the following parameters: 140 time points, repetition time 

(TR) = 2400 ms, echo time (TE) = 25 ms, flip angle = 80°, number of slices = 40, slice thickness 

= 3.3 mm, in-plane resolution = 3.3 mm, and in-plane matrix size = 68 × 66. The fMRI images 

were preprocessesd using FSL (v5.0) toolbox (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)(S. M. 

Smith et al., 2004). The preprocessing steps are: 1) Motion and splice timing correction 2) 

Alignment to the structural T1 image 3) Spatial normalization to the MNI space using the 

registration parameters obtained for the structural T1 image with the nearest acquisition date, 

and 4) Signal filtering to retain only low-frequency fluctuations (0.01–0.08 Hz) (Chao-Gan and 

Yu-Feng, 2010). Due to its high sensitivity to disease progression (Iturria-Medina et al., 2016), 

we used fractional amplitude of low-frequency fluctuation (fALFF) as a regional quantitative 

indicator of the brain’s functional integrity fALFF quantifies resting-state regional brain 

activity as the ratio of the power spectrum of the low frequency band (0.01 – 0.08 Hz) to the 

power spectrum of the whole frequency range (0 - 0.25Hz) (Zou et al., 2008). 

http://www.ppmi-info.org/
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Diffusion MRI 

Diffusion MRI (dMRI) was obtained using standardized protocols on Siemens Verio 

and Siemens Tim Trio 3T MRI scanners. A single-shot echo-planar imaging scheme was used 

with 64 sampling directions, a b-value of 1000 s/mm2 and a single b = 0 image. Other 

parameters include 116 × 116 matrix, 2 mm isotropic resolution, TR/TE 900/88 ms, and two-

fold acceleration. More information on the dMRI acquisition and processing can be found 

online at http://www.ppmi-info.org/. Further preprocessing was done in FSL (v5.0). First, the 

DTI scans were corrected for motion, eddy current and EPI distortion. Then, the b0 images 

were aligned to the corresponding subject’s T1-weighted images based on mutual information. 

The deformation field between the diffusion and T1-weighted image was calculated. The 

deformation field and eddy current transformations were applied to the dMRI images.  

Diffusion tensor models were then fitted independently for each voxel Next, the scans were 

normalized to MNI space (Evans et al., 1994) using the registration parameters obtained for 

the structural T1 image with the nearest acquisition date. The mean values of the fractional 

anisotropy and mean diffusivity were estimated for each of the 163 brain regions of interest. 

Dopamine SPECT 

A 111-185 MBq (3-5 mCi) bolus injection of I-123 FB-CIT was administered to each 

participant and the SPECT scans were obtained 4 hours post-injection. Raw projection data 

was acquired as a 128x128 matrix, after which the SPECT image was reconstructed. The 

images were preprocessed using SPM12. The scans underwent for attenuation correction and 

noise reduction using Gaussian blurring with a 3D 6mm filter were applied. The reconstructed 

and corrected SPECT images were normalized to MNI space (Evans et al., 1994), and average 

values were calculated for the 163 brain regions of interest. 
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Gene expression and brain parcellation 

Microarray data was downloaded from the Allen Human Brain Atlas 

(AHBA)  (RRID:SCR_007416) website (http://www.brain-map.org) (Hawrylycz et al., 2012). 

The AHBA data consists of mRNA expression in 3702 tissue samples obtained from six adult 

human brains, with no known neuropathological history. The data was preprocessed by the 

Allen Institute to reduce the effects of bias due to batch effects. Description of the processing 

steps can be found in the technical white paper on AHBA website. For each brain, there are 

58,692 probes representing 20,267 unique genes. Leveraging the spatial dependence of gene 

expression patterns, (Gryglewski et al., 2018),  Gaussian kernel regression was applied to 

predict the mRNA intensity in each of the 3702 samples in MNI space using leave-one-out 

cross-validation. The probe with the highest prediction accuracy (among the multiple probes 

for a gene) was chosen as the representative probe for that gene. Next, because mRNA values 

were not available for all the grey matter voxels of the brain, Gaussian kernel regression was 

again used to predict the GE for the remaining MNI coordinates without mRNA expression 

intensity. Thus, the whole-brain GE data was obtained for the selected 20,267 probes/genes. 

As it was infeasible to use these ~20,000 AHBA genes for modelling, we therefore selected 

976 landmark genes (Table 3.S2) (Subramanian et al., 2017). These landmark genes are 

universally informative transcripts with the capacity to cover most of the information in the 

whole human transcriptome across a diversity of tissue types. The average expression value of 

each gene was then calculated for the 163 brain regions of interest. 

A brain parcellation was derived from a combination of the Jülich, Brodmann, AAL3 

and DISTAL atlases. First, structural T1 images of the four atlases were registered to the MNI 

ICBM152 T1 template using FSL’s FLIRT affine registration tool. Then, the obtained 

transformations were used to project the corresponding parcellations to the MNI ICBM152 

space using nearest neighbour interpolation. The resulting parcellation has 163 gray matter 

https://scicrunch.org/resolver/SCR_007416
http://www.brain-map.org/
https://elifesciences.org/articles/62589#bib38
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regions of interest which were used to extract the multimodal imaging data, gene expression, 

and diffusion-based connectivity matrix. 

Anatomical connectivity estimation 

The connectivity matrix was constructed in DSI Studio (http://dsi-studio.labsolver.org) 

using a group average template from 1065 subject (Yeh et al., 2018). A multi-shell high-

angular-resolution diffusion scheme was used, and the b-values were 990, 1985, and 2980 

s/mm2. The total number of sampling directions was 270. The in-plane resolution and slice 

thickness were 1.25 mm. The diffusion data were reconstructed in MNI space using q-space 

diffeomorphic reconstruction to obtain the spin distribution function (Yeh & Tseng, 2011). The 

sampling length and output resolution were set to 2.5 and 1 mm, respectively. The restricted 

diffusion was quantified using restricted diffusion imaging and a deterministic fibre tracking 

algorithm was used (Yeh et al., 2017). Using the brain atlas previously described under 

Methods: Gene Expression and Brain Parcellation, seeding was placed on the whole brain 

while setting the QA threshold to 0.15. The angular threshold was randomly varied from 15 to 

90 degrees and the step size from 0.5 to 1.5 voxels. The fibre trajectories were smoothed by 

averaging the propagation direction with a percentage of the previous direction, which was 

randomly selected from 0 to 95%. Tracks with lengths shorter than 30 mm or longer than 300 

mm were discarded. A total of 100,000 tracts were calculated, and the connectivity matrix was 

obtained by using count of the connecting tracks. 

Multimodal neuroimaging modalities 

After preprocessing the imaging modalities, the data were harmonized using ComBat 

(Fortin et al., 2017). As each site used the same scanner for all subjects, the harmonization 

procedure corrected for batch effects.  The harmonized neuroimaging modalities were 

extracted for 6 measures, namely dopamine SPECT values, fALLF, fractional anisotropy, mean 

diffusivity, T1/T2 ratio, and gray matter density. Subjects having at least three neuroimaging 
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modalities in at least three time points were selected. For these subjects, the modalities missing 

at each time point having actual individual data were automatically imputed using the trimmed 

scores regression with internal PCA (Folch-Fortuny et al., 2016). Ultimately, a total of 89 

subjects were included in the study with all the 6 neuroimaging modalities for an average of 4 

(±0.5) time points. The average numbers of imputed time points per neuroimaging modality 

are presented in Table 3.S1. 

Clinical and physical activity measures 

For general clinical measures, we used eleven scores obtained from the PPMI testing 

battery, namely the Benton Judgment of Line Orientation Test (BJLOT) (Woodard et al., 1996), 

Hopkins Verbal Learning Test (HVLT) (Brandt, 1991), Letter Number Sequencing (LNS) 

(Saklofske & Schoenberg, 2011), Geriatric Depression Scale (GDS) (Yesavage, 1988),  

Movement Disorders Society – Unified Parkinson's Disease Rating Scale (MDS-UPDRS) 

(Goetz et al., 2008) Parts 1 (non-motor aspects of daily living), 2 (motor aspects of daily living), 

and 3 (motor examination), the Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 

2005), semantic fluency (SF), State-Trait Anxiety Inventory for Adults (STAIAD) (Beckler, 

2010), and Symbol Digit Modalities (SDM) (A. Smith, 1973). For the measures of physical 

activity, we used the three different subscores of the Physical Activity Scale for the Elderly 

(PASE) (Washburn et al., 1999), with higher scores indicating higher levels of physical 

activity. The subscores include PASE leisure score, PASE work score, and PASE household 

score. The methods for deriving all the composite scores are described in the respective PPMI 

protocols documentation. For each subject, we calculated the rate of change of the scores with 

respect to the examination date. The slopes of the clinical and physical scores are then used for 

subsequent analyses.   
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3.6.3 Gene expression multifactorial causal model (GE-MCM) 

The GE-MCM models how alterations in different regional neuroimaging-derived 

biological factors and their interactions are controlled by regional gene expression patterns in 

the brain (Adewale et al., 2021; Iturria-Medina et al., 2017). Simply, the model is defined by: 

(i) the influence of each gene on the local direct interactions among all the macroscopic 

imaging modalities factors, constrained within each brain region, (ii) the potential spreading of 

macroscopic factor-specific alterations through anatomical and/or vascular networks. (iii) the 

temporal changes in each macroscopic imaging factor due to (i) and (ii).  

In this work, we considered six biological factors namely, brain atrophy, neuronal 

activity, dopaminergic neuronal loss, dendritic density, and (un)directed measures of white 

matter integrity. The factors are derived from T1-weighted MR1, resting-state fMR1, DAT-

SPECT, T1/T2 ratio, mean diffusivity and fractional anisotropy, respectively. We also 

considered the regional mRNA patterns of 976 genes. The temporal evolution of the disease-

associated process is thus depicted mathematically as: 

𝑑𝑆𝑖
𝑚

𝑑𝑡
=  ∑ (𝛼𝑜

𝑛→𝑚 + ∑ 𝛼𝑘
𝑛→𝑚𝐺𝑖

𝑘𝑁𝑔𝑒𝑛𝑒𝑠

𝑘=1  ) 𝑆𝑖
𝑛𝑁𝑓𝑎𝑐𝑡𝑜𝑟𝑠

𝑛=1 +  ∑ 𝐶𝑗𝑖
𝑚(𝑆𝑗

𝑚 −  𝑆𝑖
𝑚)

𝑁𝑟𝑜𝑖𝑠
𝑗=1
𝑗≠𝑖

𝑆𝑚           (1) 

𝑁𝑔𝑒𝑛𝑒𝑠 = 976 is the number of genes normalised across 𝑁𝑟𝑜𝑖𝑠 = 163 brain regions of 

interest covering most of the brain's gray matter. Each gene i is denoted as 𝐺𝑖, and 𝑁𝑓𝑎𝑐𝑡𝑜𝑟𝑠 =

6 is the number of different biological factors measured at the same brain region. The first term 

on the right-hand side of the equation models the local direct influences of multiple 

macroscopic biological factors on the given factor 𝑚. The interaction parameters ( 𝛼𝑜
𝑛→𝑚,  

𝛼𝑘
𝑛→𝑚 ) and gene expression (𝐺𝑖

𝑘)  modulate the direct within-region impact of the factor 𝑛 on 

𝑚, including intra-factor effects, i.e., when 𝑛 = 𝑚. ∑ 𝐶𝑗𝑖
𝑚(𝑆𝑗

𝑚 − 𝑆𝑖
𝑚)

𝑁𝑟𝑜𝑖𝑠
𝑗=1
𝑗≠𝑖

𝑆𝑚 reflects the 

resultant signal propagation of factor 𝑚 from region 𝑖 to other brain regions through the 
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physical network 𝐶𝑗𝑖
𝑚. 

𝑑𝑆𝑖
𝑚

𝑑𝑡
 is the local longitudinal alteration of a macroscopic factor 𝑚 at 

region i due to the foregoing multiscale interactions. 

3.7 Statistical analyses 

3.7.1 Model fitting 

Using the GE-MCM differential equation, for each subject j and biological factor m, 

we calculated 
𝑑𝑆𝑖

𝑚(𝑗)

𝑑𝑡
  between each pair of consecutive time points. The regional values 

obtained were concatenated into a subject-factor-specific vector (
𝑑𝑆𝑚(𝑗)

𝑑𝑡
) with 𝑁𝑟𝑜𝑖𝑠 ∙

(𝑁𝑡𝑖𝑚𝑒𝑠 − 1) unique values. This allowed us to formulate the identification of the model 

parameters ( 𝛼𝑜
𝑛→𝑚,  𝛼𝑘

𝑛→𝑚 ) as a regression problem (with 
𝑑𝑆𝑚(𝑗)

𝑑𝑡
 as dependent variable). Due 

to the high dimensionality of the data, we used a Bayesian sparse linear regression with 

horseshoe hierarchy to identify the distribution of the model parameters (Carvalho et al., 2010; 

Makalic & Schmidt, 2015). We then obtained regression coefficients (gene-imaging 

parameters) as a measure of transcriptomic effect on the interaction of a macroscopic imaging-

based factor with the other macroscopic factors, in driving a longitudinal biological factor 

alteration. We calculated coefficient of determination (R2) for each subject and neuroimaging 

modality as a measure of model fit. 

3.7.2 Covariance of gene-neuroimaging parameters with clinical 

evaluations 

Due to high dimensionality, we first reduced the number of gene-imaging parameters 

by selecting only the stable parameters whose population-wide 95% confidence interval (CI) 

exclude zero. We then applied singular value decomposition (SVD) to evaluate how the stable 

transcriptomic-imaging interactions mediate the rates of change in the eleven clinical scores.  

The aim of SVD is to identify a few pairs of ‘principal components’ that maximize the cross-
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correlation between the two sets of variables (i.e., gene-imaging interactions and slope of 

clinical evaluations). We tested for the significance of the identified principal components (PC) 

by permuting the mapping the gene-imaging parameters and the clinical scores. The 

permutation was run 1000 times and principal components with a null p<0.05 were considered 

significant. To identify the genes (gene-imaging parameters) with large and reliable 

contributions on the significant PCs, we drew 1000 bootstrap samples and calculated the 

bootstrap ratio of the gene-imaging parameters. The bootstrap ratio is obtained by dividing the 

saliences (contributions) of the gene-imaging parameters by their respective bootstrap standard 

errors. Top contributing genes were obtained at a bootstrap ratio>1.96 (corresponding to 95% 

CI). Diseases associated with the genes were queried from DisGeNET database in Enrichr-KG 

(Evangelista et al., 2023) at a significance level of q-value<0.05. We derived the PPI networks 

and the associated WikiPathways from STRING database while setting the PPI confidence 

score cut-off to 0.7 (Szklarczyk et al., 2021). The hub genes for each PPI network were 

identified by ranking according to node degrees using cytoHubba plugin (Chin et al., 2014) in 

Cytoscape (v3.9.1) (Shannon et al., 2003).   

3.7.3 Covariance of gene-neuroimaging parameters with physical activity 

We again applied SVD to the stable gene-imaging parameters and the slopes of the 

three different PASE subscores. Significant principal components were obtained by running 

1000 permutation iterations and applying a p-value threshold of 0.05. To identify the top genes 

mediating physical activity, we drew 1000 bootstrap samples and applied a bootstrap ratio 

threshold of 1.96 (95% CI). The biological pathways associated with the genes were identified 

by combining WikiPathways and Reactome databases via the ClueGO (v2.5.9) (Bindea et al., 

2009) plugin in Cytoscape. For each of the significant PCs, we evaluated the contribution of 

each of the PASE subscores by calculating the relative variances along the axis of the PC. 
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3.7.4 Gene perturbation for drug discovery 

To discover putative drugs for PD treatment, we sequentially perturbed the gene 

expressions in both directions. Using Equation (1), gene expression values, most recent 

neuroimaging measurements, and estimated gene-imaging parameters of each subject, we 

simulated disease progression for two years, as captured by the longitudinal change of each 

neuroimaging modality. To perturb a gene, we increased or decreased its expression value by 

20% across the population while keeping the values of other genes constant. We then re-

simulated the disease progression for 2 years and observed the impact of the perturbation on 

disease progression. The relative measure of disease progression score is calculated thus: 

𝑆𝑔𝑒𝑛𝑒 =  
‖𝑆𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛‖

2

‖𝑆𝑛𝑜𝑟𝑚𝑎𝑙‖2
                      (2) 

Where 𝑆𝑔𝑒𝑛𝑒 is the relative disease progression score of a gene in a patient. 

‖𝑆𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛‖
2

 is the norm of 2-year predictions of the six predicted neuroimaging values 

obtained by perturbing a gene in each direction. ‖𝑆𝑛𝑜𝑟𝑚𝑎𝑙‖2 is the norm of 2-year predictions 

of all neuroimaging modalities without perturbing any gene. 

A gene is therapeutic if 𝑆𝑔𝑒𝑛𝑒 < 1; i.e., disease progression induced by perturbation is 

slower compared to actual disease progression. For each of the perturbation direction, we 

ranked the genes based on the number of subjects where they are predicted to have therapeutic 

effects. We selected the genes in the top 90th percentile and used EnrichR (Chen et al., 2013) 

to query the Connectivity Map (CMap) (Lamb et al., 2006) drug database. Specifically, the top 

genes that are therapeutic due to upward and downward perturbation are queried using CMap-

Up and CMap-Down databases, respectively. Top putative drugs were then ranked by EnrichR 

combined score. Using PubChem database (Kim et al., 2023), we retrieved the diseases 

(Therapeutic Target Database (TTD)) and the pharmacological classifications (Medical 

Subject Headings (MeSH)) associated with the top drugs. 
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3.8 Supplementary Tables 

Table 3.S1: Distribution of number of time points of neuroimaging modalities. 

Neuroimaging 

modality 

Average number of 

time points 

Average number of imputed 

time points 

Grey matter density 3.7 ± 0.6 0.16 ± 0.37 

fALFF 2.3 ± 0.8 1.5 ± 0.76 

DAT-SPECT 3.3 ± 0.8 0.5 ± 0.71 

Fractional anistropy 2.5 ± 0.6 1.3 ± 0.51 

Mean diffusivity 2.5 ± 0.6 1.3 ± 0.51 

Dendrite density 2.8 ± 0.6 1.1 ± 0.25 

 

Table 3.S2: List of genes used in this study. Please see Excel file 

 

3.9 Data and code availability 

The three datasets used in this study are available from the PPMI database 

(neuroimaging and clinical evaluations; https://www.ppmi-info.org/), the HCP database 

(tractography template for connectivity estimation; 

http://www.humanconnectomeproject.org/), and Allen Human Brain Atlas website (gene 

expression; http://human.brain-map.org/static/download). We anticipate that the GE-MCM 

method will be released soon as part of our available and open-access, user-friendly software 

(Iturria-Medina et al., 2021) (https://www.neuropm-lab.com/neuropm-box.html). 
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Chapter 4: Single-nucleus RNA velocity reveals critical 
synaptic and cell-cycle dysregulations in 
neuropathologically confirmed Alzheimer’s disease 

4.1 Preamble 

In the previous two chapters, we developed and applied a novel dynamical systems model to 

study AD and PD. Transcriptomic data used were bulk gene expression data, which can mask 

cell-specific changes. As transcriptomic changes are one of the cell-autonomous processes that 

influence selective vulnerability of brain cells to neurodegeneration, studying dynamic 

transcriptomic changes at single-cell level can provide insight into neuronal and glial cell 

changes to pathology.  A few months before the beginning of this PhD work, a dynamical 

system model called RNA velocity was developed by researchers in the single-cell 

transcriptomics field. RNA velocity is being continuously improved upon even at the time of 

writing this thesis. The model has been applied to study the trajectory of cells in development 

and cancer. In this chapter, we apply RNA velocity to study neurodegenerative disease for the 

first time. We uncovered cell-type specific changes in AD, as well as the genes and biological 

mechanisms driving those changes.  

 

This work has been published as: 

Adewale, Quadri, Ahmed F. Khan, David A. Bennett, and Yasser Iturria-Medina. 2024. 

“Single-Nucleus RNA Velocity Reveals Critical Synaptic and Cell-Cycle Dysregulations in 

Neuropathologically Confirmed Alzheimer’s Disease.” Scientific Reports 2024 14:1 14 (1): 1–

11. https://doi.org/10.1038/s41598-024-57918-x. 
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4.2 Abstract 

Typical differential single-nucleus gene expression (snRNA-seq) analyses in 

Alzheimer’s disease (AD) provide fixed snapshots of cellular alterations, making the accurate 

detection of temporal cell changes challenging. To characterize the dynamic cellular and 

transcriptomic differences in AD neuropathology, we apply the novel concept of RNA velocity 

to the study of single-nucleus RNA from the cortex of 60 subjects with varied levels of AD 

pathology. RNA velocity captures the rate of change of gene expression by comparing intronic 

and exonic sequence counts. We performed differential analyses to find the significant genes 

driving both cell type-specific RNA velocity and expression differences in AD, extensively 

compared these two transcriptomic metrics, and clarified their associations with multiple 

neuropathologic traits. The results were cross-validated in an independent dataset. Comparison 

of AD pathology-associated RNA velocity with parallel gene expression differences reveals 

sets of genes and molecular pathways that underlie the dynamic and static regimes of cell type-

specific dysregulations underlying the disease. Differential RNA velocity and its linked 

progressive neuropathology point to significant dysregulations in synaptic organization and 

cell development across cell types. Notably, most of the genes underlying this synaptic 

dysregulation showed increased RNA velocity in AD subjects compared to controls. 

Accelerated cell changes were also observed in the AD subjects, suggesting that the precocious 

depletion of precursor cell pools might be associated with neurodegeneration. Overall, this 

study uncovers active molecular drivers of the spatiotemporal alterations in AD and offers 

novel insights towards gene- and cell-centric therapeutic strategies accounting for dynamic cell 

perturbations and synaptic disruptions. 
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4.3 Introduction 

Recent advances in single-nucleus RNA sequencing (snRNA-seq) have provided an 

unprecedented ability to disentangle cellular-level transcriptomic alterations and heterogeneity 

in Alzheimer’s disease (AD) (Lau et al., 2020; Mathys et al., 2019). Early differential 

expression with neuropathological AD progression have been found to be cell-type dependent 

while apparent upregulation of genes in the later stages are shared across cell types, suggesting 

that transcriptional responses to disease are highly driven by cell states (Mathys et al., 2019). 

Furthermore, cell type-specific analysis has revealed the molecular signatures of preferentially 

affected cell populations, demonstrating that morphology alone cannot sufficiently determine 

cell type vulnerability in pathologic AD (Bergen et al., 2020; Leng et al., 2021; Olah et al., 

2020).  

Nevertheless, static snRNA-seq abundance provides only fixed snapshots of cellular 

states, not revealing temporal dynamics of genes at individual cells (Bergen et al., 2020). The 

recently proposed rate of change of mRNA, otherwise known as RNA velocity (RNA-vel) (La 

Manno et al., 2018), provides a novel method to capture temporal dynamics in mRNA 

abundance by comparing spliced and unspliced mRNA counts. In the initial model, ratio of 

intronic to exonic sequence counts in constant (steady-state) transcription is obtained, and 

RNA-vel is estimated as the deviation or residual of this ratio from the expected steady-state 

ratio (La Manno et al., 2018). Further methods have been developed to capture (potentially) 

unobserved steady states and gene stochasticity (Bergen et al., 2020). Positive and negative 

RNA velocities imply upregulation and downregulation of a gene, respectively. Notably, RNA-

vel analysis was used to infer developmental trajectories of healthy cells (Kanton et al., 2019; 

Lo Giudice et al., 2019) and unravel pathological changes in cancer cells (Couturier et al., 

2020). This paradigm shift from descriptive to predictive RNA modelling is offering a deeper 
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understanding of complex cell-level processes in health and disease, with promising 

implications to improve treatment strategies for multiple disorders. 

In the context of the progression of neuropathology, it is unclear whether genes that are 

differentially expressed across disease states are also the genes driving evolution and 

vulnerability of diseased cells. Genes with different RNA velocity values might better capture 

or capture complementary aspects of the time-resolved molecular dysregulations and 

prodromal differences underlying neurodegeneration. Here, we extend previous single-nucleus 

RNA (snRNA) analysis in AD in three fundamental ways. First, we use postmortem snRNA-

seq data from the prefrontal cortex of subjects with varied levels of AD pathology (N=48) to 

identify cell type-specific RNA velocity differences associated with neuropathology. Second, 

we demonstrate that dynamically altered genes in AD pathology, i.e., genes with differential 

RNA velocities, are qualitatively different from the genes showing differential expression 

patterns. Third, we reproduce the main observed cell type-specific RNA velocity differences 

in an independent pathologic AD sample. Overall, our results highlight the critical importance 

of further considering dynamic single-cell molecular processes underlying AD progression as 

opposed to only its static cellular RNA mechanisms. 

4.4 Results 

4.4.1 Data origin and single-nucleus RNA velocity estimation 

Single nucleus RNA-seq data was obtained from the prefrontal cortex of 48 postmortem 

human brain samples (Mathys et al., 2019) (Methods, Dataset-1 subsection). Twenty-four of 

these individuals had no or low β-amyloid burden or other pathologies (control). The remaining 

twenty-four presented mild to severe AD-pathology (amyloid burden, neurofibrillary tangles, 

global pathology, and cognitive impairment). After pre-processing, 65,422 snRNA-seq profiles 

with 16,844 transcripts (corresponding to 16,829 unique genes) were obtained. A predefined 

cluster list (Mathys et al., 2019) was used to annotate and assign the cells to six different types: 
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excitatory neurons, inhibitory neurons, astrocytes, microglia, oligodendrocytes, and 

oligodendrocyte progenitor cells (Figure 4.1a).  

Single-nucleus RNA velocities (snRNA-vel) of all genes across each cell type in the 48 

subjects were calculated using a probabilistic model (Bergen et al., 2020) (Methods, RNA 

velocity estimation subsection). This probabilistic (stochastic) method for RNA-vel estimation 

is preferred over the originally proposed steady-state model (La Manno et al., 2018) since the 

former largely accounts for cell heterogeneity and differential kinetics, while achieving higher 

computational efficiency (Bergen et al., 2020). To identify the genes that may help explain the 

velocity vector fields across the six types, we selected the top genes that show cell type-specific 

differential transcriptional dynamics (Methods, RNA velocity estimation subsection). As shown 

in Figure 4.1b, the dependency between unspliced and spliced mRNA counts of the genes gives 

the expected cell type-specific velocity values depicted as the residual from the dotted line 

(representing the constant transcriptional state). We then projected the expression and velocity 

values of these top genes to t-SNE space (Figure 4.1c). We observed more variation and cell 

type-specificity in RNA velocity compared to gene expression, suggesting that the velocity 

estimations are largely driven by transcriptional dynamics rather than gene expression (Figure 

4.1c). For example, PDE4B exhibits an oligodendrocyte-specific dynamics even though its 

expression is spread across different cell types. 

To demonstrate the suitability of using single nuclei for RNA velocity, we first 

compared both nucleus-derived (snRNA-seq) and cell-derived (scRNA-seq) RNA velocities in 

the microglia of the same subject. Notably, we observed (Figure 4.S1) strong correlations 

(ranging from 0.94 to 0.99) between the velocity estimates of the snRNA-seq and scRNA-seq, 

supporting the precision of snRNA-seq for RNA velocity calculation (see Figure 4.S1). 

Interestingly, the variations observed in velocity correlations from any random pair of single 

cells are comparable to the variations in velocity correlations between any single cell and single 
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nucleus. A previous study also found concordant RNA velocity estimates between matched 

single nuclei and single cells from rabbit retina (Santiago et al., 2023). Finally, we recalculated 

RNA velocity using veloVI (Gayoso et al., 2023), another method of RNA velocity estimation 

based on deep generative modeling. Comparison of the results from scVelo and veloVI shows 

similar velocity estimates and trajectory inference (Figure 4.S2). 

 

Figure 4.1:  Single-nucleus RNA-seq of the prefrontal cortex of 48 individuals across the Alzheimer’s disease 

(AD) spectrum. a) t-SNE visualization of clusters are annotated by cell type (excitatory neurons, inhibitory 

neurons, astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells). b) Relationship between 

unspliced and spliced mRNA counts of genes driving differential dynamics of each cell type. The dashed black 

line represents the estimated steady state ratio of the unspliced to spliced mRNA. RNA velocity is obtained as the 

residual of the observed intronic to exonic RNA ratio from this steady state line. c) RNA velocity and expression 

patterns of the dynamic genes. Larger variation in velocity is driven by transcriptional dynamics. 
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4.4.2 Static vs dynamic genetic-cell modifications underlying AD evolution 

We sought to investigate if there are global AD-pathology dependent differences in 

RNA velocity patterns across cell types. We evaluated the cell type-specific differences in 

RNA velocity between the control and AD-pathology subjects using Wilcoxon rank-sum test. 

We then compared the results with those obtained for differential gene expression. Across all 

cell types, we observed lesser genes with differential RNA velocity (612) than those with 

differential expression (3152) (Figure 4.2a, Supplementary Table 4.1). The top ranked genes 

underlying RNA expression and velocity variations are presented in Figure 4.2b. Furthermore, 

higher fold changes were observed for RNA velocities compared to gene expression. To 

exclude the possible confounding impact of age on the observed differential transcriptional 

kinetics, we reanalyzed the group differences in RNA velocity after correcting for age. The 

new result was consistent with the original finding without correction, probably because age 

was matched between groups (Figure 4.S3).  Lastly, due to potential over-representation of 

long unspliced mRNA transcripts in neurons (Gorin & Pachter, 2021), we checked if the 

differential velocity observed between the two groups may be biased by gene length. We found 

no correlation (R=0.00081; p-value=0.92) between the U-statistic of Wilcoxon rank-sum test 

and the length of genes in inhibitory neurons (Figure 4.S4). 

Notably, 63 of the 3152 (2%) differentially expressed genes were also found to exhibit 

differential velocity, suggesting substantial AD-pathology related differences between these 

two RNA descriptors. On the one hand, the genes with only snRNA-vel differences relate to 

cell developmental and synaptic processes such as morphogenesis, axonal guidance, ion 

channel activity, synapse organization and cell assembly (Figure 4.2c, Supplementary Table 

4.2). The protein-protein interaction network of genes associated with ion channel activity and 

synapse organization in excitatory neurons is shown in Figure 4.S5. Conversely, genes with 

only differential expression are majorly associated with mitochondrial activity, ribosomal 
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processes, and protein sorting. This mismatch between snRNA-vel and RNA abundance 

dysregulations suggests that analyzing RNA velocity provides relevant complementary 

information about the multifactorial molecular processes associated with neuropathological 

AD advance compared to differential expression. 

We next investigated if the changes in RNA velocity depend on disease stage. We 

subgrouped the AD-pathology subjects into early- and late-AD, based on previous study 

(Mathys et al., 2019). Briefly, the two pathological subgroups were obtained by clustering the 

subjects on several clinico-pathological features (Mathys et al., 2019). Consequently, early-

AD corresponds to some amyloid load with moderate neurofibrillary tangles and cognitive 

deficit. Late-AD subjects display higher amyloid load and increased neurofibrillary tangles, 

global pathology, and cognitive deficit. Comparison of the control and early-AD subjects 

revealed broad-scale changes in transcriptional kinetics between these subgroups 

(Supplementary Table 3). Corresponding analysis between control and late-AD subjects 

showed an increased number of affected genes in microglia, astrocytes, and oligodendrocytes, 

suggesting a progressive immune dysregulation (Figure 4.S6). However, we did not observe 

any notable shift in cell-type specificity of the velocity differences with disease progression.  

Finally, to discern sex-dimorphic differences in transcriptional dynamics, we 

recomputed differential RNA velocity between the control and AD-pathology subjects while 

stratifying the data by sex. We found more genes with differential dynamics in females 

compared to males across cell types (Supplementary Table 4). Interestingly. previous single-

cell studies of differential gene expression also observed more dysregulation in female subjects 

(Belonwu et al., 2022; Mathys et al., 2019), which may account for the higher disease burden 

in females. Nevertheless, the implicated pathways between both sexes are qualitatively similar, 

except for some biological processes such as lymphocyte activation and vascular process which 

are pronounced in the microglia of male (Figure 4.S7). 
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Figure 4.2: Differences in RNA velocity and gene expression underlying neuropathological AD progression. a) 

Number of genes with differential expression patterns and velocity between controls (n=24) and AD subjects 

(n=24) across cell types (two-sided Wilcoxon rank-sum test, permutation-based FDR-corrected q-value < 0.05, 

log2 (mean gene expression or velocity AD/mean gene expression or velocity in control) > 0.25 or < −0.25).  b) 

Cell-type specific changes (log2 (fold change)) for the top genes with differential expression (DE) (top) and 

differential velocity (bottom) between control and AD subjects. c) Comparison of biological pathways associated 

with differential expression and differential velocity.   

4.4.3 Several RNA-velocity differences underlie AD neuropathological 

severity 

We proceeded to conceptualize the observed differences in RNA velocities between the 

control and AD groups. We projected the velocity vectors into t-SNE space and evaluated the 

group difference in velocity fields across all cells (Methods: Cell speed and residual velocity 

estimation). Figure 4.3A shows the residual velocity fields which account for the difference 

between the two groups. It should be noted that the directions of the residual fields do not have 

any perceived biological connotation. To further understand the biological implication of the 
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observed residual velocity fields, we calculated the speed of individual cells using the velocities 

across all genes. Indeed, we found a higher speed in the AD groups compared to controls, 

suggesting that accelerated cell changes are associated with AD neuropathology (Figure 4.3b).  

 

Figure 4.3: Association of RNA velocity with relevant Alzheimer’s-related neuropathological traits. a) Residual 

velocity fields between the control and AD cells (z-score > 1.96 or <-1.96). a) Residual velocity fields between 

the control and AD cells (z-score > 1.96 or <-1.96). b) Variation of cell speed between the control and AD groups. 

Median speed overlays plots as numbers (Wilcoxon rank-sum test p-value<0.05). c) Spearman’s correlation of 

RNA velocity with four AD-neuropathological traits: neuritic plaque count, neuronal neurofibrillary tangle (NFT) 

counts, overall β-amyloid load (β-amyloid) and PHF tau tangle density (tangles). The confounding effects of age, 

sex, education, and postmortem interval were accounted for via partial correlation. The plots show the top 

significant genes at FWE-corrected p-value < 0.001. 

Lastly, we investigated the association of the RNA velocity differences with four well-

known AD pathological traits: neuritic plaque (NP) and neuronal neurofibrillary tangle (NFT) 
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counts based on histochemistry silver stain, and overall β-amyloid load (β-amyloid) and PHF 

tau tangle density (tangles) based on molecularly specific immunohistochemistry. We 

calculated Spearman’s correlation between RNA velocity of genes from the 24 AD subjects 

and the four neuropathological traits while adjusting for the covariates age, sex, education, and 

postmortem interval. The velocity-phenotype correlations of the top significant genes (FWE-

corrected, p-value<0.001) are shown in Figure 4.3c. The genes underlying the different 

neuropathological traits are largely specific to cell types (Figure 4.S8). Only excitatory and 

inhibitory neurons presented a relatively high overlap (up to 13%) in significant genes 

associated with the different AD neuropathological traits. The other cell types substantially 

differed in gene-specific changes across the phenotypes. Interestingly, we found some AD-

relevant genes, including ADAM10, associated with tangle burden in excitatory and inhibitory 

neurons. Some other previously reported AD genes identified include amyloid beta precursor 

protein binding family members, matrix metallopeptidases, notch, low-density lipoproteins, 

and protein kinase C’s (Supplementary Table 5). 

4.4.4 Cross-study validation of differential RNA velocity 

We tested the reproducibility of the observed AD-related differences in RNA velocity 

in an independent sample.  We obtained snRNA-seq data from the dorsolateral prefrontal 

cortex of another ROSMAP cohort (Dataset-2; Methods, Validation in independent dataset 

subsection) comprising 6 cognitively non-impaired individuals with minimal AD pathology 

and 6 subjects with both pathologic AD and clinical AD dementia (Cain et al., 2020). Following 

preprocessing, we derived 79,472 cells corresponding to the same six cell types under 

consideration, and 16,844 transcripts (corresponding to 16,829 unique genes) like in our 

analysis for the first dataset. Out of the 232 genes with significant RNA velocity differences 

between the two groups in Dataset-2, 129 (i.e., 56%) overlapped with the genes obtained from 

the initial analysis of the prefrontal cortex (Dataset-1), including 14 in excitatory neurons, 17 
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inhibitory neurons, 22 in astrocytes, 34 in microglia, 18 in oligodendrocytes and 24 in 

oligodendrocytes precursor cells (Figure 4.4a).  The significance of overlap was assessed using 

Fisher’s exact test (p-value<0.01; odds ratio>1). 

We proceeded to query enriched gene ontology terms (GO) of the significant genes 

common to the two datasets. We used EnrichR tool (Chen et al., 2013; Kuleshov et al., 2016) 

to uncover the biological processes associated with these overlapping genes. Importantly, we 

again found that most of the top biological processes across cell types are associated with neural 

development and synaptic activities (Figure 4.4b). Overall, these findings support the 

generalizability of the main RNA velocity differences identified, supporting the robustness of 

this novel technique for the deep molecular characterization and better understanding of AD 

pathomechanisms. 

 

Figure 4.4: Cross-study validation of RNA velocity differences in neuropathologic AD. a) Venn diagrams for each 

cell type showing the overlaps between Dataset-1 (prefrontal cortex, PFC) and Dataset-2 (dorsolateral prefrontal 

cortex, DLPFC) with respect to genes having differential RNA velocity in AD pathology. The sum of all two 

numbers in any circle represents the number of significant genes in the corresponding dataset. Significance of 

overlap was estimated with Fisher’s exact test (p-value<0.01; odds ratio>1). b) GO biological processes and their 

log-transformed EnrichR combined scores for the overlapping gene sets.  
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4.5 Discussion 

Here, we use RNA velocity to characterize, for the first time to our knowledge, the 

dynamical multicellular processes underlying neuropathological AD progression. 

Unprecedented advances in scRNA-seq have offered a novel way to overcome the poor spatial 

resolution of bulk tissue mRNA, while enabling the study of cell type-specific changes in AD 

and related disorders (Lau et al., 2020; Mathys et al., 2019; Olah et al., 2020). However, 

differences in RNA expression do not completely capture the evolution of the disease 

continuum or the progressive vulnerability of cells to neurodegeneration. Using snRNA-seq 

profiled from postmortem brain samples of the prefrontal cortex and dorsolateral prefrontal 

cortex in two independent studies, we uncovered highly active genes associated with different 

levels of neuropathology. Importantly, the identified cross-validated dynamic genes are 

associated with a consistent set of molecular functions linked with neurodegeneration. The 

results support the validity of the novel RNA velocity concept for achieving a complementary 

molecular characterization of AD and potentially identifying cell type-specific disease-

modifying genetic targets.   

We found accelerated cell dynamics in AD subjects compared to controls, which can 

explain some of the molecular bases of the early changes occurring in AD. A previous study 

using induced pluripotent stem cells (iPSC) showed that AD brains undergo accelerated neural 

differentiation that causes early depletion of neural progenitor pools and reduced cell renewal 

(Meyer et al., 2019). Further, accelerated cell differentiation may perturb the gene network 

associated with cell development and synapse organization thereby engendering 

hyperexcitability and other pathologic cascades. This may as well have implications for the 

risk of developing dementia as increased cell proliferation of neural progenitor cells in early 

later and depletion in later life have been linked to APOE deficiency (Yang et al., 2011). Our 
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study suggests that accelerated cell differentiation occurs across different cell types in AD and 

offers potential areas for experimental validation. 

Our analysis revealed that although RNA velocity is closely related to gene expression, 

the two quantities may capture different pathological processes. The differentially expressed 

genes associated with AD pathology differed from those associated with varying RNA velocity. 

The snRNA velocity related genes are principally involved in cell developmental and synaptic 

programs while the expression-related genes are mainly implicated in ribosomal and 

mitochondrial activities. However, most of the snRNA synaptic genes are upregulated, except 

EPBH1, IL1RAPL1 and ROBO2 in astrocytes and PTRD in excitatory neurons (Supplementary 

Table 2). Previous studies have shown that astrocytic EPHB1 and ROBO2 play vital roles in 

synapse remodeling and neuronal migration, respectively (Kaneko et al., 2010; 

Nikolakopoulou et al., 2016). The interaction of PTPRD with IL1RAPL1 promotes excitatory 

synapse formation and stabilization, and the downregulating either gene impairs 

synaptogenesis (Blockus et al., 2021; Park et al., 2020; Ramos-Brossier et al., 2015). In 

addition to β-amyloid and tau related processes, our analysis of snRNA-vel pointed at other 

potentially altered functions such as voltage-gated cation channels activity and notch signaling 

which may have dynamic causal roles in AD development but were not detected by the 

traditional differential expression. Further, we cross-validated the differential RNA velocity 

analysis in an independent dataset. The overlapping genes between the two datasets are 

predominantly implicated in biological processes associated with cell development and 

synapse organization, implying a recurring theme in our results. A profound nexus exists 

between cell cycle and synaptic activity in AD, and many AD-associated genes are involved in 

morphoregulation, i.e., the ordered development and arrangement of cells to form synapse 

through processes such as cell adhesion, cell differentiation, synaptic membrane assembly, ion 

channel activity, etc. Besides, results from animal studies showed that certain behaviors 
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simultaneously enhance synaptic plasticity and control accelerated cell cycle, thereby 

protecting against cell death and neurodegeneration (Arendt, 2003).   

The RNA velocity metric was designed to capture the dynamic process of cell evolution 

in the transcriptomic space (Bergen et al., 2020; La Manno et al., 2018). It was originally 

applied to infer the developmental states of healthy cells but has found further applications in 

studying cell proliferation in cancer (Couturier et al., 2020; Pan et al., 2020). However, it 

appears that RNA velocity can also capture dynamic differences associated with severity of 

AD pathology. Moreover, RNA velocity can be estimated for each cell type at the patient level. 

Such applications are particularly important for two main reasons. First, prodromal cell 

changes which occur in AD may be detected before clinical manifestations or the deposition of 

β-amyloid and tau (De Strooper & Karran, 2016; Maruszak & Zekanowski, 2011). Second, 

there are implications for the development of personalized treatment by detecting (and 

potentially targeting) person-specific contribution of RNA velocity changes to AD 

neuropathology. We found that most of the biological processes implicated in our study are 

involved in synapse organization and turnover, a key structural element essential for cognition.  

Many pathways are also associated with cell developmental processes, the dysfunction of 

which is linked to neurodegeneration (Joseph et al., 2020). Thus, our results inform potential 

therapeutic strategies of targeting substrates of synaptic plasticity, including glutamatergic and 

cholinergic signaling, and applying cell therapy to enhance cell renewal, differentiation, and 

proliferation.  

This study has some limitations. First, we used single-nucleus RNA sequencing to 

estimate RNA velocity. Compared to single-cell sequencing, snRNA-seq is more amenable to 

transcriptomic profiling of postmortem samples because isolated nuclei are intact in frozen 

tissues (Lake et al., 2017). Moreover, dissociating whole cells from the brain is particularly 

challenging due to the intensity of the required enzymatic activity, which could interfere with 
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cell type recovery and bias the results of downstream analyses (Habib et al., 2017). RNA 

velocity was originally formulated for scRNA-seq based on the assumption that the rate of 

RNA degradation is constant across all cells  (La Manno et al., 2018). Importantly, here we 

showed that there is high concordance between RNA velocities from matched nuclear and 

whole-cell RNA of microglia, supporting the validity of using snRNA-seq for velocity 

estimation (see Figure 4.S1). Furthermore, by using two different RNA velocity methods to 

achieve a consistent trajectory inference, we demonstrated the robustness of the velocities 

estimated from single-nucleus data. In line with our observations, a recent study comparing 

RNA velocity trajectory inferences from scRNA-seq and snRNA-seq showed that each method 

successfully predicts the transition of retinal resting cells through reactive state to terminal 

fibrous state. Interestingly, the RNA velocity estimates obtained by combining the two 

sequencing technologies were consistent with the estimates derived from using either scRNA-

seq or snRNA-seq dataset alone. Earlier studies have also successfully applied RNA velocity 

to single nuclei data to infer biologically meaningful trajectories in mouse embryo and various 

cell types of the human heart (Marsh & Blelloch, 2020; Wolfien et al., 2020). Second, RNA 

velocity was originally developed to capture rapidly evolving processes with short timescales. 

Its use in slowly evolving processes, such as neurodegeneration, remains to be validated. 

However, we believe that the relatively shorter timescale of mRNA transcriptional dynamics 

may offer a good resolution to capture subtle changes associated with the neuropathological 

cascade. Despite that the use many of subjects with varied levels of neuropathology allowed 

us to capture the association between the timescales of transcriptional dynamics and 

neurodegeneration at the global level, due to experimental limitations we could not directly 

ascertain the stability of RNA velocities within a subject over different post-mortem intervals. 

However, we confirmed that the post-mortem sampling intervals between the controls and AD 

subjects do not differ significantly (Figure 4.S9), suggesting that our results were not 
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confounded by transcriptional changes induced by death. Importantly, future studies employing 

multiscale dynamical models of the brain (via gene expression, neuroreceptors, neuroimaging) 

can also incorporate RNA-vel to better capture the time-resolved complex interactions between 

multiple biological layers/modalities in neurodegenerative progression (Adewale et al., 2021; 

Khan et al., 2021). 

4.6 Methods 

4.6.1 Dataset-1 (Prefrontal cortex) 

It includes droplet-based snRNA-seq, neuropathological and clinical data for 48 

participants enrolled in the Religious Orders Study (ROS) or the Rush Memory and Aging 

Project Study (MAP) (Bennett et al., 2018). The snRNA-seq data was previously generated 

from the prefrontal cortex (Brodmann area 10) of autopsied brains as described in (Mathys et 

al., 2019), and it was downloaded from the Accelerating Medicines Partnership Alzheimer’s 

Disease knowledge portal (AMP-AD; www.synapse.org, ID syn18485175). All subjects 

underwent postmortem neuropathologic evaluations, generated in previous ROSMAP studies 

as described in (Bennett et al., 2018) including uniform structured assessment of AD pathology, 

and other pathologies common in aging and dementia (downloaded from AMP-AD, ID 

syn3157322; see also Correlation with neuropathology subsection below). The 48 subjects 

(balanced between sexes) comprised 24 with no or low AD-pathology (control group), and 24 

with mild to severe AD-pathology (AD group) as determined by β-amyloid burden, 

neurofibrillary tangles,  and cognitive impairment (Mathys et al., 2019). The subjects were 

matched for age (medians 87.1 [no pathologic AD, N=24] and 86.7 [pathologic AD, N=24]) 

and years of education (medians of 18 [no pathologic AD] and 19.5 [pathologic AD]). Informed 

consent was obtained from each participant, and the Religious Orders Study and Rush Memory 

and Aging Project were approved by an Institutional Review Board (IRB) of Rush University 

Medical Center. The project was performed in accordance with the Declaration of Helsinki. In 

http://www.synapse.org/
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addition, subjects signed a repository consent allowing their data to be shared (related 

documents and requests for data can be obtained at https://www.radc.rush.edu). 

The process of isolating the nuclei from the postmortem brain tissues was previously 

detailed (Mathys et al., 2019). Briefly, the brain tissue was homogenized at a very low 

temperature and incubated. The tissue was then filtered and purified with working solutions. 

The nuclei were separated through spinning at high speed and counted. The sequencing 

libraries were constructed with the Chromium Single Cell 3′ Reagent Kits v.2 (10x Genomics) 

and sequenced with the NextSeq 500/550 High Output v2 kits (150 cycles).  

4.6.2 RNA abundance and cell type identification 

Intronic and exonic counts were obtained using kb-python (v0.26.3), a wrapper for 

kallisto and bustools (Bray et al., 2016; Melsted et al., 2021). First, index file of the human 

genome was generated from the Ensembl human primary reference genome sequence and gene 

annotation (GRCh38). Then, spliced and unspliced RNA counts were obtained by filtering 

barcodes with low UMI counts and mapping reads to the index file. The counting process was 

performed by sequentially running ‘kb ref’, and ‘kb count’ (with filter flag set) commands. 

Next, we acquired a previous quality controlled list of genes, cells and cell types 

(Mathys et al., 2019). We then looked for shared genes and cells between our filtered counts 

and the previously reported list. Thus, we had 65,422 cells with 16,844 transcripts 

(corresponding to 16,829 unique genes). These cells were then assigned to cell types, based on 

the reported list, as excitatory neurons, inhibitory neurons, astrocytes, microglia, 

oligodendrocytes, oligodendrocyte precursor cells, endothelial cells, and pericytes. Endothelial 

and pericyte cells were subsequently excluded because of their very low counts or absence in 

some subjects. 

https://www.radc.rush.edu/


121 

 

4.6.3 RNA velocity estimation 

We used scVelo (v0.2.3) (Bergen et al., 2020) to calculate RNA velocity. First, the cells 

were pulled together across all subjects, and each cell was normalized by its total size. The 

normalization was applied to both spliced and unspliced counts. To estimate RNA velocity 

using the stochastic method, we computed the means and variances of nearest neighbors of 

cells in principal component analysis (PCA) space. Here, 100 nearest neighbors and 30 

principal components were used. Normalization and moments calculation were achieved 

through ‘pp.normalize_per_cell’ and ‘pp.moments’ commands, respectively. The RNA 

velocity is then estimated with ‘tl.velocity’ command (setting the mode to ‘stochastic’).  

We next sought to validate the estimated RNA velocities by examining the velocity 

values of the genes driving cell type-specific dynamics. We ran a differential velocity Welch’s 

t-test with the module ‘scv.tl.rank_velocity_genes’ and obtained the top genes (based on t-

value) having cell type-specific differential velocity.  We then projected the velocities and 

expression values of the dynamic genes into t-SNE space to examine their variations across 

cell types. 

4.6.4 Differential expression and RNA velocity analyses 

Cell type-specific gene analysis was performed with Seurat (v4.0.2) and Presto 

packages in R.  We performed differential expression analysis between the control group and 

the AD group. Each cell was first normalized by its total count over all genes, scaled by 10,000 

and log-transformed. Using the ‘FoldChange’ command in Seurat, we performed Wilcoxon 

rank-sum test to identify differentially expressed genes at log2 (fold change) >0.25 or <-0.25. 

We then used the Presto package (due to its speed) to run 5000 random permutations by 

randomly reassigning the subjects to either the control or AD group. The U-statistics from the 

permutations were used to generate null distributions and significance p-values. We identified 

significant genes after adjusting for multiple testing (q<0.05, FDR-corrected). To compare 
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differential expression with differential velocity, the procedure was repeated on RNA velocities 

to identify the dynamic genes driving the velocity difference between the control and AD 

groups. 

4.6.5 Cell speed and residual velocity estimation 

First, the speed of a cell was calculated as the length of its velocity vector.  Wilcoxon 

ranked-sum test was then used to compare the speed between the two groups. Next, the RNA 

velocities of individual cells were used to derive velocity fields in t-SNE space. For each of the 

groups (control and AD), we linearly interpolated the velocity fields at the t-SNE coordinates 

where actual cells are missing to ensure equal number of velocity fields for each group. We 

then subtracted the velocity fields at same pair of coordinates for the two groups and obtained 

the z-scores of the norms of these differences. The velocity field difference of those coordinates 

where the z-score>1.96 or <-1.96 are displayed as the residuals between the two groups. 

4.6.6 Correlation with neuropathology 

In each cell type and subject, the average RNA velocity across cells was calculated for 

every gene. The velocities were tested for correlation with four AD neuropathological traits 

(Bennett et al., 2018): PHF neurofibrillary tangle density (tangles), neuronal neurofibrillary 

tangle counts (NFT), overall β-amyloid load (β-amyloid), and neuritic plaque counts (NP). The 

correlations were adjusted for age, sex, and postmortem interval. Significant genes were chosen 

based on FWER-corrected p-value < 0.001 (Genovese et al., 2002). 

4.6.7 Validation in independent dataset (Dataset-2: Dorsolateral prefrontal 

cortex) 

The droplet-based snRNA-seq data was previously generated from the dorsolateral 

prefrontal cortex of autopsied brains as described in (Cain et al., 2020), and it was downloaded 

from the Accelerating Medicines Partnership Alzheimer’s Disease knowledge portal (AMP-

AD; www.synapse.org, ID syn16780177). The subjects include another 12 sex-matched 
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individuals from Orders Study (ROS) or the Rush Memory and Aging Project Study (MAP) 

(Bennett et al., 2018): 6 subjects are cognitively non-impaired with minimal AD pathology and 

6 fulfil diagnoses for both pathologic AD and clinical AD dementia.  

As previously described (Cain et al., 2020),  the brain grey matter tissue was 

homogenized and treated with working solution to separate the nuclei. The isolated nuclei were 

then counted and filtered. The libraries were constructed and sequenced on the 10X Single Cell 

RNA-Seq Platform using the Chromium Single Cell 3’ Reagent Kits v2. After obtaining the 

intronic and exonic counts, genes were selected according to the gene list from Dataset-1 and 

the cells were filtered using the cell list obtained from the metadata of the previous study (Cain 

et al., 2020). The previously reported cell clusters were used to assign the 79,472 cells to the 

six cell types under consideration. We calculated the cell type-specific RNA velocities for each 

subject and used Wilcoxon rank-sum test to identify the genes underlying RNA velocity 

differences between the minimal AD pathology group and the pathologic/AD dementia group. 

We assessed the overlap between the significant differential velocity genes in this 

dataset and Dataset-1. Fisher’s exact test was used to obtain the significance of overlap (p-

value<0.01 and odds ratio>1).   

4.6.8 Biological pathway analyses 

Biological pathways were identified using EnrichR online tool to query enriched gene 

ontology (GO) terms (Chen et al., 2013; Kuleshov et al., 2016) from the Gene Ontological 

Biological Processes 2021. The significant GO terms were selected at an adjusted p-value<0.01 

and ranked based on their EnrichR combined scores. 

4.6.9 Comparison between single-cell and single-nucleus RNA velocities 

(Dataset-3) 
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We downloaded a previously published dataset from the Gene Expression Omnibus 

(GEO) (https://www.ncbi.nlm.nih.gov/geo/, GSE135618). The dataset contains matched single 

cells, fresh nuclei and frozen nuclei obtained from the microglia of two subjects (Gerrits et al., 

2020). After preprocessing, we obtained 2,988 cells, 4,892 fresh nuclei, and 4,019 frozen nuclei 

from one subject; and 3,485 cells, 2,593 fresh nuclei, and 5,527 frozen nuclei from the other 

subject. For each of the subjects, we estimated the RNA velocities across the three modalities 

(single cell, fresh nuclei, and frozen nuclei) and performed within-subject comparisons of the 

velocity estimates. 

4.6.10 Data visualization 

Visualizations were performed using scVelo (v.0.2.3) (Bergen et al., 2020), 

ComplexHeatMap (v.2.6.2) (Zuguang et al., 2016), g:Profiler (Raudvere et al., 2019), 

Cytoscape App (3.9.1) (Shannon et al., 2003), and STRING (v.12.0) (Szklarczyk et al., 2021). 

4.7 Supplementary Figures 
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125 

 

Validation of the correspondence between RNA velocities of scRNA-seq and snRNA-seq 

in microglia 

 

Figure 4.S1: Validation of the correspondence between RNA velocities of single-cell and single-nucleus 

sequencing dataset from microglia of same subjects. Scatter plot (in log scale) showing the linear concordance 

between velocities calculated in cells and nuclei for a subject. Each dot represents an independent gene. b) Left: 

null distribution of Pearson’s correlation coefficient between scRNA and frozen snRNA velocities from 5000 

permutations. The actual correlation (0.973) is shown in red dotted line. Right: null distribution of Pearson’s 

correlation coefficient between scRNA and fresh snRNA velocities from 5000 permutations. The actual 

correlation (0.986) is shown in blue dotted line. The second subject (not shown) had correlations of 0.936 and 

0.944 in frozen and fresh nuclei, respectively. The high and significant correlations suggest that nuclei RNA can 

be used to estimate RNA velocities in place of whole-cell RNA. c) Overlay of cell-cell (in blue) and cell-nucleus 

(in red) RNA velocity correlations. First, a pair of cells is selected at random and the velocities of the genes in the 

cells are plotted against each other. The random selection is repeated 5000 times to show the variabilities in RNA 

velocity correlations between single cells. The initial cell-nucleus correlation from A) is then overlayed on the 

cell-cell correlation plot. The variabilities in cell-nucleus correlation of RNA velocity are observed present in 

correlations between single cells. D) The correlation distribution between the RNA velocities of any random pair 

of whole cells. The 95% confidence interval is shown in the plot. 
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Comparison of RNA velocity trajectory inference between scVelo and veloVI 

 

Figure 4.S2: Comparison of single-nucleus RNA velocity trajectory predictions between scVelo and veloVI.  

Velocities were projected on the cells across 48 subjects. Inferred directionality was concordant across cell types, 

expect for minor differences in excitatory neurons. 

 

Effect of age on differential RNA velocity between controls and AD-pathology subject 

 
Figure 4.S3: Comparison of group differences in RNA velocity between controls and AD-pathology subjects 

before and after correcting for age.Jaccard similarity between the unadjusted and age-corrected analyses 

demonstrates the absence of confounding effect, possibly because the subjects were matched for age. 
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Differential RNA velocities of neuronal cells are not biased by gene length 

 

Figure 4.S4: Correlation between gene length and Wilcoxon rank sum test U-statistic (from differential velocity 

analysis between AD and control groups) in inhibitory neurons.As there is a tendency for RNA velocities in 

neurons to be biased towards gene length, we investigated whether the results of differential velocity analyses we 

performed were influenced by gene length. We found that the correlation between gene length and U-statistic is 

very minimal and insignificant, supporting that the significant genes identified are not biased by gene length.  

Protein-protein interactions of genes associated with ion channel activity and synaptic 

processes in excitatory neurons 
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Figure 4.S5: Protein-protein interaction network of the differential velocity genes implicated in synaptic and ion 

channel activities in excitatory neurons.PPI network was retrieved from STRING database.  

 

Changes in transcriptional kinetics with AD progression 

 

Figure 4.S6: Changes in RNA velocity with disease progression.  a) Comparison of the number of genes with 

differential RNA velocity between “control versus early-AD analysis (left circle)” and “control versus late-AD 

analysis (right circle)”. b) Cell-specificity of changes in transcriptional dynamics with disease progression. First, 

isolated nuclei were compared between control and AD-pathology subjects to determine genes with differential 

RNA velocity (right). Then, the level of overlap between differential velocity genes across cell types is quantified 

via Jaccard similarity. The analyses were repeated for “early- versus late-AD individuals” (middle); and “control 

versus early-AD subjects” (left).  
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Comparison of enriched pathways in male and female subjects 

 

Figure 4.S7: Enriched disease pathway networks in male and female across six cell types. GO biological processes 

derived from differential velocity genes between controls and AD-pathology subjects are clustered into biological 

themes (adjusted p-value < 0.01). The biological themes are listed in increasing order of cluster size. 

 

Inter-cell overlap of dynamic genes correlated with AD pathology  

 

Figure 4.S8: Percentage overlap of dynamic genes associated with AD pathology in each cell type. The percentage 

is obtained by expressing the number of genes common to any two cell types as a fraction of the total number of 

unique genes in the two cell types. Two neuropathological variables are visualized simultaneously on the same 

plot. Only excitatory and inhibitory neurons presented a relatively high overlapping (up to 13%) in significant 

genes associated with the different AD neuropathological traits. The other cell types substantially differed in gene-

specific changes across the phenotypes. 
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Differential velocity is not confounded by post-mortem interval 

 

Figure 4.S9: Test for difference in post-mortem interval between the control and AD groups.Wilcoxon rank-sum 

test shows that there is no significant difference in the post-mortem sampling intervals, indicating that the 

differences captured between the two groups is related to pathological process.  

4.8 Additional information 

4.8.1 Data availability 

Dataset-1 snRNA-seq and metadata are available at the AMP-AD portal 

(https://www.synapse.org, IDs syn18485175 and syn3157322). Dataset-2 snRNA-seq and 

metadata can also be downloaded from the AMP-AD portal (https://www.synapse.org, ID 

syn16780177).  The raw scRNA-seq of Dataset-3 are available on the GEO 

(https://www.ncbi.nlm.nih.gov/geo/, accession code GSE135618). The data on GEO is freely 

accessible without registration while datasets on Synapse are available under controlled use 

conditions to ensure anonymity of the study participants. Hence, data use agreement and 

registration are required to access Dataset-1 and Dataset-2.  ROSMAP data can be requested 

at https://www.radc.rush.edu.   
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4.8.2 Code availability 

scVelo (v.0.2.3) and veloVI (v.0.3.0) are downloadable as python packages (see 

https://scvelo.readthedocs.io/installation/ and https://velovi.readthedocs.io/en/latest/). The 

codes used for the analyses will be available with article publication at https://neuropm-

lab.com/other-pipelines. 
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Chapter 5: Discussion 

5.1 Summary of findings 

Using mechanistic data-driven approaches, this thesis aimed to advance the 

understanding of the multifactorial and cellular alterations of the brain in AD and PD, and how 

these changes drive patient symptoms and clinical heterogeneity. Specifically, we developed a 

novel mathematical model called Gene Expression Multifactorial Causal Model (GE-MCM), 

which was used to incorporate multiple biomarkers to study these two progressive disorders. 

Chapter 1 applied the GE-MCM to uncover the genes and biological mechanisms underlying 

normal aging and AD. Chapter 2 demonstrated the disease-agnostic utility of the model by 

applying it to PD to unravel the biological substrates of clinical symptoms and physical activity, 

and identify putative disease-modifying therapeutic targets. Chapter 3 applied another 

mechanistic model, called RNA velocity, to study neurodegenerative diseases for the first time, 

uncovering the dynamical molecular changes underlying AD progression across different brain 

cell types. The implications of these studies are discussed below. 

5.1.1 GE-MCM for aging and AD 

The main goal of this study was to develop a novel mechanistic mathematical model of 

aging and neurodegenerative diseases. In an unprecedented way, the GE-MCM allows the 

incorporation of multiple biomarkers at different spatial resolutions. The multiscale 

interactions between the biomarkers can be studied, to provide mechanistic insights into the 

complexity of aging and disease progression. Moreover, the model is applied at the individual 

level to capture disentangle disease heterogeneity and develop personalized treatment.  

By combining whole-brain gene expression with six neuroimaging modalities, we 

identified genes driving brain reorganization and clinical symptoms in AD. We also uncovered 

few genes underlying healthy aging. In addition, the possible disease-related factor modulated 
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by these genes are revealed, providing a plausible explanation for the pathological interactions 

that drive the disease process. Interestingly, some of these gene-neuroimaging interactions have 

been reported by earlier experimental studies. Our study therefore provides novel associations 

that can be functionally validated.  

Another goal of this project was to conceptualise the relationship between normal aging 

and AD. We found that the number of genes associated with AD were far more than those of 

normal aging. Interestingly, only one gene (LSM6) was common to the two processes. 

Nevertheless, as many genes might be implicated in a single biological pathway, we further 

investigated if the pathways underlying normal aging and AD are distinct. Our findings 

demonstrated both aging and AD share some biological pathways including oxidative stress, 

immune/inflammatory response, and G-protein couple receptor signalling. However, more 

pathways are implicated in AD, demonstrating that the disease is a more complex process than 

aging. Whether AD is a distinct entity or a continuum of aging is a subject of an ongoing debate 

(Franceschi et al., 2018). However, if AD is a distinct process, alterations in cognitive and 

neuropsychiatric functions at prodromal or early disease stage might be mistakenly attributed 

to normal aging. In any case, our findings have implications for identifying patients at risk of 

moving from MCI to AD. Indeed, therapeutic treatments and lifestyle interventions that target 

the common biological pathways of normal aging and AD can help reduce the risk of disease 

profession or time of clinical onset.  

5.1.2 GE-MCM for PD 

By also using GE-MCM to study PD, we showed that this novel method is generally 

applicable to progressive diseases. Specifically, we studied the biological mechanisms 

underlying different motor and non-motor symptoms in PD, identified the molecular substrates 

of physical activity, and demonstrated the translational utility of the model for drug discovery.  
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One of the original findings of this project was that PD overlaps with cancer and 

infection pathways, highlighting the systemic interaction of PD with other disorders. Our 

analysis also transcends traditional discrete methods of disease subtyping, wherein defining 

accurate cut-off points and homogeneity of subtypes remains a challenge. Instead, we 

employed continuous approach to disentangle disease heterogeneity by identifying the 

biological mechanisms that underlie distinct combinations of clinical symptom profiles 

(including motor, non-motor, psychiatric and autonomic dysfunctions). To further translate 

symptom profiles to treatment needs, we uncovered the protein-protein interaction (PPI) 

networks underlying the biological mechanisms. Interestingly, 5 out of the 6 hub genes 

underlying these PPI networks have been previously associated with PD from different study 

cohorts. Thus, in addition to identifying a novel PD hub gene, our study links the hub genes to 

different PD clinical symptom profiles. As hub genes interact with many other genes and play 

critical roles in biological processes, the hub genes identified in our study can guide biomarker 

and treatment identification by matching the corresponding symptom profiles with real-life 

clinical cases.  

Another important part of this project was to investigate the biological mechanisms 

associating PD with physical activity.  We discovered that physical activity is associated with 

PD through two principal pathways, namely, cholesterol biosynthesis and immune response. 

Specifically, the cholesterol biosynthesis pathway may act as biological substrate for leisure 

activities while immune response was more related to household activities. Work-related 

activity seems to play moderate roles in both pathways. Even though a bidirectional 

relationship exists between physical activity and PD, the results hint at possible biological 

pathways that could be modulated to enhance the benefits of physical activity in PD.  

Lastly, we demonstrated the potential use of GE-MCM for identifying disease-

modifying treatments. Through personalized in silico gene perturbation, we uncovered putative 
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drug targets for PD. Interestingly, many of these identified drugs are associated with dopamine 

agonists, including Levodopa which is the mainstay of PD treatment. Other drugs are 

associated with infection, inflammation, and insomnia. While some of these drugs are 

symptomatic, the results point to a promising direction of drug repurposing and refinement for 

slowing down or halting disease progression.  

5.1.3 Single-cell RNA velocity changes in AD 

The aim of this project was to investigate dynamic molecular dysregulations underlying 

AD. By transcending the traditional static gene expression analyses, we applied a mechanistic 

model called RNA velocity to single-nucleus RNA data from different brain cell types.   

Compared to single cells, it is more practical to isolate single nuclei from postmortem 

brain tissues. However, RNA velocity was originally developed for single-cell data and its 

validity for single-nucleus data is debated. We demonstrated that RNA velocity can also be 

calculated for single-nucleus RNA-seq and the estimates are concordant with those obtained 

from single-cell RNA-seq. We then carried out differential analysis between controls and AD 

subjects by separately using static gene expression and dynamic RNA velocity.  We found that 

the genes underlying differential velocity are largely different from those underlying static gene 

expression. Importantly, velocity-associated genes are mainly involved in cell organization and 

synaptic processes. The latter finding was replicated in an independent dataset, demonstrating 

that the results are generalizable and stable. 

Investigating the sex-dimorphic differences in RNA velocity changes revealed that 

more genes are dysregulated in females compared to males across all cell types. Nevertheless, 

the dysregulated pathways between both sexes are largely similar except for lymphocyte 

activation and vascular process which are pronounced in the microglia of males. We also 

examined the dependence of RNA velocity changes with disease stage and observed increased 
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number of affected genes in microglia, astrocytes, and oligodendrocytes. Thus, AD is 

characterized by progressive immune dysregulation with disease advancement. 

Further analysis revealed that the RNA velocity changes are highly associated with 

neuropathological burden, and these associations are cell-type specific. Hence, moving beyond 

neurocentric view and including glial cell types is crucial for a better understanding of AD 

pathogenesis.  Finally, we observed accelerated cell changes in AD subjects compared to 

controls, suggesting that early depletion of cells could be an underlying driver of 

neurodegeneration.  

5.2 Limitations 

5.2.1 GE-MCM for aging, AD and PD 

Despite the ability of the novel GE-MCM model to accurately recover the aging and 

neurodegenerative processes being modelled, some limitations still need to be acknowledged. 

First, the ADNI and PPMI cohorts do not have patient-specific gene expression data. Hence, 

we derived a brain-wide gene expression data by combining mRNA values from six healthy 

adult brains. Notably, the gene expression data is obtained for a single time point. However, 

the model was fitted for individual patient using temporally varying longitudinal neuroimage 

modalities. The parameters obtained after model fitting are assumed to reflect the gene-specific 

deformations required to fit the data, hence quantitative measures of the individual 

dysregulation. 

Second, one of the main challenges of longitudinal studies is the presence of missing 

data. Correspondingly, the GE-MCM model required at least 4 neuroimaging modalities 

measured across at least three time points. As a result, subjects who did not meet this criterion 

were excluded. For the remaining subjects, uniformity in the number of time points across all 

six neuroimaging modalities was ensured by imputation.  Even though the imputation was 

validated, using actual non-imputed data could improve the model fitting results.   
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Third, even though the GE-MCM incorporated hundreds of genes that have been 

previously shown to capture many biological functions, the human genome has over 20,000 

genes. It is therefore possible that some genes with important roles in aging and disease 

processes are missed. However, the dimensions of the GE-MCM model increases by six folds 

for each additional gene included. To incorporate more genes while maintaining a stable model 

fitting, a greater number of subjects will be required. 

Fourth, most of our analyses assume linear dependencies. For example, the GE-MCM 

linearly models the interaction between genes and neuroimaging-derived measures. Although 

the actual biological processes (i.e., gene and neuroimaging) could be interacting nonlinearly, 

it is difficult to systematically find an analytic solution to a nonlinear model.  Furthermore, by 

using a linear multivariate mapping, we examined how the interactions between genes and 

neuroimaging measures affect clinical changes in aging and neurodegeneration. While it is 

possible to include non-linearity as commonly done in regression analysis, studying nonlinear 

interdependencies would require separate addition of linear and non-linear terms. This is almost 

impractical given the high dimensionality of the model. We also assumed that the changes in 

clinical measures over time follows a linear trend. Studies have however shown that the 

trajectories of clinical symptoms could be non-linear (Bhagwat et al., 2018; Jack et al., 2012). 

Fitting non-linear models such as sigmoid or polynomial functions to the clinical scores is 

worth considering.  

Fifth, our analysis of normal aging used ADNI healthy participants who remained 

clinically healthy for an average of 7.8 years. It was impossible to immediately ascertain if 

these subjects will eventually develop MCI or AD. Nevertheless, the common duration of 

follow-up of clinical trials is 4 years from healthy state to MCI conversion, and up to 3 years 

from MCI to AD (Pang et al., 2023). We therefore believe that remaining clinically healthy for 

about 8 years is sufficient to model normal aging for practical purpose.  
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Sixth, while studying the relationship between PD and physical activity, we didn’t not 

disentangle the direction of causality. Indeed, physical activity can ameliorate PD symptoms. 

Conversely, aggravating PD symptoms can impede patients from carrying out physical activity. 

Thus, we interpreted out findings in the light of mediation, identifying immune response and 

cholesterol metabolism as important mechanism mediating the link between PD and physical 

activity.  

Lastly, while the GE-MCM was interpreted as capturing the direct influence of genes 

on different biological processes, it should be noted that genes function after being translated 

to proteins. Moreover, the genes/proteins rarely function in isolation but interact with one 

another to influence biological processes. Even though the GE-MCM incorporated the effect 

of individual genes separately, the landmark genes used in these studies represent the centers 

of various interacting proteins. 

5.2.2 RNA velocity changes in AD 

The main limitation of Chapter 4 of this study lies with the RNA velocity estimation 

itself. RNA velocity is nascent and its methods for estimation are continuously being improved 

upon (Bergen et al. 2021; Zheng et al. 2023). Importantly, RNA velocity was original 

developed for single-nucleus data where the nucleus and cytoplasm are intact. However, post-

mortem tissues are frozen and extracting whole cell is challenging. Moreover, dissociating 

whole cell from the brain is difficult because the intense enzymatic activity required can 

interfere with cell recovery. Hence, single nuclei provide an amenable alternative for 

sequencing post-mortem brain tissues. The accuracy of single nuclei for RNA velocity 

calculation is debated due to the loss of cytoplasmic content. However, our validation analysis 

showed a high concordance between RNA velocity values estimated from single cells and 

nuclei of microglia of some patients who underwent surgery. A recent animal study also 

showed concordant results between the RNA velocity trajectories of single nuclei and single 
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cells in retina (Santiago et al., 2023). Other studies obtained biologically meaningful results by 

using single-nucleus RNA velocity to infer the developmental process of mouse embryo and 

human heart (Marsh & Blelloch, 2020; Wolfien et al., 2020). More insights into the validity of 

RNA velocity for single nuclei will emerge as more complex modelling methods are 

developed, such as replacing mRNA degradation of single cells with nuclear export of single 

nucleus. 

The second limitation lies in the difference between the timescales of RNA and 

neurodegeneration. The life cycle of RNA is a few days, which is much shorter than the 

timescale of neurodegeneration. Our study provided the first use case of RNA velocity for this 

slowly evolving degenerative process. We believe that using subjects with varied levels of 

neuropathology provided an opportunity to globally capture the association between the 

timescales of transcriptional dynamics and neurodegeneration. Barring experimental 

limitations, a single subject could be sampled at several post-mortem intervals to validate the 

stability of RNA velocity within that subject. Nevertheless, we confirmed that post-mortem 

sampling intervals is not associated with RNA velocity differences between healthy and AD 

subjects, despite that death process could cause transcriptional changes. 

5.3 Future direction 

5.3.1 Integration of peripheral biomarkers 

The GE-MCM offers a flexible formulation that can allow integration of other 

biomarkers. In lieu of generating whole-brain gene expression which can be expensive without 

interpolation, blood-based gene expression can be used. Interestingly, animal and human 

studies have shown promising concordance between peripheral and brain gene expression 

patterns, suggesting that blood-based gene expression can serve as surrogate for gene 

expression in the brain (Iturria-Medina et al., 2020; Jasinska et al., 2009; Sullivan et al., 2006; 

Witt et al., 2013). Moreover, developing non-invasive biomarkers can offer a fast screening 
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tool for large scale research and routine clinical practice (Delaby et al., 2023; Leuzy et al., 

2022). Validating a peripheral biomarker in the context of GE-MCM is a viable approach. 

5.3.2 Incorporating cell-type specific changes 

The advent of single-cell sequencing technologies has provided an unprecedented 

opportunity to study diverse brain cell types and transcend the neuro-centric view of 

neurodegenerative diseases. However, sequencing the whole brain at single-cell level is cost 

prohibitive. Consequently, ingenious methods have been derived to infer and validate cell type 

proportions from bulk RNA sequencing (McKenzie et al., 2018; Newman et al., 2019). 

Importantly, a recent study derived whole-brain gene expression patterns from Allen Human 

Brain Atlas by interpolation, and subsequently applied cell type deconvolution method to infer 

the proportion of neural and glial cells in the healthy brain (Pak et al., 2023). These cell type 

proportions could replace gene expression values in the GE-MCM model to elucidate how each 

cell type drives disease progression. An alternative approach can incorporate cell-cell 

communication between cell types to understand how alterations in cell signalling drive disease 

(Wilk et al., 2024). Targeting the ligand-receptor complexes underlying pathogenic signalling 

in these diverse cell types holds promise. 

5.3.3 Analysis of comorbidity 

Co-pathology in neurodegenerative diseases is a norm rather than an exception, 

especially with increased age. ß-amyloid and tau are observed in PD patients (Mihaescu et al. 

2022; Bellomo et al. 2024), and α-synuclein can be found in AD subjects (Robinson et al. 

2018). Using similar neuroimaging modalities obtained from healthy and AD subjects in the 

ADNI cohort, we identified the common and distinct biological pathways underlying normal 

aging and AD.  Some of these neuroimaging modalities are absent in the PPMI cohort of PD 

patients. Nevertheless, we found that inflammation pathway is common to both aging, AD and 
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PD. Aligning the neuroimaging modalities will facilitate a precise comparison between AD 

and PD for understanding comorbidity. 

5.3.4 Application of GE-MCM to other progressive diseases 

The GE-MCM provides a disease-agnostic framework for modelling complex 

progressive diseases. Here, we have successfully applied it to aging, AD and PD. Interestingly, 

an macroscopic-scale multifactorial causal modelling approach of neuroimaging modalities 

only was used to uncover the distinct patterns of disease onset and progression in the genetic 

subtypes of frontotemporal dementia (McCarthy, 2022). GE-MCM can directly incorporate 

genetic data to provide comprehensive mechanistic insights into the pathogenesis of these 

various subtypes. It can also be applied to other neurodegenerative diseases such as 

Huntington’s disease, amyotrophic lateral sclerosis, etc.  

5.3.5 Comparison between subtype and spectrum 

Subtyping helps disentangle heterogeneity in complex neurodegenerative diseases. 

Often, discrete subtyping methods produce subtypes wherein some variations are still observed 

withing groups. Whether subtypes really represent distinct entities, or they are just variations 

of a continuous spectrum remains an open question. In this thesis, we used the GE-MCM to 

uncover the molecular underpinnings of different clinical profiles of PD patients. This quasi-

continuous approach allowed us to disentangle symptomatic and molecular heterogeneity 

despite having a handful of subjects. One of the requirements of stable and reliable subtyping 

is having many subjects that capture as much disease heterogeneity as possible. As more 

subjects become available, future studies can compare the symptom profiles obtained via this 

quasi-continuous approach and traditional subtyping methods by using the same gene-imaging 

parameters (obtained from GE-MCM optimization on each individual data) as inputs.  
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5.3.6 Sex-specific analyses 

Sex plays significant roles on disease risk, symptom onset and manifestation, and 

response to treatment (Philipe de Souza Ferreira et al., 2022; Pinares-Garcia et al., 2018; 

Zalewska et al., 2023). Our analysis of sex-specific changes in RNA velocity in AD revealed 

that females experience broader dynamical gene changes compared males. However, due to 

high data dimensionality and limited number of subjects, we could not investigate sex-related 

effects in the GE-MCM analyses. As model fitting of the GE-MCM is done at individual level, 

downstream analyses can stratify subjects by sex before studying the associations between the 

model output parameters and clinical evaluations or physical activity. In addition, results from 

individual in silico perturbation can be combined separately by sex to identify how different 

drugs might be preferentially beneficial to each sex.  

5.3.7 Translation to clinical practice 

Beyond advancing mechanistic understanding of neurogenerative and aging processes, 

GE-MCM can be used as a tool for drug target discovery and patient selection in clinicals. 

First, the interactions that we observed between genes and several neuroimaging-derived 

biological measures can be validated experimentally. Furthermore, the different protein-protein 

interactions and hub genes identified can be tested against real-life patients that present 

matching symptom profiles. Lastly, the model can serve as a tool for in silico gene perturbation 

to select a small group of molecules for testing. Evaluations from these clinical applications 

can help finetune and update the model.  

5.4 Conclusion 

In conclusion, we demonstrated the utility of a novel dynamical system model for 

mechanistic understanding of healthy aging and neurodegenerative diseases. We found that AD 

is a more complex process compared to aging, even though they shared some common 
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mechanisms. We also found that inflammation is a common process to aging, AD and PD. 

Further analysis showed that distinct molecular profiles underlie different PD clinical profiles, 

and this profiling can be done in a quasi-continuous manner instead of discrete subtyping. In 

addition to mechanistic insights, in silico gene perturbation at the patient level revealed putative 

PD drugs, demonstrating the clinical utility of the model. 

Leveraging another dynamical model, we showed that studying transcriptional 

dynamics instead of static snapshot of gene expression could offer novel and complementary 

insights into neurodegeneration. We found that dysregulation in cell developmental and 

synaptic processes can drive pathological changes in AD across neurons and glia. In addition, 

accelerated cell changes resulting in depleted progenitor cell pools could engender pathological 

cascade in AD. 

Continuous integration of multiple measures of disease-related processes at different 

spatiotemporal resolutions will facilitate the understanding of complex and heterogenous 

disease processes, the identification of inclusive biomarkers, and the development of efficient 

tools for clinical trials and in silico drug discovery. 
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