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Abstract

Quantum technology is attracting great attention in academia, government institu-
tions and policy-making bodies, as well as industry. Quantum technology includes
quantum computing, quantum communication and quantum sensing. These technolo-
gies exploit the peculiarities of quantum physics to achieve very substantial perfor-
mance gains over their classical counterparts. From the hardware point of view, the
basic unit in a quantum computer is the qubit, implemented in controllable quantum
two-level systems. Qubit also plays an important role in the repeaters of quantum
internet. There are many ways to implement a physical qubit. The solid-state spin-
qubit is one of the most popular realizations, which uses the two spin states of the
spin-1/2 particles. Typically, the spin-1/2 particle is confined in a gated semicon-
ductor quantum dot or artificial atom whose linear dimension is a few tens to a few
hundred nanometers. In a very interesting recent effort, researchers realized spin
qubits based on donor impurities in crystal silicon. A donor impurity is a real atom,
therefore the donor spin-qubit is in the atomic limit as far as the dimension is con-
cerned. Just like the gated artificial atom, quantum transport in and out of the
donor atom region is in the sequential tunneling regime where the physical quantity
of importance is the addition energy which measures how much energy is required to
add an electron into the qubit system. The addition energy is usually experimentally
measured to map out the operational voltages of the spin-qubit devices.

In this work, we attempt to predict the addition energy of donor spin-qubits from
atomistic first principles without any phenomenological parameters. To this end,
our method proceeds in three steps. First, for a given donor spin-qubit structure,
for instance, the phosphorus impurity in bulk silicon (P-in-Si), the single-particle
Kohn-Sham eigenstates are self-consistently determined by density functional theory
(DFT). Second, the Kohn-Sham eigenstates with low eigen-energies identified to be
impurity states, are selected as the basis set for the exact diagonalization calculation
of the many-body Hamiltonian of the qubit. Here, the identification of the localized
impurity states is carefully carried out. Third, the many-body interaction energy
is solved by exact diagonalization. As an example, we apply this first principles
theoretical framework to the P-in-Si spin-qubit, the first principles addition energy
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is predicted to be 48.9 meV. This is in excellent quantitative consistency with the
experimentally measured value of 47±3meV. Due to its first principles and atomistic
nature, the theoretical framework established in this work can be applied to a broad
range of materials for implementing spin-qubit devices.



Résumé

La technologie quantique suscite un grand intérêt dans le milieu universitaire, les
institutions gouvernementales et le milieu politique ainsi que dans le secteur indus-
triel. La technologie quantique englobe l’informatique quantique, la communication
quantique et la détection quantique. Ces technologies exploitent les particularités
de la physique quantique pour obtenir des gains de performance très significatifs par
rapport à leurs équivalents classiques. Au niveau du matériel, l’unité de base d’un
ordinateur quantique est le qubit; ce dernier est mis en œuvre dans des systèmes
quantiques à deux niveaux contrôlables. Le qubit joue également un rôle impor-
tant dans les répéteurs de l’internet quantique. Il existe de nombreuses façons de
mettre en œuvre un qubit physique. Le qubit de spin à l’état solide est l’une des
réalisations les plus populaires, utilisant les deux états de spin des particules de spin
1/2. En général, la particule de spin 1/2 est confinée à proximité d’une grille dans
une boîte quantique semi-conducteur ou dans un atome artificiel dont la dimension
linéaire est de quelques dizaines à quelques centaines de nanomètres. Dans de très
intéressants travaux récemment réalisés, des chercheurs ont réalisé des qubits de spin
à base d’impuretés donneuses dans du silicium cristallin. Une impureté donneuse est
un véritable atome, et donc le qubit de spin donneur est dans la limite atomique en
ce qui concerne la dimension. Tout comme l’atome artificiel à proximité d’une grille,
le transport quantique au travers de l’atome donneur se fait dans le régime de la
transition séquentielle o ù la quantité physique importante est l’énergie d’ajout, qui
mesure la quantité d’énergie nécessaire pour ajouter un électron dans le système du
qubit. L’énergie d’ajout est mesurée expérimentalement pour identifier les tensions
de fonctionnement des dispositifs basés sur les qubits de spin.

Dans ce travail, nous tentons de prédire l’énergie d’ajout des qubits de spin donneurs
à partir de premiers principes atomiques, sans aucun paramètre phénoménologique.
Notre méthode a trois étapes. Premièrement, pour une structure de qubit de spin
donneur donnée, par exemple l’impureté de phosphore dans le silicium massif (P-
dans-Si), les états propres de Kohn-Sham à une particule sont déterminés de manière
auto-cohérente par la théorie de la fonctionnelle de la densité (DFT). Deuxième-
ment, les états propres de Kohn-Sham avec de faibles énergies propres identifiées
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comme étant des états d’impureté sont sélectionnés comme base pour le calcul de
diagonalisation exacte de l’hamiltonien à plusieurs corps du qubit ; l’identification
des états d’impureté localisés est effectuée avec grande attention. Troisièmement,
l’énergie d’interaction à plusieurs corps est résolue par diagonalisation exacte. À titre
d’exemple, nous appliquons ce cadre théorique de premiers principes au qubit de
spin P-dans-Si, et l’énergie d’ajout de premier principe prédite est de 48.9 meV. Ceci
est en excellente concordance quantitative avec la valeur mesurée expérimentalement
de 47 ± 3 meV. Puisqu’il est basé sur les premiers principes atomistiques, le cadre
théorique établi dans ce travail peut être appliqué à un large éventail de matériaux
pour la mise en œuvre de dispositifs basés sur les qubits de spin.



Statement of Originality

This work attempts to establish a new theoretical framework based on atomistic first
principles, for predicting the addition energy in single donor spin-qubits, using a com-
bined approach of density functional theory (DFT) at the single particle level followed
by exact diagonalization at the many-body level of the electron-electron interactions.
To the best of my knowledge, this atomistic first principles method is original. As
I demonstrate, it gives quantitative predictions of the addition energy without any
phenomenological parameters. I have carried out all the calculations reported in this
document, verified the correctness of the combined modeling, interpreted the calcu-
lated data, compared to the measurements, and abstracted the important steps for
quantitative calculations of the addition energy of donor based spin-qubits. The re-
sults will be the content of a manuscript to be submitted to a refereed journal in
2023.
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1 Å = 10−10 m
a0 (Bohr radius) = 0.5292 Å
me (electron mass) = 9.1096× 10−31 kg
e (electron charge) = 1.6 ×10−19 C
h (Planck’s constant) = 6.626× 10−34 J · s
ϵ0 (vacuum permittivity) = 8.854× 10−12 F · m−1

Atomic units are used in chapter 2 of this thesis. In this system of units, e = me =

h̄ = 1.

1 unit of Length = a0 = 0.5292 Å
1 unit of Mass = me = 9.1096 ×10−31 kg
1 unit of Charge = e = 1.6 ×10−19 C
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1
Introduction

The advent of quantum technology has attracted great attention in academia, indus-

try and government [1]. Quantum technology encompasses a broad range of disci-

plines including quantum computing [2], quantum communication [3] and quantum

sensing [4]. These technologies harness the special properties of quantum phenomena

to operate. For instance, quantum computing uses quantum superposition and en-

tanglement to perform data processing, which can lead to exponentially more efficient

computation for certain algorithms in comparison to classical computers [2]. Quan-

tum communication builds on quantum laws to ensure completely secure encrypted

data transmission, as well as realizing multiple combinations of data bits simulta-

neously in the information stream [3]. Quantum sensing applies quantum principles

that govern the physics inside individual atoms to detect electric and magnetic fields

in an exponentially more accurate and efficient manner, in comparison to classical

sensors [4]. Quantum technology represents a new and exciting research direction of

both fundamental science and practical technology.

Quantum computing is an idea that uses quantum phenomena to perform logical

computation. A classical digital computer uses bits, i.e., zeros and ones, to carry out

the computation. If we are able to replace the classical bits with quantum bits (qubits)

whose physical state represents both zero and one simultaneously, in principle one

can carry out multiple classical computations simultaneously thereby increasing the

computational efficiency. This kind of “entangled state” is ubiquitous in the quantum

world due to the quantum superposition principle [6]. Harnessing the superposition of

1



2 1 Introduction

Figure 1.1: A quantum computer based on a 31P dopant array in silicon bulk, envisioned by Kane[5].
A-gates are used to manipulate electron spins. Bac is used to rotate nuclear spins. J-gates are used
to perform two-qubit operations. A magnetic field B is used to ensure electrons occupy the lowest
energy states. Figure courtesy of Reference [5].

states, quantum computing can be exponentially faster than classical computers for

certain computations such as prime number factorization [7], database searching [8],

simulation of quantum systems [9][10] and other tasks that can be mapped into these

algorithms. The history of quantum computing goes back to 1980 when Paul Benioff

proposed that a quantum version of a classical computer, such as a Turing machine,

is feasible [11]. In 1982, Richard Feynman argued that some problems would be

calculated more efficiently using quantum-evolution-based computers than classical

computers [9]. In 1984, David Deutsch gave an important proposal widely considered

to be the first design of a quantum computer, where he proved that if a qubit can

undergo some simple operations called quantum “gates”, any unitary operation can

be done, making quantum computing practically possible [12][2].

The central unit in all the quantum hardware is the qubit that can be implemented

in many different ways and materials [13]. Superconducting qubits are implemented

in superconducting electronic circuits via a ground state and an excited state as the
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two-level system [14]; trapped ion qubits are implemented by ions trapped in free

space with electromagnetic fields [15]; the optical lattice quantum computers use

atomic states of neutral atoms trapped in a optical lattice as the two-level system

[16]; and spin-qubits use the two-states of spin as the two-level system which can

be implemented in spatially confined semiconductor structures called quantum dot

(QD) or artificial atom [17], etc. While the physics of qubits is well-studied and even

produced in many academic laboratories, the industry has additional concerns and

requirements regarding the scalability of the qubits to large numbers, the reliability

and cost of the qubit hardware, as well as if the well-established semiconductor pro-

cesses and materials can be harnessed to implement qubits. At present, the most

commonly implemented qubit is based on superconductors, while the semiconductor

industry is very interested in spin-qubits implemented in semiconductor QDs, due to

the mature industrial fabrication and material processes of microtechnology.

This work focuses on spin-qubits. As the name suggests, this qubit hardware

utilizes the quantum characteristics of spin which is an intrinsic characteristic of an

electron or nuclei as the two-level quantum system. Namely, the two levels are the

spin-up and spin-down states of a spin 1/2 particle. An electron has 1/2 spin and

many nuclear spins are also 1/2. There are numerous proposals that utilize the elec-

tron spin or 1/2 nuclear spin as a spin-qubit [18]. Spin-qubit has a growing popularity

in industries because, as we will see later in this chapter, they are mostly based on

semiconductors and can operate at higher temperatures than superconducting qubits.

The semiconductor industry has the potential of mass production and up-scaling spin-

qubits. The spin-qubits we investigate in this work are the electron spin-qubits based

on single donor impurities in silicon, called donor QD. Interestingly, there are already

industrial companies dedicating their entire or part of the technology roadmap toward

such qubits [19][20]. We shall discuss in the next section the donor-based spin-qubit

in Si.
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1.1 Spin Qubits Based On Donors In Silicon

Silicon is not only the main material of semiconductor microtechnology, it has a

property very useful for building solid-state qubits. Of the 23 known isotopes, 28Si is

the most abundant at ∼ 92.2% and they have no nuclear spin. In a material, electrons

can interact with nuclear spins through the hyperfine interaction [21]. As a result,

the random orientations of nuclear spin lead to decoherence of the quantum states of

the qubits implemented in the material. This detrimental effect is largely removed

in natural Si since it almost has no nuclear spin [17][18]. In addition, technology

already exists to use the isotope effect to remove the nuclear spin of almost all Si

atoms [22]. In this section, we briefly review the spin-qubit implementation based on

donor impurities in Si.

1.1.1 Kane Model of Nuclear Spin Qubit

The first qubit based on donor impurities in silicon was proposed by Bruce Kane [5]

in 1998. Kane’s model used the nuclear spin of the donor atom, instead of its electron

spin, to implement the qubit. In this proposal, Kane envisioned a quantum computer

based on a 31P dopant array in Si bulk, schematically shown in Figure 1.1 [5]. In this

model, the hyperfine interaction couples the electron spin and the nuclear spin [21].

Because electrons are sensitive to external electric fields, by changing the voltage of

the metallic A-gates lying on top of the P dopant (see Figure 1.1), one controls the

electrons and, through the hyperfine interaction, controls the spin resonance of the

nuclear spin of the P dopant. With the help of an a.c. magnetic field Bac, one can

rotate the nuclear spins at resonance to perform single-qubit operation [5].

Importantly, different nuclear spins belonging to different P dopants are indirectly

coupled due to hyperfine interactions with the same electron to generate electron-

mediated nuclear spin coupling. With the J-gates lying between adjacent P dopants

as seen in Figure 1.1, one can turn on and off this coupling by controlling the electron
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wavefunction overlap of nearby donors [23]. Doing so, two-qubit “controlled rotation”

operations could therefore be realized. As such, both single-qubit and two-qubit

operations could be done so that all quantum operations are achieved [5].

As explained above, the choice of Si as the host material is not arbitrary as Si min-

imizes the decoherence effect due to its zero nuclear spin. Furthermore, Si has small

spin-orbit coupling, further decreasing the decoherence effect [18]. In fact, electron

spins in Si tend to have a longer relaxation time than in many other semiconductor

materials [18][24] and it is perhaps more interesting to use electron spins as the qubit,

as we discuss in the next subsection.

1.1.2 Electronic Spin Qubit

Around the same time as Kane proposed his nuclear spin-qubit, another form of spin-

qubit was proposed by Loss and DiVincenzo [25]. Rather than using the nuclear spins

as qubits, Loss and DiVincenzo proposed using electronic spins [25]. The electron

spin-qubit they envisioned was based on confining an electron inside a quantum dot

(QD) or “artificial atom”. A QD is usually created using two-dimensional electron

gas confined in a heterostructure of semiconductor materials, where the confinement

is electrostatically defined by several metallic gates [18][26]. The electrons trapped

inside the QD occupy bound states that are localized inside the QD. Electrons can

tunnel in and out of the QD controlled by applying gate voltages [27]. An illustration

of the confinement potential and the bound states of a QD is in Figure 1.2. When

there are electrons in the QD, electron spins can be manipulated by the technique

of electron spin-resonance (ESR) that forces electrons to a given spin eigenstate [28].

Such a gated QD implements a spin-qubit [29]. With an array of these spin-qubits,

a quantum computer may be realized which is illustrated in Figure 1.3. However,

this form of gated QD spin-qubit has a linear size of a few tens to a few hundred

nanometers [18], much larger than a field effect transistor of modern computers.

Furthermore, since gated QD is lithographically and electrostatically defined, it is
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Figure 1.2: A qualitative illustration of the confinement potential of a quantum dot and the bound
states[18]. The green wavefunctions represent bound states in a quantum dot, and the excessive
electrons tunneled into the quantum dot through the gates would occupy these states. The spins of
electrons in these states can be used as a two-level system for the qubit. Figure courtesy of Reference
[18].

difficult to create many gated QDs in exactly the same size and shape, thus the

device-to-device variability is large. Despite these issues, gated QDs provide the

main hardware implementation of the spin-qubits at the present time.

While a gated QD is an artificial atom, a donor impurity in Si is a real atom, and

one may consider a single donor impurity to be the smallest possible QD [17]. The

donor atom can trap excess electrons in the localized impurity states, similar to elec-

trons trapped in the QD states. By applying some gate voltages, electrons can tunnel

in and out of these impurity states, and the electron spins can also be manipulated

by ESR. An illustration of the impurity states of a donor-in-silicon system is plotted

in Figure 1.4. Comparing with Figuire 1.2, the similarities between a gated QD and

a donor are seen. In Figure 1.4, while Kane uses the nuclear spins (in blue) as the

two-level qubits, one may also use the electron spins (in red) as the two-level qubits.

Indeed, after Kane’s original proposal, many other proposals were made using electron

spins in a donor-in-silicon system as qubits [30][31]. Due to the similarity between a

donor-in-silicon system and a gated QD, the former may be called “donor-QD” [32].

Donor-QD is obviously harder to fabricate than gated-QD, but as spin-qubit it has
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Figure 1.3: A illustration of an array of quantum dots and gates as the quantum computer hardware
implementation [18]. The gates surrounding the quantum dots control the sequential tunneling of
electrons into and out of the bound states. Figure courtesy of Reference [18].

several unique advantages. First, arrays of gated-QDs have proven to be extremely

difficult to produce, arrays of donor-QDs have already been fabricated using As im-

purities in Si [33], suggesting an advantage for scaling up the qubits. Second, since

donor atoms of a given type (i.e. P, As, etc) are identical, the properties of donor-QDs

are more uniform than gated-QDs. Finally, atomic defects can be arranged very close

to each other, even down to a single bond length, as demonstrated experimentally on

Si surfaces [34], suggesting that very closely coupled donor-QDs can be fabricated.

1.2 Experimental fabrication of the donor-QD spin-qubits

As discussed above, fabricating electron donor-QD qubits is challenging. It requires

the ability to place the donor atom and the surrounding metal gates with atomic

precision [18][36]. Atomic precision techniques for placing donor impurities in sili-

con have been developed using the scanning tunneling microscopy (STM) tip [37].

Notably, in 2012, Simmons et al. fabricated a single-atom transistor, with a single

phosphorous (P) impurity acting as a donor sitting inside a silicon bulk. Figure 1.6

shows an STM image of such a transistor. Simmions et al. were able to place the

single P impurity into silicon with atomic precision, using the hydrogen-resist lithog-

raphy to control the dissociation of PH3 by ejecting a specific silicon atom at the
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Figure 1.4: A qualitative illustration of the confinement potential and the energies of the impurity
states of a donor atom in silicon [18]. The blue arrows represent nuclear spins in the Kane proposal
of qubits. The red arrows represent electron spins which can be used as the two-level system for the
qubits. Figure courtesy of Reference [18].

Figure 1.5: An illustration of a potential quantum computer implementation made of an array of
electron spin qubits based on donors in silicon [18]. The gates on top of the donors and the SiO2

layer are used to tunnel electrons into the impurity states, and also used to control the spin of the
electrons in the impurity states. The readout of electron spin qubit is easier than nuclear spin, and
can be done by using a nearby single electron transistor [35]. Figure courtesy of Reference [18].
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Figure 1.6: A scanning tunneling microscope image of the phosphorous single impurity atom tran-
sistor [38]. The G1 and G2 are gates that are in the same plane as the P dopant. The S and D are
source and drain leads. These electrodes are highly phosphorous-doped regions in a monoatomic
layer, which are highly conductive, and thus can be used to tunnel electrons into and out of the
impurity states of this transistor. Inside the white rectangle is a single phosphorous impurity atom.
Figure courtesy of Reference [38].

surface and replacing it with the P atom. The G1 and G2 in Figure 1.6 are gates that

are in the same plane as the P dopant. The S and D are source and drain leads. These

electrodes are heavily phosphorous-doped regions in a monoatomic layer, which are

highly conductive, thus can be used to tunnel electrons into and out of the impurity

states of this transistor. We see that this single-atom transistor is indeed a donor-QD

discussed above, which forms the basis of a single spin qubit. Simmons et al. could

control and observe electron states with 0, 1, and 2 conduction electrons occupying

the impurity states in this system [38]. In 2019, using the same fabrication technique,

Simmons et al. fabricated a two spin-qubits system using P dopants in silicon, and

successfully realized the two-qubit SWAP gate operation [32].

In 2020, Stock et al. proposed [39] a method to place a single As dopant into
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silicon with atomic precision using lithography. The procedure uses the dissociation

of AsH3 to place a single As atom in the silicon lattice. Such a system could become

a single donor-QD with the addition of gates and be used as spin qubits. Apart from

the electron spin-qubit, using As as a nuclear spin-qubit is also interesting. As has a

3/2 nuclear spin, which is not exactly a two-level system that a qubit requires. But

there are ways to perform two-level operations on a 3/2 nuclear spin and treat it as

a two-level qubit [39]. In addition, it is possible to make the As donor-QD a 4-level

quantum computation unit due to the spin 3/2 property, potentially making it even

more efficient for some calculations [40][41]. Indeed, it appears that As donor-QD is

another excellent candidate dopant to implement spin-qubits in Si [39].

1.3 Sequential tunneling and the addition energy

For both gated-QD and donor-QD, electrons (and/or holes) tunnel in and out of the

QD during device operation. In the case of donor-QD, electrons are tunneled into the

impurity states one by one from the outside world, controlled by the gate voltages

surrounding the donor-QD [38]. This quantized tunneling of one electron at a time is

the sequential tunneling [17].

Experimentally, sequential tunneling is marked by the Coulomb diamond diagram

due to the Coulomb blockade effect. As we saw earlier, a spin-qubit is surrounded by

source/drain leads and several plunger gates, i.e. Figure 1.6. If the qubit is in the

sequential tunneling regime, when varying the voltages between the source and drain

Vbias or sometimes denoted as VSD, and varying voltages between the gates Vg, there

is a transport regime where no current flows through the donor-QD. The reason is

that the electron already inside the donor-QD repels the electrons outside the donor-

QD by Coulomb interactions, blocking the motion of electrons going through the

QD. At some specific Vbias and Vg values, sequential tunneling resumes and a current

flows through the QD. If we plot the differential conductance dI/dVbias (where I is

the current) as a function of Vg and Vbias, a diagram that has consecutive diamond’s
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shape appears where the diamond surrounds areas of zero conductance. This is called

the Coulomb blockade diamond diagram [42]. Figure 1.7 shows the Coulomb blockade

diamond diagram measured in the single-atom transistor of P-in-Si [38]. From this

diagram, the area with a bright color indicates that with this Vg and Vbias, we would

have a large conductance, and the dark area whose boundary gives a diamond shape

indicates that there is no conductance. This diagram signifies sequential tunneling

because going from one diamond to the next diamond indicates that the system gained

one electron, which is only possible with sequential tunneling. For example, in Figure

1.7, we observe the diamonds labeled by D+, D0, and D−. These dark areas with

small differential conductance signify that there are 0, 1, or 2 conduction electrons

occupying the impurity states in the donor-QD [38]. A more detailed discussion of

the Coulomb diamonds will be provided in Chapter 3.

For a QD (or spin-qubit) in the sequential tunneling regime, a physical quantity

of utmost importance is the addition energy Eadd, or called the charging energy Ec.

It is related to how electrons interact in the QD, and how much energy is needed

to sequentially tunnel the next electron into the QD. It is defined as the difference

between the electrochemical potential µ1, which is the energy required to add one

electron into a zero electron QD, and electrochemical potential µ2, which is the en-

ergy required to add another electron into a one-electron QD [42]. This important

quantity can be measured. In a Coulomb diamond diagram, it is simply the Vbias

value (times electron charge) at the apex of the diamond. For example, in Figure

1.7, the apex height of the D0 diamond is measured to be 47 ± 3 mV, indicating an

addition energy of this value. We shall prove this equality in Chapter 3. Because

of its importance to sequential tunneling and QD-based qubits, the addition energy

is measured in all experimentally fabricated QD spin-qubits. It gives indications of

whether an impurity or several impurities have successfully been placed into bulk

silicon and more importantly, provides information on the operation of the qubits

[32][38][43].



12 1 Introduction

Figure 1.7: The Coulomb diamond diagram in Simmons et al.’s single-atom transistor [38]. The
differential conductance dI/dVbias is plotted as a function of Vg and Vbias. The diamonds as labeled
by D+, D0, and D− signify that there are 0, 1, or 2 conduction electrons occupying the impurity
states in the donor-QD. The addition energy is obtained from the apex height of the diamond to be
47± 3 meV. Figure courtesy of Reference [38].

Theoretical calculation of the addition energy of spin-qubits is very important for

quantum technology hardware designers and manufacturers. In advanced semicon-

ductor integrated circuit and chip manufacturing, the software tools of technology

computer-aided design (TCAD) [44] have been playing critical roles for decades. We

expect that to establish the quantum technology manufacturing, a quantum version

of the TCAD tool is needed and such a tool must be able to predict how qubits behave

before fabrication and in particular, accurate prediction of the addition energy is the

first task for the quantum-TCAD (QTCAD).

To this end, extensive theoretical investigation has been carried out to determine

the addition energy of QD in the sequential tunneling regime. Perhaps the most

widely applied theoretical approach is the envelope function theory [42][45] based on

the effective mass theory of solid-state physics. For the donor-QD, this approach
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treats the dopant as a hydrogen-like atom and electrons take an effective mass of

the host material [42]. More details of this method are reviewed in Chapter 3. The

envelope function theory gives a crude estimate of the addition energy of, for example,

a P donor-QD to be around 29 meV, with the first chemical potential at around −31

meV and the second chemical potential at around −2 meV [45][46]. Clearly, these

values do not agree with the experimental data shown in Figure 1.7. In this approach,

all the material properties are only included by the effective mass model and in the

coefficient of the 1/r central potential of the hydrogenic model. Unless these and other

phenomenological parameters are well-fit to measured data or adjusted, it is hard to

make quantitative predictions. Another method for calculating the addition energy

is the atomistic tight binding (TB) method [47] where a parameterized Hamiltonian

matrix allows the calculation of the eigenstates of the QD. The advantage of the

TB method is that it is computationally efficient thus very large atomic structures

can be calculated. However, to obtain accurate results, careful adjustments of the

Hamiltonian matrix elements by numerical data fitting is necessary [48] which is a

very tedious task. With a well-fit TB model, it is possible to make predictions of the

addition energy close to the measured value [49].

We conclude that to design spin-qubits for quantum technology, the best approach

is a first principles theory and modeling tool. This approach should account for

the material details of the devices and the strong electron-electron interactions in

the QD qubits, so that the addition energy of the QD is predicted without any

phenomenological parameters. In the rest of this thesis, we shall establish this first

principles approach, by combining the density functional theory (DFT) with an exact

diagonalization method.

1.4 Thesis Organization

In Chapter 2, we shall introduce the theory of DFT [50] and its practical implemen-

tation RESCU [51]. For the donor-QD, turns out that the simulation supercell must
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include a very large number of atoms to reduce the finite-size effect of the results. Our

in-house DFT package RESCU can handle such large systems due to its innovative

numerical mathematics and parallel algorithms.

In Chapter 3, we shall first establish the theory behind the observed Coulomb

diamonds and addition energies, followed by introducing the exact diagonalization

method and its implementation in the QTCAD electronic package. Because the

Hamiltonian is exactly diagonalized, the most accurate calculation of the many-body

states can be achieved [52].

In Chapter 4, we combine the DFT and QTCAD method to determine the addition

energy of P-in-Si single donor spin-qubit. We shall show that this first principles

approach predicts the addition energy in excellent agreement with the corresponding

measured data.

Finally, the last chapter is reserved for a brief summary and outlook of this work.



2
Density Functional Theory

As introduced in the last chapter, the goal of this work is to establish an atomistic

first principles framework for quantitative predictions of addition energy of donor-

QD-based spin-qubits. As a specific example, we shall investigate the experimentally

fabricated P-in-Si device [38] in Chapter 4. The density functional theory (DFT) shall

be used as the first step in our framework to determine the donor impurity states which

will play the role of basis functions for calculating the many-body Hamiltonian. DFT

is the most widely used first prinicple approach in matreial physics. The theoretical

foundation of DFT was first introduced by Hohenberg and Kohn [53] in 1964. The

theoretical formulation of DFT was reduced to many software packages in the past

several decades, including well-known packages VASP [54], SIESTA [55], RESCU [51],

etc. In this chapter, the theory of DFT and implementation details are reviewed. In

particular, the RESCU method will be introduced which is the DFT software used in

our calculation due to its capability of solving very large atomic supercells.

2.1 Born-Oppenheimer Approximation

DFT is a ground-state theory. In any material, there are Coulomb interactions be-

tween electrons, between nuclei, and between electrons and nuclei. The many-body

Schrödinger equation is:

15
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[∑
i

−1

2
∇2

i +
∑
I

− 1

2MI

∇2
I +

∑
i>j

1

|ri − rj|
−
∑
i,J

ZI

|ri −RJ|

+
∑
I<J

ZIZJ

|RI −RJ|

]
Ψgs({ri}, {RI}) = EgsΨgs({ri}, {RI}) .

(2.1)

In Eq. 2.1, atomic units (a.u.) are used: me = 1, e = 1, h̄ = 1. Lower case

indices such as i, indicate the i-th electron; upper case indices such as I, indicate

the I-th nuclei. Egs is the eigen-energy that satisfies this equation. The many-body

wavefunction Ψgs depends on the electron positions, {ri} and nuclei positions {RI}.

MI is the mass of the I-th nuclei and ZI is the atomic number of the I-th nuclei,

i.e. the number of elemental charges. The five terms in the Schrödinger equation

correspond respectively to: the electron kinetic energy, the nucleus kinetic energy, the

electron-electron interaction, the electron-nucleus interaction, and the nucleus-nucleus

interaction. This is an extremely difficult many-body problem to solve because the

Hilbert space grows exponentially with the number of particles. If there are Natom

atoms and N electrons, the exact numerical solution of this equation has been done

for a very small number of atoms even for hydrogen, Natom ∼ 5. For materials physics,

some approximations must be made to reduce the complexity of the computation.

The first approximation to make is to “freeze” the nuclei. Because nuclei have a

large rest mass compared with electrons, the nuclei move much slower than electrons.

From the electrons’ perspective, nuclei can be seen as fixed in space, i.e. “frozen”, they

only produce a static Coulomb potential to the electrons. The Born-Oppenheimer

ansatz [56] therefore assumes,

Ψgs({ri}, {RI}) = Ψe({ri}, {RI})Ψn({RI}) . (2.2)

In this approximation, the ground-state wavefunction is split into an electron part

Ψe, and a nuclei part Ψn. As a result, the original Schrödinger equation Eq. 2.1 is
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separated into two, one for the nuclei and the other for electrons.[∑
i

−1

2
∇2

i +
∑
i>j

1

|ri − rj|
−
∑
i,J

ZI

|ri −RJ|

]
Ψe({ri}, {RI})

= ϵ0(RI)Ψe({ri}, {RI})

(2.3)

[∑
I

− 1

2MI

∇2
I +

∑
I<J

ZIZJ

|RI −RJ|
+ ϵ0(RI)

]
Ψn({RI}) = EgsΨn({RI}) (2.4)

Where Eq. 2.3 is for electrons and Eq. 2.4 is for nuclei. Here ϵ0 is the ground

state energy of the electron Schrödinger equation Eq. 2.3. For materials physics, we

are interested in electrons which makes bonding between atoms and other electronic

properties, therefore Eq. 2.3 will be the focus. We will drop the subscript e without

causing confusion in the rest of the thesis. Because the nuclei are considered to be

frozen, {RI} dependence will also be dropped in Eq. 2.3. From here, Ψ({ri}) denotes

the many-body electron wavefunction in Eq. 2.3. Unfortunately, even with the Born-

Oppenheimer approximation, the Hilbert space still grows exponentially with the

number of electrons, which requires further approximations to reduce.

2.2 Hohenberg-Kohn Theorem

The problem of solving the electron Hamiltonian Eq. 2.3 is greatly simplified by intro-

ducing an energy functional, as proposed by Hohenberg and Kohn [53]. Hohenberg-

Kohn theorem is the theoretical foundation of DFT [53], which has two parts [53]:

Theorem 1 (Hamiltonian-density bijection). Consider the class of Hamiltonians

defined as Ĥ = T̂ + V̂ + Û , where

T̂ =
1

2

∫
dr∇â†(r) · ∇â(r) (2.5)

V̂ =

∫
drvext(r)â

†(r)â(r) (2.6)
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Û =
1

2

∫
drdr′

â†(r)â†(r′)â(r′)â(r)

|r− r′|
(2.7)

that have a unique ground state (â and â† are the annihilation and creation operators

respectively). There exists a bijection (one-to-one correspondence) between the set of

ground state densities ρ of this class of Hamiltonians and the set of external potentials

vext defined uniquely up to a constant.

Theorem 2 (Universal functional). Consider the following universal functional

F [ρ] = ⟨Ψ|T + U |Ψ⟩ (2.8)

and the energy functional

E[ρ] = F [ρ] +

∫
drvext(r)ρ(r) (2.9)

E[ρ] assumes its minimum value at the ground state density, and the minimum value

is the ground state energy, with the following constraint
∫
drρ(r) = N .

Note that the Hamiltonian in Eq. 2.3 is of the form in Theorem 1 which works on

a many-electron system. If the creation and annihilation operators are for electrons,

the first term corresponds to T̂ in Eq. 2.5, the second term corresponds to Û in Eq.

2.7, and the third term corresponds to a V̂ in Eq. 2.6. Theorem 1 also produces a

corollary, which gives a bijection between the set of ground state densities and the set

of ground state wavefunctions. At zero temperature (ground state), the expectation

value of an observable is a functional of the ground state wavefunction, therefore

it is also indirectly a functional of the ground state density. Hence, by solving the

ground state density, one will be able to obtain the expectation values of any physical

observable. In this chapter, zero temperature is assumed unless explicitly stated

otherwise.

Theorem 2 states that one can solve for the ground state density and energy by

minimizing the total energy. The functional F [ρ] is only a functional of the density and
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possibly derivatives of the density, as will be discussed later. Reducing the problem

of solving the many-body wavefunctions to solving the electron density drastically

simplifies the theory, making it possible to solve realistic materials physics problems.

2.3 Kohn-Sham Equation

The Hohenberg-Kohn theorem stated that one can determine the ground state density

and energy by minimizing a total energy functional. This leads to the Kohn-Sham

equation [50] that solves the minimization problem. The Kohn-Sham equation is the

central piece of DFT [50]. Kohn and Sham rewrote the total energy in Eq. 2.9 to the

following form,

E[ρ] = T0[ρ] + V [ρ] + UH [ρ] + Exc[ρ] (2.10)

where

V [ρ] =

∫
drvext(r)ρ(r) , (2.11)

UH [ρ] =
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
,

Exc[ρ] = F [ρ]− T0[ρ]− UH [ρ] .

Here, T0[ρ] is a non-interacting single-particle kinetic energy term, to be specified

later. It is not intuitive to part out this single-particle term from the many-body

problem, but it is the key to the derivation of the Kohn-Sham equation. UH [ρ] is the

classical Coulomb interaction between electrons, called the Hartree energy. V [ρ] is the

external potential that accounts for the Coulomb interaction due to the nucleus and

any other externally applied potentials. Exc[ρ] is called exchange-correlation energy

which includes quantum interactions such as the exchange and correlation energies

between the electrons, as well as any other possible interactions and corrections to the

T0[ρ] term. The name of exchange-correlation comes from the fact that this energy

is related to the exchange-correlation hole, which can be interpreted as the joint

probability of finding an electron at a point given that there exists another electron



20 2 Density Functional Theory

at another point [57]. To minimize the total energy, a functional derivative of Eq.

2.10 is taken and set to zero,

δE[ρ]

δρ
=
δT0[ρ]

δρ
+ vext(r) +

∫
dr′

ρ(r′)

|r− r′|
+
δExc[ρ]

δρ
= 0 , (2.12)

where vext is from the functional derivatives of V [ρ] in Eq. 2.11. At the energy

minimum, the functional derive of Eq. 2.12 vanishes, leading to the Kohn-Sham

equation as we derive below.

To this end, note that if the functional derivative is done for a non-interacting

system, which only includes the first and second term in Eq. 2.10, one would obtain

E[ρ] = T0[ρ] + V [ρ] , (2.13)

δE[ρ]

δρ
=
δT0[ρ]

δρ
+ vext(r) = 0 . (2.14)

Eq. 2.12 and Eq. 2.14 has the same form with the following replacement:

vext(r) → veff (r) ≡ vext(r) +

∫
dr′

ρ(r′)

|r− r′|
+
δExc[ρ]

δρ
. (2.15)

Clearly, the problem of the non-interacting system in an external field vext can be

solved by which the single-particle wavefunctions are obtained. Therefore, the same

form of Eq. 2.12 and Eq. 2.14 suggests that the interacting system can be solved in

the same way, by replacing the external potential vext with an effective potential veff

defined in Eq.2.15. To simplify notation, let’s define a Hartree potential

vH(r) =

∫
dr′

ρ(r′)

|r− r′|
(2.16)

and an exchange-correlation potential

vxc(r) =
δExc[ρ]

δρ
. (2.17)
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Following the above discussion, a Hamiltonian for non-interacting single-particles can

be written with an effective potential veff = vext+vH+vxc, obtaining the Kohn-Sham

equation, [
−1

2
∇2 + veff

]
ψi(r) = ϵiψi(r) , (2.18)

which is in effect a non-linear Schrödinger equation. The electron density is

ρ(r) =
N∑
i=1

ψ∗
i (r)ψi(r) . (2.19)

Here, we assume there are N electrons in the material, thus the summation is up to

N .

Now, the many-electron Hamiltonian in Eq. 2.1 is transformed into a single-

particle effective Hamiltonian in Eq. 2.18. In the Kohn-Sham equation, ψi is called

Kohn-Sham wavefunctions or Kohn-Sham orbitals in the literature. Strictly speaking,

ψi is not the true wavefunctions of the original Schrödinger equation, therefore it is

also called the auxiliary wavefunctions. Since ψi does give the physical quantity of

electron density through Eq. 2.19, in the rest of this thesis we shall not make the

distinction between auxiliary and true wavefunctions explicitly.

In the practical algorithms for solving the Kohn-Sham equation, since veff depends

on ρ which is obtained by solving the Kohn-Sham equation, a self-consistent solution

process is needed. Namely, from an initial ρ0, the Kohn-Sham equation is solved to

obtain a new ρ1. ρ1 is again used to solve the Kohn-Sham equation to obtain a ρ2.

This process is repeated until some convergence criteria are met at which the resulting

density and total energy do not change very much from those of the previous iteration

step.
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The ground state energy is calculated from the energy functional Eq. 2.10,

E[ρ] =
∑
i

∫
drψ∗

i (r)(−
1

2
∇2)ψi(r) +

∫
drvext(r)ρ(r)

+
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
+ Exc[ρ] +

∑
I<J

ZIZJ

|RI −RJ|
.

(2.20)

The first term is the non-interacting kinetic energy term T0[ρ] discussed earlier. The

nuclear energy is now added as the last term. Noting that the Kohn-Sham equation

gives ∫
drψ∗

i (r)

(
−1

2
∇2 + vext(r) + vH(r) + vxc(r)

)
ψi(r) = ϵi .

Summing over ϵi, using Eq.2.19 and 2.16, one obtain

∑
i

ϵi = T0[ρ] + V [ρ] + 2UH [ρ] +

∫
drvxc(r)ρ(r) .

Using this result, the total energy functional in Eq. 2.20 is rewritten into the following

simpler form:

E[ρ] =
∑
i

ϵi −
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|

−
∫
drvxc(r)ρ(r) + Exc[ρ] +

∑
I<J

ZIZJ

|RI −RJ|
.

(2.21)

2.4 Periodic Boundary Conditions

A three-dimensional (3D) crystal solid is made of primitive cells periodically extending

in 3D to infinity. Figure 2.1 plots a periodic lattice in 1D. In DFT calculations, larger

supercells can also be used to build the periodic crystal lattice, namely the supercell

forms the periodic unit of the solid while the primitive cell is the smallest possible

supercell. To deal with periodic structures, the DFT equations should satisfy the

periodic boundary condition at the supercell boundaries.
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Figure 2.1: A typical periodic 1D crystalline potential. The red dots are individual ions. The
individual potentials of the middle ion are the yellow curves. When these ion form a crystal, the
blue curve is the total potential along the line of the ions, which is periodic.

For a Hamiltonian with periodic potential, by Bloch’s theorem the wavefunction

obeys [58]

ψki = eik·ruki(r) , (2.22)

where k is the reciprocal lattice vector and uki(r) a supercell periodic function, i.e.

uki(r) = uki(r+R) where R is the cell vector of the supercell. The electron density

can be written as

ρ(r) =
1

Vr.c.

∫
r.c.

dk
∑
i

u∗ki(r)uki(r) . (2.23)

Substituting Eq.2.22 into Eq. 2.18, the periodic version of the Kohn-Sham equation

is obtained: [
−1

2
(∇+ ik)2 + veff (r)

]
ukj(r) = ϵkjukj(r) , (2.24)

Here, veff (r) = vext(r) + vH(r) + vxc(r), but the potential terms are all cell-periodic.

For each k in the reciprocal space, this equation is solved to obtain all the periodic

functions ukj(r), for j = 1, 2, · · ·N . This way, the calculation of the infinitely large

crystal lattice - practically impossible to do, is reduced to the solvable problem of the

finite supercell by sampling many k values.
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Regarding the total energy Eq.2.21, from Eq. 2.23 it is replaced by the following,

E[ρ] =
1

Vr.c.

∫
r.c.

dk
∑
i

ϵki −
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|

−
∫
drvxc(r)ρ(r) + Exc[ρ] +

∑
I<J

ZIZJ

|RI −RJ|
.

(2.25)

As will be discussed in Chap.4, for large supercells with more than 10000 atoms,

the reciprocal space is in fact extremely small. For such large systems, the Γ-point

which is at k = 0, is sufficient to represent the reciprocal space, thus only the Kohn-

Sham equation at the Γ-point needs to be solved. On the other hand, when the

supercell is not very large, for example, a few to a few tens of atoms, one needs to

make a k sampling and solve Eq. 2.24 for different values of k.

2.5 Exchange-Correlation Potential

An important term in the Kohn-Sham equation is the exchange-correlation potential.

Unfortunately, this term and/or the exchange-correlation functional are unknown

except for very special cases such as the uniform electron gas [59] for which the

electron density is a constant. For a real material such as Si, the exact form of the

exchange-correlation potential is unknown and must be approximated. Let’s denote

the exchange-correlation energy Exc to be a functional of the electron density,

E[ρ]xc =

∫
drρ(r)ϵxc(r) (2.26)

where ϵxc is the energy density due to the exchange-correlation effect. It is then a

problem to find approximations of ϵxc. Here, the two most widely used approximations

in practical calculations of DFT will be discussed.
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2.5.1 Local Density Approximation

The local density approximation (LDA) is a completely local approximation where

ϵxc is only a functional of the electron density ρ(r). For a uniform electron gas where

ρ = ρo is a constant - independent of r, ϵxc as a function of the constant ρo can be

derived analytically at the limit of high density by perturbation theory [60]. When

the density is non-uniform, LDA assumes that the form of ϵxc versus ρ(r) does not

change from that of the uniform electron gas. At the limit of very low electron density,

turns out that the kinetic energy of the electrons scales to zero much faster than the

potential energy terms, and electrons form Wigner crystals [61]. In this limit, ϵxc can

also be analytically derived [61]. In between the high and low density limits, quantum

Monte Carlo simulations give numerical curves of ϵxc versus density [62]. Fitting the

data all the way from low to high densities, the LDA form of ϵxc versus density is

obtained [63]. We refer interested readers to the original literature for the details of

these developments in the past several decades.

The LDA exchange-correlation energy has the same form as Eq. 2.26 but ϵxc is

only a functional of ρ(r),

Exc[ρ] =

∫
drρ(r)ϵxc(ρ(r)) . (2.27)

The exchange-correlation potential is obtained using Eq. 2.17 and 2.27,

vxc(r) =
δExc[ρ]

δρ
(r)

=
∂

∂ρ(r)

∫
d(r′)ρ(r′)ϵxc(ρ(r

′))

= ϵxc(ρ(r)) + ρ(r)
∂ϵxc(ρ)

∂ρ
(r) .

In the literature, the LDA exchange-correlation is written as the sum of an exchange

term and a correlation term Exc = Ex + Ec. Using the form of the electron gas [59],
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Ex = −3

4

(
3

π

) 1
3
∫
drρ(r)

4
3 .

Regarding the Ec, one of the widely used form is due to Perdew and Wang [63],

ϵc = −2A(1 + α1rs)) log

1 +
1

2A
(
β1r

1
2
s + β2rs + β3r

3
2
s + β4r

p+1
s

)


where A, α1, β1, β2, β3, β4, and p are parameters determined by quantum Monte-

Carlo simulations and rs = (4πρ/3)−1/3. The values of these parameters can be found

in Reference [63]. Ec can be obtained from ϵc with an integral similar to Eq. 2.27.

LDA is a very widely used exchange-correlation functional due to its simplicity.

It can also give reasonably accurate results in practical DFT calculations regarding

total energy, forces and electronic structures for many materials. Nevertheless, for

materials where the electron density is not very uniform, e.g. molecules, interfaces,

etc., a natural extension of the completely local LDA is to include some semi-local

terms, as we discuss below.

2.5.2 Generalized Gradient Approximation

The generalized gradient approximation (GGA) is a semi-local functional where the

exchange-correlation is not only a functional of ρ, but is also a functional of the

gradient of ρ, ∇ρ,

Exc[ρ] =

∫
drρ(r)ϵxc(ρ(r),∇ρ(r)) . (2.28)

The exchange-correlation potential is given by Eq. 2.17 and 2.28,

vxc(r) =
δExc[ρ]

δρ
(r)

=
∂

∂ρ(r)

∫
d(r′)ρ(r′)ϵxc(ρ(r

′),∇ρ(r′))

= ϵxc(ρ,∇ρ)(r) + ρ
∂ϵxc(ρ,∇ρ)

∂ρ
(r)−∇ · ρ∂ϵxc(ρ,∇ρ)

∂∇ρ
(r) .
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The gradient dependency makes GGA more accurate than LDA, especially when

the density is not very uniform. Various forms of GGA are possible, in this work we

shall use the most popular one proposed by Perdew, Burke, and Ernzerhof (PBE)

[64], which has the following form,

Exc[ρ] =

∫
drρ(r)ϵunifx (ρ(r))Fxc(rs, ζ, s) (2.29)

where ϵunifx is the exchange energy density of a uniform electron gas, rs was introduced

above, ζ is the relative spin polarization, and s is some dimensionless density gradient.

For the exact form of these terms, we refer interested readers to the original literature

Reference [64].

2.6 Spin Density Functional Theory

We note that the PBE functional in Eq. 2.29 depends on the spin information through

the polarization parameter ζ. Indeed, DFT can be extended to analyze spin-polarized

materials. Here we shall discuss the extension of DFT to the collinear spin situation.

The way to extend DFT to the non-collinear spin situation will not be discussed. The

collinear spin DFT theory takes a similar form as the Kohn-Sham theory [65]. The

essence of the collinear spin theory is to separate the density ρ into the spin-up density

ρ↑ and the spin-down density ρ↓, ρ = ρ↑ + ρ↓. The exchange-correlation functional

depends on both densities. For example, in GGA,

Exc[ρ
↑, ρ↓] =

∫
drρ(r)ϵxc(ρ

↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r)) , (2.30)

to be compared with Eq. 2.28 above. The Kohn-Sham equation becomes,

[
−1

2
∇2 + vext(r) + vH(r) + vσxc(r)

]
ψσ
ki(r) = ϵσkiψ

σ
ki(r) , (2.31)
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where σ is the spin index and

vσxc(r) =
δExc[ρ

↑, ρ↓]

δρσ
. (2.32)

The spin dependent density (spin density) is given by

ρσ(r) =
1

Vr.c.

∫
r.c.

dk
∑
i

ψσ∗
ki (r)ψ

σ
ki(r) . (2.33)

Finally, the total energy is,

E[ρ↑, ρ↓] =
1

Vr.c.

∫
r.c.

dk
∑
i

ϵσki −
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|

−
∫
drvσxc(r)ρ

σ(r) + Exc[ρ
↑, ρ↓] +

∑
I<J

ZIZJ

|RI −RJ|
.

(2.34)

In the collinear spin situation, the spin-up and -down densities do not directly

couple to each other. The Hamiltonian matrix is therefore a block-diagonal matrix:

one block for the spin-up channel and the other for the spin-down channel. This

means that in practical applications, two separate Kohn-Sham equations are solved

for the two spin channels, doubling the computational effort compared with non-spin

polarized situations. We mention in passing that for non-collinear spin situations, the

two spin channels do directly couple to each other, causing the Hamiltonian matrix

to have off-diagonal elements. In that case, the computational effort increases by a

factor of eight, since the eigenvalue solvers typically scale as the cubic power of the

size of the Hamiltonian matrix.
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2.7 Pseudopotentials

In the previous sections, the form of the external potential vext has not been discussed

in detail. A contribution to vext is the Coulomb potential of nucleus,

vext(r) =
∑
I

ZI

|r−RI |
(2.35)

where r is the position of the electron and RI is the position of the I-th nuclei.

For practical calculations, this form of the Coulomb potential poses some difficulties

because it lacks a characteristic length scale and the potential changes rapidly when

r approaches RI. This problem is solved by introducing the augmented plane waves

[66]. It is noted that the potential near the nuclei is almost spherically symmetric

and the potential varies smoothly away from the nuclei. Therefore, one may separate

the space into two regions, a nuclei sphere surrounding each nuclei, and an interstitial

region in between the nuclei spheres. This way, the basis function can be represented

using simple wavefunctions in the interstitial region such as planewaves, and using a

linear combination of solutions of the spherical Schrödinger equation inside the nuclei

spheres,

ϕk(r) =


eik·r r ∈ interstitial region∑
lm

AklmRl(r, ϵ)Ylm(θ, ϕ) r ∈ nuclei spheres
(2.36)

where Aklm are coefficients to be solved by requiring continuity at the boundary of

the spheres and interstitial, Ylm(θ, ϕ) is a spherical harmonic of order (l,m), θ and ϕ

are the polar and azimuthal angle, respectively.

Using Eq. 2.36, the nuclear potential Eq. 2.35 can be written as

vext(r) =


∑
lm

vextlm (r)Ylm(r̂) r ∈ nuclei sphere∑
k

vext(k)eik·r r ∈ interstitial .
(2.37)

One may solve the Kohn-Sham equations within the spheres and also in the interstitial
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region, demanding the match of the wavefunctions and their derivatives at the spheres’

boundaries. Further manipulations can be done regarding the size of the nuclear

sphere, namely how many shells of electrons are included inside the nuclear sphere

for each atomic species and how many outer shells are left to be in the interstitial

region. Because every electron of the atom is included in the calculation, either in the

nuclear sphere or in the interstitial region, this is the all-electron approach to solving

the Kohn-Sham equation which is numerically exact if all (k, l,m) are included. In

practice, a cut-off to all these parameters must be made and results can be tested

against the cut-off for convergence.

For most materials, the bonding of individual atoms to form solids or molecules

is dominated by the valence electrons of the atoms. One can therefore distinguish

core electrons from valence electrons of the atom, which led to the pseudopotential

approximation [67]. In this approximation, one treats nuclei and core electrons as

stable ions, and this ionic potential near the central singular region - called the core

region, can be replaced by a smooth effective potential. Outside the core region, the

pseudopotential is exactly the same as the real potential. This way, core electrons

and nuclei charges are “frozen” into the pseudopotential. Because of this, the total

number of electrons in the materials simulation problem is drastically reduced which

eases the computation burden for solving the Kohn-Sham equations.

In this work, we shall use the norm-preserving pseudopotentials which have the

following properties [67]:

1. The pseudopotential preserves the spectrum of the reference atomic configura-

tion (the atomic configuration used in the all-electron calculation);

2. The valence wavefunctions and pseudo-wavefunctions are identical beyond a

cut-off radius rc. Since rc depends on the angular momentum quantum number

l, we denote this cut-off by rcl to explicitly indicate the l dependence;

3. The integrated charge density within rcl is identical by using real wavefunctions
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or pseudo-wavefuntions;

4. The logarithmic derivative of the real wavefunctions and pseudo-wavefunctions

and its energy derivative agree beyond rcl.

In the above, the pseudo-wavefunction is the solution of the Kohn-Sham equation

for a single atom using the pseudopotential of the atom, while the real wavefunction

is the solution of the Kohn-sham equation in the all-electron scheme without using

the pseudopotential. The reference atomic configuration is obtained by doing an all-

electron calculation of a single atom and finding its ground state. The pseudopotential

method has been verified to be quite accurate for atomic species from H to Pu [68] in

the periodic table. An example pseudopotential and pseudowavefunctions are plotted

in Figure 2.2.

The pseudopotential has been generated for most atoms in the periodic table,

using the following procedure. One transforms the radial Kohn-Sham equation to the

following radial Schrödinger equation,

[
−1

2

d2

dr2
+
κ(κ+ 1)

2r2
+ veff (r)

]
rRjl(r) = ϵjlrRjl(r) (2.38)

Here κ is defined as:

κ =

l if j = l − 1/2

−l − 1 if j = l + 1/2

(2.39)

A pseudo radial wavefunction RPP
jl (r) is created for each (jl) such that it is equal to

the Rjl(r) solved from the radial Schrödinger equation Eq. 2.38 beyond the cutoff

radius rcl. There are many ways to create this radial wavefunction, the one we

employed is proposed by Troullier and Martins [69].

The peudopotential is then found by the inversion of Eq.2.38.

vPP
eff,jl(r) = ϵjl +

1

2

1

rRPP
jl (r)

d2

dx2
rRPP

jl (r)− κ(κ+ 1)

2r2
(2.40)
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Figure 2.2: The first 3 panels compare the pseudopotential wavefunctions and the reference atomic
configuration for Mo [67] for the 4d, 4p, and 5s orbitals respectively. The solid line is the pseudo
wavefunction, and the dotted lines are from the reference atomic configuration. The pseudo wave-
functions are indeed identical to the real wavefunction above the cut-off radius rc. The last panel
compares the pseudopotential for different quantum number l and the reference atomic configuration
potential. Dotted lines are potential obtained from reference atomic configuration, and solid lines
are pseudopotentials. Figure courtesy of Reference [67].
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Afterward, the pseudo Hartree potential and the pseudo exchange-correlation poten-

tial need to be subtracted to obtain the pseudo external potential which acts on the

valence electrons. This procedure is called unscreening,

vPP
ext,jl(r) = vPP

eff,jl(r)− vPP
H (r)− vPP

xc (r) (2.41)

This step is non-trivial because one needs to alienate the valance term and the core

term in the Hartree and exchange-correlation potential to obtain their pseudopoten-

tials. Finally, the (jl) dependence is eliminated by performing a summation over

these indices to obtain the vPP
ext (r) pseudopotential [68]. It is typically written in two

terms, one local and one non-local.

vPP
ext (r) = vPP

loc (r) + vPP
nl (r, r′) . (2.42)

After vPP
ext (r) is generated, it is saved into a database for practical applications of

DFT in materials simulations.

Substituting vPP
ext (r) into the Kohn-Sham equation Eq. 2.18, we obtain

[
−1

2
∇2 + veff

]
ψi(r) +

∫
dr′vPP

nl (r, r′)ψi(r
′) = ϵiψi(r) (2.43)

where

veff (r) = vPP
loc (r) + vH(r) + vxc(r) (2.44)

is the local part of the effective potential, and the non-local part of the pseudopotential

vPP
nl explicitly appears in Eq. 2.43. Again, Eq. 2.43 can be extended into periodic

systems and spin systems, similar to that discussed in Sections 2.4 and 2.6, namely

[
−1

2
∇2 + vσeff

]
ψσ
ki(r) +

∫
dr′vPP

nl (r, r′)ψσ
ki(r

′) = ϵσkiψ
σ
ki(r) , (2.45)

where k is the reciprocal lattice momentum, σ is the spin index. This nonlinear inte-
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gral equation must be solved in some manner to obtain the Kohn-Sham wavefunctions

ψσ
ki and eigen-energies ϵσki.

2.8 Basis Sets And LCAO Method

Eq. 2.45 can be discretized in a real space mesh and solved numerically. The real

space technique is very accurate if one picks a fine mesh, but a fine mesh leads to large

matrices for the eigenvalue problem which presents the bottleneck of this technique.

In Reference [51], by an innovative Chebyshev filtering approach, the large eigenvalue

problem is drastically reduced and the real space technique can be used to solve

supercells having several thousand atoms. Nevertheless, for our work in this thesis

(Chapter 4), supercells with over ten thousand atoms need to be solved, which is

too large even for the Chebyshev filtering approach. The real space technique is a

large basis method for solving the DFT equations. The most popular large basis is the

planewaves, used by the DFT packages VASP [54], Abinit [70] and QuantumExpresso

[71]. The planewave codes can typically solve supercells with a few hundred atoms. In

quantum chemistry, Gaussian basis is the standard [72][73] which has the advantage

of partially carrying out analytical derivations of the Hamiltonian matrix elements

but again, for crystals, Gaussian basis is limited to solved problems with relatively

small supercells.

In our work, we shall use the linear combination of atomic orbital (LCAO) as the

basis functions. The numerical atomic orbitals [51] in the LCAO basis are:

ϕIµ(r) = ζµ(|r−RI |)Ylµmµ(θ, ϕ) (2.46)

where I labels the atom and µ labels the atomic orbital of that atom, namely

µ = s, p, d, · · · to indicate the s-shell, p-shell, d-shell of the atomic configuration.

The basis function ϕIµ(r) is a product of a radial function ζ and a spherical harmonic

Ylm. The ζ function is solved numerically and may be put to zero outside some cut-off
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Figure 2.3: A numerical atomic orbital of the s-state of the Si atom for different cut-off radius rc.
Figure courtesy of [74].

radius rc so that two atoms with distances larger than 2rc do not have orbital overlap,

this increases the sparsity of the Hamiltonian matrix, thus reduces numerical com-

putation. The spherical harmonic is centered at the nuclei of the atom. Practically,

the atomic orbital functions ϕIµ(r) are generated by solving the Kohn-Sham equation

for a single atom using the pseudopotentials defining the atomic core, and saved in

a database together with the corresponding pseudopotentials. Because the functions

ϕIµ(r) are the solutions of the Kohn-Sham equation using the pseudopotentials, they

are also called pseudo-atomic orbitals in the literature. For material simulations,

ϕIµ(r) and its corresponding pseudopotentials are inputs to the DFT software. An

example of such orbitals is plotted in Figure 2.3.

Using ϕIµ(r) as the basis set, the Kohn-Sham wavefunctions are expanded as a
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linear combination of them (LCAO basis set),

ψi(r) =
∑
Iµ

ciIµϕIµ(r) , (2.47)

where ciIµ are coefficients to be solved via the Kohn-Sham equation.

For crystal supercells satisfying the periodic boundary condition, we construct a

new basis set from ϕIµ(r) that satisfies Bloch’s theorem,

ϕ̄k
Iµ(r) =

1√
N

∑
T

eik·TϕIµ(r) , (2.48)

where N =
∑
T

is a normalization factor. With this new basis, the Kohn-Sham

wavefunctions are expanded as:

ψσ
ki(r) =

∑
Iµ

ciσkIµ ϕ̄
k
Iµ(r) , (2.49)

where ciσkIµ are unknown coefficients to be solved by the Kohn-Sham equation.

To this end, we write the Kohn-Sham equation in a matrix form using an LCAO

basis. Multiply ψσ∗
ik on the left of Eq. 2.45 and integrate over r, substituting in

Eq. 2.49, divide by ciσk∗Iµ , the Kohn-Sham equation reduces to the following matrix

form (from now on we shall drop the PP superscript on the pseudopotential without

causing confusion)

HkCσk =
[
Tk +Vσk

eff +Vσk
nl

]
Cσk = SkCσkϵσk (2.50)

where Cσk is defined by rewriting Eq. 2.49 in a matrix form,

Ψσk = ΦkCσk , (2.51)
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and the following notations are introduced,

T k
Iµ,Jν =

∫
drϕ̄k∗

Iµ(r)

(
−1

2
∇2

)
ϕ̄k
Jν(r)

V σk
eff Iµ,Jν =

∫
drϕ̄k∗

Iµ(r)v
σ
eff (r)ϕ̄

k
Jν(r)

V σk
nl Iµ,Jν =

∫
drdr′ϕ̄k∗

Iµ(r)vnl(r, r
′)ϕ̄k

Jν(r)

Sk
Iµ,Jν =

∫
drϕ̄k∗

Iµ(r)ϕ̄
k
Jν(r)

ϵσkij = ϵσki δij

(2.52)

Eq. 2.50 is a matrix eigen-value problem which is readily solvable numerically to give

the coefficients Cσk and the eigen-vlaues ϵσk. Afterward, the Kohn-Sham wavefunc-

tions are obtained by Eq. 2.49.

2.9 The RESCU electronic package

Having reviewed the main steps and theories of realizing a DFT calculation, in this

work we shall apply the RESCU implementation of the DFT [51]. RESCU was de-

veloped in my research group. The distinct advantage of RESCU over essentially

all other DFT codes in the literature, is that it is a general purpose method opti-

mized for solving very large atomic systems for metals, semiconductors, insulators

and molecules. Due to its optimized numerical mathematics and parallel algorithms,

the computation scaling of RESCU is roughly O(2.3) up to supercells having ∼ 10, 000

atoms, which is much more efficient than the O(3) scaling of conventional codes. Since

the RESCU implementation of DFT is well-documented, we refer interested readers

to the original publication [51] and the Ph.D. thesis of Dr. Vincent Michaud-Rioux

[75]. In short, the ability to carry out DFT calculations on large systems is critical

for the research of this thesis.
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2.10 Summary

This chapter is devoted to the theory and important implementation steps of the

Kohn-Sham DFT. From the many-body Hamiltonian of a material which includes

many electrons and nuclei, the Born-Oppenheimer approximation allows the sepa-

ration of the electrons from the nucleus where electrons move inside the potential

created by the nucleus, i.e. the nucleus are frozen in space positions when we solve

the electron system. The Hohenberg-Kohn Theorem is then introduced which links

an unknown total energy functional of the system with the ground state electronic

density. Picking a particular form of the total energy functional, the Kohn-Sham equa-

tion is derived by minimizing the total energy, and the Kohn-Sham equation is the

central result of DFT. By introducing a non-interacting reference system, the many-

body Hamiltonian is transformed into a mean-field Hamiltonian with the many-body

physics casted into an exchange-correlation functional. Multiple ways to approxi-

mate the exchange-correlation functional are possible, the most popular ones are the

LDA and GGA, due to their relatively simple calculation procedure. The Kohn-Sham

equation can be extended to crystals consisting of periodic supercells and materials

with spin degrees of freedom. To reduce the number of electrons in a calculation,

pseudopotentials are introduced to define the atomic core which includes the nuclei

and core-shell electrons, as such only the valence electrons participate in the DFT self-

consistent calculation. Finally, we discussed the LCAO basis using the pseudo-atomic

orbitals as the basis function which are used to reduce the Kohn-Sham equation to a

matrix eigen-value equation. In Chapter 4, we shall apply the RESCU implementa-

tion of the DFT, to solve the electronic structure of a donor impurity in bulk Si and

in particular, to determine the localized impurity states.



3
Addition Energy And Exact Diagonalization

In the last chapter, DFT is introduced as the first principles method to determine

single-particle ground states of materials. The mean-field approximation of DFT

reduces the original many-body problem to a simpler problem of single particles

moving inside the mean-field produced by all the particles. However, the addition

energy of a QD has a large contribution from the many-body interaction which cannot

be accurately determined via a mean-field theory. In this chapter, we will discuss in

more detail the physics of addition energy, its relation to Coulomb diamonds, and the

method of exact diagonalization to account for the strong interaction and correlation

of the electrons in the QD.

3.1 Many-Body Hamiltonian

The Hamiltonian of a many-body electron system is written as

Ĥ = Ĥ0 +
1

2

∑
i,j,σ,i̸=j

VCoul.(ri, rj) (3.1)

where

Ĥ0 ≡
∑
i,σ

[
− h̄

2m
∇2

i + U(ri)

]
(3.2)

is the non-interacting part of the many-body Hamiltonian. Here, SI unit is employed,

the subscript i labels the electrons and ri is the position of the i-the electron, and σ

is the spin index of the electron. The second term in Ĥ is the summation of Coulomb

39
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interactions between pairs of the electrons, VCoul.(ri, rj):

VCoul.(ri, rj) =
e2

4πε |ri − rj|

where ε is the dielectric permittivity of the material.

The above Hamiltonian can be written in the second quantization form in terms

of the creation and annihilation operators [76][77],

Ĥ =
∑
σ

∫
drΨ̂†

σ(r)

[
− h̄

2m
∇2 + U(r)

]
Ψ̂σ(r)

+
1

2

∫
dr1dr2

∑
σ1,σ2

VCoul.(r1, r2)Ψ̂
†
σ1
(r1)Ψ̂

†
σ2
(r2)Ψ̂σ2(r2)Ψ̂σ1(r1)

(3.3)

where Ψ̂†
σ(r) is a quantum field operator that creates an electron of spin σ at position

r. Its adjoint, Ψ̂σ(r), annihilates an electron of spin σ at position r.

Using an orthonormal single-electron basis set {φi(r)}, for instance the solutions

of Ĥ0 in Eq. 3.2, the field operator is expressed as:

Ψ̂σ(r) =
∑
i

φi(r)ĉiσ (3.4)

where ĉiσ annihilates an electron of spin σ in the i-th basis state. Similarly

Ψ̂†
σ(r) =

∑
i

φ∗
i (r)ĉ

†
iσ (3.5)

where ĉ†iσ creates an electron of spin σ in the i-th basis state.

Using the single-particle basis {φi(r)} and Eq. 3.4 and 3.5, Eq. 3.3 becomes

Ĥ =
∑
iσ

ϵiĉ
†
iσ ĉiσ +

1

2

∑
ijkl,σσ′

Vijklĉ
†
iσc

†
jσ′ckσ′clσ (3.6)

where ϵi is the i-th expectation value of the non-interacting Hamiltonian Ĥ0, corre-
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Figure 3.1: An illustration of many-body energy levels of a single impurity spin-qubit [42] for the
system with N − 1, N and N + 1 electrons. The lowest energy for the systems with N electron is
the ground state energy E0

N . The chemical potential µN is the difference between the ground state
energy of the N and N − 1 electron system. Figure courtesy of Reference [42] with minor changes.

sponding to the single particle state {φi(r)}. Vijkl is the Coulomb integrals of the

basis set

Vijkl =

∫
dr1dr2φ

∗
i (r1)φ

∗
j(r2)

e2

4πε |ri − rj|
φk(r2)φl(r1) . (3.7)

3.2 Addition Energy

The Hamiltonian in Eq. 3.6 can be used to describe electrons trapped in impurity

states of a donor QD spin-qubit. After the many-body problem in Eq. 3.6 is solved

(see below), the many-body eigen-energies and many-body wavefunctions are ob-

tained. For a N -electron system (i.e. N electrons trapped in the spin qubit) where N

is an integer, assuming n many-body eigenstates are obtained, we denote Em
N where

m = 0, 1, 2, · · ·n, to be the energy of the m-th many-body states. The lowest of

them, E0
N , is the ground state energy of the many-body Hamiltonian in Eq. 3.6. An

illustration of the many-body energy levels is shown in Figure 3.1.

The chemical potential µN is the difference between the ground state energy of

the N electron system and that of the N − 1 electron system [42].

µN = E0
N − E0

N−1 . (3.8)
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In the familiar problem of a large number of particles, i.e. N >> 1, for example, the

air molecules in a room, the chemical potential µN is a constant independent of N .

But for our spin-qubit problem involving only one of a few spins inside the QD, µN

depends on N . With µN and µN+1 defined using Eq. 3.8, the addition energy is the

difference between them:

Eadd
N = µN+1 − µN . (3.9)

In this work, we shall focus on the first addition energy Eadd
1 .

In the experimental gated-QD and/or donor-QD, external gate voltages are applied

to control the device (see Figure 1.6 in Chapter 1). In Hamiltonian Eq. 3.2, the

potential U(r) depends on the applied gate voltages. Due to the plunger gate voltages,

an extra electrostatic potential Upg inside the QD is established on top of the Hartree

potential discussed in Chapter 2. Upg satisfies the Poisson equation and can be solved

numerically and written as

Upg(r) = −|e|
∑
i

ϕiαi(r) (3.10)

where ϕi is the potential applied at the i-th gate, and αi(r) is some spatial dependent

function that is always less than unity. As a result, apparently the quantities ϵi, E0
N ,

and µN all depend on the gate voltages through the electrostatic potential Upg.

Let’s consider the single-particle energies ϵi and how it changes with the gate

voltages. First of all, even though αi(r) is in principle spatial dependent, we may

ignore this dependence because the gates are significantly larger than the region where

electrons are confined. This way, by Eq. 3.10, the gate voltages simply add an offset

to the total potential in the Hamiltonian Eq. 3.2. An overall constant potential shift

does not change the single-particle wavefunctions φi [42]. Assume that when a gate

voltage ϕ0
i is applied to the gate labeled by i, there are a set of single-particle energies

ϵ0m where m labels the single-particle states. Vary the gates voltage a little to ϕi, the

single-particle energies become ϵm. Taking the expectation value of the Hamiltonian
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in Eq. 3.3 and assuming the wavefunctions remain the same, one has

ϵm = ϵ0m − e
∑
i

(ϕi − ϕ0
i ) ⟨φm|αi(r)|φm⟩ . (3.11)

Therefore, the single-particle energies change linearly with the gate voltages. ⟨φm|αi(r)|φm⟩

is called the lever arm of gate i acting on state m. In most applications, the lever

arm can be approximated to be independent of the state, and can simply be denoted

as αi. In practical simulations, once the Poisson equation is solved, the lever arm can

be determined.

Let’s partition the total energy of the N -electron system E0
N as:

E0
N =

N∑
n=1

ϵ0i +
N∑

n=1

Vc(n) (3.12)

where the first term is the non-interacting single-particle energy; the second term

accounts for the interactions, and Vc(n) is the Coulomb interaction energy required

to add the n-th electron to a system with n − 1 electrons. Insert Eq. 3.11 and Eq.

3.12 into Eq. 3.8, we obtain

µN = ϵ0N − e
∑
i

αi(ϕi − ϕ0
i ) + Vc(N) . (3.13)

Substitute Eq. 3.13 into Eq. 3.9, we have

Eadd
N = ϵ0N+1 − ϵ0N + Vc(N + 1)− Vc(N) . (3.14)

This result suggests that the addition energy Eadd
N is independent of the gate voltages

ϕi if taken the assumption that the lever arm is independent of the state and the state

wavefunctions are unchanged with different gate voltages, as we have seen above.

If one recalculates ϵN from another gate voltage, according to Eq. 3.11 the part

depending on the lever arm will be canceled. Similarly, the Coulomb integral in

Eq. 3.7 remains unchanged since a constant shift of the potential does not change
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wavefunctions. As a result, Vc also remains the same with the change of gate voltages.

We conclude that the addition energy Eadd
N can be obtained without the complications

of including the gate voltages in the analysis. In the literature, the number Vc(N +

1) − Vc(N) is defined as the charging energy. Note that the single-particle energies

ϵ02 = ϵ01 due to the spin degeneracy. Therefore, by Eq. 3.14, the first addition energy

Eadd
1 = Vc(2)− Vc(1) , i.e. it is just the charging energy.

3.3 Coulomb Diamonds

As discussed in Chapter 1, the addition energy discussed in the last section is closely

related to the Coulomb blockade effect and the Coulomb diamonds diagram which is

measured experimentally. Here we show that the height of the apex of a Coulomb

diamonds diagram corresponds to the addition energy.

Consider a QD having a source electrode, a drain electrode and a plunger gate (pg).

The externally applied voltages on these electrodes are VS, VD and Vpg, respectively. If

there are more gates, we assume all other gate voltages remain constants. The source

and the drain act as electron reservoirs that allows electrons to tunnel into the qubit.

If the voltages of the source or the drain are changed by ∆VS (VD), the chemical

potential of the source or the drain µS (µD) is raised by e∆VS(VD). The operation of

QD-based spin-qubit is in the sequential tunneling regime where electrons tunnel into

and out of the QD one by one. Sequential tunneling is dominated by the Coulomb

blockade (CB) phenomena [17]. When transport is Coulomb blockaded, no current

flows through the QD. It corresponds to the situation when it is energetically neither

favorable to remove one electron nor favorable to add an electron, into the QD. Since

no electron is added or removed from QD, there is no current flow through the QD.

The CB regime is established when chemical potentials satisfy

µN ≤ µS(µD) ≤ µN+1 . (3.15)
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Figure 3.2: An illustration of the situation with no conductance and the system will remain in a N
electron state [42]. This is because the energy gain in removing an electron from the source or drain
µS , µD is not enough for the energy to put the N + 1-th electron into the system µN+1. But at the
same time, the energy required to put an electron into the source or drain µS , µD is greater than
the energy gain in removing an electron from the system with already N electron µN . Therefore no
electrons would move into or out of the system, and the system will remain in a N electron state,
meaning there will be no current or conductance. Figure adapted from Reference [42] with minor
changes.

This means that the energy gain in removing an electron from the source or drain

µS, µD is not enough to put the N +1-th electron into the QD which requires energy

µN+1. At the same time, the energy required to put an electron into the source or

drain µS, µD is greater than the energy gain of µN in removing an electron from the

QD of N electrons. The energetics thus dictates that no electrons would move into

or out of the QD, the QD remains in the N electron state and there is no current.

A qualitative illustration of the energy diagram of the CB is in Figure 3.2. In this

illustration, the QD remains in an N electron state.

In sequential tunneling, current is not Coulomb blockaded when

µS ≥ µN ≥ µD , (3.16)

as schematically shown in Figure 3.3. In Figure 3.3b, the bias voltage is defined as

VSD ≡ VS − VD. Under the condition of Eq. 3.16, as can be seen in all three cases in

Figure 3.3, it is energetically favorable to remove an electron from the N electron QD

and put it into the drain. Once an electron is removed from the QD, it is energetically

favorable to remove an electron from the source and put it into the QD so that the

QD has N electrons again. This way, an electron jumps out of the QD followed by an
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Figure 3.3: An illustration of the situation with finite conductance. Figure (b) is the common
chemical potential situation with a current flow, when µS ≥ µN ≥ µD. Figure (a) and (c) correspond
to edge cases when µS = µN and µD = µN . [42]. It is energetically favorable to remove an electron
from the N electron system and put it into the drain. But once an electron is removed, it is again
energetically favorable to remove an electron from the source and put it into the system so that it
would have N electrons again. Therefore electrons would tunnel in and out of the system one by
one, creating a current. Figure courtesy of Reference [42].

electron jumping into the QD, a finite current thus flows through the QD. Of course,

the signs in Eq. 3.16 could be flipped which would also have a current flow: this time

from drain to source,

µS ≤ µN ≤ µD . (3.17)

The Coulomb diamonds seen in experimental measurements (see Figure 1.7 in

Chapter 1) can now be understood. Note that the boundary of the “diamonds” corre-

sponds to the transition between the situation with a current flow and the situation

with no current flow. From Eq. 3.15, 3.16 and 3.17, and from Figure 3.3, we see that

for a QD at its N electron state, this transition corresponds to the edge cases when

µS = µN for Figure 3.3a and µD = µN for Figure 3.3c.

At zero bias voltage, i.e. VSD = 0, VS = VD = V 0 where V 0 is some value, the

chemical potentials of the source and the drain are equal, µS = µD = µ0 where µ0

is some constant. One tunes the plunger gate voltage until at some V 0
pg, one has

µS = µD = µN = µ0, meaning that the three chemical potentials align with each

other. This situation is shown as the red dot in Figure 3.4 where we plotted the

Coulomb diamonds. Assume V 0 for the source and the drain, and V 0
pg for the plunger
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Figure 3.4: An illustration of the Coulomb diamonds. The red dot corresponds to the situation when
µS = µD = µN . The edge cases of µS = µN and µD = µN give two linear relationship between Vpg
and VSD, acting as sides of the Coulomb diamonds. The hollow dot is the apex of a diamond, which
is the intersection between the µS = µN line and the µD = µN+1, and its height correspond to Eadd

N

[42]. Figure adapted from Reference [42] with minor changes.

gates are used as the starting voltage to calculate ϵ0N in Eq. 3.13. Then with Eq. 3.13

a relationship as the following can be written,

µS = µD = µN

= µ0 = ϵ0N + Vc(N) .
(3.18)

We now add a bias voltage. Let us define a unitless quantity f , 1 ≥ f ≥ 0, and for

some bias VSD, V 0 − fVSD is applied to the drain, and V 0 + (1− f)VSD is applied to

the source. Experimentally, the value of f is usually 1/2. Following the discussion at

the beginning of this section, one has

µS = µ0 + e(1− f)VSD , (3.19)

µD = µ0 − efVSD . (3.20)

Following the definition of f and Eq. 3.13, at some plunger gate voltage Vpg,

µN = ϵ0N − e
[
αpg(Vpg − V 0

pg) + (1− f)αSVSD − fαDVSD
]
+ Vc(N) (3.21)

where αpg, αS, and αD are the lever arms of the plunger gate, the source, and the
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drain respectively. Next, consider the edge case where µS = µN . One can equate Eq.

3.19 with Eq. 3.21,

µ0 + e(1− f)VSD = ϵ0N − e
[
αpg(Vpg − V 0

pg) + (1− f)αSVSD − fαDVSD
]
+ Vc(N) .

(3.22)

Subtract Eq. 3.18 from Eq. 3.22, we obtain

Vpg − V 0
pg = − 1

αpg

[(1− f)αs − fαD + (1− f)]VSD . (3.23)

Therefore, for the edge case µS = µN , there is a linear relationship between Vpg and

VSD, which produces a straight line boundary when one plots the current as a function

of Vpg and VSD. This straight line, together with the line corresponding to µD = µN ,

and two lines coming from the N + 1 electron state corresponding to µS = µN+1 and

µD = µN+1, form a diamond shape area in which there is no current flow. Outside

the diamond area, there is current flow, as shown in Figure 3.4.

Let’s write down the equation for the other three lines. Similarly for the edge case

of µD = µN , equate Eq. 3.20 with Eq. 3.21 and subtract Eq. 3.18, one obtains

Vpg − V 0
pg = − 1

αpg

[(1− f)αs − fαD − f ]VSD . (3.24)

For the case where µS = µN+1, Eq. 3.21 is rewritten as

µN+1 = ϵ0N+1 − e
[
αpg(Vpg − V 0

pg) + (1− f)αSVSD − fαDVSD
]
+ Vc(N + 1) . (3.25)

Equate to Eq. 3.19 again we obtain

µ0+e(1−f)VSD = ϵ0N+1−e
[
αpg(Vpg − V 0

pg) + (1− f)αSVSD − fαDVSD
]
+Vc(N+1) .

(3.26)
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Again, subtracting Eq. 3.18 we obtain the linear relationship

Vpg−V 0
pg =

1

eαpg

(ϵ0N+1−ϵ0N+Vc(N+1)−Vc(N))− 1

αpg

[(1− f)αs − fαD + (1− f)]VSD .

(3.27)

A similar derivation for µD = µN+1 gives

Vpg − V 0
pg =

1

eαpg

(ϵ0N+1 − ϵ0N + Vc(N + 1)− Vc(N))− 1

αpg

[(1− f)αs − fαD − f ]VSD .

(3.28)

The lines corresponding to µS = µN and µD = µN+1 will intersect at some Vpg and

VSD. This corresponds to the apex of our diamond, illustrated by the hollow dot in

Figure 3.4. To find the height of the diamond’s apex, equate Eq. 3.23 and Eq. 3.28

to obtain

eVSD = ϵ0N+1 − ϵ0N + Vc(N + 1)− Vc(N) . (3.29)

Recall Eq. 3.14, this is equal to Eadd
N . Interestingly, this apex height is independent of

parameters f , αpg, αS, and αD. Therefore, the addition energy of the QD can be read

from the apex height of the bias voltage in the Coulomb diamond diagram (divided

by elementary charge). Therefore, from the experimentally measured diamond shown

in Figure 1.7, the addition energy is 47± 3meV.

3.4 Envelope Function Theory

To theoretically predict addition energy, the many-body Hamiltonian in Eq. 3.6 must

be solved. One typically proceeds in three steps. The first step is to solve the single-

particle states φi(r) and energies ϵi that appear in Eq. 3.6. The single-particle states

φi(r) form the basis functions of the field operators in Eq. 3.4 and 3.5. The second

step is to calculate the Coulomb integrals in Eq. 3.7. Finally, the third step is to

carry out exact diagonalization of the many-body Hamiltonian matrix formed by Eq.

3.6 with the single-particle basis set {φi}. In this section, we present the envelope
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function theory to solve the single-particle states, i.e. the first step of the theoretical

procedure. As stated in Chapter 1, we shall not use envelope function theory for our

work (see Chapter 4) since we wish to do first principles analysis, but it is a very

widely used and state-of-the-art single particle theory of semiconductor physics.

The non-interacting Hamiltonian in Eq. 3.2 can be rewritten in terms of Hp - for

the perfect crystal which we assume is solved, and a single particle potential U which

accounts for any perturbations to the perfect crystal. For the single impurity spin

qubits in Si, Hp is the Hamiltonian of the bulk Si; U is a 1/r-like Coulomb potential

in the hydrogenic model of the impurity atom. The non-interacting Schrödinger

equation is

[Hp + U(r)]Ψ(r) = EΨ(r) . (3.30)

Here, Hp gives the band structure of the crystal En(k) and the corresponding Bloch

wavefunctions ψnk(r) = eikrunk(r), where n labels the bands and k the momentum.

We expand the wavefunction Ψ(r) in Eq. 3.30 in terms of the Bloch wavefunctions

of the perfect crystal,

Ψ(r) =
∑
n,k

Fn(k)ψnk(r)

=
∑
n,k

Fn(k)e
ikrunk(r) .

(3.31)

Inserting this in Eq. 3.30,

∑
n,k

ψnk(r)[En(k)− E + U(r)]Fn(k) = 0 .

Multiply the above equation by ψn′k′(r) and integrate over r, we obtain

∑
n,k

[(En(k)− E)δnk,n′k′ + Unk,n′k′ ]Fn(k) = 0 (3.32)
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where Unk,n′k′ is the matrix element for the perturbation potential,

Unk,n′k′ =

∫
drψn′k′(r)U(r)ψnk(r) .

To proceed further, some assumptions are made[42]:

1. Assuming that the perturbing potential changes slowly on the scale of the crystal

lattice constant, i.e., U(q) is significant only for q ≤ π/a;

2. Assuming that the perturbation is small compared to the typical energy scale

in the semiconductor crystal, i.e. the band gap;

3. Assuming that the coefficients Fn(k) to have significant value only near some

band minimum km, e.g. the Γ-point where k = 0.

With these reasonable assumptions, it can be proved that the perturbation will not

mix states of different bands, and Unk,n′k′ ≃ U(k′ − k)δnn′ . The detailed derivations

can be found in Reference [42]. Eq. 3.32 can thus be written as,

∑
k

[(En(k)− E)δk,k′ + U(k− k′)]Fn(k) = 0 . (3.33)

Because only k that is near the band minimum is important, an approximation can

be made such that unk(r) ≃ u0k(r). Substitute this into Eq. 3.31,

Ψ(r) = u0k(r)
∑
k

Fn(k)e
ikr = u0k(r)Fn(r) (3.34)

where Fn(r) is the Fourier transform of Fn(k). Fn(r) is called the envelope function,

and is the key in the envelope function theory.

Using the approximation near the conduction band minimum and assuming a
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parabolic band dispersion there, namely

Ec(k) = Ec +
h̄2k2

2m∗

where Ec is the conduction band minimum and m∗ is the effective mass of electron.

Substituting this into Eq. 3.33, we obtain

h̄2k2

2m∗ Fc(k) +
∑
k′

U(k′ − k)Fc(k
′) = (E − Ec)Fc(k) . (3.35)

Fourier transform this equation to real space leads to,

[
− h̄2

2m∗∇
2 + Ec + U(r)

]
Fc(r) = EFc(r) . (3.36)

Eq. 3.36 is an effective Schrödinger equation for the envelop function, and the crystal

potential insideHp disappears but its effect is accounted for by the effective mass. The

potential in Eq. 3.36 is an effective potential Ec + U(r). This way, the Hamiltonian

of a perturbed crystal is transformed into a free particle Hamiltonian for the envelope

functions inside an effective potential.

This is especially useful for analyzing single impurity spin-qubits, because the per-

turbing potential is simply a 1/r Coulomb potential in the hydrogenic model of the

impurity atom. This way, the effective Schrödinger equation Eq. 3.36 becomes a hy-

drogen Hamiltonian with an effective mass which can be solved in closed form. Note

that the hydrogen-like problem, even with interactions, is well known [45]. There-

fore the many-body energies and the addition energy can be obtained by solving

this known problem. While theoretically useful, the envelope function theory for the

donor-QD relies on material parameters (e.g. effective mass) and assuming the im-

purity to be hydrogen-like, as well as other approximations mentioned above. As a

result, it predicts the addition energy of phosphorous single impurity is Si to be 29

meV [45], to be compared to the experimentally measured value of 47± 3 meV [38].
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3.5 Exact Diagonalization

Instead of using the hydrogenic model to deal with the single impurity atom in a

host material, we may use the exact diagonalization technique to solve the many-

body Hamiltonian in Eq. 3.6 [52]. In particular, we shall use the QTCAD spin-

qubit simulator [77] for our numerical calculations. The many-body Hamiltonian

is written in the basis set spanned by {φi(r)} defined in Section 3.1. To solve the

many-body Hamiltonian exactly, the basis set should in principle be complete. Exact

diagonalization is based on the assumption that by truncating the complete basis set

into a smaller set containing nstates states, the solution of the problem does not change

significantly. The validity of this assumption can be verified by increasing nstates and

checking the convergence of the solution. The result of such a convergence check will

be presented in Chapter 4.

Let’s truncate the basis set to {φi(r)} , i ∈ {1, ..., nstates}. Assume the degeneracy

of a basis state is ndegen, which for the spin qubits ndegen = 2 due to spin degeneracy.

The total number of single-particle basis states is then nstates×ndegen. Note that each

of the single-electron basis states can only be occupied by one electron, therefore the

maximum number of electrons is

Nmax = nstates × ndegen . (3.37)

Exact diagonalization can solve the many-body energies of a system with a maximum

electrons number of Nmax. However, to accurately calculate the energies of a system

with N electrons, a large number of Nmax >> N is required. The exact Nmax to

obtain an accurate result needs to be found with the convergence test.

To solve for the many-body Hamiltonian, one first breaks it down to Nmax + 1

many-body subspace, each containing N electrons with N ∈ {0, 1, ..., Nmax}. The

many-body basis set can then be written in the particle-number representation for

the N electron subspace. This representation writes a many-body basis state as a
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binary string with nstates × ndegen digits, and the i-th digit is zero (one) if the i-th

single-electron state is empty (occupied). This is under the constraint that the number

of occupied states should be equal to N . For example, if there are nstates = 2 states

in the original basis state, and the system has spin degeneracy such that ndegen = 2,

in the particle-number representation a state is a string of 2 × 2 = 4 digits. For the

N = 2 electron many-body subspace, for example, the many-body basis set can be

written as

{|1100⟩, |1010⟩, |1001⟩, |0110⟩, |0101⟩, |0011⟩} , (3.38)

The many-body basis state can be defined with fermionic creation operators ĉ†i that

create an electron in the i-th single-electron basis state. For example,

|1100⟩ ≡ ĉ†1ĉ
†
2|0⟩ (3.39)

where |0⟩ is the vacuum state with no electron. Now, suppose one is given a basis set

{φi(r)} which are the solutions of the single particle Hamiltonian in Eq. 3.2. If one

chooses nstates of the states in this basis set with degeneracy ndegen, and the expectation

value of the non-interacting Hamiltonian is {ϵi}, the many-body Hamiltonian Eq. 3.6

can be solved by partitioning it into Nmax+1 subspace each with the many-body basis

set defined above (i.e. examples in Eq. 3.38, 3.39). After evaluating the Coulomb

integral in Eq. 3.7, the many-body Hamiltonian can be written in a matrix form with

the many-body basis states. This many-body Hamiltonian matrix is block diagonal

due to the partition into many-body subspace. Finally, this matrix eigenvalue problem

can be solved numerically to obtain the many-body energies which give the addition

energy.

While very accurate, the disadvantage of exact diagonalization is also obvious: it

is only computationally tractable for a system with a very small number of electrons.

If one wishes to exactly diagonalize a system with a large number of electrons, the

many-body basis set, as seen in the example in Eq. 3.38, would grow exponentially.

For a QD, this method is computationally feasible with roughly 10 electrons or less.
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Luckily, for our donor spin-qubit, the calculation of the first addition energy Eadd
1

requires exact diagonalization of a many-body Hamiltonian of only two electrons.

The computational complexity is not an issue since only a few single-particle basis

functions suffice to converge the result, as will be presented in Chapter 4. The ad-

vantage of this method is also obvious. It solves the Hamiltonian exactly, taking

care of all Coulomb interactions and exchange-correlation energy exactly. There is no

mean-field approximation for the interactions of the electrons. For quantities such as

the addition energy which comes from interactions, exact diagonalization gives very

accurate results.

3.6 The QTCAD spin-qubit simulator

Having reduced the many-body Hamiltonian Eq. 3.6 into a matrix form, we carry

out exact diagonalization using the QTCAD spin-qubit simulator [77]. QTCAD is

a finite-element-method (FEM) simulation platform for quantum technology [77]. It

is mainly used to aid the fabrication process of QD based spin-qubits. QTCAD has

an exact diagonalization module that calculates the many-body physics of systems

having a few electrons.

The original workflow of QTCAD is to create a 3D numerical mesh and define an

external potential for the QD, the QTCAD simulator solves the electrostatic prop-

erties self-consistently by the Poisson and Schrödinger equations within the envelope

function theory. Assuming that the envelope functions are good representations of the

QD states, these functions are taken as the single-electron basis set described in Sec-

tion 3.5 to perform exact diagonalization. One obtains the many-body energies and

other many-body properties [78][79]. In Chap. 4, we shall use QTCAD to perform

exact diagonalization calculations of the donor-QD spin-qubit, in which we employed

its exact diagonalization module without doing the envelope function calculation.



56 3 Addition Energy And Exact Diagonalization

3.7 Summary

In this chapter, we showed that solving the many-body Hamiltonian of electrons is

essential for calculating the addition energy in QD. The addition energy is shown

to be related to the experimentally measurable Coulomb diamonds in the sequential

tunneling transport through the QD which is dominated by Coulomb blockade. A

theory that is widely used to solve the single-particle states in semiconductors is the

envelope function theory, and these single-particle states serve as the basis functions

for exactly diagonalizing the many-body Hamiltonian. Finally, the QTCAD spin-

qubit simulator which we shall employ to do the exact diagonalization is very briefly

introduced.

In the next Chapter, we shall analyze the single donor spin-qubit in Si. Instead of

solving the single-particle states by envelope function theory, we shall solve them by

DFT so that the material properties of the donor-QD are included at the atomic level.

Afterward, we exactly diagonalize the many-body Hamiltonian using the QTCAD

simulator to predict the addition energy.
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Addition Energy of Single Donor QD in Si

We have so far established a theoretical approach for first principles prediction of

addition energy of single donor quantum dots. In this Chapter we shall investigate

the experimental system [38] of a single P dopant in bulk Si. Similar single atom QDs

were fabricated using As atoms [39] as well. In a recent work [80], a large database

with over 50,000 single-atom or few-atom impurities in bulk Si, diamond and SiC, was

theoretically proposed for applications in quantum technology, providing a large and

exciting material platform for practical implementation of spin-qubits in the atomic

limit. We select P-in-Si for our investigation since experimental transport measure-

ments were accurately carried out for this system [38]. In particular, the first addition

energy in the transport measurements was reported [38] to be 47±3 meV (see Figure

1.7 in Chapter 1). This value was argued to be consistent with the ionization energy

of P atoms in Si which were measured by optical techniques a long time ago [45].

Using the first principles approach, here we attempt to predict the addition energy

to directly compare with the measured data without phenomenological parameters.

Our calculation proceeds in two steps, as shown in Figure 4.1. First, we determine

the P impurity states in the crystal fields of bulk Si using DFT. A surprising result

is that unless the Si supercell is very large, > 10, 000 atoms, the impurity states are

not accurately determined due to the finite-size effect. We monitored the finite-size

effect by calculating the addition energy versus the supercell size until the results

converges to a stable value. The technical difficulty of handling a huge number of

atoms in DFT is solved by the RESCU method [51] reviewed in Chapter 2. Second,

57
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taking the localized impurity states obtained by DFT as the basis set, we carry out

many-body analysis by exact diagonalization using the QTCAD method reviewed

in Chapter 3, which gives the addition energy of the single P-donor QD. Note that

the many-body theory can use any basis set, for example, the Gaussian functions,

finite-difference grids, planewaves, etc., but using the DFT states as the basis has

the great advantage of automatically including the detailed ground state properties

of the material system without resorting on any phenomenological parameters. Our

first principles theory and simulation predicts the addition energy to be 48.9 meV for

the P-in-Si system, in very good agreement with the measured data.

4.1 DFT analysis of the impurity states

In our DFT analysis using the RESCU package [51], the exchange-correlation is

treated at the GGA level (see Section 2.5.2), the atomic cores are defined by the

Trottier-Martin (TM) norm-conserving pseudopotentials (Section 2.7), and the LCAO

basis is at the level of double-zeta with polarized (DZP). For the large supercells (see

below), it is necessary to use the LCAO basis to construct a Hilbert subspace for

solving the eigenvalue problem of Kohn-Sham equations. We used a Pulay mixing

method [81] for the self-consistent DFT iteration. The mixing determines how charge

density ρ(r) is updated after each self-consistent step, which is necessary to overcome

numerical instabilities due to charge sloshing. In Pulay mixing, a mixing history

of six steps was used which we found to be a good compromise between computer

memory consumption and numerical stability. The real space potential (i.e. Hartree)

in the Kohn-Sham Hamiltonian Eq. 2.16 in Chapter 2 is calculated in a real space

cubic mesh of 2063 which we tested to be fine enough for all the systems investigated.

Finally, due to the large supercells, only the Γ-point is sampled in the Brillouin zone

during the DFT self-consistent iterations which is justified in Section 2.4. After the

Kohn-Sham Hamiltonian is converged, a full band structure can be obtained.

The P-in-Si system is a cubic supercell of Si consisting of N atoms where N ranges
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Figure 4.1: An illustration of the workflow of our method.
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Figure 4.2: The P-in-Si cubic supercell with 10648 atoms used in the DFT calculation. A 3D view
of the supercell is shown in this figure, and a zoomed view in the center box is expanded in the inset.
The Si atom in the center of the supercell is replaced by a phosphorous impurity atom, indicated by
the yellow atom in the illustration. All others are silicon atoms. This supercell has a side length of
5.97 nm.

from a few hundred to 10, 648 atoms. The Si atom in the center of the supercell is

replaced by a phosphorous impurity atom. A 3D view of the supercell is shown in

Figure 4.2, and a zoomed view in the center box is expanded in the inset. The

atom marked yellow in the supercell is the phosphorous atom, all others are silicon

atoms. For the pristine Si lattice, we use the experimentally known lattice constant

of 5.429 angstroms. When a P impurity is present, in principle a structure relaxation

is desired. A previous work showed [82] that the structural relaxation gave slightly

less than 1% change in the formation energy for a Si supercell with 431 Si atoms

and one P impurity. Since we are working with much larger systems, we shall use

the unrelaxed structure for our DFT calculations and ignore the small effects due to

relaxation.

The DFT calculation was carried out by the Béluga computer cluster of the Digital

Research Alliance of Canada. We used 10 computation nodes each with 40 computing

cores and 186G of memory. The DFT self-consistent calculation of the largest system,

10, 648 atoms, required 72 wall-clock hours and 23 self-consistent steps to converge.

Afterward, we obtain the wave functions of the Kohn-Sham states at the Γ-point.
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As discussed in Section 3.5 and 4.1, we need to use the impurity states as the

basis set for exact diagonalization calculation of the many-body Hamiltonian Eq. 3.6

in Chapter 3. The impurity states are solutions of the Kohn-Sham Hamiltonian Eq.

2.18 in Chapter 2 and localized around the impurity. As discussed in Section 3.4, the

impurity states have energies near the conduction band minimum. As an example,

it can be shown that the 1s impurity state (in a hydrogenic impurity model) in

the envelope function approach for conduction electrons is at the six-fold degenerate

conduction band minimum of Si. The degeneracy is lifted and split into a singlet A1

state with the lowest energy, a triplet T2 state and a doublet E-state [46][83]. The

lowest energy A1 state is most important for our problem, since it is the state in which

the first and second conduction electron most likely occupy, and the first addition

energy is mostly contributed from the interactions of the first and second conduction

electron. For very large supercell sizes, the Brillouin zone shrinks to essentially zero,

i.e. to the Γ-point [84]. Therefore, we may inspect the Kohn-Sham states near

the conduction band minimum at the Γ-point. In the following discussion, we shall

continue to use A1, T2 to indicate impurity states even though they will come from

DFT calculations. For the P-in-Si system, the Fermi level is calculated to be at −3.3

eV and the energy of the A1 state is 0.0148 eV above the Fermi level. The probability

density of the A1 state, i.e. the absolute square of the Kohn-Sham wavefunction

|ψA1|2 is plotted in Figure 4.3 for the (001) and (011) views. The yellow surface is the

isosurface for the probability density of 7.3× 10−13 in atomic units, i.e. the energies

are in Hartree and the lengths are in Bohr. A two-dimensional slice of the probability

density through the phosphorous impurity atom in the [100]-[010] plane is shown

in Figure 4.4. Indeed, the A1 state is localized around the phosphorous impurity

atom, spreading around 2-3 nanometers around the impurity, similar to other DFT

calculated results [84].

After visually inspecting the Kohn-Sham states to find the localized ones surround-

ing the P impurity, we further confirm them quantitatively. Since the atomic orbital

of the P impurity must contribute more significantly to the impurity state than those
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from the Si atoms, using Eq. 2.47 in Chapter 2, the coefficients
∑

µ,I=P atom
ciIµ in Eq.

2.47 must be significant. As the Kohn-Sham states are normalized,
∑
Iµ

(
ciIµ

)2
= 1, and

for the largest system there are more than 10000 atoms, we thus practically define

that an atomic orbital is significant if

cP =
∑

µ,I=P atom

(
ciIµ

)2 ≫ 10−4. (4.1)

This way, we find that the A1 state identified above indeed has a high value of

cP = 0.0092, i.e. the atomic orbitals of the P impurity contribute to this Kohn-Sham

state most significantly, much larger than all other atomic orbitals. Following the

same procedure, we identified other impurity states at higher energies: 0.052, 0.0804,

and 0.133 eV above the Fermi level. The (001) views of two such impurity states are

shown in Figure 4.5 at energies 0.052 and 0.133 eV, respectively. Since the Kohn-

Sham state at energy of 0.052 eV is found to be 3-fold degenerate, we assign them

to be the T2 states discussed above. Other Kohn-Sham states have larger mixing of

the atomic orbitals of P and Si atoms, and could not be unambiguously identified as

impurity states. Nevertheless, as presented in the next Section, the Kohn-Sham state

A1 is of the utmost importance to the addition energy, while states with energies

above T2 have a negligible contribution.

4.2 Addition Energy

As presented in the last section, we used the RESCU electronic package [51] to solve

Kohn-Sham wavefunctions of the P-impurity states, which serve as the single-particle

basis set for the many-body calculation of the addition energy of the single P-impurity

QD in Si. To this end, we apply the QTCAD spin-qubit simulation package [77] to

exactly diagonalize the many-body Hamiltonian Eq. 3.6 in Chapter 3. The combined

RESCU/QTCAD approach provides an atomistic and first principles view of the

electron-electron interactions in the P-in-Si system.
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Figure 4.3: The probability density |ψA1
|2 of the A1 state of a N = 10648 supercell plotted in

VESTA. The yellow surface is the isosurface for the probability of 7.3 × 10−13 in atomic units.
Figure (a) is a (001) view. Figure (b) is the (011) view, in which the supercell is rotated 45 degrees
along the x-axis from the perspective of (a).

Figure 4.4: A two dimensional slice of the probability density |ψA1 |2 slicing through the phosphorous
impurity atom in the [100]-[010] plane in atomic units.
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Figure 4.5: The (001) view of the probability density |ψ|2 of two chosen impurity states of a N =
10648 supercell plotted in VESTA. The yellow surfaces are the isosurface for the probability of
7.3 × 10−13 in atomic units. The chosen states are: (a). One of the T2 impurity states with an
energy of 0.052 eV above the Fermi level (b). An impurity state with an energy of 0.133 eV above
the Fermi level.

To proceed with the RESCU/QTCAD combined analysis, two transformations

of data must be done. First, a transformation of physical units is necessary since

RESCU used atomic units (a.u.) while QTCAD uses SI units. Apart from simple

relationships for energy and length between a.u. and SI, the wavefunctions receive a

transformation factor. Noting that the wavefunctions are normalized,

∫
C

ψ(r)†ψ(r)dr = 1

where C is supercell. Therefore, going from a.u. to SI units, a multiplicative factor

arenorm is required to transform the wavefunctions:

arenorm =

√
1

a30

where a0 is the Bohr radius

a0 =
4πε0h̄

2

e2me

.

Second, while the QTCAD package is a finite-element method (FEM) solver which
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usually requires a 3D FEM mesh, the wavefunctions from the RESCU package are

stored in a 3D hyperrectangle mesh. To this end, we applied the open-source mesh

generator GMSH to create a 3D hyperrectangle mesh with 2063 nodes for the QTCAD

solver to receive the P-impurity wavefunctions from RESCU.

In many-body theory by exact diagonalization, as discussed in Section 3.5, the

number of basis functions is critical for obtaining accurate results. The size of the

many-body basis set grows exponentially with the increase of the number of electrons

and becomes the numerically limiting factor of any method involving exact diagonal-

ization. Fortunately, for QD-based spin-qubits, only a very small number of electrons

- one to a few, is confined in the QD. This allows one to achieve accurate results

with a small number of basis functions nstates. Practically, we increase nstates until the

predicted addition energy is converged. For nstates = 1, only the A1 impurity state is

used (a total of two states due to the spin degeneracy). For nstates = 4, the A1 and T2

impurity states discussed above, are included in the basis (total of eight states due to

spin degeneracy). For the largest Si supercell with N = 10648 atoms, Figure 4.6 plots

the calculated addition energy versus nstates. We observe that starting from nstates = 2,

the addition energy quickly converges to a stable value. Here we are focusing on the

first addition energy which is mainly contributed from the interactions between the

first and second conduction electron (see discussions in Section 3.2), as such it is the

single particle states with the lowest energies that dominate the interactions.

Figure 4.6 shows that for the P-in-Si supercell with N = 10648 atoms, the cal-

culated first addition energy converges to a value of Eadd
1 = 48.9 meV. This is in

excellent consistency to the corresponding experimental result [38] of 47 ± 3 meV,

obtained by transport measurements of the P-in-Si single donor transistor. The cal-

culated value of Eadd
1 may also be compared to the optical spectroscopy data [45] of

impurities in Si. The optical data gives the binding energy of the first electron in the

P-impurity which is essentially µ1 of Eq. 3.9 in Chapter 3. However, the quantity µ2

of Eq. 3.9 is unknown from the optical data but it could be obtained by fitting to
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Figure 4.6: The resulting addition energy in meV is plotted against nstates. One can see that after
nstates = 2, the resulting addition energy changes very little with increasing nstates, signifying the
convergence. The converged addition energy is 48.9 meV.

the theoretical results of envelope function theory, leading to a value of ∼ 44 meV via

Eq. 3.9. While the optical analysis is not from atomic first principles, it does produce

an addition energy consistent with the direct transport measurement and our first

principles modeling.

So far, we presented the predicted addition energy Eadd
1 = 48.9 meV, for the single

P-in-Si system with a large supercell having N = 10648 atoms. If one could make

accurate predictions with smaller N , a very significant reduction of computation cost

would result since the eigenvalue solver in RESCU scales [51] in the range of O(N2.3)

to O(N3). This is the issue of the finite-size effect. This effect was studied before for

structural properties such as the formation energy of single P dopant in bulk Si [82],

where the formation energy changes roughly 2.5% when N increases from 53 to 431,

seems not extremely significant. However, structural properties are more related to

local atomic interactions near the impurity and as long as the periodic images of the

P dopant in the periodic supercells do not interact, the size of the supercell is large

enough. For our problem, on the other hand, the spatial extension of the impurity
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states plays a critical role in the value of the addition energy. In other words, the

finite-size effect limits the spatial size of the impurity states, making them more

localized than they should be, which in turn increases the Coulomb energy of Eq. 3.7

in Chapter 3, leading to a much larger addition energy. The finite-size effect can be

estimated from the point of view of the effective Bohr radius of the electron in the

material, as discussed in Section 3.4. The electron effective mass of Si is m = 0.26me,

and the relative permittivity of Si is ε = 11.7, using these parameters in a hydrogenic

atomic model of the Bohr radius, aB = ε4πε0h̄
2

e2m
, we obtain aB = 2.385 nm. A more

accurate estimate from first principles calculation [84] gave aB = 1.8 nm. Either

way, it suggests that to avoid a finite-size effect on the impurity wavefunctions, the

supercell should be much larger than ∼ 2nm. With N = 10648 atoms, the linear

supercell size is 5.97 nm.

Figure 4.7 shows a (001) view of an impurity state with a supercell of size N = 576.

Note that the isosurface of the probability density in this figure is 8.6× 10−11 in the

atomic unit, which is much larger than the isosurface in Figure 4.3, which is 7.3×10−13.

This indicates that it is a much more localized impurity state compared to those we

found in a N = 10648 supercell, agreeing with our discussion above. Figure 4.8 plots

the calculated addition energy versus the supercell size for the P-in-Si system. The

results are striking. With N = 576 atoms which are already quite large from the DFT

point of view, the addition energy was found to be 160 meV which is more than three

times larger than the experimental value. Increasing N to 4000, the addition energy

reduces to ∼ 110 meV which is still more than twice the experimental value. When

N is further increased to 10648 atoms, the addition energy essentially converges to

the experimental range [38] of 47 ± 3 meV. We conclude that the finite-size effect is

very significant for predicting the addition energies of single impurity QD.

The finite-size effect also gives an indication of the optimal distance between two

non-interacting donor QD spin-qubits. On one hand, a large addition energy is un-

wanted for a spin qubit due to the requirement of a large current during spin transport
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Figure 4.7: The (001) view of probability density |ψ|2 of an impurity state of a N = 576 supercell
plotted in VESTA. The yellow surface is the isosurface for the probability of 8.6× 10−11 in atomic
units. This impurity state is more localized than impurity states of a N = 10648 supercell, seen in
Figure 4.3.

Figure 4.8: The size of our supercell (atom number in the supercell) against the resulting addition
energy in meV obtained from our method. A converging trend is obvious.
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[49], on the other hand, the distance between nearby spin qubits should be kept small

in order to minimize system size when scaling up. The periodicity of the P donor

in the DFT calculation in our investigation is physically identical to experimentally

placing of an array of P donors in making of a multi qubit quantum computer. The

above discussion concludes that the minimal distance for P donors to be placed next

to each other without increasing the addition energy is around 5.97 nm.

4.3 Summary

In this chapter, we present the calculated addition energy of the P-in-Si spin-qubit.

Our approach is from atomistic first principles by combining the Kohn-Sham DFT

method RESCU [51] and the many-body solver in the QTCAD qubit simulator [77].

In general, for practical calculations the first principles analysis of spin-qubit proceeds

in three steps. First, for a given device supercell (e.g. P-in-Si), the single-particle

Kohn-Sham eigenstates are self-consistently determined by DFT, as discussed in Sec-

tion 4.1. The RESCU method is critical for this step as it can routinely solve super-

cells with a very large number of atoms. Second, the Kohn-Sham eigenstates with

low eigen-energies identified to be impurity states, are selected as the basis set for

the exact diagonalization calculation. For the particular P-in-Si device, the process

of identifying the P impurity states is discussed in Section 4.1, where the A1 and T2

impurity states are identified by calculating the expansion coefficients of the atomic

orbitals of the P-donor in the Kohn-Sham eigenstates. The identification of the impu-

rity states is also assisted by visual inspection of the spatial localization of the states.

Third, the selected single-particle basis set is used to solve the many-body interaction

energy by exact diagonalization using the QTCAD simulator. An important issue is

to make sure that the number of basis functions in the basis set converges the many-

body interaction energy. For the P-in-Si device, eight basis functions (nstates = 4)

were found adequate to converge the first addition energy.

In typical DFT calculations of structural and electronic properties of crystal solids,
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a supercell containing a few tens to a few hundred atoms suffices to generate reason-

able results. This size is commensurate with the ability of computational algorithms

in almost all DFT codes. Surprisingly, the addition energy we attempt to determine

is very sensitive to the finite-size effect of the DFT supercell. For the P-in-Si device,

we found that supercells with more than 10, 000 atoms are necessary to obtain accu-

rate predictions of the addition energy. This is due to the large effective Bohr radius

of the electron in the Si crystal field. Namely, the larger the effective electron Bohr

radius, the larger the supercell one must use for the DFT calculation of the impurity

states.

Finally, with the large supercells and proper identifications of the donor impurity

states, our first principles calculation predicts the first addition energy of 48.9 meV

for the P-in-Si device, in very good agreement with the measured data of 47 ± 3

meV, see Section 4.2. This demonstrates that the combined modeling method of

RESCU/QTCAD quantitatively captures both the materials physics and the many-

body physics, reaching the required accuracy for analyzing donor-QD based spin-

qubits. Since this first principles method is general, we expect its broad applications

as a designer’s tool for many other spin-qubit devices in the atomic limit.
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Conclusion

Quantum technology has attracted great attention in academic institutions, govern-

ment labs and policy makers, as well as industry, due to its potential to exploit

quantum physics of the superposition principle and entanglement for unprecedented

application power. The basic unit in quantum technology is the qubit which is a con-

trollable quantum two-level system. While there are numerous physical realizations

of two-level quantum systems, a very popular one is the spin-qubit implemented via

spin-1
2

particles such as an electron, where the spin-up and spin-down states form the

two-level quantum structure. So far, spin-qubit is mostly realized in gated semicon-

ductor QDs which are artificial atoms [18] that trap one of a few electrons into the

localized (quasi-) bound states inside the QD. In the device operation, an electron

tunnel in or out of the gated QD in the sequential tunneling regime [17] dominated

by the Coulomb blockade effect where the charging energy or the addition energy is

an important operational parameter of the device.

The gated semiconductor QD is rather large, in the scale of tens to a few hundred

nanometers [18]. Since fabricating a large number of such identical gated QDs appears

to be difficult to do, proposals have been made for using a single impurity atom as the

QD hosted by Si bulk. Using Si as the host material for such donor-QD is extremely

important, since the Si material can be purified by isotope effect to have no nuclear

spin, thereby removing a serious de-coherence effect due to the hyperfine interaction

between the donor-QD and the background nuclear spins. To this end, the first donor-

QD was due to Kane [5] who proposed to use the nuclear spin of the phosphor donor

71
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atom as the spin-qubits. A better approach may be to use the electron and hole spin

of the donor atom as the two-level spin-qubit. In donor-QD spin-qubit, instead of

using an artificial atom (QD) to host the spin, one uses a real impurity atom to host

it. The donor atom is both small and reproducible due to being simply an atom. So

far, several experimental fabrications of donor-QD spin-qubits have been achieved,

most notably using phosphorous and arsenic as the donor atom.

In a working donor spin-qubit, the electrons tunnel into the qubit and are trapped

in the impurity states one by one through a sequential tunneling process. In this

tunneling regime, the addition energy measures the energy required to add one more

electron into the donor-QD which is contributed by the interactions of electrons in the

impurity states. The addition energy indicates whether or not one has a working spin-

qubit, and whether a donor is in fact placed correctly in the Si lattice. Furthermore,

this value is easy to measure, by plotting the differential conductance as a function

of bias and gate voltages. Experimentally, once the Coulomb diamond diagram is

measured, the addition energy is simply the height of the apex of this diagram. Due to

its importance, addition energy is measured in essentially all experimentally fabricated

spin-qubits. A theoretical calculation of the addition energy is therefore important for

a designing tool of spin-qubit hardware. Theoretically, the most widely used method

to calculate the addition energy is the envelope function theory, which treats the

spin-qubit as a hydrogenic atom by neglecting the background silicon potential and

treating the donor potential in a simple 1/r form. These approximations lead to errors

in the calculated results. Another method is the tight binding model which relies on

parameterized Hamiltonian matrix. There have been good predictions of the addition

energy using the tight binding method if careful parameterization of the Hamiltonian

is done which is a very tedious task that may not even work in the end. Clearly,

a method that is both accurate and not relies on phenomenological parameters is

needed.

Therefore, it is the purpose of this work to establish and test a theoretical frame-
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work to quantitatively predict properties of solid-state spin-qubits from atomistic

first principles without any phenomenological parameter. As the first step in this

endeavor and without losing generality, we choose the experimentally realized single

impurity spin-qubit[38], namely the P-in-Si device as the target of our investigation,

and focus on predicting the first addition energy which is a very important spin-qubit

property, to directly compare with the measured data. Our first principles theoretical

framework encompasses two major techniques: a large-scale Kohn-Sham DFT method

(RESCU) [51] to deal with the material and single-particle electronic properties of the

device, and a spin-qubit simulator (QTCAD) [77] that takes the Kohn-Sham states

as the basis set to accurately predict many-body physics by exact diagonalization.

Either of these techniques is the leading tool in their respective research field and

combined, we hope to eventually innovate a designer’s tool for quantum technology

fabrication. Indeed, the combined analysis of the P-in-Si device predicts the first

addition energy in excellent quantitative agreement with the measured data.

The theoretical background of DFT and its practical implementation were dis-

cussed in Chapter 2. It is a first principles method for calculating the electronic

structure of atomic systems by writing the many-body Hamiltonian as a single-particle

non-linear effective Schrödinger equation, the Kohn-Sham equation. The eigenstates

of the Kohn-Sham equation are the Kohn-Sham states. DFT is a mean-field the-

ory in which the interactions of charges are factored into an effective potential. The

Kohn-Sham equation can be solved self-consistently for periodic systems (crystals)

and finite systems (molecules) with or without spin degrees of freedom. The effective

potential in the Kohn-Sham equation includes an external potential term that comes

from the nuclei of the atoms, a Hartree potential term that accounts for the classical

Coulomb interaction, and an exchange-correlation potential for the quantum part of

the interactions. The exchange-correlation potential is unable to be written exactly,

and is approximated using a generalized gradient approximation method in our work.

The external potential from the nucleus and the core electrons is approximated using

a pseudopotential. In our work, the Kohn-Sham Hamiltonian is reduced to a matrix
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form using a linear combination of atomic orbital (LCAO) basis set. Our numerical

solutions of the Kohn-Sham equation are realized by the RESCU electronic package

[51] which can handle a supercell with a very large number of atoms.

Once the impurity states are determined by DFT, they are used as the basis set

for calculating the many-body interaction of the donor-QD. As discussed in Chapter

3, the many-body eigen-energies and eigen-functions are obtained by exact diagonal-

ization. The electrochemical potential and the addition energy of the donor-QD are

obtained from the many-body energies. The relationship between the electrochemical

potential and the sequential tunneling is also discussed, and from there one obtains

the equality between the addition energy and the apex height of the Coulomb dia-

mond diagram. In the exact diagonalization of the many-body Hamiltonian, the size

of the basis set is important. If the size of the basis is too small, the results are

not accurate. If the basis is too large, the computational cost grows exponentially.

Fortunately, for the specific problem of spin-qubits, one is concerned with a very

small number of electrons in the QD and accurate results can be obtained with a very

modest-sized basis set. For the P-in-Si device, a few impurity states from DFT as

the basis set suffices to give converged many-body states. In our work, the apply the

QTCAD spin-qubit simulator to conduct the exact diagonalization of the many-body

Hamiltonian.

In Chapter 4, we apply the combined RESCU/QTCAD framework to investigate

the first addition energy of the P-in-Si device. Due to the large effective Bohr radius

of electrons in the Si host, very large supercells, containing more than 10,000 atoms,

must be used to calculate the impurity states. The A1 and T2 impurity states are

identified from the Kohn-Sham eigenstates at the conduction band minima, which are

used as the basis set in the many-body exact diagonalization calculation. We predict

the first addition energy of the P-in-Si device to be converged at 48.9 meV, in good

agreement with experimental values of 47±3 meV. This concludes that by combining

DFT and exact diagonalization, we reached the desired accuracy to predict addition
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energy in donor spin qubits.

One of the advantages of our combined RESCU/QTCAD framework is its high

accuracy in predicting the addition energy. The accuracy depends on the ability to

find accurate impurity states and address the strong interactions of electrons in the

QD. Another advantage is that our method is from atomistic first principles, requiring

no empirical data or parameter fitting. As such, a broad range of future investigations

for different spin-qubits are possible. For instance, experimentally it has been possible

to use As impurity as the donor-QD [33] where not only a single As donor but also

regular arrays of such donor-QDs can be fabricated. There appear to be reasons that

the As impurities are chemically easier to be placed with very high probability at

regular locations in the Si lattice, than the P impurities [39]. So far, the addition

energy of As-in-Si has not been measured yet, therefore a theoretical prediction prior

to the measurement will be very useful. Another interesting problem, which has been

achieved experimentally already [32], is to use a small cluster of several impurity atoms

as the spin-qubit. In addition, as mentioned above, in Reference [80], over 50,000

different impurity atoms or small clusters of them, in bulk Si, have been identified

theoretically and proposed to be useful for quantum technology. Our theoretical

framework can be applied to investigate this huge and very exciting material phase

space to find the best donor-QD based spin-qubit structures. Finally, a very important

next step is to investigate systems with two or more donor-QD spin-qubits.



Bibliography

[1] Inside quantum technology canada. Canada’s Quantum Computing Event

Ecosystems for Quantum Readiness, June 2023.

[2] Andrew Steane. Quantum computing. Reports on Progress in Physics, 61(2):117–

173, 1998.

[3] H. J. Kimble. The quantum internet. Nature, 453(7198):1023–1030, 2008.

[4] Dong Li, Bryan T. Gard, Yang Gao, Chun-Hua Yuan, Weiping Zhang, Hwang

Lee, and Jonathan P. Dowling. Phase sensitivity at the heisenberg limit in an

su(1,1) interferometer via parity detection. Physical Review A, 94(6), 2016.

[5] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature,

393(6681):133–137, 1998.

[6] Charles H. Bennett and David P. DiVincenzo. Quantum information and com-

putation. Nature, 404(6775):247–255, 2000.

[7] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–

1509, 1997.

[8] Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack.

Physical Review Letters, 79(2):325–328, 1997.

[9] Richard P. Feynman. Simulating physics with computers. International Journal

of Theoretical Physics, 21(6-7):467–488, 1982.

[10] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.

O’Brien. Quantum computers. Nature, 464(7285):45–53, 2010.

76



BIBLIOGRAPHY 77

[11] Paul Benioff. The computer as a physical system: A microscopic quantum me-

chanical hamiltonian model of computers as represented by turing machines.

Journal of Statistical Physics, 22(5):563–591, 1980.

[12] David Deutsch. Quantum theory, the church–turing principle and the universal

quantum computer. Proceedings of the Royal Society of London. A. Mathematical

and Physical Sciences, 400(1818):97–117, 1985.

[13] Mark Alan Horowitz and Emily Grumbling. Quantum Computing: Progress and

Prospects. the National Academies Press, 2019.

[14] John Clarke and Frank K. Wilhelm. Superconducting quantum bits. Nature,

453(7198):1031–1042, 2008.

[15] Nicolai Friis, Oliver Marty, Christine Maier, Cornelius Hempel, Milan Holzäpfel,

Petar Jurcevic, Martin B. Plenio, Marcus Huber, Christian Roos, Rainer Blatt,

and et al. Observation of entangled states of a fully controlled 20-qubit system.

Physical Review X, 8(2), 2018.

[16] Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys,

Georges-Olivier Reymond, and Christophe Jurczak. Quantum computing with

neutral atoms. Quantum, 4:327, 2020.

[17] Floris A. Zwanenburg, Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons,

Lloyd C. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith, and

Mark A. Eriksson. Silicon quantum electronics. Reviews of Modern Physics,

85(3):961–1019, 2013.

[18] John J. Morton, Dane R. McCamey, Mark A. Eriksson, and Stephen A. Lyon.

Embracing the quantum limit in silicon computing. Nature, 479(7373):345–353,

2011.

[19] Silicon quantum computing: https://sqc.com.au/.

[20] Quantum motion: https://quantummotion.tech/.



78 BIBLIOGRAPHY

[21] Charles P. Slichter. Principles of magnetic resonance. Springer, 1992.

[22] V. Mazzocchi, P.G. Sennikov, A.D. Bulanov, M.F. Churbanov, B. Bertrand,

L. Hutin, J.P. Barnes, M.N. Drozdov, J.M. Hartmann, and M. Sanquer.

99.992scale integration of silicon spin qubits. Journal of Crystal Growth, 509:1–7,

2019.

[23] Conyers Herring and Michael Flicker. Asymptotic exchange coupling of two

hydrogen atoms. Physical Review, 134(2A), 1964.

[24] G. Feher and E. A. Gere. Electron spin resonance experiments on donors in

silicon. ii. electron spin relaxation effects. Physical Review, 114(5):1245–1256,

1959.

[25] Daniel Loss and David P. DiVincenzo. Quantum computation with quantum

dots. Physical Review A, 57(1):120–126, 1998.

[26] Guang-Wei Deng, Nan Xu, and Wei-Jie Li. Gate-defined quantum dots: Funda-

mentals and applications. Quantum Dot Optoelectronic Devices, pages 107–133,

2020.

[27] L. P. Rokhinson, L. J. Guo, S. Y. Chou, and D. C. Tsui. Double-dot charge trans-

port in si single-electron/hole transistors. Applied Physics Letters, 76(12):1591–

1593, 2000.

[28] Arthur Schweiger and Gunnar Jeschke. Principles of Pulse Electron Paramag-

netic Resonance. Oxford Univ. Press, 2005.

[29] Lieven M. Vandersypen and Mark A. Eriksson. Quantum computing with semi-

conductor spins. Physics Today, 72(8):38–45, 2019.

[30] Rutger Vrijen, Eli Yablonovitch, Kang Wang, Hong Wen Jiang, Alex Balandin,

Vwani Roychowdhury, Tal Mor, and David DiVincenzo. Electron-spin-resonance

transistors for quantum computing in silicon-germanium heterostructures. Phys-

ical Review A, 62(1), 2000.



BIBLIOGRAPHY 79

[31] L. C. Hollenberg, A. D. Greentree, A. G. Fowler, and C. J. Wellard. Two-

dimensional architectures for donor-based quantum computing. Physical Review

B, 74(4), 2006.

[32] Y. He, S. K. Gorman, D. Keith, L. Kranz, J. G. Keizer, and M. Y. Sim-

mons. A two-qubit gate between phosphorus donor electrons in silicon. Nature,

571(7765):371–375, 2019.

[33] Taylor Stock. Private conversation. 2023.

[34] M. Baseer Haider, Jason L. Pitters, Gino A. DiLabio, Lucian Livadaru, Josh Y.

Mutus, and Robert A. Wolkow. Controlled coupling and occupation of silicon

atomic quantum dots at room temperature. Physical Review Letters, 102(4),

2009.

[35] Andrea Morello, Jarryd J. Pla, Floris A. Zwanenburg, Kok W. Chan, Kuan Y.

Tan, Hans Huebl, Mikko Möttönen, Christopher D. Nugroho, Changyi Yang,

Jessica A. van Donkelaar, and et al. Single-shot readout of an electron spin in

silicon. Nature, 467(7316):687–691, 2010.

[36] Belita Koiller, Xuedong Hu, and S. Das Sarma. Exchange in silicon-based quan-

tum computer architecture. Physical Review Letters, 88(2), 2001.

[37] S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rueß, T. Hallam, L. Ober-

beck, and R. G. Clark. Atomically precise placement of single dopants in si.

Physical Review Letters, 91(13), 2003.

[38] Martin Fuechsle, Jill A. Miwa, Suddhasatta Mahapatra, Hoon Ryu, Sunhee Lee,

Oliver Warschkow, Lloyd C. Hollenberg, Gerhard Klimeck, and Michelle Y. Sim-

mons. A single-atom transistor. Nature Nanotechnology, 7(4):242–246, 2012.

[39] Taylor J. Stock, Oliver Warschkow, Procopios C. Constantinou, Juerong Li,

Sarah Fearn, Eleanor Crane, Emily V. Hofmann, Alexander Kölker, David R.



80 BIBLIOGRAPHY

McKenzie, Steven R. Schofield, and et al. Atomic-scale patterning of arsenic in

silicon by scanning tunneling microscopy. ACS Nano, 14(3):3316–3327, 2020.

[40] David P. Franke, Moritz P.D. Pflüger, Kohei M. Itoh, and Martin S. Brandt.

Multiple-quantum transitions and charge-induced decoherence of donor nuclear

spins in silicon. Physical Review Letters, 118(24), 2017.

[41] Matthew Neeley, Markus Ansmann, Radoslaw C. Bialczak, Max Hofheinz, Erik

Lucero, Aaron D. O’Connell, Daniel Sank, Haohua Wang, James Wenner, An-

drew N. Cleland, and et al. Emulation of a quantum spin with a superconducting

phase qudit. Science, 325(5941):722–725, 2009.

[42] Thomas Ihn. Semiconductor nanostructures: Quantum States and Electronic

Transport. Oxford University Press, 2015.

[43] M. A. Broome, S. K. Gorman, M. G. House, S. J. Hile, J. G. Keizer, D. Keith,

C. D. Hill, T. F. Watson, W. J. Baker, L. C. Hollenberg, and et al. Two-electron

spin correlations in precision placed donors in silicon. Nature Communications,

9(1), 2018.

[44] Luciano Lavagno, Igor L. Markov, Grant Martin, and Lou Scheffer. Electronic

Design Automation for IC implementation, circuit design, and Process Technol-

ogy. CRC Press, 2018.

[45] A K Ramdas and S Rodriguez. Spectroscopy of the solid-state analogues of the

hydrogen atom: Donors and acceptors in semiconductors. Reports on Progress

in Physics, 44(12):1297–1387, 1981.

[46] Takenori Yamamoto, Tsuyoshi Uda, Takahiro Yamasaki, and Takahisa Ohno.

First-principles supercell calculations for simulating a shallow donor state in si.

Physics Letters A, 373(43):3989–3993, 2009.

[47] Neil W. Ashcroft and N. David Mermin. Solid state physics. Cengage Learning,

1976.



BIBLIOGRAPHY 81

[48] Eva Pavarini and W.M.C. Foulkes. Tight-Binding Models and Coulomb Interac-

tions for s, p, and d Electrons. Forschungszentrum Jülich GmbH, Zentralbiblio-

thek, Verlag, 2016.

[49] Bent Weber, Y. H. Tan, Suddhasatta Mahapatra, Thomas F. Watson, Hoon

Ryu, Rajib Rahman, Lloyd C. Hollenberg, Gerhard Klimeck, and Michelle Y.

Simmons. Spin blockade and exchange in coulomb-confined silicon double quan-

tum dots. Nature Nanotechnology, 9(6):430–435, 2014.

[50] W. Kohn and L. J. Sham. Self-consistent equations including exchange and

correlation effects. Physical Review, 140(4A), 1965.

[51] Vincent Michaud-Rioux, Lei Zhang, and Hong Guo. Rescu: A real space elec-

tronic structure method. Journal of Computational Physics, 307:593–613, 2016.

[52] A. D. Güçlü, Qing Feng Sun, Hong Guo, and R. Harris. Geometric blockade in

a quantum dot: transport properties by exact diagonalization. Physical Review

B, 66(19), 2002.

[53] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review,

136(3B), 1964.

[54] Jürgen Hafner. ab-initio simulations of materials using vasp: Density-functional

theory and beyond. Journal of Computational Chemistry, 29(13):2044–2078,

2008.

[55] José M Soler, Emilio Artacho, Julian D Gale, Alberto García, Javier Junquera,

Pablo Ordejón, and Daniel Sánchez-Portal. The siesta method forab initio order-

nmaterials simulation. Journal of Physics: Condensed Matter, 14(11):2745–2779,

2002.

[56] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der

Physik, 389(20):457–484, 1927.



82 BIBLIOGRAPHY

[57] J. Harris. Adiabatic-connection approach to kohn-sham theory. Physical Review

A, 29(4):1648–1659, 1984.

[58] Charles Kittel and Paul McEuen. Introduction to solid state physics. Wiley,

2022.

[59] P. A. Dirac. Note on exchange phenomena in the thomas atom. Mathematical

Proceedings of the Cambridge Philosophical Society, 26(3):376–385, 1930.

[60] Murray Gell-Mann and Keith A. Brueckner. Correlation energy of an electron

gas at high density. Physical Review, 106(2):364–368, 1957.

[61] E. Wigner. On the interaction of electrons in metals. Physical Review,

46(11):1002–1011, 1934.

[62] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic

method. Physical Review Letters, 45(7):566–569, 1980.

[63] John P. Perdew and Yue Wang. Accurate and simple analytic representation

of the electron-gas correlation energy. Physical Review B, 45(23):13244–13249,

1992.

[64] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient

approximation made simple. Physical Review Letters, 77(18):3865–3868, 1996.

[65] S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liq-

uid correlation energies for local spin density calculations: A critical analysis.

Canadian Journal of Physics, 58(8):1200–1211, 1980.

[66] J. C. Slater. An augmented plane wave method for the periodic potential prob-

lem. Physical Review, 92(3):603–608, 1953.

[67] D. R. Hamann, M. Schlüter, and C. Chiang. Norm-conserving pseudopotentials.

Physical Review Letters, 43(20):1494–1497, 1979.



BIBLIOGRAPHY 83

[68] G. B. Bachelet, D. R. Hamann, and M. Schlüter. Pseudopotentials that work:

From h to pu. Physical Review B, 26(8):4199–4228, 1982.

[69] N. Troullier and José Luís Martins. A straightforward method for generating

soft transferable pseudopotentials. Solid State Communications, 74(7):613–616,

1990.

[70] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger,

F. Bruneval, D. Caliste, R. Caracas, and et al. Abinit: First-principles approach

to material and nanosystem properties. Computer Physics Communications,

180(12):2582–2615, 2009.

[71] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car,

Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila

Dabo, and et al. Quantum espresso: A modular and open-source software project

for quantum simulations of materials. Journal of Physics: Condensed Matter,

21(39):395502, 2009.

[72] I. Burghardt, K. Giri, and G. A. Worth. Multimode quantum dynamics using

gaussian wavepackets: The gaussian-based multiconfiguration time-dependent

hartree (g-mctdh) method applied to the absorption spectrum of pyrazine. The

Journal of Chemical Physics, 129(17), 2008.

[73] ZhiGang Tang, Xia Gui, and Weiyang Fei. Utilization of molecular simulation

software gaussian 03 to design absorbent for co2 capture. Procedia Engineering,

12:87–92, 2011.

[74] Otto F. Sankey and David J. Niklewski. ab initio multicenter tight-binding model

for molecular-dynamics simulations and other applications in covalent systems.

Physical Review B, 40(6):3979–3995, 1989.

[75] Vincent Michaud-Rioux. Rescu: extending the realm of kohn-sham density func-

tional theory. McGill University Doctoral Thesis, 2017.



84 BIBLIOGRAPHY

[76] Henrik Bruus and Karsten Flensburg. Many-body quantum theory in Condensed

matter physics. Oxford University Press, 2004.

[77] Qtcad 1.2 documentation: https://docs.nanoacademic.com/qtcad/.

[78] Ioanna Kriekouki, Félix Beaudoin, Pericles Philippopoulos, Chenyi Zhou,

Julien Camirand Lemyre, Sophie Rochette, Claude Rohrbacher, Salvador Mir,

Manuel J. Barragan, Michel Pioro-Ladriére, and et al. Understanding conditions

for the single electron regime in 28 nm fd-soi quantum dots: Interpretation of

experimental data with 3d quantum tcad simulations. Solid-State Electronics,

204:108626, 2023.

[79] Félix Beaudoin, Pericles Philippopoulos, Chenyi Zhou, Ioanna Kriekouki, Michel

Pioro-Ladrière, Hong Guo, and Philippe Galy. Robust technology computer-

aided design of gated quantum dots at cryogenic temperature. Applied Physics

Letters, 120(26):264001, 2022.

[80] Vsevolod Ivanov, Alexander Ivanov, Jacopo Simoni, Prabin Parajuli, Boubacar

Kanté, Thomas Schenkel, and Liang Tan. Database of semiconductor point-

defect properties for applications in quantum technologies, 2023.

[81] Péter Pulay. Convergence acceleration of iterative sequences. the case of scf

iteration. Chemical Physics Letters, 73(2):393–398, 1980.

[82] Loren Greenman, Heather D. Whitley, and K. Birgitta Whaley. Large-scale atom-

istic density functional theory calculations of phosphorus-doped silicon quantum

bits. Physical Review B, 88(16), 2013.

[83] W. Kohn and J. M. Luttinger. Theory of donor states in silicon. Physical Review,

98(4):915–922, 1955.

[84] J. S. Smith, A. Budi, M. C. Per, N. Vogt, D. W. Drumm, L. C. Hollenberg,

J. H. Cole, and S. P. Russo. Ab initio calculation of energy levels for phosphorus

donors in silicon. Scientific Reports, 7(1), 2017.


