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Abstract 
Hockey sticks are a growing segment of the $850+ million hockey equipment market due to 

increasing global hockey participation and short product shelf life. While the technologies used to 

make ice hockey sticks have evolved drastically over the past 20 years, the purchasing experience 

has changed relatively little: Players still buy equipment mainly in physical stores where they 

aren’t able to test sticks before paying. Stick “fitting” is a process whereby players receive tailored 

stick recommendations based on their unique needs or shooting style and has gained recent 

attention from leading ice hockey equipment companies. As such, there is a need for further 

research of the relationship between objective and subjective evaluations of stick performance and 

faster, automated stick fitting processes.  

The aims of this study were to 1) understand the relationship between subjective perceptions and 

objective performance metrics with ice hockey sticks and 2) evaluate the feasibility of using 

inertial sensors and machine learning algorithms for the rapid fitting of ice hockey sticks. Ten left 

and right-handed participants of high and low caliber performed 80 shots using 4 sticks of different 

stiffnesses, blade patterns, and kick points.  

To address the first aim, an 18-camera Vicon motion capture system was used to capture player 

and puck kinematics for event detection and calculation of shot speed, accuracy, and puck contact 

time. Perceptions of shot speed, accuracy, and feel with each stick and overall stick preference 

rank order were captured separately for slap and wrist shots using 10- and 4-point scales. 

Significant differences were observed in perceived slap shot speed, slap shot feel, and wrist shot 

overall preference. No significant differences in shot speed were found: Instead, slap shot contact 

duration was found to be significantly shorter with the high kick point stick and wrist shot accuracy 

was found to be significantly lower with the flatter blade pattern. Variable factors mapping using 
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principal component analysis revealed perceptions of shot speed and accuracy to be closely related 

to objective measures during wrist shots but not slap shots.  

To address the second aim, custom-made inertial measurement units were embedded in a pair of 

hockey gloves to gather concurrent kinematic measures (linear acceleration and angular velocity) 

of the hands. Machine learning algorithms using principal components accounting for 95% of the 

variability in the hand resultant signals correctly classified players’ optimal stick flex, blade pattern, 

and kick point with 90-98% accuracy for slap shots and 93-97% accuracy for wrist shots. Based 

on these findings, the combination of embedded sensors and machine learning algorithms shows 

promise in future ice hockey stick fitting applications. 
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Abrégé 
Les bâtons de hockey sur glace sont un segment croissant du marché de l'équipement de hockey 

de plus de 850 millions de dollars en raison de la participation croissante au hockey à l'échelle 

mondiale et de la courte durée de conservation des produits. Alors que les technologies utilisées 

pour fabriquer des bâtons de hockey ont considérablement évolué au cours des 20 dernières années, 

l'expérience d'achat a relativement peu changé : les joueurs achètent toujours du matériel 

principalement dans des magasins physiques où ils ne peuvent pas tester les bâtons avant de payer. 

Le « fitting » des bâtons est un processus par lequel les joueurs reçoivent des recommandations de 

bâtons personnalisées en fonction de leurs besoins uniques ou de leur style de tir et a récemment 

attiré l'attention des principales sociétés d'équipement de hockey sur glace. En tant que tel, il est 

nécessaire de poursuivre les recherches sur la relation entre les évaluations objectives et 

subjectives des performances du bâton et les processus d'ajustement plus rapides et automatisés du 

bâton.  

Les objectifs de cette étude était 1) comprendre des relations entre la perception subjective des 

joueurs et les mesures de performance objectives obtenues avec différents bâtons de hockey sur 

glace et 2) évaluer la faisabilité d'utiliser des capteurs inertiels et des algorithmes d'apprentissage 

automatique pour effectuer une recommandation rapide et précise de bâtons de hockey sur glace. 

Dix joueurs de mains gauches et droites de haut calibre ont faire 80 lancés en utilisant quatre bâtons 

de différentes rigidités, modèle de palette et profils de rigidité.  

Pour adresser le premier objectif, un système de capture de mouvement de 18 caméras Vicon a été 

utilisé pour capturer la cinématique de joueurs et de la rondelle pour la détection d'évènements et 

le calcul de vitesse, précision, duration de contact pour chaque lancé. Les perceptions de vitesse, 

précision et sensation du lancés avec chaque bâton et l'ordre de classement de la préférence global 
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de chaque bâton ont été capturé séparément pour les lancés du poignet et les lancés frappé. Aucune 

différence significative de vitesse de lancé a été trouvé: Plutôt, le temps de contact des lancés 

frappé a été trouvé à être significativement plus court avec le bâton de profil de rigidité haut et la 

précision des lancés du poignet a été trouvé à être significativement plus bas avec le modèle de 

palette plus plat. La schématique de facteurs variables en utilisant l'analyse de composantes 

principaux (PCA) a révélé que les perceptions de vitesse de lancer et la précision sont 

principalement en accord avec mesures objectives durant les lancés du poignet, mais non pour les 

lancés frappé.  

Pour adresser le deuxième objectif, des centrales inertielles fait sur mesure ont été placés dans une 

paire de gant de hockey pour capturer des mesures cinématiques concurrent (accélération linéaire 

et vélocité angulaire) des mains. En utilisant les composantes principales montant à 95% de la 

variabilité des signaux résultant des mains, les algorithmes d'apprentissage automatique ont 

correctement classifié la rigidité, le modèle de palette et le profil de rigidité optimale pour chaque 

joueur avec 90-98% de précision pour les lancés frappé et 93-97% pour les lancés du poignet. Basé 

sur ces résultats, la combinaison de capteurs et algorithmes d'apprentissage automatique montre 

de l'espoir à l'avenir pour les applications de « fitting » de bâton pour le hockey sur glace.  
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1. Introduction 
Hockey sticks are a growing segment of the $850+ million USD hockey equipment market due to 

increasing global hockey participation and short product shelf life (Grand View Research, 2019). 

It is estimated that hockey sticks alone will reach a market value of $320 million USD by the end 

of 2025 (More, 2019).  

While the technologies used to make sticks have evolved drastically over the past 20 years, the 

retail landscape has changed relatively little: players still buy equipment mainly in physical stores 

where they are not able to test it before buying. Further, hockey sticks are more expensive than 

ever, with high end sticks retailing for up to $350 CAD (Bauer Hockey Ltd., n.d.-b). 

At present, few scientific avenues are available to players to determine which stick they should 

buy. Instead, players rely on marketing information, opinions of sales associates, and their own 

intuition. This is not the retail model for all sports that require specialized equipment. In fact, it is 

fairly for golfers and cyclists to undergo a “fitting” process for their clubs and bicycles 

respectively. During a fitting, a specialist walks the athlete through a series of tests designed to 

identify the athlete’s anthropometric or kinematic tendencies. The objective is to use this 

information to arrive at an optimal equipment configuration for the individual. 

Today, such services are not available to hockey players below the professional level; however, 

over the past five years leading hockey stick companies have released their own bespoke tools for 

assisting with hockey stick fitting. The Bauer Stick Studio (United Sport & Cycle, 2019) and CCM 

Stick Fitter (CCM Hockey, n.d.) apps utilize unique but similar methods for determining the ideal 

sticks for players. Both rely on the manual analysis of slow-motion video on a tablet device. This 
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approach is not feasible for all retailers, as it requires substantial floor space and the assignment 

of a trained salesperson. 

This thesis explores the relationships between perceptions and performance metrics with ice 

hockey sticks as well as potential future avenues for the improvement of stick fitting using readily 

available, fast-paced, low-cost technologies. 
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2. Literature Review 
The stick is a central tool in the game of ice hockey. It serves as a functional extension of the 

player’s hands and is the primary means of passing, shooting, and handling the puck (Turcotte et 

al., 2016).  

Since the 1940’s, hockey players have modified aspects of their sticks to fit their unique styles of 

play (Anderson, 2008). What began with the contortion of wooden stick blades became the fine-

tuning of whole stick parameters with the introduction of carbon composite technologies to the 

hockey stick market in the 1990’s. Today, players are able to pick and choose from sticks with a 

variety of stiffnesses, kick points, and blade patterns (Pearsall & Robbins, 2019).  

Over the past 50 years, much research has been dedicated to investigating the systematic effects 

of these parameters on ice hockey player performance in shooting tasks. This has been due to the 

importance of shooting and scoring in the game of hockey and the stick’s contribution to shooting 

performance.  

2.1 Ice Hockey Shooting 
There are four main shot types in hockey: slap, wrist, snap, and backhand shots. When and where 

players use these different shot types is both context and position-specific (Turcotte et al., 2016). 

The two main shot types are the slap shot and wrist shot. Slap shots are the shot type with the 

highest associated puck speeds and wrist shots are the most frequently used (NHL, 2020b).  

During the slap shot, the player begins by drawing the stick behind the puck and above the ice 

surface to maximize the path over which forces can be applied to the stick during the downswing 

and initiate a stretch shortening cycle in the shooting muscles (Robbins et al., 2021). After the 

downswing, the player contacts the ice behind the puck using the blade of the stick. This ice contact 
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event is proceeded by the deformation, or “loading”, of the blade and stick shaft whereby the player 

stores strain potential energy in the stick. Skilled players utilize a “rocker” strategy during the early 

portion of ice contact to achieve earlier stick deformation while less-skilled players do not leverage 

the spring-like properties of the blade and stick in this way (Lomond et al., 2007). As the stick 

continues to progress forward, the player will reach a point when they can no longer apply 

sufficient forces to the stick to keep it deformed. At this time, the stick recoils, springing forward 

in front of the player. Skilled players are able to coordinate the spatiotemporal “timing” of stick 

recoil maximize the impulse imparted to the puck and efficiently convert stick strain potential 

energy to puck kinetic energy (Villaseñor et al., 2006). The amount of strain potential energy stored 

in the stick during the loading phase is important because the puck remains in contact with the 

blade for 35-40 milliseconds prior to release (Pearsall & Robbins, 2019). This short duration makes 

it challenging for the player to achieve maximal puck exit velocities through muscular force and 

puck momentum alone, thus highlighting the important contribution of the stick to the shot. 

The wrist shot is comprised of a similar event sequencing to the slap shot with a few key 

differences. First, the wrist shot is characterized as a sweeping motion where the blade remains in 

contact with the ice. Second, the puck remains in contact with the stick blade throughout the shot. 

Third, players typically grip closer towards the top end of the stick with their bottom hand (Zane, 

2012). Consequently, wrist shots are associated with lower degrees of stick bend and puck exit 

velocities but higher levels of accuracy and quickness of release (Pearsall & Robbins, 2019). The 

wrist shot begins when the shooter draws the puck back. This is done for the same purpose of the 

backswing in the slap shot: to increase range of motion and engage the shooting musculature for 

high puck exit velocities. This allows the player to begin imparting forces to the puck in the 

forward direction prior to the positive change in velocity of the puck, similar to the way in which 
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athletes utilize countermovement sequencing to maximize vertical jump height. As the puck moves 

forward, the player applies posterior-superior forces with the top hand and anterior-inferior-medial 

forces with the bottom hand to the stick (Zane, 2012). In combination with the posterolateral 

loading on the stick blade due to contact with the ice, a third-class lever is created (Figure 1). This 

loading causes the stick to deform and recoil as the stick blade progresses forward away from the 

player through release. 

 

Figure 1. Top-down schematic displaying the hand-ice loading of the hockey stick shaft to create 
a third-class lever during a hockey shot.  

Individuals across all skill levels display disparate spatiotemporal strategies of force application 

to the stick throughout the shooting movement (Flemming, 2014; Zane, 2012). Hence, tuning 

properties of the stick to individual shooting techniques may help players maximize shooting 

performance. 
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2.2 Effects of Hockey Stick Properties on Shooting Performance 
Generally, shooting “performance” is measured as shot speed, accuracy, and quickness (Pearsall 

& Robbins, 2019). Shot speed is the puck’s velocity between puck release and net entry. Shot 

accuracy is inversely related to the radial error of the shot from the target center. Quickness of 

release is inversely related to the elapsed time between puck contact and puck release. 

In different game scenarios, the situation may call for one performance metric to be relied upon 

more than others may. For instance, a defenceman shooting from the top of the offensive zone 

would likely prioritize shot velocity to ensure the puck gets by opposing players between them and 

the net while a forward with time and space nearer to the net might prioritize the accuracy of their 

shot. Conversely, a player receiving a cross-zone pass needs to prioritize the speed of their release 

to score before the goalie can reposition themselves to cover the net opening. Hence, the effect of 

a single stick parameter on shooting “performance” does not affect all players equally. Instead, 

players must pick-and-choose the characteristics of their sticks—such as stiffness, dynamic flex 

profile, and blade pattern—based on their individual styles of play. 

2.2.1 Shaft Stiffness (“Flex”) 
The shafts of hockey sticks are hollow and rectangular. Shaft stiffness in the plane of the shot (i.e. 

about the major axis of the shaft) is reported for hockey sticks using a “flex rating”, with higher 

flexes representing stiffer sticks and vice versa. The stiffness about the minor axis of the stick is 

generally around double the stiffness about the major axis. Flex ratings are not exactly equal across 

brands; however, the ratings represent notable changes in bending stiffness for sticks of a specific 

type. 
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Sticks are sold in three different shaft sizes: junior, intermediate, and senior. Each size has a 

different cross-sectional area, with senior being the largest. Mechanically, this increases the 

bending stiffness of the axis, thus making senior sticks stiffer before considering the addition of 

any extra material. In addition to shaft cross-sectional geometry, the types of materials used in the 

shaft, the orientation of the material layers to one another, and the number of material layers all 

influence stick flex. Retail senior hockey sticks generally range from 70 to 100 flex. However, 

most senior sticks are only offered in lower flex ranges, such as between 70 and 90 flex. This 

represents a general trend of players preferring to play with more flexible sticks (Pearsall & 

Robbins, 2019). 

Research on the influence of stick flex on shooting performance to date has been conflicted; 

however, it appears that players should select their flex based on the way they load the hockey 

stick. Three possible stick “loading styles” have been reported in the literature. These are Constant 

Displacement, Constant Force, and Constant Energy (Kays & Smith, 2017; Worobets et al., 2006). 

In each loading style, a player affects a constant maximal deformation of the shaft, applies an 

identical level of force, or stores the same maximal amount of energy in the stick regardless of 

changes in shaft stiffness.  

During the shooting motion, the hockey stick functionally acts as a spring by releasing energy at a 

faster rate than it was previously stored, amplifying shot power. Hooke’s Law (Equation 1), which 

applies to springs, states that the amount of force (F) required to deform a spring (∆x) is 

proportional to that spring’s linear stiffness (k). Further, the amount of force applied to, the linear 

stiffness of, and the deformation of a spring all influence the strain potential energy (SPE) stored 

in the spring during the static equilibrium achieved at maximum stick bend (Equation 2).  
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Equation 1. Hooke’s Law formula. 

𝐹	 = 𝑘∆𝑥	 → 	𝑘 =
𝐹
∆𝑥 

Equation 2. Strain potential energy formula. 

𝑆𝑃𝐸	 = 	
1
2 	𝑘	∆𝑥

! =
1
2𝐹∆𝑥	 

Due to these physical laws, a “Constant Displacement” shooter—who always maximally deforms 

their stick the same amount—will achieve greater peak strain potential energy in the stick as stick 

stiffness increases (i.e. k increases, ∆x is held constant), and thus achieve higher shot velocities 

with sticks of increasing stiffness. On the other hand, a Constant Force shooter—who always apply 

the same peak force to the stick—will achieve higher peak shaft deformation, higher peak stored 

strain potential energy, and consequently higher shot velocities with sticks of decreasing stiffness. 

Players who exhibit a Constant Energy loading style will always store the same amount of strain 

energy in the stick at maximal deflection and are thus unaffected by changes in shaft stiffness.  

These scenarios assume that deformation of the stick occurs primarily about the major axis during 

the shooting motion, that the player applies force to the stick along the same vector, that bending 

is purely about the stick’s major axis, that bending stiffness about the stick’s major and minor axes 

both increase with stiffness rating, and that the energy stored in the stick at the moment of 

maximum bend is permitted to be converted to blade kinetic energy which can be transferred to 

the puck. Further research is warranted to better understand the individual contributions of hockey 

stick transverse and axial bending stiffnesses towards these dynamic player-stick interaction 

profiles in human subjects (Behrmann et al., 2014). 
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At present, the exact origins of these disparate stick loading styles remain unknown, however, 

there is evidence that such differences may arise due to differences in anthropometrics, kinematics, 

and levels of experience. For example, it is believed that larger, stronger players may be able to 

use a Constant Displacement model while weaker players may follow a Constant Force model 

(Kays & Smith, 2017). Others have proposed that players have adopted new shooting techniques 

to take advantage of the spring-like properties of modern carbon composite hockey sticks (Pearsall 

& Robbins, 2019). In other words, today’s players may be more inclined to use a Constant Force 

model having grown up with more compliant hockey sticks. These theories are consistent with 

previous findings that stick stiffness may negatively affect the shot velocities of younger (Roy & 

Doré, 1976) or female (Gilenstam et al., 2009) players by preventing them from realizing the full 

power-amplifying benefits of the stick. Regardless of the strategy employed, players must strive 

to maximize the strain energy stored in the stick during shooting to achieve maximal puck 

velocities. 

Given the highly individualized nature of such dynamic interactions between players and their 

sticks, it is challenging to conclude that the use of a more (or less) flexible stick benefits all players 

at all levels in the same way. Historically, this has led to disagreement amongst scientific authors 

as to the effect of stick stiffness on shooting performance (Pearsall & Robbins, 2019). Instead, 

these findings suggest that players should be provided tailored recommendations of shaft stiffness 

based on their specific loading style. 

2.2.2 Shaft Dynamic Flex Profile (“Kick Point”) 
While rods with uniform bending properties would have consistent, “static” stiffnesses at every 

point along the shaft, modern carbon composite ice hockey sticks are designed with intentionally 

asymmetric, “dynamic” flex profiles along the shaft (Figure 2). These dynamic flex profiles are 
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commonly referred to by the location of the most flexible shaft portion, called the stick’s “kick 

point”. For example, a low kick point stick is most flexible at the bottom and increases in stiffness 

moving up the shaft while a high kick point stick is stiffest at the bottom. Alternatively, sticks with 

mid kick points are stiffest in the middle of the shaft (Figure 2). The mid kick point derives its 

name from the fact that it allows players to easily store energy in the shaft at any point in the upper 

or lower portion of the shaft. In other words, it is referred to as a “mid” kick point because it 

possesses a hybrid of low and high kick point dynamic flex profiles, not because it is most easy to 

bend in the middle. Sticks are designed to have these specific kick points to maximize specific 

shot performance parameters, such as speed, accuracy, and quickness. 

 

Figure 2. Theoretical depiction of common dynamic flex profiles used in the design of modern 
carbon composite hockey sticks. 

Published academic research on the effect of stick dynamic flex profiles is scarce. However, it is 

generally believed that low kick point sticks assist with release quickness while high kick point 

sticks are best for maximizing stick bend and puck velocity (Legault, 2012). 
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Traditionally, these dynamic flex profiles have been achieved through material means with stick 

developers using stiffer materials, different lay-up orientations or simply more layers of materials 

in different portions of the stick. Given the prominence of stick weight as a driving factor of hockey 

stick selection (Hove et al., 2006), stick developers have begun turning to geometric strategies for 

tuning shaft bending stiffness in key portions of the hockey stick shaft (Rouzier & Chambert, 

2020). For example, Bauer’s high kick point Ultrasonic stick released in 2020 features a 7-sided 

shaft taper in the lower portion of the shaft (Figure 3A) to achieve increased bending stiffness in 

the lower portion of the stick without added material. Similarly, Bauer’s mid kick point Geo stick 

features a “spine” along the mid-section of the shaft, tapering back to a rectangular cross section 

toward the top and bottom of the shaft (Figure 3B). These approaches allow stick designers to 

manipulate stick stiffness without adding material layers. Hence, dynamic flex profiles can be 

maintained while weight is reduced. 

 

Figure 3. Depiction of the geometric approaches to achieving stick dynamic flex profiles in 
Bauer’s Ultrasonic (A) and Geo (B) sticks (Bauer Hockey Ltd., n.d.-b). 
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2.2.3 Blade Pattern (“Curve” & “Lie”) 
Blade pattern is the mold that the blade is made from. Characterized by the curve of the blade (i.e. 

how deep it is, how open it is, and where the curve originates along the blade) and the lie (i.e. the 

angle between the blade and the shaft). Higher lie angles represent a more upright shaft position 

when the blade sits flat on the ice. The magnitude and degree of blade curvature are limited by 

regulations which state that the curvature of the blade cannot exceed three-quarters of an inch 

beyond a perpendicular line between any point of the heel and toe of the blade (NHL, 2020a; Rule 

10.1). These rules from the NHL have been adapted to apply to players at every level (USA 

Hockey, 2021; Rule 301). 

Research on the effect of blade patterns has shown that flatter curves may enhance shot speed by 

affecting the spatiotemporal characteristics of blade and stick loading during the slap shot (Gerbé, 

2016). This may occur due to systematically decreased lag between blade-toe and blade-heel ice 

contact similar to how advanced hockey players achieve higher puck speeds by “pinning” the stick 

blade earlier and storing more strain potential energy in the stick (Lomond et al., 2007). 

In contrast, the very origin of blade curves was to provide players with added levels of puck control 

(Anderson, 2008). Mechanically, more “open” curves—those with a more negative pitch (Figure 

4)—make it easier to apply lift to the puck and consequently reach the upper net on forehand shots 

while a more pronounced curve and proper lie aid with puck control. Michaud-Paquette et al. 

(2009) found blade yaw angle, pitch angle, and change in pitch angle to be significant predictors 

of accuracy in lower net targets while blade roll, change in blade pitch and yaw, and maximum 

shaft bend were all found to be significant predictors of accuracy for upper net targets (Michaud-

Paquette et al., 2009). Making these adjustments through mechanical adaptations of the blade may 

assist players in achieving these specific release parameters during shooting. 
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Figure 4. Hockey stick blade roll, pitch, and yaw reference frames (Paveck, 2015). 

2.3 Ice Hockey Stick Selection & “Fitting” 
Despite the substantial body of research on the systematic effects of ice hockey stick parameters 

on shooting performance, most players today do not utilize scientific means to determine which 

stick they use.  

Marino and Cort (2004) identified five factors that influence the selection of ice hockey sticks. 

These factors are stick cost, appearance, feel, performance, and durability (Marino & Cort, 2004). 

Cost may prove prohibitive or not depending on a player’s level of play and financial assets while 

appearance depends on the graphics, colours, and use of lettering on the stick. Feel, performance, 

and durability depend on the dynamic response of the stick’s mechanical design and materials. 

Research suggests that the correct matching of mechanical characteristics of the stick to the 

physical attributes of the player—such as strength, size, kinematics, and perceptions—can improve 

shooting performance (Marino & Cort, 2004). 

Factors such as feel, performance, and durability are challenging to assess for the consumer 

without testing the product. Thus, companies and retailers have attempted to offer stick “fitting” 

services: sessions with trained professionals to find the optimal stick for a player based on their 

individual technique and playing habits (Radia, 2010). The concept of stick fitting began in golf, 
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where many players are able to pay for club recommendations based on their personal, static, and 

dynamic characteristics (Mauger, 2002). 

2.3.1 Important Concepts and Trends in Golf Club Fitting 
Since the early 2000s, club fitting practices in golf have grown at a rapid pace (Bertram & 

Guadagnoli, 2008; Harper et al., 2005; Mauger, 2002). There is much variety in the exact process 

between “fitters”, however, the general methods used in golf club fitting are personal, static, and 

dynamic measures (Mauger, 2002). Personal fitting measures include items that could be extracted 

from a self-reported questionnaire like age, height, weight, and current club properties. Static 

fitting measures are those captured by a fitter but not in the dynamic sporting action, such as hand 

to floor distance, grip strength. Dynamic fitting measures are data points captured during the 

sporting action itself, such as club head speed, shaft deflection, and launch angle. The inherent 

challenge of using static measures in the implement fitting process is that they are not able to 

account for the nuanced interaction between the athlete and their club during the swing.  

Mauger (2002) found dynamic fitting procedures were the most valuable data to fitters when 

helping athletes find their best implement fit. Mauger also provided two recommendations for 

future fitting systems. First, biomechanics motion capture systems should be integrated to the 

dynamic measurement process to capture data about the club head, shaft, and ball without 

interfering with the golfer’s swing. Second, a big data approach to building recommendations 

should be taken by using AI-driven “expert systems” to match the many channels of data gathered 

from a player against patterns within a larger set of golfer data and their corresponding club 

recommendations. 
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2.3.2 Important Concepts and Trends in Hockey Equipment Fitting 
Hockey gear is still sold mainly in physical retail stores. Intuitive, as players need to try equipment 

to ensure good fit before buying it. In the sport of hockey, skates are one such piece of equipment 

where fit is paramount (Pearsall & Robbins, 2019). Skates are also the most expensive piece of 

hockey equipment, with top end skates selling for over $1100 (Bauer Hockey Ltd., n.d.-a). 

The shopping experience with skates is similar to that of shoes, whereby a consumer looks at a 

wall of available skate models in a store, has their feet measured by a sales associate, and then tries 

on one or more pairs of skates to see how they fit and feel. From a retailer’s perspective, this makes 

skates a “full service” product category where consumers require a designated salesperson to guide 

them through their purchasing experience. 

Recently, hockey companies have invested heavily in automating skate fitting processes. 

Traditional analog measurement tools such as the Brannock device, which was first introduced in 

1927, are being replaced by in-store scanning kiosks that can capture the three-dimensional 

measurements of the foot and compare that with the space available within a specific company’s 

skates to suggest a size. Bauer’s 3D Skate Lab is one such example (Figure 5). 
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Figure 5. Bauer Hockey’s introduction of the 3D Skate Lab kiosk in 2017 replaced time-consuming, 
traditional two-dimensional foot data collection with three-dimensional foot data available in 
matter of seconds, drastically changing the process of skate fitting. 

The introduction of this technology exponentially improves hockey equipment fitting processes, 

taking up little floor space and automating detailed anthropometric foot shape measures with 

greater accuracy and minimal time commitment of retail store personnel. This places higher 

consumer expectations for similar accurate and rapid stick fitting practices in retail environments. 

2.3.3 Important Concepts and Trends in Ice Hockey Stick Fitting 
The hockey stick is thought to account for as much as 50% of shooting performance (Wu et al., 

2003). Further, as ice hockey sticks continue to adopt technological innovations, sticks will 

continue to become more expensive. Today, top end sticks retail for as much as $350 CAD (Bauer 

Hockey Ltd., n.d.-b). Thus, players want to determine the exact stick characteristics that they 
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should be using for optimal performance. To bridge this gap, hockey stick companies have begun 

offering hockey stick fitting services.  

One of the first companies to begin offering stick fitting services commercially was a start-up 

hockey stick company Base Hockey in 2010 (Radia, 2010). Over the past ten years, major players 

in the ice hockey stick industry, Bauer and CCM, have made substantial advances to consolidate 

their respective full fitting processes. These “full” stick fitting procedures require 45 to 90 minutes 

with a professional sports scientist and/or former professional player. Today, fitting procedures 

can be accomplished in 5-to-15-minutes using programmed tablets operated by a minimally trained 

salesperson in a retail environment. At present, both companies’ custom-made applications use a 

combination of personal (i.e. position, importance of shot speed/accuracy/quickness), static (i.e. 

height, weight), and dynamic (i.e. shooting technique, stick bend) measurement. Both companies’ 

applications also capture dynamic measures using high-quality, high-speed video of a slap and 

wrist shot to analyze a player’s shooting technique and provide recommendations of optimal stick 

flex and kick point. 

After capturing video in Bauer’s Stick Studio app, the operator manually identifies key events 

throughout the slap shot and wrist shot (United Sport & Cycle, 2019). Then, they answer a series 

of questions based on the position of the puck at these various phases of each shot. When using 

the retail version of CCM’s Stick Fitter app, the operator overlays virtual markers on top of the 

top hand on the stick and the puck to calculate the maximum stick deflection achieved during slap 

and wrist shots respectively (CCM Hockey, n.d.). For both apps, these fitter-derived performance 

metrics are fed through back-end code that generates stick flex and kick point recommendations 

to the player. 
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Despite the advancement of these processes over their analog predecessors, there is still pushback 

from retailers who claim they take too long. The obvious extension of this work is to replace these 

human-operated systems with automated, computer vision systems, however, recent advancements 

in this approach have failed to address this problem (Mendhurwar et al., 2020). Mendhurwar et al 

(2020) reported building a computer vision algorithm capable of calculating 3D stick bend using 

two stereo camera inputs. The issue was that this took 111 seconds of processing time per frame, 

adding up to approximately 18 minutes of processing if focused solely on the frames during which 

a player is in contact with the puck. Thus, alternative technological approaches to dynamic hockey 

stick fitting are needed. 

One potential solution lies in machine learning models driven by inertial measurement unit (IMU) 

signal characteristics. Inertial measurement units—which are typically comprised of an 

accelerometer, gyroscope, and magnetometer—have been used in a variety of contexts to classify 

non-cyclical human movements (Crema et al., 2017; Groh et al., 2015; McGrath et al., 2021). 

Thus, some sort of embedded sensor capable of measuring linear and angular motion could be well 

suited for the purposes of automatic stick fitting processes with minimal human processing. 

2.4 Factors Influencing the Perceptions of Sporting Implements 
All science aside, it is ultimately players who must decide which stick to use. Research of sporting 

implements has shown this to be most closely related to implement “feel” (Roberts et al., 2006). 

Research of tennis rackets (Bauer et al., 2020), golf clubs (Roberts et al., 2006, 2001, 2005), ball 

bats (Noble, 1998; Noble & Walker, 1994), and field hockey sticks (Carré & McHutchon, 2006) 

suggest these perceptions of feel are driven by feedback gathered by the athlete around impact.  
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There are four main types of feedback streams: kinaesthetic, visual, acoustic, and haptic. 

Kinaesthetic and visual feedback are challenging to quantify and inseparable from the athlete while 

it is not feasible for the purposes of ameliorating stick fitting processes to measure acoustic and 

haptic feedback directly. 

In-glove IMUs could be a simple, unobtrusive and indirect way to measure gross hand kinematics 

that may correspond to haptic feedback. If it could be understood what characteristics specifically 

drive perceptions of sticks, these measures could be monitored in real time and/or with little 

processing time to deliver players with prompt stick fitting insights (Desbiens, 2021). 
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3. Objectives and Hypotheses  
The aims of this study were to 1) understand the relationship between subjective perceptions and 

objective performance metrics with ice hockey sticks and 2) evaluate the feasibility of using 

inertial measurement unit (IMU) sensors and machine learning algorithms for the rapid fitting of 

ice hockey sticks. 

Based on the previous literature, it was hypothesized that participants would not be able to 

correctly discriminate differences in performance between the sticks and that some sort of bias 

towards a prominent source of performance feedback would influence stick perceptions. As for 

the relationship between stick properties and performance, it was hypothesized that there would 

not be significant differences between the reference stick (Stick A) and the low flex stick (Stick 

B), but that shot speed would be significantly higher with the flatter blade pattern (Stick C). It was 

also hypothesized Stick C would be associated with lower shot accuracy. No hypotheses regarding 

the effect of kick point on shooting performance were made. 

This was an exploratory study on the use of in-glove IMUs in a hockey shooting context, however, 

motivation and inspiration was derived from previous studies which have shown kinematic signals 

obtained using IMUs and machine learning algorithms to be capable of classifying athletic 

movement patterns (McGrath et al., 2021). It was hypothesized that differences in hand kinematics 

would be characteristic of different responses to stick flex, blade pattern and kick point. 
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4. Methods 

4.1 Participants 
Ten left and right-handed experienced male hockey players were recruited for this study. Two 

participants had experience at the Junior A level, five at the Canadian/American university level, 

and three at the professional level. All participants had played hockey in the past calendar year and 

were free of serious injuries at the time of data collection. Descriptive statistics of the participants 

are provided in Table 1. Testing procedures were explained in written and oral format to the 

participants, who then provided informed written consent in accordance with the Tri-Council 

Policy Statement on Ethical Conduct for Research Involving Humans (McGill REB II, File #: 375-

0216) prior to data collection. 

Table 1. Descriptive statistics of participants. 

Measure Mean ± SD 

Age (yrs) 25.9 ± 4.9 

Height (m) 1.81 ± 0.07 

Weight (kg) 88.5 ± 7.7 

Hockey Playing Experience (yrs) 20.3 ± 3.7 

Grip Strength (N): Top Hand 400.7 ± 31.6 

Grip Strength (N): Bottom Hand 400.2 ± 36.0 

 

4.2 Testing Instrumentation 
Testing instrumentation was similar to that used by Denroche (2020), with Denroche’s inertial 

sensor motion capture system (MVN Link, Xsens Technologies B.V., Enschede, Netherlands) 
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replaced by custom-made in-glove inertial measurement unit (IMU) sensors (Motsai Research, 

Saint-Bruno-de-Montarville, QC, Canada) to more closely monitor the movement of the hands. 

The IMUs provided measures of linear acceleration and angular velocity and were placed in an 

opening along the glove thumb. This instrumentation configuration was chosen to ensure the IMU 

placement would not affect players’ shooting technique during data collection and could be easily 

replicated in a real-world fitting context. 

4.2.1 Vicon System 
A Vicon optoelectronic system (Vicon, Oxford, UK) was used to capture three-dimensional 

kinematics of the body, stick, and puck. Such measures are important for the calculation of 

performance variables (i.e. shot speed, shot accuracy, quickness of release) and monitor changes 

in shooting technique across the different experimental conditions. The Vicon system consisted of 

18 cameras: Eight T10S, two T40S, four Vantage V5 and four Vero 2.2 cameras recording at a 

sampling rate of 240 Hz. The cameras were mounted on tripods at various heights surrounding the 

capture area and were connected to an MX Giganet connection Hub and desktop computer. Camera 

positions remained consistent throughout the entire data collection. Fifty-two spherical 

retroreflective markers with a diameter of 14 mm were placed on the participant in accordance 

with an adapted version of the Plug-in Gait full body model (Nexus 2.6, Vicon, Oxford, UK) 

(Figure 6). Notable adaptations included the use of four-marker clusters on the forearm to reduce 

lower-arm collinearity during shooting (in place of a single forearm marker). This included five-

marker clusters placed on the outside of a standard set of hockey gloves to monitor hand kinematics 

without disrupting realistic tactile feedback (in place of hand markers), and a pair of markers 

located on the medial and lateral aspects of the forearm proximal to the wrist to approximate wrist 

position without interfering with wrist movement during the shot (in place of wrist markers). The 
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same set of gloves were worn by all participants during data collection. Foot marker placement 

remained the same; however, these markers were placed on the exterior of the ice hockey skates 

worn by the participant.  

 

Figure 6. On-body reflective marker placements in the adapted Plug-in Gait model. Black markers 
are consistent with the standard model. Red markers represent adapted components. 

Four markers were placed on the puck and ten along the stick’s shaft and blade (Figure 7) to 

measure puck and stick kinematics, respectively. An additional eight markers were placed along 
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the posts and crossbar of the net to compute puck-to-target accuracy measures. These three marker 

sets were important for the calculation of shot events. 

 

Figure 7. Reflective marker placement on gloves, stick and puck. Markers on the stick are indicated 
by the red arrows (Denroche, 2020). IMU sensors were placed within an opening in the padding 
on each glove’s thumb.    

Prior to the start of testing, participants recorded a static calibration pose held by each participant 

for five seconds with the arms parallel with the floor and elbow bent to 90°. This calibration is 

required to determine the model of each participant’s initial coordinate system reference frame. 

4.2.2 IMU System 
Bespoke IMUs capable of capturing linear acceleration in gravitational units and angular velocity 

in degrees per second (Motsai Research, Saint-Bruno-de-Montarville, QC, Canada) were inserted 

in an opening in the thumb segment of each glove during testing to capture concurrent kinematics 

of the hands. Data capture for the IMU system was initiated by a second researcher through the 

use of a custom-built tablet application (Bauer Hockey Ltd., Blainville, Canada) over Wi-Fi 

connection. The IMUs were comprised of an accelerometer capturing linear acceleration in 
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gravitational units and a gyroscope capturing angular velocity in degrees per second at a rate of 

200 Hz. 

4.3 Testing Protocol 
Testing took place in the Biomechanics and Performance Analysis Lab at McGill University’s 

Currie Gymnasium in Montréal, Québec. The 18 Vicon cameras were placed around a synthetic 

ice surface (Viking, Toronto, Canada) (Figure 8), providing a capture volume approximately 8.0 

m long x 3.4 m wide x 2.0 m high. 

 

Figure 8. Top view layout of the motion capture area in the Biomechanics and Performance 
Analysis Lab during data collection. 

After obtaining informed written consent, anthropometric measurements were taken as necessary 

for the Plug-In Gait model. These included height, weight, ankle width, knee width, leg length, 

hand thickness, wrist width, elbow width, shoulder offset (anterior-posterior thickness), and 

shoulder breadth. Participants were then fitted with a full-body, tight fitting Velcro suit (OptiTrack, 

Corvallis, OR, USA). Retro-reflective markers for the Vicon system were placed on the Velcro 
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suit at anatomical locations in accordance with the adapted Plug-in Gait specifications. Participants 

also received a pair of skates (Bauer Vapor 1X) and a pair of gloves (Bauer Nexus) (Bauer Hockey 

Ltd., Blainville, Quebec) to be used during testing. After the static calibration trial was recorded, 

participants were given time to warm-up and get accustomed to the synthetic ice surface by taking 

practice shots on the net. 

Testing consisted of 10 stationary wrist shots and 10 stationary slap shots with 4 sticks of uniform 

length but with different properties (Table 2), for a total of 80 shots. Stick A was the “baseline” 

stick and Sticks B-D varied from Stick A in bending stiffness, blade pattern, or dynamic bending 

profile respectively. Stick B had a lighter flex rating (70) than Stick A (95) and was thus easier to 

deform. Stick C had a less curved blade pattern (PM9) than Stick A (P92). Stick D had a higher 

kick point (high) than Stick A (low) due to differences in layup and geometry of the shaft taper. 

Bending stiffness, blade pattern, and dynamic bending profile were manipulated separately to 

understand the isolated influence of each on shooting kinematics, performance measures, and stick 

perceptions. The sticks were representative of those commonly used by players of similar caliber 

but absent of graphics to blind participants to differences between the sticks.  

Table 2. Specifications of the four sticks used during testing. Stick A was used as a “baseline” 
implement. Values bolded show the property of difference for Sticks B-D. 

 Flex Blade Pattern Kick Point 

Stick A 95 P92 Low 

Stick B 70 P92 Low 

Stick C 95 PM9 Low 

Stick D 95 P92 High 
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At the beginning of each trial, participants stood adjacent to the puck placed at a mark 5.13 m 

away from the net. Participants did not receive specific instructions with respect to their technique 

but were asked to shoot like they normally would in a game from a stationary position and to strive 

for maximum velocity and accuracy, aiming at a 0.3 m diameter circular target suspended from 

the center of the net crossbar (Figure 9).  

 

Figure 9. The 0.30m circular target—suspended in the center of the net using rope—which 
participants aimed for during each trial. Global Vicon X and Z axes are shown in blue. 

Trials were performed in blocks of 10 shots. Between each block, participants received 

approximately 1 minute of rest and were asked to provide verbal ratings of the speed, accuracy, 

and feel with the stick and shot type they had just used on scales from 1 to 10. Perception data 

were captured as 10-point ratings to take advantage of participant familiarity with rating 'out of 10' 

and to provide greater granularity than 5- or 7-point scales (Dawes, 2008). Verbal end-point 

anchors were used to limit the burden and reliance on the respondents when evaluating the sticks 

subjectively (Dawes, 2008). At the end of testing, participants were asked to verbally rank the 
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sticks in order of overall preference. Separate rankings of wrist and slap shot were recorded for 

each participant.  

Each participant performed the first 20 trials with the reference stick (Stick A), with subsequent 

stick exposure orders assigned using the first ten orders from a permutation generator to 

approximate a crossover-balanced design. Shot exposure order (wrist-slap-wrist... or slap-wrist-

slap...) alternated between participants. 

Table 3. The four prompts used to acquire subjective ratings of stick speed (Q1), accuracy (Q2), 
and feel (Q3) and stick preference (Q4). * = the end of the scale associated with the most favorable 
rating. 

 Prompt Scale 

Q1 On a scale of one to ten how would you rate your shot speed with this stick? 1-10* 

Q2 On a scale of one to ten how would you rate your accuracy with this stick? 1-10* 

Q3 On a scale of one to ten how would you rate the overall feel of this stick? 1-10* 

Q4 Rank the sticks, from your favourite to least favourite *1-4 

 

Table 4. Subjective ratings and rankings of sticks across wrist and shot types using P02’s responses 
as an example. 

 Wrist Shots Slap Shots 

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Stick A 8 10 8 1 10 7 8 2 

Stick B 9 7 8 3 9 7 8 3 

Stick C 8 8 7 2 9 6 6 4 

Stick D 9 9 9 4 10 9 10 1 
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4.4 Data Analysis 

4.4.1 Data Processing  
Data captured using the Vicon cameras was processed using Vicon Nexus 2.6 software. Processing 

consisted of marker data identification (“labelling”) and gap filling (interpolating missing marker 

positions). This “processed” data from the Nexus software were then imported into Visual3D 

software (Ver 5.01.23, C-Motion, Germantown, USA) where data were filtered using a 4th order 

Butterworth filter with a cut-off frequency of 25 Hz and all 3D calculations and event detections 

were performed. Shot events were verified and data was organized and normalized using the 

MATLAB-based biomechZoo toolbox (Dixon, 2017). 

IMU data for both the left and right sensor were combined in the same file for each trial. 

Acceleration and gyroscope data was filtered with 4th order lowpass Butterworth filter with a cut-

off frequency of 20 Hz. 

Subjective ratings of shot speed, accuracy, and feel were converted to 4-point rankings to 1) reduce 

the influence of between-participant variability on quantitative measures of stick perceptions, 2) 

preserve perceived differences between the sticks, and 3) perform non-parametric statistics to 

quantify the magnitude of perceived differences between the sticks (Roberts et al., 2008). 

4.4.2 Calculating Objective Performance Measures 
Objective measures of speed, accuracy, and contact time were calculated in MATLAB R2020a 

software (The Mathworks, Natick, MA, USA) after processing with biomechZoo was complete. 

Vicon kinematic data and shot events ( 

Table 5) were used to generate measures of speed, accuracy, and contact time for each trial. 
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Shot speed of each trial was measured as peak puck velocity in the Y (towards the net) between 

puck contact/forward movement (CON/FOR) and net entry (ENTRY) events for slap and wrist 

shots respectively in meters per second (m/s). Shot accuracy of each trial was measured as radial 

error (Equation 3), where x is distance from target centre to puck in X (the horizontal direction) at 

net entry and z is distance from target center to puck in the Z (vertical direction) at net entry in 

meters (m). Stick-puck contact time for each trial was measured as the time between puck contact 

and release (REL) for slap shots and between forward movement and release for wrist shots in 

milliseconds (ms). 

Equation 3. Radial Error (Hancock et al., 1995). 

𝑅𝐸 = 	.(𝑥! + 𝑧! 

The use of these specific performance measures was motivated by the performance metrics 

previously used in ice hockey performance research. 

4.4.3 Joint Angle Calculations  
Joint angles for the ankle, knee and hip were defined by XYZ rotation, consistent with the joint 

coordinate systems described by Wu et al. (2005) and Grood and Suntay (1983). X-rotation was 

defined as flexion (+) and extension (-), while Y-rotation was defined as adduction (+) and 

abduction (-) and Z-rotation was defined as internal rotation (+) and external rotation (-). Similarly, 

head angles were measured with respect to XYZ rotation around the thorax where X-rotation was 

defined as extension (+) and flexion (-), Y-rotation was defined as side flexion (right +/left -) and 

Z-rotation was defined as rotation (left +/right -). Trunk angles were defined by YXZ rotation with 

respect to the pelvis where X- rotation was defined as extension (+) and flexion (-), Y-rotation was 

defined as side flexion (right +/left -) and Z-rotation was defined as rotation (left +/right -). Finally, 
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shoulder angle calculations used a Z-Y-Z rotation sequence, in accordance with the ISB 

recommendations and Wu et al. (2005). Consistent with the C-Motion Plug-In Gait guidelines (C-

motion, Germantown, USA), the shoulder joint centre was inferior to the acromion marker by a 

distance combining the measured shoulder radius and the marker radius. X-rotation was defined 

as horizontal abduction where 0° was abduction and 90° was forward flexion. Y-rotation was 

defined as rotation about the humerus Y-axis where negative values represent elevation. Lastly, Z-

rotation was defined as internal (+) and external (-) rotation. 

Global blade angles in the X, Y and Z directions were defined as pitch, roll and yaw, respectively. 

Blade pitch was defined as the opening (+) and closing (-) of the blade face; roll as the toe up (+) 

and toe down (-) of the blade and yaw as the inward rotation (+) and outward rotation (-) of the 

blade (Figure 4). 

For the IMU’s, only the Z axis was systematically aligned in the glove due to technical challenges 

related to consistency. The +Z axis was aligned in the glove in the direction of thumb extension 

with the +X and +Y orthogonal to this axis (Figure 10). For this reason, only the resultant channels 

of the IMU’s accelerometer (linear acceleration in gravitational units) and gyroscope (angular 

velocity in degrees per second) were used for analysis. 
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Figure 10. IMU axes. The +Z was systematically aligned in the “thumbs up” direction, however, 
the direction of X and Y were not held consistent across testing. 

4.4.4 Event Detection 
Signal events were defined from the Vicon data in Visual3D. Events were calculated using the 

stick and puck markers with respect to the global coordinate system:  

Z-axis in the vertical direction (i.e. perpendicular to the synthetic ice surface), +Z towards 

the ceiling of the lab space (Figure 9). 

X-axis perpendicular to the direction facing the net (i.e. parallel to the crossbar of the net),  

with +X towards the right post (Figure 9).  

Y-axis was the cross-product of the Z and X axes, with +Y towards the net and the Y-axis 

itself aligned with the middle of the net.  

Five events in sequence order were defined for the slap shot, while four events were defined for 

the wrist shot (Table 5). 
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Table 5. Names and definitions of slap and wrist shot events. 

Shot Type Event Name Description 

Slap 

TOP The frame when the B1 blade marker was at its highest position in the 
global Z-axis (i.e. the start of the downswing). 

GRND The frame of maximum blade acceleration in the +Z between the TOP and 
CON events (i.e. when the blade made contact with the ground). 

CON One frame before puck velocity in the Y exceeded 5.0 m/s  
(i.e. when the blade made contact with the puck). 

REL The frame when the distance between the B3 blade marker and the puck 
exceeded 0.075 m (i.e. when the puck had been “released” from the blade). 

ENTRY The frame when the distance between the puck and the net was less than 0 
m in the Y (i.e. when the puck “entered” the net). 

Wrist 

BACK The final frame when blade velocity passed 0.05 m/s in the Y before the 
FOR event (i.e. the start of the shot). 

FOR The frame when blade acceleration in the Y exceeded 150 m/s2  
(i.e. when the blade begins moving forward). 

REL One frame before the distance between the B3 blade marker and the puck 
exceeded 0.090 m (i.e. when the puck had been “released” from the blade). 

ENTRY The frame when the distance between the puck and the net was less than 0 
m in the Y (i.e. when the puck “entered” the net). 

 

All trials were inspected for completeness, data quality and event placement prior to the statistical 

analysis. Vicon trials were removed if certain events were unable to be detected in Visual3D; for 

example, if the trial ended prematurely or stick or puck markers had fallen off or went undetected 

by the Vicon system (n = 43). Since IMU trials did not have events, trials from this dataset were 

only omitted if they ended before the shooting motion had finished (n = 44). Due to differences in 

the causes of trial omission, the Vicon and IMU datasets were analyzed separately. Despite the 

fact they are of similar size, the datasets should not be confused as identical. 
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Figure 11. Schematic depicting data processing pipeline. Vicon data were passed through 
Visual3D and biomechZoo. IMU data were passed through biomechZoo only. 

4.4.5 Data Normalization 
All data were reflected to one body side to account for kinematic differences due to handedness. 

The terms “contralateral” and “ipsilateral” replaced “left” and “right” when identifying limb-

specific kinematic signals. For example, a left-handed shooter’s bottom (i.e. left) hand on the stick 

was referred to as their ipsilateral hand, while their top (i.e. right) hand was referred to as their 

contralateral hand, and vice versa. 

4.4.6 Machine Learning Model Validation 
The prediction models of stick fit based on shot speed was done using k-Nearest Neighbors (KNN) 

classification with MATLAB R2020a’s Machine Learning Toolbox. The models were trained 
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using a 5-fold cross validation and principal components explaining 95% of the data features to 

protect against overfitting with small sample sizes. 

Three separate models were created for each channel to fit players for flex, blade pattern, and kick 

point. Slap and wrist shot data were analyzed separately. 

Separate models were trained and tested on their ability to classify (i.e. fit) shooters using four 

different channels from the in-glove IMUs:  

1. Top hand resultant linear acceleration (Top_A)  

2. Top hand resultant angular velocity (Top_G) 

3. Bottom hand resultant linear acceleration (Bottom_A)  

4. Bottom hand resultant angular velocity (Bottom_G)  

The true values of stick fit (for training the algorithms and evaluating model accuracy) were based 

on the stick with higher mean shot speed to the nearest whole meter per second (m/s). Thus, within 

each model, there were three possible responder conditions: Non-responder (Stick A = Stick X), 

Reference-responder (Stick A > X), and Other-responder (Stick X > A). 

The inputs of each model were reduced from 199 data points to the 14 to 18 principal 

components that explained 95% of the variability within the waveform data (Table 6). In other 

words, principal components—rather than complete waveforms—were the features used to 

develop the algorithms. 
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Table 6. Number of trials (n) and features (PC) used for each algorithm. 

  Top_A Top_G Bottom_A Bottom_G 

Slap 
n 374 374 372 372 

PC 18 14 16 15 

Wrist 
n 380 380 380 380 

PC 15 15 16 15 

 

For all models, standardized data, a Euclidean distance metric, equal distance weight, and a default 

misclassification cost matrix were used, and hyper parametrization was disabled. 

4.5 Statistical Analysis 
An array of statistical tests was conducted to analyze the quantitative subjective and objective data. 

All statistical tests were conducted using MATLAB R2020a (The Mathworks, Natick, MA, USA) 

with alpha set at 0.05. 

4.5.1 Subjective Stick Perception Measures 
Since perceptual ratings are not normally distributed, parametric statistics were not considered 

appropriate for analysis (Roberts et al., 2008). Additionally, it was unlikely that the differences 

between scale values obtained during testing represented an equal change in sensation across scales 

(i.e. speed, accuracy) or between participants. Therefore, stick ratings (1-10) were first transformed 

into a stick ranking (1-4) for each scale (speed, accuracy, feel, overall) for each shot type and 

participant. These ordinal data were then analyzed using non-parametric statistics. 

Mean rank was calculated for the four sticks for each scale. These values were then used to identify 

perceived differences between the sticks using the Friedman two-way analysis of variance by 
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ranks. Fisher’s least significant difference (LSD) was calculated to identify where significant 

differences in stick perceptions emerged (Roberts et al., 2008). 

At the 0.05 level of significance, the critical value for T is 7.8. Values greater than this indicate 

that participants perceived differences between the sticks. If projections of ½ Fisher’s LSD from 

each stick’s mean rank were not overlapping, this indicated significant differences between sticks. 

4.5.2 Objective Stick Performance Measures 
The experimental design included two independent variables: Shot Type (Sh2) and Stick (St4). The 

four stick levels were the reference stick (Stick A), the low flex stick (Stick B), the flat blade 

pattern stick (Stick C), and the high kick point stick (Stick D). Since the interaction between 

performance parameters and shot type was not a focus of this study and outcome variables were 

conceptually independent, data were analyzed using multiple one-way repeated measures analyses 

of variance (ANOVAs) for each of the three dependent variables (Huberty & Morris, 1989): puck 

velocity, shot radial error, and stick-puck contact time. If statistical significance was achieved (i.e. 

p < 0.05) post hoc analysis was performed using the Tukey-Kramer procedure. 

4.5.3 Perception-Performance Relationships 
Principal component analysis (PCA) was used to determine the relationship between sensory 

ratings and objective performance measures with each stick. PCA was performed on a 4 × 8 matrix 

with one score per stick per attribute for slap and wrist shots. The attributes were speed rating, 

accuracy rating, feel rating, overall ranking, measured speed, measured accuracy, and measured 

contact time. 
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4.5.4. Machine Learning Model Performance 
Model performance was evaluated primarily on classification accuracy (high being preferable) and 

secondarily on computation time (low being preferable) after the fifth fold of cross-validation were 

used to compare performance between models. All of the most successful models were nearest 

neighbor algorithms (i.e. k = 1). Thus, in the interest of space, only the performances of these 

models were analyzed. 
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5. Results 
The data collected were subjected to a battery of statistical tests. Sections 5.1 to 5.4 focused on the 

juxtaposition of stick perceptions and performance parameters and the investigation of how they 

appeared to be related. Perceptual scores of stick speed, accuracy and feel (10pt scales) were 

converted to rank order for each participant and compared between sticks, in conjunction with 

overall rank order, using Friedman analysis of variance tests (Roberts et al., 2008). Objective 

performance measures of average shot speed (maximum puck velocity), accuracy (mean radial 

error to net center at ENTRY), and release quickness (puck contact duration from CON/FOR to 

REL) obtained using the Vicon motion capture system were compared using multiple one-way 

ANOVAs. Finally, the variability within the perception ratings, overall rank order, and 

performance measures were analyzed using principal component factor analysis. For each test, 

slap and wrist shot data were analyzed separately. 

Section 5.5 focused on the efficacy of machine learning models for shooter classification (aka 

performance fitting) using hand kinematic data captured with custom built in-glove IMU data (199 

data points) and MATLAB’s Machine Learning Toolbox. Of a handful of models, k-Nearest 

Neighbors (KNN) algorithms showed to be most accurate machine learning model based on the 

nature of the data being used. Thus, only the accuracy of KNN models using different IMU 

channels were evaluated in this thesis. 

5.1 Stick Perceptions 
Friedman’s tests were performed on the mean rank order of stick speed, accuracy, feel, and overall 

perception scores to detect significant differences in the perceptions of the sticks. Significant 

differences in perceptual stick rankings were found within slap shots (speed, feel) and wrist shot 

(overall) (Table 9). 
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Table 7. Slap shot mean rank speed, accuracy, feel, and overall perception scores by stick ± ½ 
Fisher’s LSD (n=10). 

 Speed Accuracy Feel Overall 

Stick A 2.70 ± 0.38 2.95 ± 0.40 3.15 ± 0.39 2.30 ± 0.41 

Stick B 2.95 ± 0.38 2.35 ± 0.40 2.10 ± 0.39 2.40 ± 0.41 

Stick C 2.80 ± 0.38 2.85 ± 0.40 2.95 ± 0.39 3.10 ± 0.41 

Stick D 1.55 ± 0.38 1.85 ± 0.40 1.80 ± 0.39 2.20 ± 0.41 

 

Table 8. Wrist shot mean rank speed, accuracy, feel, and overall perception scores by stick ± ½ 
Fisher’s LSD (n=10). 

 Speed Accuracy Feel Overall 

Stick A 2.60 ± 0.37 2.30 ± 0.39 2.55 ± 0.38 1.50 ± 0.41 

Stick B 2.30 ± 0.37 2.55 ± 0.39 2.20 ± 0.38 3.10 ± 0.41 

Stick C 2.65 ± 0.37 2.60 ± 0.39 2.95 ± 0.38 2.60 ± 0.41 

Stick D 2.60 ± 0.37 2.30 ± 0.39 2.55 ± 0.38 1.50 ± 0.41 

 

Table 9. Friedman’s test results for speed, accuracy, feel, and overall rankings by shot type (n=10). 

 Slap Shots Wrist Shots 

 Friedman’s T p-value Friedman’s T p-value 

Speed 8.718 0.033 0.556 0.907 

Accuracy 4.915 0.178 0.367 0.947 

Feel 8.226 0.042 2.310 0.511 

Overall 3.00 0.392 8.760 0.033 
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Specifically, slap shots with Stick D were ranked significantly faster than those with sticks A, B, 

and C (Figure 12) and as having better feel than those with Sticks A and C (Figure 13). Conversely, 

within wrist shots, Stick A was ranked significantly better overall than Sticks B and D (Figure 14).  

 

Figure 12. Mean slap shot perceived speed ranking by stick ± ½ Fisher’s LSD.  

 

 

Figure 13. Mean slap shot perceived feel ranking by stick ± ½ Fisher’s LSD. 
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Stick D
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Stick A

Mean Slap Shot Feel Ranking by Stick ± 1/2 Fishers LSD
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Figure 14. Mean wrist shot perceptual overall ranking by stick ± ½ Fisher’s LSD. 

5.2 Stick Performance 
Statistical tests were conducted to elucidate differences in performance between the sticks. 

Multiple one-way ANOVAs were conducted to evaluate group-level performance differences in 

speed, accuracy, and quickness between the sticks. Separate analyses were conducted for slap and 

wrist shots since interaction effects between stick and shot type were not a focus of this study. 

Individual differences in stick performance are also presented in 5.2.2. 

5.2.1 Group Level Performance Differences 

Table 10. Ensemble average speed, accuracy, and quickness with each stick for slap and wrist 
shots ± SD (n=10). 

 Slap Shots Wrist Shots 

 Speed  
(m/s) 

Radial Error  
(m) 

Quickness  
(ms) 

Speed  
(m/s) 

Radial Error  
(m) 

Quickness  
(ms) 

Stick A 31.7 ± 2.2 0.296 ± 0.166 51 ± 4 27.7 ± 1.6 0.171 ± 0.089 103 ± 12 

Stick B 31.8 ± 1.9 0.282 ± 0.138 53 ± 5 27.9 ± 1.4 0.177 ± 0.089 107 ± 13 

Stick C 31.9 ± 1.7 0.321 ± 0.157 52 ± 4 27.6 ± 1.5 0.224 ± 0.138 104 ± 12 

Stick D 32.0 ± 1.8 0.224 ± 0.129 50 ± 4 27.4 ± 1.4 0.159 ± 0.090 104 ± 13 

 

Best Worst
2 groups have mean column ranks significantly different from Stick A

Stick D

Stick C

Stick B

Stick A

Mean Wrist Shot Overall Ranking by Stick ± 1/2 Fishers LSD
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One-way ANOVAs revealed significant differences in slap shot release duration between sticks 

(F(3,36) = 3.66, p = 0.021, ηp2 = 0.234),  but not for slap shot speed (F(3,36) = 0.032, p = 0.992, 

ηp2 = 0.002) nor accuracy (F(3,36) = 2.33, p = 0.091, ηp2 = 0.162). A Tukey-Kramer post hoc test 

showed release duration to be significantly shorter for Stick D compared to Stick B (Figure 15).  

 

Figure 15. Mean slap shot puck contact duration ± standard error, by stick.  

For wrist shots, one-way ANOVAs revealed significant differences in accuracy between sticks 

(F(3,36) = 6.71, p = 0.001, ηp2 = 0.359). A Tukey-Kramer post hoc test showed wrist shot accuracy 

to be significantly lower for Stick C than the other three sticks (Figure 16). 

 

Figure 16. Mean wrist shot radial error from target center ± standard error, by stick. 
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5.2.2 Individual Level Performance Differences 
Although significant differences were only observed in slap shot quickness and wrist shot accuracy 

at the group level, differences in performance arose in shot speed accuracy, and quickness between 

the sticks on an individual level. 

5.2.2.1 Shot Speed 
For slap shots, five participants reached their highest average shot speed with Stick C, two using 

Stick A, and two using Stick D. Only one participant reached their highest average slap shot speed 

with Stick B. 

For wrist shots, six participants reached their highest average shot speed with Stick B, two using 

Stick A, and two using Stick C. No participants reached maximal wrist shot speeds with Stick D. 

There were no consistent improvements in shot speed within sticks across shot types for 

participants, nor were there systematic trends linking maximal shot speeds with one stick for slap 

shots and a different stick type for wrist shots. For example, P01 and P10 both achieved maximal 

slap shot speeds with Stick C, however, P01 reached maximal wrist shot speeds with Stick B while 

P10 reached maximal wrist shot speeds with Stick A. Four participants reached maximal shot 

speed for both shots with the same stick (P03 & P08, C; P04, A; P09, B). 
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Figure 17. Mean slap (top) and wrist (bottom) shot speed (m/s) for each stick by participant ± 
standard error. 
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5.2.2.2 Shot Accuracy 
For slap shots, eight participants reached minimal mean radial error with Stick D, two with Stick 

A. For wrist shots, five participants (including the two whose slap shots were most accurate with 

Stick A) shot most accurately with Stick D. Three participants shot most accurately with Stick A 

and two with Stick B. Eight participants were least accurate (highest mean radial error) with Stick 

C for wrist shots, compared to four for slap shots. 

 

Figure 18. Mean slap (top) and wrist (bottom) shot radial error (m) from net center for each stick 
by participant ± standard error. 
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5.2.2.3 Shot Puck Contact Time  
For slap shots, puck contact time was shortest with Stick D for five participants. Three participants 

had the shortest contact times with Stick A and one with Stick C. One participant (P09) had equally 

lowest contact times with Stick C and D. Six players experienced their longest contact times with 

Stick B. For wrist shots, puck contact time was shortest with Stick C for four participants, Stick D 

for three participants, Stick B for two participants, and Stick A for one participant.  

 

Figure 19. Mean slap (top) and wrist (bottom) shot puck contact duration for each stick by 
participant ± standard error.  
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5.4 Perception-Performance Relationships 
Principal Component Analysis (PCA) was performed for slap and wrist shots separately (Table 11, 

Table 12) to understand the relationships between subjective perception scores of stick speed, 

accuracy, and feel; overall preference rank order; and objective measures of speed, accuracy, and 

quickness.   

For slap shots, the first two principal components explained 86% of the total variance within the 

data. The first dimension (PC1) explained measured shot speed and accuracy and perceived shot 

speed, accuracy and feel ratings while the second dimension (PC2) explained overall stick rank 

order (Table 11).  

Table 11. PCA Component Matrix for Slap Shot Objective and Subjective Data. 

Variable   PC1 (69%) PC2 (17%) 

Measured_Speed 0.783 0.562 
Measured_Accuracy -0.988 0.148 

Measured_Quickness -0.540 0.452 

Perceived_Speed 0.963 0.095 

Perceived_Accuracy 0.927 0.316 

Perceived_Feel 0.881 0.019 

Overall_Rank -0.630 0.718 
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Overall stick rank for slap shots was most closely related to measured slap shot speed while 

perceived speed, accuracy, and feel ratings were most closely related to measured accuracy. These 

relationships are presented in the form of variables factor map (Figure 20). 

 

Figure 20. PCA variables factor map showing the relationship of the stick perceptions (blue dashed 
lines) with performance kinematics (red solid lines) in relation to the two principal components 
for slap shots. 
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For wrist shots, the first two principal components explained 90% of the total variance within the 

data. The first dimension (PC1) explained measured shot quickness and perceived shot speed, 

accuracy, and feel ratings while the second dimension (PC2) explained measured shot accuracy 

(Table 12). 

Table 12. PCA Component Matrix for Wrist Shot Objective and Subjective Data. 

Variable    PC1 (54%)   PC2 (36%) 

Measured_Speed 0.671 0.537 
Measured_Accuracy -0.467 0.870 

Measured_Quickness 0.975 0.165 

Perceived_Speed 0.877 -0.480 

Perceived_Accuracy -0.751 -0.650 

Perceived_Feel 0.787 -0.612 

Overall_Rank 0.575 0.517 
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Perception ratings of stick accuracy for wrist shots were found to be most closely related to 

measured accuracy while perceived speed and feel were more closely related to measured speed. 

These relationships are presented in the form of variables factor map (Figure 21). 

 

Figure 21. PCA variables factor map showing the relationship of the stick perceptions (blue dashed 
lines) with performance kinematics (red solid lines) in relation to the two principal components 
for wrist shots. 
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5.5 Stick Fit Prediction Models 
Stick fit prediction models based on hand kinematics collected from inertial measurement unit 

(IMU) sensors and shot speed were built using Nearest Neighbors classification with MATLAB 

R2020a’s Machine Learning Toolbox. The models were trained using a 5-fold cross validation and 

principal components explaining 95% of the data features to protect against overfitting with small 

sample sizes. 

Three separate models were created for each channel to fit players for flex, blade pattern, and kick 

point. Slap and wrist shot data were analyzed separately. 

Separate models were trained and tested on their ability to classify (i.e. fit) shooters using four 

different channels from the in-glove IMUs:  

1. Top hand resultant linear acceleration (Top_A)  

2. Top hand resultant angular velocity (Top_G) 

3. Bottom hand resultant linear acceleration (Bottom_A)  

4. Bottom hand resultant angular velocity (Bottom_G)  

The true values of stick fit (for training the algorithms and evaluating model accuracy) were based 

on the stick with higher mean shot speed to the nearest whole meter per second (m/s). Thus, within 

each model, there were three possible responder conditions: Non-responder (Stick A = Stick X), 

Reference-responder (Stick A > X), and Other-responder (Stick X > A). 

Model performance was evaluated primarily on classification accuracy (high being preferable) and 

secondarily on computation time (low being preferable) after the fifth fold of cross-validation were 

used to compare performance between models.  
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5.5.1 Model Accuracy 

5.5.1.1 Slap Shots 
Based on the models created, principal components of the bottom hand angular velocity 

(Bottom_G) data were able to recommend the optimal flex (96%), blade pattern (98%), and kick 

point (97%) for slap shot speed with the highest accuracy. 

Table 13. Accuracy of various fine KNN models trained using Top and Bottom hand linear 
acceleration (_A) and angular velocity (_G) data for slap shot speed. 

 Top_A Top_G Bottom_A Bottom_G 

Flex 95% 95% 93% 96% 

Blade 95% 95% 90% 98% 

Kick Point 93% 96% 94% 97% 

5.5.1.2 Wrist Shots 

Based on the models created, principal components of the top hand angular velocity (Top_G) data 

were able to recommend the optimal kick point (97%) for wrist shot speed with the greatest 

accuracy, while principal components of bottom hand linear acceleration (Bottom_A) best 

predicted optimal flex (97%), and blade pattern (96%). 

Table 14. Accuracy of various fine KNN models trained using Top and Bottom hand linear 
acceleration (_A) and angular velocity (_G) data for wrist shot speed. 

 Top_A Top_G Bottom_A Bottom_G 

Flex 93% 95% 97% 96% 

Blade 93% 93% 96% 95% 

Kick Point 94% 97% 96% 94% 
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5.5.2 Classification Confusion Matrices 
In the interest of space, only the confusion matrices for the best models were analyzed. These were 

the Bottom_G models for fitting flex, blade, and kick point for slap shots and the Bottom_A, 

Bottom_A, and Top_G models for fitting wrist shot flex, blade, and kick point respectively. 

5.5.2.1 Slap Shots 
The most accurate flex fitting algorithm for slap shot speed used the first 15 principal components 

of the Bottom_G IMU channel. This model had an overall accuracy of 97.3%; correctly classifying 

98.0% of non-responders, 99.3% of high flex responders, and 93.3% of low flex responders (Figure 

22). This model never misclassified a high flex responder for a non-responder and had the greatest 

challenge with low flex responders, misclassifying 5.9% of them as high flex responders. 

 

Figure 22. Confusion matrix of the flex fitting algorithm for slap shot speed trained using bottom 
hand resultant angular velocity (Bottom_G) signal features. Overall model accuracy was 97.3%. 
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The most accurate blade fitting algorithm for slap shot speed was trained using the first 15 principal 

components of the Bottom_G IMU channel. This model also had an overall accuracy of 97.3% 

and correctly classified 98.6% of non-responders, 98.1% of P92 responders, and 95.8% of PM9 

responders (Figure 23). This model never misclassified a non-responder for a PM9 responder and 

had the greatest challenge with PM9 responders, misclassifying 3.5% of them as P92 responders. 

 

Figure 23. Confusion matrix of the blade fitting algorithm for slap shot speed trained using bottom 
hand resultant angular velocity (Bottom_G) signal features. Overall model accuracy was 97.3%. 
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The highest accuracy kick point fitting algorithm for slap shot speed was also trained using the 

first 15 principal components of the Bottom_G IMU channel. This model had an overall accuracy 

of 97.0% and correctly classified 95.2% of non-responders, 99.1% of low kick point responders, 

and 96.8% of high kick point responders (Figure 24). This model never misclassified a low kick 

point responder for a non-responder and had the greatest challenge with high kick point responders, 

misclassifying 2.5% of them as low kick point responders. 

 

Figure 24. Confusion matrix of the kick point fitting algorithm for slap shot speed trained using 
bottom hand resultant angular velocity (Bottom_G) signal features. Overall model accuracy was 
97.0%. 
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5.5.2.2 Wrist Shots 
The highest accuracy flex fitting algorithm for wrist shot speed was trained using the first 16 

principal components of the Bottom_A IMU channel. This model had an overall accuracy of 

96.1% and correctly classified 97.9% of non-responders, 92.4% of high flex responders, and 95.6% 

of low flex responders (Figure 25).  

 

Figure 25. Confusion matrix of the flex fitting algorithm for wrist shot speed trained using bottom 
hand resultant linear acceleration (Bottom_A) signal features. Overall model accuracy was 96.1%. 
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In addition, the most accurate blade fitting algorithm for wrist shot speed was trained using the 

first 16 principal components of the Bottom_A IMU channel. This model had an overall accuracy 

of 95.3% and correctly classified 97.2% of non-responders, 95.8% of P92 responders, and 92.4% 

of PM9 responders. This model had the greatest challenge with PM9 responders, misclassifying 

5.0% of them as P92 responders. 

 

Figure 26. Confusion matrix of the blade fitting algorithm for wrist shot speed trained using bottom 
hand linear acceleration (Bottom_A) signal features. Overall model accuracy was 95.3%. 
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The highest accuracy kick point fitting algorithm for wrist shot speed was trained using the first 

15 principal components of the Top_G IMU channel. This model had an accuracy of 94.5% and 

correctly classified 97.2% of non-responders, 93.3% of low kick point responders, and 92.4% of 

high kick point responders. This model had the greatest challenge with high kick point responders, 

misclassifying 5.1% of them as low kick point responders. 

 

Figure 27. Confusion matrix of the kick point fitting algorithm for wrist shot speed trained using 
top hand resultant angular velocity (Top_G) signal features. Overall model accuracy was 94.5%. 
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5.5.3 Computation Time & Misclassification Costs 
A key factor of interest in the evaluation of these machine learning algorithms was computational 

burden—aka computation time. The prediction speed of the best models, in addition to 

misclassification costs for each algorithm, are presented in Table 15. These include the Bottom_G 

models for fitting flex, blade, and kick point for slap shots and the Bottom_A, Bottom_A, and 

Top_G models for fitting wrist shot flex, blade, and kick point respectively. All computation times 

were less than one second. 

Table 15. Total misclassification cost and prediction speed of each of the six most accurate models. 

 Model Total Misclassification Cost Observations per Second 

Slap 

Flex 10 ~700 

Blade 10 ~1200 

Kick Point 11 ~1700 

Wrist 

Flex 15 ~1400 

Blade 18 ~1400 

Kick Point 21 ~1400 
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6. Discussion 
The aims of this study were to 1) evaluate the inter-relationships between ice hockey shooters’ 

perceptions and performance with sticks of different flex, blade, and kick point properties, and 2) 

evaluate the efficacy of inertial measurement unit (IMU) hand kinematic data and machine 

learning algorithms for the rapid fitting of ice hockey sticks. 

6.1 Summary of Major Findings 
The high kick point stick (Stick D) was perceived by shooters to be associated with better feel and 

higher speeds during slap shots while the low kick point reference stick (Stick A) was perceived 

to be the best stick overall for wrist shots.  

However, the only significant differences in performance between the sticks were slap shot puck 

contact duration and wrist shot radial error. Slap shot mean puck contact duration was significantly 

shorter for the high kick point stick (Stick D) compared to the low flex stick (Stick B). Wrist shot 

mean radial error was significantly higher for the stick with the flatter blade pattern (Stick C) 

compared to the other three sticks. At an individual level, shooters exhibited different responses 

in maximal shot speed, accuracy, and puck contact duration between the stick models.  

Factor analysis of subjective (perceived speed, accuracy, and feel ratings and overall stick rank) 

and objective (speed, accuracy, and quickness) measures revealed: 

• For slap shots 
o perceptions of shot speed, accuracy and feel were most closely related to measured 

shot accuracy 
o overall stick rank was most closely related to measured shot speed.  
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and conversely  

• For wrist shots  
o perceptions of shot speed and feel were more closely related to measured speed  
o ratings of stick accuracy for shots were most closely related to measured accuracy.  

In addition to the above, using in-glove IMU data, fine KNN machine learning models were 

capable of fitting (or matching) players with their optimal flex, blade pattern, and kick point with 

90-98% accuracy for slap shots and 93-97% accuracy for wrist shots. Perhaps more impressively, 

these algorithms were able to achieve these high levels of accuracy with a processing time of less 

than one second. 

In summary, inter-stick differences were perceived by the participants in this study, however, these 

perceptions were not necessarily related to objective measures of shot performance. Instead, 

subjective stick ratings were influenced by a selected subset of performance measures specific to 

the type of shot being performed. Additionally, it appears possible—using embedded sensors and 

fine KNN machine learning algorithms—to rapidly fit players for stick flex, blade, and kick point 

with high levels of accuracy. 

6.2 Comparison of Findings with Those of Other Relevant Publications 
Slap and wrist shot speeds observed in this study were similar to those of high caliber male hockey 

players in previous stationary shooting studies (Alexander et al., 1963; Flemming, 2014; Hannon 

et al., 2011; Pearsall et al., 2001; Robbins et al., 2021; Roy & Doré, 1976; Zane, 2012). Wrist shot 

accuracy was slightly higher than that reported by Michaud-Paquette et al (2009) where university 

students (including varsity hockey players) shot at targets in the top and bottom corners of the net. 

Slap shot puck-blade contact time was longer than that previously reported for elite hockey players 
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(Villaseñor et al., 2006). This may be attributable to concurrent advances in the technologies and 

utilization of the hockey stick. 

No significant differences in shot speed were found between the sticks—which varied in flex, 

blade pattern, and kick point—for wrist or slap shots. The finding that stick stiffness did not 

significantly affect slap or wrist shot speed of male hockey players is consistent with previous 

findings of Pearsall et al. (1999), Wu et al. (2003), Hannon et al (2011), and Flemming (2014). 

The findings contradict those of Worobets et al. (2006) for wrist shots but not slap shots. Further, 

the more flexible stick was not rated significantly better, as reported by Anderson (2008). This is 

justified given the larger sample of raters and sticks used in the present study. In fact, the stiffest 

sticks received the best ratings for slap (Stick D) and wrist shots (Stick A). This finding is similar 

to that of Overney and colleagues (2010), who found that tennis players preferred racket paddles 

with the stiffest material constructions, and in contrast to the findings of Fischer et al. (2007), who 

found that expert and advanced skiers preferred skis with low flexural rigidity. 

Additionally, the stick with the flatter curve was not associated with higher slap shot velocities as 

reported by Lomond et al. (2007) and Gerbé (2016). This may have been due to the high variability 

in shot speed (Table 10) and experience level of the participants in the present study. 

Individual differences in optimal stick for shot speed reported corroborate trends in previous 

hockey stick studies (Anderson, 2008) and those of other sporting implements (MacKenzie & 

Boucher, 2017). Anderson found three players using 6 different sticks of wood and composite 

constructions each shot fastest with a different stick. 

Principal component analysis and machine learning algorithms were able to identify individual 

differences in hand kinematics that were predictive of optimal stick flex, blade pattern, and kick 
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point. This is in agreement with previous findings of Zane (2012) and Flemming (2014), who 

reported player coordinative strategies (or “shooting styles”) that appeared in both high and low 

caliber groups. It has been established that no two players shoot exactly the same (Flemming, 

2014), however, the methods used in this study were satisfactorily sensitive to the characteristics 

of hand kinematics that relate to fitting stick flex, blade pattern, and kick point in order to maximize 

shot speed. Thus, further research is warranted to better understand how features of these kinematic 

profiles relate to stick fit. 

6.3 Possible Limitations of Present Study 
The small sample size (n=10) may have limited the statistical power of the analysis. A larger 

sample size (e.g. n=40) of novel hockey players of differing ability levels would have permitted 

the comparison of different machine learning algorithms in predicting hockey stick preferences 

(Balsalobre-Fernández & Kipp, 2021; McGrath et al., 2021). Further, it is unknown how these 

trends and profiles will hold true within the larger population of hockey players since it is not 

certain how representative this sample is of all hockey players in terms of their responses to 

changes in stick properties. 

For example, only experienced adult males participated in this study. Thus, the inclusion of female, 

youth, and less experienced athletes for the development of commercial hockey stick fitting 

applications is warranted since these groups represent large, growing segments of the global 

hockey stick market (Hockey Canada, 2020). However, the sample’s high level of experience in 

this study may have allowed them to better verbalize their perceptions of sporting implements 

(Roberts et al., 2006). 
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Another limitation of this study was that the IMU data were limited to the resultant magnitude of 

the accelerometer and gyroscope data due to the lack of systematic alignment of the IMUs’ X and 

Y axes in the gloves. Nonetheless, the IMUs provided unencumbered, direct kinematic 

measurements of the hands which makes them practical for application in stick fitting in retail 

hockey stores. More work is required to investigate the repeatability of these findings when 

accounting for IMU alignment.  

An additional limitation of this study was that the sticks were not subjected to a battery of 

mechanical tests to understand the physical properties of sticks (Behrmann et al., 2014). Having 

such information would be an interesting, particularly for understanding how such parameters 

relate to perceptions of shooting performance (Fischer et al., 2007; Overney et al., 2010). Further, 

understanding how perceptual and performance measures relate to dynamic player behaviours 

during shooting—such as grip width on the stick and stick bend—is of great interest. 

6.4 Implications for Stick Fitting Practices & Research 
The above results demonstrate the potential of using embedded IMU sensors tracking hand 

kinematics and machine learning algorithms to accurately fit individuals for stick flex, blade 

pattern, and kick point. Similar research to this study should be conducted with a greater number 

of sticks with more subtle differences in flex, blade patterns, and kick points and a larger pool of 

hockey players of differing backgrounds to further validate the findings of this study. This study 

could be further supplemented through the capture of shooting performance and stick perception 

data in retail and on-ice settings using simplified objective measurement instruments (i.e. a radar 

gun). 
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Although it appears that players don’t change their shooting style when using sticks of different 

flexes in short run, it is not known how stable these gross kinematic patterns are and whether they 

would yield consistent values under test-retest conditions. Additionally, it is not yet known how 

habitual exposure to sticks of different flex, blade, and kick point properties affect shooting 

technique. Studies aimed at the repeat exposure and measurement of kinematics in response to 

sticks with different properties should be conducted. 

The results of this study also bring into question the reliability of athlete perceptions of stick 

performance parameters (i.e. speed and accuracy), particularly during slap shots. In the future, a 

common shooting performance vocabulary should be defined to prevent confusion and improve 

resolution of sensory testing in ice hockey stick perception research (Bauer et al., 2020; Desbiens, 

2021). 
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7. Conclusion  
The high kick point stick was perceived by shooters to be associated with better feel and higher 

speeds during slap shots while the low kick point reference stick was perceived to be the best stick 

overall for wrist shots. However, the only significant differences in performance between the sticks 

that arose were slap shot puck contact duration and wrist shot radial error. Specifically, the PM9 

stick was associated with the lowest average wrist shot accuracy while the high kick point stick 

had a shorter average slap shot contact duration compared to the flexible stick. At the individual 

level, shooters exhibited different response patterns in maximal speed, accuracy, and puck contact 

duration to the sticks. Further, these response patterns were not always the same across shot types. 

Factor analysis of subjective (perceived speed, accuracy, and feel ratings and overall stick rank) 

and objective (measured speed, accuracy, and quickness) measures revealed perceptions of slap 

shot speed, accuracy, and feel to be most closely related to measured shot accuracy while overall 

stick rank for slap shots was most closely related to measured shot speed. Interestingly, perception 

ratings of stick accuracy for wrist shots were found to be most closely related to measured accuracy 

while perceived speed and feel were more closely related to measured speed.  

Fine k-Nearest Neighbors machine learning models were found to be capable of fitting players 

with their optimal flex, blade pattern, and kick point with 90-98% accuracy for slap shots and 93-

97% accuracy for wrist shots using select principal components of in-glove IMU data. Perhaps 

more impressively, these algorithms were able to achieve these high levels of accuracy with a 

processing time of less than one second. 

These findings suggest that 1) embedded sensors and machine learning algorithms can be used to 

dynamically fit ice hockey players for stick parameters (flex, blade pattern, kick point) with high 
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levels of accuracy and quick computation times, 2) experienced players’ subjective perceptions of 

ice hockey sticks are not based on corresponding objective performance criteria during slap shots, 

and 3) high kick point sticks are associated with shorter slap shot puck contact times, low flex 

sticks with longer slap shot puck contact times, and flatter blade patterns with lower wrist shot 

accuracy. 
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