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Abstract 

X-ray micro diffraction is a powerful technique to study the microstructure of ma

terials. In this thesis we built two x-ray micro diffraction setups and demonstrated 

their capabilities by two case studies. In our microfocusing setup, synchrotron x-rays 

were focused to a micron-size spot using a Fresnel zone plate. To scan the sample, we 

built a 3-axis translation stage with 30 nm step size over 25 mm travel range. Our 

x-ray diffraction imaging (topography) setup consisted of a monochromator, a channel

cut analyzer to define the diffraction angle, and a CCD camera with 0.645 f..Lm pixels 

size to record the images. In our first project, we studied the microstructure of 90° 

ferroelectric domains and domain walls in barium titanate (BaTi03 ). We discovered 

a rv 1 f..Lm surface-like layer below the surface where domain walls angle, strain, and 

domains orientation deviate from the bulk values. These can be explained in terms of 

total energy minimization and domain-domain interaction. In our second project, we 

used x-ray topography to measure lattice deformations in the free and bent states of 

a silicon micro-cantilever used in scanning probe microscopy. We found that the can

tilever was twisted by 8 mdeg with respect to the base and there were small strains in 

the cantilever and joint area. In the bent state, we measured 0.3 m average radius of 

anticlastic curvature and a maximum of 2 x 10-5 strain at the edges of the cantilever. 

We discuss possible causes of the twist and the non-zero strains. Our setups and the 

tools we developed can be used to study the microstructure of other similar systems, 

as weIl. 



Abrégé 

La microdiffraction des rayons X est une technique efficace dans l'étude de la 

microstructure des matériaux. Dans cette thèse nous avons élaboré deux méthodes 

de micro diffraction de rayons X et avons démontré leurs capacités en étudiant deux 

cas particuliers. Pour notre technique de micro focalisation, des rayons X provenant 

d'un synchrotron ont été focalisés en un point dont la taille était de l'ordre du micron 

en utilisant une plaque de zone Fresnel. Pour balayage rayons X de l'échantillon, nous 

avons construit une plate-forme dotée d'une translation sur 3 axes avec des pas de 

30 nm sur une distance de translation de 25 mm. Notre installation d'imagerie de 

diffraction de rayons X (topographie) etait consistituée d'un monochromateur, d'un 

analyseur à canaux séparé pour définir l'angle de diffraction, et d'une camera CCD 

avec pixels de 0.645 /-Lm pour enregistrer les images. Dans notre premier projet, nous 

avons étudié la microstructure du domaine ferroélectrique de 90° et des parois du 

domaine dans le titanate de baryum (BaTi03). Nous avons découvert l'existance 

d'une couche d'environ 1 /-Lm sous la surface où l'angle de la paroi du domaine, la 

tension, ainsi que l'orientation du domaine dévient des valeurs générales mesurées dans 

le volume du massif. Celles-ci peuvent être expliquées en termes de minimisation de 

l'énergie totale et des interactions entre domaines. Dans notre deuxième projet, nous 

avons utilisé un topographe à rayons X pour mesurer les déformations de structures 

cristallines associées aux états libres et courbés d'un microlevier de silicon utilisé en 

microscopie à force atomique. Nous avons découvert que le microlevier était torsadé 

de 8 mdeg par rapport à la base et qu'il y avait de petites tensions dans la région 

du micro levier et du joint. Dans l'état courbé, nous avons mesuré en moyenne un 



rayon de courbure anticlastique de 0.3 m et une tension maximale de 2 x 10-5 sur 

les bords du microlevier. Nous discutons des raisons possibles de cette torsion et de 

cette tension. Nos installations ct les outils que nous avons développés peuvent. aussi 

bien être appliqués à l'étuder de la microstructure d'autres systèmes similaires. 
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Chapter 1 

Introduction 

Materials are made of atoms which are bound together by inter-atomic forces. The 

goal of material science is to study the properties of materials using different theoreti

cal and experimental methods. Among them, x-ray diffraction is one of the oldest and 

most powerful methods to get quantitative information about the atomic structure 

of materials. The overall subject of this thesis is to demonstrate how an extension of 

the conventional x-ray measurements can be used to obtain more detailed informa

tion about the structure of materials by a set of experiments and interpretation of 

the results. 

Although fundamental properties of materials are defined by their inherent atom

istic structure, often, many of their physical behaviors are determined by their struc

ture on micron size scale. For example, ferromagnetic and ferroelectric materials 

demonstrate macroscopic magnetic or electric polarizations only when their micron

size domains are aligned in a preferable direction. Therefore, the study of microstruc

ture of these systems can provide valuable information to understand their behavior. 

The system being studied can be heterogeneous with micron-size fine structures, or 

homogeneous with micrometer dimensions. In this thesis we have used x-ray mi-

1 



CHAPTER 1. INTRODUCTION 2 

croscopy to study one example of each case: the ferroelectric domains in barium 

titanate (BaTi03), a weIl known ferroelectric crystal, and the imperfections in a sin

gle crystal silicon cantilever used in scanning probe microscopy. 

We use the term microprobing to refer to any technique used to study the structure 

of materials on micrometer scale. Several microprobing techniques exist each with 

its own advantages and limitations. In this chapter we will very briefly introduce the 

methods most popular and most relevant to the systems studied in our work. 

Optical microscopy [72] is, perhaps, the oldest and most known technique. The 

instrument can be relatively simple and affordable. As the name implies, this tech

nique can be used to study only transparent materials or, otherwise, image the outer 

surface of the sample. The spatial resolution of optical microscopy is in the range of 

light wavelength (a fraction of micrometer). Merz [91, 92] used a polarized optical 

microscope to study the domains structure in BaTi03 . Merz [93], Little [87], and 

Miller et al. [95, 96] used the same method to study the motion of domain walls in 

BaTi03 . Other versions of optical microscopes have been developed for special ap

plications. Confocal optical microscopy is used to get three dimension al information 

mostly from biological systems [58]. 

Scanning Electron Microscopy (SEM) [111] and Transmission Electron Microscopy 

(TEM) [110] are techniques based on diffraction of electron beams from the sample. 

The typical energy of the electron beam in SEM is in the order of 10-100 keV and for 

TEM 100-1000 keV. These numbers translate to a few nanometer and sub-nanometer 

spatial resolutions for SEM and TEM, respectively. The instrument is more compli

cated and expensive, but, still can be installed and used in an ordinary laboratory. 

Because of the strong interaction of electrons with matter, the range of penetration 
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of electrons is very limited. SEM is used to image the surface of samples. TEM 

needs very thin samples (::;100 nm) which usually require a lot of time and effort to 

prepare. Yakunin et al. [138] used high resolution TEM to investigate the fine struc

ture of 90° domain walls in 500-2000 A BaTi03 thin films. Floquet et al. [46] used 

SEM combined with x-ray diffraction to investigate the microstructure of thin films of 

PbZrO.2 Tio.80 3 (PZT) on different substrates prepared with different methods. TEM 

is also a desirable way to measure strains in micron-size structures [33]. 

The other very important and relatively new category of microscopy techniques is 

based on the interaction of an atomically sharp tip located at the end of a micron-size 

cantilever with the surface of the sample. These techniques are generally referred to 

as Scanning Probe Microscopy (SPM). Because of the short range of the interaction, 

only a few atoms near the end of the tip interact with the atoms on the sample surface 

providing atomic resolution. Three most important examples of these techniques are 

Scanning Tunneling Microscopy (STM) [22), Atomic Force Microscopy (AFM) [119), 

and Near-field Scanning Optical Microscopy (NSOM) [29]. STM was invented in 

1982. In this technique the tip is placed very close (about 1 nm) from the surface of a 

conducting specimen and a voltage of a few millivolts to 1 volt is applied between the 

tip and the sample. This causes a tunneling current between the uppermost atoms 

on the surface and the tip. Monitoring the movements of the cantilever (constant 

current mode) or the changes in the tunneling current (constant height mode) as a 

function of the tip position provides an image of the electronic structure of the sample 

surface. This current is very sensitive to the tip-surface distance. In STM the tip 

also exerts a force to the sam pIe surface which was the idea behind invention of the 

first AFM in 1986. In AFM the force between the tip and the sample surface causes 



CHAPTER 1. INTRODUCTION 4 

small defiections of the cantilever which is recorded by a piezoelectric current or an 

optical beam refiected from the back of the cantilever. The sample does not need to 

be conductive. Measuring the cantilever defiection as a function of the tip position 

across the sam pIe surface provides an image of the surface with atomic resolution. 

With AFM not only can one image the surface, but by bringing the tip in contact with 

the surface and applying a sufficiently big voltage, it is possible to displace atoms on 

the surface. Gruverman et al. [53] showed how scanning force microscopy can be used 

to both image and manipulate the ferroelectric domains in PZT thin films. Tarrach 

et al. [130] combined polarized light microscopy and piezoresponse force microscopy 

to find the three dimensional distribution of ferroelectric domains in BaTi03 and to 

locate the regions of interest on the sample. NSOM is a method where laser light 

is passed trough a sm aIl aperture near the sample surface. The size of the aperture 

is much smaller than the light wavelength. To achieve spatial resolution better than 

diffraction limits, the tip-surface distance must also be much sm aller than the light 

wavelength, a region known as "near-field". The aperture is usually a sharp optical 

fiber coated by a metal everywhere except at its tip. Usually a feedback method is 

needed to keep the tip distance constant. NSOM can be used in transmission mode 

for transparent samples or refiection mode for opaque specimens. For example, Yang 

et al. [139] used NSOM to measure the motion of a single domain wall in ferroelectric 

lithium tantalate (LiTa03) with nanometer resolution. STM and AFM although 

have atomic spatial resolution, are methods to study the surface and provide little 

information about the bulk structure of the sample. In aU these techniques, the 

imaging is rather slow because it requires a point-by-point scan of the sample. These 

microscopy methods are widely used in many research and industrial labs. 
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Among many experimental tools to study the properties of materials on micron 

size scale, x-ray diffraction [134, 1] has a special place. X-ray diffraction is more than 

a century old and has evolved extensively [94]. X-ray wavelengths are in the order 

of the size of atoms and their inter-atomic distances (a few A) making them suit able 

for diffraction from atomic layers. Depending on the material and the wavelength, 

x-rays can normally penetrate several micro met ers into sample. They can, therefore, 

be used as a non-destructive probe to acquire detailed data on the atomic sc ale from 

the bulk of the system under study. Four main parameters of a Bragg peak obtained 

in a typical x-ray diffraction experiment directly measure four essential properties of 

the sample: 

• Peak integrated intensity is proportional to the amount of material contributing 

to the diffraction. Intensity also depends on the type and arrangement of atoms 

in the lattice through structure factor and can be, in principle, used to get 

information about this fundamental characteristic of the system (see chap. 2). 

Absorption and scattering by atoms also affect the intensity and provide extra 

information on the distribution and composition of matter in the sample. There

fore, changes in the peak intensity can be used to specify type, configuration, 

distribution, and number of atoms in the sample. 

• Sample angle, 0, determines the orientation of the diffracting atomic planes 

and, therefore, reveals how atomic layers in the lattice are oriented with respect 

to each other and the sample surfaces. variations of this quantity show lattice 

rotation and disorientation. 

• The diffraction angle, 20, directly measures the spacing between the atomic 

layers. A knowledge of 20 helps to measure quantities such as lattice deforma-
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tion and strain. With high resolution x-ray diffractometers strains as small as 

1 X 10-5 or even less can be measured depending on the angular resolution of 

the measurements. 

• Another Bragg peak parameter is the width which is inversely proportional 

to the size of the coherent diffraction volume or the crystal size, whichever 

smaller, in the direction of the diffraction vector. This provides information on 

the completeness and uniformity of the lattice. 

In a more abstract way, x-ray diffraction data can directly measure the electron 

density function or, more exactly, the correlation between the electron density at two 

different points [20]. X-ray diffraction can be used to study almost any crystalline 

or non-crystalline material. The obtained data is not restricted to the surface of 

the sample and, depending on how deep x-rays can penetrate into sample, x-ray 

diffraction is considered a bulk probe. X-ray diffraction is fast, specially with the 

existing high flux synchrotron sources and fast detectors. These detectors (depending 

on their speed) can be used to do in situ study of the dynamics of pro cesses which 

have an effect on the charge distribution in the system. Even though x-ray diffraction 

can, in principle, have atom-size resolution, this is reduced in the conventional x-ray 

diffraction techniques by the fact that the gathered data is an average over the entire 

diffraction volume. 

The ide a of x-ray microdiffraction (microscopy) [129] is to go beyond this limit 

and collect x-ray diffraction data from a micron-size region of the sample by utilizing 

one ofthe two Microfocusing, or X-ray Diffraction Imaging (XDI or x-ray topography) 

methods described in chap. 2. With x-ray micro diffraction we can get all the valuable 

information normal x-ray diffraction offers, with micrometer spatial resolution. One 
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can study the details of the static and dynamical properties of systems on micron-size 

scales. Not only the systems themselves, but many devices used to study these systems 

on micrometer or nanometer sc ales have micrometer dimensions. With the growing 

number of microfabrication facilities, micromachining is the technology extensively 

used to manufacture micro-devices. The manufacturing process itself can, in principle, 

introduce new deficiencies to the products in addition to those that inherently existed 

in the original material [104, 60, 65, 135]. These can influence the performance of the 

device in one way or another [65]. X-ray microdiffraction seems to be the most natural 

way of identifying imperfections in such devices [24, 25, 135]. In the microfocusing 

method, the diffraction volume is reduced by focusing the x-rays to a micron-size 

area using a focusing element such as a Fresnel Zone Plate (FZP) [68, 109]. In the 

XDI method, on the other hand, parallel x-rays get diffracted from a big volume, and 

then a micron-resolution detecting device such as a high-resolution photographic film 

or an x-ray CCD is used to spatially resolve the rays diffracted from different points 

on the sample [13]. Although, x-ray topography has been already used for several 

years using x-ray tube sources and special photography films, the realization of x

ray micro diffraction depends strongly on the existence of x-ray synchrotron sources 

as primary sources of extremely parallel and high flux coherent x-rays, and also on 

advanced x-ray optical devices [98]. X-ray microfocusing is only feasible with coherent 

x-rays from synchrotrons and special optical devices, such as x-ray Fresnel zone plates 

to focus the x-rays. Because of these technical complications, x-ray micro diffraction 

facilities and specially microbeam scanning microscopy, are not utilized as easily and 

widely as the other methods mentioned above. In chap. 2 we will briefly describe the 

principles of x-ray diffraction and then introduce x-ray micro diffraction methods with 
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special emphasis on the techniques used in our studies. 

In this thesis we have designed, built and characterized experimental setups to 

conduct x-ray micro diffraction measurements with high spatial and angular resolu

tions. Some parts of the instrumentation and design have been done in the Physics 

Department at McGill University. The setups have been implemented at the Ad

vanced Photon Source, Argonne National Laboratory where most of the experiments 

have been done. Modeling, software development, data analysis, interpretation of re

sults, and comparison with theory have been mostly done at McGill. To characterize, 

calibrate, and demonstrate the capabilities of our setups, we performed two microd

iffraction experiments. The samples used in our experiments, apart from the practical 

applications, were chosen mainly because they were excellent systems to be studied by 

our new setups. Our goal was to understand and characterize our setups and develop 

the required tools to overcome the new issues one has to deal with when doing x-ray 

micro diffraction experiments. The first system we studied had micron-size structures 

and the second system had micrometer dimensions. 

As the first example, we studied the microstructure of 90° ferroelectric domains 

in barium titanate (BaTi03 ) crystals [59]. Ferroelectrics are materiais that posses a 

spontaneous electric dipole moment which can be reversed by applying a sufficiently 

large electric field. Ferroelectrics have been the subject of extensive research [52], 

mainly because of their applications in making opticai devices, actuators, micro

sensors, and more recently as candidates for Non- Volatile Random Access Memories 

(NVRAMs) [124, 32, 64, 137, 99]. These are memories that, once the information is 

stored, do not need a voltage to preserve it. To minimize the total free energy, materi

aIs in the ferroelectric phase form regions with different polarization directions, called 
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ferroelectric domains. The boundary between two neighboring domains is called a 

domain wall. Many static and dynamic properties of ferroelectric materials funda

mental to their applications, such as polarization switching, fatigue, and coercive 

electric field are governed by the microstructure of ferroelectric domains and domain 

boundaries [123]. Therefore, to understand and characterize the properties of ferro

electric crystals, a detailed study of the structure of these materials on micron-size 

sc ale is essential. We have chosen barium titanate for our studies. It is a well studied 

and classic ferroelectric crystal from Perovskite family (with AB03 generic formula). 

At room temperature BaTi03 is in ferroelectric phase and has tetragonallattice with 

a rather simple atomic and domain structure consisting of anti-parallel (180°) and per

pendicular (90°) domains. The crystallographic (001) directions in the neighboring 

90° domains are perpendicular to each other separated by domain walls at 45° with 

respect to the polarizations of the domains. Because of the small tetragonality ratio, 

; ~ 1.01, the two adjacent 90° domains are distinguishable in an x-ray diffraction 

experiment. The micrometer size of these domains make them an ideal system for 

a micro diffraction study. Strain field exists around both 180° and 90° domain walls 

because of non-ide al matching of the lattices on two sides of the walls [92]. Strain 

is, however, more profound around 90° walls due to tetragonal lattice. Strain field, 

the associated elastic energy, and the interaction between the domains are impor

tant factors to be considered when studying ferroelectrics [30, 102, 17]. They affect 

many microscopic properties of the ferroelectric domains such as size and equilibrium 

configuration, domain stability and also do main boundaries orientation, profile, and 

thickness in the bulk and near the crystal surfaces [4, 2]. These, in turn, determine 

the electrical, electromechanical, and optical properties of these materials [19]. More 
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Figure 1.1: (a),(b) X-ray intensity plots of (200) and (002) domains in BaTi03 : Bright 
and dark bands represent alternating domains in the same scan region. (c) XDI image 
of a silicon cantilever: Base appears brighter than the cantilever because it is much 
thicker. 

importantly and from the novel applications point of view, many dynamical proper-

ties of these crystals directly depend on the domain wall energy through phenomena 

such as polling, domain wall motion, switching, and nucleation and growth of domains 

[97,3,127]. We did a detailed study ofthe structure of 90° domains and domain walls 

in a BaTi03 single crystal with rv10 f..Lm wide stripe-shape domain structure. From 

the results of our studies we could get an exact two dimensional map of the alternat-

ing stripe-shape 90° domains (Fig. 1.1(a) and (b)). We discovered new features in the 

structure of domains and domain walls in BaTi03 including the existence of a rv 1 f..Lm 

thick layer near the crystal surface where the domain properties substantially differ 

from the bulk. In chap. 3 we will first review the physics of ferroelectrics and then 

present the details of our x-ray micro diffraction study of the 90° domains in BaTi03 

In our second project, we used triple crystal (monochromator, sample, analyzer) 

parallel beam XDI technique to obtain micrometer-resolution lattice orientation and 

out-of-plane strain maps of a single crystal silicon cantilever[57]. We studied both 
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the "free" and slightly bent states of the cantilever. The main motivation behind 

this study was that our samples were nearly perfect micrometer-size single crystals. 

We wanted to know what type of information and to what level of precision our 

micro diffraction setups were able to obtain from such samples. From application 

point of view, they were manufactured by micromachining technique which is, es

sentially, a technology to fabricate micron size devices from bigger bulk materials. 

The fabrication process usually introduces residual strain and dislocations into the 

final product [60]. Identifying and characterizing imperfections in the micromachined 

products is crucial for the manufacturers to improve their products [108]. It is also 

important for the users of these devices to know about the possible imperfections in 

the devices they use, because, they affect the performance of the device [65]. For 

example, residual strain in cantilevers used in scanning microscopy experiments can 

affect the resonance frequency of the cantilever [88, 23]. In addition to the inherent 

imperfections, bending strain develops in these devices when they undergo mechanical 

or thermal deformations. Some of these devices are essentially used as micro-sensors 

to measure the surface strain [113, 114]. A great 'amount of work has been focused 

on silicon, because of its various applications in industry and research [135, 60, 65]. 

Different techniques are available to measure imperfections with micrometer reso

lut ion [33]. The most important ones can be found in the references given in chap. 4. 

High resolution XDI is a powerful and, perhaps, the most common technique used by 

many researchers to study imperfections in nearly perfect crystals. The principles of 

this technique has been clearly elaborated by, for example, Newkirk [103], Tanner [13], 

and Authier [6] in their books. A brief summary of the technique used in this the

sis will be given in chap. 2. One of the difficulties in this technique is, however, to 
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properly identify, resolve, and distinguish between lattice rotation and lattice strain 

in small crystals comparable in size with the spatial resolution of the obtained images 

(usually a few micrometers). Another aspect is the sensitivity of the method. There 

have been work to measure strain and lattice curvature in big crystals under large 

bending stress. Bell [9] studied large defiections, and rotations in cantilever beams. 

Yang et al. [140] measured strain and anticlastic curvature in a centimeter-size silicon 

crystal under large defiection bending. The need to measure distortions in slightly 

deformed micron-size crystals with high resolution and without ambiguity still exists. 

We used high (angular and spatial) resolution plane-wave XDI method to accu

rately measure two dimension al maps of lattice orientation, twist, and out-of-plane 

strain in a micrometer-size single crystal silicon cantilevers used in scanning force 

microscopy. Our experimental setup and methods we used to model and analyze the 

data were designed to remove the inherent ambiguities in these types of experiments 

as much as possible. One example of the integrated intensity map of the cantilever 

and the base is presented in Fig. 1.1(c). the whole cantilever and supporting base was 

a one-piece single crystal micromachined from a bulk silicon crystal. We studied the 

unstrained state of the cantilever, as well as, the slightly bent state. We discovered 

that the cantilever, as a whole piece, was twisted with respect to the base right at 

the junction area by ",,8 mdeg. Accurate measurement of the twist angle is essential 

in measuring the lateral forces in AFM [69]. Sader [115] stated that this is hard to 

measure in micron-size cantilevers. Two dimension al maps of the sample angle of the 

bent cantilever showed anticlastic curvature across the cantilever width in agreement 

with the elasticity theory for a bent beam [83, 50]. The average radius of curvature at 

the middle of the cantilever length was about ",,0.3 m. We observed non-zero strain 
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both in the "free" and bent states of the cantilever. Our results showed compressive 

strain in the order of 2 x 10-5 at the cantilever edges. In chap. 4 a short review of 

the imperfections introduced by micromachining, and the major work done to mea

sure them in small crystals will be given. We will then describe the details of our 

experiments, analysis methods, and results. 

In chap. 5 a summary of our results and achievements will be presented along with 

suggestions for future work. 



Chapter 2 

X-ray microdiffraction 

The main objective in this chapter is to introduce the x-ray microdiffraction tech

niques used in this thesis. However, to achieve this goal, it is first necessary to review 

sorne basic concepts of x-ray diffraction. This will also provide the required base to 

understand the experimental results and discussions in the following chapters. 

Electromagnetic radiations with photon energy in the range of a few ke V (wave

length = 0.1-10 A) are usually referred to as x-rays. Since the energy ofx-ray photons 

are orders of magnitude bigger than the binding energy of electrons in atoms (a few 

eV), these electrons are considered more or less "free". In a classical picture, in re

sponse to the electric field of the x-rays, these electrons oscillate and emit secondary 

electromagnetic waves with the same energy which are called scattered waves. The 

elastic scattering of x-rays from electrons (Thompson scattering, ) is the base of the 

interaction of x-rays with matter. X-rays can also get absorbed by atoms through 

phenomena such as photoelectric effect which are not considered here. For a single 

electron, the ratio between the alllplitudes of the scattered and incident waves is pro

portional to ]f' where ro=2.82x10-5 A is a constant called the Thompson scattering 

length or classical electron radius (see eq. 2.1), and R is the distance of the observa-

14 
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tion point from the scattering center. In principle, the incident x-rays get less intense 

after each scattering. Moreover, the scattered waves can get scattered again by other 

electrons and the effect of these multiple scatterings should be considered. However, 

in most of the x-ray diffraction experiments, these complications can be ignored. This 

approximation, called kinematical x-ray diffraction, is valid for samples with enough 

imperfections in their lattice. In the case of nearly-perfect crystals, where these effects 

become important, the more general theory of dynamical x-ray diffraction must be 

considered. 

2.1 Kinematical theory of x-ray diffraction 

In this section we assume that the interaction of x-rays with matter is weak (Born 

approximation) and the crystal is not a single perfect lattice, but rather consists 

of several small blocks with slightly different (0.01 0 -0.10 
) orientations. This is 

often called a mosaic structure. With these assumptions we can neglect the effect of 

scattering on the intensity of the incident beam and don't need to con si der multiple 

scattering phenomena. 

2.1.1 X-ray scattering by a single electron 

Suppose a monochromatic plane x-ray wave travelling in z direction reaches a single 

free electron with charge -e located at the origin. We can define the xz plane to 

include the observation point R(Fig. 2.1). Then, the amplitude ofthe incident electric 

field, Eb will have two Ebx and Eby components. From electromagnetism theory [67], 

the amplitude of the radiated electric field at point R, Eo, has two components: one 
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Figure 2.1: X-ray scattering by a single electron 

in the xz plane and perpendicular to R (produced by Ebx), and another one parallel 

to y axis (produced by Eby ): 

E~xz 
. eikR 

- -roEbx R cos'ljJ (2.1) 

. eikR 

- -roEbYR (2.2) 

In these equations, 'ljJ is the angle between the observation vector and the propagation 

direction of the incident wave, and ro is a constant length called the Thompson 

scattering length or classical electron radius: 

e2 

ro - 2 = 2.82 X 10-5 A, 
47rEomc 

(2.3) 

where m is the mass of the electron and c is the speed of light. In practice, what an 

x-ray detector at R measures is the number of x-ray photons scattered into a small 

solid angle .6..0 around R. The differential cross-section is defined as the number 
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of photons scattered per unit time into a unit solid angle around R divided by the 

number of incident photons per unit time per unit area (incident flux). Sinee the flux 

is proportional to the square of the electromagnetic field, we can write the scattering 

differential cross-section as: 

da 
dO, 

1 IEr l2 R2 .6.0, 

.6.0, IEi l2 

E r 2 + Er 2 
Oxz Oy 

E i2 
o 

(2.4) 

(2.5) 

Substituting from eq. 2.1 and remembering that for an unpolarized incident electric 

field, E i , each of x and y components carries half of the total intensity, we get: 

P is called the polarization factor: 

1 

p= 

if Eb is polarized in y direction. 

if Eb is polarized in x direction. 

~(1 + cos2 'IjJ) unpolarized light. 

2.1.2 X-ray diffraction from a crystal 

(2.6) 

(2.7) 

Consider the elastic scattering of monochromatic x-rays from a system of electrons 

each one with charge -e located at position r with respect to the charge at the origin. 

Suppose ki and ka are the wave vectors ofthe incident and scattered waves (Fig. 2.2). 
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Figure 2.2: X-ray scattering a system of electrons 

Because of the elastic scattering, the magnitude of the incident and scattered x-rays 

are equal, i.e Ikd = Ikol. The total amplitude of the scattered waves (in units of 

-ro and dropping the polarization factor) is proportional to the sum of the scattering 

terms from each electron: 

(2.8) 

where q = ko - ki is called the scattering vector, p(r) is the electron number density, 

and V is the scattering volume. The exponential term accounts for the phase difference 

between waves scattered from the charge at r and the one at the origin. Scattering 

intensity is given by the square of the scattering amplitude: 

(2.9) 

Eqs. 2.8 and 2.9 state that the x-ray scattering intensity is directly proportional to the 

square of the Fourier transform of the charge density in the scattering volume. A crys

talline material, by definition, consists of a set of atoms (the basis) repeatedly posi

tioned on a three dimension al periodic network of sites (the lattice). The smallest unit 

of the lattice points is called the primitive unit cell. One can specify the coordinates 

of each electron in space by r = Rn + r' where Rn = nIaI + n2a2 + n3a3 is the lattice 
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Figure 2.3: Scattering from a crystalline material. The base is assumed to have two 
different atoms represented by a circle and an ellipse. 

coordinat es and r' is the position of the electron in the unit ceIl (Fig. 2.3). Since in a 

crystalline structure, by definition, charge density is a periodic function of the lattice 

vectors, we have p(r) = p(Rn +r') = p(r'). The integral in eq. 2.8 can be converted to 

sum over lattice points and integration in the unit ceIl: Iv dr --+ Elattice Iunit cell dr'. 

Therefore, we get: 

N 

A(q) = L eiq
'
Rn 1 p(r') eiq

.
r
' dr', 

n unit cell 
(2.10) 

where N is the total number of lattice sites. Electron density in the unit cell is the 

sum of the contributions from aIl the atoms in the basis: p(r') = E j pj(r"). Also it 

is clear that: Iunitcell dr' --+ Ebase Iunitcell dr". With this considerations, we get the 

new form of the scattering amplitude: 

N 

A(q) = L eiq
'Rn L eiq

.rj 1 pj(r") eiq
.
r
" dr". 

n j unit cell 

(2.11) 
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Here rj and r" represent the coordinates of atoms in the basis and atomic coordinates, 

respectively and pj(r") is the electron number density of atom number j in the basis. 

The atomic form factor for atom j is defined as the integral in eq. 2.11: 

/j(q) -1 pj(r") eiq
-
r
" dr". 

unit ceIl 
(2.12) 

Therefore, eq. 2.11 can be rewritten as: 

N 

A(q) L: eiq
-Rn L: eiq

-rj fj (q) (2.13) 
n j 
~'~--~v~--~I 
Lattice sum Unit ceIl 

structure factor 

N 

F( q) L: eiq
-
Rn

. (2.14) 
n=l 

F(q) is the structure factor. Then, the intensity of the scattered x-rays (eq. 2.9) will 

be equal to: 
N N 

I(q) = IF(q)12 (N + L: L: eiq-rnrn), 

n=l m=l 
moFn 

where r nm = r n - r m is another lattice vector. 

2.1.3 Reciprocal lattice, Laue and Bragg conditions 

(2.15) 

For an ordinary sample, N, the total number of sites in the lattice, is a big number 

(in order of 1012 for a micron-size crystal). The second term in eq. 2.15 depends on 

the scattering wave vector, q, and is huge compared to the first term only if q . rnm 

is a multiple of 27r (it will be of order of N2). This can be better explained by 

introducing a new space. The reciprocal space is defined by three base vectors a* so 
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that: 8.i. aj = 27rbij , where bij is the Kronecker delta function (bij = 1 if i = j, and 

zero otherwise). In practice, the reciprocal lattice is defined in terms of the lattice 

vectors by the following set of equations: 

(2.16) 

where Vc = al . a2 x a3 is the volume of the unit cell. The condition for strong 

scattering is only satisfied when the diffraction vector terminates on a point in the 

reciprocallattice which is called Laue condition: 

q=G, (2.17) 

where G = ha! + ka; + 1 a; (h, k, 1 integers) is a vector in the reciprocal lattice. In 

this case the scattered waves constructively interfere and the term diffraction is used 

instead of scattering. 

Atomic planes in a crystalline material are usually characterized by three integer 

numbers, known as Miller indices, representing the smallest common multiple of the 

inverse of their intersection coordinates with the principle axes of the lattice. It is 

easy to show that the diffraction vector q is perpendicular to the atomic planes (h k 1), 

and the inter-plane distance dis equal to I~I (Fig. 2.4(a)). Since Iql = 47l"S~n(O), where 

À is the x-rays wave length and e is half of the diffraction angle, Laue condition can 

be restated in terms of real space parameters. In this form it is called Bragg's Law for 

diffraction: 

2dsine = À. (2.18) 

As seen in Fig. 2.4(a), the angle x-rays make with the diffracting planes (not the 
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Figure 2.4: (a) Bragg condition for x-ray diffraction from a crystal. (b) Laue condition 
in reciprocal space. To measure the integrated intensity, one should consider an the 
diffracted rays from the finite size Bragg peak region in the reciprocal space. ql.. and 
qll are components of the diffraction vector perpendicular and parallel to the crystal 
surface. 
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crystal surface) is half of the diffraction angle 2(). For a given wavelength and a 

particular set of atomic planes, there is only one diffraction angle which satisfies the 

Bragg condition. There is, however, a degeneracy; the crystal can rotate about the 

diffraction vector q. 

2.1.4 Measured diffraction intensity 

Since the diffraction volume in a crystal has a finite size, the Laue condition does not 

have to be precise. This me ans that instead of eq. 2.17, in reality we have: 

q = G + .6.G, (2.19) 

where .6.G defines a small volume around G (fig. 2.4(b)). Since ka = k i + q, 

for monochromatic and perfectly collimated incident rays, the diffracted rays are 

monochromatic (elastic scattering) but have a finite divergence. The Bragg peaks 

are not points, but rather small smeared spots in the reciprocal space. The detector 

usually accepts a range of diffraction angle 2(). However, to collect all the diffracted 

intensities, the crystal must be scanned around the Bragg peak position (called a () 

rock) to cover all the possible diffractions inside the Bragg peak volume. The number 

of photons per unit time per unit solid angle measured this way is called the integrated 

intensity. It can be shown [1, page 148] that the integrated intensity for a crystal is 

equal to: 

2 1 12 À
3 

1 1 = <Do ro P F(q) N - -.-e' 
Vc sm2 

(2.20) 

where <1>0 is the incident flux, N is the total number of unit cells, and the other 

variables have been defined before. The si; 2B is called the Lorentz factor. Integrated 
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intensity is proportional to N and, therefore, to the amount of material contributing 

to the diffraction. Note that sample position is conventionally denoted by () and 

diffraction angle by 2(}. These are names given to these angles and () is not necessarily 

equal to half of 2(}. To emphasize the distinction, often the difference is defined as 

sam pIe orientation angle, w (see fig 2.4(b)): 

2(} 
w = - - (). 

2 
(2.21 ) 

The intensity of x-rays diminishes after penetrating through materials. There are 

several mechanisms responsible for this. When Bragg condition is satisfied, strong 

diffraction of x-rays into the exit beam reduces the intensity of the incident wave. 

This phenomenon is called extinction and will be discussed in the next section. In 

kinematical approximation extinction is ignored. The other cause for reducing the 

intensity of the incident beam is mainly the photoelectric effect. An x-ray photon 

releases a K-Ievel electron from an atom leaving the atom ionized. Fig. 2.5(a) shows 

the absorption mechanism: the intensity of the beam after passing through a thickness 

dz' of the material is reduced by dl which is proportional to dz' itself (more material, 

more absorbing centers) and the initial intensity of the beam I(z') (bigger incoming 

flux, bigger chance of absorption): 

dl I(z' + dz') - I(z') = -J-l I(z') dz' 

-+ I(z) = 1(0) e-J1z. (2.22) 

The proportionality constant is called the absorption coefficient J-l and the absorption 

length is defined as 1.. This is the thickness, over which, the intensity of the beam 
J1 
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Figure 2.5: (a) Absorption of x-rays. (b) Absorption effect on integrated intensity. 

reduces by a factor of 1/ e. In general, absorption length depends on the energy of the 

incident photons. For example, for silicon and 6.5 keV x-ray photons, this is about 

58 f.1m. 

Absorption must be taken into account when calculating the integrated intensity. 

Suppose a beam with cross-section A is incident on a slab of material. We assume the 

material is big enough to intercept the entire beam. Let 81 and 82 be the incident and 

exit angles of the beam with the material surface and z measure the depth from the 

surface (Fig. 2.5(b)). The scattering volume between z and z + dz is a parallelogram 

with volume dV = ~iO:(~~~:~. To obtain a formula for the integrated intensity with 

absorption, we suppose a mosaic structure for the crystal. Then, we have to replace 

N in eq. 2.20 by N' Nm where, N' is the (average) number of unit cells in a mosaic 

block and N m is the number of mosaic blocks. Therefore, the number of mosaic blocks 

in the diffraction volume is equal to Nm = f" where V' is the volume of each mosaic 

crystalline. The total path the beam travels inside the material is Z(~8 + ~8 ). sm 1 sm 2 
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Integrating over z values, we get: 

l 

(2.23) 

2.2 Dynamical theory of x-ray diffraction 

For a precise study of x-ray diffraction from nearly perfect crystal, the kinematical 

theory of x-ray diffraction described in the previous section is not enough and one 

should use the more general dynamical the ory of x-ray diffraction. Since sorne of 

the samples we studied in this thesis were very high quality crystals, sorne impor-

tant concepts of the dynamical theory of x-ray diffraction will be reviewed here. A 

more complete description of the theory can be found in the references listed in the 

bibliography [6, 1, 8]. 

2.2.1 Diffraction from Perfect crystals 

When Bragg condition is satisfied, strong diffraction of x-rays into the exit beam 

diminishes the intensity of the incident beam. In a perfect crystal this effect is more 

profound because the periodic lattice extends far enough to scat ter an appreciable 

fraction of the incident beam. This phenomenon is called extinction which, even in 

non-absorbing crystals, defines a finite depth, known as extinction length, over which 

almost all the incident photons diffract off the crystal. This is a finite size effect and 

introduces an intrinsic broadening to the Bragg peaks, known as the Darwin width. 
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Figure 2.6: (a) Extinction and deviation from Bragg angle (b) Asymmetric diffraction 

Like other finite size effects, Darwin width of a Bragg peak in the reciprocal space is 

proportional to the inverse of the extinction length, provided that the crystal is thick 

enough to diffract the whole incident wave. 

Another important effect is the refraction of x-rays when they enter a crystal. 

For x-rays, the refraction index of materials, n, is sm aller than but very close to 1. 

Refraction of x-rays at the air-crystal interface changes the direction of x-rays inside 

the crystal (Fig. 2.6(a)) by a small amount of the order of 8 = 1 - n rv 10-5 rad. 

This, in turn, causes a small deviation of the Bragg peak angle form what Bragg's 

law (eq. 2.18) predicts. The order of magnitude of this deviation can be calculated 

from Snell 's law [12]: 

cos () - n cos( () - ~.e) é::::: n cos () + n sin () ~() 

1-n 1 8 5 
rv ---- é::::: -- rv 10- rad. 

n tan () tan () 
(2.24) 
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Another important effect is that x-rays diffracted from an atomic layer will satisfy 

Bragg's law when passing trough other atomic layers and, hence, have the chance 

to get scattered again and return to the incident beam (see fig. 2.6(a)). Multiple 

scattering reduces the integrated intensity of the exit beam from what the kinematical 

approximation predicts (eq. 2.20). A quantitative consideration of all these effects is 

called the dynamical theory of x-ray diffraction. There are two main approaches to 

calculate the dynamical diffraction effects. Darwin considered a perfect crystal as 

a set of atomic layers and calculated the combinat ion of multiple scattering from 

these layers. Ewald, on the other hand, solved Maxwell's equations in a continuum 

medium with periodic dielectric constant. Both approaches give similar results which 

are briefly presented here. It can be shown [6, 15] that the deviation of the center of 

the Bragg peak, !:1(), and the Darwin width, w, for the incident beam are given by: 

2rod
2 

IF(O)I tan()B 1- 'Y, 
1TVc 2'Y 

(2.25) 

2rod2 'Y --IF(q)1 tan()BP-
1 

11/ 2 ' 
1TVc 'Y 

(2.26) 

where q is the diffraction vector, IF(O)I and IF(q)1 are the structure factors at q = 0 

and q = q (broadening is more effective for strong reflections), () B is the kinematical 

Bragg angle (eq. 2.18), P is the polarization factor, and 'Y is called the asymmetry 

factor defined as: 

(2.27) 

In this equation k i and ka are the incident and exit wave vector directions and n 

is the surface normal pointing into the crystaL 'Y is positive for the Laue case and 

negative for the Bragg case. 'Y = ±1 show symmetric Laue and symmetric Bragg 
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cases, respectively. The corresponding quantities for the exit beam are given by [15]: 

!:1f)c:en 
(2.28) !:1f)cen ~ ---e 

'Y 
Wi 

(2.29) We 
'Y 

Using Bragg's law (eq. 2.18), we can translate the Darwin width in angle to a similar 

width in wavelength: 

-
tan f)' 

(2.30) 

where 8f) is the angle spread of the beam and can be replaced by Wi or W e to get 

the wavelength spread of the incident or exit beams. Wavelength spread defines a 

range of wavelengths that can be collected by the crystal from the incident beam or 

diffracted to the exit beam. 

2.2.2 Darwin refiectivity curve 

In considering dynamical diffraction experiments, two different geometries are spe-

cially important. In symmetric Bragg case, the diffracting planes are parallel to the 

crystal surface(Fig. 2.7(a)), whereas in symmetric Laue case, they are perpendicular 

to the crystal surface (Fig. 2.7(b)). A curve showing the ratio of the intensity of the 

exit beam to that of the incident beam vs beam angle or wavelength is called a Dar

win reflectivity curve. Fig. 2.8 shows Darwin refiectivity curve for Si(111) refiection 

in symmetric Bragg geometry from a 50 f-tm thick crystal. The red thin graph shows 

the case where the real absorption is assumed to be zero. The solid curve shows the 

refiectivity with absorption. The center of the peak is shifted from the kinematical 

Bragg value at zero. For low absorption the refiectivity is near unit y within the Dar-
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Figure 2.7: (a) Symmetric Bragg case (b) Symmetric Laue case 

win width. Rapid oscillations show the finite size effect due to the finite thickness 

of the crystal. The period of these oscillations in the reciprocal space is equal to 

2;, where t is the crystal thickness. Using the notations introduced in Fig. 2.6 and 

eqs. 2.25 and 2.28, we can express the incident and exit angles as follows: 

(2.31) 

(2.32) 

In these equations 6.0cen measures the deviation of the center of the incident and 

diffracted peak values from kinematical Bragg angle, and 6.0 shows the position of 

an arbitrary point relative to the center of the peak ( see Fig. 2.8). A relation similar 

to eq. 2.28 exists between 6.0 values for the exit and incident beams: 

(2.33) 
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Figure 2.8: Darwin refiectivity curve for Si(l11) refiection from a 50j.lm thick crystal 
in symmetric Bragg geometry. Red curve corresponds to the case where the effect 
of real absorption is ignored. Solid black curve shows the refiectivity of absorbing 
crystal. Rapid oscillations are due to the finite thickness of the crystal. 
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case Cl! 

Bragg o -1 

Laue 7r /2 1 

Table 2.1: Exit beam quantities in terms of the corresponding incident quantities for 
the symmetric Bragg and Laue cases. 

The results for symmetric Bragg and Laue cases are summarized in table 2.1. 

2.2.3 Dumond diagrams 

In eq. 2.32, ~(Ji = ±wi/2 define two curves corresponding to the two ends of the 

Darwin width. One can then get the incident and exit angles: 

(2.34) 

(2.35) 

For a given range of À, one can calculate two values for each of (Ji and (Je and plot 2Àd 

versus these angles. The results are often called Dumond diagrams. Although ~(Jcen 

and w are also functions of (JB and, therefore, À, they are rather small compared to 

the (J B term and for a short interval, the Dumond diagrams look like straight lines 

called Dumond refiectivity bands, because, this is the region where the refiectivity is 

close to unity. These are helpful to map a given incident ray to the corresponding 

exit one. Examples of such curves for Si(111) surface in symmetric Bragg and Laue 

cases are plotted in Fig. 2.9. In this figure [+] and [-] signs correspond to the same 

signs in eqs. 2.34 and 2.35. Note that for the Symmetric Bragg case, the incident and 
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Figure 2.9: Dumond refiectivity bands For Si(111) refiection at Ào= 1.653 Â. On the 
vertical axes d is the Bragg planes spacing. [+l and H show the two Darwin width 
edges. Dashed Hnes show the kinematical Bragg value. (a),(b) symmetric Bragg case: 
incident and exit angles are equal for an the wavelengths. (c),(d) symmetric Laue 
case: there is no shi ft due to refraction, however, rays with the same incident angle, 
but different wavelengths have different exit angles. 
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exit angles are always equal whatever the wavelength be. On the other hand, for the 

symmetric Laue case the upper and lower edges change position (see table 2.1) and 

even for the same incident angle, waves with different wavelengths leave the crystal 

with different exit angles. 

2.2.4 Dynamical integrated intensity 

In general, because of extinction and multiple scattering, the integrated intensity 

for perfect crystals is lower than the kinematical value (eq. 2.20) [for the cases we 

studied the extinction length is much smaller than the absorption length, so that the 

real absorption is not as important]. Even for mosaic crystals the integrated intensity 

is lower than the kinematical value, because, mosaic blocks have a finite size and 

dynamical effects like extinction and multiple scattering take place. To calculate the 

integrated intensity, one has to find the area under the Darwin refiectivity curve. Here 

we present the result for symmetric Bragg case [1]: 

(2.36) 

2.3 X-ray micro diffraction techniques 

In conventional x-ray diffraction, the measured intensity is an average over the entire 

diffraction volume (eq. 2.8). Therefore, the resolution of the experiment depends on 

the size of the beam and the acceptance angle of the detector. X-ray micro diffraction 

or x-my microscopy means collecting x-ray diffraction data with micron or sub-micron 

spatial resolution on the sample. To achieve this goal, one can use a very narrow beam 
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to illuminate only a micron-size area of the sample. But, this will considerably reduce 

the number of photons that can be scattered from that area. A better way would be 

to focus the x-rays to a small area without losing intensity and then move the focused 

beam to the desired point on the sample. This is called the microfocusing or x-ray 

microbeam scanning microscopy technique. Another method is to use a wide beam 

with large cross section to illuminate a large area and then use a micron-resolution 

x-ray recording medium to spatially resolve the diffracted beam. This technique is 

often called X-ray Diffraction Imaging (XDI) or x-ray topography. The invention 

of high flux x-ray synchrotron sources and the developments of high resolution x-ray 

CCD cameras helped to improve this method but, in principle, it has been known and 

used for many years using conventional x-ray sources and high-resolution films as the 

recording media. Microfocusing, however, requires an spatially coherent x-ray source 

and a focusing device. This method was only realized after synchrotron sources and 

high quality focusing elements such as x-ray Fresnel zone plates became available. A 

detailed review of these techniques can be found in the references at the end of this 

thesis [103, 6, 13,98]. In this section the two main techniques used in our experiments 

will be briefly reviewed. 

2.3.1 X-ray microbeam scanning microscopy 

Although the ide a of x-ray microscopy by a focused x-ray beam was first introduced 

about 58 years ago [80], because of technological difficulties, it was not implemented 

until the recent developments in the tunable high-fiux synchrotron sources and high 

quality x-ray focusing optical devices. The challenge was even more serious for hard 

x-rays (À = 0.1 - 10 A). This is because the normal index of refraction of materials 
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Figure 2.10: Fresnel zone plate. ( a) front view, (b) si de view to calculate the zone 
radius. 

for x-rays is very close to unit y and, therefore, a refraction-based "lens" is not so 

practical. A "diffraction grating" for x-rays must have periodicity in the order of the 

x-rays wavelength which is not very practical to make either. Unlike mirrors for light, 

there is no material to "refiect" x-rays and even the total refiection angle for x-rays 

is very small according to Snell's law. 

Micromachining technology, high-precision design and engineering, and atom-

resolution layer deposition methods have created different methods based on refrac-

tion, diffraction, and refiection to focus x-rays. These include Bragg-Fresnel lenses, 

Kirkpatrick-Baez mirrors, capillaries, compound refractive lenses, and Fresnel zone 

plates. A description of these devices can be found in the references at the end of 

this thesis [98]. Here we briefiy introduce the Fresnel zone plates which are the most 

popular devices and were used in our experiments to focus hard x-rays. A Fresnel 

zone plate is a circular diffraction grating consisting of concentric alternating rings of 

two different materials (Fig. 2.10). The rings are designed so that the optical path 

from each ring to the focal point F on the symmetric axis of the zone plate differ by 
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À/2 for the neighboring rings, where À is the wavelength of the x-rays. If the out-of-

phase zones are blocked or their phase difference 7r is somehow compensated for by 

passing through the zone plate, waves reaching the focal point from all the zones will 

constructively interfere and the result will be a strong focused beam at this point. 

From Fig. 2.10 an equation can be derived for the radius of the nth zone: 

rn (R~ - f2)1/2 = [U + n(À/2))2 - f2] 

f'V (nfÀ)I/2 = vn rl' (2.37) 

where f is the focal length of the plate and we have assumed that f »nÀ. This 

is generally true as f is typically a few millimeters and the number of zones on the 

order of a few hundreds. 80 the radius of the rings is proportional to the square root 

of integer numbers and the proportionality constant is equal to rI = W, the radius 

of the central disk. The width of each zone, i}.r n can be also estimated: 

i}.(r~) r~ - r~_1 = fÀ 

-+ 2rn i}.rn 
f'V fÀ 

-+ i}.rn 
rn rI 

(2.38) -
2.jTi: 2n 

If the spatial coherence of the beam is equal or bigger than the size of the zone plate, 

the lateral size of the focal spot, i}.s, will be diffraction-limited and determined by 

the Rayleigh criterion [12]: 

i}.s = 1.22i}.rN , 
m 

(2.39) 

where i}.r N is the width of the outermost zone and m is the diffraction or der . Fresnel 



CHAPTER 2. X-RAY MICRODIFFRACTION 38 

Fresnel zone plate XYZ translation stage 

xJ:y 
X -ray from synchrotron 

Figure 2.11: X-ray microfocusing setup 

zone plates for x-rays are usually made by very high resolution electron lithography. 

Fig. 2.11 shows a typical microfocusing setup: the sample can be moved with respect 

to the focused beam using a translation stage 'to get x-ray diffraction data from the 

desired region. 

2.3.2 X-ray diffraction imaging (topography) 

X-ray diffraction imaging is a technique to identify long range distortions and strain 

fields in crystals. In this method the incident beam is not necessarily small, but the 

diffracted beam is spatially resolved by a high-resolution detector. In this section we 

will present a qualitative description of the main princip les and techniques of XDI. 

Our emphasis will be on the plane wave diffraction imaging method used in this 

thesis. The excellent book by Authier [6] provides more detailed descriptions of these 

methods, as well as, many references on each specific subject. 
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Figure 2.12: (a) Pure lattice disorientation. (b) Pure lattice strain 

2.3.3 Source of contrast in XDI 

First question when studying XDI is the most fundamental one: how the lattice 

imperfections are distinguished in the recorded image? Two main mechanisms are 

responsible for contrast in XDI images: 

Suppose a region A in the crystal is disoriented with respect to the rest of its 

surrounding lattice B. The crystal is set to satisfy the Bragg condition for the normal 

region B and the diffracted beam is recorded by an extended detector (Fig. 2.12(a)). 

For monochromatic radiation, if the lattice rotation angle !:1.() for region A is within 

the width of the rocking curve of the crystal, Bragg condition will be only partially 

satisfied for this region and the diffracted beam will have lower intensity than the rest 

of the crystal. If disorientation is more than the width of the rocking curve, region 

A will not satisfy the Bragg condition at an and this area will appear dark in the 

image. If polychromatic radiation is used and the region A still satisfies the Bragg 

condition for sorne wavelength in the spectrum of the incident beam, the diffracted 
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rays will have a different orientation than the rest of the crystal. This will also cause 

contrast on the image by redistributing the intensities. This is, accordingly, called 

orientation contrast. The disorientation angle !J.() can be measured by rotating the 

crystal by !J.wo = -!J.() to bring region A to diffraction condition and strong intensity 

from this area is observed. It is important to note that this type of contrast can have 

a completely different origin. As illustrated in Fig. 2.12(b), suppose that in region 

A there is no disorientation, but the lattice spacing is different from its surrounding 

(strained lattice, for example). Again if the Bragg condition is met for region E, 

region A will not satisfy the diffraction condition and, therefore, will appear weaker 

or dark on the image. In this case the rotation angle !J.ws needed to bring region A 

to maximum diffraction can be calculated from Bragg's law: 

!J.d 
!J.ws = - tan() d' (2.40) 

where !J.d is the change in the lattice constant d. This can be confused with an 

equal lattice disorientation. However, since the lattice constants in these two cases 

are different, so will be the diffraction angle 2(). The angle between the diffracted and 

incident beams will be equal to 2 sin -1 (~) for a pure disorientation, and 2 sin -1 (d/L).d) 

for a pure strain. An analyzer crystal after the sample can serve as a filter to pass a 

certain direction of the diffracted beams to resolve the ambiguity. 

The second contrast mechanism arises around local imperfections in a perfect 

crystal. For example, the contrast of a point defect or dislocation in a topographic 

image. The deformed lattice around these defects is no longer a perfect lattice and, 

depending on the magnitude of imperfectness, extinction reduces and the simple 

kinematical approximation is appropriate to describe the diffraction. As we've seen 
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in sec 2.2.4, integrated intensity in the kinematical approximation is greater than the 

dynamical theory for the same lattice because of the lack of extinction and multiple 

refiections. This enhances the diffracted intensity form the defected are as and this 

type of contrast is, therefore, called extinction contrast. Obviously if extinction breaks 

down, but there is no more material to contribute to the kinematical diffraction, there 

will be no enhanced intensity. In order to observe this type of contrast, the crystal 

must be thicker than the extinction length of the x-rays. 

2.3.4 Techniques of x-ray diffraction imaging 

In general XDI can be done either in refiection (Bragg) or transmission (Laue) geome

tries. However, several techniques have been developed since the invention of XDI. 

Here a short review of the most important ones will be given and compared. 

2.3.4.1 Berg-Barrett technique 

This is a single crystal refiection topography technique. Although it was first intro

duced by Berg [10] in 1931 to observe the trace of scratches on the surface of sodium 

chloride crystals, because of its simplicity and efficiency, has been improved by many 

others and still is being used. To understand the geometry used in this technique, 

let's consider the simple st possible diffraction imaging setup. A source of size hi in 

the diffraction plane (the plane defined by k i and ko in Fig. 2.4) is used to illuminate 

the sample at distance L and an extended detector at distance l records the diffracted 

rays (Fig. 2.13). The spatial resolution of the image depends on many factors inc1ud

ing the geometrical resolution. If all the rays reaching the point P on the sample 

are within the rocking curve of the crystal, then geometrical size of the image on the 
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Figure 2.13: Berg-Barrett technique: best spatial resolution is achieved when a small 
source at far distance is employed, the incident beam is at grazing angle with the 
crystal surface, and the crystal cut and diffracting planes are set so that diffraction 
is almost perpendicular to the surface. 
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detector will be: 

s = Lw, (2.41) 

where w = 4:, the angle subtended to the source at point P or w = D, the natural 

divergence of the source, whichever smaller. This immediately implies that better 

resolution is achieved by using a small source very far from the sam pIe (or a very low 

divergence source), and placing the detector as close as possible to the sample. If the 

detecting surface is placed parallel and very close to the sample, the sample-detector 

distance and, therefore, resolution will be the same and maximum for aH the points. 

The size of the illuminated area on the sample and the corresponding size of the total 

image on the detector will be also determined by simple geometry: 

A 
hi 

(2.42) . 0' sm i 

ho 
A _ h sinOo (2.43) -'-0- - i -'-0-' sm a sm i 

where, Oi and 00 are the incident and exit angles respectively. Therefore, to cover 

a bigger area of the sam pie and have a maximum magnificat ion on the image, Oi 

should be very small (grazing angle incident) and 00 close to 90° . Fig. 2.13 shows 

a Berg-Barrett XDI setup. X-rays from a small source (a fine focus x-ray tube or a 

synchrotron source) are incident on the sample at grazing angle. The crystal is cut 

so that for a suit able diffraction order the diffracted rays are as close as possible to 

normal to the surface. The other factor that should be considered concerning the 

resolution is the resolution of the detector itself. When films are used, the image 

is directly recorded on a nuclear emulsion plate. In case of CCD or TV cameras, 

x-rays hit a phosphor screen and the optical image produced this way is recorded by 
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an optical CCD. To record a notice able trace of x-rays, they have to cross a certain 

thickness of the film or phosphor screen which will smear the image. To minimize 

this effect, the sensitive plate must be as thin as possible and placed normal to the 

x-rays. lnclined beams will have a bigger trace after passing a certain thickness. 

high efficiency films and use of soft x-rays (À > 10 A) will help to reduce the film 

thickness. The following advantages of synchrotron sources compared to laboratory 

sources make them preferable for this technique: 

1. Small size, large source-sample distance, and weIl collimated beam of a syn

chrotron source increase the resolution of the image. 

2. Low divergence of a synchrotron source makes it possible to place the detector 

far from the sam pie which facilitates the instrumentation. 

3. High flux of photons makes it possible to choose higher order and weak Bragg 

reflections to fulfill the requirement for the exit beams being normal to the 

surface. The high intensity also reduces the exposure time of the detector. 

2.3.4.2 Section and Projection topography techniques 

Section topography or Lang topography is a transmission technique first invented 

by Lang in 1958 to observe dislocations in silicon crystals [84]. Fig. 2.14 shows a 

schematic of this technique. A fine (",10 /Lm) x-ray beam is incident on the sample 

at sorne angle to satisfy the Bragg condition for the desired reflection. The diffracted 

beam goes through a series of multiple reflections in si de the crystal and, as a result, 

two wide bands of diffracted and direct beams emerge from the exit surface of the 

crystal. The diffracted beam, therefore, images a small three dimensional region inside 
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crystal 

Figure 2.14: Lang topography technique: multiple diffractions of the incident beam 
pro duce a 3-D image of the imperfections in a section inside the crystal. To cover 
bigger areas, the detector and sam pie are translated together with respect to the 
incident beam. The result is then called a projection topography. 
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x-rays 

detector 

Figure 2.15: White beam topography: Laue spots form simultaneously for different 
wavelengths in the white incident beam. 

the crystal, named a "section" by Lang. To coyer bigger areas, sam pIe and detector 

are translated together with respect to the incident beam keeping the diffraction con

dition valid. This way, an image of the defects in the crystal is projected to the film 

and, hence, the name projection topography. 

2.3.4.3 White beam topography 

This is a simple transmission technique which takes advantage of the continuous 

wavelength spectrum of synchrotron radiation. X-rays from a synchrotron source hit 

the sample and different atomic planes satisfying Bragg condition for different wave-

lengths in the beam form diffraction patterns, called Laue patterns, on the detector 

(Fig. 2.15). Each Laue spot is itself a topograph of the illuminated area at sorne 

wavelength. For a synchrotron, the x-ray source is small and very far from the sam-

pIe. So, the detector can be placed far enough from the sample (see sec. 2.3.4.1) to 

observe the details of each Laue spot. White beam topography has the advantage 
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Figure 2.16: Double crystal topography 

that several reflections form at the same time and there is no need to reorient the 

crystal to observe different reflections. As an example, Kawado [74] used synchrotron 

white beam topography to get a 3-D map of dislocations in silicon wafers. 

2.3.4.4 Double crystal topography 

This technique was first introduced by Bonse [11] in 1958 to study single dislocations. 

A good review of the applications of this method is given by Hart [56]. In this 

method the incident beam first diffracts off a high quality reference crystal before 

reaching the sample (Fig 2.16). The divergence of the beam after reflecting from 

the reference crystal is no bigger than the rocking curve of this crystal. Reflection 

from the reference crystal is usually asymmetric to collimate the beam used for the 

sample. This expands the beam and at the same time decreases the beam divergence. 

The sample is set so that the intensity is at the FWHM of the rocking curve of the 

sample. This method is very sensitive to smalliattice distortions and strain, because, 

any small changes in the locallattice orientation or spacing causes a rapid and almost 

linear change in the intensity. 
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2.3.4.5 Plane wave XDI 

In the double crystal method, the rocking curve of the reference crystal must be as 

narrow as possible to increase the sensitivity of the method. An even more sensi

tive technique can be realized by using an almost plane wave for diffraction from the 

sample. The idea was first implemented by Authier [7] in 1961 using a narrow slit 

to allow only the central part of the beam diffracted by a nearly perfect crystal in 

transmission mode, pass to the sample. Synchrotron sources have made plane wave 

topography much more practical, powerful, and precise to map very small lattice 

distortions. Often a plane-wave monochromator or a set of crystals are used to pro

duce a nearly plane beam with large cross section from a synchrotron x-ray beam. 

The small size of the source and large source-sample distance allows for high resolu

tion and bigger sample-detector distance. Aiso the tunability of synchrotron sources 

provides the choice of wavelength. This technique has been used, for example, by 

Chikaura [24, 25] to study microdefects in thin silicon crystals, Kitano [81] to detect 

lattice distortions as small as 0.2 arc second in big 6 inches silicon wafers, more re

cently by Kimura [77] with varying magnificat ion to measure dislocations in silicon 

with less than 0.5 /-lm spatial resolution, and by Kawado [73] to me as ure surface 

strain in silicon wafers. Plane wave topography is the ideal method to measure very 

smalllattice distortions. A good review of this technique and comparison with other 

methods is given by Hart [56]. First a series of images are taken for different positions 

of the rocking curve of the sample. Then, the sample is rotated about the diffraction 

vector q (Fig. 2.4) by 90, 180, and 270 degrees and the images are repeated. Changes 

in lattice parameters for a given area with respect to a reference area on the sample 

are determined by comparing the peak positions of the reflectivity curves for the two 
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places. Placing an analyzer crystal before the detector helps to distinguish between 

lattice spacing and lattice disorientation. It is fundamentally important to differen-

tiate between these two. For example, Ishikawa [63] used this modification to map 

the equi-spacing contours in GaAs single crystals. FoIlowing Bonse assumption [103] 

that the contrast arises from local deviations from Bragg's law, the total change in 

Bragg angle, f~J)B, can be imagined to consist of two parts: a true lattice rotation, 

bOB, and a change due to lattice strain, 8;: 

(2.44) 

These are two different phenomena which should be weIl separated when studying 

deformations in crystals. We have addressed this issue in our study of silicon cantilever 

in proper way. (See chap.4). 



Chapter 3 

X-ray microdiffraction study of 90° 
domains in barium titanate 

Ferroelectrics are materials that have an electric dipole moment even in the absence 

of an external electric field. What distinguishes ferroelectrics is the fact that it is pos

sible to reverse the polarization by applying a sufficiently strong electric field. This 

is the main property used in many of their applications. Ferroelectricity has been 

known for a very long time. Teophratus (a Greek author) mentioned that "lyngou

rion" (tourmaline, probably) attracted little pieces of wood when cooled down after 

heating. Ferroelectricity in its modern form was discovered by Valasek [121] in 1921. 

The first ferroelectric crystal discovered in modern ages was Rochelle salt [122]. Since 

then many other simple and complex ferroelectric materials have been discovered and 

studied. Regarding their chemical formula, ferroelectrics are classified in two groups: 

materials with hydrogen bounds, such as KH2P04 (KDP) and TGS (triglycine sul

fate), and double-oxides such as BaTi03, LiTa03, LiNb03, PbTi03, KNb03, etc. 

Because of their very high dielectric constant, ferroelectrics have been used to make 

high capacity capacitors. Sorne ferroelectrics including BaTi03, LiTa03, and LiNb03 

are transparent to light and are used in optical devices such as optical switches [137]. 

50 
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They have been also used as micro-sensors and actuators [99]. The most recent (and, 

perhaps, the most important) application of ferroelectric crystals is the N on-Volatile 

Random Access Memories (NVRAMs) [124, 32, 64, 5, 99]. In this type of RAM mem

ories ferroelectric domains are used as the storing units to store the information. 

Unlike conventional memories, once the information is stored, no voltage is needed to 

keep it which has several practical advantages. 

In this chapter we briefiy review some physical aspects of ferroelectrics relevant to 

our study. There are good classic texts [86, 137] and reviews [30, 37, 28, 31] available 

on the general theory of ferroelectricity and their applications. We also review the 

most important work done in this field with particular emphasis on Barium Titanate, 

the material studied in this thesis. A detailed description of the experimental setup 

and the results will follow the theory section. 

3.1 Physics of Ferroelectricity 

Ferroelectrics are materials that in a certain range of temperature develop sponta

neous electric dipole moment. In this regard they are pyroelectric, but, what dis

tinguishes them is that the electric dipole moment in ferroelectric materials can be 

reversed by applying a sufficiently large electric field. In ferroelectrics dipole mo

ments develop when the material undergoes a phase transition from a high symmetry 

paraelectric phase to a low symmetry ferroelectric phase. The ferroelectric state is 

the state with a non-zero spontaneous polarization, P s' The transition temperature 

is called the Curie Temperature, Tc. Table 3.1 lists some weIl known ferroelectric 

materials with their Tc and Ps values. Phase transition in ferroelectrics can be best 

understood in a phenomenological treatment given by Landau and Ginzberg[82, 132]. 
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Material Tc (C) Ps (fJ,C cm-2 at RT) 

KH2P04 -150 4.75 

TGS 49 2.8 

BaTi03 -90,0,120 26 

LiNb03 1210 71 

LiTa03 620 50 

PbTi03 490 75 

Table 3.1: Sorne ferroelectric crystals. 

The free energy per unit volume, Y, of a crystal with center of symmetry can be 

expanded in a power series of the polarization P value (the arder parameter): 

() 12 1 4 1 6 Y PTE = - E . P + .ho + -o:P + -(3P + -'V P + ... , , 2 4 6 l , 
(3.1) 

where for generality the interaction energy with an electric field E has been also 

added. In principle, 0:, (3, and,,! can be functions of temperature T. Because of the 

assumed symmetry, only even powers appear in the series. The equilibrium state 

corresponds to the value of P that minimizes the free energy: 

y' 8Y 3 5 
8P = -E+o:P+(3P +"!P = 0, 

:Fil fPF 
8p2 > 0, 

(3.2) 

(3.3) 
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where E is the electric field in the direction of polarization. To derive the princi-

pIe concepts, we first assume that there is no external electric field. If we consider 

only the square term in free energy, equilibrium state only occurs at Ps = O. Next 

approximation is to take the first two terms and set '"Y to zero. Then we get: 

(3.4) 

and the corresponding second derivatives: 

{

a, 
F"= 

-2a. 
(3.5) 

Therefore, a should be positive for Ps = 0, and negative for Ps =F 0 in order to have a 

local minimum in the free energy. This requires a to change sign at sorne temperature, 

To, so that a becomes negative for T < To: 

a = a(T - To), (3.6) 

where a is another constant. To is, therefore, the temperature below which the mate-

rial gains spontaneous dipole moment. This is by definition the Curie temperature, 

Tc = To. Equation 3.4 requires that f3 > O. If f3 < 0, there will be no ferroelec

tric phase in this approximation and, therefore, the pB term in eq. 3.1 must be also 

considered. Let's first consider the case where (3 > O. Figure 3.1(a) shows the free 

energy curves below, at, and ab ove the transition temperature Tc for this case. As 

can be seen from these graphs, the polarization continuously changes from Ps = 0 to 
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Figure 3.1: Phase transitions in ferroelectric crystals. (a) Continuous (second order) 
phase transition. (b) Discontinuous (first order) phase transition. 

Ps = ~ as temperature decreases from above to bellow the transition temperature. 

This is, therefore, called a continuous or second order phase transition. Ferroelectric 

transition in lithium tantalate, LiTa03 is of this kind. If (3 < 0, we need to keep the 

p6 term. In this case the equilibrium values for the polarization are: 

(3.7) 

This requires that , > ° and 

[1 - 40:']1/2 > 0 -+ T < T* (32 - , (3.8) 
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where the tricritical temperature T* is defined as bellow: 

(32 
T* To+-. 

4a)' 
(3.9) 

If Ta < T :::; T* the free energy curve will have two local minima other than the one 

at Ps = o. The free energy curves for this case are plotted in Fig. 3.1(b). For sorne 

temperature Tc < T* the local minima at Ps i:- 0 will have the same values as the one 

at Ps = o. At this transition temperature the polarization can suddenly jump from 

zero to sorne nonzero value. This is, therefore, called a discontinuous or first order 

phase transition. Ferroelectric phase transition in BaTi03 is of this kind. 

From structural point of view, phase transition in ferroelectric crystals is either 

displacive or order-disorder types. In a displacive ferroelectric phase transition ( 

like phase transition in the Perovskite family with AB03 generic formula, including 

BaTi03 ) ferroelectricity is a result of displacement of ions which results in separating 

the cent ers of the positive and negative charges in the unit cell (see sec. 3.2 for more 

details). In this type of transition when an atom is displaced from its equilibrium 

position, the force from the local electric field exerted on the atom grows faster than 

the restoring elastic force. As a result, a permanent polarization forms. This phe-

nome non is known as polarization catastrophe. At the beginning the electric field is 

large and the restoring force is small causing a fast development of the electric dipole 

moment. As the separation of the ions increases, so do es the restoring force stopping 

the growth of the polarization at the equilibrium value. In the order-disorder ferro-

electric transition, on the other hand, each individu al unit cell has a dipole moment, 

but they are randomly oriented above Tc. Below Tc, they an point in the same di-

rection in each domain. Ferroelectric materials with hydrogen bonds, for example, 
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KH2P04 have this type of transition. 

Electrical properties of ferroelectric crystals are directly related to the structure 

of their polarization state. For instance, the electric susceptibility is the ratio of 

polarization vector to the applied electric field. Here, as the first approximation, we 

can assume that j3 = 'Y ~ O. Then from eq. 3.2, and eq. 3.6 we get: 

P 1 x---- E - a(T-To)" (3.10) 

These quantities provide tools for the study of phase transition in ferroelectric mate-

rials by me ans of electric measurements. 

According to eq. 3.4 and Fig. 3.1, in one dimension there are two equivalent min-

ima for the free energy corresponding to P = ±Ps . Similarly, in three dimensions the 

minima of the free energy corresponds to more than one equivalent state of polar-

ization. 8elow the phase transition, different regions in the crystal can, in principle, 

have any of the energetically equivalent polarization states. Each one of these regions 

is called a ferroelectric domain. The boundary between two neighboring domains is 

called a do main wall. A multi-domain crystal costs more energy both because there 

is a positive surface energy (surface tension) associated to the domain walls, and 

also because in continuous variation of polarization from one domain to the other, 

polarization has to take values other than those of the minima which increase the 

free energy. This extra energy is often called domain wall energy. Therefore, ide-

ally, a single domain state is energetically more favorable. What, however, change 

the situation are the crystal surfaces. Fig. 3.2 demonstrates a single-domain piece of 

crystal. Polarization creates surface charges of opposite signs on the crystal surfaces. 

Separation of positive and negative charges on the crystal surface costs electrostatic 



CHAPTER 3. MICRODIFFRACTION FROM 9ff DOMAINS IN BATI03 57 

+ + + - + + 
+ ++ 

+ t ! t ! t 
+ + -- - + + 

Figure 3.2: Domain formation in ferroelectrics. In a finite size single-domain ferro
electric crystal domains form to minimize the total electrostatic and surface energies. 

energy making a single-domain state less desirable. In fact what happens is that 

these charges create a depolarizing electric field Ed in si de the crystal in the opposite 

direction of the initial polarization which is strong enough to reverse the polarization 

of sorne regions and create a multi-domain structure. The equilibrium state of the 

crystal is determined by competition between the electrostatic energy of the polar

ization charges on the surface and the domains wall energy. Crystal defects can also 

force the crystal to form domains again because of the concentration of charges. For-

mation of domains creates another problem. Polarization charges can accumulate on 

the domain walls, if the normal component of the polarization vector varies across 

the wall. To reduce this effect, ferroelectric domains arrange their orientations so 

that the electrostatic energy becomes minimum. This often creates antiparallel or 

head-to-tail configurations (see sec. 3.2). It is important to realize that a perfect 

and infinite ferroelectric crystal would consist of only one single domain. In practice, 

ferroelectric crystals usually consist of many domains randomly oriented in the pos-

sible directions. The average dipole moment in the macroscopic sc ale is, therefore, 

zero. By applying a sufficiently large electric field the dipole moments of the domains 

can be aligned so that they have a non-zero component in the direction of the field. 

This process is called polling. To pole a ferroelectric crystal, usually, the temper-
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ature is risen above the transition temperature, then, an electric field is applied to 

the crystal in the proper direction and the crystal is cooled down slowly [51]. By 

definition, ferroelectric domains polarization can be reoriented at room temperature 

by applying a large electric field known as coercive field Ec . Polarization switching 

is a rather complicated phenomena which involves heterogeneous nucleation of new 

domains and forward and/or sidewise motion of domain walls to create the new state 

of polarization [86, 97]. Ishibashi [62] proposed a lattice model to explain polarization 

reversaI in ferroelectrics. The velo city of sideway motion of domain walls follows an 

exponential law [97]: 

(3.11) 

where E is the applied electric field and t5 is called the activation field. This formula 

implies a nucleation pro cess for the sidewise motion of domain walls. Many of the ap-

plications of ferroelectric crystals are based on polarization switching. For example, in 

NVRAMs information is written by switching the polarization of domains in certain 

regions of the crystal [124]. It is known that domain wall motion plays an important 

role in polarization switching. The formation of domains in ferroelectric crystals of-

ten creates strain fields around the domain walls. This is mostly because neighboring 

domains have different lattices which have to match in the domain wall region. Many 

static and dynamic properties of ferroelectrics depend on the fine structure of do-

main walls and the associated strain field around them. Strain field and domain wall 

structure are also important factors in the crystal fatigue (change of the ferroelec

tric properties by time) which affects do main switching in ferroelectric devices [40]. 

Experimental results for many ferroelectric crystals show that the strain field around 

domain walls usually expand weIl beyond the domain wall area [76, 112, 66]. 
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3.2 The structure offerroelectric domains in BaTi03 

Ferroelectricity in barium titanate, BaTi03, was first discovered by Wul [136] in 1946. 

BaTi03 belongs to the Perovskite family with AB03 generic structure with A and B 

being mono- (or divalent) and tetra- (or pentavlent) metals. Because of their simpler 

structure compared to older compounds and, of course, their applications, BaTi03 

and other ferroelectrics from Perovskite family, such as PbTi03, KNb03, LiNb03, 

and LiTa03 attracted a lot of attention. Now, BaTi03 is one of the most studied 

ferroelectrics and is considered a classic example of ferroelectrics materials. In 1950 

Mason and Matthias [90] proposed a theoretical model to describe the structural 

phase transition in BaTi03. Devonshire [34, 35, 36] described a macroscopic thermo

dynamic theory of phase transition in BaTi03. In 1960 Cochran [26, 27] explained the 

microscopic theory of ferroelectricity in BaTi03 in terms of lattice dynamics. BaTi03 

undergoes several phase transitions: It has cubic lattice in paraelectric phase above 

120 oC. between 120 oC to 0 oC it is in ferroelectric phase and has tetragonal structure 

with polarization vector along one of the (100) directions of the cubic phase. Below 

o oC it remains ferroelectric, but the structure changes. Between 0 oC to -70 oC the 

structure is orthorhombic with polarization along one of the (110) directions of the 

cubic phase. Below -70 oC the rhombohedral phase is stable with polarization along 

one of the (111) cubic directions. The paraelectric to ferroelectric phase transition 

at 120 oC is responsible for ferroelectricity at room temperature. The transition is 

a first-order displacive type. Fig. 3.3 illustrates the structural change during this 

transition. Ba2+ ions are at the corners, Ti4+ at the center, and 0 2
- ions at the faces 

centers. because of the symmetry, the center of positive and negative charges coincide 

and there is no net polarization in the unit cell. Upon transition, structure changes 
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Figure 3.3: Structural phase transition in BaTi03 : A dipole moment develops when 
positive and negative ions are displaced relative to each other at 120 oC. 

from cubic to tetragonal (a= 3.9945 Â and c = 4.0335 Â) with P4mm (C4v ) space 

group. The lattice distortion is given by Q ratio which is ""' 1.01 for BaTi03 . Taking a 

the barium atoms as reference, the octahedra of 0 2- moves a litt le down and the 

titanium ion moves in the opposite direction separating the cent ers of positive and 

negative charges and creating a di pole moment in the unit cell. There are two types 

of oxygen ions in the unit ceIl: the two on the top and bottom (type 1) have different 

displacements than the ones on the faces (type II). Table 3.2 lists the atom positions 

and relative displacements for different ions during the phase transition [55]. Because 

of the six-fold cubic symmetry before the transition, aIl the six cubic (100) direc-

tions are energeticaIly equivalent and the dipole moment can, in principle, develop 

along any of these six directions when the crystal undergoes the phase transition. 

This results in domains with anti-parallel (180°) or perpendicular (90°) polarizations 

(Fig. 3.4( a)). To minimize the electrostatic energy, the polarization vectors in the 

neighboring 90° do mains align to form charge-natural waIls and, therefore, foIlow a 
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Atom Position Displacement (A) 

Ba 0,0,0 (origin) 0.0 

Ti 1 1 1 bZ 
2' 2' 2 + Ti 0.0135 

0 1 ~,~, bZOI -0.024 

OIl ~,O, ~ + bZOII ; O,~, ~ + bZOII -0.0150 

Table 3.2: Atoms displacement during phase transition in BaTi03 (From x-ray and 
neutron measurements by Harada et al [55]) 
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Figure 3.4: Orientation of domain walls in BaTi03 . (a) 180° and 90° walls. (b) Lattice 
matching across a 90° domain wall. 
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head-to-tail arrangement. The lattices across the domain walls should match together 

to relieve the strain. Twinning is the phenomenon when two lattices share sorne crys

tal sites. Cao et al. [17] did a full study on twinning in 90° and 180° domains in 

Perovskite crystals. Fig. 3.4(b) shows a perfect lattice mat ching for two 90° domains. 

This defines the orientation of the wall with respect to the tetragonal axes of the two 

lattices: 

(3.12) 

So, if the two lattices match perfectly, the angle between the polarization vectors (c 

axes) in the two adjacent 90° domains must be ",89.42° instead of 90°. The transfor-

mation of lattice from one domain to the other one takes place over a finite distance 

defined as do main wall thickness. In the case of 90° domains, there are two proposed 

scenarios for the change of the polarization vector from one domain to the other one: 

in the do main wall region the magnitude of the polarization vector diminishes grad-

ually without rotation and then grows again in the perpendicular direction, or the 

polarization vector rotates by 90° as one moves from one domain to the other one. 

Experimental evidences are in favor of the second scenario [138]. The thickness of 90° 

and 180° domain walls and the associated domain wall energy are important factors 

in the subject of domain dynamics, for example, domain switching. For this reason 

they have been studied and debated for long time. Table 3.3 summarizes the results 

of sorne of the work do ne to measure wall parameters of BaTi03 . 

Merz [91, 92] used polarization electric measurements and optical microscopy to 

study the structure of domains in BaTi03 single crystals. Merz [93] and Little [87] 

used the same methods to study the dynamics of 90° and 180° domain walls. Miller 

and Savage [95, 96] specifically measured the sidewise motion of domain walls and 
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O'w (mJjcm2
) tw (Â) 

Author 1800 900 1800 900 

Padilla [107] 16 5.6 

Merz [93] 7 1 

Zhirov [141] 10 2-4 5-20 50-100 

Yakunin [138] 50 

Floquet [48] 40-60 

Table 3.3: Domain wall surface energy, O'w, and wall thickness tw for BaTiü3' 

domain wall velocity in single crystal BaTi03. Optical techniques are applicable only 

to transparent crystals and have limited resolution. Transmission electron microscopy 

(TEM) has been used as an accurate method to investigate the domains structure 

in thin films of ferroelectric materials. For example, Yakunin et al. [138] studied the 

900 domain walls in 500-2000 Â BaTi03 thin films. Snoeck at al. [125] used TEM 

to measure the motion of domain walls in BaTi03 thin films. Stemmer et al. [128] 

used TEM to me as ure the atomistic structure of domain walls in PbTi03, another 

Perovskite ferroelectric material similar to BaTi03 . TEM, however, is only applicable 

to very thin films which may have different structure than the bulk samples. Scanning 

probe microscopy techniques have also been used to study mostly other ferroelectric 

materials. For example, Saurenbach et al. [120] used atomic force microscopy (AFM) 

to image domain walls in Gd2 (Mo04h, a ferroelectric-ferroelastic crystal. Yang et 

al [139] successfully measured the motion of a single 1800 domain wall in lithium 
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tantalate (LiTa03) single crystal with nanometer resolution using near-field scanning 

optical microscopy (NSOM) technique. Scanning microscopy techniques, although 

have very good spatial resolution, can only me as ure quantities on the surface of the 

sample and provide little information on bulk quantities such as internaI strain and 

lattice rotation. 

X-ray diffraction has always been a popular technique to investigate the structure 

and dynamics of ferroelectric crystals. The main advantages are that x-ray diffrac

tion is a fast sensitive and non-destructive bulk probe with atom-size resolution that 

directly measures the lattice structure. Evans [44, 43] did a detailed x-ray study 

to determine the atoms positions in tetragonal BaTi03. Later, Harada et al. [55] 

compared x-ray and neutron diffraction methods to get more accurate data. More 

recently, Chandrasekaran et al. [21] emphasized on the importance of considering the 

anomalous scattering in noncentrosymmetric ferroelectric crystals including BaTi03 

. The study of domains and domain wans structure in BaTi03 with x-ray diffraction, 

however, doesn't have a very long history. Valot et al. [133] used the relative change 

in the intensities of (002) and (200) Bragg peaks when applying an electric field or 

heating the sample as an indirect measure of the evolution of 90° domains. They also 

attributed the profile of several Bragg peaks to the microstructure of 90° domains. 

In an extensive study, Floquet et al. [48] combined x-ray powder diffraction and high 

resolution TEM to investigate the fine structure of 90° domain wans in BaTi03. In 

particular, they studied the thickness of the wans and the effect of stress in shap

ing the walls, again in an indirect way used before [133]. In another work, Floquet 

and Valot [47] proposed a structural model to interpret the width of the 90° domain 

wans obtained in their x-ray measurements of powder BaTi03. They found that do-
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main wans have internaI structure and their width is about 16% of the grain size. 

More recently, there have been work to measure in situ dynamics of domain wans 

by x-ray diffraction. Zolotoyabko et al. [142] used x-ray pulses synchronized with a 

high-frequency electric field to measure the time dependent variations of the lattice 

parameters in thin films of single crystal BaTi03 . 

In an the work mentioned above, proper understanding of the internaI microstruc

ture of domains and domain wans is a key. X-ray microdiffraction seems to be the 

appropriate tool to directly address this issue. It can directly probe the bulk and 

surface microstructure of domains and domain wans in an types of ferroelectric mate

rials. Sorne work have been done so far using this technique. Fogartyet al. [49] used 

high resolution XDI technique to image morphology of the antiparanel domains in 

thick BaTi03 crystals with 1-10 f.1m resolution. Using x-ray topography, Drakopoulos 

et al. [38] studied the inversion of 180° domains in LiNb03 and found that the domain 

wans thickness is in the order of 0.3 f.1m, larger than the theoretical values. Kim et 

al. [76] used x-ray topography to me as ure the strain field around 180° domain wans 

in LiNb03 and LiTa03 and found that strain field extends a few micrometers around 

the wans. Rogan et al. [112] carried out a direct measurement of strain field around 

domain wans in BaTi03 using a microfocused x-ray beam and found that, in contrast 

to theoretical calculations and previous measurements, the strain field extends several 

micrometers around 90° domain wans. 

In most of the microstructure studies done so far, the measurements were indirect 

and based on pre-assumptions about the structure of domains and domain walls. A 

few cases where direct measurements of the structure of individual domains with fairly 

good resolution and accuracy were done [112], the results failed to provide a complete 
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description of the fine structure of the domain structure. For example, the important 

fact that the properties of domains and domain walls in the bulk and near the surface 

of the crystal are different, was not fully taken into account when interpreting the 

data. In the following sections we will explain how we exploited the power of x-ray 

microdiffraction combined with a detailed analysis to properly address sorne of the 

important problems related to the fine structure of 90° domains and domain walls in 

ferroelectric BaTi03 crystals. 

3.3 The x-ray microfocusing experiment 

Our experiment was done at the 8-ID si de section of IMMjXOR-CAT (IBM, McGill, 

MIT, X-ray Operations,and Research Collaborative Access Team) beamline at the 

Advanced Photon Source, Argonne National Laboratory. We used two samples in 

our measurements. They both were zero-field-cooled 99.99% pure barium titanate 

single crystals from MTI Corporation [143] measured 5x5x1 mm with their bigger 

faces cut parallel to (100) planes. For rectangular shape ferroelectric samples, the 180° 

domain walls perpendicular to the crystal surface are commonly called c - c domains 

where as 90° domain walls at 45° to the surface (like our sample), and 900 domain 

walls perpendicular to the surface are referred to as a - c and a - a domain walls, 

respectively. Both Our crystals had stripe-shape 90° domains with their polarizations 

parallel and perpendicular to the crystal surface. These domains were separated by 

90° a-c domain walls at 45° to the surface. The stripes were extended over the whole 

length of the sam pie and were rv 10 J.lm wide on average. The setup for our experiment 

is schematically shown in Fig. 3.5(a). We used an x-ray Fresnel zone plate 250 J.lm in 

diameter with a 37 cm focallength at 7.5 keV to focus the synchrotron beam. The 
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Figure 3.5: (a) Microfocusing setup. (b) Domains configuration in the BaTi03 sample 
and diffraction geometry. 
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focal area was as small as 0.3 f.1m in the direction perpendicular to the domain walls 

(diffraction limited in this dimension) and 3 f.1m parallel to the strips (Fig. 3.5(b)) with 

an efficiency of "'30% of the illuminated flux. In x-ray scanning microscopy usually the 

sample is moved with respect to a fixed beam. In our case, we used a three dimension al 

XYZ translation stage with 30 nm step size over a 25 mm travel range. The stage 

was built by assembling together three translation stages (models 9064-X and 9064-Z) 

from NewFocus [144] company. Each stage was equipped with a picomotor actuator 

(model 8322) from the same company. These picomotors use a piezoelectric crystal 

to turn a fine-pitch screw. The models we used had < 30 nm nominal step size over 

25 mm travel range. In practice, to reproduce a movement with this resolution, one 

needs a readout system to register the absolute position of the stage and a feedback 

mechanism to control the motion of the actuators. To this end, we mounted a state

of-the-art optical encoder (Mercury 3000 from MicroE Systems [145]) on each stage. 

These encoders consist of two parts: a linear optical grating, and an optical encoder. 

The gratings had 20 f.1m wide parallel lines and were mounted on the body of the 

stages. An array detector, a diode laser, and electronic circuitry were integrated into 

the optical encoders which were mounted on the moving parts of the states. Figure 3.6 

shows a picture of our assembled translation stage. The way these encoders work is as 

following: an interference pattern of the grating illuminated by the laser form on the 

detector array. When the stage moves with respect to the body, the array detector 

can sense the movement by measuring the displacement of the interference pattern. 

This pattern is digitally interpolated to allow measuring a fraction of an interference 

fringe. For example, we used 1024 x interpolation factor which provided 20 nm linear 

resolution. The standard drivers and readout softwares supplied by the vendors did 
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Figure 3.6: Picture of the XYZ translation stage 
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not meet our needs for an automated closed-circuit feedback mechanism. We had to 

rewrite most of them in Linux operating system and add new codes to embed them 

into SPEC [146], the program we use to operate our diffractometer. In our developed 

version, the encoders and picomotors are linked trough a feedback mechanism. The 

position is read by the encoders and, the picomotors are asked to correct the motion 

and position the stage at the required place. Our tests showed, both relative and 

absolute positioning of the XYZ stage with better than 50 nm resolution. The stage 

was mounted at the center of a three circle diffractometer. These angles are labeled 

() (sample rotation), 2() (detector angle), and X (out-of-plane diffraction angle). To 

measure the x-rays we used a high resolution area detector consisting of a CCD camera 

on a microscope imaging an x-ray scintullator placed at ",30 cm from the sample. The 

combinat ion of these gave us 1.5 /-Lm spatial resolution. In our first run of experiments 

a 60 x 60 /-Lm2 area of the sample was scanned in 3 /-Lm steps. At each point 2() was set 

for (001) and (100) Bragg peaks corresponding to the c and a domains and () sc ans 

were performed in 0.002° steps. A Lorentzian function was fit to the measured peaks 

at each point. Fig. 3.7(a) shows two dimension al maps of the integrated intensity of 

(100) peak. Fig. 3.7(b) represents the same quantity for (001) peak in the same scan 

area. On each image bright and dark stripes indicate strong and weak diffractions 

for one type of domains (for example, c domains). As can be seen, the bright stripes 

in one of the images line up with the dark stripes in the other one confirming the 

alternating c - a 90° domains. The width of the domains were '" 10 /-Lm. Examples of 

the two Bragg peaks at the center of two adjacent domains along with the fit results 

are demonstrated in Fig. 3.7(c). Again, it is evident that the maxima of one type of 

domains corresponds to the minima of the other type and vice versa. 
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Figure 3.7: Alternating 90° domains in BaTi03 . Ca) maps of integrated intensity for 
(100) and (001) peaks in the same region. (c) Integrated intensity data (points) and 
fits (solid lines) at the center of a (100) domain (black) and a (001) domain (red). 
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Figure 3.8: Domains geometry in our BaTi03 . sample: (a) Polarized microscope 
image of domains pattern across a diagonal a - c wall. (b) (001) and (100) Bragg 
peaks associated with the four domains. 

One of our BaTi03 samples had a big diagonal c - a wall at 45 0 to the crystal 

edges. Bragg peaks pattern is more complicated for this sample because there are 

(001) and (100) peaks on each side of this wall leading to a total of four distinct 

Bragg peaks. Fig. 3.8(a) shows a polarized microscope image of the domains near 

this wall. The orientations of the four peaks with respect to each other are illustrated 

in Fig. 3.8(b). 

In our primary measurements at McGill we used our high resolution diffractometer 

in our lab to characterize the structure of this sample. We used Cu ka (À = 1.540 A) 

and a scintillation detector in our experiments. Since the beam was much larger than 

the domains width, we were able to measure both a and c domains by proper settings 

of the detector and sample. Two Bragg peaks were identified to uniquely define the 

reciprocallattice and then a two dimension al mesh scan in 5 x 10-4 Â -1 steps in the 
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Figure 3.9: Reciprocal spaee map of the (002) and (200) peaks for the two sections of 
the BaTi03 sample. The two brighter peaks on the diagonalline correspond to one 
section. 

reciprocal lattiee coordinates was performed to obtain a direct map of the reciprocal 

spaee. The result of the scan is shown in Fig. 3.9. Table 3.4 summarizes the results of 

fitting a Gaussian function to the peak shapes in the reciprocal coordinates for both 

of the (002) and (200) peaks belonging to one of the sections (the labeled ones) of 

the sample. Binee these are second order diffractions of (001) and (100) peaks, the 

lattice constants can be calculated using the Bragg's law: 

,\ 
d = 2 x . (2B)' 

2sm 2 
(3.13) 
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Peak 

(002) 

(200) 

2() (degree) 

44.8610 

45.3864 

H 

-4.4xlO-4 

2.185x10-2 

L LFWHM 

1.9980 3.5x10-4 

2.0201 1.9x10-4 3.7xlO-4 

Table 3.4: BaTi03 (002) and (200) reciprocal space coordinates. 

For a tetragonal lattice the diffraction vector q is given by: 

H L 
q = 27r[(-) + (-)]. 

a c 
(3.14) 

H and L are Miller indices. The uncertainty in q is therefore: 

(3.15) 

Estimating the errors in peak positions to be '"'-'20% of the FWHM, we calculated ~ 

for (002) and (200) peaks from eq. 3.15. Relative uncertainty in lattice constant is 

equal to: 
8d 8q 
d q 

(3.16) 

From these calculations we found: c = 4.0360 ± 0.0006 A, a = 3.9917 ± 0.0006 A. 

The angle ofthe 90 domain walls then can be calculated from eq. 3.12: a = 44.684 ± 

0.008°. The deviation of the angle between polarization axes of the two neighbor

ing domains from 90° is then equal to: 90 - 2a = 0.632 ± 0.016. We can also find 

the same angle by calculating the angle between Q002 and Q200 using the coordinates 

in table 3.4. This gives us 0.6445° which agrees with the previous value within the 
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calculated uncertainty. 

In our second series of measurements, we used the same setup as in Fig. 3.5(b), but 

did a one-dimensional rv40 /-Lm scan of the sample in z direction (perpendicular to the 

domains) in 0.5 /-Lm steps. This range was enough to coyer approximately 4 domain 

widths. At each position, a () - 2(} scan in 0.001 ° steps, a 2(} scan in 0.001° steps, and 

a X scan in 0.04° steps were measured for the (002) Bragg peak (c domains). The 

measurements were repeated for the (200) peak (a domains). Integrated intensity 

for the (002) and (200) refiections are plotted in Fig. 3.10. The alternating rv10 /-Lm 

wide patterns of c and a domains are clearly seen in these measurements. The width 

of the domains agree with our first measurement, but show better resolution. The 

45° domain walls implies that diffraction must be visible from both c and a domains 

within an area of the size of the absorption length of the x-rays. The x-ray wavelength 

used in these measurements was 1.674 A by comparing the peak positions measured 

here with those obtained in our high resolution measurements using Cu kal radiation. 

For this wavelength, the absorption length of BaTi03 is rv5.41 /-Lm which agrees with 

the width of the inter-domain regions where two domains overlap. 

To obtain more quantitative information about the domains structure, a simple 

diffraction model (Fig. 3.11) was developed. This model was based on the fact that 

the integrated intensity for each domain is proportional to only the material in that 

domain, but both domains contribute to absorption (see Appendix A for details). 

First an alternating geometry of c and a domains separated by 45° domain walls at 

certain positions were defined. Then, the diffraction intensity from a small volume 

under the crystal surface was calculated considering the total absorption of the ma

terial above. The total integrated intensity for each type of domains was obtained by 
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Figure 3.10: Integrated intensity for (002) and (200) domains along the z axis (per
pendicular to the domains strips). The thin solid lines show the results of fit to 
straight 45° wall model. The thicker solid lines are fits to the modified broken-line 
wall profile. Dashed lines indicate the places in this model where the orientation of 
the walls changes from bulk-like to surface-like region. These positions line up with 
the positions of the "kinks" in the data. 
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Figure 3.11: Model to explain the integrated intensity from alternating c-a domains. 
Both the straight-line and the modified broken-line wall profiles are shown. 

integrating over the thickness of that domain at the specified point. Repeating this 

calculation for several points across the domain pattern provided the integrated in-

tensities as a function of position for both domains. One can, then, vary the positions 

of the do main walls to fit the obtained integrated intensity to the experimental data. 

The result of the fit is shown as thin solid lines in Fig. 3.10. It is immediately evident 

that this simple straight-wall model cannot adequately explain our data. There are 

sorne "kinks" where data points start to deviate from this model. We extended our 

model by assuming a double-slope profile for the domain walls as shown in Fig. 3.11 

and let the slopes of the wall vary in our fit. This considerably improved the results of 

our fit as the thick solid lines show in Fig. 3.10. Our investigations, for the first time, 

revealed that there is a rvl /Lm surface-like layer near the crystal surface where the 

domain walls orientation changes from 45° to rv20°. This modified structure is proba-

bly adopted by the do main walls to minimize the deformation energy near the crystal 

surface. The effect of the crystal surface, as described in our work, on the structure 

of domains near the surface has not been adequately considered by others who tried 

to model or measure the domain wall profiles [41, 102, 112]. The two angles of the 

domain walls and the transition point from bulk-like to surface-like orientations were 

obtained from fitting the model to our data. The transition points are also plotted 
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by dashed lines in Fig. 3.10. It can be seen that these points line up nicely with the 

kinks observed in the data. Furthermore, from the fit results we can unambiguously 

determine the intersections of the walls with the crystal surface. 

To discover more about the fine structure of the domains, we fit a modified Gaus

sian function with a fiat area to the (), () - 2(), and X scans at each step of our z scans. 

Fig. 3.12 summarizes the fit results for the (002) domains. Relative strain b..cjc was 

calculated from the peak values of 2() scans. Peak parameters in the middle of the 

central domain was used as reference to calculate strain and all other angle changes. 

We can use the results of our model for the domain walls to draw the positions of 

the intersections of the walls with the crystal surface (red dash-dot lines) , the kinks 

(green dashed lines) , and one absorption length below the crystal surface (blue dot 

lines) on all the windows. In this figure diffraction is associated to the central domain 

in Fig. 3.12(a). Near the crystal surface this do main is thicker on the left side (135° 

edge) and thinner on the right side (45° edge). Strain is tensile on the left side and 

has its maximum value in the surface-like area. It is almost constant in the middle 

of the domain and becomes compressive with a larger absolute value on the right 

side. This is best understood if we consider this domain as a crystallite "clamped" 

between the two neighboring (200) domains [102]. The (002) domain is thick on the 

left side near the surface where its (200) neighbor is thin and, therefore, gets less 

distorted by this neighbor. On the contrary, the (002) domain is thin on the right 

si de where its (200) neighbor is thick, making the distortion by its neighbor more 

profound. In both cases lattice distortion is more obvious in the surface-like area. 

Finite size effect due to asymmetric thicknesses and the extreme strains at the two 

sides of the (002) domain are manifested in the peak width as shown in Fig. 3.12(d). 
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Figure 3.12: Summary of the model and scan fit results for (002) domains: (a) Domain 
walls profile. (b) Integrated intensity. (c) Relative out-of-plane strain peaking in 
the surface-like area. ( d) 2() width shows finite size and lattice distortion effects. 
(e) crystal angle rotation. (f) X angle rotation. The asymmetric behavior due to 
varying domain thickness near the surface is observed in all the graphs. Intersections 
of the domain walls with crystal surface (red dash-dot lines), the kink positions (green 
dashed lines) and one absorption length under the crystal surface (blue dot lines) show 
how the variations in the plots register with the characteristic points of the model. 
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This asymmetric behavior is observed in other peak parameters as weIl. also ob

served the same asymmetric behavior in the strain profile, but, The (002) domain 

axis undergoes asymmetric rotations in both () and X angles. Again the effects are in 

opposite directions and enhanced in the surface-like area under the crystal surface. 

Each domain observed as a crystallite doesn't line up completely with the crystal 

axes. The maximum and minimum of the c axis rotation in () are associated with the 

kinks positions where the domain wall orientation changes. 

From these observations we can argue that the departure of the do main wall shape 

from simple 45° wall and also the asymmetric thicknesses of the domains near the 

surface are responsible for the complicated behavior of the do mains characteristics. 

We should also consider the long range domain-domain interaction a factor in domains 

morphology. The elastic fields around the domain walls extend several microns around 

the walls although the walls themselves are much thinner. 

Similar asymmetric pattern in the strain was observed by Rogan et al. [112], but 

the reason for that was unknown to them. They used white beam Laue microd

iffraction on a similar BaTi03 crystal with 40p,m wide domains instead of lOp,m and 

found normal strain about two order of magnitudes bigger than our measurements. 

The reason might be that in their measurements the x-ray data was averaged over 

70 p,m depth of the crystal and their experiment had about 10 times less spatial scan 

resolution. Our model and results help to understand the source of the asymmetry 

in all these quantities. 
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3.4 X-ray diffraction imaging of BaTi03 domains 

To complete our study and compare the two micro diffraction methods, we also did an 

XDI study of ferroelectric do mains in BaTi03 . We used a parallel beam diffraction 

geometry and a CCD camera with 0.645 f-Lm resolution in both x and z directions. 

With this technique we were able to record x-ray diffraction data of a 500x500 f-Lm2 

area in a single scan (see sec. 2.3.2). The detector was set for the (200) reflection and 

the rocking curve ofthe sample was measured in 0.002° steps. Figs. 3.13 (a)-(f) exhibit 

snapshots of the recorded images in 0.01° intervals. The strip-shape domain patterns 

are clearly visible in these images. AIso, it can be seen that different are as on the 

sample are slightly tilted with respect to each other so that each area appears bright 

at a different angle as the sample rocks. Even more interesting is the short range 

non-uniformity of intensities within each domain. Fig. 3.13 (g) is the rocking curve 

obtained by averaging over the entire sample area. The positions of the snapshots 

are labeled on this graph. As mentioned before, x-ray microbeam scanning has the 

advantage that it provides structural information from a specifie micron-size region 

on the sample. Since the focused beam is intense, once it is pointed to the desired area 

on the sample, diffraction signal to noise ratio is normally good and data acquisition 

can be done quickly. It is, however, a scanning technique and, like others, we need 

to first find the region of interest on the sample. In all scanning probe microscopy 

techniques this is usually achieved by doing a coarse point-by-point scan of a big 

area to get a rough image and then move the probe to the desired area for a higher 

resolution scan. X-ray topography, on the other hand, has the advantage that we 

can take an image of the whole sample at once with high enough resolution. The 

diffraction signal is not as strong as with a microfocused beam, but, this is not a big 
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Figure 3.13: (a)-(f) Topography snapshots of (200) domains in BaTi03 in 
O.Ol°intervals. (g) Positions of the snapshots on the rocking curve of the whole sample 
area. Scan step was 0.002°. 
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(a) (b) 

Figure 3.14: Topographie images (a) before, and (b) after inserting the Fresnel zone 
plate. The combination of the two techniques helps to quickly register the microfo
cused beam on the sample and later move the beam to the desired position. 

issue with high flux synchrotron sources. 

We decided to combine these two methods to take advantage of both. Fig. 3.14 (a) 

shows a topography image of the do mains pattern taken with a wide beam (XDI 

mode). We then inserted the Fresnel zone plate into the beam at a focallength from 

the sample to switch to microfocusing mode. A Fresnel zone plate focuses only part of 

the incident beam (30% in our case) and the rest of the beam passes through directly. 

Normally the direct beam is stopped by using an Order Sorting Aperture (OSA) after 

the zone plate. This is, basically, a diaphragm to allow only the focused beam pass 

trough. Without an OSA, both the direct and focused beam will shi ne on the sample 

and the result will be similar to what is seen in Fig. 3.14 (b). Comparing the two 

images helps us to register the coordinat es of any point on the sample to the position 

of the focused beam. Having done this, we can easily move the sample to bring the 
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desired point (for example, a domain wall) to the focal point. Now we can switch back 

to microfocusing mode by inserting the OSA again and begin to do our diffraction 

experiment by the microfocused beam. This eliminates the need for a point-by-point 

scan and saves considerable amount of time and effort. 



Chapter 4 

X-ray diffraction imaging of a 
silicon microcantilever 

Micromachining is the method to make micron-size devices such as microsensors and 

transducers from bigger bulk materials or pro duce microstructures on bigger pieces. A 

good example is fabrication of cantilevers used in different scanning probe microscopy 

techniques from bulk single crystals [135]. Usually micromachining involves pro cesses 

like etching, doping, annealing, and oxidation which may introduce residual strain 

and/or dislocations into the final product [60]. For instance, a common method used 

to control the etch depth in fabrication of silicon devices is to dope high concentration 

of boron ions to the desired depth of the material. Boron ions are resistant to the 

etchant (KOH, for example) terminating the et ching pro cess at the desired depth. 

Etch stops like boron, being a different kind of atoms forced into the sample lattice, 

introduce residual strain and dislocations to the original material [104]. Although 

the crystal is usually annealed to relieve the residual strain, sorne effects persist. 

A quantitative understanding of the imperfections introduced by the manufacturing 

pro cess can help to improve this pro cess or at least characterize these effects in the 

final products. In addition to the imperfections caused by the fabrication process, 

85 
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small distortions can develop in these devices as a result of thermal variations or 

mechanical deformations applied to them. These can be unwanted effects or what 

exactly the device is designed to measure. For example, a microcantilever may be 

designed to measure small forces, torques, surface strains, or thermal variations. In 

any case, If we want to understand the behavior of the device, a quantitative method 

is needed to measure these effects [108]. Applications are quite wide and include: 

semiconductor industry [65], Scanning Probe Microscopy (SPM) [114, 113], micro

sensors [131], and optical devices [61, 54]. Measuring lattice reorientation and strain 

in micromachined single crystal cantilevers used as sens ors in different types of SPM 

instruments, is important both for manufacturers and us ers of these devices [113, 114, 

131, 42, 126]. Different techniques are available to study the quality of small crystals. 

Wolf [33] and Srikar [126] used Raman spectroscopy to measure bending stresses 

in micromachined silicon devices. High resolution x-ray diffractometery is another 

standard technique for this purpose. For instance, Cargill [18] used this technique to 

study lattice compression in doped Si:As crystals. Noyan et al. [105] has reviews how 

this technique is used to me as ure the residual stresses in thin film structures. Murray 

et al. [100] also used x-ray diffraction to study the heterogeneous distribution of stress 

in thin film/ substrate composites. 

X-ray diffraction imaging (also called x-ray topography, see sec. 2.3.2) is a powerful 

non-destructive technique which can provide detailed information about local imper

fections in nearly perfect crystals. There are many old [103] and newer [13, 6, 16, 45] 

references to learn the fundamental principles of this powerful technique. The main 

advantages of this technique, as described in sec. 2.3.2, is that it can provide diffrac

tion data from the whole illuminated area on the sample in short time. AIso, de-
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pending on the experiment setup, it has very good sensitivity to lattice distortions. 

Newkirk [103, pages 431-457] used this method to study dislocations in silicon crys

taIs. Kimura and Ishikawa [79, 78] used plane wave x-ray topography to me as ure the 

strain field in silicon crystals. Ludwig [89], Dudley [39], and Lida [85] studied defects 

structure in high quality crystals using XDI. Murray et al. [101] used x-ray topog

raphy to measure strain fields near SiGe etched lines of various widths and Ni dots 

on silicon substrates. Noyan et al. [106] used synchrotron x-ray topography with a 

microfocused beam to characterize the interface between a polycrystalline Al thin film 

on single crystal silicon substrates. One of the remaining difficulties is, however, to 

properly identify, resolve, and distinguish between lattice rotation and lattice strain 

in small crystals comparable in size with the spatial resolution of the topography im

ages (a few p,m). There has been work to me as ure strain and lattice curvature in big 

crystals under large loads. Yang et al. [140] measured Poisson ratio and anticlastic 

curvature in silicon crystals with large deflections. Kaldor et al. [71] studied the ef

fect of sm aller loads. However, the important problem of lattice distortion in slightly 

distorted micron-size crystals deserves more detailed and quantitative studies. 

We used high resolution (both angular and spatial) plane wave XDI technique 

(sec. 2.3.4.5) to measure complete two-dimensional maps of lattice reorientation, twist, 

and out-of-plane strain field in a micron-size single crystal silicon cantilever. These 

cantilevers were fabricated by micromachining methods to be used in scanning probe 

microscopes. Apart from practical applications that these cantilevers have, for us they 

were perfect samples to test our XDr setup. We studied lattice distortions in the free 

standing state of the cantilever where no force is applied. Then we applied a small 

force to the cantilever to bend it by rv7x 10-4 rad and measured the same quantities 
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for the bent cantilever. Our results show rv 8 mdeg lattice twist between the cantilever 

and its much thicker supporting base. Anticlastic curvature and out-of-plane strain 

both follow a nearly parabolic profile across the cantilever width. We found that 

the cantilever gets curved across when it is bent with a minimum '"'-'0.3 m radius of 

anticlastic curvature in the middle of the cantilever width. We also measured the 

relative strain map of the cantilever. Our calculation showed increasing strain toward 

the fixed end of the cantilever. The average strain reaches a maximum of 2x 10-5 at 

the edges of the cantilever. We discovered an area as big as the cantilever width near 

the junction with the base where these quantities are highly non-uniform probably 

because of the abrupt change in the crystal thickness and the et ching process. 

In this chapter we will first describe the details of the setup we used and the 

experiments we did. Because of the complex nature of the data, a great amount of 

data analysis and modeling were required to extract useful information and compare 

them with the theory. The most important procedures and steps in analyzing our 

data will be presented. Next, we will show the results we obtained and discuss them 

in the context of the existing theories for deformation of crystals. 

4.1 The x-ray diffraction imaging experiment 

The experiments were carried out at the 8-ID-E side section ofIMMjXOR-CAT (IBM, 

MIT, Mc Gill X-ray Operation and Research Collaborative Access Team) at the Ad

vanced Photon Source, Argonne National Laboratory. Our samples were single crystal 

silicon sensors made by NANOSENSORS Company [147]. Each sens or had a bulky 

holder and a much smaller cantilever with an integrated tip. The whole sensors were 

etched from a highly doped (to increase conductivity) silicon single crystal. These 
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sensors were made of same material and, in theory, had the same lattice everywhere. 

This helps to minimize the inherent strain and also thermal deformations if the am

bient temperature changes. AIso, the monolithic structure of the sensors provides 

an "absolutely straight" cantilevers as the company claims. The cantilever part was 

about 450 {Lm long, 52 {Lm wide, and 1. 7 {Lm thick with a trapezoid cross section. The 

base part was about 315 {Lm thick. Fig. 4.1 shows a technical drawing of the entire 

sensor, an optical microscope image of the cantilever, and a non-scaled drawing of its 

cross section. Crystallographic orientations of the sam pIe are also shown: the can

tilever surface is perpendicular to the (001) direction. Fig. 4.2(a) shows a schematic 

drawing of the experiment setup. The size of the source was 50 {Lm in horizontal 

and 350 {Lm in vertical. 7.5 keV (À = 1.653 A) x-rays from the source shined on a 

(022)-cut silicon monochromator located at 55 m from the source. The divergence of 

the incident beam was negligible for the purpose of our experiments. After diffract

ing off the monochromator, the wavelength spread of the beam is determined by the 

Darwin width of the silicon (022) refiection which is rv6 x 10-5 A. Since the sample 

is almost a perfect crystal, we need to consider dynamical theory of x-ray diffraction 

(sec. 2.2) to understand the experiment. We measured the (004) Bragg peak of the 

sample. For this refiection the extinction length of the x-rays is rv27.5 {Lm which is an 

or der of magnitude bigger than the cantilever thickness. Therefore, finite thickness 

of the cantilever plays an important role in increasing the divergence of the diffracted 

beam. As discussed in sec. 2.3.3, an analyzer after the sample and before the detector 

can help to remove the ambiguity between lattice reorientation and strain effects on 

the diffraction angle. We used a channel-eut analyzer [75] consisting of two parallel 

silicon (111) surfaces. The analyzer at each position selects only those diffracted rays 
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Figure 4.1: Cantilever geometry: ( a) technical drawing. (b) Optical microscope 
image with 20 x magnificat ion. (c) Cantilever cross section (not-scaled). 
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Figure 4.2: X-ray diffraction imaging setup for the silicon cantilever: (a) Schematic 
of the experiment setup. A mesh scan of sample angle (0) and channel-cut analyzer 
(Oanal) provides a 4D [0-20 at each (x,y) point of the sample] stack of diffraction 
images. (h) Each Oanal position picks only a set of parallel diffracted rays which then 
have to he restacked for the lateral shi ft on the CCD. 
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from the sample that satisfy the Bragg condition for Si(111). Sample and analyzer 

angles are denoted by (J and (Janal, respectively. After setting the diffractometer for 

silicon (004) peak, we scanned (J in 0.625 mdeg steps in a ±0.01 0 interval and at each 

step performed a similar scan of (Jan al in 0.5 mdeg steps. For each value of (J and 

(Jan al in this mesh scan the diffracted x-rays were recorded by a CCD camera. The 

camera was equipped with an optical microscope and located '"'-'20 cm from the sam

pIe. The CCD had 0.645 /-Lm square pixels. Several such mesh scans were recorded. 

To measure the effects of bending on the cantilever, an electric field was applied to 

the cantilever by applying a voltage between the cantilever and a metallic electrode 

placed behind the cantilever and very close to its tip. Since the sam pIe was doped, the 

electric field can apply a localized force to the cantilever. We noticed an interesting 

phenomenon when applying electric field to the cantilever: it takes seconds for the 

cantilever to deform when the voltage is turned on, or relax to the original shape 

after the voltage is disconnected. We believe this is because of the ionizing effects 

of the incident x-rays. X-rays generate extra charges in the cantilever which disturb 

the applied electric field. When the electric field is established or disconnected, the 

ionization charges have to re-arrange by creating ionization currents. Reaching to the 

final equilibrium state with these currents is probably a slow process during which 

the electric field keeps varying. 
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4.2 Results and discussion 

4.2.1 Restacking the CCD images 

93 

The first step in analyzing the data was to re-arrange the recorded images. As men

tioned in the previous section, for each Banal the analyzer uniquely defines the diffrac

tion angle 2B. However, as can be seen in fig. 4.2(b), the analyzer rotation translates 

the image on the CCD. The recorded data are 4-dimensional arrays of intensities: 

at each (x,y) point on the detector intensity is recorded for a mesh of () and 2() val

ues. We like to use the notation I(x, y, 2(), B) for the data to emphasize on this facto 

For a fixed position of the sample (B=const.), this forms a stack of CCD images in 

which each frame is translated with respect to the previous one by a sm aIl value as 

a result of 2() scan. The diffracted ray from a given point on the sample, therefore, 

gets recorded at different pixels of the CCD. We, consequently, had to reconstruct 

the stack of images by moving each frame back by the amount it was shifted with 

respect to the first frame. This ensures us that there is a one-to-one correspondence 

between the points on the detector and those on the sample. At each given (xo, Yo) 

point on the sample I(xo, Yo, 2B, B) can then be treated as two-dimensional map of 

2()-f) scan intensity. We called the reconstruction pro cess restacking. The per-frame 

shi ft is equal to xoff = L x b(()anal) , where L is the detector-sample distance and 

b(()anal) is the analyzer scan step. In our setup xoff = 1.75 {lm which was equivalent 

to 2.7 pixels. In the restacking process each frame in an analyzer scan was digitally 

shifted back by the integer part of the total shift for that frame. Then, a new frame 

was reconstructed by interpolating the shifted frame and the preceding frame using 

the fractional part of the shift value as interpolation factor. To test the restacking 
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code, a test image was shifted by a known value to build a stack of images. The 

restacked images then were compared with the original image. The results confirmed 

that the restacking pro cess was correct. This pro cess was then applied to the raw 

data to obtain restacked images of the cantilever. 

4.2.2 Thickness variations, resolution 

For silicon (004) refiection both the absorption length (57.8 /-lm) and the extinction 

length (27.5 /-lm) were an order of magnitude bigger than the thickness of the can

tilever (1.7 /-lm). The base, on the other hand, was 315 /-lm thick which is an order 

of magnitude bigger than the extinction length of the x-rays. For the base, the inci

dent x-rays will get diffracted within the extinction length no matter what the actual 

thickness of the base be. The cantilever was not, however, thick enough to diffract 

aIl the incident x-rays and most of them passed through. Therefore, the integrated 

intensity is proportional to the thickness of the cantilever at each point. From these 

arguments we expect a much higher integrated intensity for the base compared to the 

cantilever. Fig. 4.3(a) shows a 2D plot of the integrated intensity of the cantilever and 

its base averaged over 2() and () angles. The brighter base is clearly distinguishable 

from the less bright cantilever. Small variations of the thickness of the cantilever 

causes intensity variations in Fig. 4.3(b). For example the tip appears substantially 

brighter because there is more material there. Of course, it is possible that the in

tensity of the incident beam itself is not uniform aIl over the cantilever. This can be 

easily verified by moving the whole sample with respect to the beam and comparing 

the two images. If the intensity pattern changes, it means that the non-uniformity 

cornes form the beam, otherwise, it is due to variations in the cantilever thickness. 
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Figure 4.3: 2D plots of integrated intensity averaged over 2() and (): (a) The base 
appears brighter, because it is much thicker. (b) Intensity variations reveal small 
thickness non-uniformities over the cantilever area. 

In the setup we used, the cantilever surface was in symmetric Bragg diffraction 

geometry. This means that regardless of the x-ray wavelength, the incident and exit 

angles with the crystal surface are always equal (see sec. 2.2.3). However, because 

of the trapezoid cross section of the cantilever, the two wedge-shape surfaces on the 

sides of the cantilever are in asymmetric Laue diffraction geometry (see Fig. 4.4). 

This implies that even if the incident rays are parallel, the exit angle will be different 

for different wavelengths within the Darwin width of the incident beam. In fact since 

the cantilever thickness is less than the extinction length, the width of the reflectivity 

curve is bigger than the Darwin width because of the finite size effect. This enhances 

the divergence of the diffracted rays from the two edges. Our investigations and 

modeling proved that diffraction from the two small edges have a big effect in reducing 

the spatial resolution of the CCD image near the cantilever edges to about 5 /lm. The 

thickness of the cantilever is not constant at the edges which makes the case even 
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Figure 4.4: Diffraction geometry for the cantilever surfaces: The main surface normal 
to [001] direction is in symmetric Bragg case. The two edges are in asymmetric Laue 
cases. 

more complicated. In our samples the cantilevers were extended on top of the base 

part. The asymmetric diffraction from the edges causes intensity contrast on the 

base along these edges. Table 4.1 summarizes diffraction parameters (see sec. 2.2.1 

for definition of parameters) for different surfaces of the cantilever. The values in this 

table have been calculated for polarized 7.5 keV x-rays [15]. 

Surface !~,lJ0en 
2 !:::.ecen 

e Wi W e 

normal (mdeg) (mdeg) (x 10-2 mdeg) (x 10-2 mdeg) 

[III] 3.38 -1.23 0.37 10.33 -3.05 

[001] -1 1.04 1.04 -5.62 -5.62 

[111] 0.296 0.37 -1.23 3.05 10.33 

Table 4.1: Dynamical diffraction parameters for the cantilever surfaces 
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Figure 4.5: Integrated intensity (averaged over Banal) at x=275 J.lm vs. B for two 
different samples. Cantilever is twisted with respect to the base by .-v8 mdeg. 

4.2.3 Measuring the cantilever twist 

Our next interesting observation without much further analysis was that the straight-

ness of the sensor could be verified from our data. In Fig. 4.5 (a) and (b) the integrated 

intensities averaged over 2B are plotted versus B along a vertical axis at the center of 

the cantilever for two different samples. The entire cantilever appears at the same 

B angle which is slightly different from the angle of the base. This me ans that the 

cantilever itself is very straight, but the whole cantilever is twisted with respect to the 

base right at the junction point. The twist angle is about 8 mdeg and is in opposite 

directions for the two samples. The twist direction seems to be random; In two of the 

three samples we studied the cantilever was twisted to the left and in the third one 

to the right by the same amount. We propose sorne possible reasons for the twist: 

1. The sensors are shaped from silicon wafers by wet etching. The surface of the 

original wafers may be miscut with respect to the (001) direction. In shaping 

the cantilever, first a big amount of material is etched from the back and then 
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et ching is done from the front until the two etch fronts me et [135]. The base 

is etched less and only from one side. Since et ching removes atoms in exact 

crystallographic directions, the final surface of the cantilever will be exactly 

parallel to the (001) planes, which may not be the case for the base. Therefore, 

it is likely that et ching causes a small misorientation between the base and the 

cantilever. 

2. The cantilevers are highly doped with boron atoms during the manufacturing 

process. Different concentrations of boron atoms in the base and cantilever may 

result in strain field near the junction that can disturb the orientation of the 

lattice by small amount. 

3. There is always a thin (t'V 10 - 20 A) silicon native oxide layer on silicon surface. 

This "skin" of silicon oxide can pro duce surface tension. N ear the junction, the 

cantilever has oxide layer on its both sides, but the base has only one layer of 

oxide on top. Since the cantilever is at least two orders of magnitude thinner 

than the base, the effect of surface tension is greater for the cantilever. Surface 

tension may not be symmetric near the junction and cause small rotation of the 

cantilever lattice. 

4. The cantilever is a very long and thin piece attached to the much thicker base. 

There might be sorne instability near the junction that perturbs the perfect 

alignment between the two lattices. 
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Figure 4.6: Lattice distortions near the cantilever-base junction is complicated: (a) In
tensity map of the junction area near the Bragg peak. (b) () - 2() map for the point 
marked on the left panel with coordinates (100,300). Two Bragg peaks are visible in 
the junction area. 

In general, the structure of the junction area, where the cantilever and base lattices 

match, lS complicated. Fig. 4.6(a) shows an intensity map of this area for () and 2() 

values near the Bragg peak. For the points close enough to the junction, two Bragg 

peaks (one for the cantilever and another for the base) can simultaneously be detected 

as Fig. 4.6(b) shows, as if the two lattices are mixed. 

4.2.4 Bent versus unbent cantilever 

To proceed with our analysis, we needed more quantitative information about diffrac-

tion from each point of the sample. First, to compare the bent and unbent states of 

the cantilever we needed a way to measure how much the cantilever was bent when 

the electric field was applied. We measured this by comparing the lengths of the 

CCD images for the two cases. As shown schematically in Fig. 4.7 (a), because of 

the diffraction geometry, the bent cantilever appears longer on the CCD. Fig. 4.7 (b) 
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Figure 4.7: Bent and unbent cantilever images:(a) Bent cantilever pro duces longer 
image on the CCD. Integrated intensity for (b) unbent, and (c) bent cantilevers. 

and (c) compare the images we obtained for the two cases. Using simple geometry 

considerations (see Appendix B), We calculated the slope of the bent cantilever near 

the tip: 

,1, _ flh 
'f/L - 2D sin()B 

(4.1) 

In this formula flh is the length difference between the two states, D is the detector

sample distance, and ()B is the Bragg angle. In our setup flh =,,-,175 /Lm, D ~20 cm, 

and ()B =37.5°. The slope we obtained from eq. 4.1 was about 7.2±0.4x 10-4 rad. The 

error was mainly in measuring the detector-sample distance D, and calculating the 

difference between the lengths of the images. The error in Bragg angle is negligible. 

Next, to measure the peak parameters such as center, height, and width, we fit a 

two-dimensional Gaussian function to the data at every (x, y) point on the image. It 

should be reminded that for a fixed (x, y) point, the 4D stack of images gives us a 

2D image in ()-2() space. We fit both the unbent and bent data. Fig.4.8 (a) shows 
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an example of the peak shape in B-2B space for a point near the center of the unbent 

cantilever. The peak shape specially for the unbent cantilever has a complex structure 

and do es not completely resemble a simple 2D Gaussian function. This introduces 

a systematic error to our fit results which is important, for example, in calculating 

strain. Fig. 4.8 (b) is a plot of the same data in the reciprocal space. ql and qt are 

components of the diffraction vector normal and parallel to the crystal surface. The 

fact that peak shapes in the reciprocal space extend along ql is a confirmation that 

these data correspond to the same point on the sample and, hence, proper restacking 

of data. Similar plots for the bent cantilever (Fig. 4.8 (c) and (d)) and base (Fig 4.8 (e) 

and (f)) are also shown. The FWHM contours of the 2D Gaussian fit functions are 

also plotted for comparison. As can be seen, for the bent cantilever the peak shape is 

considerably wider in qt direction which suggests that the lateral size of the diffraction 

volume (across the cantilever width) is sm aller due to anticlastic curvature ofthe bent 

cantilever [83]. Several factors can be responsible for the peak width in ql direction: 

Strain causes a lattice spacing distribution from the top to the bottom of the cantilever 

which may increase the peak width. This, however, doesn't seem to be the dominant 

factor, because, as Fig. 4.8 (b) and (d) show, the width of the unbent and bent in 

ql direction are almost equal. Wavelength spread of the incident beam (after the 

monochromator) is another factor. Different wavelengths in the incoming beam can 

satisfy Bragg condition with slightly different incident angles and, thus, result in 

diverging diffracted rays. The other very important factor is the finite thickness of 

the cantilever which also contributes to peak broadening in ql direction. We show 

the effects of these two factors together in Fig. 4.9. Using Dumond diagrams we can 

calculate the effect of wavelength spread from the monochromator Si(022) refiection 



CHAPTER 4. XDI OF A SILICON MICRO CANTILEVER 

........... 
0> 
Q) 

"'C -co 
<D 

1 
<D 

........... 
0> 
Q) 

"'C -co 
<D 

1 
<D 

........... 
0> 
Q) 

"'C 

0.01 

0.00 

-0.01 
0.01 

0.0 

'";; 0.0 
<::D 

1 
<D 

-0.01 
-0.01 O. O. 1 

29-298 (deg) 

0.001 

-

-0.001 

0.001 

-

-0.001 

-,.-1 

0.001 

~ 0.000 
g 

102 

Figure 4.8: Two dimension al Bragg peaks of unbent cantilever [(a) and (b)], bent 
cantilever [(c) and (d)], and the base [(e) and (f)] in 0-20 and reciprocal spaces. Solid 
ellipses show the FWHM contours of the 2D Gaussian fit functions. 
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on the sample Si(004) rocking curve. Fig. 4.9 (a) and (b) show the Darwin refiectivity 

curves calculated without and with wavelength spread effects on top of the diffraction 

data for the base. As can be seen, wavelength spread is the main reason for peak 

broadening here and without that the experimental data is much wider than the 

Darwin curve. The base is much thicker than the extinction length and, therefore, 

the size of base does not play a role. Fig. 4.9 (c) and (d) show the same plots for the 

cantilever. Here, the wavelength spread correction doesn't make a big difference (if 

any), because, the Darwin curves are already about 10 times wider than those of the 

base due to the small thickness of the cantilever. For the cantilever, therefore, the 

finite size effect is the dominant peak broadening factor. The effect of finite thickness 

of the cantilever on peak broadening in qz direction is visible in Fig. 4.8(b) and (f). 

In symmetric Bragg case, the Darwin width of diffraction of parallel beams from the 

monochromator, sample, and analyzer are 1.2, 0.45, 2.25 (x 10-4 A -1) respectively. 

The width of the base peak is in the same order, but, the cantilever peak is wider due 

to its finite size. 

As can be seen from Fig. 4.7, to compare each point on the bent cantilever data 

with the same point on the unbent cantilever, we needed to map the xy coordinate 

system of the bent cantilever to the unbent one. This requires a coordinate trans

formation with proper scaling and shift values. The slope of the cantilever at each 

y coordinate along its length determines where the diffracted beam from that point 

will go on the CCD. This way, by calculating the slope of the cantilever along its 

length (see Appendix C) we were able to relate the two y coordinates. Then, the 

integrated intensities of the two rows at the corresponding y coordinates were used 

to interpolate the x coordinates and find the scaling and shift values. Fig. 4.10 show 
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Figure 4.10: x-y coordinat es of the bent state (b) are mapped to the unbent system 
(a), to compare the two data sets. 

a 100x100 flm2 of the two coordinate systems after the mapping. 

4.2.5 Strain and anticlastic curvature 

After fitting our bent and unbent data with the 2D Gaussian functions, we could 

get a 2D map of several peak parameters such as peak height, center, and width. 

Before presenting the data for the cantilever, it is informative to see what the effect 

of bending is on the base. We examined a long slice of the base in the free and bent 

states. Fig. 4.11 (a) shows the slice we chose on the base. The variations of 2(j and (j 

are plotted in Fig. 4.11 (b) and (c) across the base. Dash-dot lines show the positions 

of the two edges of the cantilever. Dynamical diffraction effects can also contribute to 

the 28 changes near the cantilever edges, because, diffraction from these area is not 

symmetric. More investigations need to be done to completely separate these effects. 

To calculate the strain we chose the 2(j value for the base along the central axis of the 
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Figure 4.11: Fit results for the unbent (dashed) and bent (solid) states of the base: 
(a) The chosen slice of the base, (b) 2() angle, (c) () angle, (d) strain. The dash-dot 
lines show the positions of the cantilever edges. 



CHAPTER 4. XDI OF A SILICON MICRO CANTILEVER 107 

cantilever as our reference point. The reference values for the unbent and bent states 

were different by 2.4 mdeg which we think is, probably, a thermal effect, because, 

the bent cantilever measurement was done in the night. This amount of change for 

silicon is equivalent to about 2.3 oC change in the temperature which is reasonable. 

The change in the reference lattice constants between the unbent and bent states 

introduces a systematic error of order of 5 x 10-6 to our strain calculations. Using 

the reference lattice constants for each state, we calculated the strain profile across 

the base. Fig. 4.11 (d) compares the two cases. As can be seen, even for the unbent 

state (dashed curve) there is a strain profile which is more obvious near the cantilever 

edges. We should recall that the cantilever trapezoidal shape extends on top of the 

base all the way to the area where our measurements were done. The strain profile 

on the base changes asymmetrically when the cantilever is bent as shown by the solid 

curve. This can be due to the twisted cantilever. 

We now present our results for the cantilever itself. Fig. 4.12 compares the fit pa

rameters for the two states of the cantilever. We calculated the transformed bent data 

maps by interpolating the bent data into the transformed coordinat es as illustrated 

in Fig. 4.10(b). The cutoff near the tip position is due to the fact that the image of 

the bent cantilever exceeded the CCD recording area. Small intensity variations in 

Fig. 4.12 (a) is indication of thickness or beam non-uniformity as explained earlier 

in sec. 4.2.2. Fig. 4.12 (c) shows an interesting result of our experiment: According 

to the Euler-Bernoulli model [50], when a solid beam is bent along its length, it will 

also slightly bend across its width (Fig. 4.13(b)). This is called anticlastic curvature 

which is less than the original bending by a factor called Poisson ratio. The fact 

that different points across the cantilever width diffract at slightly different e angles 
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Figure 4.13: (a) Cantilever beam under localized point force F. (b) 3D demonstration 
of anticlastic curvature (exaggerated in z direction). (c) sample orientation angle, 
(), is a direct measure of the curvature slope across the cantilever. ( d) Anticlastic 
curvature: points (data), solid line (model). 
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indicates that the cantilever is curved in this direction. Notice that () for the center 

of the cantilever did not change, only an increase of angles from one side to the other 

indicating a curved surface. The diffraction geometry across the cantilever width is 

shown in Fig. 4.13( c). In our case the force applied to the cantilever was a localized 

force near the tip. Using Euler-Bernoulli equation for a beam [50], we derived the 

equations for three dimensional deformations of a simple beam subjected to a localized 

force near the tip (Fig. 4.13( a)). Our model was similar to the description for a bent 

beam with a uniform bending moment [50] except we used a localized force applied 

near the tip of the cantilever. The details of the model can be found in Appendix C. 

In this model we assume a simple cantilever beam with length L fixed at one end. If 

a localized force F is applied to the free end of the cantilever, the (normalized to L) 

displacement of the cantilever in the direction perpendicular to the cantilever surface 

will be: 

w (2 y3) (2 2) W = L = cPL y - 3 + lIcPL Z - X , (4.2) 

where cPL = ~~; is the slope at the free end (see Fig. 4.13(a)), E is the modulus of 

elasticity, 1 is the area moment of inertia with respect to x axis, li is Poisson ratio, 

and X = xl L, Y = yi L, and Z = zl L are the normalized coordinates. The -lIcPLX2 

term represents the parabolic antic1astic curvature which is, by a factor of li, sm aller 

than the actual bending along the cantilever. 

In our measurements cPL = 7.2 X 10-4 rad. The Poisson ratio for crystals is usually 

direction dependent. For silicon, li = 0.279 for strains in (110) direction caused by 

stress in (001) direction [14]. We used the () variations across the cantilever as a 

direct measure of the cantilever antic1astic curvature. Our results (Fig. 4.12(c)) show 

that anticlastic curvature varies slightly along the cantilever length in agreement with 
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our model. If the bending is small compared to the cantilever width, the radius of 

anticlastic curvature of the cantilever can be calculated using the simple sketch in 

Fig. 4.14: 

Ré:::!. (W/2)2 
2h 

(4.3) 

In this formula, h is the vertical displacement of the center of the cantilever with 

respect to the edges and w is the cantilever width. The average radius of curvature 

from our measurements was about 0.32 ± 0.03 m. The error in Bragg angle was very 

small. We assumed an upper limit of 5% error in measuring the cantilever width 

which was more than our actual error. 

Anticlastic curvature of the cantilever is plotted in Fig. 4.13(d) with dots. The 

parabolic profile predicted by our model with CPL = 7.2 X 10-4 rad is also plotted with 

solid line. We can also show that the anticlastic curvature we measured agrees with 

the changes in the lateral width of the Bragg peak in the bent case. As Fig. 4.8 and 

Fig. 4.12 (d) show, the lateral FWHM of the Bragg peak for the bent cantilever is 
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considerably bigger than the unbent state. The lateral (across the cantilever width) 

size of the coherent diffraction area is of order of anticlastic radius of curvature times 

the Darwin width of the Si(004) refiection ('" 0.43 mdeg). This is equal to 2.25 /-lm. 

On the other hand the lateral width of the Bragg peak in Fig. 4.8( d) is about 6qt = 

2.2 x 10-4 A -1. 27f over this length is equal to 2.85 /-lm which is close to 2.25 /-lm. 

There are, however, discrepancies between our simple model and our data. The 

actual curvature is more than what our simple model predicts. AIso, it doesn't show 

a perfect parabolic shape. it is rather sharply bent in the middle and is more straight 

on the sides. Possible reasons for these are discussed at the end of this section. 

Another important quantity we were able to measure was the out-of-plane strain. 

This is basically the change in lattice spacing which can be calculated from Bragg's 

law: 

(4.4) 

where dis the lattice spacing and À is the x-rays wavelength. The same quantity is 

also given by the derivative of eq. 4.2: 

aw 
Ezz = az = 2v(/JLZ. (4.5) 

In our measurements x-rays penetrate through the entire cantilever thickness. There-

fore, the 2() change we measure is averaged over the cantilever thickness. According 

to eq. 4.5 the average of Ezz should be zero. However, when we properly matched 

the unbent and bent cantilever data points and calculate the strain for each case us-

ing the reference lattice constant from the base, (Fig. 4.12(b)), we obtained non-zero 

strain maps shown in Fig. 4.15(a) and (b). Cross sections of the 2-dimensional maps 
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Figure 4.15: Out of plane strains: (a) U nbent cantilever. (b) Bent cantilever. 
( c) Cross sections at yI = 100 /-Lm, y2 = 325 /-Lm, and y3 = 550 /-Lm for the un
bent (black) and bent (red) cantilevers. 
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across the cantilever at y1 = 100 Mm, y2 = 325 Mm, and y3 = 550 Mm are shown 

in Fig. 4.15(c). There is a measurable strain even in the unbent cantilever which 

increases when the cantilever gets bent. The non-zero strain shows an asymmetry 

between diffraction from the top and bottom of the cantilever. Our model doesn't 

satisfy the boundary conditions at the fixed end of the cantilever. The data, how

ever, shows that the variation of strain is less near the base, probably, because the 

cantilever has less anticlastic curvature in this area. The maximum strain from our 

data is about 2x10-5 . 

Now we explain possible reasons for the discrepancies observed in measuring the 

anticlastic curvature and strain in our data. We think the simple beam model in Ap

pendix C does not completely describe all the features we observed in our experiment. 

Our samples were highly doped to increase the conductivity. These extra atoms can, 

in princip le , cause extra strain and dislocations in the original lattice [104]. The 

cantilever and base are shaped from a bulk wafer crystal using wet etching. It is 

likely that the surface of the original wafer is miscut with respect to the (100) atomic 

planes. As mentioned before, cantilever is etched from both sides and is two order 

of magnitudes thinner than the base. This can cause extra strain on the cantilever. 

Another very important factor, we think, is the native silicon oxide layer on the sil

icon surface. Usually, a thin (rv 10 - 20 Â) layer of silicon dioxide forms on silicon 

surface in the vicinity of air. Recent studies [70] have shown that the native oxide 

layer on silicon surface can be, indeed, an order of magnitude thicker depending on 

the preparation method. This "skin" of silicon dioxide exerts extra surface tension on 

the sample. In this sense, what we have is a composite cantilever instead of a simple 

beam. Since the cantilever is thinner than the base by, at least, two orders of mag-
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nitude, we expect the surface tension to apply a bigger distortion on the cantilever. 

For the points near the two edges, because of the trapezoid cross section of the can

tilever, the complete symmetry between top and bottom breaks down. On the other 

hand, the cantilever thickness is even less in this region and it is likely that surface 

tension pro duces a big strain which propagates across the cantilever. This might be 

the reason for non-parabolic shape of the anticlastic curvature and big strain fields in 

this area. 

When the more distorted cantilever lattice meets the less distorted base lattice 

at the junction area, the differences can cause the complicated strain field in this 

area which propagates into the cantilever lattice. The extent of this field must be of 

the order of the cantilever width which agrees with our observations. The thickness 

difference between the cantilever and base leads to another very fundamental issue. 

The thickness of the cantilever is about one order of magnitude smaller than the 

extinction length of the x-rays, as opposed to the base which is about one order 

of magnitude thicker than the extinction length. This means that x-rays penetrate 

completely through the thickness and diffract from aIl the material at both the front 

and back surfaces of the cantilever. Therefore, to understand the diffraction data, we 

should consider full dynamical diffraction of x-rays from a polyhedral shape deformed 

crystal [116, 117, 118]. To include the surface effects, we need a more sophisticated 

elasticity model which contains a composite beam. These are not trivial tasks and 

need more time and effort which are subjects of future work. 



Chapter 5 

Conclusion 

In this thesis we designed and built a setup to do x-ray micro diffraction (microscopy) 

experiments using both x-ray microbeam scanning and x-ray diffraction imaging (to

pography) techniques. Both setups were finally implemented at the 8-ID-E side sec

tion of IMMjXOR-CAT (IBM, MIT, and Mc Gill X-ray Operation and Research Col

laboration Access Team) at the Advanced Photon Source, Argonne Nation Labora

tory. 

Our group was already involved in time-resolved and coherent x-ray diffraction 

experiments. The main motivation behind this work was to build a new setup to 

exp and our group research to the x-ray micro diffraction domain. Knowing that many 

interesting properties of materials have their roots in the microstructure of the sys

tems, this would give us new tools to study the physics of materials on the micrometer 

scale. 

Our microbeam scanning setup consists of the following components (see Fig. 3.5): 

• A Fresnel zone plate with a 37 cm focal length to focus 7.5 keV synchrotron 

x-rays to an area as small as 3 J-lm in horizontal and 0.3 J-lm in vertical. 

• A fully motorized 3-axis XYZ translation stage with motion control feedback. 

116 
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With the help of this stage we can scan the sample with respect to the microfo

cused beam in three directions with 30 nm step size over a 25 mm travel range. 

This stage was assembled and calibrated at McGill and then moved to the APS. 

• A high resolution three circle diffractometer. 

• A CCD camera with an optical microscope which is used to take images of an 

x-ray scintullator at 30 cm from the center of the diffractometer. 

Our X-ray Diffraction Imaging (XDI) setup was based on the triple-crystal plane

wave topography technique (sec. 2.3.4.5). The main elements of this setup are (see 

Fig.4.2(a)): 

• A silicon (022) monochromator. 

• A high resolution three circle diffractometer. 

• A double crystal channel-eut analyzer consisting of two parallel silicon (111) 

crystals to remove the ambiguity of measuring the diffraction angle. 

• A CCD camera with optical microscope providing 0.645 f-tm pixel size in both 

x and y directions. 

One of the most important tasks to do after building the new setups was to test 

them and determine characteristics such as angular and spatial resolutions as weIl as 

other limitations on their use. To achieve this goal, we did two case studies. Apart 

from the scientific interest and practical applications of these two experiments, they 

were mainly chosen to characterize our setups. For us they served as working grounds 

to develop the necessary tools for doing x-ray micro diffraction experiments, discover 

challenges one has to face, and try to understand and resolve them. 
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In our first experiment, we used our microfocusing and XDI setups to study the 

microstructure of 90° ferroelectric domains and domain walls in barium titanate 

(BaTi03) single crystals. Our sample had 10 /-lm wide alternating stripe-shape a 

and c domains. BaTi03 is a well studied material, however, the fine structure of 

these domains and the profile and dimension of the do main boundaries have been 

the subject of debate since its discovery. For us, the two types of domains, having 

different crystallographic structures and micrometer dimensions, provided an ideal 

system to be studied with our micro diffraction setups. Before doing x-ray microd

iffraction measurements, we measured the precise lattice constants of our samples 

by directly mapping the Bragg peaks in the reciprocal space. This was do ne using 

our high resolution diffractometer and Cu ka1 radiation at McGill. Calculation of 

domains orientation using lattice constants and direct measurement of the angle be

tween the diffraction vectors in the reciprocal space agreed within the experimental 

errors. We found that the average angle of the domain walls with the crystal surface 

was 44.684±0.008°. Then, we used our microfocusing setup to scan a 60 /-lmx60 J-lm 

square of our sample in 3 /-lm steps. At each step we measured both the a and c 

Bragg peaks. After fitting the data we were able to get two-dimensional maps of the 

two types of domains (Fig. 3.7). This measurement showed alternating 10 /-lm wide 

stripe-shape a and c domains pattern in agreement with our optical measurements. 

In another measurement, to determine the fine structure of domain walls, we scanned 

a 40 /-lm distance of our sample perpendicular to the domains orientation in 0.5 /-lm 

steps. At each point we measured () - 2(), 2(), and X scans for a and c domains. In 

this measurement also we observed 10 /-lm wide domains and a rv5 /-lm inter-domain 

region where both the neighboring domains had detectable contributions. This agrees 
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with the rv45° orientation of the 90° domain walls and the 5.41 f1m absorption length 

of the crystal for the wavelength we used. To obtain detailed information about the 

structure of the domain walls, we fit our data to a simple model based on partial 

contributions of a and c domains separated by 45° walls to diffraction of x-rays at 

each point. Integrated intensity of diffraction from domains showed sudden "kinks" 

(see Fig. 3.10) which could not be adequately explained by this simple model. To 

explain this feature of data, we replaced the straight-line walls in our model by "bro

ken" wall shapes whose orientation change near the crystal surface (see Fig. 3.11). 

The new model considerably improved our fit results. We discovered a rv 1 f1m thick 

surface-like layer underneath the crystal surface where the orientation of domain walls 

changes from rv45° to rv20°. This deviation from bulk profile is to minimize the total 

deformation energy near the crystal surface. We then fit our scan peaks to Gaus

sian functions to study variations of the peak angles and widths. From these fits we 

were able to plot domain orientation and the change in the lattice constant (strain) 

across the a and c domains. Our results showed that the lattice is under tension at 

one si de of each domain and is compressed by almost the same amount at the other 

side (Fig. 3.12(c)). Maximum strain occurs where the kink in the data is observed 

within the surface-like layer. This behavior can be explained if each domain lattice is 

considered as a crystallite clamped between the two neighboring domains. Difference 

between domains thicknesses near the crystal surface causes domain-domain inter

actions of opposite signs and, thus, compressive and tensile strains at the domain 

walls. The two angles of each domain wall, the transition point from bulk-like to 

surface-like angle, and the intersection of each domain wall with the crystal surface 

can be unambiguously deduced from the results of our fit. The finite size effect due 
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to domain thickness variation is manifested in the peak width which is also more 

profound near the domain boundaries. From f) and X angles we could get information 

on the rotation of the domains axes. Again, domain rotation angle is asymmetric and 

more obvious in the surface-like region. We also realized that the elastic distortion 

field around the domain walls expands several microns away from the walls. 

In another set of experiments, we combined our microfocusing and XDI microd

iffraction setups together to image the 90° domains in our sample. In this experiment 

an area of 500 f.Lmx500 f.Lm on the sample was illuminated by a parallel x-ray beam 

and the rocking curve of the sample was recorded with a CCD detector with 0.645 f.Lm 

resolution in both horizontal and vertical directions. From the topography images we 

observed that different areas on the sample are slightly tilted with respect to each 

other so that they appear bright at different angles as the crystal rocks (see Fig. 3.13). 

We then inserted the Fresnel zone plate into the beam to switch to the microfocusing 

mode. In the XDI mode we can get a quick image of the whole area of the sample 

at once and areas of interest can be identified. When we switch to the microfocusing 

mode by inserting the Fresnel zone plate, the position of each spot on the sample can 

be registered with respect to the microfocused beam (Fig. 3.14). This eliminates the 

need to scan the whole sample, common in almost aIl scanning techniques, to find 

the desired area on the sample. 

There were other subjects that we were initially planning to study but they 

didn't fit in the time frame of this thesis. The most exciting one, perhaps, is the 

domain switching and dynamics of domain walls motion. Theories exist to ex

plain the development of new domains, domain switching, and motion of domain 

walls [86, 62, 97]. There are also studies of the motion of domain walls in ferroelectric 
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materials [139, 125]. Our idea was to apply an electric field to our sample and study 

the motion of a single domain wall in real time using a fast x-ray detector such as 

a streak camera. Our micro diffraction setups allow us to study the changes in the 

structure of two adjacent domains with enough resolution when applying an electric 

field. The other interesting topic to study is the 1800 domains. In principal, x-rays 

cannot discriminate between 1800 domains, because, they have the same structure 

(Friedel's law). However, by applying an electric field, the polarization of the do

mains will exp and or shrink depending on whether they are parallel or antiparallel 

to the electric field. This can make one orientation of domains favorable in an x-ray 

study. These topics are subjects of future work in the ferroelectric materials. 

In our second project, we did a unique set of measurements to study lattice dis

tortions in a micron-size single crystal silicon cantilever used in scanning probe mi

croscopy. Our cantilevers were 450 /-Lm long, 50 /-Lm wide, and 1.7 /-Lm thick. Identify

ing these imperfections is important for the SPM device manufacturers and users. For 

us, however, measuring lattice distortions in such a tiny and literally perfect crystal 

was more a way to better understand our new setups. We did several plane wave XDI 

measurements on our cantilevers in the free (unbent) state. Our setup was a triple

crystal (monochromator, sample, analyzer) in all of our experiments. We performed 

sample and analyzer scans with 0.625 mdeg and 0.5 mdeg resolutions and recorded 

the images of the whole cantilever using a CCD camera with 0.645 /-Lm pixel size. In 

order to track each point of the sample in a series of images recorded in each scan, 

we developed a mechanism to correct for the per-frame shift caused by rocking the 

analyzer. To understand this phenomenon we had to do several simulations and tests. 

We called this procedure restacking which, to our knowledge, has not been utilized 
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by others before. With the aid of the analyzer we were able to uniquely associate 

the image points to the corresponding places on the sample. This is a major and 

not so trivial issue in XDI. To interpret the results of this type of experiments, a full 

understanding of the diffraction in the context of dynamical diffraction is necessary. 

For example, we realized that the small wedge-shape surfaces at the two sides of 

the cantilever behave differently and considerably reduce the spatial resolution of the 

images. 

By calculating the integrated intensity from our measurements we were able to 

map the small variations in the cantilever thickness (Fig. 4.3(b)), because, the can

tilever thickness was an order of magnitude smaller than the extinction length of the 

x-rays. These variations can be a result of non-uniform et ching during the manufac

turing process. This proves that XDr can be used to get a 2D map of the thickness 

variations in sufficiently thin crystals. 

Sample angle, showed that the cantilever itself was very straight but the who le 

cantilever piece was twisted at the junction with respect to the bulky base, even 

though they were one single piece of crystal (see Fig. 4.5). Our measurements showed 

a 0.008° twist angle to the left or right for different samples. The cause for the 

twist is, most likely, different et ching for the base and cantilever, additional dopant 

atoms, thickness difference between the base and the cantilever, or surface tension 

exerted by the thin oxide layer on the surface of the sample. We still need to do more 

measurements to clearly identify the cause for the twist. Near the base we could 

measure two separate Bragg peaks at each point, one for the base and another one 

for the cantilever (Fig. 4.6(b)) showing the complicated structure of this area. 

We repeated the measurements with the cantilever slightly bent by applying an 
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electric field. The bent angle was measured indirectly by comparing the image lengths 

of the bent and unbent cantilevers. This showed that the slope of the bend cantilever 

at its end was in the order of 7 x 10-4 rad. The Bragg peak shapes in the re

ciprocal space showed wider peaks in the direction perpendicular to the diffraction 

vector (Fig. 4.8), an indication of anticlastic curvature of the bent cantilever. To 

obtain quantitative and detailed information about the lattice distortions, we fit a 

two-dimensional Gaussian peak shape to the (J-2(J diffraction pattern of each point of 

the sample. For one-to-one comparison of the points on the bent and unbent can

tilevers, we developed a sophisticated method to transform coordinate of the bent 

cantilever to the unbent coordinat es system. After fitting and coordinate transfor

mation, we obtained very interesting results: a complete two-dimensional map of 

anticlastic curvature and strain field for the cantilever. 

Variations of the sample scan angle across the cantilever width directly measures 

the anticlastic curvature. Precise measurements of this parameter showed about 

4 mdeg change across the cantilever width. This translates to a radius of curva

ture of about 0.3 m. To compare this and other results with theory, we calculated 

the three dimension al deformations of a simple cantilever beam fixed at one end and 

subjected to a localized force at its free end (Appendix C). The anticlastic curvature 

we measured was almost 4 times bigger than what our simple model predicts (see 

Fig. 4.13 (d)) and didn't exactly show the parabolic profile as in simple the model. 

The cantilever was rather sharply bent in the middle and less curved at the two sides. 

Another very important quantity is the out-of-plane strain which can be calculated 

from the changes in the lattice spacing with respect to the base lattice constant which 

we considered as reference. This is itself given by variations of the diffraction angle 
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28. Our calculation showed non-zero strain even in the unbent state. The strain has 

nearly parabolic shape across the cantilever width and reaches a maximum 2 x 10-5 

near the edges of the cantilever. According to our simple model the strain averaged 

over the cantilever thickness must be zero. Our measurements suggests that the top 

and bottom parts of the cantilever are not exactly symmetrical leading to a non-zero 

average strain profile. 

The discrepancies between our results and the predictions of the simple cantilever 

model suggest that our cantilevers are not, indeed, simple homogeneous beams. The 

cantilever and base parts were etched differently. The cantilever part was etched from 

both sides, but, the base only from one side. In general the cantilever was at least 

two order of magnitude thinner than the base and is more likely to be susceptible to 

surface effects. The samples were highly doped to increase their conductivity which 

may introduce extra strains and dislocations in the lattice. Another possible factor 

is the skin of silicon oxide on the surface of the cantilevers. This layer can pro duce 

surface tension on the crystal and exert extra pressure on the internaI material. Near 

the base-cantilever joint area the thin cantilever has oxide layer both on top and 

bot tom surfaces. The thicker base, on the other hand, has oxide only on the top 

surface. This can be a reason for the complicated strain distribution in this area and 

the twist between the cantilever and the base. The symmetry between the top and 

bot tom of the cantilever breaks down near the two wedge-shape edges of the cantilever. 

These areas have also less thickness and more affected by the surface tension. We 

think these can be a source of asymmetry and non-zero strain in these are as which 

propagates across the cantilever width. Another more fundamental issue is that we 

need to incorporate dynamical diffraction from thin deformed crystals with polyhedral 
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cross section into our models to be able to properly explain our data. Considering 

the complexities in the structure of these cantilever, it seems unfeasible to find a 

simple analytical model which also satisfies all the imposed boundary conditions. 

Instead, a Finite Element calculation seems to be more practical for this purpose and 

is, therefore, recommended. AIso, from experimental point of view, larger defiections 

of the cantilever will help to better distinguish deformation effects from dynamical 

diffraction and residual strain effects. These are all subjects of future work in this 

area. 

The two systems studied in this thesis are just examples of what can be accom

pli shed by x-ray micro diffraction techniques. These systems didn't have any special 

feature other than a microstructure detectable by x-rays. The results of these studies 

confirm how modern x-ray sources and x-ray optical devices can be utilized to design 

unique x-ray micro diffraction experiments to study the microstructure of literally any 

system that can be studied by x-rays. With the increasing need to fabricate micro 

and nana devices and growing number of micromachining facilities, x-ray microd

iffraction seems to be a very promising and necessary method to control, test, and 

characterize these products. Our studies also show that dynamical theory of x-ray 

diffraction plays an essential role in proper interpretation and understanding of x-ray 

micro diffraction studies of high quality crystals on micrometer scales. In our studies 

we combined spatial and angular scans to get full diffraction data from each point of 

the sample. We also developed techniques, many unique and original in their nature, 

to interpret and analysis x-ray micro diffraction data. We believe these experimental 

and analytical methods can be applied to similar x-ray micro diffraction experiment. 

We demonstrated how the strengths of x-ray microfocusing and diffraction imaging 
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techniques, when combined together, can be exploited to perform more precise and 

faster measurements. We intend to continue and extend our work in this area and 

believe this will open a new path in our research to study a wide range of interesting 

physical phenomena in materials. 



Appendix A 

A model for x-ray microdiffraction 
from 90° domains in BaTi03 

A model is developed here to describe x-ray micro diffraction from 90° domains in 

BaTi03 . We assume an alternating series of a and c domains separated by sharp 

interfaces. z and y are coordinates in the direction of do mains extension and into the 

crystal surface, respectively, as shown in Fig. A.l. Each domain boundary intersects 

the crystal surface at Zn' and has an arbitrary profile given by function Yn(z'): 

(A.1) 
, z' > Zn' 

Incident and diffracted beams are in x - y plane (see Fig. 3.5) and the sample is 

scanned in z direction. The diffraction signal 8(dI) from a small volume dy x dz' 

centered at point (y,z') of the crystal is proportional to this volume and the total 

absorption by all the material ab ove: 

8(dI) = e-2p,y dydz', (A.2) 
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z' z'+dz' 
1 1 
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Zn-l Zn+l Zn+2 

y+dy 

Figure A.l: Microdiffraction model for 90° domains 

where J-l is the absorption coefficient of the crystal. For this narrow beam, diffraction 

of a single domain between walls n and n + 1 is then equal to: 

l
Yn (Z') 

d1n dz' e-2J.!Y dy 
Yn +1(Z') 

~[e-2J.!Yn+l(z') _ e-2J.!Yn (z')]. 

2J-l 
(A.3) 

One more integration over z' gives the total diffraction for the microbeam: 

(A.4) 

where z is the center of the microbeam and b is its width in the scan direction. To 

obtain the total diffraction signal of c or a do main types at each point z, we have to 

add only those In terms corresponding to that domain type. This means adding odd 

or even terms separately. IntegraIs in eq. A.4 can be calculated either analytically for 

simple geometries, or numerically for more complicated cases. For example, function 
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Wn(z) for straight 45° walls is given by: 

(A.5) 

In our proposed domain wall profile, the domain boundary consists of two line seg

ments each with different slops: 

, z' :s; Zn + h cot al, 
(A.6) 

, z' > Zn + hcotal. 

where al and a2 are near-surface and bulk slopes of the wall and h is the depth 

where the slope changes (the kink). 



Appendix B 

Slope of a bent cantilever and its 
diffraction image 

Suppose a set of planes parallel to z axis are set to Bragg diffraction. If we take -y 

axis along the incident wave vector, k i = k(O, -1,0), the exit wave vector ke will be 

in x - y plane (Fig. B). If the planes are tilted by a small angle, X, the reciprocal 

vector, G, normal to the surface will be given by: 

G = G ( cos X cos e B, cos X sin e B, sin X) , (B.l) 

where (JB is the Bragg angle. In this case ke will also have an azimuth angle ct with 

the x - y plane: 

ke = k ( cos ct sin 2(J B, - cos ct cos 2(J B, sin ct). (B.2) 

From Laue condition (eq. 2.17) we have: 

(B.3) 
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z 

k· 1 

y 

x 
Figure B.1: Diffraction spot displacement when tilting the crystal. 

The z component of this equation relates the two azimuth angles: 

k sin a = G sin X. (B.4) 

The rate of change of a with X for small angles is therefore given by: 

da cosx À . 
-=---~2smoB. 
dX cosa d 

(B.5) 

Because k = 2; and G = 2;, where À is the wavelength and dis the spacing between 

the planes. We also assumed that a and X are both small angles. If the detector is 

located at distance D from the origin, the displacement of the diffraction spot will 

sirnply equals to: 

/:)'h = Da = 2D sin OB X. (B.6) 
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If ~h is known, from this equation we can calculate the tilt angle: 

~h 
X = ----,--

2D sin BB . 
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(B.7) 

Moreover, the x component of eq. B.3 can be used to show that the diffraction 

angle doesn't change much when tilting the planes by a small angle: 

k cos cv sin 2BB = G cos X cos BB. (B.8) 

If we take derivative with respect to X we get: 

-ksincvsin2BB ~: + k cos cv cos 2BB d(~~B) = -GsinxcosBB. (B.9) 

For small tilt angles, sin cv = sin x:::: o. Then we have: 

(B.lO) 



Appendix C 

Three dimensional deformations of 
a simple cantilever beam 

We did not find a detailed calculation of the three dimensional deformations of a 

simple cantilever beam fixed at one end and subjected to a point force at its other 

end. 80, in this appendix we derive a simplified case following the same method 

described by Ford [50] for the case of a uniform bending moment. Our solution 

doesn't satisfy aIl the boundary conditions at the fixed end of the cantilever, but 

these only affect the solutions within a size of the cantilever width and, therefore, the 

solutions derived here provide a good approximation for the points far enough from 

the fixed end of the cantilever. 

Consider a simple homogeneous beam of length L, width b, and thickness t. The 

coordinate system axes are parallei to the beam edges and set so that the beam 

surfaces are at x = -b/2, x = +b/2, Y = 0, y = L, and z = -t/2, z = t/2. The 

beam is fixed at y = 0 and a localized force F is applied to its free end at y = L 

(Fig. C.1(a)). Fis negative for a force downward. Our goal is to derive equations for 

the three dimensional deformations at each point of the beam. Equilibrium equations 
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z z 

F(O) F(y) 

y y 

o L 

(a) (b) 

Figure C.l: Geometry of the model: the beam is fixed at one end and a localized 
force F is applied to its free end at y = L. 

for the whole beam are: 

F(O) + F = 0, 

MAO) + LF = 0, 

(C.l) 

(C.2) 

where F(O) is the reaction force along z, and Mx(O) is the bending moment about x 

axis at y = O. At any point y along the beam (Fig. C.l(b)), the equilibrium equations 

are: 

F(O) + F(y) = 0, 

Mx(O) + yF(y) + Mx(Y) = O. 

(C.3) 

(C.4) 

From eq. C.l, and eq. C.3 we get the force and bending moment at each point 
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Figure C.2: Strain in a small segment of the bent beam: the top surface is under 
tension and the bottom surface is under compression. The dashed line shows the 
neutral axis of the beam. Note that in this figure R is negative. 

along the beam: 

F(y) = F, 

Mx(Y) = FL(l- Y). 

(C.5) 

(C.6) 

In this equation Y _ Y / L is the normalized (to length) coordinate along the cantilever. 

The beam gets deformed under these reactions. We use 8 as the coordinate along the 

cantilever length and consider a small segment of the bent beam between 8 = 81 

and 8 = 82 (Fig. C.2(a)). The top surface of the beam is under compression and 

the bottom surface is under tension, therefore the strain must be zero somewhere in 



APPENDIX C. DEFORMATIONS OF A SIMPLE BEAM 136 

z 

z 

x 

dwO 

y 

y y+dy 

(a) (h) 

Figure C.3: (a) cross section of the beam. (b) bent beam curvature. 

between. This is called the neutml axis of the beam. For a beam with a symmetric 

cross section, like what we have here, the neutral axis lies on the z = 0 plane. The y 

component of the strain at z is equal to: 

(R - z)d</; - Rd</; 
Rd</; 

(C.7) 

If R > 0, Eyy is compressive for z > 0 and tensile for z < O. The bending moment 

Mx(Y) can be calculated from the stress component ayy . Suppose the beam has an 

arbitrary cross section profile shown in Fig. C.3(a). The bending moment can then 

be calculated from the sum of the torques at each small surface element: 

Mx (y) -L ayyzdA = -E L EyyzdA 

E r 2dA = El 
R lA zR' 

(C.8) 

where E is the module of elasticity, and l fA z2dA is the area moment of inertia 
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of the beam cross section with respect to the x axis. The curvature of the beam is 

by definition equal to: ~ = - ~! (see Fig. C.3(b)). Let Wo be the z displacement 

of the beam natural axis. For small deflections of the beam, cP c:::: ~ and ds c:::: dy. 

Therefore we get: 
1 d2wo 
_f"V __ 

R - dy2· 
(C.g) 

By combining eq. C.S and eq. C.g, we obtain the following equation relating the 

curvature of the beam to the bending moment at each point: 

(C.lO) 

Substituting eq. C.6 into the above equation, we obtain: 

(C.ll) 

We can obtain the slope of the cantilever at each point by integrating this equation. 

Since the fixed end of the cantilever remains straight, the boundary condition will be: 

~ [y = 0] = 0, 

(C.12) 

The end slope of the cantilever cPL, is defined as: 

(C.13) 

We can find an equation for the displacement by integrating the slope once more with 
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Figure C.4: Deformed cantilever beam: (a) Bending moment, (b) Slope, and (c) De
flection versus the dimensionless length Y. 

the boundary condition that Wo [y = 0] = 0 (the fixed end of the beam doesn't move): 

Wo (C.14) 

(C.15) 

where Wo = wo/ L is the normalized (to length) displacement in z direction and 

WOL = ~<PL is the maximum displacement at y = L. Equations C.6, C.12, and C.14 

are plotted in Fig. C.4. Note that F, <PL, and W OL are negative for a force pointing 

down. 

Now let u(x, y, z), v(x, y, z), and w(x, y, z) be the deformations in x, y, and z 

directions at point (x, y, z). The y component of the strain is defined as Eyy - ~~. 

From eqs. C.7, C.8, and C.6 we get: 

av FL2 

E = - = --Z(l - Y) = -2"'LZ(1 - Y) yy oy El lf', (C.16) 

where Z = z / L is the third normalized coordinate. The other two diagonal com-

ponents of the strain tensor, Exx and Ezz are smaller by a factor called Poisson ratio 
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v [50] and have the opposite sign (a rubber rob becomes thinner when gets stretched): 

Exx 
au ax = -VEyy = 2v(hZ(1 - Y), 

aw az = -VEyy = 2v(hZ(1 - Y). Ezz 

The off-diagonal elements are aH zero. 

Exy 

Eyz 

Exz 

au av_ o ay + ax - , 
av aw_ o az + ay - , 
au aw_ o az + ax - . 

(C.17) 

(C.18) 

(C.19) 

(C.20) 

(C.21) 

(C.22) 

It is more convenient to use the normalized displacements U _ uj L, V _ v j L, and 

w - w j L. We can directly calculate V by integrating eq. 0.16: 

l
y y2 

V = 0 - 2(hZ (1 - Y')dY' = -2(hZ(Y - -) + f(X, Z). 
o 2 

(C.23) 

fis an arbitrary function of only X and Z. This result can be substitute into eqs. C.21 

and C.20: 

aw = _ av = 2(h (Y _ y 2
) _ a f 

ay az 2 az' 
au av af 
ay ax -ax' 

(C.24) 

(C.25) 
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Integrating with respect to Y, we get these solutions: 

w y 3 af 
(h(y2 - 3) - y az + g(X, Z) 

u af 
-y ax + h(X, Z). 
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(C.26) 

(C.27) 

In these equations 9 and h are two other arbitrary functions of only X and Z. We 

can again substitute these solutions in eqs. C.18 and C.17. Therefore we get: 

(C.28) 

(C.29) 

Since f is a function of only X and Z, and the above equations must be valid for any 

X, the [ 1 terms must be equal to zero: 

(C.30) 

(C.3l) 

Then we get one step doser to the solution of 9 and h functions in eqs. C.28 and 

C.31. 

9 = v(hZ2 + p(X), 

h = 2v(hX Z + q(z). 

(C.32) 

(C.33) 

p is a function of only X and q a function of only Z. Now we can substitute these 
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solutions in eqs. C.26 and C.27 and then apply condition C.22 to obtain: 

a2 f dp dq 
-2Y ax az + dX + dZ + 2l1(hX = O. 

Again For this equation to be valid for any value of y, it requires that: 

Separation of variables then requires that: 

dp 
dX + 2l1(hX = -a, 

dq 
dZ =a. 

In this equation a is a constant. The solution are simple: 

p = -lI(hX2 
- aX + Po, 

q = aZ + qo. 

141 

(C.34) 

(C.35) 

(C.36) 

(C.37) 

(C.38) 

(C.39) 

Po and qo are constants. It can be seen that equation C.35 is consistent with eqs. C.30 

and C.31 only for li = O. This is because the conditions in eq. C.20, C.21, and C.22 

ignore coupling between the three axes. However, since li for silicon (and in general) 

is only a few percent, we use the li = 0 solutions as an approximation. In this case, 

we find: 

f = AX +EZ +C. (C.40) 

A, E, and C are constants. Substituting our solutions in eqs C.27, C.23, and C.26, 
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we find the following solutions for the displacements: 

U = -AY + 2v(hXZ + aZ + qo, 
y 2 

V = -2(hZ(Y - 2) + AX + BZ + C, 

2 y
3 

(2 2) W = (h(Y - 3) - BY + Vq;L Z - X - aX + Po· 

The boundary conditions at y = 0 are the followings: 

U = V = W = 0 no displacement, 

&W -0 
&y -

&W -0 
&X -

&U - 0 ay -

zero slope, 

zero anticlastic curvature, 

zero lateral slope. 
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(C.4I) 

(C.42) 

(C.43) 

(C.44) 

Our solutions don't satisfy all these boundary conditions (see Fig. C.5), because, our 

initial assumptions that Exy = Eyz = Exz = 0 are not valid near the fixed end of 

the cantilever. The exact analytical solutions for deformations with these boundary 

conditions are too complicated. For example, Sader [114] derived the solutions for a 

cantilever with constant bending moment. However, our simple model can provide 

the approximate answer for points far enough (about the width of the cantilever) from 

the fixed end. Only near the fixed end of the cantilever the exact solution differs from 

the simple treatment given here. If we apply the boundary conditions at the origin 
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1.0 

Figure C.5: Three dimension al deflection of the natural plane of a simple beam. 

x = y = Z = 0, we find that aU the constants will be zero and the final solutions 

for the cantilever displacements will be given by: 

U = 2v(hXZ, 
y2 

V = -2(hZ(Y - 2)' 

2 y
3 

2 2) W = (h(Y - 3) + v(h(Z - X . 

(C.45) 

(C.46) 

(C.47) 

The -v(hX2 term in eq C.47 shows the parabolic anticlastic curvature across the 

cantilever width. A three dimensional plot of W for the natural axis is plotted in 

Fig. C.5. 
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The strains are given by the derivatives: 

au 
Exx = ax = 2v(/JLZ, 

av 
Eyy = ay = -2(/JLZ(1 - Y), 

aw 
Ezz = az = 2v(/JLZ. 
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(C.48) 

(C.4g) 

(C.50) 
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