1	Is There A Stratospheric Radiative Feedback in Global
2	Warming Simulations?
3	
4	Yi Huang, Minghong Zhang, Yan Xia
5	Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada
6	Yongyun Hu
7	Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China
8	Seok-Woo Son
9	School of Earth and Environmental Sciences, Seoul National University, Seoul, South
10	Korea
11	
12	
13	March, 2015
14	
15	
16	
17	
18	
19	
20	Corresponding author: Dr. Yi Huang, 805 Sherbrooke Street West, Montreal, Quebec,
21 22	H3A 0B9, Canada. Email: <u>Yi.Huang@mcgill.ca</u>

23 Abstract

24	The radiative impacts of the stratosphere in global warming simulations are
25	investigated using abrupt CO2 quadrupling experiments of the Coupled Model Inter-
26	comparison Project phase 5 (CMIP5), with a focus on stratospheric temperature and
27	water vapor. It is found that the stratospheric temperature change has a robust bullhorn-
28	like zonal-mean pattern due to a strengthening of the stratospheric overturning
29	circulation. This temperature change modifies the zonal mean top-of-the-atmosphere
30	energy balance, but the compensation of the regional effects leads to an insignificant
31	global-mean radiative feedback (-0.02 ±0.04 W m _2 K _1). The stratospheric water vapor
32	concentration generally increases, which leads to a weak positive global-mean radiative
33	feedback (0.02 \pm 0.01 W m _2 K _1). The stratospheric moistening is related to mixing of
34	elevated upper-tropospheric humidity, and, to a lesser extent, to change in tropical
35	tropopause temperature. Our results indicate that the strength of the stratospheric water
36	vapor feedback is noticeably larger in high-top models than in low-top ones. The results
37	here indicate that although its radiative impact as a forcing adjustment is significant, the
38	stratosphere makes a minor contribution to the overall climate feedback and its
39	uncertainty in CMIP5 models.
40	
41	Key words: Stratosphere, radiative feedback, CMIP5

1. Introduction

45	It is increasingly recognized that the stratosphere plays an important role in
46	climate change. In addition to aspects such as the dynamical coupling to the tropospheric
47	circulation (Gerber et al., 2012), the importance of the stratosphere is manifested in its
48	impact on the radiation energy budget. Many stratospheric trace gas species, such as
49	carbon dioxide, ozone, and water vapor, affect the radiation energy balance by interacting
50	with the shortwave solar radiation and the longwave terrestrial radiation. Numerical
51	experiments show that stratospheric contributions are critical for the climate system to
52	maintain the balance of the top-of-the-atmosphere (TOA) radiation energy budget during
53	transient climate change (Huang 2013a). For example, the magnitude of the overall time-
54	varying stratospheric effect on the outgoing longwave radiation (OLR) can be
55	comparable to that of the overall longwave cloud feedback, and the inter-model spread is
56	as large as that of the overall non-cloud tropospheric feedback (Huang 2013b).
57	A climatic effect can be generally classified either as a forcing, which drives
58	climate change, or a feedback, which determines the sensitivity (i.e., how strongly the
59	climate system responds to a given forcing). With regard to the stratospheric radiative
60	effect, especially that related to temperature variations, the conventional view is that it is
61	a <i>forcing</i> effect that arises from the rapid temperature adjustment driven by the radiative
62	cooling due to greenhouse gas perturbation (e.g., Hansen et al. 1997). Interestingly, even
63	when greenhouse gas concentrations are identically prescribed, there may still be
64	substantial inter-model differences in the temperature adjustment and thus in the overall

65	strength of the adjusted radiative forcing (Zhang and Huang 2014). Hence, there is a need
66	to explicitly assess the stratospheric radiative effect in climate feedback analysis.
67	On the other hand, some studies have hypothesized that stratospheric changes
68	may be coupled with tropospheric and surface climates, and constitute a radiative
69	feedback mechanism (Gerber et al., 2012; Dessler et al., 2013). For instance, the
70	stratospheric overturning circulation, the so-called Brewer-Dobson Circulation (BDC), is
71	projected to intensify in response to global warming (e.g., Butchart et al. 2006; Li et al.
72	2008; Manzini et al., 2014). This may affect both the stratospheric temperature, by
73	enhancing the adiabatic cooling in the tropics and the warming in the extratropics, and the
74	stratospheric water vapor, by modifying the troposphere-stratosphere transport
75	(Feuglistaler et al. 2014). Stratospheric water vapor not only directly affects radiation
76	budget by trapping outgoing radiation but also radiatively cools the stratosphere and thus
77	may induce an indirect (Planck) effect. This process has been hypothesized as a
78	stratospheric water vapor feedback (Forster and Shine 1999; Stuber et al. 2001; Joshi et
79	al. 2010; Huang 2013b; Dessler et al. 2013).
80	It is of great interest to know whether a stratospheric feedback exists in the
81	climate models and whether it affects climate sensitivity in a significant way. However, it
82	is difficult to partition the overall effect to forcing and feedback during transient climate
83	change (Huang 2013b). In this paper, we take advantage of the abrupt quadrupling CO_2
84	experiments of CMIP5 (Taylor et al. 2012) to separate the two effects, and focus on the
85	effect that may constitute a feedback. In the following sections, we first explain the

86	kernel method that is used to quantify the radiative effect of stratospheric temperature and
87	water vapor responses. Then we examine the stratospheric responses and quantify the
88	resulting feedback in the models in the quadrupling CO ₂ experiment. To diagnose the
89	possible causality, a set of experiments are conducted using the CAM5 model of the
90	National Center of Atmospheric Research (NCAR). We then conclude the paper with a
91	summary and discussion of the main findings.

93 **2. Method**

We measure a radiative effect, either forcing or feedback, by the radiative kernelmethod:

96
$$\Delta R_X = \frac{\partial R}{\partial X} \Delta X$$
 (1)
97 Here $\frac{\partial R}{\partial X}$ is a set of pre-calculated radiative sensitivity kernels (Shell et al. 2008) and ΔX
98 the change in a climatic variable, e.g., stratospheric temperature or water vapor
99 concentration.

To separate the stratosphere from troposphere, we set the tropopause level as the lowest level where the temperature lapse rate is less than 2 K/km for a depth of more than 2 km in each grid box in each model following the standard definition of the World Meteorological Organization (WMO 1957). The stratospheric radiative effect is then integrated from the determined tropopause level to the model top. This analysis is done globally at every grid box and for each month. The feedback parameter is defined as

107
$$\lambda_X = \frac{\langle \Delta R_X \rangle}{\langle \Delta T_S \rangle} \tag{2}$$

where <...> denotes global average and T_s is the surface temperature. This parameter is of interest because it is directly related to the climate's overall sensitivity to radiative forcing.

The kernel-based feedback analysis procedure is well documented in the literature (Soden and Held 2006, Soden et al. 2008, and Shell et al. 2008). In addition, Huang (2013b) and Huang and Zhang (2014) advanced the method to account for forcing uncertainty in the procedure. The feedback analysis conducted here follows that of Huang and Zhang (2014).

116 Although the kernel method has been validated and mostly used for quantifying 117 tropospheric radiative feedback, our tests show that it is an appropriate method for 118 quantifying the stratospheric feedback as well. Firstly, using a radiative transfer model 119 and based on different types of standard atmospheric profiles (McClatchey et al. 1972), 120 the linearity of radiation response to stratospheric temperature and water vapor 121 perturbations is verified. Fractional errors are less than 15% when approximating the 122 radiation flux change caused by up to 20 K stratospheric temperature change by scaling 123 the radiation flux change due to 1 K temperature perturbation, and are less than 25%124 when approximating the radiation change caused by quadrupling water vapor 125 concentration by scaling the radiation change due to 20% water vapor perturbation (20-126 fold magnification in each case). It is worth noting that the temperature and water vapor 127 changes that we are concerned with (see the following section) do not exceed these

128	magnitudes. In addition, as found in previous studies (Huang et al. 2007; Zhang and
129	Huang 2014), the stratospheric and tropospheric feedback is linearly additive. The
130	difference between the sum of the radiation changes caused by tropospheric and
131	stratospheric changes respectively and the radiation change caused by both changes
132	simultaneously is generally within a few percent. Secondly, in order to assess the kernel
133	uncertainty associated with model atmosphere and radiation code, we compare the
134	feedback analysis results using two sets of kernels: one based on a NCAR model (Shell et
135	al. 2008) and the other based on a Geophysical Fluid Dynamics Laboratory (GFDL)
136	model (Soden et al. 2008). Although the GFDL model-based kernels do not cover the
137	portion of the stratosphere above 30 hPa, the quantifications of ΔR_X (Eq. 1) for the
138	portion below 30 hPa using the two sets of kernels are in good agreement, with a bias
139	generally less than 10%. In summary, these test results suggest that the kernel-based
140	linear decomposition can achieve a comparable accuracy for the stratospheric
141	temperature and water vapor feedback as for the tropospheric feedback (Soden et al.
142	2008).

3. CMIP5 CO₂ quadrupling experiment

To isolate the feedback from forcing, we analyze the climate change simulated by
the CMIP5 models in two idealized quadrupling CO₂ experiments: abrupt4xCO₂ and
sstClim4xCO₂. In the abrupt4xCO2 experiment, the general circulation models (GCMs)
are integrated for 150 years after the atmospheric CO₂ concentration is instantaneously

149	quadrupled. A total of 11 models, as listed in Table 1, are available and included in this
150	study. In the accompanying sstClim4xCO ₂ experiment, the GCMs are integrated for 30
151	years with the sea surface temperature (SST) being fixed after the quadrupling. Among
152	15 models archived in the CMIP5, 11 models are used for the analysis and compared with
153	the abrupt4xCO2 experiments (see Table 1).
154	
155	3.1 Forcing adjustment
156	The change in a stratospheric temperature in the sstClim4xCO ₂ experiment in
157	relevance to its control run (the sstClim experiment) defines the forcing adjustment
158	response. Figure 1 (top panel) shows that the stratospheric temperature adjustment settles
159	very rapidly. In the sstClim $4xCO_2$ experiment, the stratospheric temperature drops
160	considerably; most of the cooling is attained within a year and then the temperature
161	steadies, allowing it to be considered a rapid adjustment of the forcing (Hansen et al.
162	1997). The multi-model global mean forcing adjustment, assessed according to Equation
163	1, is 1.9 W m ² , compared to the instantaneous forcing of 5.4 W m ² caused by the CO ₂
164	quadrupling. We notice that the magnitude of temperature adjustment differs substantially
165	across the models, which results in quantitative differences in their adjusted radiative
166	forcing (Zhang and Huang, 2014). The inter-model spread (max-min) among 11 models
167	amounts to 30% of the mean.
168	
169	3.2 Stratospheric temperature feedback

170	In the abrupt4xCO ₂ experiment when the SST is allowed to vary (Figure 1, bottom
171	panel), stratospheric temperature continues to vary over the whole integration period (150
172	years) in many models. Because the radiative relaxation time in the stratosphere is short
173	(as manifested by the temperature response shown in the top panel of Figure 1), the
174	extended stratospheric temperature change cannot be understood as a forcing adjustment,
175	but a response that likely relates to SST changes.
176	When the radiation anomaly caused by stratospheric changes in humidity or
177	temperature, quantified using Equation 1, is plotted against the global annual mean
178	surface temperature anomaly, significant correlation is observed in most models. This
179	verifies a strong connection between the surface temperature and the stratospheric
180	radiative effect under question, and justifies quantifying the stratospheric feedback using
181	Equation 2, as commonly done for tropospheric feedback.
182	We first calculate the temperature response that can be considered as a feedback
183	as the average of the last ten years (141-150) of the abrupt4xCO ₂ experiment minus
184	forcing adjustment as quantified above in sstClim4xCO ₂ experiment. Figure 2 shows the
185	zonal-mean pattern of the feedback response of temperature and water vapor. A bullhorn
186	pattern with positive changes extending from subtropical upper troposphere both upward
187	and poleward is noticed in most of the models (see the mean of model ensemble, MME).
188	We then calculate the feedback parameter according to Equation 2 (see Table 1).
189	The feedback response of stratospheric temperature consists of both positive and negative
190	changes (Figure 2a). The bullhorn temperature response pattern leads to a distinct zonal

191	mean feedback pattern especially in the mid-latitudes (Figure 3a). Although the feedback
192	at every latitude zone is generally robust and different from zero, its global integration
193	results in a weak global mean feedback parameter, λ_{Tst} . The multi-model ensemble mean
194	of λ_{Tst} is -0.02 W m ² K ⁴ with a standard deviation (STD) of 0.04 W m ² K ⁴ , and a range
195	from -0.09 W m ² K ⁴ (MRI-CGCM3) to 0.04 W m ² K ⁴ (IPSL-CM5A-LR). These results
196	suggest that the global mean temperature feedback in the models is rather uncertain.
197	
198	3.3 Stratospheric water vapor feedback
199	Figure 2b shows the feedback response of the stratospheric water vapor in the
200	abrupt $4xCO_2$ experiment. The water vapor response reaches 4 times the unperturbed
201	climatological values in many models. The feedback parameter, λ_{WVst} , quantified by the
202	kernel method (Equation 1) has a multi-model mean value of 0.02 W $m^{_2}K^{_1}$ and a
203	standard deviation of 0.01 W m ² K ⁴ (Table 1). It is interesting to note that because the
204	OLR sensitivity to water vapor $(\frac{\partial R}{\partial q})$ changes sign from lower to upper stratosphere, a
205	uniform moistening in the stratosphere would lead to a small overall radiative effect after
206	compensation, such as in tropical regions (see Figure 3b).
207	When grouping the models according to their model top height, we find that the
208	high-top (higher than 1 hPa) ones show noticeably stronger water vapor feedback (see
209	Table 1). From the water vapor response pattern (Figure 2b), it is evident that the high-
210	top models tend to simulate a relatively stronger lower stratospheric moistening in the

extratropical regions. This leads to a substantial (>0.2 W m² K⁴) feedback in these regions
(Figure 3b).

213	It is worth noting that stratospheric water-vapor feedback parameter shown in
214	Table 1 is an order of magnitude smaller than the value reported by Dessler et al. (2013):
215	0.3 W m^2 K ⁴ . A few reasons may explain the difference. Firstly, the feedback evaluated
216	here is defined with respect to the TOA radiation flux while that of Dessler et al. is
217	evaluated at the tropopause. Stratospheric water vapor increases, by itself, would induce a
218	greater change in downwelling radiation at the tropopause (R_i) than in the upwelling
219	radiation at the TOA (R_2). This is because R_1 is more sensitive to the stratospheric
220	emissivity (ϵ) increase than R ₂ . Consider a two-layer (troposphere and stratosphere) grey-
221	atmosphere model, $\partial R_i/\partial\epsilon$ equals σT_i^4 , which is the blackbody emission at the
222	stratospheric temperature T_1 , while $\partial R_2/\partial \epsilon$ equals $\sigma T_2^4 - \sigma T_1^4$, which is the difference
223	between the blackbody emission at the equivalent troposphere-surface temperature T_2 and
224	that at the stratospheric temperature T_1 . It can be shown that $T_2^4-T_1^4 < T_1^4$ given that the
225	stratosphere is at radiative equilibrium and absorbs solar radiation. Secondly, the water
226	vapor feedback given in Table 1 is measured by the kernel method (Eq. 1) and reflects
227	only the emissivity effect of water vapor but not the indirect effect through stratospheric
228	cooling. The subsequent stratospheric cooling (decrease in T_1) due to the radiative cooling
229	caused by water vapor, however, will damp the emissivity effect on R_1 but enhance the
230	effect on R_2 . If the stratosphere adjusts to a new radiative equilibrium, the overall changes
231	at the tropopause and at the TOA need to be balanced and thus the combined effect would

232	be equal no matter whether it is evaluated at the TOA or tropopause. This means that the
233	sum of water vapor and temperature radiative effects by the end of the abrupt4xCO2
234	experiment (when it approaches equilibrium), as given by Table 1, has appropriately
235	accounted for the combined water vapor radiative effects.
236	
237	3.4 Combined feedback
238	The above results indicate that the stratosphere has a sign-uncertain temperature
239	feedback but a weak positive water vapor feedback. Adding the two effects yields a wide
240	range of feedback strengths with a minimum of -0.06 W m _2 K _4 and a maximum of 0.07 W
241	$m^{2} K^{4}$. As a result, the MME is nearly zero, with a STD of 0.04 W $m^{2} K^{4}$ (Table 1).
242	Although the global mean feedback is insignificant, stratospheric changes play a non-
243	negligible role in local radiative feedback especially in extratropics (see Fig. 3).
244	To verify the feedback values obtained above using the differencing method
245	(Equations 1 and 2), we also calculate the feedback parameters using a regression method,
246	by regressing the global annual mean radiation anomalies in years 21-150 in the
247	abrupt4xCO2 experiment to the surface temperature anomalies. The results obtained from
248	the two methods are generally in agreement (see Table 1). The only noticeable
249	discrepancy in the CCSM4 model is due to weak linear relationship between the
250	stratospheric temperature-caused radiation anomaly and surface temperature anomaly
251	(and thus greater regression uncertainty).

4. Cause of local stratospheric feedback

254 4.1 Temperature feedback

255	The analysis above indicates that the stratospheric temperature feedback is locally
256	significant in the extratropics (Figs. 2a and 3a). The stratospheric temperature response
257	shown in Figure 2a consists of both positive and negative changes. In general, the
258	positive signals emerge from both sides of the subtropical tropopause region and extend
259	poleward and upward in both hemispheres. This pattern of warming, looking like bull
260	horns, does not resemble the temperature change that is caused by stratospheric
261	moistening, which would be uniformly negative (e.g., Forster and Shine 1999). Instead,
262	one can draw similarities between the feedback temperature response here and the
263	temperature changes in many of the global warming experiments (e.g., Son et al. 2009),
264	which suggests a common cause of the bullhorn-like feedback response of the
265	stratospheric temperature.
266	We find that the bull horns-like temperature change pattern between 60 [.] S and
267	60°N is very well correlated with the anomaly of the residual vertical velocity w^{*} (see
268	Andrews et al 1987, Eq. 3.5.1b for definition) in the stratosphere (compare Figs. 4a and
269	b). The increases of upwelling in the deep tropics and downwelling in the extropical
270	regions, as shown in Figure 3b, particularly indicate strengthening of the BDC in the
271	quadrupling CO ₂ experiment as in the scenario integrations (e.g., Butchart et al., 2006;
272	Manzini et al., 2014). The consequent adiabatic cooling and warming largely explain the
273	bullhorn pattern in the stratospheric temperature change. This result suggests that the

peculiar stratospheric temperature feedback response likely results from the strengtheningof the BDC.

276 To verify that it is the SST-driven circulation change that gives rise to the 277 bullhorn-like temperature feedback response in the stratosphere, we conduct the 278 following experiment using CAM5 (Neale et al. 2010). The model is integrated from 279 1960 to 2007 with greenhouse gas concentration fixed at 1960 value but with time-280 varying historical SST values. Four ensemble runs are done. Figure 4c shows that this 281 experiment reproduces the bullhorn-shaped temperature response pattern seen in the 282 quadrupling CO₂ experiment fairly well (compare Figs. 4a and 4c). Although temperature 283 trend in the Southern Hemisphere high latitudes is different, it is not statistically 284 significant.

We diagnose the temperature tendency terms $\left(\frac{dT}{dt}\right)$, T: temperature; t: time) in the 285 286 CAM5 simulations, including those caused by dynamics (heat advection) and physics (the physical parameterizations of longwave and shortwave radiative heating, moist 287 288 processes, vertical diffusion, deep convective detrainment and orographic gravity wave 289 drag, etc). We find that the temperature tendency caused by the resolved dynamics, as 290 opposed to the parameterized physics, accounts for the bullhorn-shaped temperature 291 pattern. The pattern caused by the physics is dominated by radiative cooling, which is 292 spatially uniform, as shown by previous studies (Forster and Shine 1999), and does not 293 explain the bullhorn-shaped pattern. In comparison, the pattern caused by the dynamics 294 (Figure 4 d) is also bullhorn-shaped and has a strong spatial correlation with the overall

295	temperature trend pattern (correlation coefficient: 0.95). Moreover, the dynamically-
296	caused temperature change pattern is well correlated with the anomalous residual vertical
297	velocity w° between 60°S and 60°N. The spatial correlation between the two variables is -
298	0.54; the temporal correlation between the annual mean anomalies of the two variables at
299	50hPa averaged over the tropics (30°S-30°N) is -0.80. These results affirm that surface
300	warming causes dynamics adjustment (BDC strengthening) in the stratosphere, which
301	then leads to the distinct temperature change pattern.
302	It is important to note that the positive and negative temperature changes caused
303	by the stratospheric circulation changes have compensating radiative effects over the
304	globe. Using the kernel approach (Eq. 1) the global-mean feedback effect due to the
305	dynamical term (Figure 4d) is calculated to be -0.01 W m ² K ⁴ . This affirms that the
306	dynamical heating/cooling does not lead to a significant feedback in the global-mean
307	surface temperature.
308	
309	4.2 Water vapor feedback
310	Unlike tropospheric water vapor variations, which can be largely explained by
311	tropospheric temperature change and conservation of relative humidity, stratospheric
312	water vapor is not controlled by local temperature. The water vapor and temperature
313	change patterns (Figure 2) in the abrupt4xCO2 experiment bear no similarity in the
314	stratosphere.

315	Figure 2 b shows that in most models the most noticeable stratospheric water
316	vapor increase occurs in the lowermost stratosphere that is adjacent to the tropical upper
317	troposphere region where the atmospheric moistening is maximized. This suggests that
318	the stratospheric moistening is through mixing (e.g., isentropic) that transports water
319	from tropical upper troposphere to lower stratosphere. Indeed, the global mean specific
320	humidity in the lowermost stratosphere (above tropopause and below 70 hPa) and the
321	tropical mean (30°S-30°N) upper tropospheric specific humidity (UTH) averaged in a
322	100 hPa layer below tropopause are strongly correlated. Table 2 shows that the
323	correlation between the annual anomalies of the two variables in every model is greater
324	than 0.9 (many close to 1).
325	The UTH control of the overworld stratosphere (above 70 hPa) is noticeably
326	weaker (see Table 2). For this region, it is expected that the ascent strength of the BDC
327	and the temperature at tropical cold point tropopause (CPT) also influence the
328	stratospheric humidity (Gettelman et al. 2010, Feuglistaler et al. 2014). Similar to what is
329	found by Dessler et al. (2014), we find strong anti-correlation (-0.81) between the
330	residual velocity w and the CPT temperature, which indicates that the two control factors
331	have degenerated to one (with compensating effects). We correlate the annual anomalies
332	of the CPT temperature and the stratospheric specific humidity in each model and find
333	significant correlation in some models. In comparison, the specific humidity in both
334	lowermost and overworld stratosphere is better explained by the UTH, except for the
335	MIROC5 model. We also conduct a multiple regression of the stratospheric humidity

336	change against both variables: UTH and CPT. We find they together can explain most of
337	the stratospheric water vapor change in most models, except for the overworld
338	stratosphere in the INMCM4 model.
339	Finally, with regard to the inter-model differences in these variables, we find high
340	correlation between the global mean overall stratospheric water vapor change and the
341	tropical upper tropospheric water vapor change (correlation coefficient: 0.86), and the
342	tropical CPT temperature (0.67), respectively. In summary, these results suggest that the
343	moist increase in the lowermost stratosphere can be mostly attributed to mixing of upper
344	tropospheric water vapor, while that in the overworld is also affected by changes in BDC
345	strength and in tropical tropopause temperature.
346	
347	5. Discussion and conclusions
348	We analyze the stratospheric responses in climate models that can be considered
349	as a feedback to surface warming. The GCMs examined have a stratospheric temperature
	as a recuback to surface warming. The Genns examined have a stratospheric temperature
350	feedback ranging from -0.09 to +0.04 W m ² K ⁴ and a weaker water vapor feedback from
350 351	feedback ranging from -0.09 to +0.04 W m ² K ⁴ and a weaker water vapor feedback from 0.01 to 0.03 W m ² K ⁴ . The sum of the two effects ranges from -0.06 to 0.07 W m ² K ⁴ with
350351352	feedback ranging from -0.09 to +0.04 W m ² K ⁴ and a weaker water vapor feedback from 0.01 to 0.03 W m ² K ⁴ . The sum of the two effects ranges from -0.06 to 0.07 W m ² K ⁴ with almost zero multi-model ensemble mean value. The high-end feedback magnitudes
350351352353	feedback ranging from -0.09 to +0.04 W m ² K ⁴ and a weaker water vapor feedback from 0.01 to 0.03 W m ² K ⁴ . The sum of the two effects ranges from -0.06 to 0.07 W m ² K ⁴ with almost zero multi-model ensemble mean value. The high-end feedback magnitudes suggest that the stratosphere may have a non-negligible effect on climate sensitivity. The
 350 351 352 353 354 	feedback ranging from -0.09 to +0.04 W m ² K ⁴ and a weaker water vapor feedback from 0.01 to 0.03 W m ² K ⁴ . The sum of the two effects ranges from -0.06 to 0.07 W m ² K ⁴ with almost zero multi-model ensemble mean value. The high-end feedback magnitudes suggest that the stratosphere may have a non-negligible effect on climate sensitivity. The considerable range of the feedback values indicate that this feedback mechanism is
 350 351 352 353 354 355 	feedback ranging from -0.09 to +0.04 W m ² K ⁴ and a weaker water vapor feedback from 0.01 to 0.03 W m ² K ⁴ . The sum of the two effects ranges from -0.06 to 0.07 W m ² K ⁴ with almost zero multi-model ensemble mean value. The high-end feedback magnitudes suggest that the stratosphere may have a non-negligible effect on climate sensitivity. The considerable range of the feedback values indicate that this feedback mechanism is poorly quantified in the models.
 350 351 352 353 354 355 	the declaration of the summer walking. The Gerns examined have a statesphere emperature feedback ranging from -0.09 to +0.04 W m ² K ⁴ and a weaker water vapor feedback from 0.01 to 0.03 W m ² K ⁴ . The sum of the two effects ranges from -0.06 to 0.07 W m ² K ⁴ with almost zero multi-model ensemble mean value. The high-end feedback magnitudes suggest that the stratosphere may have a non-negligible effect on climate sensitivity. The considerable range of the feedback values indicate that this feedback mechanism is poorly quantified in the models.

356	The overall climate feedback of the same CMIP5 models analyzed here amounts
357	to -1.4 \pm 0.4 W m ² K ⁴ (MME and STD, see Zhang and Huang, 2014). In comparison, the
358	stratospheric feedback makes considerably less contribution to the overall climate
359	feedback and its spread in these models. However, we note that the stratospheric
360	adjustment, i.e., the rapid stratospheric temperature change that is induced by CO ₂ cooling
361	and is not related to surface warming, has a much more significant impact on the
362	radiation energy budget (a MME of 1.9 W m^2 , in comparison to a 5.4 W m^2 instantaneous
363	forcing of quadrupling CO ₃). It can be concluded that the significant inter-model spread
364	of the overall stratospheric radiative impact as noticed by Huang (2013b) can be mostly
365	attributed to forcing adjustment.
366	We also note that the results here do not exclude the possibility of stratospheric
367	feedback caused by mechanisms other than water vapor and temperature variations. For
368	instance, Zhou et al. (2014) find a non-negligible cirrus cloud feedback in short-term
369	climate variations in observational data (a fraction of which may be related to clouds
370	above the tropopause and thus be considered a stratospheric feedback), although this
371	feedback is insignificant in GCM global warming experiments (Zelinka et al., 2012).
372	With regard to the cause of stratospheric feedback, we find that the strengthening
373	of the BDC explains the stratospheric temperature feedback. The circulation change
374	causes the temperature change through both dynamical (via adiabatic heat advection) and
375	radiative (via changing stratospheric water vapor) heating. These two mechanisms are
376	characterized by distinctive zonal mean temperature change patterns. The dynamical

377	heating pattern resembles the shape of bullhorns while the radiative heating pattern is
378	much more uniform. This suggests that it should be possible to attribute the overall
379	temperature change in both simulations and observation records to the two mechanisms
380	based on these distinctive spatial signatures, which shall be investigated in future work.
381	Unlike temperature feedback, stratospheric water vapor shows positive feedback
382	in all experiments. The stratospheric water vapor response largely results from
383	transported moisture from the tropical upper troposphere through mixing, but is also
384	modulated by cold point temperature as well as BDC strength. It warrants further
385	research to clarify how different mechanisms (e.g., ascent strength vs. tropopause
386	temperature) control the stratospheric water vapor change in a warming climate, at least
387	in the models. It should be borne in mind that not all 11 CMIP5 models included in this
388	analysis fully resolve the stratosphere. The high-top models seem to have a stronger
389	water vapor feedback (see Table 1) and this can be attributed to the relatively stronger
390	extropical lower stratospheric moistening, the effects of which are also stressed by
391	Dessler et al. (2013).
392	Although the net effect of global-mean stratospheric temperature and waver vapor

393 feedback is small, we find that stratospheric changes may be important for local radiative

394 feedback. A significant positive feedback is found in the extratropics. This could

395 effectively change meridional temperature gradient in the troposphere. Since the

396 circulation is sensitive to temperature gradient change in addition to temperature change

397 itself, this local radiative feedback can affect circulation in certain regions. This potential

398 link between stratospheric feedback and tropospheric climate change needs to be399 explored in future study.

400

401 Acknowledgements

402 We thank three anonymous reviewers whose comments helped improve the

403 quality of the paper. Y. Huang and MZ are supported by a Discovery grant form the

- 404 National Science and Engineering Research Council of Canada (RGPIN418305-13). YX
- 405 is supported by a postdoctoral fellowship of Fonds de recherché du Québec- Nature et
- 406 technologies. YX and Y. Hu are supported by the National Natural Science Foundation of
- 407 China (41025018) and by the National Basic Research Program of China (973 Program,
- 408 2010CB428606). SWS is supported by Korea Ministry of Environment as "Climate
- 409 Change Correspondence Program". We acknowledge the World Climate Research
- 410 Programme's Working Group on Coupled Modelling for the CMIP5 model data used in

411 this study.

412 **References**

- 413 Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the
- 414 Brewer–Dobson circulation. Climate Dyn., 27, 727–741, doi:10.1007/s00382-006-0162-4.
- 415 Bunzel, F., and H. Schmidt, 2013: The Brewer-Dobson circulation in a changing climate: Impact
- 416 of the model configuration. Journal of the Atmospheric Sciences, 70(9), 3002-3002.
- 417 Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., & Rosenlof, K. H., 2013, Stratospheric
- 418 water vapor feedback. *Proceedings of the National Academy of Sciences*, *110*(45), 18087-18091.
- 419 Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, K. H. Rosenlof, and J.-P. Vernier, 2014,
- 420 Variations of stratospheric water vapor over the past three decades, J. Geophys. Res. Atmos.,
- 421 119, 12,588–12,598, *doi*:10.1002/2014JD021712.
- 422 Forster, P. M. D. and K. P. Shine, 1999. "Stratospheric water vapour changes as a possible
- 423 contributor to observed stratospheric cooling." Geophysical Research Letters 26(21): 3309-3312.
- 424 Fueglistaler, S., et al., 2014, Departure from Clausius-Clapeyron scaling of water entering the
- 425 stratosphere in response to changes in tropical upwelling, J. Geophys. Res. Atmos., 119, 1962–
- 426 1972, *doi*:10.1002/2013JD020772.
- 427 Gerber et al., 2012: Assessing and understanding the impact of stratospheric dynamics
 428 and variability on the earth system. Bull. Amer. Meteor. Soc., 93, 845–859.
- Gettelman, A., *et al.*, 2010, Multimodel assessment of the upper troposphere and lower
 stratosphere: Tropics and global trends, J. Geophys. Res., 115, *D00M08*, *doi*:10.1029/2009JD013638.
- Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. *Geophys. Res. Atmos.*, 102, 6831-6864.

- 434 Hegglin, M. I., Tegtmeier, S., Anderson, J., Froidevaux, L., Fuller, R., Funke, B., ... &
- 435 Weigel, K., 2013, SPARC Data Initiative: Comparison of water vapor climatologies from
- 436 international satellite limb sounders. Journal of Geophysical Research: Atmospheres,
- 437 *118*(20), 11-824.
- 438 Huang, Y., V. Ramaswamy, and B. Soden, 2007: An investigation of the sensitivity of the clear-
- 439 sky outgoing longwave radiation to atmospheric temperature and water vapor, J. Geophys. Res.,
- 440 112, D05104, doi:10.1029/2005JD006906.
- 441 Huang, Y., 2013a: A simulated climatology of spectrally decomposed atmospheric infrared
- 442 radiation, J. of Climate, doi: 10.1175/JCLI-D-12-00438.1.
- Huang, Y., 2013b: On the Longwave Climate Feedbacks. Journal of Climate 26(19): 7603-7610.
- Huang, Y. and M. Zhang, 2014: The implication of radiative forcing and feedback for
 meridional energy transport, Geophys. Res. Lett., DOI: 10.1002/2013GL059079.
- 446 Joshi, M. M., M. J. Webb, et al., 2010. "Stratospheric water vapour and high climate sensitivity
- in a version of the HadSM3 climate model." Atmospheric Chemistry and Physics 10(15): 7161-7167.
- 449 Li, F., J. Austin, and R. J. Wilson, 2008: The strength of the Brewer-Dobson circulation in a
- 450 changing climate: coupled chemistry-climate model simulations, J. Clim., 21, 40-57.
- 451 Manzini, E., et al., 2014:Northern winter climate change: Assessment of uncertainty in
- 452 CMIP5 projections related to stratosphere-troposphere coupling, J. Geophys. Res.
- 453 Atmos., 119, doi:10.1002/2013JD021403.
- 454 McClatchey, R. A., R. W. Fenn, J. E. Selby, F. E. Volz, and J. S. Garing, 1972:Optical
- 455 Properties of the Atmosphere, Third Edition, Air 599 Force Geophysical Laboratory
- 456 Technical Report, AFCRL-72-0497, 80 pp.

- 457 McLandress, C., and T. G. Shepherd, 2009: Simulated Anthropogenic Changes in the Brewer-
- 458 Dobson Circulation, Including Its Extension to High Latitudes. J. Climate, 22, 1516–1540. doi:
- 459 10.1175/2008JCLI2679.1
- Mote, P. W., K. H. Rosenlof, et al., 1996. "An atmospheric tape recorder: The imprint of tropical
 tropopause temperatures on stratospheric water vapor." Journal of Geophysical Research
 101(D2): 3989.
- 463 Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model
 464 (CAM5.0). NCAR Tech. Rep. NCAR/TN-486+STR, 268 pp.
- 465 Shell, K. M., J. T. Kiehl, et al., 2008: "Using the radiative kernel technique to calculate climate
- 466 feedbacks in NCAR's Community Atmospheric Model." Journal of Climate 21(10): 2269-2282.
- 467 Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the
- brewer–dobson circulation in response to climate change: critical-layer control of subtropical
 wave breaking. J. Atmos. Sci., 68, 784–797. doi: 10.1175/2010JAS3608.1
- 470 Brian J. Soden and Isaac M. Held, 2006: An Assessment of Climate Feedbacks in
- 471 Coupled Ocean–Atmosphere Models. J. Climate, **19**, 3354–3360.
- 472 Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields,
- 473 2008: Quantifying climate feedbacks using radiative kernels. J. Clim., 21, 3504-3520.
- 474 Son, S.-W., L. M. Polvani, et al., 2009. "The Impact of Stratospheric Ozone Recovery on
- Tropopause Height Trends." Journal of Climate 22(2): 429-445.
- 476 Stuber, N., M. Ponater, et al., 2001. "Is the climate sensitivity to ozone perturbations enhanced
- 477 by stratospheric water vapor feedback?" Geophysical Research Letters 28(15): 2887-2890.
- 478 Taylor, K. E., R. J. Stouffer, et al., 2011. "An Overview of CMIP5 and the Experiment Design."
- 479 Bulletin of the American Meteorological Society 93(4): 485-498.

- 480 WMO, 1957: Definition of the tropopause. *WMO Bull.*, **6**, 136.
- 481 Zelinka, M., et al., 2012: Computing and Partitioning Cloud Feedbacks Using Cloud
- 482 Property Histograms. Part I: Cloud Radiative Kernels, J. Climate, 25, 3715–3735,
 483 doi:10.1175/JCLI-D-11-00248.1.
- 484 Zhang, M., Y. Huang, 2014: Radiative forcing of quadrupling CO₂, J. Climate, doi:
- 485 http://dx.doi.org/10.1175/JCLI-D-13-00535.1.
- 486 Zhou, C., A. E. Dessler, M. D. Zelinka, P. Yang, and T. Wang, 2014: Cirrus feedback on
- 487 interannual climate fluctuations, Geophys. Res. Lett., 41, doi:10.1002/2014GL062095.

- 488 Tables
- 489 Table 1. Stratospheric temperature and water vapor feedback parameters of each model in

490 the unit of W m² K⁴. Two methods are used here: a differencing method and a regression

- 491 method (see details in the texts). The results are grouped to high-top (HT, at 1 hPa or
- 492 above) and low-top (LT) models. See Table 9.A.1 of the IPCC 5^a assessment report for
- 493 details of the models.
- 494

MODEI	Model	Differencing Method			Regression Method		
WIODEL	top	λ_{Tst}	λ_{WVst}	λ_{st}	λ_{Tst}	λ_{WVst}	λ_{st}
GFDL-CM3	HT	-0.02	0.03	0.01	-0.02	0.03	0.01
IPSL-CM5A-LR	HT	0.04	0.03	0.07	0.06	0.02	0.08
MPI-ESM-MR	HT	0.01	0.03	0.03	0.01	0.02	0.03
MRI-CGCM3	HT	-0.09	0.03	-0.06	-0.07	0.03	-0.04
CanESM2	HT	-0.03	0.03	-0.01	-0.03	0.02	-0.01
CCSM4	LT	-0.06	0.01	-0.05	0.00	0.01	0.01
CSIRO-Mk3.6.0	LT	0.03	0.01	0.04	0.04	0.00	0.04
HadGEM2-ES	LT	0.02	0.02	0.04	0.06	0.02	0.07
INMCM4	LT	-0.03	0.01	-0.01	-0.02	0.02	0.00
MIROC5	LT	-0.02	0.01	-0.01	-0.01	0.02	0.01
NorESM1-M	LT	-0.01	0.01	-0.00	0.01	0.01	0.02
Mean		-0.02	0.02	0.00	0.01	0.02	0.02
STD		0.04	0.01	0.04	0.04	0.01	0.04

496	Table 2. Correlation between global mean lowermost (below 70hPa) and overworld
497	(above 70hPa) stratospheric specific humidity and two control factors: temperature at the
498	cold point tropopause (CPT) averaged over 10°S–10°N and tropical upper tropospheric
499	specific humidity (UTH) averaged over 30°S-30°N. The correlation coefficients are
500	calculated based on the annual mean anomalies of these variables in Years 21-150 in the
501	abrupt 4xCO2 experiment for each model. In the case of CPT+UTH, stratospheric
502	specific humidity is first regressed to the two variables in a multiple regression and then
503	correlation coefficient is calculated between GCM-simulated and regression-model-
504	predicted humidity anomalies.

	Model	Lowermost stratosphere			Overworld stratosphere		
MODEL	top	CPT + UTH	CPT	UTH	CPT + UTH	CPT	UTH
GFDL-CM3	HT	0.99	-0.07	0.99	0.92	0.13	0.89
IPSL-CM5A-LR	HT	0.99	-0.33	0.99	0.91	-0.30	0.91
MPI-ESM-MR	HT	0.99	-0.25	0.99	0.87	0.18	0.77
MRI-CGCM3	HT	0.97	0.92	0.97	0.87	0.83	0.87
CanESM2	HT	0.99	-0.06	0.99	0.86	0.01	0.86
CCSM4	LT	0.97	0.26	0.97	0.86	0.32	0.86
CSIRO-Mk3.6.0	LT	0.99	0.94	0.99	0.96	0.92	0.95
HadGEM2-ES	LT	0.98	-0.97	0.98	0.95	-0.91	0.95
INMCM4	LT	0.91	0.34	0.91	0.37	-0.05	0.36
MIROC5	LT	0.98	0.95	0.97	0.75	0.72	-0.57
NorESM1-M	LT	0.97	0.39	0.97	0.85	0.40	0.85

508 Figures

Figure 1. Time series of global mean 50 hPa temperature change in the sstClim4xCO2
(top) and abrup4xCO2 (bottom) experiments. The changes (unit: K) are relative to their
control runs sstClim and piControl, respectively. Note that the range of x-axis is different
in two time series.

517 Figure 2. Zonal mean feedback response in a) atmospheric temperature ΔT , unit: K, and b)

518 logarithm of specific humidity, $\Delta \log_2(q)$. The thick line indicates the tropopause.

521 Figure 2 b. Zonal mean feedback response in the logarithm of specific humidity, $\Delta \log_2(q)$.

524 Figure 3. Zonal mean radiative feedbacks (unit: W m² K¹) of the stratospheric a)

526 red dashed lines respectively. The thick black line denotes the multi-model mean.

528

529 Figure 4. a) Multi-model mean feedback temperature response (unit: K) in the

530 abrupt4xCO₂ experiment. b) Multi-model mean change in the residual vertical velocity w^{*}

531	of the overturning circulation in the abrupt4xCO ₂ experiment (unit: mm/s). Contoured
532	here is $(-1) \times \Delta w^{\cdot}$, so that negative (positive) means ascent (descent). c) The ensemble
533	mean feedback temperature response (unit: K) in the CAM5 experiment. d) The dynamics
534	contribution to the temperature response (unit: K) in c). For the CAM5 experiment, the
535	change is the difference between the means of 2003-2007 and 1960-1964. In (a) and (b),
536	stippling indicates at least 13 models showing the same sign of change; in (c) and (d),
537	significant trend at 90% confidence level.