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ABSTRACT 

Nonlinear dynamlc ônalysls of MDOF structures is usually performed in geometric 

coordinates using a step-by-step integratlon of ail modes simultaneously. The mode 

superposition used extenslvely ln linear problems can be thought competitive and efficient ln 

nonllnear problems If a truncated vector basls can be considered. 

This thesls presents two algorithms to solve nonlinear seismic problems ln generahzed 

coordinates, one that uses a set of vectors computed from initial properties, the Pseudo-Force 

Method (PFM), and another that contlnuously updates the vector basis to represent the 

nonlinear behaviour, the Tangent Spectrum Method (TSM). Both methods can use elther exact 

eigenvectors or load dependent vectors as vector basis. Parametric analyses are carned out on 

a senes of multistory buildings Idealized as shear beam structures wlth bllinear hysteretlc 

behavlour. The effects of the truncation of the vector ba,is on the stablhty and the quallty of the 

nonlinear solutions are Investigated uSlng nonlinear response parameters such as dUCtlhty, 

energy balance, and dissipation. The algorithms are then used to make a comparative study on 

the effects of different mathematical representatlons of VISCOUS damping based eiti1er on initiai 

elastic, or tangent modal, properties of MDOF structures. 

For a flexible 25-story structure, the solution IS much more sensitive to the truncatlOn of 

the vector basls when the PFM IS used instead of the TSM. However, even if the TSM yields 

accurate g. ,bal results based on dis placements such as ductility and hysteretic energy 

dissipation, it shows important error in velocity and acceleration when a sm ail number of vectors 

is used. For a stift 5-story structure, the trend is re"ersed and the PFM seems to be more 

accurate when a truncated basis is used. The equilibnum iterations are founn to be very 

important to reduce the required number of basis updates ln the TSM algonthm. The use of 

eigenvectors or load depandent vectors yielded comparable results. A tangent Rayleigh damping 

model that maintains a constant damping ratio throughout the elastic and inelastic response has 

been developed. If initiai elastic vectors are used, a very good approximation ta the rigorous 

response based on tangent damping is obtained from damping proportional to the 

instantaneous stiftness for MOOF structures with fundamental penods of vibration, T, :s 0.5 sec. 

For structures with T, > 0.5 sec, Rayleigh damplOg based on initiai elastic properties should be 

used. 



RÉSUMÉ 

Une analyse dynamique d'un système non-hnéalre à plusieurs degrés de hberte 1st 

habituellement résolue en utilisant l'intégration pas- _-pas de tous les modes simultanément La 

méthode de superpOSItion modale, utilisée pour les problèmes Itnéalres, peut possiblement ètre 

compétitive et efficace pour un problème non-lInéalr& SI une base de vecteurs tronquée peut 

être considérée. 

Cette thèse présente deux algorithmes pour résoudre des problèmes séismiques non­

linéaires en coordonnées généralisées. Le premier utilise un ensemble de vecteurs calculés à 

partir des propriétés Initiales (Méthode de Pseudo-Force, MPF), et l'autre met à lour la base de 

vecteurs pour représenter le comportement non-linéaire (Méthode du Spectre Tangent, MST). 

Les deux méthodes utilisent salt des vecteurs propres ou vecteurs dépendants de la charge 

comme base vectorielle. Des études paramétnques sont menées sur une séne de bâtiments 

multi-étagés Idéalisés par de'3 poutrps de Clsatllement à deux degrés de liberté avec 

comportement bi-linéaire hystérétique. Les effets de la tronratlon de la base vectoflelle sur la 

stabilité et la qualité de la solution non-linéaire sont examinés en utilisant des Indicateurs tels 

que la ductilité, la balance et la dissipation d'énergie. Les algorithmes sont ensuite utilisés pour 

mener une étude comparative sur les effets de différents modèles Ot:> matrices d'amortissement 

calculées salt à partir des propriétés Initiales ou tangentes du système. 

Pour un bâtiment flexible de 25 étages, la troncatlOn de la base vectoTtelle est beaucoup 

plus sensible pour la MPF que la MST. Cependant, même si la MST donne des résultats globaux 

satisfaisants, elle produit des erreurs conSidérables dans les vecteurs vitesse et accélération 

quand un nornbre peu élevé de vecteurs est utilisé. Pour un bâtiment rigide de 5 étages, la 

tendance est renversée et la MPF semble plus précise. Les itérations d'éqUilibre sont très 

importantes pour faire de la MST un algorithme intéressant et compétitif. L'utilisation de vecteurs 

propres ou de vecteurs dépendants de la charge donne des résultats comparables. Un modèle 

d'amortissement tangent qui maintient un taux d'amortissement constant au cours d'une analyse 

non-linéaire a été développé. Si les vecteurs Initiaux élastiques sont utilisés, une très bonne 

approximation de la réponse rigoureuse basée sur l'amortissement tangent est obtenue à partIr 

de l'amortiss3ment proportionnel à la rigidité Instantanée pour structures à plUSieurs degrés de 

liberté avec périodes fondamentales de VibratIOn, T, s 0.5 sec. Pour les structures avec 

Tl > 0.5 sec., l'amortissement de type Rayleigh, basé sur les propriétés Inttlales élastiques, 

devrait être utilisé. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW AND OBJECTIVES 

It is generally reeognlzed that It is uneeonomleal to design ail bUilding structures to 

remam in the elasUe range to resist major earthquakes. Step-by-step Integration of ttle 

Incrementai form of the equations of dynamlc eqUlhbnum expressed ln geometnc coordlnates 

is generally usad to investigate the nonhnear selsmic behavlour of MDOF structures The 

Integration procedure mathematlcally corresponds to the slmultaneous Intt:!gratlOn of ail 

Instantaneous modes of vibration uSlng the same tlme-step. The use of vector superposition 

methods ln nonlinear analysls conslsts ln performlng a change of basls to a more eHectlve 

system of equatlon. The effectiveness of vector superposition techniques ln nonllnear dynarnlc 

problems depends on (1) the number of vectors reqwed to simulate accurately the response, 

(ii) the frequency of updatlng and recalculatlng the basls vectors, whlch are a tunetion of the rate 

of change of these vectors wlth time, and (Iii) the efflclency of the algonthm used ta calculate 

the initial vectors and lJpdating them (Noor 1981). Vector superposition methods ln nonhnear 

structural dynamics can be based on either the Tangent Spectrum Method (TSM) (Maison and 

Kasal 1990, Ibrahlmbegovlc and Wilson 1990, Idelsohn and Cardona 1985, Glilles and Shepherd 

1983, Remseth 1979, Nlckell 1976) or the Pseudo-Force Method (PFM) (Chang and Moraz 1990, 

Mus"olino 1989, Hanna 1989, Filho et al. 1988, Knight 1985, Dungar 1982, Bathe and Gracewskl 

1981, Geschwlndner 1981, l.ukkunaprasrt et al. 1980, Shah et al. 1979, Clough and Wilson 1979, 

Hofmeister 1978, MOrris 1977, Stricklln and Haisler 1977, Molnar et al. 1976). In the TSM, the 
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change of basis is performed at each time-step using vector shapes and frequencies 

corres~ondJng to the Instantaneous system matnces. In the PFM, a single set of vectors, based 

on hnear system matrices, IS used throughout the analysis. The linear system matnces are 

employ~d dunng the complete response calculatlon. and the nonlineanties are taken as pseudo-

forces on the nght hand side of the equatlons of motion. The PFM avolds the solution of the 

tangent eigenproblem at each time-step dunng nonlinear behavlour, and has been found to be 

competitive regarding computational effort with direct Integration operators in geometric 

coordinates in numbers of simple nonlinear structural dynamlc problems. 

The satisfactory seismic performance of structures designed to reduced elastic strength 

demand according ta modern building codes, has been mainly attributed to overstrength and 

dynamic response modification in the inelastic range, corresponding to changes in period of 

vibration, effective damping, and related energy dissipation mechanisms. The TSM provldes 

knowledge of the spectrum of frequencies for the dominating modes throughout the inelastic 

seismic response. This present several potential advantages such as: 

(i) A rationalizatlon of nonlinear behaviour in an elastic format ta evaluate period 

elongations, and Rayleigh damping matrices based on tangent modal properties. 

(ii) A better representation of the inf:'rtia forces in inelastic configuration using instantaneous 

mode shapes instead of the elastlc deformation modes used in the PFM. 

(iii) A mean ta d,evelop simplified seismlc design methodology based on modified elastic 

modal response as given in building codes (Un and Mahin 1985, Villaverde 1988). 

(iv) The definition of new damage indices based on the evolution of tangent modal 

properties during the earthquake (DiPasquale et al. 1990). 

(v) A direct control on the participation of higher modes that can be explicitly excluded of 

the solution instead of relying on numerical damping. 
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The objectives of this thesis are to develop proper solution strategies for nonlinear 

seismic analysis using generalized coordinates, and ta Investigate the effects of dlfferent 

mathematical representations of !Jlseous damping on nonhnear response parameters such as: 

energy, power, ductllity, and number of yield excursions. In the tlrst part of thls study, dltferent 

solution strategies ta solve nonlinear seismic problems are investigated wlth an empnasis on the 

effect of the retained strategy (PFM or TSM), modaltruncation, and basis vector selection. The 

second part focuses on energy loss mechanisms in nonlinear seismic analysis. The effect of 

diffuent modelling procedures for viscous damping on nonlinear response parameters IS 

assessed. 

1.2 REVIEW OF PAST WORK 

Previous investigations related to inelastic seismic analyses of MDOF structures uSlng 

vector superposition methods, have been almast exclusively based on the PFM. Lukkunapraslt 

(1980) analyzed a 30-story shear building subjected to an amphtled NS component of the 1940 

El Centro Eartt:quake. It was eoncluded that the PFM was able to predlct accurately the 

dis placement, an "absalute" response quantity, using only a few lower modes. The Internai 

forces, that are computed from relative interstory displacements, were more sensitive to the 

truncation of hlgher modes. In inelastic analyses with elasto-perfectly plastic mOdel, the 

maximum value of the story interna! forces is approximately limited to the story yield forces. In 

this case, the ductility, defined as the ratio of the maximum story relative dis placements to the 

static yield value, was found to be more sensitive ta modal truneatlon than the Internai forces. 

These conclusions were confirmed by Bathe and Gracewskl (1981) that performed the same 

type of analyses on a simllar building. Museolino (1989) added pseudo-statie correction to the 

PFM for the truncation of higher modes to study the elasto-plastlc displaeement response of 

simple 6 COF structures subJected to harmOnie loadlng. It was concluded that for structures 

subjected to low frequency content loading, the higher modes do not Influence the elastlc 
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( response very much. However. the corresponding elasto-plastic response is influenced by the 

modal truncatlOn, and the addition of a pseudo-statlc correction improved sigmficantly the 

nonlinear response evaluated by the usual mode dlsplacement method (MDM). Similar 

observations were made by Dungar (1982) that analyzed a 3 DOF el asto-plastic structure. Hanna 

(1989) combined the pseudo-force method with the mode-acceleration method to provlde a 

static correction for the truncation of the hlgher modes in seismic analysis of moment-resistlng 

frames. However, no systematic analyses to compare the quality of the modal solution with and 

wlthout statlc corrections were reported. Chang and Mohraz (1990) stlJdied the selsmic 

displacement and internai force responses of a 6-story, ngid, and 19-story, flexible, shear 

buildings consldenng classical and non-classlcal damplng. It was concluded that ail modes 

should be considered for the 6-story structure, and that depending on the accuracy deslred, 

fewer modes may be usad for the flexible structure. 

Gillies and Shepherd (1983) used the TSM to study the inelastic seismic response of a 

six-story planar moment-resisting frame subjected to the NS component of the 1940 El Centro 

Earthquake. Displacements and pe!'iod elongations were reported. No systematlc parametric 

evaluation of the effect of modal truncation was carried out. Idelsohn and Cardona (1985) 

studied the dynamic response of simple geometrically nonlinear structures subjected to 

harmonic loads by the TSM using truncated vector bases. In addition to the usual modal 

truncation error, a new source of error was identified each time a change of basis was 

performed. Incompatibility between the ability of the 0' ~ basis and the new basis to represent 

the initiai displacement, velocity and acceleration at the beglnning of a new time-step introduced 

a continuously growing lack of equilibrium that produced an unstable solution. The proposed 

remedy to this problem was to improve the vector basis by the use of load-dependent Ritz 

vectors (Wilson et al. 1982, Léger and Wilson 1987) and by the addition of modal denvatives to 

avoid the need of updating the basis thus using a strategy similar ta the PFM (Idelsohn and 
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Cardona 1985). 

Review of past work concerning seismic energy dissipatIOn and damplng models for 

nonlirear selsmlc response analysis IS presented ln chapter 6 of this thesis. 

1.3 SCOPE OF THE PRESENT STUDY 

This research project is carried out in two phases. The flrst phase assesses dlfferent 

solution strategies to solve nonlinear seismic problems using vector superposition methods. The 

emphasis is put on the effect of modal truncation on the quality of the solution. The algonthrns 

developed ln the first phase are then used to study the effect of dlfferent mathematlcal 

representations of viscous damplng on nonlinear response parameters. 

ln chapter 2. the general theory related to the solution of nontinear systems in geometnc 

coordinates is briefly ~resented. Two algorithms are then developed to extend the mode 

superposition method to nonlinear problems uSlng elther a tangent spectrum or a pseudo-force 

approach. A discussion about the selection of appropnate vector bases 15 also presented. A 

short description of the computer implementation of the two solution algorithms termlnates this 

chapter. 

Chapter 3 introduces various indicators to characterize the nonlinear solution carned out 

by a panicular strategy. Importance is given to indicators that reflect the cumulatIVe effects of 

nonlinear beha'liour such as hysteretic and damping energy dissipation. The structures analyzed 

and the eanhquake acceleration records used to conduct thls study are presented ln ch;:tpter 

4. They are both adjusted to meet the requirements of the National BUilding Code of Canada 

(NBC 1990). 
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Numerical results concerning the solution strategies and the truncatlon of vector basis 

in nonlinear selsmic analysis are given in chapter 5. Different proportional damplng models 

sUltable for earthquake response analysls are presented in chapter 6. A parametric study is 

performed to show the Influence of these damping models on nonlinear response indicators ln 

chapter 7. Finally, chapter 8 summarizes the work carried out and the main conclusions of this 

study. 
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CHAPTER 2 

SOLUTION STRATEGIES FOR NONLINEAR DYNAMIC 

ANALYSIS 

This chapter presents the strategies to solve the equation of motion of MDOF structures 

written as: 

[M]{ü} + [C]{u} + [K](uJ '" {F(t)J = {f(s)J'g(t) (2-1 ) 

where [M] is the mass matnx. [C] IS the damplng matnx. and [K) IS the stiffness matnx. The 

vector {u} represents nodal displacements. and the dots indlcate Its derivatives. The load vector. 

{F(t)}. can be expressed as the product ot a tixed spatial distributIOn. {f(s)}, and prescnbed time 

function. g(t). The vector superposition method used in IInear analysls IS extended to nonllnear 

analysis using either pseudo-force or tangent spectrum approach. 

2.1 SOURCES OF NONLINEARITIES 

ln a nonlinear problem. the matrices [M], [C], [K], and the vector {f(s)} of Eq. 2-1 can 

be a function of the displacements or ItS derivatives. The nonlinearities affecting those matnces 

and vector are tram various sources. In structural angineering. the most trequent type of 

nonlinearity generally affects the stlffness matnx ot the system. Figure 2.1 shows dlfferent 

sources of nonllneanty frequently observed in seismlc response analysls of MOOF structures 

the P-,!\ effects, the pounding with adjacent building, the uplift of one or more supports, and the 

nonlinear actlon-deformation of the resistlng elements. 
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ln this study, only matenal nonlineanties affectlng the stlffness matnx Will be conslderec1. 

The damping matnx may therefore become nonltnear If It IS taken as a comblnatlon of the 

tangent stlffness and mass matnces (Rayleigh damplng descnbed ln chapter 6). Figure 22 

shows a typlcal actlon-deformatloll of a blltr'ear hysterettc model of the structural element 

considered for numencal applications of the proposed solution strategies. 

R 
__ - -:raKo 

,..-

6U 

Figure 2.2. Action-deformation model of structural elements. 

2.2 EQUATION OF DYNAMIC EQUILIBRIUM 

The equation of dynamic equilibrium for s~ismic response analysis of a bilinear system 

in geometric coordinates is: 

[M]{ü} + [C],{ü} + (R(t)} = -[M){r}ü,,(t) = {F(t)l (2-2) 

where [M] is the mass matnx, [Cl, is the tangent damping matrix, {R(t)} i5 the nonhnear restonng 

force vector, {r} 15 the influence vector from unit base displacement, and ug(t) 15 the speclfied 

ground acceleratlon. The restoring force vector, {R(t)} , can be wnnen ln terms of the tangent 

stiffness matrix. [K]t. as: 
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(R(t)} = [K),(u} = ([K],+ [K]n){u} (2-3) 

where [Kl, IS the linear stlffness correspondlng to the reference state of the structure, and [K]n 

is the stlffness component dependent on displacements. In nonlinear selsmic analysis, VISCOUS 

dampmg is generally modelled by a Rayleigh-type representatlon given as (Gilhes and Shepherd 

1983, Kanaan and Powell 1973): 

[Cl, '" sIM) + b[Kl, + bo[K), :: (s(M) + (b + bo)[K),) + b(K)n .. [Cl, + [C)n (2-4) 

Substituting Eqs 2-3 and 2-4 in Eq. 2-2 and th en transfernng ail the nonlinear terms to the right 

hand side of the equation, we obtaln the pseudo-force formulation of the equation of eqUlhbrium: 

[M)(ü} + [CI,fu} + (KI,fu) = (F(t)) - (K]nfu) - [Cln{u} (2-5) 

This formulation is aise used to treat problems wlth nonproportional damping, where [Cl" then 

represents the nonproportional portion of the damping matrix and [K]n is taken as zero (Claret 

and Venâncio-Filho 1991; Udwadia and Esfandian i990; Ibrahimbegovic and Wilson 1989). 

Il is also possible in Eq. 2-2 to treat directly the nonlinearities of the system ln the left 

hand side of the equation. This method is known as Newton-Raphson or tangent method. This 

procedure provldes a fast rate of convergence since the tangent properties of the system are 

frequently updated to reflect the evolution of nonlinear behaviour. The method has the drawback 

that a reformulation of the system matrices IS needed at each update. Therefore, the gain made 

with a fast convergence can be lost if frequem reformulations are required. Equation 2-5 takes 

ail the nonlinear terms to \ne right hand side of the equation. This method is called the Modified 

Newton-Raphson or Pseudo-Force Method (PFM). It generally converges more slowly th an the 

tangent method but does not reqUire any reformulation of the system matnces. Figure 2.3 shows 

schematically the type of convergence achieved by both methods. 

10 
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a) 

TANGENT METHOD 

FAST CONVERGENCE 

Eq. 2-2 

b) 

PSEUDO-FORCE METHOD 

SLOW CONVERGENCE 

Eq. 2-5 

Figure 2.3. Rate of convergence of tangent and pseudo-force methods. 

As shown in Figure 2.3, Eqs 2-2 and 2-5 have to be solved iteratlvely slnce the nonllnear 

portion of the matrices, [K]n and ie]n' are not known a priori. Step-by-step Integration of the 

equations in their incremental forms is generally used in the solution. It is recognlzed that ln 

geometric coordinates, Eq. 2-2 requires much less Îteration than Eq. 2-5, but needs a 

reformulation of the matrices at each iteration (Bathe and Cimenta 1980). The computer program 

DRAIN-2D (Kanaan and Powell 1973) uses a technique that does not Involve Iteration. It salves 

the equation of equi1lbrium using Eq. 2-2 and by applying the unbalanced load vector ta the next 

time-step. The unbalanced load vector is sim ply a force vector representlng the lack of 

equllibrium at each DOF. Therefore, the equilibrium is not achleved at every tlme-step and thls 

procedure requires a small time-step ta ensure a good quality of the solution. 
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2.3 VECTOR SUPERPOSITION IN NONLINEAR DYNAMIC ANAL YSIS 

2.3.1 Pseudo-Force Method (PFM). 

The vector of nodal dlsplacements, {u}, can be approximated by a linear comblnation 

of a set of hnearly Independent tree-vlbration elastlc eigenvectors or [M]-orthonormal, [K]j" 

orthogonal, load dependent transformation vectors, [X], as: 

{u} • [X]{Y} (2-6) 

where {Y} IS the generalized coordinates obtamed by solving a system of equatlon wntten as: 

[M]"{Y(t)} + (C]"{y(t)} + [K]"(Y(t)} = (F(t)}" - (F(t)}~ 

where {F(t)}n' IS defined as: 

and: 

[M]· = [X]T[M][X] = [/] 
[Cl· = [X]T[C],[X] = [2·~ 'w] 
[K)" .. [Xt[KMX] = [w 2 ] 

{F( tH" = [Xf{F(t)} 

(2-7) 

(2-8) 

(2-9) 

ln this study, the solution of Eq. 2-7 is carried out iteratively, as shown in Table 2.1, using 

Newmark-Beta average acceleratlon method. The nonlinear term, {F(t)}n' is evaluated by 

computing the geometric displacements and velocities only at the DOF where nonlinear 

behaviour or added damping occur. In a large structurai system wlth localized nonlineanties 

described by few DOF, thls strategy will result in substantial computational saving as compared 

to the direct Integration of the original equation of dynamic equilibrium. Moreover, the time-step 

required by vector superposition will generally be greater than that required by the step-by-step 

method of the onginal system of equations. 

12 
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Table 2.1. Pseudo-Force Method (PFM). 

A-INITIAL CALCULATIONS: 

1- Compute transformation [K]/[X) = [w2 )[M)[X) for eigenvectors 
vectors: Table 2.3 for LD veclors 

2- Compute damping coefficients [Cl iM] b. iK] [Cl ,=s + 0' : n 
a and bo and form damping 
matrices [C]I' [C]n: 

3- Reduce the system of 
equation: 

4- Form effective stiffness: 

B- FOR EACH TIME-STEP: 

1- Form effective load "ector: 

initialize i=1, {6Uo}={O} 

2- Reduce load vector: 

[K]; = [X]T[K],[X] [Cl; = [X)T[C],[X) 
(M]" = [X]T[MJ[X] = [/] 

[K]O = [K]; + ...i..(M]· + .1.[C); 
At2 4t 

{~( I)} = (AF( t)} + [M](: t(Li( t)) + 2(ü( t)}) + 2 [CId ù( t)} 

where (AF(t)) = {F(t+d tH - {F(t)} 

{~(IW = [X]T{,t(t)} 

3- Solve for incremental [K)" {A Y,} = (I='(t))" 
displacements: {dU,} = [X]{d Y,} 

4- Aceumulate incremental {dU,(t)} = (4U,.,(t)} + (dU,) 
displaeements: 

5- Compute incremental 
"eloeities and aceelerations: 

6- Update motion: 

7- State determination: 

8- Equilibrium check: 

9- Proeeed to next time-step. 

(dÜ(t)) ;: ~{dUI(t» - 2{ü(t)l 
4t 

(dÜ(t)} '" ~(AU,(t)} - ~(ù(t)} - 2{ü(t)) 
At2 At 

{U(t+dt)J = (u(l)} + (Au/(t)} 
(Ü(t+At)} = (ü(t)} + {Aü(t)J 
{Ü(t+At)l = (ü(t)} + (dÜ(t») 

R(t+AI) = ([K], + (K]n){u(t+ L\I)I 

(RES) = {F(11-4t)} - (R(t+4t») 
- ((C], + [Cln ){ù(t+4t)J - [M]{ü(t+l1t)} 

IF I{RES)12 > TOL l=i+1 GOTO 2 with {F(t)} = (RES) 
~ TOL CONTINUE 
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2.3.2 Tangent Spectrum Method (TSM). 

ln the Tangent Spectrum Method, the transformation vectors are updated at each tlme­

step when nonllnear behavlour IS detected ln the solution. The equllibrium equatlon ln 

generahzed coordanates uSlng [M)-orthonormal tangent vectors, [XII' can be wntten as: 

[X);[M][XJ,( Y(t)} + [X);[C),[X),( Y( t)} + (X);(K],(X),( Y( tH = [X);{F( t» 

(Y(t)} + [C];(Y(t)} + [K];(Y(t)} = (F(t))" 

(2-10) 

The tanger.t solution strategy developed in th,s study is summarized ln Table 2.2. EqUlhbrium 

Iterations can be optlOnally pertormed in the system of equatlon expressed ln generalized 

coordinates. The eqUllibnum unbalance can be compensated by computing the acceleratlon 

vector from the condition ot dynamic equilibnum expressed in geometric coordinates as 

descnbed in step 8-10 in Table 2.2. This strategy provides a stable tangent solution, however 

the acceleratlon and veloclty may tnen differ sigmticantly trom the exact solution usmg a 

complete vector basls. From prellminary analyses, it has been tound that a single update by 

time-step can result ln a good approximation ot tha exact respo.1se. It has also been observed 

that the TSM IS much more accurate when the update is pertormed at the second Iteration as 

compared to a strategy that performs an update at the tirst iteration when nonhnear behavlour 

has been detected. 

2.4 SELECTION OF VECTOR BASIS 

The elastic. [X], or tangent, [X],. transformation vectors can be computed trom the 

n x n undamped tree-vibration eigenproblems: 

[K)/[X] .. [w 2 ][M][X] or [K],[X], .. [w 2 ]t[M)[X], (2-11 ) 

When Hie vector basis, taken as eigenvectors, is truncated to r vectors ( with r < < n ), it has 
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been shown that a better response IS obtalr '~d for the PFM If a statlc COI rection IS consldered 

to compensate for the flexlblhty of the hlgher modes Ignored ln the superposItIOn (Hanna 1989, 

Museolino 1989). This statle corr~ctlOn can be taken Into account as (Léger and Wilson 1988) 

or 

(u(t)} : L~., [X,} Y,(t) + ([Kl-' - [Xr)[<.)~rl[XrIT){F(t)} 

(u(t)} .. L~.l {X,J Y,(t) + [Kt1 
( (F(t)) - L~.l ({X,ffF(t)}) [M]{X,J ) 

(2-12) 

(2-13) 

where {XI} 15 the eigenveetor correspondlng to the Ith frequency. In Eqs 2-12 and 2-13, the 'Irst 

term corresponds to the modal superposition of generalized coordlnates {Y,}, wlth 1 ranglng trom 

1 to r. The second term is a full static solution from whlch the contnbutlon of modes 1 to r IS 

removed. Léger and Wilson (1988) have demonstrated that uSlng elther Eq 2-12 or 2-13 ta take 

into account a statlc correction ln mode superposition IS equlvalent. 

Alternéltively, load dependent transformatIOn veetors generated by an Inverse Iteration 

type of scheme from the fixed spatial dlstnbutlOn of the selsmlc load can be used for [X) or [XII 

The algorithm to generate the load dependent vectors IS shown ln Table 2 3 (Léger and Wilson 

1987). These vectors will Include dlrectly ln the basls the statlc correction for the truncatlon of 

higher modes ln superposition, and can be generated at a fraction of the computatlOnal cast 

required to obtain exact elgenvectors. For linear earthquake response analyses based on vector 

superposition methods, an effective mass corresponding to the part of the total mass respondlng 

to the earthquake in each vectof, is commonly used as an Indlcator of the relative contributIOn 

of a particular vector to the global structural response. The cumulative effective ·modal· mass, 

for a truncated set of r [Ml-orthonormal I3lgen or load-dependent veetors IS: 

8 = B.l p~ . 100% 
r {r}T(M]{r} 

(2-14) 

where: 

(2-15) 

The value of er can be monitored directly during the vector computation process. An approprlate 
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value, corresponding to 90% to 95% of the total mass, can be used to define a cutoff criterion 

in order to stop generating new vectors when a good representation of the spatial distribution 

of the earthquake load has been achieved. 

Table 2.2. Tangent Spectrum Method (TSM). 

A-INITIAL CALCULATIONS: 

Perform operations described in block C-TANGENT PROPERTIES. 

B- FOR EACH T1ME-STEP: 

1- Form effective load vector: (1(t)) -(AF(t)} + [Ml(:t{li(t)} +2{U(t)}) + 2 [Cl,{u(t)} 

Initialize i= 1, {6Uo}=0 
where (AF(t)} = (F(t+A t)} - (F(t)} 

2-lf i=2 and a change of basis is required, perform block C- TANGENT PROPERTIES 

3- Reduce load vector: 

4- Solve for incremental 
displacoments: 

5- Accumulate Incrementai 
displacements: 

6- Compute Incrementai 
velocitias and accelerations: 

7- Update motion: 

8- State determlnatlon: 

{'(tW - [X)i{f!t)} 

[K');{A Y,} = (1(t)}­
{AU,} = [XJt{A Y,} 

(AU,( t)} III {AU,_1 (t)} + (AUJ 

(AIi(t)} .. .!.{AU,(t)} - 2{Ii(t» 
AI 

(AO(t)} '" ,}.~ (Au,(I)} - :t{Ü(t)} - 2{O(t)} 

(U(t+At)} = (u(t)} + (AU/(t)} 
(Ü(t+At)} • (ü(t)} + (AÜ(t)} 
(O(t+At)} a {OCt)} + (AO(t)} 

R(t+At) a [K],{U(t+At)) 

If 1=1 and a member changes state, an update of the basis is required. 

9- Equilibrium check: 

10- reestablish equilibrium: 

11- Proceed to next tlme-step. 

(RES) = (F(t+At)} - (R(t+At)} 
- [CJt{Ü(t+At)} - [M]{ü(t+At)} 

IF IfRESJI2 > TOL l-i+1 GOTO 2 wlth (F(t)} = {RES} 
~ TOL CONTINUE 

(O(t+At)} = [MJ-1 ({F(t+At)} -(R(t+At)} -[C),{Ü(t+At)}) 
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Table 2.2. Tangent Spectrum Method (continued). 

C-TANGENT PROPERTIES: 

1- Compute tangent vector 
shapes: 

(Kl,(Xl, = (û) 2It(M)[Xlt for elgenvectors 
Table 2.3 for LD vectors 

2- Compute damping matnx: 
(if required) 

(C), = si(M) + b,{K), + bo{K), 

3- Reduce the system of 
equation: 

[K]; = (X];[K],[X], [CI; :: [X];(C],[X], 

(M)· = (X);(M)[X), = [/) 

4- Form effective stiffness: [K]; .. (K]; + ~[M]· + ~[C]; 
At2 tH 

Table 2.3. Load dependent vectors (LO). 

1- Oynamic equilibrium equation: 

2- Triangulanze stiffness matrix: 

3- Solve for initiai static deflected shape. {Ua}: 

4- Solve for Ritz vectors i=1 ..... r-1: 

[M] -orthogonalization 
(skip for i= 1) 

(M1-normalization 
update static vector 

5- Add statie residua'.{U,.,}. as statie correction 
vector. {X,}: 

6- Orthogonalize vectors with respect to stiffness 
ma~rix: 

solve r x r eigenvalue problem 

calculate orthogonal Ritz vectors 
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[M){ü} + [CJ{ù} + [K]{u} = (f( s)} g( t) 

[K] = [L)T[D)[L) 

[K]{Uo} :: {!(sn 

(K]{,\J} ::: (MI( U,_,) 
CI .. (;\f} T [M] (x,} 

{Xi} ::: {XI} - r::~ C((XJ} 
v = ({X,}T [M] (x,})1/2 

{,\J} = {X,} '1/v 
Cul = {U,_l }T [M] {XI} 

fU,} ::: {U,_l1 - cuI'{X,} 

br • ({Ur_,}T [M) {U,_,})1I2 
{X,} :: (Ur_,}'1/br 

[K,] :: [X,}T [K] [X,} 

([K,]- [(.)~) (1) ) [Zr) .. (0) 

[~] = [X,] [Z,] 
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2.5 COMPUTER IMPLEMENTATION OF NONUNEAR SOLUTION ALGORITHMS 

A FORTRAN computer program has been developed to integrate the solution algorithms 

presented in Tables 2.1, 2.2 and 2.3. The program IS also capable of carrying the solution in 

geometric coordinates if the transformation to a reduced system of equations is ignored. Many 

computational vanants are possible depending If the coordinate transformation decouples the 

reduced system or not. This is a function of the type of damping model retained, and also of the 

(K]-orthogonality of the [M]-orthonormal vector basis that is not a mandatory requirement for the 

validity of the proposed solution strategies. The program has been developed using the 

Newmark-Beta method to solve either coupled or uncoupled reduced systems, and maintain a 

high degree of compatibility between the PFM, TSM, and the solution in geometric coordlnates. 

Extensive post-processing options have been provided to tabulate and interpret the various 

nonllnear response indicators considered in the study. 
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CHAPTER 3 

INDICATORS TO CHARACTERIZE NONLINEAR BEHAVIOUR 

This chapter presents the indicators used to monitor the structural response obtalned 

from various algorithms to solve nonlinear selsmic problems. These indicators can be classlfled 

into two categories. The first category relates to the time-histories of response parameters such 

as dis placements, internai forces, ductility, and penods of vibration. The intenslties of the tlme­

history responses are characterized by the maximum values of these parameters over the 

duration of the event. The second category relates to cumulative effects such as hysteretlc 

energy dissipation, and total number of yield excursions. Both categories are required to quantlfy 

the level oi anticipated seismic damage, and are used extenslvely in earthquake resistant deSign 

and analysis of structural sys~ems. 

3.1 EVOLUTION OF TANGENT MODAL PROPERTIES 

One advantage of using tangent modes superposition in nonlinear dynamic analysls IS 

the ability to follow the evolution of the modal properties. This provides a ratlOnalizatlon of the 

nonlinear behaviour of the seismic response in an elastic format. Moreover, it permlts a better 

control on some parameters of the nonlinear solution such as the numbar of modes that should 

be retained in the superposition. 

The evolution and maximum values of the periods of vibration in a seismlc analysls can 

give a good indication of the severity of the nonlinear response of a structure dunng an 

earthquake. Furthermore. for elasto-plastic type of resisting elements, the periods of the structure 

will increase as the structure becomes nonlinear. Therefore It will generally attract less selsmlc 
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load. One can th us rationalize the importance of dynamic modification of the structural properties 

on the reductiun of selsmic load. Dipasquale (1989) proposed the following damage index based 

on the maximum fundamental period, Tl mu' reached by the nonlinear solution: 

(3-1) 

where cS represents a global damage Index that reflects the importance of the softening effect 

produced by plastic deformations. 

3.2 DISPLACEMENT DUCTllIlY 

The displacement ductllity demand of a member with hysteretic behaviour IS used as an 

indicator of the severity of the nonlinear response. Many modern codes uses the ductility 

concept in reducing the sei smic design force to account for the abllity of the structures to 

deform inelastically. The displacement ductility is defined as the ratio of the member relative 

displacement du ring a yield excursion normalized by the yield static displacement, t.Uy, as 

shown in Figure 2.2. Only the maximum absolute value of the ductility demand of each member 

will be retained in the nonlinear analyses. 

3.3 ENERGY INDICATORS 

Energy balance considerations are used extensively to characterize the behaviour of a 

structure that experiences nonlinearities during an earthquake (Uang and Bertero 1990; Conte 

et al. 1990; Hadidi-Tamjed 1988). The energy reflects the interaction of the displacements and 

related forces since it is the product of those two parameters. 

3.3.1 Energy balance 

The energy calculations are performed using the "absolute" energy equation, (Uang and 

Bertero 1990). The dynamic equation of equilibrium in its absolute form is writen as: 
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[M){ü,l + [C){û} + {R( tH = 0 (3-2) 

where [M] is the mass matrix, [Cl is the damplng matnx, {R(t)} IS the vector of nonhnear 

restoring force, and l1t is the absolute structural displacement given by the sum of the relative 

displacement, u, and the ground displacement ug• Integrating Eq. 3-2 wlth respect ta the 

displacement, we get the following energy balance expression: 

(3-3) 

replacing {u} by ( {l1t} - {ug} ) in the tirst term of Eq. 3-3: 

1 ([M]{Ü,})T{du} = 1 ([M){ü,}) T({du,}-{du,J) = 1 «(M) ! (it,}) T{du,} - 1 ([MJ{ü,}) T{du,l 

'" (û,)TI:Jlü,) _ f ([M){ü,1) T(dU
g

} (3-4) 

substituting the resuit of Eq. 3-4 in Eq. 3-3: 

ln Eq. 3-5, the kinetic energy is: 

(3-6) 

using {du} = {u}dt, the damping energy becomes: 

(3-7) 

and the input energy becomes: 

(3-S) 
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It should be noted that uSlng the absolute energy equation yields expressions for the Input 

energy. Et. and kinetic energy. EK• that include the effects of rigid body translation of the 

structure. Finally the reslstlng force. RI(t) of each element i is composed of recoverable strain 

energy. ESI' and dlssipated or Irrecoverable hysteretlc energy. EH" Refering to Figure 2.2. the-

straln energy. Es for the total number of elements. nel. is: 

(3-9) 

and EH is computed as follows: 

where ~ is the current stiffness of element i. Finally Eq. 3-3 yields to: 

(3-11) 

with ail terms described in Eqs 3-6 to 3-10. It should be noted. regarding Eqs 3-6 to 3-10. that 

the kinetic energy and recoverable strain energy are instantaneous quantities. whlle input 

energy, the damping energy, and the hysteretic energy are cumulative quantities. 

Since ail energy terms are computed individually, the error in energy balance can be 

used as a global indicator of the equilibrium acheived by a solution strategy. The normalized 

error in energy balance, EEB(t), ean be defined as: 

EEB(t) .. 1 EtC 1) - E~I) -ED(I) -EH(I) -Es(t) 1 

1 Et(t) 1 
(3-12) 

The value of EEB(t) should be very small ta ensure the reliability of seismic response indicators 

produced by a specifie strategy. 

22 



. 

3.3.2 Energy dissipation 

The ratio of hysteretic energy ta the amount of input energy, EHJ'E" is cornputed for eacl1 

analysis at the end of the earthquake record. For inelastlc systems, the values of the klnetlc and 

strain energles are generally sm ail as compared ta the damplng and hysteretlc en erg les at ttm 

end of the earthquake. The total Input energy at the end of the ground motion, E" IS therefore 

approximately equal ta the total disslpated energy. TDE, given by the sum of EH and Eo. Thus, 

the ratio EJE, can be also interpreted as the ratio EflDE Indlcating the relative Importance of 

the hysteresls response mechanism on the total energy disslpated. 

3.3.3 Rate of energy dissipation, power 

Various indicators related ta the rate of energy (power) responses are also computed. 

These quantities indicate how fast the energy is impartEld and dissipated by the structure. It has 

been postulated by Conte et al. (1990) that a low and umform, or a highly variable, splky, rate 

of hysteretlc energy dissipation must respectlvely correspond ta dlfferent levels and types of 

damage. Much research works remain to be done ln this area, It is therefore Important at thls 

stage to study the influence of the mathematical model adopted for the VISCOUS damplng on the 

power response. The power indicators are ada:;Jted from Conte et al. (1990). They are deflned 

as the maximum positive rate of normalized earthquake input energy, PI' the maximum rate of 

normalized hysteretic energy dissipated, PH' and the maximum rate of normahzed viscous 

damping energy 1 PD' given as: 

(3-13) 

(3-14) 

(3-15) 
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where {Ay} IS the vector of yield force of the members equal ta the selsmic lateral design forces 

of the multistory buildings for a force reduction factor R= 1, and {t.Uy} is the corresponding yield 

displacements as shawn in Figure 2.2. 

3.4 YIELDING SEQUENCE 

The yielding sequence plays a very important raIe in evaluating the potential damage 

of a structure due ta cumulative effects such as low cycle fatigue. The number of tlmes that a 

member ylelds combined wlth the duc!ility demand provide indications about the type of damage 

that can occur. A large number of yield excursions combined with low ductility demand is hkely 

ta produce fatigue type of damage. On the other hand, few yield excursions wlth a hlgh ductility 

demand will produce damage by lost of capacity. In this study, the number of yield excursions 

and the ductllity demand are analysed as separate parameters. Sorne relatively complex 

indicators have been developed ta link these two parameters (Hadidi-Tamjed 1988). 
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CHAPTER 4 

SYSTEMS ANAL YSED 

This chapter presents the MDOF structural systems developed ta perform numencal 

applications. The structures are designed according ta National Building Code of Canada 1990 

(NBC 1990). The seismic loads consist of three weil known earthquake acceleration records that 

have been grouped around the NBC 1990 elastic design spectra by a proper scaling method. 

4.1 STRUCTURAL MODELS 

The multistory buildings are represented by typical MOOF "shear beam" structures as 

shawn in Figure 2.1. In this model, the number of DOF corresponds to the number of stones. 

Seven buildings wlth 1, 3, 5, 10, 15, 20 and 25 DOF are considered tor numerical applications 

4.1.1 Element actlon-deformatlon model 

The type of structural element action-deformation model used in the analyses is a 

bilinear hysteretic model as shown in Figure 2.2. Since only materlal nonlinearitles are 

considered, the bilinear hysteretic model simulates the interstory resisting force of the members. 

This type of element has the ability to store strain energy and ta dissipate energy trough 

hysteretic behaviour. The hysteretlc energy dissipated by this type of element IS computed tram 

Eq. 3-10 and is represented schematically by the area enclosed by the salid curve on Figure 2.2. 

4.1.2 Oe.lgn procedure 

Seismic provisions of the National Building Code of Canada (NBC 1990) are used to 

design the structures. In NBC, the total minimum lateral seismic force, that is used wlth a load 
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factor equal ta 1, is glVen by V = 01e 1 R) U where Ve is the equlvalent lateral force at the base 

of the structure representlng the elastic response. The base shear is dlstnbuted over the height 

of the structure by an inverted triangular distnbutlon plus an addition al force at the top as shawn 

ln Figure 4.1. The parameter R IS the force modification factor ta account for nonlinear ductile 

behaviour, and U IS a calibration factor representlng the desired level of protection based on 

expenence. The value of R ranges from 1, for non-ductile structural systems expected ta remain 

elastic under the design earthquake ground motion, ta 4 for ductile moment resisting frames with 

good seismlc detailing. For SDOF structures, the value of R IS directly related ta the 

displacement ductility demand of the systems. The total force reduction tram the elastic level can 

be interpreted as the product of a global ductllity t 3ctor equal ta R, and an overstrength factor 

equal ta 1/U. 

Figure 4.1. 
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NBC pseudo-statie earthquake loading distribution. 

The structures are assumed to be located in Victoria, B.e. considering a peak ground 

velocity (PGV) of 0.26 mIs and a peak ground acceleration (PGA) of 0.26 g. The structures 

analyzed are designed for an actual base shear equal to V/U to consider the effect of 

overstrength on the nonlinear response (Uang 1991). A nondimensional parameter, 11, can be 

used ta eharacterize the strength of ec:ch ~1ructure. The parameter 11 is expressed as the ratio 

of the design base shear at yield, V/U, to the maximum effective force applied during the 

earthquake: 
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(4-1) 

where M is the total mass of the system and Ogmax is the PGA expressed in consistent unlts wlth 

the mass. 

The design procedure can be summarized as follows: 

1. Assume a unlform ·unit· mass of 100 kN-sec2{m at each f1oor. 

2. Compute the total minimum lateral seismic force at the base of the structure 

considering overstrength V/U. The fundamental period of vibration is assumed equal 

ta 0.1 N as speclfied by the code. 

3. Compute the lateral distribution of the selsmic load V/U over the helght of the 

structure according to NBC. 

4. Take the yield forces equal to the story shears. 

5. Assume a linear variation of the stlffness over the helght of the structure. 

6. Adjust the top and bottom stiffness to give almost equal Inter-story drifts al the top 

and bottom of the building when loaded by the NBC pseudo-statlc Joad (Figure 4.1) 

7. Scale ail stiffness coefficients ta oblain a fundamental period of vibration equaJ to 

0.1 N where N is the number of stones. 

8. The properties of the strongest member are taken for grouped members. For 

structures with a large number of staries, keep the properties unchanged for two or 

three staries. 

9. Verity that the interstory drift limitation specified by the code is met. 

4.1.3 Structural propertl •• 

The procedure outlined in the previous section is applied ta the 1, 3, S, 10, 15, 20 and 

25 DOF structures ta define the properties of the members. Table 4.1 lists the imtial stlffness and 

the yield force of each member or group of members for ail structures. The yleld forces ln thls 

table correspond ta a force modification factor, R=4. Those values should be multlphed by 4 to 

obtain f\ for R=1, by 2 ta obtain F\ for R=2, and sa on. Since the method used ta scal~ the 

earthquakes does not give unlform PGA for the three earthquakes, the strength parameter, Tl, 

is varying from an earthquake to another. The values of 17 are listed in Table 4.2. 
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Table 4.1. Properties of structures analyzed. 

No of level l Ko f\2 No. of Levell Ko Ry2 
stories (kN/m) (kN) storles (kN/m) (kN) 

395000 191 20 1·2 231000 1352 

3-4 211750 1336 

3 274000 540 5·6 192500 1293 

2 205000 450 7·8 173250 1236 

3 137000 270 9-10 154000 1153 

11·12 134750 1048 

5 245700 676 13-14 115500 920 

2 210600 631 15·16 96250 771 

3 175500 541 17-18 77000 599 

4 140400 406 19-20 57750 405 

5 105300 225 

10 1·2 248000 957 25 232000 1513 

3-4 201500 908 2·4 220400 1509 

5-6 155000 795 5-7 197200 1474 

7-8 108500 617 8-10 174000 1405 

9-10 62000 374 11-13 150800 1301 

14·16 127600 11133 

15 252000 1172 17·19 104400 991 

2-3 224000 1163 20·22 81200 783 

4-5 196000 1119 23-25 58000 541 

6-7 168000 1041 

8-9 140000 927 

10-11 112000 779 

12·13 84000 595 

14-15 56000 377 

1 Each level has a mass of 100 kN·sec2/m. 
2 f\ i. given for R=4. 21\ corresponds to R=2. 

Table 4.2. Strength parameter, 1], of structures analyzed for R=4. 

Number of Earthquakes 
stories 

El Centro Parkfield Taft 

'7 '1 '7 

0.59 0.72 0.51 

3 0.55 0.68 0.48 

5 0.42 0.51 0.36 

10 0.29 0.36 0.25 

15 0.24 0.30 0.21 

20 0.21 0.26 0.18 
, 

25 0.19 0.23 0.16 J , 
1 
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4.2 EARTHQUAKE LOADING 

Three eal1hquakes have been selected ta perform the numencal analyses. Since the 

structures are designed according ta the NBC 1990, the earthquake records are scaled su ch 

that they fit as weil as possible the elastic response spectra of the NBC 1990. 

4.2.1 Selected earthquakes 

The selected earthquake accelerograms represent dlfferent types of seismlc loadlng. The 

SOOE component of the 1940 El Centra earthquake contains a broad range of frequency The 

N65E component of the 1966 Parkfield earthquake is representatlve of a single pulse loadlng. 

Finally the S69E component of the 1952 Taft earthquake contalns hlgh rrequency loadlng and 

strong shaklng is of long duration. The first 20 seconds of ail records are considered. The three 

unscaled earthquakes are shawn in Figure 4.2. 

4.2.2 ScaJlng method 

The scaling method proposed by Schlff (1988) is used ta group the elastlc spectra of 

the earthquakes around the NBC elastlc design spectra corresponding to a zonal velocity ta 

acceleration ratio equal to unrty and a PGV=0.26 mis. The three earthquakes are hrst scaled 

such that they have the same spectral intenslty, Sly , in the velocity range. The spectral intenslty 

is defined as the area under the cUlVe of the elastic spectra normalized by the speclfied 

freqUf~ncy range: 

SI.. 1 fTa3.0 PS (n.dT 
v 3.0 -0.5 r-O.5 Il 

(4-2) 

where PSy is the pseudo velocity for 5% damping, and T is the period ln seconds. This glves a 

first scaling factor. FI' for each accelerogram that tends ta group the records together ln the 

medium and long period range. The three accelerograms are th en scaled by a unique scallng 

factor, F 2 ta position them around the NBC elastlc spectra. The scaling factor, F 2' IS cornputed 
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by dividing the spectral intensity in the acceleration range, SI., of NBC by the average of SI. for 

the three accelerograms already scaled by F,. SI. is glven by: 

SI = 1 fT.O.5 PS (T) ·dT 
• 0.5 -0.25 T-O.25 • 

where PS. is the pseudo absolute spectral acceleratlon for 5% damping. 

Figure 4.2. 
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Table 4.3 gives the intensities and the scaling factors for ail accelerograms. The last 

column of Table 4.3 gives the PGA of the scaled records. Figure 4.3 shows the spectra for the 
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three scaled accelerograms compared with the NBC spectra. Figure 4.3d shows the average 

and the envelope of the three scaled records compared with the NBC design spectra. It is 

observed that a very good agreement between the earthquake response spectra and the NBC 

design spectra is obtained from this scaling method even If there is sorne variatIOns in the short 

penod range cr < 0.5 sec). 
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Figure 4.3 • Sca/ed Earthquake spectra 
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Table 4.3. Scaling factors for the earthquake records. 

Siv F1 SI. F2 PGA (g) 

El Centra 0.613 1.73 1.246 0.3316 

Parkfield 1.059 1.00 1.216 0.55 0.2691 

Taft 0.273 3.88 1.676 0.3829 

NBC 1990 0.764 

,{ 
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CHAPTER 5 

NONLINEAR SEISMIC RESPONSE USING VECTOR 

SUPERPOSITION 

The performances of the algonthms based on the Pseudo-Force Method (PFM) and 

Tangent Spectrum Method (TSM) that have been developed in chapter 2 are investigated in thls 

chapter. The main objective of this study IS ta assess the effects of the truncation of the vector 

basis on nonlinear response parameters described in chapter 3. The accuracy and the numerical 

stability of the algonthms are investigated. 

The 5-story and 25-story buildings subjected ta the scaled El Centra earthquake are 

used for the analyses. Ta maintain compatibility between the PFM and the TSM, the viscous 

damping is taken as Rayleigh type based on the initial elastic properties of the systems. The first 

mode and the mode at which 95% of effective modal mass is Included ln the solution are 

damped at 5% critical. The yield forces are those corresponding to a force reductlon factor, R, 

equal to 4. A strain hardening ratio, a, of 10% is considered for ail the members :n bath 

structures. 

5.1 TANGENT SEISMIC RESPONSE ANALYSIS 

The use of a tangent solution algorithm ta perform a nonlinear analysls in generaltzed 

coordinates provides several advantages su ch as those described in the introduction of this 

thE;Sis. The additional informations available tram the tangent modal properties allow ta develop 
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a better understanding of the nonlinear behaviour. 

5.1.1 E\""'ut'or. of tlngent modll propertlea 

Figure 5.1 shows the input accelerogram, and an example of the variation in the­

fundamental period of vibration, and the number of modes required to maintain 95% of effective 

modal mass in the solution using the TSM-MOM for the 25-story bUilding. The Instantaneous 

period of the first mode increases from 2.5 sec for elastic response to a maximum of 

approximately 6.8 sec when the system responded inelastically. For elastic response, modes 1 

to 5 should be included to maintain 95% of effective modal mass while for inelastic response thls 

range Increases to modes 1 to i O. 

5.1.2 Performlnce of tlngent solution 

Figure 5.2a IIlustrates the numerical stability of the TSM-MOM using ~t=O.01 sec with 

equilibrium iterations for the 25-story building. When a complete basis is used, the solution 

where {ü} is computed from the Integration operator is numerically stable. When a truncated set 

of vectors is used, instabllity soon appears after the tirst change of basis as shown by the top 

displacement response using 11 vectors. The addition of 6 vectors only delays the time at which 

the instability arises as shawn by the response considering 17 vectors. This instabllity is due to 

the inability ot the updated truncated vector basis to represent accurately the initial conditions 

computed tram the previous time-step considering a different basis. It is possible ta obtain a 

stable solution by computlng {ü} from the condition of equilibrium at the end of each time-step. 

However depending on the number of vactors considered, the accelerations, {li} and the 

velocities, {ü}, might significantly deviate trom the solution carried out with a complete basis. It 

should be noted that restoring equilibrium at the end ot each time-step also provides sorne form 

of correction for the lack of equilibrium introduced by the truncation of higher modes. 
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(a) El Centra accelerogram. 
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(c) Ductility demand for solution with equilibrium iterations. 
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Figures 5.2b and 5.2c show the effect of equilibrium iteratior'ls on the peak ductility 

demand considenng the TSM-MDM strategy wlth different time-steps. The solution wlthout 

iteration, as shown in Figure 5.2b, is sensitive ta the selected tlme-step speclally ln the bottom 

staries. When equilibrium Iterations are used, as shawn ln Figure 5.2c, the respanse 15 almast 

independent of the time-step. An accurate response is obtained uSlng M as large as a 02 sec 

correspanding ta the time interval used to descnbe the input earthquake acceleratlons. The TSM 

with equilibrium iterations is therefore very advantageous ta limlt the number of basis update 

during the solution as shawn in Table 5.1. 

Table 5.1. Effects of equilibrium iterations and time-step on the number of basls updates. 

Method Time-step Number of basis updates 

6t (sec) with iterations without iteration 

TSM-MDM 0.02 102 142 

0.01 140 255 
0.005 164 500 

0.002- 201 927 

TSM-LOM 0.02 99 152 

0.01 133 258 
0.005 164 500 
0.002 216 1033 

The use of the TSM-LDM eonsidering 17 'Jectors, required for energy convergence, 

deereases the CPU time by a factor of about two with respect to the TSM-MOM. The CPU time 

for the TSM-MDM is obiained by using the Lanczos method as the eigensolver. For a large 

structural system thls difference would be much more signlfieant, especlally if the more robust 

subspace iteration algorithm IS selected as the eigensolver. For thls smalt system, no slgnlfieant 

CPU time differences are abserved between the PFM-MOM and the PFM-LDM sinee the 'Iecter 

basis is computed anly once. The PFM solutions require approximately 15% and 30 % of the 

- TSM-MDM and TSM-LDM execution time, respective/y. 
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5.2 EFFECTS OF VECTOR BASIS TRUNCATION 

5.2.1 Convergence of nonllnear response Indlcators - 2S-story bu"dlng 

Figure 5.3a shows the time-history response of the top displacement using the TSM­

LDM. A very good agreement IS obtained for large-amplitude displacement oscillations 

considering only 5 vectors. For low-amplitude oscillations there is minor deviations from the 

"exact" response using 25 vectors that was found virtually identical with the solution in geometric 

coordlnates. Figure 5.3b shows the force response in level 20. The 5-vector solution misses ail 

the peak force responses. The 11-vector solution is almost identical with the "exact" force 

response. Further investigations have shown that for the systems analyzed, the ductility demand 

computed from truncated vector bases follows closely the convergence characteristics of the 

force response. Therefore, in subsequent comparative analyses, the emphasis IS put on the 

ductility demand and the energy response. 

Figure 5.4 describes the effect of the number of transformation vectors on the peak 

ductility demand for different solution strategies applied to the 25-story building. A time-step ~t 

= 0.01 sec and equilibrium iterations are used in ail analyses. The results shown in Figure 5.4a 

and 5.4b indicate that the peak ductility response is quite sensitive to vector basis truncation 

when the PFM is used. The solutions computed using eigenvectors, PFM-MDM, and load­

de pendant vectors, PFM-LDM, yield comparable global performances. The truncated PFM-MDM 

ductility response is more accu rate in the top stories while the PFM-LDM response is more 

accurate in the bottom stories. Figures 5.4c and 5.4d indicate that the peak ductility responses 

based on the TSM is much less sensitive to basis truncation than the solutions obtained trom 

the PFM. Excluding the solutions carried out with 5 vet.10rs, it is shawn that the MDM and the 

LDM yield almost identicaJ results. 
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Figure 5.5 shows the convergence of nonlinear response Indicators for different solution 

strategies. For the dUctllity, 11>, the total hysteretic energy, EH' and the damplng energy. ED• 

dissipated at the end of the earthquake, the results are glven ln terms of the relative error wlth 

respect ta the solution uSlng a complete basis. For th6 error ln :nergy balance, EEB, the 

maximum value of Eq. 4-12 multlplied by 100% is used. Figure 5.5a shows the convergence of 

the ductllity demand ln level 20 that is representatlve of the response ln the upper reglon of the 

building. For solutions using from 5 ta 17 vectors, the type of vectors considered does Ilot 

influence significantly the results. For the PFM-MOM, 17 eigenvectors produce an error of 1 % 

white 25 vectors are required to get the same accuracy by the PFM-LOM. For a story level 

representatlve of the bottom part of the structure, opposite results are observed as shown ln 

Figures 5.4a and 5.4b. 

Figure S.Sb indicates that EH is not sensitive ta modal truncatlon If the TSM 15 used. The 

EH error IS larger when the PFM is used Instead of the TSM although the values remaln below 

10% for any solution considenng more than S vectors. Figure S.5c shows the error ln energy 

disslpated by viscous damping. The behaviour of the PFM and TSM solutions are very different 

ln the case of the TSM, the computation of the acceleration vector fram eqUilibnum condition 

introduces a significant error in the acceleration and velocity when a relatlvely small number of 

vectors is used. A solution using 17 vectors provides an Eo error below 10% uSIng elther vector 

bases. When the PFM is used, the Eo error is not sensitive ta basis truncation slnce there IS no 

change of basis. Figure S.5d indicates that the EEB error follows the convergence pattern of the 

Eo error. A value sm'lller than 5% should be obtained ta ensure a reliable global performance 

of a particular solution strategy. However, this does not guarantee accurate results for local 

response indicators su ch as story ductllity demand. Contrary ta elastlc analyses, the cnte non 

of 95% effective modal mass to obtain a reliable global response IS found Inapphcable to elasto­

plastic systems. 
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Figure 5.5. Convergence of varia us nonlinear response indicators for different 
solution strategies - 25-story building. 

5.2.2 Convergence of nonllnear response Indlcators - 5-story building 

Figure 5.6 describes the effect of the number of transformation vectors on the peak 

ductility demand for different solution strategies applied to the 5-story building. The results 

indicate that the ductllity response is not very sensitive ta vector basis truncation when the PFM 

is used. It should be noted that this method misses ail the peaks in ductllity demand for the 25-

story building and that for this fairly rigid structure there is no sharp peak in story ductllity 

demand. The PFM-LDM produces accurate results considering only 2 vectors in the basls. 

Figures S.6c and S.6d show the very poor behaviour of the TSM for short-period structures. 
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Figure 5.7. Convergence of various nonlinear response indicators for different 
solution strategies - 5-story building. 

Figures 5.7a and 5.7c indicate that for stiff low-rise structures a nearly complete vector basis 

should be considered to obtain accu rate results using the TSM. Figures 5. ;Ob, 5.7c and 5.7d 

show similar trends to those observed for the 25-story building. 

5.3 CONCLUSIONS 

ln this chapter, the performance of the Pseudo-Force Method (PFM) and the Tangent 

Spectrum Method (TSM) have been investigated for inelastic seismic response analysis of MDOF 

structures. The mode displacement (MDM) and the load dependent method (LDM) have been 
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used in comparative analyses. A flexible 25-story, and a stiff 5-story bUildings wlth blilnear 

hysteretic behavlour have been considered. The emphasls has been put on the evaluation of 

ductility demand and energy indicators that are considered fOf selsmic damage evaluatlon. 

For the flexible 25-story building, the TSM can evaluate the peak ductllity demand wlthln 

10% of the 'exact' results using 11 vectors with either the MOM or the LOM. However, the 

incompatibility between old and updated truncated vector bases requires the computallon of the 

acceleration vactor from the equilibrium condition at the end of each time-step. This correction 

ensures numerical stability of the solution. but the velocity and acceleratlon can still be 

inaccurate. Seventeen vactors should then be considered to obtaln an error level below 10% 

on the damping energy and energy balance. The equilibrium iterations are found to be very 

important to provide a good convergence of the response wlth a large time-step thus mlnlmlzlng 

the number of basis updates. The LOM should be used since the computatlonal effort to 

generate transformation vectors is much less than that required to generate elgenvectors (MOM). 

The PFM is more stable, and requires much less computatlonal effort than the TSM. 

However, it can not provide any information on the evolution of tangent modal propertles in tlme. 

For a flexible structure, the ductility demand computed from the PFM IS found more sensitive to 

basis truncation than those computed trom the TSM. However, the opposite behavlour 15 

observed for the stiff, S-story structure, where the TSM is found very sensitive to basis truncatlon. 

ln this case, results within 10% of the 'exact' solution can be obtained trom the PFM wlth a basis 

of two load-depandent vectors. 

Although the PFM is much more computationally effective than the TSM, reeent 

advances in computer vectorization/parallelization of solution algoflthms make thls solution 

technique possible on larger systems than those considered ln this study. The TSM mlght 
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emerge as a valuable tool in earthquake engineering to further improve the understanding and 

ratlonalize ln a linear format complex nonlinear response mechamsms. 
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CHAPTER 6 

MATHEMATICAL MODELS FOR VISCOUS DAMPING 

This chapter describes different mathematical models of viscous damping suitable for 

nonlinear seismic response analysis. Eight damplng models are derived from Rayleigh type 

damping formulation. 

6.1 INFLUENCE OF VISCOUS DAMPING ON ENERGY ABSORPTION 

The seismie input energy imparted to a structure is equal ta the sum of the klnetlc 

energy, the strain energy, the energy dissipated by hysteretie action of the structural elements, 

and by other non-yielding mechanisms usually represented by equlvalent viscous damplng. It 

is generally postulated that a structure can survive major earthquakes if the structural energy 

absorption capacity is greater than the seismic input energy (Kuwamura and Galambos 1989, 

Housener and Jennings 1977). The seismic energy dissipation and related damage models of 

SOOF systems have been studied by many researchers (Conte et al. 1990, Fajtar and Fishlnger 

1990, Fajfar et al. 1989, McCabe and Hall 1989, Wu and Hanson 1989, Hadidi-Tamled 1988, 

Tembulkar and Nau 1987). Most seismie codes are using force modification factors, tllat reflect 

the capability of MOOF structure to dissipate energy through inelastie behavlour, to reduce the 

seismic forces obtained trom linear elastie deSign procedures. ThiS philosophy generally Imphes 

that signifieant structural and economic damages will be incurred. Zahrah and Hall (1984) have 

observed that damping hus Imle effects on the amount of energy Imparted ta a structure by an 

earthquake, and that damping significantly influences the amount of hysteretic energy available 

for damage. Various devices have been proposed to increase slgmficantly the effective damplng 

of building structures to limit or eliminate seismie structural damages (Pail and Marsh 1982). 
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The effect of viscous damping on the seismic response will be influenced by the 

mathematic:al model selected for its representation. The damping can be mode lied using mass 

proportional, stlffness proportional or Rayleigh damping computed either from the Initiai elastie 

or the tangent Inelastle system properties. Otani (1980) eompared the experimental nonhnear 

selsmie response of a three-story small-scaJe reinforced concrete structure with the response 

obtained from numerical models. Damping matrices proportional to the mass and to the 

instantaneous stiffness matrices were used with the proportionality coefficients computed from 

the initiai elastic properties. A fair agreement between the experimental results and the numerieal 

results uSlng erther damping model, was obtained for the large-amplitude dlsplaeement 

oscillations at the roof. For low-amplitude oscillations, the stlffness proportional damping model 

provided better correlations with the experimental results. 

6.2 DAMPING MATRIX FORMULATION 

The effects of non-yielding energy dissipation mechanisms are typieally represented in 

MDOF structures by VISCOUS modal damping ratios varying between 0.1 % ta 7% entlcal. Because 

the nature of damping is difficult ta quantify analytically, experimentation is used to determine 

the damping characteristics inherent ta various types of structures. Note that damping is often 

increased in linear analysis ta approximate energy lasses due ta anticipated inelastic behaviour. 

These increased damping values should not be used in rigorous nonlinear analysis since sorne 

losses will be counted twice. The following Rayleigh-type damping representation is used 

extensively for the linear and nonlinear analyses of MDOF systems (Gillies and Shepherd 1983; 

Kanaan and Powell 1973): 

[C], .. a'[M] + b'[K], + bo '[K], (6-1) 

where [C]I is the tangent damping matrix, [M] is the mass matrix, [K], is the tangent stiffness 

matrix, and [K]I is the initial stiffness matrix. The coefficients a, b, and bo are proportionality 
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constants computed from the natural frequencies of the stnlcture. If a. or band bQ are set ta 

zero. stiffness or mass proportional damping are obtalned. respectively. In linear analysls. b=O. 

and Eq. 6-1 allows to control a specified damping ratio. ~. at two distinct frequencles W j and w, 
as shown in Figure 6.1. The coefficients a and bo are computed from: 

(6-2) 

(6-3) 

ln Eqs 6-2 and 6-3, w, is usually taken as the tirst natural frequency and w, 1:» the trequency ot 

the highest mode that contributes significantly to the response. The value of wJ is often taken as 

the frequency for which 90% to 95% of effective modal mass is represented by a truncated 

vector basis. In nonlinear analysis, the following methods can be used to obtaln [CIl: 

M1: tho coefficients a and/or bQ are computed from the Initial elastle trequencles wlth 

b=O, this results ln a time independent damping matrix. The following notation 15 used 

to describe variations among this model; M1 (a), M1 (bJ. M1 (a,bJ. Tht) coefficients ln 

parentheses indicate which terms of Eq. 6-1 are retained in the formulation. 

M2: the coefficients a and b are computed from the Initial elastlc frequencies wlth bo=O. 

this results in a time depandent damping matrix since [K], is changlng with time. The 

possible models are M2(b), M2(a,b). 

M3: the coefficients a and/or b are computed tram the tangent frequencies wlth bo=O, 

this results in a time dependent damping matrix and constant damplng ratio for the 

modes used to compute the coefficients a and b. The possible model5 are M3(aJ, 

M3(bJ, and M3(~,bJ. The subscript t IS added to a and b to Indlcate clearly that these 

coefficients are computed from tangent free-vibratlon propertles that are cantinuously 

changing when the response is inelastic. 
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Flgur.I.1. 

RAYLEIGH DAMPING 
(a"O,bo"O) 

STlFFNESS PROPORTIONAL 
(0=0) ~=boW/2 

MASS PROPORTIONAL 
(bo=O) ~=o/2w 

Wl wJ FREQUENCY W 

FREQUENCY RANGE FOR 
90-9~ EFFEcnVE 
MODAL MASS 

Rayleigh damping, 

For example, Otani (1980) used the M1 (a) and M2(b) damping moejels in the seismic 

analysis of reinforced concrete buildings as mentioned previously, Schiff et al. (1991) used 

Rayleigh damping proportional ta [K]t, the M2(a,b) model, ta study the nonlinear response of 

low-rise steel moment resisting frames. Filiatrault (1990) used mass proportional damping, the 

M1 (a) model, to study the seismic response of MOOF wood structures with nonlinear connectors, 

Sedarat and Benero (1990) used Rayleigh damping proportional to the initial system matrices, 

the M1 (a,bJ model, ta study the nonlinear torsional response of MOOF concrete structures. 

EI-Aidi and Hall (1989) used the stiffness proponional damping model, M2(bJ, to study the 

nonlinear response of concrete dams. In ail cases reponed in the literature, the damping 

proportionality coefficients were computed trom the initial elastic tree-vibration propenies. 

The classical Integration procedures used in nonlinear seismic analysis correspond to 

the simultaneous Integration of ail modes of vibration at a particular time-step. The actual 

50 



-

(instantaneous) frequencies of the system are continuously changing during nonlinear behavlour. 

The response of the system may thus be obtalned in terms of the nonhnear (tangent stlffness) 

frequency spectrum (Idelsohn and Cardona 1985, Gillies and Shepherd 1983, Bathe and 

Gracewski 1981, NickeIl1976). The use Jf the initiai elastlc frequencles to compute the damplng 

proportlonality coefficients cornes mainly from computatlOnal convemences slnce the evolutlOn 

of the frequency spectrum of the dominating modes throughout the nonhnear response IS 

usually unknown.ln the analysis of softemng structures (elasto-plastlc condition), the frequencles 

become smaller when the structure expenences nonlinear behaviour The selected frequencles 

based on linear analysls to compute Rayleigh damplng coefficients may thus cover a too narrow 

range. The use of tangent spectrum propertles Will therefore permit a more ratIOnal control of 

the amount of energy dissipated by viscous damping in nonlinear selsmlC analysls. 
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CHAPTER 7 

SEISMIC ENERGY DISSIPATION IN MDOF STRUCTURES 

7.1 INTRODUCTION 

The influence of viscous damping models on the nonlinear energy response of MDOF 

structures has not received a lot of attention in the past. The purpose of this chapter is to 

Investigate the displacement ductility demand, indices related to the relative amount and rate 

of energy dissipation, and the number of yield excursions of MOOF using mass and/or stiffness 

proportional damping models. Solution strategies using initial elastic or tangent inelastic 

structural spectrum properties are used to evaluate the damping matrices. Bilinear hysteresis 

models of simple MOOF structures presented in chapter 4 with different strength levels, straln 

hardening ratios, and damping ratios are considered. 

The computer program presented in chapter 2 is used to perform the step-by-step 

Integration of the equations of dynamic equilibrium using either geometric coordinates or modal 

coordlnates. When modal coordinates are used, the frequency and mode shapes are computed 

trom the tangent stiffness at each time-step. The equations of motion are then transformed and 

solved in generalized coordinates. A complete eigenbasis is used in ail computations. This is to 

avoid any error in the nonlinear response indicators due to modal truncation thus maintalning 

a computational strategy equivalent to a step-by-step Integration in geometric coordinates. 
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7.2 INFLUENCE OF CAMPING MODELS ON SEISMIC RESPONSE 

The influence of the elght damping models described ln chapter 6 IS tlrst Investlgated 

for the 10-story bUilding wlth the torce modification factor. R=4. the straln hardenmg ratIo. 

a=1%, and the dampmg ratio, ç=5%, subjected to the three selected earthquakes. 

7.2.1 Evolution of nonllnear tangent propertles 

Figure 7.1 a shows the variation in the fundamental period of vibration due to Inelastlc 

behaviour. The instantaneous period of the tirst mode Increased tram 1 sec for slastlc response 

ta a maximum of approximately 8 sec when the system responded melastically. Figure 7 1 b 

Indicates the vanations in the number of modes required to maintaln 95% ot effective modal 

mass in the solution. For the elastic response, modes 1 ta 4 should be Included. For Inel3stlc 

response, this range increased to modes 1 to 10, or the complete eigenbasis. However, the tlrst 

five modes are found adequate for almost the entire nonlinear analysis except for three very 

short periods of time. 

Figure 7.2 shows the variation of the Rayleigh damping coefficients ta malntaln 5% 

instantaneous critical damping using the tangent damping mOdel, M3(~,bJ. The damplng 

coefficients, ~, b\l are computed using the tirst tangent trequency and the tangent frequency 

of the highest mode required ta obtain 95% effective modal mass in the solution. If only mass 

proportionat damping is considered (M3(aJ), the damping ratio can be as low as 0.2% ln the 

highest mode required ta obtain 95% effective modal mass. On the other hand, the damplng 

ratio in this mode can be as high as 217% If only stiffness proportIOn al dampmg is consldered 

(M3(bJ). The seismic response using the damplng model M3(bJ Will th us be slgmflcantly 

overdamped. 

,-.. 
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( 7.2.2 Displacement responses at the top 

Figure 7.3 shows the top displacement responses for the 10-story building subjected to 

the El Centro earthquake. The mass proportlonal and the Rayleigh damplng models using elther 

the initial elastic or the tangent Inelastic damplng coefficients yield almost identICal results. The 

stiffness proportlonal damplng models show slgnificant variations in the dlsplacement responses. 

The damping model using tangent properties, M3(bJ, provldes the largest damping, followed 

respectively by the imtial elastic, M1 (bcJ, and the instantaneous stiffness proportional, M2(b), 

damping models. Wh en Rayleigh damping is used, the dispersion observed in the stiffness 

proportional damping models is significantly reduced. In thls case, the mass component of the 

damplng appears to dominate the response. 

7.2.3 Nonllnear respons. Indlcator. 

Figure 7.4 shows the vanation in the nonlinear response indicators due to the use of 

different damping models for the 10-story building subjected to the three earthquake records. 

Consistent variations are obtained from ttte different damping models as different earthquake 

records are considered. The tangent damping models using mass proportional, M3(a,) , and 

stiffness proportional, M3(bJ, damping, respectively produce about the highest and lowest 

intensity of the nonlinear response indicators. If these models are excluded trom the analyses, 

average relative variations among the remaining damping rnodels of about 40%, 20% and 80% 

are respectively observed for the average ductility, E~E, ratios, and the average number of yleld 

excursions. If only the three types of Rayleigh damping models are considered, M1 (a, bcJ , 

M2(a,b), and M3(~,bJ, the average relative variations of the same response indicators are 

respectively reduced to 10%, 8% and 30%. The average number of yleld excursions is therefore 

more sensitive to the earthquake records and damping models th an the average ductility and 

the E~E, ratio. 

( 
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Figure 7.5 shows the varÎations in the power response indicators due to different 

damping models for the 10-story building subjected to the three earthquake records. Consistent 

variations are also observed from the different damping models as different earthquake records 

are considered. The most sensitive response parameters to the type of damplng model are 

respectlvely the damping power, Po, the input power, PI' and the hysteretlc power, PH' If the 

masC) and stlffness tangent damping models are excluded from the analyses, average relative 

vanations of about 40%, 10% and 5% are obtained among the remaining damping models for 

Po, PI' and PH' respectively. These variations do not change slgnificantly if the compansons are 

restricted to the three Rayleigh damping models. For a given earthquake, the rate of hysteretic 

energy dissipation is not very sensitive to the selected damping modal. 

7.3 PARAMETAIC sruOy 

A parametric study is performed by considering for the seven buildings subjected to the 

El Centro earthquake, the three Rayleigh damping models and the instantaneous stiffness 

damping model, M2(b), wlth b computed from the Initiai elastic properties. Rayleigh damplng is 

commonly used in practice, and the model M2(b) has been shown by Otanl (1980) to provide 

a good correlation with experiments for low-rise reinforced concrete buildings designed wlth a 

strength parameter, '7=0.5. Two values of the damping ratio, ~ (2%, 5%), of the force 

modification factor, R (2, 4), and of the strain hardening parameter, a (1%,25%), are considered 

in the parametric study. The average ductility, the average number of yield excursions, the ratio 

Et/El' and the m3)Clmum vaJue of hysteretic power, PH' are computed in each case. With the 

exception of Et/El' the nonlinear response indicators are very high for the single story (SDOF) 

bUilding (T, = 0.1 sec) as compared with the MD OF buildings. For the SoOF building, the 

numerical values of these indicators have thus been reported in parenthesis beside each 

damping model in the figure legends. 
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The tangent Rayleigh damping model, M3(~,bJ, 15 u51ng proportlonahty coefficients that 

are updated at each tlme-step. It malntains throughout the elastlc and Inelastlc response, a 

constant damplng ratio for the flrst mode, and the mode reqUired ta obtaln 95% of effective 

modal mass. This approach provides a rational control of the VISCOUS damplng mechanlsm Il) 

nonlinear selsmlc analyses as Inittally selected by the analyst. The M3(a"bJ model win thus form 

the basis upon which the performance of the other damplng models Will be compared. 

7.3.1 Influence of damplng ratio 

Figure 7.6 shows the effect of the oamplng ratio on thp non!inear response of multlstory 

buildings. A reductlon in the damplng ratio trom 5% to 2% Increases the Intenslty of ail 

nonlinear response indicators. Considenng the tangent Rayleigh damplng model, M3(~,bJ, It IS 

shown in Figure 7.6c that for T, c: 1.5 sec, the EJE, ratio IS approxlmately constant. In thls 

range, the ratio EJE, increases from 0.55 for €=5% ta 0.75 for €=2%. ThiS represents an 

increase of about 35% of the hysteretic energy avallable for damage ln the short penod range 

(T, :$ 0.5 sec), the influence of damplng on EjE, ratios IS not as slgnlflcant. Increases of about 

15% are now observed when e is reduced trom 5% ta 2%. For T, ~ 0.5 sec, the EjE, ratios 

computed from the stiffness proportional damping model, M2(b), are almast Identlcal wlth the 

rigorous M3(~,bJ damping model. For Tl > 0.5 sec, the M2(b) model dlsslpates more energy 

by viscous damplng than the Rayleigh mOdels, produclng smaller EJE, ratios. For T, c: 1 sec, 

the Rayleigh model using the instantaneous stiffness, M2(a,b), ylelds EjE, ratios that are wlthln 

4% of the values computed tram the tangent Rayleigh damping model, M3(~,bJ. In thls range, 

the Rayleigh damping model based on initiai system matrices, M1 (a,b~, provldes Er/E, ratios that 

are within 10% of the M3(~,bJ damping model. 

Figure 7.6a indicates that a reduction of e from 5% to 2% Increases the average ductlhty 

demand by about 15% over the complete range of fundamental periods. The Influence of the 
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vanous damplng models on the average ductlhty IS simllar to tne effects observed for the E~E, 

ratios. Figure 7.6b Indlcates that the average number of yield excursions decreases rapldly as 

T, Increases. For structures wlth ç:::5% and T, :s 0.5 sec. the average number of yleld 

excursions IS not sensitive to the darnplng model selected. For systems wlth T, > 0.5 sec. the 

M2(b) damplng model underestimates the average number of yleld excursions. As ç IS reduced 

from 5% ta 2%. the M2(b) damping model underestimates the average number of yleld 

excursions over a wlder range of fundamental periods correspondlng to T, > 0.1 sec. Figure 

7.6d Indlcates that the maximum hysteretic power. PH' IS also decreasing very rapldly as T, 

Increases. For T, ~ 0.5 sec. PH is not sensitive to the values of ç and the damping models. For 

T, < 0.5 sec. slgnlflcant vanations are observed among the values computed from the dlfferent 

damping models. In thls range. the stlffness proportlonal damping model. M2(b). shows agaln 

an excellent correlation with the ngourous tangent Rayleigh damping model M3(~.bJ. 

7.3.2 Influence of force reductlon factor 

Figure 7.7 shows l,he effect of the force reduction factor on the nonlinear response of 

multistory buildings. Figufl~ 7.7a indicates that for the 10 story building (medium penod range) 

deslgned with R=4. an average ductility demand equal to 3.75 IS obtalned from the tangent 

Rayleigh damping model, M3(~,bJ. This value is within 6% of the selected force modification 

factor. R=4. The parameter R can thus be interpreted as a global ductlhty factor for MDOF 

structures ln the medium period range. For short-period structures designed with a substantial 

force modification factor. glVen here by R=4 and TI :S 1. the ductility demand is very high as the 

period is reduced and the systems converge toward the statlc response. For the structures 

deslgned wlth R=2. the parameter TI is larger than 1 for T, < 0.5 sec. In thls case. the average 

ductllity Will converge to the selected value of R=2 as the penod is reduced. 
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Figure 7.6. 
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The average ductlhty and the EjE, ratio are not sensitIVe ta the damping models for 

structures wlth T, < 1.0 sec deslgned ta respond wlth mild inelastlc behaviour as given by R:::2. 

For structures wrth T, > 1.0 sec, the M2(b) model should not be used since It overdamps the 

energy response signlflcantly. 

Figure 7.7b indicates that if the M2(b) damping model is excluded, the average number 

of yield excursions is not sensrtive to the Rayleigh type of damping model selected for R=2. 

Figure 7.7d Indicates that in the medium and short-period ranges (0.1 < T, < 1.5 sec) the 

hysteretic power increases as the force modification factor is reduced from R=4 ta R=2. This 

trend is reversed for T,=0.1 sec. For mlldly nonlinear systems (R=2), PH' is not sensitive ta the 

selected type of Rayleigh damping model over the complete frequency range. The M2(b) model 

should not be used for TI > 1.0 sec since it overdamps the PH response. 

7.3.3 Influence of straln hardenlng ratio 

Figure 7.8 shows the effect of the strain hardening ratio, a, on the nonlinear response 

of multistory buildings. In the short-period range, the average ductility does not exceed about 

5 for a=25% as compared ta a maximum value of 18 for a=1%. The variations in average 

ductllity among the various damping models Is reduced as a IS increased from 1 % ta 25%. For 

long perlod structures (T, > 1.5 sec), the average ductility IS not very sensitive ta the strain 

hardening ratio. 

Figure 7.8c indicates that in the short period range (T, < 0.5 sec), the EjE, ratio is 

reduced as the strain hardening is increased. For systems using large a, the M2(b) and M2(a,b) 

damping models should be used ta approximate the response of the tangent Rayleigh damping 

mOdel, M3(~,bj, in the short-period (T, ~ 0.5 sec) and the medium and long period range (T, 

> 0.5 sec), respectively. Figure 7.8b indicates that the average number of yield excursions 
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Figure 7.7. 
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Increases with an increase ln the strain hardening ratio. For large a, there is no sigmficant 

variation of the average number of yleld excursions among the Rayleigh damping models. except 

for the M2(b) model for T, > 0.5 sec. Figure 7.8d indlcates that the strain hardemng does not 

affect the PH values for T, > 1 sec. For T, < 0.5 sec and a=25%, the PH values exhiblt mlnor 

variations for the different damping models. 

7.4 CONCLUSIONS 

ln thls chapter, the effects of various mathematical models ta represent viscous damping 

in nonlinear seismic analysas of MOOF structures have been investigated. Bilinear hysteretic 

models of simple MOOF structures using different strength levels, strain hardening ratios, and 

damplng ratios have baen considered. The average ductility demand, the average number of 

yleld excursions, the ratio of hysteretic ta input energy, Et/El' and the maximum rate of hysteretic 

energy dissipation have been selected as indicators ta characterize the nonlinear seismlc 

response. 

A tangent Rayleigh damping mOdel using proportionality coefficients that are updated 

at each time-step has been developed. It maantains throughout the elastic and inelastlc 

response, a constant damping ratio for the first mode, and the mode required ta obtain 95% of 

effective modal mass. This approach provides a rational and rigorous control of the damplng ln 

nonlinear seismic analysos. In practice, the damping proportionality coefficients are usually 

computed from the initial elastic properties. In this case, damping proportional to the 

instantaneous stiffness, the M2(b) damping model, should be used for MOOF structures with 

fundamental penods of vibration, T, s 0.5 sec. For the systems analyzed wlth T, s 0.5 sec and 

the M2(b) damping model, ail seismic response indicators were very closed ta the tangent 

Rayleigh dampin'J model lor a wide range of damping ratios, strain hardening ratios and force 

reduction factors. For MOOF structures with T, > 0.5 sec, Rayleigh damping should be used. 
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The Rayleigh damping model using the Instantaneous stiffness with the propoltionallty 

coefficients computed trom the elastlc propertles provides a very good agreement wlth the more 

rrgorous tangent damping model ln the medium period range (0.5 < T, < 1.5 sec). For 

multlstory buildings wlth T, > 1.5 sec, the selsmic response IS not affected by the type ot 

Rayleigh damplng model selected. 
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8.1 SUMMARY 

CHAPTER S 

CONCLUSIONS 

This thesis has presented a study of nonlinear selsmlc response of MDOF structures 

using vector superposition methods. Bihnear hysteretic models of 'shear beam" MDOF structures 

sUbjected to three dlfferent earthquake records have been consldered for parametnc studles 

The MOOF structures have been designed to meet the requlrements of the National BUilding 

Code of Canada (NBC 1990) and the earthquake records have been grouped around the NBC 

1990 response spectra for bUilding structures located in Victoria B.C. Two distinct Investigations 

have been made. First, the solution algonthms for nonhnear vector superposition analyses have 

been studied. Second, a comparative study of dlfferent mathematlcal models for VISCOUS 

damping has been macse. 

Step-by-step inteyratlon of the Incrementai form of the equatlons of dynamlc equlhbnum 

expressed in geometric coordinates IS generally used to investlgate the nonhnear elasto-plastlc 

behaviour of MDOF structures. The integration procedure mathematlcally corresponds to the 

simultaneous Integration of allinstantaneous modes of Vibration Chapter 2 presented solution 

algonthms ta use vector superpOsition methods ln nonhnear analysls that conslst ln perlormlng 

a change of basis to a more effective system of equatlons uSlng elthef the Pseudo-Force Method 

(PFM) or the Tangent Spectrum Method (TSM). In the PFM, a single set of modes based, on 

elastlc system matrices are employed dUrlng the complete response calculatlon, and the 
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nonhneantles are taken as pseudo-forces on the right hand side of the equation of motion. In 

the TSM, the change of basis IS performed at each tlme-step uSlng mode shapes and 

frequencles corresponding ta the Instantaneous system matrices. 

An Investigation of the elasto-plastlc seismlc response of MDOF structures uSlng the 

PFM and the TSM has been presented in chapter 5. The emphasis was put on the effect of 

vector basls truncatlOn on the nonhnear response and the stabllity of the solution algonthms. An 

equihbnum correction method has been proposed to pravlde numerical stablhty ta tangent 

solutions when truncated vector bases are used. The effectlveness of a new algonthm ta 

generate load-dependent vectors that provides a statlc correction for the truncatlOn of the hlgher 

modes has been evaluated ln the context of elasto-plastic analysis. The dis placements, the 

internai member forces, the ductllity demand, the hysteretlc, and the damping energy dlsslpated 

during the nonlinear seismlc response, have been selected as indicators ta study the 

convergence charactenstlcs of dlfferent solutions strategies. 

The seismic input energy imparted ta a structure is dissipated by hysteretic behavlour 

and by other non-yielding mechanisms usually represented by equivalent v;scous damping. It 

is generally recognized that there is a strong correlation between the energy dissipated by 

hysteretic action and the seismically induced level of damage. While viscous damplng has been 

found to have a sm ail effect on the amount of energy Imparted ta a structure, it has a slgnificant 

mfluence on the amount of hysteretic energy dissipation. A parametric study has been presented 

ln chapter 7 on the Influence of the mathematical modelling of viscous damping on seismic 

energy diSSipatIOn of MDOF structures. The damping has been modelled uSlng mass 

proportional, stlffness proportional, and Rayleigh damplng computed either fram the initiai elastlc 

or the tangent iflelastlc system properties. Various structural performance indices have been 

evaluated for blhnear hysteresis model of simple MDOF structures wlth different strength levels, 
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strain hardening ratios, and damping ratios. 

8.2 CONCLUSIONS 

From the results obtalned, several conclusions can be reached about the applicabliity 

of vector superposition methods and the proper mathematlcal modelling of VISCOUS damptng ln 

nonlinear seismlc problems. 

8.2.1 Vedors superposition methods 

For the applicablhty of vector superposition methods in nonhnear selsmlc analyses and 

the effects of vector basls truncatlon, the general conclusions can be summanzed as follows. 

- If the TSM is used. the acceleration vector should be computed from equlhbnu~ 

condition ta account for the incompatibllity of an updated basis to fully represent the 

inttial conditions at t + ~t. The acceleratlon and veloclty can still be in error but the 

solution will be numencally stable. 

- The equilibflum Iterations have been found to be very Important to provlde a good 

convergence of the response with a large tlme-step thus mlnimlzlng the number of basls 

updates. 

- The displacement response has been shawn not rehable ta judge of the quahty of a 

solution strategy in nonlinear seismic analysis. 

- The use of load dependent vectors (LDM) or eigenvectors (MDM) has not shown 

significant influences in both PFM or TSM. The LDM should be used since the 

computational effort to generate transformatIOn vectors 15 much less than that reqUifed 

to generate eigenvectors (MDM). 

- The PFM was more stable, and required much less computatlOnal effort than the TSM. 

However, it can not provide any information on the evolution of tangem modal propertles 

in time. 
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For the investigation on the flexible 25-story building, the main conclusions are: 

- Considenng the peak ductlllty demand, the TSM is much less sensitive ta the truncation 

ot the vector basls than the PFM. 

- Considenng the peak ductlhty demand and hysteretic energy dissipation, 11 vectors are 

required when the TSM is used ta have an error level below 10% of the "exact" results. 

However, if the damplng energy and the energy balance are consldered, 17 vectors are 

reqUired ta malntain the error level below 10%. This 15 due ta the error in veloelty and 

aceeleration eaused by the TSM. 

For the stlff 5-story bUilding the conclusions are as follows: 

- The TSM has been found very sensitive to basis truneation. Results within 10% of the 

"exact" solution can be obtained from the PFM with a basis of two load-depandant 

vectors. 

8.2.2 Mathematlcal modelling of vlscous damplng 

Several mathematlcal models for viscous damplng wlth proportionality coefficients 

computed trom initiai elastic properties have been compared ta a tangent Rayleigh damping 

model that kept constant damping ratio throughout the nonlinear analysis. The principal 

conclusions of this phase of the study are: 

- Damping proportional to the instantaneous stiffness with the proportionallty coefficients 

computed trom initial elastic properties should be used for MDOF structures wlth 

fundamental periods of vibration, Tl :s 0.5 sec to obtain a very good approximation of 

the more rigorous tangent damping model. 

- Rayleigh damping model wlth constant coefficients based on elastic properties and 

using the instantaneous stiffness provided a very good agreement with the more 

rigourous tangent damping model in the medium period range (0.5 < Tl < 1.5 sec). 

- For multistory buildings with Tl > 1.5 sec, the seismic response is not atfected by the 

type of Rayleigh damping model selected; 
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- The consideration of damping ratios, ç, of 2% or 5%, force reductlon factors, R, of 2 or 

4, and strain hardenlng ratios, a, of 1 % or 25% have no effects on the above 

conclusions. 

8.3 RECOMMENDATIONS FOR FURTHER STUDIES 

The present study has ralsed several pOints that mlght be consldered ln further 

investigations such as: 

- The investigation of the effects of other nonhnearities such as the P-Ll effect and 

structural pounding on the performance of the PFM and TSM and related energy 

response. 

- The investigation of the effects of other hysteretic model such as the stlffness degradlng 

model or slip model on the performance of the PFM and TSM and related energy 

response. 

- The study of the applicability of the TSM to mnre complex structures. 

- The developement and calibration of new damage Indices based on tangent propertles, 

power, and energy consideration. 

- The investigation of nonlinear behaviour such as force reduction factor trom elastic 

response uSlng the evolution of tangent modal propertles. 

- The investigation of the effects of numerical damping provided by dlfferent Integration 

methods on the energy balance. 

- The study of the influence of the adjustment of oquivalent damping ratios wlth the 

current stress-strain state. 

- The investigation cf sorne tarin of correction based on steady-state frequency domaln 

analysis wlth low damplng responsr:. to correct for the incompatlblhty of updated vector 

basis ln the TSM. 
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