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ABSTRACT

Nonlinear dynamic analysis of MDOF structures is usually performed in geometric
coordinates using a step-by-step integration of all modes simultaneously. The mode
superposttion used extensively In linear problems can be thought competitive and efficient in

nonhinear problems if a truncated vector basis can be considered.

This thesis presents two algorithms to solve nonlinear seismic probiems in generalized
coordinates, one that uses a set of vectors computed from initial properties, the Pseudo-Force
Method (PFM), and another that continuously updates the vector basis to represent the
nonlinear behaviour, the Tangent Spectrum Method (TSM). Both methods can use either exact
eigenvectors or load dependent vectors as vector basis. Parametric analyses are carried out on
a sernies of multistory buildings idealized as shear beam structures with bilinear hysteretic
behaviour. The effects of the truncation of the vector basis on the stability and the quality of the
nonlinear solutions are investigated using nonlinear response parameters such as ductility,
energy balance, and dissipation. The algorithms are then used to make a comparative study on
the effects of different mathematical representations of viscous damping based eitirer on initial
elastic, or tangent modal, properties of MDOF structures.

For a flexible 25-story structure, the solution is much more sensitive to the truncation of
the vector basis when the PFM is used instead of the TSM. However, even if the TSM yields
accurate g. bal results based on displacements such as ductility and hysteretic energy
dissipation, it shows important error in velocity and acceleration when a small number of vectors
is used. For a stiff 5-story structure, the trend is reversed and the PFM seems to be more
accurate when a truncated basis is used. The equilibnum iterations are founc to be very
important to reduce the required number of basis updates in the TSM algorthm. The use of
eigenvectors or load dependent vectors yielded comparable results. A tangent Rayleigh damping
model that maintains a constant damping ratio throughout the elastic and inelastic response has
been developed. If intial elastic vectors are used, a very good approximation to the rigorous
response based on tangent damping is obtained from damping proportional to the
instantaneous stiffness for MDOF structures with fundamental periods of vibration, T, < 0.5 sec.
For structures with T, > 0.5 sec, Rayleigh damping based on initial elastic properties shouid be
used.
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RESUME

Une analyse dynamique d'un systéme non-inéaire A plusieurs degrés de liberte st
habituellement résoiue en utitisant l'intégration pas- -pas de tous les modes simultanément La
méthode de superposition modale, utiisée pour les problémes néaires, peut possiblement étre
compétitive et efficace pour un probleme non-linéare s1 une base de vecteurs tronquée peut
étre considérée.

Cette thése présente deux algorithmes pour résoudre des problémes séismiques non-
linéaires en coordonnées généralisées. Le premier utilise un ensemble de vecteurs calculés a
partir des propriétés inttiales (Méthode de Pseudo-Force, MPF), et I'autre met & jour la base de
vecteurs pour représenter le comportement non-inéaire (Méthode du Spectre Tangent, MST).
Les deux méthodes utilisent soit des vecteurs propres ou vecteurs dépendants de la charge
comme base vectortelle. Des études paramétriques sont menées sur une séne de batiments
muiti-étagés idéalisés par des poutres de cisallement a deux degrés de liberté avec
comportement bi-lindaire hystérétique. Les effets de la troncation de la base vectorielle sur la
stabilite et la qualité de la solution non-inéaire sont examinés en utilisant des indicateurs tels
que la ductilite, la balance et la dissipation d'énergie. Les algornthmes sont ensuite utilisés pour
mener une étude comparative sur les effets de différents modeles de matnices d'amortissement
calculées soit a partir des propnétés initiales ou tangentes du systéme.

Pour un batiment flexible de 25 étages, la troncation de la base vectorielle est beaucoup
plus sensible pour la MPF que la MST. Cependant, méme si la MST donne des résultats globaux
satisfaisants, elle produit des erreurs considérables dans les vecteurs vitesse et accélération
quand un noinbre peu élevé de vecteurs est utilisé. Pour un batiment ngide da 5 étages, la
tendance est renversée et la MPF semble plus précise. Les itérations d'équiiibre sont trés
importantes pour faire de la MST un algorithme intéressant et compétitif. L'utilisation de vecteurs
propres ou de vecteurs dépendants de la charge donne des résuftats comparables. Un modéle
d'amortissement tangent qui maintient un taux d’amortissement constant au cours d'une analyse
non-linéaire a été développé. Si les vecteurs nitaux élastiques sont utiisés, une trés bonne
approximation de la réponse ngoureuse basée sur I'amortissement tangent est obtenue a partir
de 'amortissament proportionnel a la ngidité instantanée pour structures a plusieurs degrés de
liberté avec périodes fondamentales de vibration, T, < 0.5 sec. Pour les structures avec
T, > 0.5 sec., 'amortissement de type Rayleigh, basé sur les proprétés intiales élastques,
devrait étre utilisé,
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW AND OBJECTIVES

It is generally recognized that it is uneconomical to design all buillding structures to
remain in the elastic range to resist major earthquakes. Step-by-step integration of the
incremental form of the equations of dynamic equilibrium expressed in geometric coordinates
is generally used to investigate the nonlinear seismic behaviour of MDOF structures The
integration procedure mathematically corresponds to the simultaneous ntegration of ail
instantaneous modes of vibration using the same time-step. The use of vector superposition
methods in nonlinear analysis consists N performing a change of basis to a more effective
system of equation. The effectiveness of vecter superposition techniques in nonlinear dynamic
problems depends on (1) the number of vectors required to simulate accurately the response,
{ii) the frequency of updating and recalculating the basis vectors, which are a function of the rate
of change of these vectors with time, and (i) the efficiency of the algonthm used to calculate
the initial vectors and updating them (Noor 1981). Vector superposition methods in nonhinear
structural dynamics can be based on either the Tangent Spectrum Method (TSM) (Maison and
Kasai 1990, lbrahimbegovic and Wilson 1990, Idelschn and Cardona 1985, Gilhes and Shepherd
1983, Remseth 1979, Nickell 1976) or the Pseudo-Force Method (PFM) (Chang and Moraz 1990,
Mus~olino 1989, Hanna 1989, Filho et al. 1988, Knight 1985, Dungar 1982, Bathe and Gracewski
1981, Geschwindner 1981, Lukkunaprastt et al. 1980, Shah et al. 1979, Clough and Wilson 1979,

Hofmeister 1978, Morris 1977, Stricklin and Haisler 1977, Molnar et al. 1976). In the TSM, the




change of basis is performed at each time-step using vector shapes and frequencies
corresponding to the instantaneous system matrices. In the PFM, a single set of vectors, based
on linear system matrices, s used throughout the analysis. The linear system matrices are
employed during the complete response calculation, and the nonlinearities are taken as pseudo-
forces on the nght hand side of the equations of motion. The PFM avoids the solution of the
tangent eigenproblem at each time-step during nonlinear behaviour, and has been found to be
competitive regarding computational effort with direct integration operators in geometric

coordinates in numbers of simple nonlinear structural dynamic problems.

The satisfactory seismic performance of structures designed to reduced elastic strength
demand according to modern building codes, has been mainly attributed to overstrength and
dynamic response modification in the inelastic range, corresponding to changes in period of
vibration, effective damping, and related energy dissipation mechanisms. The TSM provides
knowledge of the spectrum of frequencies for the dominating modes throughout the inelastic

seismic response. This present several potential advantages such as:

(i) A rationalization of nonlinear behaviour in an elastic format to evaluate period
elongations, and Rayleigh damping matrices based on tangent modal properties.

(i) A better representation of the inertia forces in inelastic configuration using instantaneous
mode shapes instead of the elastic deformation modes used in the PFM.

(iii) A mean to develop simplified seismic design methodology based on modified elastic
modal response as given in building codes (Lin and Mahin 1985, Villaverde 1988).

(iv) The definition of new damage indices based on the evolution of tangent modal
properties during the earthquake (DiPasquale et al. 1990).

v A direct control on the participation of higher modes that can be explicitly excluded of
the solution instead of relying on numerical damping.

2
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The objectives of this thesis are to develop proper solution strategies for nonlinear
seismic analysis using generalized coordinates, and to investigate the effects of different
mathematical representations of viscous damping on nonlinear response parameters such as:
energy, power, ductility, and number of yield excursions. In the first part of this study, different
solution strategies to solve nonlinear seismic problems are investigated with an empnasis on the
effect of the retained strategy (PFM or TSM), modal truncation, and basis vector selection. The
second pan focuses on energy loss mechanisms in nonlinear seismic analysis. The effect of

different modelling procedures for viscous damping on nonlinear response parameters Is

assessed.

1.2 REVIEW OF PAST WORK

Previous investigations related to inelastic seismic analyses of MDOF structures using
vector superposition methods, have been almost exclusively based on the PFM. Lukkunaprasit
(1980) analyzed a 30-story shear building subjected to an amplified NS component of the 1940
El Centro Earth.quake. It was concluded that the PFM was able to predict accurately the
displacement, an *absolute* response quantity, using only a few lower modes. The internal
forces, that are computed from relative interstory displacements, were more sensitive to the
truncation of higher modes. In inelastic analyses with elasto-perfectly plastic model, the
maximum value of the story internal forces is approximately limited to the story yield forces. In
this case, the ductility, defined as the ratio of the maximum story relative displacements to the
static yield value, was found to be more sensitive to modal truncation than the internal forces.
These conclusions were confirmed by Bathe and Gracewski (1981) that pertormed the same
type of analyses on a similar building. Muscolino (1989) added pseudo-static correction to the
PFM for the truncation of higher modes to study the elasto-plastic displacement response of
simple 6 DOF structures subjected to harmonic loading. it was concluded that for structures

subjected to low frequency content loading, the higher modes do not influence the elastic




response very much. However, the corresponding elasto-plastic response is influenced by the
modal truncation, and the addttion of a pseudo-static correction improved significantly the
nonlinear response evaluated by the usual mode displacement method (MDM). Similar
observations were made by Dungar (1982) that analyzed a 3 DOF elasto-plastic structure. Hanna
(1989) combined the pseudo-force method with the mode-acceleration method to provide a
static correction for the truncation of the higher modes in seismic analysis of moment-resisting
frames. However, no systematic analyses to compare the quality of the modal solution with and
without static corrections were reported. Chang and Mohraz (1990) studied the seismic
displacement and internal force responses of a 6-story, ngid, and 19-story, flexible, shear
buildings considering classical and non-classical damping. It was concluded that all modes
should be considered for the 6-story structure, and that depending on the accuracy desired,

fewer modes may be used for the flexible structure.

Gillies and Shepherd (1983) used the TSM to study the inelastic seismic response of a
six-story planar moment-resisting frame subjected to the NS component of the 1940 El Centro
Earthquake. Displacements and period elongations were reported. No systematic parametric
evaluation of the effect of modal truncation was carried out. Idelsohn and Cardona (1985)
studied the dynamic response of simple geometrically nonlinear structures subjected to
harmonic loads by the TSM using truncated vector bases. In addition to the usual modal
truncation error, a new source of error was identified each time a change of basis was
performed. Incompatibility between the ability of the ol basis and the new basis to represent
the inttial displacement, velocity and acceleration at the beginning of a new time-step introduced
a continuously growing lack of equilibrium that produced an unstable solution. The proposed
remedy to this problem was to improve the vector basis by the use of {oad-dependent Ritz
vectors (Wilson et al. 1982, Leger and Wilson 1987) and by the addition of modal denvatives to

avoid the need of updating the basis thus using a strategy similar to the PFM (ldelsohn and



Cardona 1985).

Review of past work concerning seismic energy dissipation and damping models for

nonlirear seismic response analysis 1S presented in chapter 6 of this thesis.

1.3 SCOPE OF THE PRESENT STUDY

This research project is carried out in two phases. The first phase assesses different
solution strategies to solve nonlinear seismic problems using vector superposition methods. The
emphasis is put on the effect of modal truncation on the quality of the solution. The algonthms
developed in the first phase are then used to study the effect of different mathematical

representations of viscous damping on nonlinear response parameters.

in chapter 2, the general theory related to the solution of nonlinear systems in geometric
coordinates is briefly presented. Two algorithms are then developed to extend the mode
superposition method ta nonlinear problems using either a tangent spectrum or a pseudo-force
approach. A discussion about the selection of appropnate vector bases 1s also presented. A

short description of the computer impiementation of the two solution aigorithms terminates this

chapter.

Chapter 3 introduces various indicators to characterize the nonlinear solution carned out
by a particular strategy. Importance is given to indicators that reflect the cumulative effects of
nonlinear behaviour such as hysteretic and damping energy dissipation. The structures analyzed
and the earthquake acceleration records used to conduct this study are presented in chapter

4. They are both adjusted to meet the requirements of the National Building Code of Canada

(NBC 1980).




Numerical results concerning the solution strategies and the truncation of vector basis
in nonlinear seismic analysis are given in chapter 5. Different proportional damping models
suitable for earthquake response analysis are presented in chapter 6. A parametric study is
performed to show the influence of these damping models on nonlinear response indicators in
chapter 7. Finally, chapter 8 summarizes the work carried out and the main conclusions of this

study.
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CHAPTER 2
SOLUTION STRATEGIES FOR NONLINEAR DYNAMIC
ANALYSIS

This chapter presents the strategies to solve the equation of motion of MDOF structures

written as:

[MI{d} + [C1a) + [KI{u) = (F(t)) = {f(s))-g(1) (2-1)
where [M] is the mass matrix, [C] is the damping matrix, and [K] 1s the stiffness matrix. The
vector {u} represents nodal displacements, and the dots indicate its derivatives. The load vector,
{F(t)}, can be expressed as the product of a fixed spatial distribution, {f(s)}, and prescrnbed time
function, g{t). The vector superposition method used in linear analysis is extended to nonlinear

analysis using either pseudo-force or tangent spectrum approach.

2.1 SOURCES OF NONLINEARITIES

in a nonlinear probiem, the matrices [M], [C], [K], and the vector {f(s)} of Eg. 2-1 can
be a function of the displacements or its derivatives. The nonlinearities affecting those matrices
and vector are from various sources. In structural 2ngineering, the most frequent type of
nonlinearity generally affects the stiffness matrix of the system. Figure 2.1 shows different
sources of nonlineanty frequently observed in seismic response analysis of MDOF structures
the P-4 effects, the pounding with adjacent building, the uplift of one or more supports, and the

nonlinear action-deformation of the resisting elements,




adjacent

— ::::W building

) z 2 \ ]
' structural pounding
;c :

kinetic energy

~ damping energy

input energy

Figure 2.1. Sources of nonlinearities.
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In this study, only matenial nonlinearities affecting the stitfness matnx will be considered.
The damping matrix may therefore become nonlinear If it 1s taken as a combtnation of the
tangent stiffness and mass maitrnces (Rayleigh damping descrnibed in chapter 6). Figure 22
shows a typical action-deformation of a bilirear hysteretic model of the structurai element

considered for numerncal apphications of the proposed solution strategies.

A R - jaKO
y
_ !
- | :
ou_, Ko |
mn * '

Figure 2.2. Action-deformation model of structural elements.

2.2 EQUATION OF DYNAMIC EQUILIBRIUM

The equation of dynamic equilibrium for seismic response analysis of a bilinear system

in geometric coordinates is:

IMI{a} + [C1{d} + (R(1)} = -[MY{r}dy(t) = (F(t)} (2-2)
where [M] is the mass matrix, [C], is the tangent damping matrix, {R()} is the nonlinear restoring
force vector, {r} is the influence vector from unit base displacement, and u,(t) 1s the specified

ground acceleration. The restoring force vector, {R(t)}, can be written in terms of the tangent

stiffness matrix, [K],, as:




{R(1) = [K]{u} = (K], + [K],) {u} (2-3)
where [K], 1s the linear stiffness corresponding to the reference state of the structure, and [K],
is the stiffness component dependent on displacements. In nonlinear seismic analysis, viscous
damping is generally modelled by a Rayleigh-type representation given as (Gilkes and Shepherd

1983, Kanaan and Powell 1973):

[Cl, = alM] + b[K],+ Bo[K], = (alM] + (b+ by)[K]) + bIK], = [C)+(C],  (24)

Substituting £qs 2-3 and 24 in Eq. 2-2 and then transfernng all the nonlinear terms to the right

hand side of the equation, we obtain the pseudo-force formulation of the equation of equilibrium:

M](a} « [Cl{u} + [K){u} = (F(D) - [K]s(u) - [Cla{0) (2-5)

This formutation is also used to treat problems with nonproportional damping, where [C], then
represents the nonproportional portion of the damping matrix and [K], is taken as zero (Claret

and Venancio-Filho 1991; Udwadia and Esfandian 1990; lbrahimbegovic and Wilson 1989).

It is also possibie in EQ. 2-2 to treat directly the nonlinearities of the system in the left
hand side of the equation. This method is known as Newton-Raphson or tangent method. This
procedure provides a fast rate of convergence since the tangent properties of the system are
frequently updated to reflect the evolution of nonlinear behaviour. The method has the drawback
that a reformulation of the system matrices is needed at each update. Therefore, the gain made
with a fast convergence can be lost if frequent reformulations are required. Equation 2-5 takes
all the nonlinear terms to he right hand side of the equation. This method is called the Modified
Newton-Raphson or Pseudo-Force Method (PFM). It generally converges more slowly than the
tangent method but does not require any reformulation of the system matnices. Figure 2.3 shows

schematically the type of convergence achieved by both methods.

10
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(K], (K],

TANGENT METHQD PSEUDBO-FORCE METHOD
FAST CONVERGENCE SLOW CONVERGENCE
Eq. 2-2 Eq. 2-5
t -
Figure 2.3. Rate of convergence of tangent and pseudo-force methods,

As shown in Figure 2.3, Egs 2-2 and 2-5 have to be solved iteratively since the nonhnear
portion of the matrices, [K], and {C],, are not known a priori. Step-by-step integration of the
equations in their incremental forms is generally used in the solution, It is reccgnized that in
geometric coordinates, Eq. 2-2 requires much less iieration than Eq. 2-5, but needs a
reformuiation of the matrices at each iteration (Bathe and Cimento 1980). The computer program
DRAIN-2D (Kanaan and Powell 1973) uses a technique that does not involve iteration. it solves
the equation of equitibrium using Eq. 2-2 and by applying the unbalanced load vector to the next
time-step. The unbalanced load vector is simply a force vector representing the lack of
equitibrium at each DOF, Therefore, the equilibrium is not achieved at every time-step and this

procedure requires a small time-step to ensure a good quality of the solution.

11
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2.3 VECTOR SUPERPOSITION IN NONLINEAR DYNAMIC ANALYSIS

2.3.1 Pseudo-Force Method (PFM).
The vector of nodal displacements, {u}, can be approximated by a linear combination
of a set of linearly independent free-vibration elastic eigenvectors or [M]-orthonormal, [K],-

orthogonal, load dependent transformation vectors, [X], as:

{u} = [XI{Y) (2-6)

where {Y} is the generalized coordinates obtained by solving a system of equation written as:

MI*(Y() + [CT(V(1) + [KI"IV()} = {(F() - {F(D)), 2-7)

where {F(1)}, I1s defined as:

(F(, = IXTIKLIXHY() + IX)TICLIXI{Y(2) (2-8)
and:
IM]" = IX)TIMIIX] = (1]
[CI' = XI'[C)IX] = [2-w] (2-9)

(K] = IXT(K)IX] = (2]
{F(t = [XIT{F()

In this study, the solution of Eq. 2-7 is carried out iteratively, as shown in Table 2.1, using
Newmark-Beta average acceleration method. The nonlinear term, {F(1)},” is evaluated by
computing the geometric displacements and velocities only at the DOF where nonlinear
behaviour or added damping occur. In a large structurai system with localized nonlineanties
described by few DOF, this strategy will result in substantial computational saving as compared
to the direct integration of the original equation of dynamic equilibrium. Moreover, the time-step
required by vector superposition will generally be greater than that required by the step-by-step

method of the original system of equations.
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Table 2.1. Pseudo-Force Method (PFM).

A- INITIAL CALCULATIONS:

1- Compute transformation
vectors:

2- Compute damping coefficients
a and b, and form damping
matrices {C], [C],:

3- Reduce the system of
equation:

4- Form effective stiffness:

B- FOR EACH TIME-STEP:

1- Form effective load vector:
initialize i=1, {au,}={0}
2- Reduce load vector:

3- Solve for incremental
displacements:

4- Accumulate incremental
displacements:

5. Compute incremental
velocities and accelerations:

6- Update motion:

7- State determination:

8- Equilibrium check:

9- Proceed to next time-step.

[K1IX] = [@?]{M][X] for eigenvectors
Table 2.3 for LD vectors

[C], = a{M] + by{K], Cl

[K) = IXITIK)IX]
M]° = IX)TIMIIX) = 1))

[C) = IX)[C)IX]

[KI* = KT} +

4 .« . 2¢Ap
AFWl + 43iCl

(F() =(aF()} + [Ml(f—tllﬁ(f)l +2lt7(t)l) +2[Cl{u(h)}
where {AF(t)} = {F(t+At)} - {F(t)}
(A = TR

[RI'{a Y} = (F(1)
{au} = [X){a Y}

{ay () = {ay, (0} +~ {au}

(ad(1)) - f—,{Au,(rn - 2(u(1)

st 4 K. TP
(aa(n) = —alau(n) - a0} - 2{a)

(w(t+A) = {u(t)] + (Au(t)}
(d(ean) = (a(n) + (ad(r))
(G(t+An) = (@D} + (AG(D)

R(t+at) = (K], + [K],) {u(t+ At))

(RES} = {F(t+A1)} - (R(t+A1)
- (IC), +[C) ) {u(t+at)) - [M){a(t+at))
IF {RES)I, > TOL i=i+1 GOTO 2 with {#(t)} = {RES)
< TOL CONTINUE

13




2.3.2 Tangent Spectrum Method (TSM).
in the Tangent Spectrum Method, the transformation vectors are updated at each time-
step when nonlinear behaviour 1s detected in the solution. The equilibrium equation In

generalized coordinates using [M]-orthonormal tangent vectors, {X],, can be wriiten as:

IXITIMIXIAY() + IXEICLIXLAYC) + IXIIRLIXIY) = XIF)

(Y(1) + [CL{Y()) + [KIFIY(D)} = (F(t)

The tangerit solution strategy developed in this study is summarized in Table 2.2. Equilibrium
iterations can be optionally performed in the system of equation expressed in generalized
coordinates. The equilibrium unbalance can be compensated by computing the acceleration
vector from the condition of dynamic equilibnum expressed in geometric coordinates as
described in step B-10 in Table 2.2. This strategy provides a stable tangent solution, however
the acceleration and velocity may tnen differ significantly from the exact solution using a
complete vector basis. From preliminary analyses, it has been found that a single update by
time-step can resuit in a good approximation of the exact response. It has also been observed
that the TSM 1s much more accurate when the update is performed at the second iteration as
compared to a strategy that performs an update at the first iteration when nonlinear behaviour

has been detected.

2.4 SELECTION OF VECTOR BASIS
The elastic, [X], or tangent, [X],, transformation vectors can be computed from the

n x n undamped free-vibration eigenproblems:

[K1IX] = [@®)IMIEX]  or  [KIEX), = [@®]IM](X], (2-17)

When thie vector basis, taken as eigenvectors, is truncated to r vectors ( with r << n), it has

14




been shown that a better response I1s obtair-ud for the PFM if a static cotrection 1s considered
to compensate for the flexibiity of the higher modes ignored in the superposition (Hanna 1989,

Muscolino 1989). This static correction can be taken into account as (Léger and Wilson 1988)

() = X0, (61 + (K1 - DT XD (F() (212)
or  {u(t) = XL AXIY(D) « [KIC(F() - X0, UXYTR(DY IMI(X)) (2-13)

where {X} I1s the eigenvector corresponding to the I” frequency. In Eqs 2-12 and 2-13, the first
term corresponds to the modal superposition of generalized coordinates {Y }, with 1 ranging from
1 to r. The second term is a full static solution from which the contnibution of modes 1 to r 1s
removed. Léger and Wilson (1988) have demonstrated that using etther Eq 2-12 or 2-13 to take

into account a static correction in mode superposition IS equivalent.

Alternatively, load dependent transformation vectors generated by an inverse iteration
type of scheme from the fixed spatial distribution of the seismic load can be used for [X] or [X],
The algorithm to generate the load dependent vectors 1s shown in Table 2 3 (Léger and Wilson
1987). These vectors will include directly in the basis the static correction for the truncation of
higher modes in superposition, and can be generated at a fraction of the computational cost
required to obtain exact eigenvectors. For linear earthquake response analyses based on vector
superposition methods, an effective mass corresponding to the part of the total mass responding
to the earthquake in each vector, is commanly used as an indicator of the relative connbution
of a particular vector to the global structural response. The cumulative effective *modal* mass,
for a truncated set of r [M]-orthonormal sigen or load-dependent vectors ts:

2

o o Xt Pl ooe (2-14)

TN TIMI)
where:

Py = {X)TIM){r) (2-15)

The value of e, can be monitored directly during the vector computation process. An appropriate
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value, corresponding to 90% to 95% of the total mass, can be used to define a cutoff criterion
in order to stop generating new vectors when a good representation of the spatial distribution

of the earthquake load has been achieved.

Table 2.2, Tangent Spectrum Method (TSM).

A- INITIAL CALCULATIONS:
Perform operations described in block C-TANGENT PROPERTIES.

B- FOR EACH TIME-STEP:

1- Form ffective load vector: (U1} = (AF(D) + M)} » 20(e)) + 21C, o)
where (AF(?)) = (F(t+At)} - (F(t)}

Initialize i=1, {Au,}=0
2- If i=2 and a change of basis is required, perform block C- TANGENT PROPERTIES
3- Reduce load vector: (RO} = X[ (F{t)}

4- Solve for incremental (K1, {aY)) = (F(t)}
displacements: (Au) = [X],{AY)

5- Accumulate incremental {Au N} = {Au_ (D)} + {Aud
displacements:

6- Compute incremental {A(t)) = f—,mu,(r» - 2(u(1))
velocitias and accelerations: . 4 4 .. .
(831} = =2 (au(n) - (a0} - 2(6(1)

{u(t+At)) = (u(1)) + (Auft))

{u(t+An)} = {u(e)} + (Aa(t))
(a(e+an) = {a(0)} + (ad(0)

7- Update motion:

8- State determination: R(t+4at) = [K](u(t+Al)}

It i=1 and a member changes state, an update of the basis is required.
—_ . (RES} = {F(t+At)} - {R(t+At)}
9- Equilibrium check: - IC],{I.I(“'A')} - [M](ﬁ(h'At))
IF {RES)|, > TOL i=i+1 GOTO 2 with {F(t)} = {RES)

s TOL CONTINUE
10- reestablish equilibrium: {a(t+at)) = [M]' ({F(t+a1)} - {A(t+AL)} -[Cl{u(t+A1)})

11- Proceed to next time-step.
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Table 2.2. Tangent Spectrum Method (continued).

C-TANGENT PROPERTIES:
1- Compute tangent vector (KX = [@*LIM][X], for eigenvectors
shapes: Table 2.3 for LD vectors

2- Compute damping matrix: IC); = a,{M] + biK], + byiK],

(if required)

K] = [XVIKLIX),
M]" = IXITIMIIX], = (1)

3- Reduce [C) = IX)ICLIX),

equation:

the system of

(71" . 4 » 2 .
4- Form effective stiffness: Kl = [K) + E;Wl + 7;':[0]'

Table 2.3. Load dependent vectors (LD).

1- Dynamic equilibrium equation: [M{a} + [Cl{a} + [K){u) = {£(s)}g(2)
[K) = {L)1D)IL]

(KI{lp) = (A(s)}

2- Triangulanize stiffness matrix:
3- Solve for inttial static deflected shape, {U,}:

4- Solve for Ritz vectors i=1,...,r-1: [K]{)?,} = [M){U_}

¢ = {X}" [M] (X}

{M]-orthogonalization
(skip for i=1)

[M]-normalization
update static vector

X} = (X} - I} X}
v = ((X)7 [M] (X))
X)) = (X}-11v

Cw = (U} [M] (X}
(U} = (U} - ey X))

5- Add static residual,{U,.,}, as static correction
vector, {X}:

b, = ({U,.,)" M} (U...)'?
(X} = {Upq) 11k,

6- Orthogonalize vectors witi1 respect to stiffness

, (K1 = 1T (K (X
matrix;

solve r x r eigenvalue problem
calculate orthogonal Ritz vectors

(1K) -laf (1) 1Z] = [0]
X = (X112)
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2.5 COMPUTER IMPLEMENTATION OF NONLINEAR SOLUTION ALGORITHMS

A FORTRAN computer program has been developed to integrate the solution algorithms
presented in Tables 2.1, 2.2 and 2.3. The program i1s also capable of carrying the solution in
geometric coordinates if the transformation to a reduced system of equations is ignored. Many
computational vanants are possible depending if the coordinate transformation decouples the
reduced system or not. This is a function of the type of damping model retained, and aiso of the
[K]-orthogonality of the [M]-orthonormal vector basis that is not a mandatory requirement for the
validity of the proposed solution strategies. The program has been developed using the
Newmark-Beta method to solve either coupled or uncoupled reduced systems, and maintain a
high degree of compatibility between the PFM, TSM, and the solution in geometric coordinates.
Extensive post-processing options have been provided to tabulate and interpret the various

rionlinear response indicators considered in the study.
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CHAPTER 3
INDICATORS TO CHARACTERIZE NONLINEAR BEHAVIOUR

This chapter presents the indicators used tc monitor the structural response obtained
from various algorithms to solve nonlinear seismic problems. These indicators can be classified
into two categories. The first category relates to the time-histories of response parameters such
as displacements, internal forces, ductility, and penods of vibration. The intensities of the time-
history responses are characterized by the maximum values of these parameters over the
duration of the event. The second category relates to cumulative effects such as hysteretic
energy dissipation, and total number of yield excursions. Both categories are required to quantify
the level oi anticipated seismic damage, and are used extensively in earthquake resistant design

and analysis of structural systems.

3.1 EVOLUTION OF TANGENT MODAL PROPERTIES

One advantage of using tangent modes superposition in nonlinear dynamic analysis 1s
the ability to follow the evolution of the modal properties. This provides a rationalization of the
nonlinear behaviour of the seismic response in an elastic format. Moreover, it permits a better
control on some parameters of the nonlinear solution such as the number of modes that should

be retained in the superposition.

The evolution and maximum values of the periods of vibration in a seismic analysis can
give a good indication of the severity of the nonlinear response of a structure durnng an
earthquake. Furthermore, for elasto-plastic type of resisting elements, the periods of the structure

will increase as the structure becomes nonlinear. Therefore it will generally attract less seismic
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load. One can thus rationalize the importance of dynamic modification of the structural properties
on the reductiun of seismic load. Dipasquale (1989) proposed the following damage index based
on the maximum fundamental period, T, ... feached by the nonlinear solution:
5 = 1 - Doiste (3-1)
T max
where & represents a global damage index that reflects the importance of the softening effect

produced by plastic deformations.

3.2 DISPLACEMENT DUCTILITY

The displacement ductility demand of a member with hysteretic behaviour 1s used as an
indicator of the severity of the nonlinear response. Many modern codes uses the ductility
concept in reducing the seismic design force to account for the ability of the structures to
deform inelastically. The displacement ductility is defined as the ratio of the member relative
displacement during a yield excursion normalized by the yield static displacement, AU, as
shown in Figure 2.2. Only the maximum absolute value of the ductility demand of each member

will be retained in the nonlinear analyses.

3.3 ENERGY INDICATORS

Energy balance considerations are used extensively to characterize the behaviour of a
structure that experiences nonlinearities during an earthquake (Uang and Bertero 1990; Conte
et al, 1990; Hadidi-Tamjed 1988). The energy reflects the interaction of the displacements and

related forces since it is the product of those two parameters.

3.3.1 Energy balance
The energy calculations are performed using the *absolute® energy equation, (Uang and

Bertero 1990). The dynamic equation of equilibrium in its absolute form is writen as:
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(MI{a} « [C)a} + {AR(t)} = O (3-2)

where [M] is the mass matrix, [C] is the damping matrix, {R({t)} 1s the vector of nonlnear
restoring force, and u, is the absolute structural displacement given by the sum of the relative
displacement, u, and the ground displacement u,. Integrating Eq. 3-2 with respect to the

displacement, we get the following energy balance expression:

[aM1{@nT(du} + [(ICHE)T(du) « [(R(t) (du} = 0 @-3)

replacing {u} by { {u;} - {u;} ) in the first term of Eq. 3-3:

[M1ENTIw} = [AMUGNT(du) ) = [(AMISGNTidu) - [AMIENTIdu,)

)M

5 - [(MI(a) () 3-4)

substituting the result of Eg. 34 in Eq, 3-3:

AN

5+ JUCHM(du) + [(R(NT(du} = [(IMUG) (du,) @-5)

in Eq. 3-5, the kinetic energy is:

(&) TIM) G} (3-6)

Edt) =

using {du} = {Uu}dt, the damping energy becomes:

Ep() = [(CNaNTIdw} = [ 1a)TIC arar (37

and the input energy becomes:

E(1) = [(IM@)(du,) = [ g ) IMNa)ar (3-8)
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It should be noted that using the absolute energy equation yields expressions for the input
energy, E, and kinetic energy, E,, that include the effects of rigid body translation of the
structure. Finally the resisting force, R(t) of each element i is composed of recoverable strain
energy, E, and dissipated or irrecoverable hysteretic energy, E,,. Refering to Figure 2.2, the
strain energy, E, for the total number of elements, nel, is:

nel nel R
Es(1) = §ESI(‘) - 2. ELI(?:_: (3-9)

and E, is computed as follows:

£ - Eut-an . 3 2EMCAD 14Uk - dult-A0 1y

[Au(t) - Au(t-At)]

()]
. H,(l-At)‘AU,(f—Af) _ H,(f)‘AU,(f) (3.10)
2 2
where K, is the current stiffness of element i. Finally Eq. 3-3 yields to:
E(t) = Exlt) + Ep(t) + E5(t) + Ey(t) (3-11)

with all terms described in Eqs 3-6 to 3-10. it should be noted, regarding Eqgs 3-6 to 3-10, that
the kinetic energy and recoverable strain energy are instantaneous quantities, while input

energy, the damping energy, and the hysteretic energy are cumulative quantities.

Since all energy terms are computed individually, the error in energy balance can be
used as a global indicator of the equilibrium acheived by a solution strategy. The normalized
error in energy balance, EEB(t), can be defined as:

j EI(‘)'El((t)'ED(t)"EHU)'Es(') I (3_12)
| EX) |

The value of EEB(t) should be very small to ensure the reliability of seismic response indicators

EEB(t) =

produced by a specific strategy.



3.3.2 Energy dissipation

The ratio of hysteretic energy to the amount of input energy, E,/E, is computed for each
analysis at the end of the earthquake record. For inelastic systems, the values of the kinetic and
strain energles are generally small as compared to the damping and hysteretic energies at the
end of the earthquake. The total input energy at the end of the ground motion, E, is therefore
approximately equal to the total dissipated energy, TOE, given by the sum of E, and E,,. Thus,
the ratio E,/E, can be also interpreted as the ratio E,/TDE indicating the relative importance ot

the hysterests response mechanism on the total energy dissipated.

3.3.3 Rate of energy dissipation, power

Various indicators related to the rate of energy (power) responses are also computed.
These quantities indicate how fast the energy is imparted and dissipated by the structure. It has
been postulated by Conte et al. (1990) that a low and uniform, or a highly variable, spiky, rate
of hysteretic energy dissipation must respectively correspond to different levels and types of
damage. Much research works remain to be done in this area, it is therefore important at this
stage to study the influence of the mathematical mode! adopted for the viscous damping on the
power response. The power indicators are adanted from Conte et al. (1990). They are defined
as the maximum positive rate of normalized earthquake input energy, P, the maxmum rate of
normalized hysteretic energy dissipated, P, and the maximum rate of normalized viscous

damping energy, Py, given as:

P, = max| ELD.___1 (3-13)
a (AU){R,}

P, - max| 1| (3-14)
o (aUR,)

Py - max| %ol 1| (3-15)
? @ {aUNR,)
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where {R,} is the vector of yield force of the members equal to the seismic lateral design forces
of the multistory buildings for a force reduction factor R=1, and {aU,} is the corresponding yield

displacements as shown in Figure 2.2.

3.4 YIELDING SEQUENCE

The yielding sequence plays a very important role in evaluating the potential damage
of a structure due to cumulative effects such as low cycle fatigue. The number of times that a
member yields combined with the ductility demand provide indications about the type of damage
that can occur. A large number of yield excursions combined with low ductility demand is likely
to produce fatigue type of damage. On the other hand, few yield excursions with a high ductility
demand will produce damage by lost of capacity. In this study, the number of yield excursions
and the ductillity demand are analysed as separate parameters. Some relatively complex

indicators have been developed to link these two parameters (Hadidi-Tamjed 1988).
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CHAPTER 4
SYSTEMS ANALYSED

This chapter presents the MDOF structural systems developed to perform numerncal
applications. The structures are designed according to National Building Code of Canada 1990
(NBC 1990). The seismic loads consist of three well known earthquake acceleration records that

have been grouped around the NBC 1990 elastic design spectra by a proper scaling method.

4.1 STRUCTURAL MODELS
The muiltistory buildings are represented by typical MDOF *shear beam* structures as
shown in Figure 2.1. In this model, the number of DOF carresponds to the number of stones.

Seven buildings with 1, 3, 5, 10, 15, 20 and 25 DOF are considered for numerical applications

4.1.1 Element action-deformation model

The type of structural element action-deformation model used in the analysss is a
bilinear hysteretic model as shown in Figure 2.2. Since only matenal nonlinearities are
considered, the bilinear hysteretic model simulates the interstory resisting force of the members.
This type of element has the ability to store strain energy and to dissipate energy irough
hysteretic behaviour. The hysteretic energy dissipated by this type of element 1s computed from

Eq. 3-10 and is represented schematically by the area enclosed by the solid curve on Figure 2.2.

4.1.2 Design procedure
Seismic provisions of the National Building Code of Canada (NBC 1990) are used to

design the structures. in NBC, the total minimum lateral seismic force, that is used with a load
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factor equal to 1, is given by V = (Ve / R) U where Ve is the equivalent lateral force at the base
of the structure representing the elastic response. The base shear is distributed over the height
of the structure by an inverted triangular distribution plus an additional force at the top as shown
in Figure 4.1. The parameter R is the force modification factor to account for nonlinear ductile
behaviour, and U 1s a calibration factor representing the desired level of protecticn based on
experience. The value of R ranges from 1, for non-ductile structural systems expected to remain
elastic under the design earthquake ground motion, to 4 for ductile moment resisting frames with
good seismic detailing. For SDOF structures, the value of R is directly related to the
displacement ductility demand of the systems. The total force reduction from the elastic level can
be interpreted as the product of a global ductility tactor equal to R, and an overstrength factor

equal to 1/U,

ld Y
Vv
—-

Figure 4.1. NBC pseudo-static earthquake loading distribution.

The structures are assumed to be located in Victoria, B.C. considering a peak ground
velocity (PGV) of 0.26 m/s and a peak ground acceleration (PGA) of 0.26 g. The structures
analyzed are designed for an actual base shear equal to V/U to consider the effect of
overstrength on the nonlinear response (Uang 1991). A nondimensional parameter, 1, can be
used to characterize the strength of each structure. The parameter 1 is expressed as the ratio
of the design base shear at yield, V/U, to the maximum effective force applied during the

earthquake:
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(4-1)

where M is the total mass of the system and U, is the PGA expressed in consistent units with

the mass.

The design procedure can be summarized as follows:

1. Assume a uniform "unit® mass of 100 kN-sec?/m at each floor.

2. Compute the total minimum lateral seismic force at the base of the structure
considering overstrength V/U. The fundamental period of vibration is assumed equal
to 0.1N as specified by the code.

3. Compute the lateral distribution of the seismic load V/U over the height of the
structure according to NBC.

4. Take the yield forces equal to the story shears.

5. Assume a linear variation of the stiffness over the height of the structure.

6. Adjust the top and bottom stiffness to give almost equal inter-story dnfts ai the top
and bottom of the building when loaded by the NBC pseudo-static load (Figure 4.1)

7. Scale all stiffness coefficients to obtain a fundamental period of vibration equal to
0.1N where N is the number of stones.

8. The properties of the strongest member are taken for grouped members. For
structures with a large number of stories, keep the properties unchanged for two or
three stories.

9. Verify that the interstory drift limitation specified by the code is met.

4.1.3 Structural propertles

The procedure outlined in the previous section is applied to the 1, 3, 5, 10, 15, 20 and
25 DOF structures to define the properties of the members. Table 4.1 lists the initial stiffness and
the yield force of each member or group of members for all structures. The yield forces in this
table correspond to a force modification factor, R=4. Those values should be muitiphed by 4 to
obtain R, for R=1, by 2 to obtain R, for R=2, and so on. Since the method used to scale the
earthquakes does not give unform PGA for the three earthquakes, the strength parameter, 1),

is varying from an earthquake to another, The values of n are listed in Table 4.2.
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Table 4.1. Properties of structures analyzed.
No of Level' Ko 2 No. of Level' Ko R?
stories (kN/m) (kN) storles (kN/m) (kN)
1 1 395000 191 20 1-2 231000 1352
34 211750 1336
3 274000 540 5-6 192500 1293
205000 450 7-8 173250 1236
137000 270 9-10 1540C0 1183
11-12 134750 1048
5 1 245700 676 13-14 115500 920
2 210600 631 15-16 96250 71
3 175500 541 17-18 77000 599
4 140400 406 19-20 57750 405
5 105300 225
10 1-2 248000 957 25 1 232000 1513
34 201500 908 2-4 220400 1509
5-6 155000 795 57 197200 1474
7-8 108500 617 8-10 174000 1405
9-10 62000 374 11-13 150800 1301
14-16 127600 1163
15 1 252000 1172 17-19 104400 991
23 224000 1163 20-22 81200 783
4-5 196000 1119 23-25 58000 541
6-7 168000 1041
8-9 140000 927
10-11 112000 779
1213 84000 505
14-15 56000 377

' Each levei has a mass of 100 kN-sec?/m.
%R, is given for R=4, 2R, corresponds to R=2.

Table 4.2.

Number of
stories

10
15

25

Earthquakes
El Centro Parkfield Taft
n n n
0.59 0.72 0.51
0.58 0.68 0.48
0.42 0.51 0.36
0.29 0.36 0.25
0.24 0.30 0.21
0.21 0.26 0.18
0.19 0.23 0.16
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4.2 EARTHQUAKE LOADING
Three earthquakes have been selected to perform the numerical analyses. Since the
structures are designed according to the NBC 1990, the earthquake records are scaled such

that they fit as well as possible the elastic response spectra of the NBC 1990.

4.2.1 Selected earthquakes

The selected earthquake accelerograms represent different types of seismic loading. The
SO00E component of the 1940 El Centro earthquake contains a broad range of frequency The
N6SE component of the 1966 Parkfield earthquake is representative of a single pulse loading.
Finally the S69E component of the 1952 Taft earthquake contains high frequency loading and
strong shaking is of long duration. The first 20 seconds of all records are considered. The three

unscaled earthquakes are shown in Figure 4.2,

4.2.2 Scaling method

The scaiing method proposed by Schiff (1988) is used to group the elastic spectra of
the earthquakes around the NBC elastic design spectra corresponding to a zonal velocity to
acceleration ratio equal to unity and a PGV=0.26 m/s. The three earthquakes are first scaled
such that they have the same spectral intensity, Si,, in the velocity range. The spectral intensity
is defined as the area under the curve of the elastic spectra normalized by the specified

frequency range:

= ___1____ T30 . 4'2
Sl = 35755 Jros PSATYAT (a-2)

where PS, is the pseudo velocity for 5% damping, and T is the period in seconds. This gives a
first scaling factor, F,, for each accelerogram that tends to group the records together in the
medium and long period range. The three accelerograms are then scaled by a unique scaling

factor, F, to position them around the NBC elastic spectra. The scaling factor, F,, 1s computed
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by dividing the spectral intensity in the acceleration range, Si,, of NBC by the average of S|, for

the three accelerograms already scaled by F,. Sl, is given by:

_ ____1__ T=0.5 . 4.3
Sh = 557028 [z PS(T) AT (4-3)

where PS, is the pseudo absolute spectral acceleration for 5% damping.
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Figure 4.2,  Selected earthquakes.

Table 4.3 gives the intensities and the scaling factors for all accelerograms. The last

column of Table 4.3 gives the PGA of the scaled records. Figure 4.3 shows the spectra for the
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three scaled accelerograms compared with the NBC spectra. Figure 4.3d shows the average
and the envelope of the three scaled records compared with the NBC design spectra. It is
observed that a very good agreement between the earthquake response spectra and the NBC
design spectra is obtained from this scaling method even if there is some vaniations in the shont

period range (T < 0.5 sec).
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Figure 4.3. Scaled Earthquake spectra.
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Table 4.3. Scaling factors for the earthquake records.

S, F, S, F, PGA (g)
El Centro 0.613 1.73 1.246 0.3316
Parkfield 1.059 1.00 1.216 0.55 0.2691
Taft 0.273 3.8 1.676 0.3829
NBC 1990 0.764
32




CHAPTER 5
NONLINEAR SEISMIC RESPONSE USING VECTOR

SUPERPOSITION

The performances of the algonthms based on the Pseudo-Force Method (PFM) and
Tangent Spectrum Method (TSM) that have been developed in chapter 2 are investigated in this
chapter. The main objective of this study s to assess the effects of the truncation of the vector
basis on nonlinear response parameters described in chapter 3. The accuracy and the numerical

stability of the algonthms are investigated.

The 5-story and 25-story buildings subjected to the scaled El Centro earthquake are
used for the analyses. To maintain compatibility between the PFM and the TSM, the viscous
damping is taken as Rayleigh type based on the initial elastic properties of the systems. The first
mode and the mode at which 95% of effective modal mass is included in the solution are
damped at 5% critical. The yield forces are those corresponding to a force reduction factor, R,
equal to 4. A strain hardening ratio, a, of 10% is considered for all the members in both

structures.

5.1 TANGENT SEISMIC RESPONSE ANALYSIS
The use of a tangent solution algorithm to perform a nonlinear analysis in generalized
coordinates provides several advantages such as those described in the introduction of this

thesis. The additional informations available from the tangent modal properties allow to develop
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a better understanding of the nonlinear behaviour.

5.1.1 Evalutior. of tangent modal properties

Figure 5.1 shows the input accelerogram, and an example of the variation in the
fundamental period of vibration, and the number of modes required to maintain 95% of effective
modal mass in the solution using the TSM-MDM for the 25-story building. The instantaneous
period of the first mode increases from 2.5 sec for elastic response to a maximum of
approximately 6.8 sec when the system responded inelastically. For elastic response, modes 1
to 5 should be included to maintain 95% of effective modal mass while for inelastic response this

range increases to modes 1 to 10.

5.1.2 Performance of tangent solution

Figure 5.2a illustrates the numerical stability of the TSM-MDM using At=0.01 sec with
equilibrium iterations for the 25-story building. When a complete basis is used, the solution
where {0} is computed from the integration operator is numerically stable. When a truncated set
of vectors is used, instability soon appears after the first change of basis as shown by the top
displacement response using 11 vectors. The addition of 6 vectors only delays the time at which
the instability arises as shown by the response considering 17 vectors. This instability is due to
the inability of the updated truncated vector basis to represent accurately the initial conditions
computed from the previous time-step considering a different basis. It is possible to obtain a
stable solution by computing {G} from the condition of equilibrium at the end of each time-step.
However depending on the number of vectors considered, the accelerations, {u} and the
velocities, {0}, might significantly deviate from the solution carried out with a complete basis. It
should be noted that restoring equilibrium at the end of each time-step also provides some form

of correction for the lack of equilibrium introduced by the truncation of higher modes.
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Figure 5.1, Input motion and evolution of tangent modal properties for 25-story
building.

(a) El Centro accelerogram.
(b) Evolution of fundamental period, T,.

(c) No. of modes for 95% of effective modal mass.
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(b) Ductility demand for solution without equilibrium iteration.

(c) Ductility demand for solution with equilibrium iterations.
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Figures 5.2b and 5.2c show the effect of equilibrium iterations on the peak ductility
demand considenng the TSM-MDM strategy with different time-steps. The solution without
iteration, as shown in Figure 5.2b, is sensitive to the selected time-step specially in the bottom
stories. When equilibrium iterations are used, as shown in Figure 5.2c, the response Is aimost
independent of the time-step. An accurate response is abtained using At as large as 0 02 sec
corresponding to the time interval used to descrnbe the input earthquake accelerations. The TSM
with equilibrium iterations is therefore very advantageous to limit the number of basis update

during the solution as shown in Table 5.1.

Table 5.1. Effects of equilibrium iterations and time-step on the number of basis updates.
Method Time-step Number of basis updates
At (sec) with iterations without iteration
TSM-MDM 0.02 102 142
0.01 140 255
0.005 164 500
0.002 201 927
TSM-LDM 0.02 99 152
0.01 133 258
0.00& 164 500
0.002 216 1033

The use of the TSM-LDM considering 17 vectors, required for energy convergence,
decreases the CPU time by a factor of about two with respect to the TSM-MDM. The CPU time
for the TSM-MDM is obiained by using the Lanczos method as the eigensolver. For a large
structural system this difference would be much more significant, especially if the more robust
subspace iteration algorithm 1s selected as the eigensoiver. For this small system, no significant
CPU time differences are observed between the PFM-MDM and the PFM-LDM since the vector
basis is computed only once. The PFM solutions require approximately 15% and 30 % of the

TSM-MDM and TSM-LDM execution time, respectively.
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5.2 EFFECTS OF VECTOR BAS!S TRUNCATION

5.2.1 Convergence of nonlinear response Indicators - 25-story bullding

Figure 5.3a shows the time-history response of the top displacement using the TSM-
LDM. A very good agreement is obtained for large-amplitude displacement oscillations
considering only 5 vectors. For low-amplitude oscillations there is minor deviations from the
‘exact’ response using 25 vectors that was found virtually identical with the solution in geometric
coordinates. Figure 5.3b shows the force response in level 20. The 5-vector solution misses all
the peak force responses. The 11-vector solution is almost identical with the "exact* force
response. Further investigations have shown that for the systems analyzed, the ductility demand
computed from truncated vector bases follows closely the convergence characteristics of the
force response. Therefore, in subsequent comparative analyses, the emghasis 1s put on the

ductility demand and the energy response.

Figure 5.4 describes the effect of the number of transformation vectors on the peak
ductility demand for different solution strategies applied to the 25-story building. A time-step At
= 0.01 sec and equilibrium iterations are used in all analyses. The results shown in Figure 5.4a
and 5.4b indicate that the peak ductility response is quite sensitive to vector basis truncation
when the PFM is used. The solutions computed using eigenvectors, PFM-MDM, and load-
dependent vectors, PFM-LDM, yield comparable global performances. The truncated PFM-MDM
ductility response is more accurate in the top stories while the PFM-LDM response is more
accurate in the bottom stories. Figures 5.4c and 5.4d indicate that the peak ductility responses
based on the TSM is much less sensitive to basis truncation than the solutions obtained from
the PFM. Excluding the solutions carried out with 5 vectors, it is shown that the MDM and the

LDM yield almost identical results.
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Figure 5.5 shows the convergence of nonlinear response indicators for different solution
strategies. For the ductility, u, the total hysteretic energy, E,, and the damping energy, E,.
dissipated at the end of the earthquake, the resuits are given in terms of the relative error with
respect to the solution using a complete basis. For the error in :nergy balance, EEB, the
maximum value of Eq. 4-12 muitiplied by 100% is used. Figure 5.5a shows the convergence of
the ductility demand in level 20 that is representative of the response in the upper region of the
building. For solutions using from 5 to 17 vectors, the type of vectors considered does not
influence significantly the results. For the PFM-MDM, 17 eigenvectors produce an error of 1 %
while 25 vectors are required to get the same accuracy by the PFM-LDM. For a story level

representative of the bottom part of the structure, opposite results are observed as shown in

Figures 5.4a and 5.4b,

Figure 5.5b indicates that E,, is not sensitive to modal truncation if the TSM is used. The
E,, error i1s larger when the PFM is used instead of the TSM although the values remain below
10% for any solution considering more than 5 vectors. Figure 5.5¢ shows the error in energy
dissipated by viscous damping. The behaviour of the PFM and TSM solutions are very different
In the case of the TSM, the computation of the acceleration vector from equilibrium condition
introduces a significant error in the acceleration and velocity when a relatively small number of
vectors is used. A solution using 17 vectors provides an E, error below 10% using either vector
bases. When the PFM is used, the E;, error is not sensitive to basis truncation since there is no
change of basis. Figure 5.5d indicates that the EEB error follows the convergence pattern of the
E, error. A value smaller than §% should be obtained to ensure a reliable global performance
of a particular solution strategy. However, this does not guarantee accurate resuilts for local
response indicators such as story ductility demand. Contrary to elastic analyses, the criterion
of 95% effective modal mass to obtain a reliable global response 1s found inapplicable to elasto-

plastic systems.
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5.2.2 Convergence of nonlinear response indicators - 5-story building

Figure 5.6 describes the effect of the number of transformation vectors on the peak
ductility demand for different solution strategies applied to the S-story building. The resuilts
indicate that the ductility response is not very sensitive to vector basis truncation when the PFM
is used. It should be noted that this method misses all the peaks in ductility demand for the 25-
story building and that for this fairly rigid structure there is no sharp peak in story ductility
demand. The PFM-LDM produces accurate results considering only 2 vectors in the basis.

Figures 5.6¢c and 5.6d show the very poor behaviour of the TSM for short-period structures.
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Figures 5.7a and 5.7c indicate that for stiff low-rise structures a nearly complete vector basis
should be considered to obtain accurate results using the TSM. Figures 5.7b, 5.7c and 5.7d

show similar trends to those observed for the 25-story building.

5.3 CONCLUSIONS
In this chapter, the performance of the Pseudo-Force Method (PFM) and the Tangent
Spectrum Method (TSM) have been investigated for inelastic seismic response analysis of MDOF

structures. The mode displacement (MDM) and the load dependent method (LDM) have been
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used in comparative analyses. A fiexible 25-story, and a stift 5-story builldings with bilinear
hysteretic behaviour have been considered. The emphasis has been put on the evaluation of

ductility demand and energy indicators that are considered for seismic damage evaluation.

For the fiexible 25-story building, the TSM can evaluate the peak ductility demand within
10% of the "exact* resuits using 11 vectors with either the MDM or the LDM. However, the
incompatibility between old and updated truncated vector bases requires the computation of the
acceleration vector from the equilibrium condition at the end of each time-step. This corraction
ensures numerical stability of the solution, but the velocity and acceleration can stil be
inaccurate. Seventeen vectors should then be considered to obtain an error level below 10%
on the damping energy and energy balance. The equilibrium iterations are found to be very
important to provide a good convergence of the response with a large time-step thus mimmizing
the number of basis updates. The LDM should be used since the computational effort to

generate transformation vectors is much less than that required to generate eigenvectors (MDM).

The PFM is more stable, and requires much less computational effort than the TSM.
However, it can not provide any information on the evolution of tangent modal properties in time.
For a flexible structure, the ductility demand computed from the PFM 1s found more sensitive to
basis truncation than those computed from the TSM. However, the opposite behaviour i1s
observed for the stiff, 5-story structure, where the TSM is found very sensttive to basis truncation.

In this case, results within 10% of the *exact® solution can be obtained from the PFM with a basis

of two load-dependent vectors.

Although the PFM is much more computationally effective than the TSM, recent
advances in computer vectorization/parallelization of solution algorthms make this solution

technique possible on larger systems than those considered in this study. The TSM might
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emerge as a valuable tool in earthquake engineering to further improve the understanding and

rationalize in a linear format complex nonlinear response mechanisms.

46




CHAPTER 6
MATHEMATICAL MODELS FOR VISCOUS DAMPING

This chapter describes different mathematical models of viscous damping suitable for

nonlinear seismic response analysis. Eight damping models are derived from Rayleigh type

damping formulation.

6.1 INFLUENCE OF VISCOUS DAMPING ON ENERGY ABSORPTION

The seismic input energy imparted to a structure is equal to the sum of the kinetic
energy, the strain energy, the energy dissipated by hysteretic action of the structural elements,
and by other non-yielding mechanisms usually represented by equivalent viscous damping. It
is generally postulated that a structure can survive major earthquakes if the structural energy
absorption capacity is greater than the seismic input energy (Kuwamura and Galambos 1989,
Housener and Jennings 1977). The seismic energy dissipation and related damage models of
SDOF systems have been studied by many researchers (Conte et al. 1990, Fajfar and Fishinger
1990, Fajfar et al. 1989, McCabe and Hall 1989, Wu and Hanson 1989, Hadidi-Tamjed 1988,
Tembulkar and Nau 1987). Most seismic codes are using force modification factors, that reflect
the capability of MDOF structure to dissipate energy through inelastic behaviour, to reduce the
seismic forces obtained from linear elastic design procedures. This philosophy generally implies
that significant structural and economic damages will be incurred. Zahrah and Hall (1984) have
observed that damping has Iittle effects on the amount of energy imparted to a structure by an
earthquake, and that damping significantly influences the amount of hysteretic energy available
for damage. Various devices have been proposed to increase significantly the effective damping

of building structures to limit or eliminate seismic structural damages (Pall and Marsh 1982).
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The effect of viscous damping on the seismic response will be influenced by the
mathematical model selected for its representation. The damping can be modelled using mass
proportional, stiffness proportional or Rayleigh damping computed either from the inttial elastic
or the tangent inelastic system properties. Otani (1980) compared the experimental nonlinear
seismic response of a three-story small-scale reinforced concrete structure with the response
obtained from numerical models. Damping matrices proportional to the mass and to the
instantaneous stiffness matrices were used with the proportionality coefficients computed from
the initial elastic properties. A fair agreement between the experimental results and the numerical
results using either damping model, was obtained for the large-amplitude displacement
oscillations at the roof. For low-amplitude oscillations, the stiffness proportional damping model

provided better correlations with the experimental results.

6.2 DAMPING MATRIX FORMULATION

The effects of non-yielding energy dissipation mechanisms are typically represented in
MDOF structures by viscous modal damping ratios varying between 0.1% to 7% cnitical. Because
the nature of damping is difficult to quantify analytically, experimentation is used to determine
the damping characteristics inherent to various types of structures. Note that damping is often
increased in linear analysis to approximate energy losses due to anticipated inelastic behaviour.
These increased damping values should not be used in rigorous nonlinear analysis since some
losses will be counted twice. The following Rayleigh-type damping representation is used
extensively for the linear and nonlinear analyses of MDOF systems (Gillies and Shepherd 1983;

Kanaan and Powell 1973):

(Cl = a[M] + bi[K], + by K], (6-1)

where [C], is the tangent damping matrix, [M] is the mass matrix, [K], is the tangent stiffness

matrix, and [K], is the initial stiffness matrix. The coefficients a, b, and b, are proportionality
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constants computed from the natural frequencies of the structure. If a, or b and b, are set to
zero, stiffness or mass proportional damping are obtained, respectively. In linear analysis, b=0,
and Eq. 6-1 allows to control a specified damping ratio, £, at two distinct frequencies w, and «,

as shown in Figure 6.1. The coefficients a and b, are computed from:

a< 28w (6-2)
(l), + ‘A)I

b« -2 (6-3)
v

in Eqs 6-2 and 6-3, w, is usually taken as the first natural frequency and w, ts the frequency ot
the highest mode that contributes significantly to the response. The value of w, is often taken as
the frequency for which 90% to 95% of effective modal mass is represented by a truncated

vector basis. In nonlinear analysis, the following methods can be used to obtain [C];:

M1: the coefficients a and/or b, are computed from the initial elastic frequencies with
b==0, this results in a time independent damping matrix. The following notation 1s used
to describe variations among this model;, M1(a), M1(b,), M1(a,by). The coefficients in
parentheses indicate which terms of Eq. 6-1 are retained in the formulation.

M2: the coefficients a and b are computed from the initial elastic frequencies with b,=0,
this results in a time dependent damping matrix since [K], is changing with time. The
possible models are M2(b), M2(a,b).

Ma3: the coefficients a and/or b are computed from the tangent frequencies with b,=0,
this results in a time dependent damping matrix and constant damping ratio for the
modes used to compute the coefficients a and b. The possible models are M3(a),
M3(b), and M3(a,b). The subscript t 1s added to a and b to indicate clearly that these
coefficients are computed from tangent free-vibration properties that are continuously
changing when the response is inelastic.
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Figure 6.1. Rayleigh damping.

For example, Otani (1980) used the M1(a) and M2(b) damping moels in the seismic
analysis of reinforced concrete buildings as mentioned previously. Schiff et al. (1991) used
Rayleigh damping proportional to [K],, the M2(a,b) model, to study the nonlinear response of
low-rise steel moment resisting frames. Filiatrault (1990) used mass proportional damping, the
M1(a) model, to study the seismic response of MDOF wood structures with nonlinear connectors.
Sedarat and Bertero (1990) used Rayleigh damping proportional to the initial system matrices,
the M1(a,b,) model, to study the nonlinear torsional response of MDOF concrete structures.
El-Aidi and Hall (1989) used the stiffness proportional damping model, M2(b,), to study the
nonlinear response of concrete dams. In all cases reported in the literature, the damping

proportionality coefficients were computed from the initial elastic free-vibration properties.

The classical integration procedures used in nonlinear seismic analysis correspond to

the simultaneous integration of all modes of vibration at a particular time-step. The actual
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(instantaneous) frequencies of the system are continuously changing during nonlinear behaviour,
The response of the system may thus be obtained in terms of the nontinear (tangent stiffness)
frequency spectrum (ldelsohn and Cardona 1985, Gillies and Shepherd 1983, Bathe and
Gracewski 1981, Nickell 1976). The use df the initial elastic frequenctes to compute the damping
proportionality coefficients comes mainly from computational conveniences since the evolution
of the frequency spectrum of the dominating modes throughout the nonhnear response Is
usually unknown. inthe analysis of softening structures (elasto-plastic condition), the frequencies
become smaller when the structure expenences nonlinear behaviour The selected frequencies
based on linear analysis to compute Rayleigh damping coefficients may thus cover a too narrow
range. The use of tangent spectrum properties will therefore permit a more rational control of

the amount of energy dissipated by viscous damping in nonlinear seismic analysis,
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CHAPTER 7
SEISMIC ENERGY DISSIPATION IN MDOF STRUCTURES

7.1 INTRODUCTION

The influence of viscous damping models on the nonlinear energy response of MDOF
structures has not received a lot of attention in the past. The purpose of this chapter is to
investigate the displacement ductility demand, indices related to the relative amount and rate
of energy dissipation, and the number of yield excursions of MDOF using mass and/or stiffness
proportional damping models. Solution strategies using initial elastic or tangent inelastic
structural spectrum properties are used to evaluate the damping matrices. Bilinear hysteresis
models of simple MDOF structures presented in chapter 4 with different strength levels, strain

hardening ratios, and damping ratios are considered.

The computer program presented in chapter 2 is used to perform the step-by-step
integration of the equations of dynamic equilibrium using either geometric coordinates or modal
coordinates. When modal coordinates are used, the frequency and mode shapes are computed
from the tangent stiffness at each time-step. The equations of motion are then transformed and
solved in generalized coordinates. A complete eigenbasis is used in all computations. This is to
avoid any error in the norilinear response indicators due to modal truncation thus maintaining

a computational strategy equivalent to a step-by-step integration in geometric coordinates.
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7.2 INFLUENCE OF DAMPING MODELS ON SEISMIC RESPONSE
The influence of the eight damping models described in chapter 6 Is first investigated
for the 10-story bullding with the force modification factor, R=4, the stran hardening ratio,

a=1%, and the damping ratio, £ =5%, subjected to the three selected earthquakes.

7.2.1 Evolution of nonlinear tangent properties

Figure 7.1a shows the variation in the fundamental period of vibration due to inelastic
behaviour. The instantaneous period of the first mode increased from 1 sec for elastic response
to a maximum of approximately 8 sec when the system responded inelastically. Figure 7 1b
indicates the variations in the number of modes required to maintain 95% of effective modal
mass in the solution. For the elastic response, modes 1 to 4 should be included. For inelastic
response, this range increased to modes 1 ta 10, or the complete eigenbasis. However, the first

five modes are found adequate for almost the entire nonlinear analysis except for three very

short periods of time.

Figure 7.2 shows the variation of the Rayleigh damping coefficients to maintain 5%
instantaneous critical damping using the tangent damping model, M3(a,b). The damping
coefficients, a, b, are computed using the first tangent frequency and the tangent frequency
of the highest mode required to obtain 95% effective modal mass in the solution. If only mass
proportional damping is considered (M3(a)), the damping ratio can be as low as 0.2% in the
highest mode required to obtain 95% effective modal mass. On the other hand, the damping
ratio in this mode can be as high as 217% if only stitfness proportional damping is considered

(M3(b)). The seismic response using the damping model M3(b) will thus be significantly

overdamped.




7.2.2 Displacement responses at the top

Figure 7.3 shows the top displacement responses for the 10-story building subjected to
the El Cantro earthquake. The mass proportional and the Rayleigh damping models using either
the initial elastic or the tangent inelastic damping coefficients yield almost identical results. The
stiffness proportional damping models show significant variations in the displacement responses.
The damping model using tangent properties, M3(b), provides the largest damping, followed
respectively by the initial elastic, M1(by), and the instantaneous stiffness proportional, M2(b),
damping models. When Rayleigh damping is used, the dispersion observed in the stiffness
proportional damping models is significantly reduced. In this case, the mass component of the

damping appears to dominate the response.

7.2.3 Nonlinear response indicators

Figure 7.4 shows the vanation in the nonlinear response indicators due to the use of
different damping models for the 10-story building subjected to the three earthquake records.
Consistent variations are obtained from the different damping models as different earthquake
records are considered. The tangent damping models using mass proportional, M3(a), and
stiffness proportional, M3(b), damping, respectively produce about the highest and lowest
intensity of the nonlinear response indicators. If these models are excluded from the analyses,
average relative variations among the remaining damping models of about 40%, 20% and 80%
are respectively observed for the average ductility, E,/E, ratios, and the average number of yield
excursions. If only the three types of Rayleigh damping models are considered, M1(a,by),
M2(a,b), and M3(a,b), the average relative variations of the same response indicators are
respectively reduced to 10%, 8% and 30%. The average number of yield excursions is therefore
more sensitive to the earthquake records and damping models than the average ductility and

the E,/E, ratio.
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Figure 7.5 shows the variations in the power response indicators due to different
damping models for the 10-story building subjected to the three earthquake records. Consistent
variations are also observed from the different damping models as different earthquake records
are considered. The most sensitive response parameters to the type of damping model are
respectively the damping power, P, the input power, P, and the hysteretic power, P, If the
mass and stiffness tangent damping models are excluded from the analyses, average relative
vanations of about 40%, 10% and 5% are obtained among the remaining damping models for
P, P, and P,, respectively. These vanations do not change significantly if the comparisons are
restricted to the three Rayleigh damping models. For a given earthquake, the rate of hysteretic

energy dissipation is not very sensitive to the selected damping modei.

7.3 PARAMETRIC STUDY

A parametric study is performed by considering for the seven buildings subjected to the
El Centro earthquake, the three Rayleigh damping models and the instantaneous stiffness
damping model, M2(b), with b computed from the initial elastic properties. Rayleigh damping is
commonly used in practice, and the model M2(b) has been shown by Otari (1980) to provide
a good correlation with experiments for low-rise reinforced concrete buildings designed with a
strength parameter, n=0.5. Two values of the damping ratio, £ (2%, 5%), of the force
modification factor, R (2, 4), and of the strain hardening parameter, a (1%, 25%), are considered
in the parametric study. The average ductility, the average number of yield excursions, the ratio
E./E, and the maumum value of hysteretic power, P,, are computed in each case. With the
exception of E,/E, the nonlinear response indicators are very high for the single story (SDOF)
building (T, = 0.1 sec) as compared with the MDOF buildings. For the SDOF building, the
numerical values of these indicators have thus been reported in parenthesis beside each

damping model in the figure legends.
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The tangent Rayleigh damping model, M3(a, b)), is using proportionality coefficients that
are updated at each time-step. it maintains throughout the elastic and inelastic response, a
constant damping ratio for the first mode, and the mode required to obtain 95% of effective
modal mass. This approach provides a rational control of the viscous damping mechanism in
nonlinear seismic analyses as nittally selected by the analyst. The M3(a,b,) model will thus form

the basis upon which the performance of the other damping models will be compared.

7.3.1 Influence of damping ratlo

Figure 7.6 shows the effect of the aamping ratio on the nonlinear response of muitistory
bulldings. A reduction in the damping ratio from 5% to 2% Increases the intensity of all
nonlinear response indicators. Considering the tangent Rayleigh damping model, M3(a,.b), it is
shown in Figure 7.6¢ that for T, = 1.5 sec, the E,/E, ratio 1s approximately constant. in this
range, the ratio E,JE, increases from 0.55 for £¢=5% to 0.75 for £=2%. This represents an
increase of about 35% of the hysteretic energy available for damage In the shont period range
(T, < 0.5 sec), the influence of damping on E,JE, ratios 1s not as significant. Increases of about
15% are now observed when ¢ is reduced from 5% to 2%. For T, < 0.5 sec, the E,/E, ratios
computed from the stiffness proportional damping model, M2(b), are almost identical with the
rigorous M3(a,b) damping model. For T, > 0.5 sec, the M2(b) mode! dissipates more energy
by viscous damping than the Rayleigh models, producing smaller E JE, ratios. For T, = 1 sec,
the Rayleigh model using the instantaneous stiffness, M2(a,b), yields E,/E, ratias that are within
4% of the values computed from the tangent Rayleigh damping model, M3(a,.b). In this range,
the Rayleigh damping model based on inttial system matrices, M1(a,b), provides E, /g, ratios that

are within 10% of the M3(a,b) damping model.

Figure 7.6a indicates that a reduction of ¢ from 5% to 2% increases the average ductility

demand by about 15% over the complete range of fundamental periods. The influence of the
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various damping models on the average ductility 1s similar to the effects observed for the E, /E,
ratios. Figure 7.6b indicates that the average number of yield excursions decreases rapidly as
T, increases. For structures with ¢=5% and T, < 0.5 sec, the average number of yield
excurstons is not sensitive to the damping model selected. For systems with T, > 0.5 sec, the
M2(b) damping model underestimates the average number of yield excursions. As ¢ 1s reduced
from 5% to 2%, the M2(b) damping model underestimates the average number of yield
excursions over a wider range of fundamental periods corresponding to T, > 0.1 sec. Figure
7.6d indicates that the maximurn hysteretic power, P, 1s also decreasing very rapidly as T,
increases. For T, = 0.5 sec, P, is not sensitive to the values of ¢ and the damping models. For
T, < 0.5 sec, signficant vanations are observed among the values computed from the different
damping models. In this range, the stiffness proportional damping model, M2(b), shows again

an excellent correlation with the rnigourous tangent Rayleigh damping model M3(a,b).

7.3.2 Influence of force reduction factor

Figure 7.7 shows the effect of the force reduction factor on the nonlinear response of
multistory buildings. Figure 7.7a indicates that for the 10 story building (medium period range)
designed with R=4, an average ductility demand equal to 3.75 is obtained from the tangent
Rayleigh damping model, M3(a,b). This value is within 6% of the selected force modification
factor, R=4. The parameter R can thus be interpreted as a global ductilty factor for MDOF
structures in the medium period range. For short-period structures designed with a substantial
force modification factor, given here by R=4 and n < 1, the ductility demand is very high as the
period is reduced and the systems converge toward the static response. For the structures
designed with R=2, the parameter n is larger than 1 for T, < 0.5 sec. In this case, the average

ductility will converge to the selected value of R=2 as the penod is reduced.
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The average ductility and the E,/E, ratio are not sensitive to the damping modeis for
structures with T, < 1.0 sec designed to respond with mild inelastic behaviour as given by R=2.
For structures with T, > 1.0 sec, the M2(b) model should not be used since it overdamps the

energy response significantly.

Figure 7.7b indicates that if the M2(b) damping model is excluded, the average number
of yield excursions is not sensitive to the Rayleigh type of damping model selected for R=2.
Figure 7.7d indicates that in the medium and short-period ranges (0.1 < T, < 1.5 sec) the
hysteretic power increases as the force modification factor is reduced from R=4 to R=2. This
trend is reversed for T,=0.1 sec. For mildly nonlinear systems (R=2), P, is not sensitive to the
selected type of Rayleigh damping model over the complete frequency range. The M2(b) model

should not be used for T, > 1.0 sec since it overdamps the P,, response.

7.3.3 Influence of strain hardening ratio

Figure 7.8 shows the effect of the strain hardening ratio, a, on the nonlinear response
of muitistory buildings. In the short-period range, the average ductility does not exceed about
5 for a=25% as compared to a maximum value of 18 for a=1%. The vanations in average
ductility among the various damping models is reduced as a Is increased from 1% to 25%. For
long period structures (T, > 1.5 sec), the average ductility is not very sensitive to the strain

hardening ratio.

Figure 7.8c indicates that in the short period range (T, < 0.5 sec), the E_/E, ratio is
reduced as the strain hardening is increased. For systems using large a, the M2(b) and M2(a,b)
damping models should be used to approximate the response of the tangent Rayleigh damping
model, M3(a,b), in the short-period (T, < 0.5 sec) and the medium and long period range (T,

> 0.5 sec), respectively. Figure 7.8b indicates that the average number of yield excursions

64




R

AVGE DUCTILITY
- hxﬁ:vt&rﬁ@ °
®

-

R
-R

4
2

PN A Sl Y W S U il G T W U U B B S S

bk

o i

15 208
NUMBER OF STORIES

FIRST PERIOD T, (sec)
20

08

06

04

Ew / E

02

M1(a,bo)
M2(b)

M2(a,b)
M3 Gy, b|)

+DDO

-
]
-
) N
" N
L4 v -
- @ N ‘“ ‘..
R=4 \ 8ttea, L™
---R=2 ey

00

Figure 7.7.

1
NUMBER OF STORIES

Centro earthquake

MAX HYSTERETIC POWER, Py

FIRST PERIOD, T, (sec)

» O. 10 29 25
zzobr‘lI'rfllu"11v(r‘ftf|'!!'[
[@] b) o M1 Obo) 29; 5
» |} o M2(b) 29 )
3 a M2{a.b) )
S*Sr + M3{(a,by) 29 5)
o

oot

; =

2 Jo ™

S

>4

FIRST PERIOD T. (szeg)

Q5

o v-r r vy
4-dy ®eq o Mi(a,bo) (10 6; 8.8
R N v °) f 16.6, 8.9;
& M2{a,b) ((106. 8.8)
3F + M3 (h.bq) 15 8. 89)
a2l k'Y

1 1
NUMBER OF STORIES

Influence of the force modification factor, R, on the response of muttistory buildings (§=5%, a=1%) subjected to the El




increases with an increase n the strain hardening ratio. For large a, there is no significant
variation of the average number of yield excursions among the Rayleigh damping models, except
for the M2(b) model for T, > 0.5 sec. Figure 7.8d indicates that the strain hardening does not
affect the P, values for T, > 1 sec. For T, < 0.5 sec and a=25%, the P,, values exhibit minor

variations for the different damping models.

7.4 CONCLUSIONS

In this chapter, the effects of various mathematical models to represent viscous damping
in nonlinear seismic analysis of MDOF structures have been investigated. Bilinear hysteretic
models of simple MDOF structures using different strength levels, strain hardening ratios, and
damping ratios have been considered. The average ductility demand, the average number of
yield excursions, the ratio of hysteretic to input energy, E,/E, and the maximum rate of hysteretic
energy dissipation have been selected as indicators to characterize the nonlinear seismic
response.

A tangent Rayleigh damping model using proportionality coefficients that are updated
at each time-step has been developed. It maintains throughout the elastic and inelastic
response, a constant damping ratio for the first mode, and the mode required to obtain 95% of
effective modal mass. This approach provides a rational and rigorous control of the damping in
nonlinear seismic analyses. In practice, the damping proportionality coefficients are usually
computed from the initial elastic properties. In this case, damping proportional to the
instantaneous stiffness, the M2(b) damping model, should be used for MDOF structures with
fundamental periods of vibration, T, < 0.5 sec. For the systems analyzed with T, < 0.5 sec and
the M2(b) damping model, all seismic response indicators were very closed to the tangent
Rayleigh dampinf) model for a wide range of damping ratios, strain hardening ratios and force

reduction factors. For MDOF structures with T, > 0.5 sec, Rayleigh damping should be used.
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The Rayleigh damping model using the nstantaneous stiffness with the proportionality
coefficients computed from the elastic properties provides a very good agreement with the more
ngorous tangent damping model in the medium period range (0.5 < T, < 1.5 sec). For
multistory buildings with T, > 1.5 sec, the seismic response Is not affected by the type of

Rayleigh damping model selected.
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CHAPTER 8
CONCLUSIONS

8.1 SUMMARY

This thesis has presented a study of nonlinear seismic response of MDOF structures
using vector superposition methods. Bilinear hysteretic models of *shear beam* MDOF structures
subjected to three different earthquake records have been considered for parametric studies
The MDOF structures have been designed to meet the requirements of the National Building
Code of Canada (NBC 1990) and the earthquake records have been grouped around the NBC
1990 response spectra for building structures located in Victoria B.C. Two distinct investigations
have been made. First, the solution algorthms for nonlinear vector superposition analyses have
been studied. Second, a comparative study of different mathematical models for viscous

damping has been mace.

Step-by-step integration of the incremental form of the equations of dynamic equilibrium
expressed in geometric coordinates is generally used to investigate the nonlinear elasto-plastic
behaviour of MDOF structures. The integration procedure mathematically corresponds to the
simuitaneous integration of all instantaneous modes of vibration Chapter 2 presented solution
algorthms to use vector superposition methods in nonhnear analysis that consist in performing
a change of basis to a more effective system of equations using either the Pseudo-Force Method
(PFM) or the Tangent Spectrum Method (TSM). In the PFM, a single set of modes based, on

elastic system matrices are employed durnng the complete response calculation, and the
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nonhinearities are taken as pseudo-forces on the right hand side of the equation of motion. In
the TSM, the change of basis i1s performed at each time-step using mode shapes and

frequencies corresponding to the instantaneous System matrices.

An investigation of the elasto-plastic seismic response of MDOF structures using the
PFM and the TSM has been presented in chapter 5. The emphasis was put on the effect of
vactor basis truncation on the nonlinear response and the stabillity of the solution algorthms. An
equilbnum correction method has been proposed to provide numerical stability to tangent
solutions when truncated vector bases are used. The effectiveness of a new aigonthm to
generate load-dependent vectors that provides a static correction for the truncation of the higher
modes has been evaluated in the context of elasto-plastic analysis. The dispiacements, the
internal member forces, the ductility demand, the hysteretic, and the damping energy dissipated
during the nonlinear seismic response, have been selected as indicators to study the

convergence characteristics of different solutions strategies.

The seismic input energy imparted to a structure is dissipated by hysteretic behaviour
and by other non-yielding mechanisms usually represented by equivalent viscous damping. It
iS generally recognized that there is a strong correlation between the energy dissipated by
hysteretic action and the seismically induced level of damage. While viscous damping has been
found to have a small effect on the amount of energy imparted to a structure, it has a significant
influence on the amount of hysteretic energy dissipation. A parametric study has been presented
In chapter 7 on the influence cf the mathematical modelling of viscous damping on seismic
energy dissipation of MDOF structures. The damping has been modelled using mass
proportional, stiffness proportional, and Rayleigh damping computed either from the initial elastic
or the tangent inelastic system properties. Various structural performance indices have been

evaluated for bilinear hysteresis model of simple MDOF structures with different strength levels,
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strain hardening ratios, and damping ratios.

8.2 CONCLUSIONS
From the results obtained, several conclusions can be reached about the applicability

of vector superposition methods and the proper mathematical modelling of viscous damping in

nonlinear seismic problems.

8.2.1 Vectors superposition methods
For the applicability of vector superposition methods in nonlinear seismic analyses and

the effects of vector basis truncation, the general conclusions can be summarized as follows.

- If the TSM is used, the acceleration vector should be computed from equilibnum
condition to account for the incompatibility of an updated basis to fully represent the
initial conditions at t + At. The acceleration and velocity can still be in error but the
solution will be numerically stable.

- The equilibrnium iterations have been found to be very important to provide a good
convergence of the response with a large time-step thus minimizing the number of basis
updates.

- The displacement response has been shown not rehable to judge of the quality of a
solution strategy in nonlinear seismic analysis.

- The use of load dependent vectors (LDM) or eigenvectors (MDM) has not shown
significant influences in both PFM or TSM. The LDM should be used since the
computationai effort to generate transformation vectors 1s much less than that required
to generate eigenvectors (MDM),

- The PFM was more stable, and required much less computational effort than the TSM.
However, it can not provide any information on the evolution of tangent modal properties
in time.
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For the investigation on the flexible 25-story building, the main conclusions are:

- Considering the peak ductility demand, the TSM is much less sensitive to the truncation
of the vector basis than the PFM.

- Considering the peak ductiity demand and hysteretic energy dissipation, 11 vectors are
required when the TSM is used to have an error level below 10% of the *exact" resuilts.
However, if the damping energy and the energy balance are considered, 17 vectors are
required to maintain the error level below 10%. This 1s due to the error in velocity and
acceleration caused by the TSM.

For the stiff 5-story building the conclusions are as follows:

- The TSM has been found very sensitive to basis truncation. Resuits within 10% of the
*exact® solution can be obtained from the PFM with a basis of two load-dependent
vectors.

8.2.2 Mathematical modelling of viscous damping

Several mathematical models for viscous damping with proportionality coefficients
computed from initial elastic properties have been compared to a tangent Rayleigh damping
model that kept constant damping ratio throughout the nonlinear analysis. The principal

conclusions of this phase of the study are:

- Damping proportional to the instantaneous stiffness with the proportionality coefficients
computed from initial elastic properties should be used for MDOF structures with
fundamental periods of vibration, T, s 0.5 sec to obtain a very good approximation of
the more rigorous tangent damping model.

- Rayleigh damping model with constant coefficients based on elastic properties and
using the instantaneous stiffness provided a very good agreement with the more
rigourous tangent damping model in the medium period range (0.5 < T, < 1.5 sec).

- For multistory buildings with T, > 1.5 sec, the seismic response is not affected by the
type of Rayleigh damping model selected:;
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- The consideration of damping ratios, £, of 2% or 5%, force reduction factors, R, of 2 or
4, and strain hardening ratios, a, of 1% or 25% have no effects on the above
conclusions.

8.3 RECOMMENDATIONS FOR FURTHER STUDIES
The present study has raised several points that might be considered in further

investigations such as:

- The investigation of the effects of other nonlinearities such as the P-a effect and

structural pounding on the performance of the PFM and TSM and related energy
response.

- The investigation of the effects of other hysteretic model such as the stiffness degrading

model or slip model on the performance of the PFM and TSM and related energy
response.

- The study of the applicability of the TSM to more complex structures.

- The developement and calibration of new damage indices based on tangent properties,
power, and energy consideration.

- The investigation of nonlinear behaviour such as force reduction factor irom elastic
response using the evolution of tangent modal properties.

- The investigation of the effects of numerical damping provided by different integration
methods on the energy balance.

- The study of the influence of the adjustment of equivalent damping ratios with the
current stress-strain state.

- The investigation cf some form of correction based on steady-state frequency domain
analysis with low damping response. to correct for the incompatibility of updated vector
basis in the TSM.
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