INHERITANCE IN A RELATIONAL
OBJECT-ORIENTED DATABASE SYSTEM

by

ELLEN MNUSHKIN

March 1992

A thesis submitted to the
Faculiy of Graduate Studies and Research
in partial fulfiliment of the requiremert for the degree of

Master of Science
School of Computer Science

McGill University

Montreal

© Ellen Mnushkin

ABSTRACT

This thests shows that major object-oriented features ciat be implemented in a
relatonal database to improve its case of use Such object-oriented features as class
hierarchy, imheritance of attributes and methods, polymorphism, and collections of classes,
are captured by three meta-refations i which the relationships between classes, association
of methods with classes and the composition of collections, are recorded. Each of these
meta-relations imphes a modification of the relational algebra operators so that they can be
applied both o the independent relattons and to the relasons which are part of the class
hierarchy.

We describe the relational algebra implementation of all the moditfications to the
relational operators necessary to accommodate the object-oriented teatures mentioned above.

New syntax s suggested when these modifications are not sufficient.

i

RESUME

Cette these montre que les caractéristiques majeures orientees-obyel peivent etie
imnlementées dans une base de donndes relationnelle en fin de tacthter son usage Ces
caractéristigucs orientées-objet, comme la hidrarchie de classes, Pherttage diattnibuts ot de
méthodes, polymorphisme, ct les collections de classes, sont representes par s metd
relations dans lesquelles la relaton entre les cinsses, Passociation de méthodes avec les
classes, et la composition des collections sont enregistrés — Chacune de ces meta relations
implique une modification des opére.curs d'algebre relationnelle gqui peuvent ¢tie apphigques
aux relations indépendantes et aux relations g font partic d'une hidrarchie de classes

Nous décrnivons 1Mimplantation en algebre relationnelie des moditications auy
opérateurs opdrationnels ndéeessaires pour ajouter les caractenstiques — orrentees obyel
mentionndes ci-dessus. Une nouvelle syntaxe est suggérdée dans les cas ot ces modihications

ne sont pas suffisantes.

i

ACKNOWLEDGEMENT

I would like to thank my supervisor Professor T.H. Merrett for his encoutagerient,
technical advice, support and many hours of productive scientific discussions throughout my
graduate work at McGill Umversity He read promptly and carefully earlier drafts of this
thesis and has suggestions and crincism contributed greatly to ats final form. I am gratet]
for has guidance and his genuine mterest i my research

Many people have contributed 1in one way or another to facilitate the work on this
thesis, The closely related work ot Xian Xiang Hu provided me with the opportunity to test
my results, and served as a basis for chapter 6. Heping Shang and Mariza Komioti have
been helpful i clanfymg a number of topies [am specially thankful to my husband,
Massoud Barzinpour, for his continuous moral support and encouragement. His pride of my
achievements and his behief i my ability to do better, have been a strong motivation for me.

Fmally, T express my gratitude to professor Merrett for his tinancial assistance.

v

T

TABIT OF CONTENTS

Chapter 1 Introduction
1.1 Relatienal Model
1.1.1 Relanonal Algebra
1.2 Object-Orniented Programmung I anguages
1.3 Object-Oriented Databases
1.4 Thesis Amms and Outline

1.4.1 Thests Qutlime

1.5 Overview of Object-Oriented Programming Languages and Databases

15,1 Usimg Existing Classes as Building Blocks tor New Classes
1.5.2 Muluple "herttance and Resolution of Ambiguities

1.5.3 Method Overriding and Accessing Superclass’s Methods
1.5.4 Methods

1.5.5 Collection Classes

1.5.6 Sending a Message to All the Subcelasses of a Class
1.5.7 Composite Objects

1.5.8 Schema Modification

1.5.9 Persistent Objects and Object Identity

1.5.10 Inhenitance of Features, Private and Public Oputions

Chapter 2 Rehx Overview
2.1 Domains and Relations
2.2 Projection and Sclection Operations
2.3 Join
2.3.1 p-joins
2.3.2 o-joins
2.4 Update
2.5 Domain Algebra

R
33
319
3
6
i
39

41

25 1 Scalar Operations
25 2 Reduction

25 3 Functional Mapping
Recursion

Metacode and Metadata

27 1 Stmt Mctadata

Chapter 3 Attnibute Inhentance

36

3.7
3.8
39

Representation of Inheritance Hierarchy

Object Identifier

Declaration ot Inheritance Hierarchy

Algorithm tor Implementation of the Inherit Stateinent
Projection and Sclection

Algonithm tor Implementation of the Minimum Join Approach
to Project and Select Operations

Jomn

Algorithm tor Implementation of Join

Update

3 9.1 Updaung an ID field

3.9.2 Implementation of the Update Statement

3 10 Algorithm for Implementation of Update Statement

Chapter 4 Method Inheritance

41

4.2
4.3
4.4
4.5

Functions and Procedures in the Object-Oriented Relational
Database Language Relia

Genenie and Class Associated Methods

Polymorphic Methods

Algorithm for Implementation of Method Inheritance

Method Invocation on Relational Expressions

A2

18
48
49
50

56

58
58
61
61
63
66
69

71

71
73
74
76
76

Chapter 5 Collect.on Hierarchy and Subobjects
5.1 Declaration of Collection Hierarchy

5.2 Punctionahty of Collection Hicrarchy

5.3 Interpretation of Messages Sent to a Collectine Class

5.4 Algonthm for Implementaton of Method Invocaton on Collective Classes 8o

Chapter 6 Comparative study of the Objective-C implementaton ot Gedit and

its Proposed Implementation in Object-Oriented Relin N7
6.1 Graphes Editor Implemented i Objective € NN
6.1 1 Introduction to Gedit and a Short Tutonal 8N
6 1.2 Summuary ot the Basic Operations Deseribed mthe Tatoral 103
6.2 Objective-C Environment 106
6.2.1 Mcthod Inheritance 106
6.2.2 Inheritance Hierarchy 107
6.2 3 View Hicrarchy Il
6 2 4 Objective-C Implementation of the Sample Operations e
6.3 Rehix Environment P14
6.3.1 "Class-Onented” Reliv vs Objective-C 114
6.3.2 Inhentance Hierarchy 115
6.3.3 Collection Hierarchy L1
6.3.4 Representation of the Gedit Session in Relational Format L1

6.3.5 Object-Oriented Rehx Implementation ot the Sample Operations 123

Chapter 7 Conclusion 126
7.1 Summary [26
7.2 Further Wotk 127
Appendix A Attribute Inhertance 12%
A.1 Inherit Statement 131
A.2 Projection and Selection 132

Vil

A 4 Join
A 4 Update
A 4 1 Update Operation with Change Clause
A 4.2 Update Operation with Add or Delete Clause
Appendix B Mcethod Inhenitance
Appendix ¢ Method Broadeasting

Appendix D Implementation of Gedit in Object-Oriented Rehs

Reterences

viii

156

162

169

Chapter 1

Introduction

In this thests we are exploning the possibility of the implementanion ot the key objedd
oriented features in the relational database model

Betore this topic s pursued, 1t s necessary 1o have an overview of the i
characteristies of relational databases, object orrented programming languages and databases
(Sections 1 Lto b 3 of Chapter 1y Secuon T4, Thesis Anms and Outlimes, desanbes bretly
these hey object-oriented teatures [talso presents the considerations mvolved mthe design
of these features m the Reliv relational database Several commierarally available objedt
oriented programming languages and databases are examined m Section Ty wath the special

emphasis on these features

1.1 Relational Model

In the relational database model, mntormation 1s represented ind tabie tormat with the
following characteristics
® all rows are distinct
® the ordering of the rows 1s immate.ial
¢ cach column 1s labelled by a umque name making their order msigniticant
® all values in cach row and under cach column are simple, such as mtegers, characters and

booleans The meaning ot "simple” depends on the operations performed

Each row 1s called a tuple and a column 1s reterred to as a domain or an attribute,

A domain 1s a pool of values from which the values of an attribute are drawn

il

‘The relational approach to data modelling was proposed by Codd n 1970 [Codd70].
A relation was 1o be used ws a model for a file A set of relations were to represent data n
databases ‘Thus, i this context, a database 1s & set of time-varying relations

One of the great advantages of the relational view of data 1+ data independence. To
the user, data appears i the form of tables which can be implemented 1n many ways, such
as incrdence matrices, networks, sequential or inverted filey, and others. The user need not

worry about the physical structure of the relations

1.1.1 Relational Algebra

‘The relational approach gives us not only the relational model for data representation
but also the relational algebra to process data with

Relational algebra 1s a collection of high level operations on relations. There 1s no
concept of tuple, cach relational operator tahes as operands whole reiations and returns a new
refation as ats result L oops are avoided during the processing of relations. Relations are
considered as atonie objects by the relational operations This simplifies the notation and
the manmpulation that must be performed and 1s also very appropriate for the data on
secondary stordage

Codd onganally defined a set ot such operations and showed that those operations
were “relationally complete™ [Codd72]. Since then the operators of the algebra have been
placed in two groups The first of these groups includes the traditional set operators: union,
mtersection, ditterence and cartesian product The second group 15 composed of special
relational operators select. project (unary operators) and several famihies of joins (binary
operators) - Phe latter operators are defined as tollows,
select viclds a new relation whose tuples satisty the given selection constraint imposed

on the tuples of the given relation,

project yields a new relation which 1s defined on a subset of domains of the given

relation,

join - combines o given relations 1in a third relation by joining together tuples with

common attributes

1.2 Object-Oriente ! Programming Languages

Object-oriented languages deal with objects. The common properties (stiucture and
behaviour) of a set of objects can be collected i a class. A class can be seen as a template
from which objects are created. The individual objects deser.bed by a class e called s
instances The instance object has the structure gnstance vartables) and the behaviow
(methods) defined n ats class [Weg87]. It s important to keep mommd the distimenon
betwesn an object and a class. an object 15 a run-ti ne element which will be created durmg
a system’s execution; a class 1s a purely static descuption of a set of possible objects the
instances of the class [Meye88al.

Inheritance 15 a reusability mechanism tor sharing properuies between objects The
key 1dea of class henitance 1s the provision of a simple and powerful mechanism: fog
defimng new classes (subcelasses) that mherit (re-use) sttucture and behaviour from the
extsting classes (superclasses), and possibly add some mstance vanables and methods of
their own [Nier89].

Let us consider the two classes, Employee and Student Both classes have common
structure (for example, name, address, marital status), and 4 common behaviour (to
example, they can change address, and may get married). Additionally, cach class has
some specific structure and behaviour. An employee can be permanent or temporiry, and
so forth: therefore we need a method to change his status, For example, a student s
registered 1 a faculty, and should be able to change his programy In an object onented
system we can mode! this relationship by creating a superclass person which comprises the
common properties of Employee and student Then we declare a class Faproyee with its
special properties (variables: status, ctc ; methods' change work status, cle.), 1o be d
subclass of person $0 that Employee can mherit all the propertics of person ‘Thus, ceven
though the variable name 1§ not defined inside the Employee class, 1t can «ull be referenced
through the mheritance Iink to the person class. Smularly we declare student to be a
subclass of person.

With simple inheritance, a subclass may inherit propertics of a single superclass
A natural extension to sumple inheritance 1s multiple inheritance which allows a subcliss

to inherit propertics of multiple superclasses.

Inheritance 15 a powerful organizational principle. The class hierarchy represents
a specialization relattonship between a superclass and ats subclasses. It also captures
stmilanties and differences among vanous classes of entities: the similarity between two
classes 15 expressed by common ancestors (superclasses) n their class hierarchy, and the
difference 15 indicated by having different superclasses. This means that an object-oriented
language provides a user intertace for the defimtion and manipulation of relatienships among
pairs of classes This in turn means that application programmers nced not explicitly
program and manage these relationships (Kim91].

Another advantage of the inheritance mechanism is, of course, the possibility of code
sharing Both the programmer and the implementation can take advantage of that. The
programmer need not wrnite the inhented mcthods again, and the program will be shorter.
Shorter programs result in a more compact code stored 1n the computer memory [Yon87].

Methods defined on a superclass are inhenited by 1its subclasses. Furthermore, a
subclass may redehine the inherited method by modifying its implementation while retaining
the name of the method.

Polymorphism is defined as the ability of operations to be performed on more than
one class Polymorphic methods are methods whose actual parameters can be of more than
one class. Cardellh and Wegner [CaWe85] distinguish between two global categories of
polymorphism, namely, universal polymorphism and ad-hoc polymorphism.

Universally polymorphic functions work uniformly on a possibly infinite range of
types as long as these types exhibit some common structure. A Count function which counts
the elements of a set wrrespective of the type of the elements 1s an example of this kind of
polymorphism.

In contrast, ad-hoc polymorphic methods work on a finite set of different and
potentially unrelated classes (which may not exhibit a common structure). Furthermore, the
methods may behave mounrelated ways for each class.

Overloading 1s a category of ad-hoc polymorphism. Here the same method name
18 used to denote different methods and the context (class of argument) is used to decide
which implementation 1s denoted by a particular instance of the name. Thus, the same
methed name can map to different code bodies [UnSc90]. For example, method pisplay
may be defined on classes carcle and pPoint, but its implementation and behaviour are

different in cach class.

Class inheritance 18 closely related to polymorphism. The same operations that apply
to instances of a parent class also apply to instances of 1ts subelasses. A method redefined
in the subclass 1s an overloaded method [Nier89)

Encapsulation 1s the pninciple which states that a class can only be accessed via ats
external interface. It strictly distinguishes between the implementation of a class that 1s only
visible to 1ts implementor (and therefore hidden), and its interface, which describes the only

way in which uscrs can view the class [UnSc90].

1.3 Object-Oriented Databases

The next-generation database management systems, somettmes called object-onented
DBMSs, are designed to widen the applicability of database technology to new kinds ot
applications 1n which traditional DBMSs are claimed to be inadequate These apphications
include computer-aided software engineering (CASE), mechanical and clectrical computer
aided design (CAD), computer-atded manufactuning (CAN), scientific and medical
applications, graphics representation, office automation, and busiess apphications [Catt9 1]

The data modelling features of the next-generation DBMSs might be regarded as
combming the best features of relational database systems and object-oriented programming
languages. Database systems hke O, [Deux91], ObjectStore [Lamb9l], and GomStone
[Butt91], which evolved from programming language architecture, provide “database
programming languages”. That 1s, they are designed as an extension of object-onented
programming languages (OOPLs) to provide persistence, concurrency control, quenes, and
other database features for programming language objects Database systems ke
POSTGRES [Ston91] extend the functionahty of relational database systems with procedure
calls, efficient object references, hierarchy of objects, and other object onented programming,
language capabilities [Catt91].

An object-oriented database (OODB) can represent not only data, relationships and
constraints on the data, as can any conventional database, but 1t also allows encapsulation
of data and of programs that operate on the data. Further, 1t provides a uniform framework
for the treatment of arbitrary user-defined data types It 1s a system which provides
database-like support (for persistence, transactions, querying, etc.) for objects, that is,

encapsulated data and operations [Kim91}.

An object-oriented database supports a set of core object-oriented concepts which are

found 1n most object-oriented programming languages and systems [Kim9!].

1.

Lvery object encapsulates a state and a behaviour, where the state of an object is the set
of values for the attributes of the object and the behaviour o an object 1s the set of
methods which operate on the state of the object. The state of an object may be
accessed, and ats behaviour invoked, from outside the object only through explicit
message passing.

All objects that share the same set of attributes and methods are grouped in a class.
All clastes are orgamzed in a rooted, directed acyclic graph, or a hierarchy (called a
class hicrarchy or an inheritance hierarchy). A class inherits ali the attributes and
methods from its direct and indirect ancestors in the c'ass hierarchy. A message sent to

an nstance of a class may be bound to a method defined in a superclass of the class.

1.4 Thesis Aims and Qutline

This thesis demonstrates Low the relational database model can be used to incorporate

key object-oniented features, such as inheritance of attrnibutes and methods, polymorphic

mcthods, and collective classes, 1n the relational model.

The amm of this thesis 1s to umty relatonal and object-orniented paradigms 1) to

establish exactly which concepts and corresponding syntax are needed to capture the

important object-oriented features, and 2) to show that relational and object-oriented

approaches are not incompatible. The design of the following features 1s addressed:

® (lasses arc wdentitied with relations;

® Object identity (1d) 1s given by ordinary attributes, which may or may not be keys of the

relattons m whach Id’s are detined;

® (Class hierarchies arc represented as relations; in particular:

» an ISA hierarchy 1s introduced for the inhentance of
e attnibutes, and
¢ mcthods;
® a HASA hierarchy 1s introduced to provide subobjects and the broadcasting of methods

to all subobjects.

® Methods arc identified with constant, function, or procedure-valued attributes of a
relation.

® A high level relanonal language such as Relix has no concept of "tuple” or corresponding
syntax (1t deals enly with "relations”, as 18 suttable tor a language geared to collective ot
"bulk" data on secondary storage). Therefore, the object-onented approach incorporated
in Relix will have no concept of "object” or corresponding syntax, but only the concept

of "class”. It can thus be thought of as a "class-oriented” relational language.

There are two possible approaches to achicve the aims specified above.

1. Introduce minimal new syntax into Relix to express object-oriented features such as
inheritance;

2. Implement everything as procedure calls in Relix with no new syntax (cxeept that
presently Rehix does not have procedures or tunctions, so we will propose how a
procedure call 1s made).

When a new syntax 18 necessary, we will show that 1t can be mimplemented in the Rehix

database language itself without reverting to the base language (C) in which Relix s

implemented.

Object Identity.

A key concept of object-oriented programming 1s that each object has a unigue
identity by which 1t can be referenced. In most of the commercially-available OODRs the
object’s 1dentity 1s 1ts physical address.and objects refer to cach other by a pomter In a
relational database the concept of a pointer docs not exist. In order to be consistent with the
philosophy of the relational approach, we choose to represent the object wdentity by an
attribute of a relation.

In Relix all the attnbutes of a relation can be manipulated at the programmer’s
discretion. We will consider whether 1t 1s necessary to have a somewhat restricted access

to the Id field in order to mantain the system integnity.

Class Hierarchy.
The relational model does not support the concept of inheritance hicrarchy. 1'or

example, the relationship between the relations person, Employee, Permanent, Tempourary

7

and student is described graphically below, They form an ISA hierarchy.

Person
/ \
18a isa
/
Employee Student
isa isa
/ \
Permanent Temporary

Person (id, Name) Employee (id, Emp#) Permanent (id, Salary)

1 Mike 1 123 1 30
2 Ann 2 345 2 25
3 Pete 3 456
4 Kate
Temporary (id, Hours) Student (id, Stud#)
3 10 4 91012A

Knowing the relationship between these relations, we can put together the
information. ~ these tables to conclude that Ann is a permanent employee whith salary of 25.
Before we talk about using a class hierarchy, we need to find a way of recording the

links between classes. We need to adopt a new syntax for arranging classes into a hierarchy.

ISA Hierarchy.

Once the inheritance mechanism is in place, the features that are described in the
superclass relation may be referred to by the subclass relations. The following expression
includes a selection and a projection of inherited attributes from a subclass relation
Permanent

[Name, Salary] where Emp# = 123 in Permanent

The mherited attributes of a subclass relation can be updated. For example, we
might want to change the name of a Permanent Employee whose salary is 25.

update Permanent change Name < "Anne" using (where Salary = 25 in Permanent)

HASA Hicrarchy.

Suppose that an international organization wants to pass a new international law.
The commuttece members represent ditferent countries. To pass a new law, each committee
member must first get his country to accept it. The countries are broken down into two

categories by their distnibution of power: democracies and dictatorships. The procedure by

which a new law is accepted 15 different 1n each category of country.
We want to send a message "Pass new law" to all countnes represented on the

committee. The Continent inhenitance hierarchy 1s shown in Figure 1.1 below.

Continent
Country
\\
™~
Democracy Dictatorship
method "Pass new law" method "Pass new law"

Figure 1.1 Continent inheritance hicrarchy.

The inheritance hierarchy does not provide the capability of sending a message to
a group of related objects that do not necessanly belong to the same class. It 1s obvious that
the inheritance hierarchy cannot satisfy all the needs of the user

To provide the capacity to delegate messages downward, we need a notion of
collective classes and a collection hierarchy

In our example, a collective class Committee will heep a hst of the countries
represented on the commuttee. The collection hierarchy specifies the classes of objects found
in the collective class In the Figure 1.2 below, the Commuttee collection hierarchy indicates
that the committee collective class contains objects of two classes. pemocracy and

Dictatorship.

Commuttee

.
/ ;
N

N

/ \

/

e

Democracy Dictatorship

Figure 1.2 Commuttee collection hierarchy,

The collection hierarchy 1s used to ensure that the method sent to the collective clasy
can be interpreted by each subobject according to the class of that object. In other words,
the method applied to each subobject of the collective class has the implementation defined

for that object’s class or for 1ts superclasses in the inhentance hierarchy.

Methods

Presently the Relix database language doces not have an implementation of methods
(functions or procedures). In this thesis we are not concerned with the actual implementation
of methods, which 1s a topic for another thesis, rather, we assume that the methods are

alrcady avarlable to the user. We propose the syntax of associating a method with a class.

function Vahd_number() on Employee
{if Emp# < 3 then return (True)
clse return (False)
H
Here the method valid_number () 1s applicable only to the class on which 1t 1s defined
(employee) and to all its subclasses, namely permanent and Temporary. It cannot be apphed
0 Person
A micthoa 1s imvohked by actualizing, in the operand relation, the virtual attribute to
which that method was assigned (Virtual attnibutes are discussed in more detatls in Chapter
2.y In the example below, the function valid_number () 1s mvoked in the Employee

relation,

let vahidity be Vahid_number ();
result < [Emp#, vahdity] in Employee;

result (Emp#,validity)

] True
2 True
3 False

A pulymorphic method s a method which has a different implementation for
different classes of arguments The function valid_number () can be written to validate both
the employee number and the student number, which are possibly of difterent types (one is
nwneric and the other ts alphanumeric).

function Valid_number() on Student
{ if the last letter of Stud# = "A" or "H" then return (True)

else return (False)

}

The system should determune which implementation of this function to use when the function

is applied to a class.

10

1.4.1 Thesis Qutline

All of the above proposals are discussed m detail in the body of this thests which s
organized mnto 7 chapters

Section 1.5 of Chapter | reviews the commercially available object-oriented
programming languages and database systems with the special emphasis on o then
implementation of mheritance and collection hierarchies, polymaorphism, and encapsulation

Chapter 2 gnes a general overview of Rehy database programming language
developed at McGull Umversity. This chapter presente all of the features of Rehix which
are going to be used in the later chapters

Chapter 3 cexplores the correspondence between classes o object oriented
programming languages and relations in relattonal database management systems (classes)
The representation of Object Identity as an attnbute of the relation s discussed. ‘The chapter
then antroduces the class hierarchy and s representenion an relattonal format The
mechanmism of attribute mhentance (ISA hierarchy) s expluned on the examples of
traditional relational operations like projection, sclection, jomn and update

Chapter 4 suggests the syntax for the declaration of mcthods that are apphicable to
the lmited number of classes It focuses on method mheritance among classes of the ISA
hierarchy, and on the use of polymorphic functions and procedures

Chapter 5 introduces the collection lierarchy (HASA Hierarchy), 1ts declaration, and
application.

Chapter 6 demonstrates how Rehix, enhanced with the teatures described in the
previous chapters, can be used to implement a graphics editor written in Objective- € This
chapter compares the implementation in both languages on the basis of class hierarchy and
simple operations hike creating and selecting objects, moving selected objects, and hiding and
showing constramnts.

Chapter 7 concludes our discussion with a summary of the main results and gives

directions for further rescarch.

11

1.5 Overview of Object-Oriented Programming Languages and Databases

In this section we will examine a number of object-oriented programming languages
(OOPI') and databases (OODB) Among the commercially available OOPLs we will discuss
Simula, Smalltalk [Gold83, Shat91], Eitfel (Jell90, Meye88a, Meye88b], C+ + [Stro86,
Muli89], Trellis [Shat86], and CLLOS [Brac90, Moon89]. Among the OODBs we will
discuss O, [Deux90, Deux91], ObjectStore [LL.amb91], GemStone [Bret89, Butt91, CoMa84,
Penn87), ORION [BaneB87, KimBE8] and POSTGRES [Rowe87, Ston86, Ston91].

Object-onented databases support the following features that are not present in
object-oniented programmumg languages:

® persistent objects,

® <chema moditfications (changes to the defimition of the behaviour of a class and changes
to the structure of the class lattice);

® mcthods associated with a class, which can be applied to every object of a class (whereas
m OOPLs a method can be apphied only to one object);

® cach object has a unmique, never-changing 1D,

Simple inheritance 1s a standard feature of all OOPLs and OODBs. Most of the
systems discussed in this overview support multiple inheritance in addition to simple
inheritance.

All systems mentioned above provide opportumities to develop data aggregates.
System-defined collection classes hike sets, bags, lists and arrays specify a number of
predefined procedures on the collection classes, such as adding a new element, verifying the
existence of an element, enumerating elements, and removing an element. Composite
objects orgamze a collection of related objects into a hierarchical structure which captures

the IS-PART-OF relationship between an object and its parent.

12

Deradpive

1.5.1 Using Existing Classes as Building Blocks for New Classes

New classes in object-oriented languages and databases can be created by inhenting
the properties of existing, more general classes, and adding some properties specific to the
new class. This is the priciple of inhernitance.

The vanables of the classes can be of simple or structured data type A basic
(stmple) data type 1s a data type whose vaiues are regarded as nondecomposable, hike mteger
or character. A structured (composite) data type consists of component elements which are
related by some structure. Examples are an array of mtegers, a set of characters, and a
structure which includes an mteger and a character. A class defimtion can be viewed as a
type declaration

The notion of clients and suppliers binds class variable to spectfic classes In battel
[(Meye88a] a class A 1s said to be a client of a class B, and B 1s a supplier of class A,

whenever A contains an entity declaration of the form ¢ B

class PERSON feature class BOOK feature
f name, 1_name: STRING; title STRING:;
end -- class PERSON author: PERSON;

end -- class BOOK

In this example, Book 15 a chient of PERson because Book contams the attribute

declaration: auther: PERSON.

A class may be its own chent, for exampie, an EMPLOYEE class mught be of the form

class EMPLOYLE feature
dept: STRING;
manager: EMPLOYEE;

end -- class EMPLOYEE

The chent-supphier relationship exists in all OOPLs since the instance vanables can

be of any type - simple (string, integer, ctc) or user defined.

Inheritance and the chent relationship correspond to different needs. Inheritance

i3

means "15", chent means "uses”. Inhernitance 1s appropriate if every mstance of A may also
i be viewed as aninstance of B The chent relation 13 appropriate when every instance of A
simply possesses one or more attributes of B Chients of A only see A from its interface;
hence chients are protected against future changes i A’s implementation. When a class
ihernits from A1t gams access to A's implementation, which gives that class more power,

but no protection

1.5.2 Multiple Inheritance and Resolution of Ambiguities

All ot the OOPLs and OODBs reviewed here except C+ + and ObjectStore support
multiple mhentance of attributes and methods In some OOPLs hike Smalltalk [Shaf91] and
POSTGRES [Rowce87], 1t the ambiguities arise because a class inhernits the same attribute
name from multiple parents, creation of the new class 1s rejected
Trellis [Shat86] allows the same name to be defined in different parents of a class,
but requires the programmer to resolve expheitly the ambiguities by prefixing the method
i or attribute name by the name of the parent class from which that method or attribute should
be inhenited. For example, the pisplay operation in Bordered _Window class first calls the

Display operation in window class and then draws a border around the window.

operation Display (me)
/* Display an object 1n this window with a border around it
is
begin
Window'Display (me): /* use Window’s Display
Display_border (me), /* display the border

end;

The me keyword andicates that the operation is an instance operation. The invocation
Window'Display can only occur in a subclass of Wwindow.

In Eiffel [Meye88a] name clashes may be removed by introducing one or more
rename subclauses n the inhent clause. For example, if both Employee and student

classes contam an attribute Name and a tunction calc_age, then a class Wworking Student

14

may stll inhent from both as tollows

class Working_ Student

inherit
Employee
rename Name as E_Name, cale_age as E_cale_age
Student
feature
end

Within both working_student, the chients and subclasses of working student, the Name
attribute from Employee will be referred to as B Name, and the one from student as Nawe
Renaming makes 1t possible to refer to the same feature under difterent names i ditterent

classes.

In ORION [KimB88, Banc87] an exphcit confhet resolution 1 mcorporated i the

definition of the class by a :methods clause

(make_class Classname
ssuperclasses ListOfSuperclasses
:attributes ListOfAttnibutes
:methods ListOfMethodSpec)

Here ListofMethodspec 15 a list 0f pairs (MethodName, Superclass) where Methodtame:
1s the name of a method to be inherited from the superclass Thus the tmethaod construct
allows the user to specify which methods are to be inherited from wineh superclasses It the
:methods construct 1s not specitied, all the methods are imherited tfrom all the superclasses,
and conflicts are resolved on the basis of superclass ordering

If an mstance vanable or a method with the same name appears i more than one
superclass of a class C, the one chosen by default 15 that of the first superclass i the list of
immediate superclasses of C, as specified by the programmer. Since this default contlict
resolution schema hinges on the permutation of the superclasses of a class, ORION allows

the user to change exphicitly this permutation at any time.

15

CLOS [Brad90] resolves inheritance confhicts by defining an order of precedence

which determines wiich class’s characteristics dominate.

(defelass Person () (namey))
(defelass Graduate (Person) (degree))
(defelass Doctor (Person) ()

(defelass Research Doctor (Doctor Graduate) ()

The defclass construct includes the name of the new class, a hst of superclasses, and
a list of s mstance vanables To avord imheritance ambiguities, CLOS hnearizes the
ancestor graph ot a class to produce an inhernitance hist in which each ancestor occurs only
once. The graph of Research-Doctor 1s hnearized t0 Research-Doctor, Doctor,
Graduate, Person Using hinearization, a CLOS muluple inheritance hicrarchy 1s reduced
10 a collection of mhentance hsts, one for each class kach hist can be interpreted using
simple mherttance Classes appeanng carhier m ths hist are considered more spectfic than

classes appeanng later, and the characteristics of more specific classes dominate.

1.5.3 Method Overriding and Accessing Superclass’s Methods

In all the languages mentioned o Section 15, a subclass may override the
superclass’s methods by providing a ditferent implementation for that method under the same
name. In C++ a subcdass can provide a new implementation of a methed inherited from
ity superclass only af that method was defined i the superclass as VIRTUAL.

In Smalltalk, C++, and ObjectStore, the subclass may access the superclass’s
methods with the keyword super even if that method 1s redefined n the subclass. In Trelns,
the method’s name should be pretixed by the name of the superclass, only the subclasses can
reterence the superclass’s methods

Self in Smalltalk 15 a pseudo-variable referrning to the receiver of a message. When
“1s used m a method, it indicates that the value of the next expression 1s to be the value of
the method.

When a method contans a message whose receiver is sel £, the search for the method

16

for that message begins 1n the instance’s class, regardless of which class contains the method

containing self. Consider an example.

class name: One class name: Two
superclass: Object superclass: One
methods methods

test test

*1 2

resuitl

“self test

An nstance of each class will be used to demonstrate the method determination for
messages to self. Examplel 1S an nstance of class one and example2 15 an stance of

class Two.

examplel < One new. expression result
example2 < Two new.,

examplel test
example! resultl
example? test
example? resultl

o - —

The pseudo-variable self can be used to implement recursive functions. An

example of the method Factorial is given below:

Factorial
self = 0 ifTrue: [*1].
self < 0 ifTrue: [self error: 'Factorial invalid’)
ifFalse: [“self * (self - 1) Factonal]

The receiver 1s an integer. The first expression returns 1 1f the receiver 15 0. The second
expression notifies the user of an error if the sign of the receiver is negative. Otherwise,

the value returned 1s the receiver multiplied by the factorial of one less than the receiver

self * (self — 1) Factorial

17

[

Super 1n Smalltalk refers to the receiver of the message, just as self does.
Huewever, when a message 15 sent to super, the search for a method does not begin in the
receiver’s class. Instead, the scarch for a method begins in the superclass of the class
containing the method. The use of super allows a method to access methods defined in a
superclass even it those methods have been overridden in subclasses. Messages to super

will be explamed using two more example classes.

class name: Three class name: Four
superclass: Two superclass: Three
mcthods methods
test test
*3 “4
result2

“self resultl
result3

“super test

We will illustrate the results of sending the messages test, resultl, result2 and result3

to nstances of class2s Three and Four.

exampled < Three new. expression result
exampled < Four new.

example3 test

example4 resultl
example3 result?
example4 result2
example3 result3
exampled4 result3

WA WwWhs W

In Euffel [Meye88a], the superclass’s method can be accessed by renaming that
meihod m the current class. For example, 1n class Three we will rename the method test
of ciass Two 1n order to cnable access to 1t. The predefined entity name current allows the

reference to the class of the current mstance. It 1S similar o self in Smalltalk.

18

class Three
inherit Two
rename test as two_test
feature
test:INTEGER is
do Result := 3
end;
result2:INTEGER is
do Result : = Current.resultl
end;
result3:INTEGER is
do Result : = two_test
end:

end -- class Three

1.5.4 Methods

Methods can be associated with a specific class, in which case they are inhented by
all the subclasses of that class. This type of methods can only be used with the objects of
the classes on which these methods are defined. Method inheritan.e means that the butlding
blocks from which a class is constructed may include behaviour in the form of methods as
well as structure.

In Exffel [Meye88a], attributes and routines are grouped under the same category of

Seatures.

19

class POINT
feature
X, ¥y: REAL,;
scale (factor:REAL) is
-- Scale by a ratio of factor
do
» .= factor * x;
y := factor * y;
end; -- Scale

distance (other:POINT): REAL is
-- Distance from current point to other
do
Result . — sqrt ((x - other.x)*2 + (y - other.y)*2)
end; -- distance
end -- class FOINT

The text of an Eiffel class [Meye88a) always refers to a current instance of the class.
Most of the time this current instance is anonymous: in a class, a feature name which
appears unquahtfied denotes the corresponding feature of the current instance. So in class
poINT, the unqualified feature name x (i.e. just x, not p.x for some p of type POINT) would

denote the corresponding feature of the current instance.

In CLOS [Brac90, Moon89] each method specifies its own applicability condition,
the most common kind of which 1s a test of whether the argument passed to that method is
a member of a particular class on which this method is defined. Thus all instances of a class

have the same behaviour, because the same methods are applicable to each of them.

(defclass Person () (name))
(defmethod Display ((self 'Person))

(display (slot-value self 'name)))

(defclass Graduate (Person) (degree))
(defmethod Display ((self Graduate))
(call-next-method)
(display (slot-value self ’degree)))

20

e e

The argument hist of the defmethod expression defines the class on which the method s
defined. Mcthod combination is supported by call-next-method, which plays the role of
super In Smalltalk. call-next-method provides access to the second most specific method
in the inheritance chamn with the same message selector. For example, when a pusplay
message 1s sent to 4 Graduate student whose name 1s A.Smiuth and who s doing a Ph.D.

degree, "A.Smith Ph.D." 1s displayed.

POSTGRES [Rowe87,Ston86,Ston91] system allows 1ts methods to be wnitten n
languages like C or Lisp, and m POSTQUEL query language. The former methods are
called user-defined, and the latter are termed POSTGRES methods

A user-defined method 1s defined to the system by specifymg the names and types
of the arguments, the return type, the language it s written in, and where the object code
1s stored. For example, the definmition

define procedure AgelnYears (date) return intd

is (language = "C", filename = "CalculatcAge")

declares a procedure ageinyears which is written in C and whose object code is stored in
the filename "CalculateAge”. This procedure takes an argument of the type date and returns
an integer value. The argument and return types are specified using POSTGRES types, such
as characters, integers, etc. When the procedure 1s called trom a relation, 1t is executed
once for each tuple of that relation, taking the specified attributes as input arguments.
POSTGRES stores the information about a procedure in the system catalogues and
dynamically loads the object code when 1t 15 called i a query. The following query uses
the AgeInYears procedure 0 retrieve the names and ages of all people:
retrieve (P.Name, Age = AgelnYears (P Birthda.e)) into Agelnfo

from P in Person

Consider that the relation rerson has two tuples: one for cach Ann and Pete. The result of
the evaluation of the query above by invoking a procedurc Agelnyears on each tuple of

person, will give the relation AgeInfo.

Person (Name,Birthdate) AgeInfo (Name,Age)
Ann 55/01/20 Ann 36
Pete 65/09/30 Pete 26

21

User-defired procedures can also take tuple-variable arguments. For example, the
following command detines a procedure, called comp, which takes a tuple of the EMPLOYEE
class and computes the employee’s compensation according to some formula which involves
several attributes in the tuple (e.g. the employee’s status, job title, salary):

define procedure Comp (EMPLOYEE) returns int4

is (language = "C", filename = "Comp")

The argument of class EMPLOYEE represents a reference to a tuple in the EMPLOYEE relation.
This procedure 1s called 1 the following query:

retrieve (E.Name, Compensation = Comp(E)) from E in EMPLOYEE

A data structure which contains the names, types, and values of the attributes in the tuples

is passed to the C function that implements this procedure.

POSTGRES methods are procedures stored in the attributes of POSTGRES relations.
The system provides two kinds of procedure type-constructors: variable and parameterized.
A variable procedure-type allows a different POSTQUEL procedure to be stored in each
tuple, while parameterized procedure-types store the same procedure in each tuple but with
different parameters.

We tllustrate the use of a variable procedure-type by showing how to determine the
student’s major. Supposc that a pEPARTMENT relation was defined with the following
command:

create DEPARTMENT (Name = char[25],Chair = char[25],...)

A student’s najor(s) can then be represented by a procedure in the sTUDENT relation that
retrieves the appropriate DEPARTMENT tuples(s). The attribute Majors would be declared as
follows:

create STUDENT (..., Majors=postquel,...)

Data type postquel repiesents a procedure-type. The value in Majors will be a query which
fetches those tuples of the DEPARTMENT relation which represent the student’s majors. When

that query is executed, Majors will store the tuples fetched by the query. Thus Student is

22

a nested relation. The following command appends a student to the database who has a
double major in Math and C.Sc.:
append STUDENT (Name= "Smuth",.., Majors =
"retrieve (D.all) from D in DEPARTMENT
where D.Name = "Math" or D.Name = "C §c¢."")

A query which references the Majors attribute returns the stning that contaims the postquel
command. Two notations are provided that will execute the query and return the result,
rather than the string with the postquel command. First, nested-dot notation implicitly
executes the query:

retrieve (S.Name, S.Majors.Name) from S in STUDENT

This prints a hist of names and majors of students. The result of the evaluation of the query,

stored 1n Majors, 1s imphicitly joined with the tuple specitied by the rest of the target hst

In other words, 1f a student has two majors, this query will return two tuples with the Name

attribute repeated. The implicit join 1s performed to guarantee that a relation s returned
The second way to exccute the query 1s to use the execute command

execute (S.Majors) from S in STUDENT where S.Name = "Snuth"”

returns a relation which contains pEpPARTMENT tuples for all of Smuth’s majors.

Parame:erized procedure-types arc used when the query to be stored i an attnbute
is nearly the same for every tuple. The query parameters can be taken from other attributes
in the tuple or they may be explicitly spectfied. For example, suppose an attribute m
STUDENT rcpresents the student’s current class list. Given the defimtion for ENROLMENTS,

create ENROLMENT (Student = char[25],Class = char[25])

Bill’s class list can be retrnieved by the query
retrieve (ClassName = E.Class) from E in ENROLMENT
where E.Student = "Bill"

This query will be the same for every student,except for the constant that specifies the

23

it

rY

) T‘*-'«‘

student’s name
A parameterized procedure-type can be defined to represent this query as follows:
define type classes is
retrieve (ClassName = E Class) from E in ENROLMENT
where E.Student = $.Name

end

The dollar-sign symbol ($) refers to the tuple in which the query is stored (i.e. the current
tuple). The parameter for each instance of this type (i.e., a query) 1s thc Name attribute in
the tuple in which the instance 1s stored. This type is then used in the create command,

create STUDENT (Name = char[25],...,ClassList = classes)

1o define an attribute which represents the student’s current class list. This attribute can be
used in a query to return a hst of students and the classes they are taking:

retrieve (S.Name, S.ClassList ClassName)

Notice, that for a particular sTUDENT tuple, the expression "$.Name" in the query refers to
the name of that student. The symbol "$" can be thought of as a tuple-variable which is

bound to the current tuple.

1.5.5 Collection Classes

A collection groups related objects together, so that they can be referred to as a
single entity. The elements of the collection can belong to different classes. Collection
classes are system-defined and support four categories of messages for accessing elements:
1) adding new clements; 2) removing elements; 3) testing occurrences of elements; and 4)
cnumerating clements. Also the size of the collection can be determined. The enumeration
messages are useful when the same operation needs to be applied to all the elements of the
collection For example, Figure can include such graphical objects as point and circle. To
move every object of the Figure by a certain distance, apply the move method to every

object of the Figure.

24

The Smalltaik-80 syntax for this problem is as follows:

Q class name: Point
superclass: Graphical_objects
instance variable names: x, y
methods

newx:xInt y:ylnt

/* To create an instance of a pont, both x and y coordmates arc specified. */
X < xInt.

y < yint.

moveHoriz: hint Vert: vint
/* Both coordinates of the point are changed by the corresponding amount. */

X « X + hint.

y <y + vint.
class name: Circle
superclass: Graphical_objects
instance variable names: center, radius
methods

newCenter; aPoint rad; Int

/* Create an instance of a circle class. The center instance variable should be
Just like the instance apoint of the class point. */
¥ center < aPoint copy.
radius < Int.

moveHoriz: hint Vert; vint

/* When moving a circle, only its center needs to be moved.*/
center moveHoriz: hint Vert: vint,

class name: Figure
superclass: Object
instance variablc names: components
methods

new

/* This method makes the vaniable components to be a Set. */
components « Set new.

addComponent: anObject

/* Add a new object of any class to the components set. */
components add: anObject.

moveHoriz: hint Vert: vint

/* Apply the method moveHoriz: Vert: to each element of the components set. */
components do: [:each | each moveHornz: hint Vert:vint}.

25

A geometricfigure COnsIsts of a point and a carcle. First, create each graphical object,

and then add 1t to the set of components of the geometricFigure.

pomt] « Point newx:0 y:0.

pomt2 « Point newx 0y 10

circlel < Circle newCenter:point2 rad: 3.
geometrichgure <« gure new.
geometrickigure < addComponent: pointl.
geometrickigure < addComponent: circlel.

If we want to move the whole geometricFigure by a certam distance, we will apply the
moveHoriz: Vert: method to the geometricFigure.

geometriciigure moveHori7:2 Vert:4.

Collections can be thought of as lists of objects which can be stored n any of several
forms: sorted or unsorted, ordered or unordered, with or without duplicates. Sets and hists
are subclasses of the Collection class and are supported by such languages as Trellis, O,,
Smalltalk, C++, ObjectStore. GemStone and POSTGRES.

In some languages, hike ObjectStore, collections cannot store objects of different
types (classes). So the Figure example above cannot be implemented in those languages.

In GemStone, a class detines the structure of 1ts instances, but rarely keeps track of
all those nstances. Instead, collection objects --Arrays, Bags, Sets-- serve to group those

instances. An object may belong to more than one collection [Bret89].

1.5.6 Sending a Message to All the Subclasses of a Class

In POSTGRES [Rowe87] a * after the class name indicates that the query should be
run over the class and all 1ts subclasses. For example, 1f we have the following hierarchy
of classes,

create EMP (name = c¢l12, salary = float, age = int)
create SALESMAN (quota = float) inherits EMP

then, 1if we wanted the names of all salesmen or employees over 40, the notation would be:

retrieve (E.name) from E in EMP* where E.age > 40

26

1.5.7 Composite Objects

A composite object 1s a collection of related instances These instances form a
hierarchical structure which captures the IS-PART-OF relationship between an object and
its parent. ORION [Bane87] uses the knowledge of compostte objects not only to entorce
the semantics of composite objects but also to cluster physically the constituent objects of
composite objects, so as to mimimize the 1/0 cost of retrieving composite objects

A composite object has a single root object, and the root reterences multiple children
objects, each through an instance vanable. Each child object can in turn reterence its own
children objects, again through instance variables. A parent object exclusively owns children
objects, and as such the existence of children objects depends on the existence of their
parent. Children objects of an object are thus dependent objects The instances that
constitute a composite object belong to classes in the inhertance hierarchy This hierarchical
collection of classes 1s called a composite object schema.

Below we 1llustrate a composite object schema for vehicles.

... Name
o
Manufacturer -~<———— Location

\\ . .
domain:Company) —~ Divisions
Chassis
Vehicle wwmmee—s— Body <Interlor
(demain: Autobody) Doors
Draivetrain Engine
(domain: AutoDrivetrain;:::Transmxssxon

The classes that are connected by bold lines form the composite object schema. The root
class is the class vehacle. Through instance variables Body and privetrain, vehicle
instances are linked to their dependent objects, which belong to classes Autobody and
AutoDravetrain. The class vehicle has another instance variable called Manufacturer,
but it 1s not a hnk to a dependent object because Manufacturer 1s not exclusively owned by
the vehicle. The instances of AutoBody and Autobraivetrain are connected 1n turn to other
dependent objects. A vehicle composite object, then, 1s an instance of the class vehicle,

as well as an instance of AutoBody and AutoDraivetrain classes.

27

Lach non-leaf class of a composite object schema has one or more nstance variables,
called composite instance variables, that serve as links to dependent classes In other
words, a composite object schema 1s created through composite instance variables which
have dependent classes as their domains. The hink between a class and the domain of a
composite instance variable of the class 15 a composite link. For example, the vehicle
class has a composite hink to the class autoBody through the mstance vanable Body. The
instance variable Body has as domain the class Autobody, and it has the compostte link
property

The object which s referenced through a composite instance variable 1s a dependent
object whose existence depends on the existence of the referencing object. For example, the
body of a vehicle 1s not only owned by one specific vehicle, but it also cannot exist without
the vehicle. This means that a dependent object cannot be created if its owner does not
already exast As such, a composite object must be instantiated in a top-down fashion: the
root object of a composite object must be created tirst, then the objects at the next level, and
S0 on. When a constituent object of a composite object 1s deleted, all 1ts dependent objects
must also be deleted

The composite lmk property of an instance variable of a class 1s nherited by
subclasses of that class. For example, 1f the class Automobile 15 a subclass of vehicle, 1t
mhents the istance vanable Body from vehicle. Furthermore, because Body is a composite

hink 1n the vehicle class, 1t will also be a composite hink n the Automobile class.

1.5.8 Schema Modification

A schema s described by the set of class definitions connected by the superclass /
subclass relationship, 1.e. 1t s represented by the class definitions and the structure of the
class lattice [UnScv0] Schema change operations fall into three categories [NgRi89]:

1. changing class defimuions, 1.e , adding and deleting instance variables;

tJ

. addmg and deleting classes in the lattice;

‘o

. modifymg the class lattice by changing the relationship between classes.

28

In OOPLs schema modification 1s not allowed, smce classes are types and they do
not contain any objects.

Below we review the semanties of the schema change operation in ORION [Buaned7)

1 Changing class definition.

1.1 Add a new stance vanable V to a class C.

If V causes a name conflict with an inherited instance variable, Vo will overnde the
inherited one 11 the old instance vanable was defined locally in C, s replaced by
the new defimtion V 1s inherited by all subclasses of C. 1 there 1s a name contlict
in a subclass, V 15 not mherited Exasting instances of the class and subelasses

receive the user-specified default value, 1f there s one, or the il value

1.2 Drop an_instance variable V trom a class C.

V must have been defined in the class C; it as not possible to drop an inhernited
mstance variable. 'V as dropped from C and all ats subelasses If € or any of ats
subclasses has other superclasses which have an mstance varnable of the same name
as V, Cnhents one of those instance vanables. In the case that Vo must be dropped
from C or any of its subclasses without a replacement, existing mstances lose their

value for V.

2 Adding and removing classes.

2.1 Add anew class C.

If no superclasses are specified for a newly-added class, the root class OBJIECT 15
the default superclass of the new class If multiple superclasses are specified, all

instance variables and methods from all superclasses of C are inherited by C.

2.2 Drop an existing class C.

All the subclasses of C become immediate subclasses of the superclasses of C - The
definition of C 1s dropped, together with all 1ts instances. If the class C was the
domain of an instance varniable V, of another class C,, V, 1s assigned a new domain,

namely, the first superclass of the dropped class C.

29

3 Modifying the class lattice

3.1 Make a class S a superclass ot a class C.

‘The addition of a new edge from S to C must not ntroduce a cycle in the class

latice € and ts subclasses mherit instance variables and methods from S.

32 Remove d class S trom the st perclass hist of a class C.

The deletion of an edge from S to C must not cause the class lattice DAG to become
disconnected. In the case that S s the only superclass of C, then C is made an
immedrate subclass of cach of S's superclasses. Thus C does not lose any instance
vanables or methods that were inherited from the superclasses of S. C only loses
those mstance variables and methods that were defined in S Dropping of those

vartables s discussed in 1.2,

GemStone [Bret89] allows a class to be added as a leaf of the class hierarchy. To
add an mterior node to the hierarchy, the new class’s name, 1ts superclass, and 1ts immediate
subclasses are spectfied. GemStone’s schema modification semantics is very similar to that

of ORION except for the tollowing differences.

1.2 Drop an nstance variable V from a class C.

The modification 1s not propagated to subclasses of the modified class. The same
eftect may be achieved by repeatedly applying the operation to the modified class’s

subelasses.

2.1 Addanew class C.

To add an interior node to the herarchy, the new class’s name, its superclass, and
its subclasses are specified. The subclasses must currently be immediate subclasses
of the given superciass. The representation specified by the new class will be the
same as that specified by the superclass. No new vanables are introduced into the
class and the constramnts on inherited variables remain unchanged. Note that new

instance variables can be added subsequently.,

30

2.2 Drop an existinge class C.

A class may not be removed 1if 1t has any mstance GemStone has a message by
which an object can change s class to a subclass of 1ty current class; this message
can be used to remove all instances of a given class. The superclass of all nstances

of the removed class 15 changed to the superclass of the removed class.

In O, [Deux91] the schema designer is not forced to follow any order when creating
classes. Therefore. classes can be momentanly imncompletely spectfied. For mstance, a class
C can be defined with an attribute of class C’, which 1s not detined But instances of that
class cannot be created unless the class definttion 1s well defined. Deletion of a class which
1s not a leal in the inhenitance hierarchy s forbidden. A class 1s deleted only if @) 1t has no
instances, and b) no other classes are dependent on it through composition or specialization

Every time a class 1s deleted, all the methods associated with 1t are invahdated.

1.5.9 Persistent Objects and Object Identity

In all the OOPLs objects are not persistent They are referenced by a pointer.

In the OODRBs hike O,, ObjectStore and GemStone there are two types of objects
persistent and transient. By default, all the objects are transient unless they are made
persistent sometime after their creation and before the end of the execution of the program
Persistent objects are assigned a name which becomes their object identity In POSTGRES
[Rowe87, Ston91]. cach mnstance of a class has a umque (never changing) system-defined
identifier (OID), thus making all the objects persistent. The OID can be accessed, but not

updated by the user.

31

s S

1.5.10 Inheritance of Features, Private and Public Options

In C++ and O, all the attributes and methods by default are private, and are only
accessible to the incthods defined in the declaration of that class. In O,, features explicitly
declared public are inherited. On the other hand, in Simula and Trellis all the features are
inheritable by default, unless they are explicitly defined as hidden or private respectively.
In Smalltalk, Eiffel and POSTGRES, all of the features of the superclass are inherited by the
subclass. In Fiffel, features and mcthods listed in the export clause are available to the
clients of this class. Inherited features can be exported too.

In Trellis and in C++ subtype-visible methods are inherited and can be redefined,
but are not visible outside the defining type and its subtypes. This type of methods is not
as restrictive as private but not as general as public.

In C+ +, a class may name other classes to be 1ts fiiends; this allows access to the

private members of the class by the methods of these friend classes.

32

Chapter 2

Relix Overview

Relix, Relational database on Unix, is a database language developed in the Aldat
project. The Aldat project [Merr77] explores extensions and applications of the relational
algebra. The extensions have evolved through a careful empincal process of developing
applications of the existing formalism. Extenston has been done only where necessary, and
only if the extension fits nto a simple conceptual framework. The baswis of Aldat 1s

described in [Merr84]. This chapter outhines the subset of Relix that 1s used in this thesis.

2.1 Domains and Relations

An attribute of the relation 1s associated with a set of values called a domain. Relix

supports the following domain types:

intg - an integer type

real - a real type

strg - a variable length character string
bool - boolean type

stmt - executable statement

Before an attribute can be used in the declaration of a relation, it should be declared
to be of one of the above types. Let us declare several attributes.
domain Age intg;
domain Name strg;

domain Occup strg;

33

A rclation can be created 1n several ways.
® [t can be assigned the value of a file located tn the secondary storage, using the relation
declaration syntax,
relation Person (Name, Age, Occup) « "P";
The newly-created relation person may have these tuples:

Person (Name, Age, Occup)
Ann 25 Employee
Pete 31 Student
Kate 26 Student
John 27 Employee
Jake 21 Student
® ft can be assigned the value that 1s a result of a relational algebra operation on existing
relations. The expression R « T replaces the contents of the relation R with the contents
of the relaton T if relation R has already existed, and creates R being 1dentical to T if
relation R did not exist before this operation. In both cases R is assigned the same
attributes as I,
The expression R <+ T appends the tuples of T to R if both relations are defined on the

same attrnibutes. Otherwise an error occurs.

Example 2-1. Consider four relations and two assignment statements:

Info Sales Cs202 Final
({Name, Age) (Dept, Sale) (Name, Mark) (Name, Mark)
Jack 30 Toy 200 Pete 80 Pete 75
Deli 180 Vera 70 Vera 70
Nick 60
Info « Sales; Cs202 <+ Final;

The results of each assignment are shown below,

Info (Dept, Sale) Cs202 (Name, Mark)
Toy 200 Pete 80
Deli 150 Vera 70
Pete 75
Nick 60

|
There are two types of relations in Relix: system- and user-defined. Above we
discussed the user-defined relations Person, Info, sales, etc. These two types of
relations are casily distinguishable by their name. The names of system-defined relations as
well as their domains s prefixed with the dot (), while user-defined relation names are not.

The most important system relation used in this thesis 1S .rd (.rel_name, .dom_name),

34

which contains information about the structure ot cach relaton in the system. That 1s, tor
every relation .rd hsts the domains on which that relation 1s defined. For example, relation
Info in the Example 2-1 is represented m the . rd system relation by two tuples .

.rd (.rel name, .dom name)

Info Dept
Info Sale

2.2 Projection and Selection Operations

Projection is a vertical operation on a relation which specities a subset of the
attributes of a relation. Note: the resulting relation 1s defined on the projected attributes and
contains no duplicate tuples. To find all the occupations of the people i the Person relation,

project Pexrson onto 1its attribute occup.

Occupations < [Occup] in Person;

Occupations (Occup)
Employee
Student

Note: the relation Person has five tuples and the relation occupations has only two tuples
This is because the values "Employee” and "Student” appear two and three times,
respectively, in the attribute occup of person.

Selection 15 a horizontal operation which extracts a subset of relation’s taples in
which every tuple sausfies a given criterion. We can 1solate all the employed people mto

a relation working People by selecting corresponding tuples from person.

Working_people < where Occup = "Lmployee" in Person;
Working people (Name, Age, Occup)

Ann 25 Employee
John 27 Employee

Relix allows the project and select operations to be combined in a single ‘T-Selector
expression. For instance, we can find the names of people who are under 30 years of age
Under_30 « [Name] where Age < 30 in Person;
Under_ 30 (Name)
Ann
Kate

John
Jake

35

Pty

2.3 Join

As relations are the generalizations of sets, Relix has relational operators which are
gencralizations of the set operators. The set-valued set operations such as union,
intersection, difference, etc. belong to the class of u-joins. The logic-valued set operations
such as inclusion, empty ntersection, etc are extended to the class of o-joins. Only those

join operations that are usced 1n this thesis are discussed in detail below.

2.3.1 p-joins

The natural join ({foin) 1s the most common member of the u-join family. The two
operand relations are joined on the common attribute and only the tuples that have the same

value of that attribute m both relations are written into the resulting relation.

Example 2-2 Given two relations,

Stud_info (Name, Course,examl,exam2) Person (Name, Age, Occup)
Pete (€S202 70 €0 Ann 25 Employee
Kate Math251 80 70 Pete 31 Student
Jake Phys420 S0 60 Kate 26 Student

John 27 Employee
Jake 21 Student

the natural jomn of these relations associates tuples of person with those tuples of
Stud_info that have the same value of Name.

Students < Person ijoin Stud_info;

Students (Name, Age, Occup, Course, examl,exam2)

Pete 31 Student Cs202 70 60
Kate 26 Student Math251 80 70
Jake 21 Student Phys420 60 10

The attributes participating in the join (in this example, Name) are called the join
attributes, and may be specaified implhicitty or explicitly. If the join attributes are not
specified, then we have two cases: a) if the two relations share some common attributes,
then the jom s computed on those commonly named attributes (see Example 2-2 above);
b) if relations do not have any common attributes, then the natural join computes a cartesian

proaduct of those relations,

k1)

Example 2-3. Explicit specification of join attributes.

Given two relations, Income by city,

Income_by city (City, Status, income)
Montreal employee 35
Montreal owner 50
Toronto employee 40
Toronto owner 60

and person (Example 2-2). Find the salary that the working people can expect in the

cities mentioned m the Income by city relation.

Personal_incomes < Person [Occup ijoin Status] Income_by_city;

Personal _incomes (Name, Age, Occup, City, rncome)
Ann 25 employese Montreal 35
Ann 25 employee Toronto 40
John 27 employee Montreal 35
John 27 employee Toronto 40

The union join (uwjoin) corresponds to the sct umon. In general, the union jom
consists of thiee disjoint sets of tuples: the center, the left wing, and the nght wing. For
the given operand relations, R(X,Y) and S(Y,7), these three sets of tuples are cach defined
on the attributes X,Y.7Z. The center 1s the yoin of the relations R and 8 The left wing
consists of all the tuples from R that match no tuple tfrom S, augmented by the null value
in the attnibute Z. The right wing, conversely, consists of all the tuples from S that match

no tuple from R, augmented by null values n the attribute X [Merr84].

Example 2-4. Given two relations,

Staff (Name,Emp#,Position) Alumnae (Name,Major,Grad year)

Pete 123 Professor Pete C.Sc. 1980
Ann 345 Secretary Kate Psyc 1982
Jake 567 Janitor John Chem 1988

find the complete information about all the attendants of the university reunion, both

the statt and the alumnae.

Attendants <« Staff ujoin Alumnae;

Attendants (Name, Emp#, Position, Major, Grad year)

Pete 123 Professor C.Sc. 1980 | center

Ann 345 Secretary NULL NULL | left wing
Jake 567 Janitor NULL NULL |

Kate NULL NULL Psyc 1682 | right wing
John NULL NULL Chem 1988 |

37

The difference join (djoin) corresponds to the set difference. In general, difference

<4

join consists of rnight wing tuples (see the definition above).

The left join (ljoin) consists of the center and the left wing tuples

Example 2 5. Difference join.

Consider the relations in Example 2-4. Find all the employees who are not alumnae.

Not_alumnae <« Staff djoin Alumnae;

Not alumnae (Name, Emp#, Position)
Ann 345 Secretary

Jake 567 Janitor
| |

Example 2-6. Left join.

Consider the relations in Example 2-4. Find the educational background of the

university employees.

Education_of_Staff « Staff ljoin Alumnae;

Education of Staff (Name, Emp#,Position, Major,Grad_year)

P

Pete 123 Professor C.Sc. 1980
Ann 345 Secretary NULL NULL
Jake 567 Janitor NULL NULL

2.3.2 o-joins

A feature common to all ¢-joins is that the join attributes are excluded from the

resulting relation,

The natural composition (icomp) 1s similar to the natural join operation. It extracts

the tuples whose join attributes’ values are 1dentical in both relations.

Example 2-7. Natural composttion.

Consider the relations in Example 2-4. Find the employees who are alumnae.

Alumnae_Staft « Staff icomp Alumnae;

Alumnae_sStaff (Emp#,Position, Major,Grad_year)
3 123 Professor C.Sc. 1980

38

2.4 Update

There are three types of update operations on relations: add new tuples, delete tuples,

and change attribute values of some tuples.
To add the tuples in S to the relation R, we write

update R add S;

To delete the tuples that are both in S and in R from R, we write

update R delete S;

To see the results of the execution of the update operations described in this section,

consider the tollowing examples relations.

Dept_sales Org_sales
(Dept month sales) (Dept month sales)
Toys April 200 Toys April 250
Video May 500 Video April 450
Stereo May 400 Hardware May 250
MansWear April 350 MansWear April 350
I In the following examples assume that pept_sales contains the above values every

time we enter a new command. New tuples are marked 1n bold.

Example 2-8. Add clause 'n the Update statement.

update Dept_sales add Org_sales;

Result: pept_sales (Dept month sales)
Toys April 200
Video May 500
Stereo May 400
MansWear Apr.l 350
Toys April 250
Video April 450
Hardwear May 250

"

Example 2-9. Delete clause 1 the Update statement.

update Dept_sales delete Org_sales,

Result: Dept sales (Dept month sales)
Toys April 200
Video May 500
- Stereo May 400
a
*
39

Changing a relation involves modifying values of the specified attributes in selected

tuples. The general syntax of this operation is

update R change attr] « vall {,attr2 « val2,...} {using rel_expr};

where {} indicates optional syntax.

The syntax of the update command has two clauses: the change clause specifies all
the modifications to the attributes, while the using clause specifies the selection criteria for
the tuples to which the modifications are to be applied. In the absence of the using clause
the modifications are applied to all the tuples of the relation being updated.

The tuples to be updated are selected by joiming the relation resulting from the

evaluation of the relational expression in the using clause with the relation heing updated.

Example 2-10. Update statcment with change clause.
update Dept_sales change sales « 300;

Since the using clause 1s not specified, every tuple in the pept_sales is changed.

Result: pept_sales (Dept month sales)
Toys April 300
Video May 300

Stereo May 300
MansWear April 300

Example 2-11. Update statement with change clause and a relational expression in the
using clause.
update Dept_sales change month < "April" using
([Dept] where month = "April" in Org_sales);
Only those tuples of bept_sales whose Dept is listed in the org_sales for the month

of Apnl are updated.

Result: pept_sales (Dept month sales)
Toys April 200
Video April 500

MansWear April 350
Stereo May 400

40

2.5 Domain Algebra

The domain algebra defines virtual attributes which may be actualised when needed
When utilized to its full potential, the domain algebra provides facthties such as arithmete,
totalling, ordering, etc. A thorough description of the domam algebra may be tound
[Merr84].

2.5.1 Scalar Operations

The simplest operation of the domain algebra generates the value v a tuple tor the
virtual attribute only in terms of the values in the same tuple of the operand atributes “Thas
operation works along a tuple and is sometimes refetred to as a horizontal operation We

define a scalar virtual attribute as follows:

let GPA be 4; < define a constant attribute >
let seqnl be seqn; < rename an attribute >

let final _mark be (exam1 + exam2)/2;

let passed be if final_mark > 55 then true

else false;

It 1s implicit from thc above examples that virtual attributes can be defined i terms
of each other, for example, passed depends on the final mark, which 1s i turn detined
terms of other attributes.

Virtual attributes are not associated with any relation untl they are actuahised, erther

by a projection or a selection. For example, expression

Stud_record < [Name,exam!,exam?2,final_mark,GPA] in Stud_info;
will create the relation

Stud_record (Name,examl,exam2,final mark,passed,GPA)

Pete 70 60 65 True 4
Kate 80 70 75 Truc 4
Jake 60 i0 40 False 4

41

The horizontal operator can be of various types.

- * mathematical operator, such as +, —, *, /, mod, **, abs
e trigonometric function, such as cos, sin, tan, log, etc.

e logical operator, hke <, <=, >, >=, =, ~=

e conditional assignment if..then..else..

* concatenation of atinibutes and scalars by a cat operator.

A good illustration of the functionality of the cat operator is the task of combining

the first and the last name fields together to obtain a full name.

Example 2-12. Cat operator.
Compose the full name by concatenating the title "Dr. * with the fist name (£_name)
and last name (1_name). When the virtual attribute full_name defined below

let full_name be "Dr. " cat f_name cat cat I_name;

16 actualised i the relation professor, it has these values:

¢ Professors (l_name,f name,dept) full name
. Peter Smith Chem Dr. Peter Smith
- Mike Wong Phys Dr. Mike Wong
|
2.5.2 Reduction
The reduction operations combine values from more than one tuple in a relation.
They are sometimes referred to as the vertical operations.
The simple reduction produces a single result from the values of a single attribute
of all tuples of an operand relation,
Example 2-13. Red operator.
Find the number of tuples in the stud_info relation.
let no_students be red + of 1;
Find the average final mark of the students.
¥ .
i let AVG be (red + of final_mark) / no_students;

42

| g

When these virtual attributes are actualised by the eapression
Stud_recl < {Name,final_mark,no_students,AVG] in Stud _record;

the resulting relation looks like this:

Stud_recl (Name,final mark,no_students,AVG)

Pete 65 3 60
Kate 75 3 60
Jake 40 3 60

The equivalence reduction 1s ike simple reduction, but produces a ditferent result
for different sets of tuples in the relation. Each set 1s characterized by all the tuples having
the same value in some specified attribute -- an "equivalence class" - mathematical

terminology. Subtotalling is an example.

Example 2-14. Equiv operator,
Count how many students have passed their courses and how many have failed.
let pass_fail_group be equiv + of 1 by passed;

stud_rec? < [Name,final_grade,passed,pass_fail_group] in Stud_record;

Stud_rec2?2 (Name,final grade,passed,pass_fail group)

Pete 65 True
Kate 75 True 2
Jake 40 False 1

Only commutative and associative operators, like +, *, and, or, max, min, arc

permitted inside the reduction expression.

2.5.3 Functional Mapping

The second type of the "vertical” domain algebra operations involves an operand
attribute and a controliing attribute. In this case, the controlling attribute serves to specity
an order 1n which the tuples are to be processed. The two kinds of functional mapping are

best presented through examples.

43

Simple functional mapping 1s illustrated by cumulative total.

Example 2-15. Fun operator.
Find the YTD income.
let YT income be fun + of salary order month;

Below we show the yTD_income virtual attribute actualised n the relation Income.

Income (month, salary) YTD income

1 250 250
2 260 510
3 260 770

For a functional mapping to be properly defined, the operand attribute (for example,
salary) must be functionally dependent on the controlling attribute (for example, month).

The resulting virtual attribute 1s also functionally dependent on the controlling attribute.

*artial functional mapping extends simple functional mapping in the same way that

cquivalence reduction extends simple reduction.

£

LExample 2-16. Par operator.
Find the cumulative sales m cach department by the month.
let dept_cum_sale be par + of sales order month by dept;

The virtual attribute dept_cum_sale is actuahsed in the relation Dept_sales below.

Dept sales (Dept month sales) dept cum_sale

Toys April 200 200
Toys May 250 450
Toys June 240 690
Video April 500 500
Video May 670 1170

The permitted operators for the functional and partial functional mapping operations
are -+, -, *./, ** mod, pred, succ, &, and |

Of particular interest to us are the predecessor (pred) and successor {succ) operators.
The pred (succ) operator gives the predecessor (successor) in the order indicated by the

attribute of the order clause.

44

Example 2-17. Par pred of and par succ of operators.
For each month calculate the change in profit over the previous month’s profit and the
subsequent growth,

| let last_sale be par pred of sales order num_month by Dept;

| let next_sale be par succ of sales order num_month by Dept;

These virtual attributes are actualised in the relation pept_sales as follows.

Dept_sales (Dept,num_month,sales) last_sale next_sale

Toys 4 200 240 250

5 250 200 240
Toys 6 240 250 200
Video 4 500 600 670
Video 5 670 500 600
Video 6 600 670 500

This example demonstrates the cyclic nature of the suce and pred operators.

|

\

|

| Toys
]

2.6 Recursion

Recursion is one of the most powerful techniques discovered in computer science,
A recursive routine 1s one which calls 1itself or in some way refers to atself, Thus a
recursive relation 1s defined 1n terms of 1tself. The syntax for defining a recursive relation
is as follows:

R is rel_expr;

In Relix a recursive relation is defined as a view. The keyword, is, indicates that R

is a view. The view 1s similar to a virtual attribute whose value 15 not computed untih 1t s

actuahsed 1n a relation There are two processes assoctated with views:

® Defintion: the relation to the lett of the is keyword 1s bound to the operation on the right
of the is keyword. This defimtion 1s mterpreted at the compiie time

® Evaluation: the evaluation of the above defimtion 1s triggered. The evaluation happens
when the view is executed at the run time using the current version of the relations in s

definition.

Consider the statement, R is S ijoin T. A view n this case 15 a binding of the
relation R with the operation (S ijoin T). The evaluation will take place every time R 15

referred to in the print or assignment statements.

45

4

Example 2-18. Given a relation,

Parent (Sr Jr)
Dave John
John Dima
Dima Alex

find all the groups of relatives in the parent relation.

Ancestor is Parent ujoin (Parent [Jr icomp Sr] Ancestor);
As a result of this recursive process, Ancestor relation will contain six tuples. Issue

a print command to evaluate the Ancestor view.

pr!!Ancestor

Ancestor (Sr Jr)
Dave John
John Dima
Dima Alex
Dave Dima
Dave Alex
John Alex

2.7 Metacode and Metadata

We can write Relix routines which interpret other Relix statements. These routines
will be referred to as metacode routines.

A relational database consists of data and metadata. Data is represented by relations
such as person, stud_info, clc. described above. Metadata is the data that describes or
helps to interpret other data [Day85]. In a relational database metadata includes: the names
of relations and their corresponding attributes; types and domains of attnibutes; physical

storage and access paths for relations, etc.

Example 2-19
The Requirements relation specifies the criteria for belonging to each category of
students at the umiversity. Here the attributes store the names of the relations,

Grad_students, Ugrad Students, Students, Grad, and Ugrad (see below).

Requirements (Category Criterionl Criterion2)
Grad_Students Students Grad
Ugrad_Students Students Ugrad

46

Metadata can be manmpulated by domain algebra. The Requirements relation
can be used to determine the complete information on people belonging to cach

category. To do this, we jom the relations in the criterionl and criterion2 ficlds,

t W,

let new_rel be Category cat " « " cat Criterionl cat " join " cat Cniterion2 cat ,";

Combine « [new_rel] in Requirements;

As a result, the metadata stored in the relation combine will be 1n the form of querics.

Combine (new_rel)

Grad_Students « Students ijoin Crad;
Ugrad_Students ¢ Students ijoin Ugrad;

2.7.1 Stmt metadata

Relix can execute the contents of the attnbute of a relation only tf the attribute 1y
defined to be of type stmt. If that attribute 1s defined to be of type strg, 1t can be cast to
stmt type. During this process no changes to the value of the attnibute occur A stmt
keyword preceding the name ot the attribute signals to the system that the following attribute

1s Lo be treated as an executable statement

Example 2-20 Execution of the queries stored 1n the combine relation in Example 2-13
let 1 be (stmt new_rel);

Res <« [1] in Combine;

Res:
Given the following relations,
Students Grad Ugrad
(Name Stud#) (Stud# Year) (Stud# Credits)
Pete 123 123 2 234 30
Kate 234 345 1 456 15
Jake 345
Vera 456

Two relations will be produced as a result of the actualization of the res relation

Grad Students Ugrad Students

(Name Stud# Year) (Name Stud# Credits)
Pete 123 2 Kate 234 30
Jake 345 1 Vera 456 15

47

Chapter 3

Attribute Inhcritance

The notion of 1nheritance 1s absent in conventional database systems. In this chapter
we are proposing a relational medel of classes, class hierarchy, and inheritance of attributes.
The declaration of the inhenitance hierarchy can be implemented by metacode 1in Rehx, but
we suggest a shorthand syntax which assumes that implementation.

In a relational data model, a class 1s represented by a relation where the attrnibutes of
well-defined types are the instance variables of that class, and the instances of that class are
its tuples. (Some instances might be represented by more than one tupley. An instance object
contains some general features (attributes of the superclass relation) and some specialized
information (attributes of a subclass relation). Thus an instance object 1s spread across many
relations of 1ts inheritance hierarchy

In the following discussion we are going to concentrate on simple inheritance, where
each class has at most one superclass

After ntroducing the relational representation of the inheritance hierarchy, this
chapter will discuss the modifications to the basic relational operations (projection, selection,
Jomn and update) that are necessary to take advantage of the attribute inhentance. For details

of each of the implementation algonthms discussed 1n this chapter, see Appendix A.

3.1 Representation of Inheritance Hierarchy

The first step in the implementation of inhenitance is to determine in what format the
representation of the class hierarchy will be stored in a relational database. A simple
approach s to have a system meta-relation .Hierarchy(.Subclass, .Superclass) in which

cach tuple represents an isa relationship between two classes.

48

In a relational database model, that means that the attnibutes of the superclass are attributes
of the subclass. To accomplish this, there must be a way of jommng relations m the
hierarchy, 1 ¢ there must be a common field which hinks ditterent levels of a hierarchy. An

ID field serves this purpose

3.2 Obhject Identifier

physical address in the memory In a relational data model, the concept of pointers does not
exist. The philosophy ot the relational approach 1s to keep all the attnibutes and relations
visible to the programmer there are no hidden structures. Thus the identity field should be

an attribute of each class relation This approach was taken by POSTGRES [Ston91], which

Example 3-1. Representation of the Person hierarchy.

Let us consider the following hierarchy:
Person

/N

Employee Student

Permanent Temporary

There are four isa relationships in this hierarchy, so we can expect four tuples in the
.Hierarchy relation,
.Hierarchy (.Subclass,.Superclass)
Employee Person
Student Person

Permanent Employee
Temporary Employee

As was mentioned above, subclasses inhenit all the attributes of therr superclasses

In most ommeraally-available OODBs, objects are referenced by a pointer to their

is an eatension of a relational database system

The object identitier (11)) 15 a system-defined surrogate which 1s generated during the

creation of the class and 15 incJuded as an attribute of that class Since all the attributes are

visible, ID can be used 1n all the relational operations

49

‘The name of the ID attribute 15 user-defined. When user-detined names represent
identity, we sce a mix ot addressability and identity. Addressabihity 1s external to an object.
Its purpose 1s to provide a way to access an object within a particular environment and 1s
theretfore environment dependent. Identity 1s internal to an object Its purpose 1s to provide
a way to represent the individuality of an object independently of how 1t 1s accessed
[Khos86]. Having user defined names for the 1D field means that 1t 1s necessary to include

the name of the ID field in the system meta-relation.

Lixample 3-2. For the hierarchy

Person
(Persld, Name)

Employee Student
(Empld, Emp#) (Studld, Prog)
Permanent Temporary

(Permld, Salary) (Templd, Hours)

the new format of the meta-relation 1s

.Hierarchy (.Subclass, .Subld, .Superclass,.Superld)

Employee EmpId Person PersId
Student StudId Person Persld
Permanent PermlId Employee EmpId

Temporary TempId Employee EmpId
]

This meta-relation 1s now ready to be used. It specifies the superclass of each class
of the hicrarchy. It also gives the name of the ID field n each class, thus letting the
inheritance mechanism know on which attributes to join subclasses with their superclasses.

Later m this chapter we will discuss how metacode is used to implement the nheritance

mechanism.
3.3 Declaration of Inheritance Hierarchy

A relation s considered independent of other relations unless it belongs to a

hicrarchy. New relations can be included in a hierarchy by specifying their superclass and

50

the names of ID fields in both subclass and superclass relations. The shorthand syntax for
including a Subclass under the Superclass fits nicely into Rehx philosophy. It will be

referred to as an inherit statement
Subclass [Subld isa Superld] Superclass

Example 3-3.
Include the relation child into the ISA hierarchy under person.
Child [Kidld isa Persld] Person
The hierarchy of classes will be changed by including Child under the Person.

Person
(Persld, Name)

\\

Employee Student Child
(Empld, Emp#) (Studld, Prog) (Kidld, DOB)
Permanent Temporary
(Permld, Salary) (Templd, Hours)

A new tuple will be added to the Hierarchy meta relation

.Hierarchy {-Subclass, .Subld, .Superclass,.Superld)

Employee EmplId Person PersId
Student StudId Person Persld
Permanent Permld Employee EmpId
Temporary Templd Employee Empld
Child KadId Person Persld

If the names of the ID ficlds are not specified in the inhenitance statement, a default
field name "Id" 1s assumed. So an expression "Dog isa Mammal” translates into a tuple
{Dog.Id. Mammal.Id} m the .Hierarchy relation

The semantics of the irherit statement 1s designed so as to disallow the insertion of
relations between the exasting classes In this way the specialization chain will not be
broken. For example, including a class adults as a subclass of person and 4 superclass ot
Employee Is not permitted

In all of the OODBs, the declaration of inhentance 15 done at the time of class

definmition, when no instances of that class exist. We will adopt the same approach and allow

51

o el

only empty subclass relations to be used in the inherit statement. There is another reason
why a relation can be placed into the ISA hierarchy only when that relation is empty. Since
the ID field 15 generated by the system, the system should know at the time of creation of
tuples of the relation whether to generate the values for that field or not.

At any time a class can be removed from the hierarchy, because it does not need to
inherit either the attnbutes or the behavior from its superclasses. The same format of the
inhenit statement 1s used with the name of the relation on the left hand side of the ISA
keyword and a rescrved word ROOT on the nght hand side. So to take the relation
Permanent Out of the hierarchy, we write

Permanent isa ROOT

When a class R is removed from the hierarchy, the attributes that could be referenced
from the superclasses ot R through the ISA links become 1naccessible. The programmer has
to heep m mind that some operations which were legal before the removal, become illegal
after the removal

The procedure of removal of the relation from the hierarchy does not alter the
contents of that relation This procedure breaks the link between it and 1ts superclass by
deleting the tuple representing that hnk from the Hierarchy relation. If the relation is a leaf
class, the result ot ity removal from the hierarchy makes 1t an independent class. If the
relation 1s an intermediate class, its removal from the hierarchy will make the branch rooted
at 1t into a separate hierarchy

This muight be usetul in sphtting a deep hierarchy tree. The user might need to work
with difterent parts of the hierarchy in different stages of his program. For the purpose of
simphification and effectiveness of join operations (fewer attributes in the intermediate
relations, fewer relations to joim) the user may choose to break the tree into several shorter
subtrees This would be done in such a way that each subtree would contain all the

necessary relations for that stage of the program.

52

Example 3-4. Sphung of class hierarchy.

A good example of such a situation 1s a highly bureaucratic organization with
many levels of management Each manager 1s a subordinate of his higher-level
manager and at the same time he has his own subordinates. At the bottom of the
hierarchy are the umonized employces For the purpose of project management 1t 1s
necessary to know the chain of command of each employee The union 1s only
interested in the employee and his direct supervisor when the unmion handles
complaints So for handhing employee complaints, the union needs only the last two

levels of the organizational hierarchy.
]

Since in a simple-inheritance system each subclass has only one superclass, there 15
a unique tuple for each subclass 1n the .Hierarchy relation. Therefore, when removing a
leaf relation trom the hierarchy of classes, the tuple corresponding to that relation an the

.Hierarchy mela-relation 1s casy to locate

Example 3-5. Removal of a leaf class from the class hierarchy.
Remove the relation Permanent from the person hierarchy (Example 3-2).
Permanent isa ROOT;

The tuple {Permanent, Permld, Employee, Empld} will be deleted from the Hierarchy

relation
.Hierarchy (.Subclass, .Subld, .Superclass,.Superld)
Student StudId Person Persid
Employee EmpId Person Persld
Temporary Templd Employee Empld

And graphically the Person hierarchy will look Iike this:

Person

Lmployee Student

Temporary

53

Example 3-6. Removal of a non-leaf class from the class hierarchy.

Remove the relation Employee from the Person hierarchy (Example 3-2).

Employee isa ROOT

The tuple {Employee,Empld,Person,Persld} 1s deleted from the .Hierarchy meta-

relation

.Hierarchy (.Subclass,.Subld,
Student StudIld
Permanent PermId
Temporary Templd

.Superclass, .SuperlId)

Person
Employee
Employee

Persid
Empld
Empld

The branch rooted at Employee 1s made into an independent hierarchy. We now have

two hicrarchies: Person and Employee.

Person Employee

Student Permanent Temporary

This syntax 1s surtable for the declaration of multiple inheritance. We can say that

in the Person hicrarchy in Example 3-2, Temporary employees are at the same time

Students. The investigation and mmplementation of multiple inheritance is left for future

rescarch. When multiple inheritance 1s not supported by the language, care should be taken

to ensure that every class has only one superclass.

54

3.4 Algorithm for Implemeniation of the Inherit Statement

Given an inheritance statement,

Child [CId isa PId] Parent

Parse the inherit statement and imtiahze the following scalars:

Child - the left most relation name;

CId - 1f there are square brachets, the attribute name after “[" and before isa keyword,
else Id;

PId - 1f there are square brackets, the attribute name after the isa heyword and before "1,
else 1d;

Parent - the nght most relation name.,

Proceed as follows:
If Parent = "ROOT" then
Delete a tuple from the .Hierarchy meta-relation where .subclass = child
else
if the child refation is empty then
add a tuple {cnhi11d,c1d,Parent,P1d} to the .Hierarchy meta-relation
else

Error - attempt was made to include a non-empty relation,

Section A.l of Appendix A gives a more detatled description of this process

595

3.5 Projection and Selection

Example 3-7. Selection and projection of inhented attributes.

For the hierarchy, Person
(Persld,Name)

VRN

Employee Student
(Empld,Emp#) (Studld,Prog)

N

Permanent Temporary
(Permld,Salary) (Templd,Hours)

/ N\

Office Field
(Ofld,Phone) (Fld,Addr)

evaluate an expression

[Emp#] where Salary = 25 in Office

Note: the attnibutes Emp#' and salary do not belong to the relation office. They are

found :in the relations Employee and Permanent above office in the hierarchy. The

system should search for these attributes in the superclasses of office.

Two approaches can be taken to fulfil the request to project an attrnibute from a

relation higher up in the hierarchy. They vary in their efficiency.

The first approach 1s naive, but intuitive and straightforward. When an attnbute

being projected 1s not defined 1n the relation from which it 1s projected, we can join all the

relations 1n the branch of the hierarchy tree to which that relation belongs, and then project

the requested attribute.

56

Example 3-7a. Evaluation of the expression in Example 3-7.
The system generates an expression which contains the jomn of all relations in the

hierarchy from office to the root class person

(((Office [Ofld ijoin Permld] Permanent) [Permld ijoin Empld] Employee)
[Empld ijoin Persld] Person),

and then evaluates the original expression by replacing of £ 1ce by the above expression

[Emp#] where Salary = 25 in (((Office [Ofld ijoin Permld] Permanent)
[Permld ijoin Empld] Employee) [Empldijoin Persid] Person),

The second approach 1s to reduce the number of relations in the join by gnoring all
the classes which do not contain any attributes referenced in the expression This s called
a minimum join approach. It 1s important to mention that mmimum join should always
include the onginal relation even if that relation docs not contain any attributes reterenced
in the projection or selection list. This will ensure that only those objects whose
specialization 15 specified by the user (1.e.. only those Employees that have an office) will
be considered for the projection and selection operations The .Hierarchy table 1s used to

determine on which attnbutes these relations are to be joined

Example 3-7b. Mimmimum Join

Only relations Permanent and Employee need to be jomned with of face. Our onginal

expression 1s evaluated on the generated join expression.

[Emp#] where Salary = 25 in ((Office [Ofld ijoin Permld]} Permanent)
[Permld ijoin Empld] Employee);

It might be argued that pointers can be much faster than joins, but only for connecting
single objects. Our approach deals always with sets of objects --classes and their subsets--

and because of possible large size of these sets, 1t 18 better to use joins

57

L

3.6 Algorithm for Implementation of the Minimum Join Approach to

Project and Select Operations

Given a statement,

R1 « [projection] where selection-condition in R;

determine 1if the input expression can be evaluated in the current implementation of Relix
(1.e., all the attnibutes in the projection hist and the selection-condition are defined on R).
If the evaluation 1s not possible, then proceed as follows:
1. Determine all the superclasses of R on which the attributes referenced in the projection
hist and the selection condition are defined. Generate a jomn expression in which these

superclasses are jomed with R

29

. An executable expression s generated fromn the input expression by replacing R with the
jom expression of step |

R1 « [proj] where sclection-cond in (join expression);

Section A 2 ot Appendix A presents a more detailed description of this process.

3.7 Join

The two operands of the join operation can be independent relations, relations from the
same hierarchy, relations belonging to possibly different hierarchies, or a combination of

above types Let us consider several special case. where Q « R ijoin S.

I. Rand § belong to the same hierarchy and they have the same parent T.

T (1d.C,D) /T (ld,C.D)\
R (Id.Ay § (ld.B) R (Id,A) Q (Id,A,B) S (Id,B)
a) b)

Figure 3.1

58

In order to avoid duplicating attributes of T, Q can be attached under T, thus inheriting

its attributes (Fig. 3.1b).

2. R and S belong to different branches of the same hierarchy. We want Q to inherit from

two relations: the parent of R and the parent of S. This is a case of multiple inheritance

T (d, C, D)

N

U @d, F) V (d, E)

R (1d, A) (1d A, E/ S (d, B)

Note: one can think of this case of multiple inheritance as 1f, for the ume of join, R and
S were treated as independent relations. Thus Q will have all the combinations of
attributes A and B. When the join 1s complete, we remember to include Q under the

parents of both R and S, because Q already has all the necessary information about the

attributes of R and S relations. but not about the inhernited attributes

3. R and § belong to different hierarchies.

T (1d,C) U (IdU,F)

N

R (Id,A) Q (Id,A,B) S (IdU,B)

4. R 1s an mdependent relation and S belongs to a hierarchy.

R (A) U (ld, F)

N

Q (d,A,B) S (Id, B)

59

There are several disadvantages of making Q inherit from the superciasses of R and S:
® the above arguments and suggested treatment might not be equally valid for all the u- and
o-joIns
p-joins. In the case 4 above, R djoin S will produce an independent Q because it will
not have the [Ds that are 1n the hierarchy to which S belongs.
o-joins. Any o-join on the 1Ds will produce the relation Q, which will not have the 1D
field 1n 1t, and thus Q will be independent.
® a dirferent treatment ot each special case implies a complicated implementation of the join

statement

Considering these important disadvantages, it 1s better to create Q as an independent
relation contarming all the attnibutes of the joining relations R and S This will allow a
completely general implementation of all of the join statements A preliminary routine will
expand all the relations belonging to a hierarchy into independent relations and will pass
those independent relations to the current implementation of the join statement. Thus a

maxtnum reusability of the existing code will be achieved.

Example 3-8 Join of Relatons in Different Branches of the Class Hierarchy.

In the expression,
[Name, Satary ,Stud#] in Permanent [Permld ujoin Studld] Student

refations permanent and student belong to different branches of the same hierarchy.
The attnbute Nane 15 not defined on any of the relations 1n the join. The minimum
Joins of the rehations 1n the permanent branch and the student branch of the person
hierarchy dare
® for permanent Permanent [Permld ijoin Persld] Person
e for student Student [Studld ijoin Persld] Person.
We replace the onginal join eapression with the new one, which uses the

minimum jom ¢ypressions above

[Name Salary Stud#} in ((Permanent {Permld ijoin Persld] Person)
[Permid uyoin Studld] (Student {Studld ijoin Persld] Person));

60

3.8 Algorithm for Implementation of Join

Given a join expression,

[projection] where selection_condition in S [attr, join_symbol attr] T

determine 1f the input expression can be evaluated 1n the current implementation of Relhin

(i.e., all the attributes n the projection hist and the selection-condition are defined on the
relations S and T).

If the evaluation 1s not possible, then proceed as follows
1. Determine all the superclasses of the relations participating n the join on which the

attributes in the projection list are defined For each of these input relations generate a

join expression which joins that relation with 1its superclasses
2. Expand the onginal join 1n the in clause by putting together the jomn expressions of step
1 1n the same order as their base relations appeared 1n the onginal join, and separating
} o J o

these expressions by the corresponding join symbol from the jomn_symbol table

Section A.3 of Appendix A presents a more detailled description of this process
3.9 Update

A subclass relation may override the aitnibutes nats ancestor relations There are

two types of overnides' value and meaning
1. Value override - when a system receives a request to update an inherited attnibute, this

attribute 15 updated 1n the relation in which it1s defined, and not in the relation in which

it 1s inhernted

Example 3-9. Value Overnde.

Consider three relations below which belong to the person hicrarchy (Example 3 7)

Person Employee Permanent
(Id, Name) (Id, Position) (Id, Salary)
1 Mike 1 Manager 1 35
2 Ann 2 Clerk 2 20
3 Pete

61

If the user want, to change the Name of a Permanent Employee who earns 20 to Kate,
then the value of the attnbute Name should be changed 1n its oniginal relation Person.

This ensures that the change 1s seen by the offspring of person.
a

2. Meaning overnde - if an attribute defined 1n a superclass takes on a different meaning
In a subclass, that attribute may be redefined in the subclass. When the system receives

a request to update the redefined attribute, only the subclass 1s affected.

Example 3-10. Mcaning Overnide
Consider the following hierarchy

Person
(Id, Name)

|

Student
(1d, stud#)

Csc
(Id, Name, Alloc_space)

where for a computer science student the Name attribute represents the user name on
the computer and not the real name. Given: Pete’s student# 1s 1234 and he has an

account on "bart" machine

Person Student CSc
(1d, Name) (Id, stud#) (Id, Name, Alloc_space)
3 Pete 3 1234 3 Pete@bart 10Mb

It Pete’s account gets transfered to "homer™ machine, his login name can be changed
without affecting his real name:

update CSc change Name « "Pete@homer”;

Person Student CSc
(Id, Name) (Id, stud#) (Id, Name, Alloc_space)
3 Pete 3 1234 3 Pete@homer 10Mb

62

3.9.1 Updating an ID field

Of special consideration 1s a question of updating an Id field. Since an 1D field 1
a visible attribute and it plays a special role in inking classes, we are faced with a dilemma
should the updates be allowed on 11?7 Severdl options can be considered.
1. Allow updates of ID only 1n the following cases
* addition of new IDs to the root of the hierarchy,

® deletion of old IDs trom the leafs of the herarchy tree,

2. Allow updates everywhere, betore a physical update takes place, venify the vahdity ot
1t (make sure that no children are made orphans),
3 Allow uncenditional additions and deletions of 1Ds anywhere in the hierarchy and fill

in automatically the missing imformation with null values

Here we discuss cach option in detal

I. Restrict updates ot the 1D field Allow only additions ot new IDs at the root and

deletions of IDs at the leafs of the hierarchy tree.

Example 3-11.
Consider the following relations which belong to the hierarchy in the Example 3-7

Person (Id,Name) Employee (Id,Emp#) Permanent (1d, Salary)

1 Mike 1 123 1 25
2 Ann 2 34%
3 Pete

The rest of the relations are empty

The only operations allowed are to add tuples with new IDs to Person and to
delete tuples from the leat classes Field, Office, Temporary, and Student. In
this case deletion of the employee with Id = 2 15 not ailowed, since Employee 15 hot
a leaf class Logically, we should be allowed to delete 1t since 1t does not have
children, 1 ¢ there are no tuples in permanent nor in Temporary with Id = 2 Soan
reality an instance of Erplogee with Id = 2 15 the leat of this branch

Tuples with the new values of 1D attnbute can only be added to the root class
Below we show what might happen otherwise. if we add a tuple {4, 567} to the

Employee relation, Employee 4 would not have the corresponding tuple in the perscn

63

&

relation

Person (Id,Name) Employee (Id,Emp#) Permanent (Id, Salary)

1 Mike 1 123 1 25
2 Ann 2 345
3 Pete 4 6567

2 Allow all updates as long as they make sense.
This approach does not put any restrictions on the syntax of the update, assignment
and declaration statements But the statement should be semantically correct, 1.e.
* 1n the case of a delete, the system should venify that there are no tuples in the subclass
relation with the same 1D (orphans are not allowed)
¢ 1n the case of an add, the system should make sure that a parent with the same 1D already
eXIStS,

This approach gives the user a lot of freedom and flexibility 1n manipulating data

3 Allow all updates

Here the requirements ot the previous option are completely relaxed. The additions
and deletions of 1Ds are allowed at any level in the hierarchy. In the case of addition, the
requested tuple s created. then the parent of the updated relation 1s found, and the existence
of the added D m the parent relation 1s verified If 1t 1s not found, a tuple with that 1D 1s
added to this parent relation and all other attnibutes are imtialized to Null. These attributes
can be updated at o later time

This 1s usetul when a user 15 only nterested 1n the attributes of the leaf classes and
will (if necessary) input the missing information later. This might produce unwanted results
when manipulating an incomplete relation (where Null values have not been changed to
meaningiul ones)

In the case of deletion, all the relations in the hierarchy under the class 1in which the
1D s ehimmated are cleared of the tuples with that ID.

This approach supports the concept of generalization, where we build the hierarchy

from the most speaific object to a more general one

Among the existing OODBs, POSTGRES supports the second approach.

64

To this point, we dealt with additions and deletions of tuples 1n a class. The net
logical question 1s. what happens when an 1D field 1s changed n the updating process?

A change of an attnbute consists of two parts deleting the tuples with that attnbute
and inserting 4 tuple with the new value of that attribute. All the other attributes retain their

onginal valuce

Example 3-12 Bredh of the generahization chain as a result of the change to the ID.

Given three relatons that belong to the hierarchy in Example 3-7,

Person Employee Permanent
(PersId, Nanme) (Empld, Emp#) (Permld, Salary)
1 Pete 1 123 1 25
2 Mike 2 345 2 35
3 Kate 3 567

4 Nick

update Permanent change Name « "Ann", Permld « 3,

If this statement 1s legal, then first, all the tuples 1 person which huve a
corresponding tuple in permanent will be identified These tuples will be updated and
the name "Ann" will replace the previous names Then all the tuples i permancnt

will have therr permid changed to 3 As a result we should see the toilowing

itormaton
Perscon Employee Permanent
(Persid, Name) (EmpId, Emp#) (PermId,Salary)
1 Ann 1 123 3 25
2 Ann 2 345 3 35
3 Kate 3 567
4 Nick

Syntactically there 1s nothing wrong with this result since no orphans resulted
from this operation Nevertheless the generahization chamn has been changed
dramatically. To avoid such a situation, a constraint mught be entorced where the
value of 1D field can be changed only it 1ts parent s specified

.
N L

Advantages to treating an ID field in a special restricted fashion:
® D plays a special role as a hink between two relations in the hierarchy. Once that link
15 estabhished, 1t should not be allowed to be changed, since any change to 1ts value
alters the established generalization path

® protects the user from mistakenly altering the generahzation path.

Disadvantages to treating an 1D field in a restricted fashion:
® the user 1s sertously hmited in the desired manipulation of accessible fields 1n all
relations,
® the user 1s not presented from altering the generalization path, since the user can delete
the Teat relations and v .reate them with different ID values;

® the implementation of the update statement 1s complhicated.

There are no mechanisms in Relix to protect fully any attribute from being changed.
Even if strong protection 1s provided, the user can always go around 1t and achieve what he
wants This leads to the conclusion that there should be no restrictions on the use of ID field
in the update statement The user should carry full responsibility for the results of his update

statements

3.9.2 Implementation of the Update Statement

The update statement in Object-Onented Rehix may contain attributes from different
levels of the mhernitance hierarchy, As long as these atiributes are found in the relations
belonging to the same branch ot the hierarchy tree, the statement is valid. In order to
achieve mavimum utihzation of existing routines, the update statement (which contains
attnbutes not found in the specified relaton) will be transformed 1nto two or more update

statements, edach operating only on the attnibutes n the specified relation.

66

Example 3-13. Treatment of the Update Statement with Inhenited Attnbutes in the Change

Clause.
The statement
update Permanent change Name <« "Ann", Permid « 3,
will be transformed into two statements to give the above interpretation

update Person change Name « "Ann" using ((Permancnt {Permid ijoin Empld)

Employee) [Empld ijoin Persid] Person),
update Permanent change Permid « 3;

The previous example dealt with the change clause Next we discuss the
implementation of the add and delete clauses of update expressions The operation of
addition of tuples to a relation m the class herarchy has two interpretations
1. New tuples speaialize the existing objects with the specitied object 1D because the new

attributes are added to the classes lower down in the hierarchy,

t9

. New tuples define new object(s) which did not exist in the hierarchy by providing

attributes 1n all the reiations over which new objects are defined

The first interpretation means that the relaton in the add clause of the update
expression has all the attributes of the relations in the hierarchy that need to be updated “The
second terpretation means that the attnbutes ot all the relations in the hierarchy, including
the relation being updated and those above 1, are supphied by the relation in the add clause
In both cases 1t 1s important that the set of attributes in the add clause should be a union of

all the attributes 1n the relations affected by this update expression
3.9.2.1 Adding New Objects to the Hierarchy

Example 3-14.

Given the following relations of the person hierarchy ot the Example 3-7,

Person Employee Temporary
(Persid,Name) (Empld, Emp#) (TempId, Hours)
1 Pete 1 123
2 Mike 2 345
3 Kate 3 567 3 27
4 Nick

67

suppose a user wants to add the tuples of the relation NewEmployees

NewEmployees (TempId,Name, Emp#, Hours)
S Fred 987 45
6 Ken 888 50

to the class Temporary. Note: NewEmployees contains all the attributes of the class
Temporary (Templd,Hours), Including the inherited ones (Name,Emp#). User's
statement

update Temporary add NewEmployees;
will be transtormed into three statements

update Person add ([Templd,Name] in NewEmployees);

update Employce add ([Templd, Emp#] in NewEmployees);

update Temporary add (JTempld, Hours] in NewEmployees);

Atter the execution ot these three statements, the updated relations will have the

following tuples (new tuples are in bold)

Person Employee Temporary
(Persld,Name) (Empld,Emp#) (TempId,Hours)

1 Pete 1 123

2 Mike 2 345

3 Kate 3 567 3 27

4 Nick

5 Fred 5 987 5 45

6 Ken 6 888 6 50

‘There are sull problems with this breakdown. The relations person and Employee

do not have the attnibute permza When chimbing the hierarchy to find superclass relations
to be updated, the 1D of each superclass should be associated with the ID of the class 1n the
update expression

3.9.2.2 Specializing Objects in the Hierarchy

Example 3-15

It 1s also possible to add a relation

FirstJob (Templd,Emp#,Hours)
4 479 15

to the class Temporary The user’s statement

68

update Temporary add Firstob;
will be transformed 1into three statements
let Empld be Templd,

update Employee add ([Empld, Emp#] in FirstJob);

update Temporary add ({Templd, Hours] in Firstlob),

The changes are 1llustrated on the relations given at the beginming of Example 3-14.

Person Employee Temporary
(PersId, Name) (EmpId, Emp#) (Templd, Hours)
1 Pete 1 123
2 Mike 2 345
3 Kate 3 567 3 27
4 Nick 4 479 4 15

Adding FirstJob to the Temporary would have been invalid 1if the Employee

relation was defined on three attributes (1d, Emp#, Dept), because the implementation

of the add clause 1n Rehx requires that the attributes in the add clause be the same as

the attnbutes 1n the relation bemng updated

Before the update 1s completed, the system chechs that no orphans are created and that

all the attributes have values

A delete clause 1s interpreted 1n a similar way.

3.10 Algorithm for Implementation of Update Statement

The change clause of the Update statement 1s interpreted differently from the

add/delete clause. Their implementation 1s described separately

1. Change clause.

Given a genceral format of an update statement with the change clause,

update R change a, « value, a, « value,,..,a, <« value, using Expr,

determine if the input expression can be evaluated 1n the current implementation of Relix

(1.e., the fields value, through value, are defined on the Expr)

69

o

FANY

If the evaluation 15 not possible, then proceed as follows:

1. Find the superclasses of the relation in the using clause and choose those ones on
which the attributes value, 10 value, as well as the attributes referenced in the Expr
are defined. Construct a join expression from these classes.

2. Evaluate the join expression from step 1 and place the result 1n a relation Temp_Rel.

3. Determine which classes of the branch whose leaf 1s R are affected by the update
statement, 1.e. which classes define the attmbutes being updated.

4. For cach class selected 1n step 3 generate the list of assignments which will make up
the change clause

5. For each class selected 1n step 3 generate an executable update statement by
concatenating "update ", Superclass, "change ", list of assignments, "using Temp_Rel".
Execute the generated statements one after another in the same order as the attnbutes

in the change clause of the input update statement.

2. Add and delete clauses.

Given the general format of the update statement with add or delete clause,

update R { add } ([attr,,..attr,] where select_cond in S);
delete

determine 1if the imput expression can be evaluated 1n the current implementation of Relix

(1.e., the ficlds value, through value, are defined on the Expr)

If the evaluation 1s not possible, then proceed as follows:

. Find the superclasses of the relation being updated and among them choose those
classes which define the attributes attr, to attr,.

2. For each class selected 1n step 1, generate the projection list of attributes. This list
will be included i the add/delete clause of the generated update statement for that
class

3. For each class sclected 1n step 1, generate an executable update statement by
concatenating "update ", Superclass, type of clause "(", projection hst, " in ", S.

Execute these generated update statements.

Section A.4 of Appendiv A presents a more detailed description of these processes.

70

Chapter 4

Method Inheritance

4.1 Functions and Procedures in the Object-Oriented Relational

Database Language Reliv

Functions and procedures (methods) provide a convenient way to encapsulate and to
abstract computations Presently Rehix does not have an mmplementation of methods Here
we discuss how methods can be applied to relations and how to associate the method with
a class.

The tfact that a function returns only one value allows us to assign a function to a
virtual attnibute m a domain algebra statement . When this virtual attibute 1s projected from
a relation, 1ty calculated for cach tuple of that relation by the speatfied tunction. The
arguments of a function can be scalars or attributes of the relation to which that function s

apphed.

Example 4-1. Function Declaration.

Given a relation Person and a function cale_age,

Person (Name YOB)
Mike 1941
Pete 1961

function Calc_Age (birth_year, curr_date);

return (curr_ycar — birth_year);

71

F2y

calculate the age of each person using a function calc_Age:
let curr_date be 19915
let age be Cale Age (YOB, curr_date);

R« [Name, age} in Person;

R (Name age)
Mike 50
Pete 30

The ditference between a procedure and a function 1s that a function returns one
value, while a procedure returns several values. Therefore, when apphed to a relation, a
funct:on returns one virtual attnbute of that relation and a procedure returns several virtual
attributes — Since more than one attribute s returned by a procedure, 1t cannot be assigned
to one attnibute - a domam algebra statement 1n the same way as a function 1s.

To overcome this problem, a procedure definition needs to have a set of input

arguments and a set of output arguments

Example 4-2 0 Procedure Declaration
Procedure Adjpust_Marks (in: nudierm, tinal,adjustment; out: new_mid,new_fin);
new mid < nudterm + adjustment;

new fin < final + adjustment;

The format ot a procedure call m the domain algebra of Relix would be:
let Proc name Gnel b L out:O,,0,..,0,);

where I, 1, are the input attnibutes, and O, .O,, are the output virtual attributes.

This domam algebra statement defines the output attributes O, to O,, as coming from
the procedure proc name The procedure will only be invoked when at least one output
attnibute 1s specitied i the projection or selection operation. As with the functions, the

procedure proc name will be performed on every tuple of the invoking relation.

Example 4-3. Procedure Invocation.,

Given a relation students helow and the procedure Adjust_Marks (Example 4-2),

Students (Name midterm final)

Fred 86 80
Jack 74 78
Lynn 92 S0

calculate adjusted mmdterm and final marks for cach student:
let adjustment be 5;

let Adjust_Marks (in:midterm, final,adjustment; out:new _nud,new_fin);

Students_revised < [Name, new_mid,new_fin] in Students;

Students_revised (Name new_mid new fin)

Fred 91 8%
Jack 79 83
Lynn 97 95

4.2 Generic and Class Associated Methods

The number of relations to which a method may be apphed 1s controlled by the way

that method 1s declared. There 1s an optional on clause which can be used for this purpose.
function Determune_nationality () on Person;

If the on clausc 1s not used, then the method is genenic (for example, funcuon
calc_age n the Example 4-1). If the relation n the on clause 1s:

* not associated with any hicrarchy, then the method can only be applied to that relation;
e associated with a hicrarchy, then the method can be used with that relation and all ats
subclasses.

In other words, a method defined on a relation cannot be used with any other relation
except with its subclasses One of the advantages of using such a method 15 that no matter
from where 1t 1s mvoked, the attributes of the relation on which 1t s defined are always
available. Methods assoctated with a relation can reference all the attributes of that refation
without these attributes bemg passed in the parameter Iist - Since subclasses inherit all the
attributes of 1ts superclasses, a method defined on a superclass can be ivoked on the

subclass.

For a generic method, all the vanables used in the body of the method should be

passed as parameters. POSTGRES follows this approach.

4.3 Polymorphic Methods

A program may have several methods with the same name but declared on different
relations ‘This can be usetul when a different treatment 1s required for different relations,
but the meaning of the result 1s the same. For example, to calculate the present value of a
government bond we need to add the compounded nterest to its base value, and to calculate
the present value ot a car we need to subtract the depreciation amount from its original price.

1 hat 15 part of the concept of polymorphism. It dalso leads to late binding since at the
compilation time the actual method name cannot be determined.

To implement this teature we need a system relation, .Methods, where this

mformanon will be stored It has the tollowmg format,

.Methods ({ .rel, .meth)
Investment Calc Present Value
Vehicles Calc Present Value

Lvery tme a method s defined with an on clause, a tuple 15 added to this relation.

It 1 possible to overnide a superclass’s method by defining a method with the same
name on the subelass A subclass can still access the superclass’s method with the help of
a heyword super For example, a method Training defined for a person class determings
the number ot years of postsecondary educatton In the Employee class this method 1s
redefined to determime the number of m-house traming courses an employee has completed.

o imvoke the rer son’s detimion of Training on an Employee, We Write,

let Lducation be super rainmg();

result « [Lducaton] in Employcee:;

When an mvoecation of a method M s requested by projecting virtual attributes
detined by that method from a relation R, the system scarches the . Methods relation for an
ndication that Moy detined on R or one of the superclasses of R, If method M 1s invoked

with the super heyword, then the search starts trom an immediate superclass of R, If the

74

search is successful, it determines which defimition of M to use Otherwise the system

assumes that the method 1s generie An error occurs 1f this genenie method 1s not defined

Example 4-4. Mechamsm to Determine the Apphicability ot Methods to Relations
Grven the representation of a person hierarchy and a function declared on 4 subclass
of person.

-Hierarchy (.Subclass, .Subld, .Superclass, .S5uperld)

Employee Empld Person Persld
Permanent Permld Employee Empld
Temporary Templd Employee EmpId

)

function Calc_Scniority (curr_month) on Employee

return (curr_month - start_month),

When the system receives the declaration of the cale seniority tunction, the
following tuple 15 imserted mto the . Methods relation

.Methods (.rel, .meth)
Employee Calc_Seniority
Apply cale_senmiority method to the Temporary relation
let curr_month be 11
let senmornity be Cale_Semority (curr_month),

Recent_Hires « [Name, Emp#. seniority] where seniority < 2 in ‘Temporary,

During the projection of the senior ity attnibute from the relatton Temporary, the

system reahzed that since this attnibute 1s not defined on Temporary nor on its

The system checks the .Methods table to see i it can find the tuple {Temporary,
Calc_Seniority}. Since this tuple s not tound, the system consults the .Hierarchy
table to locate the superclass of Temporary, and then looks for the tuple {Fopioyee,
cale Senmiority}. The successtul scarch provides the system with the mtormation

about which function to execute

superclasses, 1t must be a virtual attribute returned by the tunction cale seniority
|

|

|

75

4.4 Algorithm for Implementation of Method Inheritance

It an mput expresston has micthod vocations, repeat the followmg steps for each

mdependently evaluatesd subespression that makes up the iput expression:

® determine an which classes these mvohed methods are detined;

® tind all the superclasses of the relations on which these methods are invohed;

® venty that all the non-generie methods are defined erther on the input relations, or on
therr superclasses, if a method 1s defined on both a subcliss and a superclass, choose the
stbelass,

® deternune 1t there are any ambiguous method mvocations (1 ¢ some methods are defined

on more than one branch of a class hierarchy).

Appendin B provides more details of thas algorithm.

4.5 Method Invocation On Relational Expressions

Up to now we foohed at simple expressions, hke a projection from a relation, which
did not mvolve any retational expression evaluation prior to mvocation of the method. In
genetal, a method detined onarelation can be invoked on any expression which contains that

relation

Example 45
Onven two o relattons, vmployee(1d, Emp#) and Returned Employees(Emp#,
date returned). Fmployee(Id,Emp#) belongs to the person hicrarchy in Example
44, and Returned _Employees 15 an independent relation,

Fhe defintion of the attribute senyority 1s found 1n the same example.

In the expression

[Id. semonity | in I mployee ijoin Returned_Employees;

cale_seniority is invoked on the intermediate relation that contains the result of the

76

e on

evaluation ot the yomn operation,

In determimimg the vahidity ot this invocation, Cale_Sentority method 1y looked
up in the .Methods relation I 101y tound and ity corresponding relation 1s 1 mployee
Or Employee’s supcrcl‘l\s Person, Of Returned Employees, then the cale senion it Y
detfined on that relaton 1y imvohed Inthis example, the wple
{Employee,calc seniority} of the .Methods relation tells the system o ouse the

tunction calc seniority defined on the Employee relation
.

This approach suggests that 1if more than one relat n o the relationadl expression has
the same method detined on 1t or any of its superclasses, the ambigmty will arise In order
to avord ambiginties, the method to be apphed must be adenatied, tor mstance, by

appropritte projection,

Example -6 Ambiguity Resolution,
Grven an nheritance: hierarchy and o ditferent implementation ot the function

Calc_Seniority on several subcelasses

Person
(Id, Name)

-
e

Limployee Student Club_member
(Id. Emp# start_date) (Id. Farst_registry (1d, Year joimed)

N

Permanent Temporary Dull_time Part_time
(Id.Sal) (Id hours) (Id) (Id)

function Cale_Sentonity (curr_ycar) on Employee

return (curr_yecar = start_date);

function Calc_Scmonty (curr_year) on Student

return (curr_ycar — birst_registr);

P

function Calc Semority (curr_year) on Club_member

return (curr_year — Year joined).

The detimtion ot a virtual attribute seniority 1s the same as in the Example 4-4, 1.¢e ,

let semority be Cale_Senionty (1991),

To find the number of years of membership in the club of every temporary
cmployee who 1s domg part-time studies, we have to invoke the calc_seniority

function on the club_member class 1 order to avoid ambiguities.

fet semonty be Cale Seniority (1991);
Club member into < [Name,sentonity] in

(([Id. semority} in Club_member) ijoin Temporary ijoin Part_time);

Here senionrcy will have the value returned by the function cale_seniority defined
on the club menber relation

Speaial attention should be paid to the fact that the result of the evaluation of
the relational expression on which a method s invoked should have all the attributes
referenced m that method Inthis example, the method cale_seniority uses the
attribute Year joined which 1s defined on the club_member class

On the other hand, to find the number of years of experience of those
temporary employees who are studying part-time and are members of the club, a
ditferent projection s executed. In this example, the method cale _senvority, defined
on employee, 15 imvohed because the itermediate expression contains the attribute
start date and not Firot _reqgistr O Year joined.

Temp employee mfo « [Name,senrority] in

(({Id] in Club_member) ijoin Temporary ijoin ([Id] in Part_time));

78

Chapter 5§

Collection Hierarchy and Subobjects

The noton of the iheritance of attributes and methods, although powertul, cannot
represent the IS-PART-OF relationship between objects that cpatures the notion of an object
being part of another object Along with the IS A welationship, the IS PART O selationship
1s one of the tundamental data modelling concepts

Many apphications require the ability to define and mamipulate a set of objects as a
single logical entity tor the purposes of semantic integrity - We detine a collective object
as a collection ot reterences to other objects (possibly ot difterent classes), which make up
that collective object Collective objects are grouped together imtto collective classes For
example, the class Room holds objects of classes couch, rable, and chia

The collection hierarchy expresses the IS PART-OF relationship between classes by
histing the classes of objects referenced in each collective class A particularly usetul
characteristic of collective classes 15 the capdacity to broadeast a message to every subobject

(1.e., object that 1s part ot the collective object) ot a collective class

Example 5-1

To find the arca of a Room that 1s occupied by furniture (the sum of the sizes
ot different furmiture items i the Room), a message calc size 1S sent to the Room
collective class, which in turn torwards that message to all the subobjects found i that
room. Since subobjects belong to ditferent classes, the method corresponding to the
message sent may have difterent implementations i every class For example, to
calculate the size of the couch, multiply 1ts Length by its wadth, to determine the size
of the Table, pertorm the calculation that 1s appropriate for its shape, to calculate the
size of the chaxr, square its base.
|

79

Thus when a message 1s sent to a collective class, the message 1s interpreted by the
collective class and by the individual subobjects. The mechanism of collection works in a
similar way to the inheritance mechanism, except that in the collection hierarchy the search
1y done m a downward direction, whercas m the inhentance hierarchy 1t 1s done in the

upward direction

5.1 Declaration of Collection Hierarchy

A collective class 1s defined by a HASA expression 1n a way similar to the declaration

of subclasses in the imhentance hierarchy.

Fxample 52 Declaration ot Collection Hierarchy
The tollowing Rehix code 1s used to define a collective class Room, which
contains subobjects of classes couch, Table, and chair.
Room hasa Couch,
Room hasa Table,

Room hasa Chair;

The collection hierarchy 1s represented by a system meta-relation .collection
(.collectClass, .subobjClass) whose attnibutes .collectClassand . subobjClass store
the names of relations When the system receives a declaration of a collective class, as in
Example 5-2, 1t inserts a tuple with the name of the collective class (the word on the left of
the HASA keyword) and the name of the class of the subobjects (the word on the right of

the HASA keyword) into the .collection relation,

Example 5-3

The room collective class 1s represented by three tuples in the .collection relation,

.Collection (.collectClass,.subobjClass)

Room Couch
Room Table
Rowm Chair

80

Another aspect of the representation of a collective class 1s how to include the actual
subobjects in the collective object We use a relation Subobjects (coliectId,subobjid),
which combines the 1Ds of the collective objects (collect1d) and the IDs of the subobjects
(subobj1d) that make up that collective object Relation Subobjects 1s avaifable to the user
to mampulate - to add and delete subobject IDs to the collective object 1D but the attnibute
names (collectld and subobjld) are not allowed to be changed by the user The user s
responsible for updating and keeping up to date the Subobjects relation, but it cannot be

deleted, and no changes to s structure (only two attributes) are allowed

Example 5-4
The rRoom class has charactenstics such as Length and width, etc kach prece
of furmture 1s descnibed 11 a Furmiture branch of the inhentance hierarchy ‘The coucn
class also has attributes Length and wideh Lhe Table class has intormation about the
type of wood and the shape of the table The chaur class specifies the Height of the

chair and the size of the Base of the scat, assuming that all chairs have square seats

Inhentance Hierarchy

OBJLC l
Furniture Room
(Fuld.Weight, Price) (Rold,Length, Waidth)
Couch Table Chair

(Cold,Length,Width) (Tald,Wood,Shape) (Chld,Height,Base)

Room (RolId,Length,Width)
31 25 40

32 45 20
Couch Table Chayir
(Cold, Lergth,Width) (Tald,Wood, Shape) (Chld,Heignt,Base)
1 15 5 11 ©Oak round 21 7.5 3
2 17 5 12 Pine square 22 7 3.5
3 18 6 23 8 3

Suppose that we have two rooms. a wide room has one couch, an oak table and two
chairs; a long room has two couches, odkh and pine tables and a 8" chair The

insertion of all the pairs of IDs into the subobjects relation 1s shown below:

81

let collectld be Rold, let subobjld be Cold,

Subobjects < + [collectld] where Width = 40 in Room) ijoin ([subobjld] in
(t{Cold] where Length = 15 in Couch) [Cold ujoin Tald]
([lald] where Wood = "Oak " in Table) [Tald ujoin Chld]
({Chld} where Heirght < 8 in Chair)),

Subobjects < + [collectld] where Length = 45 in Room) ijoin ([subobjld] in
((|Cold] where Length > 15 in Couch) [Cold ujoin Tald]
([Tald] where Wood = "Oak " or Wood = "Pine" in Table)
{Tald ujoin Chld] ({Chld] where Height = 8 in Chair));

.Collection Subobjects (collectld,subobjId)
{.collectClass, .subobjClass) 31 1
Room Couch 31 11
Room Table 31 21
Room Chair 31 22
32 2
32 3
32 11
32 12
32 23
n

5.2 Functionality of Collection Hierarchy

The collective classes are stored m the inhentance hicrarchy. To distinguish
collective classes trom non-collective classes and to identity the classes of objects held 1n
cach collective class, the collection hierarchy 1s used. Thus every collective class 15 found
in both mheritance and collection hierarchies The collection hierarchy refers to the classes
found in the inhentance hierarchy

In many ways the two hierarchies are stmilar. The ditference 1s that the inhentance
mechanism works in the upward direction, looking for superclasses, and the collection
mechanism works in the downward direction, looking for subobjects.

In Scction 43 we have shown how the keyword super 15 used to access the
superclass's detimtion of the method that 1s defined i the current class. A sub keyword 1s
stmular to the super keyword, but it 1s used to access the subobject’s definition of a method,

even 1f that method s detined on the collective class.

let size be sub Cale_si7¢();

Posuble_furmiture_sizes <« [Rold, size] in Room;

82

The subobject IDs can be projected together wath the broadeasted methods To avord
confusion (as subobject classes may have different 1D fields), the 1Ds ot the subobjects will
be projected under the field name "subobjld™ subobjytd will be an ahas of the 1D names,

otherwise, any duplicate values returned by the methods will be gnored

5.3 Interpretation of Messages Sent to a Collective Class

When a method 1s applied to a collective class, several possibilities arise

1) the method 1s defined on the collective class' no broadeasting 1s performed whether
or not the method 1s detined also on the subobjects:
the method s not detined on the callective class broadeasting occurs, and the method
15 projected trom those subobject classes tor which gt s detined,

3y the method name 1s prefined with the heyword sub same as case 2) above, even of

that method s detied for the collective dass, the method s not mvoked on ot

In summary. broadcasting 1s pertormed it among the methods applicd o a ddass there s at
least one method which either s called with the keyword sub or 15 not detined on the class

to which 1t was apphed.

Example 5-§
To tllustrate the first and third case, find the free area of a room (room size
the sum of the sizes of the furniture 1n the room) The method cale size 1y defined

on both the room class and the subobject classes, couch, Table, and Chair

function Calc_size () on Room

{ return (Length * Wadth) |}

function Calc_size () on Couch

{ return (Length * Width) }

function Calc_size () on Table
{ arca < if Shape = "round " then 100 else 150;

return (arca) |}

83

function Cale_size () on Char

$oreturn (Base * Haghty |}

e

let sizeRoom be Cale_size();

let sizeSub be sub Cale sizeq);

Here sizeroom 1s goimg to hold the result of the invocation of the cale_size method
on the koom class sazesub will hold the result of the invocation of the cale_size
method on the subobjects of the Room class. The only way 1o invoke cale_size on
the subobjects s with the help of the keyword sub

To tind the occupied arca of the room, use the equivalence reduction that sums
Al the stzeSub attnbute values tor cach room 1D We need to project the 1Ds of the
subobjects S0 as not to loose any duplicate sizes So we project the subobjId field.
When mcthod broadeasting oceurs, the system mahkes this ficld available to be used as

a reterence to the 1Ds of subobjects (see Example 5-7 for detals of ity generation).

let triee arca be sizeRoom — (equiv + of sizeSub by Rold),

Free space < [Rold, tree_areal in (fRold,stzcRoom, subobyld,sizeSub] in Room);

Fxample S 6
Tolhustrate the second case, consider a method, Heating cost, defined on the

rRoom class, and a method, present _value, defined on the couch and Table classes.

let Heating be Heating cost();
let Value be Present value(),

Fyvatuanion < [Rold Heating, subobyld, Value] in Room;

Fhe method neating_cost will not be broadcasted since it is defined on the collective
class. The method present_value 1s going to be broadcasted to all the classes of
subobjects without the help of the sub keyword because Present _value is not defined

on the collective class, but only on the subobject classes.
g]

84

The following example demonstrates e general terms how a relational expression
which contains a combination of all three types of method invocations s transtormed into

an expression which can be evaluated using the techimques discussed in the presious chapters

Example 5-7.
Given the following input expressions:
let m1l be methodl (),
let m2 be mcthod?2 ()
let m3 be sub method3 O

R « [Id.m1,subobjld, m2,m3} in collectiveClass,

where methodl 18 detined on the collective class collectiveClass, met hod? 1s defined
on the classes S1 and S2 of subobjects of collectiveClass, and met hod3 1s detined on

both the collectiveclass and its subobject classes S1 and 82

Output expression”
R <« [Id.m1,subobjld,m2 . m3jin d-h
| ([Id.m 1] in collectiveClass) (2
| {Id ijoin collectid] Subobjects (3
ijjoin ([subobjld,m2,m3] in (a4

((Id,m2,m3}in Sty [, m2,m3 ujoin 1d2,m2,m3) ([Id2.m2,m3}in 82)), ¢9)

-1 1s the onginal projection

18 a relational expression on the collectiveClass, similar to the input expression

but contamnmg only attnbutes and methods defined on that class, thus 1t can be

evaluated as described in previous chapters

1-3 15 needed to select ondy the 1Ds of the subobjects of collectiveclass.

-4 gets the subobject IDs and the results of the mvocation of methods m2 and m3 on
all subobjects

1-5 1nvokes methods m2 and m3 on each subobject class, and then joins the results of

these mvocations

85

5.4 Algorithm for Implementation of Method Invocation on Collective

Classes

Goven an anput expression which nvolves method invocation on the collective class
cullectiveClass,
R« [Id,m;, .,m,] in collecuiveClass;

where mp my, represent methods some of which may be declared with the sub keyword.

Deternine which methods are appheable o the collective class, and which ones need
to be broadeasted to subobjects It there are no methods to be broadcasted, then the input
expression aan be evaluated as desenibed 1 the previous chapters
i Relational expressions which mvolve method broadeasting cannot be evaluated
dhirectly They are replaced by asystem generated output expression. which can be evaluated
using techniques discussed in the previous chapters There are three mam parts to generating
the output expresston Fyample 5 7 altustrates this algorithm.

I Treatment of the collective class
Find the attributes and methods defined on the collective class. Generate the expression
tor the collectine dlass (1-2)

2 Treatment ot the subobjects
Find the methods to be broadeasted. Deternine the subobject classes and their [D fields.
For cach subobject class generate a projection ot ats ID and the results of method
mvocations Create a umon of these projections (1-5)

3 Generation ot the output expression

Bring together method invocations on the collective class and on its subobjects by

selecting the actual subobjects from the subobject classes (1-3).

Eor detals of ths algonthm, see Appendix C

86

Chapter 6

Comparative Study of the Objective-C
Implementation of Gedit and Its Proposed

Implementation in Object-Oriented Relix

The purpose ot this chapter s to dlustrate how the object orrented features discussed

il

the previous chapters aie used man apphication program. This chapter gives examples of

® adding new objects o the erarchy of classes (operation "creation of objects™ on p 122);

® applymg a method to the collective class (function prsplay (p 116) m the operation
"ereation of objeciy”y,

® using generie methods (function braw_line (p L17) m the operation "creation of objects™);

e using methods which are defined on a subclass and which reference inhented attributes
(functions overlap, Draw_trame onp 117),

o updating an mhernited attnibute (operation "selection of several objects” on p 124),

® 1mnvohing a procedure (procedure Move obj (p 117) m the operation "moving selected
objects” (p 125)),

® calling a superclass procedure from a subclass procedure (procedure Move ohj);

® applying a procedure to a subset of a class, where the selection of atfected objects 1s done
outside the procedure (procedure Move opj on the Graphics class);

® applying a function to a subset of a class, where the selection of atfected objects 1s done
mstde that function (function nrawself on the constraints cass (p 117))

Farst, we present a short wtorial on the Graphies Editor (Gedit) to mtroduce the
reader to the basic operations provided by the editor Section 6 2 outhnes the mam
charactenstics and considerations required by the Objective-C implementation of the Gedit
in the NeXT environment Section 6.3 proposes how Gedit can be implemented i Object

Orented Rehix,

6.1 Graphics Editor Implemented in Objective-C

The Graphics Editor (Gedit) is implemented on the NeXT machine [Huxx91}. It
allows us to create simple objects like point, circle, polylines and polygons, and to apply

constraints to them. In the following section we will demonstrate how to manipulate objects
in Gedit.

6.1.1 Introduction to Gedit and a Short Tutorial

Gedit consists of three main components: the menu, the Object and the Constraint
Primitives panel, and the drawing window. When a Gedit is first invoked, all its

components appear as follows.

A AT AL ‘
Z Primltives {0 or [
3, "“‘WM
Py 2 £ k & ‘
Eod, Hig i
X 7 oMt gt
'Conﬁi’a’intmr’? E‘)‘(ﬁm bt iy X
‘:/ < ;’V >y - P
5o

348, Ay

;the' ‘ﬁm 54)

i w!/'ws«m
Quit

Vs
)wn'/é,.y
q
4%
£ s
) .
D 2
Y &
5, 4
g Y
§y- fin
& =
A %,
?4,'4, ‘;‘,{
P 7
45?/,' . z
e ”‘
WL, . 7
¢¢¢J * *
P IR e R
M4 //' x ' I I ’?’; Wty (,4,«
s * .
? ¥ ” L ootV AU B0 LS st 0 of, K VDG W

The top 6 icons of the Primitives panel constitute an object factory and allow the
creation of objects like circle, polyline, polygon, point and text. The bottom 12 icons

constitute the constraint factory and are used to impose different constraints on objects.

88

Pongirnat

6.1.1.1 How to Create Objects

Creation of an object is done in two steps: a) selecting the corresponding icon from
the Primitives panel by clicking the left mouse buton on it, and b) drawing the object in the
window.

Let us create a circle. Click with the left mouse bution on the circle icon. The icon
becomes highlighted (its background is white). Each subpanel of primitives -- object factory
and constraint factory -- can have only one selected icon at any time. Now move the cursor
to the drawing window. Press the left mouse button down where you want the center of the
circle to be, and drag the mouse until the desired radius is reached. At that point release the

button,

You see 8 dots around the circle. They show the frame of the circle. Every object in Gedit
has a frame -- a rectangular region enclosing the object. A frame displayed around an object

indicates that either the object has just been created, or it has been selected.

89

To create a point, use the mouse to select the point icon in the object factory.
Position the mouse on the desired location of the drawing window. Then make a single click

with the left button (press the button and release it immediately).

" Graphic Editor

Notice that the frame around the circle has disappeared. MNow the frame around the point

is shown. We can draw several points by clicking in different places of the window.

S0

g

To draw a polyline, select a polyline icon with the left buiton. Position the mouse
on place in the drawing window where you want the first vertex of the polyline to be. Click
the left button once. Press the left button down, drag it to where the first iine segment will
end, and release the button. During the dragging process the line segment is drawn from the
previous vertex to the current cursor position to aid the user in determining how the line

would look if the button were released at that particular moment.

"= Graphic Editor

3 ‘a‘ &r*rﬂlmmwwoﬁ

%

21

g Repeat the proces: of pressing the button, dragging it and releasing it, until all the
line segments of the polyline are created. The last vertex is signalled by a double click on
the left button. When Gedit receives the double click, 1t completes the creation of the

polyline and draws a frame around it.

'ge(m . TR . ‘ Graphic |

[

92

1 A very similar procedure is used for creating a polygon, with the difference that a

double click at the end of creation connects the last vertex with the first vertex, thus closing

the polygon.

iFont %2,
WArange
Print 5 p
tHide . h

fQut " g A

E™

I »
e 1

93

| -

6.1.1.2 How to Select Objects

Object selection can be performed only when the arrow 1con of the object factory s
highlighted. Objects are selected for such operations as moving, zooming, resizing,
removing, etc. To select an object, chick the left button anywhere inside the object’s frame.

Below we show how the screen will look after the left button 1s released.

Print . 7P
Hide maEPR

~ e
Quit A 7
? e i

94

Several objects can be selected at the same time. These objects must be inside or
intersecting a selected region 1in the window. To select the region, press the left button 1n

one corner of the region and drag the mouse until the opposite corner is reached. Release
the Hutton.

Below we show the selected region; the left button is not released yet.

Graphic Editor

’ gedit

& 83
3

s W

41>

4,

oA| o e

E RSN AT AR

95

Ty

Now release the button and all the objects in the selected region are selected.

Farange it

Print., . p

Mids * h

fQuit s g

TERERT ek aes [A

il T

T

]

96

3 6.1.1.3 How to Move Objects

Moving an object or several objects 1s done in three steps: a) select the object(s), b)
press the left button inside the object’s frame, and c) drag the mouse in the desired direction
As the cursor moves during the dragging event, the object moves with 1t. Releasing the

button 1ndicates the end of the moving process.

18

indow

onstralnt e
FEdiL -5 L
(I g |
‘Amrange " r{k™
Print..c " p
fHide = n
‘Qut . . g

Eibiy

<>}

‘]bl”rwn s o rsm W;ﬁy&z;: 2yl
4v - M Ar w T S i el

97

6.1.1.4 How to Use Constraints

We can impose some constraints on objects or parts of them. For example, it might
be necessary to make two adjacent hine segmente of a polyline perpendicular to one other
This 15 done with the help of the constraint 1con of the specified type Constraint icons have
from 1 to 4 arms, which are connected to the vertices of the objects to be constrained In
the previous example, the "perpendicular” constramnt has 4 arms the first two are for the end
points of the first hine segment, and the second two are for the end pomts of the second hne
segment. There are 11 different constraint icons 1n the constraint tactory 1o aply a cortun
constraint to an object, select the corresponding constraint tcon from the constramt factory
(by chicking or 1t with the left button) and place that icon 1n the window (by clicking on the
desired spot with the right button) Any subsequent night button clicks in the window wiil
create new 1cons of that type. For example, 1n the picture below, the nght button was
chicked twice in the window after the parallel constraint was selected from the constrant

factory

—

anto’s A

iConsiraintor]
TEdR TE 2T
‘Font 7250
‘ATange b
"Print 7%
‘Hide "~ h . T
euit " qffit—] l

Ve ta
e te
zzy ctoreThonans \»
S 3 *
. o »
=3
SO =
. . o
i
3 » * o
//' X ‘(’ P' T 7T gt P, [S e o] 8
. . - . ! - ppy _ Y, 7, ”)
. | KAy e AL 3,

98

&

To enforce the constraint, its arms need to be connected to the vertices of the objects.
The arms are located 1n the corners of the constraint icon.
arm 2 ¥] arm 3
arm 1 @ arma4
Arm 1 15 in the bottom left corner of the icon. Arms are numbered 1n a clockwise
direction and are shown with a dot 1 the corner of the icon. To connect an arm of a
constraint 1con, press the right button down on or around the corresponding dot, and drag
the mouse to the vertex of the object When the vertex 1s reached, release the button,

Repeat the process unuil all the arms have been connected. When all the arm connections

have been established, the constraint 1s enforced.

Graphic Editor

R e el

ndow i

PRERUSN RRAS g;
s
A '—'?‘m \r :b
L peprn 2] * r
e x .

L mreehomr, »”\“ 5‘:
h, [N rd
°
;»
& .
RN R I
g Wt . S—
HoX =4l
* AN B4 L4 !
ot
O/D B" » A
7 e
.
. . g‘b,\.\O v

99

L P

To move a constraint, the arrow icon should be selected in the constraint factory.
Follow the same procedure as that for moving objects As the constraint 1S moved, the arms

remain attached to the vertices.

‘Graphic Editor

OnSIF
&dii’p ;
Fomt SUERAL
*Anange Ty i
Hide . -~ h
‘Quit " q

o
A
Y

<I>I ORESRCRIE S5 06 5 A '4@ RN Lot s Rl

W s, TN NI 0,V W
DBindss: A Al A s s A Aditincs s 1MWM%, iR Wi

100

6.1.1.5 Invocation of Operations Through the Menu

Some operations can be invoked only through the menu. Here we discuss the "Hide

All Constraints”, "Show All Constraints", "Zoom out”", and "Zoom in" operations.

How to Hide and Show Constraint Icons.

If we do not want to see the constraint icons with their arms in the drawing window,
but we still want them to be enforced, we can hide them temporarily. To do that, select a

MaA Option in the main menu by clicking once on it with the left button. From

a Constraint submenu select the | option. The result of that operation is

shown below.

Graphic Editor

finfo 875" F'E
IWindbWIR R
| Constraint & [A
(Edit 0 ”hﬁ”m' “i.

Font BT Hlue do Selectrd®
"arrange”™” & | Rémoye 2 "
'Print ... ’p | Remove All2.<D
‘Hide .”h | SetQuiantity

;Qu“““'“ﬁ&?‘ FHES s Oy
IR

The hidden 1cons can be redisplayed by selecting the "Show All" option from the

same menu.

101

How to Zoom out and Zoom in Objects

Graphical objects can be zoomed out. This operation takes selected object(s) and
halves them in size. If more than one object 1s selected, the distance between the vertices
of the selected objects and the midpoint of the rectangle encompassing them 1s also doubled.
To zoom out selected objects, follow these steps:

a) select one or more objects 1 the drawing window,

b) call up the Arrange submenu by clicking orice on the Arrange option in the mam menu;

and

RN

c) select the |42~ .o j option from the Arrange submenu.

As a result we see that all the objects 1n the selected region become smaller 1n size.

o2) oTo Front :
‘Window ' F | To Back ™™
Constraint X 2. .. <

Edt_ crfroe

Giad
oty Sy

)

Font .- .« | Show Frame
Arrange | Show Name
Print.. " 'p | Asslgn Name
Hide . h | Rotate °
Quit 7.7 q] Move A Vertex
oy AN
ARON It
A I 7 T e aiccaasd .
. R Y R RS R XM

To achieve an enlarging effect, zoom the selected objects in by selecting the

EX'Z.,W; R lopuon in the same menu.

102

4

6.1.2 Summary of the Basic Gedit Operations Described in the Tutorial

Below we give an outhine of the sequence of mouse clicks and drags necessary to

complete each of the operations described in the above tutorial.

Creation of an Object

a) Select the desired 1con from the object factory by clicking on the 1con with the left button.
b) Create an object in the drawing window by a series of left button clicks and drags. Each
type of object 1equires a different sequence of mouse movements and/or clicks,
summarized below
® point. chiek once,
® circle. create the center by pressing the left button down; drag the mouse till the
desired radius 1s reached; then release;
® polylme and polygon place the first vertex by clicking once; press the left button
down to prepare to place the nest vertex; drag the mouse until the desired position is
reached; release the button to create the vertex; repeat the process of creating vertices

unttl the last vertex 1s created; double click to finish the object creation.

Creation of a Constraint

a) Sclect the desired 1con from the constraint factory by clicking on the icon with the left
button.
b) Create a constraint in the drawing window by a single right button click on the desired

location.

103

Connection of the Arms of the Constraint

Repeat the following steps for cach arm of the constraunt icon that is to be connected to the

objects in the drawing window:

a) Position the cursor on the dot corresponding, to the arm to be connected and press down
the right button;

b) Drag the mouse to the vertex of the object to which the arm will be connected;

¢) Release the button when the vertex 1s reached.

Selection of an Object

a) Click the left button on the arrow scon in the object factory.

b) Click the left button made the object to be selected

Selection of Several Objcects

a) Click the left button on the arrow 1con in the object factory.

b) With the cursor located 1 a corner of the rectangular region containing the objects o be
seiected, press the left button down. Drag the mouse unul the opposite corner of that
region is reached, and release the button, At this pomt all the objects whose frames

overiap the selected region are selected.

Selection of One Constraint

a) Click the left button on the arrow icon i the constraint factory.

b) Click the left button mside the constraint icon in the drawing window.

104

Moving Selected Objects
a) Click the Ieft button on the arrow icon n the object factory.
b) Press the left button down nside the frame of one of the selected objects, drag the mouse

to the new location, and release the button. All the selected objects will he moved at the

same time

Moving Selected Constraint

Press the left button down on the selected constraint icon in the drawing window. Drag the

mouse to the new location and release the button.

Hiding Constraints / Showing Constraints

a) Click the left button on the Constraint option of the main menu.

b) Click the left button on the appropriate option of the Constraint submenu.

Zooming Selected Objects

a) Click the left button on the Arrange option of the main menu.

b) Click the left button on the appropriate option in the Arrange submenu.

s

105

6.2 Objective-C Environment

The implementation of Gedit 1s simphfied by the fact that it 1s written in the NeX'T
environment. The NeXT environment supplies some common classes The classes are
Iinked together i o hierarchicat tree with Object class at its root Each class mherits both
nstance vartables and methods trom ats superclasses. Any new user detined class must be
linked to the hierarchy by declarmg its superclass

The mheritance of instance variables means that the subclasses do not have o declare
those vanable themselves -- thair declaration 15 mmpheit. Since class istances inherit
variables and not values, every mstance of the same class has its own copy ot all the instance
vartables declared tor the class, thus cach object controls its own data A subelass cannot
override an inherited mstance vanable This means that a subclass cannot declare a new
variable with the same name

Internally. an object 1D 18 a pointer to the data structure that contains all the instance
variables of that object

The NeXT environment supplies some mmportant functions When a "mouse down”
event occurs, the NeX'T wdentifies the object on which the cursor 1s positioned and sends the
"mouse down" message to that object For example, when the right mouse 1s pressed on the
constraint icon, the "mouse down" message 1s sent direetly to that constraint object

In Objective-C a message 1s sent to the imdividual objects To send a4 message to
some or all objects of a class, the IDs of those objects are added to an mstance of a Tist class
and the method 1s performed on all the elements of that Tist object Gedit uses three lists:
Glist, 1o hold the I1Ds and trames of all the graphical objects detimed i the window; Clist,
to hold the IDs of all the constramts defined in the system; and Slist, to hold the IDs of all

selected objects.

6.2.1 Method Inheritance

An object can mhent behaviour defined for its class and for its superclasses. In the

inheritance of behaviour (unhike the inhentance of nstance varables), an object does not

106

:n&‘

F:

iy

keep a copy of methods that were defined for its class or for its superclasses. The obiect
Just accesses (or calls) them when it recerves a message requesting that method. When an
object recerves a message, the system searches for the requested method 1n the class’s table.
[f the method s not found, the system scarches for it 1n the object superclass’s table, and so
on, up to the root, Object class, table. Once the method 1§ found, the system passes the
object’s instance variabiee to the method and mvokes the method.
‘There are thrce ways to mhent superciass’s methods:
® Simple inheritance subclass uses all the methods defined n ats superclass.
® Partial inhertance @ method defined in the superclass may call another method for
which the scarch will start from the subelass and, 1t 1t 1s not defined there, 1its definition
m the superclass wall be used
® Sclective inheritance: a me-hod 1s defined both 1n the superclass and the subclass; the

subclass’s version of the method overndes the superclass's method.

An objeet may use the method defined m its own class by sending the message to self

[self method)

Alternatively, 1t may use the method defined in its superclass by sending the message to
super

[super method]

6.2.2 Inheritance Ilicrarchy

The partial mhertance hierarchy of Gedit is shown in Figure 6.1. We only show
classes and nstance varables that are going to be used m our discussion below. The
hierarchy contans both the NeXT supplied classes (object, View, List, Button)and the
classes defined b_v Gedit {(Graphics, Point, Circle, Poly, Constraint, Glist, Clist,

slist). Instance varables are histed in curly brackets.

107

Svngre

Object

/\

View List

{frame)
/Sclcct\

Ghist Clist Shst

Graphics Button
{firstV} \
// \ Constraints
Point Circle Poly {Hide}
{radius} {ListOfVert} type
NoOfV ListOfArms

type

Figure 6 1 Inhenitance Hierarchy of Gedit

The meaning of instance variables declared n tiis hierarchy are explained below.

Note that the types of mstance vanables can be simple (Boolean, char, int), structures, or

linked hists

frame

Select

firstV

1

- Every graphical object has a frame, which 1s a rectangular region that
completely encloses all the vertices and sides of the object In Objective-C,
a frame 1s represented by its bo'tom lett corner (onigin), and 1its size width
and height. Frame plays an important role 1 the way objects are
manipulated. Its primary purpose 1s to wdentity the object being selected
Also, selected objects have their frame displayed to distingwish them from
non-sclected objects The trame display consists of 9 small squares along the

perimeter of the rectangular region that encompasses that object

The variable select 1s sct to True 1f an object 1s selected and to False

otherwise,

- Every object has one or more vertices. The first vertex s of particular

importance for the polygon class since, when displaying the object, its first

and last vertices are connected automatically by a hine to close the polygon

108

Al

B Y

radius - Objects of class circle can be erther circles or ellipses. To allow for both

shapes, the radius has two components: horizontal and vertical radu.

ListOfVert - For cach vertex of a poly-figure, the Listofvert contans the ID of the
vertex, the sequence number of that vertex in the poly-figure, and the x and

y coordmates of that vertex

i

NoOIV This variable specifies the number of vertices 1n a poly-tigure.

type In a poly class, type has two possible values: G for polygon, and L for
polyline. In a constraints class, type mdicates the constraint name: P for

parallel, p for perpendicular, etc.

ListOftArms - This List contains an entry for each connected arm of the constrant. The arm
information inctudes the arm#, the ID, and the sequence number of the vertex

to which that arm 1s connected.

A general idea of how the inheritance of attributes and methods is used 1n Objective-
C can be dlustrated by showing the implementation of a sample of the basic operations. FFor
this purpose, tour of those operations are selected m Gedits creation of an object; selection
of several objects: moving selected objects; and hiding and showing constraints. These
sample operations, selected from the operations described in the tutorial at the beginning of
this chapter, demonstiate ditterent aspects of inheritance. In Section 6.3.4 we will show
how Object-Oriented Rehx can achieve the same results. For this purpose m both this
section and Section 6.3.2 we provide an outline of the functionality of each method used n
the implementation of those operations.

In Objective-C, methods associated with a class are defined inside the class
declaration. Therefore, 1t 1s fogical to hist all of the methods that are of interest to us under
therr corresponding class heading. The view and Button classes are defined by the NeXT

environment. We restrict the following discussion to classes created specifically for Gedut,

109

Graphics Class
DrawSelf

self Draw:

Move imousc_down :mouse_up
Calculate the distance moved by subtracting mouse_down fTom mouse _up;
Add that distance to the frame origin and 10 the address of the first VeTICX;

Perform Display on the whole drawmg window:

Select_ob)
Sct select flag to True;

Postseript routine to display 9 small squares around the perimeter of the frame.

Point Class
Draw

Postseript routine to draw a pomt;

Circle Class
Draw

Postseript routine to draw a cirele:

Poly class
Draw
Postseript routine to draw hnes between adjacent vertices in the Listofvert.

It type = "G" then draw a line between the last vertex in the hist and the first

veriea,

Move mouse_down :mouse_up

Calculate the distance moved by subtracting mouse _down from mouse up;
For all the vertices except the first one, add that distance to the address of the
vertex:

[super move mmouse_down :mouse_upl;

110

Constraints class

DrawSelt

it HIDL = 0 then [super draw Self]
Hide_All

set Hide = "True

pertorm Display on the whole drawing window;

Hide_Selected
set Hide = True

perform Display on the whole drawing window;

Show_All
set Hide = False

perform Display on the whole drawing window;

Generic function
Overlap :RegionOngm -RegionSize *FrameOrign :FrameSize
If the frame of an object overlaps the region’s boundaries,
then return (True)

else return (FFalse)

6.2.3 View Iierarchy

All the graphical objects that are created n the drawing window are linked together
in a View hierarchy. The View hierarchy is not the same as the irheritance hierarchy. The
inhenitance herarchy 1s an arrangement of classes; the View hierarchy (s an ordered
arrangement of objects. Objects that are referenced more recently are placed ahead of the
objects that are reterenced cailier. The View hierarchy also defines a message-passing
cham. Forexample, sending a pasplay message to the root of an aggregation hierarchy will

cause every object in the hierarchy (in the drawing window) to be displayed.

111

-

View

) PAARN

Point Circle Poly Constraints

Figure 6.2 The View Hierarchy of Gedit

6.2.4 Objective-C Implementation of the Sample Operations

Now we describe the sequence of commands that execute the operations mentioned

in the previous scction
6.2.4.1 Creation of an Object

A graphical abject of the class selected 1 the object factory 1s created when the drawing

window receives a "mouse down” event.

Point.
A farstv vanable s miniahzed with the coordinates of the "mouse down" event A
point 1s drawn.

Circle
A firstv variable 1s imtiahized with the coordinates of the "mouse down" event The
“mouse up" event deternines the radius of the circle. Both the center and circumference
of the circle are drawn,

Poly.

Every tume a mouse button 1s chicked, the coordinates of the cursor are inserted nto the

Listofvert list The hine between the current and previous vertex 1s drawn, When the
double click event 1s recerved, 1f the object factory selection 15 a "polygon”, the Line 15

drawn between the last and the first vertex in the Listofvert hst.

When the creation of an object 15 complete (double click for poly-figures and "mouse up”
event for points and circles), the frame of that graphical object 15 calculated and displayed

The object ID and the frame are added to the Glast.

112

6.2.4.2 Selection of Several Objects

Fhe addresses ot the left-button "mouse down” and "mouse up" events are temporarily
saved, A genenie function overlap: s 3: 15 applied to every element of the 6list to 1dentify
all the objects whose trame overlaps with the selected region’s boundary. siist is cleared
and all the objects wdentified by the overlap function are mserted into the siist. The

messdage select_oby s sent to cach object 1n the s1ist.

6.2.4.3 Moving Selected Objects

The move:: message is sent to all the objects in the slist. As a result, the coordinates of

all the vertices i those objects are changed, as is the frame origin of those objects.

6.2.4.4 Iliding / Showing Constraints

Execute the procedure corresponding to the Constraint submenu selection.

"Hide All"
Send a Hide_ ALl message to every element of the clist. This method sets the wide
variable to True tor those constrants, Also, the pisplay message is sent to the whole
window bdisplay routine does not display icons whose Hide variable is True.

"Hide Selected”,
Set Hide vanable o True for the constraint whose select flag is set to True. Send a
Display message to that constramnt,

"Show All"
Send a show_ALL message to every element of the clist. This method sets the nide

flag to False for every constraint - Also the pisplay message is sent to the whole view.

113

6.3 Relix Environment

In Object-Oriented Rehy, subelasses inherit both attnibutes and methods from ther
superclasses. Methods are mhented in the same way as in Objective-C. On the other hand,
attribute inhentance 1s different: the subclasses do not contain the inherited attnibutes, bt
can access them through the hnk (the object 1D field) connecting superclasses with their
subclasses. This approach 1s significantly different from the Objective-C inheritance
mechanism, because 1n Object-Oriented Relix an object which belongs to a leaf class of an
mheritance hierarchy spans all the classes above it in the hierarchy. That 1s, its attnibutes
are distrnibuted among all 1ts superclass relations.

In Object-Oriented Rehix, graphical objects are represented by their vertices. So a
poly-figure having 4 vertices will have 4 tples i the craphies class. Thus for constramt

satisfaction routines all the vertices are stored in one central place - cGraphica class.

6.3.1 "Class-Oriented" Relix vs Objective-C

In Relix, methods are invoked on classes rather than on the class instances. Thus
a method 1s applicd cither to all of the mnstances of a class or to a selection of class instarces
There 15 no need to deal with lists of objects, as 18 necessary m Gedit. 1P a user wants to
apply a method only to mstances satisfying some conditions, the sclection may be performed
in two ways:
® by the relational expression mvoking the method; or
® by that method itself, which can be written to 1gnore all the instances that do not satisfy

those conditions

Because of the nature of Rehix, it 15 appropnate to exccute the same procedures as Gedit but
on a log of the Gedit session (see Section 6.3.4). Our task then would be to combine all
similar information in corresponding relations and to apply the same method to all tuples in

such a relation,

114

Er

6.3.2 Inheritance Hierarchy

There are two major differences between the class hierarchies in Gedit and Relix.
The first 1s that Relix does not have List classes (clist,slist,Glist). The second is that
Poly-figures in Relix do not have an attnbute which represents a list of vertices -- all the
vertices with their corresponding sequence numbers are stored 1n the Graphics class. Also

a collective class Figure was added to the class hierarchy in Relix.

OBJECT
View Figure
(1d,Select,f_origin_x,f_ongin_y, (1d, Desc)

f_width,f_height)

I

Graphics Button
(Id,Oseqn,x,y) (Id)
Pomt/ , >ly_ﬁgures }nstraints
(Id) Circle (Id) (Id,type,Hide)
(1d, rad_x,rad_y) al_Id,al_sq,a2 Id,a2_sq,
\ a3 _1d,a3_sq,24_Id,ad4_sq

Polygon Polyline
(1d) (Id)

Figure 6.3 Inheritance Hierarchy in the Object-Oriented Relix Version of Gedit.

The meaning of instance variables declared in this hierarchy and different from the
Gedit hierarchy are explamed as follows:
f_ongmm_x, f_onigmn_y - the x and y coordinates of the frame origin;
f_width, f_height

i

the width and height of the frame;
Oseqn

the sequence number of the vertex within a graphical object;

addr_x, addr_y

1

the coordinates of the vertex;

rad_x, rad_y - horizontal and vertical radius of a cirle (if the two radii are not the
same, it 1s an elipse);
al_Id, al sq, ... - for each arm of a constraint we store the ID of the graphical object

115

that contains the vertex to winch that arm 1s connected; the
sequence number uniquely wdentifies the vertex among all the

vertices of that object.

The view class has one tuple per object The graphics class has attnibutes x and
y which are the coordinates ot a point, and which are interpreted differently in cach of the
subclasses of Graphics. For the point it1s the pomntatself, tor the circle it 18 the center,
and for the poly~figures 1t 1s their vertex. The Poly-figures have two or more vertices
It is important to preserve the sequence 1n which these vertices were originally created. The
oseqn attribute in the Graphies class serves that purpose. Thus a craphics cliass has one
tuple for each pPoint or circle, and two or more tuples for ¢ach roly-tigure

Below we show a pseudo code for the methods that are going to be used 1in Section
6.3.5 to perform the four operations. The actual Rehix code for these methods and for the
operations described in Section 6 3.5 can be found in Appendix D.

In Object-Oriented Rehx, the association of methods with classes s achieved by
declaring the class mn the on clausc of the method declaranon For the better tlustration of

method inhentance we group methods by their name.

function Display () on OBJECT;
call DrawSelf();

function DrawSelf() on Graphics;

call Draw();

function Draw () on Point;

Postscript routine to draw a Point

function Draw () on Circle;

Postscript routine to draw a Circle

116

function DrawSelt () on Constraints;
if Hide = Falsc then
Postscript routine to draw each 1con
else

crase icon and arms

function Overlap (orig_x, orig_y, width, height) on Graphics;

determine if graphics frame overlaps the rectangle specified in the parameter list.

function Draw_frame () on Graphics;
if Sclect = True then
Postscript routine to display 9 small squares around the perimeter of the
rectangular frame
clse

crase the 9 small squares around the perimeter if they are there.

procedure Move (in: dist_x, dist_y; out: orig_x, orig_y) on View;
Move the frame of an object or a constraint. Since the frame is represented by its

origin and 1ts size, 1t is only necessary to change its origin by the given distance.

procedure Move_ob) (in: dist_x, dist_y; out: new_x, new_y, orig_x, orig_y) on Graphics
Calculate the new address of each vertex by adding the given distance to the
coordinates of each vertex.

Call the procedure Move() defined on the superclass to move the frame.

Generic function
function Draw_line (from_x, from_y, to_x, to_y)

Postscript routine to draw a line from point (from_x,from_y) to point (to_x,to_y);

117

6.3.3 Collection Hierarchy

The collection hierarchy of Object-Oxiented Relix shown in Figure 6.4 differs from
the collection hierarchy of Gedit (Figure 6.2). The main difference 1s that it does not keep
track of the order in which objects were referenced. It serves umquely as a distrnibutor of
messages. A message sent to a collective class 1s distributed to every subobject class of that
collective class. For example, a Move_obj message sent to the Figure cla.s will be applied

to the subobject classes of Fiqure, namely Point, Circle, Polygon, and Polyl ine classes
A

Figure

N

Point Circle Polygon Polyline

Figure 6.4 Collection Hierarchy 1n Object-Onented Rehx Implementation of Gedit.

Also, this hierarchy does not include the constraints class. The reason for that 1s
that the functionality of the constraints class is very different from the subclasses of the
Graphics class. For the four operations discussed in this chapter, we need only to include

the subclasses of the Graphics class in the collection hierarchy.

6.3.4 Representation of the Gedit Session in Relational Format

In a distributed database there might be a situation in which two users are working
on the same database of graphical objects. Suppose that one user 1n Montreal 1s using Gedit
to create and manipulate graphical objects, and another user in Vancouver needs to know the
changes to the screen. The information can be transmitted along the telephone hines in the
relational forinat. Gedit has a logging capability which records every detail about each
mouse click such as its location, which button was used (left or right), the type of the mouse
chck (single or double), and 1f any dragging has occurred between the "mouse down" and

"mouse up" events. Since the order of the mouse events is important in the process of

118

manipulating graphical vbjects, the log also gencrates the relative sequence number of each
click. The log contuns independent actions so that the order 1in which these actions are
performed 1s irrelevant.

We illustrate how a Gedit session (consisting of creating objects, selecting objects,
moving sclected objects, hiding or showing constraints) can be used as a good example of
how an object-oriented Rehix can achieve the same results as Gedit nsing the log of this
SCSS10N.

A Graphics editor session can be recorded as a sequence of mouse clicks. The
following assumptions simplify the task of correctly identifying the purpose of each mouse
chek:

o the Primitives pancel, drawimg window, menu and all the submenus do not overlap;

e the Priniuves panel, drawing window, and menu remamn immobile during the complete
session, so that the locatton of @ mouse click can be unambiguously determined;

e all the mouse chicks are erther on the Primitives panel, on the drawing window, or on the
menu;

e text creation and manipulation 1s omitted,

L.et us examine the actions performed during the Gedit session described above. All
the events are generated by mouse chicks. There are two types of mouse clicks: single and
double. A single mouse chek consists of consecutive "mouse down” and "mouse up" events.
Between those two events a mouse may be dragged. A double mouse click consists of two
single mouse cheks made within a short time interval of each other. 1he left and right
button clicks serve difterent purposes. The right button is used only for creating constraints
mside the drawing window and connecting the arms of the constraints. The left button is
used for everything clse

Different sequences of mouse clicks and mouse drags lead to different results. The
address of a mouse chick determines whether the event happened on the Primitives panel, on

the menu, or on the d wing window.

The log of the Gedit session 1s stored in the SESSION relation.

119

SESSION (segn,x,y,chick_type,mouse,drag)

where seqn - the sequence number of the mouse click;

T

X,y - the coordmnates of the cursor at the time of the mouse chek;

chck_type

s for single

d for double:

mouse - 1 for lett mouse chck
r for nght mouse click;
drag - n for no dragging between the mouse clicks

d for mouse down followed by a dragging event

u for the release of mouse after the dragging event,

From the SESSION relation we can obtaimn the relations create_obj, sel objects,
Move _objects, and Constr_menu_sel, by grouping the tuples representing operations of
creating graphical oljects, sclecting objects, moving objects and hiding/showing of
constraints respectively. "This grouping can be done in the current implementation of Relix
Since 1t does not require the object oriented features presented m this thests, this procedure

1S not discussed here.,

120

The complete process of using the log of the Gedit session is illustrated by the

flowchart below.

_/ SESSION /

'

7 Grouping of tuples
{not shown)

N

/Crgatc_oby / Sel_objcctsj/ /ﬂove_objects / /Constr_menu_sel /

6351 6352 6353 6354
- add objects to the - determine which - update the vertex - set the Hide attribute
hierarchy objects are selected addresses and fram ongins arcording to the menu
- add object Ids 10 the - draw frame around of all selected objects selection
aggregation class selected objects - display selected objects -send Display messagef
- display new objects - display frame around them to the constraint class
Methods Operations Classes
used P affected
Display —>»
> Graphics
Draw_Frame 6.3.53 ’
Move_obj =———3p» o >
> >/ o7
D 1 6.3.5.1 > crle S
raw_ling see——3pn- > Poyoon
> Polyline
>

6.3.5 4 [/ Concrants 7

121

Below we deseribe the four relations that are eatracted from the SESSION relation
1. Creation of graphical objects.
Create_oby (d,Oseqnitype X,y f_ong_x.f_orig_y,f width,f_height)
where Oseqn - sequence number of the vertex wathin an object;

type - ¢ for aircle
p for pont
g for polygon
I for polyhne;

X,y - the coordinates of the vertex f the figure v a point, polygon or a
polylme. If the figure is the circle, for oseqn = 11115 the center,
and for oseqn = 2 1t 1s the radius 1 cach direction:

{_orig_x - the coordinates of the left bottom corner,

f_ong_y of the rectangular box (frame) that surrounds cach object,

f_width - the width of the frame;

{_height the height of the frame.

In this relation points are represented by one tuple. circles are represented oy two
tuples. The tuple with oseqn = 1 contains the coordimates of the center, and the tuple
with oseqn = 2 contans the radius of the circle in both x and y direction. poly-figures
are represented by N tuples where N is the number of line segments that make up that

poly-figure.

2. Selection of sewvcral objects
Sel_Objects (r_orig_x,r_orig_y, r_width,r_height)
where r_org_x, r_orig_y - coordinates of the bottom left corner of the selected region;

r_width, r_height - width and height of the rectangular region.

3. Moving selected objects
Move_objects (dist_x, dist_y)
where dist_x - the absolute horizontal distance travelled by the mouse;

dist_y - the absolute vertical distance travelled by the mouse.

122

4 Hiding/showing of constraint(s)
Constr_menu_sel (menu_sel)

where menu_sel 15 the option of the Constraint submenu chosen.

6.3.5 Object-Oriented Relix Implementation of the Sample Operations

In this section we will describe the procedure for executing the four Gedit operations
in object-oriented Relix. Each procedure consists of relational and domain algebra
statements which use the refations extracted from the SESSION, classes of the inheritance

herarchy, and the methods defined on those classes.

6.3.5.1 Creation of Objects
Given: Create_oby (1d,Oseqn,type,x,y,f_ong_x,f orig_y,f width,f_height)

The process of creating graphical objects consists of placing them in the appropriate
classes of the mhertance merarchy and displaying them. Each class should be treated
difterently. Creation ot objects 15 the very first operation of the session. At this point the
class hierarchy 1s empty

When adding an object to the leaf class of the inheritance hierarchy, we should
provide the values ot all the attributes (both mnherited and defined in the leaf class itself).
This can be achieved by an update statement.

Point
Add to the poant class all the relevant information from those tuples of the create_obj
retation where type = "P".

Circle.
First, add to the cirecle class coordinates of the center and frame specifications from
those tuples of the create_objy relation where type = "C" and oseqn = 1. Second,

record the radius in the circle class by changing the value of the rad_x and rad_y

123

attributes to x and y attnbutes trom the tuples of the create_obj relation where type
= "C" and oseqn = ..

Poly-figures.
Add to the Polygon and Polyline classes all the relevant informaton from those tuples

of create_obj relation where type = "G" or "L" respectively.

At this pomnt the Graphies branch of the mmhenitance hicrarchy s complete. Now we need
to place all the objects mto the collection class It 1s done by adding all the object 1Ds
the create_obj rclation to the Figure collective class.

Send a Display message to the Figure class to display new objects That takes care of
displaymg pomts and circles. To display poly-figures, mvoke @ braw_line procedure for

every pair of adjacent vertices.

6.3.5.2 Selection of Several Objects

Given: Sel objects (r_orng_x,r_orig_y,r_width,r_height)

Selection of objects 15 always associated with another operation such as moving or
zooming. It 1s essential to preserve the order i which selection, moving and zooming
operations occur. ‘The same sequence number will be assigned to the selection and to the
operation that immediately follows the selection and operates on the selected objects. The
selection of all the objects 1 the region consists of these procedures:

1. In the craphics class, sct the select attribute to the value returned by the function
overlaps, defined on the Graphics class. The overtaps function deternines if the
frame of the object overlaps the frame of the selected regron,

2. Invoke the praw_frame method m the Graphics relation to display the frame around the
selected objects; when this method 15 applied to objects with the select attribute set to
False, nothing happens; thus by sending the praw_frame message to all the objects in the

Figure, the desired ctfect 1s achieved.

124

P

6.3.5.3 Moving Selected Objects

Given: Move_objects (dist_x, dist_y)

Selected objects are moved by invoking method Move _obj on the Graphics class.
Mecthod Move_objy, defined on the Graphacs class, changes the addresses of the vertices of
those objects whose select attribute 1s set to True. Then the frame’s origin 1s moved by
invoking method Move defined on the view class. When both methods are applied to objects
with the select attribute sct to False, nothing happens. Thus by sending the Move message

to all objects 1 the craphics class, only selected objects are moved.

6.3.5.4 Iiding Constraints / Showing Constraints

Given: Constr_menu_sel (menu_sel)

The menu_sel attribute has one of the following values: "Hide All", "Show All",
"Hide Selected”.

Hiding and showmg of constramts 1s achieved by setting the Hide attribute of the
Constrants class to True or False respectively, and then sending a brawsel £ message to the
Constraints class. The prawself method 1s coded mn such a way that 1t does not display
the constramnts whose Hide attribute 1s True.,

"Hide All™:
Set the Hide attribute to True for every constraint;
"Hide Selected”.
Set the Hide attibute to True for the constraint whose select attribute is set to True;
"Show All":
Sct the Hrde attnibute to False for every constraint; determine the the coordinates of end
points of all connected arms for all constraints; call a braw_line method to draw these

arms.

125

Chapter 7

Conclusion

In this thess we have shown that the relational database model has the power to
support the most important object-oriented features, namely, mheritance of aunbutes and
methods, and mcthod polymorphism. We have derived these teatures trom the data structure
and opcrations of the classical relational model This work 15 based on the assunmption that
a relation n a relavonal DBMS s equivalent to a class moan object onented DBMS

We formalized the detintion of these object orented features s enables a
database programmer to understand them operationally, in terms ol the well known refational

algebra.

7.1 Summary

The class hierarchy is represented by a relation where cach superclass-subclass pan
is represented by a tuple. Attribute inhertance is tmplemented by projecting the superclass’s
attributes from the join of the subclass with its superclass on the 1D field — Objects, which
span one or more tuples, are umgquely dentified by their D ficld

Methods can be either generic (apphcable to any relanon) or speaific o a dass, 1o,
applicable only to that class or its subclasses. The mtormation about the association of
methods and classes 1s stored i a relational tormat The mechanism of method nheritance
is implemented by combimng the information on method assoctation with the inherttance
hierarchy to determine which subclasses are eligible to use those methods.

The collection hierarchy determines 1f a message sent to a class should be passed on

to the classes that make up that collective class.

126

As a result of this design, the following new syntax was added to the set of operations

available to the user in Object-Oriented Relix:

New Syntax -) Page
Class2 (Id2 1saﬂId1]mea~ssl B 50
Class3 hasa Classé 80
function func namwe (i1nput _attr list) on Classl 72
let virtual attr be super Method(); 74
let virtual attr be sub Method(); 83

Chapter 6 illustrates how the features presented 1n this thesis can be used in an object-
ortented apphcation. The first part of that chapter fanuliarizes the reader with an object-
oriented apphication, Gedit, which 1s written 1in Objective-C. The second part of that chapter
proposes how some of the features of Gedit may be implemented 1n Object-Oriented Relix.
It 1s important to keep m nund that this thesis 1s not based on an actual implementation, but
1s of a pure analytical nature. The implementation which is proposed in the appendices has

not heen tested.

7.2 Further Work

. Chapter 3 mentioned that the ID fields are generated by the system, but did not specify
how this was accomphshed. The ID generation procedure should keep track of the
existing 1D values so that newly-generated values are unique. This procedure should
make extensive use of the .Hierarchy system meta-relation to guide it in determining
when to generate new ID values and when to assign the corresponding values of the
parent’s 1D. This 1s significant for consistency checks, and for verification of the

existence of orphans,

127

. Chapter 3 concentrated on simple inhenitance. Multiple wherntance is mowe powertul than
simple inheritance. To implement multiple inheritance, some algonthms (ithe method

broadcasting) would have to be redesigned.

. Can the design described i Chapter 3, which represents the ISA relationships between

classes in the inheritance hierarchy, be adopted for the representation of nested relations”?

. Chapter 4 discussed polymorphic functions and procedures which can be declared on
specific relations. Before this feature can work, it 1s necessary to implement functions

and procedures m Relix. This would require further research on type theory.,

. Chapter 4 also described how methods are mvoked on relations and produce one or more
values for cach tuple of that relation. [t 1s desirable to have another type of method
which would work with relations as a whole, like the procedure Join Hierarchy

Appendix A.

. In this thesis we concentrated on attribute and method inherttance. No object-oriented
database can be complete without other important features, like abstract data types (AIYT),

encapsulation, and information hiding.

128

B %

Appendix A

Attribute Inheritance

The appendices of this thesis use a system relation .rd (.rel name,.dom name).
This relation contains information about all the relations in the database. It is maintained
by the system and is updated every time a relation 1S created or deleted. For each relation
the system table . rd contains as many tuples as there are attributes in that relation. So for
example, the .Hierarchy relation 1s represented by four tuples: {.Hierarchy, .Subclass},
{.Hierarchy, .sSubld}, {.Hierarchy, .Superid}, {.Hierarchy,.Superclass}.

The actualization of a virtual attribute in an operand relation is determined by the
following conditions:
® If the requested attribute 1s found in the definition of the operand relation (there is a tuple
tor that attnbute 1n the .rd system relation), then that attribute is used,;
@ \f the operand relation does not have that attribute, the attribute is calculated (actualized)
according to its domain algebra definition.

The Null values are represented in Relix as Don’t Care (DC).

129

The following system relations are used to illustrate the Relix code presented n this

.rd

(.rel_name, .dom_namc)
Person Persld
Person Name
Person DOB
Employee Empld
Employee Emp#
Permanent Permld
Permanent Salary
Permanent Name
Office Ofld
Office Phone
Field Fldid
Field Location
Temporary Templd
Temporary Hours
Student Studld
Student Major
Science Scld
Science Labs
Education Edld
Education School
Corrections Corrld
Corrections Amount
Corrections Date
Pay errors Templd

appendix:

.Hierarchy

(.Subclass, .Subld, .Superclass, .Superld)
Employee Empld Person Persld
Permanent Permld Employee Empld

Office Ofld Permanent Permld

Field Fldld Permanent Permld
Temporary Templd Employee Empld

Student Studld Person Persld

Science Scld Student Studld
Education EdId Student Studld
Pay_errors Templd Corrections Corrld

Corrections
(Corrld,Amount,Date)
Pay_errors
(Templd,Pay#)
Person
(Persld,Name,DOB)
Employee Student
(Empld,Emp#) (Studld,Major)
Permanent Temporary Science

(Permld,Name,Salary) (Templd,Hours)

Office Field
(Of1d,Phone) (FldId,Location)

130

Pay errors Pay#
Second_job Templd
Second _job Name
Second_job DORB
Second_job Emp#
Second_job Hours

N

Education

(Scid,Labs) (EdId,School)

A.1 Inherit Statement

This detailed explanation corresponds to the algorithm in section 3.4.

The inherit statement 1s parsed and four scalar variables are initialized: child, c1d,
PId, and Parent.

In order to insert a tuple with the above values into the .Hierarchy relation, we
need to use an ADD clause of the update statement. The ADD clause requires that the
relation being added has the same attributes as the relation being updated. In other words,
since .Hierarchyrelation has attributes . suoclass, .subId, .Superld, and .Superclass,
we need to find a way of referring to the four input scalars under the names of the
.Hierarchy attributes. This can be achieved by renaming .Hierarchy attributes to their
corresponding input scalars and projecting these virtual attributes from any relation that does

not have any of the .Hierarchy attributes, say .rd.

if Parent = "ROOT" then
update .Hierarchy delete (where .Subclass = Child);
else
if Child relation 1s empty then
let .Superclass be Parent;
let .Subclass be Child;
let .Subld be Cld;
let .Superld be Pld;
update .Hierarchy add ([.Subclass,.Subld,.Superld,.Superclass] in .rd);
else

crror message "Cannot insert a non-empty relation into a class hierarchy”.

131

A.2 Projection and Selection

This detailed description corrasponds to the algorithm in section 1.6.

Hustration.,
Evaluate an expression

New_rel « [Name,DOB,Emp#] where Salary = 25 in Office;

The input expression is parsed and its elements are stored in scveral relations that are going

to be used by the system to generate an exccutable expression:

® all the attributes between square brackets and 1n the where clause are stored n a relation
Proj List (attr),

® the name of the relation (R) in the in clause is stored in the relation Join rels
(In_rel,Rel ordr) with Rel ordr = I;

® the part of the input expression excluding the contents of the in clause 1s stored in a

scalar variable non_relational_part.

Nlustration.

Proj_List (attr) Join_rels (In_rel, Rel_ordr)

Name Office 1
DOB
Emp#
Salary
non_relational part = "New_rel « [Name,DOB,Emp#| where Salary = 2510 "

We have broken this process into three procedures (Join_Hierarchy,
Minimum Join, and Find_Classes_in_Branch) that call each other. This break down
enables other processes in this appendix to use one or more of these procedures. The calling
sequence of these procedures is shown below:

Join_Hierarchy calls Minimum_Join calls Find_Classes_in_Branch

132

The procedures Join_Hierarchy, Minimum_Join, andFind_Classes_in_Branchare
shown bclow. They are illustrated for the input expression of section A.2.
The complete process of projecting and selecting inhented attributes is presented on

page 139.

procedure Find_Classes_in_Branch()

< This procedure finds all the superclasses of the relations in the Join_rels table, The
< relation classes_in_Branch contains the following information:

<€ .Superclass - the name of the superclass relation

< .Superld - the ID field of the superclass relation

< In_rcl - relation for which the superclasses are determined

< Relld - the ID field of the 1n_rel relation

< Rel_ordr - order in which current 1n_rel appears in the input expression

< ordr - order in which superclasses are found. The lower the order, the more
< closely related is the superclass to the 1n_rel relation. The highest order
<€ indicates the root of the hierarchy to which 1n_rel belongs.

< To insert the first set of tuples (one for each relation in the Join_rels table) into
< the classes_in_Branch relation, we redefine . Superclass as In_rel and ordr as
< Rel_ordr. The other attnbutes are unknown at this time, so they will have the

< value DC.

let .Superclass be In_rel; let .Superld be DC; let Relld be DC;
let ordr be Rel ordr;

Classes_in_Branch < [.Superclass,.Superld,In_rel,Relld,Rel_ordr,ordr] in Join_rels;

Hlustration.,

Classes_tin_Branch (.Superclass,.Superld,In_rel, Relld,Rel_ordr,ordr)
Office DC Office DC 1 1

133

< To find the immediate superclass of each input relation, we join Join_rels with the
< .Hierarchy System relation. The ordr attribute 1s calculated by incrementing the

<t total count of tuples 1n the intermediate relation.

let Relld be .Subld;
let ordr be (red + of 1) + 1;
Classes_in_Branch < + [.Superclass,.Superld,In_rel,Relld,Rel_ordr,ordr] in

Join_rels [In_rel ijoin .Subclass] .Hierarchy;

Illustration.

Classes_in_Branch (.Superclass, .Superld,In_rel, Relld,Rel_ordr,ordr)
Office DC Oftice DC 1 1
Permanent Permld Office Ofld | 2

A

Recursively find the other superclasses. Notice that the attribute rRel1d exists in the

classes_in_Branch relation, and therefore that its value will be taken from the

A A

Classes_in_Branch relation rather than from .Hierarchy’s .subId, as it was in

A

the previous step.

Classes_in_Branch is Classes_in_Branch ujoin
([.Superclass,.Superld,In_rel,Relld,Rel_ordr,ordrlinClasses_in_Branch

[.Superclass,.Superld icomp .Subclass,.Subld] .Hicrarchy);

Hlustration.

Classes_in_Branch (.Superclass, .Superld,In_rel, Relld,Rel_ordr,ordr)
Office DC Office DC 1 1
Permanent Permld Office Ofld 1
Employee Empld Office OfId 1
}

2
3
Person Persld Office Ofld 4

134

procedure Minimum Join ()

< This procedure finds all the superclasses of the relations in the input expression and

< selects only those classes which contain the attributes of the proj_List table.

{

Find_Classes_in_Branch();

Classes_with_attr < [.Superclass,.Superld,In_rel,Relld,Rel_ordr,ordr,attr] in

.rd [.rel_name,.dom_name ijoin .Superclass,attr] (Classes_in_Branch ujoin Proj_List);

Hlustration.,

Classes_with_attr (.Superclass, .Superld, In_rel, Relld, Rel_ordr, ordr, attr)

Permanent Permld Office Ofld 1 2 Name
Permanent Permld Office Ofld 1 2 Salary
Employee Empld Office Ofld 1 3 Emp#
Person Persld Office Ofld 1 4 Name
Person Persld Office Ofld 1 4 DOB
|
. < Ensure that 1f there are any renamed attributes in the specialized classes, those
h < attributes are projected instead of the attributes with the same name in the more
< gencral classes. This involves determining from the classes_with_attr relation
< if any attribute is defined in more than one class. We want to refer only to the
< more specialized attributes, so we select those tuples which have the lowest ordr.

let attr_count be equiv + of 1 by In_rel,attr;

let lowest_rel be equiv min of ordr by In_rel,attr;

let conflict_attr be if (attr_count > 1 and ordr > lowest_rel) then 1

else O;

A A A A

135

defined 1in a more specialized class (Name in Permanent).

Special treatment is required when the input expression contains references to

severul attributes of a general class (Name, DOB In Person), some of which are also

The special treatment

involves mcluding *n the join expression, generated by the sysiem, the projection of

]

non-renamed attrnibutes from the general class, 1n order to allow unambiguous

projection of the renamed attributes from the more specialized class. The attnbute

proj_attr_list is generated from the classes with_attr relation and takes care

A A A A

of necessary projections from general classes.
let list_of _attr be equiv max of (par cat of ("," cat attr) order ordr
by.Superclass,In_rel,contlict_attr)by.Superclass, In_rel,conflict_attr;
let confhict_rel be equiv max of conflict_attr by .Superclass,In_rel;
let proj_attr_list be if conflict_rel = 1 then
" ([" cat .Superld cat list_of _attr cat "] in " cat .Superclass cat ")) "
else .Superclass cat ") ";
Necessary _Classes < [.Superclass,.Superld,In_rel,Relld,Rel_ordr,ordr,projy_attr_hist]

where (attr_count = 1 or ordr = lowest_rel) in Classes_with_attr;

Nlustration.

Classes_with_attr
(.Superclass, .Superld,In_rel, Relld,Rel_ordr,ordr,attr) attr lowest conflict

count rel attr
Permanent Permld Office Ofld 1 2 Name 2 2 0
Permanent Permld Office Ofld 1 2 Salary |1 2 0
Employee Empld Office Ofld 1 3 Emp# | 3 0
Person Persld Oftice Ofld 1 4 Name 2 2]
Person Persid Office Ofild 1 4 DOB 1 4 0

Necessary_Classes
(.Superclass, .Superld,ln_rel, Relld,Rel_ordr,ordr, proj_attr_hst)
Permancnt Permld Office Ofld | 2 "Permanent) "
Employee Empld Office Ofld 1 3 "Employee) "
Person Persld Office Ofld 1 4 "({Persld,DOB] in Person) "

< We will not need the tuples with the input relation names in the . Superclass

< attribute.

update Necessary Classes delete (where .Superld = DC in Necessary_Classes);

136

procedure Join_Hicrarchy ()

Build a Necessary_Classes relation which contains only those superclasses of the

relation(s) participating in the input expression, which define the attributes from the

<

<

<€ Proj _List. Usc the Necessary_cClasses and the Proj_List tables to generate join
<€ expression(s) which will be used to replace the contents of the in clause. Store the
<

generated expression(s) in the relation Expanded_hierarchy.

p—t—

Minimum_Join ();

To build a join expression we work with the Necessary classes relation. Each
tuple is used to provide information of what class is joined on what ID field. The

intermediate attributes (pefore and after) are designed in such a way that, when

A A A A

concatenated together, they produce the required expre ision.

let min_index be equiv min of ordr by In_rel;
let before be

if ordr = mun_index then

In_rel cat " [" cat Relld cat " yoin " cat .Superld cat "] " cat .Superclass cat ") "

elsc .Superld cat "] " cat .Superclass cat ") ";
let max_index be equiv max of ordr by In_rel;
let after be if ordr = max_index then " "

else “[" cat .Superld cat " ijoin ";

let int_cxpr be before cat proj_attr_list cat after;

let brackets be equiv max of (fun cat of "(" order ordr) by In_rel;

Hlustranon.

Necessary Classes
(.Superclass,.Superld,In_rel, Relld,Rel_ordr,ordr,proj_attr_list)
Permanent Permld Office Ofld 1 2 "Permanent) "
Employce Empld Office Ofld 1 3 "Employee) "
Person Persld Office Ofld 1 4 "([Persld,DOB] in Person) "

137

.. continued from the above relation.

.Superclass min_index before max_index after
Permanent 2 "Office [Offld ijoin Permid] " 4 “[Permld ijomn "
Employee 2 "Empld] " 4 “[Empld yjoin "
Person 2 "Persld] " 4 .

.. continued from the above relation.

.Sujerclass brackets nt_expr

Permanent " (((" "Office [Ofld ijoin Permld] Permanent) [Permid join "
Employce "(((" "Empld] Employee) [Empld 1join *

Person (" "PersId] ([Persld, DOB] in Person)) "

]

< The last step of joining the hierarchy involves gencrating the final jomn of all the

< necessary classes that will replace the contents of the in clause of the input

< expression.

let expression be equiv max of (par cat of int_expr order ordr by In_rel) by In_rel;

let string_stmt be brackets cat expression;

Expanded_thierarchy « [In_rel,Rel_ordr,string_stmt] in Necessary_Classes;

Hlustrarion.

Expanded_hierarchy

(In_rel, Rel_ordr, string_stmt)

Oftice I "(((Office [Ofld ijoin Permld] Permanent) [Permld yoin Empld|
Employee) [Empld ijoin Persld] ({Persld,DOB] in Person)) "

138

Process of projecting and selecting inherited attributes

1. Determine all the superclasses of the relation R and select among them only those

superclasses which define the attributes referenced in the input expression.

<
<
< Generale a join expression from these selected classes and store 1t in the relation
< Expanded_hierarchy. These operations are performed in the procedure

<

Join_Hirerarchy which is described on page 137.
Join_Hicrarchy ();

<t 2. In the mput expression replace R with the join expression generated in the previous

< step. Evaluate the input expression.

let excc_stmt be (stmt (non_relational_part cat string_stmt cat ";"));
S «- [exec_stmt] in Expanded_hierarchy;

S;

Hlustration.

The expresston in the relation S is intended to be as follows:

New_rel < [Name,DOB,Emp#] where Salary = 25 in
(((Office [Ofld ijoin Permld] Permanent) [PermId ijoin Empld]
Employee) [Empld ijoin Persld] ([Persld,DOB] in Person)) ;

139

A3 Join

This detailed description corresponds to the algorithm in section 3.8.

Hlustration.
Evaluate an expression
New_rel « [Name,Emp#,School] where Hours > 25 in

Temporary [Templd {join EdId] Education;

The input expression 1s parsed and its elements are stored in several relations that are going

to be used by the system to generate an executable expression:

@ all the attributes between square brackets (includes projected and join attributes) and n
the where clause are stored in a relation Proj _List (attr);

® the names of the relations participating in the jownn are stored in Join_rels
(In_rel,Rel_ordr);

® the part of the input expression excluding the in clause is stored in a scalar variable
non_relational_part]

® the information about the type of join following each relation in the in clause (which
might include join attributes) 1s stored 1n the relation Join_symbol (symbol,Rel_ordr),
where Rel_oradr 1s the order of the relation in the in clause after which the symbol 18

found.

Nlustration.

Proj_List Join_rel Join_symbol

(attr) (In_rel, Rel_ordr) (symbol, Rel ordr)
Name Temporary 1 " [Templd 1join EdId] " 1
Emp# Education 2

Templd

EdId

Hours

School

non_relational_part = "New_rel < [Name,Emp#,School] where Hours > 25 in "
n

140

<
<
<
<<
<

1. Build a Necessary classes relation which contains only those superclasses of the

rclations in the Join_rels table in which all of the attribites from the proj_List are

defined. Construct a join expression from the classes listed in the

Necessary Classes and store it in the relation Expanded_hierarchy. These

operations are performed 1n the procedure Join_Hierarchy on page 137.

Join_Hierarchy ();

Hustration.

Classes_in_Branch (.Superclass, .Superld,In_rel,

Temporary
Employee
Person
Education
Student
Person

Classes_with_attr
(-Superclass, .Superld,In_rel,

Temporary DC Temporary
Temporary DC Temporary
Employce Empld Temporary
Person Persld Temporary

Education DC Education
Education DC Education
Person Persid Education

Necessary _Classes
(.Superclass, .Superld,In_rel,

Employce Empld Temporary
Person Persld - Temporary
Person Persld Education

Expanded_hierarchy

(In_rcl, Rel_ordr, string_stmt)

Temporary |
Person) "

Education 2

Relld, Rel _ordr,ordr,attr

DC

DC
Templd
Templd
DC

DC
Edld

[2\ B NS R
B2 W R —

Templd
Hours
Emp#
Name
EdId
School
Name

Relld, Rel ordr,ordr)

Templd 1 2
Templd 1 3
EdId 2 4

141

"(Education [Edld ijoin Persld] Person) "

1

ik pd mk P Pk et

Relld, Rel_ordr,ordr)
DC Temporary DC 1 1
Empld Temporary Templd 1 2
Persld Temporary Templd 1 3
DC Education DC 2 2
Studld Education EdId 2 3
Persld Education EdId 2 4

rel

SO LN =

) attr lowest conflict
count

attr
0

OO OCO

"((Temporary [Templd 1join EmpId] Employee) [Empld ijoin Persld]

< 2. Insert the join symbols between generated expressions.

let complete_stmt be if symbol ~ = DC then string_stmt cat " " cat symbol cat " "
else string_stmt;

let final_stmt be red max of (fun cat of complete_stmt order Rel ordr);

let exec_stmt be (stmt (no_rclational_part cat final_stmt cat ";"));

S « [exec_stmt] in Expanded hierarchy ujoin Join_symbol;
S;

IHustration.

The following statement is executed:
New_rel « [Name,Emp#,School] where Hours > 25 in

((Temporary [Templd ijoin Empld] Employee) [Empld ijoin Persld] Person)
[Templd ijoin Edid] (Education [Edld ijoin Persld] Person);

A.4 Update
This detailed description corresponds to section 3. 10.
A.4.1 Update Operation With Change Clause
Hlustration.

Evaluate expression

update Temporary change Hours < Amount, Emp# < Pay#, DOB <« Date

using Pay_errors;

142

-

R 4

The input expression 1s parsed and 1ts elements are stored 1n several relations that are going
to be used by the system to generate an executable expression:

® the name of the relation being updated and the name of the relation 1n the using clause
are stored in the relation Join_rels (In_Rel,Rel_ordr);

® all the attnibutes referenced in the using clause and the attributes on the nght hand side

of the "«" symbol in the change clause are stored in the relation proj List (attr);

® the attributes bemg updated (on the left hand side of the "«" symbol) and the attributes

from which they are assigned values (on the night hand side of the "<" symbol) are

stored 1 a relation Change_update_list (attr,value,attr ordr), where attr_ordr

indicates the order of attr-value pairs in the update expression.

Hlustration.
Proj List Join_rels Change_update_list
(attr) (In_rel, Rel_ordr) (attr, value, attr_ordr)
Amount Temporary 1 Hours Amount 1
Pay# Pay_errors 2 Emp# Pay# 2
Date DOB Date 3
8

1. Find the superclasses of all the relations in the input statement and store them in the
Classes_in_Branch relation. Choose the relations in the classes_in_Branch on
which the attributes in the Proj_List are defined, and store those relations in the
Necessary_Classes rclation. Notice that Necessary_classes does not contain the
rclation baing updated or any of its superclasses since the attributes in the proj_List
are from the relation in the using clause. Construct a join expression from the
classes histed in the Necessary classes and store it in the relation

Expanded_hierarchy. These operations are performed in the procedure

AA A A A A A A A

Join_Hierarchy presented on page 137.

Join_Hierarchy ();

143

e

Hlustrarion.

Classes_in_Branch (.Superclass, .Superld,In_rel, Relld, Rel_ordr,ordr)
Temporary DC Temporary DC 1 1
Employee Empld Temporary Templd 1 2
Person Persld Temporary Templd i 3
Pay_errors DC Pay errors DC 2 2
Corrections Corrld Pay_errors Templd 2 3
Classes_with_atir
(.Superclass, .Superld,In_rel, Relld, Rel _ordr,ordr,attr) attr lowest confhct
count rel attr
Pay_errors DC Pay_errors DC 2 2 Pay# 1 2 0
Corrections Corrld Pay_errors Templd 2 3 Amount l 3 0
Corrections Corrld Pay_errors Templd 2 3 Date 1 R 0

Necessary Classes
(.Superclass, .Superld.In_rel, Relld, Rel_ordr,ordr, proj_attr_list)
Corrections Corrld Pay_errors Templd 2 3 "Corrections) "

Expanded _hierarchy
(In_rel, Rel_ordr, string_stmt)
Pay errors 2 “(Pay_errors [Templd ijoin Corrld] Corrections) "

2. Generate and evaluate a join of the necessary superclasses of the relation in the
using clause. It 1s important to include 1n that join the relation being updated (R)

so that later when the superclasses of R are updated, only tuples with offsprings

<

<€

<

< Rare updated. The join expression 1s assigned to a relation Temp_Rel, which will be
< used in the using clauses of all the gencrated update statements. This increases

< the efficiency of the evaluation of those statements because this join expression will
<

be evaluated only once.
let final_expr be "Temp Rel « " cat string_stmt cat " yyoin " cat In_rel cat ";";
let Stmt_final be (stmt final_expr);
S « [Stmt_final] in (([string_stmt] in Expanded_Hierarchy) ujoin
([In_rel] where Rel_ordr = 1 in Join_rels);

S;

144

Hlustraton.
Temp _rel «< (Pay_crrors [Templd ijoir Corrld] Corrections) ijoin Temporary;
a

3. Determune which classes are affected by the input update expression (1.€. among the

class being updated and 1ts superclasses find the ones on which the attributes in the

<€

<

<€ change _update_list are defined). The superclasses of the relation being updated
< have been determined in the Join Hierarchy procedure and are stored in the

<

Classes_in_Branch relation.

Update_Classcs « [.Superclass,.Superld,Relld,attr,value,attr_ordr] in
rd [rel_name,.dom_name ijoin .Superclass,attr]

((where Rel_ordr = 1 in Classes_in_Branch) ujoin Change update_list);

Hiustration.
Classes _in_Branch (.Superclass, .Superld,In_rel, Relld, Rel_ordr,ordr)
Temporary DC Temporary DC 1 1
Employee Empld Temporary Templd 1 2
Person Persld Temporary Templd | 3
Pay_errors DC Pay_errors DC 2 2
Corrections Corrld Pay_errors Templd 2 3

Update_Classes
(.Superclass, .Superld, Relld, attr, value, attr ordr)

Temperary DC Templd Hours Amount 1
Employce Empld Templd Emp# Pay# 2
Person Persld Templd DOB Date 3
[

< 4. For cach class, determine the list of assignments to be placed in the change clause.

< This 1s done by concatenating all the attr-value pairs defined on the same relation.

let comma be if attr_ordr = (equiv max of attr_ordr by .Superclass) then " " else ",";
let hist_of_updates be equiv max of (par cat of (attr cat " « " value cat comma)

order attr_ordr by .Superclass) by .Superclass;

145

Hlusrration.

Update_Classes
(.Superclass, .Superld, Relld, attr, value, attr_ordr) comma hist_of updates

Temporary Templd Templd Hours Amount 1 “ " "Hours < Amount "
Employce Empld Templd Emp# Pay# 2 " " "Emp# « Pay# "
Person Persld Templd DOB Date 3 "' "DORB < Date "

n

< 5. Generale an exccutable update expression for cach relation in the update_classes.
< Concatenate gencrated statements one after another in the same order as their

< attributes appear in the change clause of the input update statement.

let USING jomn_attr be if Superld = DC or .Superld = Relld then * ©

clse " |" cat .Superld cat " yoin " cat Relld cat "} ";
let update_expr be "update " cat .Sup cat " change " cat hist_of _updates cat " using "

cat USING_join_attr cat Temp_Rel cat ",";
let update_ordr be equiv min of attr_ordr by .Superclass;
let ready_update_expr be (st (red max of (fun cat of update_expr order update_ordr)));
S « [ready_update_expr] in Update_Classes;

S;

Hiustration.

The following statements are executed:

update Temporary change Hours « Amount using Temp_Rel;
update Employce change Emp# < Pay# using [Empld ijoin Templd] Temp_Rel,
update Person change DOB < Date using [Persld ijoin Templd] Temp_Rel;

146

A.4.2 Update Operation With Add or Delete Clause

Hlustration.

Given a relation second_job (Templd,Name,DOB, Emp#,Hours). Evaluate the following:

update Temporary add Second_job;

The input expression 1s parsed and 1ts elements are stored in several relations that are later
used by the system to generate an executable expression:

® the name of the relation being updated is stored in the relation Join_rels
(In_rel,Rel ordr) with Rel ordr = 1;

e attnibutes histed in the add/delete clause are stored in the Proj_List (attr) relation; if
there 18 no exphicit projection in the add/delete clause, then the .rd relation is used to
find all the attributes of the relation in the add/delete clause;

® initialize a scalar vanable var_clause to "add " or to "delete " depending on the clause
used;

® inhialize a scalar variable Add_pelete_rel to the name of the relation in the add/delete

clause.
Hlustration,
Proj_List (attr) Jomn_rels (In_rel, Rel_ordr)
Templd Temporary 1
Name
DOB
Emp# var_clause = "add "
Hours Add_Dclete_rel = "Second_job"
]

< 1. Find which classes among the superclasses of the relation being updated define the
< attnibutes of the relation in the add/delete clause. Use the procedure Minimum_Join
<

on page 135.

Minimum_Jomn ();

147

Hlustration.

Classes_in_Branch (.Supcrclass, .Superld,In_rel, Relld, Rel ordr,ordr)

Temporary DC Temporary DC 1 1
Employee Empld Temporary Templd | 2
Person Perisld Temporary Templd | 3

Classes_with_attr
(.Superclass, .Superld,In_rel, Relld, Rel ordr,ordr,attr)

Temporary DC Temporary DC 1 1 Templd
Temporary DC Temporary DC 1 I Hours
Employece Empld Temporary Templd 1 2 Emp#
Person Persld Temporary Templd 1 3 Name
Person Persld Temporary Templd 1 3 DOB

2. For cach class 1n the classes_with_attr table, generate the projection hist of
attributes. The attnibutes in this projection hist will be projected from the relation in
the add/delete clausc and this will ensure that for each update statement the
attributes of the add/delete clause are the same as those of the relation being
updated. If the name of the 1D attribute of some superclasses 15 not the same as in
the relation in the add/delete clause, then, 10 project the 1D attnbute under the

appropriate name, 1t 1s necessary to rename it to its corresponding name 1n the

A A A A A A A A

relaton of the add/delete clause,

let elem_of_attr_hst be
if attr = (equiv min of attr by .Superclass) then
if .Superld = DC then " |" cat attr
else " [" cat .Superld cat "," cat attr;
else "," cat aur,
let part_of _proj_list be
if attr = (equiv max of attr by .Superclass) then elem_of_attr_hst cat "] "

else elem_of attr_list;

let list_of attr be equiv max of

(par cat of part_of_proj_list order attr by .Superclass) by .Superclass;

148

iy

let Id_rename be if .Superld = DC then ""
clse "let " cat .Superld cat " be " cat Relld cat *;";

Hlustration.

Classes_with_attr

(.Superclass, .Superld,In_rel, Relld, Rel_ordr,ordr,attr) part_of proj_list
Temporary DC Temporary DC 1 I Templd *,Templd]
Temporary DC Temporary DC 1 1 Hours " [Hours"
Employce Empld Temporary Templd 1 2 Emp# " [Empld,Emp#] "
Person Persld Temporary Templd 1 3 Name ",Name] "
Person Persld Temporary Templd 1 3 DOB "[Persld,DOB,"

.. continued from the above table

Supercliass list_of_attr Id_rename

Temporary " [Hours, Templd] " "

Employce " {Empld,Emp#] " “let Empld be Templd;"

Person " [Persld,DOB,Name] " "let Persid be Templd;"

[]

< 3. Generate an update statement for each relation in the classes_with_attr.

let update_expr be "update " cat .Superclass cat " " cat var_clause cat " (" cat list_of attr
cat " in " cat Add_Delete_rel cat ");";

let executable_expr be (stmt (fun cat of (Id_rename cat update_expr) order ordr));

S < [executable_eapr] in Classes_with_attr;

S;

Hlustration.

The following statements will be executed as a result of execution of S:

update Temporary add ([Templd,Hours] in Second_job);
let Empld be Templd;

update Employce add ([Empld,Emp#] in Second_job);
let Persld be Templd,

update Person add ([Persld,Emp#] in Second_job);

u

149

Appendix B

Method Inheritance

This detailed description corresponds to the Section 4.4.

Method inheritance will be illustrated by the following example.

Example B-1. Consider two hierarchies: Person and Pet_owners.

Person Pet_owners
(Id,Name,DOB) (Id, #ofPets)
Employee Student Cat_owners

(1d,Start_year) (1d,First_registered,Dept) (Id,Date_bought)

N

Permanent Temporary
(Id,Salary) (1d,YTD_hours)

Office Field
(Id,phone) (Id,Site#)

After the declaration of several methods below, the user 1ssues a request 1o

evaluate a relational expression which nvolves method invocations.

function Years_spent (curr_ycar) on Person;

return (curr_year — DOB);

function Years_spent (curr_year) on Employec;

return (curr_year — Start_year);

150

function Ycars_spent (curr_year) on Student;

return (curr_year — First_registered),

function Years_spent (curr_year) on Cat_owners;

return (curr_year — Date bought);

function Which_Floor () on Office;
FFloor < if phone > 2000 then 2
clse I;

return (Floor);

function FFind_status (Income);

status < if Income > 25 then "rich"

" ",

else poor";

return (status);

let curr_ycar be 91;

let experience be Years_spent(curr_year);
let floor# be Which_Floor();

let status_in_society be Find_status (Salary);

Complete_info « [Id,expenence, floor#,status_in_society] in Office ijoin Cat_owners;

During the parsing of the input expression, independently evaluated
subexpressions are 1dentified. For each subexpression found, create the relations

Join_rels and Method calls.

Jomn_rels Method_calls
(In_Rel, Rel_ordr) (call)
Office l Years_spent
Cat_owners 2 Which_Floor

Find_status

For cach method which 1s declared on a specific class there is a tuple in the

151

-Methods system relation which was introduced in Section 4.3, The information about
classes and their superclasses 1s stored in the .Hierarchy system meta-relation

discussed mn Scction 3.2,

.Methods .Hierarchy
(.rel, .meth) (.Subclass, .Subld, .Superclass,.Superld)
Person Years_spent Employee Id Person Id
Employce Years_spent Student Id Person Id
Student Years_spent Permanent Id Employee Id
Office Which_Floor Temporary Id Employee Id
Cat_owners Years_spent Office Id Permanent Id
Field Id Permancnt Id
Cat_owners 1d Pet_owners Id
s

< 1. Find all the classes on which the methods in the Method_calls table are defined.

Invoked_methods < [.rel,.meth] in .Methods [.meth ijoin call] Method_calls;

Hlustration.

Invoked_methods (.rel, .meth)
Person Years_spent
Employce Years_spent
Student Years_spent
Office Which_Floor
Cat_owners Years_spent

.

< 2. Find all the ancestors of the relations in the Join_rels table and keep the order in
< the hierarchy. We use the procedure Find_Classes_in_Branch, defined in Appendix
< Aonpage 133 which uses the Join_rels table and generates the classes_in_Branch
<

relation,

Find_Classes_m_Branch ():

152

Hlustration.

4 Classes_in_branch

! (.Superclass, .Superld,In_rel, Relld, Rel_ordr,ordr)
Office DC Office DC 1 1
Permunent Id Office Id 1 2
Employce Id Office Id 1 3
Person Id Office Id 1 4
Cat_owners Id Cat_owners Id 2 1
Pet_owners Id Cat_owners Id 2 2

3. Determine 1f all the methods 1n the I1nvoked_methods are defined on the relations in

the Join_rel table or therr superclasses. If a method is defined on both a subclass

<

<

< and its superclass, choose the subclass. If the relational expression contains more
< than one relation (Join_rel table has more than one tuple), verify that each method
<

1s defined on only one of those relations to avoid any ambiguity.

let min_index be equiv min of ordr by In_rel,.meth;

let count be equiv max of (par + of 1 order In_rel by .meth) by .meth;

iy

Association <= [.Superclass,.meth,count] where ordr = min_index in

Classes_in_branch [.Superclass ijoin .rel] Invoked_methods;

fllustration.
Classes_m_branch [.Superclass ijoin .rel] Invoked _methods
(.Superclass, In_rel, ordr, .meth) min_index count
Office Office I Which_Floor 1 1
Employee Office 3 Years_spent 3 2
Person Office 4 Years_spent 3 2
Cat_owners Cat_owners | Years_spent 1 2

Association
(.Superclass, .meth, count)
Office Which_Floor 1

Employee Years_spent 2
Cat_owners Years_spent 2

o

153

<€
<<
<
<
<
<

4. The Association table provides two types of information: presence of ambiguously

referenced methods, and an indication to the system of which definition of each

method should be used during the evaluation of the current relational expression It
the count attribute tor any method 1s greater than one, then that method s defined on
several unrelated classes. If some methods from the Method calls hist are not found

in the Association table, then these methods are potentially generic.

Hlustration.

The association table above indicates that the method Years_spent 18 defined on two
unrelated classes and thus introduces ambiguity. The evaluatior cannot proceed, and
an error message 1s 1ssued — Also the method Find_status 15 not hsted m this table.

This tells the system that Fand_status 1s either a generie method or 1t s not defined.

The ambiguity can be avorded by rewriting the expression:

Complete_info < [Id,experience, floor#,status_in_society] in

Office ijoin (]Id]) in Cat_owners);

As a result the system considers two expressions for determining which method to apply:

a) [Id,expenence, floor# status_in_society] in Office

b) [Id} in Cat_owners

Hlustration.

The nterpretation of the expression a) follows the same steps which produce the
intermediate relations listed below.

Classes_mn_branch
(.Superclass,. Superld,In_rel,Relld,Rel_ordr,ordr)

Oftice DC Otfice DC | |
Permanent Id Otfice Id l 2
Employce Id Office Id 1 3
Person Id Office Id 1 4

154

#y

Classes_in_branch [.Superclass ijoin .rel] Invoked methods

(.Superclass, In_rel, ordr,.meth) min_index count
Office Officc 1 Which_Floor 1 1
Employec Office 3 Years_spent 3 1
Person Office 4 Years_spent 3 1

Association

(.Superclass,.mcth, count)
Office Which_Floor 1
Employce Years_spent 1

Here the association table unambiguously determines that the system should invoke

method which_Floor, defined on the office class, and should invoke method

Years_spent defined on the Employee class.

The mterpretation of expression b) does not follow these steps because there are no

methods invoked 1 this expression.

155

Appendix C

Method Broadcasting

This detailed description corresponds to Section §.1.

To illustiate the operations presented in this appendix, the following example will be used.

Given the OBJECT hierarchy n the Example 5-4 and the following methods,
function Calc_heating_cost () on Room;
function Calc_size () on Room;
function Calc_size () on Couch;
function Calc_sizc () on Table;
function Calc_size () on Chair;

function Calc_Dcpreciation () on Furniture;

and, after the four domain algebra statements below, the system encounters an expression
which cannot be directly evaluated:

let Heating be Calc_heating_cost ();

let Depr be Cale_depreciation ();

let RoomSize¢ be Calc_size ();

let Size be sub Calc_size ();

Costs < [Rold,Width,RoomSize,Heating,subobjld, Depr,Size}

where Length = 25 in Room;

156

The above stiatement has to be transformed into the following format in order to be
executable:
Costs « [Rold,Width,RoomSize,Heating, subobjld,Depr,Size] in
([Rold,Width,RoomSize,Heating) where Length = 25 in Room)
[Rold ijoin aggregld] Subcbjects ijoin ([subobjld,Depr,Size] in
(Chair [Chld,Depr,Size ujoin Cold,Depr,Size] Couch
[Cold,Depr,Size ujoin Tald,Depr,Size] Table));

The following scalars arc initialized as a result of the parsing of the input expression:
condition - the sclection criterion 1n the where clause:
requested class - the name of the relation in the in clause;

final projection - contains the assignment of the projected attributes to a new relation,

The following relations are imtia'ized:
Collect_methods_hist (C_invok_attr)

- attributes resulting from methods invoked by the input expression

detined on the requested_class;
Suboby_methods_hst (S_invok_attr)

- atiributes resulting ‘rom methods invoked by the input expression
cither not defined on the requested_class or called with the sub
heyword;

Collect_attributes_hist (C_attr,ordr)

- attibutes in the projection list of the input expression that are

defined on the requested_class with the order in which they are

projected.

The other relations used here and described in Sections 5.1 and 3.2:
.Collection (.collectClass,.subob)Class)
- pairs of colelctive class names (.collectclass) and their

corresponding subobject class names (.subobjclass);

Subobjects (collectld,subobjld)
- hists the IDs of the collective objects (collect1d) and the 1Ds of the
subobjects (subobyId) that are part of the collective objeet;
.Hierarchy (.Subclass,.Subld,.Superclass, Superld)
- hists the name of the superclass (.superclass) for cach subclass

(.subclass) and the names of the ID ficlds in cach class

Hlustranion.
requested_class @ Room
condition : "Length = 25"

final_projection : "Cost « {Rold,Width,RoomSize,Heating, subobyld,Depr,Size]

Collect_methods_hist Subob)_methods_hst Collect_attnbutes_ht
(C_invok_attr) (S_mvok_attr) (C_attr,ordr)
Heating Depr Rold |
RoomSize Size Width 2
.Collection Subobjects .Hierarchy
(.collectClass,.subobjClass) (collectld,subobjld) (.Subclass..Subld,.Superclass, Superld)
Room Couch 31] Furmture buld OBJIECT 1d
Room Table 3l 11 Couch Cold Furniture l-uld
Room Chair 31 21 Table Tald Furniture Fuld
31 22 Chair Chld Furniture Tuld
32 2 Room Rold OBJECT Id
32 3

< 1. Treatment of the collective class.
< a) find the name of the ID field of the requested_class and include it n the

< Collect attributes hst.

C_Id < [.Subld] where .Subclass = requested_class in .Hierarchy;

Collect_attributes_list « Collect_attributes_hist [C_attr,ordr ujoin .Subld, 1] C_Id,

Hlustration.
C _Id (.Subld) Collect_attributes_hst (C_attr,ordr) !
Rold Rold 1 ;
Width 2
]

158

< b) generate a projection expression using the information in the requested class table.

let C_attr_temp be if ordr = | then C_attr

LU 1]

else """ cat C_attr;
let Co_atinbutes be red max of (fun cat C_attr_temp order ordr);
let Co_nvok attrs be red max of (fun cat ("," cat C_invok_attr) order C_nvok_attr);
let collect_projection be “[* cat Co_attributes cat Co_invok_attrs cat "] ";
Collect_proj_rel «- [collect_projection] in (([Co_attributes] in Collect_attributes_list)

ujoin ([Co_invok_attrs] in Collect_methods_list));

" L1

let C_projection be "(" cat collect_projection cat " where " cat condition cat " 1n " cat

requested _class cat ")[" cat C_Id cat " ijoin collectld] Subobjects ijoin ([subobjld,";

Hlustranion.
Colleet_attributes_hist Collect_methods_list
(C_attr, ordr) C_attr_temp Co_attributes (C_invok_attr) Co_invok_attrs
Rold 1 "Rold" "Rold,Width" Heating " ,Heating, RoomSize"
Width 2 ", Width" "Rold,Width" RoomSize " ,Heating,RoomSize"
Collect_proj_rel (collect_projection)

"[Rold,Width,Heating, RoomSize}”

When the ¢_projection attribute 1s projected from the Collect_proj_rel, it will
have the value:

“({Rold, Width,Heating,RoomSize] where Length = 25 in Room)[Rold ijoin collectld]
Subobjects 1jom ([subobyld,”

< 2. Treatment ot subobject classes.

< a) find the classes of subobjects and the names of their 1D fields.

Suboby_class_1d_rel « [subobjClass,.Subld] in ({.subobjClass]
where .collectClass = requested class

in .Collection) [.subobjClass ijoin .Subclass] .Hierarchy;

Hlustration,

Subob)_class_1d_rel (.subobjClass, . Subld)
Chair Chid
Couch Cold
Table Tald

< b) project from each subobject class the ID and methods.

let sub_invok_attrs be red max of (fun cat ("," cat S_invok_attr) order S_imvok_atir),
let first_tuple be red min of _subobjClass;
let Iast_tuple be red mav of subobjClass;
let before be if subobjClass = first tuple then sub_invok attrs eat "] n ("
else Subld eat sub invok_attrs cat "] "

let after be if subobjClass = last_tuple then ")),"

else "{" cat .Subld cat sub_invok_attrs cat " wjomn ”
let sub_interm_proy be before cat subobyClass cat after,
let sub_projection be red max of (fun cat of sub_interm_proy order subobjClass),
Sub_projection_rel « {sub_projection] in (Suboby_class_1d_rel ujoin

([sub_invok_attrs] in Suboby_methody_list)),

Hlustrarion,

Subob)_methods_hist
(S_mvok_attr) sub_mvok_attrs
Depr " Depr,Size”
Size " Depr,Size”

Suboby_class ad_rel first last

(.subobjClass, Subld) tuple tuple before after
1 Charr Chld Charr Table "Depr,Size] in (" "[Chld,Depr,Size uygomn ™
2 Couch Cold Cnar Table "Cold,Depr,Size]” "[Cold, Depr,Size yjoin ™
3 Table Tald Chair Table "Tald.Depr.Swze}” "),"

sub_interm_proyj
"Depr,Size] m (Charr {Chld,Depr,Stz¢ ujoin ™
"Cold.Dcpr,Size] Couch [Cold,Depr,Size ujoin ”
"Tald,Depr.Size] Table)),"

W N = I3

160

Sub_projection_rel

(sub_projection)

"Depr,Size] i (Chair [Chld, Depr,Size ujoin Cold, Depr,Size] Couch [Cold, Depr,Size
ujoin ‘Tald,Depr,Size] Table));"

< 3. Generate and evaluate the final join.

let subobjld_declaration be stmt ("let subobjId be " cat .Subld cat ";");
letStmt < [subobyld _declaration] where .subobjClass = first_tuple in Subobj_class_id_rel;
letStmt,
fet final _jom cxpr be stmt (final_projection cat "in " cat C_projection cat sub_projection);
Final_join_rel < [final_jom_expr] in

({C_projection] in Collect_proj_rel) ujoin Sub_projection_rel,

Final_jomn_rel;

Hlustrar on.
The exccution of letStmt results in the evaluation of the expression

let subobjld be chld;

The execution of Final_join_rel results 1n the following expression being evaluated:
Cost < [Rold, Width,RoomSize,Heating, subobjld,Depr,Size] in
({Rold,Width, Heating . RoomSize] where Length = 25 in Room)
[Rold ijoin collectld] Subobjects ijoin ([subobjld,Depr,Size] in
(Chair [Chld, Depr.Size ujoin Cold, Depr,Size] Couch
[Cold.Depr.Size ujoin Tald,Depr,Size] Table));

161

k.

Appendix D

Implementation of Gedit in Object-Oriented
Relix

The Relix code of this appendix provides the details of the Sections 6.3.2 and 6.3.4.

The declaration of relations in the inhenitance hierarchy in Figure 6.3 18 shown below.

relation View (Id.Sclect,f_ongm_x,t ongin_y,f width,t_height),
relation Graphics (Id,Oseqn.x,y)

relation Point (Id),

relation Circle (Id,rad_x,rad_y);

relation Poiy_figures (Id);

relation Polygon (Id).

relation Polylme (Id),

relation Figure (Id, Dosey,

relation Button (ld);

relation Constraints (Id,type,Hide,al _Id.al sq,a2 Id,a2 sq,ad Id,ad sq,ad _1d,ad sq);

Graphics isa View: Button isa View, Figure isa OBJLCT,
Point isa Graphies: Circle isa Graphics; Poly figure isa Graphics;
Polygon isa Poly_tigure, Polyhne isa Poly_tigure; Constraints isa Button;
Figure hasa Pont, Figure hasa Circle; Frgure hasa Polygon;

Figure hasa Polyline;

* The following functions dre declared.

function Display () on OBJECT,

return (DrawSelt());

function DrawSclt() on Graphics;

return (Draw());

function Draw () on Pamnt;
Postseript routine to draw a Point

return (the completion status of the postscript routine);

function Draw () on Circle,
Postseript routine to draw a Circle

return (the completion status of the postscript routine);

function DrawSelt () on Constraints;
if Hide = Ialse then
Postseript routine to draw the icon
else crase ice and arms

return (the completion status of the postscript routine);

function Overlap (onig_x,ong_y,width,height) on Graphics;
y_cond «if (I_ong_y > = ong_y and f_orig_y <= orig_y + height) or
(t_ong_y + f haight > = ong_y and
t_ong_y + 1_height <= ong_y + height)
then True
else False:
res < iy cond = True then
if (t_ong x >=ong_x and {_orig_x < orig_x + width) or
(f_ornig_x + t width > = ong_x and
t_onig_x + f width <= ong_x + width)
then True
elve False:

return (res);

163

function Draw_frame () on Graphics,
if Select = True then
Postscript routine o display small square around pomt (f_orig_x.f orig_y)
Postscript routine to display small square around pownt
(f ong_x + t width /2.1 ong_y)
Postscript routine to display small square around pont (f_onig_x + { wadth,t_ong_y)
Postscript routine to display small square around point
(f omg_x + 1 width,f ong vy + { height / 2)
Postscript routine to display small square around pomnt
(f_ong_x + t_width,f_ong_y + t_height)
Postscript routine to display small square around point
(fong_x + 1t width 7 2t ong y + {_height)
Postscript routine to display small square around pomt (f_ong x.f onig y + 1 _height)
Postscript routine to display small square around pomnt
(f ong_x,f ong_y + { height / 2)
else

erase the Y small squares around the pernimeter it they are there.

return (the completion status of the postscript routine),

procedure Move (in:dist_x,dist_y; out:orig_x,orig_y) on View;
orig_ x < t ong x + dist_x;

ong y < I ong_y + dist_y;

procedure Move oby (inidist_x,dist_y; out: new_x,new_y,orig_x,orig_y) on Graphics;
new_x « x + dist_x;
new_y <y + dist_y;

Move (in-dist_x dist_y; outiong_x,ong_y);

Generic function
function Draw_line (from_x.from_y,to_x,to_y)

Postscript routine to draw a line from the point (from_x,from_y) to the point (to_x,to_y).

164

&

The following scctions which provide the Relix code for the operations described 1in Chapter

6 arc numbered 1n the same way as their corresponding sections 1n Chapter 6.

D.3.5.1 Creation of Objects

Given: Create_ob) (1d, Oseqn, type, x, y, f_ong_x, f orig_y, f_width, f_height)

let Sclect be False;
update Graphics add ([I1D,Oseqn,x,y,Select,f_orig_x,f_ong_y,f width,f_height]
in Create_obj);
update Point add (|Id] where type = "P" in Create_oby);
let rad x be x; et rad_y be y,
update Circle add ({Id,rad_x,rad_y] where type = "C" and Osegn = 2 in Create_obj);
update Circle delete (where Oseqn = 2 in Circle);
update Polygon add ([Id] where type = "G" in Create_oby);

update Polyline add (JId] where type = "L" in Create_ob));

This completes the graphical hierarchy. Now place all the objects into the collective
class Suppose that the current Figure has 1ts ID value stored in a scalar variable

Curr_Figure_Id. As we discussed n Section 5.1, the information about which

A A A A

subobjects are assoctated with a collective object 1s stored in the relation subobjects.

let subobyld be Id:
let collectld be Curr_Figure_Id;

update Subobjects add ([collectld,subobyld] in Create_obj);

< The pisplay method can be applied to both Point and circle classes by invoking that

< method on the Figure class.

let result be Display():

display_result < [1d, result] in Figure;

165

A A A A A

Since Polygon and pPolyline classes do not have a prawself mcthad, they will be
displayed with the help of the praw_1ine generic method This method takes as
parameters the end ponts of a ine Poly-fipures are sinular in that they consist of
lings. The end powts of cach line of polygon and polyline objects are recorded in one

relation ready to_draw and then the method praw_line 15 invoked on that relation

To specity the hnes of polygons:

let next_x be par suce of x order Oseqn by Id;

let next_y be par succ of y order Oseqn by 1d;

ready to draw < [Id.x.y,next x,next_y] in Polygon;
y_1o_ y _ Y Y&

<

To specity the lines of polylines:

let last_vertex be egniv max of Oseqn by Id;

ready to_draw <+ [ld,x,y,next_x,next_y] where Oseqn ~ = last_vertex in Polyline;

let status be Draw _hine (x,y,next_xnext_y);

display _result « [Id status] in ready_to_draw;

D.3.5.2 Selection of Several Objects

Given: Sel objects (r_ong_x,r_ong_y,r_widta,r_height)

let overlapping be Overlap (r_ong x,r_ong_y,r_width,r_height);

update Graphics change Sclect < overlapping using ijoin on Scl_objects;

let res be Draw_frame ();

display _result « [Id,res] in Graphics,

166

D.3.5.3 Moving Selected Objects

Given: Move_objects (dist_x, dist_y)

let Move_oby (imdist_x,dist_y; out:new_x,new_y,orig_x,orig_y);

update Graphics change x < new_x, y < new_y, f_orig_x < ong_x, f_orig_y < orig_y
using ijoin on Move_objects;

let res be Draw _frame ();

let result be Display ();

display_result « [Id,result,res] in Graphics;

D.3.5.4 Hiding Constraints / Showing Constraints

Given: Constr_menu_sel (menu_sel)

let hide_or_not be if menu_sel = "Hide All" then True
clse if menu_sel = "Hide Selected" then Select
clse if menu_sel = "Show All" then False;
update Constramts change Hide < hide_or_not using ijoin on Constr_menu_sel;
let result be Display ()

display_result < [Id,result] in Constraints;

< Draw the connected arms of the constraints that are not hidden.

let from_x be f_ong_x; let from_y be f _orig_y;
Arms <« [Id, from_x,from_y x,y] in ([Id,Oseqn,x,y] in Graphics)
{1d,Oscqn ijoin al_Id,al_sq]

(lal_ld,al_sq, from_x,from_y] where Hide = False in Constraints);

167

let from_x be t ong x; fet from_y be f ong_y + hewght;

Arms <+ [Id, from_x,from_y,x,y] in ([Id,Oseqn,x,y]} in Graphics)
[1d,Oscqn ijoin a2_Id,a2_sq]

([a2_Id,al_sq, from_x,trom_y] where Hide = False in Constraints);

let from_x be t ong x + f width; let from_y be f ong y + { heght,
Arms <+ {Id, from_x,from_y,x,y] in ({Id,Oscgn,x,y} in Graphics)
[1d.Oseqn ijoin a3_Id,a3 sq]

({23 _Id,a3_sq, from_x,from_y} where Hide = False in Constraints);

let from_x be {_ong x + { width; let from_y be f ong y;
Arms <+ [Id, from_x,from_y,x,y} in ({Id,Oscqn,x,y} in Graphics)
[1d,Oseqn ijoin ad_Id,ad_sq)

([ad_Id,a4_sq, from_x,from_y] where Hide = False in Construints);

let status be Draw _line (from_x,from_y,x,y);

display_arms < [Id, status] in Arms;

168

pisiy

References

[Banc87]

| Brac90]

[Bret89)

|Buttvlj]

[Cat9l]

[CaWe8s)

Banerjee J., Kim W., Kim H.J., Korth H., Semanncs and Implementation of
Schema Evolution in Object-Onented Databases, Proceeding of ACM Special
Interest Group on Management of Data 1987 Annual Conference, pages 311-322,

San Fransisco, May 1987

Bracha G., Cook W | Muxin-based Inhernitunce, Proceedings of the conference
on Object-Ortented Programming: Systems, Languages and Applications, pages

303-311, Qttawa, October 1990

Bretl R., Maier D | et al, The GemStone Data Management System, in Kim W,
and Locnovsky ', editors, Object-Oriented Concepts, Databases, and
Apphicanions, pages 283-308, ACM Press, New York, Reading, Mass., Addison-
Wesley, 1989

Butterworth P., Ous A., Stein J., The GemStone Object Darabase Management
Svsrem, Communications of the ACM, 34(10):65-77, October 1991

Cattell R.G.G., What are next-generatrion database systems?, Communications

of the ACM, 34(10):31-33, October 1991

Cardell L., Wegner P., On Understanding Types, Data Abstraction, and
Polymorphism, ACM Computing Surveys, 17(4):471-523, December 1985

169

TR

[Clo87] Clouatre A., Implementation and applicarions of recursively defined relariony, ‘

Ph.D. thesis, School of Computer Science, McGill Umversity, 1987

[Clo89] Cloutier F., Olyect-Oriented Prolog: 1 Yesren and Implementation Ivsues, Master's

thesis, School of Computer Science, McGill University, 1989

[Codd70] Codd E.F., A Relunonal Model of Datu for Large Shared Dara Banky,
Communications of the ACM, 3(6), June 1970, pages 377-387

[Codd72] Codd E.F., A Datu Base Sublunguage Founded on the Relanional Culculuy,
Proceedings of 1971 ACM SIGFIDET Workshop on Data Description, Access

and Control

[CoMa84] Copeland G. and Maier D., Making Smalltalk a Databave Svstem, Yormark,
editor, Proceedings of ACM SIGMOD International Conterence on Management

of Data, pages 316-325, Bosten, June 1984

[Day85] Dayal U., Buchmann A., Goldhirsch D . Heiler S., Manola ¥ . Orenstern J and
Rosenthal A., PROBE - A Rescarch Poiect in Knowledge-Oviented Databaye
Systems: Prelunmnary Analysts, CCA-85-02 Computer Cotporation of Amenica,

Cambridge, Massachusetts, July 1985

[Deux90] Deux O., The Story of O, IEEE Transactions on Knowledge and Data
Engineering, 2(1):91-108, March 1990

[Deux91] Deux O., The O, system, Communications of the ACM, 34(10):35-48, October
1991

[Gold83] Goldberg A., Robson D., Smalltalk-80. The language and it implementation,
Addison-Wesley, Reading, Mass., 1983

170

[Huxx91]

[1e1190)

[Kent78]

[Khos86]

[KimB¥]

[Kim9l]

fLamb9l]

[Mcerr77]

[Merr84)

Hu X X | Implementation of a Constraint-Based Graphics Eduor for Relix,
Master’s thesis, School of Computer Science, McGill Umversity, Montreal,

I ebruary 1992

Jelhinghavs R., Effel Linda: an Object-Oriented Linda Dialect, SIGPLAN
NOTICES 25(12):70-84, December 1990

Kent W, Data and Realiry, North-Holiand Pubhshing Co , New York, 1978

Khoshafian S |, Copeland G., Object Idennry, Proceedings of the conference on
Object-Onented Programming. Systems. Languages and Applications, pages 406-

416, Portland. Oregon, September 1986

Kim W, Ballou N, Chou H-T, Garza J , Woelk D., lnregranng an Object-
Oriented Svstem With a Database Svstem, Proceedmgs of the conference on
Object-Oriented Programenng: Systems. Languages and Applhications, pages 142-

152, San Diego, California, September 1988

Kim W | Object-Onented Darabase Svstems: Strengths and Weaknesses, Journal

of Object-Oniented Programmumg, 4(4)°21-29, July/August 1991

Famb €, Tandis G., Orenstem J., Weinreb D | The ObjectStore database
svarem, Communrications of the ACM, 33(10):51-63, October 1991

Merrett ‘T H., Relations as Programmung Language Elements, Information

Processing Letters, 6(1):29-33, February 1977

Merrett T H., Relatonal Information Svstems, Reston 1984

[MeyeB8al Meyer B.. Objecr-onenied Software Construction, Prentice Hall, New York 1988

171

[MeyveB8b] Mever B, Eifel A Language and Lavironmers o0 Sortware Fuginecnng, Ha

Journal of Syvstems and Sottware, 830 199 2do, Junce TUSN

[Moong&9}] Moon D, The Common Lip Object Oniented Programinmne 1 angiaye

[Mullg9]

[NgRi89]

[Nier89]

[Penn87]

[Rowe87]

[Shai91)

Standard, m Kim W and Tochossky 1T editors, Objecr Onenred Congepiy,
Databases, and Applications, pages 49-79 New York, ACM Press, Readyg

Mass.. Addison-Wesley, 1989

Mullin M, Olyect-Oviented Program Desien with foaamples in C vt Addison
Wesley, 1989

Nguyen G., Rieu D., Schema Evolunion in Object Oniented Datalase Sysicni,

Data & Knowledge Engineering, 4¢1), North Holland. July 1989

Nierstrasz O, 4 Swrvey of Object Oniented Concepis, in ko W and T ochioysky
F., editors, Object-Onented Concepts, Databeases, and Applications, pages 3 20,

New York, ACM Press, Reading, Mass | Addison Wesley, 1989

Penncy D.. Stein J.. Cluss Modifications in the GemStone Object Oviented
DBMS, Proceedings of the conterence on Object Onented Programminy

Systems, Languages and Apphcations, pages HH-1H7 Olando Elornda, October
1987

Rowe L., Stonebraker M., The POSTGRES Data Model, Proceedings of the [3ith
International Conterence on Very Large Data Bases, pages 83 95, Brighton,

England, Scptember 1987

Shafer D., Ritz D., Practical Smallralk, String-Verlag, 1991

172

[Shat®6]

[Shess)

[Ston86]

[Stonvl]

[Strog6]

[UnSeo0)

[Wee87)

[Yons/]

Shattert €, Cooper T L Bulhs B, Kihan M, Wilpolt C.. An Introduction 1o
Diellis/Owl Proceedings of the conference on Object-Ornented Programnung
Systems, Languages and Applications. pages 9-16, Portland, Oregon, September

19%6

O'Shea T, Panel: The Learnabiluy of Object-Oviented Programming Svstems.
Proceedimgs of the conference on Object-Onented Programning — Systems,
Languages and Applications, pages 502-504, San Diego, California, September

1988

Stoncbraker M, Rowe L, The Design of POSTGPRES, Proceedings of
International Conterence on Management of Data, Washington, D.C., May 1986,

published in SIGMOD RECORD, 15(2):340-355. June 1986

Stonebraker M., Kemmitz G., The Posigres Next Generation Databuse

Management System, Communications of the ACM, 34(10):79-92, October 1991

Stroustrup B The C++ Progre mmung Language, Addison-Wesley, 1986

Unland R., Schlageter G, Object-Oriented Database Svstems: Concepts and
Perspecnives, w Blaser AL, editor, Database Svsiems of the 90y, 1LNCS 466,
pages 154-197, Spring-Verlag, New York, 1990

Wegner P, Dimensions of Object Bused Language Design, Proceedings of the
conference on - Object-Oriented Programming: Systems, Languages and

Applications, pages 168-182, Orlando, Flonda, October 1987

Yonezawa A, Tokoro M., editors, Object-Oriented Concurrent Programming,

The MIT Press, 1937

