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ABSTRACT

The SAG Power Index test (SPI) is a tool for forecasting autogenous mill performance.
Much effort has been directed towards the development of the process models relating
SPI to throughput estimates, but little has been directed towards ore body modeling.
Blending studies are presented showing that the SPI is not additive, affecting the
geostatistical procedures. A method is given to ensure that additivity is respected during
geostatistical interpolation. A procedure for relating mean SPi precision to sample
spacing is given. This procedure is combined with a study of the process model error to
estimate the precision of the mean throughput forecasts. A case study from Chino
Mines is discussed. The relative throughput error is between 20 and 26 percent for
perfect knowledge of SPI. For 100 m sample spacing at Chino, one third of the error is
due to the process models and the rest to the SPI estimates.

RESUME

. L'essai d'indice de puissance SAG (SPI pour « SAG Power Index » en anglais) sert a
prédire la capacité des broyeurs SAG. Plusieurs modéles de processus unitaires ont été
développés pour permetire cette prédiction, ce qui n'est pas le cas des modéles
géostatistiques de la distribution des valeurs de SPI dans les gisements. Des études de
mélange d’échantillons montrent que le SPI n'est pas une variable additive, ce qui
complique son utilisation en géostatistique. Nous présentons une méthode qui résout ce
probléme en restituant au SPI son additivité. Nous présentons une procédure qui fait le
lien entre la maille de détermination du SPI et la précision du SP! moyen. Nous
présentons une étude de cas pour la mine Chino. Nous combinons cette procédure a
une étude des erreurs des modéles de procédés utilisés dans la prédiction de la
capacité des circuits de broyage SAG pour en estimer la précision, qui se situe entre 20
et 26%. Lorsque la maille d’échantilionnage & Chino est de 100 m, un tiers de l'erreur
de prédiction provient des modéles de processus unitaires et deux tiers des erreurs de
SPL
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INTRODUC

Beginning in the middle of the 20™ century a trend began to emerge in the design and

construction of comminution circuits. Large-diameter autogenous (AG) and semi-
autogenous grinding (SAG) mills began to replace the two-stage process of secondary
crushing and rod-milling. Autogenous mills brought with them lower operating costs, but
at a price. The lower steel charges in the autogenous mills and their dependence on
large ore pieces for grinding media rendered them susceptible to production swings
caused by abrupt changes in ore hardness and competency.

Initially, the transition to autogenous milling forced the design engineers to cope with the
design complexities of large-diameter mills without adequate scale-up technology. The
practice developed to perform large-scale pilot-plant studies, an expensive and lengthy
prospect often requiring hundreds of tonnes of ore sample. However, the same ore
hardness variability that caused the production swings in the full-scale mills created
. problems in their pilot counterparts. If autogenous milling is so susceptible to abrupt ore
changes within the ore body, how could the design team be certain that the ore used for
the pilot plant was representative of the ore that will be processed by the full-scale

instaliation?

Driven by lower operating costs, the diameters of autogenous mills and their capital
costs have steadily increased' over the past 25 years, adding to the risk and cost of
design errors and exacerbating the problem of inadequate scale-up technology.

As the risk increased, engineers began to adopt the Bond work index, product of a 10-kg
test long-used for ball mill scale-up, for use in conjunction with pilot plant work. The
Bond test, when performed on samples collected from the ore body, provided a measure

of the ore hardness variability. This measure could be used to “correct” the pilot plant

' For example, during the five years from 1975 to 1980, only 3 wet autogenous mills with diameter greater
than 35 feet (10.67 m) were installed worldwide. Between 1995 and 2000, 13 were installed worldwide
{Jones 2001).




McGill University Introduction

results and thereby avoid design errors that would have resulted from a sampling

problem. Although an improvement over an exclusive pilot-plant-based design, this
methad, still in use foday, is flawed because the Bond test was developed as a model for
ball mill scale-up, and therefore has difficulties measuring hardness variability for

autogenous mills.

The 1970's and 1980’s saw the introduction of various alternative tests for autogenous
mill scale-up. They include the McPherson autogenous work index test, the JKMRC
technology?, and the Media Competency test. These tests have become useful for
predicting AG/SAG behaviour, but they suffer from large sample mass requirements
(although not quite as large as pilot plant work). The costs of diamond drilling and the
small diameter of core samples make it an expensive prospect to use these tests for ore
body characterization. The SAG Power Index® (SPI) test was developed in an attempt to
adequately model AG/SAG mills while providing a cheaper alternative for characterizing

ore bodies.

The test employs a small laboratory mill (30.5 cm diameter) to grind a 2 kg of sample

. from a fixed starting size to a fixed product size. The SPI, measured in minutes, is the
time it takes to grind the ore, and it is used to calculate the energy requirements of a full-
scale mill in a manner similar to the Bond method for ball mills. It has gained
acceptance for AG/SAG circuit design, and much work has been done to examine its
feasibility for use in AG/SAG circuit modeling and scale-up. A computer program called
CEET* was developed to perform the scale-up calculations on a virtually unlimited data
set of SPI values, facilitating the use of the index in geologic models and mine block
models. To date, however, no detailed examination has been undertaken to investigate
its application to ore body characterization; ie. how should the SPI values be
incorporated into the block models in the first place?

2 Which includes drop-weight fests, abrasion tests, and a modeling suite

® The SPi is a proprietary test exclusively marketed by Minnovex Technologies Inc., a Toronto-based
mineral processing technology company. This thesis was performed with technical and financial support
from Minnovex.

4 Refer to Section 2.1.4.3 for detailed description of CEET and the nature of the scale-up calculations
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There are two main issues that have not been addressed. The first involves the

question of additivity of the SPI index. GCeostatistical or geometrical interpolation
procedures assume that the parameter being interpolated can be linearly averaged.
Gold grades, for example, are additive. If one were to blend a high-grade gold ore with
an equal amount of low-grade ore, the grade of the resulting blend would be the average
of the grades of the parent ores. Permeability, on the other hand, is not an additive
parameter and is therefore more difficult to model geostatistically. Preliminary work
performed in 1997 suggested that the SPI may not be additive®, ie. that blends are
“softer” than the weighted average predicts. This research project investigates the
additivity of the SP! by performing SPI tests on a series of blended and unblended ores.
The results are presented in Section 3.

The second main issue involves determining the proper size and scope of an ore body
sampling campaign. Simply stated: for a given ore body, how many samples should be
coliected and tested for SPI? Some ore bodies have been characterized with as few as
15 samples and others with as many as 1300. Answering this question is linked to the
precision that would resuit from different scopes of sampling campaigns and the direct
. needs of the mine. There are two main sources of error in the calculations used to
convert SPI to throughput (or mill power and diameter, if for design). One is a result of
the geostatistical interpolation procedure and is a function of the distance between
samples (i.e. the number of samples and the spatial variability of ore hardness). The
other is the imprecision of the calculations used to convert SPl measurements to mill
capacities. Quantifying these errors is prerequisite to determining the proper scope of a

sampling program.

To answer the question of error attribﬁtable to geostatistical interpolation of SPI values,
this work presents a method for calculating the precision of mean SPI values in an ore
zone as a function of the spacing between SPI samples. This method can be used to
optimize the scope of a sampling campaign such that the acceptable error levels of the

throughput estimates are achieved.® An example from Chino Mines is used to illustrate

® See Section 2.3.2
® It is agsumed that the mine knows what leve! of precision is desired. This is associated with the cost of the

imprecision in forecast or design errors.
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the procedure. Note that the geostatistical technique itself is not original, but its

application to ore hardness measurements is. It is presented in Section 4.1.

The errors that are associated with the conversion of SPI to mill capacities are presented
in Section 4.2. This is done through an error propagation study that uses Monte-Carlo
simulation. This study is the author’s original work.

Finally, the investigations into SPI additivity, geostatistical error, and model error are
integrated into a proposed macroscopic procedure for applying SP! technology to ore
body hardness characterization. This is discussed in Section 5.

While this thesis focuses on the SPI test for autogenous mill characterization, a similar
approach can be used for the Bond work index for ball mill design, or kinetic parameters
for flotation or leach circuit design.

The body of the thesis is divided into 3 sections. Section 2 contains a review of literature
pertinent to the work presented. It is subdivided in three-—one part reviewing grinding
. and SPI technology, one reviewing geostatistical techniques, and one describing
previous work on blending and additivity. Section 3 presents the resuits of the work
conducted on blended samples to investigate additivity. Section 4 is a summary of the

investigations into geostatistical error and model error.

Conclusions, recommendations, and suggestions for future studies are summarized in
Section 6, and acknowledgements can be found in Section 7. The bibliography is listed
in Section 8.
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2 LITERATURE REVIEW

The referencing style used in this thesis is as follows. References appearing in
parenthesis outside the last sentence of a paragraph apply to the paragraph itself.
References inside the sentence apply only to that sentence.

2.1 SPITEST

The SPI test is a laboratory-scale batch test that employs a 30.5 cm diameter rotating
mill to measure the grindability of a 2 kg ore sample for use in design and production
planning of full-scale SAG mills (Starkey ef al. 1994). The simplicity of the test and its
capacity to provide a good estimate of the hardness variability (regional or across entire
ore bodies) has made the test an attractive supplement to traditional metallurgical test
work (Kosick et al., 2001).

. This section details the historical background of the SPI test.

2.1.1 Need for the SPI test

This section describes the significant developments in the field of comminution leading
to the current state of the science.

2.1.1.1 DEVELOPMENT OF PRIMARY AUTOGENOUS
GRINDING

Autogenous grinding was originally developed as a dry technology (i.e. water was not
added to the ore) in the first decade of the 20" century. Pioneering work was done by
Graham on so-called “tube mills” in a paper published in 1907 and summarized by Bond
in 1985 in a detailed history on the topic (published in the SME Mineral Processing
Handbook, from which the following is excerpted). Tube mills were tumbling mills
between 1.2 and 1.8 meters in diameter and 6.1 and 6.7 meters in length, and although
they were established for the grinding of fine ores with coarser pebbies, they
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nonetheless contained many of the features found in current SAG milling including

trommels, liners {consisting of silex or flint blocks and cemented into place with portland
cement), and grate- and overflow-discharge designs (Bond 1985). Tube mills
predominated in South Africa, with only a few commercial installations in the Americas
prior to the 1920’'s, when they were supplanted by ball milling (although their use
continued uninterrupted in South Africa) (Bond 1985).

Primary autogenous rock grinding’ was developed in the 1930's and 1940's. The
Hadsel mill, developed in California by Hadsel and marketed briefly by Hardinge
(Hardinge Company)®, consisted of a rotating large-diameter Ferris wheel structure with
interior buckets for lifting and dropping rock onto iron liners (McPherson 1989). It was
originally operated wet; however, the excessive wear impelled Hadsel to develop a dry
version, which later became the foundation of the Aerofall mill>. Hardinge then
developed (circa 1940) the Hardinge Cascade mill, which was marketed as a dry mill
before being converted to the wet cascade mill in 1950. (Bond 1985)

The parallel development of primary autogenous milling in South Africa consisted
. principally of a trend towards ever-larger diameters of tube mills, accompanied by the
corresponding increase in feed particle size (Bond 1985). This trend was accelerated
with the introduction of the Hardinge and Aerofall technology during the experimentation
of a 5.2-m mill at Daggnfontein Mine (Anglo American) in South Africa (McPherson
1989). One problem with the large-diameter, short-length mills marketed by Aerofall and
Hardinge was that they could not be manufactured in South Africa at the time. The
solution, championed by Union Corporation, was to manufacture longer wet autogenous
mills with smaller diameters (McPherson 1988). The result of the combination of

manufacturing circumstance and history with tube mills is now evident in the prevalence

" The practice of feeding all of the rock together, without any prior size separation, into a large primary
tumbling mill, as opposed to “secondary” or “intermediate” autogenous grinding (the practice of using 210 6
inch pebbles to grind 4/8-inch ore feed) to which tube mills were applied.

¥ from 1932 until 1936.

° Consolidated Mining & Smelting Co (Cominco) acquired rights to build the dry Hadsel mill in Canada and in
the early 1940s released the rights {o an employee (David Weston), who established Aerofall Milis Ltd in
Toronio and made numerous improvements.




McGill University Literature Review

of “long mills”, or AG and SAG mills with larger lengths (relative to their diameter) than
their counterparts in the Americas (Bond 1985, McPherson 1988).

Beginning in the mid 1950’s and proceeding throughout the following decades, primary
autogenous milling began to supplant traditional rod-mill/ball-mill grinding by replacing
secondary and tertiary crushers and the rod mill or mills (and sometimes part of the ball
milling process as well). The primary incentive is a reduction in capital and operating
costs due to fewer pieces of equipment and lower steel consumption. In some cases
(such as the early applications to coarse-grained specular hematite) autogenous
grinding also provided improved metaliurgical results. These benefits came at the cost
of increased sensitivity (i.e. tonnage variability) resulting from changes in ore hardness.
(Bond 1985)

it soon became apparent, however, that many of the naturally harder ores (such as
taconite or many hard-rock base-metal deposits) showed increased resistance to
comminution by abrasion. Furthermore, extremely soft ores were observed in which
insufficient coarse material was present for autogenous grinding. Either case resuited in
‘ the generation of too much fine material (depending on grate sizes) and therefore
depressed metallurgical performance. As a result, it became common to add 10 to 13
cm steel balls to supplement the grinding process. This became known as semi-
autogenous grinding, or SAG milling, the results of which were less production of fines

and lower sensitivity to changes in ore hardness. (Bond 1985)
2.1.1.2 SEMI-AUTOGENOUS GRINDING

Today’s most common form of a semi-autogenous grinding circuit consists of a single-
stage primary crusher, typically a large gyratory crusher, that reduces the run-of-mine
ore to under 25-cm (top size). The material is transferred to the SAG'® mill circuit from

the coarse ore stockpile on a belt conveyor.

The SAG mill rotates between approximately 70% and 85% of critical speed and the
material is passed through the mill where it undergoes grinding—generally at about 65 {o

' Eor the remainder of this work, SAG will refer to both fully-autogenous (AG) and semi-autogenous milling

unless otherwise noted.
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75 percent feed density—and out onto the classification mechanism via the grates

and/or pebble ports. The grates and pebble ports are typically 2 to 8 cm in width and
designed to help the SAG mill retain the ore charge until it has undergone significant
grinding. The classification device can either be a trommel screen fixed to the discharge
end of the SAG mill or a vibrating screen deck, or (in some cases) both. The goal of the
classification mechanism is to separate product-size material from unfinished material.
The product, or screen-undersize, is promoted to the secondary grinding circuit while the
unfinished material, or screen-oversize, is returned to the SAG feed, often via a pebble-
crushing circuit. This material is generally called “critical-size” material. The circuit
configuration described above is called an “ABC” circuit— the acronym connoting the
“autogenous mili/ball mill/pebble crusher” arrangement—and is the circuit depicted in
Figure 2-1.

The secondary grinding circuit generally consists of one or more ball mills in series or
parallel, operating in closed circuit with a series of cyclones arranged in cyclopacks.
Figure 2-1 shows a typical flowsheet.

. A good description of a conventional semi-autogenous grinding circuit (the new Batu
Hijau concentrator in Indonesia) can be found in McLaren et al. (2001).
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Figure 2-1 Batu Hijau grinding circuit, from MclLaren et al. {2001)

2.1.1.3 DESIGN PRACTICES OF AUTOGENOUS
GRINDING

The design of the comminution circuit is recognized as one of the most important steps
in the design stage of a beneficiation plant. As such, the existing literature and practice
is both broad and deep. This document only addresses the areas that are relevant to
the evolution of the SPI test.

Of the four principal design phases generally identified between the conception and
commissioning of a green-fields comminution circuit—financial appraisal, pre-feasibility,
feasibility, and detailed engineering—it is principally during the feasibility stage that the
SPI test is prevalent in modern plant design practice. The circuit configuration and
equipment size determines capital and operating costs of an installation, which in turn

drive the economic feasibility. Indeed, in Design and Installation of Comminution

Circuits (Mular and Jergensen, editors, 1982, pp. 1) Barratt and Sochocky write:

“The selection of an appropriate comminution circuit for a specific ore is one of the most
important decisions in the design of a processing plant. The importance is related to the

Literature Review
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fact that the capital and operating costs for crushing and grinding plants generally

represent, as is well known, the major portion of the plant costs.” Furthermore, “The
most important step in the development is the analysis and understanding of the ore
characteristics.” (text italicized by the author)

Hence, the effort to produce a feasibility study can be broadly grouped in two classes.
The first is the effort of understanding the ore characteristics. The second is the design
of a circuit appropriate for those characteristics.

Some possible circuit configurations are (after Barratt and Sochocky, 1982):

e Single Stage Autogenous

e Autogenous — Ball Mill

e Autogenous — Ball Mill - Crusher
e Single Stage Semi-Autogenous
o  Semi-Autogenous — Ball Mill

e Semi - Autogenous - Ball Mill - Crusher

Once the circuit arrangement has been selected, the size of the grinding mills required to
process the design tonnage must be selected. This is the second major deliverable of
the feasibility study (without considering the cost-related consequences on down-stream

unit operations).

In practice the mill shell sizes are selected such that the design tonnage is achieved in a
multitude of circuit configurations (which are generally identified at the pre-feasibility
stage) using bench-scale and pilot-scale testing programs, and the most cost-efficient
circuit is selected based on budgetary quotes for the pieces of equipment considered

and their respective sizes.

The principal parameters describing the characteristics of the ore body are:

o Hardness

o Abrasiveness

o Friability

10
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e Mineralization
e Liberation Size

e Chemistry

While the chemistry and the mineralization to some extent affect the comminution circuit
design (the presence of alkalis, for example, may create sliming problems), the
predominant variables are the liberation size (which dictates the size requirements of the
finished product), and the trio of hardness, abrasiveness, and friability, which together
dictate the amenability of the mineral to grinding and hence the mill diameter (and
power) required to grind the material to the product size (Barratt and Sochocky, 1982).
These three variables are measured by the gamut of metrics generated by the various

pilot- and bench-scale test work options, namely (Mosher and Big, 2001):

e Pilot Plants

e Media Competency Tests

e Drop Weight Tests

o Autogenous Mill Work Index Test (McPherson Test)
e SAG Power Index (SPI)

¢ Bond Impact, Rod Mill and Ball Mill Tests

e Abrasion Index Test

The nature of each test, their respective mill diameters and required top size, and the
sample mass required for each are listed in Table 2-1 (after Mosher and Big, 2001).

Top Size . Closing Size Sample Sample Used Mill Diametet
Test {mm) (mm) Requested (kg) (kg) Test Type {m) |
Piiot Testing 100 - 150 varies ~ 10000 varies Continuous 1.83
Media
Competency 165 n/a 750 400 Batch 1.83
20 50x75 mm
Bond Impact 75 nia rocks 7.5 Single Particle n/a
Single Particle &
Drop Weight 64 nfa 75 24 Batch n/a
MacPherson
Autogenous 32 1.2 135 100 Continuous 0.45
AG Power
index (SPH 19 nfa 10 3 Batch 0.305
Bond Rod Bill 13 1.2 20 10 Locked 0.305
Bond Ball Mil 3.3 0.149 10 4 Locked 0.305

Table 2-1 Existing test work options for SAG circuit design

11
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Pilot Plants
Pilot plants are the favored design fool for determining power requirements of SAG mills,

although they also can be used to provide insight into ball charge, power split' (by
changing the SAG product size), and pebble-crushing requirements. Pilot plant testing
(after Mosher and Bigg, 2001):

e makes it possible to work with samples that are relatively similar in feed size to
the full-scale operation,

e allows direct examination and comparison of some important operating variables
(mill speed, screen slot size, ball charge, and feed density),

e requires the least amount of direct scale-up, and

e is the most accepted method.

The main drawback to pilot plant testing is the large amount of coarse material required
for testing. For green-fields projects it is necessary to dig a pit, sink a shaft, or drill an
adit to obtain sufficient coarse material for testing. This can be a considerable expense
and, as a result, it is not unreasonable for a pilot plant program to require over a year of

. time and a million dollars (Rowland 1989). Furthermore, the fact that a single or several
samples are collected from one or a few places in the ore body creates a significant risk
of designing a plant based on a misrepresentative sample of ore. Indeed, most pilot
plant design failures on record have been attributed to insufficient testing of ore types
(Digre, 1989; e.g. Sherman 2001)"

Media Competency Tests

As implied by the name', media competency tests measure the resistance of coarser ore
particles to breakage in a high-aspect-ratio (diameter to length) tumbling mill. There are
several different versions of the test (Kilborn, Allis-Chalmers, or Amdel-Orway), but they
share the same characteristic of festing larger particles for resistance to impact

breakage. In this respect they are a compromise between pilot plants, which require a

" The “power spiit” is the ratio between installed SAG mill power and instalied bail mill power.
2 Another contributing factor to pilot plant-based design is the smoothing of hardness variability resulting

from the large sample mass required.

12
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large amount of coarse sample, and bench-scale tests which require a smalil amount of

fine sample. (Mosher and Bigg 2001)

The Kilborn test is performed in a 910 x 610 mm test mill. The mill is charged with 125
kg of 35 mm balls and 5 kg of silica sand at 60% to 65% solids and operated for 24
hours in semi-continuous form (i.e. ground ore is removed and replaced with fresh rock
pieces). The pulp density is checked every 30 minutes and the leve!l is checked every
60 minutes; rock pieces or water are added as necessary. (Wyslouzil 1982)

The test procedure developed by Allis-Chalmers in Milwaukee is a batch test in which
large rock pieces are milled in a 183 cm (6 ft) by 30 cm (1 ft) drum for a fixed number of
revolutions, then the charge is screened to determine the breakage rate of the coarse
particles (McPherson and Turner, 1980; Mosher and Bigg, 2001).

The Amdel-Orway test is called the Advanced Media Competency Test and also uses a
183 cm diameter by 30 cm length tumbling mill. The mill rotates at 26 rpm and
approximately 200 kg of sample are required (The actual test requirement is eleven

. pieces of rock each of the following size fractions: -102+76 mm, -76+51 mm, -51+38
mm, -38+25 mm, -25+19 mm). The sample is placed in the mill and the mill is rotated
for 500 revolutions, after which the sample is sized and the number of rock pieces
remaining in each of the feed size classes determined. Bond rod-mill work index tests,
Bond ball-mill work index tests, abrasion tests, and impact tests are performed on the
products of the test. (AMMTEC, 2002)

Drop Weight Tests

The most prevalent drop-weight test used in the mineral processing industry was
developed by the Julius Kruttschnitt Mineral Research Centre in Queensland, Australia,
and is marketed by their commercial arm, JKTech. The test requires 75 kg of screened
sample with a top size of 84 mm. The JK Drop Weight Tester consists of a 20 kg steel
weight which is raised to a known height and released such that it falls with a known
amount of energy onto a rock particle of a certain size. The test is repeated between 10
and 30 times for each of approximately 15 size/energy combinations. The broken
particles are collected and screened, and the percentage of the progeny particles that

13
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are finer than one tenth of the size of the original particle is determined. This is called

the 11p. The energy as determined from the height of the drop-weight is known as the
Ecs (JKTech 2003). The tyo is then plotted against the Ecs and an exponential eguation
of the form:
to=A[1-e"%
Egquation 2-1

is fitted using least-squares techniques. The constants A and b are curve-fitting
parameters that together are an indication of ore hardness. (Mosher and Bigg, 2001)

In addition to the A and b parameters, which indicate the amenability of the ore to
breakage by high-energy impact, a low-energy parameter called the t, (similar in
definition to the ty, described above) is generated by a proprietary tumbling test and
used in conjunction with the A and b parameters defined above.

The behavior of ore in a full-scale mill is modeled using the breakage rates determined
as described above. The energy input in the full scale mill (as determined by the mill
diameter, the amount of balls and coarse particles, and the rotational velocity) per
‘ particle (as determined by feed rate and feed size distribution) is combined with models
for mass transfer of slurry within the mill and classification of particles at the grates to
determine the discharge size distribution of the mill. An iterative procedure is then used
to test various mill sizes, grate configurations, and ball charges for optimum

performance. (Leung ef al. 1987)
Autogenous Mill Work Index (McPherson test)

Approximately 150 kg of sample no finer than 3.2 cm are required for the McPherson
test. The sample is crushed naturally to 100% minus 3.2 cm and fed intc a 45-cm air-
swept mill designed by Aerofall Miils, Ltd. (McPherson et al. 1989). The mill is charged
with 8% by volume graded ball charge (18.2 kg) and mill load is controlled by varying the
feed rate based on sound such that a2 28% load by volume in the mill is maintained. The
mill is operated in a dry, continuous, closed-circuit fashion with a 14-mesh screen (1180
um) until steady-state conditions are achieved, after which the mill is surveyed over a 1-

hour period and the autogenous work index calculated based on the feed and product

size distributions and the measured power input according to the equation:

14
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Ay = W [ (10/Pg - 10/Fg)
Equation 2-2

where A, is the autogenous work index (kWh/tonne), W is the power input to the mill
(kWitonne), and the Pg and Fgy are the 80%-passing size of the product and feed size
distributions, respectively. (McPherson et al., 1989; Farrow and Smith, 1982)

The McPherson test is a dry test requiring significantly less sample than traditional pilot
plant test programs and hence is much cheaper from a time and cost perspective.
However, 150 kg of sample are still difficult to acquire if one must confine the collection
to drill core.  Another drawback to the test is the small feed size, necessitating a
correction using a database of measured plant operations when the autogenous work
index exceeds a certain value. (McPherson ef al. 1989; Rowland, 1989)

SPI Test

As stated, the goal of the above tests was to provide a metric for measuring the
‘ hardness, friability, and abrasion properties of mineral ores in order to infer the operating
characteristics of full-scale SAG mills. In this regard the above tests provide an
invaluable suite of tools for autogenous mill design, and are an improvement over the
standard Bond-based methods used since the development of SAG milling in the 1950’s.
The acceptance of these tests has meant that the principal concern when designing
grinding circuits is no longer how fo measure the pertinent ore properties, but whether
the ore body’s characteristics are adequately represented by the samples tested. The
SPi test was developed originally as a complement {o the above tests in an attempt to
eliminate the problem of sample representativity, but through extensive calibration over
the past several years, it is now used as a complete design and forecasting tool by itself.

The test employs a 30.5 cm diameter by 10.2 cm wide grinding mill charged with 5 kg of
steel balis. Two kilograms of sample are crushed to 100% minus 1.9 cm and 80% minus
1.3 cm and placed in the mill. The mill is run with several screening iterations until the
sample is reduced to 80% minus 1.7 mm (10-mesh}). The length of time required to
achieve 80% minus 10-mesh, in minutes, is called the SAG Power index, or SPI. In

addition to the SPI, the test generates a parameter called the Pg;. The Pgy is the 80%-

15
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passing size of the material that is finer than 10-mesh at the end of the test'. It is”

related to the abrasive properties of the ore. (Starkey ef a/. 1994, Starkey and Dobby,
1996)

The SP! is used in a proprietary transformation equation that has been calibrated with an
extensive database of plant surveys to generate the operating specific energy
(kWhtonne) for the full-scale mill (Starkey and Dobby, 1996; Kosick and Bennett, 1899).

The advantage of the SPI test is therefore tied to the fact that the test only requires a 2-
kg sample™, a quantity that for most properties can be easily collected from existing drill
core. Hence, the test can be viewed as an addition to the suite of tools described above,
the primary difference being that it can easily be employed to measure hardness
distributions in the ore body.

Bond Rod- and Ball-Mill Tests

The standard rod-and ball-mill work index tests were developed by Bond beginning in
. ' the 1920’s and became the most widely-used metric for ore hardness by the early
1960's (Mosher and Bigg, 2001).

The tests employ a standard Bico-Braun rotating bench-scale ball mill charged with
20.185 kg of graded balls (or rods, in the case of the rod-mill index test). A standard
volume of 100% minus 6-mesh (3.36 mm) is placed in the mill with the ball charge and
the mill is operated in a closed-circuit locked-cycle fashion with a closing screen size
equal to that of the proposed ball mill circuit (generally 150 pm). After each grinding

| cycle, the ground product is removed and replaced with fresh feed. The cycles are
repeated until a steady-state system is achieved; i.e. the circulating load is unchanged at
250% after 2 or 3 cycles. (JKMRC 1929)

'3 Because by definition at test completion exactly 80% of materiat is finer than 10 mesh, 80% of this is 64%
of the original 2-kg sample (80% x 80% = 84%), hence the name Pea.
" The SPI fest itself requires 2 kg of sample, however 3 kg are requested for crusher-index determination

and other considerations.
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Once steady state is achieved, the work index is calculated by way of an equation

employing the 80%-passing size of the product from the last cycle (Pg, in microns), the
80%-passing size of the feed (termed the Fg, also in um) and the grams per mill

revolution of product generated. (Deister, 1987)

The main drawbacks to the test are that it requires a somewhat larger sample than the
SPI test (approximately 10 kg minimum) and it is recognized to be unreliable for
predicting SAG performance due to the finer particle sizes and higher proportion of
impact breakage that predominates in the test (Mosher and Bigg, 2001).

2.1.2 Development of SPI test

The SPI test was created in 1991 with the construction of a prototype mill in Canada.
The first practical application was performed with the second prototype mill, constructed
in fran to address a question regarding ore sample representativity at Gol-E-Gohar. A
50-tonne sample of very soft ore believed to represent the entire ore body was used for
SAG testing. Relative SPI values collected for test work on drill core showed this to be

' an extremely soft and misrepresentative portion of the ore. The success in identifying
the soft nature of the sample drew the attention of Kvaerner-Davy and MinnovEX
Technologies, Inc., the latter endeavoring to develop an industrial calibration database of
test results for absolute kWh/tonne prediction.

The development of the calibration database, undertaken with financial support from
MITEC (Mining Industry Technology Council of Canada, now part of Camiro), began in
eamnest in 1994 and the results were released in April 1995, in the form of a straight-line
equation derived from grinding line surveys at five Canadian SAG plants (Starkey,
1997). This equation was deemed valid for operating closed-circuit SAG mills with no
pebble crusher and nominal 15-cm feed size (Starkey and Dobby, 1998).

An empirical database that quantitatively demonstrated the applicability of the test to

semi-autogenous milling allowed MinnovEX to commercialize the SPI test.
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2.1.3 Commercialization of the SPI test

Between 1997 and 2000 the SPI test calibration database grew at a rapid pace as a by-
product of commercial autogenous mill optimization projects undertaken at MinnovEX.
Nearly 200 calibration points were collected from a variety of grinding circuit
configurations in operation at more than 25 mining properties, including many
configurations with pebble crushers or fine feed. As of 2000, the SPI database was
routinely used to quantify the effects of fine feed, pebbie crushing, or both (Kosick ef al.
2001).

While expanding the SPI database, MinnovEX in partnership with 13 major international
mining companies undertook to develop a computer algorithm that could be used to
apply the autogenous mill specific energy calculations (used to convert SPI values to mill
power draws, specific energies, and tonnages) on a block level. The idea was to use
SPI measurements taken from drill core and interpolate them into a three-dimensional
model of the ore body (a “block model” in mining jargon) and then apply a computerized
algorithm to determine the throughput or specific energy estimates for each block from

. ' their respective SPI values. This procedure allows the engineer to generate a 3-
dimensional map of the ore body hardness, SAG mill throughput predictions, and
specific energy requirements on a block-by-block basis. This provides a much greater
understanding of the ore hardness characteristics and therefore a greater degree of
latitude in selecting the cheapest circuit—indeed, a whole new degree of freedom is
given to the design process (that of being able to select a given tfime period or specific
ore volume upon which to base the design, something which previously had not been
economically feasible due to the large sample sizes required for the alternative tests).
(Kosick et al. 2001; Custer ef al. 2001; Dobby ef al. 2001)

The computer program is called CEET, an acronym for Comminution Economic

Evaluation Tool.

The SPI test procedures and CEET Algorithm are described in more detail in Section
2.1.4.3 below, but the reader is referred to the referenced publications for the complete

descriptions of the various CEET components.
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2.1.4 The SPI: State of the Science

The SPI test, procedures, and interpretation methodology are the intellectual property of
MinnovEX Technologies Inc. This section does not present a detailed description of the
test equipment and procedure; this can be found in the referenced publications. The
purpose of this section is to provide the background information essential for the
subsequent ore body characterization work.

2.1.4.1 GENERAL TEST PROCEDURES

Equipment

The SPI faboratory mill is a 30.5 cm diameter steel mill with a TEFC 120V electric motor,
V-belt drive, and a Dodge gear reducer coupled to the 2.54 cm drive shaft. The mill is
charged with a 15% by volume charge of steel balls and a 2-kg sample of ore (Starkey
and Dobby, 1996). An illustration of the SPI mill is shown in Figure 2-2.

Figure 2-2 SPI test mill being discharged

In addition to the mill, the following screens and pans are required (internal
documentation, MinnovEX, 2001):

e 46.7 cm (18-in) pan
e 48,7 cm (18-in) Tyler 10-mesh (ASTM #12) screen
e 46.7 cm (18-in) ASTM standard 1-inch screen {for catching the balls)
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e 20.3 cm (8-in) ASTM standard screens numbers %-in, %-in, 3/8-in, #3, #6, #12'°,
#20, #40, #70, #100, #140, Pan

The following ancillary equipment is required (internal documentation, MinnovEX, 2001):

e Rotap Sieve Shaker

e Laboratory jaw crusher with 2.54 cm closed-gap setting
e Digital Balance

e Drying oven

¢ Pans and sample bags

e Dust masks, gloves, and other safety equipment
Procedures

To perform an SPI test, the 2-kg charge is crushed to 100% minus 19 mm and 80%
minus 12.7 mm by repeated closed-circuit crushing in the laboratory jaw crusher. The
sample is then screened using the Rotap sieve shaker and the screens with sizes

. described above. In general, after crushing approximately 80% to 90% of the total feed
sample is coarser than a Tyler standard #10 mesh (1.7 mm).

The test is performed by placing the crushed 2-kg sample in the mill with the ball charge
and running the mill for series of grinding iterations. The sample is removed and
screened after each iteration. If the ore has not yet been reduced to 80%-passing 1.7
mm, the entire sample is returned to the mill for another grinding iteration. This
sequence is performed until more than 80% passing 1.7 mm is achieved, and the SPI
(the time required to reach 80%-passing 1.7 mm) is then interpolated from the grinding

iterations.

Once the technician determines that less than 20% of the sample is coarser than a Tyler

standard #10 mesh, the test product is screened on the ASTM sieve set given above to

5 ASTM siandard #12 has the same 1700 um mean opening as the Tvler standard #10 screen typically

referred {o as the standard “closing size” of the SPI test.
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determine the final screen analysis of the product (internal documentation, MinnovEX,

2001).
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Figure 2-3 SPI test curve for a typical ore

2.1.4.2 CALCULATING THE SAG MILL SPECIFIC ENERGY

To calculate the autogenous mill specific energy from the SPI, the following must be
known (in addition to the SPI):

e Autogenous mill product size (Tgo)
e Approximate mill feed size
e Autogenous circuit configuration (ie. pebble crushing and circulating load, ball

charge, efc.)

The procedure involves the following two steps (Custer ef al.,, 2001, Dobby et al., 2001):
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1. Determine the specific energy for the product size and reference circuit, which is

usually a SAG mill operating in closed circuit with no pebble crusher and 6-inch
feed size.'

2. Adjust the specific energy calculated for the reference circuit to reflect the
characteristics of the target circuit (i.e. finer feed, pebble crushing efc.).

Reference Circuit
The primary SPI calibration equation was originally developed for 6-inch feed and no
pebble crushing. Figure 2-4 shows the SPI standard circuit with the primary variables.

The Fgo in Figure 2-4 is defined as the size, in inches unless otherwise specified, for
which 80% of the feed is finer. The Tg is defined as the size, in microns unless
otherwise specified, for which 80% of the product is finer. (Kosick and Bennett, 1999)

N S
3 s, e,
' %%M Cireulating
ﬁﬁfﬁffj@’ﬁg MWEN%
: B e,
. P -
N / TR
” : j' w“'wﬁé i M‘ri.
LA S tr\&i /1 s \u/% ":?E:N
\ A ‘*z:"”;‘m‘
Feed

s il v , f;y .
(Feo, SP1, TPH) —\ﬂ\\ " I - %

Screan ™, iﬁ;ﬂ “

Product
Tan

Figure 2-4 SPI standard circuit

The primary calibration equation was developed by sampling and testing the SAG mill
feed for SPI and Fg, while sampling the product for Tg and monitoring the mill power
draw (kW) and mill feed rate (TPH). This process, repeated for many operating SAG
mills operating at 6-inch Fg's, provided enough data to generate the primary calibration

'® This particular reference circuit (wet SAG grinding in closed circuit with a screen, no pebble crusher and
nominal 8-inch feed) is ofien termed the “standard circuit” and the SPI that calcufates the kWh/ionne for this

circuit is called the “primary calibration equation”
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equation through multivariate regression. The equation is (Kosick and Bennett, 1999;
MinnovEX 2001):
E = Gy * (SPI/\Tg)?
Equation 2-3 SPI equation (standard form)

Where E is the mill specific energy in kWh/tonne and the values of the constants C, and
C, are protected by MinnovEX for competitive reasons. Figure 2-5 shows a predicted-
versus-actual scatterplot of the primary calibration database. The ordinate represents
the specific energy observed in the plant during the sampling program, and the abscissa
is the specific energy found by applying Equation 2-3 to the SPI and Tg values
determined from test work on the feed and product plant samples (Kosick and Bennett,
1999).
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Figure 2-5 Primary calibration scatterplot {after Kosick and
Bennett, 1998)

Target Circuit

Given the product size and SPI values, once the specific energy requirements are
determined for the standard circuit as described above, the values are adjusted to reflect
the difference in specific energy that can result from a change or changes in the
configuration of the circuit (e.g. adding a pebble crusher) or the operating parameters
(e.g. receiving a finer feed). One would intuitively suspect that finer feed and/or pebble
crushing would result in lower SAG mill specific energies than predicted by the standard
equation and hence survey points from operating plants should fall below the equality
line that represents the standard circuit. Figure 2-6 shows a selection of survey points
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that illustrate the effects of finer feed and pebble crushing. The specific energies do not
include the energy expended in the pebble crusher, conveyor belts, or pumps.

SAG Speclfic Energy Calibration SAG Specific Energy Calibration
Standard Circuit with Fine Feed Points Standard Circuit with Pebble-Crushing Points
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Figure 2-6 SAG specific energy scatterplots showing effects of
fine feed and pebble crushing (Kosick et al., 2001; MinnovEX 2001)

The general method for accounting for differences between the target circuit and the
reference circuit (such as those depicted by Figure 2-6) is to include a sub-model as a
multiplier in Equation 2-3. The sub-model, Fgag, is a function that varies based on the
number and magnitude of the parameter differences, and is introduced as follows
(Dobby et al. 2001)"":

E = Cy * (SPH/\Te)*?® * Fspe

Equation 2-4 SPI calibration equation (common form)

The sub-model Fgag incorporates some or all of the effects of finer feed, pebble
crushing, differences in circulating loads, differences in ball charges (or fully autogenous
grinding), extremely fine grinding, low aspect-ratio mills, and open-circuit grinding.
Grinding circuit audits performed on industrial-sized circuits are required for calibrating
the sub-model for the target circuit. There are sufficient data in the MinnovEX database
to model fine feed or pebble crushing conditions without necessarily collecting plant
data; however, when other conditions (such as fine grinding, low-aspect ratio mills, or
open circuit SAG mills) are investigated it might be wise fo first perform some calibration

'7 Note that the same technique is applied o the Bond equation to “correct” for differences between the
Bond standard circuit {2.44-m diameter wet ball mill closed with cyclones and fed by a rod mill). See
Rowland and Kjos, Mineral Processing Plant Design, ed. Mular and Bhappu, Ch. 12, “Rod and Ball Mills”, pp
263-267. SME-AIME, 1980) ’
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work before attempting to estimate the value of Fsag. (after Kosick ef al. 2001, Bennett ef
al. 2001)

Throughput or Power?
Once the specific energy requirement, in kWWh/tonne, is calculated for a given block or
sample of ore, the throughput is calculated by dividing the SAG power by the ore’s

specific energy:

P/E = T
Equation 2-5

where P is expected mill power draw (kW), E is the specific energy requirement
(kWh/tonne) and T is the throughput (tonnes/hr). For the design of an autogenous
circuit, the target throughput is multiplied by the specific energy to determine the

required power:

T*E=P
Equation 2-6

If the goal is design, it is general practice to let the manufacturers or engineering firms
size the SAG mill such that the mill diameter and motor are sufficiently large to draw or
deliver the required power. If the goal is production forecasting, the power used must be
the actual power delivered to the mill shell (ie. minus transformer, motor, gear reducer

or VFD, and pinion inefficiencies).
2.1.4.3 CEET

CEET is the computer program that is used to apply the calculations described in the
previous section to large collections of samples or blocks that represent the ore body. In
addition to the SAG model described above, it incorporates a ball mill model (an
empirically corrected form of the Bond ball mill model) and a data set that is preferably
generated from geostatistical distribution of SPI and Bond work index data. The general
functionality is best described by a series of steps (Kosick ef al. 2001; Custer ef al.
2001):
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1. Three input sets are created. The first is the required block model containing a

list of SPI and Bond work index pairs, their x, y, and z coordinates, and various
other ore properties. The second is a fixed data set residing in CEET that
consists of various circuit configurations, equipment sizes, and operating and
capital cost parameters. The third is a list of input variables selected and
submitted by the user to describe his or her design criteria (i.e. average
throughput target, maximum and minimum allowable tonnages, desired average
product size, maximum allowable product size, efc.).

2. For each block in the block model CEET calculates the comminution circuit
performance (i.e. tonnage, required kKW, efc.) and cost.

3. The results of Step 2 are summarized over the entire block model to generate a
result for the whole block model for each flowsheet.

4. The user examines the results. If designing a circuit, the flowsheet with the
lowest capital cost or operating cost can be selected as per his or her design
criteria. If it is a production planning project, the resulting tonnages and product
sizes are readily available for each block and can now be imported into the mine
planning software.

The CEET output and the user input values that customize the SAG and ball mill models
are entered and refrieved via HTTP and FTP internet connections. The reader is
referred the cited publications for more detailed information on the functionality and
application of CEET.

2.1.4.4 CEET Hi

The reader will observe from Section 2.1.4.2 that guantitative knowledge of the Tg and
Fsag is required to calculate the required specific energy. Quantitative knowledge of the
feed size and pebble crusher circulating load is required to estimate the value of Fgae
(Eguation 2-4). Prior to CEET I, this knowledge was acquired either by performing a
series of sampling surveys around the grinding circuit (for existing plants) or estimating
them from the database (for design projects). The difficulty with this solution is tied to
the fact that the Ty, feed size, and circulating load are heavily dependent upon ore

characteristics. The resulting specific energy calculations would therefore be valid for
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material similar to that processed during the sampling campaign, but may not be so

when applied to ore still buried in the pit.

The first CEET version addressed this issue (rather poorly) by assuming a constant Fgag
and Tgo value for the entire block model. CEET ll improved this by introducing sub-
models for feed size, circulating load, Fsag, and Tg. These four models are described
below in detail, as they will be referenced in the error analysis of CEET presented in
Section 4.2.1. |

Feed Size

The feed size predictor relates the 80%-passing and 50%-passing points of the feed size
distribution (Fgy and Fs, respectively, in mm) to the hardness of the ore and the closed-
side setting of the primary crusher (CSS in Figure 2-7). Two parameters, the SPI and
the SPI Crusher Index'® (Cg), quantify the ore hardness. Figure 2-7 shows the Fg, model
on the left and the Fs, model on the right. The curves are exponential regressions fitted
with a least squares procedure. The x-axes are equal to C"'SPI™?CSS™, where values
of ny, ny, and n; are proprietary. (Dobby et al. 2001)
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Figure 2-7 Feed size models developed for CEET ii {(Dobby et al.
2001}

® The SPI crusher index Cr is an index test developed as part of the CEET Ii effort that describes the
breakage of ore during the crushing iterations undergone by the SPI test feed sample (Dobby ef al. 2001).
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Circulating Load
The circulating load model is based upon the feed size distribution, grate and pebble

port apertures, the slot width of the trommel or vibratory screen, and the ore hardness as
defined by the SPI. The feed size distribution is determined using the feed size sub-

mode! described above.

Knowledge of the feed size distribution, the average grate/pebble port size, and the
screen or trommel slot width permits the calculation of the relative mass present in the
coarse (plus grate-size}, fine (minus slot width), and intermediate size fractions of the
feed (0, 0y, 0, respectively). A semi-empirical model relates the pebble crusher
circulating load (PCCL) to the ore hardness (SPI) and the relative mass of the two
coarsest size classes'® (6, and 8;). The form of the model as published by Dobby ef al.
(2001) is given by:
PCCL = a (8,+ b8; / SPI®)° SPIF
Equation 2-7 PCCL Model

Dobby et al. determined the values of the calibration constants a, b, C, D, and E using a

. database of measured circulating loads and operating characteristics. Figure 2-8 shows
a scatterplot of the predicted circulating load versus those in the database (Dobby et al.
2001).

120
g
g 100 %
@ o Y@
S 80 0
= o oD o
8 60 &-09 0
1 4 o
2
= O
g 40 T Eﬂ'm
g Wl S
S 20
© £in °

e
0
0 20 40 80 80 100 120

Circulating Load Calculated (%)

Figure 2-8 Circulating load sub-modei scatterpiot

' The finest size class is material finer than the slot width of the frommel or screen, hence it has no effect on

the circulating load.
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Fsag sub-model

The Fsag sub-model in Equation 2-4 is a function of the feed size and pebble crusher
effectiveness. lts value is determined using an unpublished formula derived from the
database of sampled grinding circuits (Dobby ef al. 2001).

Ts0 and Ty Models
For simplicity this section describes only the Ts, model with the explanation that the Ty

calculations are identical in form if not function.

The Tso model estimates the Tg, from the feed size distribution, the ore hardness as
quantified by the SPI, the size of the grate or pebble port apertures, the siot width of the
trommel or screen, the ball charge in the mill, the pebble crusher circulating load, and

the pebble crusher product size (Dobby ef al. 2001).

The feed stream is divided into the same three size categories used for the circulating
. load model. The pebble crusher discharge is a fourth stream with a portion, 6,, finer
than the screen or frommel aperiures. Each stream will produce a portion of the mass
flow in the product stream and hence will contribute to the Tg. The magnitude of this
contribution is based on their mass and their particle size. Their mass is known from the
size distribution and the screen or trommel slot width. Their particle size, characterized
by the 80%-passing size in the case of the Tg, calculations, is calculated using a series
of empirical equations. These equations in their published form are (Dobby et al. 2001):

TeolA) = a, Dy SPI®' SF (fine material in feed)
Tso(B) = a SPI°? SF (intermediate material in feed)
Teo{C) = a3 Pes™ SF (coarse material in feed)

TeolD) = 24Dy SPIP SF (fine material in pebbie crusher product)

Eguation 2-8 Ty squations

In these equations, the constanis a, a, a; as, by, by bz and by were determined from
calibration with the plant database, SF is a function of the steel charge in the mill, and D,
and D, are the 80%-passing sizes of fines in the mill feed and pebble crusher product

29



McGill University Literature Review

(respectively). The final Ty is calculated by weighted sum of the four components,
namely (Dobby ef al. 2001):

Teo = TsolA) 61 + Tso(B) (PCCL x 64) + T5o(C) (02 - PCCL x04) + Tso(D) 65

Equation 2-8 T equation

Because these four sub-models are based in part upon measured ore properties, the
design team could now account for regional differences in feed sizes, product sizes, and

crusher effectiveness (Dobby ef al. 2001).

CEET Il was completed in partnership with commercial mining companies in the year
2001 and has since been used in a large number of commercial projects (Kosick et al.
2001).

2.1.4.5 COMMERCIAL PROJECTS

Today the SPI technology described above is in common usage in design and
production planning programs. Since the commercialization of CEET in 2000, many

. large base-metal operations are using the SPI test as part of large-scale projects for
production management. Many (if not most) new autogenous grinding circuit design
projects used the SPI test and CEET technology for guiding the sample selection or
even the design criteria. (Kosick ef al. 2001, Custer ef al. 2001; Lane ef al. 2001)

To date (June 2003) over 6,000 SPI tests have been performed on approximately ten
mineral types and nearly fifty grinding lines.

2.1.5 The SPI Technology in a Historical Context

The following summary is a compilation of material presented by JKMRC (1986) and
BMHB (1985) with the exception of the SPl-related analysis, which is the author’'s work.

2.1.5.1 HISTORICAL COMMINUTION MODELS

The modeling of comminution circuits has historically been dependent on the
computational power available to perform calculations. Before the advent of discrete

element modeling and population balance methods the only comminution models were
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simple energy relationships that related the energy input to the degree of size reduction

(expressed in terms of percent passing size). Today these energy models, far advanced
from the early days described below, are the most common tool used for the
macroscopic design and shell sizing of grinding circuits. (JKMRC 1996)

it has always been ciear that more energy is required to achieve a similar relative size
reduction as the product becomes finer, resulting in the simple differential equation
iz %)
x

Eguation 2-10

where E is the energy input, K and n are constant, and x is the particle size in cumulative
percent passing. The difficulty that arose involves the estimation of the value of the
exponent n. (JKMRC 1996)

In 1867, Rittinger argued that the incremental energy input is proportional to the amount
of new surface area created, hence n = 2. Substituting 2 for n in Equation 2-10 and

‘ integrating yields “Rittinger’'s Law” (after BMHB 1985):

1 1
E- k(_ L
X X%
Equation 2-11 Rittinger equation {(general form)

Kick studied coarser comminution, arguing in 1883 that the energy input for crushing an
ore is constant for a given reduction ratio, hence n = 1. Substituting 1 for n in Equation
2-10 yields “Kick's Law” (BMHB 1985; JKMRC 1996):

X,
E=k*tn 2+
X3
Eguation 2-12 Kick equation {general form)

In 1952 after extensive experimental work on ball mills, Bond suggested that the energy
is proportional to the length of the new crack tip formed, resulting in the intermediate
vaiue of n = 1.5 and his “third law” of comminution (BMHB 1985; JKMRC 1996):

(3]

Egquation 2-13 Bond equation (general form)
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in 1961, Hukki, after reviewing a wide range of comminution devices, concluded that no
single relationship was adequate, and proposed the graph shown in Figure 2-9. At
crushing sizes, Kick’s relationship was appropriate. At intermediate sizes, traditionally
reserved for rod- and ball-mill grinding, Bond’s equation worked well; and at finer sizes,
Rittinger's ideas about surface area were more plausible. (JKMRC 1996)
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Figure 2-8 Relationship between energy input and particie size
(JKMRC 1993)

In modern comminution, it is suspected that all of these underlying ideas are incorrect.
Compelling evidence provided by the material science field suggests that cracks initiate
at points of weakness or flaws in the atomic structure of the material. it is assumed that
most rocks contain a distribution of flaws of various sizes, from geological faulting or
jointing down to dislocations in the crystal structures on the atomic scale. For large
particles there are plenty of flaws available. For finer particles, the larger flaws would
tend to become exiernal particle surfaces. It is this underlying trend that produces
different n-values at different pariicle size. (JKMRC 1996)

But even if the underlying elements of the theories of Bond, Kick, and the other
researchers are not correct, their observations regarding increased incremental energy
expenditure with decreasing particle size are. This is true regardiess of whether they are
based on physical theories about crack phenomena or on the statistical properties
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relating to the size and occurrence of the particles and their imperfections. (JKMRC
1986)

Note that the above theories do not incorporate effects of particle transport, expenditure
of energy that does not result in breakage, or deviations of the slope of the product size
distribution from the typical. For this reason it is necessary to correct the energy modeis
either empirically or with a series of plant surveys as per suggestions in contemporary
literature (e.g. Rowland 1980; Dobby et al. 2001). (JKMRC, 1996)

2.1.5.2 SPI MODEL IN A HISTORICAL CONTEXT

The SPI test is a batch laboratory-scale test created for the energy modeling of SAG
mills, i.e. product size ranges intermediate to ball-milling (Bond's theory) and coarse
crushing (Kick’s theory). The typical product size of a SAG mill varies between 1mm
and 10mm. This region in Figure 2-9 is the area where the tangent created by Bond’s
value of n = 1.5 and Kick’s tangent (n = 1) diverge from the energy curve suggested by
Hukki. This divergence may be one of the reasons for observed lack of correlation

20,21

. between the Bond equation and traditional SAG milling

The SPI test, like the Bond equation, is calibrated empirically with an extensive database
of operating SAG mills. The general form of the calibration equation can be liberally

rewritten from Equation 2-3% as:

Equation 2-14 SPI equation (general form)

20 As a semantic correction, it might be stated that the divergence of the Bond model in Figure 2-9 and the
ohserved lack of correlation between Bond fests and SAG milling are both results of a common cause,
namely, the value of n for this model does not correctly reflect for the size range in question the propensity
for breakage of a particle, i.e. its flaw size disiribution and occurrence function.

2 g might also be noted that a similar divergence between Bond's and Kick’s theories near the range of
particle sizes traditionally involved in tower mills (i.e. vertimilis) may explain the observed lack of correlation
between the Bond equation and tower mill performance, and may provide insight into the form of a still-
nonexistent tower mill modei.

?2 By applying the exponent C; to the terms within the parentheses and introducing the second term in the

parentheses in Equation 2-14 above, which reduces to zero for large values of X
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where ¢y is the value of n — 1 in the above analysis. The absolute value of ¢, is

protected for competitive purposes, but it is in the range of approximately 0.2 to 0.4—
precisely where one would suspect from examination of Figure 2-9. In other words, it
appears that the empirical development of the SPI equation has resulted in a value of n
that is substantiated by the values arrived at by historical researchers working with
neighboring particle size ranges. In this context, the SPI equation can be viewed as an
integral part of the specfrum of energy models for mineral comminution.

it is interesting fo note that while the equation used by MinnovEX to calculate the
autogenous mill specific energy does not utilize the second term in parenthesis
(Equation 2-14), typical Fs,g values used for fine feed size compensate. In other words,
for a given SPI and transfer size, both Equation 2-4 and Equation 2-14 would yield the

same restilt.

2.2 GEOSTATISTICS

The body of knowledge termed geostatistics is broad and deep, and as such a complete
' review of the practice is beyond the scope of a Masters thesis, especially one that
focuses on industrial comminution. This section endeavors to present the reader who is
unfamiliar with geostatistics with a macroscopic understanding of those parts of the

practice that are relevant to this work.

The information contained in this Section has been compiled from various sources
including (first and foremost) the course notes and seminar presented by Michel
Dagbert, Geostat Systems International Inc. during March 5 — March 7, 2001 in Toronto,
Ontario. Other sources include Isaaks and Srivastava (1989), and David (1988). All
figures have been extracted from Dagbert (2001), with permission.

2.2.1 Background

Geostatistics came about more than 40 years ago in the Witwatersrand gold mines
where Krige proposed a statistical correction to the traditional way of estimating the
average grade of a block of ore by the arithmetic mean of a limited number of channel

cuts in drives, raises and stope faces around the block. As Krige's work was supported
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by large numbers of samples, it was experimental in nature. Matheron formulated the

theory ten years later, introducing the variogram (a tool for analyzing spatial variability of
ore grades) and an estimation method based on it called “kriging” (in recognition of
Krige's early work in South Africa).

The next two decades saw the application of these tools to a large variety of deposits
from fairly regular sedimentary iron ore to highly variable uranium or precious metals.
They have been refined too. The last decade has seen the emergence of more robust
ways of analyzing the spatial continuity of the mineralization using alternate formulations
of the variogram. Variants of the kriging method have also been proposed. Emphasis is
being put on the estimation of block recoveries (tonnages and grades above various cut-
offs) rather than just a single block grade average. In some mining operations with
poorly visible ore, geostatistics has proven to be a powerful method of processing grade

" control sample data. Finally, as this report will attest, it is now being applied to ore
hardness indices and rate constants for kinetic models of separation processes, thereby
enabling the design of a grinding or flotation circuit based on the geostatistically-
distributed properties of the ore body as a whole.

In this section several geometrical interpolation methods and their characteristics are
introduced. The concept of estimation error is discussed and it is shown that kriging is
simply a statistics-based interpolation method that aims to minimize the estimation error.

Finally, alternative methods for geostatistical estimation are summarized.

2.2.2 Geometrical Interpolation Methods

The three main geometrical interpolation methods discussed here are nearest-neighbor
(also known as the method of polygons or polygonal estimation), inverse-distance
methods, and moving-window averagé methods. Strictly speaking, these methods are
the same in that nearesi-neighbor interpolation weights nearby samples by the inverse
of the distance, raised to the power of infinity, whereas moving window average methods
weight them by the inverse of the distance, raised to the power of zero. Generally
“inverse-distance” weighting methods are assumed to be in-between somewhere, with
most common exponents taking on the value of 2 or 3, the higher values giving
proportionally more weight to the nearest sample or samples.
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2.2.2.1 NEAREST NEIGHBOR

The nearest neighbor method is known as polygonal estimation because the general
algorithm consists of calculating the polygon of influence surrounding each sample point.
The polygon is defined by its vertices, each of which occurs at the intersection of the
perpendicular bisectors between the sample point and its neighbors. By definition, each
sample point can have only a single polygon of influence. Furthermore, any point in the
polygon of influence of a sample is closer to that sample than it is to any other nearby
sample. Once the polygon has been identified, the value of each point in that polygon is
attributed the value of the sample point around which it is drawn?®.

Although it is uncommon to apply nearest-neighbor estimation for ore reserve estimation
and grade control, the method is commonly used to decluster raw sample sets prior to
conducting statistical analysis. Declustering is the procedure by which nearby samples
are given lower weighting factors than samples that are more spatially dispersed.
Because nearby samples will (hopefully) show similar values, this will be reflected in the
statistical calculations. If the nearby samples are each given the same weighting factor
. as the more dispersed samples, calculated averages will be biased towards the values
of the nearby samples and calculated variances will be lower than the estimated
variance of the population (ore body). Declustering using polygonal estimation is a
convenient method for calculated weighting factors that reflect the actual ore that each

sample represents in the deposit.

The nearest-neighbor method is the only geometrical interpolation method that does not
require a search neighborhood or search elflipsoid of some kind.

Figure 2-10 shows a plan viéw of hypothetical drill core intercepts in a bench of an open
pit gold mine (units are g/tonne of gold). Crosses are the drill-hole intercept coordinates
and numerals are their assay grades. Figure 2-11 shows the polygons of influence

surrounding each drill core intercept.

% The process of dividing a polygon into many poinis is known as discrefization and the points are referred
to as discretization poinis or discrelization nodes.
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2.2.2.2 INVERSE DISTANCE

inverse distance is probably the most often-used of the geometrical techniques. It is
simple and most geostatistical programs include this as an interpolation option. In its
simplest form, the estimated value of a point or node is calculated by proportioning the
value of nearby samples according to the inverse of their distance from the node.
inverse Distance Squared, the most common form, proportions the sample values by the
inverse of its squared distance from the node, inverse distance cubed by the inverse of
the cubed distance from the node, and so on.

A benefit to inverse distance squared is that different exponents can be used in different
directions to account for anisotropy®. For example, in a coal deposit it might make
sense to use inverse distance squared in the horizontal directions to account for the
increased grade continuity, but inverse distance to 4™ power in the vertical due to both
the (observed) reduced thickness in this dimension and a better (theoretical)
understanding of the sedimentary genesis of the deposit. An alternative method used

for accounting for anisotropy is to use smaller search radii in the directions with less

. continuity.?®

inverse distance methods are generally used when insufficient data are available for
more detailed geostatistical and variability studies, or when the variable of interest is
difficult to model using geostatistical methods. Because of the practice of averaging, it is
impossible for any node to have a value greater than the maximum or lower than the
minimum of the sample values within the search neighborhood. This inevitably results in
a certain amount of smoothing, resulting in a histogram of calculated node values that
will be narrower (i.e. lower standard deviation) than that of the sample set itself. This
phenomenon should be considered during the interpolation analysis.

4 Anistropic behavior means that the variable of interest can change more quickly in one or more directions.
Variables that have the same degree of continuity in ali direction show isofropic behavior.

%5 Note that in general deposits are assumed to be isotropic unless there are clear reasons suggesting
otherwise (such as in the coal seem example described).
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2.2.2.3 MOVING WINDOW AVERAGES

The general practice of using the method of moving averages for geometrical
interpolation consists of defining a set of search radii or a search ellipsoid. The
calculated node value is then equal to the average sample values that are within the
search ellipsoid.

To a limited extent, anisotropy can be incorporated by varying the length of the search
radii that define the ellipsoid. Smoothing is also a factor in this method.

The practice of moving window averaging for grade estimation is rare, however it is
sometimes applied to ore hardness, separation efficiency (for processing unit operations
such as flotation or dewatering) and other variables with less impact on the project
economics than ore grade. By far the most common method for applying this technique
is to identify different lithologic or otherwise-defined ore class boundaries and assign the
average value for the samples collected from that unit to all nodes within. those
boundaries. This practice generates reasonable estimates of the average values for
. those units, however it does not generate any information on the variability of the

variable within the lithologic unit or ore class.

Figure 2-12, Figure 2-13 and Figure 2-14 show variations of gold grade in g/tonne in a
hypothetical test bench as comparison between the “real” grades (as determined from
1200 simulated values) and the estimated grades calculated using polygonal estimation

and inverse distance squared. Note that:

e The polygonal estimation reflects the natural distribution of the gold grades
shown in Figure 2-12. There is no smoothing of the histogram of gold grades.
e The inverse-distance squared method shows more continuous variability in gold

grade, but has a higher degree of smoothing.
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Figure 2-12 Real biock grades in a bench. Horizontal grids are on

5 m intervals. Vertical is g/tonne Au on unit intervals beginning
from 0 g/tonne Au (Dagbert 2001).
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Figure 2-13 Variations of gold grade in the bench according to the
nearest neighbor method, same axes as Figure 2-12 (Dagbert 2001}
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Figure 2-14 Variations of gold grade in the test portion of the
bench according to the inverse distance squared method. Same
axes as Figure 2-12 (Dagbert 2001)

2.2.3 Geostatistical Methods

This section describes selected geostatistical methods used for ore reserve estimation

‘ ahd grade control. The first pért of this section introduces the concept of estimation
error. The second part explains the geostatistical tool called the varicgram, which is
used to calculate the expected estimation error for a node from samples separated by
distances. The third part explains the basis of kriging, which is simply a statistical
procedure that calculates the appropriate weighting factors for the nearby samples such
that the estimation error of the node is minimized. Finally, some alternative forms of
node interpolation and simulation are summarized in the fourth part.

2.2.3.1 ESTIMATION ERROR

It is apparent from Figure 2-13 and Figure 2-14 that neither the inverse distance squared
method nor the polygonal estimation method produce perfect estimates of the goid
grades shown in Figure 2-12. It can therefore be stated that the estimates derived from
a small number of samples are not true values. The difference between the true value
and the estimate is the estimation error. it can be positive (under-estimation) or negative
(over-estimation). If the estimation error is large, then serious ore classification
problems may occur. Obviously, at the time of the estimation the error is not known,
- otherwise there would be no error.

41



.

McGill University

Literature Revisw

Figure 2-15 and Figure 2-16 show the histograms of errors for the polygonal estimation
method and the inverse distance squared method discussed above. A glance at the

histogram shows that the dispersion of the histogram of errors due to the polygonal

estimation method is greater than that due to the inverse distance squared method. This

is known as the error variance or the average squared difference between each value

and the mean of the histogram. The sqvuare root of this variance is the sfandard error

(standard deviation of the errors) and is a good measure of the overall magnitude of
errors. In the example discussed, the standard error for polygonal estimation is 3.96 g/t

and 2.57 g/t for inverse distance squared.
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Figure 2-15 Histogram of errors due to the polygonal estimation
method, g/t Au(Dagbert 2001)
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Figure 2-16 Histogram of errors due to the inverse distance
squared method, g/t Au{Dagbert 2001)

It is important to point out that the mean residual error, or the average value of the above

histograms, is zero. This signifies that these methods are unbiased methods for point

estimation, i.e. the sum of the weights used for nearby samples equals unity.
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2.2.3.2 THE VARIOGRAM

The previous section has shown that a convenient way to characterize the magnitude of
estimation errors is through the standard variance of the histogram of errors. The
variance is the average squared difference between the true value and all possible
estimates for that value; hence a way to appraise that squared difference is to look at
squared differences between sample values themselves. If the differences between
samples are high, even at small distances between those samples, then it is expected
that the differences between the true value and estimates derived from those samples
will be high as well. This is the concept behind the variogram: to analyze differences
between samples to be able to predict differences between estimates and true values.
The variogram looks at squared differences between samples simply because the
selected measure of the error is also a squared difference, the variance.

Practically, samples are classified according to how distant they are from each other. As
it is expected that the differences between samples increase with increasing distances, it
is customary to classify samples for analysis into groups with similar distances.

-Figure 2-17 shows a conceptual view of what a variogram is. Equally sized channel
samples have been taken along a straight portion of a drift at 3 m intervals. Considering
all the pairs of samples at 3 m distances, the squared differences between the two
sample values in each pair are averaged. This is the first point in the variogram; it
shows the average squared difference of sample values separated by a distance of 3
meters. Repeating this procedure for samples separated by 6 meters gives the second
point in the variogram. The same process is repeated for pairs at 9 meters, 12 meters,
15 meters, and each time a new variogram value is generated. The result is a diagram
showing the average squared difference between samples as a function of the distance
between those samples. The very interest of the variogram is the rate of increase of
those differences. If the rate is low, two samples may have very similar values even if
they are far apari, resulting in an estimation error that is likely to be low. On the other
hand, if the average difference between samples increases rapidly with distance, the
estimation error is likely to be high.
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Figure 2-17 Calculation of a variogram from regularly spaced
samples in one direction.

Some further notes on the variogram are:

The variogram depicted in the example above has been computed in a single
direction. In practice, directional variograms should be calculated in 3 directions
to account for any anisotropy. If the same variogram is used in all 3 dimensions,
it is said to be an omni-directional variogram and the variable exhibits isotropic
behavior.

The variogram is not exactly the average squared difference between samples
but only half of it. The 0.5 scaling factor is meant to adjust the variogram such
that it is of comparable units to the variance. This 0.5 factor explains why the
variogram is sometimes referred to as the semivariogram.

The total number of possible pairs between N samples is defined by N(N-1)/2.
Hence with 1000 samples, 500,000 possible pairs can be investigated. In
practice not all pairs are examined as pairs separated by large distances are
generally of little interest and only specific directions are analyzed. Furthermore,
because of sampling practicalities, it is necessary to define the distance for
sampling pairs with a lag or tolerance in order to generate shfﬁcient sample pairs

within a distance class. These two points combine to make variogram
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computation a very tedious process if it were to be performed by hand.

Computer programs are generally used.

o Implicit in the variogram calculation method is the assumption that the variation
of differences between samples with distance and direction is the same
everywhere (for example there are no places where the difference at 10 meters
in a given direction is always around 5 whereas in another place this difference is
always around 10). This is called the sfationarity assumption and a lot of
geostatistical theory depends on it.

e The calculated variogram is not used in kriging. Rather, a model or curve (called
the model variogram) is fit to the calculated variogram to approximate its shape.
The equation of the curve is used for kriging
General terminology regarding the variogram is as follows. The point where the
variogram intercepts the y-axis, or variogram axis, is known as the nugget effect
(Figure 2-18). It can be thought of as the average squared difference between
adjacent samples. The differences are due to the natural variability of the
variable being measured (natural nugget effect) plus any sampling variance,
testing/assay variance, and other errors that propagate into the testing

. procedures (human nugget effect). The term originally came from gold deposits,

where adjacent drill holes were often observed to have very different gold assays

due to the presence of a relatively small amount of large “nuggets” in one of the

holes.

The sill of the variogram is the plateau where the average difference between
samples tends to level out. The apparent sill, shown in the model, is the
estimated sill based on the calcuiated variogram. The nested sifl, which is
equivalent to the calculated variance of the entire sample set, can also be used
for variogram modeling. The range is the distance along the x-axis at which the
average distance reaches the sill. It can be thought of as the distance between
samples beyond which there is no statistical relationship between their values.

For good estimation (low standard errors) it is desirable to have & variogram with
a low nugget effect, a low sill, and a low slope (and hence a high range).
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Figure 2-18 Properties of a variogram

2.2.3.3 KRIGING

The main feature that distinguishes kriging from the estimation methods discussed in
Section 2.2.2 is that it does not use a pre-ordained weighting system that is dependent
upon the estimation method used (ie. as inverse distance squared uses a weighting
system for nearby samples based on the inverse of the squared distance). Instead,
kriging is a calculation method for the set of weights for the nearby samples such that
the error variance, or standard deviation of the error, is minimized. As with the three
geometrical interpolation methods discussed, the sum of the weights in a single kriging
system must equal unity, therefore the kriging method is also unbiased. For these
reasons, kriging is often associated with the acronym B.L.U.E., for “best linear unbiased
estimator” (it is linear because the estimate is a weighted linear combination of the
available data).

A brief description of the procedure is as follows. It can be shown that the estimated
grade/value of a point or node, given n number of nearby samples, is a function only of
the values of those samples and weighting system that we apply to them. This can be
expressed by the (unbiased) equation:
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V=iw, e}, and iw,. =1
i=l

i=}

Equation 2-15

Where V is the estimated point value, V,; is the measured value of the nearby sampile |/,
and w; is the weight applied to the sample /. Furthermore, it can be shown that the error
variance of the estimate is a function only of the weights applied to the nearby samples,
the variance of those samples, and the variogram as described in section 2.2.3.2. ltis
given by the formula:

Gi=0'2+; ;wfij,-,--zgwiCio

Eguation 2-16

Where s is the error variance, o° is the variance of nearby samples, and the C
represents the variogram function®. Knowing the general formula for the error variance
as a function of the variogram, local variance, and the weighting system, we solve for the
weights such that the error variance is minimized. This is done by setting the n partial
first derivatives of the error variance with respect to the weights equal to zero and
. solving. This produces a system of n equations and n unknowns. However, not just any
system of weighting factors is acceptable; the unbiased condition dictates that only a
weighting system in which the individual weights sum to one is acceptable. This has the
effect of adding another equation to the system; the problem therefore becomes one of

constrained minimization, the solution of which is not as straightforward.

The constrained minimization problem is solved through the introduction of a Lagrange
parameter, thereby converting the constrained minimization problem into an
unconstrained one. The Lagrangian is introduced in the following manner:

O Y. waw,,-C,-,--2§wiC,-o+2ﬂ( 2 w,-1)

=1 j=l i=l
0

Eguation 2-17

% Actually it represents what is called the covariance function, similar in nature to the variogram. Detailed

explanations of this and other equations can be found in Isaaks & Srivastava, chapter 12
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Because the sum of the weights equals zero, the Lagrange term has the net effect of

adding zero to one half of the equation.

The n + 1 equations (n equations plus the unbiased condition) and n + 1 unknowns (n
weights plus p, the Lagrange term) are known as the ordinary kriging system. It is
solved for the individual weights, which are subsequently applied to the nearby sample

values to generate the node estimate.
2.2.3.4 OTHER GEOSTATISTICAL METHODS

Block Kriging
The previous discussion described the method of ordinary kriging. Block kriging is a
modification of the ordinary kriging process intended to account for the fact that in
general the mining industry is not concerned with the estimated value of a point, but
rather the average estimate of an entire block. Block kriging is simply a method of
discretizing the block into many discretization points and using ordinary kriging for each
point. The estimated points are then “re-combined” into a single block average.
. Because of the averaging that occurs in a block, the larger the blocks are, the more
smoothing that occurs.

Multiple Indicator Kriging

Muitiple indicator kriging is the process of kriging “histograms” into each block with the
intent of evaluating the amount of smoothing that occurs during the kriging process. The
general procedure is to assign different indicator cut-offs and create a variogram for
each one. An indicator cut-off is an “arbitrarily” chosen grade, for example in a gold
deposit the gold grade indicator cut-offs could be 1 ght, 2, g/, 3 g/t, and so on. For the 1
g/t cut-off, a unit value of 1 is assigned to all sample assays greater than the cut-off, and
0 is assigned to those lower than the cut-cut-off. The variogram is then calculated for all
of the 1's and 0’s, which are subsequently kriged into each block. The same process is
applied io all of the cut-offs, resulting in a different value for each cut-off. These values
become the histogram, effectively a kriged distribution for all of the cut-offs chosen.
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Conditional Simulation

As the name implies, this method is not an interpolation method but a simulation
method. It is computer-intensive, but has gained popularity with the increased computer
processing power of the last decade. Although it is beginning to be used for reserve
estimation, it is most often employed for shori-term production forecasting from blast
hole drill chips (due to the usually smalier blocks used in the model®, the increased
assay availability®®, and the limited number of blocks requiring interpolation®®).

The idea behind conditional simulation is to simulate assay or core composites in the
block model using nearby samples such that the giobal histogram of assays and the
variogram derived thereof are both preserved (hence it is “conditional”). Because the
method simulates assay values, the block grids are generally much smaller. The
benefits to conditional simulation are that the effect of smoothing is not present because
no averaging occurs in the process; therefore predicted economic repercussions such as
ore dilution and the effects of blending in the mining and stockpiles processes can be
evaluated. However, this also results in the fact that only a “simulated” value is given for
a single node and not the “best linear unbiased estimate.” The result is that upwards of
. 20 or 30 individual simulations should be performed if the best estimate of a single block
is desired. This adds significantly to the computer power needed (due to the smaller
grids and increased number of iterations needed) and is the main drawback of

conditional simulation.

2.3 ORE BLENDING

There are two main issues that generally arise during any discussion of ore blending.
The first issue centers around the industrial practicality of ore-blending programs: what

are the benefits and detriments? The second involves the laboratory and theoretical

27 Which is in tumn due o increased knowledge of mining selectivity in the imimediate shori-term and closer
assay spacing

%8 Diamond drill holes generally have spacing intervals an order of magnitude greater than those of blast
hole drills

2 A single blast “parcel” or pattern will have oniy a fraction of the blocks contained in the entire deposit,
smaller blocks notwithstanding. This significantly reduces the computer time required for the simulation.
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issues that might arise when attempting to perform test work on blended samples or

modeling of blend behavior in a process plant.

2.3.1 Full-Scale Blending

Perhaps the single most important benefit to blending is attributable to the fact that the
process plant houses a number of very different unit processes connected together in
series configuration. Each unit process, be it autogenous grinding, secondary grinding,
flotation, or dewatering, has its own capacity or capacities, depending on the properties
of the mineral. VWhen only one of these processes is operating at maximum capacity
during the processing of any given ore, there is a production bottleneck in the process
plant and the remaining unit operations will be operating below capacity, resulting in idle

- capital and probably increased specific operating costs. {(After Mitchell and Holowachuk,
1996)

The obvious solution to the problem is to widen the bottleneck through process
improvements. [If for some reason this is not possible, the alternate solution is to

. implement a program of ore biending such that an ore that would create a bottleneck at
one unit process is blended with an ore that would create a bottleneck at another unit
process. The resulting blend would serve to reduce both hypothetical bottlenecks and
increase the overall plant production over what would be achieved by processing each
ore exclusively. (Bennett et al 2001; Mitchell and Holowachuk, 1996)

This problem can be particularly acute in SAG grinding for two somewhat associated

feasons.

Firstly, in SAG grinding the ratio of impact to abrasion/atirition grinding is different than it
is in secondary ball-mill grinding due to differences in typical mill diameters, feed sizes,
and ball charges. It was shown (Section 2.1.1.3) that rock can exhibit various different
properties of ore hardness that may not be correlated, such as friability and
abrasiveness. Relative differences in these properties from one ore to the next will lead
to relative differences in maximum capacities from the SAG mill to the ball mill circuit.
For example, it is common for an ABC grinding circuit that is milling hard, coarse ore to

produce a larger relative amount of fine material in the primary mill product. Because

50



MeGiil University Literature Review

the ore is hard and coarse, more primary milling time is required (i.e. lower throughputs)

and hence the product becomes finer (due to higher residence time in an abrasion-
dominated environment). The combination of low throughput and fine product creates
under-loading of the ball mills. The opposite scenario occurs when the SAG mill
receives fine, soft material. This tends to flow through the SAG mill and out the grates
before much grinding actually occurs, resuiting in a high flux of coarse material to the
ball mills. In this scenario the ball mills are the bottleneck and the SAG mill is under-
loaded. (Bennett ef al. 2001)

The second reason has to do with the variability of feed particle size to the mills. Feed
size fluctuations are much more erratic in primary milling than they are in secondary
milling (after the ore has already passed through a grinding machine, grates and a
screen, and possibly a pebble crushing circuit with a circulating load). Feed size
variations change the abrasion/attrition ratios in the autogenous mills significantly, and
lead to performance efficiency problems in the grinding circuit as a whole (after Hart et
al. 2001).

. The effects of a program of ore blending can be evaluated by performing SPI and Bond
tests on the problematic ores and then calculating the SPI and Bond work index for the
blend based on the proportion of each ore used to create it. This procedure raises the
important question of additivity: can SPI and Bond Wi values be averaged linearly?
Recall that in Section 2.2.3.3 the geostatistical method of kriging was discussed, and it
was noted that kriging itself results in a linear average of the surrounding data points.
As such, if SPI and Bond Wi values are not additive there would be repercussions on the
geostatistical method used. The next section describes some preliminary work
undertaken to answer the guestion of additivity of the SPIL.

2.3.2 Modeling of Blends

The first study® that was conducted to investigate blending was initiated by the author in
1997 under the auspices of MinnovEX and NSERC, (Natural Sciences and Engineering
Research Council of Canada). It was a preliminary scoping study into the effects on ore

0 aAmelunxen, P., “Minnovex SP! Grind-Time Variations in Hard/Soft Ore Combinations”, MinnovEX
Technologies / NSERC study, Toronto, Ontario, 1997.
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blending. The work was performed before some important quality control procedures
were implemented on the general SPI procedure and as a result the sample preparation

procedures can be criticized somewhat:

e The parent ores were crushed to SP! feed size prior to blending.
e The ratios of the different size classes were not controlled®’, except for the plus

2.54 cm material and minus 2.54 cm material,

The above caveats notwithstanding, the project conclusively determined that the SPI of
a blend will be lower than the linear average SPI of the parent ores used to create it. It

is therefore not an additive parameter.
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Figure 2-19 Blend results, 1997 NSERb study (Amelunxen 13987)

Figure 2-19 shows results from a typical blend suite. The straight line shows the SPI
calculated by linear average based on the percent hard ore shown on the x-axis. The

curved line shows the measured SPI values of the blend.

2.4 ROSIN-RAMMLER EQUATION

The Rosin-Rammler equation was published in 1933/34 as a technique for use in

determining the particle size analysis of coal powder. There has been some confusion

¥ “Controlled size class” blending indicates that material was screened into different size classes and the

size classes were individually blended in the correct proportions
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on the general form of the Rosin-Rammler equation; one common form (particularly on
the Australian continent) as published by Taggart (1945) and JKMRC (1999) is given by

R=100-¢ **"

Equation 2-18 Rosin-Rammler formula A

in Equation 2-18, R is the cumulative percent passing size x, and a, and m are
constants®. Often, however, the size parameter a is expressed as 1/b (e.g. Lynch and
Lees, 1985), giving the equation:

R=100—¢ ®"

Equation 2-19 Rosin-Rammlier formula B

The equation has also been expressed without the constant b raised to the power of m,
as in BMHB (1987):

R=100-¢"

Equation 2-20 Rosin-Rammier formula C

Given the confusion, the author has not hesitated to take some liberties with the general
. form of the equation as well. This explanation is provided for clarity.

All equations are fitted using least-squares regression techniques.

% The constant a is sometimes referred to as the size parameter, or modulus, of the curve and is the
36.79% cumulative percent passing size.
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The question of additivity is important for at least one simple reason. All geostatistical

and geometrical interpolation techniques that are used for modeling ore bodies are
based on the additivity of the parameter in question. The process of calculating a
parameter's average for a cell or moving window, computing a variogram, or calculating
a kriged value is performed under the implicit assumption that the parameter can be
mathematically averaged. For metal assays such as gold grade or copper
concentration, it is intuitive that the parameter is additive, but what about for index-type
tests such as the SPI, where the value is expreséed in units of “minutes”?

The simplest way to prove that an ore property is additive is to create a physical blend of
two different ores, and measure the value of that property in the parent and progeny
samples. If the calculated average is the same as the value measured on the blend, the
property is additive. This approach has shown (Section 2.3.2) that the SPI is not an

’ additive parameter. This stems from the fact that the reduction of ore in a laboratory mill
can be characterized by a non-linear curve of grind versus time, whereas the SP! is only
one point on this curve (see Section 2.1.4.1 and Figure 2-3). It has been observed that,
within experimental errors, the SP! of a blend of samples is always lower than the
calculated average would predict.

This section will show that the observed difference between the SPI of a blend and that
of the parent ores can be fully explained by considering the entire curve of grind versus
time when calculating the average. This curve is described in Section 3.1 in detail and a
model or models are derived to represent it. Section 3.2 shows how the models of two
parent ores can be combined to predict the behavior of the blend. Section 3.3 presents
the results of experimental blending work that show agreement between the predicted
behavior of a blend of ores and the measured behavior. Section 3.4.3 provides some
suggestions for improving the SPI! test in light of the current analysis, and the
geostatistical implications that should be considered.

3.1 MODELING OF THE SPI TEST
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The SPI test is a series of grinding iterations on a 1.7 mm screen. When 80% of an
initial 2 kg charge has been ground to minus 1.7 mm, the test is complete and the time

required for grinding the ore to this point is the SPl. Figure 3-1 shows the typical
grinding iterations of an SPI test. The y-axis is the percent of the initial SPI charge
remaining in the plus 1.7mm portion of the charge.

Prediction of 8Pl of a Blend of Hard & Soft Ore
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Figure 3-1 SPI test grind curve

. Several models can be used to represent the SPI grinding behavior:

C3t

P=c +ce

Equation 3-1

— —cyt?
P=ce

Equation 3-2

—02163

P=c +e

Eguation 3-3

where P is the percent of material retained on the 10-mesh screen, ¢, ¢, and ¢; are

constants, and t is the grinding time, in minutes.

Equation 3-1 is a simple exponential function that converges on 0 + ¢, where ¢, is the
percentage of the test feed that is already finer than 1.7 mm at zero minute. Equation
3-2 and Equation 3-3 are forms of the Rosin-Rammler equation. They converge on 0
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and 0 - ¢4, respeciively. Figure 3-2 shows the three models extrapolated far past the
test completion point to illustrate the differences in the convergence of the models.

Comparison of SPI grind models
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Figure 3-2 Various SPI models extrapolated past the SPI
termination point

Equation 3-2 is the most-used form of equation used for modeling the SPI test, but for
. very soft or very hard ores it does not perform well. Soft ores undergo very rapid
reduction in the plus 10-mesh fraction, which disappears after a very short grinding time.
This rapid reduction is not adequately modeled by Equation 3-2 because it converges on
0%, creating a bias near test completion on very soft ores. This is not a significant
source of error for the SPI test in its current form but blending studies and geostatistical
concerns (discussed below) require knowledge of the grind curves of soft ores in the
time range beyond the point where 20% is retained an the test stopped. In this range
the errors introduced by the convergence on zero of Equation 3-2 would become
significant. These errors are minimized by the use of Equation 3-3, for which the
constant ¢, allows fo converge on 0 — ¢,. The concept that there can be a negative
percent retained on the 10-mesh screen is meaningless in practice, but the
mathematical modeling of such a scenario works adequately for the study of blending.
The only cautionary note that applies involves the modeling of extremely soft ores (e.g.
SPI values under 15 minutes). In this case it is necessary to use two equations to

describe the behaviour of the ore in the SPI test mill: one for modeling the breakage
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rate before P = 0 and one to hold P = 0 for all time values past that point on the model
as shown in Figure 3-3.

Prediction of SPI of a Blend of Hard & Soft Ore
% of Ore Plus 1.7mm
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ol SPI Def )

R N 0
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&
2 40% 1 40%
g 30% 1 30%
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Figure 3-3 Application of Equation 3-3

The convergence of Equation 3-2 on 0% creates problems for hard ores as well as soft,
but for the opposite reason. Many hard ores never reach 0% retained. Equation 3-1,

which converges on ¢4, is then used.

3.2 BEHAVIOUR OF BLENDED ORE

To predict the behavior of a blend, it is assumed that the portion of an ore that is present
in the blended sample retains the same grinding characteristics that its parent ore
exhibited in the unblended test. This assumption enables the use of the models of the
parent ores to predict the behavior of the progeny blends.

The best way to illustrate the technique is using an example. In this case the ores
biended are hard and soft copper porphyry ores (Figure 3-4) from Kennecott Minerals,

Utah. The experimental points and their respective models are shown in Figure 3-4.
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Prediction of 8P of a Blend of Hard & Soft Ore
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Figure 3-4 Hard (134 minutes) and soft (58 minutes) ores

The behavior of a 50% blend of the two ores shown in Figure 3-4 can be predicted as
follows. Their curves are discretized into 5-minute intervals and the percentage of
material remaining at the end of each interval is calculated from the models. The
percentage of material remaining in the blended sample at the end of the same time
. interval is then calculated by arithmetic average based on the ratios of material that
constitute the blend. For example, after 5 minutes of grinding there would be 80% of the
hard ore remaining in the 10-mesh fraction, and 69% of the soft ore. By simple
arithmetic average, there should be 74.5% of the coarse remaining after 5 minutes in the
plus 10-mesh fraction of a 50% blend of these ores. The calculation steps are shown in

Table 3-1.
Sofi: 50%
Hard 50%
SPi: 85
Time P P P
Hard Soft Biend
{min) % + 1.7mm operation % + 1.7mm operation % +1.7mm
0 87% * 50% + 86% * 50% = 85%
5 80% * 50% + €9% * B0% = T4%
10 73% * B0% + 59% * 50% = ' 66%
15 68% * 50% + 51% * 50% = 58%
85 28% * 50% + 12% * 50% = 20%

Table 3-1 Method for calculating the SPI of a blend
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Figure 3-5 shows the graphed prediction of the grindability of a 50% blend of the two

parent ores and the experimental resulis of the SPI test performed on this blend. The
experimental points show close correlation with the theoretical model.
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Figure 3-5 50% Blend model with experimental points

. To investigate this further, experimental work was performed on blend samples created
in various different ratios of parent ores. The confirming results are shown in Figure 3-6

and Figure 3-7.
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Figure 3-8 Predicted and actual grindability of two parent ores (137
and 58 minutes) and their three progeny blends.
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Figure 3-7 Predicted and actual grindability of two parent ores (136
and 42 minutes) and their three progeny blends.

3.3 PREVIOUS BLENDING RESULTS

The above analysis can be extended to previous blending work with the caveat that the
blending techniques applied during the sample preparation for the Kennecott samples
above were not applied during the blending of the samples tested in the previous work.
This previous work consists of two main studies. The first, performed in 1997 under the
auspices of NSERC, did not utilize the controlled blending® or the improved test
procedures® developed during 1999 and 2000 for quality control purposes. The second,
a 1999 study at Phelps Dodge Chino Mines, also did not use the improved test
procedures (although the ores were prepared using the controlied blending methods).
Therefore, it is expected that the results of this previous work would show more scatter
and variability then those shown above for Kennecott.

Figure 3-8 is a simple scatterplot with the measured SP! of the blend along the x-axis
and that predicted from the modeling method along the y-axis. The most recent, lower-

variance fest results are shown as black {riangles grouping within a few SP! minutes of

% «controlled blending” means that the relative size distribution of the coarse material in each component of

a biend is identical to those of their parent ores. See Appendix XXX.
% Specifically a more rigorous feed preparation procedure that includes a oven-drying stage before the test
is performed.
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the equality line. The previous blend studies (Chino and NSERC) show no visible bias
about the equality line, although slightly higher variance (scatter) is apparent.

Some
statistics are shown in Table 3-2. Note that although Chino has a higher relative
standard error, this is due only to one single test near the origin that skews the results.
Removing the test from the sample set reduces the relative error of the Chino data set to
approximately 16%.

The bias of the blending results was testing using a two-tailed t-test for paired data
means. For 23 degrees of freedom (24 blending tests), the t-score is 1.15, which is
much lower than the significance value of 2.07 for 2 levels of confidence. Hence, there
is no significant bias between the SPI value measured on a blend of ores and the value
calculated from the parent ore grinding models. Table 3-3 shows the t-test statistics.

Historical Blending Studies
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120 4 +.
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0. 90 +
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%04 2T + NSERG (1997)
20 1 o~ ° o Chino (1999)
104 & Kennecott (2002)
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Figure 3-8 Previocus blending studies in the context of the current

analysis
Relative Absolute
Study Date Standard Error Standard Error
{% of SPi) {minutes)
NSERC 1997 28% 16
Chino 1998 40% 14
Kennecott 2002 4% 4

Table 3-2 Previous blending studies
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Measured  Calculated

Mean 68 87
Variance 734 821
Qbservations 24 24
Pearson Correlation 0.99
Hypothesized Mean Difference 0

df 23

f Stat 1.18

P(T<=t) two-tail 0.26

i Critical two-tail 2.07

Table 3-3 t-test statistics for blending studies

3.4 RECOMMENDATIONS

Several recommendations for improvements in the test procedure can be drawn from the
analysis presented in this section.

3.4.1 Extrapolation of Soft Ores

Be it for the purpose of process optimization or geostatistical interpolation, the
mathematical modeling of the grinding behaviour of a blend of ores is a straightforward
. procedure given adequate knowledge of the grinding behavior of the parent ores.
During discussion of modeling in Section 3.1 it was noted that correct blending analysis
requires knowledge of the grinding curve of the soft ores beyond the point in time where
the test is stopped. Use of the correct model will avoid some of the errors, but the lack
of experimental points in this area will add uncertainty to the extrapolation of any model.
Furthermore, because of the double-exponential nature of the Rosin-Rammiler equation,
minor experimental errors in the point locations would result in large errors in the
extrapolated model. This in turn creates significant errors in the blend calculations®,
particularly when attempting to mathematically blend extremely soft ores with harder

ones.

% For example it was noted in the previous section that one of the Chino tests was a significant outlier. That
particular test was performed on a blend of 75% soft / 25% hard ore where the soft ore had an SPI value of
12 minutes and the hard ore had an SPI value of 127 minutes. It is strongly suspected that minor errors in
the determination of the SPI of the soft ores resulted in much more significant errors in the calculated blend
value due simply to the large amount of extrapolation applied to an already-limited model.
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The simple solution to this is problem is to modify the SPI test such that soft ores are
ground for some time after they have reached 80% passing 1.7mm (test completion).

This will provide enough data in the post-completion part of the test to significantly
reduce the amount of extrapolation required for soft ores.

3.4.2 Extra Grind lterations Near Completion

Often two or three grind iterations are performed at the end of the SPI test to determine
the exact location of the completion point by linear interpolation, as shown by the test
example depicted in Figure 3-9. This is no longer necessary because the models
developed in the previous sections can now be used to calculate the completion point.
Although using the model equation instead of linear interpolation to calculate the test
completion results in minor differences in SPI values, the procedural change has trivial
impact on the test accuracy and zero impact on the geostatistical error®®. This
hypothesis was tested by comparing the SPI values from 939 SPI tests from Escondida
to those calculated using the proposed methodology (after removing the redundant grind
iterations and re-fitting the models).

Prediction of SP! of a Blend of Hard & Soft Ore
-10-Mesh Accumulation in SPI Test
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Figure 3-9 8P test model showing redundant end-points

% Because in light of the current blend analysis it may become necessary to krige or disiribuie the entire

curve.
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Although some error can be seen in the scatterplot shown in Figure 3-10, this is due fo
differences in the lengths of the grind iterations (and hence the best-fit parameters that
are derived from them) and not to an error inherent in the estimation of the SPI point.
Fixing the iteration lengths to constant intervais may help to avoid these minor

differences.

The bias between the two methods was investigated using a simple two-tailed z-test.
Statistics are shown in Table 3-4. The z-score of -0.032 is much lower than the
significance value of 1.96 for a 0.95 confidence level, indicating that there is no
significant bias between the two at 2 levels of confidence.
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Figure 3-10 Scatterplot of deviation in SPi value when omitting
redundant points near the test completion point

Linear int. Model

Mean : 49.0 49.0
Known Variance 512 493
Observations 939 939
Hypothesized Mean Difference 0

z -0.032

P{Z<=z) two-tail 0.974

z Critical two-tail 1.960

Table 3-4 Z-test statistics for data shown in Figure 3-10
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3.4.3 Geostatistical Considerations

It is worth reminding the reader again that the process of interpolating SP! values into a
block model is effectively a mathematical blending of ores. The above analysis has
shown that the SP! is not an additive property when the SP! is considered exclusive of
its underlying grinding curve; hence, the geostatistical processes that assume additivity
do so erroneously. This fact is novel~-indeed, the geostatistical work presented below is
itself based on the additive procedures for variogram calculation and kriging. While the
general methodology described in the subsequent section still applies, some errors will
result from the findings presented in this section. The magnitude of the error will be a
function of ore body properties and can only be quantified with a comparative study—
this will be discussed in Section 6.3. As the geostatistical studies were performed prior
to the development of the blending conclusions presented above®, a correction to the
procedures described in Section 4.1 will be proposed. These corrections consist of
interpolating the entire curve and then using the interpolated curve to back-calculate the
SPL. This is presented in detail in Section 5.

% This was a result of some of the commercial implications of this research program.
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T ESTIMATION

ERRORS

The throughput capacity of a plant is calculated by substituting Equation 2-4 into

Equation 2-5 as follows:
P

sp1 Y
€ ——_-, fs‘a

Equation 4-1

T =

where T is the throughput in fonnes/hr and P is the mill power draw in KW. Errors in
CEET throughput forecasts can be broadly atiributed to two main causes:

1. Imperfect knowledge of the ore body (i.e. the error in SPI)

. 2. Imperfect knowledge of the process plant (i.e. all other terms in Equation 4-1)

The first error arises from the distance between samples in the ore body, the geographic
variability of ore hardness, and the imperfections that cannot be eliminated from

sampling protocol, sample preparation procedures, and test procedures.®

The second group of errors arises from the inability to design an economically-feasible
sampling campaign that can perfecily capture the compiexities of an industrial-sized
grinding circuit. Because CEET is based on semi-empirical models that are calibrated to
industrial grinding circuits using an extensive database derived from plant sampling
campaigns, these errors are manifested in the form of scatter, or “noise”, in the various

calibration equations.

The first group of errors can be approximated through geostatistical studies performed
on ore body hardness data as illustrated and exemplified in Section 4.1. Section 4.2

O % These errors are mathematically expressed by the variogram and nugget effect.
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describes a methodology and exampie for approximating the second group of errors

through Monte Carlo simulation studies.

Two assumptions are made in the following analysis. The first assumption is that the
capacity of the SAG circuit is not limited by external equipment such as the ball mills,
and the second is that there is perfect knowledge of the term P (mill power draw) in
Equation 4-1. These assumptions are discussed in Section 5.

4.1 THE ORE BODY

When designing a process plant to meet certain minimum average throughput rates, the
two single most important questions that are asked by the design team are:

1. What is the average and variability of the ore hardness?
2. Given the design throughput and the answer to question 1, what size of grinding
mill is required?

The complex system of natural processes that cause hardness variability in an ore body
makes it a difficult task to solve the first problem. Hence, it is easy to empathize with the
design engineer who historically has devoted more attention to the second question than
to the first. But given the current design trends of higher grinding circuit capital costs
and lower run-of-mine feed grades, the financial risks associated with undersized
grinding mills no longer permit the design team to claim ignorance of the ore hardness
variability in the interest of expediency.

asses

In past and present practice, the common approach to simplifying this task has been to
divide the ore body into various “ore classes”, ie. categorize based on similar
characteristics. These ore classes are then assigned the mean hardness value
determined from tfest work on that ore. This seclion presents a discussion on the
* applicability of this method to ore hardness characterization. The method itself is not
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original, but the data and discussion presented here are an original analysis of the
method and is integral to the process of ore body hardness characterization.

The underlying assumption with this method is that ores that share similar properties
(such as geology, lithology, or alteration) should also share similar hardness values. For
This is
illustrated by the histograms of SPI values presented in Figure 4-1 for several rock and

reasons discussed below, this assumption has sometimes proven false.

alteration types selected by geologists at Phelps Dodge Chino Mines, a copper porphyry
deposit from the southwestern United States. Rock types shown are skarmm and

granodiorite.  Alteration types shown are biotized and retrograde. Statistics are

presented in Table 3-1.

The rock type “granodiorite” and the alteration type “biotized” show the lowest relative
standard deviation of SPI, indicating that the hardness variability within these ore
classes is lower than for the other two. Furthermore, it can be stated that the rock type
“skarn” has a relative standard deviation that is intermediate (although the absolute
standard deviation is the highest of the four), and that the alteration type “retrograde”
appears to have the lowest overall SPI values but the highest relative standard

deviation.
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Figure 4-1 SP! histograms for selected rock and alteration types

from Chino Mines.
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‘ ‘ Alteration ‘

Granodiorite Skarn Biotized  Retrograde |
No. Samples 18 21 17 14
Min (minutes) 17 13 38 7
Median (minutes) 54 52 79 23
Max (minutes 125 220 135 91
Average {minutes) 58 70 77 31
St. Dev (minutes) 29 47 23 25

RSD (%) 50% 68% 30% 82%

Table 4-1 Statistics for rock and alteration types from Chino Mines

This discussion reveals an important limitation of the ore classification approach:
variability within ore classes is ignored. Furthermore, it brings up another question:
How does one decide that “skarn” or “retrograde” is adequate as a class definition? A
skarn, for example, can have the subclasses of endoskarn or exoskarn®; it can be either
a magnesian or calcic skarn. “Retrograde” alteration can be found in infinite degrees

ranging from 0% alteration to 100% alteration.

The question of ore classification is important for two reasons. Firstly, if the class
definitions are too broad then important trends in hardness might be overlooked, and if
the class definitions are too narrow, then the amount and costs of sampling and test

. work required to generate the necessary statistical information will increase. Secondly,
classification is often left to the personal interpretation of the geologist, and is affected by
things such as differences in experience and vaguely defined threshold levels.

The ore classification approach offers a starling step in understanding hardness
variability in the ore body. It can be used to identify areas where more hardness
information is required. It can even be used exclusively for design when high confidence
in the design results is not required, for example for projects with minimal capital
expenditure or at the pre-feasibility stage of a high-capital project. But as a sole basis
for the design of a capital-intensive, high-production grinding circuit, the relatively wide
distributions shown in the histograms andfor the errors that may result from arbitrary
ciass definitions or sample classification may lead to the improper sizing of the SAG mill.
If used for the purposes of budgetary production planning for a high-production operation

% Indicating either a sedimentary or igneous protolith, respectively.
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{which is based on a much narrower time frame) this method could prove even less

robust®.

4.1.2 Geostatistical Methods

The alternative approach to using ore classes is to use geostatistical methods to
characterize the ore body. In this section a general procedure is presented for
implementing a geostatistical program applied to SPI values. Practical observations
made by the author during this investigation are presented with the hope of assisting the
practicing geologist or geostatistician to devise a site-specific procedure. The variogram
and precision curve examples were developed in collaboration with Michel Dagbert,
Systémes Géostat International Inc, as part of the research project undertaken at Chino
Mines.

For grinding circuit design or production planning the engineer is interested in the error
of the average throughput estimate or mill size, hence the variances of the block must be
combined in a manner that generates the standard error of the mean (or “standard

. error’). This is then used in the Monte Carlo simulation procedures described in Section
4.2

Before describing this method, it is worth pointing out some of its drawbacks. The first is
that the method requires a variogram of ore hardness and hence the samples must be
dispersed spatially throughout the ore-body. If diamond drill core of sufficient
w competency and quantity is not available for SPI and Bond testing, it may be necessary
to drill additional drill holes, which could be an expensive prospect.

It is possible for ore bodies that lack sufficient drill core or that do not consist of one or
several large, continuous mineralization zones (such as Falconbridge's Raglan®’
property in northern Canada) to combine the ore-class approach with the geostatistical

approach. The result is a compromise solution that considers the estimates resulting

0 because fewer ore biocks are processed and hence the propensity of the errors to “canceling each other
out’ is minimized
“! Raglan consists of a series of major and minor mineralized lenses dispersed throughout a zone tens of

kilometers in length.
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from ore class relationships in paralle! with those derived by geostatistical computation in

accordance with the inverse of their estimation variance. In this case the estimation
variance for the class-derived estimate will be the SPl variance in that class, and the
estimation variance derived from kriging will simply be the kriging variance. The end
result will be that in areas where drill core is available for sampling, the geostatistical
estimations carry more weight, and in areas where ore class is the only readily available

information, the estimate for that ore class will have more influence.

There are two methods for applying the general techniques for approximating the
standard error of the mean kriged SPI. The first method is used when a sampling
campaign has already been completed and the engineer desires to know the precision of
the resultant throughput forecasts or mill sizes. A complete description of the procedure
is given elsewhere (David 1988), but the general methodology is as follows. A nearest-
neighbor polygon of influence surrounding each sample is identified and discretized and
the elementary extension variance for each discretization point is obtained using the
variogram and the classical kriging formula. The extension variances are then combined
to determine the estimation variance of the polygon. Volume-variance relationships are

. used to combine the variance of each polygon to produce the variance of the mean
hardness for that given production period.

As this work focuses on the design of sampling campaigns, we will discuss the second
method in more detail. It is applied when the engineer must design a sampling
campaign to achieve a minimum acceptable error of the throughput forecast or mill
design. It uses the same methodology described above to estimate the variance of the
average for a series of different hypothetical sampling grids. As the distance between
neighboring drill core samples becomes smaller, the confidence in the hardness
estimates of the ore body become greater. In this manner, a curve can be generated
that shows the relationship between the distance between samples and the resultant
precision of the throughput estimate. This is done for a volume of ore corresponding to

a specific mining schedule or an assumed mining schedule.

Figure 4-2 shows the results of the method as applied at Phelps Dodge Chino Mines,

New Mexico. Calculations were performed for four different mining periods (one month,
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three months, six months, and one year). The sample spacing (in meters) is plotted on
the x-axis and the precision of mean SPI (i.e. relative standard error).

Precision of SPl as a Function of Sample Spacing
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Figure 4-2 Precision curves from Chino Mines

The following steps are taken to produce the curve for a given production period.

1. Select the production period. Four production periods are shown for the
comparative purposes in Figure 4-2 but for the purposes of this example, we
select a one-month period.

2. For the production period, define the geometry of the active faces by assuming
certain block dimensions, bulk density, mean throughput, and active benches.
The active face dimensions for this period were determined from reasonable
assumptions drawn from discussion with metallurgical, mining and geologicai
personnel at Chino. In the case of the 1-month example, there are two active ore
faces each 500-ft by 300-ft by 50-ft (150m by 90m by 15m), comprising a total of
120 15m-cubic ore blocks and approximately 1.1 million metric tonnes of ore.

3. Select a given sample interval. For this example we select 15 m as the distance A
between centers of drill core samples, and for the active face geometry defined in
Step 2, 15 m sample spacing would aliow for 60 individual composite samples
per active face.

4. Using a geostatistical program, compute the extension variance of each
composite to its cell of influence, and combine the variances to generate the
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variance of the mean hardness for the entire face. For the defined face, the

extension variance of a sample to its polygon of influence is 231 min®. The
combined variance as per the classical kriging equation (Equation 2-17) for 60
equally-spaced composite samples at 25 m intervals is 4 min®>. This is the
variance of the mean for this face.

5. Using the standard volume-variance relationship, combine the mean variance for
the active faces to generate the variance of the mean for the production period.
Because in this example the faces are of equal dimension, the variance of the
mean for a face can simply be divided by 2 because there are two faces. The
variance of the mean SPI for a 120 composites representing one month of mine
production is therefore 2 min®.

6. Use the above procedure to calculate the variance of the mean for sequentially
larger sample intervals until the curve depicted in Figure 4-2 is generated. The

calculations are shown in Table 4-2.

Months in Spacing Spacing Ext. Var #comp.in Estvar. Estvar. Standard

Period {f) {m) {min2) face face total error
{min2) {min2) (min.)

1 500 152 410 1 684 342 18.5
. 1 450 137 400 1 541 270 16.4
1 400 122 390 1 417 208 14.4

1 350 107 380 1 311 155 125

1 300 91 369 2 222 111 10.5

1 250 76 358 2 149 75 8.6

1 200 81 348 4 92 48 6.8

1 150 46 33 7 50 25 5.0

1 100 30 303 15 20 10 3.2

1 50 15 231 60 4 2 1.4

Table 4-2 Variance calculations for 1 month time period and
multiple sample intervals

The standard error of the mean SPI (last column in Table 4-2) is used as the estimation
error of the ore body hardness (SPI) in the Monte-Carlo simulation. To this error must
be added the errors due to imperfect knowledge of the process plant. This will aliow the
y-axis in Figure 4-2 to be converted from the units of SPI (minutes) to units of plant
throughput (tonnes/hr). The model error can either be added to the individual cells of
influence (in which case it must be divided by the number of composites representing
the ore during the given broduction period) or it can be added to the mean estimation
error after the Monte Carlo simulation (this is the method used in Section 4.2.2.2). Both

methods vield the same result.
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4.1.3 Practical Observations

Sampling Effort

The scope of the sampling effort will play a role in the method selected for modeling the
hardness of the ore body. For example, Figure 4-3 shows the calculated and model
variograms for Chino Mines and Figure 4-4 shows the same for BHP-Billiton's Escondida
deposit. Both y-axes are in units of variance (min? in the case of the SPI). In each
graph the unsmoothed line is the experimental variogram calculated from the raw SPI
values and the smooth line is the model variogram fit with a mathematical formula.
Numbers near the points on the experimental variogram from Chino show the number of
sample pairs used to compute that point.
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Figure 4-3 Experimental and model variograms for Chino

0

it is immédiately apparent that the experimental variogram from Chino shows much
more variability with respect to its model than that from Escondida. The difference
results from differences in the number of samples used to calculate each variogram:
litle more than a hundred SPI composites in the case of Chino and nearly 800 in the
case of Escondida. in both cases the samples were reasonably well dispersed in the

ore body.
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Figure 4-4 Experimental and model variograms for Escondida

The above comparison suggests that given reasonable assumptions about composite
dispersion in the ore body, it will become difficult to model the shape of the variogram
when fewer than approximately 100 samples are available. This threshold value is
useful if a limited budget is available and one must decide between the ore-class
‘ approach and the geostatistical approach. It is also useful if there are a large number of
| classes identified in the ore-class approach. To coliect and test sufficient samples to
obtain reliable mean and variance figures for each class may greatly exceed the number
of samples required to obtain a variogram. [n this case the geostatistical method could
be used to provide better hardness characterization, either exclusively or in combination

with the ore class approach as discussed in Section 5.2.

Another obvious question that might arise from the geostatistical procedure
demonstrated in Section 4.1.2 is how to begin a sampling campaign when no prior
sampling work has been performed. The variogram is required to calculate the number
of samples for a given precision target, but samples are required to calculate and model
the variogram. The solution in this case is to propose an iterative procedure that
focuses first on collecting enough information to obtain a variogram. This will permit the
generation of a series of preliminary precision curves that can be use to expand the
sampling effort. As the sampling campaign effort expands, more data are made
available to update the variogram.
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Variogram Modeling

Examination of Figure 4-3 and Figure 4-4 above shows that the general shapes of the
two variograms are similar. Both have low nugget effects and variances that increase
very quickly near the origin of the distance axis. The variances increase to half of the
value of the sill within approximately the first 50 meters and thereéﬁer increase less
quickly. The estimates of the nugget effect for each variogram were determined
experimentally from repeat sampling and test work. In the case of Escondida, for
example, two, three, and sometimes four repeat tests performed on 39 composite
samples. The absolute variance (specifically the average of the variances of the repeats
on each sample) of the 88 repeats is an experimental determination of the nugget effect.
In this case it was determined that for the suite of data analyzed (shown in Table 4-3)
15.3 min® was a good estimate of the nugget effect. Compared with the sill of the

variogram this is a low nugget effect.

Statistic Value  Units

No. Composites 39
No. Duplicates a8
Min Ave. SPI 19 min
. Med. Ave. SPI 45 min
Max. Ave. SPI 77 min
Ave. SPi 47 min
Relative Variance 0.006
Relative St. Error 7.8%
. |Absolute Variance 15.3 min?
Absolute St. Error 3.8 min

Table 4-3 Statistics of 3% composites tested in dupliicate for SPI

it can be argued that because the nugget effect for Escondida was determined by repeat
test work on the same sample, it does not contain the variability attributable to the
sampling method used when collecting the composite from the drill core. To address
this, experimental work was conducted at Chino in which three 15-meter core composite
samples were collected from the same bench composite of drill core and tested for SPI
variability. Results of SP! and Bond work index determinations on these core samples
are shown in Table 4-4. They agree well with the reproducibility work presented above.
Other work performed on a large copper deposit in Chile has shown similar resuits to
those from Escondida and Chino; however, permission has not been received to publish

it.
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Sample SPi Wi
1 32 1.7
2 31 11.0
3 28 10.5
Average 30 11
Variance 4.3 0.4
RSD 7% 5%

Table 4-4 Statistics for 3 duplicate core samples from Chino Mines

From the-above data it can be concluded that with careful core sampling procedures, the
raw variability inherent in sampling and testing procedures for SP! is negligible.
Hardness, as defined by the SPI, has a low nugget effect.

Sampling Considerations
The method used to collect core samples in the above analysis was designed to
minimize the variance introduced at the sampling stage. The SPI requires one-inch
(2.54 cm) pieces of drill core. The composite length is generally the bench height,
thereby allowing the largest possible sample mass for the given block size. One-inch
. (2.54 cm) sections of core were collected every 0.5 m along the 15 m length of split core,
resulting in approximately 5 to 7 kg of sample. Care was taken to avoid favoring large or
intact pieces of rock. The same 2.54 cm section was collected every 0.5-meter

regardless of whether fractured or friable core was encountered.

Because geostatistical methods may be used in conjunction with the ore-classification
approach, it is always beneficial to record the down-hole coordinates, hole-number, rock
type, lithology, alteration, RQD, and all other geological or geomechanical properties of

the core.

There are various models integrated into the calculations for specific energy of an ore
sample in an autogenous mill. These models were derived empirically from a database
of grinding circuit surveys performed in industrial plants. lrrespective of the methods
used for data reconciliation, the practical difficulties associated with the sampling of
industrial grinding circuits will always result in small amounts of uncertainty in the results
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of the survey. This uncertainty can be visually expressed as scatter about the 45-degree

line in a scatter diagram showing the predicied value versus the actual value of the
variable of interest. This section altempts to quantify the errors in specific energy
estimation that result from the accumulation of these errors in the various models that

compose the CEET program. The method used is Monte Carlo simulation.

The first step is to gquantify the amount of error inherent in each sub-model. In the
second step these errors become the statistical parameters used for creating normal
distributions of the model variables. The values of the model variables are combined to
calculate the specific energy and in Step 3 a statistical analysis is performed on the
resulting distributions. The statistical analysis yields the estimated error of the specific

energy estimates assuming perfect knowledge of the ore hardness (SPI).

Many of the models used for the Monte Carlo simulation study are protected for
commercial reasons. MinnovEX provided the author with the specific forms of the

models for the sole purpose of this research study.

‘ 4.2.1 Model Error

Section 2.1.4.4 described the models that are used in CEET to comprise the specific
energy calculations for an autogenous mill. If the primary SPI calibration equation is

considered as well, there are a total of five models that can introduce error. These are:

Feed Size
Pebble Crusher Circulating Load
Fsag

Transfer Size

ok N

Primary Calibration

The error variance of each model is calculated based on two assumptions***°;

1. The variance of the distribution of y for a fixed value of x is constant.

2 The validity of these assumptions is investigated and discussed in detail in Section 4.2.2.1
“3 With the exception of the feed size models as discussed in Section 4.2.1.1
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2. For afixed value of the x, y follows a normal distribution.

Given these assumptions, the standard error variance is given by:

82y[x = Z (Xi - Yi)z / (n'df)
Equation 4-2

Where n is the number of calibration points and df is the number of degrees of freedom
lost in the model (i.e. the number of independent curve-fitting constants).

4.2.1.1 ERROR OF FEED SIZE MODEL

The feed size models described in Section 2.1.4.4 employ the SP! and crusher index
test Cr in combination with the primary crusher closed-side setting to predict the feed
size Fso and Fgp. The graphs of the models shown in Figure 2-7 (page 27) are converted
into scatter diagrams of predicted versus actual feed size (Figure 4-5).
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Figure 4-3 Scatter diagrams for the Fsy and Fge models, in
millimeters, with 1 standard error line (dashed)

The scatter is attributed to number of causes, including:

1. Sampling error introduced when mill feed sample for large-scale screen analysis
was collected from the conveyor belt
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2. Sampling error introduced when sample collected for SPI and crusher index

determination
Error of mean apertures of screens used to perform screen analyses
Error of estimating primary crusher closed-side setting
5. Reproducibility of the SPI, crusher index, and screen analysis test procedures

Applying Equation 4-2 to the data presented in Figure 4-5 generates the error estimates
presented in Table 4-5. The results show that the error sources described above
introduce a combined error of approximately plus or minus 25 mm for the Fg and plus or
minus 12 mm for the F5, estimates derived from the CEET models.

Statistic

Observations
df

Standard Error Variance
Standard Estimation Error

Table 4-5 Statistics of feed size model error

One additional factor must be considered for the simulation of feed size. The Fs; and Fgo
‘ are not independent variables; i.e. they are linearly correlated. This is shown by plotting
measured and calculated Fg values against their associated Fsy values (Figure 4-6).
Because etrors of the two models are partly correlated®, a different simulation approach
is required; For this study the Fg, is simulated first using the statistical parameters
shown in Table 4-5 and then the Fs, is simulated using the linear equation and error
variance that relate observed Fs; and Fg values (the graph on the left of Figure 4-6).
The error values for this graph are shown Figure 4-6. Like previous error models,

constant variance is assumed.

* “sartly correlated” because Fso estimation errors (relative to the Fgo estimation errors) can have two

causes:

1. Sampling error that affects both Fsp and Fgo values collected from the plant. This is analogous to a
parallel shift of the size distribution curve; hence, the resulting Fso error is already accounted for
during the simulation of Feo.

2. Sampling error that affects only the Fsp or Feo, but not both. This is analogous fo a slope shift of the

size distribution curve. This error is represented by the scatter plot shown on the left of Figure 4-6.
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Figure 4-6 Correlation of F530 and F80 showing that the error in the
F50 and F80 models are correlated
Observations
df
Standard Error Variance
Standard Estimation Error
Table 4-6 Statistics for simulation of Fso from F,
. In Section 4.2.1 it was stated that the simulation assumes constant variance of y for

fixed values of x. Examination of the graphs in Figure 4-5 and Figure 4-6 suggest that
this assumption may be false; j.e. that the absolute scatter increases with feed size.
This is checked by calculating the standard estimation error for different sizes. In this
case, three size classes were used in order to obtain sufficient data in each one for a
reliable calculation of the estimation error. Size classes were categorized by increased
Fgo values. They are 0 to 50 mm, 50 to 100 mm, and 100 to 150 mm. Results are
shown in Figure 4-7. Note that the graph for Fs5, estimation error is calculated using the

relationship between Fs; and Fgo shown in Figure 4-6.

A clear increase in estimation error is observed in Figure 4-7; therefore, the simulation
study must account for increased relative model precision at small feed sizes, and vice-

Versa.
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Figure 4-7 Estimation error for feed models versus mean feed size

4.2.1.2 PEBBLE CRUSHER CIRCULATING LOAD

The pebble crusher circulating load model described in Section 2.1.4.4 is based upon

guantified knowledge the feed size distribution; grate and pebble port apertures; the slot

width of the trommel or vibratory screen; and the ore hardness as defined by the SPI.

Figure 4-8 presents a scatter diagram showing the errors in the calibration. Errors are
’ attributable to a combination of:

1. Sampling error introduced when mill feed sample for large-scale screen analysis
was collected from the conveyor belt

Sampling error introduced when sample collected for SPI determination

Error of mean apertures of screens used to perform screen analyses
Reproducibility of the SP! and screen analysis test procedures

L

Error attributable to imperfect knowledge of the mean pebble port and grate
openings
6. Error due to imperfect knowledge of mean screen or trommel apertures
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Figure 4-8 Scatter diagram of pebble crusher circulating Ioad
model

Table 4-7 shows the calculated estimation error for the model.

Observations
df
Standard Error Variance
Standard Estimation Error

%2 of Fresh Feed
% of Fresh Feed

Table 4-7 Statistics of pebble crusher circulating load model

The feed size distributions used to derive the model were based upon screen analyses
performed on bulk samples collected from mill feed belt during the plant survey. As a

result, in addition to the above errors, the Monte Carlo simulation study must consider:

7. Error atiributable to the feed size distribution model
4.2.1.3 Fsag

The semi-empirical Fsag model is based on an unpublished equation relating the Fgag f0
the Feed size and pebble crusher circulating load. The scatter diagram is shown in
Figure 4-9,
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Scatter Diagram of Fsag Model
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Figure 4-9 Scatter diagram of Fsag model

Because the Fsag model was derived using the feed size and circulating load figures
determined from the plant surveys, the following error must be added to the Fsag error
tabulated in Table 4-8:

1. Error attributable o use of feed size model for Fsac estimation
2. Error attributable to use of pebble crusher circulating load model for Fsas

estimation

units

Statistic
Observations
df
Standard Error Variance

Standard Estimation Error

Fsag

Table 4-8 Statistics of Fsae mode!

SFER SIZE

4.2.1.47

The transfer stream model described in Section 2.1.4.4 consists of a Ty formula, a semi-

empirical mode! that requires quantified knowledge of:

The feed size distribution
The ore hardness as quantified by the SPI
The size of the grate or pebble port apertures

PO Dd =

The slot width of the trommel or screen
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5. The ball charge in the mill

6. The pebble crusher circulating load
7. The pebble crusher product size

The SPI calibration equation only considers the Ty, when calculating the specific energy;
hence this section is only concerned with the error introduced by the Ty calibration.
This error is graphically represented by Figure 4-10, which shows the calibration points
used to derive the models.

Scatter Diagram of Ty Model
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Figure 4-10 Scatter diagram of Tz model

Sources of the error shown by Figure 4-10 include:

1. Sampling error introduced when sampling mill feed belt for large-scale screen
analysis

Sampiling error introduced when collecting sample for SPI determination

Error of mean apertures of screens used to perform screen analyses

Error of estimating pebble crusher closed-side setting

Reproducibility of the SPI and screen analysis test procedures

2 T

Error atiributable to imperfect knowledge of the mean pebble port and grate
openings

7. Error due to imperfect knowledge of mean screen or frommel apertures
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The sum of these errors is summarized in Table 4-8. The Tg model has a standard

error of estimation of 0.63 mm.

Statistic

Observations
df

Standard Error Variance
Standard Estimation Error

Table 4-9 Statistics for Tye model

The calibration of the transfer stream models was performed using the screen analysis
data from the bulk sample collected during the plant survey. The pebble crusher
circulating load used to calibrate the mode! was determined from the weightometer on
the recycle belt. As a result, the following errors must be considered, in addition to those
presented above, when accounting for Tgo errors during the Monte Carlo simulation:

8. Error due to feed size model, and
9. Error due to pebble crusher model.

4.2.1.5 PRIMARY CALIBRATION

The primary SPI calibration equation (Equation 2-4 on page 24) is the formula that
relates the specific energy requirements of an ore in an autogenous mill to the SPI, T,
and Fsae. Figure 4-11 shows the specific energy calculated using the calibration
equation plotted (on the x-axis) against the specific energy measured at the time of the

plant survey.

Scatter Diagram of Primary SPI
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Figure 4-11 Scatter diagram of primary SPIl calibration model
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The error in the calibration equation shown by the scatter in Figure 4-11 is attributable to

a combination of:

1. Sampling error of large-scale screen analysis sample,
Sampiling error of SP| samples,
Sampling error of transfer stream sample collected from screen undersize,
Error of mean apertures of screens used to perform screen analyses,
Reproducibility of the SPI and screen analysis test procedures, and

2

Error in collection of mill feed rate and power draw and/or instrument calibration.

Table 4-10 shows the standard estimation error for the primary calibration, indicating that
with perfect knowledge of the SPI, Tgo, and Fsac, there would still be an error of plus or
minus 0.53 kWht/tonne in the calculated specific energy of the ore in an autogenous mill.

Observations
df
Standard Error Variance
Standard Estimation Error

(kwhit)?
KWhit

Table 4-10 Statistics of primary calibration equation

' 4.2.2 Monte Carlo Simulations

The error values described in the previous section were used in a Monte-Carlo study
that simulates the propagation of error within the CEET program. The goal of the
simulation study was to determine the combined effect of the individual model errors
described above on the estimate of the required specific energy of the ore in an
autogenous mill. Three steps were involved:

Construct the Monte-Carlo simulation program

2. Simulate the estimation error of the specific energy assuming perfect knowledge
of SPI

3. Integrate the estimation errors determined in Step 2 to the standard errors of SPI
given in Figure 4-2.

Each step is described in detail below.
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4.2.2.1 THE SIMULATION PROGRAM

The models for feed size, pebble crusher circulating load, transfer size, and Fsac
described in Section 2.1.4.4 are interdependent in the CEET algorithm. For example,
the pebble crusher circulating load model requires knowledge of the feed size.
Therefore any error in the feed size model will propagate to the pebble crusher model
and increase the error of the circulating load estimate. Figure 4-12 shows a diagram
illustrating the interdependency of the models and the required ore characteristics for

each.

Model Structure and Emor Propagation
CEETI Calculations
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Figure 4-12 Mode! structure and error propagation (CEET i)

This thesis focuses on the error attributable to the CEET models and to the ore body
characterization techniques. It does not address the error in estimating the power draw
of the mill, but suggestions for future research in this respect are given in Section 6.2.

From Figure 4-12 it can be seen that the feed size models are inputs for the pebble
crusher circulating load model. Both the feed size and pebble crusher circulating load
models are inputs for the Tg; and Fsag models. The SPI calibration in turn requires only
the outputs of the Ty and Fsag models. All models except that for Fgag require the SPI
as a parameter input. In addition to the SPI, the feed size models require the crusher

index, Cg. %

45 Note that in Section 2.1.4.4, Equation 2-8 references the SP! test parameter Pes as a required input for the
transfer size model. The simulation instead uses a relationship supplied by MinnovEX that relates Pes t0
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To construct the simulation program it was necessary to make assumptions about the
mean values of the various parameters used in the model. The assumptions made
correspond to typical values observed in industrial grinding circuits. Assumptions
regarding ore characteristics and operating parameters are tabulated in Table 4-11.

Principal Assumptions

Parameter Value Units
Primary Crusher CSS: 150 mm
Steel Charge: 10%

SAG Grate Size 50 mm
Screen Aperture g mm
Pebble Crusher Pg 16 mm
Pebbie Crusher P, 10 mm

Table 4-11 Assumptions used for simulation program

The simulation is conducted with the same left-to-right sequence that the models are
used to calculate the specific energy requirements (Figure 4-12). Specifically, the steps
are:

' 1. Create a normal distribution of SPI values with mean of 0 and standard deviation
derived from the geostatistical methods described by Section 4.1.2 and
expressed by Figure 4-2. These are the SPI errors that are added to the mean
SPI designated for the study. Also create a normal distribution of correlated Cr
values. ¥

SPL. This relationship is often used by MinnovEX o represent the Pgs when the Pg,4 is not available (internal
correspondence, MinnovEX Technologies, 2002).

“s Note that the general forms of some of the equations used in the CEET Il algorithm and summarized in
Section 2.1.4.4 are proprietary to MinnovEX Technologies inc., and are unpublished for competitive
reasons. The same applies io the values of the curve-fitling constants used in many of these equations and
in the primary SPI calibration equation. MinnovEX has provided the specific forms of all equations for the
sole purpose of conducting the error analysis described herein. These are not published in this report but
can be obtained with permission from MinnovEX for the purposes of duplication and clarity of this thesis.

" The investigation of the precision of the crusher index test for Cr is beyond the scope of this thesis but is
identified as an area meriting future work. There is a correlation between Cr and SPI. This correlation,
provided by MinnovEX, was used to ensure thai realistic Cr values are used at different SPI values;
however, quantification of the Cr precision would require detailed investigation into the reproducibility of the
test procedures used io derive it.
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2. Create a normal distribution of Fg error values with a mean of 0 mm and

standard deviation as per Figure 4-7 in Section 4.2.1.1. For the F5, simulation,
create a standard normal distribution (mean of 0 and standard deviation of 1).
Calculate for each SPI and Cr pair generated in Step 1 the corresponding Fgo
values using the proprietary CEET Il model. For each Fg value determine the
estimated Fso using the equation relating observed Fg; and F5, (Figure 4-6). For
each Fso value calculate the estimation error using the regression equation from
the right side of Figure 4-7 and muitiply it by the simulated standard normal
values. To each pair of F5, and Fgo values add the simulated Fso and Fg, scatter
to generate a distribution of Fso and Fgo values that include the model error.

3. Simulate the scatter of the pebble crushing model by creating a normal
distribution of pebble crusher circulating load values (PCCL values) with a mean
of 0 % (of the fresh feed rate) and a standard deviation as per Table 4-7. For
each set of SPI, Fg, and Fsy values calculate the estimated pebble crusher
circulating load using Equation 2-7. For each point add the simulated scatter to
the estimated circulating load to generate a distribution of circulating load values

” that include the model error.

' 4. Simulate the scatter of the Fsag model by creating a normal distribution of Fgae
values with a mean of 0 and a standard deviation as per Table 4-8. Estimate the
Fsac value for each pair of PCCL and Fgo values using the unpublished equation
described in Section 2.1.4.4 on page 29. For each Fsag value, add the simulated
scatter to the estimated value to create a distribution of Fsag values that includes
the estimated model error.

5. Simulate the scatter of the Ty model by creating a normal distribution of Ty
values with a mean of O mm and a standard deviation as per the estimation error
given in Table 4-9. For each set of values of SPI, PCCL, and feed size calculate
the estimated transfer size Tg. Add the simulated scatter to the estimated Ty
value to create a distribution of Ty, values that includes the model error.

6. Simulate the scatter due fo the primary SPI calibration equation by creating a
normal distribution of specific energy values with a mean of 0 kWht/tonne and
standard deviation as per the model error described in Table 4-10. For each set
of SP|, Ty and Fsag values, caiculate the estimated SAG mill specific energy
requirements, and add to it the simulated model error to create a distribution of

specific energy values that accounts for the model error
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The table of specific energy calculations that results from Step 6 represents the

hypothetical specific energy values that would be observed in the plant if the same ore
sample were independently collected and test many times for specific energy
requirements. Furthermore, by setting the standard error of the SPI distribution created
in Step 1 equal to zero, the errors that are attributable to CEET can be analyzed
exclusively of the geostatistical errors. In this fashion, the estimation error of the specific
energy can be expressed assuming perfect knowledge of the ore hardness (SPI). This
is useful because it aliows us to check some of the assumptions that were made to
construct the simulator. For example, the simulation was conducted assuming that the
mean SPI is 70 minutes. Does the error change if the mean SPI changes? Another
question relates to the simulation error itself: How many times should we simulate the
variable in each distribution? These questions are discussed below.

Number of Simulation Points
To investigate the number of individual simulations that should be conducted for each

variable, the following procedure was devised.

1. Perform the simulation study*® described above 20 times for the same ore
parameters, plant parameters, and error parameters.

2. For each of the 20 studies, calculate the mean specific energy by averaging the
calculated specific energy for each simulation point.

3. Calculate the standard deviation of the mean specific energy values determined
in Step 2.

4. Repeat steps one to three for an increasing number simulation points in each

study.

The standard deviation calculated in Step 3 is the standard error of the mean specific
energy value. The central limit theorem dictates that the standard error of the mean
specific energy will converge on zero as the number of simulation points in the study

increases. This can be shown by performing the above steps with an increasing number

8 For clarity, in this report a “simulation study” refers te an entire Monte Carlo simulation consisting of
thousands of independently simulated points. A “simulation point” refers to a data set consisting of a single
simulated SPI, Feo, Fso, PCCL, Teo, Fsag, and specific energy (kWht/tonne).
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of simulation points. The number of simulation points selected for this study was 1000,
2000, 4000, and 8000. Results are graphed in Figure 4-13.

Standard Error of the Mean Specific Energy
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Figure 4-13 Specific energy error versus simulation points

Figuré 4-13 shows that standard error of the mean kWh/tonne decreases as the number
of simulation points increases. At 8000 points, the standard error of the mean specific
energy is approximately 0.01 kWh/tonne. This is an acceptable level of precision for the
investigative studies detailed below. For available computing resources, increasing CPU
requirements becomes an obstacle to conducting simulation studies involving more than
8000 points.

Error Correction Rules

When simulating thousands of SPI associated model parameters, there is a small
probability that the random number generator gives negative or otherwise unrealistic
values for some variables®. It was found that error correction rules were required to

* These unreslistic values are probably due fo the fact the error models do not always foliow normal
distributions; i.e. they are “bounded” normal distributions in some cases. For example, by definition the feed
size Fgo can never be lower than the Fs. The simple error modeis used imply that when generating
thousands of random variables there may be very rare occasions at extremely small (an unrealistic) feed
sizes when this may occur. Hence error correction is unavoidable.
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ensure that the simulation programs functions properly and realistically. These rules

are!

e Fg must be greater than 15 mm and the Fs, must be greater than 5 mm

e The pebble crusher circulating load must be between 3% and 100% of the feed
rate.

o The transfer size Tgo must be larger than 200 um

o SPl must be greater than 10 minutes

Average SPI Value

Simulations studies, each consisting of 8000 points, were conducted for mean SPI
values of 30 minutes, 70 minutes, and 110 minutes. These are the general values for
“soft”, “medium”, and “hard” ores. The relative standard errors of the épecific energy

estimates are given by the last column on the right of Table 4-12.

SPI F80 F50 PCCL Fsag T80 kWhtionne kWhtlonne
mean mean mean mean mean mean mean RSD
30 41 19.2 13 0.78 3.30 3.22 20%
70 71 35.4 28 0.74 2.45 5.33 20%
. 110 96 48.7 37 0.72 1.73 7.57 26%

Table 4-12 Error analysis for various mean SPI values

The relative standard error is approximately 20% for mean SPI values of 30 minutes and
70 minutes, but climbs to 26% for the mean SPI case of 110 minutes. This is due
primarily o the inter-relationships between feed size, transfer size and vibrating screen
slot size. At larger feed sizes there is increased error in the transfer size calculations.
This is not a significant factor for throughput forecast precision, however, given the
significantly larger errors attributable to SPI interpolation. This will be discussed below.

Figure 4-14 shows the relative contributions of the various CEET Il sub models to the
total error of the specific energy estimates for a soft ore.

83



McGill University Throughput Estimation Errors

Relative Contributions OT CEET Il Sub Models to
Specific Energy Estimation Error (Soft Ore)
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Figure 4-14 CEET !l error contributions for a “soft” ore

The two largest error contributions are from the feed size sub-model and the primary SPI

calibration model (37% and 38% of the error, respectively). This is expected because

the Fso and Fg derived from the feed size model are required input parameters for the

three models for pebble crusher circulating load, transfer size, and Fgag. Errors in the
. feed size model therefore have a higher degree of propagation.

The SPIi calibration error, also a large contributor in Figure 4-14, is significant for a
different reason. The standard estimation error for the SPl primary calibration is
constant at 0.53 kWh/tonne (see Table 4-10) for all values of specific energy®. For soft
ores, the specific energy is lower, therefore the constant 0.53 kWh/tonne is a more
significant source of error than it would be for hard ores with higher mean specific
energy requirements. Figure 4-15 and Figure 4-16 show the error contributions for the
medium (70 minutes) and hard (110 minutes) ores in. it can be seen that at 70 minutes
the feed size model comprises approximately 45% of the error, and at 110 minutes it
contributes 58% of the error, with the primary calibration error reduced to only 4% of the

otal error.

%0 see assumptions one and two on page 78
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Relative Contributions of CEET Il Sub Models to
Specific Energy Estimation Error (Medium Ore)
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Figure 4-15 CEET Hf error contributions for “medium” ore

Relative Contributions of CEET Il Sub Models to
Specific Energy Estimation Error (Hard Ore)
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Figure 4-16 CEET !l error contributions for “hard” ore

ING SPI ESTIMATION ERROR

In Section 4.1 a method was presented for quantifying the expected error of the
geostatistical interpolations as a function of the distance between samples. An example
of the calculations for a one-month time period was iliustrated and the results presented
in Table 4-2 on page 73. In this section the standard error of the mean SPI (the y-axis in
Figure 4-2) is converted into the standard error of the mean specific energy. Because
the specific energy is linearly correlated with throughput (by simple multiplication with
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power draw), the relative error of the specific energy estimates is the same as the error

of the resulting throughput estimates.

When integrating the SPI model errors (CEET errors) with the geostatistical errors, an
important assumption must be made. Because the objective of this study is to determine
the standard error of the mean specific energy, the error variance must be divided by the
number of points used to calculate the error variance as per Equation 4-3.

22
n

Equation 4-3

With SPI calculations this is straightforward—one simply divides the ermor variance by
the number of samples in the face or faces—but the CEET models were developed from
1-hour sampling campaigns conducted on operating grinding circuits. The correct
number of points for error variance calculations is thus related to the number of unique
or independent operating conditions experienced by the grinding circuit during the time
frame that it would be processing the ore represented by the SPI samples. This, in turn,
is related to the frequency of ore type changes and the autocorrelation properties of
. grinding mill variables like feed size, transfer size, and circulating load.

A series of sampling campaigns on a single grinding circuit over a large, continuous time
frame would provide a definitive answer, but for the limited scope of this thesis the
number of SPI samples was used as an estimate of the number of independent grinding
line conditions. It is thought that this assumption is very conservative given the large
amount of ore represented by a single SPI sample. Hence, the specific energy errors
presented in this section should be considered maximum errors.

The first step in the process of integrating the model errors with the geostatistical errors
is to estimate the standard error for each SPI sample collected in the faces. For each
sample interval the variance of the mean SPI is multiplied by the number of samples in
the ore volume. Taking the sguare root yields the estimated standard deviation of each
equally spaced SPI sample. This standard deviation becomes the SP! error used in
Step 1 of the simulation algorithm (recall that it was set to 0 for the analysis presented in
the previous section). Calculations for the one-month period of the Chino example are
shown in Table 4-13.
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Monthsin Spacing Spacing Ext Var #compin Estvar. Total # Estvar, Stendard | Error per
Period {f) {m) {min2) face face Comps total ervor | Composite

{min2) {min2) {min.) {min)

1 500 152 410 1 684 2 342 18.5 26.2

1 450 137 400 1 541 2 270 16.4 23.2

1 400 122 380 1 417 2 208 14.4 20.4

1 350 107 380 1 311 2 155 12.5 17.6

1 300 91 369 2 222 4 111 10.5 21.1

1 250 76 358 2 149 4 75 8.6 17.3

1 200 61 346 4 92 8 48 6.8 19.2

1 150 48 331 7 50 14 25 5.0 18.7

1 100 30 303 15 20 30 10 3.2 17.3

1 50 15 231 80 4 120 2 1.4 15.5

Table 4-13 SP! errors per composite (last column on right) for 1-
month period at Chino Mines

The second step is to input the errors for each composite into the simulation program. In
doing so, it was observed that for the very large composite errors (ji.e. the 152 m spacing
scenario in Table 4-13 that yields a 26.2 minute SPI composite error) the simulations
would generate occasional negative values for SPI. This was corrected by setting a
minimum acceptable value of 10 minutes for SPI. The floor value is consistent with
observed SPI values from the Chino deposit and is not deemed to significantly affect the
overall error calculations.

The simulation program was run for the four operating periods. The resulting standard
deviations of the specific energy, when divided by the mean, yield the reiative standard
estimation error of the specific energy. This equates to the estimated throughput error
as per Equation 2-5 on page 25.

The new precision curves are shown in Figure 4-17.
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Error of Mean Throughput Predictions
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Figure 4-17 Error of mean throughput predictions versus sample
spacing ~ CEET error included

At Chino Mines, the increase in throughput precision with decreasing sample spacing is
due almost entirely to the central limit theorem; ie. the increased geostatistical
knowledge of the hardness properties resulting from smaller sample spacing does not

. significantly improve the throughput error for a single sample. To illustrate this,
simulation studies were performed for different spacing intervals (30-meters, 100-
meters, and infinite spacing; /.e. a pure nugget effect®"). The relative contributions of the
CEET sub-models to the total specific energy errors are shown in Figure 4-18 for the
case of no spatial correlation (pure nugget effect). Approximately three quarters (76%)
of the error is due to imperfect knowledge of the ore hardness and the rest is due to the
SPI models. This error drops to 65% for the case of 100 m sample spacing (Figure
4-19), and to 61% for the case of 30 m sample spacing (Figure 4-20).

This trend is attributable to the fact that the variogram for Chino increases rapidiy from a
low nugget effect. This rapid increase means that the hardness can change very quickly
within the ore body (an observation supported by the experience of plant personnel at
Chino).

8t “pure nugget effect’” means that no spatial correlation exists between SPI values. In this case the

variogram would be a horizontal line equal to the variance of all SPI samples in the ore body. For :his
simulation study, the standard deviation of SPI in the ore body was used as the SPi estimation error.
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Contributions to Total Throughput Error, With SP! Contributions
(No Spatial Correlation of SP)
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Figure 4-18 Contribution fo error assuming no spatial correlation )
of SPf .
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Figure 4-18 Contributions to error for 100-meter spacing
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Contributions to Total Throughput Error, With SP] Contributions
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Figure 4-20 Contributions to error for 30-m spacing

This is not to say that the benefits of increased test work are muted. The error of the
mean specific energy estimates for a one-year period is reduced from nearly 5% to 1.3%
by reducing the sample spacing from 100 m to 30 m (and increasing the number tests
from 28 to 360). Figures are shown in Table 4-14.

F80 Fsag T80  Sp Energy Sample SpPi

mean mean .~ oméan Spacing Composites

{mm) {%) (mm) kWh/tonne {m) # %
70 27 0.74 26 5 100 28 5.3%
70 27 0.74 2.6 5 30 360 1.4%

Table 4-14 Standard error of mean specific energy estimates for
100-m spacing and 30-m spacing cases
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This section is a discussion of questions that arose during this research project. It is

divided into four sections:

o Discussion of the blending and modeling work on the SPI test,

e Discussion of the analysis of the geostatistical properties of the SPI and methods
for interpolating the values

o Discussion of the CEET error analysis

o Discussion and interpretation of the Chino example

5.1 BLENDING

Previous work has suggested (Section 2.3.2) that the SPI is not an additive parameter.
. The analysis presented in Section 3 has shown that the blending of ore can be

mathematically predicted by considering the entire curve of percent retained (10-mesh)

versus time. The curves are additive even if the SPI (a single point on a curve) is not.

Modeling of the SPI grind curve is necessary for mathematical blending studies. The
improper modeling of an SPI curve results in errors in the blending model. For example,
it was mentioned that soft ores a‘re difficult to model because the cut-off point of the test
is too close to the origin for proper extrapolation of the model, particularly when
attempting to blend the soft ore with a harder ore. This is a source of error in blending
studies; however, the error can be minimized by use of the correct models for soft,
medium, and hard ores. It can be further minimized by instituting the recommended
changes in the SPI test procedure discussed in Section 3.4.1.

STATIS’

The geostatistical investigations were performed at Chino Mines before the blending
studies were undertaken in Toronto, Canada. For economic and commercial reasons,
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the development of the geostatistical methodology for ore body characterization at Chino

Mines was completed before the question of SPI additivity was resolved. As a result, the

geostatistical analysis described was developed using the raw SPI, which, as shown and

explained in Section 3, is not an additive parameter.

While a comparative study is the only way to quantify the errors associated with the

method used at Chino, it is thought that the resulting error is not significant for several

reasons.

1.

The geostatistical estimations resulting from use of the raw SP| values will resuit
in positive estimation error; ie. the true value is lower than the estimated value.
This means that the corresponding throughput estimates will err slightly on the
side of caution.

The SPI is raised to a power between 0 and 1 in the primary SPI calibration
equation (Equation 2-4), thereby reducing the magnitude of the error due to the
SPI value.

Significant error only arises when very hard samples are blended with very soft
samples. This would be analogous to estimating the SPI value of an unknown
point in the ore body between a hard and soft composite sample. Geographic
trends in ore hardness, as quantified by the variogram, reduce the likelihood of

this scenario.

The correct geostatistical methodology incorporates the blending conclusion in the

geostatistical process as follows:

Variograms should be created for various points along the time axis of the grind
curve. For example 10 minutes, 30 minutes, 80 minutes, and 120 minutes,
producing a set of four variograms.

Each point should be kriged using its respective variogram and the resulting
grind curve estimated using one of the models described in Section 3.1.

The resulting SPI value should be estimated from the kriged grind curve.
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it may be possible to use only a single variogram if the four variograms described in

Step 1 show significant similarities. An investigative study should be conducted in this
regard.

The procedure for the geostatistical estimation of the entire grind curves adds to the
effort required to produce the precision curves. Whether this is justified by the additional
accuracy thus obtained should be investigated.

If variograms are created for several points along the time axis of the SPI grind curve, it
would be useful to change the SPI test procedure to fixed-length iterations instead of the
variable-length used in the current procedures. This would allow the use of the
measured value for variogram analysis and kriging, instead of a value estimated from a
model. Continuing the test on soft ores to well past the SPI point would also diminish
the error resulting from model extrapolation.

The geostatistical properties of the crusher index were not investigated or included in
this study. The large contribution of the feed size model to the total estimation error

. indicates that the crusher index errors could contribute significantly to overall errors. It
also indicates that better methods for estimating feed size would decrease the error.
Such methods may include image analysis on exposed faces in the pit and/or
consideration of mine blast patterns and powder factors.

5.3 CEET ERROR ANALYSIS

The CEET error analysis considers all errors caused by the scatter of the various sub-
models used to return a specific energy value from the SPI, crusher index, and various
operating and plant parameters. It was based on the assumption that the variance of the
predicted variable is constant for fixed values of the caiculated variable. The only
exception is the feed size model used, which shows increasing absolute variance with

mean feed size.

The error analysis study has shown that the calculaiion of specific energy from a single
drill core sample is subject to an error of approximately 20 — 26 percent (at the 68%
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confidence interval). This includes all errors attributable to the model calibration scatter.

it does not include errors due to SPI or mill power draw.

It is worth commenting on this error. When a plant is surveyed, the resulting analysis is
based on the observed values of feed size distribution, transfer size distribution, and
pebble crusher circulating load. In this case the error is substantially lower (actually
equivalent to the 0.51 kWh/tonne of the primary SPI calibration). The 20 — 26 percent
error described above is based on the SP| obtained from a single 2-kg composite
sample collected from the pit. This SPI value is then used to estimate the Fgo, Fso,
PCCL, Tg, Fsac, and specific energy as illustrated in Figure 4-12.

5.4 THE CHINO EXAMPLE

The Chino example has shown that the improvement in the throughput error that results
from a larger sampling effort is entirely explained by the central limit theorem. In other
words, the benefits of using an approach based exclusively on kriging are non-existent

for economically viable sample intervals at Chino.

This is a natural result of the hardness continuity expressed by shape of the variogram
at Chino: a low nugget effect followed by a sharp increase near the origin of the
distance axis. It is thought that one reason the variogram shows this shape is because it
was created from sample pairs that have been select irrespective of geologic or lithologic
zoning. The shape of the variogram might improve by respecting structural boundaries
within the ore body when pairing points for variogram calculation. Anocther option is to
create individual variograms for lithologic zones. In either case, more accurate
variogram modeling of the spatial continuity of SPI will result in greater possibie sample
spacing for the same nominal forecast errors.

The difficulty with the above suggestions is that the number of required sample points
starts to increase quickly as the new criteria eliminate possible composite pairs. One
alternative is to calculate the global omni-directional variogram as exempilified by the
Chino variogram, and then to scale the sill according to the variance of SPI values within
each specific lithologic zone. This would effectively lower the sill of the variogram (and
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hence the estimation error of the SPI) for lithologic zones that have relatively minor

hardness variations.

Another alternative is to use rock type, alteration, grade, and any other secondary
information to improve the geostatistical estimates. In this method a principal
component analysis is performed to identify the variables that have the highest
correlation with SPI value. These variables are then used in a multi-regression analysis
to estimate SPI values. The estimated values are combined with the geostatistical
results according to the inverse of the estimation variance for each method. The result
is an estimate lower than either method would give independently.

All of these suggestions are options for improving the estimation error of the mean
specific energy. Obviously each one entails an economic expenditure. Assuming that
the variogram and secondary correlations are not improved substantially by more
sampling and testing (a questionable assumption), the above example from Chino
suggests that only marginal improvements in the geostatistical estimates would resuit
from increasing the sampling program from 28 to 360 SPI samples for a 1-year program.

. This indicates that for short-term periods and/or low-production operations the
diminishing returns of the geostatistical approach make it an undesirable alternative to
the standard ore-class approach described in 4.1.1. In fact, in this situation performing
one or a few tests on a sample composite or composites will give the same indication of
the mean specific energy (but with all the smoothing problems associated with sample
compositing). Note that this result is specific to Chino Mines. Other ore bodies
sampled, particularly from South American copper porphyry deposits, have shown much
greater degrees of hardness continuity within the ore body.

108



McGill University Conclusions

ONCLUSIONS

6.1 GENERAL

This research project has developed a methodology for characterizing the hardness, in
terms of the SAG Power Index, of an ore body for grinding circuit design and
optimization through the following steps:

1. Studying through ore blending experiments the additivity of the SP! and its
implications for geostatistical or geometrical interpolation procedures
2. Adapting in collaboration with a geostatistical advisor the geostatistical
procedures used for ore grade estimation to hardness estimation, and using
them to quantify the error of the resultant estimates based on the distance
between samples in an ore body
‘ 3. Using the error determined in step two in a Monte-Carlo simulation study that
quantifies the propagation of error through the complex CEET Il calculations that
are used to convert SPI to required specific energy of an ore in an autogenous

mill.

Conclusions specific to each step in the procedure are summarized below.

6.1.1 Blending

e The SPI test can be adequately modeled by representing the percent retained in
the plus 10-mesh fraction (1.7 mm) versus time as one of several exponential
curves.

e The use of these models enables the prediction of the behaviour of a blend of
ores based solely on the models of its parent ores.

e The SPIis not an additive parameter. Geostatistical and blending studies should
consider the entire curve of grind versus time if an additive parameter is desired.
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6.1.2 Geostatistics

e Geostatistical methods can be used to estimate the standard error of the mean
SPI value in a face or faces.

o For low-production operations or short time periods, an ore characterization
approach based on ore classes may offer the most attractive cost/benefit ratio

e The SPI variogram at Chino mines suggests that the SPI has a low nugget effect,
followed by a steeply increasing variance very close to the origin of the distance
axis, reflecting high variability over short distances in the ore body

e At economically feasible sampling efforts, there is little improvement in error
resulting from the kriging of closely spaced SPI values; instead, the
improvements are due to the statistical implications of the central limit theorem
and the larger sampling efforts involved. This is a result of the high hardness
variability as shown by the variogram of SPI.

e Consideration of variability within ore zones and relationships between SPI and
secondary variables such as lithography, alteration, assay, etc., may improve the
geostatistically-caused error of the throughput estimate. Methods for doing so

. were discussed in Section 5.4.

6.1.3 CEET Error Analysis

e The combined error of a specific energy estimate using the CEET Il models
accounting for the effects of feed size, circulating load and transfer size within the
primary SPI calibration equation is approximately 20 to 26 percent.

e The majority of the error inherent in the CEET I calculations can be atiributed to
scatter in the feed size model and the propagation of this scatter throughout the
other sub-models that require knowledge of the feed size

® As'the value of the SPI decreases the percentage of the specific energy error
attributable to scatter in the primary calibration model increases and that
attributable fo the feed size model decreases.

e For the work conducted at Chino mines, it was determined that the error
attributable to the precision of CEET Hl accounts for approximately one third of
the estimation error for SPI cell of influence, with the remainder attributable to
geostatistical considerations.
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6.2 RECOMMENDATIONS

e Perform SPI interpolation in an ore body respecting the entire curve of grind
versus time instead of only a single point (i.e. the SPI).

o Modify the SPI test procedures to fix the lengths of the grind iterations at
constant periods. This will facilitate the modeling of the SPI grind curve and the
geostatistical or geometrical interpolation methods used to model the ore body.
it will also eliminate duplication of points near the test completion point, thereby
decfeasing the time required to perform a test.

e Extend the SPI grinding time on soft ores to beyond the current SPl-defined
completion time. This will eliminate errors caused by the extrapolation of models
on soft ores.

e To reduce the error of the geostatistical interpolations, perform variogram
calculation and kriging such that ore zone boundaries are respected and use
correlation with secondary variables. Methods for doing so are proposed in
Section 5.4.

‘ e For low-production or short-term time frames consider the ore-class approach to
. modeling or compositing samples due to the diminishing benefit/cost ratic of the
geostatistical methodology

6.3 FUTURE WORK

¢ Study the geostatistical properties of the crusher index Cr and the effects on the
precision of the mean specific energy forecasts that result from geostatistical
estimation of the crusher index in the ore body.

e Investigate the error of the mill power draw estimates used to calculate the final
throughput values. The power draw is related to size of the miil shell relative to
the installed motor power; the liner, grate, and pebble crusher configurations; the
size and competency of the ore feeding the mill; its density and rheology inside
the mill; and the operating practices used to control the mill. Because the power
draw is directly proportional {o the throughput (refer to Equation 2-5), the error
attributable to power draw is a significant one and in the opinion of the author has
not been adequately investigated. It would be an interesting research project to
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attempt to characterize mill power draw as a function of ore characteristics.

Models exist for characterizing material transport and mill load in autogenous
mills. If these can be adopted for ore body characterization, a significant source
of error would be removed from the CEET calculations.

o Perform a comparative study to gquantify the differences between direct
geostatistical interpolation of SP! and the interpolation of the entire SPI grind
curve. [f the differences are insignificant, it may not be necessary to interpolate
the entire curve grind versus time. This would greatly simplify the development
of the precision curves. If the differences are significant, it may be necessary to
develop a methodology for developing the precision curves such that the entire
SPI grinding curve is accounted for in the face calculations.

o Develop and exemplify the procedure for incorporating the relationships between
SPI and secondary variables in the interpolation procedures.

e [nvestigate alternative methods for improving the feed size models. Because the
feed size models comprise the largest portion of the CEET U error, reductions in
the feed size models will lead to reductions in the specific energy predictions.
Options for consideration include considering ore blasting practices and/or image

‘ analysis of exposed faces.
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