
DISTRIBUTED COLLISION DETECTION AND RESOLUTION

by

Ching Ling Tom Chen

School of Computer Science

McGill University, Montreal, Quebec

May 2010

A thesis submitted to McGill University

in partial fulfillment of the requirements of the degree of

Master of Science

Copyright c© 2010 by Ching Ling Tom Chen

Abstract

Multiplayer, online computer games often distribute game-object state to client

machines in order to improve game scalability and responsiveness. Network latency

and jitter are concerns in this context, although the impact is reduced by the use of

predictive techniques such as dead reckoning. These techniques, however, introduce

consistency concerns for important and hard to predict behaviours, such as object col-

lisions. In these cases a centralized authority or client/server architecture is typically

used to ensure strong consistency, limiting game scalability.

In this work we propose a motion-lock protocol for distributed game collision de-

tection and resolution. The motion-lock protocol improves performance of motion

prediction by giving stations time to communicate and agree on the detected col-

lisions. This reduces the divergence of object states and post-collision trajectories.

Offline and online simulation results show the motion-lock protocol is able to main-

tain strong consistency in collision count and reduces post-collision deviation with a

small sacrifice of 3-4% in responsiveness of player controls. Qualitatively, the visual

result of the collision response is greatly improved. With the motion-lock protocol,

multiplayer online games can offload basic collision detection and resolution to game

clients, increasing scalability without overly sacrificing consistency.

i

Résumé

Multijoueurs, des jeux informatiques en ligne distribuent souvent tat du jeu-objet

aux ordinateurs clients afin d’amliorer l’extensibilit de jeu et ractivit. Temps de la-

tence et la gigue sont des proccupations dans ce contexte, bien que l’impact est rduit

par l’utilisation de techniques de prdiction, comme dead reckoning. Ces techniques,

toutefois, d’introduire des proccupations importantes pour la cohrence et difficile pr-

dire les comportements, tels que les collisions d’objets. Dans ces cas, l’architecture

d’une autorit centralise ou client/serveur est gnralement utilis pour assurer la coh-

rence forte, limiter l’volutivit jeu.

Dans cette texte, nous proposons un protocole de motion-lock pour la dtection de

collision jeu distribu et de la rsolution. Le motion-lock protocole amliore les perfor-

mances de prdiction de mouvement en donnant stations temps de communiquer et

de s’entendre sur les collisions dtectes. Cela rduit la divergence des tats de lobjet et

trajectoires post-collision. Les rsultats de simulation en mode den ligne et hors ligne

montrent le protocole motion-lock est en mesure de maintenir la cohrence forte du

nombre de collisions et rduit l’cart aprs la collision avec un petit sacrifice de 3-4% de

la ractivit des commandes du lecteur. Qualitativement, le rsultat visuel de la raction

de collision est grandement amliore. Avec le protocole de motion-lock, les jeux mul-

tijoueurs en ligne peut dcharger la dtection de collision et la rsolution de base aux

clients de jeu, ce qui augmente l’volutivit sans trop sacrifier la cohrence.

ii

Acknowledgments

I would like to thank my supervisor Professor Clark Verbrugge. He allows me to

freely explore this new research area, while, at the same time, guiding me to the right

direction. His valuable advice and patience have made this thesis possible.

I would express my gratitude to my family. Encouragements from my parents

have kept me going through difficult times during my graduate studies.

Finally, I would like to give special thank to Pauline Lau for believing in me

and my decisions. Without her support and understanding, this thesis would not be

completed.

iii

Contents

Abstract i

Résumé ii

Acknowledgments iii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Contributions . 4

2 Background and Related Work 5

2.1 Consistency in Distributed Architectures 6

2.2 Related Work . 9

2.2.1 Object State Consistency and Motion Prediction 9

2.2.2 High Level Consistency Architectures 11

2.3 NetZ Middle-Ware . 13

3 Challenges 14

3.1 Challenges in Motion Prediction . 15

3.1.1 Motion Prediction . 15

iv

3.1.2 Extrapolation Errors . 16

3.2 Challenges in Distributed Collision Detection and Resolution 18

3.2.1 Inconsistency in Distributed Collision Detection 19

3.2.2 Inconsistency in Distributed Collision Resolution 21

3.3 Formalizing Consistency and Correctness 23

3.3.1 Consistency and Correctness in Motion Prediction 23

3.3.2 Consistency and Correctness in Distributed Collision Detection 25

3.3.3 Consistency and Correctness in Distributed Collision Resolution 27

4 Distributed Collision Detection and Resolution 29

4.1 Categorization of Collisions and Stations 31

4.2 Distributed Collision Detection . 32

4.2.1 Post-Collision Agreement Protocol 33

4.2.2 Pre-Collision Agreement Protocol 38

4.2.3 Motion-Lock Collision Agreement Protocol 46

4.3 Distributed Collision Resolution . 50

4.3.1 Post-Collision Trajectory Agreement 53

4.4 Multi-object Collisions . 55

4.4.1 Spatial-temporal Bucket Synchronization 56

4.5 Conclusion . 61

5 Simulations and Analysis 63

5.1 Offline Simulator Design and Implementation 64

5.1.1 Station . 66

5.1.2 Network . 68

5.1.3 Monitor . 69

5.2 Online Simulation Design and Implementation 70

5.2.1 Object Replication . 70

5.2.2 Network Data Definition . 71

5.3 Offline Experimental Analysis . 72

5.3.1 Experiment Setup . 74

v

5.3.2 Measurements . 78

5.3.3 Qualitative Result . 79

5.3.4 Quantitative Result . 81

5.4 Online Experimental Analysis . 90

5.4.1 Experiment Setup . 91

5.4.2 Measurements . 93

5.4.3 Qualitative Result . 94

5.4.4 Quantitative Result . 95

5.5 Conclusion . 98

6 Conclusion 99

6.1 Future Work . 101

6.1.1 Collision Count Correctness 101

6.1.2 Post-Collision Trajectory Agreement 102

6.1.3 Multi-Object Collisions . 103

6.1.4 Cheating and Security . 103

6.1.5 Fault Tolerance . 104

vi

List of Figures

1.1 A missed collision when error in the location of one object is greater than

the sum of the radius of the objects. 3

1.2 A false collision when error in the location of one object is greater than the

sum of the radius of the objects. 3

3.1 Accurate Extrapolation . 17

3.2 Unreliable Extrapolation . 18

3.3 Objects on station A and B . 19

3.4 False collision causes inconsistency between A and B. 20

3.5 Missed collision causes inconsistency between A and B. 21

3.6 Inconsistent collision states causes different trajectories after the collision. 22

4.1 Post-collision agreement protocol. Length of Δtcol depends on the net-

work latency. 37

4.2 Pre-Collision Agreement Protocol message passing. 43

4.3 Termination of the protocol during passing of ACK causes inconsistency. 44

4.4 Unable to complete the protocol due to late detection of a potential

collision. 45

4.5 By sending potential collision counter before the collision, Δtcol can be

minimized. 51

4.6 Collision with correct collision normal. 52

4.7 Collision with incorrect collision normal. 52

4.8 Large correction jump when state update is received. 53

4.9 Small correction jump using received post-collision trajectory. 54

vii

4.10 Rk interrupts the committed collision between Mi and Rj 56

5.1 Offline simulator overall system design. 65

5.2 Design of StatioCDEVS and MainLoopADEVS. 67

5.3 Design of NetworkCDEVS and ConnectionADEVS. 69

5.4 Linear-Linear-Collide scenario. 74

5.5 Linear-Linear-Pass scenario. 75

5.6 Circular-Linear-Collide scenario. 75

5.7 Circular-Linear-Pass scenario. 76

5.8 Circular-Circular-Collide scenario. 76

5.9 Circular-Circular-Pass scenario. 77

5.10 Collision inconsistency interval for LLC Scenario 85

5.11 Collision inconsistency interval for CLC Scenario 85

5.12 Collision inconsistency interval for CLP Scenario 86

5.13 Collision inconsistency interval for CCC Scenario 86

5.14 Collision inconsistency interval for CCP Scenario 87

5.15 Post-Collision Trajectory Deviation for LLC Scenario 88

5.16 Post-Collision Trajectory Deviation for CLC Scenario 88

5.17 Post-Collision Trajectory Deviation for CLP Scenario 89

5.18 Post-Collision Trajectory Deviation for CCC Scenario 89

5.19 Post-Collision Trajectory Deviation for CCP Scenario 90

5.20 Multi-object collision scenario. 92

5.21 Replica deviation causes consecutive collisions. 92

viii

List of Tables

5.1 Collision Count for Good Network Condition (50ms delay, 10% loss) . 83

5.2 Collision Count for Normal Network Condition (100ms delay, 20% loss) 83

5.3 Collision Count for Congested Network Condition (150ms delay, 40%

loss) . 83

5.4 Deviation error of M1 in Multi-Object Collision scenario 97

5.5 Collision inconsistency interval of M1 in Multi-Object Collision scenario 97

5.6 kBytes sent from station A in Multi-Object Collision scenario 97

5.7 kBytes received by station A in Multi-Object Collision scenario . . . 97

ix

Chapter 1

Introduction

Multiplayer online games (MOG) have become popular in recent years. Advances

in networking technology allow game developers to send more data with faster trans-

mission and thus support larger and more complex virtual worlds. Currently, most

multiplayer online games out in the consumer market use the centralized client/server

architecture as a basis for the game implementation [12, 11]. This architecture is rel-

atively easy to implement, and the centralized server helps the companies deal with

issues such as billing and security. A single game authority further simplifies many

game implementation aspects, such as in modeling game physics. For these interac-

tions a centralized authority is useful in order to ensure detection and resolution of

important game events, such as object collisions, are the same for all clients.

As the game population increases, however, basic client/server models suffer from

the server acting as a bottleneck to game state processing and communication. The

recent success of Massive Multiplayer Online Role Playing Games (MMORPG), which

emphasize large and growing player populations, has motivated the game companies

to look into more scalable architectures. Peer-to-peer and more complex hybrid de-

signs show promise [14, 7, 1]. Unfortunately, as game sizes grow and as information

is distributed, state consistency becomes more difficult to maintain, reducing either

performance or apparent accuracy and thus interfering with immersive game-play.

Techniques exist to improve scalability while maintaining real-time performance,

and in the academic and the military community research into the closely related

1

field of distributed virtual simulation has been around since the 1980’s. An important

solution to scalability in such contexts is the use of optimistic techniques that locally

cache or replicate remote-object data. Stations can then interact optimistically using

local versions, avoiding the need to always consult with the holder of remote data.

When data changes, synchronization of replicas is performed by sending messages

between replicas and the original master. Network latency and jitter can of course

delay updates, causing gaps or delays in representing or resolving state. To overcome

network problems, dead-reckoning algorithms are used to predict object motions and

interpolate any missing data. This reduces round-trip communication delays, at a

cost of reduced accuracy in representation.

Although these designs improve scalability, they have a less positive impact on

the representation of important interactions such as collision detection or resolution.

Dead-reckoning is least successful in the presence of unpredictable, dynamic interac-

tions such as game-object collisions. Errors in dead-reckoned motion can affect the

time, location, and even detection of collisions, easily resulting in large visual errors

as the game state deviates and is eventually synchronized. Figures 1.1 and 1.2 show

examples where errors introduced by dead-reckoning cause a collision to be missed or

detected erroneously (respectively). The potential for this behaviour is an important

aesthetic concern in client/server architectures, and has an impact on overall game

consistency in peer-to-peer contexts.

Here we investigate a new protocol for improving collision consistency between

pairs of distributed objects. Our motion-lock protocol works by observing object

behaviour and preventing unpredictable local object movements in the presence of

potential collisions. By matching limitations on object activity to network delay,

the prediction of future collisions can be greatly improved, optimally resulting in

in perfect collision synchrony. This simple design has few drawbacks, adding only

minimal additional network cost and having little to no discernible user impact.

We evaluate our design experimentally, measuring and comparing behaviour to

an industry-standard dead-reckoning design, as well as in relation to basic optimistic

and pessimistic designs for improving collision consistency. Our design shows signifi-

cant benefit to game consistency, greatly reducing the inconsistency times over more

2

Figure 1.1: A missed collision when error in the location of one object is greater than the

sum of the radius of the objects.

Figure 1.2: A false collision when error in the location of one object is greater than the

sum of the radius of the objects.

3

straightforward approaches on average, and noticeably improving visual appearance.

1.1 Contributions

Our work makes the following specific contributions:

• We develop a new protocol for improving collision consistency in a distributed,

peer-to-peer environment. Our approach constitutes a form of local lag [19]

specialized to collision handling, and has low network and user impact.

• To help evaluation, we develop two implementations of our design. These consist

of an offline simulation capable of arbitrarily varying test parameters, and for

more complex and realistic testing an implementation within a full-featured,

industry-grade game network middleware.

• As part of validating our design we perform detailed experimentation, showing

data comparing the behaviour of our approach under both offline, simulated

and online measured implementations. We consider both qualitative and quan-

titative characteristics relevant to our problem. Our motion-lock protocol has

demonstrably better behaviour, reducing inconsistency time and improving vi-

sual appearance, while also demonstrating no significant network overhead.

In the next chapter we give essential background and related work for understand-

ing our design and approach to distributed collision detection. Chapter 3 examines

the challenges in distributed collision detection in detail, and defines important defini-

tions that will be used throughout this thesis. Chapter 4 describes our main protocol

design, and Chapter 5 gives experimental data evaluating our design. We conclude

and describe future work in Chapter 6.

4

Chapter 2

Background and Related Work

Traditionally, a multiplayer offline game consists of a single station with a single

instance of game state. Players enter commands through different controllers to

manipulate the game state on the single station. At its core, a multiplayer online

game (MOG) is similar to its offline version where there is a shared game state.

However, players are distributed geographically and manipulate the game state on

their own local machines through the network.

In an MOG there are two main types of architectures used to maintain the shared

game state: centralized and distributed. The centralized architecture contains a

single instance of game state that resides on a server station. Players send commands

from their local client machine to the server to change the shared game state. The

server then processes the commands, calculates a new game state and sends the new

state back to the clients. Since there is only a single game state, the centralized

architecture guarantees strong consistency of the game state. However, the server

has finite processing power and bandwidth to handle a given number of clients, and

so this architecture has difficulty scaling up to large game sizes. Furthermore, if the

server crashes, the game state is lost and the game is over.

In the distributed architecture, such as peer-to-peer and server cluster architec-

tures, there are multiple instances of the game state replicated on different stations.

A player’s local station can either retain its own instance of game state, or connect to

one of the stations with an existing replication. If one station crashes, there are still

5

other stations maintaining the shared state that allow the game to continue. Player

commands can (optimistically) change one of the instances, and thus, the processing

of the game states is distributed, avoiding the single server bottleneck. A disadvan-

tage of this design is that in order to keep the instances synchronized, the stations

need to send update messages to each other. If the network conditions between sta-

tions becomes congested, however, updates can be delayed or lost, causing the states

to diverge and thus become inconsistent.

In this chapter, we first present some background on the distributed architectures

of games and how game state is replicated and updated. Next, related work on

consistency and collision handling in multiplayer online games is presented.

2.1 Consistency in Distributed Architectures

In modern multiplayer online games, thousands of players can connect to the game

and interact with each other. With a client/server architecture, the centralized server

contains the single game state and maintains the consistency of the game state. In a

distributed architecture, the game state is replicated on different stations so that the

processing of the game state is distributed. However, replication introduces inconsis-

tency. In this section, we discuss the basics of game state replication and the cause of

inconsistency. Then we show some pioneering works in distributed virtual simulation

and how they handle the inconsistency.

In a game, the entire game state can be broken down to individual states for each

object. For example, the state for an item that a player may or may not possess, would

include whether it is acquired by a character or not. In a distributed environment,

each object and its state may be created by one of the game instances on one station.

The object is then required to be replicated on other stations so that all instances

which may need to represent or otherwise deal with the existence of that object have

the same state.

In our research we focus on the physically based motion state of a player-controlled

6

object. The motion state of a controlled object is its position, velocity, and accel-

eration. We assume the state can be changed by player inputs, but also follows an

underlying motion model. Objects thus undergo change not only from player inputs

but may also experience continuous movement or state change due to the motion

model.

In order for other players to see each other’s controlled objects, the controlled

objects are replicated on all players’ local stations. For our discussion, we term the

copy of the object that is controlled by the player the master, and the replicated

copies that are located on other players’ remote station the replicas. On each station,

players can control their own master object and interact with the replicas.

SIMNET [5] and DIS [2] were the pioneers in distributed virtual simulation de-

veloped by the United State Defence Advanced Research Projects Agency. SIMNET

was used to train military personnel in warfare tactics and operating various vehicles.

The protocol used in SIMNET was later on standardized to the DIS protocol. In DIS,

the controlled objects operated by the soldiers are replicated on all stations. The mo-

tion states of the master objects are sent through the network to update the state of

the replicas on the other stations. Unfortunately, network latency is always present

in a distributed simulation. Master updates will be delayed and the replicas will be

perceived to be moving in the past. The states of the replicas are not synchronized

with the master and any interactions with the delayed replicas cause inconsistency.

To compensate for network latency and possible packet loss, DIS uses a dead

reckoning algorithm to synchronize the states of the masters and their replicas. In

general, dead reckoning algorithms use the past state to extrapolate a future state

based on the underlying motion model. For example, if an object is moving according

to Newton’s law of motion, its future position can be predicted using the equation

Pt+Δt = Pt + VtΔt + AtΔt2/2. In DIS, the dead reckoning algorithm uses the re-

ceived but outdated master state to extrapolate a current state for any corresponding

replicas. The position of the replica is then approximately in sync with the master’s

position; this reduces the inconsistency when the objects interact with each other.

The DIS dead reckoning protocol also reduces the bandwidth by controlling the

update frequency. On the master station, a prediction of replica state is made using

7

the same dead reckoning algorithm as each replica may use. The master station

then calculates the difference between the actual state and the predicted state of

the master. Only when the difference exceeds some preset threshold will the master

station send update to the replicas. In other word, replicas are updated only when the

master believes the replicas have a large deviation. In practice this can be combined

with the Position History-Based Dead Reckoning protocol [28], which improves upon

the DIS protocol by further reducing bandwidth usage. Instead of sending position,

velocity, and accelerations to the remote stations, only the position of the master is

sent to reduce the packet size. Upon receiving a position, the remote station stores

the position in a history. As the frame time is reached to display the objects, the

remote station uses the positions in the history and an adaptive tracking algorithm

to estimate the current velocity and acceleration. With the received position and the

estimated velocity and acceleration the current position can be extrapolated.

Although dead reckoning algorithm can help synchronize the state of the replicas

with its master, for controlled objects players can enter inputs at anytime to change

the master’s motion. The inputs are discrete events that cause the master to tem-

porary disobey the motion model and become unpredictable by the dead reckoning

algorithm. Similarly, collisions between objects are discrete collision events that cause

the master to break away from the motion model. Both player inputs and collisions

cause the dead reckoning algorithm to unable to predict the master’s state, and so

the replicas deviate and create inconsistency.

State consistency in such environments does not grow unbounded. Even if a replica

has deviated, its state will be corrected after applying the next state update from the

master. This correction, however, can be large, visually apparent and thus confusing

to players. The dead reckoning protocols thus also use smoothing algorithms to

gradually converge any deviated state to the correct state to produce better visual

results. Unfortunately, a smooth transition of the replica’s trajectory that is still not

in sync with the master’s actual motion, may not correspond to the actual object

motion model, and may further diverge in state if any other inputs or collisions occur

during the transition period.

8

2.2 Related Work

As discussed above, motion prediction is essential for multiplayer online games to

synchronize the motion state of a master and its replicas. The DIS dead reckoning

protocol [2] and the Position History-Base Dead Reckoning protocol [28] provide the

basis in motion prediction to improve consistency for distributed virtual simulations

and multiplayer online games. In this section, we discuss some of the relevant research

that provides more consistency to distributed architectures. This research can be

divided into consistency in object state, and a higher level consistency in global game

state.

2.2.1 Object State Consistency and Motion Prediction

To improve consistency, many researchers have looked into improving the dead reckon-

ing protocol by using alternative measurements or adaptively changing the attributes

of the protocol. Cai et al. adaptively changes the error threshold of the dead reckon-

ing algorithm depending on the distance between the object. When two objects enter

each other’s area of interest such that the distance between them is small, the error

threshold is reduced so that the update frequency is increased to reduce prediction

error [4]. Similarly, Kenny et al. calculates the deviation error of the replica and

sends back the error to the master, so that the master can change the error threshold

accordingly. This creates a close-loop control system to adjust the update frequency

[15]. The Pre-reckoning algorithm overrides the error threshold and sends updates

immediately to the replica if the motion of the master shows the following three be-

haviours: resting master starts to move, moving master comes to a full stop, and

master makes a sharp turn [10]. Robert et al. introduce the time-space threshold to

determine the update frequency. The deviation between the master’s absolute state

and predicted state is summed over time between two successive updates. The time-

space threshold performs better than the original error threshold when objects move

with smooth and low curvature motions [27].

Similar to dead reckoning algorithms, a Kalman filter estimator can be used to

9

estimate object motion states. The Kalman filter predicts a state based on the under-

lying model, and then corrects the prediction based on the measured data. For details

on Kalman filter, Welch et al. [32] provides a good introduction. In their research,

Tumanov et al. [31] use a Kalman filter to predict the future state of the master on

the sender side. The future time of the predicted state is relative to the estimated

network latency. The predicted master state is then sent to update the replica such

that it will arrive on time without the need of extrapolation at the receiver side.

Chan et al. [6] suggest that most distributed virtual simulations use the 2D

mouse to navigate through the environment. They propose that by predicting the 2D

movement of the mouse and then mapping the movement onto the 3D virtual world,

the prediction of the object’s motion can be simplified. They studied the mouse

movement and use a Kalman filter estimator to predict the movement. However, this

work is limited to games that uses a mouse for control.

Research into motion prediction can help improve the accuracy of state predic-

tions, which, in turn, can reduce the inconsistency caused by collision events. Still,

motions for user controlled objects can be hard to predict, and with high latency and

jitter false and missed collision can still occur. Therefore, improvements in motion

predictions are not enough to maintain consistency in object states when there are

collisions between objects.

For collision detection, in his research, Ohlenburg adaptively increases the rate

of updates from master to replicas when objects are close to each other and may

potentially collide [21]. The results show great improvement in object collisions,

but also show that by increasing the update rate, the bandwidth usage increased

dramatically. This work is closely related to our research; however, the adaptive

approach does not deal with missed or false collisions. Stations will not be informed

if a collision is missed. This creates inconsistency in number of collisions detected, as

we will discuss in detail in the next chapter.

For more predictable non-player controlled objects, the Deterministic Object Po-

sition Estimator uses an object’s past trajectories to predict the motion of the object

and the collision point and time [17]. The estimator shows accurate results for objects

that follows predictable trajectories, but does not apply to player controlled objects

10

with unpredictable movements.

Another approach to improve state consistency is to manipulate the time when

events are actually performed. In the local lag algorithm [19], player commands that

are to be applied to the masters are delayed and scheduled to be executed at a

future time. The commands are then sent to the replicas, hopefully arriving before

the scheduled execution time. When the scheduled time has reached, the master

and its replicas process the commands simultaneously, synchronizing the states and

maintaining consistency. Here responsiveness to player commands is traded-off for

consistency. The amount of delay (lag) should not be so long as to be perceivable

by players, but long enough to allow state synchrony. Our motion-lock protocol

is similar to the local lag algorithm such that player’s loses control to gain collision

consistency; however, the motion-lock protocol only applies the locking when collisions

are predicted, while local lag delays all player commands.

2.2.2 High Level Consistency Architectures

In this section, research in maintaining and synchronizing global states is discussed.

Due to variable network delays and differences in frame rates among the connected

stations, the game state on each station may not be synchronized. In the research of

Diot et al. [9], the bucket synchronization algorithm discretized time into buckets of

fixed intervals. Commands are delayed, similar to the local lag but with a fixed 100ms

lag, and are put into a bucket to be processed. At the scheduled time, commands

that belong to the same bucket are processed at the same time. Missing states due to

latency are extrapolated from the old buckets using dead reckoning algorithms. The

bucket synchronization algorithm helps stations running at different frame rates to

be synchronized and maintain consistency.

However, when critical events such as collisions are delayed and cannot be pre-

dicted by dead reckoning algorithms, replicated game states can diverge. The time-

warp algorithm [19] [20] can be used to repair the states. Received events and updates

are kept in buckets. When a delayed event has finally arrived, with the old bucket,

the time-warp algorithm recalculates the current states with the events from the time

11

of the delayed event up to the time of the most current event. The time-warp al-

gorithm not only maintains consistency but also state correctness. However, this

algorithm aims at different goals then the motion-lock protocol. Our goal is not to

have state correctness but to synchronize collision events among stations to gain state

and collision consistency.

Similar to the time-warp algorithm, the trailing-state synchronization algorithm

[8] rolls back and recalculates the game state when there are inconsistencies. The

algorithm uses the mirror server architecture that replicates the game states on dif-

ferent servers with different locality. Comparing to the time-warp algorithm, instead

of keeping a series of snapshots of the game state in old buckets, multiple copies of

the game with different delays in simulation time are running simultaneously on the

mirrored servers. Whenever a rollback is required, the trailing game state that is

currently running with a delay such that it has data just before the inconsistency is

used to recalculate the current game state.

Another high level approach to maintain consistency is the use of hybrid architec-

tures. Hybrid architectures combine the centralized and distributed architecture that

provides good scalability in peer-to-peer systems, while still providing some form of

centralized authority over the game states. The Zoned Federation architecture [14] is

a hybrid architecture that divides the game space into zones. Each zone is maintained

by a federation of nodes containing the zone owner and the zone members. Each zone

member can hold some data for the zone. In order to modify the zone data, mem-

bers need to request an update from the zone owner. The zone owner serializes the

requests and ensures consistency of the zone. In a similar approach, SimMud [16]

divides the game based on a player’s locality in the game world. Players in the same

region broadcast to each other to update their state. To ensure consistency, shared

objects are assigned to a coordinator. The coordinator updates and resolves conflicts

of the object it governs.

While most architectures divide the game world spatially, in Ghost [29], the game

space is divided into different latency groups. Nodes that are experiencing the same

network latency are allowed to interact and exchange game events. On the other hand,

nodes from different latency groups are not allowed to interact. By grouping nodes

12

into latency groups, nodes with high latency will not hinder the performance and

consistency of nodes with low latency. Ghost provides good consistency and avoids

issues of unfairness that can result from players with better or worse connectivity,

but limits the freedom of players in choosing which other players to interact with.

2.3 NetZ Middle-Ware

To prove that the protocol developed in our research can be used in real industrial

grade multiplayer online games, we implemented and tested our protocol within the

NetZ middle-ware. NetZ is a distributed state management framework written in

C++. It is developed by Quazal and has been used successfully in many popular

games in the gaming industry [30].

The NetZ middle-ware is based on a distributed architecture. At its core, a unique

Data Definition Language and Duplication Space model defines the objects and repli-

cates them among the stations. The Data Description Language uses a C++-like

syntax to define the type and name of the data to be sent over the network. The

Data Definition Language compiler compiles the data and generates optimized C++

code for marshalling/unmarshalling and sending/receiving the data. The Duplication

Space technology uses a publish-subscribe model to automate the object replication

process. NetZ implements a number of features to help synchronize game objects and

maintain consistency; this includes PHBDR, Local-Lag, Bucket-Synchronization, and

more [26, 25, 24]. Game developers can easily turn on and off any of these algorithms

to meet the needs of their game.

For collisions, NetZ provides a Local-Correction algorithm, allowing replicas to

resolve collisions independently on the remote station based on local data. When the

remote station has detected a collision between a replica and some object, instead

of updating the replica with the predicted states calculated by the dead reckoning

algorithm, the station resolves the collision and calculates a post-collision trajectory

for the replica. This helps remove object penetrations when master updates are

delayed. Chapter 3 provides a more detailed discussion of this issue.

13

Chapter 3

Challenges

Network latency and packet loss are two main challenges encountered in multi-

player online games and distributed virtual simulations. Network latency and packet

loss reduce the ability of such applications to maintain consistent and correct appli-

cation states among the stations. For player controlled objects in multiplayer online

games, network latency delays state updates from the masters to their replicas, and

packet loss prevents replicas from receiving all state updates from the masters. These

problems affect the synchronization of the states of the replicated objects and ulti-

mately cause problems for collision detection and resolution.

In Chapter 2, we see that many algorithms and protocols have been developed to

predict the motion states of controlled objects. Dead reckoning algorithms are widely

used in multiplayer online games because they are effective and easy to implement.

However, as network latency and packet loss increases, dead reckoning algorithms can

produce large extrapolation errors, increasing consistency concerns.

In this chapter, we take a closer look on how network latency and packet loss

affects motion prediction and how they lead to extrapolation errors. The chapter

then examines how the extrapolation errors affect collision detection and resolution

in distributed systems. Finally, the chapter formalizes consistency and correctness for

motion prediction, distributed collision detection and distributed collision resolution.

14

3.1 Challenges in Motion Prediction

Because of network latency and packet loss, replicas may not know the absolute state

of their master. The purpose of motion prediction in multi-player online games is

then to predict states for the replica using past states to compensate for the effects

of network latency and packet loss. However, for controlled objects, player inputs

can be entered to change the state of the masters, and thus, the masters’ motion

cannot be predicted accurately. Furthermore, as network latency and packet loss

increase, the prediction error increases. To understand how player inputs affects

motion prediction, the basics of motion prediction is first presented. The problems

caused by the combination of unreliable network and player inputs are then examined

in detail.

3.1.1 Motion Prediction

It is possible for a replica to accurately predict the motion of its master if the master’s

trajectory can be described by a certain motion model, and the model and starting

point of the trajectory are known to the replica. For example, many futuristic first-

person-shooters have a “rail-gun” as one of the weapon choice. Slugs fired out from

a rail-gun follow a well-defined, coiled trajectory. If the motion model of the coiled

trajectory and time of fire are known ahead of time, the location of the slug can be

accurately predicted at any time, irrespective of network latency and packet loss.

To understand motion prediction for controlled objects, we first define the state

of the object at time t as a vector:

Xt =

⎡
⎢⎢⎣
Pt

Vt

At

⎤
⎥⎥⎦ (3.1)

where Pt is the position vector, Vt is the velocity vector, and At is the acceleration

vector. Pt, Vt, and At contain the x, y, and/or z components, depending on the

dimensionality of the game.

15

Next, the motion model that describes the kinematics of the object is the equations

of motion:

P̂t+Δt = Pt + VtΔt+ AtΔt2/2 (3.2)

V̂t+Δt = Vt + AtΔt (3.3)

where P̂t+Δt and V̂t+Δt are predicted position and velocity at time t + Δt. The

equations of motion are functions of time that assume constant acceleration. Dead

reckoning algorithms are based on this model. The motion model can be represent

by matrix multiplication:

X̂t+Δt = FXt (3.4)

where F is a 3 by 3 matrix that represents the equations of motions:

F =

⎡
⎢⎢⎣
1 Δt Δt2/2

0 1 Δt

0 0 1

⎤
⎥⎥⎦ (3.5)

To extrapolate a state for a replica, dead reckoning algorithms use the most re-

cently received state as the initial state, Xi. To extrapolate a state at the current

frame time, the extrapolation interval Δtex is calculated by subtracting the current

frame time from the time of the initial state. X̂t+Δtex can then be calculated using

equation 3.4, where Δt = Δtex in matrix F. Figure 3.1 shows the extrapolation of

state X̂t+Δtex for the replica using the most current received state Xi. If the mas-

ter moves at constant acceleration during Δtex, the motion model can accurately

extrapolate a state at the current frame time for the replica.

3.1.2 Extrapolation Errors

For a controlled object, a player’s inputs change the acceleration of the master, and as

stated above, a replica’s extrapolated state is accurate if the acceleration is constant.

Changes in acceleration and direction can be seen as an impulsive state change that

do not have any past state to relate to, and thus cannot be predicted. The predicted

states are therefore sometimes erroneous.

16

Figure 3.1: Accurate Extrapolation

If the extrapolation interval Δtex is short, the error is small and may not be appar-

ent when rendered. However, as network latency and packet loss rate increases, the

dead reckoning algorithm requires the use of older received states to extrapolate and

thus Δtex increases. If the replica is already traveling at an inaccurate trajectory,

as Δtex increases, the replica will continue to drift away from the master’s trajec-

tory. Furthermore, players have more time to enter more input during the interval

to changing the state of the master. The replica then becomes more uncertain of the

state of the master. Figure 3.2 shows the effect of player inputs changing the master’s

trajectory during Δtex. The replica is unaware of the inputs, and so the extrapolated

state is inaccurate.

Extrapolation errors lead to different states between the master and the replicas

at a given time. If the master and the replica are at different states, interactions with

the replicated object may lead to different results on different stations. This causes

inconsistency among the stations.

One way of measuring the extrapolation error is by measuring the distance between

position of the master and the replica. We denote this as deviation. Assume the

controlled objects are represent by circles with radius r. In terms of collisions between

objects, if the deviation is less than 2r, part of the replica may still collide with an

approaching object and resulting both the master and the replica encountered the

collision. However, if the deviation is greater than 2r, the replica may dodge the

approaching object and miss the collision. Therefore, deviation of the replica that is

17

Figure 3.2: Unreliable Extrapolation

greater than 2r is considered significant for collision detection. We will discuss this

issue in detail in the next section.

3.2 Challenges in Distributed Collision Detection and

Resolution

Collision detection and resolution algorithms require using the states of the colliding

objects to correctly detect the collisions and calculate the post-collision trajectories.

However, due to extrapolation errors, replicas may not have the same states as the

masters. Therefore, in distributed architectures, if the stations are to process the

collisions independently, collision detection and resolution algorithms may return dif-

ferent results among the stations: some stations may detect the collisions while some

stations may not. For collision resolution, the post-collision trajectories may also be

different, at least until the replicas receive a master state update to correct the tra-

jectory. During this interval the stations will be inconsistent and produce confusing

results.

In the next two sections, we will describe the inconsistency in distributed collision

18

detection and resolution in detail. To aid the discussion, we assume there are two

stations A and B. A contains master M1 and replica R2. B contains master M2 and

replica R1. All objects are represented as circles. Assume M1 and R1 have radius of

r1, and M2 and R2 have radius of r2. Figure 3.3 shows the objects on the stations.

Masters are represented with black circles, and replicas are represented with grey

circles.

Figure 3.3: Objects on station A and B

3.2.1 Inconsistency in Distributed Collision Detection

As stated above, a master and its replicas may have different states at a given time due

to player inputs and extrapolation errors. When the deviation error is large, replicas

may unintentionally collide or miss a collision, and the collision detection algorithm

returns different results among the stations. The inconsistency can be categorized

into two types: false collisions and missed collisions.

False Collisions

A false collision is an unintended collision between a replica and an object on one

station, while the same collision is not detected between the master and the object

on the station of the master. The problem occurs when there are player inputs that

19

change the master’s trajectory, and the replica extrapolates a position with a large

deviation error that causes a collision with other objects.

Using the above setup, assume at time t0, M1 and M2 are moving toward each

other without the players entering any inputs. R1 and R2 are then moving accurately

without extrapolation errors. As the objects are about to collide with each other,

player 1 decides to avoid the collision by changing M1’s trajectory at time t10. On

A, M1 successfully avoided the collision with R2. At t20, M1 and R2 are d distance

away from each other, centre to centre. On B, however, because of network latency

and packet loss, R1 did not receive the update at t10. At t20, R1 extrapolates a state

where deviation derr ≥ d−(r1+r2). The extrapolation error causes R1 to collide with

M2 and results in a false collision on B. A is correct for not detecting any collision

while B is incorrect and inconsistent for detecting a collision.

Figure 3.4 shows the above scenario. The dashed arrow and circle are the extrap-

olated trajectory and state. As shown, the extrapolated state of R1 collided with M2

on B, while M1 turned away from R2 on A.

Figure 3.4: False collision causes inconsistency between A and B.

Missed Collisions

A missed collision is an intended collision between a master and an object on one

station, while the same collision is not detected between the replica and the object on

another station. The problem occurs when the master changes its trajectory to collide

20

with other objects while the replica did not receive the update and extrapolates a

state that misses the collision.

Using the above setup, assume at t0, M1 and M2 are moving towards each other

but will not collide, and the players are not entering any inputs. R1 and R2 are then

moving accurately without extrapolation errors. At t10, player 1 suddenly changes

M1’s trajectory to collide with R2. On A, M1 successfully collided with R2 at t20.

On B, however, because of network latency and packet loss, R1 did not receive the

update at t10 and continues to move on the current trajectory. At t20, R1 extrapolates

a state where the deviation error derr > r1+ r2. The extrapolation error causes R1 to

miss the collision with M2. A is correct for detecting a collision while B is incorrect

and inconsistent for missing the collision.

Figure 3.5 shows that on A, M1 changes its direction to collide with R2, while

on B, R1 continues to move at the same direction and extrapolates a state that

completely missed the collision. The dashed arrow and circle are the extrapolated

trajectory and state.

Figure 3.5: Missed collision causes inconsistency between A and B.

3.2.2 Inconsistency in Distributed Collision Resolution

After a collision has been detected, the states of the colliding objects are taken to

calculate the post-collision trajectories. However, since a master and its replicas

21

may have different states due to player inputs and extrapolation errors, at the time

of collision, if the deviation between the master and a replica is large the replica

may miss the collision, as described in the above section. On the other hand, if the

deviation is small, both the master and the replica will collide, but the states taken

to calculate the trajectories at each station may be different. Since the states are

different, the post-collision trajectories will also be different.

Using the above setup, assume the player 1 frequently enters inputs to change

M1’s acceleration and direction. M1 is then moving unpredictably and R1 is uncertain

about M1’s state. When M1 collides with R2, the deviation error for R1 is derr ≤
r1 + r2. R1 will collide with M2, but the states of M1 and R1 are not equal. The

post-collision trajectories between the masters and their replicas are then different.

Figure 3.6 shows the collision between the objects. The dashed arrow and circle

are the extrapolated trajectory and state, and gray arrows are the post-collision tra-

jectories after the collision. As shown, the predicted state for R1 is different from

M1’s state.

Figure 3.6: Inconsistent collision states causes different trajectories after the collision.

In this situation both A and B detected the same number of collisions, and thus

maintain some sense of consistency, but the masters and their replicas have different

trajectories after the collision resulting in inconsistent object states. The replica will

eventually receive an update from the master and again move in the same trajectory

as the master, but the temporary inconsistency can be visually unappealing and

22

disruptive to game immersion.

3.3 Formalizing Consistency and Correctness

From the discussion above, we can see that in distributed collision detection and

resolution, the main challenge is to maintain consistency and correctness among the

stations before and after a collision. In this section, we formalize the definition of

consistency and correctness for motion prediction, collision detection and collision

resolution. Through the formalization, we will generalize the problem for each part

and discuss how each part cannot be achieved due to player inputs and extrapolation

errors. Finally, we redefine each part in a less constrained way so that some form of

consistency and correctness can be efficiently achieved.

3.3.1 Consistency and Correctness in Motion Prediction

The goal of motion prediction in multi-player online games is to predict states for

replicas so that they will be consistent with the masters’ states. In this section, we

want to first formally define state consistency and correctness. Next, we will discuss

under what circumstances will a replica have consistent and correct motion prediction.

First we define state consistency:

State Consistency. A replica RB
i on B is state consistent with its master Mi on A

at time t if and only if the predicted state X̂
RB

i
t of RB

i is equal to the absolute state

Xt of Mi. Two replicas from the same master, RB
i on B and RC

i on C, are state

consistent with each other at time t if and only if the predicted state X̂
RB

i
t of RB

i is

equal to predicted state X̂
RC

i
t of RC

i .

State Correctness. A replica RB
i on B is state correct with its master Mi on A at

time t if and only if RB
i is state consistent with Mi.

By the above definition, state consistency can be between a replica and its master,

or two replicas from the same master. When a replica is consistent with its master,

it is also correct. In most games, consistency between masters and their replica is

23

more important than consistency between replicas; therefore, we will focus on state

correctness in our discussion.

For a replica to achieve state correctness, the master has to be moving at a known

(usually zero or constant) acceleration and without any player inputs. This means

that the master is moving according to the motion model. The replica can then

extrapolate a predicted state without errors. The state of the master is predictable,

and the extrapolated state of the replica is accurate.

Replicas are state incorrect if the player enters an input to change the master’s

motion. The master’s motion cannot be predicted, and so the predicted state of the

replica is inaccurate and incorrect. Fortunately, the problem of state incorrectness

repairs itself. When there are no more player inputs, the master motion is predictable

again, and the next state update from the master will allow the replicas to accurately

predict a state. Inconsistency may thus be short-term, producing only small deviation

errors that are not apparent when rendered. We can relax the criteria of state correct-

ness by allowing replicas to have some extrapolation error if the error is unnoticeable.

We can then define the relaxed state correctness as ΔP -state correctness:

ΔP -State Correctness. A replica RB
i on B is ΔP -state correct with its master Mi

on A at time t if and only if the predicted state X̂
RB

i
t of RB

i and the absolute state Xt

of Mi are related such that the difference in positions is bounded: |P̂RB
i

t − Pt| ≤ ΔP .

The definition of ΔP -state correct is stating that replicas only need to be ΔP

close to the master at every frame. The obvious question is how large ΔP should

be. When an object is moving in the game without any other objects to collide with,

the value of ΔP depends on the game and desired visual result—a relatively large

deviation may be acceptable. However, when there are other objects to collide with

we want ΔP to be as small as possible to avoid incorrect collision detection. Note that

object position is sufficient here, since other aspects of object state such as velocity

and acceleration are not required for collision detection and may be inferred from

position for resolution.

24

3.3.2 Consistency and Correctness in Distributed Collision De-

tection

In a peer-to-peer, multi-player, online game allowing each station to detect and resolve

collisions can lead to an inconsistent and incorrect result. Even if the result may

eventually be repaired, different stations may fail to visualize an actual collision or

represent a collision that did not occur. Certainly missing or extraneous collisions

are visually disruptive; collision detection in itself, however, can be important to the

design of many games. For example, a bumper car game may use the number of

collisions to determines the amount of damage done to a car, calculating the winner

as the car with least damage. An inconsistent appearance of collisions misrepresents

critical game state to the players.

In this section, we first introduce a way of measuring collision consistency and

correctness. Then we will formalize consistency and correctness in collision detection.

Collisions are discrete events associated with time. However, we cannot simply

sample a specific time and determine if two stations are consistent in terms of col-

lisions. For example, at t10, A detected a collision between M1 and R2 but B did

not detect a collision between M2 and R1. At t20, there is no collision detected on

both stations. If we ask whether A and B are consistent on collision at t10, then the

answer is no. If we ask if the stations are consistent at t20, then the answer is yes since

neither A nor B detected a collision. It is clear, however, that B missed the collision

at t10 and is inconsistent semantically, with respect to the number of collisions, even

if it is consistent in position.

To evaluate consistency and correctness for collisions, we propose measuring the

number of accumulated collisions for each object pair on each station. We denote the

collision counter as cSi,j, where i and j are object IDs and S is the station ID. From

the above example, each station has a collision counter. At t10, A has cA1,2 of 1 and B

has cB1,2 of 0. At t20, the collision counts for both stations remain the same, and so A

and B remain inconsistent.

Using the collision counters, we now formally define collision-count consistency:

25

Collision-Count Consistency. Two stations, A and B are collision-count consis-

tent for one object pair, Oi and Oj, at time t if and only if the collision counter cAi,j

is equal to the collision counter cBi,j.

To define collision count correctness, we first define a virtual perfect station:

Virtual Perfect Station. The virtual perfect station is a hypothetical station that

receives all state updates from all stations without network delay or loss. At any

given time, the station has correct state for all objects and correct collision count for

all object pairs.

Using the above definition, we define collision count correctness as:

Collision Count Correctness. A station A is collision count correct for one object

pair, Oi and Oj, at time t if and only if the collision counter cAi,j is equal to the

collision counter cVi,j on the virtual perfect station.

By the definition above, if two stations are collision count correct on a certain

object pair, then they must be collision count consistent. On the other hand, two

stations that are collision count consistent on a certain object pair need not to be

collision count correct.

For two stations to achieve collision-count consistency, both stations need to detect

the same collisions at the same time. However, in practice, at the time of collision

the state of the replicas may be different from the masters’ state, perhaps ensuring

only ΔP -state consistency. The small difference in position can cause one station to

detect the collision before or after the other station, but assuming a small enough

error bound both stations will eventually agree on the collision. The short interval of

inconsistency should be tolerated. We define the interval as the collision inconsistency

interval Δtcol, and define a relax version of collision count consistency as Δtcol-collision

count consistency:

Δtcol-Collision Count Consistency. Two stations, A and B are Δtcol-collision-

count consistent for one object pair, Oi and Oj, if and only if the collision counter

cAi,j at tA is equal to the collision counter cBi,j at tB such that |tA − tB| ≤ Δtcol.

26

Inconsistency in collision-count occurs when the colliding objects are state incon-

sistent, such that the deviation for the colliding objects are large enough to cause

false and missed collisions. This leads to one station detecting more collisions than

the other, and Δtcol may grow excessive. Unlike state inconsistency, state updates

from the masters do not repair an inconsistent collision count. Therefore, one of the

goals of this research is to develop efficient algorithms that preventively ensure correct

inconsistency in collision counts, and reduce Δtcol as much as possible.

As a further extension we note that collision-count correctness may not be strictly

required, as long as the corresponding collision-countconsistency is achieved to ensure

fairness and eliminate confusion. Two stations may be Δtcol-collision-count consistent

but incorrect if both stations detect a false collision during Δtcol. This has applications

to multi-player online games which may tolerate the incorrectness, although more

demanding physics simulations may find this unacceptable.

3.3.3 Consistency and Correctness in Distributed Collision Reso-

lution

When stations are allow to resolve collisions independently, if the states of the replica

are incorrect at the time of collisions, the calculated post-collision trajectories and

states will also be incorrect. As discussed in the above sections, it is difficult to

achieve state correctness when there are player inputs, and similarly it is also difficult

to achieve state correctness after a collision. In this section, we will formally define

post-collision state correctness and a relaxed version.

The definition of post-collision state correctness is directly related to state consis-

tency:

Post-collision State Correctness. A replica RB
i on B is post-collision state correct

with its master Mi on A after the time of collision tcol if and only if RB
i is state correct

with Mi after tcol and θ̂Bi , the direction of RB
i represented by angles with respect to

world frame, and θi, the direction of Mi, are equal.

To define a relaxed version of the above definition, we need to examine what is

27

visually significant for objects after a collision. In state correctness, we point out

that the distance between the replica and the master’s positions is important for

rendering and collision detection. For collision resolution, the direction where the

objects bounce off to is also important; therefore, we need a more strict definition for

the post-collision state:

Δθcol-post-collision State Correctness. A replica RB
i on B is Δθcol-post-collision

state correct with its master Mi on A after the time of collision tcol if and only if

RB
i is ΔP state correct with Mi after tcol and θ̂Bi , the direction of RB

i represented by

angles with respect to world frame, and θi, the direction of Mi, are θ̂Bi − θi ≤ Δθ.

The definition above states that, after a collision, if the post-collision position of

the replica is ΔP close to the master’s position, and the post-collision direction of the

replica is Δθcol close to the master’s direction, then the replica is considered to have a

correct state. One of the goals of this research is then to develop algorithms to reduce

ΔP and Δθcol as small as possible so that the post-collision states and trajectories

are visually acceptable.

28

Chapter 4

Distributed Collision Detection and

Resolution

Collision detection and resolution are essential in modern computer games to

display proper visual responses when virtual objects collide. The correct states of

these objects are required for the game engine to properly calculate the collision point

and time. However, as stated in chapter 3, in multi-player online games, the states

of the replicas can deviate from the states of the master due to errors from motion

predictions. The collision points and times are then different between the master and

its replicas, causing the states to diverge. This leads to inconsistent object states and

collision counts among the stations.

In chapter 3, we defined the collision inconsistency interval, Δtcol, as the differ-

ence in time in detecting collisions between two stations. When two stations both

detect the same collision but at different time, the stations are Δtcol-collision count

consistent. However, if one station misses a collision, Δtcol will then grow unbounded.

Thus, our first goal is to design a protocol that bounds the collision inconsistency in-

terval, so that stations will remain Δtcol-collision count consistent even if one station

misses a collision.

Just bounding the collision inconsistency interval is not enough to produce good

visual results. When Δtcol is large, it indirectly means that the states of the objects

at the time of collision between the stations are very different. Different collision

29

states will then produce different post-collision trajectories, and Δθcol will be large.

Large Δθcol causes the replicas to move in different directions from the masters after

collisions, and the states diverge further. Furthermore, upon receiving the next state

update from the master, the replicas correct their position with a large jump. This

large discrepancy is visually confusing. Therefore, our next goal is to minimize Δtcol

and Δθcol so that stations detect and resolve the collisions as close as possible to

reduce visual confusion.

With the above goals in mind, in this chapter, we will discuss various algorithms

and protocols in dealing with the problems in distributed collision detection and

resolution. First, we categorize the different types of objects that can exist in a

multiplayer online game, and the types of collisions between them. We then focus

our discussion on master-replica collisions and define two categories of stations that

are involved in a master-replica collision.

Next, we present two collision detection agreement protocols that bound and

minimize the collision inconsistency time. These two protocols are novel ideas in

solving the problems; however, both have flaws. The post-collision protocol bounds

Δtcol but does not minimize it. On the other extreme, the pre-collision protocol tries

to have a zero collision inconsistency interval, but may still have unbounded Δtcol.

We present these two protocols to help understand the complexity of the problems,

and motivate the design of our third protocol, the motion-lock protocol.

The motion-lock protocol bounds and minimizes the collision inconsistency inter-

val by locking the motion of the colliding objects for a short period of time. The

locking of motion temporarily discards (or buffers) all a player’s commands; this may

reduce the responsiveness of the objects, but allows the objects to commit to the

collision ahead of time. In our discussion we will show that with minimal amount of

locking the objects can achieve short Δtcol. Furthermore, the motion-lock protocol

allows the post-collision trajectory to be calculated before the collision, and sent to

the other stations to achieve post-collision trajectory agreement, minimizing Δθcol.

Finally, we discuss the problems associated with collisions with multiple objects.

The motion locking blocks player controls to allow the stations to notify each other

before the collision. However, when there are multiple objects in the scene, objects

30

that are motion locked and committed to the collision can be interrupted by other

objects. The previous committed collision is no longer valid, and the motion-lock pro-

tocol is no longer correct. We introduce the Spatial-temporal Bucket Synchronization

algorithm that resolves a group of colliding objects at the same time.

4.1 Categorization of Collisions and Stations

In offline games, all objects are local to the game process. Collisions are calculated by

single process on the station. However, in multiplayer online games, different types of

objects exist on the station, and so stations require protocols to resolve the collisions.

Before we discuss the collision detection protocols, we first need to identify the

different types of objects that can exist on a station. There are three types of objects

that can exist on a station. From the previous chapters, we have already identified the

masters and replicas. The masters are objects that are local to the stations. Players

or the local game processes can control the masters. The replicas are copies of the

masters that reside remotely on other stations. The local station sends the state of

the masters through the network to update the replicas.

The third type of object is the global object. Global objects are objects that

are controlled by the game process itself. They can be static, such as the world

boundaries and obstacles, or dynamic, such as the non-player characters (NPCs).

Static global objects are stateless, and so they are the same on all stations. For

dynamic global objects, since they are controlled by the game process, if the object

states of two instances diverge, the states can be easily predicted and corrected by

the game process because no player inputs are involved.

If we assume that each player controls only one master, from the three types of

objects, there exist five categories of collision: master-global, master-replica, replica-

global, replica-replica, and global-global (if players can control more than one object

there will be master-master collisions). Since global objects appear on all stations,

they are considered local on all stations; therefore, master-global and global-global

31

collisions are resolved by the game process. For replica-global and replica-replica col-

lisions, the stations that detected these collisions have no authority over the replicas;

therefore, whether these replicas collided or not will be determine by their masters’

station.

Master-replica collisions are the main source of inconsistency we will consider in

distributed collision detection. Before we discuss the master-replica collisions, we

first define the stations that are involved in master-replica collisions as the collision

participating stations.

Collision Participating Stations. For each master-replica collision, there are ex-

actly two participating stations involved. When one station A detects a collision

between its master Mi and a replica RA
j , there exists a station B such that B detects

a collision between its master Mj and a replica RB
i , where RB

i is a replica of Mi and

RA
j is a replica of Mj.

In a master-replica collision, the collision participating stations have authority over

the detection and resolution of the collision. Since both of the collision participating

stations have the authority, however, they need to communicate and agree on the

collision. For the rest of this chapter, we will focus on the agreement between the

collision participating stations.

4.2 Distributed Collision Detection

In a master-replica collision, the two participating stations may detect the collision

at different times; we term the time difference as the collision inconsistency interval

Δtcol. The collision inconsistency interval may be infinite if one of the participating

stations missed the collision. To avoid this, the other participating station needs to

notify the station about the collision so that the interval will be bounded, and the

stations will be collision count consistent.

The notification about the collision is sent after the collision with the receive time

dependent on the network latency. Therefore, to reduce the collision inconsistency

interval, the notification should be sent before the collision. This will also reduce the

32

divergence of the object states after collisions and improve the visual play-out of the

collision.

In this section we present three collision detection agreement protocols that deal

with bounding and minimizing the collision inconsistency interval for master-replica

collisions. The first protocol is the Post-Collision Protocol that bounds the collision

inconsistency interval. The stations naively send out collision counts after collisions

to prevent the collision inconsistency interval to grow to infinity. Furthermore, heart-

beat messages are sent to provide on average collision count consistency within a

bounded time.

The second protocol is the Pre-Collision Protocol that tries to make the stations

come to an agreement on collisions before the objects collide. The stations predict

collisions based on objects’ motions, and exchange messages before the collision. If the

stations reach an agreement, the collision inconsistency time will be zero; however, as

we shall see, in an asynchronous network, reaching an agreement before the collision

time is quite difficult.

The third protocol is the Motion-Lock Protocol that combines the above two pro-

tocols to provide collision count consistency with reduced collision inconsistency in-

terval. When the stations predict a collision, the motions of the objects are locked

to commit to the collision. The motion locking allows the collision count to be in-

cremented and sent before the collision, and thus reduces the length of the collision

inconsistency interval.

In the next three sections, we present the protocols. For all protocols, we assume

the network communication is asynchronous and unreliable. Packets can be delayed

for arbitrary time and may be lost in the network. We do assume a practical context

where messages will eventually get though with enough resends.

4.2.1 Post-Collision Agreement Protocol

The Post-Collision protocol maintains consistency through exchanging collision counts

between the stations. When a station detects a collision, it first increments the col-

lision counter, and then sends the counted value to the other participating station.

33

If the receiving station missed the collision, the local collision count will be less than

the received collision count. This triggers the collision event, and the station will

resolve the collision and increment the local collision counter to reach collision count

consistency.

When the network latency is high, the collision time for the received counter

may be very out-dated. Calculating long delayed collisions can produce confusing

visual result. Therefore, received counters that exceed a preset cut-off time will still

increment the local collision counter but the post-collision trajectory is not calculated.

Furthermore, because packets can get lost in the network, the collision counts that

are sent after each collision may not reach the receiving station. The protocol then

needs to send the collision counts at a heart-beat interval to bound the collision

inconsistency interval.

Formally, we assume the following. Let:

• A and B be the participating stations.

• Mi be the master on A, and RB
i be the replica of Mi on B.

• Mj be the master on B, and RA
j be the replica of Mj on A.

• CollisionDetection(obj1, obj2) be a function that returns true if obj1 and obj2

have collided, and returns false otherwise.

• CollisionResolution(obj1, obj2) be a function that calculates the post-collision

trajectories for obj1 and obj2.

• DelayedCollisionResolution(obj1, obj2) be a function that handles delayed tra-

jectory calculation for delayed collisions.

• On A, cAi,j be the local collision counter for collisions between Mi and Rj , and

tAi,j be the time of collision. cBi,j be the received collision counter from B to A,

and tBi,j be the received collision time.

• Station B has the same counters and timestamps with reversed station id.

34

• Tcut be the cut-off time for resolving delayed collision events.

• Tbeat be the preset heart beat interval, and tsAi,j be the last time cAi,j was sent.

Algorithm 1 shows the post-collision protocol.

The protocol starts when A detects a collision between Mi and RA
j , A increments

the collision counter cAi,j, calculates the post-collision trajectories, and then sends

the collision counter to B. If A receives cBi,j , A compares its local collision counter,

cAi,j, with the received counter. If A missed a collision, cBi,j will be greater than cAi,j.

This triggers A to resolve the collision and increments the counter. Collision events

that are triggered by the collision counters are usually past the actual collision time.

These collisions need to be resolved differently to properly calculate the post-collision

trajectory. This will be discussed in a later section of this chapter.

Evaluation of Post-Collision Agreement Protocol

For the Post-Collision protocol, because collision counters are sent after collisions

have been detected, and network latency means that the station which missed the

collision may trigger the collision event after the objects have move passed the actual

collision point. The length of the collision inconsistency interval is then the length of

network latency, and so the time performance of the protocol depends on the network

condition. Figure 4.1 depicts the collision inconsistency interval between the two

stations.

Furthermore, objects on the station that delay the collision event may appear to

bounce off each other with a gap in between. To prevent large gaps, the cut-off time

discards collision counters with long delay. From the research of Pantel et al. [23],

delays of events under 200ms can be tolerated by players. Therefore, for our current

implementation, we set Tcut to 200ms. However, bad network condition can increase

the average latency over 200ms. Most of collisions in this case will be discarded.

Another disadvantage of this protocol is that it can lead to incorrect collision

count. When one collision participating station detects a false collision, it will send

the collision count and the stations will agree on the false collision. The stations

35

Algorithm 1 Post-Collision Agreement Protocol

On initialization at A

for each replica Rj on A do

cAi,j ← 0

tAi,j ← 0

tsAi,j ← 0

cBi,j ← 0

tBi,j ← 0

end for

On each game loop at A

for each replica Rj on A do

if CollisionDetection(Mi, Rj) = true then

CollisionResolution(Mi, Rj)

cAi,j ← cAi,j + 1

tAi,j ← tcurrent

tsAi,j ← tcurrent

send < cAi,j, t
A
i,j > to B

else if cBi,j > cAi,j then � Compare collision counts.

if tcurrent − tBi,j < Tcut then

DelayedCollisionResolution(Mi, Rj)

end if

cAi,j ← cBi,j

tAi,j ← tcurrent

end if

36

if tcurrent − tsAi,j > Tbeat then

tsAi,j ← tcurrent

send < cAi,j, t
A
i,j > to B

end if

end for

On receipt of < cBi,j, t
B
i,j > from B

store cBi,j and tBi,j at A

Figure 4.1: Post-collision agreement protocol. Length of Δtcol depends on the network

latency.

are consistent but incorrect. This means the protocol’s correctness depends on the

state correctness of the replicas. Therefore, the station that suffers bad network

37

communication and detects many false collisions will be the station that others agree

upon.

The heart-beat intervals must be infrequent to prevent any excessive bandwidth

cost. Since counters that have arrived later than the cut-off time will be discarded,

the purpose of heat-beat messages is to loosely synchronize collision counters. The

value of Tbeat should be tuned depending on the game requirements.

4.2.2 Pre-Collision Agreement Protocol

The goal of pre-collision agreement is to have the participating stations reach an

agreement on a master-replica collision before the objects collide. If an agreement

can be reached, the collision inconsistency interval can be as low as zero. In order to

achieve this, the participating stations need to exchange messages before the collision.

In this section we present the Pre-Collision agreement protocol. Similar to the

classic 2-phase commit protocol, the pre-collision agreement protocol consists of two

phases: the voting phase and the collision phase. In the voting phase, the two collision

participating stations exchange votes on a potential collision. The motions of the

objects are locked so that the votes do not change. In the collision phase, if both

stations agreed on the collision, the objects are committed to collide and the collision

counters are incremented. If one station disagrees on the collision, or the stations

are unable to complete the protocol before the collision time, both stations abort the

collision.

The Pre-Collision agreement protocol requires at most 3 rounds of message ex-

change to reach an agreement. This introduces round-trip delays similar to the

client/server architecture. However, in the client/server architecture, the centralized

server handles all collision messages from all the clients and requires large bandwidth

usage. On the other hand, in the Pre-Collision protocol, for each collision, only the

two collision participating stations are involved with the message exchange, and thus

the bandwidth requirements are distributed.

Formally, in addition to the assumptions we made in the Post-Collision protocol,

we further assume the following. Let:

38

• CollisionPrediction(obj1, obj2) be a function that returns true if the current

states of obj1 and obj2 will lead to a collision, and returns false otherwise.

• LockMotion(obj) and UnlockMotion(obj) be functions that locks and unlocks

the motion of obj.

• willCollide[k] be a Boolean array that indicates if the master of the station will

collide with replica k.

• canCollide[k] be a Boolean array that indicates if the participating stations

have agreed on collision between the master and replica k.

Algorithm 2 shows the pseudocode of the pre-collision agreement protocol.

On each game loop, all stations check for potential collisions for each object pair

using the collision prediction algorithm. The collision prediction algorithm first esti-

mates an object’s future trajectory by linear extrapolation of the current state. The

estimated trajectories are checked for intersections. If the trajectories intersect, the

pair of objects will collide at a future time if the objects maintain their velocities.

When a station detects a potential collision, the station initiates the voting phase

of the protocol. If station A predicted a collision between Mi and Rj, the motion

of Mi and Rj are locked such that player inputs and master updates do not change

Mi’s and Rj ’s motion, and the objects are guaranteed to collide. Without locking,

no agreement can ever be reached. After the motions are locked a request, REQ, is

sent to B to inform B of the incoming collision. willCollide[j] is then set to true to

indicate that the objects have their motions locked and the station is waiting for a

vote.

Next, if A receives a REQ from B, A checks if it has also detected a potential

collision. If no potential collision is detected, A sends a NO vote to inform B that

the collision will lead to a false collision and should be aborted. If A has also detected

a potential collision and has its objects’ motion locked, A sends a Y ES vote to B to

engage the collision.

In the collision phase, when A receives a Y ES vote from B, A sends an ACK

acknowledgement to B to confirm the collision. A sets canCollide[j] to true and waits

39

Algorithm 2 Pre-Collision Agreement Protocol

On initialization at A

for each replica Rj on A do

cAi,j ← 0

cBi,j ← 0

willCollide[j]← false

canCollide[j]← false

end for

On each game loop at A

for each replica Rj on A do

if CollisionPrediction(Mi, Rj) = true then

LockMotion(Mi)

LockMotion(Rj)

willCollide[j]← true

send REQ to B � Send a vote request to initate the protocol.

end if

if CollisionDetection(Mi, Rj) = true then

if canCollide[j] = true then � Commit to the collision.

CollisionResolution(Mi, Rj)

cii,j ← cii,j + 1

end if

UnlockMotion(Mi)

UnlockMotion(Rj)

willCollide[j]← false

canCollide[j]← false

end if

end for

40

On receipt of a REQ from B at A

if willCollide[j] = true then � Return a vote when a request is received.

send Y ES to B

else

send NO to B

end if

On receipt of a Y ES from B at A

if willCollide[j] = true then � Send a ACK to confirm the Y ES vote.

canCollide[j]← true

send ACK to B

end if

On receipt of a NO from B at A

UnlockMotion(Mi) � Abort the collision when a NO vote is received.

UnlockMotion(Rj)

willCollide[j]← false

canCollide[j]← false

On receipt of a ACK from B at A

if willCollide[j] = true then

canCollide[j]← true � Commit to the collision when a ACK is received.

end if

41

for the objects to collide. If a NO vote is received, A sets canCollide[j] to false and

unlocks the motions of the object pair. When A receives an acknowledgement ACK

from B, A sets canCollide[j] to true and waits for the objects to collide.

At the time of the collision between Mi and Rj , if canCollide[j] is true, the

collision counter cAi,j is incremented and the post-collision trajectories are calculated.

If canCollide[j] is false the collision is aborted. In both cases the motions of Mi and

Rj are unlocked afterwards.

Finally, if the protocol is not able to complete by the time the objects collide, the

collision is aborted because the stations failed to come to an agreement.

The protocol only requires the collision participating stations to exchange mes-

sages, so both stations can initiate the first phase and the protocol will still come

to the same result. Figure 4.2 shows the exchange of messages between the collision

participating stations. Stations A and B agreed on the collision and the protocol is

able to be complete before the collision time.

Evaluation of the Pre-Collision Agreement Protocol

In this section, we evaluate and discuss the problems of the above pre-collision agree-

ment protocol.

By default, if the protocol terminates during the first phase, both stations abort

the collision. We designed the protocol to be pessimistic so that in case of a failure

during first phase, the stations will still remain consistent.

However, there are two major problems that can cause the Pre-Collision protocol

to fail and lead to inconsistent collision counts. The protocol produces inconsistency

at the second phase when one of the participating stations ends the protocol before it

receives the acknowledgement message. The station that sends the acknowledgement

commits to the collision, while the station that did not receive the acknowledgement

aborts the collision. The protocol can end during the second phase due two factors:

the asynchronous network and the object dynamics.

In an asynchronous network, messages can be delayed and arrive at arbitrary

time. If the ACK is received on time, as in figure 4.2, both stations will allow the

42

Figure 4.2: Pre-Collision Agreement Protocol message passing.

collision and the collision counts will be consistent. However, if the ACK arrives

late and passes the collision time, one station will commit to the collision while the

other aborts the collision. Even if the protocol starts early, we cannot guarantee

that the ACK message will arrive on time given the none-deterministic nature of the

asynchronous network. Figure 4.3 shows the ACK message arriving after the collision

time.

The dynamics of the objects can also cause the protocol to fail and lead to incon-

sistency. For example, if the network has in average 100 ms latency. The protocol

requires at least 3 messages to allow a collision, and so approximately 300 ms is re-

quired to complete the protocol. If a potential collision is detected such that the

objects will collide within 250 ms, the protocol is destined to terminated while the

43

Figure 4.3: Termination of the protocol during passing of ACK causes inconsistency.

ACK is in transit. This will lead to inconsistency. Figure 4.4 depicts the above

problem. The dynamics of the objects do not give enough time for the protocol to

finish.

Furthermore, if the objects move around frequently, the protocol will rarely be

complete. The objects will not collide most of the time and appears to pass through

each other. If the game requires objects to collide to determine a winner, the game

can become frustrating and visually confusing. The locking of object motions also

reduces responsiveness of the objects. If there are many objects in the game, many

collisions can happen and the motions of the objects are locked most of the time. The

44

Figure 4.4: Unable to complete the protocol due to late detection of a potential

collision.

players cannot control their characters and the game becomes unplayable.

In general, in an asynchronous network, guaranteeing an agreement between sta-

tions within a given length of time is difficult [18]. Therefore, the Pre-Collision

protocol is unable to maintain collision count consistency. However, if both phases

of message exchange can be finished, the protocol can achieve zero collision inconsis-

tent intervals. This protocol may be ideal for games running on more reliable and

low-latency network.

45

4.2.3 Motion-Lock Collision Agreement Protocol

From the above sections, we see that the Pre-Collision protocol does not provide

collision count consistency in every case; however, if it is able to complete, it can

achieve collision count consistency with Δtcol equals to zero. On the other hand, the

Post-Collision protocol provides on average collision count consistency, but the length

of Δtcol depends on the network latency. In this section, we present the Motion-Lock

protocol that provides on average collision count consistency with Δtcol less than the

network latency. This is done by combining the techniques of motion locking in the

pre-collision protocol and collision count exchange in the post-collision protocol.

The Motion-Lock collision agreement protocol is similar to the post-collision pro-

tocol such that stations exchange collision counts to maintain consistency. To reduce

the length of inconsistency time, stations lock the motions of the colliding objects so

that they are committed to the collision. This allows the collision counters to be sent

early before the collision.

However, if the objects’ motions are locked for too long, players may feel they have

lost control of the objects. To prevent this, a predefined maximum locking threshold

Tlock caps the locking interval. When two objects’ estimated trajectories intersect,

their motions are locked only when the remaining time to the collision is between

Tlock and 0.

Formally, in addition to the assumptions we made in the above two protocols, we

further assume the following. Let:

• CollisionPrediction(obj1, obj2) be a function that returns the remaining time

to a collision if the current states of obj1 and obj2 will lead to a collision, and

returns ∞ otherwise.

• On A, cpAi,j be the local potential collision counter for the potential collisions

between Mi and Rj, and cpBi,j be the received potential collision counter from

B to A.

• Tlock be the preset maximum locking threshold.

46

Algorithm 3 Motion-Lock Protocol

On initialization at A

for each replica Rj on A do

cAi,j ← 0

cpAi,j ← 0

tAi,j ←∞
tsAi,j ← 0

cBi,j ← 0

cpBi,j ← 0

tBi,j ←∞
end for

On each game loop at A

for each replica Rj on A do

Δtremain ← CollisionPrediction(Mi, Rj)

if 0 ≤ Δtremain ≤ Tlock then

� Lock motions and exchange potential collision counters.

LockMotion(Mi)

LockMotion(Rj)

tAi,j ← Δtremain + tcurrent

cpAi,j ← cpAi,j + 1

tsAi,j ← tcurrent

send < cpAi,j, t
A
i,j > to B

else

UnlockMotion(Mi)

UnlockMotion(Rj)

end if

47

if CollisionDetection(Mi, Rj) = true then

CollisionResolution(Mi, Rj)

cAi,j ← cAi,j + 1

tAi,j ← tcurrent

tsAi,j ← tcurrent

send < cAi,j, t
A
i,j > to B

else if cpBi,j > cpAi,j and tBi,j ≤ tcurrent then

� Potetial collision counters trigger the collision event.

if tcurrent − tBi,j < Tcut then

DelayedCollisionResolution(Mi, Rj)

end if

cpAi,j ← cpBi,j

cAi,j ← cpBi,j

tAi,j ← tcurrent

tBi,j ←∞
else if cBi,j > cAi,j then � Compare collision counts.

if tcurrent − tBi,j < Tcut then

DelayedCollisionResolution(Mi, Rj)

end if

cAi,j ← cBi,j

cpAi,j ← cBi,j

tAi,j ← tcurrent

end if

if tcurrent − tsAi,j > Tbeat then

tsAi,j ← tcurrent

send < cAi,j, t
A
i,j > to B

end if

end for

48

On receipt of a < cpBi,j, t
B
i,j > from B

store cpBi,j and tBi,j at A

On receipt of < cBi,j, t
B
i,j > from B

store cBi,j and tBi,j at A

Algorithm 3 shows the pseudocode for the Motion-Lock protocol.

A station initiates the protocol when the collision prediction algorithm detects a

potential collision between two objects. The collision prediction algorithm returns

the remaining time to the collision. If the remaining time is between the predefined

Tlock and 0, the motions of the objects are locked so that the objects will eventually

collide. Once the objects’ motions are locked they are committed to the collision.

The potential collision counter can then be incremented and sent to inform the other

stations before the objects actually collide. The collision event can be triggered

by the object collision itself, collision counters, and the potential collision counters.

Because the potential collision counters are sent early, they can be received before the

scheduled collision time. To prevent the station triggering the collision event ahead

of time, the collision time is also sent so that the stations can correctly schedule the

collision event.

Evaluation of Motion-Lock Protocol

The Motion-Lock protocol provides Δtcol-collision-count consistency and reduces the

collision inconsistent interval by locking the objects’ motion and exchanging the po-

tential collision counts before the actual collision. The value of Tlock may depend on

the game; however, in general, the value should not be too long and perceivable by

the players. From the research of Pantel et al. [23], delays of player inputs become

perceivable above 100ms; we thus set Tlock to 100ms.

The protocol separates the collision counters into a potential collision counter and

the actual collision counter. The purpose of doing this is so that the actual collision

49

counter is not incremented before the collision, and other game events that rely on

the collision counter will not be triggered prematurely.

The minimization of the collision inconsistency interval depends on how early the

potential collision counters are sent, which itself depends on the dynamics of the

objects. The best case is when the potential collisions are detected at Tlock, and so

the collision inconsistency interval is equal to networklatency−Tlock. The worst case

is that the potential collision is never detected due to frequent changes in objects’

motion. The potential collision counter is then sent at the collision time, and so

the collision inconsistency interval is equal to the network latency; and thus, the time

performance for the Motion-Lock protocol would be better, but never worse, than the

post-collision protocol. Figure 4.5 shows the reduced Δtcol as the result of passing

cpAi,j before the time of collision. cAi,j and cBi,j are incremented afterwards.

Similar to the Post-Collision protocol, the Motion-Lock protocol does not filter

out the false collisions. Moreover, when objects are close to each other, both stations

force the objects to collide by locking their motions, making it is hard to define

collision correctness. If thresholds are too large the objects may appear to be pulled

toward each other in order to collide. Therefore, the size of Tlock is again important

and needs to be scaled to the game object size and speed.

4.3 Distributed Collision Resolution

In the Post-Collision protocol and in the worst-case of the Motion-Lock protocol,

stations that missed the collision receive the collision counter after the objects have

moved past the collision point. If the collision time is within the cut-off time, the

stations need to resolve the collision. However, since the objects are no longer at the

collision point, using their current state to calculate collision resolution will result

in incorrect post-collision trajectories. The objects on the participating stations will

have different post-collision trajectories, resulting in further divergence of the states

between the replicas and their masters.

One way of calculating collision resolution is to determine the collision normal.

50

Figure 4.5: By sending potential collision counter before the collision, Δtcol can be

minimized.

Figure 4.6 shows the collision between two spheres. Here the collision normal can be

calculated by finding the vector between the centers of the spheres. The direction

of the post-collision trajectory can then be determined by inverting the direction of

the pre-collision trajectory along the collision normal. However, in figure 4.7, as the

objects move apart, the collision normal can no longer be calculated using the sphere

center. The post-collision trajectories would be completely different than on the other

stations if the above calculation of the collision normal is used. Therefore, collision

resolution for the delayed collisions needs to be calculated differently.

The problem is of course magnified over time. After the replicas travel with their

post-collision trajectories for a while, the next state update from the master will

result in a correction, jumping (or converging) from the current position to the update

51

Figure 4.6: Collision with correct collision normal.

Figure 4.7: Collision with incorrect collision normal.

position. If the post-collision trajectory is incorrect and Δθcol is large, the correction

can be large and visually confusing. Figure 4.8 shows a large discrepancy in post-

collision trajectories and the required large correction. If there are many collisions,

frequent corrections can reduce playability. If smooth convergence is applied to correct

the position instead of jumps, the large smoothing trajectory can also cause more false

collisions.

Therefore, in distributed collision resolution, an important goal is to coordinate the

stations so that correct post-collision trajectories are used to avoid further divergence.

52

Figure 4.8: Large correction jump when state update is received.

4.3.1 Post-Collision Trajectory Agreement

To deal with the above problems we modify our Motion-Lock protocol. When objects

are committed to a collision and have locked their motions, they will travel linearly

until the collision. It is possible then to accurately calculate the post-collision tra-

jectory before the actual collision by linear extrapolation of the current state to the

collision time, and then calculating the post-collision trajectories. Along with the

collision counter and collision time we can then send the pre-calculated post-collision

trajectories to the other participating stations. Upon receiving the post-collision tra-

jectory, if the station missed the collision, the received post-collision trajectories can

be used to update the objects’ states. Objects on both the participating stations will

then travel in the same direction after the collision.

The position of the object at the collision point can also be pre-calculated with

linear extrapolation, and be sent before the collision. However, as mentioned above,

objects on the stations that missed the collision have moved past the collision point.

Objects would then require warping back to the received collision point, and such

warping can cause visual confusion.

With the received post-collision trajectories, the stations are applying the trajec-

tories to the objects at different positions. The size of ΔP would depend on when the

53

post-collision trajectories are received. Fortunately, the Motion-Lock protocol mini-

mizes the collision inconsistency interval, and so the deviations of the replicas are not

so far off from the master, and ΔP may be small and not perceivable. Furthermore,

since the received post-collision trajectories are used, the direction of objects on both

stations are equal such that Δθcol is zero. Starting positions of the post-collision tra-

jectories may be slightly different, but the directions are the same. This minimizes

the correction jump when the next state update is received. Figure 4.9 shows the

post-collision trajectories with different starting points, and the reduced correction

jump.

Figure 4.9: Small correction jump using received post-collision trajectory.

The above post-collision trajectories agreement strategy benefits the stations that

missed the collision. However, if a station received the post-collision trajectories and

also detected the collisions itself, deciding whether to use the received trajectories or

its locally calculated trajectories is non-trivial. This is a general problem with reach-

ing agreement in asynchronous contexts [18]. For now, in our implementation, locally

calculated trajectories are used with higher priority. A more detailed investigation to

this problem is left for future work.

Overall, the post-collision trajectories agreement improves consistency of the ob-

jects after collisions, which reduces further divergence of the object states and im-

proves the visual results of collisions.

54

4.4 Multi-object Collisions

The above discussions and protocols all deal with single master-replica collisions. In

the motion-lock protocol, by locking the motion of the colliding objects, the two

participating stations can send out collision counts before the objects collide. How-

ever, when there are multiple objects in the scene, a master and a replica that are

committed to a collision can be interrupted by another replica. The second replica

may suddenly change its trajectory and collide with the master. The master will

be knocked off-course and the previous committed collision is no longer valid. More

importantly, the potential collision counter that was sent earlier for the first colli-

sion will cause the receiving station to trigger a false collision event. The protocol is

no longer correct, and the stations are then inconsistent. Figure 4.10 shows replica

Rk changing its trajectory and colliding with master Mi. The previous committed

collision between Mi and Rj is no longer valid.

A simple solution to the above problem is to ignore all new collisions with a master

that has already locked its motion and is committed to a collision. Unfortunately,

this may cause the replica that has been ignored to penetrate and pass through the

master. Visually, this may confuse the player. Using the above example, if the

collision between Mi and Rk is ignored then Rj will collide with Mi while Rk passes

through Mi.

Instead, as a means of keeping motion-lock protocol correct and improving the

visual result, we propose the Spatial-temporal bucket synchronization algorithm. De-

riving from the bucket synchronization algorithm [9] where time is discretized into

buckets and events that belong to the same bucket are evaluated together (see sec-

tion 2.2 for details), the spatial-temporal bucket synchronization algorithm discretizes

both space and time so that objects near the same collision point and time are pro-

cessed together. In the next section, we present the algorithm in detail.

55

Figure 4.10: Rk interrupts the committed collision between Mi and Rj .

4.4.1 Spatial-temporal Bucket Synchronization

The spatial-temporal bucket synchronization maintains collision count consistency

and improves the visual result of multi-object collisions. The committed collisions will

not be interrupted so that the collision counter can still be sent early. Furthermore,

replicas that are subsequently colliding with the master form a collision group with

the master. The group resolves the collision together at the scheduled collision time.

The algorithm starts when a potential collision between an unlocked master and

an unlocked replica is detected. The motion of the master and the replica are locked

56

and committed to the collision, and the potential collision count is sent to inform the

other participating station about the collision. The scheduled collision time for the

first master-replica collision determines the time bucket for the synchronization.

Next, any replicas that will collide with the master before the time of the first

committed collision are added to the collision list and lock their motions. Instead

of colliding with the master upon impact, the replicas are scheduled to resolve the

collision at the end of the time bucket. The replicas in the list create a cluster of

collision points around the master, and the cluster defines the spatial bucket. The

scheduled collision time and potential collision counters are sent to each replica’s

master stations accordingly to inform about the group collision.

Finally, when the time of the first collision is reached, the collision trajectories

of the master and the list of replicas are calculated and resolved together using the

local states. With the post-collision trajectory agreement, if any post-collision tra-

jectories are received, the received trajectories are used on the corresponding replicas

to improve consistency and reduce correction jumps. After the collision, the master’s

station sends collision counters to the stations of the replicas to maintain collision

count consistency.

Formally, in addition to the assumptions we made in the above protocols, we

further assume the following. Let:

• IsLocked(obj) return true if obj is locked.

• collisionList be the list of replicas that will collide with the master.

• tbucket be the collision time for the master and the listed replicas.

Algorithm 4 shows the pseudocode for the Motion-Lock protocol with Spatial-

temporal Bucket Synchronization.

Evaluation of Spatial-temporal Bucket Synchronization

Replicas that join the collision group do not have the same collision point and time

as the first master-replica collision. At the end of the bucket interval, these replicas

57

Algorithm 4 Motion-Lock protocol with Spatial-temporal Bucket Synchronization

On initialization at A

for each replica Rj on A do

cAi,j ← 0

cpAi,j ← 0

tAi,j ←∞
tsAi,j ← 0

cBi,j ← 0

cpBi,j ← 0

tBi,j ←∞
end for

collisionList← [] � Empty list.

tbucket ←∞

On each game loop at A

for each replica Rj on A do

Δtremain ← CollisionPrediction(Mi, Rj)

if 0 ≤ Δtremain ≤ T then

tAi,j ← Δtremain + tcurrent

if IsLocked(Mi) = false and IsLocked(Rj) = false then

� First master-replica collision.

LockMotion(Mi)

LockMotion(Rj)

tbucket ← tAi,j � Init temporal bucket.

add Rj to collisionList

cpAi,j ← cpAi,j + 1

tsAi,j ← tcurrent

send < cpAi,j, tbucket > to B

58

else if IsLocked(Mi) = true and IsLocked(Rj) = false then

if tAi,j ≤ tbucket then

� Add subsequent colliding replicas to the list.

LockMotion(Rj)

add Rj to collisionList

cpAi,j ← cpAi,j + 1

tsAi,j ← tcurrent

send < cpAi,j , tbucket > to B

end if

end if

end if

if tbucket ≤ tcurrent then

if Rj in collisionList then

CollisionResolution(Mi, Rj)

cAi,j ← cAi,j + 1

tAi,j ← tcurrent

tsAi,j ← tcurrent

tbucket ←∞
remove Rj from collisionList

UnlockMotion(Rj)

if collisionList is empty then

UnlockMotion(Mi)

end if

send < cAi,j, t
A
i,j > to B

end if

else if cpBi,j > cpAi,j and tBi,j ≤ tcurrent then

if tcurrent − tBi,j < Tcut then

DelayedCollisionResolution(Mi, Rj)

end if

cpAi,j ← cpBi,j

cAi,j ← cpBi,j

59

tAi,j ← tcurrent

tBi,j ←∞
UnlockMotion(Mi)

UnlockMotion(Rj)

else if cBi,j > cAi,j then

if tcurrent − tBi,j < Tcut then

DelayedCollisionResolution(Mi, Rj)

end if

cAi,j ← cBi,j

cpAi,j ← cBi,j

tAi,j ← tcurrent

UnlockMotion(Mi)

UnlockMotion(Rj)

end if

if tcurrent − tsAi,j > Tbeat then

tsAi,j ← tcurrent

send < cAi,j, t
A
i,j > to B

end if

end for

On receipt of a < cpBi,j, t
B
i,j > from B

store cpBi,j and tBi,j at A

On receipt of < cBi,j, t
B
i,j > from B

store cBi,j and tBi,j at A

60

do not bounce off at their collision point since the replicas need to travel a bit further

until the collision time. This may cause the replicas to slightly overlap with the

master. When there are many objects colliding together, the replicas may appear to

overlap and group around the master.

Fortunately, since objects are locked when the collision time is within 0 and Tlock,

and since Tlock is short, the collision points and times of each master-replica collisions

are spatially and temporally close to the first collision. Therefore, the replicas would

not move far before the collision, and thus the overlapping is small. Furthermore,

humans do not perceive collision points accurately [22]. The small difference in colli-

sion point and overlapping may not be observable. Thus, by allowing the objects to

resolve the collision at the same time should not produce perceivable visual confusion.

On each station, the collision point of the group is centralized around the master.

Because the masters of the stations are located at different positions, the grouped

collision points among the stations will be different. Different stations may also resolve

multiple master-replica collisions in different orders. The spatial and temporal bucket

may thus be different among the stations, and the synchronization may potentially

increase the deviation error. More detailed description on multi-object collision are

discussed in section 5.4.

4.5 Conclusion

The Post-Collision protocol and the Motion-Lock protocol improve collision count

consistency for distributed architectures. In terms of bandwidth, both protocols

require a minimal amount of additional data to be sent between the participating

stations. Collision counts are only required to be sent when a collision is detected

and on each heart-beat interval. Furthermore, while the centralized server in the

client/server architecture can be overloaded by a large amount of collision messages,

the Post-Collision and Motion-Lock protocols distribute the processing and band-

width usage of each collision to the relevant collision participating stations.

The Pre-collision protocol demonstrates the infeasibility of reaching an agreement

61

within a preset amount of time in an asynchronous network. Although the protocol

can achieve a zero collision inconsistency interval, it does not maintain Δtcol-collision

count consistency.

The Motion-Lock protocol improves upon the post-collision protocol by locking

object motions and sending collision counts early so that the stations can agree on

collision counts with inconsistency intervals less than the network delay. Furthermore,

the Motion-Lock protocol allows post-collision trajectories to be sent early. Stations

that missed the collisions are expected to benefit from the received post-collision

trajectory. Overall, the motion-lock protocol should improve consistency in collision

detection and resolution in distributed architectures.

The spatial-temporal bucket synchronization allows motion-lock protocol to con-

tinue to be functional in the presence of multi-object collisions. Although the manip-

ulation of the collision point and time can increase the deviation error, the synchro-

nization removes the visual object penetration caused by collisions between locked

and unlocked objects.

62

Chapter 5

Simulations and Analysis

In this chapter, we analyse the effectiveness of the Motion-Lock protocol in dis-

tributed collision detection and resolution. We implemented an offline and an online

simulator to analyse the protocol. The offline simulator contains a simulated network

that can change the latency and packet loss rate, which allows us to test the protocol

in different network condition. The online simulator builds on top of Quazal’s NetZ

multiplayer online middle-ware, a practical context well-known in the gaming indus-

try. The online simulator allows us to test the protocol under real network conditions

and to measure the actual bandwidth used in the protocol.

Both the offline and online simulators use Position History-Based Dead Reckoning

(PHBDR) protocol to synchronize the motion states of the objects, and we build

our Motion-Lock protocol on top of the PHBDR protocol. In our analysis we then

compare the control protocol, which only contains the PHBDR, with the Motion-Lock

protocol, which has both protocols. In addition, we implemented the Post-Collision

protocol to show the improvement of the Motion-Lock protocol over this protocol.

The Post-Collision protocol is implemented in both offline and online simulator. For

the offline simulator, we also implemented a simple Super-node protocol such that a

station is assigned to be the authority over all collision outcomes. The Super-node

protocol represents a more centralized approach to contrast the distributed approach

of the Motion-Lock protocol.

63

To analyze how the objects behave in each protocol, we set up scenarios with differ-

ent object movements and, for the offline simulator, with different network conditions.

The protocols are then evaluated and compared qualitatively and quantitatively. In

the qualitative analysis, we observe how objects in each protocol behave and record

any perceivable visual artefacts. To augment these subjective assessments we also

quantitatively measure three properties of each protocol: collision counts, collision

inconsistency intervals, and post-collision deviations. The post-collision deviation is

calculated by summing deviations of the replica within a given interval.

In the following sections we first present the two simulators and how the protocols

are implemented in the simulators. Next we discuss how the three different quantita-

tive measurements are recorded and the significance of the measurements. Third, we

discuss the scenarios and the expected object behaviours in each scenario. Finally,

we present the experiment results.

5.1 Offline Simulator Design and Implementation

We built the offline simulator with adjustable network latency and packet-loss rate

in order to test the protocols under different network conditions. In this section we

first present the overall design and specification. Next we discuss each component in

detail, and finally we show how the protocols are implemented.

The simulator uses the Discrete Event System Specification (DEVS) formalism

[33] to model the system. DEVS is a hierarchical formalism for modeling systems.

A system defined by DEVS is composed of subsystems. Each subsystem can be

an atomic DEVS or a coupled DEVS, and the subsystems communicate with each

other by sending and receiving output and input events. Each atomic DEVS is a

state machine such that the state changes are triggered by internal and external

transitions. The internal transitions are scheduled with a time advance. When the

time expires, the state is changed and an output event is sent to other subsystems.

When an input event is received, the external transition is triggered to change the

state. A coupled DEVS is a subsystem that can be composed of other coupled or

64

atomic DEVSs, and simply passes the inputs and outputs between its subcomponents

and other connected DEVSs. It provides a more modular structure to the system.

DEVS was chosen to model the offline simulator because it provides modular

structure similar to a real distributed system, where each station can be seen as a

subsystem. Furthermore, DEVS subsystems communicate with each other by sending

output events, which is similar to stations sending asynchronous packets.

Our design consists of five subsystems: the System, Network, Monitor, and two

Stations. The System is the top-most coupled DEVS that processes the command

line arguments and starts up the other coupled DEVS. The Network coupled DEVS

controls the latency and packet-loss rate for each connection between the two stations.

The Station coupled DEVS initiates and updates the game loop. The Monitor is an

atomic DEVS that collects statistical data from the Network and the Stations. Figure

5.1 shows the overall design of the offline simulator. The simulator is implemented in

python using the Python DEVS package [3].

Figure 5.1: Offline simulator overall system design.

65

5.1.1 Station

Each Station coupled DEVS contains a Main-Loop atomic DEVS that drives the

game in an update/sleep cycle. The Main-Loop atomic DEVS contains the Game

state. After each update, the Main-Loop sends packets through the network to the

other station. At any point of the cycle, the Main-Loop can receive packets from the

network and stores them locally in a buffer.

The StationCDEVS, MainLoopADEVS, and Game classes implement each their

respective components. StationCDEVS is responsible for forwarding packets between

the MainLoopADEVS and the Network. It also forwards statistical data to the Mon-

itor.

The MainLoopADEVS is the heart of the system that runs the Game model

and sends updates to the other station through the StationCDEVS. The Main-

LoopADEVS has five states: START, UPDATE, SENDING, and SENDONE. After

initialization, the model changes from START to UPDATE with zero time advance

and triggers the Game model to update the game objects. The time advance of the

UPDATE state is equal to the update time. The update time determines the delta

time of the Game model. The Game model moves the game objects in accordance

with the delta time elapsed. The smaller the delta time, the smoother the game

object moves. When the update time expires, the MainLoopADEVS changes from

the UPDATE state to the SENDING state. The output function of the transition

from UPDATE to SENDING renders the game objects in the graphic interface. The

MainLoopADEVS then cycles between SENDING state and SENDONE state. Each

transition from SENDING to SENDONE outputs one packet to the network. The

cycle continues until all queued packets are sent. Note that during transitions of the

internal states the MainLoopADEVS can receive packets from the network, which

then triggers the external transition function. The external transition function stores

the data from the packets into a buffer. Upon each UPDATE, the Game processes

all the data in the buffer. Figure 5.2 shows the design of the StationCDEVS and

MainLoopADEVS.

The MainLoopADEVS consists of the Game, a simple 2D physics simulation that

66

Figure 5.2: Design of StatioCDEVS and MainLoopADEVS.

contains circular objects moving and colliding with each other. The Game is modeled

with a continuous spatial distribution, such that the objects are moving through con-

tinuous time and state respecting the equations of motion. However, since continuous

time is difficult to model, the Game abstracts the time by discretizing it. Continu-

ous time is broken into discrete segments of the same size as the frame interval; the

smaller the frame interval the smoother the rendering of the game. With discretized

time the Game can then be connected to the MainLoopADEVS.

The Game itself consists of four major components: the motion-prediction en-

gine, the physics engine, the graphics engine, and the game object(s). The motion-

prediction engine provides an interface for the motion-prediction protocols. Our cur-

rent simulator has the DIS version of the dead reckoning protocol and the PHBDR

protocol implemented. The motion-prediction protocols are modular units interact-

ing through a well-defined interface; the motion-prediction engine can then switch

67

between different protocols with ease. The physics engine is responsible for cal-

culating the motion of the objects, collision detection, collision resolution, and for

providing a list of pre-calculated object trajectories to automate the objects’ motion.

The distributed collision detection and resolution protocols are also implemented in

the physics engine. The graphics engine simply renders the game; our current imple-

mentation uses the TKinter package to render the game.

Each game object is composed of three bodies: the net body, physics body, and

the scene body. For the masters, on each update, the physics engine takes the states

of the physics bodies to calculate new states and check for collisions. The states of the

physics bodies are then used to update net bodies and scene bodies. The net bodies

are processed by the motion-prediction engine and sent to the network. The scene

bodies are processed by the graphics engine to render the objects. For the replicas,

the motion-prediction engine uses the current set of received states to calculate and

update the net bodies. The physics engine updates the physics bodies. Then, de-

pending on the current game progression, either the net body or the physics body is

used to update the scene body. For example, while under normal circumstances the

net body provides the motion-predicted state, if a collision is detected, the physics

body will be used to update the scene body instead.

5.1.2 Network

The Network coupled DEVS consists of two Connection atomic DEVSs. Each Con-

nection atomic DEVS receives packets from the sending station and assigns a latency

value to each packet. Once the latency time is reached, a packet-loss filter deter-

mines whether the packet will be forwarded to the receiving station. Both latency

and packet-loss rate can be adjusted to alter the simulated network condition.

The NetworkCDEVS and ConnectionADEVS classes implement the network and

connection components respectively; Figure 5.3 shows the design. The NetworkCDEVS

is connected to the two Stations and the Monitor. Packets received from Stations

are forwarded to the ConnectionADEVS, and packets received from the Connection-

ADEVS are forwarded to the Station to update the replicas and to the Monitor to

68

calculate statistical data.

Figure 5.3: Design of NetworkCDEVS and ConnectionADEVS.

The class ConnectionADEVS receives and stores packets in a pool, assigning each

packet a latency value; this value is determined using a uniform random number

generator with a preset range. In early experiments, Poisson and normal distributions

have been tested but yield no significant differences. The packet with the smallest

latency value determines the next time advance for the model. When the packet with

the smallest latency value is ready to exit the pool, a packet-loss filter with preset

loss percentage determines whether the packet is forwarded to the receiving station

or not. Both success and lost packet are sent to the Monitor for statistical analysis.

5.1.3 Monitor

The Monitor is atomic DEVS and implemented in class MonitorADEVS. The Moni-

tor collects and records the game states from both Stations, and network data from

69

Network. From the Stations the replica deviation, collision count and collision incon-

sistency interval at each frame are recorded. From the Network the packet latency

and loss rate are recorded. For each measurement statistical data, such as average

and standard deviation, are calculated. All data are stored in text files for graph

generation.

5.2 Online Simulation Design and Implementation

To prove the feasibility of the Motion-Lock protocol in a real online multiplayer game

context, we implemented the protocol in the NetZ online multiplayer middle-ware.

NetZ is a distributed state management framework written in C++ for online games.

It provides a high-level, easy-to-use API abstracting the networking details from the

game developers. The framework includes object replication, object data definitions,

state synchronization techniques, fault-tolerance algorithms, and communication pro-

tocols [26]. In the previous chapters we have already discussed the different state-

synchronization techniques and consistency protocols. In this section, we focus our

discussion on object replication and the data definition, and how we implemented our

protocol with respect to these two concepts.

The NetZ framework package also provides sample programs to demonstrate its

functionality and flexibility. One of the samples program is a 3D physics simulation

that contains a rectangular, enclosed arena with spheres moving and colliding. The

spheres’ movements can be controlled by players or automated with a preset pattern.

The state synchronization techniques provided in NetZ can be turned on or off in-

side this sample program. We used this sample program as the base for our online

simulator and built our protocols on top of it.

5.2.1 Object Replication

Many online games use a client/server architecture such that the server has authority

over game state. In terms of object states, the clients send commands and events

to the server, and then the server calculates new states and sends them back to the

70

clients. In the virtual simulation community, distributed virtual simulations replicate

objects at each station, and allow each station to optimistically calculate and update

states locally. To synchronize the states, station broadcasts the object states to

update the remote replicas.

NetZ uses the replication techniques in distributed virtual simulation and applies

them to multiplayer online games. NetZ’s Duplication Space technology [25] uses

a publish-subscribe model to automate the replication process. First, we defined

the duplication space as a grouping that determines which station gets a replica.

Objects are assigned as publisher, subscriber, or both. The subscribers subscribe

their local stations to a duplication space, and the publishers replicate themselves at

the subscribed stations. In other word, publishers are replicated only at subscribed

station within the same duplication space.

One of the key concerns when we design the Motion-Lock protocol is to minimize

the use of bandwidth. When a collision is detected, data should only be sent to the

other collision participating station, and need not be broadcast to the other stations.

In the Data Description Language (see next section), we define a new duplication

space: Collision Space. Upon initialization, stations create a Collision Space for each

master-replica object pair, and the two collision participating stations corresponding

to the object pair are subscribed and published to the Collision Space. Subscriptions

to the space do not change over time. For example, if there are one master and three

replicas on a station, the station would be belonged to three different Collision Spaces

and send the data accordingly. By creating Collision Spaces, observing stations will

not receive data for collisions that the stations have no authority over.

5.2.2 Network Data Definition

In the NetZ framework, game data that will be sent through the network are defined

using the Data Description Language (DDL) [25]. The Data Description Language

uses a C++-like syntax to define the type and name of the data and group the data

into datasets. Policies such as reliable/unreliable transmission and update frequency

can also be defined for each dataset. Datasets are grouped into a duplication class.

71

The duplication classes are then compiled by the DDL compiler to generate optimized

code for marshalling/unmarshalling and sending/receiving the data.

The provided 3D physics simulation uses a PHBDR protocol to update the repli-

cas. Since the PHBDR protocol only sends master positions, only the positions are

required to be defined in the DDL. Objects positions are defined as the Extrapolated

Position dataset, which contains three floating point values for the 3 dimensional

Cartesian coordinates. The dataset uses unreliable UDP protocol for transmission,

and uses the PHBDR protocol’s default error threshold to control the update fre-

quency. Lastly, the Net Object duplication class contains the Extrapolated Position

and other datasets that are required to create and update the replicas.

The Motion-Lock protocol requires also sending the collision counters, potential

collision counters, collision times, and post-collision trajectories. In DDL, we defined

the Collision Data dataset that contains integers for the collision and potential col-

lision counters, floats for the collision time and the post-collision trajectory vectors.

The Collision Data is sent with unreliable UDP for fast transmission. The update fre-

quency depends on when a collision is detected and the preset heart-beat frequency.

The frequency is controlled by the Motion-Lock protocol, so we do not define it at

the DDL level. We also define a Collision Index dataset that contains the two col-

liding object’s IDs associated with the Collision Data. The IDs do not change, so

the update policy is constant and only sent once at initialization. The two datasets

are grouped into the Collision Object duplication class. The stations then create a

Collision Object for each object pair.

5.3 Offline Experimental Analysis

The offline simulator was build to allow us to analyze the protocols with more control

over many different aspects. With the adjustable, simulated network, we can observe

how the protocols behave in, not just normal conditions, but also extreme network

conditions. With the monitor atomic DEVS, data generated from the stations can

be easily recorded and analyzed. Furthermore, frame rates for the stations can be

72

synchronized to allow the object states to be sampled at the same time. This increases

the accuracy of the calculated statistical data.

For the offline simulation, we implemented the control, Super-node, and Post-

Collision protocols to compare with the Motion-Lock protocol. The Motion-Lock

protocol includes post-collision trajectory agreement. Spatial-temporal bucket syn-

chronization is not implemented because the offline simulator is only testing single

collisions.

• The control only has the underlying PHBDR protocol to synchronize the motion

states. No collision agreement mechanism is implemented. The stations will be

collision count inconsistent if one station missed a collision. It acts as a basis

for the purpose of comparison.

• The Super-node protocol assigns one station to be the authority over all collision

detections. All stations still contain masters and replicas, and the motion of

the master on each station, including the Super-node, is still calculated locally.

Only when the objects collide, the detection and resolution of the collision is

determined by the Super-node. If the Super-node detected a collision, it will

send collision counts to trigger collision events in the other stations. This pro-

tocol represents a more centralized approach to maintain collision consistency.

In our implementation, we assign station A to be the Super-node.

• The Post-Collision protocol sends out the collision count after a collision is

detected. The collision participating stations will eventually be consistent, but

the collision inconsistency interval varies with the network latency. We want to

compare with the Post-Collision protocol to evaluate the effect of reducing the

collision inconsistency interval in the Motion-Lock protocol.

In this section, we present the experimental setup and results for the protocols.

First, the details of the test scenarios are presented. Next, the measurements are

discussed. Finally, the qualitative and quantities results are presented.

73

5.3.1 Experiment Setup

We set up six scenarios to evaluate the protocols. All scenarios involve two stations,

A and B, such that A contains master M1 and replica R2 and B contains master

M2 and replica R1. The objects are represented by circles with radius r equals to 10

pixels:

Linear-Linear-Collide (LLC)

In this scenario, the objects are moving in straight line towards each other, and will

collide head on at one point. The scenario evaluates how the protocols deal with

objects in simple linear motions and head on collisions. Since linear motion follows

the motion model, states of the replicas are correct. Figure 5.4 depicts the LLC

scenario.

Figure 5.4: Linear-Linear-Collide scenario.

Linear-Linear-Pass (LLP)

In this scenario, the objects are moving in straight line, similar to the above scenario,

except that the objects will not collide and instead will just miss each other by 3r,

from center to center. Figure 5.5 depicts the LLP scenario.

74

Figure 5.5: Linear-Linear-Pass scenario.

Circular-Linear-Collide (CLC)

In this scenario, M2 is moving in straight line while M1 is moving in a circle to

simulate more complex motion, such as from player inputs. The extrapolated state of

the replica R1 of M1 is thus inaccurate. The objects will collide at one point; however,

R1’s extrapolation error may cause it to miss the collision with M2. This scenario is

to evaluate how the protocols deal with missed collisions. Figure 5.6 depicts the CLC

scenario.

Figure 5.6: Circular-Linear-Collide scenario.

75

Circular-Linear-Pass (CLP)

Motion of the objects is similar to CLC except the objects will not collide, and instead

will just miss each other at one point by 3r, from center to center. Again, the state

of R1 is inaccurate and may cause false collisions. This scenario is to evaluate how

the protocols deal with false collisions. Figure 5.7 depicts the CLP scenario.

Figure 5.7: Circular-Linear-Pass scenario.

Circular-Circular-Collide (CCC)

In this scenario, both objects are moving in circles and the objects will collide at one

point. This is to evaluate how the protocols perform when the states of both replicas

are inaccurate. Figure 5.8 depicts the CCC scenario.

Figure 5.8: Circular-Circular-Collide scenario.

76

Circular-Circular-Pass (CCP)

This scenario is similar to the CCC scenario except the objects do not collide but just

miss each other by 3r, from center to center. Figure 5.9 depicts the CCP scenario.

Figure 5.9: Circular-Circular-Pass scenario.

Network Conditions

Three different network conditions are setup to combine with each scenario:

• The good network condition has 50ms latency and 10% packet-loss rate.

• The moderate network condition has 100ms latency and 20% packet-loss rate.

• The congested network condition has 150ms latency and 40% packet-loss rate.

The values for the network conditions are chosen to closely match the real network.

According to Pantel et al. [23], network latency beyond 200ms may cause the game

to be unplayable; therefore, we only test the protocols in conditions such that the

game is still playable.

Each combination of the scenarios and conditions is run 50 times with different

random seeds. If a collision is detected the run continues for 500ms more before it

terminates; if there is no collision the run terminates after 3 seconds. The machine

used for the offline simulator is an Intel Core 2 2GHz machine with 2GB of memory

and runs on 32 bit Windows Vista.

77

5.3.2 Measurements

For the quantitative analysis, we measured the number of collisions detected on each

station to determine the collision count consistency, the time of collision on each

station to determine collision inconsistency interval, and the positions of the objects

after collision to determine the post-collision deviation.

Collision Count

The number of collisions detected in each station is recorded to determine if the sta-

tions are collision count consistent, and to show the importance of collision count

consistency techniques. Whenever a collision is detected, the collision count is sent

to the other participating station and the monitor. The monitor records the colli-

sion count for further analysis. The Motion-Lock, Super-node, and Post-Collision

protocols are expected to have equal collision counts between the stations, and the

Control may or may not have equal counts since no collision consistency algorithm is

implemented.

Collision Inconsistency Interval

The collision inconsistency interval is measured to show that the Motion-Lock proto-

col can effectively minimize the interval. The monitor records the time the collision

was detected or informed of through the collision counters, and then the monitor cal-

culates the difference in collision times between the stations to determine the collision

inconsistency interval. At the end of each run the sum, average, standard deviation,

minimum, and maximum of the collision inconsistency intervals are calculated for

statistical analysis.

The average collision inconsistency interval for the Motion-Lock protocol is ex-

pected to be lower than the Post-Collision protocol, and, more importantly, lower

than the preset network latency. For the Control, the average value is expected to be

large since no collision consistency is implemented.

78

Post-collision Trajectory Deviation

The size of the post-collision trajectory deviation indirectly determines the size of

the correction jumps (or convergence times and distances). By measuring the post-

collision trajectory deviation we can determine which protocol minimizes any visually

confusing corrections. To calculate deviations the positions of the masters and the

replicas are recorded by the Monitor. The Monitor then determines the deviation

of the replica by calculating the distance between position of the master and the

replica at matching time stamps. To determine the post-collision deviation, after

each collision the deviations are summed from the time of collision to the end of

the 500ms interval, so that the runs have the same summation interval for better

comparison. At the end of each run, the sum, average, standard deviation, minimum,

and maximum of the post-collision trajectory deviation are calculated for statistical

analysis.

The Motion-Lock protocol is expected to have a lower post-collision deviation

than the Post-Collision protocol because the trajectories are pre-calculated. On the

other hand, the Super-node protocol may have better performance because of the

centralized authority.

5.3.3 Qualitative Result

One of the goals of the Motion-Lock protocol is to produce visually pleasing collisions

and reduce visual anomalies. We therefore also compare the protocol qualitatively by

examining the behaviour of the objects in each scenario. Although this is a subjective

assessment, the behaviours we remark on are clear and supported by the quantitative

evidence as well.

Control

In both LLC and LLP scenarios the objects behave optimally: the objects collide

cleanly in LLC and pass by each other in LLP. In CLC, CLP, CCC, and CCP, with

congested network condition, both R1 and R2’s circular motions deviate greatly and

79

cause misses and/or false collisions. Because there are no agreement messages ex-

changed, if there is a missed collision and/or false collision the master of one station

may detect a collision and bounce off, with its replicas behaving the same. On the

other station, however, the master that missed the collision will continues to move

at its original trajectory, and so do its replicas. This causes every station to observe

one object bouncing off because of the collision while the other object ignores the

collision and continues the original trajectory. This is distracting, and players may

be confused as to whether there is a collision or not.

Super-node Protocol

The Super-node protocol uses station A as the central authority in detecting and

resolving collisions. This results in some unsurprising asymmetry in the object be-

haviours. In all the scenario with normal and congested network conditions, on the

Super-node A, M1 and R2 collide with clean results. However, on B, M2 and R1

penetrate each other because the collisions are not resolved locally, and so the bounce

occurs with some delay. The penetration occurs even in LLC despite the simple linear

motion of the objects. Station B does not resolve collisions to create different post-

collision trajectories than A. However, collisions in A create sudden changes in object

motions and can still cause large deviation errors. Large correction jumps therefore

still occur.

Post-Collision Protocol

In the LLC and LLP, objects collide or pass by each other correctly without any

visual anomalies. In CLC, CLP, CCC, and CCP, on the station that missed the

collision, objects pass each other at the expected collision point. Once the collision

counts are received, however, the objects bounce off with a large gap greater than 2r

between them. Under congested network condition the gap between the objects can

be very noticeable. Furthermore, the delay in resolving the collision causes different

post-collision trajectories between the stations, and large correction jumps with Δθcol

greater than 90 degree are observed.

80

Motion-Lock Protocol

In the LLC and LLP, objects collide or pass by each other correctly without any

visual anomalies. In CLC, CLP, CCC, and CCP, the collision gaps between the

objects are smaller than the gaps in the Post-Collision protocol. This correlates

with quantitative data presented below, where we show the collision inconsistency

interval is also reduced. However, in CCP, objects sometimes appear to reduce the

gap by pulling toward each other; this is a result of the motion lock period sometimes

exceeding the threshold beyond which it is visually apparent. By reducing the Tlock,

the pulling can be less apparent, but this sacrifices the ability for potential collision

counters to be sent early. Some large correction jumps with Δθcol greater than zero

are still observed, although the sizes are reduced. Overall, the Motion-Lock protocol

produces better results than the other protocols with cleaner collisions by reducing

the gaps in between the objects, and with fewer large correction jumps.

5.3.4 Quantitative Result

Human observations are of course not enough to show the performance of the proto-

cols. In this quantitative analysis we measure the protocols in terms of the discussed

quality measurements in section 5.3.2 and analyze the significance of the observed

results.

Collision Count

The number of collisions detected on each station are recorded to determine if the

stations are collision count consistent. Since each scenario is tested for 50 runs, for

scenarios with intended collisions, the collision counts are expected to be 50. For

object passing scenarios, the expected collision counts are all 0.

In the LLC and LLP scenarios collision counts for all protocols return the expected

values. In CLC, CLP, CCC, and CCP, because of the circular motion, deviations from

the replicas are causing false and missed collisions. Tables 5.1, 5.2, and 5.3 show the

collision count for the scenarios with good, normal and congested network condition,

81

respectively.

The tables show that the stations in the control protocol are inconsistent in col-

lision count in most of the scenarios because no messages are passed between the

stations to inform each other of detected collisions. On the other hand, the sta-

tions with Super-node, Post-Collision, and Motion-Lock protocols are all consistent

in collision count.

In the CLP scenario where objects pass each other without colliding, stations

using the Super-node protocol correctly detect no collisions because the Super-node

A, moves M1 in circular motion while R2 is moved linearly without any deviation

error, allowing the objects to pass each other correctly with no false collisions. On

station B, R1 may deviate, but since B is not the Super-node collisions caused by R1

are ignored. In CCP, however, R2 on A moves in a circular motion with error, and

so false collisions are still detected on the Super-node A.

On the other hand, in CLP and CCP, stations with the Post-Collision and Motion-

Lock protocols are detecting and agreeing to many false collisions caused by the

replicas. Note that A and B are collision count consistent, because of collision count

passing; the collisions, however, are unintentional. Moreover, even in good network

conditions, the Motion-Lock protocol detects false collisions because the objects are

locked and forced to collide. This is undesirable from a correctness perspective, but

may still be acceptable in terms of fairness and consistency, since stations using the

Motion-Lock protocol are detecting the same number of collisions despite the different

network conditions.

In CCC and CCP, the Motion-Lock protocol can detect more than 50 collisions.

This may due to the inaccuracy of the potential collision prediction algorithm. After

a collision objects are still close to each other, and numerical error or insufficient

time for collision resolution to move objects apart can cause the collision prediction

algorithm to incorrectly detect multiple collisions instead of one. The problem can

be reduced with better collision prediction, although this is left for future work.

82

Table 5.1: Collision Count for Good Network Condition (50ms delay, 10% loss)

Scenario CLC CLP CCC CCP

Station A B A B A B A B

Control 50 50 0 1 50 49 1 0

Super-node 50 50 0 0 50 50 1 1

Post-Collision 50 50 1 1 50 50 1 1

Motion-Lock 50 50 50 50 50 50 50 50

Table 5.2: Collision Count for Normal Network Condition (100ms delay, 20% loss)

Scenario CLC CLP CCC CCP

Station A B A B A B A B

Control 50 50 0 50 44 43 35 37

Super-node 50 50 0 0 50 50 46 46

Post-Collision 50 50 50 50 50 50 50 50

Motion-Lock 50 50 50 50 50 50 50 50

Table 5.3: Collision Count for Congested Network Condition (150ms delay, 40% loss)

Scenario CLC CLP CCC CCP

Station A B A B A B A B

Control 50 10 0 25 44 42 46 46

Super-node 50 50 0 0 50 50 50 50

Post-Collision 50 50 25 25 50 50 50 50

Motion-Lock 50 50 50 50 52 52 51 51

83

Collision Inconsistency Interval

We compare collision inconsistency intervals among the Super-node, Post-Collision,

and Motion-Lock protocols. The Control cannot be used here because, without an

agreement protocol, if one station misses a collision the inconsistency time grows

unbounded.

Figure 5.10 shows collision inconsistency time for the LLC scenario. The color

bars and the lines extended from the bars represent the average and standard de-

viation of the collision inconsistency interval, respectively. With objects moving in

linear motion, the collision inconsistency intervals for Post-Collision and Motion-Lock

protocols is zero because both stations detect and resolve the collision independently.

Furthermore, because the objects are moving linearly, no false or missed collisions oc-

cur. On the other hand, the Super-node protocol shows a long collision inconsistency

interval. This is because station A needs to inform B of every collision, and thus,

even for simple linear motions, the Super-node protocol shows delays in resolving

collisions, as described in the qualitative analysis.

Figures 5.11, 5.12, 5.13, and 5.14 show the collision inconsistency interval for

CLC, CLP, CCC, and CCP scenarios. Overall, the motion-lock protocol shows shorter

collision inconsistency intervals, and even with 150ms network latency the motion-lock

protocol has the inconsistency interval below the network latency. This demonstrates

that our motion-lock protocol can successfully minimize the collision inconsistency

interval. In 5.12, the Super-node protocol shows zero inconsistency intervals because

it detected no collisions (discussed in the above collision count section).

Post-Collision Trajectory Deviation

We of course also want to reduce the deviations of the replicas after collisions to

prevent large jumps when replicas correct their positions in their next state updates.

The post-collision trajectory deviations provide a good indication on how large the

correction jump will be. In this analysis we compare all four protocols.

Figure 5.15 shows that, again even with simple linear motion, the Super-node

protocol causes delays in resolving collisions, and thus creates post-collision deviation

84

 0

 0.05

 0.1

 0.15

 0.2

50ms-10% 100ms-20% 150ms-40%

C
ol

lis
io

n
In

co
ns

is
te

nt
 T

im
e

(m
s)

Latency and Lost Rate

Network Condition vs. Collision Inconsistent Time

Supernode
Naive-Send
Motion-Lock

Figure 5.10: Collision inconsistency interval for LLC Scenario

 0

 0.05

 0.1

 0.15

 0.2

50ms-10% 100ms-20% 150ms-40%

C
ol

lis
io

n
In

co
ns

is
te

nt
 T

im
e

(m
s)

Latency and Lost Rate

Network Condition vs. Collision Inconsistent Time

Supernode
Naive-Send
Motion-Lock

Figure 5.11: Collision inconsistency interval for CLC Scenario

85

 0

 0.05

 0.1

 0.15

 0.2

50ms-10% 100ms-20% 150ms-40%

C
ol

lis
io

n
In

co
ns

is
te

nt
 T

im
e

(m
s)

Latency and Lost Rate

Network Condition vs. Collision Inconsistent Time

Supernode
Naive-Send
Motion-Lock

Figure 5.12: Collision inconsistency interval for CLP Scenario

 0

 0.05

 0.1

 0.15

 0.2

50ms-10% 100ms-20% 150ms-40%

C
ol

lis
io

n
In

co
ns

is
te

nt
 T

im
e

(m
s)

Latency and Lost Rate

Network Condition vs. Collision Inconsistent Time

Supernode
Naive-Send
Motion-Lock

Figure 5.13: Collision inconsistency interval for CCC Scenario

86

 0

 0.05

 0.1

 0.15

 0.2

50ms-10% 100ms-20% 150ms-40%

C
ol

lis
io

n
In

co
ns

is
te

nt
 T

im
e

(m
s)

Latency and Lost Rate

Network Condition vs. Collision Inconsistent Time

Supernode
Naive-Send
Motion-Lock

Figure 5.14: Collision inconsistency interval for CCP Scenario

errors for the replicas. The other protocols show no error at all under this easy to

predict scenario.

Results from more complex motion tests are shown in Figures 5.16 and 5.17. Here

we see that the motion-lock protocol has a smaller deviation error than all protocols,

except in the case of the Super-node protocol tested on circular-linear-pass. In this

situation the Super-node protocol successfully filters out the false collisions, resulting

in no deviation.

Both objects moving in a circular path represents a difficult test for distributed

collision detection. Figures 5.18 and 5.19 show that all protocols improve significantly

over the control, with the Motion-Lock protocol having approximately the same error

as others. When both objects are moving in circles, collision prediction may not

accurately detect potential collisions, and so the motion-lock protocol is unable to

send the collision counter prior to the actual collision time. The collision inconsistency

intervals thus are about the same as the Post-Collision protocol, or the delay generated

by the Super-node protocol.

87

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

50ms-10% 100ms-20% 150ms-40%

S
um

 o
f D

ev
ia

tio
n

ov
er

 T
im

e
(p

ix
el

s*
m

s)

Latency and Lost Rate

Network Condition vs. Post-Collision Deviation

Control
Supernode

Naive-Send
Motion-Lock-state

Figure 5.15: Post-Collision Trajectory Deviation for LLC Scenario

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

50ms-10% 100ms-20% 150ms-40%

S
um

 o
f D

ev
ia

tio
n

ov
er

 T
im

e
(p

ix
el

s*
m

s)

Latency and Lost Rate

Network Condition vs. Post-Collision Deviation

Control
Supernode

Naive-Send
Motion-Lock-state

Figure 5.16: Post-Collision Trajectory Deviation for CLC Scenario

88

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

50ms-10% 100ms-20% 150ms-40%

S
um

 o
f D

ev
ia

tio
n

ov
er

 T
im

e
(p

ix
el

s*
m

s)

Latency and Lost Rate

Network Condition vs. Post-Collision Deviation

Control
Supernode

Naive-Send
Motion-Lock-state

Figure 5.17: Post-Collision Trajectory Deviation for CLP Scenario

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

50ms-10% 100ms-20% 150ms-40%

S
um

 o
f D

ev
ia

tio
n

ov
er

 T
im

e
(p

ix
el

s*
m

s)

Latency and Lost Rate

Network Condition vs. Post-Collision Deviation

Control
Supernode

Naive-Send
Motion-Lock-state

Figure 5.18: Post-Collision Trajectory Deviation for CCC Scenario

89

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

50ms-10% 100ms-20% 150ms-40%

S
um

 o
f D

ev
ia

tio
n

ov
er

 T
im

e
(p

ix
el

s*
m

s)

Latency and Lost Rate

Network Condition vs. Post-Collision Deviation

Control
Supernode

Naive-Send
Motion-Lock-state

Figure 5.19: Post-Collision Trajectory Deviation for CCP Scenario

5.4 Online Experimental Analysis

In the above offline experiment we analyzed pair-wise object collision behaviour. In

the online experiment we increase the complexity of the scenario by having multiple

objects in the scene to create multiple collisions. This allows us to test the effective-

ness of the Spatial-temporal bucket synchronization algorithm. Furthermore, with a

real network context we are able to measure the amount of data sent and received at

each station. This allows us to analyze the actual network impact of the protocols.

For the analysis, we focus our observation on two types of collisions: multi-object

collisions, and consecutive collisions. Multi-objects collisions occur when more than

two objects collide near the same point, as discussed in the Spatial-temporal bucket

synchronization section 4.4.1. Consecutive collisions occur when one object collides

with a series of objects consecutively at different collision points, within a short time

period. Each collision contributes a certain amount to post-collision deviation, and

so consecutive collisions can lead to large deviations and thus large correction jumps.

90

We implemented the Control, Post-Collision, and Motion-Lock protocols for the

online simulation. To test the Spatial-temporal bucket synchronization algorithm we

also set up two different versions of the Motion-Lock protocol, either with or without

spatial-temporal bucket synchronization.

In this section, we present the experimental setup and results for the online simu-

lation. First, the details of the test scenarios are presented. Next, the measurements

are discussed. Finally, the qualitative and quantitative results are presented.

5.4.1 Experiment Setup

We set up a specific multi-object collision scenario to analyze protocol performance,

and used two machines on the Internet to test actual distributed performance. One

machine was located on McGill campus in Montreal, and one in Longueuil. The

machine in Montreal is an Intel Core 2 2GHz machine with 2GB of memory and runs

on 32 bit Windows Vista. The machine in Longueuil is an Intel Core 2 Quad 2.5GHz

machine with 4GB of memory, running on 64 bit Windows 7. For simplicity, we term

the machines as station A and B.

Station A contains one master while station B contains 7 masters, so each station

has 8 objects to render. Initially, objects are placed far away from the center. When

the scenario starts, all objects move toward the center and collide with each other

to engage in a multi-object collision. Every three seconds after the main collision,

user commands are simulated to force objects to once again all head for the center,

repeating the multi-object collision. However, due to the nondeterministic nature

of the network and extrapolation error, the replicas may not reach the center at

exactly the same time. Some replicas will deviate and consecutive collisions can occur.

This scenario maximizes the chance of multi-object and consecutive collisions and of

observing inconsistency in the treatment of the 7 replicas on A. For each protocol,

the scenario runs for 20 minutes. Figure 5.20 shows the multi-object collision where

objects collide at the center. Figure 5.21 shows the consecutive collisions of the master

M1 that occur when replicas deviate and do not collide at the center.

91

Figure 5.20: Multi-object collision scenario.

Figure 5.21: Replica deviation causes consecutive collisions.

92

5.4.2 Measurements

Similar to the offline experiment, for the online experiment, we need to define some

measurements to evaluate the protocols. The data are measured and recorded in

a similar way to the offline Monitor case. However, since stations are distributed

geographically, each station records the data in a local file, then the files are combined

and processed after each simulation. We measure and calculate the collision count

and collision inconsistency interval the same as the offline simulator. For details on

these two measurements, see section 5.3.2.

Deviation

In a multiple collision scenario, each collision can be difficult to isolate in order to

calculate the post-collision deviation. Instead, we sum the deviation for each object

from the beginning to the end of each 20 minute run.

Deviation error is calculated from samples of object positions. Object positions

are recorded every 20ms between frames. Because the stations can be running at

different frame rates, the recorded positions of master and replica may not be in

sync. Therefore, master positions are interpolated to match the time of their replica’s

recorded position. At the end of each run, the sum, average, standard deviation,

minimum, and maximum of the deviation error are calculated for statistical analysis.

Bandwidth Usage

The Motion-Lock protocol is designed in a way such that the collision data sent across

the network should not cause significant extra burden to the network and stations.

Nevertheless, we do send extra data, and so we want to observe the amount of band-

width used by our protocols for network efficiency analysis. The NetZ framework

provides functions to measure the number of bytes sent and received at each station.

We simply use these functions to record the amount of network data. The number

of kBytes sent and received are sampled at every 20ms between frames for the 20min

run. At the end of each run, the sum, average, standard deviation, minimum, and

maximum of the bytes sent and received are calculated for statistical analysis.

93

Motion Locked Percentage

When there are multiple objects in the scene with many potential collisions the

Motion-Lock protocol may result in the master having its motion locked very fre-

quently; players may feel they lose responsiveness in controlling their objects. There-

fore, we want to analyze the degree of control being discarded due to motion locking.

We recorded the total number of automated commands that change object motion

to reach the center, and the number of automated commands discarded while the

objects’ motion is locked. The percentages of commands that are discarded can then

be calculated.

5.4.3 Qualitative Result

Similar to the offline simulation, we observe the behaviours of the objects and discuss

any visual anomalies. We also focus our observation on the multi-objects collisions,

and consecutive collisions.

Control

Because there is no collision count agreement, when an object encounters a consecu-

tive collision, the master and the replicas may detect a different number of collisions.

Furthermore, as each collision amplifies the deviation error, after a few consecutive

collisions, the replicas can end up in a complete different location than their master.

This can cause very large correction jumps as great as across the entire game arena.

Post-Collision Protocol

Similar to the offline simulation observation, we detected collision gaps greater than

2r between objects due to the long collision inconsistency interval. In consecutive

collisions, the masters and replicas detect the same collision count, but the large

collision gap can still cause replicas to deviate, and thus creating large correction

jumps.

94

Motion-Lock Protocol

Without the Spatial-temporal bucket synchronization collisions between a locked ob-

ject and an unlocked object are ignored. Therefore, in multi-object collisions we

observed object penetrations. By sending the collision counter early, gaps in colli-

sions are much smaller than seen in the Post-Collision protocol. This prevents large

deviations caused by the consecutive collisions, and so the numbers of large correction

jumps are also reduced.

Motion-Lock with Spatial-temporal Bucket Synchronization

With the Spatial-temporal bucket synchronization no object penetrations are ob-

served in multi-object collisions. The spatial-temporal bucket synchronization algo-

rithm manipulates object collision times so that they all bounce off at the same time

and avoid object penetrations. However, because of the collision time manipulation,

masters and replicas may end up with different post-collision trajectories. Therefore,

although penetration issues improved, we observed more state correction jumps in

motion-lock protocol with spatial-temporal bucket synchronization than without.

5.4.4 Quantitative Result

In the multi-object collision scenario, master M1 on A interacts with 7 replicas from

B, while the masters on B interact with only one replica, R1 from A. Since we are

interested in master-replica collisions, we focus on the experimental results involving

M1 or R1. For bandwidth analysis, we focus on the number of bytes station A sent

and received.

Table 5.4 shows the statistical data for the deviation between M1 and R1. The

result clearly shows the benifit of having collision count consistency algorithms. The

control shows two times more deviation error than the Post-collision and the Motion-

lock protocols. The Motion-Lock without the Spatial-temporal bucket synch shows

the least amount of deviation for R1 among the protocols. R1 in the Motion-Lock

with the synchronization algorithm deviates slightly more than the protocol without

95

the synchronization. As observed in our qualitative analysis, by manipulating colli-

sion time the spatial-temporal bucket synchronization may produce more deviation.

Therefore, spatial-temporal bucket synchronization reduces observed object penetra-

tions, but creates more distance error. Both versions of the Motion-lock protocols

show less deviation than the Control and Post-collision protocols.

Table 5.5 shows the collision inconsistency interval for the master-replica collisions

between M1 and the seven replicas on A. The Control is omitted since it does not have

consistency techniques implemented and the interval can thus grow unbounded. The

average interval among the three protocols shows no significant difference. However,

Post-Collision protocol shows larger standard deviation and maximum interval. This

indicates that by sending collision counters early before the collisions, motion-lock

protocols are able to reduce the collision inconsistency interval.

Tables 5.6 and 5.7 show the amount of data in kilobytes sent and received by

station A. The data are sampled at every 20ms for the entire 20min run, and the

data is averaged by number of samples. The overall amount of data sent is small and

the average changes are minimal for all protocols—-the collision consistency protocols

do not use much more bandwidth to enable collision count consistency. We do note

that the Motion-lock protocols shows larger maximum kBytes sent and received. This

can be cause by the increase in data transmission when there are many collisions

happening at the same time. However, on average, the motion-lock protocols do not

show much more bandwidth usage.

For the two Motion-Lock protocols, with our default 100ms Tlock threshold, around

4% of the commands to change M1’s motion are discarded due to motion-locking. In

the Motion-Lock protocol 20min run, station A generates 79074 commands to change

the motion of M1 so that M1 turns around to move towards the center again. Out

of these commands, only 3196 commands (4.04%) are discarded due to motion lock.

Similarly, in the Motion-Lock protocol with spatial-temporal bucket synchronization,

3002 out of 72645 (4.13%) commands are discarded. Statistically, the amount of

commands being discarded seems low and players should not feel any significant loss

of control of their objects. For future work, the motion-lock protocol should be tested

with real players surveying actual user experience.

96

Table 5.4: Deviation error of M1 in Multi-Object Collision scenario

Deviation (pixels) Sum Avg. Std. Max.

Control 30740 0.51 2.19 42.57

Post-Collision 19342 0.32 0.86 12.82

Motion-Lock 16148 0.27 0.69 13.30

Motion-Lock w/ S-T Sync 17538 0.29 0.65 13.08

Table 5.5: Collision inconsistency interval of M1 in Multi-Object Collision scenario

Collision Inconsistency Interval (ms) Avg. Std. Max.

Post-Collision 8.52 19.88 428

Motion-Lock 7.62 4.64 39

Motion-Lock w/ S-T Sync 8.00 4.86 53

Table 5.6: kBytes sent from station A in Multi-Object Collision scenario

Send (kByte) Avg. Std. Max.

Control 8.14 4.75 29.71

Post-Collision 8.08 4.68 29.71

Motion-Lock 8.09 5.01 48.83

Motion-Lock w/ S-T Sync 8.36 5.14 52.69

Table 5.7: kBytes received by station A in Multi-Object Collision scenario

Received (kByte) Avg. Std. Max.

Control 27.27 9.44 61.89

Post-Collision 28.70 9.16 65.97

Motion-Lock 29.18 9.62 77.10

Motion-Lock w/ S-T Sync 29.60 10.10 79.74

97

5.5 Conclusion

From the analysis, we can see that the Motion-Lock protocol shows good results

comparing to the standard dead reckoning protocol. Visually, by reducing the in-

consistency interval, the Motion-Lock protocol reduces the collision gap created by

the delayed collision resolution. With the post-collision trajectory agreement, the

protocol is able to eliminate most large correction jump. With the Spatial-temporal

bucket synchronization, the motion lock protocol is able to send the collision count

early and display better visual result in multi-object collision.

Statistically, the use of exchanging collision counters in Post-Collision and Motion-

Lock protocol helps reduce the overall deviation error. In the offline simulation anal-

ysis, comparing to the Control, the Motion-Lock protocol reduces the post-collision

deviation error by half. Similarly, in the online simulation analysis, even under com-

plex multi-object collision scenarios, the Motion-Lock protocols with and without the

Spatial-temporal synchronization result in less deviation. Furthermore, the band-

width analysis shows that on average, the Motion-Lock protocol do not require much

more bandwidth usage. Therefore, the results shown in this chapter suggest that mul-

tiplayer online games with distributed architecture can benefit from the motion-lock

protocol.

98

Chapter 6

Conclusion

In order for multiplayer online games to break away from client-server architec-

tures and be implemented in more scalable and fault-tolerant distributed architec-

tures, consistency for the states of player-controlled objects is required. In distributed,

virtual simulations, many algorithms such as dead-reckoning, local lag, and time warp

have been designed to improve consistency of game or object states in general. There

has, however, not been much research specifically on consistency in collision detec-

tion, yet the majority of computer games require collision detection to display proper

visual results and, more importantly, determine critical game events such as the win-

ner of the game. Without proper collision detection, some games become unplayable;

therefore, strong consistency in collision detection and resolution is essential.

In chapter 3 we analyzed a basic dead-reckoning algorithm and pointed out the

problem of extrapolation error. When two objects are moving towards each other,

inaccurate extrapolations can cause stations to detect different collision points, and

thus, different post-collision trajectories. Furthermore, at high network latency, the

extrapolation can be large enough to cause false and missed collisions. These problems

create inconsistency in collision and cause the motion states to diverge. Furthermore,

in the presence of network latency, jitter and packet loss, achieving perfect consis-

tency and correctness in a distributed architecture is very difficult. We therefore

defined ΔP -State Correctness, Δtcol-Collision Count Consistency, and Δθcol-post-

collision State Correctness so that some form of consistency and correctness can be

99

reached.

In chapter 4, we present the motion-lock protocol that maintains consistency and

improves the visual result for distributed collision detection and resolution. The

protocol consists of four parts. Additional collision counters are exchanged between

stations to ensure the numbers of detected collisions are consistent. The motion lock-

ing allows collision counters to be sent early before the objects collide so that the

collision inconsistency interval is minimized. The post-collision trajectory agreement

reduces large correction jumps for deviated objects, improving the visual result after

collisions. The spatial-temporal bucket synchronization further improves the visual

result for multi-object collisions by grouping closely located collision points and re-

solving them as one multi-object collision.

In chapter 5, the motion-lock protocol is analyzed using our offline and online sim-

ulators. The offline simulator can adjust the simulated network latency and packet

loss rate to test the protocol under various network conditions. Building on top of

Quazal’s NetZ middleware for multiplayer games, the online simulator analyzes the

protocol and measures bandwidth usage in a real network. Besides the motion-lock

protocol, the dead reckoning, super-node, and post-collision protocols are also imple-

mented and tested to compare the result with the motion-lock protocol. Scenarios

are designed to unit test the protocols in different object behaviours and game en-

vironments. Collision count, inconsistency interval, deviation, and bandwidth usage

are measured for each protocol. The experimental results show that the motion-lock

protocol maintains consistent collision count and greatly improves post-collision tra-

jectories deviation and visual results. Furthermore, the motion-lock protocol does not

require much more bandwidth and reduces by only around 4 percent the responsive-

ness of player controls. As to be expected, however, complex multi-object scenarios

remain challenging, and the motion-lock protocol shows less improvement as condi-

tions become more extreme for collision detection. We also find the spatial-temporal

bucket synchronization does not yield a better result in quantitative analysis, al-

though it does provide a visually acceptable solution for collisions between locked

master and unlocked replicas.

100

6.1 Future Work

Our Motion-Lock protocol is one of the first protocols for improving consistency in

distributed collision detection. Of course, and as seen in the analysis, the Motion-

Lock protocol is far from perfect. In the following sections, improvements and future

work to the motion-lock protocol and distributed collision detection will be discussed.

6.1.1 Collision Count Correctness

For games with highly dynamic object, such as first person shooters, motion of the

masters can be highly unpredictable, and thus increase the number of false collisions.

If the stations do not filter out the false collisions, objects can be colliding constantly,

which may cause the game to be unplayable. The post-collision and motion-lock

protocols maintain collision count consistency, but not collision count correctness. In

the post-collision protocol, stations send out collision counts for all detected collisions

including false collisions, because the stations do not have enough information to

discern the false collisions from the real. The receiving stations then optimistically

agree to all informed collisions. In the motion-lock protocol, the potential collision

detection algorithm uses linear extrapolation to estimate collisions. The estimation

can be wrong, forcing objects to engage in unintentional collisions.

One possible way of filtering out incorrect collisions is to determine if the extrap-

olated states of the replicas are accurate or not. If a master collides with a replica

with an inaccurate state, the chance that the collision is a false collision is high.

The station can then steer away the replicas to avoid the possible incorrect collision.

The accuracy of the extrapolated state of the replica can be approximated using the

previously received states and the time gap between the states. If the past states

do not closely follow the motion model, the chances are the motion of the master

is unpredictable and thus the predicted motion of the replica is inaccurate. On the

other hand, if the past states show constant acceleration, the replica’s extrapolated

state should be accurate. An additional factor is the time between updates. If the

101

gaps between correctly received states are large, perhaps caused by a congested net-

work, the predicted motions of the replicas will themselves be based on previously

extrapolated data, compounding any error. If, however, time gaps are short, the max-

imal deviation of a replica is more limited, heuristically suggesting better tracking of

the master motion. This kind of information can be exploited to help provide cheap

confidence heuristics that reduce false collisions.

6.1.2 Post-Collision Trajectory Agreement

In asynchronous networks, for stations to agree on post-collision trajectories is quite

difficult. In chapter 3, the motion-lock protocol allows stations to send the pre-

calculated post-collision trajectory to the other collision participating station. If the

receiving station missed the collision, it simply uses the received trajectory to display

the collision resolution. However, this only benefits the situation when one station

misses the collision. If both stations detected the collision and calculate different sets

of collision trajectories, choosing which set of trajectories to be used on both stations

would require further agreement. However, any more messages passing to reach an

agreement would delay the resolution of the trajectories. Furthermore, as we seen in

the pre-collision agreement protocol, reaching an agreement in asynchronous network

by passing messages is difficult.

Heuristically, using available local information to adaptively prioritizing which

set of trajectories to be used may provide a faster solution to reach a better agree-

ment. Local information such as the accuracy of extrapolated states of the replica,

as discussed in previous section, can provide a score to each set of trajectories. By

sending the score with the trajectories to the participating stations, stations can com-

pare the scores between the local and received trajectories to determine which set of

trajectories to be used.

102

6.1.3 Multi-Object Collisions

Designing a protocol for multi-object collisions can be difficult because of the increased

object dynamics and interactions. From our experimental results, we see that spatial-

temporal synchronization does not yield a better statistical result. Both versions

of motion-lock show a reduced deviation, but the synchronization creates a larger

collision inconsistency interval. Reducing the collision inconsistency interval reduces

replica deviations, but reducing deviations may not reduce the collision inconsistency

interval. The trade-offs here are interesting and worth further consideration.

Of course game development often focuses more on good visual results than pre-

cise collisions with correct physics. Therefore, instead of developing a protocol with

accurate results, heuristic solutions are preferred. The spatial-temporal bucket syn-

chronization provides a better visual result by grouping colliding objects into one

collision; this avoids situations where the congested nature of many collisions oth-

erwise causes collisions to be missed and subsequent object penetrations. Another

possible heuristic solution for multi-object collisions is to calculate and send data only

for collisions that are perceivable by the players. For example, when an object travel-

ing with high velocity collides with a cluster of objects, the collisions inside the cluster

may be too fast for the players to observe any visual anomalies. The post-collision

trajectories for each object in the cluster that bounces outward, however, are highly

perceivable. Therefore, before the fast-approaching object enters the cluster, we can

heuristically pre-calculate the post-collisions trajectories for all objects in the cluster

and send the trajectories to the other stations. This should improve the consistency

of the post-collision trajectory and reduce the number of large correction jumps.

6.1.4 Cheating and Security

The Motion-Lock protocol is aimed at providing strong consistency for distributed

architectures. Practical use in a multiplayer system also requires consideration of

game security. This makes our design vulnerable to game cheating; users can mali-

ciously craft network packets to manipulate the motion-lock protocol to force objects

103

to collide or not. Future work thus includes considering the use of cryptographic tech-

niques to hide and validate the data transmitted. One other possible way of avoiding

cheating is to use a trust system for the clients [13]. For the Motion-Lock protocol,

clients with higher trust values would have more authority in deciding the result of a

collision.

6.1.5 Fault Tolerance

In a real network, stations can crash and drop out from the network. When a station

is dropped, the master no longer exists, and, before the crash is discovered by the

other stations, the faulty replicas residing on other stations may not yet been removed.

The faulty replicas can still collide with the other objects causing false collisions. In

most cases, however, the impact on Motion-Lock is limited, since the protocol acts as

an agreement only between the collision participating stations. If a master collides

with a faulty replica, collision counters would be sent to inform the faulty station.

Since the station no long exists, the protocol ends and the correct station resolves the

collision as usual. Other stations continue to observe the collision as a replica-replica

collision. Further investigation on the impact of faulty stations on the Motion-Lock

protocol is of course required to verify our claims and establish the limits of fault

tolerance.

104

Bibliography

[1] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: a distributed

architecture for online multiplayer games. In NSDI’06: Proceedings of the 3rd

Symposium on Networked Systems Design & Implementation, pages 155–168,

Berkeley, CA, USA, 2006. USENIX Association.

[2] IEEE-SA Standards Board. IEEE standard for distributed interactive simulation

- application protocols. IEEE, 1995. IEEE Std 1278.1-1995.

[3] Jean-Sébastien Bolduc and Hans Vangheluwe. A modelling and simulation pack-

age for classical hierarchical DEVS. Technical Report MSDL-TR-2001-01, McGill

University, 2001.

[4] Wentong Cai, Francis B. S. Lee, and L. Chen. An auto-adaptive dead reckon-

ing algorithm for distributed interactive simulation. In PADS ’99: Proceedings

of the thirteenth workshop on Parallel and distributed simulation, pages 82–89,

Washington, DC, USA, 1999. IEEE Computer Society.

[5] J. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Miller, and D. Owen. The simnet

virtual world architecture. In Virtual Reality Annual International Symposium

(VRAIS ’93), pages 450–455. IEEE, 1993.

[6] Addison Chan, Rynson W. H. Lau, and Beatrice Ng. Motion prediction for

caching and prefetching in mouse-driven DVE navigation. ACM Trans. Internet

Technol., 5(1):70–91, 2005.

105

[7] Luther Chan, James Yong, Jiaqiang Bai, Ben Leong, and Raymond Tan. Hydra:

a massively-multiplayer peer-to-peer architecture for the game developer. In

NetGames ’07, pages 37–42, New York, NY, USA, 2007. ACM.

[8] Eric Cronin, Burton Filstrup, Anthony R. Kurc, and Sugih Jamin. An efficient

synchronization mechanism for mirrored game architectures. In NetGames ’02:

Proceedings of the 1st workshop on Network and system support for games, pages

67–73, New York, NY, USA, 2002. ACM.

[9] C. Diot and L. Gautier. A distributed architecture for multiplayer interactive

applications on the internet. Network, IEEE, 13(4):6–15, Jul/Aug 1999.

[10] T.P. Duncan and D. Gracanin. Pre-reckoning algorithm for distributed virtual

environments. In Proceedings of the 2003 Winter Simulation Conference, vol-

ume 2, pages 1086–1093 vol.2, Dec. 2003.

[11] Blizzard Entertainment. Diablo II. http://classic.battle.net/diablo2exp/

faq/multiplayer.shtml.

[12] Blizzard Entertainment. World of warcraft. http://www.worldofwarcraft.

com/index.xml.

[13] Josh Goodman and Clark Verbrugge. A peer auditing scheme for cheat detection

in MMOGs. In NetGames 2008: 7th Workshop on Network & System Support

for Games, Worcester, MA, USA, oct 2008.

[14] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned federation of

game servers: a peer-to-peer approach to scalable multi-player online games. In

NetGames ’04, pages 116–120, New York, NY, USA, 2004. ACM.

[15] Alan Kenny, Séamus Mcloone, and Tomás Ward. Controlling entity state updates

to maintain remote consistency within a distributed interactive application. ACM

Trans. Internet Technol., 9(4):1–25, 2009.

106

[16] B. Knutsson, Honghui Lu, Wei Xu, and B. Hopkins. Peer-to-peer support for

massively multiplayer games. In INFOCOM 2004. Twenty-third Annual Joint

Conference of the IEEE Computer and Communications Societies, volume 1,

pages –107, March 2004.

[17] A. Krumm-Heller and S. Taylor. Using determinism to improve the accuracy of

dead reckoning algorithms. In in Proc. of Simulation Technologies and Training

Conference, 2000.

[18] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[19] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and timewarp: pro-

viding consistency for replicated continuous applications. Multimedia, IEEE

Transactions on, 6(1):47–57, Feb. 2004.

[20] Martin Mauve. How to keep a dead man from shooting. In IDMS ’00: Proceedings

of the 7th International Workshop on Interactive Distributed Multimedia Systems

and Telecommunication Services, pages 199–204, London, UK, 2000. Springer-

Verlag.

[21] Jan Ohlenburg. Improving collision detection in distributed virtual environments

by adaptive collision prediction tracking. In VR ’04: Proceedings of the IEEE

Virtual Reality 2004, page 83, Washington, DC, USA, 2004. IEEE Computer

Society.

[22] Carol O’Sullivan and John Dingliana. Collisions and perception. ACM Trans.

Graph., 20(3):151–168, 2001.

[23] Lothar Pantel and Lars C. Wolf. On the impact of delay on real-time multiplayer

games. In NOSSDAV ’02: Proceedings of the 12th international workshop on

Network and operating systems support for digital audio and video, pages 23–29,

New York, NY, USA, 2002. ACM.

[24] Quazal. Combating Latency - Game Coherence Over the Internet, Network Prob-

lems - Quazal’s Solutions, January 2007.

107

[25] Quazal. Duplication SpacesTM, March 2008.

[26] Quazal. Quazal Net-ZTM 2008 Technical Overview, March 2008.

[27] Dave Roberts, Rob Aspin, Damien Marshall, Seamus Mcloone, Declan Delaney,

and Tomas Ward. Bounding inconsistency using a novel threshold metric for

dead reckoning update packet generation. Simulation, 84(5):239–256, 2008.

[28] Sandeep K. Singhal and David R. Cheriton. Using a position history-based

protocol for distributed object visualization. Technical Report STAN-CS-TR-

94-1505, Stanford University, Stanford, CA, USA, 1994.

[29] Aaron St. John and Brian Neil Levine. Supporting p2p gaming when players

have heterogeneous resources. In NOSSDAV ’05: Proceedings of the international

workshop on Network and operating systems support for digital audio and video,

pages 1–6, New York, NY, USA, 2005. ACM.

[30] Quazal Technologies. Netz. http://www.quazal.com.

[31] A. Tumanov, R. Allison, and W. Stuerzlinger. Variability-aware latency ame-

lioration in distributed environments. In Virtual Reality Conference, 2007. VR

’07. IEEE, pages 123–130, March 2007.

[32] Greg Welch and Gary Bishop. An introduction to the Kalman filter. Technical

report, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.

[33] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of Modeling

and Simulation. Academic Press, Inc., Orlando, FL, USA, 2000.

108

