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ABSTRACT

Background: Cytosine  methylation,  particularly  5-methylcytosine  in  cytosine-

phosphate-guanine  (CpG)  sites,  has  long  been  considered  to  primarily  repress  the

binding of transcription factors (TFs) in vivo. This DNA modification is known to change

the local structural features of DNA and, when occurring on binding sites, change the

binding affinity of TFs. In contrast to the conventional repressive role of methylation,

recent  high-throughput  in  vitro studies  of  TF-DNA  interactions  have  revealed  that

cytosine methylation has a heterogeneous effect on TF binding, with the direction of this

effect  depending  on  the  specific  TF  and  the  position  where  methylation  appears.

Expanding these in vitro observations to in vivo TF binding preferences, however, is a

challenging task, since confounding factors like DNA accessibility  and regional  DNA

methylation make it difficult to isolate the effect of individual CpG sites. As a result, the

in vivo methylation preferences of most TFs remain uncharacterized.

Methodology: In order to infer the effect of CpG methylation on TF binding  in

vivo,  we  developed  Joint  Accessibility-Methylation-Sequence  (JAMS)  models.  JAMS

creates quantitative models that  connect the DNA accessibility,  regional  methylation

level, sequence, and base-resolution methylation to the strength of the binding signal

observed in ChIP-seq of a TF. Furthermore, by jointly modeling both the control and

pull-down signal  in  a  ChIP-seq experiment,  JAMS is  able to  isolate  the  TF-specific

effects from background effects, revealing how methylation of specific CpGs within a

binding site alters the TF binding affinity in vivo. 

Key results: Using the transcription  factor  CTCF as a  model,  we show that

JAMS can  quantitatively  model  the  TF binding  strength  and learn  the  accessibility-

methylation-sequence  determinants  of  TF  binding.  In  addition,  JAMS  can  faithfully

recapitulate  cell  type-specific  CTCF  binding  based  on  differential  accessibility  and

methylation across cell lines. We show that even in the absence of any change in DNA

accessibility, changes in the methylation level of specific CpGs within the CTCF binding

site drive its differential  binding across cell  lines. Systematic application of JAMS to

2368 ChIP-seq experiments covering 260 TFs revealed that 45% of TFs are inhibited by
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methylation of their potential binding sites. In contrast, 6% prefer to bind to methylated

sites and 1% show mixed effects. The other 48% either do not bind to CpG-containing

sequences or are indifferent to CpG methylation. Comparison of these in vivo models to

in  vitro data  confirmed  high  precision  of  the  methyl-preferences  inferred  by  JAMS.

Finally, among the CpG-binding proteins from the ZF-KRAB family of TFs, we observed

a disproportionately high preference for methylated sequences (24%), highlighting the

role of CpG methylation in determining the genome-wide binding profiles of the TFs

from this family.  
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RÉSUMÉ

Contexte: La méthylation des cytosines, et en particulier des 5-methylcytosine

sur les sites cytosine phosphate-guanine (CpG),  a longtemps été considéré comme

réprimant  principalement  la  liaison  des  facteurs  de  transcription  (TF)  in  vivo.  Cette

modification de l’ADN est connue pour changer les caractéristiques structurelles locales

de l’ADN, ainsi que l’affinité des liaisons des TF, lorsqu’elle apparait sur leurs sites de

liaison. Contrairement au rôle répressif de la méthylation, beaucoup d’études  in vitro

récentes, sur l’interaction FT-ADN ont révélé que la méthylation des cytosines a un effet

hétérogène sur la liaison des FT. Ces études ont notamment montré que la liaison d’un

TF dépends du TF lui-même et de la position où apparait la méthylation. L’extrapolation

de ces observations  in vitro, à la préférence de liaison des TF in vivo, est cependant

difficile  à  réaliser.  En  effet,  des  facteurs  comme  l’accessibilité  de  l’ADN,  et  la

méthylation régionale de l’ADN rend difficile l’isolation de l’effet  des CpG seuls.  En

conséquence,  l’étude  des  préférences  de  méthylation  sur  la  plupart  des  FT  reste

inexploré in vivo.

Méthode: Dans le but de conclure sur l’effet de la méthylation des CpG sur les

liaisons  des  FT  in  vivo,  nous  avons  développé  le  modèle  JAMS  (pour  Joint

Accessibility-Methylation-Sequence).  JAMS crée des modèles quantitatifs  mettant en

relation des données sur l’accessibilité de l’ADN, le degré de méthylation locale, les

séquences, et, la méthylation à l’échelle des bases, avec l’intensité du signal de liaison

observée dans le ChIP-sep d’un TF. De plus, en modélisant conjointement le signal

pull-down  et  le  signal  contrôle  dans  les  expériences  ChIP-seq,  JAMS est  capable

d’isoler les effets spécifiques des TF par rapport aux effets du background. Cela montre

comment la méthylation de certaines CpG d’un site de liaison modifie l’affinité de liaison

du TF in vivo.

Résultats: En utilisant le facteur de transcription CTCF comme exemple, nous

avons  montré  que  JAMS  est  capable  de  modéliser  quantitativement  les  forces  de

liaison  d’un  TF  et  d’intégrer  le  critère  déterminant  d’accessibilité  des  séquences

méthylées  pour  une  liaison  du  TF.  De  plus,  JAMS  peut  reproduire  fidèlement  les
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liaisons  spécifiques  du  CTCF  aux  cellules,  en  se  basant  sur  différents  degrés

d’accessibilité et la méthylation entre différentes lignées cellulaire. Nous avons montré

que même en l’absence de quelques changements dans l’accessibilité de l’ADN, des

changements dans le degré de méthylation des CpGs spécifiques dans les sites de

liaison du CTFT, amène à une liaison différente entre différentes lignées cellulaires.

L’application systémique de JAMS à 2368 expériences ChIP-seq comprenant 260 TF a

révélé  que  45% des  TF  sont  inhibés  par  la  méthylation  sur  leurs  sites  de  liaison

potentiels. Cependant, 6% préfèrent se lier aux sites méthylés et 1% ont montré des

effets mitigés. Le reste des 48% de TF ne se sont pas liés à des séquences contenant

des CpG ou sont indifférents à la méthylation des CpG. Les données résultantes de la

comparaison de ces modèles in vivo aux modèles in vitro confirment la haute précision

des préférences de méthylations proposées par JAMS. Finalement, parmi les liaisons

de la protéine CpG à la famille de TF ZF-KRAB, nous avons observé une préférence

disproportionnellement  grande  des  TF  pour  les  séquences  méthylé  (24%).  Cette

différence met en évidence le rôle de la méthylation des CpG dans la détermination des

motifs de liaisons des TF de cette famille à l’échelle du génome.

6



TABLE OF CONTENTS

DEDICATION.....................................................................................................................2

ABSTRACT........................................................................................................................3

RÉSUMÉ............................................................................................................................5

TABLE OF CONTENTS.....................................................................................................7

LIST OF ABBREVIATIONS.............................................................................................11

LIST OF FIGURES..........................................................................................................13

LIST OF TABLES.............................................................................................................14

ACKNOWLEDGEMENTS................................................................................................15

FORMAT OF THE THESIS.............................................................................................16

CONTRIBUTION OF AUTHORS.....................................................................................17

CHAPTER 1. INTRODUCTION.......................................................................................18

1.1 Transcription factors..............................................................................................19

1.1.1 DNA binding domains and TF families...........................................................22

1.1.2 ChIP-seq measures TF binding.....................................................................23

1.2 Epigenetic factors that affect TF binding...............................................................24

7



1.2.1 DNA accessibility................................................................................................25

1.2.1.1 Measuring DNA accessibility using DNase-seq..........................................26

1.2.1.2 DNA accessibility and regulatory regions...................................................26

1.2.1.3 DNA accessibility and TF binding...............................................................26

1.2.2 DNA methylation.................................................................................................27

1.2.2.1 WGBS provides base-resolution readout of methylation states.................28

1.2.2.2 DNA methylation and TF binding................................................................28

1.2.2.3 Relationship between DNA methylation and DNA accessibility.................30

1.3 The interplay between TF binding and DNA methylation......................................30

1.3.1 Interactions between methylated DNA and TFs identified by high-throughput

in vitro methods.......................................................................................................31

1.3.2 In vivo effects of DNA methylation in TF binding...........................................32

1.4 Computational methods that study TF methyl-binding preferences.....................33

1.5 Hypothesis.................................................................................................................35

1.6 Objectives..................................................................................................................35

CHAPTER 2. MATERIALS AND METHODS..................................................................36

8



2.1 Preprocessing of genomic data.............................................................................36

2.1.1 ChIP-seq data processing, peak calling, and peak signal quantification.......36

2.1.2 WGBS data processing and DNase-seq data retrieval.................................37

2.2 Joint Accessibility-Methylation-Sequence (JAMS) models...................................37

2.2.1  Formatting and preprocessing of data for JAMS..........................................37

2.2.2 Implementation of JAMS................................................................................39

2.3 Differential binding analysis...................................................................................41

2.4 Inference of PFMs for C2H2-ZF proteins using RCADE2.....................................42

CHAPTER 3. RESULTS..................................................................................................43

3.1  Quantitative  modeling  of  ChIP-seq  data  to  infer  the in  vivo methyl-binding

preferences of TFs......................................................................................................43

3.1.1 Modeling the joint effect of accessibility, methylation and sequence on TF

binding.....................................................................................................................43

3.1.2 JAMS models reveal the contribution of CpG methylation to TF binding......46

3.2 Prediction of cell type specific TF binding using JAMS models............................49

3.2.1 CTCF JAMS models are transferable across cell types................................49

3.2.2 Differential binding between cell lines is captured by JAMS models.............49

9



3.3 JAMS models reveal the landscape of TF methyl-binding preferences................52

3.3.1 A high-confidence compendium of JAMS models for 260 TFs......................52

3.3.2 Systematic inference of the in vivo TF methyl-binding preferences..............55

CHAPTER 4. DISCUSSION............................................................................................62

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS........................................66

CHAPTER 6. REFERENCES..........................................................................................67

APPENDICES..................................................................................................................81

Supplementary figures.................................................................................................81

Supplementary tables..................................................................................................87

Copyright clearance.....................................................................................................89

10



LIST OF ABBREVIATIONS

5mC 5-methylcytosine

bHLH Basic helix-loop-helix

C2H2-ZF The Cys2His2 zinc-finger protein family

ChIP-seq Chromatin immunoprecipitation followed by sequencing

CpGs Cytosines followed by guanine residues

DHS DNase I hypersensitive site

DNA Deoxyribonucleic acid

DNase-seq DNase I hypersensitive site sequencing

DNMTs DNA methyltransferases

EMSA Electrophoretic mobility shift assay

ENCODE ENCyclopedia Of DNA Elements

EREs Endogenous repeat elements

FDR False discovery rate

GEO Gene Expression Omnibus

H3K4 Histone 3 at lysine 4

HDACs Histone deacetylases

HDMTs Histone demethylases

HMTs Histone methyltransferases

JAMS Joint Accessibility-Methylation-Sequence

KRAB-ZFPs Krüppel-associated box domain zinc finger proteins

LFC Log fold change

MBD Methyl-CpG-binding domain

PBM Protein-Binding Microarrays

PCR Polymerase chain reaction

PFM Position frequency matrix

PPM Position probability matrix

PWM Position weight matrices

RCADE Recognition Code-Assisted Discovery of regulatory Elements

11



RF Random forests

SELEX Systematic evolution of ligands by exponential enrichment

SEM Standard error of mean

SMiLE-seq
Selective microfluidics-based ligand enrichment followed by 
sequencing

TCGA The Cancer Genome Atlas

TET Ten-Eleven-Translocation

TFBS Transcription factor binding sites

TFs Transcription factors

WGBS Whole genome bisulfite sequencing

ZF Zinc finger

12



LIST OF FIGURES

Figure 1: Schematic of a TF and its domains..................................................................20

Figure 2: Position weight matrix and motif logo of GATA3..............................................21

Figure 3: Different continuous chromatin states ranging from close to open chromatin.25

Figure 4: Overview of JAMS model.................................................................................44

Figure 5: CpG methylation preference of CTCF in HEK293 cells...................................47

Figure 6: Prediction of differentially bound CTCF peaks using JAMS............................51

Figure 7: Systematic application of JAMS.......................................................................54

Figure 8: Examples of known TF methyl-binding preferences that were also captured by

JAMS................................................................................................................................56

Figure 9: Example of a novel TF methyl-binding preference found by JAMS.................58

Figure 10: Methylation preferences per TF family...........................................................60

Supplementary Figure 1: Background coefficients for CTCF in HEK293 cells...............81

Supplementary Figure 2: Likelihood ratio test per position.............................................82

Supplementary Figure 3: JAMS coefficients for CTCF across different cell lines...........83

Supplementary Figure 4: Calculating LFC threshold.......................................................84

Supplementary figure 5: MethylChIP results by TF families...........................................85

Supplementary figure 6: TF-specific motif logos for MethylPlus and MixedEffects TFs

identified by JAMS...........................................................................................................86

13



LIST OF TABLES

Table 1: Pearson correlation between observed and predicted CTCF-binding across cell

types.................................................................................................................................49

Table 2: Contingency table of TF classifications by JAMS and bisulfite-SELEX............57

Table 3: TFs with MethylPlus and MixedEffects methyl-binding preferences.................61

Supplementary Table 1: GEO and ENCODE FASTQ identification number..................87

Supplementary Table 2: TFs with high quality JAMS model...........................................88

Supplementary Table 3: Model matrix used to compare count ratios with DESeq2.......88

14



ACKNOWLEDGEMENTS

First,  I  would  like  to  acknowledge  Dr.  Hamed Shateri  Najafabadi for  his  constant

support  and mentoring during the duration of  this project.  His  in-depth feedback on

analysis and written works helped me become a better scientist.

I would like to thank Dr. Senthilkumar Kailasam for his guidance, especially during the

start of the project.

I would also like to thank my supervisory committee,  Profs. Guillaume Bourque and

Yasser Riazalhosseini for their comments and feedback on the project.

Notes of sincere gratitude to:

The lab members of the Computational and Statistical Genomics Lab for the discussion,

and comments, especially to Ariel, Gabrielle, Rached, and Pubudu.

Marie for translating the abstract to French.

My father,  mother,  sister and brother for their constant support and giving me every

opportunity I could have asked for.

Mitacs Globalink Graduate Fellowship for financial support.

15



FORMAT OF THE THESIS

This thesis was prepared in adherence to the traditional thesis format outlined by

McGill  University’s  Faculty  of  Graduate  and  Postdoctoral  Studies.  This  thesis  is

composed  of  six  chapters.  Chapter  1  is  a  comprehensive  review  of  the  literature

relevant  to  this  thesis.  Chapter  2  is  a  presentation  of  the  materials  and  methods.

Chapter 3 is a presentation of results, which is in preparation for submission to a peer-

reviewed journal. Chapter 4 is a discussion of the results presented in this thesis, while

Chapter 5 is a conclusion discussing future research directions. Chapter 6 includes all

the references of the thesis.  Finally,  appendices include supplementary figures,  and

tables, and copyright clearances.

16



CONTRIBUTION OF AUTHORS

Detailed contributions are as follows:

Aldo Hernández Corchado (A.H.C.) analyzed the data, developed figures and wrote the

thesis.

Hamed S. Najafabadi (H.S.N.) and A.H.C. developed the computational and statistical

methods.

H.S.N. conceived and directed the study and edited the thesis and figures.

17



CHAPTER 1. INTRODUCTION

Transcription  factors  (TFs)  are  key  regulators  of  gene  expression.  Each  TF

usually  recognizes  a  specific  sequence  motif;  however,  TF  binding  is  affected  by

several other variables as well. One of these variables is DNA methylation, which has

traditionally been viewed as having a repressive effect on TF binding 1. However, this

traditional view is gradually changing, as more examples are reported of TFs that bind

to methylated sequences. These include studies that have reported increased binding of

specific TFs to methylated DNA in vitro 2, in addition to reports indicating that, for some

TFs, a large fraction of their  in vivo binding sites is highly methylated  3,4.  While it  is

tempting to view these anecdotal cases as exceptions rather than a general trend, a

recent systematic analysis of TF CpG methylation preferences revealed that, in fact, a

large fraction of TFs may bind to methylated CpGs  in vitro. Based on this study, the

effect  of  methylation  is  dependent  on  its  position  in  the  binding  site,  and  is

heterogeneous  within  and  across  TF  families  5.  While  this  study  provides  in  vitro

evidence  for  widespread  recognition  of  methylated  CpGs  by  TFs,  a  comparable

systematic analysis of  in  vivo methylation preferences of TFs is still  lacking. This is

primarily because observing the specific in vivo effect of intra-motif CpG methylation is

confounded  by  binding  site-specific  factors  such  as  DNA  accessibility,  regional

methylation  level,  and  binding  site  sequence  6–8.  Experimental  control  of  these

confounding factors is complicated and resource-exhaustive  9–11, highlighting the need

for computational methods to untangle, from these confounding variables, the base-

resolution relationship between TF binding affinity and intra-motif CpG methylation.

In  this  study,  we  introduce  Joint  Accessibility-Methylation-Sequence  (JAMS)

models, a statistical framework for deconvolving the individual contribution of various

factors, including intra-motif CpG methylation, on the in vivo strength of TF binding as

observed by ChIP-seq. We show that JAMS models are reproducible and generalizable,

can capture known CpG methyl-preferences of TFs, and can even predict differential TF
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binding across cell lines based on changes in intra-motif CpG methylation. Finally, we

apply JAMS to a large compendium of ChIP-seq experiments to systematically explore

the CpG methylation preferences of TFs across different families.

In this work, I  use the term  in vitro to refer to experimental  conditions where

naked DNA is tested for its ability to bind a specific TF outside the cell (e.g., SELEX,

PBM, and SmiLE-seq experiments). DNA in these experiments is usually synthetic, with

a random sequence  5,12,13. On the other hand, I use the term  in vivo for experiments

performed in cell lines and tissues (i.e. ChIP-seq), where the resulting signal can be

confounded by different DNA-binding proteins (e.g., other TFs or MBD proteins) and

chromatin state 14.

1.1 Transcription factors

Transcription factors (TFs) are proteins that bind to DNA in a sequence-specific

manner  and  regulate  the  transcription  15.  TFs  play  a  major  role  in  regulating  gene

expression  through  various  mechanisms,  which  range  from  recruiting  other

activating/repressive proteins to simply obstructing the binding of other factors to DNA

16.  Most  TFs  in  eukaryotes  are  believed  to  exert  their  function  through  recruiting

cofactors,  i.e.  proteins  or  protein  complexes  that  act  as  activators  or  repressors  of

transcription  17. However, other TFs may have other mechanisms of action, some of

which are shown in Fig. 1 18.
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         Figure 1: Schematic of a TF and its domains. Adapted from Lambert, S. A., et

al.  (2018).  Cell  172(4):  650-665  with  permission

(DOI:https://doi.org/10.1016/j.cell.2018.01.029) 18.

Most  TFs  have  at  least  one  DNA binding  domain  (DBD)  that  recognizes  its

targets  with  sequence  specificity:  i.e.  binds  with  higher  affinity  to  a  specific  set  of

sequences than to other sequences  19.  The sequences preferred by a given TF are

regularly summarized as a motif  model.  Motifs are normally represented as position

weight matrices (PWM) and visualized using sequence logos (Fig. 2)  20,21. PWMs and

sequence logos provide the  means to  understand how TFs  recognize  their  specific

targets, and even to predict the binding of TFs to a given DNA sequence 20,22. Overall,

there are >1,600 known or likely TFs encoded by the human genome, 1107 of which

have a known motif, 104 have a homologous TF in other organisms with a known motif,

and 428 have no motifs associated with them 18.
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         Figure 2: Position weight matrix and motif logo of GATA3. (A) The binding

sites of the GATA3 TF are identified by high-throughput sequencing techniques. (B) A

position frequency matrix (PFM) shows the nucleotide counts on each position. (C)

Normalizing  the  values  (dividing  the  entries  by  the  total  count  at  each  position)

produces a position probability matrix (PPM) from a PFM. (D) A PWM can be obtained

by transforming the entries of a PPM to log likelihoods M k , j=log2(
M k , j

bk ), where b is a

background model (b=0.25 if we assume that all nucleotides appear with the same

frequency ) 21. In entries where the probability of a nucleotide is zero (due to a small

sample size), a pseudocount can be used to avoid undefined values (M k , j=−∞) 23. (E)

A sequence logo that visually represents the PWM. Data from Jolma et al. (2013). Cell

152(1): 327-339 (DOI:https://doi.org/10.1016/j.cell.2012.12.009) 24.
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1.1.1 DNA binding domains and TF families

TFs are  often  classified  into  families  based on  the  type  of  the  DNA binding

domain(s) that they use to interact with DNA 18. The three largest TF families in humans

include:

1 C2H2-ZF: The Cys2His2 zinc-finger protein family is the largest class of TFs in

humans with ~750 members. It  is also the least understood, since we do not

know the motif  that is recognized by ~30% of these TFs  18.  Each C2H2-ZFP

contains a number of “zinc finger” (ZF) DNA-binding domains, ranging from one

to 35 ZFs with an average of ~10 18. C2H2-ZFPs usually recognize their target

DNA using a subset of their ZFs, with each ZF usually interacting with three to

four nucleotides 25.

2 Homeodomain: The homeodomain is a protein domain of ~60 amino acids with a

structure consisting of three alpha-helices 26. Homeodomains are encoded by the

homeobox  genes  27,  which  are  found  in  animals,  fungi,  and  plants  and  are

particularly highly conserved in vertebrates 28. Almost all of their motifs are either

directly known or can be inferred based on homology  18 TFs of this class are

often associated with developmental processes such as differentiation and show

highly tissue-specific expression patterns 29.

3 bHLH: A basic helix–loop–helix (bHLH) is a protein structural motif that is formed

by two regions, one with two α-helices connected by a loop, and a basic region

for recognition and binding to DNA 30,31. Mediated by the HLH motif, the TFs with

bHLH often dimerize (either forming homodimers or heterodimers)  32. They are

highly conserved and present in most eukaryotes, including metazoans, plants,

and fungi 33.
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Beside DBDs, TFs can also contain effector domains; these domains can interact

with the basal transcriptional machinery, interact with other TFs, and/or recruit enzymes

that modify chromatin state 34. They can either activate or repress gene expression in a

context-dependent manner, which is determined by the local sequences, availability of

cofactor, and recruitment of cofactors with opposite effects 35.

1.1.2 ChIP-seq measures TF binding

Various methods exist to determine the sequences that are bound by TFs in vitro

or  in  vivo.  Among  the  in  vivo methods,  chromatin  immunoprecipitation  followed  by

sequencing (ChIP-seq) is by far the most widely used method. ChIP-seq detects binding

between DNA and proteins at a genome-wide scale 36, and has been extensively used

to detect not only the genomic binding sites of TFs, but also the genome occupancy

profiles of RNA polymerase, modified histones, and other targets of interest 37. ChIP-seq

involves  crosslinking  of  DNA-binding  proteins  and  genomic  DNA,  followed  by

fragmentation  of  the  genomic  DNA  (e.g.  by  sonication).  Genomic  sites  bound  by

proteins are protected from fragmentation; those bound by the protein of interest can be

co-immunoprecipitate  using  an  antibody  specific  to  that  protein.  Finally,  the  co-

immunoprecipitated DNA goes through library preparation and sequencing 38. A control

experiment is also often performed in parallel to this pull-down experiment, to obtain

DNA that was only crosslinked and fragmented without any antibody-based enrichment

(input DNA), or DNA that was immunoprecipitated with a non-specific antibody (“IgG”

control) 39.

Peak  calling  is  often  the  first  step  of  downstream  ChIP-seq  analysis,  after

mapping and quality control of the sequenced ChIP-seq reads. “Peaks” are regions that

are significantly enriched for reads in the pull-down experiment in comparison to the

control DNA 37. As the signal varies across peaks (resulting in strong and weak peaks),

the  algorithms  and  tools  used  for  peak  calling  often  calculate  p-values  and  false
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discovery rate (FDR) to help identify biologically relevant sites 40,41.

One of the insights obtained from thousands of ChIP-seq experiments across

hundreds of TFs is that PWMs are often inadequate models for explaining the in vivo

specificity of TFs:  scanning the genome sequence using PWMs 22 usually results in the

identification of tens of thousands of putative TF binding sites (TFBS), most of which are

false positives that are not actually functional 15. While more complicated models such

as deep neural networks have had better success  42,  in vivo TF binding sites remain

difficult  to  predict  using  DNA sequence alone  15.  This  underlines  the  importance of

factors other than sequence that impact TF binding and, consequently, gene regulation,

including  DNA  accessibility  and  DNA  methylation  43,44.  In  the  next  section,  we  will

discuss some of these additional layers that impact TF binding.

1.2 Epigenetic factors that affect TF binding 

Various  chemical  modifications  can  affect  the  genome  and  its  associated

histones without changing the DNA sequence. The repertoire of these modifications is

called the epigenome, and constitutes a key layer of the gene regulation system 45. The

conformation  of  the  epigenome is  different  across  cell  types,  explaining,  to  a  large

extent,  why cells with the same genomic sequence have widely different expression

patterns and phenotypes 45. 

Two  of  the  most  important  and  well-studied  components  that  define  the

epigenome of a cell are DNA methylation and histone modifications. DNA methylation,

which is the addition of methyl groups to the DNA molecule itself, plays a key role in

different cellular processes, with its dysregulation associated with various diseases 46.

Histone modification, on the other hand, involves post-translational modification of the

N-terminal  tail  of  histone  proteins  in  the  nucleosome  complex  47.  There  are  many

possible histone modifications that work together to determine chromatin structure, with

changes  in  DNA  accessibility  being  a  major  consequence  of  such  chromatin
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modifications  48.  Particularly,  DNA  accessibility  has  been  identified  as  the  most

important feature, after DNA sequence, to predict the location of TFBSs 43. Here, we will

provide  a  summary  of  the  mechanisms  through  which  DNA  methylation  and  DNA

accessibility impact TF binding, and, consequently, gene regulation.

1.2.1 DNA accessibility

In eukaryotes, nuclear DNA is tightly packaged into chromatin. The basic unit of

chromatin is the nucleosome, which is formed by a segment of DNA that wraps around

eight histone proteins  47. Nucleosomes do not occupy the genome in a uniform way,

resulting  in  a  range  of  compactness  from  regions  that  are  densely  packed  with

nucleosomes  to  nucleosome-depleted  regions  that  are  often  found  in  highly  active

genomic regions  49.  DNA accessibility refers to the level of possible physical contact

between macromolecules and chromatinized DNA—Fig. 3 shows the continuous nature

of  DNA  accessibility,  ranging  from  nucleosome-packed  closed  chromatin  to

nucleosome-depleted accessible DNA 50. 

         Figure  3: Different continuous chromatin states ranging from close to

open chromatin. Adapted from Klemm et al., (2019). Nature Reviews Genetics 20(4):

207-220 with permission  (DOI:https://doi.org/10.1038/s41576-018-0089-8) 50.
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1.2.1.1 Measuring DNA accessibility using DNase-seq

DNase I hypersensitive site sequencing (DNase-seq) is one of the first methods

developed to measure genome-wide DNA accessibility 51 and one of the main methods

used for TF footprinting 52. DNase I is a DNA endonuclease that creates, preferentially,

double-stranded  breaks  in  regions  where  chromatin  is  not  condense  and  DNA  is

accessible. In DNase-seq protocols, nuclei  are first  isolated and permeabilized, then

DNA is digested by DNase I into 50-100 bp fragments, followed by library construction

and sequencing 53.

1.2.1.2 DNA accessibility and regulatory regions

High levels of accessibility are usually associated with active regulatory loci and

transcription. Mapping of highly accessible sites, based on the identification of DNase I

hypersensitive sites (DHSs), has shown that these regions encompass ~2-3% of the

total genome in any given cell type  8.  The majority of these regions fall  within distal

enhancers and in lesser amounts within promoters and transcription start site (TSS)-

proximal  regions  8.  Often,  promoter  regions  are  constitutively  accessible,  but  the

accessibility  of  distal  enhancers  varies  by  cell  type  50.  High  accessibility  of  both

promoters and enhancers is correlated with transcriptional activity 8, although regulatory

elements that are open but not active are also common 54.

1.2.1.3 DNA accessibility and TF binding

TF binding positively correlates with DNA accessibility. Within moderately packed

chromatin, a small number of TFs can take advantage of short periods of time where

DNA is accessible to recruit cofactors and stabilize chromatin into a more accessible

state  8,55. However, for the great majority of TFs, the existing chromatin state dictates

binding 7,8,56. For example almost all of the binding sites of the glucocorticoid receptor, a

TF of the nuclear hormone receptor family, fall within constitutively accessible chromatin

, meaning that existing cell type-specific chromatin accessibility landscape determines
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occupancy of this TF 7. Genome wide mapping of DNase hypersensitivity sites of 125

human cell lines by the ENCODE project revealed that the vast majority of sites bound

by TFs (90%) fall within open chromatin 8. This study helped establish DNA accessibility

as a useful proxy for TF occupancy 50. TF binding site prediction methods benefit greatly

from DNA accessibility information as it is an important feature to identify functional and

non-functional  TF  binding  sites  57,58.  Notably,  during  the  ENCODE-DREAM  in  vivo

transcription  factor  binding  site  prediction  challenge,  the  methods  with  the  best

performance used TF binding motifs and chromatin accessibility information as main

sources 43. 

1.2.2 DNA methylation

Another key epigenetic layer that affects TF binding and gene regulation is DNA

methylation, the addition of a methyl group to a DNA base. Although both adenine and

cytosine bases can be methylated, the term DNA methylation is more commonly used

to  refer  to  5-methyl-cytosine  modification,  the  most  common  DNA  methylation.  In

animals,  most 5-methyl-cytosines appear in CpG sites, i.e.  a cytosine followed by a

guanine in the 5’ to 3’ direction. This modification is widespread through the genome,

with 70-80% of all CpG sites methylated in mammals 59.

CpG  methylation  is  almost  always  symmetric  in  somatic  cells,  meaning  that

methylation is present on the cytosines of both strands of the self-complementary CpG.

This symmetry ensures the preservation of CpG methylation after replication, through

recognition  and  methylation  of  the  resulting  hemimethylated  DNA by DNMT1 [DNA

(cytosine-5)-methyltransferase  1]  60.  Other  members  of  the  DNA  methyltransferase

family also play a fundamental role in de novo DNA methylation 61. Conversely, the ten-

eleven  translocation  (TET)  methylcytosine  dioxygenases  mediate  demethylation  62.

Aberrant DNA methylation patterns, caused by malfunction or dysregulation of DNMTs

and  TET  proteins,  are  linked  to  cancer  and  other  diseases  46,63,  highlighting  the
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importance of DNA methylation in maintaining proper cell function. Hypo- and hyper-

methylation of tumor samples, for example, are a common occurrence in cancer  46,63.

Genome-wide hypo-methylation is associated with increased gene expression and can

occur at regulatory elements like promoters and enhancers. Furthermore, transcriptional

silencing  of  tumor  suppressor  genes by  hyper-methylation  has  been  observed  in  a

plethora of cancer types 46,63.

1.2.2.1 WGBS  provides  base-resolution  readout  of

methylation states

Whole-genome bisulfite sequencing (WGBS) is the most widely used method for

genome-wide  determination  of  the  methylation  status  of  cytosines  at  single-base

resolution. In this method, sodium bisulfite is used to convert unmethylated cytosines to

uracil,  while  methylated  cytosines  are  protected  from  this  conversion.  After  PCR

amplification and sequencing, the methylated cytosines appear as C in the sequencing

reads, while unmethylated cytosines that were converted appear as T 64. Downstream

analysis tools can then use a bisulfite-converted reference genome to align reads and

call the fraction of methylated reads at each base 65.

WGBS is experimentally expensive—although it can cover >90% of all genomic

CpG sites without considerable bias toward a specific region, it also requires substantial

sequencing  depth  to  obtain  precise  measurement  of  methylation.  Additionally,

depending on the biological question and the required downstream analysis, it may be

beneficial  to  have  biological  replicates  66,67.  Fortunately,  consortiums  such  as  the

ENCyclopedia Of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA)

have publicly provided WGBS data for many of the widely used cell lines as well as

different cancer types 68,69, enabling studies such as the one described in this thesis.

1.2.2.2 DNA methylation and TF binding

DNA methylation is often associated with gene silencing through both direct and
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indirect  regulation  of  gene expression  70.  This  gene silencing effect  can result  from

various molecular mechanisms, including the inhibition of the binding of TFs to gene

regulatory  regions.  Some of  the  main  mechanisms through  which  DNA methylation

affects TF binding include:

i Binding of MBD proteins to methylated DNA: The mCpG-binding domain (MBD)

protein family includes MeCP2, MBD1, MBD2, MBD4, and MBD3, proteins that

bind to mCpG in a non-sequence-specific mode 4. MBD proteins can affect gene

expression in two main ways: first, they can outcompete TFs by simply binding to

DNA and obstructing TF binding 4; secondly, by recruiting histone deacetylases

(HDAC)  71,  MBD  proteins  can  increase  chromatin  compaction  and  lead  to

transcriptional repression 72.

ii Direct  effect  of  methylated  DNA on TF binding:  In  TFBSs,  the  addition  of  a

“bulky” methyl group allows for the formation or loss of possible van der Waals

interactions or hydrophobic contacts between DNA and protein side chains  73.

TFBS methylation has been traditionally associated with repression of binding,

although it has been found to enhance in vitro binding for some TFs 1,74,75. 

iii Methylation-induced structural changes: The double-helix of methylated DNA has

a narrower minor groove compared to unmethylated DNA. Lazarovici et al. used

cleavage by DNase I, which is highly shape-sensitive, to probe the DNA shape

and  found  enhanced  cleavage  adjacent  to  methylated  CpG  base  pairs  76,

suggesting  narrowing  of  the  minor  groove  induced  by  methylation.  These

changes in DNA shape can subsequently affect the binding of many of the TFs

77.
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1.2.2.3 Relationship  between  DNA  methylation  and  DNA

accessibility

There is a tight relationship between DNA methylation and DNA accessibility,

with histone modifications playing an integral part in mediating this association 78. DNA

methylation  affects  the  state  of  chromatin.  Methylated  DNA is  recognized  by  MBD

proteins,  which  in  turn  recruit  histone  deacetylases  (HDACs)  71,79,80 and  histone

methyltransferases (HMTs)  79. The effect of both HDACs and HMT results in a more

compact  chromatin  and,  consequently,  represses transcription  72.  Furthermore,  DNA

methyltransferases (DNMTs) can directly recruit these histone modifiers. DNMT1 and

DNMT3b can interact  with  HDACs  81,82,  and  DNMT1 and DNMT3a can bind  to  the

histone methyltransferase SUV39H1  79.  Conversely,  the existing chromatin state can

affect the DNA methylation 83. For instance, the methylation state of histone 3 at lysine 4

(H3K4) is linked to local DNA methylation  83. Unmethylated H3K4 is recognized by a

protein domain found in DNMT3A, DNMT3B and DNMT3L, DNMT3A and DNMT3L can

form a tetramer 84; Interestingly, when this tetramer is modeled into nucleosomal DNA,

the active sites of DNMT3A are positioned on adjacent DNA major grooves and can

result in de novo CpG methylation  84. Finally, and consistent with the effect of these

histone  modifications,  next  generation  sequencing  techniques  have  observed  a

negative correlation between DNA methylation and DNA accessibility, when measuring

them simultaneously over DNase hypersensitive sites 85,86.

1.3 The interplay between TF binding and DNA methylation

The underlying mechanisms that govern TF recognition of DNA methylation are

poorly understood. As outlined above, the most widely recognized relationship between

TFs and methylated DNA interactions is that  DNA methylation prevents TF binding,

through  competitive  binding  of  proteins  containing  a  methyl-CpG-binding  domain

(MBD), through promoting closed chromatin, or through direct prevention of TF binding

by the methyl moiety  4. However, there is a growing body of evidence that, TFs can
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directly  interact  with  methylated DNA using their  DNA binding domains  2,87.  In  what

follows,  we  will  summarize  some  of  the  recent  findings  that  suggest  TF-mCpG

interactions may be more frequent than currently recognized.

1.3.1 Interactions between methylated DNA and TFs identified

by high-throughput in vitro methods

Recently,  several  high-throughput  methods  that  measure  the  effect  of  DNA

methylation on TF binding have been developed 5,12,13. Methyl-Spec-seq simultaneously

measures  the  relative  affinities  of  hundreds  to  thousands  of  unmethylated  and

methylated sequences towards TFs 12. EpiSELEX-seq is another method that quantifies

the binding free energy changes in the presence of methylation, by probing the binding

affinity of methylated and unmethylated sequences in a single reaction to compare TF

occupancy 13.  Both methods use electrophoretic mobility shift assay (EMSA) selection

followed by DNA sequencing. Methyl-Spec-seq has been used to probe the  in  vitro

methylation preferences of CTCF and ZFP57, while EpiSELEX-seq has been used to

study p53  12,13.  Another method, which is based on systematic evolution of ligands by

exponential enrichment (SELEX), was used to carry out a systematic exploration of the

effect of methylation on TF binding preferences  5. Yin et al. analysed the methylation

preferences of 519 TFs that recognize CpG-containing sequences, and found that 60%

were influenced by mCpG: for 23% of TFs, mCpG inhibited binding, while another 34%

of TFs actually preferred binding to methylated CpG-containing sequences, and 5% of

TFs showed multiple effects depending on the position of mCpG within the binding site

5.  Interestingly,  they  found both  TF families  with  homogeneous effects  of  mCpG in

binding as well as TF families with heterogeneous responses to mCpG. For example, in

the MAD and CP2 families, mCpG always had a positive effect on binding. In others,

like the RUNT and ETS families,  mCpG consistently causes a decrease in binding.

Notably,  the  Cys2His2  zinc  finger  proteins  (C2H2-ZFPs)  had  a  heterogeneous

response, with some showing increased and some showing decreased binding due to
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methylation of CpGs 5.

1.3.2 In vivo effects of DNA methylation in TF binding

Disentangling the effect of DNA methylation on TF binding from other factors in

vivo is experimentally demanding. As a consequence, there are few studies that have

probed in vivo methyl-CpG preferences of TFs. The following studies either account for

changes in DNA accessibility or offer supporting in vitro evidence in their analysis.

Maurano et al. found that, although the majority of in vivo CTCF binding sites are

unaltered by DNA methylation changes, there is a subset of CTCF sites that is sensitive

to DNA methylation, with a diverse occupancy of CTCF across cell types 88. Importantly,

these sites showed no co-binding by other TFs, were methylated when unbound, and

were enriched for CpG sites that start at the 2nd and 12th positions 88.

Domcke et al. found that NRF1 is sensitive to methylation of its binding sites.

They studied TF binding in wild type and Dnmt1 knockout murine embryonic stem cells,

and  found  that  NRF1  gained  several  thousand  binding  sites  in  the  unmethylated

condition among genomic regions that were accessible in both conditions. Furthermore,

when methylation was restored in Dnmt1 knockout cells, NRF1 binding was diminished

by methylation of the binding sites 10.

In another study, Mann et al. used protein binding microarrays to evaluate the

effect of CpG methylation on B-ZIP transcription factors. They found enhanced binding

of CEBPB to DNA when CpGs in array probe sequences were methylated 2. Another in

vitro  study  corroborated that CpG methylation in the 6 th position  of the CEBPB motif

increased binding 5. Furthermore, a large number of in vivo CEBPB binding sites have

been reported to be highly methylated 3,4.

Finally,  Cusack  et  al.  examined  occupancy  of  five  TFs  in  conditions  with
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contrasting DNA methylation (wild type and DNMT knockdowns) and chromatin states

(normal  and  treated  with  HDAC  inhibitor)  9.  Pairwise  comparisons  of  these  four

conditions showed that MAX and NRF1 TFs preferentially bind to unmethylated DNA.

Importantly, this preferential binding is observed even after considering changes in DNA

accessibility due to recruitment of HDACs to methylated CpGs by MBD proteins 9.

1.4 Computational  methods  that  study  TF  methyl-binding

preferences

As discussed in the previous section, there are only a few cases in which the in

vivo effect  of  methylation on TF binding has been tested.  As a result,  most  of  our

understanding of how DNA methylation affects TF binding comes from in vitro studies,

with only a few exceptions 2,9,10,13. While in principle it should be possible to use in vivo

data of TF binding, DNA methylation, and other confounding factors to fill  this gap,

available computational studies for performing such analysis are limited in both scope

and methodology.  Here,  we will  summarize  the  available  methods for  studying  TF-

mCpG interactions in vivo. 

One  of  the  methods  that  consider  DNA  methylation  to  model  TF  binding  is

Methylphet,  which  predicts  TF  binding  using  a  machine-learning  approach  called

random forests (RF)  44. For a given TF, the RF model of Methylphet incorporates the

methylation score, motif score (obtained with a known PWM), and an array of genomic

features (distance to TSS, sequence conservation, etc) in order to perform a binary

classification of any given genomic region (TF-bound vs. unbound). Methylphet uses

ChIP-seq peaks of a TF in order to train the RF model. Xu et al. showed that Methylphet

performs better than the motif score alone, or motif score combined with other genomic

features (using CENTIPEDE)  44,89. However, Methylphet uses the average methylation

score over the putative TFBS as well as the average of methylation in 30bp bins around

the site; therefore it is not able to identify the specific CpG where methylation impacts

binding.  Furthermore,  it  is  not  able  to  deconvolve  the  effect  of  methylation  from
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correlated confounding variables such as DNA accessibility. Finally, it does not provide

an explicit model of how methylation affects TF binding; instead it only predicts whether

the TF binds to a specific genomic region.

Other methods have been developed as methylation-aware tools to improve de

novo motif discovery. Viner et al. and Ngo et al. describe tools that expand the ATGC

alphabet  by  adding  symbols  for  methylated  cytosines  90,91.  Specifically,  Viner  et  al.

present an extension of MEME, a widely used  de novo motif-finding algorithm, while

Ngo et al. present an algorithm called mEpigram that identifies enriched k-mers in TF

peaks and uses them to identify enriched motifs. These methods use WGBS data to

create a methylation-aware genome and use it  (in addition to a normal genome) to

identify methylated motifs (m-motifs) and regular motifs. However, both approaches only

consider the sequence and methylation at the potential TFBSs, again leading to the

inability to deconvolve the effect of methylation at specific CpG sites from confounding

factors such as DNA accessibility and local (regional) methylation level.

This shortcoming is also present in MEDEMO 92, another tool for de novo motif

discovery with a similar approach to Viner et al. and Ngo et al. 90,91. MEDEMO, however,

reports the largest number of predicted TF methyl-preferences than any of the previous

methods: application of MEDEMO to 335 TFs identified 32 cases where inclusion of

methylation in the model improved the prediction of TFBSs, 14 of which represented

potential  new  findings  92.  However,  similar  to  Methylphet,  MEDEMO  only  reports

whether  considering  methylation  improves  TFBS  prediction,  without  delineating  the

positive or negative effect of methylation. Furthermore, among the 32 TFs for which

methylation was deemed important, only one TF is known to prefer methylated DNA.

This might point to a blind spot of this method, considering that 33% of TFs exhibit

preferential binding to mCpGs in vitro  5. Furthermore, the TFs with well-established in

vivo methyl-binding  preferences  were  also  missing  from  MEDEMO’s  findings.  For

example, MEDEMO was not able to find any methylation preference for CEBPB, a TF
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with well characterized affinity for methylated DNA 2.

Lastly, another relevant method is TFregulomeR, which uses a compendium of

ChIP-seq  and  WGBS  datasets  to  characterize  binding  partners  and  cell-specific

bindings sites of a TF. Importantly, it allows to investigate the TF function at different

DNA methylation levels and with different co-factors. However, this method only allows

for  a  representation  of  the  DNA  methylation  levels  in  different  contexts  (binding

partners) and does not provide a quantitative meassurement of its effect on TF binding

93.

Given these shortcomings, there is still a gap in computational methods that can

delineate the direct effect of CpG methylation on TF binding in vivo, in order to perform

a  systematic  investigation  of  TF  methylation  preferences.  This  project  aims  to

quantitatively  model  the  relationship  between  DNA  methylation  and  DNA  binding

preferences of TFs  in vivo,  using a model that is robust to experimental noises and

biases inherent to ChIP-seq, able to account for confounding factors that may mask the

true methylation-TF interactions, and applicable to a large number of human TFs.

1.5 Hypothesis

We hypothesize that DNA methylation is a major determinant of  in  vivo DNA

binding by  TFs,  and that  we can model  TF methyl-preferences using  genome-wide

binding profiles of TFs.

1.6 Objectives

 To develop a method for quantitative modeling of TF binding in vivo.

 To use this  method for  systematic  characterization  of  in  vivo TF  methylation

preferences.
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CHAPTER 2. MATERIALS AND METHODS

In order to understand the relationship between DNA methylation and TF binding,

we began by retrieving and analyzing WGBS,  ChIP-seq,  and DNase-seq data from

different TFs in several cell lines (Section 2.1). We developed a method to jointly model

these data sets to predict  TF-specific binding (Section 2.2),  and benchmarked it  on

CTCF ChIP-seq data in HEK293 cells. We expanded our CTCF studies by obtaining

differential  binding  sites  of  CTCF  between  different  cell  lines  (Section  2.3),  and

examined  whether,  using  our  method,  we  can  predict  differential  binding  that  was

caused by DNA methylation changes. Finally, we applied our method to a large number

of  TFs to  systematically  study the  in  vivo effect  of  DNA methylation on TF binding

(Section 2.4). In this chapter, I will describe the methods used to obtain the data and

perform these analyses.

2.1 Preprocessing of genomic data

2.1.1 ChIP-seq data processing, peak calling, and peak signal

quantification 

We limited our analysis to ChIP-seq experiments for TFs done in HepG2, K562,

HEK293, GM12878 and HeLa-S3 cell lines, given the availability of WGBS and DNase-

seq data for these cell lines. ChIP-seq and ChIP-exo raw reads were retrieved from four

main sources: ENCODE 68,94, Najafabadi et al. 95, Schmitges et al. 96, and Imbeault et al.

97. ENCODE  data  were  downloaded  from  ENCODE  project  website

(https://www.encodeproject.org/experiments/),  while  the  other  data  were  downloaded

from GEO (accession numbers GSE58341, GSE76494, and  GSE78099).  A total  of

2677 ChIP-seq experiments were analyzed, covering 421 TFs and 5 cell lines.

Raw reads were aligned to the human reference genome (GRCh38) with bowtie2

(version 2.3.4.1) using the “very sensitive local”  mode. Mapped reads with mapping

quality score smaller than 30 were removed using  Samtools (version 1.9).  ChIP-seq

peaks were called using  MACS (version 1.4) with a permissive p-value threshold of
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0.01. We used this permissive p-value to obtain a range of TF binding signals, which

our method uses to quantitatively model TF binding strength. We also included negative

peaks, i.e. peaks obtained by swapping the treatment with the control experiments, to

enable  proper  modeling  of  the  background  signal.  In  the  end,  for  each  ChIP-seq

experiment, this process resulted in a list of peaks covering a wide range of pulldown or

control (background) signal strengths, along with their associated read counts.

2.1.2 WGBS data processing and DNase-seq data retrieval

Raw reads from Whole-Genome Bisulfite Sequencing (WGBS) of six cell  lines were

retrieved  from  ENCODE  and  GEO  (see  Supplementary  Table  1 for  accession

numbers).  Raw  reads  were  trimmed  based  on  their  quality  (phred33  >=  20)  with

TrimGalore (version  0.6.4)  98.  Paired  reads  were  aligned  to  the  human  reference

genome hg38 99 using bismark (bowtie2 mode, version 0.22.2), allowing one mismatch

during alignment. Reads were deduplicated by removing those that aligned to the same

genomic position (bismark:deduplicate_bismark). Methylation calls were then extracted,

ignoring  the  first  2  bps  from  the  5'  end  of  read  2

(bismark:bismark_methylation_extractor).  A  genome  wide  coverage  report  with

methylated  and  unmethylated  read  counts  was  then  generated

(bismark:coverage2cytosine). Finally, a bigwig file was generated for unmethylated and

methylated counts (bedGraphToBigWig) 100.

For DNase-seq data, read depth-normalized bigwig files representing DNase-seq

signal  were  retrieved  from  ENCODE  (see  Supplementary  Table  1 for  accession

numbers).

2.2 Joint Accessibility-Methylation-Sequence (JAMS) models

2.2.1  Formatting and preprocessing of data for JAMS

To retrieve the sequence, DNA accessibility, and DNA methylation to train our

model we focused on the positive and negative ChIP-seq peak regions that did not fall
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within endogenous repeat elements, since the sequence homology of repeat elements

can confound the modeling of ChIP-seq data based on sequence 95. This was done by

removing peaks that overlapped any repeat regions, as defined by RepeatMasker 99,101 .

To model the effect of sequence and epigenetic factors on TF binding using our

method, it is necessary to align the peaks based on the position of the most likely TF

binding site. To do so, we used the known motif of each TF, in the form of position

frequency matrices (PFMs), to search for the most likely TFBS within the 100 bp range

of the peak summit. PFMs were obtained from CIS-BP 102, and were augmented by de

novo motifs identified by RCADE2  103,104 for the C2H2-ZF family of TFs as described

later  in  Section  2.4.  CISP-BP contains  more  than  one  PFMs per  TF,  as  they  are

derived from different experimental techniques. We selected PFMs exclusively derived

from in vitro experiments, in order to avoid the confounding effects present in vivo. We

prioritized,  in  descending  order,  PFMs  from  SELEX,  Selective  microfluidics-based

ligand  enrichment  followed  by  sequencing  (SMiLE-seq),  and  Protein-Binding

Microarrays (PBM). We used  AffiMx 105 to identify the best motif match in each peak

sequence. This process was uniformly applied to all peaks, including the negative ChIP-

seq peak set.

Once the best motif hit in each peak was identified, we extracted the sequence

and nucleotide-resolution  methylation  profile  at  the  motif  hit  as  well  as  the  flanking

regions (20  bp)  around the  motif  hit.  Sequences were  retrieved from the  reference

genome hg38 using  bedtools:getfasta  99,106. Methylated and unmethylated read counts

at each position were retrieved from the WGBS bigwig files using bwtool 107.

Similarly, normalized DNA accessibility was extracted from the motif hit region

and 500 bp upstream and downstream of the motif hit from the DNase-seq bigwig files.

ChIP-seq read counts were extracted from the control and pull-down experiments for

the +/- 400bp region surrounding the motif match using bedtools:multicov (MAPQ score
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> 30). (Fig. 4C, bottom) 106.

2.2.2 Implementation of JAMS

Our  method  creates  a  joint  accessibility-methylation-sequence  model  (JAMS

model) for each ChIP-seq experiment, in which the ChIP-seq signal of each peak is

explained  as  a  function  of  accessibility,  methylation,  and  sequence  at  that  peak.

Consider the  k×m matrix  X, which represents the value of  m predictive features at  k

genomic positions (i.e. peaks). These m features include those related to accessibility

(A), methylation (M), and sequence (S):

X=[X A XM X S ]

JAMS models the logarithm of TF binding strength at each of the k peaks as a

linear function of the matrix X:

log μ f=X× β f

Here,  μf is the vector of the binding strength for transcription factor  f across  k

peaks,  X is  the  k×m feature  matrix  described  above,  and  βf is  the  vector  of  m

coefficients that describe the effect of each of the m features on the TF binding strength

(matrices are denoted with bold capital letters, and vectors with bold lower-case letters).

Similarly, the background ChIP-seq signal across the peaks is also modeled as a

function of X:

log μb=X× βb

Here, μb represents the background signal strength across k peaks, and βb is the

vector  of  m  coefficients  that  describe  the  effect  of  each  of  the  m features  on  the

background signal.

In  a  ChIP-seq experiment,  the  expected control  (background)  read counts  at

each peak is simply a function of the background signal multiplied by the library size.

Therefore, the logarithm of control reads can be modeled as:

log λc= log μb+sc=X× βb+sc

Here,  λc is the vector of expected (average) control read counts across the  k

peaks,  and  sc is  an  experiment-specific  size  factor  that  can  be  interpreted  as  the

logarithm of sequencing depth for the control library.

The expected pull-down read counts in a ChIP-seq experiment, however, are a
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function of both the background signal and the TF binding strength, multiplied by the

library size. Therefore:

log λp=log μb+ log μ f+sp=X× βb+X× β f+sp

Here, λp is the vector of expected pulldown read counts across the k peaks, and

sp can be interpreted as the logarithm of sequencing depth for the pulldown library.

While these equations describe the expected control  and pulldown read counts,  the

actual observed read counts are probabilistic observations that may deviate from these

expected  values.  Here,  we  model  the  read  counts  as  observations  from  negative

binomial distributions  108 whose mean is given by the equations above, with a shared

dispersion parameter across the peaks:

nc=NB ( λc ,φ )

np=NB ( λp , φ )

Here,  nc and  np are the vectors of observed control and pulldown read counts

across the  k peaks, respectively,  and φ is the dispersion parameter.  The equations

above allow us to jointly model the control and pulldown experiments as a function of X.

We  use  the  glm.nb  function  in  R  for  this  purpose  and  fit  a  model  of  the  form

n~XX+t+XX:t,  where  n is  an  R  vector  that  concatenates  the  observed  control  and

pulldown read counts  (with  length  2k),  XX is  the result  of  duplicating  matrix  X,  i.e.

XX=rbind(X,X), and  t is a binary vector of length 2k indicating whether the observed

read count comes from the control experiment (0) or from the pulldown experiment (1).

The  coefficients  returned  by  the  glm.nb  function  for  XX correspond  to βb in  the

equations above, and the coefficients for XX:t correspond to βf. The glm.nb also returns

the standard error of mean and a p-value for each of these coefficients, which we use to

determine the statistical significance.

Constructing the matrix    X  :   Sequence, DNA methylation and DNA accessibility

are used as the predictor variables, which are included in the matrix X. We used one-

hot  encoding  for  the  sequence  over  the  TFBS.  Methylated  and  unmethylated  read

counts  over  the  motif  were  used  to  calculate  the  methylation  percentage  at  each

position. If the average coverage of methylation and unmethylated reads over the motif
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is less than 10 counts, the peak is removed. Average DNA accessibility was calculated

for bins of 100 bp (10 bins) plus one bin for the TFBS region itself, and then logarithm of

DNA accessibility was calculated; a pseudocount equivalent of 1% of the smallest value

was used to allow for log transformation of the data. Average methylation percentage

and sequence composition of the flanking regions were also used as predictors.

2.3 Differential binding analysis

To calculate differential TF binding between cell lines, we first identified CTCF

ChIP-seq experiments from ENCODE that had at least two biological replicates per cell

line  (Supplementary  Table  1),  and  retrieved  the  pull-down and  control  experiment

data. After aligning and peak calling (Section 2.1.1), we defined a unified list of peaks

that were present in at least one sample. Peaks that were present in more than one

sample and had summits within  100 bp of  each other  were merged,  as they likely

represent the same CTCF binding site. Then, the best motif  match within 100 bp of

each summit was identified  105. We extracted ChIP-seq read counts present within a

400bp range from the motif hit in the pull-down and control experiments and created a

count matrix.

We used the count matrix and a custom model matrix (Supplementary Table 3)

to  compare count ratios (of pulldown and control reads) between pairs of cell lines. The

DESeqDataSetFromMatrix function from DESeq2 was used to create a DESeqDataSet

object  (parameters:  countData  =  count  matrix  and  colData/design  =  custom matrix)

followed  by  fitting  of  a  negative  binomial  GLM (function  DESeq,  parameters:  full  =

custom matrix, betaPrior = FALSE), and computing of log2 fold changes and p-values

109. Significant differentially bound peaks (FDR < 0.1) were identified for every pair of

cell lines, excluding cell line pairs whose ChIP-seq experiments were done in different

laboratories. The pair of cell lines (GM12878 and HeLa-S3) with the highest number of

significantly bound peaks were selected for further analysis.
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2.4 Inference of PFMs for C2H2-ZF proteins using RCADE2

We inferred position frequency matrices (PFMs) for canonical C2H2 zinc finger

proteins using RCADE2  103,104. RCADE2 uses the protein sequence, the DNA sequence

of the ChIP-seq peaks, and a previously computed machine learning-based recognition

code to predict the DNA-binding preferences of C2H2-ZFPs. The protein sequences for

these TFs were retrieved from UNIPROT  110.  We focused on the top 500 ChIP-seq

peaks (sorted by p-value) that did not fall within endogenous repeat elements (EREs)

99,101. The DNA sequence of the +/- 250 region around the peak summits for the top 500

non-ERE peaks along with the protein sequence was provided as input to RCADE2,

and the optimized motif was used to augment the CIS-BP motifs.
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CHAPTER 3. RESULTS

3.1 Quantitative  modeling  of  ChIP-seq  data  to  infer  the in  vivo

methyl-binding preferences of TFs

3.1.1 Modeling the joint effect of accessibility, methylation and

sequence on TF binding

Several factors work together to determine the TF binding strength, as measured

by ChIP-seq,  toward  a specific  binding site.  First,  the sequence of  the binding  site

determines  the  TF  affinity,  given  that  the  majority  of  TFs  are  sequence-specific.

Secondly, for most TFs, the existing level of DNA accessibility heavily influences TF

binding  7,8.  Finally, regional methylation outside the TFBS may affect the TF binding

strength, for example by recruiting Methyl-CpG-binding domain (MBD) proteins, which

in turn recruit chromatin remodelers 6. Therefore, in order to examine the specific effect

of methylation of the TFBS on TF binding affinity, we need to jointly model it together

with these confounding factors.

For this purpose, we developed Joint Accessibility-Methylation-Sequence (JAMS)

models, which quantitatively explain both the pull-down and background signal in ChIP-

seq experiments (https://github.com/csglab/JAMS). The JAMS model for each ChIP-seq

experiment  considers the pull-down read density as a combination of  a background

signal and a TF-specific signal. On the other hand, the read count profiles obtained from

control  experiments (e.g.  input DNA) purely reflect  the background signal  (Fig.  4A).

Each of the background and TF-specific signals, in turn, is modeled as a function of the

peak sequence, chromatin accessibility profile along the peak, and regional as well as

base-resolution  methylation  pattern  of  the  peak  (Fig.  4B-C).  JAMS  converts  these

associations into a generalized linear model whose parameters can then be inferred

jointly from pull-down and control  experiments,  with an appropriate error model  that

connects the expected (predicted) signal at each peak to the observed read counts—we

use negative binomial with a log-link function in this work (Fig. 4D).

43



       Figure 4: Overview of JAMS model. (A) At each genomic region i, the JAMS

model considers the control tag count (left)  or the pull-down tag count (right) as a

combination of background and/or TF-binding signals at  that position. (B)  Each of

these signals are then modeled as a function of accessibility (Ai), methylation (Mi), and

sequence (Si)  at  each region  i.  (C)  Schematic  summary  of  the  predictor  features

extracted for each genomic location and the outcome variables. (D) The specifications

of the generalized linear model used by JAMS. (E) Comparison between the observed
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and  predicted  CTCF  binding  signal  in  HEK293  cells  96.  (F)  DNA  accessibility

coefficients learned by the CTCF JAMS model; each dot corresponds to the effect of

accessibility at a 100bp-bin. (G) Sequence motif logos representing the known CTCF

binding preference (based on SELEX  24 (left), the TF binding specificity learned by

JAMS (middle), and the effect of sequence on the background signal (right). JAMS

motif logos are plotted using ggseqLogo  111 , with letter heights representing model

coefficients; SELEX motif logo was obtained from the CIS-BP database 102.

To fit the parameters of its model, JAMS assumes that TF binding occurs at a

fixed position and orientation in each of the provided peaks. To satisfy this assumption,

we use existing position frequency matrices (PFMs) of each TF to identify the most

likely  TF  binding  site  within  each  peak,  and use  that  position  as  the  reference for

extracting the accessibility-methylation-sequence features at, and around, the binding

site (see Method, Section 2.2 for details). Also, to ensure that JAMS can correctly learn

the features associated with both TF-specific and background signals, we include not

only the peaks that have significantly high pull-down signal, but also peaks with low pull-

down signal as well as genomic locations that have significantly high control signal (

Method, Section 2.1.1).

In order to examine the ability of JAMS models to recover the  in vivo binding

preferences of TFs, we first applied it to ChIP-seq data from CTCF, a widely studied TF

that  is  constitutively  expressed  across  cell  lines  and  tissues  112,113 and  has  a  long

residence time on DNA 114. We initially focused on the cell line HEK293, and generated

a JAMS model of CTCF binding in this cell line using previously published ChIP-seq 96,

WGBS  115, and chromatin accessibility data  94 (Methods, Section 2.1.1). To evaluate

the performance of the JAMS model, we used 10-fold cross-validation, and examined

the correlation between the predicted TF-specific signal and the observed pulldown-to-

control  signal  ratio  across  the  peak  regions.  As  Fig.  4E shows,  the  JAMS  model

predictions correlate strongly with the pulldown-to-control signal ratio (Pearson r=0.69),
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suggesting that  accessibility-methylation-sequence features can quantitatively  predict

the CTCF-binding strength.

Examining  the  coefficients  of  the  fitted  JAMS model,  we observed that  DNA

accessibility, especially at the peak center, has a strong effect on the TF-specific signal

(which  only  affects  the  pull-down read count),  but  limited  effect  on  the  background

ChIP-seq signal (which affects both the control and pull-down read counts;  Fig. 4F).

Nonetheless, the effect on background signal was still statistically significant, consistent

with previously observed bias of DNA sonication toward accessible chromatin regions

116.  Importantly, sequence features at the TF binding site are strongly predictive of the

CTCF binding strength, while they have limited and diffuse effect on the background

signal  (Fig.  4G).  Furthermore,  the  sequence  model  learned  by  JAMS  is  highly

correlated with  the  known motif  for  CTCF (r=0.86,  Fig.  4G),  suggesting  that  JAMS

models can recapitulate the underlying biology of TF binding. We emphasize that while

the known CTCF motif is used initially to identify an offset for each peak and align the

peak regions, this process is not expected to confound the sequence features learned

by JAMS, since it is uniformly applied to all peaks regardless of the signal strength.

3.1.2 JAMS models reveal the contribution of CpG methylation

to TF binding

By jointly considering the contribution of accessibility, methylation and sequence

to  TF  binding,  JAMS  models  should  be  able  to  deconvolve  the  specific  effect  of

methylation from the confounding effect  of  other variables.  To begin to  explore this

possibility,  we examined the JAMS model of  CTCF. For this purpose, in addition to

sequence motif logos, we developed “dot plot logos” to enable easier visual inspection

of JAMS coefficients that correspond to sequence and methylation effects. As Fig. 5A

shows,  the  JAMS  model  of  CTCF  binding  in  HEK293  cells  suggests  that  CpG

methylation in the 2nd and 12th positions of the binding site has a significantly negative

effect on CTCF binding (but not on the background signal; Supplementary Fig. 1). In
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other  words,  while  a  large fraction  of  CTCF binding  sites  have CpGs at  those two

positions, CTCF preferentially binds when these CpGs are not methylated.

      Figure 5: CpG methylation preference of CTCF in HEK293 cells. (A) Motif logo

and dot plot representations of the sequence/methylation preference of CTCF. The

logo (top) shows methylation coefficients as arrows, with the arrow length proportional

to  the  mean  estimate  of  methylation  effect.  The  heatmap  (bottom)  shows  the

magnitude of the preference for each nucleotide at each position using the size of the

dots, with red and blue representing positive and negative coefficients, respectively.

The signed logarithm of P-value of the methylation coefficient is shown using the color

of  the squares around the dots,  with  red and blue corresponding to  increased or

decreased  binding  to  methylated  C,  respectively  (only  significant  methylation

coefficients at FDR<1×10–5 are shown). (B) Heatmap representation of the sequence,

accessibility, and CpG methylation, for a subset of CTCF peaks that have high DNA

accessibility, a close sequence match to the initial CTCF motif, and CpGs at positions

2 and 12. Peaks are sorted by the residual of a reduced JAMS model that does not

use the methylation level of C2 and C12 for predicting the CTCF binding signal.

To ensure that this observation is not confounded by other variables such as

accessibility and the average local methylation level, we also trained a JAMS model
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with all the variables except the CpG methylation level at each binding site position; we

then compared these reduced models to the full model using a likelihood ratio test. This

analysis revealed that removing the CpG methylation levels at positions 2 or 12 of the

binding  site  significantly  reduces  the  fit  of  the  model  to  the  observed  data

(Supplementary Fig.  2).  Therefore,  the CpG methylation level  in these positions is

informative  about  CTCF  binding  signal  even  after  considering  the  effect  of  other

confounding variables such as sequence, accessibility, and the average methylation of

flanking regions.

The  independent  effect  of  CpG  methylation  on  CTCF  binding  can  also  be

observed  after  stratification  of  CTCF  peaks  based  on  the  confounding  variables.

Specifically,  we  repeated  the  JAMS  modeling  after  removing  the  variables  that

represent the TF-specific contribution of methylation at positions 2 and 12, sorted the

peaks  by  the  residual  of  this  model  (i.e.  by  the  ChIP-seq signal  that  could  not  be

explained by the reduced model), and visualized the methylation pattern of the peaks,

limiting to the peaks that (a) had a sequence similar to the CTCF-preferred binding site,

(b) had CpGs at positions 2 and 12, and (c) had high DNA accessibility. As  Fig. 5B

shows,  even if  we focus on the  peaks with  similar  sequence and accessibility,  the

residual  of  the  reduced  model  still  correlates  negatively  with  CpG  methylation  at

positions 2 and 12. In other words, peaks whose signal is smaller than what the reduced

model predicts have higher CpG methylation, supporting the negative effect of CpG

methylation on CTCF binding.

Similar  JAMS  models  can  be  obtained  using  CTCF  ChIP-seq,  WGBS,  and

accessibility data from several other cell lines (Supplementary Fig. 3), highlighting the

reproducibility of these results across different contexts.  Importantly,  our observation

that  CpG  methylation  at  positions  2  and  12  negatively  affects  CTCF  binding  is

consistent with previous reports on CTCF methylation preferences in vivo and in vitro

12,88.  These results overall  suggest that JAMS models have the potential  to faithfully

recapitulate the methylation preferences of TFs using ChIP-seq data.
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3.2 Prediction of cell type specific TF binding using JAMS models

3.2.1 CTCF JAMS models are transferable across cell types

A JAMS model that encodes the intrinsic binding preference of a TF should be

able to predict the ChIP-seq signal of that TF in new contexts, such as in previously

unseen cell  types that  were not  used in  model  training.  We began to  examine this

possibility by investigating the transferability of the CTCF model that was learned in

HEK293 cells to  other cell  types. We used DNase-seq and WGBS data (Methods,

Section 2.1.1 and Supplementary Table 1) from six cell lines (H1, GM12878, HeLa-

S3, HepG2, and K562) to predict the CTCF binding signal (using the HEK293-trained

JAMS model),  and  compared  the  predictions  to  experimental  CTCF ChIP-seq  data

obtained for each cell  type (Supplementary Table 1).  We observed that the CTCF

JAMS model that was trained on HEK293 data could successfully predict the ChIP-seq

pulldown-to-control ratio in other cell types, with a performance comparable to JAMS

models  that  were  specifically  trained on the  data  from each type (Table  1).  These

results support the transferability of JAMS models across cell types.

Table  1:  Pearson correlation between observed and predicted CTCF-binding

across cell types.  The third column shows the  r between observed and predicted

signal for  JAMS models that were trained on each individual  cell  type. The fourth

column shows the r between the predictions of the JAMS model that was trained on

HEK293 and the observed ChIP-seq data in other cell lines.

Cell line ChIP-seq peaks 10-fold CV HEK293-trained r
HEK293 135,717 0.69 -
H1 128,123 0.72 0.62
GM12878 39,535 0.69 0.54
HeLa-S3 65,865 0.72 0.60
HepG2 81,188 0.73 0.64
K562 85,122 0.74 0.68

3.2.2 Differential  binding  between  cell  lines  is  captured  by

JAMS models

The analyses described in  the  previous section show that  the JAMS models

learned  from  one  cell  type  can  be  transferred  to  another  cell  type.  However,  a

considerable proportion of CTCF binding sites are shared across these cell types  88;
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therefore, it is not immediately clear to what extent this transferability corresponds to

cell-invariant  features of the JAMS model  (sequence) as opposed to  potentially cell

type-specific  features  (methylation  and  accessibility).   In  fact,  one  of  the  most

challenging aspects of modeling TF binding is the ability to identify TF binding sites that

are  differentially  occupied  across  cell  types  43.  To  understand  the  extent  to  which

differential accessibility and methylation of DNA drives differential CTCF binding, and

the extent to which these effects can be captured by JAMS, we decided to use the

JAMS model learned from HEK293 cells to predict differential binding of CTCF in other

cell lines. We started by identification of differentially bound CTCF peaks in pairwise

comparisons of cell lines listed in Table 1. For any given two cell lines, we used the log-

fold  change  (logFC)  in  the  pulldown-to-control  ratio  as  the  measure  of  differential

binding (Fig.  6A).  The mean and standard error  of  mean (SEM) of this  metric  was

calculated using a statistical model that assumes a negative binomial distribution for the

tag counts, which also allows us to calculate a P-value for the null hypothesis that logFC

is equal to zero (see Methods, Section 2.3).

Application of this method to all pairwise cell comparisons revealed the largest

number of differentially bound CTCF peaks between GM12878 and HeLa-S3 cells (Fig.

6B); therefore, we focused on prediction of the differential peaks between these two cell

lines using the HEK293 JAMS model of CTCF. Specifically, we used the JAMS model to

predict the CTCF binding signal in each of the GM12878 and HeLa-S3 cell lines (based

on the accessibility  and methylation data of each cell  line),  and then calculated the

logFC of the JAMS predictions between the two cells. As shown in Fig. 6C, the JAMS-

predicted changes in CTCF binding are strongly correlated with the experimental logFC

values (r=0.40 across peaks with  logFC SEM<1.28;  see  Supplementary  Fig.  4 for

details on the choice of SEM cutoff). These results suggest that the CTCF JAMS model

can quantitatively predict  the change in CTCF binding strength based on differential

accessibility and methylation. Importantly, for the set of peaks that pass the statistical

significance threshold for differential binding between the two cell lines (FDR<0.1), the
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correlation between JAMS predictions and experimental logFC reaches as high as 0.84

(Fig. 6C), with JAMS being able to distinguish GM12878-specific from HeLa-S3-specific

binding events with 95% accuracy.

        Figure 6: Prediction of differentially bound CTCF peaks using JAMS. (A)

Schematic  representation  of  identifying  differentially  bound  peaks  based  on  the

combination of pulldown and control signal in two cell lines. See Methods for details.

(B) Volcano plot showing differential binding of ChIP-seq peaks between GM12878

and HeLa-S3. Significant peaks at FDR < 0.1 are shown in red. (C) Left: Scatter plot

of  JAMS-predicted  changes  in  CTCF  binding  and  observed  differential  binding

between GM12878 and HeLa-S3 cells. Peaks with observed logFC SEM <1.3 are

included. Right: Limited to peaks that pass FDR<0.1 for differential binding of CTCF.

(D) Comparison of the accessibility of putative CTCF peaks between two cell lines.

The diagonal band in the middle (blue) shows the region that was selected as no-

change in  accessibility  (difference in  accessibility  < 0.2).  (E)  Predicting differential

CTCF  binding  for  peaks  with  no  change  in  accessibility.  Peaks  were  ranked  by

accessibility,  and the correlation between predicted and observed logFC of  CTCF
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binding  was  calculated  for  sliding  windows  of  500  peaks  (bottom).  The  average

accessibility for each sliding window is shown on top.

We  note  that  many  of  the  CTCF  binding  sites  are  differentially  accessible

between GM12878 and HeLa-S3 (Fig.  6D).  The above analysis cannot rule out the

possibility that differential accessibility is responsible for the differential CTCF binding

between these two cell lines. To specifically examine the role of differential methylation

in driving cell type-specific CTCF binding, we further limited our analysis to the set of

peaks that had similar accessibility in both cell lines (Fig. 6D), and also removed all the

JAMS predictor variables corresponding to accessibility. We observed that this reduced

JAMS model can still predict differential CTCF binding among the peaks that are not

differentially accessible (r=0.14 between predicted and observed logFC across n=2232

peaks; Fig. 6E). This correlation increases to 0.22 for the set of peaks that have high

accessibility in both cell lines (Fig. 6E), suggesting that the effect of CpG methylation is

most noticeable when the putative CTCF binding site is accessible.

Overall,  these  analyses  suggest  that  JAMS  models  can  accurately  predict

differential TF binding across cell types, including differential TF binding events that are

driven  by  differential  methylation  of  the  putative  binding  sites.  The  ability  of  JAMS

models to predict cell type-specific TF binding events further highlight their reliability in

capturing the biochemical determinants of TF binding using ChIP-seq data.

3.3 JAMS  models  reveal  the  landscape  of  TF  methyl-binding

preferences

3.3.1 A high-confidence compendium of JAMS models for 260

TFs

A recent large-scale in vitro study has revealed that methyl-binding preferences

are heterogeneous across TFs, and vary even within TF families 5. While this  in vitro

study provided a first global picture of TF methyl-preferences, it is not clear to what

extent its conclusions can be extended to in vivo TF function. However, establishing the

relationship between TF binding and CpG methylation  in vivo is experimentally taxing

and time consuming  9,10,14. Therefore, we decided to apply JAMS to a comprehensive
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compendium of ChIP-seq data in order to identify TFs whose in vivo binding is positively

or negatively affected by methylation of CpGs at their binding sites.

We collected and uniformly processed data from 2368 ChIP-seq and ChIP-exo

experiments 94,96,97, covering the in vivo binding profiles of 260 TFs in six cell lines, along

with the WGBS and DNase-seq assays in those cell lines  (see Supplementary Table

1 for  accession  numbers).  On  average,  we  identified  ~60k  peaks  per  ChIP-seq

experiment using the permissive P-value threshold of 0.01 (Fig. 7A). We then used the

peak tag counts to fit a JAMS model to each ChIP-seq experiment. We noticed that the

quality  of  the  JAMS  models,  measured  by  the  Pearson  correlation  between  the

predicted and observed TF-specific signal, varied substantially across the experiments,

with correlations ranging from 0 to 0.8 (median 0.48, Fig. 7B). This variation may reflect

a multitude of factors, including the ChIP-seq data quality as well as the extent to which

the TF signal can be explained by our model specifications. We therefore decided to

keep only a subset of high-confidence models. Specifically, we selected at most one

representative model per TF based on the following criteria: (i) the model should have

used  at  least  10,000  peaks  for  training,  (ii)  Pearson  correlation  >0.2  between  the

predicted and observed TF-specific signal after cross-validation, (iii) Pearson correlation

>0.3 between the known and JAMS-inferred sequence motif, (iv) and low contribution of

the sequence to the background signal compared to the TF-specific signal (control-to-

pulldown ratio of the sequence coefficients mean < 0.4). As an example, in Fig. 7C we

show two JAMS models for BHE40, obtained from two different ChIP-seq experiments,

only one of which passes all the criteria mentioned above. Overall, we obtained high-

confidence JAMS models for 260 TFs, spanning a range of TF families (Fig. 7D).
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             Figure 7: Systematic application of JAMS. (A) Left: Violin plot showing the

distribution of Pearson correlation between the observed and predicted TF binding

signal. Right: Distribution of the number of peaks used to create JAMS models. The

violin plots represent a total of 2368 ChIP-seq experiments that were analyzed by

JAMS. (B) Known BHE40 motif obtained from the CIS-BP database, shown as an

example  102. (C) Results from a high-quality (top) and a low-quality (bottom) JAMS

model for BHE40. Inferred sequence coefficients for TF binding (left) and background

(middle), as well as the predicted vs. observed TF binding signal (right) are shown.

(D) Pie charts of the main TF families (left) and C2H2 ZF proteins subfamilies (right)

for TFs with at least one high-quality JAMS model. (E) Pie chart of the methyl-binding

preferences of TFs with at least one high quality JAMS model. We obtained high-

quality models for a total of 260 TFs.
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3.3.2 Systematic  inference  of  the  in  vivo TF  methyl-binding

preferences

After selecting one JAMS model per TF, we used the JAMS-inferred effects of

methylation to classify the TFs according to their inferred methyl-binding preferences.

We  use  a  notation  similar  to  Yin  et  al.  5.  Specifically,  we  classified  a  TF  as  (a)

MethylMinus if its JAMS model included at least one significantly negative mCpG effect

(FDR<1×10–5),  (b) MethylPlus if the model included at least one significantly positive

mCpG  effect,  (c)  mixed-effect  if  the  model  included  both  significantly  positive  and

negative mCpG effects, (d) and no-effect if the motif included a CpG but its methylation

level  did  not  have a  significant  effect.  Overall,  we found 117 MethylMinus TFs,  16

MethylPlus TFs, four mixed-effect TFs, and 67 TFs with no significant mCpG effects; we

also identified a set of 56 TFs without a CpG site in their binding site (Fig. 7E).

To understand whether our JAMS-based classification captures known methyl-

binding preferences of TFs, we started by examining a few TFs whose methyl-binding

preferences have been extensively studied  in vitro and  in vivo, including CEBPB and

NRF1. Using protein-binding microarrays (PBMs), Mann et al. have previously reported

enhanced binding of CEBPB to its  CpG-containing target  sequence when the array

probes  were  methylated  2.  Consistent  with  this  observation,  a  large  number  of  the

genomic binding sites of CEBPB is highly methylated  in vivo 4. The JAMS model for

CEBPB (Fig.  8,  top)  is  concordant  with  these previous  reports,  showing  that  CpG

methylation at the 6th position of CEBPB target sequence has a positive effect on its

binding strength (Fig. 8C). This effect is in fact highly reproducible, and is present in

three  out  of  four  JAMS models  that  we  obtained  using  different  CEBPB ChIP-seq

experiments.

Another well studied TF is NRF1, which has been found to be sensitive to CpG

methylation of DNase-I-hypersensitive sites in murine stem cells  10. Moreover, Cusack
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et al. found that NRF1 preferentially binds to unmethylated DNA even after accounting

for changes in DNA accessibility caused by the recruitment of HDACs to methylated

CpGs by MBD proteins 9. Consistent with these reports, we found that CpG methylation

of the 3rd and 9th positions of the NFR1 target sequence has a negative effect on its

binding (Fig 8G); these effects were consistent across all the cell lines we analyzed.

         Figure 8: Examples of known TF methyl-binding preferences that were

also captured by JAMS. Panels  A-D correspond to CEBPB, a known methyl-plus

TF.  Panels  E-H correspond  to  NRF1,  a  known TF whose  binding  is  inhibited  by

methylation.  (A)  Known  motif  for  CEBPB.  (B)  Scatter  plot  of  JAMS-predicted  vs.

observed TF binding signal for CEBPB. (C) Motif logo and dot plot representations of

the sequence/methylation preference of CEBPB as inferred by JAMS (see Figure 5

for how these representations should be interpreted).  (D) Heatmap representation of
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the sequence, accessibility, and CpG methylation, for a subset of CEBPB peaks that

have high DNA accessibility. Peaks are sorted by the residual of a reduced JAMS

model that does not use the methylation level for predicting the TF binding signal. (E-

H) Similar to panels A-D, but for NFR1.

The above examples suggest that JAMS models are consistent with previously

reported methylation preferences of  TFs. However,  there are only  a handful  of  TFs

whose methylation preferences have been validated in vivo. Therefore, to systematically

evaluate  our  JAMS-based  classification  of  TFs,  we  compared  our  inferred  methyl-

binding preferences with those obtained from methylation-sensitive SELEX (bisulfite-

SELEX) by Yin et al.  5. Overall, 76 out of the 260 TFs that we studied here were also

included in the Yin et al. study (Table 2). These included 44 TFs that we classified as

MethylMinus based on  in vivo data; 29 of these TFs (~66%) were also identified as

MethylMinus by bisulfite-SELEX, and another 7 TFs (16%) were identified as mixed-

effect. This suggests that our approach has ~82% precision for identification of TFs that

are  negatively  affected  by  CpG  methylation  in  at  least  one  position  in  their  target

sequence. On the other hand, out of 39 MethylMinus TFs found by bisulfite-SELEX, 31

were also classified as either MethylMinus or mixed-effect by JAMS, suggesting that

~79% of in vitro-observed MethylMinus effects can be captured using in vivo data.

Table 2: Contingency table of TF classifications by JAMS (rows) and bisulfite-SELEX 5 

(columns).

bisulfite-SELEX
MethylMinus MethylPlus MixedEffects Little effect Not studied

JAMS

MethylMinus 29 4 7 4 73

MethylPlus 1 4 0 0 11

MixedEffects 2 1 0 0 1

NoCpG 0 0 0 0 56

NoEffect 7 11 4 2 43
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Similarly, out of five JAMS-based MethylPlus TFs that were also studied by Yin

et al., four were classified as MethylPlus based on SELEX, suggesting a precision of

~80% 5. However, despite this high precision, analysis of in vivo data appears to have

low  sensitivity  in  detecting  MethyPlus  events,  with  only  5  out  of  20  SELEX-based

MethylPlus TFs being identified as either MethylPlus or mixed-effect by JAMS (~25%

sensitivity). This observation might reflect the difficulty of modeling MethylPlus effects

using  in  vivo data.  Nonetheless,  we found 11 MethylPlus  TFs  that  were  previously

unclassified—this is in addition to 73 previously unclassified MethylMinus and one novel

mixed-effect TF, highlighting the utility of JAMS models in revealing novel TF methyl

preferences (Table 2). For example, we show a novel TF methyl preferences for ZKSC1

(Fig. 9). The TF-specific logos for all the MethylPlus and MixedEffects inferred by JAMS

are shown in Supplementary figure 6.

         Figure 9: Example of a novel TF methyl-binding preference found by

JAMS. (A)  Known motif  for  ZKSC1, a C2H2 zinc finger  transcription factor  (motif

inferred  by  RCADE2  103,104).  (B)  Scatter  Plot  of  JAMS-predicted  vs.  observed TF

binding signal. (C) Motif logo and dot plot representations of the sequence/methylation

preference,  as  inferred  by  JAMS.  (D)  Heatmap  representation  of  the  sequence,

accessibility,  and CpG methylation, for  a subset of  TF peaks that have high DNA

accessibility. Peaks are sorted by the residual of a reduced JAMS model that does not

use the methylation level on position 2 for predicting the TF binding signal. Note the

high level of methylation at position 2 among the peaks that have an excess binding
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signal that cannot be explained by this reduced model.

Fig.  10 shows the distribution of different methyl-preferences across main TF

families. We noticed that a disproportionately large number of MethylPlus TFs appears

to belong to the C2H2-ZF family (also shown in Table 3). Specifically, among KRAB-ZF

TFs whose binding is significantly affected by methylation, ~24% preferentially bind to

methylated  CpGs,  compared  to  only  ~12%  of  non-KRAB  TFs  (Fisher’s  exact  test

P<0.009,  Supplementary  Table  2).  This  is  an  intriguing  observation,  given  that  a

majority  of  KRAB-ZF proteins evolved to  specifically  bind  and repress transposable

elements,  which  largely  reside  in  highly  methylated  genomic  regions  117.  Our

observation  suggests  that  many  of  these  proteins  preferentially  bind  to  methylated

instances  of  their  target  sequence,  potentially  allowing  them  to  distinguish  the

transposable elements from other genomic regions that contain their preferred binding

sequence. In fact, ~56% of all MethylPlus TFs that we identified are KRAB-ZF proteins,

suggesting that recognition of methylated transposable elements might have been a

primary force in the evolution of methyl-binding TFs.

Overall, our results demonstrate that the methylation preferences of TFs can be

reliably  inferred  from  their  in  vivo binding  profiles,  and  provide  a  comprehensive

resource for classification of TF methyl-preferences.
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            Figure 10: Methylation preferences per TF family. Stacked bar plots 

showing the distribution of TF methylation preferences inferred with JAMS, grouped 

by TF families. The inset shows the distribution of methylation preferences for C2H2-

ZFP subfamilies.
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Table 3: TFs with MethylPlus and MixedEffects methyl-binding preferences, as

inferred by JAMS using in vivo data. For MixedEffect TFs, both the position at which

a positive methylation effect  was observed as well  as the position with a negative

methylation effect are indicated.

TF name
(Uniprot entry

name) 

Gene
name

(HGNC
symbol)

Family
JAMS

classification

Effect of
methylation
by position

Classification
by Yin et al.,

(2017)
Positive Negative

ZN793_HUMAN ZNF793 C2H2 ZF (KRAB) MethylPlus 7

ZKSC1_HUMAN
ZKSCA

N1
C2H2 ZF

(KRAB+SCAN)
MethylPlus 2

CEBPB_HUMA
N

CEBPB bZIP MethylPlus 6 MethylPlus

ZN141_HUMAN ZNF141 C2H2 ZF (KRAB) MethylPlus 17

ZN320_HUMAN ZNF320 C2H2 ZF (KRAB) MethylPlus 17

ZN605_HUMAN ZNF605 C2H2 ZF (KRAB) MethylPlus 15

COT2_HUMAN NR2F2 Nuclear receptor MethylPlus 5, 8

ZN479_HUMAN ZNF479 C2H2 ZF (KRAB) MethylPlus 11

SP1_HUMAN SP1 C2H2 ZF MixedEffects 5 8 MethylPlus

ZN490_HUMAN ZNF490 C2H2 ZF (KRAB) MethylPlus 7

ZN506_HUMAN ZNF506 C2H2 ZF (KRAB) MethylPlus 5

ZN417_HUMAN ZNF417 C2H2 ZF (KRAB) MethylPlus 16

USF1_HUMAN USF1 bHLH MixedEffects 7 5 MethylMinus

USF2_HUMAN USF2 bHLH MixedEffects 7 5 MethylMinus

TCF7_HUMAN TCF7 HMG/Sox MethylPlus 2 MethylMinus

KAISO_HUMAN ZBTB33 C2H2 ZF (BTB) MethylPlus 5, 7 MethylPlus

TFAP4_HUMAN TFAP4 bHLH MethylPlus 7

NFYB_HUMAN NFYB NFYB/HAP3 MixedEffects 9 13

SCRT1_HUMAN SCRT1 C2H2 ZF MethylPlus 3 MethylPlus

CEBPG_HUMA
N

CEBPG bZIP MethylPlus 6 MethylPlus
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CHAPTER 4. DISCUSSION

In this study, we built Joint Accessibility-Methylation-Sequence (JAMS) models to

capture the relationship between TF binding and DNA methylation in vivo. This method

models TF binding as a function of DNA accessibility, sequence and methylation at and

around TF binding sites, while separating the background from TF-specific signals. We

started by applying this method to CTCF, which revealed that CpG methylation at the

2nd and 12th positions of the CTCF motif  is associated with decreased TF binding. This

methylation sensitivity is reproduced in multiple cell lines, can be observed even among

highly accessible genomic regions, and can explain differential CTCF binding between

different cell lines.

As mentioned in the previous chapter, methylation-sensitivity of CTCF has been

previously reported 88.  An intriguing observation in this regard was made by Zuo et al.,

who used a high-throughput in vitro method to quantify the effect of CpG methylation on

CTCF binding: they found a substantial negative effect of the CpG methylation at the 2 nd

position of the motif  12, which is also one of the CpG sites we identified. However, we

also identified a second CpG site at the 12th position whose methylation reduces CTCF

binding, which was not reported by Zuo et al. 12. Using a likelihood ratio test we showed

that the observed effect of methylation at this position cannot be simply explained by its

correlation with the first  CpG site (Supplementary Fig.  2),  suggesting that we may

have identified a novel CpG methylation effect. 

One possible explanation as to why the methylation effect at position 12 th could

not be observed in vitro is that it may reflect the direct competition between CTCF and

MBD proteins, with the latter not included in the in vitro assay. While JAMS is able to

capture  the  effect  of  changes  in  DNA  accessibility  that  result  from  chromatin

remodelling factors recruited by MBD proteins, it currently does not model the direct

competition of TFs and MBD proteins. This undetected direct competition between MBD

proteins  and  TFs  for  the  binding  sites  could  affect  the  interpretation  of  our  model

parameters:  methylation  coefficients  obtained  by  JAMS  models  should  be  more
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accurately interpreted as the affinity of a TF toward mCpG sites relative to the affinity of

MDB proteins.

Accordingly,  a  positive methylation coefficient  means that  the TF binds more

strongly  to  the  mCpG  than  MDB  proteins  do,  therefore  outcompeting  them.  This

interpretation may in fact explain why a large number of  in vitro-detected MethylPlus

TFs 5 could not be identified by JAMS: even though these TFs can bind to mCpGs in

vitro, competition with MDB proteins might attenuate this effect  in vivo. On the other

hand,  a  negative  JAMS  methylation  coefficient  could  mean  that  the  MDB proteins

outcompete the TF in vivo, or that the TF simply does not bind to mCpGs even without

considering the effect of MBDs. Since the majority of MethylMinus TFs that we identified

match  in  vitro observations  5,  the latter  scenario is  likely  more prevalent,  with most

negative coefficients reflecting the TF preference for unmethylated CpG even without

considering competition with MBDs.  We would like to note the possibility of directly

deconvolving  these  scenarios  (i.e.  intrinsic  preference  for  unmethylated  CpGs  vs.

competition with MBDs) by including the MBD protein occupancy profiles as additional

variables in future versions of the JAMS model.

Another aspect of JAMS models is that it can explain differential TF binding that

is associated with changes in DNA methylation, even after controlling for differences in

DNA accessibility and sequence. Specifically, we showed that while the large majority of

CTCF binding sites are constant across cell types, there are a limited set of methylation-

sensitive sites that are highly variable across cell types 88 that can be explained based

on our  JAMS model  of  CTCF binding.  It  is  relevant  to  mention that  modelling,  and

predicting, cell type-specific TF binding is a challenging task and an actively researched

problem  43—Our results support the notion that using CpG methylation data in these

methods is an important consideration in order to improve TF binding modelling. 

One potential limitation of inference of methyl-preferences of TFs from  in vivo
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data,  e.g.  using  our  JAMS models,  is  that  it  is  difficult  to  establish  the  direction  of

causality: while it is likely that the observed associations reflect the effect of methylation

on TF binding, it could also be that they reflect the effect of TF binding on the DNA

methylation level 118. However, TFs that influence DNA methylation most often have an

effect  on  the  local  neighborhood  of  their  binding  sites,  which  often  spans  tens  of

nucleotides 119–121. JAMS takes into account the neighboring levels of methylation, and

tries  to  identify  the  site-specific  methylation  effects  within  the  motif  that  cannot  be

explained by (or are independent of) the flanking methylation levels. Furthermore, most

known associations between DNA methylation and TF binding  entail DNA methylation

effect on TF binding rather than the reverse direction 14; this viewpoint is also supported

by  high-throughput  in  vitro studies,  in  which  binding  site  methylation  levels  are

established  before  measuring  TF  binding  5,12,13.  We  note  that  the  majority  of  our

MethylMinus  and  MethylPlus  findings  (>80%)  match  in  vitro observations  when

available 5; therefore, it is likely that we are observing the effect that CpG methylation

has on TF binding, rather than the effect of TF on CpG methylation

Our results represent, to our knowledge, the largest resource for exploring the in

vivo effect  of  methylation  on TF binding:  only  a  handful  of  studies  have previously

investigated methylation preferences of a limited number of TFs in vivo while accounting

for changes in DNA accessibility. Our results match what has been reported in these

studies, e.g. for NRF1, MAX, CEBPB, and KAISO 2,3,9,10,87, but also reveals a substantial

number of novel TFs that are affected by CpG methylation Of particular interest, our

study revealed a significant number of MethylPlus TFs consistent with in vitro studies 5,

in stark contrast to previous methods that have attempted to infer the effect of DNA

methylation on TF binding 44,90–92.

Finally,  we  found  that  a  large  proportion  of  the  TFs  that  we  identified  as

MethylPlus belonged to the C2H2-ZF family. C2H2-ZF proteins recognize DNA with an

array of zinc fingers (ZFs)  122, with each ZF  three or four nucleotides using its base-
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contacting residues 123 (the base-contacting residues occupy specific positions in the ZF

domain  124).  Identifying  the  methylation  preferences of  C2H2-ZF proteins  opens the

possibility of associating the identity of base-contacting residues to mCpG binding: with

a sufficiently large number of methyl-binding ZFs, we could potentially infer a “grammar”

of  mCpG  binding  recognition,  similar  to  previous  studies  that  have  identified  the

grammar  that  connects  the  identity  of  base-contacting  residues  to  that  of  the

nucleotides bound by each zinc finger.
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

Our study presents, to our knowledge, the first method that quantitatively models

the strength of TF-binding as well as background signal using ChIP-seq data, with the

goal of deconvolving the effects of sequence, DNA accessibility, and CpG methylation

on TF-DNA interactions. We showed that this method captures intra-motif methylation

effects,  explains  differential  TF  binding  between  cell  lines  driven  by  changes  in

methylation, and produces TF binding models that are largely consistent with  in vitro

data  as  well  as  existing  literature.  By  systematically  applying  this  method  to  a

compendium of 2368 ChIP-seq experiments, we were able to obtain high-confidence

models  for  260  TFs,  representing  the  largest  resource  for  exploring  in  vivo TF

methylation preferences to date.

Future work could focus on using JAMS to understand the processes in which

epigenetic  changes  affects  TF  binding,  especially  in  conditions  where  epigenetic

remodelling  is  widespread  and  frequent,  as  it  is  the  case  in  cancer  and  cellular

differentiation. Furthermore, we could associate mCpG recognition, infered by JAMS, to

TF features, namely the structure and residue sequence of their DNA binding domains.

The C2H2-ZF family is of special interest as they bind to DNA in a modular manner.

Finally,  albeit  our  results  match current  literature,  we could improve our  method by

integrating other relevant genomic features, for example MBD protein profiles.

JAMS is available as a GitHub repository (https://github.com/csglab/JAMS) that

includes the computational tools described here as well as the comprehensive dataset

of TF methyl-preferences that we have inferred.
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APPENDICES

Supplementary figures

Supplementary Figure 1: Background coefficients for CTCF in HEK293

cells.  (A)  Motif  logo  and  dot  plot  representations  of  the  sequence/methylation

preference of the TF-specific (A) and background (B) signals. The logo (top) shows

methylation coefficients as arrows,  with the arrow length proportional  to the mean

estimate of methylation effect.  The heatmap (bottom) shows the magnitude of the

preference for each nucleotide at each position using the size of the dots, with red and

blue  representing  positive  and  negative  coefficients,  respectively.  The  signed

logarithm of P-value of the methylation coefficient is shown using the color of  the

squares around the dots, with red and blue corresponding to increased or decreased

binding  to  methylated  C,  respectively  (only  significant  methylation  coefficients  at

FDR<1×10–5 are shown). 
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Supplementary  Figure  2:  Likelihood  ratio  test  per  position  to  identify

CTCF  binding  site  positions  with  significant  methylation  effects. For  each

position of the binding site, a reduced model was trained, each exclusing methylation

of that position from the predictive variables. Then, each of these reduced models

were compared to the whole CTCF JAMS model using a likelihood ratio test (LRT).

The p-values obtained from the LRT are shown as the color of the squares. The effect

sizes for the bases and methylation are obtained from the full CTCF JAMS model.

Significant LRT p-values indicate that removing the methylation of the corresponding

position from the model reduces the goodness of fit.
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Supplementary Figure 3: JAMS coefficients for CTCF across different cell

lines. Motif logs and dot plot representations follow the same format as described in

Fig.  5.  TF-specific  and background model  coefficients  are  shown side-by-side  for

each of the six cell lines (GM12878, HepG2, H1, HeLa-S3, and K562).
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Supplementary  Figure  4:  Calculating  LFC  threshold. (A)  Pearson

correlation  between  the  predicted  and  observed  change  in  CTCF  binding,  after

filtering the CTCF peaks based on different cutoffs for standard errors of the LFC of

pull-down/control ratio. An optimal threshold is observed at LFC SE = 1.28. (B) To

discard the possibility of overfitting of the threshold, different optimal thresholds were

calculated using a 10-fold cross-validation approach. The LFC SE threshold obtained

by using all peaks is similar to the threshold obtained with cross-validation and leads

to a similar correlation between the predicted and observed change in CTCF binding.
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Supplementary  figure  5:  MethylChIP  results  by  TF  families.  Violin  plots

showing  the  Pearson  correlation  between  observed  and  predicted  pull-down  tag

density (left) and number of peaks used to train the GLM (right), shown separately for

each TF families (A) and C2H2-ZF subfamilies (B). The red dots represent the median.
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         Supplementary figure  6:  TF-specific  motif  logos for  MethylPlus and

MixedEffects TFs identified by JAMS. Motif logo and dot plot representations follow

the same formatting as Fig. 5.  
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Supplementary tables

Supplementary Table 1:  GEO and ENCODE FASTQ identification numbers per cell

lines for the data that were used to train JAMS CTCF models

Cell
line CTCF ChIP-seq Input ChIP-seq

Pull-down
and Input

ChIP-seq lab
source

WGBS DNase-seq

HEK29
3

GSM2026781
HEK293_input_H

ughes_7
Hughes lab,

Toronto
GSM1254259 ENCFF148BGE

H1
ENCFF000ON

R
ENCFF000OOF

ENCFF000OSS
ENCFF000OSP

Richard
Myers, HAIB

ENCFF677BSB
ENCFF800KIP
ENCFF311PSV
ENCFF335TUD

ENCFF131HMO

GM128
78

ENCFF000ARP
ENCFF000ARV

ENCFF621LOE
ENCFF904LCW

Bradley
Bernstein,

Broad

ENCFF585BXF,
ENCFF851HAT
ENCFF798RSS
ENCFF113KRQ

ENCFF743ULW

HeLa-
S3

ENCFF000BAS
ENCFF000BAT

ENCFF000BAO
ENCFF000BAU

Bradley
Bernstein,

Broad

ENCFF953ELH
ENCFF718LOZ
ENCFF751KHK
ENCFF192ITK

ENCFF256QQH

K562
ENCFF000PYD
ENCFF000PYJ

ENCFF000QFI
ENCFF000QFJ

Richard
Myers, HAIB

ENCFF413KHN
ENCFF567DAI
ENCFF336KJH
ENCFF585HYM

ENCFF413AHU

HepG2
ENCFF000PHE
ENCFF000PHG

ENCFF000POU
ENCFF000POV

Richard
Myers, HAIB

ENCFF406GDR
ENCFF508BUS
ENCFF706BRZ
ENCFF220NMH

ENCFF577SOF
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Supplementary Table 2: TFs with  high quality  JAMS model,  stratified by methyl-

binding preference. 

JAMS-inferred methyl preference TFs in the ZF-KRAB family Total TFs

No effect of CpG methylation or no CpG 48 123

MethylPlus 9 16

MethylMinus 28 117

MixedEffects 0 4

Supplementary Table 3: Model matrix used to compare count ratios with DESeq2.

(Intercept) sample_2 sample_3 sample_4 read_type cell_line_1

cell_line_2_replicate_1.pulldown 1 0 0 0 0 0

cell_line_2_replicate_2.pulldown 1 1 0 0 0 0

cell_line_1_replicate_1.pulldown 1 0 1 0 0 0

cell_line_1_replicate_2.pulldown 1 0 0 1 0 0

cell_line_2_replicate_1.control 1 0 0 0 1 0

cell_line_2_replicate_2.control 1 1 0 0 1 0

cell_line_1_replicate_1.control 1 0 1 0 1 1

cell_line_1_replicate_2.control 1 0 0 1 1 1
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