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ABSTRACT

Background: Cytosine methylation, particularly 5-methylcytosine in cytosine-
phosphate-guanine (CpG) sites, has long been considered to primarily repress the
binding of transcription factors (TFs) in vivo. This DNA modification is known to change
the local structural features of DNA and, when occurring on binding sites, change the
binding affinity of TFs. In contrast to the conventional repressive role of methylation,
recent high-throughput in vitro studies of TF-DNA interactions have revealed that
cytosine methylation has a heterogeneous effect on TF binding, with the direction of this
effect depending on the specific TF and the position where methylation appears.
Expanding these in vitro observations to in vivo TF binding preferences, however, is a
challenging task, since confounding factors like DNA accessibility and regional DNA
methylation make it difficult to isolate the effect of individual CpG sites. As a result, the

in vivo methylation preferences of most TFs remain uncharacterized.

Methodology: In order to infer the effect of CpG methylation on TF binding in
vivo, we developed Joint Accessibility-Methylation-Sequence (JAMS) models. JAMS
creates quantitative models that connect the DNA accessibility, regional methylation
level, sequence, and base-resolution methylation to the strength of the binding signal
observed in ChiP-seq of a TF. Furthermore, by jointly modeling both the control and
pull-down signal in a ChlP-seq experiment, JAMS is able to isolate the TF-specific
effects from background effects, revealing how methylation of specific CpGs within a

binding site alters the TF binding affinity in vivo.

Key results: Using the transcription factor CTCF as a model, we show that
JAMS can quantitatively model the TF binding strength and learn the accessibility-
methylation-sequence determinants of TF binding. In addition, JAMS can faithfully
recapitulate cell type-specific CTCF binding based on differential accessibility and
methylation across cell lines. We show that even in the absence of any change in DNA
accessibility, changes in the methylation level of specific CpGs within the CTCF binding
site drive its differential binding across cell lines. Systematic application of JAMS to
2368 ChIP-seq experiments covering 260 TFs revealed that 45% of TFs are inhibited by



methylation of their potential binding sites. In contrast, 6% prefer to bind to methylated
sites and 1% show mixed effects. The other 48% either do not bind to CpG-containing
sequences or are indifferent to CpG methylation. Comparison of these in vivo models to
in vitro data confirmed high precision of the methyl-preferences inferred by JAMS.
Finally, among the CpG-binding proteins from the ZF-KRAB family of TFs, we observed
a disproportionately high preference for methylated sequences (24%), highlighting the
role of CpG methylation in determining the genome-wide binding profiles of the TFs

from this family.



RESUME

Contexte: La méthylation des cytosines, et en particulier des 5-methylcytosine
sur les sites cytosine phosphate-guanine (CpG), a longtemps été considéré comme
réprimant principalement la liaison des facteurs de transcription (TF) in vivo. Cette
modification de 'ADN est connue pour changer les caractéristiques structurelles locales
de '’ADN, ainsi que l'affinité des liaisons des TF, lorsqu’elle apparait sur leurs sites de
liaison. Contrairement au réle répressif de la méthylation, beaucoup d’études in vitro
récentes, sur l'interaction FT-ADN ont révélé que la méthylation des cytosines a un effet
hétérogéne sur la liaison des FT. Ces études ont notamment montré que la liaison d’un
TF dépends du TF lui-méme et de la position ou apparait la méthylation. L’extrapolation
de ces observations in vitro, a la préférence de liaison des TF in vivo, est cependant
difficile a réaliser. En effet, des facteurs comme [l'accessibilité de I'ADN, et la
méthylation régionale de I'ADN rend difficile Iisolation de l'effet des CpG seuls. En
conséquence, I'étude des préférences de méthylation sur la plupart des FT reste

inexploré in vivo.

Méthode: Dans le but de conclure sur l'effet de la méthylation des CpG sur les
liasisons des FT in vivo, nous avons développé le modéle JAMS (pour Joint
Accessibility-Methylation-Sequence). JAMS crée des modéles quantitatifs mettant en
relation des données sur I'accessibilité de 'ADN, le degré de méthylation locale, les
séquences, et, la méthylation a I'échelle des bases, avec l'intensité du signal de liaison
observée dans le ChIP-sep d’'un TF. De plus, en modélisant conjointement le signal
pull-down et le signal contrble dans les expériences ChlIP-seq, JAMS est capable
d’isoler les effets spécifiques des TF par rapport aux effets du background. Cela montre
comment la méthylation de certaines CpG d’un site de liaison modifie I'affinité de liaison

du TF in vivo.

Résultats: En utilisant le facteur de transcription CTCF comme exemple, nous
avons montré que JAMS est capable de modéliser quantitativement les forces de
liasison d’'un TF et d'intégrer le critere déterminant d’accessibilité des séquences

méthylées pour une liaison du TF. De plus, JAMS peut reproduire fidelement les



liasisons spécifiques du CTCF aux cellules, en se basant sur différents degrés
d’accessibilité et la méthylation entre différentes lignées cellulaire. Nous avons montré
que méme en l'absence de quelques changements dans I'accessibilité de 'ADN, des
changements dans le degré de méthylation des CpGs spécifiques dans les sites de
liasison du CTFT, améne a une liaison différente entre différentes lignées cellulaires.
L’application systémique de JAMS a 2368 expériences ChlP-seq comprenant 260 TF a
révélé que 45% des TF sont inhibés par la méthylation sur leurs sites de liaison
potentiels. Cependant, 6% préférent se lier aux sites méthylés et 1% ont montré des
effets mitigés. Le reste des 48% de TF ne se sont pas liés a des séquences contenant
des CpG ou sont indifférents a la méthylation des CpG. Les données résultantes de la
comparaison de ces modeéles in vivo aux modéles in vitro confirment la haute précision
des préférences de méthylations proposées par JAMS. Finalement, parmi les liaisons
de la protéine CpG a la famille de TF ZF-KRAB, nous avons observé une préférence
disproportionnellement grande des TF pour les séquences méthylé (24%). Cette
différence met en évidence le réle de la méthylation des CpG dans la détermination des

motifs de liaisons des TF de cette famille a I'échelle du génome.
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CHAPTER 1. INTRODUCTION

Transcription factors (TFs) are key regulators of gene expression. Each TF
usually recognizes a specific sequence motif; however, TF binding is affected by
several other variables as well. One of these variables is DNA methylation, which has
traditionally been viewed as having a repressive effect on TF binding '. However, this
traditional view is gradually changing, as more examples are reported of TFs that bind
to methylated sequences. These include studies that have reported increased binding of
specific TFs to methylated DNA in vitro 2, in addition to reports indicating that, for some
TFs, a large fraction of their in vivo binding sites is highly methylated **. While it is
tempting to view these anecdotal cases as exceptions rather than a general trend, a
recent systematic analysis of TF CpG methylation preferences revealed that, in fact, a
large fraction of TFs may bind to methylated CpGs in vitro. Based on this study, the
effect of methylation is dependent on its position in the binding site, and is
heterogeneous within and across TF families °. While this study provides in vitro
evidence for widespread recognition of methylated CpGs by TFs, a comparable
systematic analysis of in vivo methylation preferences of TFs is still lacking. This is
primarily because observing the specific in vivo effect of intra-motif CpG methylation is
confounded by binding site-specific factors such as DNA accessibility, regional
methylation level, and binding site sequence ©®®. Experimental control of these
confounding factors is complicated and resource-exhaustive "', highlighting the need
for computational methods to untangle, from these confounding variables, the base-

resolution relationship between TF binding affinity and intra-motif CpG methylation.

In this study, we introduce Joint Accessibility-Methylation-Sequence (JAMS)
models, a statistical framework for deconvolving the individual contribution of various
factors, including intra-motif CpG methylation, on the in vivo strength of TF binding as
observed by ChIP-seq. We show that JAMS models are reproducible and generalizable,

can capture known CpG methyl-preferences of TFs, and can even predict differential TF
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binding across cell lines based on changes in intra-motif CpG methylation. Finally, we
apply JAMS to a large compendium of ChlP-seq experiments to systematically explore

the CpG methylation preferences of TFs across different families.

In this work, | use the term in vitro to refer to experimental conditions where
naked DNA is tested for its ability to bind a specific TF outside the cell (e.g., SELEX,
PBM, and SmiLE-seq experiments). DNA in these experiments is usually synthetic, with
a random sequence >'?>'. On the other hand, | use the term in vivo for experiments
performed in cell lines and tissues (i.e. ChIP-seq), where the resulting signal can be
confounded by different DNA-binding proteins (e.g., other TFs or MBD proteins) and

chromatin state .

1.1 Transcription factors

Transcription factors (TFs) are proteins that bind to DNA in a sequence-specific
manner and regulate the transcription . TFs play a major role in regulating gene
expression through various mechanisms, which range from recruiting other
activating/repressive proteins to simply obstructing the binding of other factors to DNA
'®. Most TFs in eukaryotes are believed to exert their function through recruiting
cofactors, i.e. proteins or protein complexes that act as activators or repressors of
transcription '’. However, other TFs may have other mechanisms of action, some of

which are shown in Fig. 1 ™.
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e.g. ligand binding domains

o

Can mediate protein-protein interactions
e.g. BTB domain

Effector Domain(s) | ) "7TTTTTTTTTTTIe. %

' Can have enzymatic activities

e.g. 5 C2H2 zinc fingers L aG SETaraE

DNA-binding domain(s)

Recognize specific DNA s
sequences and sites L J) /

Figure 1: Schematic of a TF and its domains. Adapted from Lambert, S. A, et
al. (2018). Cell 172(4): 650-665 with permission
(DOI:https://doi.org/10.1016/j.cell.2018.01.029) *.

V. Y

Most TFs have at least one DNA binding domain (DBD) that recognizes its
targets with sequence specificity: i.e. binds with higher affinity to a specific set of
sequences than to other sequences '°. The sequences preferred by a given TF are
regularly summarized as a motif model. Motifs are normally represented as position
weight matrices (PWM) and visualized using sequence logos (Fig. 2) ??'. PWMs and
sequence logos provide the means to understand how TFs recognize their specific
targets, and even to predict the binding of TFs to a given DNA sequence ?°?2. Overall,
there are >1,600 known or likely TFs encoded by the human genome, 1107 of which
have a known motif, 104 have a homologous TF in other organisms with a known motif,

and 428 have no motifs associated with them 8.
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Figure 2: Position weight matrix and motif logo of GATA3. (A) The binding
sites of the GATA3 TF are identified by high-throughput sequencing techniques. (B) A
position frequency matrix (PFM) shows the nucleotide counts on each position. (C)
Normalizing the values (dividing the entries by the total count at each position)

produces a position probability matrix (PPM) from a PFM. (D) A PWM can be obtained

M, ;

by

by transforming the entries of a PPM to log likelihoods M, ;=log,

), where b is a

background model (b=0.25 if we assume that all nucleotides appear with the same
frequency ) ?'. In entries where the probability of a nucleotide is zero (due to a small
sample size), a pseudocount can be used to avoid undefined values (M, ;=—®) %, (E)
A sequence logo that visually represents the PWM. Data from Jolma et al. (2013). Cell
152(1): 327-339 (DOI:https://doi.org/10.1016/j.cell.2012.12.009) *.
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1.1.1 DNA binding domains and TF families

TFs are often classified into families based on the type of the DNA binding
domain(s) that they use to interact with DNA '®. The three largest TF families in humans

include:

1 C2H2-ZF: The Cys;His, zinc-finger protein family is the largest class of TFs in
humans with ~750 members. It is also the least understood, since we do not
know the motif that is recognized by ~30% of these TFs '8. Each C2H2-ZFP
contains a number of “zinc finger” (ZF) DNA-binding domains, ranging from one
to 35 ZFs with an average of ~10 '®. C2H2-ZFPs usually recognize their target
DNA using a subset of their ZFs, with each ZF usually interacting with three to

four nucleotides 2.

2  Homeodomain: The homeodomain is a protein domain of ~60 amino acids with a
structure consisting of three alpha-helices #*°. Homeodomains are encoded by the

homeobox genes %

, which are found in animals, fungi, and plants and are
particularly highly conserved in vertebrates %. Almost all of their motifs are either
directly known or can be inferred based on homology " TFs of this class are
often associated with developmental processes such as differentiation and show

highly tissue-specific expression patterns #°.

3  bHLH: A basic helix-loop—helix (bHLH) is a protein structural motif that is formed
by two regions, one with two a-helices connected by a loop, and a basic region
for recognition and binding to DNA %', Mediated by the HLH motif, the TFs with
bHLH often dimerize (either forming homodimers or heterodimers) *. They are
highly conserved and present in most eukaryotes, including metazoans, plants,

and fungi .
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Beside DBDs, TFs can also contain effector domains; these domains can interact
with the basal transcriptional machinery, interact with other TFs, and/or recruit enzymes
that modify chromatin state **. They can either activate or repress gene expression in a
context-dependent manner, which is determined by the local sequences, availability of

cofactor, and recruitment of cofactors with opposite effects *°.

1.1.2 ChIP-seq measures TF binding

Various methods exist to determine the sequences that are bound by TFs in vitro
or in vivo. Among the in vivo methods, chromatin immunoprecipitation followed by
sequencing (ChlP-seq) is by far the most widely used method. ChlP-seq detects binding
between DNA and proteins at a genome-wide scale *, and has been extensively used
to detect not only the genomic binding sites of TFs, but also the genome occupancy
profiles of RNA polymerase, modified histones, and other targets of interest *. ChlP-seq
involves crosslinking of DNA-binding proteins and genomic DNA, followed by
fragmentation of the genomic DNA (e.g. by sonication). Genomic sites bound by
proteins are protected from fragmentation; those bound by the protein of interest can be
co-immunoprecipitate using an antibody specific to that protein. Finally, the co-
immunoprecipitated DNA goes through library preparation and sequencing 3. A control
experiment is also often performed in parallel to this pull-down experiment, to obtain
DNA that was only crosslinked and fragmented without any antibody-based enrichment
(input DNA), or DNA that was immunoprecipitated with a non-specific antibody (“lgG”

control) *°.

Peak calling is often the first step of downstream ChIP-seq analysis, after
mapping and quality control of the sequenced ChIP-seq reads. “Peaks” are regions that
are significantly enriched for reads in the pull-down experiment in comparison to the
control DNA *". As the signal varies across peaks (resulting in strong and weak peaks),

the algorithms and tools used for peak calling often calculate p-values and false
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discovery rate (FDR) to help identify biologically relevant sites “*'.

One of the insights obtained from thousands of ChlP-seq experiments across
hundreds of TFs is that PWMs are often inadequate models for explaining the in vivo
specificity of TFs: scanning the genome sequence using PWMs #? usually results in the
identification of tens of thousands of putative TF binding sites (TFBS), most of which are
false positives that are not actually functional '*. While more complicated models such

as deep neural networks have had better success *

, In vivo TF binding sites remain
difficult to predict using DNA sequence alone '. This underlines the importance of
factors other than sequence that impact TF binding and, consequently, gene regulation,
including DNA accessibility and DNA methylation ***. In the next section, we will

discuss some of these additional layers that impact TF binding.

1.2 Epigenetic factors that affect TF binding

Various chemical modifications can affect the genome and its associated
histones without changing the DNA sequence. The repertoire of these modifications is
called the epigenome, and constitutes a key layer of the gene regulation system . The
conformation of the epigenome is different across cell types, explaining, to a large
extent, why cells with the same genomic sequence have widely different expression

patterns and phenotypes .

Two of the most important and well-studied components that define the
epigenome of a cell are DNA methylation and histone modifications. DNA methylation,
which is the addition of methyl groups to the DNA molecule itself, plays a key role in
different cellular processes, with its dysregulation associated with various diseases “.
Histone modification, on the other hand, involves post-translational modification of the
N-terminal tail of histone proteins in the nucleosome complex . There are many
possible histone modifications that work together to determine chromatin structure, with

changes in DNA accessibility being a major consequence of such chromatin
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modifications *

. Particularly, DNA accessibility has been identified as the most
important feature, after DNA sequence, to predict the location of TFBSs . Here, we will
provide a summary of the mechanisms through which DNA methylation and DNA

accessibility impact TF binding, and, consequently, gene regulation.

1.2.1 DNA accessibility

In eukaryotes, nuclear DNA is tightly packaged into chromatin. The basic unit of
chromatin is the nucleosome, which is formed by a segment of DNA that wraps around
eight histone proteins *’. Nucleosomes do not occupy the genome in a uniform way,
resulting in a range of compactness from regions that are densely packed with
nucleosomes to nucleosome-depleted regions that are often found in highly active
genomic regions “°. DNA accessibility refers to the level of possible physical contact
between macromolecules and chromatinized DNA—Fig. 3 shows the continuous nature
of DNA accessibility, ranging from nucleosome-packed closed chromatin to

nucleosome-depleted accessible DNA *°.

Dynamics

Closed chromatin Permissive chromatin Open chromatin

® ®

A A
0 '

Figure 3: Different continuous chromatin states ranging from close to
open chromatin. Adapted from Klemm et al., (2019). Nature Reviews Genetics 20(4):

207-220 with permission (DOI:https://doi.org/10.1038/s41576-018-0089-8) *°.
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1.21.1 Measuring DNA accessibility using DNase-seq

DNase | hypersensitive site sequencing (DNase-seq) is one of the first methods
developed to measure genome-wide DNA accessibility *' and one of the main methods
used for TF footprinting 2. DNase | is a DNA endonuclease that creates, preferentially,
double-stranded breaks in regions where chromatin is not condense and DNA is
accessible. In DNase-seq protocols, nuclei are first isolated and permeabilized, then
DNA is digested by DNase | into 50-100 bp fragments, followed by library construction

and sequencing .

1.21.2 DNA accessibility and regulatory regions

High levels of accessibility are usually associated with active regulatory loci and
transcription. Mapping of highly accessible sites, based on the identification of DNase |
hypersensitive sites (DHSs), has shown that these regions encompass ~2-3% of the
total genome in any given cell type 8. The majority of these regions fall within distal
enhancers and in lesser amounts within promoters and transcription start site (TSS)-

proximal regions

. Often, promoter regions are constitutively accessible, but the
accessibility of distal enhancers varies by cell type *°. High accessibility of both
promoters and enhancers is correlated with transcriptional activity 8, although regulatory

elements that are open but not active are also common *.

1.2.1.3 DNA accessibility and TF binding

TF binding positively correlates with DNA accessibility. Within moderately packed
chromatin, a small number of TFs can take advantage of short periods of time where
DNA is accessible to recruit cofactors and stabilize chromatin into a more accessible
state 8%, However, for the great majority of TFs, the existing chromatin state dictates
binding "*%°. For example almost all of the binding sites of the glucocorticoid receptor, a
TF of the nuclear hormone receptor family, fall within constitutively accessible chromatin

, meaning that existing cell type-specific chromatin accessibility landscape determines
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occupancy of this TF 7. Genome wide mapping of DNase hypersensitivity sites of 125
human cell lines by the ENCODE project revealed that the vast majority of sites bound
by TFs (90%) fall within open chromatin 8. This study helped establish DNA accessibility
as a useful proxy for TF occupancy *°. TF binding site prediction methods benefit greatly
from DNA accessibility information as it is an important feature to identify functional and
non-functional TF binding sites °"°®. Notably, during the ENCODE-DREAM in vivo
transcription factor binding site prediction challenge, the methods with the best
performance used TF binding motifs and chromatin accessibility information as main

sources ®.

1.2.2 DNA methylation

Another key epigenetic layer that affects TF binding and gene regulation is DNA
methylation, the addition of a methyl group to a DNA base. Although both adenine and
cytosine bases can be methylated, the term DNA methylation is more commonly used
to refer to 5-methyl-cytosine modification, the most common DNA methylation. In
animals, most 5-methyl-cytosines appear in CpG sites, i.e. a cytosine followed by a
guanine in the 5’ to 3’ direction. This modification is widespread through the genome,

with 70-80% of all CpG sites methylated in mammals **.

CpG methylation is almost always symmetric in somatic cells, meaning that
methylation is present on the cytosines of both strands of the self-complementary CpG.
This symmetry ensures the preservation of CpG methylation after replication, through
recognition and methylation of the resulting hemimethylated DNA by DNMT1 [DNA
(cytosine-5)-methyltransferase 1] °°. Other members of the DNA methyltransferase
family also play a fundamental role in de novo DNA methylation '. Conversely, the ten-
eleven translocation (TET) methylcytosine dioxygenases mediate demethylation ©2.
Aberrant DNA methylation patterns, caused by malfunction or dysregulation of DNMTs

and TET proteins, are linked to cancer and other diseases *°® highlighting the
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importance of DNA methylation in maintaining proper cell function. Hypo- and hyper-
methylation of tumor samples, for example, are a common occurrence in cancer %,
Genome-wide hypo-methylation is associated with increased gene expression and can
occur at regulatory elements like promoters and enhancers. Furthermore, transcriptional
silencing of tumor suppressor genes by hyper-methylation has been observed in a

plethora of cancer types “5,

1.2.21 WGBS provides base-resolution readout of

methylation states

Whole-genome bisulfite sequencing (WGBS) is the most widely used method for
genome-wide determination of the methylation status of cytosines at single-base
resolution. In this method, sodium bisulfite is used to convert unmethylated cytosines to
uracil, while methylated cytosines are protected from this conversion. After PCR
amplification and sequencing, the methylated cytosines appear as C in the sequencing
reads, while unmethylated cytosines that were converted appear as T *. Downstream
analysis tools can then use a bisulfite-converted reference genome to align reads and

call the fraction of methylated reads at each base .

WGBS is experimentally expensive—although it can cover >90% of all genomic
CpG sites without considerable bias toward a specific region, it also requires substantial
sequencing depth to obtain precise measurement of methylation. Additionally,
depending on the biological question and the required downstream analysis, it may be
beneficial to have biological replicates °°’. Fortunately, consortiums such as the
ENCyclopedia Of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA)
have publicly provided WGBS data for many of the widely used cell lines as well as

different cancer types %, enabling studies such as the one described in this thesis.

1.2.2.2 DNA methylation and TF binding

DNA methylation is often associated with gene silencing through both direct and
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indirect regulation of gene expression °. This gene silencing effect can result from

various molecular mechanisms, including the inhibition of the binding of TFs to gene

regulatory regions. Some of the main mechanisms through which DNA methylation

affects TF binding include:

Binding of MBD proteins to methylated DNA: The mCpG-binding domain (MBD)
protein family includes MeCP2, MBD1, MBD2, MBD4, and MBD3, proteins that
bind to mCpG in a non-sequence-specific mode *. MBD proteins can affect gene
expression in two main ways: first, they can outcompete TFs by simply binding to
DNA and obstructing TF binding *; secondly, by recruiting histone deacetylases
(HDAC) ™, MBD proteins can increase chromatin compaction and lead to

transcriptional repression .

Direct effect of methylated DNA on TF binding: In TFBSs, the addition of a
“bulky” methyl group allows for the formation or loss of possible van der Waals
interactions or hydrophobic contacts between DNA and protein side chains ™.
TFBS methylation has been traditionally associated with repression of binding,
although it has been found to enhance in vitro binding for some TFs "*"°,

Methylation-induced structural changes: The double-helix of methylated DNA has
a narrower minor groove compared to unmethylated DNA. Lazarovici et al. used
cleavage by DNase |, which is highly shape-sensitive, to probe the DNA shape
and found enhanced cleavage adjacent to methylated CpG base pairs
suggesting narrowing of the minor groove induced by methylation. These

changes in DNA shape can subsequently affect the binding of many of the TFs

77
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1.2.2.3 Relationship between DNA methylation and DNA

accessibility

There is a tight relationship between DNA methylation and DNA accessibility,
with histone modifications playing an integral part in mediating this association 2. DNA
methylation affects the state of chromatin. Methylated DNA is recognized by MBD
proteins, which in turn recruit histone deacetylases (HDACs) ""7°#® and histone
methyltransferases (HMTs) . The effect of both HDACs and HMT results in a more
compact chromatin and, consequently, represses transcription 2. Furthermore, DNA
methyltransferases (DNMTs) can directly recruit these histone modifiers. DNMT1 and
DNMT3b can interact with HDACs 2%, and DNMT1 and DNMT3a can bind to the
histone methyltransferase SUV39H1 "°. Conversely, the existing chromatin state can
affect the DNA methylation . For instance, the methylation state of histone 3 at lysine 4
(H3K4) is linked to local DNA methylation . Unmethylated H3K4 is recognized by a
protein domain found in DNMT3A, DNMT3B and DNMT3L, DNMT3A and DNMT3L can
form a tetramer 3; Interestingly, when this tetramer is modeled into nucleosomal DNA,
the active sites of DNMT3A are positioned on adjacent DNA major grooves and can
result in de novo CpG methylation . Finally, and consistent with the effect of these
histone modifications, next generation sequencing techniques have observed a
negative correlation between DNA methylation and DNA accessibility, when measuring

them simultaneously over DNase hypersensitive sites 8¢

1.3 The interplay between TF binding and DNA methylation

The underlying mechanisms that govern TF recognition of DNA methylation are
poorly understood. As outlined above, the most widely recognized relationship between
TFs and methylated DNA interactions is that DNA methylation prevents TF binding,
through competitive binding of proteins containing a methyl-CpG-binding domain
(MBD), through promoting closed chromatin, or through direct prevention of TF binding

by the methyl moiety *. However, there is a growing body of evidence that, TFs can
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directly interact with methylated DNA using their DNA binding domains #%¥’. In what
follows, we will summarize some of the recent findings that suggest TF-mCpG

interactions may be more frequent than currently recognized.

1.3.1 Interactions between methylated DNA and TFs identified
by high-throughput in vitro methods

Recently, several high-throughput methods that measure the effect of DNA
methylation on TF binding have been developed °>'?"*. Methyl-Spec-seq simultaneously
measures the relative affinities of hundreds to thousands of unmethylated and
methylated sequences towards TFs 2. EpiSELEX-seq is another method that quantifies
the binding free energy changes in the presence of methylation, by probing the binding
affinity of methylated and unmethylated sequences in a single reaction to compare TF
occupancy *. Both methods use electrophoretic mobility shift assay (EMSA) selection
followed by DNA sequencing. Methyl-Spec-seq has been used to probe the in vitro
methylation preferences of CTCF and ZFP57, while EpiISELEX-seq has been used to
study p53 "', Another method, which is based on systematic evolution of ligands by
exponential enrichment (SELEX), was used to carry out a systematic exploration of the
effect of methylation on TF binding preferences °. Yin et al. analysed the methylation
preferences of 519 TFs that recognize CpG-containing sequences, and found that 60%
were influenced by mCpG: for 23% of TFs, mCpG inhibited binding, while another 34%
of TFs actually preferred binding to methylated CpG-containing sequences, and 5% of
TFs showed multiple effects depending on the position of mCpG within the binding site
°. Interestingly, they found both TF families with homogeneous effects of mCpG in
binding as well as TF families with heterogeneous responses to mCpG. For example, in
the MAD and CP2 families, mCpG always had a positive effect on binding. In others,
like the RUNT and ETS families, mCpG consistently causes a decrease in binding.
Notably, the Cys2His2 zinc finger proteins (C2H2-ZFPs) had a heterogeneous

response, with some showing increased and some showing decreased binding due to
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methylation of CpGs °.

1.3.2 Invivo effects of DNA methylation in TF binding

Disentangling the effect of DNA methylation on TF binding from other factors in
vivo is experimentally demanding. As a consequence, there are few studies that have
probed in vivo methyl-CpG preferences of TFs. The following studies either account for

changes in DNA accessibility or offer supporting in vitro evidence in their analysis.

Maurano et al. found that, although the maijority of in vivo CTCF binding sites are
unaltered by DNA methylation changes, there is a subset of CTCF sites that is sensitive
to DNA methylation, with a diverse occupancy of CTCF across cell types . Importantly,
these sites showed no co-binding by other TFs, were methylated when unbound, and

were enriched for CpG sites that start at the 2™ and 12" positions 2.

Domcke et al. found that NRF1 is sensitive to methylation of its binding sites.
They studied TF binding in wild type and Dnmt1 knockout murine embryonic stem cells,
and found that NRF1 gained several thousand binding sites in the unmethylated
condition among genomic regions that were accessible in both conditions. Furthermore,
when methylation was restored in Dnmt1 knockout cells, NRF1 binding was diminished

by methylation of the binding sites ™.

In another study, Mann et al. used protein binding microarrays to evaluate the
effect of CpG methylation on B-ZIP transcription factors. They found enhanced binding
of CEBPB to DNA when CpGs in array probe sequences were methylated 2. Another in
vitro study corroborated that CpG methylation in the 6" position of the CEBPB motif
increased binding °. Furthermore, a large number of in vivo CEBPB binding sites have

been reported to be highly methylated 3*.

Finally, Cusack et al. examined occupancy of five TFs in conditions with
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contrasting DNA methylation (wild type and DNMT knockdowns) and chromatin states
(normal and treated with HDAC inhibitor) °. Pairwise comparisons of these four
conditions showed that MAX and NRF1 TFs preferentially bind to unmethylated DNA.
Importantly, this preferential binding is observed even after considering changes in DNA

accessibility due to recruitment of HDACs to methylated CpGs by MBD proteins °.

1.4 Computational methods that study TF methyl-binding

preferences

As discussed in the previous section, there are only a few cases in which the in
vivo effect of methylation on TF binding has been tested. As a result, most of our
understanding of how DNA methylation affects TF binding comes from in vitro studies,
with only a few exceptions 2%, While in principle it should be possible to use in vivo
data of TF binding, DNA methylation, and other confounding factors to fill this gap,
available computational studies for performing such analysis are limited in both scope
and methodology. Here, we will summarize the available methods for studying TF-

mCpG interactions in vivo.

One of the methods that consider DNA methylation to model TF binding is
Methylphet, which predicts TF binding using a machine-learning approach called
random forests (RF) **. For a given TF, the RF model of Methylphet incorporates the
methylation score, motif score (obtained with a known PWM), and an array of genomic
features (distance to TSS, sequence conservation, etc) in order to perform a binary
classification of any given genomic region (TF-bound vs. unbound). Methylphet uses
ChlIP-seq peaks of a TF in order to train the RF model. Xu et al. showed that Methylphet
performs better than the motif score alone, or motif score combined with other genomic
features (using CENTIPEDE) *%. However, Methylphet uses the average methylation
score over the putative TFBS as well as the average of methylation in 30bp bins around
the site; therefore it is not able to identify the specific CpG where methylation impacts

binding. Furthermore, it is not able to deconvolve the effect of methylation from
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correlated confounding variables such as DNA accessibility. Finally, it does not provide
an explicit model of how methylation affects TF binding; instead it only predicts whether

the TF binds to a specific genomic region.

Other methods have been developed as methylation-aware tools to improve de
novo motif discovery. Viner et al. and Ngo et al. describe tools that expand the ATGC
alphabet by adding symbols for methylated cytosines *°'. Specifically, Viner et al.
present an extension of MEME, a widely used de novo motif-finding algorithm, while
Ngo et al. present an algorithm called mEpigram that identifies enriched k-mers in TF
peaks and uses them to identify enriched motifs. These methods use WGBS data to
create a methylation-aware genome and use it (in addition to a normal genome) to
identify methylated motifs (m-motifs) and regular motifs. However, both approaches only
consider the sequence and methylation at the potential TFBSs, again leading to the
inability to deconvolve the effect of methylation at specific CpG sites from confounding

factors such as DNA accessibility and local (regional) methylation level.

This shortcoming is also present in MEDEMO 9, another tool for de novo motif
discovery with a similar approach to Viner et al. and Ngo et al. **°'. MEDEMO, however,
reports the largest number of predicted TF methyl-preferences than any of the previous
methods: application of MEDEMO to 335 TFs identified 32 cases where inclusion of
methylation in the model improved the prediction of TFBSs, 14 of which represented
potential new findings %. However, similar to Methylphet, MEDEMO only reports
whether considering methylation improves TFBS prediction, without delineating the
positive or negative effect of methylation. Furthermore, among the 32 TFs for which
methylation was deemed important, only one TF is known to prefer methylated DNA.
This might point to a blind spot of this method, considering that 33% of TFs exhibit
preferential binding to mCpGs in vitro °. Furthermore, the TFs with well-established in
vivo methyl-binding preferences were also missing from MEDEMO’s findings. For

example, MEDEMO was not able to find any methylation preference for CEBPB, a TF
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with well characterized affinity for methylated DNA 2.

Lastly, another relevant method is TFregulomeR, which uses a compendium of
ChiP-seq and WGBS datasets to characterize binding partners and cell-specific
bindings sites of a TF. Importantly, it allows to investigate the TF function at different
DNA methylation levels and with different co-factors. However, this method only allows
for a representation of the DNA methylation levels in different contexts (binding

partners) and does not provide a quantitative meassurement of its effect on TF binding

93

Given these shortcomings, there is still a gap in computational methods that can
delineate the direct effect of CpG methylation on TF binding in vivo, in order to perform
a systematic investigation of TF methylation preferences. This project aims to
quantitatively model the relationship between DNA methylation and DNA binding
preferences of TFs in vivo, using a model that is robust to experimental noises and
biases inherent to ChiP-seq, able to account for confounding factors that may mask the

true methylation-TF interactions, and applicable to a large number of human TFs.

1.5 Hypothesis

We hypothesize that DNA methylation is a major determinant of in vivo DNA
binding by TFs, and that we can model TF methyl-preferences using genome-wide

binding profiles of TFs.

1.6 Objectives
® To develop a method for quantitative modeling of TF binding in vivo.
® To use this method for systematic characterization of in vivo TF methylation

preferences.
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CHAPTER 2. MATERIALS AND METHODS

In order to understand the relationship between DNA methylation and TF binding,
we began by retrieving and analyzing WGBS, ChlIP-seq, and DNase-seq data from
different TFs in several cell lines (Section 2.1). We developed a method to jointly model
these data sets to predict TF-specific binding (Section 2.2), and benchmarked it on
CTCF ChIP-seq data in HEK293 cells. We expanded our CTCF studies by obtaining
differential binding sites of CTCF between different cell lines (Section 2.3), and
examined whether, using our method, we can predict differential binding that was
caused by DNA methylation changes. Finally, we applied our method to a large number
of TFs to systematically study the in vivo effect of DNA methylation on TF binding
(Section 2.4). In this chapter, | will describe the methods used to obtain the data and

perform these analyses.

2.1 Preprocessing of genomic data
211 ChlIP-seq data processing, peak calling, and peak signal

quantification

We limited our analysis to ChlP-seq experiments for TFs done in HepG2, K562,
HEK293, GM12878 and HelLa-S3 cell lines, given the availability of WGBS and DNase-
seq data for these cell lines. ChlP-seq and ChIP-exo raw reads were retrieved from four
main sources: ENCODE %, Najafabadi et al. **, Schmitges et al. *, and Imbeault et al.
%  ENCODE data were downloaded from ENCODE project website
(https://www.encodeproject.org/experiments/), while the other data were downloaded
from GEO (accession numbers GSE58341, GSE76494, and GSE78099). A total of

2677 ChlP-seq experiments were analyzed, covering 421 TFs and 5 cell lines.

Raw reads were aligned to the human reference genome (GRCh38) with bowtie2
(version 2.3.4.1) using the “very sensitive local” mode. Mapped reads with mapping
quality score smaller than 30 were removed using Samtools (version 1.9). ChlP-seq

peaks were called using MACS (version 1.4) with a permissive p-value threshold of
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0.01. We used this permissive p-value to obtain a range of TF binding signals, which
our method uses to quantitatively model TF binding strength. We also included negative
peaks, i.e. peaks obtained by swapping the treatment with the control experiments, to
enable proper modeling of the background signal. In the end, for each ChIP-seq
experiment, this process resulted in a list of peaks covering a wide range of pulldown or

control (background) signal strengths, along with their associated read counts.

21.2 WGBS data processing and DNase-seq data retrieval

Raw reads from Whole-Genome Bisulfite Sequencing (WGBS) of six cell lines were
retrieved from ENCODE and GEO (see Supplementary Table 1 for accession
numbers). Raw reads were trimmed based on their quality (phred33 >= 20) with
TrimGalore (version 0.6.4) ®. Paired reads were aligned to the human reference
genome hg38 * using bismark (bowtie2 mode, version 0.22.2), allowing one mismatch
during alignment. Reads were deduplicated by removing those that aligned to the same
genomic position (bismark:deduplicate _bismark). Methylation calls were then extracted,
ignoring the first 2 bps from the 5' end of read 2
(bismark:bismark_methylation_extractor). A genome wide coverage report with
methylated and unmethylated read counts was then generated
(bismark:coverageZ2cytosine). Finally, a bigwig file was generated for unmethylated and
methylated counts (bedGraphToBigWig) '®°.

For DNase-seq data, read depth-normalized bigwig files representing DNase-seq
signal were retrieved from ENCODE (see Supplementary Table 1 for accession

numbers).

2.2 Joint Accessibility-Methylation-Sequence (JAMS) models
2.21 Formatting and preprocessing of data for JAMS

To retrieve the sequence, DNA accessibility, and DNA methylation to train our

model we focused on the positive and negative ChlP-seq peak regions that did not fall

37



within endogenous repeat elements, since the sequence homology of repeat elements
can confound the modeling of ChIP-seq data based on sequence *. This was done by
removing peaks that overlapped any repeat regions, as defined by RepeatMasker %"

To model the effect of sequence and epigenetic factors on TF binding using our
method, it is necessary to align the peaks based on the position of the most likely TF
binding site. To do so, we used the known motif of each TF, in the form of position
frequency matrices (PFMs), to search for the most likely TFBS within the 100 bp range
of the peak summit. PFMs were obtained from CIS-BP %, and were augmented by de
novo motifs identified by RCADE2 %% for the C2H2-ZF family of TFs as described
later in Section 2.4. CISP-BP contains more than one PFMs per TF, as they are
derived from different experimental techniques. We selected PFMs exclusively derived
from in vitro experiments, in order to avoid the confounding effects present in vivo. We
prioritized, in descending order, PFMs from SELEX, Selective microfluidics-based
ligand enrichment followed by sequencing (SMiLE-seq), and Protein-Binding
Microarrays (PBM). We used AffiMx '® to identify the best motif match in each peak
sequence. This process was uniformly applied to all peaks, including the negative ChIP-

seq peak set.

Once the best motif hit in each peak was identified, we extracted the sequence
and nucleotide-resolution methylation profile at the motif hit as well as the flanking
regions (20 bp) around the motif hit. Sequences were retrieved from the reference
genome hg38 using bedtools:getfasta *'%. Methylated and unmethylated read counts

at each position were retrieved from the WGBS bigwig files using bwtool '".

Similarly, normalized DNA accessibility was extracted from the motif hit region
and 500 bp upstream and downstream of the motif hit from the DNase-seq bigwig files.
ChIP-seq read counts were extracted from the control and pull-down experiments for

the +/- 400bp region surrounding the motif match using bedtools:multicov (MAPQ score
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> 30). (Fig. 4C, bottom) '*.

2.2.2 Implementation of JAMS

Our method creates a joint accessibility-methylation-sequence model (JAMS
model) for each ChIP-seq experiment, in which the ChIP-seq signal of each peak is
explained as a function of accessibility, methylation, and sequence at that peak.
Consider the kxm matrix X, which represents the value of m predictive features at k
genomic positions (i.e. peaks). These m features include those related to accessibility
(A), methylation (M), and sequence (S):

X:[XAXMXS}

JAMS models the logarithm of TF binding strength at each of the k peaks as a

linear function of the matrix X:
logyf:X X Bf

Here, ur is the vector of the binding strength for transcription factor f across k
peaks, X is the kxm feature matrix described above, and Br is the vector of m
coefficients that describe the effect of each of the m features on the TF binding strength
(matrices are denoted with bold capital letters, and vectors with bold lower-case letters).

Similarly, the background ChIP-seq signal across the peaks is also modeled as a
function of X:

logp,=XxB,

Here, u, represents the background signal strength across k peaks, and B, is the
vector of m coefficients that describe the effect of each of the m features on the
background signal.

In a ChIP-seq experiment, the expected control (background) read counts at
each peak is simply a function of the background signal multiplied by the library size.
Therefore, the logarithm of control reads can be modeled as:

logA =logu,+s, =X x B,+s.

Here, A: is the vector of expected (average) control read counts across the k
peaks, and s; is an experiment-specific size factor that can be interpreted as the
logarithm of sequencing depth for the control library.

The expected pull-down read counts in a ChlP-seq experiment, however, are a
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function of both the background signal and the TF binding strength, multiplied by the
library size. Therefore:
logA =log p,+logp,+s =X x B, +X X B +s
Here, A, is the vector of expected pulldown read counts across the k peaks, and

Sp can be interpreted as the logarithm of sequencing depth for the pulldown library.

While these equations describe the expected control and pulldown read counts, the
actual observed read counts are probabilistic observations that may deviate from these
expected values. Here, we model the read counts as observations from negative
binomial distributions '® whose mean is given by the equations above, with a shared

dispersion parameter across the peaks:

nCZNB(AC,(p]
n,=NB(2,,0|
Here, n. and n, are the vectors of observed control and pulldown read counts
across the k peaks, respectively, and ¢ is the dispersion parameter. The equations
above allow us to jointly model the control and pulldown experiments as a function of X.
We use the glm.nb function in R for this purpose and fit a model of the form
n~XX+t+XX:t, where n is an R vector that concatenates the observed control and
pulldown read counts (with length 2k), XX is the result of duplicating matrix X, i.e.
XX=rbind(X,X), and t is a binary vector of length 2k indicating whether the observed
read count comes from the control experiment (0) or from the pulldown experiment (1).
The coefficients returned by the glm.nb function for XX correspond to B, in the
equations above, and the coefficients for XX:t correspond to B The glm.nb also returns
the standard error of mean and a p-value for each of these coefficients, which we use to
determine the statistical significance.

Constructing the matrix X: Sequence, DNA methylation and DNA accessibility

are used as the predictor variables, which are included in the matrix X. We used one-
hot encoding for the sequence over the TFBS. Methylated and unmethylated read
counts over the motif were used to calculate the methylation percentage at each

position. If the average coverage of methylation and unmethylated reads over the motif
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is less than 10 counts, the peak is removed. Average DNA accessibility was calculated
for bins of 100 bp (10 bins) plus one bin for the TFBS region itself, and then logarithm of
DNA accessibility was calculated; a pseudocount equivalent of 1% of the smallest value
was used to allow for log transformation of the data. Average methylation percentage

and sequence composition of the flanking regions were also used as predictors.

2.3 Differential binding analysis

To calculate differential TF binding between cell lines, we first identified CTCF
ChIP-seq experiments from ENCODE that had at least two biological replicates per cell
line (Supplementary Table 1), and retrieved the pull-down and control experiment
data. After aligning and peak calling (Section 2.1.1), we defined a unified list of peaks
that were present in at least one sample. Peaks that were present in more than one
sample and had summits within 100 bp of each other were merged, as they likely
represent the same CTCF binding site. Then, the best motif match within 100 bp of
each summit was identified '®. We extracted ChIP-seq read counts present within a
400bp range from the motif hit in the pull-down and control experiments and created a

count matrix.

We used the count matrix and a custom model matrix (Supplementary Table 3)
to compare count ratios (of pulldown and control reads) between pairs of cell lines. The
DESeqgDataSetFromMatrix function from DESeq2 was used to create a DESegDataSet
object (parameters: countData = count matrix and colData/design = custom matrix)
followed by fitting of a negative binomial GLM (function DESeq, parameters: full =
custom matrix, betaPrior = FALSE), and computing of log2 fold changes and p-values
%9 Significant differentially bound peaks (FDR < 0.1) were identified for every pair of
cell lines, excluding cell line pairs whose ChlP-seq experiments were done in different
laboratories. The pair of cell lines (GM12878 and HelLa-S3) with the highest number of

significantly bound peaks were selected for further analysis.
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24 Inference of PFMs for C2H2-ZF proteins using RCADE2

We inferred position frequency matrices (PFMs) for canonical C2H2 zinc finger
proteins using RCADE2 %% RCADE2 uses the protein sequence, the DNA sequence
of the ChlP-seq peaks, and a previously computed machine learning-based recognition
code to predict the DNA-binding preferences of C2H2-ZFPs. The protein sequences for
these TFs were retrieved from UNIPROT '"°. We focused on the top 500 ChIP-seq
peaks (sorted by p-value) that did not fall within endogenous repeat elements (EREs)
9191 The DNA sequence of the +/- 250 region around the peak summits for the top 500
non-ERE peaks along with the protein sequence was provided as input to RCADEZ2,

and the optimized motif was used to augment the CIS-BP motifs.
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CHAPTER 3. RESULTS

3.1 Quantitative modeling of ChlP-seq data to infer the in vivo
methyl-binding preferences of TFs
3.1.1  Modeling the joint effect of accessibility, methylation and

sequence on TF binding

Several factors work together to determine the TF binding strength, as measured
by ChIP-seq, toward a specific binding site. First, the sequence of the binding site
determines the TF affinity, given that the majority of TFs are sequence-specific.
Secondly, for most TFs, the existing level of DNA accessibility heavily influences TF
binding "%. Finally, regional methylation outside the TFBS may affect the TF binding
strength, for example by recruiting Methyl-CpG-binding domain (MBD) proteins, which
in turn recruit chromatin remodelers °. Therefore, in order to examine the specific effect
of methylation of the TFBS on TF binding affinity, we need to jointly model it together

with these confounding factors.

For this purpose, we developed Joint Accessibility-Methylation-Sequence (JAMS)
models, which quantitatively explain both the pull-down and background signal in ChIP-
seq experiments (https://github.com/csglab/JAMS). The JAMS model for each ChIP-seq

experiment considers the pull-down read density as a combination of a background
signal and a TF-specific signal. On the other hand, the read count profiles obtained from
control experiments (e.g. input DNA) purely reflect the background signal (Fig. 4A).
Each of the background and TF-specific signals, in turn, is modeled as a function of the
peak sequence, chromatin accessibility profile along the peak, and regional as well as
base-resolution methylation pattern of the peak (Fig. 4B-C). JAMS converts these
associations into a generalized linear model whose parameters can then be inferred
jointly from pull-down and control experiments, with an appropriate error model that
connects the expected (predicted) signal at each peak to the observed read counts—we

use negative binomial with a log-link function in this work (Fig. 4D).
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Figure 4: Overview of JAMS model. (A) At each

genomic region i, the JAMS

model considers the control tag count (left) or the pull-down tag count (right) as a

combination of background and/or TF-binding signals at that position. (B) Each of

these signals are then modeled as a function of accessibility (A;), methylation (M), and

sequence (S)) at each region i. (C) Schematic summary of the predictor features

extracted for each genomic location and the outcome variables. (D) The specifications

of the generalized linear model used by JAMS. (E) Comparison between the observed
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and predicted CTCF binding signal in HEK293 cells %*. (F) DNA accessibility
coefficients learned by the CTCF JAMS model; each dot corresponds to the effect of
accessibility at a 100bp-bin. (G) Sequence motif logos representing the known CTCF
binding preference (based on SELEX # (left), the TF binding specificity learned by
JAMS (middle), and the effect of sequence on the background signal (right). JAMS

11

motif logos are plotted using ggseqlLogo , with letter heights representing model

coefficients; SELEX motif logo was obtained from the CIS-BP database '*.

To fit the parameters of its model, JAMS assumes that TF binding occurs at a
fixed position and orientation in each of the provided peaks. To satisfy this assumption,
we use existing position frequency matrices (PFMs) of each TF to identify the most
likely TF binding site within each peak, and use that position as the reference for
extracting the accessibility-methylation-sequence features at, and around, the binding
site (see Method, Section 2.2 for details). Also, to ensure that JAMS can correctly learn
the features associated with both TF-specific and background signals, we include not
only the peaks that have significantly high pull-down signal, but also peaks with low pull-
down signal as well as genomic locations that have significantly high control signal (
Method, Section 2.1.1).

In order to examine the ability of JAMS models to recover the in vivo binding
preferences of TFs, we first applied it to ChIP-seq data from CTCF, a widely studied TF
that is constitutively expressed across cell lines and tissues %' and has a long
residence time on DNA . We initially focused on the cell line HEK293, and generated
a JAMS model of CTCF binding in this cell line using previously published ChIP-seq ,
WGBS ", and chromatin accessibility data * (Methods, Section 2.1.1). To evaluate
the performance of the JAMS model, we used 10-fold cross-validation, and examined
the correlation between the predicted TF-specific signal and the observed pulldown-to-
control signal ratio across the peak regions. As Fig. 4E shows, the JAMS model

predictions correlate strongly with the pulldown-to-control signal ratio (Pearson r=0.69),
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suggesting that accessibility-methylation-sequence features can quantitatively predict

the CTCF-binding strength.

Examining the coefficients of the fitted JAMS model, we observed that DNA
accessibility, especially at the peak center, has a strong effect on the TF-specific signal
(which only affects the pull-down read count), but limited effect on the background
ChIP-seq signal (which affects both the control and pull-down read counts; Fig. 4F).
Nonetheless, the effect on background signal was still statistically significant, consistent
with previously observed bias of DNA sonication toward accessible chromatin regions
e Importantly, sequence features at the TF binding site are strongly predictive of the
CTCF binding strength, while they have limited and diffuse effect on the background
signal (Fig. 4G). Furthermore, the sequence model learned by JAMS is highly
correlated with the known motif for CTCF (r=0.86, Fig. 4G), suggesting that JAMS
models can recapitulate the underlying biology of TF binding. We emphasize that while
the known CTCF motif is used initially to identify an offset for each peak and align the
peak regions, this process is not expected to confound the sequence features learned

by JAMS, since it is uniformly applied to all peaks regardless of the signal strength.
3.1.2 JAMS models reveal the contribution of CpG methylation
to TF binding

By jointly considering the contribution of accessibility, methylation and sequence
to TF binding, JAMS models should be able to deconvolve the specific effect of
methylation from the confounding effect of other variables. To begin to explore this
possibility, we examined the JAMS model of CTCF. For this purpose, in addition to
sequence motif logos, we developed “dot plot logos” to enable easier visual inspection
of JAMS coefficients that correspond to sequence and methylation effects. As Fig. 5A
shows, the JAMS model of CTCF binding in HEK293 cells suggests that CpG
methylation in the 2™ and 12" positions of the binding site has a significantly negative

effect on CTCF binding (but not on the background signal; Supplementary Fig. 1). In
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other words, while a large fraction of CTCF binding sites have CpGs at those two

positions, CTCF preferentially binds when these CpGs are not methylated.
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Figure 5: CpG methylation preference of CTCF in HEK293 cells. (A) Motif logo
and dot plot representations of the sequence/methylation preference of CTCF. The
logo (top) shows methylation coefficients as arrows, with the arrow length proportional
to the mean estimate of methylation effect. The heatmap (bottom) shows the
magnitude of the preference for each nucleotide at each position using the size of the
dots, with red and blue representing positive and negative coefficients, respectively.
The signed logarithm of P-value of the methylation coefficient is shown using the color
of the squares around the dots, with red and blue corresponding to increased or
decreased binding to methylated C, respectively (only significant methylation
coefficients at FDR<1x10~° are shown). (B) Heatmap representation of the sequence,
accessibility, and CpG methylation, for a subset of CTCF peaks that have high DNA
accessibility, a close sequence match to the initial CTCF motif, and CpGs at positions
2 and 12. Peaks are sorted by the residual of a reduced JAMS model that does not

use the methylation level of C2 and C12 for predicting the CTCF binding signal.

To ensure that this observation is not confounded by other variables such as

accessibility and the average local methylation level, we also trained a JAMS model
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with all the variables except the CpG methylation level at each binding site position; we
then compared these reduced models to the full model using a likelihood ratio test. This
analysis revealed that removing the CpG methylation levels at positions 2 or 12 of the
binding site significantly reduces the fit of the model to the observed data
(Supplementary Fig. 2). Therefore, the CpG methylation level in these positions is
informative about CTCF binding signal even after considering the effect of other
confounding variables such as sequence, accessibility, and the average methylation of
flanking regions.

The independent effect of CpG methylation on CTCF binding can also be
observed after stratification of CTCF peaks based on the confounding variables.
Specifically, we repeated the JAMS modeling after removing the variables that
represent the TF-specific contribution of methylation at positions 2 and 12, sorted the
peaks by the residual of this model (i.e. by the ChIP-seq signal that could not be
explained by the reduced model), and visualized the methylation pattern of the peaks,
limiting to the peaks that (a) had a sequence similar to the CTCF-preferred binding site,
(b) had CpGs at positions 2 and 12, and (c) had high DNA accessibility. As Fig. 5B
shows, even if we focus on the peaks with similar sequence and accessibility, the
residual of the reduced model still correlates negatively with CpG methylation at
positions 2 and 12. In other words, peaks whose signal is smaller than what the reduced
model predicts have higher CpG methylation, supporting the negative effect of CpG
methylation on CTCF binding.

Similar JAMS models can be obtained using CTCF ChlIP-seq, WGBS, and
accessibility data from several other cell lines (Supplementary Fig. 3), highlighting the
reproducibility of these results across different contexts. Importantly, our observation
that CpG methylation at positions 2 and 12 negatively affects CTCF binding is
consistent with previous reports on CTCF methylation preferences in vivo and in vitro
1288 These results overall suggest that JAMS models have the potential to faithfully

recapitulate the methylation preferences of TFs using ChIP-seq data.
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3.2 Prediction of cell type specific TF binding using JAMS models
3.21 CTCF JAMS models are transferable across cell types

A JAMS model that encodes the intrinsic binding preference of a TF should be
able to predict the ChIP-seq signal of that TF in new contexts, such as in previously
unseen cell types that were not used in model training. We began to examine this
possibility by investigating the transferability of the CTCF model that was learned in
HEK293 cells to other cell types. We used DNase-seq and WGBS data (Methods,
Section 2.1.1 and Supplementary Table 1) from six cell lines (H1, GM12878, Hela-
S3, HepG2, and K562) to predict the CTCF binding signal (using the HEK293-trained
JAMS model), and compared the predictions to experimental CTCF ChlP-seq data
obtained for each cell type (Supplementary Table 1). We observed that the CTCF
JAMS model that was trained on HEK293 data could successfully predict the ChIP-seq
pulldown-to-control ratio in other cell types, with a performance comparable to JAMS
models that were specifically trained on the data from each type (Table 1). These

results support the transferability of JAMS models across cell types.

Table 1: Pearson correlation between observed and predicted CTCF-binding
across cell types. The third column shows the r between observed and predicted
signal for JAMS models that were trained on each individual cell type. The fourth
column shows the r between the predictions of the JAMS model that was trained on
HEK293 and the observed ChlIP-seq data in other cell lines.

Cell line ChiIP-seq peaks 10-fold CV HEK293-trained r
HEK?293 135,717 0.69 -

H1 128,123 0.72 0.62

GM12878 39,535 0.69 0.54

HelLa-S3 65,865 0.72 0.60

HepG2 81,188 0.73 0.64

K562 85,122 0.74 0.68

3.2.2 Differential binding between cell lines is captured by
JAMS models

The analyses described in the previous section show that the JAMS models
learned from one cell type can be transferred to another cell type. However, a

considerable proportion of CTCF binding sites are shared across these cell types %;
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therefore, it is not immediately clear to what extent this transferability corresponds to
cell-invariant features of the JAMS model (sequence) as opposed to potentially cell
type-specific features (methylation and accessibility). In fact, one of the most
challenging aspects of modeling TF binding is the ability to identify TF binding sites that
are differentially occupied across cell types “*. To understand the extent to which
differential accessibility and methylation of DNA drives differential CTCF binding, and
the extent to which these effects can be captured by JAMS, we decided to use the
JAMS model learned from HEK293 cells to predict differential binding of CTCF in other
cell lines. We started by identification of differentially bound CTCF peaks in pairwise
comparisons of cell lines listed in Table 1. For any given two cell lines, we used the log-
fold change (logFC) in the pulldown-to-control ratio as the measure of differential
binding (Fig. 6A). The mean and standard error of mean (SEM) of this metric was
calculated using a statistical model that assumes a negative binomial distribution for the
tag counts, which also allows us to calculate a P-value for the null hypothesis that logFC

is equal to zero (see Methods, Section 2.3).

Application of this method to all pairwise cell comparisons revealed the largest
number of differentially bound CTCF peaks between GM12878 and HelLa-S3 cells (Fig.
6B); therefore, we focused on prediction of the differential peaks between these two cell
lines using the HEK293 JAMS model of CTCF. Specifically, we used the JAMS model to
predict the CTCF binding signal in each of the GM12878 and HelLa-S3 cell lines (based
on the accessibility and methylation data of each cell line), and then calculated the
logFC of the JAMS predictions between the two cells. As shown in Fig. 6C, the JAMS-
predicted changes in CTCF binding are strongly correlated with the experimental logFC
values (r=0.40 across peaks with logFC SEM<1.28; see Supplementary Fig. 4 for
details on the choice of SEM cutoff). These results suggest that the CTCF JAMS model
can quantitatively predict the change in CTCF binding strength based on differential
accessibility and methylation. Importantly, for the set of peaks that pass the statistical

significance threshold for differential binding between the two cell lines (FDR<0.1), the
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correlation between JAMS predictions and experimental logFC reaches as high as 0.84
(Fig. 6C), with JAMS being able to distinguish GM12878-specific from HelLa-S3-specific

binding events with 95% accuracy.
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Figure 6: Prediction of differentially bound CTCF peaks using JAMS. (A)
Schematic representation of identifying differentially bound peaks based on the
combination of pulldown and control signal in two cell lines. See Methods for details.
(B) Volcano plot showing differential binding of ChiP-seq peaks between GM12878
and HelLa-S3. Significant peaks at FDR < 0.1 are shown in red. (C) Left: Scatter plot
of JAMS-predicted changes in CTCF binding and observed differential binding
between GM12878 and HelLa-S3 cells. Peaks with observed logFC SEM <1.3 are
included. Right: Limited to peaks that pass FDR<0.1 for differential binding of CTCF.
(D) Comparison of the accessibility of putative CTCF peaks between two cell lines.
The diagonal band in the middle (blue) shows the region that was selected as no-
change in accessibility (difference in accessibility < 0.2). (E) Predicting differential
CTCF binding for peaks with no change in accessibility. Peaks were ranked by

accessibility, and the correlation between predicted and observed logFC of CTCF
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binding was calculated for sliding windows of 500 peaks (bottom). The average

accessibility for each sliding window is shown on top.

We note that many of the CTCF binding sites are differentially accessible
between GM12878 and HelLa-S3 (Fig. 6D). The above analysis cannot rule out the
possibility that differential accessibility is responsible for the differential CTCF binding
between these two cell lines. To specifically examine the role of differential methylation
in driving cell type-specific CTCF binding, we further limited our analysis to the set of
peaks that had similar accessibility in both cell lines (Fig. 6D), and also removed all the
JAMS predictor variables corresponding to accessibility. We observed that this reduced
JAMS model can still predict differential CTCF binding among the peaks that are not
differentially accessible (r=0.14 between predicted and observed logFC across n=2232
peaks; Fig. 6E). This correlation increases to 0.22 for the set of peaks that have high
accessibility in both cell lines (Fig. 6E), suggesting that the effect of CpG methylation is
most noticeable when the putative CTCF binding site is accessible.

Overall, these analyses suggest that JAMS models can accurately predict
differential TF binding across cell types, including differential TF binding events that are
driven by differential methylation of the putative binding sites. The ability of JAMS
models to predict cell type-specific TF binding events further highlight their reliability in
capturing the biochemical determinants of TF binding using ChlP-seq data.

3.3 JAMS models reveal the landscape of TF methyl-binding

preferences
3.3.1 A high-confidence compendium of JAMS models for 260

TFs

A recent large-scale in vitro study has revealed that methyl-binding preferences
are heterogeneous across TFs, and vary even within TF families °. While this in vitro
study provided a first global picture of TF methyl-preferences, it is not clear to what
extent its conclusions can be extended to in vivo TF function. However, establishing the
relationship between TF binding and CpG methylation in vivo is experimentally taxing

and time consuming *'%™. Therefore, we decided to apply JAMS to a comprehensive

52



compendium of ChlP-seq data in order to identify TFs whose in vivo binding is positively

or negatively affected by methylation of CpGs at their binding sites.

We collected and uniformly processed data from 2368 ChIP-seq and ChIP-exo
experiments %9 covering the in vivo binding profiles of 260 TFs in six cell lines, along
with the WGBS and DNase-seq assays in those cell lines (see Supplementary Table
1 for accession numbers). On average, we identified ~60k peaks per ChiIP-seq
experiment using the permissive P-value threshold of 0.01 (Fig. 7A). We then used the
peak tag counts to fit a JAMS model to each ChlP-seq experiment. We noticed that the
quality of the JAMS models, measured by the Pearson correlation between the
predicted and observed TF-specific signal, varied substantially across the experiments,
with correlations ranging from 0 to 0.8 (median 0.48, Fig. 7B). This variation may reflect
a multitude of factors, including the ChlP-seq data quality as well as the extent to which
the TF signal can be explained by our model specifications. We therefore decided to
keep only a subset of high-confidence models. Specifically, we selected at most one
representative model per TF based on the following criteria: (i) the model should have
used at least 10,000 peaks for training, (ii) Pearson correlation >0.2 between the
predicted and observed TF-specific signal after cross-validation, (iii) Pearson correlation
>0.3 between the known and JAMS-inferred sequence motif, (iv) and low contribution of
the sequence to the background signal compared to the TF-specific signal (control-to-
pulldown ratio of the sequence coefficients mean < 0.4). As an example, in Fig. 7C we
show two JAMS models for BHE40, obtained from two different ChlP-seq experiments,
only one of which passes all the criteria mentioned above. Overall, we obtained high-

confidence JAMS models for 260 TFs, spanning a range of TF families (Fig. 7D).
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Figure 7: Systematic application of JAMS. (A) Left: Violin plot showing the
distribution of Pearson correlation between the observed and predicted TF binding
signal. Right: Distribution of the number of peaks used to create JAMS models. The
violin plots represent a total of 2368 ChIP-seq experiments that were analyzed by
JAMS. (B) Known BHE40 motif obtained from the CIS-BP database, shown as an
example 2. (C) Results from a high-quality (top) and a low-quality (bottom) JAMS
model for BHE40. Inferred sequence coefficients for TF binding (left) and background
(middle), as well as the predicted vs. observed TF binding signal (right) are shown.
(D) Pie charts of the main TF families (left) and C2H2 ZF proteins subfamilies (right)
for TFs with at least one high-quality JAMS model. (E) Pie chart of the methyl-binding
preferences of TFs with at least one high quality JAMS model. We obtained high-
quality models for a total of 260 TFs.
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3.3.2 Systematic inference of the in vivo TF methyl-binding

preferences

After selecting one JAMS model per TF, we used the JAMS-inferred effects of
methylation to classify the TFs according to their inferred methyl-binding preferences.
We use a notation similar to Yin et al. °. Specifically, we classified a TF as (a)
MethylMinus if its JAMS model included at least one significantly negative mCpG effect
(FDR<1x107°), (b) MethylPlus if the model included at least one significantly positive
mCpG effect, (c) mixed-effect if the model included both significantly positive and
negative mCpG effects, (d) and no-effect if the motif included a CpG but its methylation
level did not have a significant effect. Overall, we found 117 MethylMinus TFs, 16
MethylPlus TFs, four mixed-effect TFs, and 67 TFs with no significant mCpG effects; we
also identified a set of 56 TFs without a CpG site in their binding site (Fig. 7E).

To understand whether our JAMS-based classification captures known methyl-
binding preferences of TFs, we started by examining a few TFs whose methyl-binding
preferences have been extensively studied in vitro and in vivo, including CEBPB and
NRF1. Using protein-binding microarrays (PBMs), Mann et al. have previously reported
enhanced binding of CEBPB to its CpG-containing target sequence when the array
probes were methylated 2. Consistent with this observation, a large number of the
genomic binding sites of CEBPB is highly methylated in vivo *. The JAMS model for
CEBPB (Fig. 8, top) is concordant with these previous reports, showing that CpG
methylation at the 6th position of CEBPB target sequence has a positive effect on its
binding strength (Fig. 8C). This effect is in fact highly reproducible, and is present in
three out of four JAMS models that we obtained using different CEBPB ChIP-seq

experiments.

Another well studied TF is NRF1, which has been found to be sensitive to CpG

methylation of DNase-I-hypersensitive sites in murine stem cells '°. Moreover, Cusack
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et al. found that NRF1 preferentially binds to unmethylated DNA even after accounting
for changes in DNA accessibility caused by the recruitment of HDACs to methylated
CpGs by MBD proteins °. Consistent with these reports, we found that CpG methylation
of the 3™ and 9" positions of the NFR1 target sequence has a negative effect on its

binding (Fig 8G); these effects were consistent across all the cell lines we analyzed.
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Figure 8: Examples of known TF methyl-binding preferences that were
also captured by JAMS. Panels A-D correspond to CEBPB, a known methyl-plus
TF. Panels E-H correspond to NRF1, a known TF whose binding is inhibited by
methylation. (A) Known motif for CEBPB. (B) Scatter plot of JAMS-predicted vs.
observed TF binding signal for CEBPB. (C) Motif logo and dot plot representations of
the sequence/methylation preference of CEBPB as inferred by JAMS (see Figure 5

for how these representations should be interpreted). (D) Heatmap representation of
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the sequence, accessibility, and CpG methylation, for a subset of CEBPB peaks that
have high DNA accessibility. Peaks are sorted by the residual of a reduced JAMS
model that does not use the methylation level for predicting the TF binding signal. (E-
H) Similar to panels A-D, but for NFR1.

The above examples suggest that JAMS models are consistent with previously
reported methylation preferences of TFs. However, there are only a handful of TFs
whose methylation preferences have been validated in vivo. Therefore, to systematically
evaluate our JAMS-based classification of TFs, we compared our inferred methyl-
binding preferences with those obtained from methylation-sensitive SELEX (bisulfite-
SELEX) by Yin et al. °. Overall, 76 out of the 260 TFs that we studied here were also
included in the Yin et al. study (Table 2). These included 44 TFs that we classified as
MethylMinus based on in vivo data; 29 of these TFs (~66%) were also identified as
MethylMinus by bisulfite-SELEX, and another 7 TFs (16%) were identified as mixed-
effect. This suggests that our approach has ~82% precision for identification of TFs that
are negatively affected by CpG methylation in at least one position in their target
sequence. On the other hand, out of 39 MethylMinus TFs found by bisulfite-SELEX, 31
were also classified as either MethylMinus or mixed-effect by JAMS, suggesting that

~79% of in vitro-observed MethylMinus effects can be captured using in vivo data.

Table 2: Contingency table of TF classifications by JAMS (rows) and bisulfite-SELEX °

(columns).
bisulfite-SELEX
MethylMinus |MethylPlus| MixedEffects | Little effect| Not studied
JAMS
MethylMinus 29 4 7 4 73
MethylPlus 1 4 0 0 11
MixedEffects 2 1 0 0 1
NoCpG 0 0 0 0 56
NoEffect 7 11 4 2 43
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Similarly, out of five JAMS-based MethylPlus TFs that were also studied by Yin
et al., four were classified as MethylPlus based on SELEX, suggesting a precision of
~80% °. However, despite this high precision, analysis of in vivo data appears to have
low sensitivity in detecting MethyPlus events, with only 5 out of 20 SELEX-based
MethylPlus TFs being identified as either MethylPlus or mixed-effect by JAMS (~25%
sensitivity). This observation might reflect the difficulty of modeling MethylPlus effects
using in vivo data. Nonetheless, we found 11 MethylPlus TFs that were previously
unclassified—this is in addition to 73 previously unclassified MethylMinus and one novel
mixed-effect TF, highlighting the utility of JAMS models in revealing novel TF methyl
preferences (Table 2). For example, we show a novel TF methyl preferences for ZKSC1
(Fig. 9). The TF-specific logos for all the MethylPlus and MixedEffects inferred by JAMS

are shown in Supplementary figure 6.
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Figure 9: Example of a novel TF methyl-binding preference found by
JAMS. (A) Known motif for ZKSC1, a C2H2 zinc finger transcription factor (motif
inferred by RCADE2 '%1%) (B) Scatter Plot of JAMS-predicted vs. observed TF
binding signal. (C) Motif logo and dot plot representations of the sequence/methylation
preference, as inferred by JAMS. (D) Heatmap representation of the sequence,
accessibility, and CpG methylation, for a subset of TF peaks that have high DNA
accessibility. Peaks are sorted by the residual of a reduced JAMS model that does not
use the methylation level on position 2 for predicting the TF binding signal. Note the

high level of methylation at position 2 among the peaks that have an excess binding
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signal that cannot be explained by this reduced model.

Fig. 10 shows the distribution of different methyl-preferences across main TF
families. We noticed that a disproportionately large number of MethylPlus TFs appears
to belong to the C2H2-ZF family (also shown in Table 3). Specifically, among KRAB-ZF
TFs whose binding is significantly affected by methylation, ~24% preferentially bind to
methylated CpGs, compared to only ~12% of non-KRAB TFs (Fisher's exact test
P<0.009, Supplementary Table 2). This is an intriguing observation, given that a
majority of KRAB-ZF proteins evolved to specifically bind and repress transposable
elements, which largely reside in highly methylated genomic regions '". Our
observation suggests that many of these proteins preferentially bind to methylated
instances of their target sequence, potentially allowing them to distinguish the
transposable elements from other genomic regions that contain their preferred binding
sequence. In fact, ~56% of all MethylPlus TFs that we identified are KRAB-ZF proteins,
suggesting that recognition of methylated transposable elements might have been a

primary force in the evolution of methyl-binding TFs.

Overall, our results demonstrate that the methylation preferences of TFs can be
reliably inferred from their in vivo binding profiles, and provide a comprehensive

resource for classification of TF methyl-preferences.
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Figure 10: Methylation preferences per TF family. Stacked bar plots
showing the distribution of TF methylation preferences inferred with JAMS, grouped
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Table 3: TFs with MethylPlus and MixedEffects methyl-binding preferences, as

inferred by JAMS using in vivo data. For MixedEffect TFs, both the position at which

a positive methylation effect was observed as well as the position with a negative

methylation effect are indicated.

TF name
(Uniprot entry
name)

ZN793_HUMAN
ZKSC1_HUMAN

CEBPB_HUMA
N

ZN141_HUMAN
ZN320 HUMAN
ZN605_HUMAN
COT2_HUMAN
ZN479_HUMAN
SP1_HUMAN
ZN490 HUMAN
ZN506_HUMAN
ZN417_HUMAN
USF1_HUMAN
USF2_HUMAN
TCF7_HUMAN
KAISO_HUMAN
TFAP4_HUMAN
NFYB_HUMAN
SCRT1_HUMAN

CEBPG_HUMA
N

Gene
name
(HGNC
symbol)

ZNF793

ZKSCA
N1

CEBPB

ZNF141
ZNF320
ZNF605
NR2F2
ZNF479
SP1
ZNF490
ZNF506
ZNF417
USF1
USF2
TCF7
ZBTB33
TFAP4
NFYB
SCRT1

CEBPG

Family

C2H2 ZF (KRAB)

C2H2 ZF
(KRAB+SCAN)

bZIP

C2H2 ZF (KRAB)
C2H2 ZF (KRAB)
C2H2 ZF (KRAB)
Nuclear receptor
C2H2 ZF (KRAB)
C2H2 ZF
C2H2 ZF (KRAB)
C2H2 ZF (KRAB)
C2H2 ZF (KRAB)
bHLH
bHLH
HMG/Sox
C2H2 ZF (BTB)
bHLH
NFYB/HAP3
C2H2 ZF

bZIP

JAMS
classification

MethylPlus
MethylPlus

MethylPlus

MethylPlus
MethylPlus
MethylPlus
MethylPlus
MethylPlus
MixedEffects
MethylPlus
MethylPlus
MethylPlus
MixedEffects
MixedEffects
MethylPlus
MethylPlus
MethylPlus
MixedEffects
MethylPlus

MethylPlus

Effect of
methylation
by position

Positive Negative|

7

2

6

17
17
15
58
11

5 8

7

5

16

7 5

7 5

2
57

7

9 13

3

6

Classification
by Yin et al.,
(2017)

MethylPlus

MethylPlus

MethylMinus

MethylMinus

MethylMinus
MethylPlus

MethylPlus
MethylPlus
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CHAPTER 4. DISCUSSION

In this study, we built Joint Accessibility-Methylation-Sequence (JAMS) models to
capture the relationship between TF binding and DNA methylation in vivo. This method
models TF binding as a function of DNA accessibility, sequence and methylation at and
around TF binding sites, while separating the background from TF-specific signals. We
started by applying this method to CTCF, which revealed that CpG methylation at the
2" and 12" positions of the CTCF motif is associated with decreased TF binding. This
methylation sensitivity is reproduced in multiple cell lines, can be observed even among
highly accessible genomic regions, and can explain differential CTCF binding between

different cell lines.

As mentioned in the previous chapter, methylation-sensitivity of CTCF has been
previously reported . An intriguing observation in this regard was made by Zuo et al.,
who used a high-throughput in vitro method to quantify the effect of CpG methylation on
CTCF binding: they found a substantial negative effect of the CpG methylation at the 2
position of the motif ', which is also one of the CpG sites we identified. However, we
also identified a second CpG site at the 12th position whose methylation reduces CTCF
binding, which was not reported by Zuo et al. . Using a likelihood ratio test we showed
that the observed effect of methylation at this position cannot be simply explained by its
correlation with the first CpG site (Supplementary Fig. 2), suggesting that we may

have identified a novel CpG methylation effect.

One possible explanation as to why the methylation effect at position 12™ could
not be observed in vitro is that it may reflect the direct competition between CTCF and
MBD proteins, with the latter not included in the in vitro assay. While JAMS is able to
capture the effect of changes in DNA accessibility that result from chromatin
remodelling factors recruited by MBD proteins, it currently does not model the direct
competition of TFs and MBD proteins. This undetected direct competition between MBD
proteins and TFs for the binding sites could affect the interpretation of our model

parameters: methylation coefficients obtained by JAMS models should be more
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accurately interpreted as the affinity of a TF toward mCpG sites relative to the affinity of
MDB proteins.

Accordingly, a positive methylation coefficient means that the TF binds more
strongly to the mCpG than MDB proteins do, therefore outcompeting them. This
interpretation may in fact explain why a large number of in vitro-detected MethylPlus
TFs ° could not be identified by JAMS: even though these TFs can bind to mCpGs in
vitro, competition with MDB proteins might attenuate this effect in vivo. On the other
hand, a negative JAMS methylation coefficient could mean that the MDB proteins
outcompete the TF in vivo, or that the TF simply does not bind to mCpGs even without
considering the effect of MBDs. Since the majority of MethylMinus TFs that we identified
match in vitro observations °, the latter scenario is likely more prevalent, with most
negative coefficients reflecting the TF preference for unmethylated CpG even without
considering competition with MBDs. We would like to note the possibility of directly
deconvolving these scenarios (i.e. intrinsic preference for unmethylated CpGs vs.
competition with MBDs) by including the MBD protein occupancy profiles as additional

variables in future versions of the JAMS model.

Another aspect of JAMS models is that it can explain differential TF binding that
is associated with changes in DNA methylation, even after controlling for differences in
DNA accessibility and sequence. Specifically, we showed that while the large majority of
CTCF binding sites are constant across cell types, there are a limited set of methylation-
sensitive sites that are highly variable across cell types # that can be explained based
on our JAMS model of CTCF binding. It is relevant to mention that modelling, and
predicting, cell type-specific TF binding is a challenging task and an actively researched
problem “*—Our results support the notion that using CpG methylation data in these

methods is an important consideration in order to improve TF binding modelling.

One potential limitation of inference of methyl-preferences of TFs from in vivo
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data, e.g. using our JAMS models, is that it is difficult to establish the direction of
causality: while it is likely that the observed associations reflect the effect of methylation
on TF binding, it could also be that they reflect the effect of TF binding on the DNA
methylation level "*®. However, TFs that influence DNA methylation most often have an
effect on the local neighborhood of their binding sites, which often spans tens of
nucleotides "*'?'. JAMS takes into account the neighboring levels of methylation, and
tries to identify the site-specific methylation effects within the motif that cannot be
explained by (or are independent of) the flanking methylation levels. Furthermore, most
known associations between DNA methylation and TF binding entail DNA methylation
effect on TF binding rather than the reverse direction ™; this viewpoint is also supported
by high-throughput in vitro studies, in which binding site methylation levels are
established before measuring TF binding *'>'. We note that the majority of our
MethylMinus and MethylPlus findings (>80%) match in vitro observations when
available °; therefore, it is likely that we are observing the effect that CpG methylation

has on TF binding, rather than the effect of TF on CpG methylation

Our results represent, to our knowledge, the largest resource for exploring the in
vivo effect of methylation on TF binding: only a handful of studies have previously
investigated methylation preferences of a limited number of TFs in vivo while accounting
for changes in DNA accessibility. Our results match what has been reported in these
studies, e.g. for NRF1, MAX, CEBPB, and KAISO 231%87 byt also reveals a substantial
number of novel TFs that are affected by CpG methylation Of particular interest, our
study revealed a significant number of MethylPlus TFs consistent with in vitro studies °,
in stark contrast to previous methods that have attempted to infer the effect of DNA

methylation on TF binding #4992,

Finally, we found that a large proportion of the TFs that we identified as
MethylPlus belonged to the C2H2-ZF family. C2H2-ZF proteins recognize DNA with an

array of zinc fingers (ZFs) %, with each ZF three or four nucleotides using its base-
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contacting residues '* (

the base-contacting residues occupy specific positions in the ZF
domain '#*). Identifying the methylation preferences of C2H2-ZF proteins opens the
possibility of associating the identity of base-contacting residues to mCpG binding: with
a sufficiently large number of methyl-binding ZFs, we could potentially infer a “grammar”
of mCpG binding recognition, similar to previous studies that have identified the
grammar that connects the identity of base-contacting residues to that of the

nucleotides bound by each zinc finger.
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

Our study presents, to our knowledge, the first method that quantitatively models
the strength of TF-binding as well as background signal using ChlP-seq data, with the
goal of deconvolving the effects of sequence, DNA accessibility, and CpG methylation
on TF-DNA interactions. We showed that this method captures intra-motif methylation
effects, explains differential TF binding between cell lines driven by changes in
methylation, and produces TF binding models that are largely consistent with in vitro
data as well as existing literature. By systematically applying this method to a
compendium of 2368 ChIP-seq experiments, we were able to obtain high-confidence
models for 260 TFs, representing the largest resource for exploring in vivo TF
methylation preferences to date.

Future work could focus on using JAMS to understand the processes in which
epigenetic changes affects TF binding, especially in conditions where epigenetic
remodelling is widespread and frequent, as it is the case in cancer and cellular
differentiation. Furthermore, we could associate mCpG recognition, infered by JAMS, to
TF features, namely the structure and residue sequence of their DNA binding domains.
The C2H2-ZF family is of special interest as they bind to DNA in a modular manner.
Finally, albeit our results match current literature, we could improve our method by
integrating other relevant genomic features, for example MBD protein profiles.

JAMS is available as a GitHub repository (https://github.com/csglab/JAMS) that

includes the computational tools described here as well as the comprehensive dataset

of TF methyl-preferences that we have inferred.
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Supplementary Figure 1: Background coefficients for CTCF in HEK293
cells. (A) Motif logo and dot plot representations of the sequence/methylation
preference of the TF-specific (A) and background (B) signals. The logo (top) shows
methylation coefficients as arrows, with the arrow length proportional to the mean
estimate of methylation effect. The heatmap (bottom) shows the magnitude of the
preference for each nucleotide at each position using the size of the dots, with red and
blue representing positive and negative coefficients, respectively. The signed
logarithm of P-value of the methylation coefficient is shown using the color of the
squares around the dots, with red and blue corresponding to increased or decreased
binding to methylated C, respectively (only significant methylation coefficients at
FDR<1%x10-5 are shown).
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Supplementary Figure 2: Likelihood ratio test per position to identify
CTCF binding site positions with significant methylation effects. For each
position of the binding site, a reduced model was trained, each exclusing methylation
of that position from the predictive variables. Then, each of these reduced models
were compared to the whole CTCF JAMS model using a likelihood ratio test (LRT).
The p-values obtained from the LRT are shown as the color of the squares. The effect
sizes for the bases and methylation are obtained from the full CTCF JAMS model.
Significant LRT p-values indicate that removing the methylation of the corresponding

position from the model reduces the goodness of fit.
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Supplementary Figure 3: JAMS coefficients for CTCF across different cell
lines. Motif logs and dot plot representations follow the same format as described in
Fig. 5. TF-specific and background model coefficients are shown side-by-side for
each of the six cell lines (GM12878, HepG2, H1, HeLa-S3, and K562).
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Supplementary Figure 4: Calculating LFC threshold. (A) Pearson
correlation between the predicted and observed change in CTCF binding, after
filtering the CTCF peaks based on different cutoffs for standard errors of the LFC of
pull-down/control ratio. An optimal threshold is observed at LFC SE = 1.28. (B) To
discard the possibility of overfitting of the threshold, different optimal thresholds were
calculated using a 10-fold cross-validation approach. The LFC SE threshold obtained
by using all peaks is similar to the threshold obtained with cross-validation and leads

to a similar correlation between the predicted and observed change in CTCF binding.
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Supplementary figure 5: MethylChIP results by TF families. Violin plots
showing the Pearson correlation between observed and predicted pull-down tag
density (left) and number of peaks used to train the GLM (right), shown separately for
each TF families (A) and C2H2-ZF subfamilies (B). The red dots represent the median.
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Supplementary figure 6: TF-specific motif logos for MethylPlus and
MixedEffects TFs identified by JAMS. Motif logo and dot plot representations follow

the same formatting as Fig. 5.
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Supplementary tables

Supplementary Table 1: GEO and ENCODE FASTQ identification numbers per cell
lines for the data that were used to train JAMS CTCF models

Cell
line

HEK29
3

H1

GM128
78

Hel a-
S3

K562

HepG2

CTCF ChIP-seq

GSM2026781

ENCFFOOOON
R
ENCFFO00OOF

ENCFFOO0ARP
ENCFFOOOARV

ENCFFOOOBAS
ENCFFOOOBAT

ENCFFOOOPYD
ENCFFOO0OPYJ

ENCFFOOOPHE
ENCFFOOOPHG

Input ChiP-seq

Pull-down
and Input
ChlP-seq lab
source

HEK293 input H Hughes lab,

ughes_7

ENCFFO0000SS
ENCFFO00OSP

ENCFF621LOE
ENCFF904LCW

ENCFFOOOBAO
ENCFFOOOBAU

ENCFFOO00QFI
ENCFFO00QFJ

ENCFFO00POU
ENCFFO00POV

Toronto

Richard
Myers, HAIB

Bradley
Bernstein,
Broad

Bradley
Bernstein,
Broad

Richard
Myers, HAIB

Richard
Myers, HAIB

WGBS

GSM1254259

ENCFF677BSB
ENCFF800KIP
ENCFF311PSV
ENCFF335TUD

ENCFF585BXF,
ENCFF851HAT
ENCFF798RSS
ENCFF113KRQ

ENCFF953ELH
ENCFF718LOZ
ENCFF751KHK
ENCFF192ITK

ENCFF413KHN
ENCFF567DAl

ENCFF336KJH

ENCFF585HYM

ENCFF406GDR
ENCFF508BUS
ENCFF706BRZ
ENCFF220NMH

DNase-seq

ENCFF148BGE

ENCFF131HMO

ENCFF743ULW

ENCFF256QQH

ENCFF413AHU

ENCFF577SOF
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Supplementary Table 2: TFs with high quality JAMS model, stratified by methyl-

binding preference.

JAMS-inferred methyl preference TFs in the ZF-KRAB family Total TFs

No effect of CpG methylation or no CpG 48 123
MethylPlus 9 16
MethylMinus 28 117

MixedEffects 0 4

Supplementary Table 3: Model matrix used to compare count ratios with DESeq2.

(Intercept) sample 2 sample_3 sample 4 read_type cell line 1

cell_line_2_replicate_1.pulldown 1 0 0 0 0 0
cell_line_2_replicate_2.pulldown 1 1 0 0 0 0
cell_line_1_replicate_1.pulldown 1 0 1 0 0 0
cell_line_1_replicate_2.pulldown 1 0 0 1 0 0
cell_line_2_replicate_1.control 1 0 0 0 1 0
cell_line_2_replicate_2.control 1 1 0 0 1 0
cell_line_1_replicate_1.control 1 0 1 0 1 1
cell_line_1_replicate_2.control 1 0 0 1 1 1
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“Work(s)') Copyright Clearance Center, Ine. ["CCC"hgrants licenses through the Service on behalf of the
rightsholder identied o the @ der @nr el i an { the "RgMshol de ). Roubl | dliat, @ ued haein, gnerally
means the inclusion of a Work, In whale of In part, in a new work or works, alsa as deseribed on the Ordes
Conrra tin e, wod foren mans te mreon o @ity kig ueh rpubl ictin

N

The terms set forth in the relevant Order Conrra tim, md a terrs =t by the Rdt shol dbr w th respect to a
particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the person
transacting for a republication license on behal? of the User represents and warrants that he/shefit {a) has been
duly authorizad by the User to accept. and hereby does accept. all sush terms and conditions on behalf of User
and (B} shall inform User of all such terms and conditions. In ths event such person is a "freslancsr” or other third
party independent of User and CCC, such party shall be deemed jaintly a "User” for purposes of these term s and
conditions. In any event. User shall be deemed to have accapted and agreed to all such tarms and conditions If
User republishes the Wark in any fashion.

@

Scope of License; Limitations and Obligations.
3t
All Works and all rights therein. including copyright rights, remain the sole and exclusive property of the
Rightsholder. Tha license created by the sxchangs of an Order Conrm tim (md! @ ay ive w) ad
payment by User of the full amount set forth on that docum ent Includes only thase rights expressly set
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forth in the Order Conrm Lim md in these ters @d andilos. Mo @nveys o o ker AgiLs in the
Work(s) to User. All rights not expressly granted are hereby reserved

3.2. General Payment Terms: You may pay by credit card or through an account with us payable at the end of
the month. If you and we agres that you may establish a standing account with GGG, then the following
terms apply: Remit Paym ent to: Gopyright Clearance Center, 28118 Netwark Place, Chicago, IL 60673-1291
Payments Due: Invaices are payable upon their delivery Lo you (or upon our notice to you that they are
avallable te you for downloading). After 30 days, outstanding amounts will be subject ta a service charge of
9-1/2% per month or, if less, the maxim um rate allawed by applicable law. Unless otherwise spacical Iy st
forth in the Order Conrra tim o inampard e witter mreems nt smed ty ©C, ivol s @o die ad
payable on "net 30" terms. While User may exercise the rights licensed immedately upon issuancs of the
Order Conrm tion, the limnse isait are el ly rvoked ad Isullad ol d @ il ld ever men
issued, if com plete payment for the license is Not raceived on a i ely basis either fram User girectly or
through a payment agent, such as a credit card company.

. Unless otherwise provided in the Order Conrm Lion, @y gant d idils lo Wer ()is"me-lim " Groluling
the editions and produst family specied In the li@nse}, {)Is n- exclisive ad mn- transfereol eand (1))
is subject to any and all limitations and restrictions (such as, but not limited Lo, limilations on duration of
use or circulation}included in the Order Conrra t i @ ivel ® mdi o intese tam ad ondi tos
Upan completion of the licensed use, User shall either secure a new permission for further use of the
Work(s) or immediately cease any new use of the Work(s) and shall render inaccessibla (such as by
deleting or by removing or severing links o other locators) any further copies of the Work (except for
copies printed on paper in accordance with (his license and still in User's stock ai the end of such periad).

3.4. In the event that the material for which a republication license is sought Includes third party materlals
(such as photographs, lilustrations, graphs, inserts and similar materials) which ere identied in ach
material as having been used by issicn, User is responsible for identifying, and seoking separate
ligenses {under this Service or otherwise) for, any of such third party materials; without a separate license,
such third party malerials may not be used

3.5. Use of proper copyright notice for a Work is required as a condition of any license granted undar the
Service. Unless otherwise provided in the Order Conrra tim, apoper mpyrigt mtie Il g
substantially as follows: "Republished with permission of [Rightsholder's name], from [Work's title, author,
volume, edition number and year of copyright]: permission conveyed through Copyright Clearance Center.
Inc. " Such notice must be provided in a reasanably legible font size and must be placed either
imm ediately acjacent to the Work as used (for exam ple, as part of a by-line or footnole but not as a
separate electronic link) or in the place where substantially all other credits or notices for the new work
cantaining the republished Work are located. Failure Lo include the required notice results in loss to ihe
Rightsholder and CCC, and the User shall be liable ta pay liquidated damages for each such failure equal
to twice the use fee specied inthe ® der @nre i g1 inadiitintothe ue feitdl ad ay ohe fas
and charges specied

3. User may only make alterations to the Work if and as expressly set forth in the Order Conrra o N
Work may be used in any way that is defam atory, violates the rights of third parties (including such third
parties rights of copyright, privacy, publicity, or other tangible or intangible praperty], or s otherwise
illegal, sexually explicit or obscene. In addition, User may not conjoin a Work with any other material that
may result in damage to the reputation of (he Rightsholder. User agrees to inform CCC 1 it becomes aware
of any infringement of any rights in a Work and to cooperate with any reasonable request of CCC or the
Rightsholdar in connection therewith

4. Indemnity. User hereby indemnies @d areos 1o df mé the Rl chol &r ad ©C, md thei 1 respectie
employees ang directors, against all claims, liability, damages, costs and expenses, including legal fees and
expenses, arising out of any use of a Work boyond (he scope of the rights granted hersin, or any use of a Work
which has been altered in any unautharized way by User, including claim s of defamation or infringem ent of rights
of copyright, publicity, privacy or other tangible or intangible property
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REUSE CONTENT DETAILS

Title, description or Figurs 1. A continuum of  Title of the Chromatin accessibility
numeric reference of the  acosssibilty states broadly  article/chapter the and the regulatory
portian(s) rescistre danintio d  portion is from epigenome.

chromatin dynamlcs Author of portion(s) Greenleat, Wiliam

acrassthe genome Kiemm, Sandy L; Shipony,
Editor of portionts) Gresnieat, William J Zonar

e Sandy L SHPenY - publication date of 2019:04-01

ohar portion
Volume of serial or 20
monograph
Page or page range of 208208
portion
RIGHTSHOLDER TERM S AND CONDITIONS

If you ara placing a request on behalf offfor a corporate organization, please use RightsLink. For furthar information visit
-nature.com/rep -requests.himl and

nitps i springer wmrgumgmwerm|ssmns/ummmg permissions/B62. If the content you are requesting 1o reuse is

under a CC-BY 4.0 licence (or previous version), you de not need 1o seek permission from Springer Nature for this reuse

as1ong as you provide appropriote credit to the original o

CCC Terms and Conditions

1. Description of Service: Dened Errs . hi s Roubl iation liense mabl e te Wer to ¢l d n lienses fr
republication of one or more capyrighted works as described in detall on the relevant Order Conrra tien (te
“Work(s)"). Copyright Clearance Centar, Inc. ("GCC") grants licensas through {he Service on behalf of the
rightsholder identied m the @ der @nrmet i o (the "Rak skl da ™). Rpubl i @i of, & umd haein, gnerally
means the inclusion of a Work. in whole or in parl.in a new werk or works, also as described on the Order
Conrma tim, "eer”, & wed feren mans te @reon @ @tily m ki ach republ ictim

2. The terms set fortn in the relevant Order Conrra tiol, md my ta s i ly te RGUsol G W ih espect © a
particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the person
transacting for a republication license on bahalf of the User represents and warrants that he/she/it (a) has been
duly authorized by {he Ussr to accept, and hereby does accept, all such terms and conditions on behalf of User.
and {b) shall inform User of all such terms and conditions. In the event such person is a *freelancer” or other 1l
party independent of User and COC, such party shall be deemed jointly a "User” for purposes of these terms and
conditions. In any event, User shall be deemed ta havs accepted and agreed te all such terms and conditions if
User republishes the Work in any fashion

3. Scope of License: Limitations and Obligations.

3.1. All Works and all rights therein, including capyright rights, remain the sole and exclusive property of the
Rightsholder. The license created by the exchange of an Order Conrma tim (md/a ay invoi @) and
payment by User of the full amount sel forth on that document includes only those rights expressly set
forth in the Order Conrma tim md intrese tems ad ondi tims, ad ©nveys m dler fightsintre
Work(s)to User. Allrights not expressly granted are hereby reserved.

General Payment Terms: You may pay by credit card or through an account with us payable at the end of
the month. If you and we agree that you may establish @ stending account with CCC, then the following
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terms apply: Rem it Payment 1o° Copyright Clearance Center. 29118 Network Place, Chicago. IL 60673-1291
Payments Due: Invoices are payable upon their delivery to you (or upon our notice 1o you that thay are
avallable 1o you for downlaading). After 30 days, outstanding amounts will be subject o a service charge of
1-1/2% per month or, If less, the maximum rate allowed by applicable law. Unless otherwise specical Iy st
farth in the Groer Conrma Lim o inapara e w iten greene nt Sgied by ©C. iNoi ®s ae we @0
payable on “net 30" terms. While User may exercise the rights licensed imm ediately upon issuance of the,
Order Gonr ra tio, the liense isait ama tial by revoked ad isnliad wid @ if ithd rever teen
issued, if com plete payment for the license is not received on & timely basis eitner from User directly or
through a payment agent, such as a credit card com pany.

3.3. Unless otherwise provided in the Order Conrra tim, @y gant d nfitsto Ger (i)isme-tim * ficldi g
the editions end product family specied in the liense) , (i} is mn- sl sie md on- rnsla ol e md (i)
is subject to any and all limitations and restrictions (such as, but not limited to, limitations on duration of
uBe O circulation] included in the Order Conr @ tio1 & V0l ® @d/ o in teso lars aid ©ndi o,
Upan completion of tne licensad use, User shall aither secure a new permission for furiher use of the
Wark(s) or imm ediately coase any new use of the Work(s)and shall render inaccessible (such as by
aeleting or by removing or severing links or other locators) any furtner copies of the Work fexcep! for
<copies printed on paper in accordance with this license 2nd still in User's stock at the end of such period)

34, In the event that the material for which a republication license is sougnt includes third party materials
(such as phetographs, illustrations, graphs, inserts 21d sim ilar materials) wich are identied in wich
material as having been used by permission, Ussr isresponsible for identifying, and seeking separate
licen ses (under this Service or otherwise) for, any of such third party materials; withou! a seperate license,
such third party materials may not be used.

355 Use of praper copyright notice for a Work Is required as a condition of any license granted under the
Service. Unless otherwise provided in the Order Gonr ra Lo, apoer @pyridit wotie w il ead
substantially as follows: "Republisned with permission of [Rightsholder's name], from [Work's title, author,
volume. edition num ber and year of copyright]; permission conveyed through Copyright Claarance Genter,
Inc.* Such notice must be provided in a reasonably legible font size and m ust be placed sither
immediately adjacent to the Work as used (for example, as part of a by-ine or footnote but net asa
aenme-e elactranic link} o in the place where substantially all other aredits of notices for the new work

ining the republished Work ars located, Failurs 1o include the required notics results in loss to the
Hgmsnn\nor and GOC. and the User shall be liable to pay liquidated damages for sach such fallure equal

10 twice the use fee specied Inthe @ cer @nrmet [ inadiitiontotle us fe itsif au ary ohe fas

and eharges specied

3.6, User may only make alterations to the Work if and as expressly set forth in the Order Conr ra tio. 1
‘Work may be used in any way that is defam atory, viclates the rights of third parties (including such third
parties’ rights of copyright, privacy. publicity, or other tangible or intangible property). or is otherwise
illegal. sexually explicit or obscene. In addition, User may not conjoin a Work with any other material that
mey resull in damage to the reputation of the Rightsholder. User agrees to inform CCGIf it becomes aware
«of any infringement of any rights in a Work and lo cooperale with any reasonable request of CCC ar the
Rghtsholder in connection therewith.

. indemnity. User hereby indemnies ad rees to dfed te Rdit sl &r ad ©C, ad trei rrespsctie
employees and directors, against all claims, liability, dam ages. costs and expenses. including legal fees and
expenses, arising out of any use of a Work beyond the scope of the rights granted herein, or any use of a Work
which has been altered In any unauthorlzed way by User, including dlaims of defamation or Infringem ent of rights
of copyright. publicily. privacy or other tangible or intangible property

® Limitation of Liability UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIV TATION DAM AGES FOR LOSS OF
BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING DUT OF THE USE OR INABILITY
TG USE A WORK, EVEN |F ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event
the total liability of the Rigntsholder and CCG (including their respective em ployees and directors) shall not exceed
ht. 195-feb8... 35
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5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT,
INDIRECT. CONSEQUENTIAL OR INCIDEN TAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF
BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY
TO USE A WORK, EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any sven
the total liability of the Rightsholder and GGG (indluding their respective em ployees and directors) shall not exceed
the total amount actually paid by User for this license User assumes full liability for the actions and omissions of its
principals, employees, agents, al ides, accessors md ®al s

6. Lim ited Warranties. THE WORKIS) AND RIGHT(S) ARE PROVIDED "AS IS". CCC HAS THE RIGHT TO GRANT TO USER
THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL
OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS
OROTHER FORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER;
USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL
RIGHTS TO GRANT.

7. Eect & Boach My fluety Wer tomy @ aw unt wen die, o @y wo by Wer d aWrk byond te ope
of the licanse set forth In the Order Conrna tio md/ o these terns md ondiins, sal Il arm terid beach &
the license croated by the Order Conrm 1101 @¢ Upse lare @d ondi Gors, My beach mt ara whin D
days of written notice thereof shall result in immediate termination of such license without further notice. Any
unautnorized (but licensable) use of a Work that is terminated immediately upon notice thereof may be liquidated
by payment of the Rigntsholder's ordinary license price therefor; any unauthorized (and unlicensable) use that is.
not terminated immediately for any reason (including, for xam ple, because m aterials containing the Work cannot
reasonably be recalled) will be subject 10 all rem edies available at law or in equily, But in no event to a payment of
less than three times the Rightsholder's ardinary license price for the most clossly analogaus licensable use plus
Rightshalder's and/or CCC's costs and expenses Incurred in collecting such payment

8. Miscellaneous.

8.1. User acknowledges that CCC may, from time to time, make changes or additions 1o the Service or to these
terms and canditions, and CCC reserves the right Lo send nolice 1o the User by electronic mail or
otherwise for the purposes of metifying User of such changes or additions; pravided that any such changes
or additions shall not apply to permissions already secured and paid for

8.2. Use of User-related information collested through the Servics is gaverned by CCC's privasy policy, available
online ight re-ul Pl -polioy

8.3. The licensing transaction described in the Order Conrra tim is@rsonal to Wer. herelae Wer my
not assign or transfer 10 any other person (whether a natural person or an organization of any kind) the
license created by the Order Conrma ticn ad Uese s ad odi tois o @y ngts gant el
nereunder; provices, however, that User may assign such licanse in its entirety on written notice to CCCin
the event of a transfer of all or substantially all of User's rignts in the new material which includes the
Work(s)licensed under this Service.

8.4. No amendment or waiver of any Lerms is binding unlass set forth in writing and signed by the parties. The
Rigntshelder and COC hereby object to any terms contained in any writing prepared by the User or it
principals, employees, agents or al ides ad prportig o gvern o dferw = rd s to the liensing
transaction described in the Order Conrma tio, Wi tom e inmy Wy iconsismt W th y tams
set forth in the Crder Conrm tim md/ o in these tams =d @nditims o ©C sdadard meraimg
procedures, whetner such writing is prepared prior te, simultaneousty with or subsequent 1o the Order
Conrm tio, @d wetler sch w g Ppears o awpy d e ©der BNrmat o or ina s@ar ate
instrument

s
The licansing lransaclion described in the Order Conrra tim doums nt dal b gvermed by ad
canstrued under the law of the State of New York, USA, without regard to the principles thereof of conl d's

95573a-9c 61-139¢f .
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of law_ Any case. cantroversy. sult, action. or proceeding arlsing out of. in connection with, or relsted to
such licensing transaction shall be brouaht, at CCC's sole giscretion, in any federal o state court located in
the County of New York, State of New York, USA, or in any federal or state court whoss geographical
jurisdiction covers the location of the Rightsholder set forth in the Order Conr ra tio e mrtis
exprossly submil (o the personal jurisdiction and venue of each such federal or state court.If you have any
comments or questions about the Service or Gapyright Clearancs Genter, pleass contact us at 978-750-
8400 or send an e-mail {0 support@copyright com

t /6c95573a-0c87-421b-829c-52137da2f35 el bebf-9ea5-483d-9161-139¢f. .
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9b-a0€0-2:
the total amount actually paid by User for this license, User assumes full liability for the actions and omissions of its
principals, employees, agents, al id es, siccessors ad msi s

6. Limited Warranties. THE WORK(S) AND RIGHT(S} ARE PROVIDED "AS |S". CCC HAS THE RIGHT TO GRANT TC USER
THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL
OTHER WARRAN TIES RELATING TO THE WORK(S) AND RIGH 1(S), EITHER EXPRESS OR IMPLIED, INCLUDING
W/ITHOUT LIM ITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
ADDITIONAL RIGHTS M AY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS
OR OTHER PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER;
USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL
RIGHTS TO GRANT.

7 Eeol d Beach. Ay falwe by Mer to my ay amunt wen die, 0 my e iy Wer d aWrk tsyond the mope
of the license sat forth in the Order Gonr a tim md/ o these tars md @ndifims. dal Ite am taid beach d
the license oreated by the Order Conrra tion ad these lams ad wndiims. Ay besch ot ared wtin @
days of written notice thereof shall resull in imm ediate termination of sush license without further notice. Any
unauthorized (bul licensable) use of a Work that is lerm inated imm ediately upen notice thereof may be liquidated
by payment of the Rightshalder's ordinary license price therefor; any unauthorized (and unlicensable) use that is
ot tarm inated immediately for any reasen (Including, for example, bacause matarlals containing the Work cannot

bs be subject 1o all d lable at law or in equily, but in no event to a payment of
less than tnree times the Rightsholder's ordinary license price for the most closely analogous licensable use plus
Rightsholder's and/or CCC's costs and expenses incurred in collecting such payment

8, Miscellaneous

8.1, User acknowledges that CCCmay, frem time to time, m ake changes or additions to the Sarvice of to these.
terms and condilions, and CCC reserves the right to send notice Lo the User by electronic mail or
othorwise for the purposes of notifying User of such changes or additions; providad that any such changes
or additions shall not apply to parmissions already secured and paid for

8.2. Use of User-related information collected through the Service is governed by GEG's privacy policy, available
online here-hitps://marketplace copyright comirs-ui-web/mp/privacy-policy

8.3. Tna licensing transactien deseribed in the Order Conrra tim is @rsonal to Wer. herdfae Wer my
not assign er transfer to any other person (whether a natural person or an organization ef any kind} the
license created by the Order Conr ma Lin @d tese tes ad onditios o @y g s gant el
hareunder; provided, howaver, that User may essign such license in its entirety on written notice to CCCin
the svent of a transfer of all or substantially all of User's rignts in the new material which includes the
Work(s) licensed under this Service.

8.4. No amendment or waiver of any terms is binding unless set forth in writing and signed by the parties. The
Rightsholder and CEC hereby abject to any 1erms contained in any wriling prepared by the User of its
principals, employees. agents oral ide @d mrporting o vern o dlerw @ @ de lo e liensig
transaction described in the Order Conrra Lic, i tars ae in@y W@y imonsige! % ih ay e
setforth in the Order Conrra tim ad/ e intrese terns od @ndi s o ©C sgandard geraing
procedures, whether such writing is preparad prior to, sim ultaneously with or subsequent Lo the Orcar
Conrra tim, @d Wwether ach witim Ppears o ampy d the ©der Gnrme ionor ina sgarate
instrument

© e icansing transaction deseribed in the Ordar Conr ra 1 abcuro nt sl |te @verned by md
construed under the law of the State of New York. USA, without regard to the principles thereof of coni ds
of law. Any case, controversy, suit, action, or proceeding arising out of, in connection with, or related to
sueh licensing transaation shall be brought. at GCC's sole disoretion. in any federal or state court localed in
the County of New York, State of New York, USA, or in any federal or state court whose geographical
jurisdiction Govers tha losation of the Rightsholder sal forth in the Order Conr e tior, he farlim
expressly submit 1o the personal jurlsdiction and venue of each such federal or state court If you have any
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comments or questions about the Service or Copyright Clearance Center, please contact us at 978-750-
8400 or send an e-m i to suppPOrt@sopyright com
via
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