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SUMMARY

The formation of positronium by the process of electron capture
by positrons passing through hydrogen has been studied theoretically.
For formation in the ground state, the cross section has a maximum
value equal to 4.9 times the area of the hydrogen atom, when the
incoming positron has about the same velocity as the bound electron
in hydrogen. Above this velocity, the cross section falls off rapidly,
going asymptotically as v~/z ,

Various approximations have been made in analogous problems,

including some work on helium.
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Historical Introduction

In 1951, M. Deutsch (2) was able to show that a group of positrons,
injected in a gas, did not all behave the same way before annihilation;
that different decay periods were observed, and that some of these
periods did not vary if the pressure in the gas was allowed to change.'
This phenomenon was explained by assuming another phase in the positron
history: its existence in a bound state with an electron, just before
annihilation. The system escapes the influence of the surroundings and
ean undergo annihilation with its mean life essentially independent of
ambiant pressure.

This system has been called positronium, and it is very similar
to the hydrogen atom. Its reduced mass is one half that of hydrogen,
and its Bohr radius twice as large. If we introduce this new Bohr
radius in the quantum mechanical expression for the wave function and
energy levels of an hydrogen atom, we get the proper equivalent term

for positronium, that is:

_I(J‘Q
LLM m = - ‘Q 0, @ M+ M
b= = § () m} Lres @) Yin(o,0)

Q = Ag/hLao




The ionisation potential is 6.8 ev., or half of the hydrogen
value.

Depending on whether the spins are parallel or anti-parallel
in the atom, it is called ortho-positronium or para-positronium.

The first one has a mean life of~10~~ sec., and decays in three gamma
rays, while the second lives~10~"° sec., where only two gamma rays are
emitted.

When positrons are sent into a gas, a certain fraction of them
end up bouﬁd with an electron in a positronium atom.

The process is a complex one involving several steps. If the
positron has a relatively high velocity initially, it will lose
energy in the usual manner by ionization and excitation of the gas
atoms. As its velocity falls into the region of atomic electron
velocities, it will perhaps capture an electron to form positronium.
This neutral atom will make further collisions, losing energy, and
perhaps the electron will be stripped off. The positron continues
losing energy and capturing and losing electrons, until it reaches a
velocity at which it is energetically impossible to lose or capture
an electron. A certain fraction of positrons reaching this energy
will be bound in positronium atoms. The rest will be free. The
fraction forming positronium can be estimated by relatively crude
arguments (see Deutsch (2) ).

The aim of the present work was to find out the cross-section

of different gases for the initial electron capture process. No
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attempt was made to evaluate the complex pfocess which leads to a
certain number of positrons eventually existing in the gas as
positronium atoms of very low energies.

Atomic hydrogen was the first gas considered. The cross-
section was evaluated completely in the Born approximation. Some
approximations were obtained for the capture cross-section in

helium, but the complete calculation was too involved.




Pogitrons in Atomié Hydrogen

The process of electron capture and positronium formation will
be studied by means of a Born approximation. The cross-section for

capture into a given final state then appears as follows:

- ()& |3

where py =2Mm is the final reduced mass of the system, (assuming

the proton is infinitely heavy relative to the positron and electron),

(v /rve) is the ratio of fimal and initial velocity,
and I is the perturbation matrix element:
<R3 R R
L,:j& Wi (=) V(R,2) & ke \.vw(m)abwﬁ_l?

V (2, R) is the interaction Hamiltonian.

Figure I shows the system of coordinates used in the calculation.

/
e-» oM, cr&?n.
Figure I

Before the éollision, the electron is bound around the proton,

and the incoming positron feels an interaction potential:

from the H atom.




The wave function describing the initial state is:

Wo(r) = ! e Yo

Nnas?

- =

for an hydrogen atom in its ground state., The term Qf'o s in the
matrix element, represents the relative motion of the two systems
involved; if we neglect the polarisation created in the atom by the
incident positroﬁ.

\Rol =(7_/w E)‘/’-

o

)b\'l.
(E is the initial energy of the positron relative to the
hydrogen atom).

For ground state capture, the final wave function is

W= o= e
J I‘\Zzao)‘
LR
for the positronium atom. The factor & describes the motion

of the positronium atom relative to the proton. The final wave
number is

— Vi
IR¢) <%§;;‘2Ei) 2

(the mass now being 2m).
Because the collision is a rearrangement collision, the inter-

action is different in the final state:

Vp= &t et
R 2

However, as is shown in Appendix A of Jackson and Schiff (3), the




perturbation matrix element I, 1is the same, whether one employs \/.

or Vi

Conservation of energy requirements are that:
\?oz-hzz \ f2ak}
= e

For convenience, we introduce the new variables:

and use £ and JZ' as independent variables, instead of =

and R . Then, the matrix element becomes:

-(.E‘;' AB‘/Z

T = je_" Wyea) [, —Ee T Valw iy

So far, the spins of the electron and positron have been
ignored. In the final state, the bound system of electron and
positron»can be in either a'triplet or a singlet spin state. Since
the interaction is not dependent on spins, the two spin states will
be popﬁlated according to their statistical weights. Thus, of thé
total number of atoms formed, three-fourths will be ortho-
positronium atoms (triplet spin state), and the remaining fourth,
para-positronium atoms (singlet spin state).

We first determine the ground stéte capture cross-section,

using an approximation introduced by Brinkman and Kramers (1).




This approximation considers only the electron-positron interaction
in evaluating the matrix element, (neglecting nucleus-positron inter-
action). The details of the calculation are similar to those given

in Appendix A of Jackson and Schiff (3). This matrix element called

Tex 18 Texk= — {3 pezaz |
E3 A7

where A T—,_g._(z_d:/Ej"m@l

E = k'ai = Initial energy of positron in units of 13.6 ev.

© = scattering angle.

The differential cross~-section is:
\
AdTek = 4ar (2~ '/e) oo 1
When integrating over angles, we get the total cross-section:

Toe = s (P5- Q&%) P=(re=(2-yg)?)™
14k 1=

Q = (/-5 —Cz—,/E)'h_)—)

The graphs in the four following pages illustrate the thepry.

Figure II represents the total cross-section in the B.K. |
approximation. As expected, it has a threshold at a value of posi-
tron energy equal to the difference between the hydrogen atom and
the positronium atom ground state energies, i.e. 6.8 ev. The

cross-section peaks quite sharply around 12-13 ev., and then falls
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off rapidly as the sixth power of energy.

It should be emphasized that this result is for atomic hydrogen
gas. For Hz gas, molecular effects will change curve in the low
energy region.

Figures III and IV the differential cross-sections for different
energies.

The angular distribution is seen to be essentially independent
of angle for energies close to threshold. It becomes more and more
peaked in the forward direction as E increases.

To afford a better study of this effect, we define as
"anisotropy" the "Ratio of actual cross-section at ©° over cross-
section at 0° if the same total number of emitted particles was
emitted isotropically", that is:

2/ (ow
T A Jg%se

For our case, this is shown in Figure V. Thus, one can see
whether he is justified in considering only the cross-section at
small angles in a particular calculation.

The capture cross—-section was then evaluated, taking into
account the nucleus-positron interaction in the matrix element,
according to a method developed by Jackson and Schiff (3).

The following Fourier transform is used,

| = / oLh ,a,ar&ch (/z.--n.):,

|Z-%] 27

and the nucleus-positron part of the matrix element reads:
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T= y/z22* (dik ' !
3 aOS' h?. EE_ ﬁ)L_Pa:z] 2 L(E~E')L+<ZW)~Z]Z

To evaluate this, we use the Feynman Integral:
(aady? = (' ex(1=x) dee
o [asc+Ah(1-=)]"
o = o [(B-RY'=+ar]
b= (€-R)+aay]

with

R P b=t —x/s

% = EZ/Z -+ & () —a¢)
and Bz = & — (2a0)™"
from conservation of energy.

We now use the formumla

dR = Wz{ 2 + 3/+
R(R—2 R p)” e Bl P
| where we put
= LK =7/
(d:) /*’2) = ax®+4bx +c a = -—E/a," iq = L:_/aoe
(2‘ _.DC) < . = Va’z

With these substitutions, and after integration over "x" of

integrals of the form ~ 7 e
(a2 b 4)™

we get the needed matrix element.
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The complete matrix element, (summing both terms), is now:

4 a4 H K

Tr = {2 [1eca’ i
A3 A2 A

E3

8§ = $(os-2/8) +(2/e —2)

H = ‘0@—24/(%5)

K = —=6& + 3(5EH5E412) b+E)®
b =(2/7E) ty(VEL)
A= )5 —(2=V)* e b,
de = az(z-e)" Q% + 26H +(H2+28K) +2HK + K2
AL —_— At AS AY AP A
W3 yer = - g 0-4# K3(P*=Qq¥) +&H(Pi-q4) -\%-,(Hz-#z.,s/()(p?_Q‘s)
2 E
Mac

+z H K (P~ q?) +2}<=('p—a)§

Pe 15— (21 nt]”

Q = £ 15+ (2-YE)" mé)}"
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The graphs on the four following pages illustrate the
behaviour of these cross-sections, and their comparison with the
Brinkman-Kramer results.

In Figure VI, the shape of theUs curve appears to be very
similar to the previous one, but the numerical values are about
ten times smaller. This implies that the repulsion of the posi-
tron greatly decreases the probability of positronium formation.

Figure VII is the ratio of the two cross-sections Vuex /(3 .
As E—» <o the ratio approaches a limiting value of about 1.57.
This means that the two parts of the interaction are always
effective, and should be retained in any calculation.

This importance of both terms can also be brought in evidence

if we look at the matrix element appearance at high energy.

9 goes to —2 H—wo K — #o
2
and A0y _ [Fal 4 o0 - 6co
ada ] e At AH Az

E——boo

The first term in r.h.s. is identical with dU®yx .

aQ
Grouping the two last terms, we have
JT — 2.44X/70% _ J.24x10°
naaz 'EL-, Eé
E o

where again the first term is the B.K. term (E —=~ ).
In Figures VIII and IX, the I differential cross-section

shows a remarkable difference from the B.K. one. First of all,
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Figure VII
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Figure VIII
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Figure IX
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it vanishes at a certain angle. This can be attributed to inter-
ference between the two parts of the matrix element. In the high
energy iimit, there is a root at 6=25%3' (& 1is the scattering
angle). At lower energies, it is hard to determine the roots
exactly, as we deal with a 6™ order equation iné.

Figure VIII represents an attempt at doing it graphically for
E =1, Quite a number of points were taken, and there is a gap in
the curve, at an angle higher than in the previous case.

By the same effect, the differential cross-section at high
angles is in the méan mich more important than in the B.K. case.

A small table will illustrate that:

Tz dm):%l-(rwqaﬂ E = We%aqod
B K +30 HXxio™
3 2 10"

Unfortunately, because of the actual definition of the
"anisotropy", this is not visible in the corresponding figure,
which appears as a dotted line in Figure V.

Before leaving the ground state capture problem, we mention
a proposal of Schiff (6) that good results can be obtained by
using a screened potential for the incident ion-electron interaction
in order to include at least partially the effect of the incident
ion-nucleus interaction in a B.K. type of calculation, and so

avoid the more complex computations involved when the complete
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interaction is used. Schiff has applied this idea to the capture
of electrons by protons in hydrogen. His result is in moderate
agreement with that obtained by the use of the complete interaction.

To test Schiff's idea further, the corresponding calculation
was made for positrons in hydrogen. The details are presented in
Appendix I and Figure XIII, There is no agreement between the re-~
sults using the screened potential and those employing the complete
interaction, the cross~section differing by a factor of 2 or 3 in

the region of interest.

Captures into excited states

The possibility of formation of positronium in z+ and 2p
excited states from hydrogen ground state was then investigated.

The final wave functions involved here are:

’(X_} 24 = | (Z—/L/Zda) &—“/J/do
I0YFR a,%h
—tfbla,
/\h ep=_r& /" coo &
16 m(aa)3ﬁ-

where the subscripts on V are the guantum numbers w and A .
-2
The degenerate energy level is E&::/dLﬂo and conservation of
3
energy requirements are that RZ —JE;L =*/3a,°
2

The calculation proceeds in the same manner as for formation in

the ground state. Only the end results will be stated here.




The Jgx  matrix element is considered first:
Tnken = —*f7as .
————E3 A3 JE A*
Tekrzp = —A& na. [ c mé]
2. EY PAS
A = /8 = (2—F \/Zcooé——
P (g5
Jek 20 = L {_/_( @5-p3)__1 (&4-pe) « 1 (g*
I7 e = 24E Yy§?
(\)\BK?, = | / Q6~]D‘ —_ /(Qq-—[)'—‘)
S
a4, E 45E
P= g 1§+ (2-2)°_ 37~
| “vE JE

«- |

)5 = (2%~

1

“HE
3F

3}"’

_p#)}
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As expected, the threshold is somewhat higher, namely at
E = 0.875. The two curves have the usual shape (Figure X), with

Oz~ slightly higher than Q',_P .

It is of interest to note that one can express Uy« 2 P in

function of (U gx2e  bY:

Uhkeoe = _I_ L@élpﬂ — Uekzp
T7ak 5E¢ Mnas

and further that for E — > the total cross—section for the
degenerate levels is:
Cekz = (TBch—i-U_BKzP) = —51— UBk\

This is a special case of the general result tha.t%;(n,_—_,'_g QObx)
n

for B — .

The equivalent ¥ calculation in 2+ case involves a matrix

element of the form

Y= ZLZSdE{ ‘ %}(? ! T ! N
nes ) & LIB-0%ar])) ([E-Ry+@a)?  Fadfc-kypa)

e Lat (0.3/%2)—‘: /LS lxz(l—x)o‘x
. e Y_a:x. + %(/-.r)]s
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& Loo S’zﬂdh_ =;71§é 43
Jo (B2 Ren 4p)* Plp-)™ pAp-ey ¥

~ g/H + 15

732(71‘_’0,)5‘/2_ ﬂa(ﬂo—wz)?/z
=8 = _2 (e +<24«-)‘j

(2-x)
(ﬂb —Q%) = ax’+ b +c a. = —Ejat
G b=t o= (a)”
The expressions for Ts , A03/dn , TF are too

complicated to be written here, but they are of the same form
as in the ground state case.

For E =1 the total cross-section gives

g3
faF — 934

The ratio (Jzxz.4 is about o©.¢g4 atthis value of
O-B)\’Va

ener, whereas the ]
nergy, Tnfos, 1 oz

Massey and Mohr (4) give a graph of this cross—section,
which they evaluated by a spherical harmonic expansion method,
According to the graph, their value for E=1 seems to be about
five times smaller than that quoted here. No reason has been

found for this disagreement.
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Formation of Positronium in Helium

The next purpose was to obtain some results in experimentally
available gases. Molecular hydrogen soon revealed itself an
extremely complicated case, because of the number of particles
involved (5). The helium atom case was hardly easier, (4 particles
involved). The trouble in this cése is more in the interminable
length of the calculation than in the mathematics itself. General
formulae and some approximations are given in the following pages.

Figure XI shows the new sets of coordinates:

F-«-% I
The matrix element for the Born approximation is now:
— - 4 RgeR Rt —
1= (o 7;\{.(.(Jl+l,}2+z) V(R,}Z+z,)2ﬂ)€. ‘Qfa(]?b)},,JOQRGlM&II;

The initial interaction potential'is:

V, =/28£% — &t —LZ>
R JZ-»_ S

A variational principle as given in Schiff (5) will give us

the approximate wave function for the helium atom:
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-—@(J?, -3-127.)

—EVO :83 &—da GZ: 2'75 E =.@;-:42.
nas* o

If we consider for the final state an ionized atom in its

ground state: _ — R4y
W = Woem Ho) xWpoo =202 & = x £ 25
’5' ( P vT-;‘aa‘/Z \/Wraag 1

Conservation of energy requirements are that:

RE—RE =2 /a0
2

We use again variables B and £ and A ji,,JS;
instead of Ti.JZ+:,JZ+z;

The presence of two electrons multiplies the cross-section
by a factor of two. The positronium systems are distributed in
spins, according to the following remarks:

The initial spin of the system is one half, as only the
positron contributes to it., Since spin is conserved throughout
the collision, the final spin must be one half. Thus, the posi-
tronium spin ( S=¢ or! ) must combine with the remaining helium
electron ( S='/2) to give a resultant total spin of one half.

In writing down the final spin wave function, one has to be careful
in order as to conserve the symmetry property under exchange of
the two electrons in the helium atom. When this is done properly,
one finds that the triplet factor is 1.5, the singlet one 0.5,

The sum is two, as expected. The cross-section presented below
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is that for a single helium electron.

The matrix element appears as

) —~ R4t '/__.&_ZJZL
L= L Calr LF =4 )[Z as
S%( ¥n ad A \/ na}

2 2% -—_’_Q_Z__——-— R /:-E")Z)
|72 — T )R::—E%—le \)*?.H\]MO( '

_a = -
E@B/ﬂafe_ Z?'(J?"”Z") A A A
We now separate T in two parts.

where |, contains the positron nucleus interaction
(analogous to I3 )
T,Q,, the positron-stolen electron interaction
(analogous toT k)
1. the positron-left electron interaction.
We shall treat each of them separately.

T4 = - A4 774l

X_\ ' __.__4? ] \ P_—R
2!

: - £ —-0-35 — é 225

=3 [M e Q-3 M—=Nce b +C 5

I

M =
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o

Ogx = J 703 Xl0> §(8_~3+) +40m Sy —Lna-)
T4, E

&

-+

(-57) o) ()

3> = /+ 0 525
B Ax

Axr = [he=x (?——%Léi)y?‘@@e-ﬂéé‘]

For T,

To = Hine? SolF ‘ . !
7as ) R* [(a-k)z+(z@)~j [(B-R+aE)* ]

The calculations are similar to the 15 case in hydrogen,

except that

a.x +/?>(I.—Dc) = A-2 h—;g + R + ex
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/S = g /« \ = —A-—-F—éic'—
3/ P =L
</aq¥-/\~)z) = ax*+hx +c R = = L= vee]
VS (s P
(2-x) ‘ /L -0 {_E+3]
For 1 - ‘"a(a”)
T = —6.3¢% (AR : \
=y R ICC"?) +(2_a¢,)'_] [_( B-kY _%9, -‘ \zz+(z+r3 ]

The convenient formula here is

z./?’zcz>"‘| =/ ':x(l-:-t)é!d: lA%Cl"'a)
g 265 i Y_axa. —\-/Q:*a(l-—x)-t—cc.—g)] ¢

o

The rest of the integration in these two cases presents no

analytical difficulties, but involves extremely long calculation.
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Integration of functions of the type

S 2" o X = axttbx+c
(B+ex)™ X

are troublesome because they lead to arcsin of complicated functions

of /A . Because of the fact that A contains in itself the angle
between incident and ejected particles, the integration of the total
cross-section after squaring of the matrix element would be analytically

extremely involved, and probably possible only numerically,

In the limit of large E some simplifying approximations are
possible. We can expand the factor (A+éx Y"  in inverse powers of A

which is proportional to E:

(A-H—;x)‘n’ = A'n'<|- nex A + )

To examine the magnitude of the terms, we inspect the ratio of
the minimum value of A for a given energy, and the maximum value

of exX S & =o0.595

For &> 50 Ale =~ o5 F

e

Below this value of E, we cannot neglect <x
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Keeping the first term in the expansion, we obtain

Ta = /5)x10°enal

E 3 go 5~ (2- 2%)'/2@:6_0 35)§

Another method of approximation deals with the original form of
the matrix element before the introduction of the Feynman integrals.

If E>1, 3>1,Z > the integrand is large only at certain
regions in the YR  space, namely when B~ R , & ~R

Therefore we may write approximately:

Ya =~

+ or
e’ LB-O e 5 3+ /)] cg_a-c)uz%gyS [ Ga]®
provided that the regions where the integrals come from do not over-
lap. This condition is seen to be fulfilled if ®& >>/J- &

When integrateci, this limitating value of T« is seen to agree
exactly with the result given above, so that the two schemes of
approximation are equivalent.

We now use the second method of approximation in Yec and see
that it falls off with energy as Ed* whe.rea.s To.and T& go like

E~>. At high energies, we can therefore neglect it.

It is probable that Ic is small at all energies, since it

represents the interaction of the positron with the electron that is

left behind., The principal effect of this interaction would be to

weaken somewhat the positron-nucleus interattion, i.e. 1. would tend
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to cerncel so e pert OfYa, .

Tsing the asymptotic forms of La and Iv, neziect-
ing T , we fird tust the totel crcss-section for E—~>®
is Gr/nak — 2. /5 x1o* [E*

when tie c<quivaicnt

()\Bf\/na,‘-—y H.bz xlo"/,‘__: ¢

cCoth arvear to we lerger t.sn the equliva.ent

vdrasen cross-sectlions:
Terte) = /134 ; UM = /o
T8k (H) - q3 (HD
A few nunericel calculations were then cearried out
at ©=2.4, .y taking into zccount Yo ané T, , the
differertial cross-sectior in forward d.rection (&=

was found to oe Cj_@x/&\ﬂ— = 2.6%F A0

The rati
TR A ek /doy = 6

A rough numericali integration to teke gccount of-X<
gives a T ot
dy2

difrering of the OLQ\I/CL-D— by about 13:.

2.35 Ae

The ratic d_G‘BK/d_LTToT now climos up to 7.5.
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..Q:L appears also for comparison
Nag <

- In the top of the graph, UM with E on a log, scals.
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APPENDIX I:

Use of an Averaged Potential as the Perturbation

An attempt was made to include the nucleus-positron interaction
in some sort of approximate manner in a B.K. type calculation: we
replace the usual (sum of two terms) perturbation potential obtained
by averaging the proton charge distribution around the electron in the

H atom.

Instead of »2_7/-'2 - =® Sz

W:\’a(zzj A/ZT = V(J}_')

| ==~

we replace QVR 496— *&lj Worr)

We call Halg Via) — e%/p

I

—_ 2

= o Jamp (22 ()]

The matrix element is then:

I = zy‘znaaz[__l___}[ l s ! ]
E— 2 3 2 2 de —
(e %(ma)) (e>+25 )" ((_2—:-5;})

“as

a= \:2:4 —E{
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and the total cross-section

Om =4 125 (Q*S3-PRY) +s55 (@3s*— P3RY)
=é

77401 QE - ZES
43 (B’S-PR) —31_ (@3-P?)
Jz E* SHE?
—+31) (Q?‘—DZ) — 31 (Q=-P) +31_ LnQR
216 E® bHIE 3583 sPb

Q= //M—+/‘/ P = ’//M'/V\R-’ /M—/V*O
S = I/M+A/+0
M= Ls r= (=)

O=¢/E

At present, it is_not clear where this type of approximation
fits into the consistent theory of collision processes., In particular,
it is uncertain whether J 4 offers any improvement over the straight
forward calculation.
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ERRATA

In page li, first ecuatlon, read: .

-%LLT(GZ;L - 2!7*1) "—L‘ Yf\i

In page 19, third equation, read:

To=— \03____}_\__&;9_ \g/\/{ Nceeab - OS:XM ~Newb 0. ?,Zb)J !

In page 20, third eguation, read:

A s =_g_&1.s+_ (2-224Y — 035
Ao" € =

In Figure XII, divide the ordinates by 1lé,



