

COMPUTERIZED INTERFACE CONTROL

DOCUMENTS

Keyvan Rahmani

Department of Mechanical Engineering

McGill University

Montreal, Quebec

April 2012

A dissertation submitted to McGill University in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Copyright ©2012 by Keyvan Rahmani

iii

ABSTRACT

Interfaces between subsystems in collaborative product development projects are

presently defined by interface control documents. These documents are created

after agreements are made between designers on how to design subsystem

interfaces. The designers must commit to the definitions given by these

documents in order to ensure their subsystems remain compatible as the design

process continues. An important consequence of using interface control

documents during product development processes is that they make the interface

control task manual and document based, which can impede design processes.

This thesis presents the ingredients of a computer aided methodology for defining

and controlling subsystem interfaces. In this thesis, interfaces are port to port

interactions between subsystems. Ports are specified attributively. The two main

sources of attributes that specify a port are its form and function. Two ports are

called compatible if the values of their attributes satisfy the compatibility

constraints that have been defined for them. An interface can be established

between two ports if they are compatible.

Compatibility constraints are defined by different subsystem designers. They are

transformed into interface control rules in order to be used to control the status of

interfaces during a product development project. The rules altogether constitute a

knowledge base that can be used for compatibility checking. The left hand sides

of the rules in the knowledge base correspond to the compatibility constraints that

have been defined for ports. The right hand sides of the rules specify detection

messages that alert designers about violations of compatibility constraints as well

as their exact location. The interface control knowledge base is the computer

manageable representation of interface control documents.

The thesis also proposes a mechanism that ensures interface definitions are

created consistently by different teams. An ontology is used for this purpose. The

iv

ontology explicitly provides a vocabulary from which port attributes can be

chosen. By committing to the ontology, interface definitions are defined

consistently.

Finally, the thesis proposes a software architecture that can operate on the

ontology and the interface control knowledge base to control the consistency and

compatibility of interfaces during collaboration. A piece of software that

corresponds to the proposed architecture is implemented to demonstrate its key

functionalities. The functionalities are illustrated by means of two examples that

show how interface information in a design project can be captured by the

software and how the consistency and compatibility of interfaces can be checked.

v

RÉSUMÉ

Les interfaces entre les sous-systèmes dans les projets collaboratifs de

développement de produits sont actuellement définies par les documents de

contrôle d'interface. Ces documents sont créés après que des accords soient

conclus entre les concepteurs sur la façon de concevoir les interfaces des sous-

systèmes. Les concepteurs doivent s'engager à respecter les définitions données

par ces documents afin de s'assurer que leurs sous-systèmes restent compatibles

courant le processus de conception. Une conséquence importante de l'utilisation

de documents de contrôle d'interface au cours des processus de développement de

produits, c'est qu'ils rendent la tâche de contrôle d'interface manuelle et liée à des

documents, ce qui peut entraver les processus de conception.

Cette thèse présente les ingrédients d'une méthodologie assistée par ordinateur

pour définir et contrôler les interfaces des sous-systèmes. Dans cette thèse, des

interfaces sont des interactions port à port entre des sous-systèmes. Les ports sont

précisés au moyen de leurs attributs. Les deux principales sources d'attributs qui

spécifient un port sont sa forme et sa fonction. Deux ports sont appelés

compatibles si les valeurs de leurs attributs satisfont des contraintes de

compatibilité qui ont été définies pour eux. Une interface peut être établie entre

deux ports s‟ils sont compatibles.

Des contraintes de compatibilité sont définies par les concepteurs qui développent

des sous-systèmes différents. Elles sont transformées en règles de contrôle

d'interface afin d'être utilisées pour contrôler l'état des interfaces au cours d'un

projet de développement de produits. Tout en tout, les règles constituent une base

de connaissances qui peut être utilisée pour la vérification de compatibilité. Les

côtés gauches des règles dans la base de connaissances correspondent aux

contraintes de compatibilité qui ont été définies pour les ports. Les côtés droits

des règles spécifient les messages de détection qui alertent les concepteurs sur des

contraintes de compatibilité violées avec leurs emplacements exacts. La base de

vi

connaissances de contrôle d'interface est la représentation de documents de

contrôle d'interface qui est gérable par ordinateur.

La thèse propose également un mécanisme qui assure que les définitions des

interfaces sont créées de manière cohérente. Une ontologie est utilisée à cette fin.

L'ontologie fournit explicitement un vocabulaire à partir de laquelle les attributs

des ports peuvent être choisis. En s'engageant à l'ontologie, la définition des

interfaces est définie de façon cohérente.

Enfin, la thèse propose une architecture logicielle qui peut fonctionner sur

l'ontologie et la base de connaissances de contrôle d'interface pour contrôler la

cohérence et la compatibilité des interfaces au cours d‟une collaboration. Un

logiciel qui correspond à l'architecture proposée est implémenté afin de démontrer

ses fonctionnalités clés. Les fonctionnalités sont illustrées au moyen de deux

exemples qui montrent comment les informations d'interface dans un projet de

conception peuvent être capturées par le logiciel et comment la cohérence et la

compatibilité des interfaces peuvent être vérifiées.

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep gratitude to my advisor,

Professor Vince Thomson. I would like to sincerely thank him for all his

guidance, patience, and encouragement during the development of this thesis and

my graduate studies.

Next, I am indebted to the people who provided the input information for the

application examples discussed in this thesis. I would like to thank Mr. Keith

Hoege of CAE Inc. (Canadian Aviation Electronics) for providing the input

information for the flight simulator example. I also thank the students associated

with the 2011 CAMAQ project at École Polytechnique de Montréal, particularly

Mr. Boris Toche, for providing the input information for the pylon example.

I am also indebted to all my colleagues in the PLM group at McGill for useful

advice during the course of this project. My special thanks go to Dr. Onur

Hisarciklilar, a post-doctoral fellow in our lab.

Finally, I would like to thank professor Alain Desrochers of the University of

Sherbrooke for reading and giving useful comments about the thesis that helped

me to improve its content.

http://www.polymtl.ca/

viii

TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 Problem statement .. 1

1.2 Why study interfaces in product development? 3

1.3 Interface definition and control .. 4

1.3.1 Identification of interfaces .. 4

1.3.2 Categorization of interfaces .. 5

1.3.3 Documentation of interfaces ... 6

1.3.4 Analysis of interface compatibility ... 7

1.4 Thesis scope ... 8

1.4.1 Internal and external interfaces ... 8

1.4.2 Abstraction level ... 9

1.4.3 Physical interfaces .. 10

1.5 Thesis objectives .. 11

1.6 Thesis organization .. 12

2 BACKGROUND AND RELATED WORK .. 14

2.1 Conceptualization of interfaces .. 14

2.1.1 Interfaces in software design .. 14

2.1.2 Interfaces in hardware design ... 18

2.1.3 Interfaces in mechanical design .. 20

2.1.4 Interfaces in simulation of mechatronic systems 22

2.2 Markup and schema languages .. 22

2.3 Ontologies .. 24

2.3.1 The purpose of ontologies ... 25

ix

2.3.2 Ontologies in engineering design .. 26

2.3.3 Port ontologies for conceptual design ... 26

2.4 Summary .. 27

3 INTERFACE REPRESENTATION MODEL ... 29

3.1 Interface formalism .. 32

3.2 Function attributes .. 37

3.3 Aggregate ports .. 39

3.4 Interface Semantics .. 42

3.4.1 Ontological concepts ... 43

3.4.2 Ontological relationships .. 45

3.4.3 Semantic representation of constraints ... 46

3.5 Summary .. 47

4 INTERFACE CONTROL ... 49

4.1 Control mechanism .. 49

4.2 Analysis of the interface knowledge .. 54

4.3 Interface control software architecture ... 55

4.4 Summary .. 58

5 PROTOTYPE IMPLEMENTATION ... 59

5.1 Interface and ontology definition languages .. 59

5.2 Binding port attributes to the ontology (schema) 65

5.3 Editing port specifications and constraints ... 67

5.4 Inference engine ... 69

5.5 Summary .. 72

6 EXAMPLES ... 74

6.1 Flight simulator example .. 74

x

6.2 Pylon example .. 85

7 CONCLUDING REMARKS .. 89

7.1 Contributions .. 90

7.2 Future research ... 92

7.2.1 Checking interface status between different CAD systems 92

7.2.2 Component compatibility .. 92

xi

LIST OF FIGURES

Figure 1.1: Relationship between functional and physical architecture. 5

Figure 1.2: Imaginary interface plane between boundaries of subsystems S1 and

S2. .. 7

Figure 2.1: (a) The UML class diagram for an online shopping system. (b) The

corresponding component diagram for the online shopping system. 17

Figure 2.2: Object flow ports in SysML internal block diagram. 19

Figure 3.1: Interaction of two component boundaries. ... 30

Figure 3.2: Interfaces as port to port interactions (binary) between two subsystems

at a time. .. 34

Figure 3.3: Black box interface formulation. .. 35

Figure 3.4: Flow hierarchy. ... 39

Figure 3.5: An aggregate port that is composed of six circular hole subports. 39

Figure 3.6: Congruency checking between the points in (left) and (right).

 ... 42

Figure 3.7: A partial port ontology. .. 44

Figure 4.1: Illustration of the interface control method. Rxy is an identifier for the

constraint over {x , y}. .. 51

Figure 4.2: The architecture of interface control software.................................... 57

Figure 5.1: Core classes in XSD format. .. 61

Figure 5.2: Extension of core classes. ... 62

Figure 5.3: An example XML file representing the ports of a subsystem. 63

Figure 5.4: Definition of a constraint in an XML file. .. 64

Figure 5.5: The classes that correspond to the partial XSD file in Figure 5.2. 66

xii

Figure 5.6: The objects that correspond to the XML file in Figure 5.3. 67

Figure 5.7: A Jess rule. ... 70

Figure 5.8: The architecture of the prototype interface control software. The XSD

file is shown in pseudo form. .. 73

Figure 6.1: Simplified internal block diagram representation of a flight simulator.

 ... 75

Figure 6.2: The class hierarchy that represents the section of the ontology used in

the flight simulator example. .. 76

Figure 6.3: Content objects corresponding to the hub1 subsystem specification. 77

Figure 6.4: Order matching between hub1.p3 and simComp.p1. 78

Figure 6.5: The graphical user interface of the prototype interface control

application. .. 79

Figure 6.6: Editing an attribute value. .. 83

Figure 6.7: A class compatibility constraint between two AC power couplings. . 84

Figure 6.8: Setting the mate of a port.. 85

Figure 6.9: Interfaces between the pylon, engine and fuselage. 86

Figure 6.10: A partial ontology that captures the semantics of the pylon example.

 ... 88

1

1 INTRODUCTION

1.1 Problem statement

An interface refers to any logical or physical relationship required to join the

boundary of a system to another system, or the boundary of a system to its

environment. Here, the word system refers to a set of interoperable elements

compatible with each other in form, fit and function to achieve a specific outcome

(Wasson, 2006).

Interface management has been defined as “the management of communication,

coordination and responsibility across a common boundary between two

organizations, phases, or physical entities which are interdependent” (Wideman,

2002). The main idea behind interface management is to improve communication,

and therefore, to prevent inconsistencies and errors in information exchange

between organizations.

The above definition of interface management is broad; it includes interfaces

between all entities that can exist in a complex system: humans, machines,

procedures, missions, policies, environments, media, etc. This thesis is only

concerned with systems that are the result of engineering work. These are

commonly referred to as products
1
. Interface management plays an important role

in the development of complex products. To develop such products, fast and

consistent information sharing among design teams is critical to prevent design

errors (Blyler, 2004).

Product interface management consists of a variety of activities from identifying

interfaces during conceptual design to ensuring interoperability of subsystems

during detailed design. Nowadays, to develop a complex product, the design task

is often distributed among collaborating teams that are located at different places.

1
 In this thesis, the words system and product are used interchangeably.

2

In such a setup, design teams must first agree on the specification of interfaces

before they proceed with their own part of the design. These agreed specifications

are written down in interface control
2
 documents (ICD). As the design process

continues, any subsystem that is being developed must adhere to these

specifications so that it can be integrated into the rest of the system.

An important consequence of using ICDs during product development is that they

make projects document driven. This has some major drawbacks since documents

differ substantially from one organization to another. There are standards for the

organization of ICDs in certain domains, such as aircraft stores (SAE, 2004), but

there is no standard for the content of ICDs. The common practice of using

natural languages, homemade drawings, graphs, etc. to create ICDs by diverse

organizations leads to ambiguities when design information is shared among

organizations. Moreover, using documents makes design processes manual and

time consuming. Finally, in the lack of a standard language for interface

representation, ICDs have not been included in the set of data that can be

managed by computer aided design (CAD) and product data management (PDM)

systems.

The above shortcomings of a document based interface control methodology can

be eliminated by using a computer readable language to define ICDs. If one can

represent any interface in a structured and computer readable form, the interface

control process and ICDs can be automatically managed by computers; hence, a

significant amount of error and misunderstanding due to poor interface design can

be prevented in product development processes. This thesis presents a language

and software architecture to define and control interfaces in a product

development process.

2
 Interface control as used in this thesis means the management of interface information.

3

1.2 Why study interfaces in product development?

There are two main reasons to study product interfaces. One is to analyze product

architecture and the other is to ensure compatibility of subsystems during product

development. The first one deals with interfaces at an abstract level, whereas the

second one deals with them at a concrete level.

Much research on product architectural analysis has been sparked since some key

studies were done in the early 1990s that revealed the impact of product

architecture on product development activities. The influential paper published by

Karl Ulrich (1995) is one of the most notable ones. He argued that product

architecture plays a key role in many performance aspects of a manufacturing

firm. He identified product interfaces as one of the defining elements of product

architecture.

Ever since, studies that use mathematical approaches to analyze product

architecture and its effects on product development processes have received a lot

of attention. The design structure matrix (DSM) has been one of the most popular

tools in conducting such studies (Browning, 2001; Danilovic and Browning,

2007; MacCormack et al., 2006; Pimmler and Eppinger, 1994; Sosa et al., 2003).

DSM shows dependencies among components. The main idea behind using DSM

in architectural analysis is to see if components can be regrouped into modules

such that each module contains only highly dependent components that are

otherwise less dependent on the rest of the system. This is done by using

clustering algorithms
3
. A clustered DSM has a reduced number of dependencies

among modules. Dividing a product into modules in this way makes the whole

product development process more efficient. Modules set the tune for the

organization of product development teams and the design process.

3
 DSM is also used to find an optimal sequence of design tasks. The algorithms used for this

purpose are called partitioning algorithms.

4

Evidently, dependencies among components can be represented by graphs or

matrices. As such, studies of product architecture have received much attention in

academia, whereas ICDs have not, because ICDs are information intensive. This

thesis is intended to bring some academic insights into the issue of interface

control.

1.3 Interface definition and control

ICDs have been traditionally used in highly complex projects, such as the lunar

module in the Apollo program (Blair-Smith, 2010; Eyles, 2004). In non-complex

products, much of the effort is put into the design of individual parts, and ICDs

are not usually needed. In complex products, ICDs cannot be ignored because

such products are composed of subsystems rather than just simple parts. These

products often have a distributed architecture. For example, a control system that

sits in one location can be used to derive a hydro-mechanical system that sits in

another location. Such products are also increasingly designed and built by

geographically distributed teams. Therefore, they require consistent definition and

careful control of ICDs.

Perhaps, one of the most well known approaches to create ICDs is described in

NASA‟s training manual for interface definition and control (Lalli et al., 1997).

According to this manual, the main steps of interface control are as follows:

identify interfaces, categorize interfaces, document interfaces, and analyze for

interface compatibility. These steps are briefly explained here.

1.3.1 Identification of interfaces

The first task of any interface management process is to identify where interfaces

are going to occur. Interfaces are identified during conceptual design when

subsystem boundaries are drawn within a system. Drawing system boundaries can

be done based on an organization‟s experience, or by using reasoning methods

such as functional decomposition. The result of functional decomposition is a

description of a product in terms of its primitive functions. This description is

5

called the functional architecture of the product. By grouping highly relevant

functions together, a functional area is obtained that can be implemented by a

physical subsystem. This process is called synthesis, and the resulting description

of a product in terms of its subsystems is called its physical architecture (Figure

 1.1). The physical architecture of a system should be established before interface

control documents are created.

Figure ‎1.1: Relationship between functional and physical architecture.

1.3.2 Categorization of interfaces

The most widely used interface categorization comes from design theory. From

the design theoretic point of view, interactions among systems are divided into the

following four classes: spatial, energy, signal, and material (Pahl and Beitz, 2005;

Pimmler and Eppinger, 1994). These interactions are briefly defined as:

Spatial: identifies adjacency or orientation between two entities.

Energy: identifies energy transfer between two entities.

Signal : identifies signal exchange between two entities.

Material: identifies material exchange between two entities.

Categorization of interfaces can help to better organize ICDs. Interfaces of the

same type can be compiled into separate ICDs, for example, mechanical ICD,

electrical ICD, etc.

6

1.3.3 Documentation of interfaces

Documentation of interfaces can be started right after they are identified.

Interfaces are usually identified during conceptual design and ICDs are created

after this phase. ICDs are then used during the detailed design and the subsequent

stages. They are used as reference documents during the subsequent stages, but

they may also evolve. This is quite expected because all the details of interfaces

may not be known right after conceptual design. As the design process continues,

more details can be added to ICDs. The main objectives of ICDs can be

summarized as follows (Lalli et al., 1997):

1. control the design of subsystem interfaces by preventing any changes to a

subsystem‟s boundary that would affect compatibly of its interfaces with

other subsystems,

2. communicate design decisions that affect a subsystem‟s boundary to all

collaborating parties,

3. identify missing interface data (voids) and control the submission of these

data,

4. identify the subsystems that are associated with an interface.

The most important criterion in writing these documents is to avoid unnecessary

details. The documentation should only highlight how the compatibility of

interfaces can be demonstrated during subsystem design. Interface documentation

should not assume any information about the internal structure of any subsystem.

The focus should remain only at subsystem boundaries. This is why the metaphor

interface plane is used as illustrated in Figure 1.2.

The documents created during the interface documentation phase can take a

variety of forms and names. In most cases, the term ICD has been used in place of

all such documents. These documents provide either a one sided view or a two

sided view of the interfaces between subsystems (Figure 1.2).

7

Figure ‎1.2: Imaginary interface plane between boundaries of subsystems S1 and

S2.

One sided view: These documents are created by subsystem developers. They

describe the requirements for a subsystem‟s boundary. Satisfying these

requirements is necessary to ensure proper functionality of the subsystem.

Two sided view: These documents are created when two subsystems from separate

organizations must adhere to a common interface. They detail the parameters of

interfaces between interacting elements of two subsystems.

The lifetime of a specific ICD depends on whether interface definitions change

during a project. Some interface definitions remain fixed throughout the lifecycle

of the program while others change frequently. In a document based interface

management system, it is worth treating each group separately to reduce the

document management workload.

1.3.4 Analysis of interface compatibility

Interface information compiled into ICDs must be analyzed for compatibility.

This means that any proposed changes to the interface definitions must be

evaluated to ensure the interfaces are still compatible. This task is essential in any

interface control process. Each time a change to interface definitions occurs, the

compatibility analysis must be able to demonstrate the completeness and

correctness of interface information. Demonstrating information completeness

means revealing whether any part of interface data is missing. Demonstrating

8

correctness means providing a record that shows that interfaces have been

examined to have the right form, fit, and function for the interacting subsystems.

In document based interface control, these tasks are very time consuming,

particularly if interfaces change frequently. Each time a change in a definition is

requested, the designers themselves need to elicit the pertinent data from ICDs

and conduct the analysis.

1.4 Thesis scope

Although the term product in this thesis is used interchangeably with the term

system, it should be noted that in general the term product has a much more

limited scope than the term system. The term product usually refers to an

engineered good. Cars, airplanes, bridges, and refrigerators are products, whereas

banks, universities and fire departments are systems. By subsystem, we refer to

any interoperable group of components in a product.

The domain of all possible interfaces that can occur among all possible products is

a vast universe. It is too ambitious to think that a single tool can be designed to

solve all the problems that can arise in such a huge domain. The purpose of this

section is to draw a clearer boundary around the set of problems this thesis intends

to solve. As mentioned before, this thesis is concerned with the issue of interface

control during product development processes. Some of the assumptions used in

the thesis have already been put forward in the previous sections; they are restated

again here more precisely and followed by some additional assumptions.

1.4.1 Internal and external interfaces

We need to distinguish between internal and external interfaces of a system.

Internal interfaces are the ones that occur among the components within a

system‟s boundary. External interfaces are the ones that occur between a system‟s

boundary and its environment, such as people, physical environment, etc. It might

have already been noticed from frequent use of the word subsystem that this thesis

focuses only on internal system interfaces.

9

1.4.2 Abstraction level

It has also been set forth that this thesis is not intended for product architectural

analysis or conceptual design; it is intended for interface control. Here, the

product architecture/concept is considered an input to the process of interface

control. This is true in a top-down design process.

Functions that describe a product‟s architecture have highly abstract

representations that only describe the intent of product‟s subsystems. This means

that the actual implementation of functions is disregarded in the product‟s

architecture. ICDs on the other hand are concerned with the concrete

implementations of the functions that occur at subsystem boundaries; hence, it is

the content of interfaces that receives attention in ICDs, not the intent. The

following paragraphs are intended to clarify what is meant by the content of

interfaces.

Product functions are usually represented in the form of a verb-object pair of

symbols (f , o) where f is chosen from a set of appropriate action verbs and o is

chosen from a set of objects (Pahl and Beitz, 2005). For example, consider the

function “light the lamp”. Here the verb is „to light‟, and the object is „the lamp‟.

This function can be decomposed into two simpler subfunctions: “connect to the

electrical outlet” and “press the electrical switch”. These functions only show the

intent of product‟s components/subsystems.

In some function representations, objects of the verb-object pair are regarded as

flows (Hirtz et al., 2002). In such representations the scope of action verbs is more

limited, but the approach becomes more informative. The flows are usually

assumed to belong to one of the following classes: energy, material, and signal.

Note that this is in accordance with the common functional categorization of

interfaces introduced in § 1.3.2.

10

The verb-flow representation of functions can be used to describe the

functionality of interfaces, given that the difference between an interface function

and that of a subsystem is properly understood. The former is a two sided

phenomenon that describes what happens at an interface, but the latter is a one

sided phenomenon that describes what a subsystem does. The full specification of

flows in a verb-flow representation of an interface function is a part of its content.

It can be seen later in chapter 3 that the full specification of the content of an

interface requires the specification of the flows between subsystem boundaries as

well as the relationships between the forms of these boundaries. In such a

representation, forms and flows are defined by their physical properties.

In this thesis, we are more interested in the functionality of interfaces than their

forms. This is the characteristic of a system with a distributed architecture, for

example, a flight simulator. A flight simulator is a composition of hardware,

software and mechanical subsystems that are placed in different locations and

interact with each other through a collection of wires, data buses, tubes, etc.

Purely mechanical interfaces, such as the geometric interfaces in a mechanical

structure or a mechanism can be represented by mechanical assemblies. However,

we do consider the information pertinent to the forms of interfaces since they

cannot be completely ignored in interface definitions even in a distributed system.

1.4.3 Physical interfaces

A final note to establish the scope of the thesis is to state that this thesis only

focuses on physical interfaces. Physical interfaces are generally defined as the

interfaces that are physically quantifiable (DAU, 2001; USAF, 2005; FAA, 2006;

Lalli et al., 1997). Physical interfaces themselves constitute a vast domain, and

they are the ones that are highly relevant to engineering design. The interface

definition language that is proposed in this thesis applies to all physical interfaces.

The language is not limited to a single engineering domain. An example of a

11

system whose interfaces are describable by the language is a mechatronic system

where there are spatial, electrical and signal interactions among its subsystems.

1.5 Thesis objectives

As explained earlier, interface definition and control processes are currently

document based; so, they are highly manual. There is a lack of a language and

software architecture for definition and control of interfaces. This problem has

received no attention by academia in spite of the large amount of attention that

has been given to component dependencies in product architectural analysis. This

thesis is intended to reduce this gap.

This thesis proposes a language, software architecture and a methodology to

define and manage the information contained in ICDs. The interface definition

language can be used to define all sorts of physical interfaces regardless of their

domain (mechanical, electrical, etc.). It is shown later in Chapter 3 that a physical

interface can be represented by a set of binary constraints over peripheral

attributes of two interacting subsystems. The software architecture proposed in

this thesis is intended for collaborative product development. The interface

definition and control methodology proposed in this thesis provides a framework

to:

1. consistently define interfaces,

2. identify missing interface information,

3. automatically check the compatibility of interfaces,

4. communicate violations of interface compatibilities to all stakeholders and

precisely track the violation.

To fulfill the above objectives, the thesis proposes the following ingredients to

create the interface control knowledge that can be managed by computers and be

included in CAD/PDM systems:

12

 An ontology that explicitly specifies the semantics of interfaces. The

ontology provides a common vocabulary for interface definitions; so, it

helps to overcome the lack of commonality in interface terminologies and

improves information sharing among organizations. When all

collaborating agents commit to a formal ontology, the interface definitions

become meaningful and consistent.

 An interface control knowledge base that semantically specifies interfaces.

The interface control knowledge is represented as a collection of interface

control rules. A checking mechanism is proposed that operates on the

interface control knowledge base, and reports compatibility violations of

interfaces. A violation message identifies the erroneous subsystem, the

place where the violation happened on the subsystem‟s boundary, and the

name of the subsystem property that has been violated.

 Software architecture that shows how interface control software operates

with the ontology and the interface knowledge base to communicate the

status of interfaces to designers.

1.6 Thesis organization

The rest of this thesis is organized as follows:

Chapter 2 presents a background for the thesis and surveys some of the areas that

are relevant to the subject of this thesis. In this chapter, first, different interface

conceptualization practices are discussed. The interface conceptualizations are

discussed from the perspective of the engineering domain in which they are used.

Next, the chapter discusses the current technology and the languages that are used

for semantic information definition. Finally, the use of ontologies as knowledge

sharing artifacts, particularly in engineering design, is described.

Chapter 3 presents a formal model for interface definition, which can be used as a

language to create computer readable ICDs. This chapter also discusses some of

the main sources of information that should be considered when creating

13

computerized ICDs. The three sources of information that are considered in this

thesis are form, function and fit of an interface. The chapter also presents an

ontology that can be used for consistent and semantic interface definition.

Chapter 4 presents the control mechanism that can be used by a piece of software

that operates on semantic interface definitions. This is necessary because when an

interface is violated, the precise meaning of the violation and the exact place

where it occurred must be understood. The chapter concludes with a possible

architecture for the interface control software.

Chapter 5 presents a prototype implementation of the interface control software.

The interface control software is supposed to operate on the interface data stored

in shared repositories that are accessible via a network. The prototype interface

control software is implemented in Java.

Chapter 6 gives a demonstration of the interface control software that can check

the consistency and correctness of computerized ICDs. The chapter includes

examples that demonstrate the functionality of the implemented software.

Chapter 7 presents a summary of the contributions of this thesis and outlines a

number of research issues that can be studied in the future.

14

2 BACKGROUND AND RELATED WORK

This chapter first gives an account of the prevalent interface conceptualizations in

different engineering domains. Interface conceptualizations are discussed from

three different engineering perspectives: software, electronic, and mechanical

engineering. This chapter then discusses and compares some of the existing IT

languages that are capable of making documents computer readable. Finally, since

making a document computer readable is not enough to unequivocally share it

among agents, a brief discussion of the current information sharing technology,

i.e., ontologies, is also given. Ontologies resolve lexical and semantic problems in

information sharing; so, they can be used for the same purpose in ICDs.

2.1 Conceptualization of interfaces

The concept of interface has different meanings in different engineering domains.

This section explores different interface conceptualization methodologies in

software, hardware and mechanical engineering.

2.1.1 Interfaces in software design

The methodologies that are used to design software interfaces have many benefits

that make it worth to explore whether these methodologies can be applied to the

design of physical interfaces. As such, the intention of this section is mainly to

describe and illustrate a methodology that is known as the principle of

encapsulation in software design. Later in Chapter 3, it is shown how the

principle of encapsulation can be used to obtain a simple formulation for physical

interfaces.

Software development puts much emphasis on the development of interfaces for

software reuse. Software reuse is one of the main promises of object oriented

(OO) programming. An OO program is a collection of interacting pieces of code

15

that are called objects. An object wraps both data structures and the functions that

operate on the data structures into a single code unit. Objects are created by

reusing a piece of code that is called a class code. It is the class code that defines

the data structures and functions of its constituent objects once and for all. The

class code can then be instantiated as many times as wished to create new objects.

The data structures that are defined by a class are called attributes, and the

functions that operate on these data structures are called methods. Any change to

the attributes of an object, i.e., changing its state, must be done through relevant

methods. The methods that change the state of an object are virtually its

interfaces.

The area in software engineering where interfaces have essential significance is

component based software engineering (CBSE) (Sommerville, 2007). A

component can be an individual class or a group of semantically related classes.

Some of the methods of the classes that constitute a component are responsible for

interactions with other components in the system. These methods are called

component interfaces. A component may provide or require an interface. An

interface that offers services to other components is called a provided interface,

whereas an interface that uses services from other components is called a required

interface.

To effectively reuse components in different systems, they should be defined with

regard to the principle of encapsulation. The intent of encapsulation is to isolate

the internal structure of a piece of code from its users (Armstrong, 2006). The

principle of encapsulation is closely tied to a more general principle called

separation of concerns. Separation of concerns means system elements should

have exclusive and singular purposes (Dijkstra, 1982). For example, explicitly

defined component interfaces should be the only places through which it interacts

with the rest of the system.

CBSE is an emerging software engineering paradigm with the hope of enabling

black box reuse of software components (Szyperski et al., 2002). This means that

16

software components should be reused disregarding their source code, that is,

plugged and played in any system (Clements, 1995). This is of course possible if

components exclusively interact with each other through their interfaces. Well

encapsulated software components can be interchanged if they have the same

interfaces (Parnas, 1972).

Figure 2.1 illustrates how encapsulation and separation of concerns can be used in

practice to hide a component implementation. Suppose that the goal here is to

build an online shopping system. Figure 2.1 (a) shows some of the classes that are

designed for this system in a Unified Modeling Language diagram (UML)

(Rumbaugh et al., 2004). UML is a general purpose and standard modeling

language that is used to create visual models of software systems.

Each class in Figure 2.1 (a) is visually modeled by a rectangle that is divided into

three areas. The top area identifies the name of the class, the middle area identifies

its attributes, and the bottom area identifies its methods. A solid arrow is drawn

when a class depends on another class, that is, when it uses another class. A

dashed arrow with triangular arrowhead is drawn when a class explicitly

implements an interface, that is, when it provides an interface. A diamond on an

association line means the class owns another class. The asterisk on an association

line means many instances of the associated class are involved in the association.

An interface is represented in the same way as a concrete class with the addition

of <<Interface>> keyword to its heading.

Explicit separation of interfaces from classes is illustrated in Figure 2.1 (a). A

ShoppingCart in this example does not care about the internal implementation of

the CardPayment as long as the latter provides the Payment interface, that is, as

long as it has getPaymentAmount() method as specified by the interface. This

class diagram can now be put into the form of a component diagram as shown in

Figure 2.1 (b). In this example, let us assume that CardPayment,

CustomerDirectory, and ShoppingCart are the three components that constitute

17

the online shopping system. Components can be as granular as individual classes,

like this example, or as a collection of classes in more complex cases.

Figure ‎2.1: (a) The UML class diagram for an online shopping system. (b) The

corresponding component diagram for the online shopping system.

In Figure 2.1 (b), one can replace CardPayment with another class, for example

PayPal, if the replacement class provides Payment interface and requires

Authentication interface. The internal implementation of replacement class, e.g.,

PayPal, could be anything; it only needs to satisfy the interfaces. This is called

component interchangeability.

Figure 2.1 (b) also shows another important concept: The interfaces to a software

component can be delegated to some of its constituting objects that are called

18

ports. Ports in UML are represented by small boxes at the boundaries of

components. A port is an instance of an inner class that is exclusively in charge of

a component‟s interface. Note that these inner classes are not shown in Figure 2.1

(a). The ports of a software component are the places where interactions with

other components are supposed to happen.

Some of the concepts used in OO software development have been introduced to

the systems engineering applications too. For example, the System Modeling

Language, SysML (Friedenthal et al., 2008), is a language that has been recently

proposed for visual modeling of both hardware and software systems. SysML is a

language that is heavily founded on UML concepts, but it is smaller, semantically

more complete, and less software centric. It has a range of enhancements over

UML that allows it to be applied to modeling and analysis of a wider range of

systems.

The atomic elements of most SysML‟s structural diagrams are blocks. Blocks in

block definition diagrams of SysML play the same role as classes in UML class

diagrams. The SysML counterpart of a UML component diagram is the internal

block diagram, ibd. The interactions among blocks in ibd are represented by using

a port notation. Ports are still represented by small boxes at the boundaries of

blocks; however, SysML allows two types of ports to be defined. The first is a

standard port. These are the places that exchange services with other components.

The second type of port is an object flow port. A flow port identifies the kind of

object that can flow in or out of an interaction point. A simple example is shown

in Figure 2.2. The colon before the Fuel / Air in this figure indicates an unnamed

object of the type Fuel / Air.

2.1.2 Interfaces in hardware design

The most prolific elements in conceptualization of interfaces in the electronic

industry are ports. Ports are the locations where the inputs or outputs to a

hardware component are defined. The inputs and outputs to electronics systems

19

are usually the flow of signals or electrical energy. In the specification of

interfaces, both the physical properties of the signals and the data they carry are

important, although more emphasis may be put on one than the other, depending

on the situation.

Figure ‎2.2: Object flow ports in SysML internal block diagram.

Electronics is an area of engineering in which many of the building blocks of its

systems have been standardized from logical gates to integrated circuits and

circuit boards. The existence of standard components has made it possible in some

cases to automatically synthesize physical models from functional models. This is

doable because the standard physical components that implement standard

functions are widespread in electronics. For example, a logical circuit can be

configured on a Field Programmable Gate Array (FPGA) just by specifying its

functionality in a hardware description language (HDL).

Verilog HDL and VHDL
4
 are two competing hardware description languages

used to design logical circuits. Once the functionality of the circuit is defined by

these languages, a physical circuit can be configured on an FPGA board

automatically by synthesis tools. HDLs also use the concept of ports to define

input/output interfaces among entities. For example, Verilog uses in, out or inout

ports to specify input/output binary signals to an entity.

4
 VHDL stands for VHSIC Hardware Description Language, in which VHSIC itself stands for

Very High Speed Integrated Circuits, a program that was launched by the Department of Defense.

20

2.1.3 Interfaces in mechanical design

The use of interfaces in the mechanical design of systems is less pronounced than

that of hardware/software (HW/SW) engineering. This might have happened

because it is probably easier to encapsulate and standardize functions than

geometric forms and spatial relationships. HW/SW design is primarily concerned

with the design of functions whereas mechanical design puts more emphasis on

the design of forms. The more encapsulated the components are, the more

pronounced their interfaces are.

In mechanical design, the most apparent place to look for interfaces is the mating

constraints in assembly models. Mating constraints are binary relationships that

are defined between low level geometric entities that exist in parts, such as faces,

edges, axes and vertices (Lee and Gossard, 1985; ISO, 2004). Such low level and

concrete mating constraints fit very well with the common bottom up practice of

assembly design; that is, building an assembly model from parts. ICDs are,

however, artifacts of top-down design.

One way to build a top-down assembly model is to use form features to define

mating relationships. Shah and Rogers (1993) introduced the idea of feature based

assembly modeling. An assembly feature is a group of mating constraints that are

defined between the form features of two parts. Van Holland and Bronsvoort

(2000) built a prototype assembly modeler that could be used for top down

assembly design. It allowed users to instantiate compatible form features to define

assembly connections.

This thesis also prescribes feature based representation of assembly connections

for the purpose of defining mechanical interfaces. The reason is that form features

better fit the idea of ports in mechanical components. A connection between two

ports can be regarded as an assembly feature between their form features. In this

way a unified model can be used to represent interfaces irrespective of the

physical domain to which they belong. We can generally consider an interface as

21

an interconnection between two ports, whether the port is mechanical, electrical,

etc.

There has been some recent interest in including port information in assembly

models. One of the attempts to define ports in assembly models has been made by

Singh and Bettig (2003). They suggested that port information be added to part

models in order to automate the process of applying mating constraints in

assembly models. They compared three different schemes to represent an

assembly port; namely, as a single low level geometric entity, as a single form

feature, or as a collection of all geometric entities that are intended for mating.

The three schemes were quantitatively compared based on the efforts they impose

on the automatic process of applying mating constraints.

For the benefit of this thesis, it is not possible to draw a definitive conclusion

from Singh and Bettig‟s work on what the best scheme to represent assembly

ports would be. Numerical criteria to define ports for the optimal process of

assembly as proposed by Singh and Bettig cannot sufficiently address the issues

that may arise in interface control. As such, this thesis relies on some conceptual

criteria to define ports and interfaces in ICDs. The main criterion that is used in

this thesis to define interfaces is that subsystems should be encapsulated to

separate their internal structure from their interfaces.

Bettig and Gershenson (2010) also proposed some criteria to define interfaces for

modular products. A module is not necessarily an assembly; it is a collection of

highly dependent parts. They suggested that interfaces of modular products be

classified into the following four groups to reduce the effort and the space

required for their representation: attachment, control, transfer and field. However,

the concept of connectivity between modules was absent in Bettig and

Gershenson‟s work. The modules were just stored individually without defining

how the interfaces of a module may interact with another in a system. In this

thesis we are mainly concerned with proposing a methodology that defines the

connectivity of subsystems in addition to their interface specifications.

22

2.1.4 Interfaces in simulation of mechatronic systems

Port based modeling has been a major paradigm used to simulate component

behavior in mechatronic systems. In the work done by Paredis et al. (2001) and

Sinha (2001), components were composed together via their ports to make a

composite simulation model. Ports were considered as the places where energy

and signals were exchanged among components. The interactions among

components in the work by Paredis et al. and Sinha were defined based on the

relationships among ports‟ effort and flow variables. The effort and flow variables

are rooted in bond graph modeling (Rosenberg and Karnopp, 1983). For example,

effort and flow variables map to voltage and current in the electrical domain, and

velocity and force in the mechanical domain.

The work by Paredis et al. and Sinha described what could be regarded as a

component behavioral model. Component behavior is defined by ordinary

differential equations that show how effort and flow variables are related in a

component, and by algebraic constraints that show how these variables are related

to that of another component.

This thesis proposes to use a port based representation to define subsystem

interfaces, but for the purpose of interface control. The interface specifications

that appear in ICDs are very diverse; they are not just limited to power conjugate

variables. As such, interface control issues should be dealt with by means of

knowledge management tools; they cannot be dealt with by simulation models.

2.2 Markup and schema languages

One of the objectives of this thesis is to make ICDs machine readable. A markup

language can be used for this purpose. The most widespread markup language that

is in use today is HyperText Markup Language, HTML (W3C, 1999). HTML is a

popular language used to construct a web page from text and media elements. The

most important entities in an HTML document that markup the content are tags.

Each tag is a keyword enclosed by angle brackets, e.g., <p> for paragraph. Tags

23

normally come in pairs, one of which marks the beginning and the other marks the

end of a textual content, e.g., <p>content</p>. It is also possible to link a web

page to another one by using the anchor tag. To do this, one needs to specify the

URL (uniform resource locator)
5
 of the target web page as an attribute of the

anchor tag.

The above brief description of HTML exemplifies some of the main ingredients

of syntactic web, i.e., a collection of documents (web pages), a unique scheme to

identify these documents (URLs), and the linkage among them (hyperlinks)
6
. The

role of HTML in a syntactic web is just to describe the presentation of web pages.

It describes what part of a document is the header, what part is a paragraph, etc.; it

does not know anything about the content of the document.

In syntactic web, it is the people, not computers, who take care of linkage and

interpretation of contents. In order to get computers to do the work, a paradigm

shift has already started to occur from syntactic web to semantic web. The current

syntactic web is a web of unstructured documents. The semantic web, however, is

a web of structured and semantic documents. The term semantic web was

introduced by Tim Berners-Lee (2001), the inventor of World Wide Web and the

director of World Wide Web Consortium (W3C). The movement to create

semantic web is currently led by the W3C, where the aim of the movement is to

develop the technology required to create semantic content for web pages.

The most basic task in creating semantic content is to encode textual data in a way

that can be interpreted by computers. The eXtensible Markup Language (XML)

(W3C, 2006) is a very popular tool used for such a purpose. It is designed to

represent data in a way that is both human and machine readable. XML structures

a document by wrapping data in tags. Like HTML, tags are defined by angle

brackets. The main difference between HTML and XML tags, however, is that the

tags in the former are predefined and mark up the presentation of the document,

5
 URL is a character string that indicates the location of a resource on the internet.

6
 A hyperlink is a direct reference to a document or data that the reader can follow.

24

whereas the tags in the latter are user defined and mark up the data within the

document.

XML lies at the first level of the hierarchy of languages being developed for

semantic web. XML can be used to define the semantics of the data that is

embedded in an HTML webpage. However, only the creator of an XML marked

data is aware of the meanings of the tags; XML by itself does not have any means

to share the semantics of tags. A higher level language is required to actually

define the semantics of tags in XML so that they can be shared among different

agents. This goal can be partially achieved by using the XML Schema language,

XSD (W3C, 2012); it is a language that describes the structure of XML

documents.

It is possible to enforce consistency among a set of XML documents by

committing to an XSD schema. This works well for agents in a stable and

specialized community who want to share XML documents for some special

purposes, for example, as in the case of ICDs. However, using XML/XSD

technology alone falls short of meeting the ultimate goal of semantic web, which

is to allow sharing of information across all applications and all community

boundaries. Such a goal requires a more expressive language than XSD. W3C‟s

Web Ontology Language, OWL (Horrocks et al., 2003) is the most recent attempt

in designing such a general purpose and expressive language.

2.3 Ontologies

Ontology as a philosophical discipline is the systematic study of being, whereas

an ontology as an engineering artifact is a vocabulary that describes the concepts

in a certain domain as well as the explicit assumptions about the intended

meaning of the concepts.

In engineering, ontologies act as a specification mechanism. “an ontology is an

explicit specification of a conceptualization.” (Gruber, 1995). The set of objects

25

that can be formally represented in a domain are called its universe of discourse.

These objects and the relationships among them constitute an ontology, i.e., a

vocabulary, which can be used by a knowledge representation program. The

definition of the terms in an ontology specifies the meanings of the objects in a

universe of discourse, and the specification of the relationships among the terms

guarantees precise use of these terms.

2.3.1 The purpose of ontologies

The main thrust for the development of ontologies has been knowledge sharing

and reuse. Similar to software engineering, knowledge components can be reused

instead of building a new knowledge base from scratch (Neches et al., 1991). The

two main challenges to be met in doing so are the lexical mismatches and the

semantic problems among knowledge bases. Lexical problems emerge when

different knowledge bases use different terminologies to represent the same

concept. Semantic problems occur when the same term implies different meanings

in different contexts. Ontologies constitute a dictionary to solve lexical and

semantic problems in knowledge sharing (Gomez-Perez, 1997).

An ontology should be expressed by domain independent and machine readable

languages. When agents, e.g., computer systems, share knowledge with others,

they should commit to the terms and their meanings specified by the ontology.

Ontological commitment means observable actions of an agent must be consistent

with the definitions in the ontology (Gruber, 1995).

Ontologies can be classified based on the level of formality with which they are

defined. An informal ontology is described by natural languages, whereas a

formal ontology is codified by a formal and machine readable language. The most

notable ontology representation language is OWL, but less expressive languages

such as XSD can also be used to define simpler ontologies (Klein et al., 2000).

26

Depending on how they are intended to be used, ontologies can also be classified

into different types (Gomez-Perez, 1997). There are several ontology categories

that are defined in the literature, but the one that is related to this thesis is the

domain ontology. Domain ontologies establish a vocabulary that describes the

terms related to a specific domain, for example, medical domain, etc.

Domain ontologies can be used in different ways. Uschold and Gruninger (1996)

identified three possible uses for domain ontologies: communication among

organizations, interoperability among software systems, and systems engineering

benefits. The usage of ontologies in systems engineering is more intended for

design time issues. They provide a shared understanding of a system‟s domain. In

this thesis we propose a domain ontology that captures the semantics of interfaces

and improves the sharing of ICD information.

2.3.2 Ontologies in engineering design

The use of ontologies to solve knowledge sharing problems in engineering has

been diverse. A complete account of all applications of ontologies to solve

different engineering problems does not concern this thesis as many of such

applications are not highly relevant to the subject of interface control. For a

review of recent applications of ontologies in mechanical engineering, the reader

can refer to Liu and Lim (2011).

2.3.3 Port ontologies for conceptual design

In engineering design, ontologies have been used to formalize knowledge during

conceptual design of components (Horvath et al., 1998; Kitamura and Mizoguchi,

2003), to partition components into modules based on the semantic similarities of

port functions (Cao and Fu, 2011; Cao et al., 2009), and to share the information

of CAD assembly models (Kim et al., 2006; Patil et al., 2005).

Ontologies have also been proposed to support incremental refinement of design

decisions made during conceptual design as proposed by Liang and Paredis

27

(2004). Their proposed ontology contained classes to define ports and their

attributes. They suggested that port attributes should be defined by taking into

account different design perspectives: form, function and behavior. In this thesis,

a similar, but broadened ontology is proposed that is useful for interface control.

Liang and Paredis‟ work was only aimed at the issues that arise in conceptual

design, whereas this thesis uses an ontology, firstly, to semantically describe the

interactions of subsystems in ICDs, and secondly, to semantically define the

actions that designers must take to fix violated interfaces.

There are many technical issues in the use of an ontology for interface control that

need to be addressed before it can be successfully used for such a purpose. One is

how to ensure the interface definitions that come from different sources are

actually consistent with the ontology. This thesis addresses these issues by

proposing a software architecture that is responsible for checking completeness

and correctness of interface definitions.

2.4 Summary

Port based representation is one of the most widely used methods to represent

interfaces in HW/SW engineering. Port based representation has recently come to

more prominence even in mechanical engineering. Ports are now included as

features in the core product model that is proposed by the National Institute of

Standards and Technology (NIST) (Fenves et al., 2004).

Port based representation of component interactions is more useful for a top down

design process than a bottom-up process. ICDs are artifacts of a top-down design

process. As such, this thesis prescribes a generic port based representation for

interface definitions. It is assumed in this thesis that ICDs are written for

subsystems that are well encapsulated. Such subsystems exclusively interact with

each other through ports.

28

Encapsulation is a good design practice that improves reusability and

maintainability of components, even though it is not as widespread in mechanical

engineering as in software engineering. This may be because the emphasis in

mechanical engineering is more on the design of forms than functions, which are

probably harder to encapsulate.

ICDs can be made machine readable by using available technology. The XML

language is the current standard for information transfer on the web. XML is used

in this thesis to define machine readable interface definitions. The structures and

definitions of the tags in XML documents can be defined by XSD language. XSD

is used to actually get different agents to agree and commit to a specific group of

tags used to create an XML document; hence, XSD is used in this thesis to define

the interface ontology. The expressive power of XSD is enough to represent the

ontology that is defined within the boundaries of this thesis.

The next chapter proposes a formal interface representation model for ICDs. The

model can uniformly be applied to different physical domains such as mechanical

and electrical interfaces. After defining the formal model, an ontology that defines

the semantics of interfaces is presented. The use of the ontology is very important

in enabling information sharing and in tracking the incompatibilities of interfaces.

29

3 INTERFACE REPRESENTATION MODEL

A formal model for interface definition is the first step to have ICDs managed by

computers. This chapter presents an interface representation model that can be

used to create computerized ICDs as it is expressible by a computer readable

language, e.g., XML.

Before proposing the interface representation model, it is necessary to make a

distinction between the concept of component
7
 and the concept of interface.

Unlike a component, an interface is not an independent entity; it occurs as a result

of the interaction of the boundaries of two components; hence, a component

always exists independently of how and where it is used, but an interface exists

only if two components interact.

Both components and interfaces in a system can be described by mathematical

models. A component model usually uses a set of differential and algebraic

equations that describe the component‟s behavior. An interface model, on the

other hand, exclusively describes the compatibility of component boundaries at

any point of interaction. Interface models consider components as black boxes

whereas component models consider them as white boxes. The internal structure

of the components in an interface model should entirely be hidden; only the

interacting boundaries of components should be visible in the interface model.

This differentiation between component models and interface models contrasts the

essence of interface control as opposed to component design.

An interface between two components can be established if their peripheral

properties are compatible at the virtual plane at which their boundaries come

together. For this to happen, the peripheral properties of the two components must

satisfy a given compatibility relationship. Figure 3.1 illustrates this concept. The x

7
 The terms component and subsystem are used interchangeably in this thesis.

30

and y symbols in the figure represent two peripheral properties of components c1

and c2. The symbol is a relational operator that defines the

compatibility relationship x y+δ. The semantics of the relational operators

depends on the properties they relate. The semantics of these operators is clear for

simple real valued properties.

The areas of a component‟s boundary through which it interacts with other

components are called ports. The component‟s peripheral properties that take part

in interactions are delegated to ports and called port attributes. In each interface,

the attributes of one port are related to the attributes of another port. For example,

x and y in Figure 3.1 are port attributes of c1 and c2, respectively.

Figure ‎3.1: Interaction of two component boundaries.

As can be seen in Figure 3.1, a component in the interface model is analogous to

an area; its boundary is analogous to a curve that surrounds this area; and a point

on the curve is analogous to a port. A point cannot come into contact with more

than one point; the same is true for ports. This means that in the interface model,

all port to port interactions between components are independent.

In this thesis, an object oriented notation is used to define ports and their

attributes. In this notation, different types of ports are represented by different

classes. A class in object oriented terminology is an abstract representation of a

group of individuals, called objects, which share common attributes.

c1 c2

x y+δ

x y

31

Objects of a class are defined by assigning different values to the set of attributes

that are defined by the class. For example, the concept of pin_port defines a class.

All objects that belong to this class have a cylindrical shape that can be minimally

described by a diameter and a length attribute. This class can be instantiated to

different objects by assigning different values to these attributes; that is, different

objects of the pin_port class have different diameters and lengths.

In general, attributes can be quantitative or qualitative. In the domain of physical

interfaces, we are mainly interested in quantitative attributes. Quantitative

attributes can be measured by numbers; hence, they have a magnitude and a unit

of measure. The diameter of a pin is an example of a quantitative attribute.

The semantics of the attributes can be defined by using fully qualified names. The

unqualified names of the attributes need not be different. For example, we can

have the hole_port class whose attributes have the following unqualified names:

diameter and length. We can also have the pin_port class whose attributes have

the same unqualified names, i.e., diameter and length. The difference between the

attributes of two classes becomes clear when the fully qualified names of the

attributes are considered. For example, one talks about the diameter of a pin port

and the diameter of a hole port, not just the diameter. In this regard, the diameter

of a pin port and the diameter of a hole port are two different attributes.

Qualified names also distinguish different classes since two different classes may

have the same unqualified name. For example, it is possible to have the pin_port

class and the pin_componet class, which have the same unqualified name, i.e.,

pin. However, the former defines a class of ports whereas the latter defines a class

of components. These two classes are related though; the pin port class is a part of

the pin component class. Since this thesis is mostly concerned with port classes,

the _port postfix is dropped in the majority of cases. In the discussions that

follow, fully qualified names are avoided as much as possible to simplify the text.

32

3.1 Interface formalism

Definition 1. Let P and Q be two port classes and and be two

objects of these classes. An object compatibility relationship between p and

q is the set of binary constraints over a subset of the attributes of p and a subset of

the attributes of q. Each constraint in relates an attribute of p to exactly one

commensurable attribute of q.

Let and be the set of attribute symbols of P and Q, respectively. The

attribute symbols of p and q are also chosen from and . Each attribute

 has a domain from which its value can be chosen. Further, let

 and . Note that | | | | . An

object compatibility relationship between p and q can be formally defined as

follows:

 〈 〉 |

 (3.1)

in which is a pair of commensurable attribute symbols of p and q, and R is

a relation that is called a constraint over , which can be denoted as
 or

 . This view of compatibility relationships is analogous to the concept of a

binary constraint network (Dechter, 2003). The binary network here is composed

of the relationships between the attributes of p and q. The domain of attributes in

the case of physical interfaces is usually the set of real numbers ; hence,

 .

When the same compatibility relationship is defined for all and

 , it is called a class compatibility relationship .

In physical interfaces,
 usually relates two real valued attributes and

that can be defined by using a relational operator and positive

constants and , e.g., .

33

Port objects are specified by assigning values to their attributes. This is called an

instantiation. Let be a variable assignment that assigns a value to an

attribute of p from its domain . Port objects p and q are instantiated from their

class P and Q by assigning values to their attributes.

Definition 2. Two port objects p and q are compatible with regard to an object

compatibility relationship if 〈 〉 〈 〉 .

Likewise, two port objects p and q are compatible with regard to a class

compatibility relationship if 〈 〉 〈 〉 .

Note that deciding whether two ports are compatible or not requires two sources

of information: a compatibility relationship (for classes or objects) and a value

assignment. Due to the latter, it does not make sense to say two port classes are

compatible because attributes in classes are unassigned; so, it only makes sense to

say two port objects are compatible with regard to either an object or a class

(universal) compatibility relationship.

The above definitions correspond to the two-sided view of interfaces that is

mentioned in § 1.3.3. Recall that there can be a one-sided view of interfaces too. A

one-sided interface view can be regarded as a set of constraints on the attributes of

a single port.

Definition 3. An object requirement for a port object p is the set of unary

constraints over its attributes.

 〈 〉 | (3.2)

In the above definition, the relation R simply specifies a subset of the domain of x.

For real valued attributes, each unary constraint in specifies an interval of real

numbers.

34

When the same requirement is defined for all , it is called a class

requirement .

Definition 4. A port object p is eligible with regard to an object requirement

if 〈 〉 . Likewise, A port object p is eligible with regard to

a class requirement if 〈 〉 .

The interface formalism presented so far defines compatibility relationships

between ports as a set of binary and independent constraints between their

attributes. The interface model that is based on this formalism considers

subsystems as black boxes with entirely invisible internal design. In this model,

interfaces are regarded as port to port interactions as shown in Figure 3.2. Note

that interfaces between a set of subsystems are defined by considering two of

them at a time. This is expected because ICDs themselves define interfaces

between every pair of subsystems. The purpose of ICDs, and therefore the

interface model proposed here, is to control the design of interfaces, not to

provide a system wide model that describes system behavior. In this regard, ICDs

should not be confused with assembly models, system wide block diagrams, etc.,

that show the overall system view or behavior.

Figure ‎3.2: Interfaces as port to port interactions (binary) between two

subsystems at a time.

35

The aforementioned interface model can be used to define all types of physical

interfaces between subsystems. We postulate that all physical interfaces can be

defined based on the binary constraints among port attributes if subsystems are

well encapsulated (black boxes).

The example shown in Figure 3.3 is intended to make the idea of black box

encapsulation clear even though it is a purely mechanical example that may not

need an ICD. The figure shows three components: a rectangular bar and two discs.

Components c1 and c2 interact through ports p1 and q. Components c1 and c3

interact through ports p2 and r. The interaction between p2 and r may seem

unrealistic, but this is not the point of this example. The point is to show that in

black box encapsulation, an interface can be defined by a set of independent

binary constraints.

Figure ‎3.3: Black box interface formulation.

The interface model that is proposed in this chapter strictly considers interfaces as

the places where the boundaries of two components come together; hence, the

interface between p1 and q is different than the interface between p2 and r. P1 and

q are collections of four rectangular surface segments, whereas p2 and r are

collections of four line segments.

36

Assume that the side lengths of the rectangular cross sections at p1, p2, and q are

all denoted by unqualified attribute names a and b. Further assume the diagonal of

the rectangular and circular cross sections at p2 and r are both denoted by the

unqualified name dg. Let us use the dotted notation p.t to refer to the qualified

name of the attribute t of a port p. With this notation, the compatibility

relationships in this example can be written as:

which represents a set of linear, binary, and independent inequalities
8
 as each pair

of attributes appear in only one inequality. Constants , , and in the above

inequalities represent the fit tolerances between the ports. In the above example, it

is tempting to relate a, b and dg together because by looking at Figure 3.3 one can

see that p1 and p2 actually have the same dimensions, that is,

 |√ |

However, the above equation should be avoided in a well encapsulated interface

model because we can only be aware of the above equation by seeing the overall

shape of c1, which we could not see if it was a black box. The interface model

needs to know that p2‟s attribute is p2.dg, but it should not know how dg is

actually calculated from component c1. The latter is the responsibility of the

component designer, not the ICD. Therefore, the compatibility relationships in a

well encapsulated system can be represented by a set of binary, independent, and

linear inequalities.

Object requirements in Figure 3.3 can be formulated by specifying the convex real

intervals from which the values of the port attributes can be chosen, for example

8
 If necessary, the above binary constraints can also be defined as ,

which is still a binary constraint between p.x and q.y. Using one relational operator is for brevity.

37

in which represents a dimensional tolerance for p1.a.

In general, by using black box encapsulation, the compatibility constraints

between port attributes can be formulated as

 (3.3)

in which is a positive number. Port requirements can be formulated as

 (3.4)

The inequalities defined by (3.3) and (3.4) only tell us whether the ports of each

pair of components are compatible. They do not tell us whether the entire

assembly model shown in Figure 3.3 can actually work. The latter question can

only be answered if the entire design of components, e.g., their shapes, is known.

When put together, the components‟ boundaries may unintentionally interact, i.e.,

interfere. This is not, however, a question that can be answered by an interface

model. Interface definitions are analogous to assembly mating constraints. Mating

constraints only show how each pair of components are connected. They cannot

guarantee that there would be no interferences between components after they are

mated.

3.2 Function attributes

The example given in the previous section only illustrates compatibility

relationships between form features. In cases where only form features are

concerned, an assembly model is usually enough to show the interactions; there is

no need to write ICDs for such cases. There is a lot of information, however, that

cannot be captured by assembly models for which writing ICDs is justified.

38

In some cases, for example, in a large number of electrical and electronic

connections, form attributes have less significance compared to the attributes that

define the function of a port. In fact electrical interfaces are sometimes called

functional interfaces in contrast with mechanical interfaces (Lalli et al., 1997).

Function attributes can be represented by verb-flow pairs, as defined in

“functional basis” (Hirtz et al., 2002). The verbs that most relevantly describe the

functions of components at interconnections are support, connect and channel.

Support function means the component is intended to secure or position a flow

into a defined location. Connect function means the component is intended to

bring some flows together. The most frequently used subfunctions of „connect‟

are join and link. Channel function means the component causes a flow to move

from one place to another. The most frequently used subfunctions of „channel‟ are

transport and transmit. All flows are subclasses of Signal, Material, and Energy

classes.

The primary purpose of “functional basis” was to classify the functionality of

components in product design. The same scheme can also be used classify the

functionality of interfaces if the subtle difference between the functionality of

components and interfaces is understood. The functionality of an interface is

always a two sided phenomenon; two ports with the same function constitute the

functionality of an interface.

Like forms, flows can also be described by flow attributes. To specify an energy

flow, the attributes that describe the transmission of power should be given. For

example, voltage and power are the two most general attributes of an electrical

energy flow. To specify a signal flow, the attributes that describe the waveform

should be given. To specify a material flow, the attributes that describe the

transport of material should be given. The three generic flow classes, i.e.,

material, energy, signal, can be hierarchically divided into more specific

subclasses as shown in Figure 3.4 to semantically define different types of flow.

39

Figure ‎3.4: Flow hierarchy.

3.3 Aggregate ports

In some instances, multiple ports are grouped together into a single package that

provides an interaction point on a subsystem boundary. These ports are called

aggregate ports. Note that in addition to ports, form and functions can also be

aggregates.

To correctly connect two aggregate ports, the entire collection of subports in one

port must correctly match with that of the other. For this to happen, the subports

in the two connecting aggregate ports must have the correct order. As such, a

generic method to formulate aggregation constraints between aggregate ports is

needed. An example of an aggregate port is shown in Figure 3.5. This thesis only

considers 2D aggregate ports since it is rare to see a 3D arrangement of ports.

Figure ‎3.5: An aggregate port that is composed of six circular hole subports.

40

Following is a description of an aggregate port matching method that can be

applied to any 2D arrangement of subports, if the centers and orientations of

subports‟ in the 2D plane can be defined unambiguously. One group of shapes

that satisfies this condition and most frequently happens in 2D arrangements is a

regular polygon. Note that a circle is also a regular polygon with an infinite

number of sides.

To check whether two 2D arrangements of subports match with each other, three

tests are needed. The first test is to check whether the sets of center points of the

polygons are congruent. The second test is to check whether at each coincidence

between the centers, the shapes of the corresponding subports have the correct

orientations and dimensions. The last test is to check whether at each coincidence

between the centers, the functions of the corresponding subports are the same.

To consistently do the above tests, the subports in aggregate ports must be

ordered. Two aggregate ports match if there is one-to-one mapping between their

subports according to the given order. Defining a consistent method for subport

ordering and checking the congruency between the center points of the elements

of two aggregate ports are closely related issues.

The problem of finding the congruency of two sets of points can be regarded as a

simplified version of the problem of finding congruency between two planar

figures (Atallah, 1984). Two planar sets of points are congruent if one can be

made coincident with another by a translation or a rotation. If two sets of points

are coincident, their centroids
9
 must be coincident too. Therefore, to align one set

of points to another, we can first do a translation to make the centroids of the two

sets coincident, and then rotate them around the centroid to make all individual

points coincident. This means that the congruency of two sets of points can be

checked by placing their coordinate frames at their centroids and finding out if

one set is a rotated version of the other.

9
 The centroid C of a set of points Di is defined by ∑

⃗⃗ ⃗⃗⃗⃗ ⃗
 ⃗ .

41

Let A and B be two planar sets of points that represent the center points that

belong to the subports of two aggregate ports p and q, respectively. The

congruency between A and B can be decided if the points in A and B are defined

in polar coordinate systems with the poles Cp and Cq placed at the centroids of A

and B, respectively. The position of the polar axes can be arbitrarily chosen to go

through a point in A and B. We also assume that the sets of points in A and B are

viewed from the outside of their corresponding subsystems, that is, the z axes of

the aggregate ports point away from the subsystems.

If p and q are compatible, the set of points defined by A and B must be oppositely

congruent. Opposite congruence means a mirrored version of the points in A,

denoted by , is directly congruent to the points in B. is obtained by reflecting

the points of A relative to an arbitrary axis in its plane, e.g., the polar axis of A.

The reflection about the polar axis is easily obtainable by the replacement

 , where is the angular coordinate.

Let be partitioned into classes

 , where
 is the set of points that have

the same radial coordinate , and . B is partitioned into in the

same manner. If , or if for some , |
 | | |, then and B cannot be

congruent; otherwise, they are congruent if the points in are a rotated version of

the points in B.

To check whether is a rotated version of B, suppose that the polar axis L1 for

all points in goes through an arbitrary point in
 . Suppose also that the polar

axis L2 for all points in B also goes through an arbitrary point in . Let

 be a string that represents the sequence of relative angular

displacements of the points in
 . Likewise, represents the

relative angular displacements of . These two partitions are a rotated version of

each other if is a cyclic shift of , which is true if is a substring of .

42

The relative rotation from
 to can be computed by finding the index by

which occurs in . The set
 can be obtained from by the relative rotation

 for . For example in Figure 3.6, if

 , then is a cyclic shift of with

 and . and B are congruent if the same relative rotation

holds between all other partitions
 and .

Figure ‎3.6: Congruency checking between the points in (left) and (right).

With the above algorithm at hand, it is possible to generically check whether two

aggregate ports have the correct order of subports. The constraints between the

two patterns can be represented in the compact form p.order = q.order, in which

the attribute „order‟ abstracts the ordering of the ports defined based on the

partitioning method mentioned in the above algorithm, and „=‟ operator signifies

that the positions, orientations, dimensions, and functions of the subports of p and

q must match.

3.4 Interface Semantics

The attributive interface representation described in this chapter is clearly

computer manageable; constraints are formally defined and ports as well as their

attributes are represented in an object oriented model. However, a symbolic

43

representation of attributes by itself cannot enable information sharing in a

collaborative environment. Identifying attributes in the form of x and y by one

organization is often meaningless to the designers of another organization.

Interface control documents are meant to be shared. To share any interface control

document, the semantics of the terms used in it should be known to its users. This

applies to the formal interface representation model presented in § 3.1 too. The

interface model addresses the issue of compatibility between ports, but the model

works if interface definitions that come from different sources are consistent, that

is, defined using the same terminology. The semantics of ports and their attributes

should be known before the interface model is shared by different organizations.

Information sharing between design teams who share interface definitions can be

improved by using an ontology. The ontology can be organized based on the

framework that has been discussed so far in this chapter, that is, to define the port

classes based on their form and function attributes. This framework actually sets

the architecture of the ontology. It makes the ontology objective. The top layer of

Figure 3.7 shows the architecture of the ontology that can be used for interface

control.

3.4.1 Ontological concepts

Any concept in the ontology must adhere to the architecture shown in Figure 3.7.

Based on the figure, any port in the ontology is conceptualized in terms of its

form and function attributes. A port must also have a coordinate frame. It has

already been seen why coordinate frames are important: to define the ordering of

subports relative to each other in aggregate ports. The coordinate frame of a port

is equivalent to the coordinate frame of its form.

The domain ontology that is illustrated in Figure 3.7 can be a vast layer. The

concepts in the domain ontology reflect the terminology that is used in a target

domain, e.g., a flight simulator domain, an aircraft domain, etc. All concepts in

44

the domain ontology are instances of the concepts set by the ontology

architecture. For example, one can define a USB port, a coupling port, etc., as

instances of the port concept. These port instances must define what form and

verb-flow attributes they are going to have.

Figure ‎3.7: A partial port ontology.

Form and verb-flow attributes are chosen from the form and verb-flow instances

that are available in the domain ontology. For example, one can define

Coupling_Port as an instance of port that has a pattern of Hole as an instance of

form. Hole has Diameter as an instance of Length physical quantity.

45

The physical quantity class shown in Figure 3.7 plays a pivotal role in checking

commensurability of attributes in physical interfaces. Any form or flow attribute is

eventually described by some physical quantities, which have a magnitude, a unit

of measure, and a physical dimension. For example, a hole can have a hole-depth,

which has the physical dimension of length (L). Any two attributes that have the

same physical dimension are commensurable; hence, they can be related by a

constraint.

The bottom layer that is shown in Figure 3.7 is not an ontology layer; it is where

individuals are defined. Individuals are instances of the concepts in the domain

ontology. The distinction between the concepts in the domain ontology and

individuals can be subtle in some cases, but the distinction is clear in the ontology

that is presented in this thesis. The concepts in the domain ontology are classes,

whereas individuals are objects of these classes.

3.4.2 Ontological relationships

An ontology is not merely a collection of concepts; it also shows the relationships

among concepts. A formal ontology should rigorously define all relationships

among concepts. The relationships in ontologies are called properties. The arrows

in Figure 3.7 represent the properties that exist in the port ontology, all of which

are subproperties of has-a and is-a generic properties. Has-a property represents

an ownership relationship whereas is-a property represents a subclass

relationship.

For simplicity, the exact names of properties are not shown in Figure 3.7, but they

can be easily understood from the context. For example, the property that maps

the port class to the form class can be understood as has_form property of the port

class. When shown with an asterisk, has-a property represents an aggregation.

It should be stated here that providing a full scale domain ontology is not the

intention of this thesis. Such an ontology would indeed be extremely large; it is

46

not a goal that can be achieved by a single person or even a group of experts.

Developing a large ontology may even need the use of mass collaboration tools,

such as a Wiki technology (Hepp et al., 2007; Wongthongtham et al., 2009). What

this thesis intends to do, however, is to show how the ontology can be used to

control interfaces by computers.

3.4.3 Semantic representation of constraints

The semantics of compatibility relationships represented by (3.1) and (3.2) is

defined by choosing class symbols from the domain ontology. To elaborate how

interface constraints can be semantically represented, let C(x) be a predicate that

holds if x is an instance of class C, and P(x , y) be a predicate that holds if x is

mapped to y by property P. If x is a variable, it is prefixed with a question mark as

?x. P and C are chosen from a port ontology.

A class requirement has the following generic form:

 (3.5)

in which is a predicate that holds if a constraint on attribute is satisfied. For

example, if is required to be a constant, is written as

 . has either of the two following forms:

 (3.6)

or

 (3.7)

A class compatibility constraint between two attributes has the following generic

form:

http://collaboration.wikia.com/wiki/Computer-supported_collaboration
http://collaboration.wikia.com/wiki/Collaboration_tool

47

 (3.8)

in which defines a compatibility constraint on two commensurable attributes

and . For example, if has to be less than , then .

3.5 Summary

This chapter has provided a formal interface representation model in terms of

compatibility constraints among ports of two components. The interface model

treats components as black boxes. It is shown later in Chapter 5 that this interface

model can actually be expressed by a computer readable language such as XML

and create computerized ICDs.

This chapter has also discussed what sources of information should be used to

define port attributes. Any port can be specified by defining its form, function,

and fit. Forms are specified by form attributes. Functions are specified by pairs of

verb-flow attributes. Specification of flows constitutes the most important part of

a port‟s functional information in interface definitions. The fit of an interface is

defined based on the compatibility constraints between port attributes. The

specification of form, verb-flow, and fit can describe a large number of physical

interfaces.

Finally, this chapter has shown how the semantics of the ICDs should be defined

so that they can be shared among different organizations. Interface semantics is

captured by an ontology that provides a vocabulary to define ports, forms, and

verb-flows.

The next chapter describes how violations of semantic constraints can be checked

and traced by a knowledge base. Tracing the violations in a meaningful manner

speeds up collaboration. A meaningful manner means that the exact location and

48

cause of the violation should be reported to designers. In this way the designers

know what exactly needs to be done to fix the problem.

49

4 INTERFACE CONTROL

This chapter presents a control mechanism that can be used by a piece of software

to check the status of interfaces. The software operates on semantic interface data.

In this chapter, first, the control functionality of the software is formally

presented. Next, a possible architecture for the interface control software is

proposed.

Interface control software needs to check the consistency and compatibility of

interface definitions. The former requires binding the software to an ontology to

ensure the interface definitions that come from different sources are consistent,

i.e., correct and complete. The latter requires a checking mechanism that detects

errors in the value assignments to port attributes. This chapter discusses the

mechanism that is used for compatibility checking. The consistency checking

functionality is mainly discussed in the next chapter where the details of the

ontology binding mechanism are given.

4.1 Control10 mechanism

One of the main purposes of interface control processes is to ensure compatibility

of interface definitions. Interface control software should play the same role. Such

software is primarily a checker, i.e., a detective tool, not a corrective tool. This

means that interface control software cannot decide a value for a port attribute, for

example, by trying to find a solution for interface constraints. Such an assignment

is almost certainly meaningless to component designers because interface

constraints are just a part of the information that is needed for the design of

components, not all of it. Port attribute values should be assigned by component

designers based on both component design criteria and interface constraints. What

10

 The use of the term “control” here is due to its widespread use since otherwise ICDs are

reference documents that are used to check the status of interfaces; hence “checking mechanism”

would be a better term in this context.

50

the interface control software can do is to ensure value assignments by

collaborative component designers do not violate interface constraints.

The first thing that can be checked is to ensure a user does not carelessly define a

bad constraint. Suppose two attributes x and y are constrained by the following

compatibility and requirement constraints:

The above formulation is satisfiable if

 .

This test still focuses on the definition of constraints, not the value assignment to

port attributes during subsystem design. It should be done immediately when the

user defines the constraints, that is, before the constraints are used for

compatibility checking.

A compatibility checking mechanism checks whether the value assignments to

port attributes are legitimate. Figure 4.1 illustrates the compatibility checking

mechanism that is used in this thesis. The figure illustrates a port requirement and

two compatibility constraints, which are going to be monitored by interface

control software. Any value assignment to a port attribute that violates a

constraint is reported to designers in a traceable and meaningful manner.

Violations of requirement and compatibility constraints are recorded in a traceable

way as illustrated in Figure 4.1. To record a requirement violation, two elements

are needed: a port identifier and a requirement constraint identifier. An error

message is created based on the requirement constraint identifier and added to the

list of errors maintained by the port. To record a compatibility violation, three

elements are needed: two port identifiers and a compatibility constraint identifier.

51

An error message is created based on the compatibility constraint identifier and

added to the error lists maintained by both ports.

Figure ‎4.1: Illustration of the interface control method. Rxy is an identifier for the

constraint over {x , y}.

The essence of any interface control statement in Figure 4.1 is to record a

violation message if a constraint is violated. This means that any interface control

statement is actually a rule. It is critical to note that interface control rules can by

no means be predefined in any piece of software or program. The user should be

free to define a constraint that better suits his design needs. Therefore, interface

control rules should be arbitrarily defined outside of any software that operates on

them. They can be defined in a rule based knowledge base and managed by rule

engines. Such a collection of interface control rules in this thesis is called an

interface control knowledge base, or simply interface knowledge base.

s2:Subsystem

pm:Port

x1

x2

x3

.

.

xj

s1:Subsystem

pn:Port

y1

y2

y3

.

.

yk

Requirement: {⟨s2.pm.x1 ≤ Constant⟩ , …}

Compatibility: {⟨s2.pm.x1 = s1.pn.y1⟩ , ⟨s2.pm.x2 = s1.pn.y2⟩ , …}

Control: Record (pm , “violation of Rx1”)

Record (pn , pm , “violation of Rx1y1”)

Record (pn , pm , “violation of Rx2y2”)

Attributes

52

Equations (3.5) and (3.8) can be used to define the generic forms of interface

control rules in the interface knowledge base. Each constraint that corresponds to

these equations forms the left hand side (LHS) of an interface control rule; so, any

interface control rule has either of the two following generic forms:

 (4.1)

or

 (4.2)

which indicates an action must be taken when a constraint is violated; hence,

and appear in complementary forms.

One can observe that the LHS of (4.1) and (4.2) consists of two parts: the one that

defines the context C in which the attributes are defined and the one that defines

the constraint itself; so, for the sake of an analysis of the rules, they can be

simplified as:

 (4.3)

 (4.4)

The context specification and the attribute symbols in the above formulas can be

removed by using indices that uniquely identify each attribute; so, (4.3) and (4.4)

can be rewritten as and , respectively. In this way, we

also do not need to distinguish a port requirement from a compatibility constraint,

since can be used in place of . Therefore, an interface control rule can be

simply denoted as:

53

 (4.5)

The negative rules per (4.5) specify what actions must be taken if a constraint is

violated. As illustrated in Figure 4.1, an action can be the recording of violation

message for a given port. A port may have several error messages if several

constraints are violated. This makes it necessary to maintain an error list for every

port in the system. A port must also have an error flag that alerts designers

whenever its constraints are violated. The error flag indicates an unresolved status

for the port if the error list associated with the port is not empty; otherwise, it

indicates a resolved status for the port.

Let be the list of error messages that is maintained for port p. An action h in

(4.5) means adding an error message s to . This can be stated as

 . Since every h changes the content of , the reverse of h must also be added

as a rule to the interface knowledge base to delete the error message whenever the

interface constraint becomes satisfied again. This means that the positive rule

 must also accompany its negative counterpart in the knowledge base,

where
 .

Let n be the total number of constraints that are defined between ports p and q.

The interface control knowledge pertinent to p and q can be represented by the

following set of rules:

(4.6)

54

4.2 Analysis of the interface knowledge

A knowledge base that is a collection of rules is called a rule based system. A rule

based system should be verified with regard to the redundancy, subsumption,

determinism, reducibility, and completeness of the knowledge it represents

(Ligeza, 2006).

A rule based system is redundant if after removing some of the rules in , a

new rule based system is obtained that behaves exactly as . Evidently, the

system represented by (4.6) is not redundant. In practice, the users may make the

system redundant by defining identical rules. Identical rules should be disallowed

by the interface control software.

Subsumption means that there is a rule that has either a more general precondition

or a more specific conclusion than another similar rule. Because all constraints are

independent, all interface control rules defined by (4.6) are independent; so, the

only occasion in which subsumption may occur is when there are two rules such

that the LHS of one rule is a class compatibility/requirement constraint and

the LHS of the other rule is an object compatibility/requirement . When a class

rule is defined, the object rules with the same LHS should be disallowed.

Determinism issues are mainly caused by the existence of ambiguous rules.

Ambiguous rules have the same preconditions, but different conclusions. The

system represented by (4.6) is not ambiguous. The interface control software

automatically assigns the right hand side (RHS) of the rules itself; so, there is no

way for the users to define ambiguous rules.

Reducing a rule based system means there are some rules that can be combined

into a single equivalent rule. The system represented by (4.6) is not reducible,

again because all individual rules are independent.

55

A rule based system is logically complete if the disjunction of all LHSs of its rules

is a tautology. This means that every possible input condition satisfies the LHS of

at least one rule. It can be observed that the interface control system represented

by (4.6) is logically complete. It is composed of pairs of complementary rules; so,

the disjunction of all LHSs is a tautology:

 .

4.3 Interface control software architecture

In the absence of a computer based methodology, an interface control process that

uses ICDs is done manually. Designers must consult ICDs to ensure what they

design is compatible to the rest of the system. Computers however can make this

process faster and less erroneous. The aforementioned interface control

knowledge base can be managed by interface control software, which is a piece of

software that has the following use cases:

U1. it controls the status of interfaces during collaborative product

development.

U2. it allows easy creation and modification of interface knowledge base.

The first use case means the software architecture should facilitate

communication of interface violations to designers in a collaborative

environment. The second use case means the software should provide some

means for the users to specify interface control rules, i.e., it should have a

convenient graphical user interface (GUI). The first use case is more an

architectural issue for the software whereas the second use case is more an

implementation issue.

A collaborative system that is used for product development should provide

mechanisms for communications among distributed organizations. In document

based interface control, the means of communication can be emails, video

56

conferences and/or meetings. In computer aided interface control, the means of

communication can be a co-design software architecture that allows synchronized

modification of interface data and automatic tracking of interface violations.

In a synchronized co-design system, designers are allowed to work on the same

model (Li and Qiu, 2006). Synchronization ensures changes to the model data are

done safely. In a synchronous system, design tasks are scheduled by using control

tokens. A designer may modify a file once he has obtained the control token for

that file. When his task is complete, the control token is free to be taken by other

designers.

Figure 4.2 shows a software architecture that can be used for collaborative

interface control. Software that has this architecture operates on interface

specifications and rules to fulfill use cases U1 and U2. User actions in Figure 4.2

are shown with dashed arrows. The rest of the arrows represent system actions. As

can be seen in the figure, the architecture has a server and client. The server

maintains interface specifications, interface control rules and interface ontology in

a sharable format. It also synchronizes access and modifications to these files.

The user interface of the client application allows creation and modification of

port attributes. Port attributes are loaded from the shared repository that is

maintained by the interface control server, and transformed into a convenient

form that can be displayed by the client application. Once designers are done with

modifying port attributes, the changes must be committed back to the shared

repository.

The client application also allows edition of interface control rules. To do this,

designers only need to define interface constraints. The software automatically

transforms the constraints into rules. Checking the status of interfaces requires an

inference engine. Once the inference engine is run, all violations of interface

constraints are revealed to users.

57

The solid arrow shown in Figure 4.2 represents a dependency between port

descriptions and the ontology. It means that the software is responsible to ensure

port descriptions are bound to the ontology. Binding to the ontology means to

ensure the interface terminology is consistent with the framework and the

vocabulary that is set by the ontology. This ensures every organization that

develops a different part of the system uses the same terminology; hence, their

specifications can be compared. Binding to the ontology must be done before

beginning an interface specification or control session by designers.

Figure ‎4.2: The architecture of interface control software.

Top level

system

developer

edit

report

status

Shared Repository

Ontology

Interface

Control

Client Application

load
edit

commit

Interface Control

Server

Subsystem

designer

bind

report

status

Inference

Engine

Compatibility rules

Port descriptions

Requirement rules

58

Figure 4.2 also shows that the users of the interface control system can be divided

into two groups with different access permissions. The first group consists of the

subsystem designers. They are allowed to define and modify port descriptions and

requirement rules for their own subsystems. The second group consists of the top

level system developers. A top level developer has access to all descriptions and

rules in the system. He/she also decides which group should have access to which

subsystems. File permissions are managed by the server. Users may be given read,

or write permissions to a file. The server also enforces synchronization. It ensures

only one user can commit changes to any file at one time.

4.4 Summary

This chapter has presented the elements of an interface knowledge base and the

control mechanism that can be used to detect port errors in the interface

knowledge base. It has been shown that any interface control statement can be

represented as a rule, in which the LHS is a constraint and the RHS is an action to

be taken if the constraint is violated. The chapter has also presented a possible

architecture for interface control software. The next chapter presents a prototype

implementation of the interface control software, and shows how the current

information sharing languages can be used to create computerized ICDs. The

language used to share interface knowledge in this thesis is XML.

59

5 PROTOTYPE IMPLEMENTATION

This chapter presents a prototype implementation of the interface control software

whose architecture has been defined in Figure 4.2. It also demonstrates how the

consistency and compatibility checking functionalities of the software can be

implemented. The consistency checking functionality ensures interface definitions

are in accordance with an ontology. Compatibility checking functionality detects

errors in value assignments to port attributes based on the mechanism that has

been described in the previous chapter. The interface control software that is

presented in this chapter is implemented in Java.

The interface control software operates on the interface information stored in a

shared repository (Figure 4.2) that is accessible via a network. The interface

information in the shared repository is the computer manageable version of an

ICD; hence, it is called computerized ICD. The computerized ICD contains

interface constraints and port specifications that are expressed by XML.

5.1 Interface and ontology definition languages

Interface definitions (specifications) in a shared repository are eventually going to

be transported to different design systems that interoperate with the interface

control software. As seen before, interface definitions can be created based on the

binary constraints among ports attributes. The constraints have a structured format

that is expressible by a computer readable language. Recall from § 2.2 that port

attributes and interface constraints must be defined semantically and XML is a

popular language to create semantic content; hence, this thesis uses the XML

language to specify port attributes and interface constraints.

As mentioned in § 2.2, the structure of XML documents can be defined by XSD,

which is also capable of expressing simple ontologies (Klein et al., 2000). In this

thesis, the interface ontology is expressed by XSD.

60

Note that the types of relationships among objects that can be represented by XSD

are limited. XSD is not the most expressive language that can be used to define

ontologies. However, this language has been chosen to define the interface

ontology in this thesis for two main reasons. First, the ontological relationships in

Figure 3.7 are subtypes of is-a and has-a relationships. XSD is perfectly capable

of defining these two types of relationships. Second, using XSD/XML simplifies

the implementation effort to a great extent. The compilers that check the

consistency of XML documents to an XSD schema are already available.

Therefore, by using XSD, we do not need to implement the ontology binding

functionality of the interface control software (Figure 4.2) from scratch.

Every class in an XSD file is defined by the xsd:complexType tag. The elements

that belong to the class are indicated by the xsd:sequence tag. The numbers of

times the elements are repeated in each sequence are marked by the tag

multiplicity attributes, i.e., maxOccurs and minOccurs. Both multiplicities are set

to one if they are not explicitly defined. Figure 5.1 shows the XSD file that

defines the core classes of the ontology. These are the classes from which all other

classes in the ontology are obtained by extension.

Figure 5.1 indicates that a port must have a name, a resolved status flag, a form,

possibly several functions, and possibly several subports. It also indicates that a

function can provide or require exactly one flow, and both form and flow are

defined by a sequence of physical quantities. Finally, it indicates that a form has a

coordinate frame, and it can be composite, i.e., having subforms. Note that in this

chapter and the rest of the thesis, the term „verb‟ in the verb-flow representation

of functions is implicitly defined by the name of the function class. There is no

need to explicitly define verb classes.

61

Figure ‎5.1: Core classes in XSD format.

Other classes in the ontology are defined by extending the above mentioned core

classes. In this way the ontology is organized as a hierarchy, the architecture of

which is defined by the core classes. This is illustrated in Figure 5.2. For example,

the electrical AC energy flow and AC power coupling port can be defined as

subclasses of flow and port. More specific subclasses of these latter classes can

still be defined in the same way. The extended subclasses contain new attributes

in addition to the ones they inherit from their super-classes. Extending and not

changing the previously defined ontology prevents older XML files that are bound

to the ontology from becoming corrupt. The ellipsis in Figure 5.2 is for brevity.

<xsd:complexType name="Port">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="resolved" type="xsd:boolean"/>

 <xsd:element name="form" type="Form"/>

 <xsd:element name="function" type="Function" maxOccurs="unbounded"/>

 <xsd:element name="port" type="Port"/ maxOccurs="unbounded" minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Function">

 <xsd:sequence>

 <xsd:element name="provided" type=" xsd:boolean "/>

 <xsd:element name="flow" type="Flow/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Flow">

 <xsd:sequence>

 <xsd:element name="physicalQuantity" type="PhysicalQuantity"

maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Form">

 <xsd:sequence>

 <xsd:element name="CoordinateFrame" type="CoordinateFrame"/>

 <xsd:element name="physicalQuantity" type="PhysicalQuantity"

maxOccurs="unbounded"/>

 <xsd:element name="form" type="Form" maxOccurs="unbounded" minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

62

Port objects are defined in XML files whose structures are bound to the ontology

classes. Figure 5.3 shows an example in which a power plug subsystem has an AC

power coupling port. The xsi:type keyword specifies to which particular subclass

of a core ontology class the object belongs. For example <flow xsi:type="AC"/>

refers to an unnamed object of the electrical AC class. Objects are named only in

case of subsystems and port instances because they are the ones that need to be

traced. Figure 5.3 shows that plug1.outlet transmits a 110V AC energy. Its form is

composed of two rectangular holes with the given dimensions. The ellipsis in

Figure 5.3 is for brevity.

Figure ‎5.2: Extension of core classes.

< xsd:complexType name="Transmit">

 <xsd:complexContent>

 <xsd:extension base="Function">

 …

<xsd:complexType name="Energy">

 <xsd:complexContent>

 <xsd:extension base="Flow">

 <xsd:sequence>

 <xsd:element name="power" type="PhysicalQuantity"/>

 …

<xsd:complexType name="Signal">

 <xsd:complexContent> <xsd:extension base="Flow">

 …

<xsd:complexType name="Material">

 <xsd:complexContent> <xsd:extension base="Flow">

 …

 <xsd:complexType name="AC">

 <xsd:complexContent>

 <xsd:extension base="Energy">

 <xsd:sequence>

 <xsd:element name="voltage" type="PhysicalQuantity"/>

 <xsd:element name="frequency" type="PhysicalQuantity"/>

 …

<xsd:complexType name="Hole"> <!-can be sub-classed into Rectangular and Cylindrical…->

 <xsd:complexContent> <xsd:extension base="Form">

 …

<xsd:complexType name="ACPowerCoupling">

 <xsd:complexContent> <xsd:extension base="Port">

 …

63

Figure ‎5.3: An example XML file representing the ports of a subsystem.

Constraints are also defined in XML files. Figure 5.4 shows a simple example in

which a constraint between the voltage of plug1.outlet port and chord1.inlet port

is defined. Each constraint has two blocks of operands defined between <OP1>

and <OP2> tags. The relational operator between the two blocks is defined

between <ROP> tags. The <LCST> and <RCST> tags define the two positive

constants that set the lower and upper limits of the fit between two attributes per

(3.3). Every constraint is identified by an ID tag so that it can be traced in the

system if it is violated. Either of the operands in a constraint defines a fully

qualified name of an attribute; hence, the constraints represented in Figure 5.4

read as:

 <subsystem xsi:type="PowerPlug">

 <name>plug1</name>

 <port xsi:type="ACPowerCoupling"/>

 <name>plug1.outlet</name>

 <function xsi:type="Transmit">

 <provided>true</provided>

 <flow xsi:type="AC"/>

 <power>

 <magnitude>60.0 </magnitude>

 <unit>W</unit>

 </power>

 <voltage> …110.0V… </voltage>

 <frequency>…50.0H…</frequency>

 </function>

 <form>

 <form xsi:type="RectangularHole">

 <length>

 <magnitude>1.0</magnitude>

 <unit>cm</unit>

 <width>…0.2cm…</width>

 </form>

 <form xsi:type="RectangularHole">

 <length>…0.5cm…</length>

 </width>…0.2cm…</width>

 </form>

 </form>

 </port>

 </subsystem>

Power plug

64

Figure ‎5.4: Definition of a constraint in an XML file.

Constraint-C1:

ACPowerCoupling(chord1.inlet).Transmit.AC.voltage – 5.0 ≤

ACPowerCoupling(plug1.outlet).Transmit.AC.voltage ≤

ACPowerCoupling(chord1.inlet).Transmit.AC.voltage + 5.0

<constraint>

 <ID>Constraint-C1</ID>

 <OP1>

 <class>ACPowerCoupling</class>

 <name>plug1.outlet</name>

 <function xsi:type="Transmit">

 <provided>true</provided>

 <flow xsi:type="AC"/>

 <attribute>voltage</attribute>

 <unit>V</unit>

 </flow>

 </function>

 </OP1>

 <ROP> <= </ROP>

 <OP2>

 <class>ACPowerCoupling</class>

 <name>chord1.inlet</name>

 <function xsi:type="Transmit">

 <provided<false</provided>

 <flow xsi:type="AC"/>

 <attribute>voltage</attribute>

 <unit>V</unit>

 </flow>

 </function>

 </OP2>

 <LCST>5.0</LCST>

 <RCST>5.0</RCST>

</constraint>

<requirement>

 <ID>Requirement-R1</ID>

 <Class>ACPowerCoupling</class>

 <name>plug1.outlet</name>

 <function xsi:type="Transmit">

 <flow xsi:type="AC"/>

 <attribute>voltage</attribute>

 <unit>V</unit>

 <MIN>90.0</MIN>

 <MAX>120.0<MAX>

 </flow>

 </function>

</requirement>

65

Requirement-R1:

90.0 ≤ ACPowerCoupling(plug1.outlet).Transmit.AC.voltage ≤ 120.0

5.2 Binding port attributes to the ontology (schema)

In order to have automatic information sharing among subsystem designers, the

interface control software must ensure they all define their XML files

consistently, i.e., using the ports and their attributes as defined by the ontology.

For example, the XML file shown in Figure 5.3 uses a legitimate vocabulary

according to the ontology defined in Figure 5.2. Ensuring that port attributes are

correctly chosen from the ontology is called consistency checking. This section

discusses the mechanism that is used for checking the consistency of port

attributes in this thesis. Since port specifications are defined by XML and the

ontology is defined by XSD, checking the consistency of port attributes with

regard to the ontology can be implemented by a mechanism that ensures the

consistency of XML files with regard to XSD files.

The technology to ensure the consistency of XML files with regard to some given

XSD files is already available and is called Java Architecture for XML Binding

(JAXB) (Oracle, 2012). JAXB provides a binding compiler, called xjc, which

derives a set of Java classes from XSD files and allows a user to use these classes

to define or read XML files. For example, the hierarchy of the classes that are

derived by JAXB from the schema file of Figure 5.2 is shown in Figure 5.5. In

this figure, the triangular arrow represents a subclass relationship and the lozenge

represents an aggregation relationship.

After binding, XML documents can be “unmarshalled” by JAXB‟s API; that is, a

tree of content objects that portray the XML document is made based on the

generated classes. The consistency of XML documents to the XML schema is

automatically checked by JAXB during unmarshalling, which relaxes us from

implementing this functionality from scratch. Unmarshalled objects can be

accessed and modified by a Java program. It is also possible to marshall the

66

objects back to the XML files. Figure 5.6 shows the unmarshalled objects that

correspond to the XML file of Figure 5.3.

Figure ‎5.5: The classes that correspond to the partial XSD file in Figure ‎5.2.

The port attributes of different subsystems are defined in different XML files. The

following lines of code briefly summarize how a subsystem XML file is

unmarshalled by JAXB:

JAXBContext jc = JAXBContext.newInstance (packageName);

Unmarshaller u = jc.createUnmarshaller();

Subsystem subsystem = (Subsystem) u.unmarshall (newFile (XMLfilePath));

in which the packageName identifies the place where Java classes that represent

the ontology (XSD) are stored. By executing the above lines of code, the content

of every XML file is put into a different subsystem object in a Java program.

Every subsystem object contains all the information about its ports.

67

Figure ‎5.6: The objects that correspond to the XML file in Figure ‎5.3.

5.3 Editing port specifications and constraints

The unmarshalled objects from XML files can be accessed and modified via a

Java program. In normal applications of JAXB, this is easy to do because the set

of classes defined by the XSD file is fixed; so, the Java programmer already

knows what classes have been defined and what methods they provide to modify

their objects. A good example is a program that displays the information about a

collection of books from an XML file that is bound to an XSD file. The classes in

this case are all known and fixed, e.g., a book class, a book collection class, etc.

Therefore, the methods to modify the objects of these classes are also known

when the program is created, e.g., a_collection.getBook(ISBN) to retrieve a book

from a collection, or a_book.setISBN() to set the ISBN of a book. The most

important feature of this simple example is that the entire set of classes, i.e., Book

and Collection, is known at compile time.

However, interface control software is a different situation. The set of classes that

are defined in the schema files can be very large. More importantly, the XSD file

that describes the ontology is not even fixed; it can continually evolve as new

68

classes are added to the ontology. This makes it impossible to preprogram all the

method calls that modify the objects of these classes at compile time. Such an

evolving set of classes have to be dealt with at run time. Using reflection in

computer programming is a way to do this. Reflection is a mechanism by which a

program can observe and modify its own structure and behavior at run time.

In an object oriented programming language such as Java, reflection allows

inspection of types and names of classes, methods, attributes, etc., at runtime

without knowing their types and names at compile time. It also allows

instantiation of objects from classes at run time and invocation of methods on

these objects. Reflection in Java is supported by a number of special classes that

provide the required mechanisms for run time investigation. The most important

reflection classes are Class, Field
11

, and Method. For example, to investigate the

type of a port object and enumerate its attributes at run time, one can write:

Class portClass = port.getClass ();

Field[] fields = portClass.getDeclaredFields ();

For (Field f : Fields)

 Class fieldClass = f.getClass ();

 Object value = f.get (port);

The above statements return the type of the port and the list of the attributes it

holds at run time. Once this list is available, the type of each attribute f and the

value assigned to it can also be investigated. Modification of the attribute value is

accomplished by modifying the value object obtained by the above method calls.

It should be mentioned here that the above explanation merely describes the

outline of using Reflection in the presented implementation. Lots of technical

details are skipped here that would consume a lot of space, but add little to the

understanding of the functionality of the software. For example, one limitation of

11

 Attributes are called instance fields in Java.

69

the getDeclaredFields() method is that it only enumerates direct fields of an

object. It does not enumerate the object‟s inherited fields from its super classes.

Inherited fields have to be enumerated by recursive method calls and so on.

5.4 Inference engine

An inference engine operates on the interface control knowledge base and checks

the violation of interface control rules. A business rule engine can be used for this

purpose. The rule engine used in this implementation is Jess, the rule engine for

the Java platform (Friedman-Hill, 2003). Using Jess enables us to write a Java

program that has the capacity to reason about the knowledge that is supplied to it.

Jess is a small and fast rule engine that can fully operate in a Java program.

Jess always operates on a collection of knowledge items called facts. Every fact

has a template. Facts and templates are analogous to objects and classes in Java.

Every template has a name and a set of data slots, which are also analogous to

class names and class attributes in Java. Facts are instantiated from templates by

assigning values to the slots; likewise, Java objects are instantiated from Java

classes by assigning values to class attributes.

Every fact in Jess is represented as a list. For example, a fact that represents a

flow of AC energy is represented as follows:

(AC (power 60.0W) (voltage 110.0V) (frequency 50.0H))

Facts can be created entirely by Jess, or derived from the objects in a Java

program. The latter are called shadow facts to emphasize that they are linked to

objects from the outside of Jess. To create shadow facts, first, Jess templates are

associated with Java classes. For example, an AC flow template in Jess can be

associated with an AC class in a Java program as follows:

(deftemplate AC (declare (from-class(AC)))

70

Next, Java objects are added to Jess‟ working memory to create shadow facts.

This is done by instantiating a Jess rule engine inside a Java program and calling

engine.add (object) method to add an individual object or engine.addAll (objects)

to add a set of objects to Jess‟ memory.

Jess rules are declaratively defined in the form of LHS => RHS, in which LHS

stands for left hand side and RHS stands for right hand side. A declarative rule

engine is different from a procedural one in that the rules in the former can be

arbitrarily executed when their preconditions are satisfied, whereas the rules in the

latter are executed in the same order that is defined by the programmer. This

makes Jess orders of magnitude faster than a procedural rule based system

(Friedman-Hill, 2003). It should be noted that the sequence of rules in (4.6) is

immaterial.

Figure ‎5.7: A Jess rule.

Jess considers the LHS of any rule as a pattern. The satisfiability of LHS is

checked by pattern matching. Figure 5.7 shows an example Jess rule. The pattern

to match in this example is a port that is named as plug1.outlet. The test

conditions in this rule check whether the function and the flow have the right

types, and whether the magnitude of the voltage of the AC flow is between 90.0

(defrule Requirement-1

 (Port (name /plug1.outlet/) (OBJECT ?port))

 (Function (flow ?flow) (OBJECT ?function))

 (ErrorLogger (OBJECT ?logger)

 (test (and

 ((?port getFunction) contains ?function)

 (= ((?function getClass) getName) “Transmit”)

 (= ((?flow getClass) getName) “AC”)))

 (test (and

 (>= ((?flow getVoltage) getMagnitude) 90.0)

 (<= ((?flow getVoltage) getMagnitude) 120.0)))

 =>

 ((?logger getErrorList ?port) remove “Requirement-1”)

 (?port setResolved (?logger isResolved ?port)))

71

and 120.0. The tests for the units of measures are ignored for brevity. The slashes

/ / are used to find an exact match between two strings. The OBJECT is a Jess

artifact for storing a pointer to the object whose pattern is matched so that it can

be used in other statements within the rule. When the LHS of this rule is satisfied,

an error message is removed from the port‟s error list.

In the example shown in Figure 5.7, the name of the rule is the same as the name

of the requirement constraint it checks; so, the satisfiability of the LHS of the

above rule means the Requirement-1 constraint is satisfied. Therefore, in RHS, the

violation message that has been added as a result of the violation of Requirement-

1 must be removed. All violation messages are stored in the logger object. The

logger object contains a hash map that maintains all error messages for all ports in

the system. A hash map is a fast way of randomly accessing data stored in a

memory. A hash map contains key-value pairs in which a value is returned by

providing a key.

The hash map that belongs to the logger object of a system is defined as

 . The object keys in this hash map are

chosen from the collection of all ports in the system. By using a port as a key to

this hash map, one can access the list of all error messages associated with that

port, which contains the names of the interface constraints that have been

violated, e.g., Requirement-1. In this way, the violated constraint can be traced in

the system. Back to the example shown in Figure 5.7, the RHS of the rule uses

?port key to get the error list of the port, and removes Requirement-1 message

from the list. The RHS of the rule also decides the resolved status of the port by

invoking the isResolved method on the logger object. The isResolved method

returns true if the error list that is associated with the port is empty.

The above mentioned example illustrates a positive rule. As discussed in § 4.1,

every positive rule must have a negative counterpart. This means that in the

previous example, the Requirement-1-negative rule must be defined too. The

negative rule can be automatically derived from the positive one. The negative

72

counterpart of Requirement_1 only differs in the test conditions on the power and

the action defined in the RHS, hence

(defrule Requirement-1-negative

 (…same as before…)

 (test (not (and

 (>= ((?flow getVoltage) getMagnitude) 90.0)

 (<= (?flow getVoltage) getMagnitude) 120.0))))

 =>

 ((?logger getErrorList ?port) put “Requirement-1”)

 (?port setResolved (?logger isResolved ?port)))

which puts Requirement-1 in the error list of the port.

5.5 Summary

Putting everything together, the functionality of the prototype interface control

software can be summarized by Figure 5.8. The repository side of the architecture

contains the XSD file that defines the ontology, the XML files that define port

specifications, and the XML files that define constraints. The binding compiler of

JAXB generates classes that correspond to the XSD file while JAXB API

transforms subsystem XML files into the objects that are instances of these

classes. The constraint XML files are transformed into Jess rules by the XML2Jess

translator. Jess rules are applied to the shadow facts, i.e., port objects, to check the

status of ports. The software shows whether a port has unresolved constraints. If

so, the software shows which port constraints have been violated.

Figure 5.8 captures the core functionality of the interface control software, but it

does not describe its user interface. Without a convenient user interface it may be

hard to use the software in practical situations. Obviously, the users of the

interface control software are better off with a more user friendly representation of

the rules than either of the XML or the Jess representation. These sorts of issues

73

should be taken care of in the design of the software‟s user interface. In this

research, a graphical user interface (GUI) is implemented that allows designers to

readily edit port attributes and interface constraints. The form and functionality of

the GUI is exemplified in the next chapter.

Figure ‎5.8: The architecture of the prototype interface control software. The XSD

file is shown in pseudo form.

74

6 EXAMPLES

This chapter presents a piece of software that can check the consistency of

computerized ICDs. The chapter illustrates how binary interface constraints can

be defined by the software‟s GUI. Included are the functionality of the

implemented software, its GUI, and its capability of doing computer aided

interface control within the boundaries of this thesis.

The difference that the port to port interface model and the proposed software

architecture make in product development is that they provide a connectivity

model that can automatically tell designers whether they are defining interface

attributes correctly. The real benefit of using such a system is evident when there

are a large number of interfaces that need to be checked. Interface constraints can

be created once, and the values of port attributes can be changed as wished since

the software guarantees to report incorrect assignments. Manual ICDs on the other

hand do not provide any connectivity between two subsystems. They are isolated

documents that need to be consulted every time a change in the design of

interfaces on one of the subsystems is requested. Finally, formal and structured

interface definitions can pave the way to include interface specifications into

CAD/PDM systems.

6.1 Flight simulator example

Figure 6.1 shows a simplified representation of a flight simulator with a few

components shown as a SysML internal block diagram. Cabinet1 consists of an

off-board computer (simComp) that runs a piece of simulation software. Cabinet2

is onboard, and contains many subsystems (not shown) that provide the

computing infrastructure to generate the required signal for the panel in the

cockpit. The other subsystems of interest in this product are the two power

supplies shown in the figure. The ports in Figure 6.1 are named p0, …, p5 and s0,

75

…, s2. These ports belong to different subsystems. In the dotted notation, the

names of these ports should be read with regard to the names of their subsystems,

for example, port p2 of subsystem hub1 is read as hub1.p2.

This example is intended to demonstrate the GUI and the functionality of the

implemented software. It shows how port specifications and constraints are

defined in the software by taking as examples the power coupling port hub1.p2

and the signal coupling port hub1.p3 of Figure 6.1. The figure also shows the

flows through these ports. For example, there is an AC flow into hub1.p2 and

there is a digital signal flow from simComp.p1 to hub1.p3. A section of the

ontology classes that is relevant to this example is shown in Figure 6.2. For

brevity, the form attributes of the ports are mostly ignored in this example.

Figure ‎6.1: Simplified internal block diagram representation of a flight simulator.

As can be seen in Figure 6.2, the SignalCoupling class is defined as an

aggregation of signal Pins. An easy interface definition case happens as shown in

Figure 6.2 when a port is standard. For example, it may be possible to fully define

a standard signal coupling port by giving its standard label, its number of pins,

cabinet1

hub1: Subsystem

SimComp : Subsystem

: AC

: AC

: Signal

cabinet2 cockpit

hub2 :

Subsystem

: Signal

panel :

Subsystem

p0

p2
p3

p1

p4

simulator

powerSupply1

s0 s1

p5

powerSupply2

s2
110v

200w

p

110v

60w

p

76

and the male/female labeling of its form (not shown in the figure). Non-standard

ports should be fully specified in terms of their form and function.

The mate attribute of a port shown in Figure 6.2 is a string that contains the name

of the port to which it is connected. This attribute is significant when class

compatibility constraints are defined (§ 3.1). This way of constraint representation

reduces the effort of otherwise individually specifying the same constraints

between every pair of port objects that belong to two specific classes. The class

compatibility constraints have a scope, which is the flight simulator system in this

example.

Figure ‎6.2: The class hierarchy that represents the section of the ontology used in

the flight simulator example.

77

Figure ‎6.3: Content objects corresponding to the hub1 subsystem specification.

The initial state of the hub1 subsystem is shown in Figure 6.3. The figures shows

the port objects that are unmarshalled from hub1‟s XML file and loaded into the

interface control application. The PWR pin of hub1.p3 requires a constant voltage

of 5V. The GRND pin is a reference voltage pin for the other three pins in

78

hub1.p3. The pins D+ and D- are used to transmit a digital signal. Port hub1.p4 is

a standard IEEE1394 signal coupling, which is represented with the standard

label, the number of pins, and a very abstract representation of its form, i.e., the

male form. Port hub1.p2 is an AC power coupling port.

According to Figure 6.3, hub1.p3 is mated to simComp.p1. They are aggregate

ports that contain pin subports. In hub1.p3, assume the pins have the arrangement

as shown in Figure 6.4. The pins in hub1.p3 are ordered with regard to the

partitioning method explained in § 3.3. If the polar axis of hub1.p3 is placed in its

centroid and directed toward hub1.p3.D-, the ordering of its subports becomes D-,

D+, GRND and PWR. Now, if the polar axis of simComp.p1 is placed in its

centroid and directed toward simComp.p1.D+, the ordering of the subports of

simComp.p1 has to be D+, D-, PWR and GRND so that the constraint

hub1.p3.order = simComp.p1.order can be satisfied, as illustrated in Figure 6.4.

Note that the ports in this figure are viewed from the outside of the subsystems; so

they correctly coincide when the page that contains the figure is folded along its

vertical middle line.

Figure ‎6.4: Order matching between hub1.p3 and simComp.p1.

A snapshot of the application‟s graphical user interface (GUI) is shown in Figure

 6.5. This GUI implementation is based on Java Reflection classes as mentioned in

§ 5.3. The GUI has four distinct areas: the Project tree, the subsystem Navigator

tree, the Editor area and the Output area.

PWR D+ D- GRD GRD D- D+ PWR

hub1.p3 simComp.p1

79

Figure ‎6.5: The graphical user interface of the prototype interface control

application.

The Project tree shows all the content that is created for a system in a shared

repository on the server. Before starting a project, the user must bind the overall

system to an ontology by clicking on the bind button on the top of the Project

tree. There is a node for each subsystem XML file in this tree. The Project tree

also contains a Ruleset node that represents all the compatibility rules created for

this project. By selecting a subsystem node from the Project tree and clicking on

80

the Load button, the user can load the contents of that subsystem from the server

into the Navigator tree for modification if he/she has the write permission. When

done with the modification, the user can click on the Commit button to save

changes to the files on the server.

The Navigator tree in Figure 6.5 shows the contents of a subsystem in terms of its

ports. For example, the figure shows that subsystem hub1 uses three ports

hub1.p2, hub1.p3 and hub1.p4 for interaction. The signal coupling port hub1.p3 is

an aggregate port and contains D-, D+, GRND, and PWR contact pins. The

hub1.p2 port in the Navigator tree is expanded to show its content. The question

mark next to the form node means the form of this port has not been defined yet.

This port has a Transmit AC function.

The editor area in Figure 6.5 contains two tabs for editing the attributes and rules

in a project. The Rules tab shows either a list of port requirements or a list of

compatibility constraints depending if a node from the Navigator tree is selected

or the Ruleset node from the Project tree is selected. Selecting a rule from the

Rules tab and then clicking on the Edit button opens the Rule Builder window as

shown in Figure 6.5. The figure shows the content of Requirement-hub1.p2 in the

Rule Builder window. Every rule has a name and an optional description. The

ports for which the rule is built are selected from the #Port and $Port combo

boxes. In a requirement rule, the $Port combo box is not needed and disabled.

As shown in Figure 6.5, the Rule builder window requires that the type and scope

of each rule be selected from the Type and Scope combo boxes. The scope of all

the rules in this example is the Flight Simulator system. The type combo box

allows selection of one of the following four types: object requirement, class

requirement, object compatibility, and class compatibility. The example shown in

Figure 6.5 illustrates an object requirement for hub1.p2.

The next row in the Rule Builder as shown in Figure 6.5 requires the user to select

an available function or form for which he/she wants to build a rule, e.g.,

81

Transmit AC in the figure. Finally, the Constraint area at the button of the Rule

Builder window allows the user to define the constraints on the attributes, i.e.,

or per (3.5) and (3.8), which constitute the LHS of the rules.

A constraint on a single attribute or a pair of commensurable attributes is inserted

between curly brackets as shown in Figure 6.5. Any attribute that refers to the

#Port must be prefixed by „#‟ symbol, and any attribute that refers to $Port must

be prefixed by „$‟ symbol. The $Port is enabled for defining compatibility

constraints. All constraints that apply to the same form or flow must be defined at

once and be separated by curly brackets as illustrated in Figure 6.5. The system

does not allow separate definitions of constraints on the same form or flow to

prevent occurrence of identical or subsumptive rules. This is a preventive measure

given that Jess itself completely detects and removes such rules, although it is not

explicit to the user; so, identical and subsumptive rules cannot occur in the

system.

The example in Figure 6.5 illustrates the constraint on the power and the voltage

of Transmit AC function of hub1.p2. The “<” and “≤” symbols are used

interchangeably and both represent “≤”.

The user defined constraints are then translated into Jess rules. The constraints

constitute the LHS part of Jess rules. The software automatically creates the RHS

of the rules. When user defined constraints are translated into Jess, they are also

broken down to atomic rules on individual attributes. For example, the

requirement defined in Figure 6.5 is broken down into two Jess rules that

separately represent the constraints on the power and the voltage. When this is

done, the error messages are also specifically adjusted to include the attribute

name in addition to the constraint name.

The software needs both positive and negative rules to operate properly (§ 5.4),

but this does not concern the users. The software itself automatically creates both

positive and negative rules from the user defined constraints. After the rules are

82

translated into Jess, the user can run a status check by clicking on the Run button

on the main toolbar (Figure 6.5).

During a status check, the Output area of the GUI shows whether there are any

errors within the system. The errors can be viewed by clicking on a port node (or

any of its sub-nodes) in the Navigator tree. When a port node is clicked, the

Output area shows the error messages associated with that port. For example,

Figure 6.5 shows that the power value of hub1.p2 is out of range. This is expected

because the power of hub1.p2 was initially set to 80W as in Figure 6.3. A red

exclamation mark also appears next to a port node icon in the Navigator tree if the

port is in error state.

After seeing an error, the users can refer to the Attribute editor area to fix it. This

is illustrated in Figure 6.6. The Attribute area shows the editable content of each

selected node from the Navigator tree. By clicking on the AC flow of hub1.p2 in

the Navigator tree, the Attribute tab shows its voltage, power and frequency. The

user can change the attribute values or units in here. A question mark is shown in

a table cell to notify the user in the case where a value is undefined. In the

example shown in Figure 6.6, the user changes the power value to 60W, and then

runs the system again. This time an „OK‟ message is shown in the Output area to

indicate that hub1.p2 does not have any errors since the power of 60W now

satisfies the ObjectRequirement-hub1.p2.

Let us now illustrate how a class compatibility rule is defined and checked by the

software. A rule that is defined between two port classes is applicable to every

pair of objects that belong to these classes. Class compatibility rules are derived

from user defined class compatibility constraints. An example of a class

compatibility constraint definition is shown in Figure 6.7. This constraint is

applicable to all AC power couplings within the scope of the flight simulator

system. It signifies that any two objects of the ACPowerCoupling class that satisfy

the specified constraints between their powers and voltages are compatible if one

of them requires the AC flow and the other provides it.

83

Figure ‎6.6: Editing an attribute value.

Defining a class compatibility constraint is a useful and time saving way of

representing a constraint that uniformly applies to all objects of two classes in a

system‟s scope. The items available in #Port and $Port combo boxes change

depending on whether Object Compatibility or Class Compatibility is selected

from the type combo box of the rule builder window (Figure 6.7). In the former

case the #Port and $Port combo boxes show the list of objects in the system‟s

scope whereas in the latter case they show the list of classes. In the case of a class

compatibility constraint, the user must also indicate which one of the ports is the

provider of the function by selecting either of the radio buttons. These radio

buttons are disabled in the case of object rules because the provided attribute is

explicitly defined for port functions.

84

Figure ‎6.7: A class compatibility constraint between two AC power couplings.

Similar to requirement constraints, one must edit all the compatibility constraints

on the same form or flow at once, as illustrated in Figure 6.7. The software

disallows partially defining compatibility constraints between the same pairs of

forms or flows in separate places. Moreover, when a compatibility constraint

between two classes is defined, the software disallows defining the same

constraint between the objects of these classes.

A class compatibility constraint can be used together with the mate of a port to

run a status check. For example, the class compatibility constraint in Figure 6.7

becomes applicable to hub1.p2 if it is mated to another power coupling port. Note

from Figure 6.3 that initially hub1.p2 does not have a mate. To mate this port to

another port, the user can select hub1.p2 node from the Navigator tree and then

set its mate to powerSupply2.s2, as illustrated in Figure 6.8.

85

Once the mate of hub1.p2 is set, another status check is run that results in a new

error as shown in Figure 6.8. The Output area indicates that the power of hub1.p2

is in conflict with powerSupply2.s2. This happened because the class

compatibility constraint between these two ports requires that the power of

hub1.p2 be within the ±5W range of any mating port‟s provided power, including

powerSupply2.s2. Changing hub1.p2‟s mate to powerSupply1.s0 (its power and

voltage are shown in Figure 6.1) can resolve this issue since it has the correct

matching power.

Figure ‎6.8: Setting the mate of a port.

6.2 Pylon example

The second example in this chapter demonstrates how the interface control

process that is proposed in this thesis can be methodologically applied to a

product development project. Figure 6.9 shows a few of the interfaces beween the

fuselage, pylon and engine in an aircraft that is taken from a student project in a

Master of Aerospace program under CAMAQ (Fortin et al., 2006). In the project,

86

the students are supposed to design a pylon so that a given jet engine can be

integrated with an aircraft fuselage. One of the important pieces of equipment to

design in this project is the mounting device that connects the engine to fuselage

through the pylon.

It should be noted that in practice, to completely define interfaces in the pylon

example, CAD and assembly models need to be drawn as a part of interface

definitions, but that is not the concern of this example. This example is only

intended to demonstrate the methodological application of the interface control

process described in this thesis to a given project: defining the ontology,

identifying ports, identifying forms and verb-flows for the ports, and defining the

constraints between port attributes.

Figure ‎6.9: Interfaces between the pylon, engine and fuselage.

To design the mounts, students are provided with ICDs that describe the forms of

the connections on the engine and the fuselage sides of these mounts as well as

87

the specification of the engine‟s axial thrust force. Let us take fwmount (forward

engine mount) as an example component for which the interface knowledge is

going to be created. One can identify three areas in Figure 6.9 that capture the

interaction of this component with the rest of the system. The ports of interest in

this example are named m1, m2, m3, e2, e3, f1. Let us ignore the rest of ports in

this example to simplify illustration.

Ports m2 and m3 are two mechanical pins that have identical forms. The

subcomponent shown in the upper left part of the figure contains port m2. A

slightly different subcomponent is used in fwmount that contains m3. The two

hole ports of the engine that receive these ports are e2 and e3, which are hidden

below m2 and m3.

The shaded areas in the upper right side of Figure 6.9 highlight ports m1, m2 and

m3. The shaded areas in the bottom left side of the figure highlight ports m1 and

f1. The bottom right side of the figure shows connectivity of these ports in a

SysML diagram. The complete pylon and engine equipments are not shown in the

figure.

The semantics of the ports involved in this example are captured by the partial

ontology shown in Figure 6.10. The engine thrust force in this example is

captured by the mechanical energy flow through the transmit function of e2 to m2

as well as e3 to m3. Mechanical energy also flows between two clevis ports m1 to

f1. The port requirement and compatibility constraints in this example can be

easily specified based on the form and function attributes that are defined in the

ontology, e.g., the constraint between the wall thickness of m1 and the slot width

of f1.

88

Figure ‎6.10: A partial ontology that captures the semantics of the pylon example.

89

7 CONCLUDING REMARKS

Despite its importance, no research has been published on a comprehensive

method for checking the completeness, correctness, connectivity and consistency

of ICDs by computers. Managing ICDs by computers can speed up collaborative

design activities that use ICDs. This thesis is intended to bring some academic

insights into the issue of computer aided interface control in product development.

ICDs are particularly important artifacts in the development of multidisciplinary

and distributed systems. In such systems it is not possible to capture all

interactions of subsystems in a domain specific CAD model. When it comes to

define the interfaces between these subsystems, we are still relying on manual

documentation. This thesis is the first attempt to shift from document based

interface control practices to computer based interface control practices.

The thesis proposes a computer aided methodology and software architecture to

manage the information contained in ICDs. The methodology uses port based

representation of interfaces to capture the interactions of subsystems. Port based

representations fit well with applying the principle of encapsulation in subsystem

design. An encapsulated subsystem has hidden internal structure. ICDs should

exclusively define the interactions among the boundaries of subsystems

irrespective of what the internal structures of these subsystems are.

The principle of encapsulation provides an objective criterion to create

sufficiently detailed ICDs, as proposed in this thesis. Having sufficient amount of

detail in ICDs has been a vague idea in the communities that use ICDs. By

applying the principle of encapsulation to the definition of interfaces, the

specification of interfaces is separated from that of components, making ICDs

sufficiently detailed.

90

The thesis also discusses the architecture and the main functionalities of interface

control software. The thesis identifies two main functionalities of such software:

checking the completeness and consistency of interface definitions, and checking

the connectivity and compatibility of interface constraints.

Checking the consistency of interface definitions is crucially important if the

interface information is shared among different organizations, which is a very

likely situation for most products. Each organization may use a different

terminology to define interfaces, which cannot be understood by another

organization. The interface information from all such diverse sources is going to

be managed by the interface control software; hence, the software must have a

mechanism to ensure they have been defined consistently. This is accomplished

by using an ontology that defines the semantics of port attributes that constitute

interface definitions. Some of the artifacts of the semantic web technology such as

XML and XSD can be used for this purpose.

Checking the compatibility of interfaces is also an important issue to prevent

design errors. In the absence of a computer management tool, the designers must

manually read ICDs to ensure their subsystems are designed according to the

interface agreements. Having a piece of software that automatically checks the

compatibility of interfaces and precisely shows what errors happened in the

system certainly helps to speed up the design process.

7.1 Contributions

The contributions of this thesis can be summarized with regard to its objectives

that have been defined in § 1.5. This thesis has proposed a computer readable

language, software architecture and a methodology that can be used to:

1. consistently define interfaces,

2. identify missing interface information, i.e., completeness,

3. automatically check the compatibility of interfaces,

91

4. communicate violations of interface compatibilities to all stakeholders and

precisely track the violation.

The above objectives have been accomplished by using the following ingredients:

1. A consistency checking mechanism: This is done by using an ontology to

explicitly specify the semantics of interfaces. The ontology provides a

common vocabulary for interface definitions; so, it is the basis for

consistency checking by interface control software. The software ensures

all collaborating agents commit to the terms in the ontology.

2. A mechanism to find missing interface information: This is also done with

the aid of the ontology. The ontology precisely defines the set of attributes

for a port. If any of these attributes is missing in the interface definition,

the software indicates it by showing a question mark in the place of the

missing attribute.

3. A rule based system for interface knowledge representation: This is called

interface control knowledge base. A control mechanism is proposed that

operates on the interface control knowledge base and finds

incompatibilities between the value assignments of port attributes. The

interface control knowledge base is a collection of interface control rules.

The rules are automatically derived from requirement and compatibility

constraints that are defined by the user. The constraints are defined

according to a formal model.

4. A software architecture that allows communication of violated interfaces:

The software reports the erroneous ports, the constraints that are violated,

and the names of the attributes that are involved in violations.

To demonstrate the above contributions, the thesis presented a prototype

implementation of the interface control software that can check the consistency of

interface definitions and report violations. This has been done by implementing a

piece of software that has a rule engine, can bind to an ontology, and has a

graphical user interface that makes editing of interface specifications easy. The

92

prototype implementation has shown the viability of the proposed computer aided

interface control methodology.

7.2 Future research

The research that has been presented in this thesis can be extended in different

ways as mentioned in the following.

7.2.1 Checking interface status between different CAD systems

To have a fully automatic interface control process, future CAD vendors should

include some of the proposed functionalities of the interface control software in

their CAD systems. Creating and editing port attributes can be done in CAD

systems, and the interface control software can then be used as a status checker. In

other words, the interface control software can extract port specifications from

different CAD systems to check the status of interfaces. In this way the interface

control software acts as a communication medium rather than a port specification

tool. The XML/XSD technology is a great asset in facilitating such

communication.

7.2.2 Component compatibility

Component compatibility issues can play an important role in the design of

distributed systems. In a distributed system, components are connected by means

of wires, pipes, wireless communication, etc., where the exact orientation and

spatial location of components does not matter. In such systems, compatibility of

ports approximately becomes a sufficient condition for compatibility of

components. By approximately we mean there can still be unintended

interferences between components, which may or may not be negligible. Port

compatibility can only guarantee the correctness of intended interactions between

components.

By using a formal model for component compatibility, it may be possible to

synthesize a distributed physical system from a repository of well encapsulated

93

components that is available on a network or the internet. Future research should

investigate this idea. Compatible components in such a repository can be found by

a search engine. A system designer can pose a query to the repository to find

compatible components that can be used in his/her system.

94

REFERENCES

ARMSTRONG, D. J. 2006. The quarks of object-oriented development.

Communications of the ACM, 49 (2), 123–128.

ATALLAH, M. 1984. International Journal of Computer and Information

Science, 13 (4), 279–290.

BERNERS-LEE, T., HENDLER, J. & LASSILA, O. 2001. The semantic Web: A

new form of Web content that is meaningful to computers will unleash a

revolution of new possibilities. Scientific American, 284 (5), 34–43.

BETTIG, B. & GERSHENSON, J. K. 2010. The representation of module

interfaces. International Journal of Product Development, 10 (4), 291–

317.

BLAIR-SMITH, H. 2010. System integration issues in Apollo 11. Digital

Avionics Systems Conference (DASC), Salt Lake City, UT.

BLYLER, J. 2004. Interface management: Managing complexity at the system

interface. IEEE Instrumentation and Measurement Magazine, March

2004, pp. 32–37.

BROWNING, T. R. 2001. Applying the design structure matrix to system

decomposition and integration problems: A review and new directions.

IEEE Transactions on Engineering Management, 48 (3), 292–306.

CAO, D. & FU, M. W. 2011. Port-based ontology modeling to support product

conceptualization. Robotics and Computer Integrated Manufacturing, 27

(3), 646–656.

CAO, D., RAMANI, K., FU, M. W. & ZHANG, R. 2009. Port-based ontology

semantic similarities for module concept creation. ASME International

Design Engineering Technical Conferences & Computer and Information

in Enginerring Conference (IDETC/CIE), San Diego, CA.

CLEMENTS, P. C. 1995. From subroutines to subsystems: Component-based

software development. The American Programmer (now: Cutter IT

Journal), November 1995.

DANILOVIC, M. & BROWNING, T. R. 2007. Managing complex product

development projects with design structure matrices and domain mapping

matrices. International Journal of Project Management, 25 (3), 300–314.

DAU 2001. Systems engineering fundamentals, Defence Acquisition University

Press (Department of Defence), Systems Management College, Belvoir,

Virginia.

95

DECHTER, R. 2003. Constraint processing, Morgan Kaufmann Publishers, San

Francisco, CA.

DIJKSTRA, E. W. 1982. Selected writings on computing: A personal perspective,

Springer-Verlag, New York, NY.

EYLES, D. 2004. Tales from the lunar module guidance computer. 27th annual

Guidance and Control Conference of the American Astronautical Society,

Breckenridge, Colorado.

FAA 2006. Systems engineering manual, Federal Aviation Administration.

FENVES, S. J., FOUFOU, S., BOCK, C., SUNDARSAN, R., BOUILLON, N. &

SRIRAM, R. D. 2004. CPM2: A revised core product model for

representing design information (NISTIR 7185), National Institute of

Standards and Technology (NIST), Gaithersburg, MD.

FORTIN, C., HUET, G., SANSCHAGRIN, B. & GAGNÉ, S. 2006. The

CAMAQ project: a virtual immersion in aerospace industry practices.

World Transactions on Engineering and Technology Education, 5 (2),

287-290.

FRIEDENTHAL, S., MOORE, A. & STEINER, R. 2008. A practical guide to

SysML: The system modeling language, Morgan Kaufmann OMG Press,

Burlington, MA.

FRIEDMAN-HILL, E. 2003. Jess in action: Java rule-based systems, Manning

Publications, Greenwich.

GOMEZ-PEREZ, A. 1997. Knowledge sharing and reuse. In: LIEBOWITZ, J.

(ed.) The handbook of applied expert systems. CRC Press.

GRUBER, T. 1995. Toward principles for the design of ontologies used for

knowledge sharing. International Journal of Human-Computer Studies, 43

(5–6), 907–928.

HEPP, M., BACHLECHNER, D. & SIORPAES, K. 2007. Harvesting Wiki

consensus - using Wikipedia entries as ontology elements. IEEE Internet

Computing, 11 (5), 54-65.

HIRTZ, J., STONE, R. B., MCADAMS, D. A., SZYKMAN, S. & WOOD, K. L.

2002. A functional basis for engineering design: reconciling and evolving

previous efforts. Research in Engineering Design, 13 (2), 65–82.

HOLLAND, W. V. & BRONSVOORT, W. F. 2000. Assembly features in

modeling and planning. Robotics and Computer Integrated

Manufacturing, 16 (4), 227–294.

96

HORROCKS, I., PATEL-SCHNEIDER, P. F. & VANHARMELEN, F. 2003.

From SHIQ and RDF to OWL: The making of a web ontology language.

Web Semantics, 1 (1), 7–26.

HORVATH, I., VERGEEST, J. S. M. & KUCZOGI, G. 1998. Development and

application of design concept ontologies for contextual conceptualization.

ASME Design Engineering Technical Conferences, (DETC 98), Atlanta,

GA.

ISO 2004. ISO 10303-109: Industrial automation systems and integration—

product data representation and exchange—part 109: Integrated

application resource: Kinematic and geometric constraints for assembly

models, International Organization for Standardization, Geneva,

Switzerland.

KIM, K. Y., MANLEY, D. G. & YANG, H. 2006. Ontology-based assembly

design and information sharing for collaborative product development.

Computer-Aided Design, 38 (12), 1233–1250.

KITAMURA, Y. & MIZOGUCHI, R. 2003. An ontological schema for sharing

conceptual engineering knowledge. International Workshop on Semantic

Web Foundations and Application Technologies, Nara, Japan.

KLEIN, M., FENSEL, D., HARMELEN, F. V. & HORROCKS, I. 2000. The

relation between ontologies and XML schemas. ECAI00 Workshop on

Applications of Ontologies and Problem-Solving Methods, Berlin.

LALLI, V. R., KASTNER, R. E. & HARTT, H. N. 1997. Training manual for

elements of interface definition and control (NASA Reference Publication

1370), National Aeronautics and Space Administration, Lewis Research

Center, Cleveland, Ohio.

LEE, K. & GOSSARD, D. C. 1985. A hirearchial data structure for representing

assemblies Part 1. Computer-Aided Design, 17 (2), 15–19.

LI, W. D. & QIU, Z. M. 2006. State-of-the-art technologies and methodologies

for collaborative product development. International Journal of

Production Research, 44 (13), 2525–2559.

LIANG, V. C. & PAREDIS, C. J. J. 2004. A port ontology for conceptual design

of systems. Computing and Information Science in Engineering, 4 (3),

206–217.

LIGEZA, A. 2006. Logical foundations for rule-based systems, Springer-Verlag,

Berlin.

LIU, Y. & LIM, S. C. J. 2011. Using ontology for design information and

knowledge management: A critical review. In: BERNARD, A. (ed.)

97

Global product development: Proceedings of the 20th CIRP Design

Conference, Nantes, France.

MACCORMACK, A., RUSNAK, J. & BALDWIN, C. 2006. Exploring the

structure of complex software designs: An empirical study of open source

and proprietary code. Management Science, 52 (7), 1015–1030.

NECHES, R., FIKES, R., FININ, T., GRUBER, T., PATIL, R., SENATOR, T. &

SWARTOUT, W. R. 1991. Enabling technology for knowledge sharing.

AI Magazine, pp. 36–56.

ORACLE 2012. Java Architecture for XML binding [Online]. Available:

http://www.oracle.com/technetwork/articles/javase/index-140168.html

[Accessed 8/11/2011].

PAHL, G. & BEITZ, W. 2005. Engineering design: A systematic approach,

Springer-Verlag, London.

PAREDIS, C. J. J., DIAZ-CALDERON, A., SINHA, R. & KHOSLA, P. K. 2001.

Composable models for simulation-based design. Engineering with

Computers, 17 (2), 112–128.

PARNAS, D. L. 1972. On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15 (12), 1053–1058.

PATIL, L., DUTTA, D. & SRIRAM, R. 2005. Ontology-based exchange of

product data semantics. IEEE Transactions on Automation Science and

Engineering, 2 (3), 213–225.

PIMMLER, T. & EPPINGER, S. 1994. Integration analysis of product

decompositions. ASME Design Theory and Methodology Conference,

Minneapolis, MN.

ROSENBERG, R. C. & KARNOPP, D. C. 1983. Introduction to physical system

dynamics, Mcgraw-Hill College, New York.

RUMBAUGH, J., JACOBSON, I. & BOOCH, G. 2004. The Unified Modeling

Language Reference Manual, Addison Wesley, New York, NY.

SAE 2004. AS5609: Aircraft/Store common interface control document format

standard, Society of Automotive Engineers International.

SHAH, J. J. & ROGERS, M. T. 1993. Assembly modeling as an extension of

feature-based design. Research in Engineering Design, 5 (3–4), 218–237.

SINGH, P. & BETTIG, B. 2003. Port-compatibility and connectability based

assembly design. Computing and Information Science in Engineering, 4

(3), 197–205.

http://www.oracle.com/technetwork/articles/javase/index-140168.html

98

SINHA, R. 2001. Compositional design and simulation of engineered systems.

PhD Thesis, Carnegie Mellon University.

SOMMERVILLE, I. 2007. Software engineering, Pearson Education.

SOSA, M. E., EPPINGER, S. D. & ROWLES, C. M. 2003. Identifying modular

and integrative systems and their impact on design team interactions.

Journal of Mechanical Design, 125 (2), 240–252.

SZYPERSKI, C., GRUNTZ, D. & MURER, S. 2002. Component software:

Beyond object oriented programing, Addison-Wesley.

ULRICH, K. 1995. The role of product architecture in the manufacturing firm.

Research Policy, 24 (3), 419–440.

USAF 2005. Systems engineering: concepts, processes, and techniques, US Air

Force, Space and Missile Systems Center.

USCHOLD, M. & GRUNINGER, M. 1996. Ontologies: Principles, methods, and

applications. Knowledge Engineering Review, 11 (2), 93–106.

W3C 1999. HTML 4.01 specification [Online], World Wide Web Consortium.

Available: http://www.w3.org/TR/html401/ [Accessed 17/1/2012].

W3C 2006. XML 1.1 specification [Online]. Available:

http://www.w3.org/TR/2006/REC-xml11-20060816/ [Accessed

18/1/2012].

W3C 2012. XML Schema Definition Language 1.1 [Online], World Wide Web

Consortium. Available: http://www.w3.org/TR/2012/PR-xmlschema11-1-

20120119/ [Accessed 7/10/2010].

WASSON, C. S. 2006. System analysis, design, and development: concepts,

principles, and practices, John Wiley & Sons Inc., New Jersey.

WIDEMAN, R. M. 2002. Wideman comparative glossary of project management

terms, v3.1 [Online]. Available:

http://www.maxwideman.com/pmglossary/PMG_I03.htm [Accessed

1/1/2012].

WONGTHONGTHAM, P., KASISOPHA, N. & KOMCHALIAW, S. 2009.

Community-oriented software engineering ontology evolution.

International Conference for Internet Technology and Secured

Transactions ICITST, London.

http://www.w3.org/TR/html401/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2012/PR-xmlschema11-1-20120119/
http://www.w3.org/TR/2012/PR-xmlschema11-1-20120119/
http://www.maxwideman.com/pmglossary/PMG_I03.htm

