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ABSTRACT

Semiparametric efficient methods in causal inference have been developed to ro-

bustly and efficiently estimate causal parameters. As in general causal estimation, the

methods rely on a set of mathematical assumptions that translate into requirements

of causal knowledge and confounder identification. Targeted maximum likelihood es-

timation (TMLE) [78] methodology has been developed as a potential improvement

on efficient estimating equations, in that it shares the qualities of double robustness

(unbiasedness under partial misspecification) and semiparametric efficiency, but can

be constructed to provide boundedness of parameter estimates, robustness to data

sparsity, and a unique estimate.

This thesis, composed primarily of three manuscripts, presents new research

on the analysis of longitudinal and survival data with time-dependent confounders

using TMLE. The first manuscript describes the construction of a two time-point

TMLE using a generalized exponential distribution family member as the loss func-

tion for the outcome model. It demonstrates the robustness of the continuous version

of this TMLE algorithm in a simulation study, and uses a modified version of the

method in a simplified analysis of the PROmotion of Breastfeeding Intervention Trial

(PROBIT) [27] where evidence for a protective causal effect of breastfeeding on gas-

trointestinal infection is obtained.

The second manuscript presents a description of several substitution estimators

for longitudinal data, a specialized implementation of a longitudinal TMLE method,

and a case study using the full PROBIT dataset. The K time point sequential
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TMLE algorithm employed (theory developed in [74]), implemented nonparametri-

cally using Super Learner [36], differs fundamentally from the strategy used in the

first manuscript, and offers some benefits in computation and ease of implementation.

The analysis compares different durations of breastfeeding and the related exposure-

specific (and censoring-free) mean counts of gastrointestinal infections over the first

year of an infant’s life and concludes that a protective effect is present. Simulated

data mirroring the PROBIT dataset was generated, and the performance of TMLE

was again assessed.

The third manuscript develops a methodology to estimate marginal structural

models for survival data. Utilizing the sequential longitudinal TMLE algorithm [74]

to estimate the exposure-specific survival curves for all exposure patterns, it demon-

strates a way to combine inference in order to model the outcome using a linear

specification. This article presents the theoretical construction of two different types

of marginal structural models (modeling the log-odds survival and the hazard) and

presents a simulation study demonstrating the unbiasedness of the technique. It then

describes an analysis of the Canadian Co-infection Cohort study [26] undertaken with

one of the TMLE methods to fit survival curves and a model for the hazard function

of development of end-stage liver disease (ESLD) conditional on time and clearance

of the Hepatitis C virus.
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ABRÉGÉ

Des méthodes d’analyse causale semi-paramétriques et efficaces ont été développées

pour estimer les paramètres causaux efficacement et de façon robuste. Comme c’est

le cas en général pour l’estimation causale, ces méthodes se basent sur un ensemble

d’hypothèses mathématiques qui impliquent que la structure causale et les facteurs de

confusion doivent être connus. La méthode d’estimation par le maximum de vraisem-

blance ciblé (TMLE) [78] se veut une amélioration des équations d’estimation effi-

caces: elle a les propriétés de double robustesse (sans biais même avec une erreur de

spécification partielle) et d’efficacité semi-paramétrique, mais peut également garan-

tir des estimés finis pour les paramètres et la production d’un seul estimé en plus

d’être robuste si les données sont éparses.

Cette thèse, composée essentiellement de trois manuscrits, présente de nouvelles

recherches sur l’analyse avec le TMLE de données longitudinales et de données de

survie avec des facteurs de confusion variant dans le temps. Le premier manuscrit

décrit la construction d’un TMLE à deux points dans le temps avec une distribu-

tion de la famille exponentielle généralisée comme fonction de perte du modèle de

la réponse. Il démontre à l’aide d’une étude de simulation la robustesse de la ver-

sion continue de cet algorithme TMLE, et utilise une version Poisson de la méthode

pour une analyse simplifiée de l’étude PROmotion of Breastfeeding Intervention Trial

(PROBIT) qui donne des signes d’un effet causal protecteur de l’allaitement sur les

infections gastrointestinales.
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Le deuxième manuscrit présente une description de plusieurs estimateurs de sub-

stitution pour données longitudinales, une implémentation spéciale de la méthode

TMLE longitudinale et une étude de cas du jeu de données PROBIT entier. Un

algorithme TMLE séquentiel à K points dans le temps est utilisé (théorie développée

dans [74]), lequel est implémenté de façon non-paramétrique avec le Super Learner [36].

Cet algorithme diffère fondamentalement de la stratégie utilisée dans le premier

manuscrit et offre des avantages en terme de calcul et de facilité d’implémentation.

L’analyse compare les moyennes de dénombrements du nombre d’infections gastroin-

testinales dans la première année de vie d’un nouveau-né par durée d’allaitement et

avec aucune censure, et conclut à la présence d’un effet protecteur. Des données

simulées semblables au jeu de données PROBIT sont également générées, et la per-

formance du TMLE de nouveau étudiée.

Le troisième manuscrit développe une méthodologie pour estimer des modèles

structurels marginaux pour données de survie. En utilisant l’algorithme séquentiel

du TMLE longitudinal pour estimer des courbes de survie spécifiques à l’exposition

pour tous les patrons d’exposition, il montre une façon de combiner les inférences

pour modéliser la réponse à l’aide d’une spécification linéaire. Cet article présente

la construction théorique de deux différents types de modèles structurels marginaux

(modélisant le log du rapport des chances de survie et le risque) et présente une étude

de simulation démontrant l’absence de biais de la technique. Il décrit ensuite une

analyse de l’Étude de la Cohorte Canadienne de Co-Infection [26] à l’aide d’une des

méthodes TMLE pour ajuster des courbes de survie et un modèle pour la fonction de
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risque du développement de la maladie chronique du foie (ESLD) conditionnellement

au temps et à l’élimination du virus de l’hépatite C.
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CHAPTER 1
Introduction

Causal inference, the statistical analysis of cause and effect, seeks to pinpoint

the true effect of a treatment or exposure (depending on which characterizes the

source of the effect of interest) on an outcome. In a longitudinal setting, where

both treatment and outcomes are observed over a period of time, the interest lies in

determining the effect of a treatment regimen (a sequence of point-treatments over

time) on a final outcome. Such an effect can be extracted by correctly implement-

ing a randomized trial where different groups, made approximately comparable by

randomization, are each blindly issued different treatment regimens. Under ideal cir-

cumstances, including full compliance with the assigned treatment, no dropout, the

absence of statistical uncertainty, and successful blinding of both participants and

outcome assessors where necessary, the difference in outcome between these groups

can be attributed solely to the effect of the treatment regimen [54]. Unfortunately,

a randomized trial is not always feasible. For example, ethical concerns may arise

from lack of clinical equipoise [14], or blinding may be impossible due to an invasive

treatment being tested such as a new surgical technique [29]. In such cases, it might

be that only non-experimental data can be made available to the researcher.

When it is impossible to randomize a treatment (as in observational data), and

the resulting data are used in a statistical analysis, confounding of the treatment
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effect may be present. Confounding can be intuitively described as the incompa-

rability between two exposure groups in terms of a given outcome, meaning that

when confounding is present, the true effect of the treatment in question cannot be

derived simply from the difference in outcome between the group that underwent

treatment, and the group that did not [30]. Confounding by a baseline variable may

arise when there is a patient characteristic that affects both the probability of being

treated and the outcome. As a basic example of confounding, pulmonary abnor-

malities are common in patients with Scleroderma (SSc or Systemic Sclerosis) [68]

and immunosuppressant drugs are often prescribed to improve lung function (among

other things) [60]. A simple comparison of the measure of lung function between

scleroderma patients in the Canadian population who are taking immunosuppres-

sants versus those who are not would initially seem to indicate that the drugs are

harmful to lung function. Upon consideration, however, we note that this conclusion

may not be warranted as those patients who are most affected by their disease are

more likely to have been prescribed immunosuppressants and also have reduced lung

function. That is, the comparison is primarily between two very different groups of

patients: the desired effect measurement is confounded by disease progression and

severity.

In longitudinal data, an additional challenge may arise due to the presence of

time-dependent confounders, which affect both later exposure and outcome. When a

time-dependent confounder is also affected by previous treatment, traditional meth-

ods of controlling for confounding using regression models (such as mixed models)

are biased whether or not one chooses to control for the time-dependent confounders
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[43, 46]. Because of this, several methods have been produced to properly analyze

longitudinal data when time-dependent confounders are thought to be present. Two

of these methods are inverse probability of treatment weighting (IPTW) [8], which

requires a model for the probability of treatment, and G-computation [44], which

models the outcome and time-dependent variables.

Both IPTW and G-computation produce unbiased estimates of a causal param-

eter under standard causal assumptions (see Section 2.1.1). However, they both also

assume that the required models are correctly specified (i.e. that the form chosen for

the model captures the true causal structure). Van der Laan and Robins [76] used

semiparametric efficiency theory to identify causal estimators that improved upon

IPTW and G-computation. Their theoretical framework led to the construction of

regular, asymptotically linear estimators that have optimally low asymptotic variance

in their class when correctly specified. Some of these estimators only require correct

specification of either the treatment (and censoring) model or the model for outcome

and time-varying covariates in order to obtain asymptotically unbiased inference.

This property is called double robustness [25]. Examples of double robust, semipara-

metric efficient estimators are augmented IPTW [45] for cross-sectional data, and

the method proposed by Bang and Robins for longitudinal data [1].

Targeted Maximum Likelihood Estimation (TMLE) [78] is a framework for

building doubly robust, semiparametric efficient estimators that have additional

benefits over previously developed semiparametric efficient estimators. In partic-

ular, TMLE offers additional flexibility in constructing the estimator by allowing

for a choice of loss function to minimize, it naturally produces bounded estimation
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for bounded parameters, it can be used to construct estimators for a wider range

of causal parameters, and it does not have the problem of multiple solutions that

exists for other types of semiparametric efficient methods. Finally, TMLE allows

for nonparametric estimation of the required density components (for example, the

probability of treatment, and the models for outcome and time-dependent variables),

removing the requirement of choosing a correct parametric model.

In this thesis, we focus on the use of TMLE for estimating different measures

of causal effect of time-dependent outcomes in longitudinal settings. In Chapter 2,

we provide a critical review of the literature on causal inference for time-dependent

outcomes, and Chapter 3 enumerates our research objectives. In Chapter 4, we

demonstrated how a two time point TMLE can be constructed with a generalized

exponential family member loss function, and apply the method to an extensive sim-

ulation study and a case study. In Chapter 5, we describe the theory and specialized

implementation of an alternative longitudinal TMLE method in the context of a case

study in Paediatrics. Chapter 6 describes a method of fitting double robust marginal

structural models for survival data using TMLE, and the application of the method

in a data analysis involving an HIV/Hepetitus C co-infection cohort. Chapters 4,

5, and 6 were originally written as stand-alone papers. Consequently there is some

overlap and inconsistency in notation (sometimes due to journal formatting) between

these chapters. Chapter 4 will appear in Biostatistics. Chapter 5 has been submitted

for publication, and is under review. Chapter 6 will be submitted to a statistical

journal shortly after the submission of the thesis. In Chapter 7, we conclude with

an overview of the three manuscripts.
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CHAPTER 2
Literature Review

The Literature Review is comprised of three sections. The first is a description

of the Rubin-Neyman counterfactual model of causal inference, and the causal as-

sumptions and identifiability results required for the estimation of a large class of

causal parameters with a particular focus on longitudinal parameters. The second

section involves inferential methods for the estimation of causal parameters defined

for longitudinal and survival data. In the third section, semiparametric efficiency

theory is summarized, and a description of efficient estimating equations is given.

This is followed by an introduction to TMLE, the general construction and previous

work on estimation in longitudinal and survival contexts.

2.1 Causal inference and the counterfactual model

The Rubin-Neyman counterfactual model [54] can be used to describe causal

effects and confounding in a fairly intuitive and direct way. For an individual sub-

ject indexed by i and potentially exposed to two different treatments, let outcome

under treatments a = 0, 1 be denoted Y 0
i and Y 1

i , respectively. The individual-

level causal effect is the difference between one person’s outcome under treatment

and non-treatment in a specific context and time-frame. It can be denoted in this

counterfactual framework as Y 0
i − Y 1

i . This effect can almost never be directly ob-

served because one person can only be treated or not treated at a given time or

under identical circumstances, and therefore we can only observe one result. The
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marginal population-level difference is defined as the difference in mean outcome of

a given population when then entire population has received treatment versus when

they have not. If subject i was drawn from population D, then the causal differ-

ence between treatments a = 0 and 1 on (random) outcome Y can be defined as

ED(Y
0 − Y 1) = ED(Y

0) − ED(Y
1). Just as in the individual case, we can never

observe both outcomes of the same population under different treatment statuses

but otherwise the exact same conditions.

A randomized trial is the most natural way to make causal comparisons, as

random treatment assignment in a given population provides easy access to an un-

biased estimate of the population-level causal effect of treatment. Ideally, a simple

randomized trial would take a random sample of participants from the population,

D, of interest, and then randomly allocate levels of treatment to the participants.

Let D0 be the group of size n0 that received treatment A = 0, and D1 be the group

of size n1 that received A = 1. Then, an unbiased estimate of the population-level

difference is 1/n0

∑
i∈D0

Yi − 1/n1

∑
i∈D1

Yi.

When randomized trials are unavailable, infeasible, or suffer from non-compliance,

the goal is then to derive unbiased and efficient causal estimates from observational

or other data where the treatment of interest is unrandomized. Since the two lev-

els of exposure cannot both be applied and evaluated on the same population at

the same time, we may alternatively use information on surrogate populations who

have been observed under the different levels of the exposure of interest. Suppose

we observe group F of size nF with exposure A = 0 and group G of size nG with

exposure A = 1. An estimate of the causal difference of population D might then be
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1/nF

∑
i∈F Yi − 1/nG

∑
i∈G Yi which unbiasedly estimates EF (Y

0) − EG(Y
1). Con-

founding bias is present when ED(Y
0)−ED(Y

1) ̸= EF (Y
0)−EG(Y

1), meaning that

the populations used for inference do not represent the population of interest [30, 16].

In an unrandomized study, the legitimacy of this type of simple inference is very

often contestable due to comparisons between incompatible populations. Modeling

methods are often required to correct for relevant differences between populations.

Ultimately, however, extracting a fair causal comparison relies on extensive knowl-

edge of the data application in question, and a collection of assumptions.

2.1.1 Causal assumptions and identifiability of the causal effect

For a causal effect to be identifiable, several data-generating assumptions are

required. For the methods presented in this thesis, the necessary assumptions are

i) no interference between subjects, ii) consistency, iii) positivity (also called the

experimental treatment assumption), and iv) unconfounded treatment assignment

(also called no unmeasured confounders or sequential randomization).

Assumptions i) and ii) are together called the Stable Unit Treatment Value As-

sumption (SUTVA) by Rubin, 1980 [57]. The absence of interference means that one

subject’s potential outcome is independent of the other subjects’ exposures. Con-

sistency, as refined by VanderWeele, 2009 [81], is the assumption that the observed

outcome of a subject who experienced a given exposure is the same as the potential

outcome under the exposure. Essentially, for observed exposure Ai = a, Y a
i = Y obs

i

where Y obs
i is the actual realization of subject i. The consistency assumption therefore

incorporates the requirement that there is only one version of treatment a. Together,
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these assumptions imply that subject i exposed according to a will obtain outcome

Y a
i , independent of other subjects’ exposures.

Assumption iii) requires that every unit has a non-zero probability of being ex-

posed at every treatment level. For treatment at a single time point, if A is the

variable indicating treatment received, and X is a set of variables occurring prior to

treatment, the theoretical positivity assumption states that Pr(A = a | X) > 0 for

any treatment a and all possible realizations of X. As an example of a contradiction

to theoretical positivity, doctors may determine that patients can be too sick to re-

ceive an experimental surgery. In this case, there is a subpopulation of patients that

could never have received surgery (the intervention of interest). For this subpopu-

lation (of very sick patients), the expected outcome under surgery is undefined. In

general, even if the theoretical positivity assumption holds, the practical positivity

assumption may still be violated. This occurs when a set of data is obtained in which

certain covariate patterns are not represented for (at least) one exposure status, per-

haps due to small sample size. In this situation, no outcome information on this

subgroup is available for this exposure status. Therefore, comparisons for different

exposures within this subgroup become impossible unless the analyst decides that it

is defensible to smooth between groups (for instance, by decreasing the dimension of

X). The theoretical positivity assumption is required for definition of the parameter,

and the practical assumption is required for estimation. A dataset will be described

as “sparse” when very few subjects of certain covariate patterns are available for any

one of the exposure groups.
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Assumption iv) was described notably by Rubin [55] in the related context of

missing data. Ignorability is the minimal sufficient criteria for inference of missing

data, which can be translated to the causal scenario as

Pr(A | X,Y 0, Y 1) = Pr(A | X, Y obs),

where A is the indicator of treatment, and X is an observed set of covariates (occur-

ring prior to treatment, or representative of a pre-treatment variable), and Y obs is

the observed outcome. “Unbiased” treatment assignment or conditional randomiza-

tion occurs when the conditional probability of A is also independent of the observed

outcome [17].

A precise definition of a “confounder” is generally not provided, but for the

purposes of this thesis and intuition, it will be described as a pre-treatment variable

which, relative to a set of pre-treatment covariates W , removes a portion of the

confounding bias when conditioned on in addition to the set W . This allows for

redundancy between confounders (two confounders relative to the same set may

not both be needed to adjust for confounding) and relativity (a variable may be

described as a confounder with respect to one set of covariates, but not another). A

confounding variable can also be (insufficiently) described as a variable that causally

affects the outcome and is differentially distributed in the exposure groups [17].

2.1.2 Longitudinal data, confounding, and causal parameters

Suppose that we observe data of the general longitudinal form

O = (L0, A0, L1, A1, ..., AK−1, LK = Y ), where each of these variables may be mul-

tivariate. The baseline variable L0 includes all potentially confounding variables.

12



The “intervention nodes” At, t = 0, ..., K − 1 include the exposure status at each

time point. For a longitudinal cohort study where patients may become lost to

follow-up, the intervention nodes may also include censoring status. The variables

Lt, t = 1, ..., K−1 include any time-dependent confounding variables (affecting both

subsequent exposure and outcome) that are also affected by previous exposures. If

the outcome of interest is survival at the final end-point, then the time-dependent

variables must include survival status at each time point.

Our data O consist of n independently and identically distributed draws from

a true underlying distribution P0. Let L̄t = (L0, ..., Lt) be a history of the time-

dependent variables up until time t, and let Āt be similarly defined for the exposure

history. The true density may be decomposed corresponding to the time-dependent

structure of the data as

P0 =
K−1∏
t=0

gt(At | Āt−1, L̄t)
K∏
t=0

ft(Lt | Āt−1, L̄t−1)︸ ︷︷ ︸
Q0

(2.1)

(where A−1 and L−1 should be taken as the empty set).

When longitudinal data arise with time-dependent confounding of the effect

of exposure on outcome, standard regression techniques (including mixed effects

modeling, linear regression, and standard Cox-proportional hazards modeling in the

survival setting) will yield biased results whether or not they control for the time-

dependent confounders [43]. Careful identification and estimation of the target pa-

rameter is required.
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Defining the parameter of interest

The primary parameter of interest is the marginal exposure-specific mean, ψā =

E(Y ā), described as the expected counterfactual outcome under no censoring and

fixed exposure regimen (which we will also call exposure pattern) ā = (a0, a1, ..., aK−1)

corresponding to a specific history of exposure. Different parameters of interest

describing the exposure effects can be defined as functions of the marginal exposure-

specific mean, for different exposure patterns. An example of such a function is the

difference in means for exposure patterns ā(0) and ā(1), E(Y ā(0))− E(Y ā(1)).

A larger set of causal parameters that might be of interest comes from modeling

the counterfactual outcomes conditional on time-varying exposure pattern, time and

subgroup status. Often this is accomplished by assuming a linear model for the

outcome. A marginal structural model (MSM) is a model of the causal effect of

a time-dependent exposure on an outcome, when time-dependent confounding also

affected by previous treatment is present [46]. The parameters of interest are the

coefficients of the covariates of the linear model. Note that modeling the difference

in marginal exposure-specific means is an example of a saturated MSM equivalent

to:

E(Y ) = β0 + β1I(Ā = ā(0)) + β2I(Ā = ā(1))

where ψā(0) = β0 + β1 and ψā(1) = β0 + β2 so that β1 − β2 is equal to the difference

between the marginal exposure-specific means. Also note that parametric assump-

tions are not imposed in this equation. An unsaturated example given in Robins,

Hernán, and Brumback (2000) [46] describes a binary outcome being modeled as a
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function of cumulative exposure:

logit[E(Y ā)] = γ0 + γ1cum(ā)

where cum(ā) =
∑K−1

t=0 at for ā = (a0, ..., aK−1).

Hernán, Brumback and Robins (2000) [21] choose to fit a marginal Cox-proportional

hazards model for a survival outcome. Suppose for each subject there exists a sur-

vival time T and censoring time C measured from a fixed baseline so that T is only

observed if T < C. The counterfactual survival time T ā is the survival time that

would have been observed had the subject been exposed according to ā and un-

censored. Drawing a link to the longitudinal context, let L1,t indicate survival at

time point t, so that the marginal exposure-specific survival curve can be defined as

S ā(t) = Pr(T ā > t) = Pr(Lā
1,t = 1), where Lā

1,t is the counterfactual survival status

at time t. For a baseline covariate, W ⊆ L0, Hernán et al model the counterfactual

hazard of mortality as

λā(t | W ) = λ0(t) exp(β1at + β2W ),

where the discrete hazard function can be defined as λā = Pr(T ā = t | T ā ≥ t).

Identification of the exposure-specific mean

The marginal exposure-specific mean can be identified through Robin’s G-computation

formula [43] conditional on the assumption of sequential randomization. Similar to

the conditional randomization assumption in the cross-sectional setting (also known

as “no unmeasured confounders”), the identification of the longitudinal parameter
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requires that

Pr(At | {L̄ā
K , ĀK−1; for all ā ∈ Ā}) = Pr(At | L̄t, Āt−1), t = 0, ..., K − 1.

In words, this requires that the distribution of exposure only relies on the observable

past. In particular, it also assumes that there are no unmeasured time-dependent

confounders.

Let Qt(lt | l̄t−1, āt−1) be the conditional distribution of the time-dependent vari-

able Lt evaluated at realization lt and conditional on fixed exposure history āt−1 =

(a0, a1, ..., at−1) and given time-dependent variables path l̄t−1 = (l0, l1, ..., lt−1). Then,

the marginal exposure-specific mean can be identified through the G-computation

formula using nested integrals:

ψā =

∫
l0

· · ·
∫
lK−1

E(Y | l̄K−1, āK−1)×QK−1(lK−1 | l̄K−2, āK−2)dlK−1 · · ·Q0(l0)dl0.

Here, the Lebesgue integrals are taken over the supports of L0, L1, ..., LK−1, respec-

tively (and each represents multiple integrals in the case where the time-dependent

variables are multivariate). For the simplified scenario where the time-dependent

variables are univariate and binary (but the structure of the baseline variable is

unconstrained), this formula reduces to nested summations:

ψā =

∫
l0

· · ·
∑

lK−2={0,1}

∑
lK−1={0,1}

E(Y | l̄K−1, āK−1)Q̄
ā
LK−1

(l̄K−1)Q̄
ā
LK−2

(l̄K−2) · · · f0(l0)dl0,

(2.2)
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where Q̄ā
Lt
(l̄t) = Pr(Lt = lt | L̄t−1 = l̄t−1, Āt−1 = āt−1), t = 1, ..., K − 1 is the

conditional probability that Lt takes the value of lt conditional on the fixed exposure

history and time-dependent variable path.

Identification of a parameter of a marginal structural model

In general, the identification of a marginal structural model parameter can be

made through the choice of a loss function, L(θ), in addition to the choice of the

marginal mean model. An example of such a loss function is the negative of the log

of an exponential family member distribution:

LY (θ) = −
{
Y θ − b(θ)

a(η)

}
where a(η) is the family-specific dispersion factor that depends on the nuisance pa-

rameter η. In the corresponding density, the mean of Y is E(Y |θ) = b′(θ). Let g

be the canonical link function such that g{E(Y |θ)} = θ. Using a Gaussian family

member, for example, this loss function simplifies to a squared-error loss. Suppose

we specify a marginal model E(Y ā) = µ(ā,W,β) where W is a baseline variable

included in the design matrix of the MSM and β is the vector of model coefficients.

Then, the parameters of the MSM can be defined to minimize the loss function [33]:

β = argmin
β′

∑
ā∈Ā

EL[µ(ā,W,β′)]

which, for an exponential family member loss function, simplifies to

β = argmax
β′

∑
ā∈Ā

E

{
Y āµ(ā,W,β′)− b(µ(ā,W,β′))

a(η)

}
.
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2.1.3 A note about marginal versus conditional parameters

Specialists in causal inference often prefer to estimate marginal parameters,

such as the marginal exposure-specific mean that was described above. For many

parameters and models, the marginal parameter is not the same as the one obtained

when conditioning on a set of covariates. This is called noncollapsibility of the

parameter. As a specific example, consider n independent, identically distributed

observations (W,A, Y ). The marginal exposure-specific difference (for two single

time point exposures, denoted A = 0, 1) of a binary outcome Y may be estimated

through logistic regression. If the variable W is sufficient to control for confounding

of the effect of interest, a logistic regression could be fit, with the regression model

logit[E(Y | A,W )] = β0 + β1A+ β2W . An estimate of the marginal difference could

be obtained using the resulting fit

En(Y
0)− En(Y

1) =
1

n

n∑
i=1

{
expit(β̂0 + β̂2wi)− expit(β̂0 + β̂1 × 1 + β̂2wi)

}
,

where wi is the ith subject’s realization of the baseline variable. This effect estimate

is not necessarily equal to the β̂1 coefficient, which is often used as an estimate of

the treatment effect.

For the general regression case, consider two regressions fit – one controlling

for both W and Z, and the other controlling only for W . The two models are:

g[E(Y | A,W,Z)] = β0 + β1A + β2W + β3Z and g[E(Y | A,W )] = β∗
0 + β∗

1A +

β∗
2W . The conditional parameter is said to be noncollapsible for β1 over Z if β1 ̸=

β∗
1 [17]. Therefore, if two investigators modeled the same data but controlled for
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different variables and even if confounding control was adequate in both analyses, the

parameters estimated using such a regression method would not be the same.

The estimation of marginal parameters is nevertheless sensitive to the choice of

population and dependent on appropriate confounder control which makes marginal

parameters somewhat difficult to compare across studies [82]. This is why epidemi-

ological studies must take care to carefully define their population of interest, and

describe the parameter as specific to the chosen population. While strictly observed

for randomized trials, controlling the entrance criteria in order to be able to clearly

define the parameter of interest is also necessary for observational studies [6].

2.2 Inference

The previous section described conditions under which causal parameters are

estimable, and the identification of the longitudinal parameter that is of interest in

this thesis. This section contains an overview of several estimation methods defined

for parameters related to a longitudinal data structure.

2.2.1 Inverse probability of treatment weighting

One class of inferential methods utilizes measured confounders to estimate sub-

jects’ differing levels of probability of obtaining treatment (or the probability of

leaving the study). They involve calculating the probability of receiving treatment

given a set of confounders. If missing visits or censoring also occur in the study, a

conditional probability of missingness can be calculated. Once the treatment and

missingness conditional probabilities are calculated from the observed data, they can

be included as a covariate in a regression analysis [50], used to weight each partici-

pant in estimating the mean outcome, or in a model for the outcome [46, 42], or used
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to match subjects who are comparable with respect to their covariate values [12].

Bias due to the measured confounders is removed because the levels of confounders

will be similar within strata defined by these probabilities.

Inverse probability of treatment weighting (IPTW) (which will also be used to

refer to weighting to adjust for censoring or missingness) calculates the conditional

probabilities of treatment and censoring, and uses their inverses to weight each par-

ticipant. This procedure produces reweighted exposure groups that are comparable

in terms of the confounders included in the weighting model. For the longitudinal

data structure described in Section 2.1.2, IPTW can be used to estimate the marginal

exposure-specific mean by reweighting each subject when calculating the mean out-

come. This procedure can also be used to reweight non-monotone missing visits (i.e.

intermittently missing visits) [42] but this section only demonstrates the method for

censored data.

Let At now refer to the exposure status at time t, with ĀK−1 describing the

complete history of exposure, and Ct, t = 1, ..., K − 1, referring to the monotone

censoring status. An estimate of the exposure-specific mean under ā can be obtained

by weighting the outcomes and using

ψ̂ā
IPTW =

1

n

n∑
i=1

Y
I(ĀK−1 = ā)I(CK−1 = 0)

ḡA0,n(a0)ḡC0,n(a0)
∏K−1

t=1 ḡAt,n(āt)ḡCt,n(āt)
, (2.3)
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where

ḡA0,n(a0) = Prn(A0 = a0 | L0),

ḡC0,n(a0) = Prn(C0 = 0 | A0 = a0, L0),

ḡAt,n(āt) = Prn(At = at | Āt−1 = āt−1, Ct−1 = 0, L̄t), and,

ḡCt,n(āt) = Prn(Ct = 0 | Āt = āt, Ct−1 = 0, L̄t).

These weights can be constructed for each subject. Once estimated, they can also

be used to weight each observation in a MSM. For example, in a time-dependent

MSM, the observations used are each subject at each time point, which are modeled

conditional on the covariates in the MSM. In the saturated MSM case where the

parameter of interest is truly the exposure-specific mean, the IPTW procedure is the

same as taking a weighted mean of the outcome of interest, as in Equation (2.3).

When data are sparse, it is often the case that few subjects were observed to have

been treated or untreated for a range of covariate values in some of the conditional

models. When this occurs, the affected conditional models will predict very small

probabilities for being exposured or unexposed for subjects at those covariate levels.

The inverse of the probabilities will therefore be very large, sometimes approach-

ing computational infinitude. One solution is to stabilize the weights by including

any function of the baseline and exposure variables (but not the time-dependent

confounders) in the numerator of the weights. For instance, the weights are often

altered to be:

w(L̄K−1; ā) =
h(ĀK−1, C̄K−1; ā)

ḡA0,n(a0)ḡC0,n(a0)
∏K−1

t=1 ḡAt,n(āt)ḡCt,n(āt)
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where the function h can be set to

h(ĀK−1, C̄K−1; ā) = Prn(A0 = a0)Prn(C0 = 0 | A0 = a0)×
K−1∏
t=1

Prn(At = at | Āt−1 = āt−1, Ct−1 = 0)Prn(Ct = 0 | Āt = āt, Ct−1 = 0).

To maintain confounding control, variables that are included in the conditional prob-

abilities in the numerator must be included in the outcome model of the MSM.

Therefore, when fitting an MSM that doesn’t include any confounding variables, the

numerator also cannot be a function of any confounding variables.

When stabilization also fails to control the size of the inverse weights, analysts

may choose to perform an ad hoc procedure such as weight trimming or weight trun-

cation where the topmth percent of weights is either removed (i.e. the corresponding

subjects are removed from the calculation) or reduced to the values of the weight at

the 1−mth percentile [8, 84].

The success of these techniques again relies on the causal assumptions specified

in Section 2.1.1. In particular, the set of suspected confounders must be sufficient

to adjust for confounding. Similarly, these methods also require that the probability

of dropout or missing values only depends on observed variables (i.e. that they are

missing at random [55]) and variables that do not affect the outcome.

IPTW for survival data

IPTW can be used to fit MSMs for general longitudinal and survival data

equally [46, 21]. The exact same weights are used (the inverse conditional probabili-

ties, possibly stabilized), but they are used to weight each uncensored subject-specific
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visit in a regression corresponding to the marginal model of interest (and the chosen

loss function).

Often, it is of interest to estimate the marginal exposure-specific probability of

survival at each time point, S ā(t) = Pr(T ā > t), in order to directly visualize or

statistically compare the survival curves. The nonparametric Kaplan-Meier method

of constructing the survival curve is straight-forward but assumes no confounding

and independence between censoring and failure time [23]. Let δj,ā be the number

of deaths at time point j corresponding to exposure pattern āj and Yj,ā the total

number of subjects with exposure pattern āj at risk at time j. Then, the Kaplan-

Meier estimate for the survival curve at time t for subjects with exposure pattern āt

is given by
∏t

j=1

(
1− δj,ā

Yj,ā

)
.

IPTW has also been used to reweight the Kaplan-Meier curve in the case of

baseline and time-dependent confounding [9]. Xie and Liu [86] developed the Ad-

justed Kaplan-Meier estimate (AKME), a type of IPTW estimator. For each subject

observed at a time point j, let pj,ā = Pr(Āj = āj | L̄j−1) be the probability of

that subject having a given exposure pattern, āj, possibly conditional on a his-

tory of time-dependent and baseline covariates, L̄j−1. Let δ be the indicator of

whether a subject was observed to fail (as opposed to having been censored). Then,

δj,ā =
∑

T=j I(Āj = āj)δ, where the sum is taken over all subjects who fail exactly at

time j. Similarly, Yj,ā =
∑

T≥j I(Āj = āj) where the sum is taken over all subjects

at risk at time j. The weighted counterparts of these measures can be described

as δWj,ā =
∑

T=j I(Āj = āj)δ/pj,ā and Y W
j,ā =

∑
T≥j I(Āj = āj)/pj,ā and fit for all

subjects.
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The AKME is equal to

Ŝ ā
AKME(t) =

 1 if no failures are observed prior to t∏t
j=1

(
1− δWj,ā

Y W
j,ā

)
otherwise.

The AKME is a method that is unbiased as long as the probabilities of exposure are

correctly specified. This estimator is also unbiased under MAR censoring if a model

for censoring can also be correctly specified and included in the weights.

2.2.2 Plug-in estimation and G-computation

In Section 2.1.2, the marginal exposure-specific mean was identified using Robin’s

G-computation formula. Substitution or “plug-in” estimation of this parameter [43]

can be produced by estimation of each of the components in the formula (or through

Monte-Carlo sampling of the densities in the formula for the general structure) that

are then inserted into the formula. If the time-dependent variables are binary, the

formula simplifies to Equation (2.2), and estimation of the target parameter can be

produced through 1) estimation of the expectation of the outcome conditional on the

past and the fixed exposure pattern,

Q̄ā
n,Y (l̄K−1) = En(Y | L̄K−1 = l̄K−1, ĀK−1 = āK−1),

2) estimation of the conditional probabilities for each time-dependent variable,

Q̄ā
n,Lt

(l̄t−1) = Prn(Lt = lt | L̄t−1 = l̄t−1, Āt−1 = āt−1), for all l̄t,

and 3) fitting the empirical distribution for the baseline covariate(s), Qn(l0) = 1/n

for each subject’s baseline covariates. Then, an estimate of ψā = E(Y ā) can be
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calculated using

ψ̂ā
GCOMP =

1

n

n∑
i=1

∑
l1=0,1

· · ·
∑
lK1

Q̄ā
n,Y (l̄K−1)Q̄

ā
n,Lt

(l̄t−1) · · · Q̄ā
n,L1

(li0)

Note that when fitting the G-computation formula, the conditional expectations

are calculated over each combination of the time-dependent variable path l̄K−1 =

(li0, l1, ..., lK−1) where the baseline covariates are subject-specific.

A variant of the G-computation estimator may be used to estimate the param-

eters of a marginal structural model as well [67, 80] but is rarely used in practice,

with IPTW being the prominent method for fitting MSMs.

In general, plug-in estimators can be described for any parameter that can be

defined as a smooth function of a component of the underlying data-generating func-

tion, Q0 ⊂ P0. Let Ψ be one such function that takes an argument in the model

space M and returns a value in the space of real numbers. For a parameter that

can be described as ψ = Ψ(Q0), plug-in estimation of this parameter is available by

first fitting the component of the necessary underlying distribution, Qn, and then

plugging this estimate into the function so that ψ̂ = Ψ(Qn).

Unbiasedness of a plug-in estimator relies on the correct modeling of the required

components of the data-generating distribution. Correct parametric specification of

the density models will result in efficient estimation. However, the general proce-

dure of optimizing a density estimate (possibly by maximizing a likelihood) and

then plugging it into a function doesn’t necessarily optimize the estimation of the

target parameter. Such a procedure may lead to arbitrary trade-offs between bias
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and variance and produce a slowly-converging estimator (even when asymptotically

unbiased) [78].

No closed form variance is available for G-computation or for a general plug-in

estimator. Often, the bootstrap procedure is used [67, 80]. Possibly because of this,

and because G-computation rapidly becomes exceedingly computationally complex

for more time points and time-varying exposures, the method remains underutilized

in epidemiological studies [82].

2.3 Efficient estimation

The literature on efficient estimating equations goes back many decades, with

roots in Fisher’s definition of the information of an estimator, sufficiency, and min-

imal asymptotic variance [24, 4]. The following theory on minimal variance estima-

tion is a closely related generalization of the Cramér-Rao lower bound [40, 10, 41]

applicable to all regular, asymptotically linear semiparametric estimators. Van der

Laan and Robins (2003) [76] extended efficient methods to the general causal infer-

ence and missing data settings, and described a general theory of semiparametric

efficiency applicable to causal parameters.

The first part of this section briefly describes elements of the theory that led

up to the development of Targeted Maximum Likelihood Estimation. The second

discusses a relevant estimator for the marginal exposure-specific mean of longitudinal

data that was developed by Bang and Robins (2005) [1] using this theory. The final

part describes the general framework of TMLE as proposed by Van der Laan and

Rubin (2006) [78].
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2.3.1 The efficient influence function for plug-in estimation

Suppose we observe n independent and identically distributed observations O =

{Oi, i = 1, ..., n} with joint probability distribution P0 ∈ M. Let the R-dimensional

parameter ψ be defined as a pathwise differentiable function of a component of the

underlying density, Q0 ⊂ P0. That is, let ψ = Ψ(Q0) for some function Ψ that takes

an argument in a statistical model space, M, and returns a real value (possibly a real

vector). For instance, Ψ could be defined as an expected value operator on a single

variable, or as the G-computation formula that identified the exposure-specific mean

in Section 2.1.2. As described in Section 2.2.2, plug-in estimators for the parameter ψ

may be constructed using density estimator Qn and evaluating the expression Ψ(Qn).

Let Q0(ϵ) ∈ M be a regular parametric submodel of the density component Q0

(such that Q0(0) = Q0) with score function Sϵ. Under pathwise differentiability,

d

dϵ
Ψ(Q0(ϵ)) |ϵ=0= E [D(P0)(O)Sϵ(O)] (2.4)

for some R-dimensional function D(P0) with finite variance and zero mean. This

function, called a gradient of the pathwise derivative at P0 [76], and elsewhere termed

an influence function [71], can be seen as a member of a Hilbert space equipped

with inner product < d1, d2 > = E(d1(O)d2(O)) [78]. Sϵ(O) is the score func-

tion with respect to parameter ϵ for the parametric submodel, Q0(ϵ), i.e. Sϵ(O) =

d/dϵ log{ Q0(ϵ)(O) } |ϵ=0.
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Let a tangent sub-space T (P0) of the Hilbert space be the closure of the linear

span of score functions Sϵ(O) for each parametric submodel, Q(ϵ). Then, the canon-

ical gradient D∗(P0) is defined as the unique gradient contained within T (P0) (see

Tsiatis, 2006, ch. 3 [71] for the geometry of gradients).

For each observation, let D(P0)(Oi) be the subject-specific component of the

gradient D(P0)(O). Given a gradient D(P0), there exists a regular asymptotically

linear estimator that is associated with it. Let Pn be a fit of the underlying probability

distribution P0. And let Qn be the fit of the component of the distribution required

for the parameter identification Q0 ⊆ P0. Then, an estimator Ψ(Qn) can be found

using the definition

n1/2[Ψ(Qn)− ψ] = n−1/2

n∑
i=1

D(P0)(Oi) + oP (1) (2.5)

where oP (1) is the component that converges to zero in probability as n increases.

By an application of the Central Limit Theorem, this implies that

n1/2[Ψ(Qn)− ψ] →D N{0, E[D(P0)(O)D(P0)(O)
T ]}

when Pn(O) is asymptotically unbiased (a full description is available in Van der

Laan and Rose, 2011, Appendix A.2 [77]). From Equation (2.5), it is apparent that

the asymptotic behaviour of the estimator is completely determined by its associated

gradient. In particular, the large sample variance of the estimator can be approx-

imated by the variance of the gradient scaled by 1/n. Efficiency in estimation can

therefore be improved by finding estimators associated with gradients that have the

minimal variance.
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It can be shown that the gradient with minimal variance is identical to the

canonical gradient, commonly referred to as the efficient influence function (Van der

Laan and Rose, 2011, Appendix A.4 [77]). This generalization of the Cramér-Rao

lower bound theorem implies that there is a lower variance bound amongst the class

of regular, semiparametric estimators that can only be attained through estimation

with the efficient influence function.

The efficient influence function can be found by performing a linear projection

of any gradient onto the tangent space T (P0). Van der Laan and Robins [76] derived

the efficient influence functions for many causal parameters. As will be described

in more detail in Section 2.3.2, Bang and Robins [1] derived the efficient influence

function for the exposure-specific mean parameter for a longitudinal exposure. Under

a different factorization of the data-generating distribution, Van der Laan [73] derived

a simplified expression of the efficient influence function for the same parameter when

time-dependent confounders can be factorized into binary variables.

A simple example

As a simple example of the derivation of an influence function (taken from the

2011 course notes of Van der Laan at University of California, Berkeley), consider

a data set with N independent and identically distributed observations, each with

baseline variable W , discrete exposure variable A, and outcome Y . Under the time-

ordering assumption, the full likelihood is given as P0(O) = QY (Y | A,W )gA(A |

W )QW (W ), where QY represents the conditional distribution of the outcome vari-

able, gA represents the conditional distribution of the exposure variable, and QW

is the distribution of the baseline variable. Under the counterfactual framework
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where single exposure A is set to a, the likelihood of the data factorizes into Q0 =

QY (Y | A = a,W )QW (W ). Correspondingly, the exposure-specific mean E(Y a) is

identifiable through the G-computation formula as

E(Y a) = Ψ(Q0) =

∫
w

E(Y | A = a,W = w)Pr(W = w)dw

=

∫
w

∫
y

yPr(Y = y | A = a,W = w)Pr(W = w)dydw

where E and Pr are an expectation and probability function, respectively, taken with

respect to the probability distribution QY . Note that, as usual, the exposure-specific

mean can be identified independently of the likelihood component gA. The integrals

are taken over the support of Y andW , respectively. The parameter can be estimated

by choosing and fitting a model for Pr(y | a, w) = Pr(Y = y | A = a,W = w), using

the empirical fit for QW (so that Prn(w) = Prn(W = w) = 1/n for each subject),

and carrying out an empirical average of the conditional probability for Y over all

subjects.

Suppose we have defined some parametric submodel of Q0, which implies a

submodel for both components, say Q(ϵ) = QW (ϵ)QY (ϵ). Let Sϵ,W (w) be the score

function for the submodel QW (ϵ). Similarly, let Sϵ,Y (y | a, w) be the score function

for the conditional distribution of Y . Lower-case letters indicate evaluation at a

realization. By properties of the score function, it follows that EP0{Sϵ,W (W )} =

EP0{Sϵ,Y (Y | A,W )} = 0.

The first goal is to identify a gradient of the parameter, ψa = E(Y a). Construct

a regular parametric submodel of the density Q0 with respect to some parameter ϵ
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by defining

Ψ(Q(ϵ)) =

∫
w

∫
y

y{1 + ϵSϵ,Y (y | a, w)}Pr(y | a, w){1 + ϵSϵ,W (w)}Pr(w)dydw.

Taking a derivative with respect to ϵ (and assuming that the integral and derivative

and be interchanged) yields

d

dϵ
Ψ(Q(ϵ)) =

∫
w

∫
y

ySϵ,Y (y | a, w)Pr(y | a, w)Pr(w)dydw

+

∫
w

∫
y

ySϵ,W (w)Pr(y | a, w)Pr(w)dydw.

Multiply and divide both components by Pr(a | w), the probability of obtaining

exposure a conditional on baseline w. Then, using a summation manipulation (and

because A has a discrete support), this is equal to

d

dϵ
Ψ(Q(ϵ)) =

∫
w

∑
a∗

∫
y

y
I(a∗ = a)

Pr(a | w)
Sϵ,Y (y | a, w)Pr(y | a, w)dyPr(a | w)Pr(w)dw

+

∫
w

∑
a∗

∫
y

y
I(a∗ = a)

Pr(a | w)
Sϵ,W (w)Pr(y | a, w)dyPr(a | w)Pr(w)dw

=EP0

[
Y

I(A = a)

Pr(A | W )
Sϵ,Y (Y | A,W )

]
+ EP0

[
Y
I(A = a)

Pr(a | W )
Sϵ,W (W )

]
=EP0

[
Y

I(A = a)

Pr(A | W )
{Sϵ,Y (Y | A,W ) + Sϵ,W (W )}

]
.

The above expectation is taken over P0, the complete distribution. To see how this

equation relates to the definition of the gradient in Equation (2.4), note that the score

function for the parametric subspace Q0(ϵ) separates as Sϵ,Y (Y | A,W ) + Sϵ,W (W ),

and that its expectation under P0 is zero. The above expectation is therefore equal
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to

d

dϵ
Ψ(Q(ϵ)) = EP0

[{
Y
I(A = a)

Pr(a | W )
− ψa

}
Sϵ(O)

]
.

Then, by the definition, D(O) = Y I(A=a)
Pr(A|W )

− ψa, which has mean zero as required

and is equal to a gradient of the parameter ψa = E(Y a). Note that when empirically

evaluated by taking a mean over N subjects, this is equivalent to the unstabilized

IPTW method, resulting in an unbiased estimator of E(Y a) when Pr(a | W ) is

correctly specified.

The above gradient is not the canonical gradient as it is not an element of

the semiparametric tangent space associated with Q0, which we shall denote TQ.

Since Q0 = QY (Y | A = a,W )QW (W ) is decomposed as a product of orthogonal

densities, this semiparametric tangent space is defined as the mean square closure of

the space spanned by the score functions, Sϵ,Y and Sϵ,W , for all parametric submodels,

Q(ϵ). This can be written using the direct summation TQ = TY ⊕ TW . To obtain

the canonical gradient, the gradient D(O) can be projected onto each orthogonal

tangent space, resulting in a gradient with the smallest norm as defined by the inner

product metric, or equivalently, the smallest variance. By Tsiatis’ Theorem 4.5 [71],
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this projection is:

∏
(D | TQ) =

∏
(D | TY ⊕ TW )

=
∏

(D | TY ) +
∏

(D | TW )

= {E(D | Y,A = a,W )− E(D | A = a,W )}+ E(D | W )

=

{
Y
I(A = a)

Pr(a | W )
− E(Y | A = a,W )

I(A = a)

Pr(a | W )

}
+ {E(Y | A,W )− ψa}

=
I(A = a)

Pr(a | W )
{Y − E(Y | A = a,W )}+ E(Y | A = a,W )− ψa. (2.6)

Therefore, Equation (2.6) is D∗(O), the canonical gradient, or the efficient influence

function for ψ.

2.3.2 Efficient and double robust inference for longitudinal parameters

One strategy to produce an estimator connected to the efficient influence func-

tion is to use the efficient influence function to define an estimating equation (so

that P ∗
n is and m-estimator [71]) where P ∗

n solves
∑n

i=1D
∗(P ∗

n) = 0. Extended to the

causal inference setting by Robins and Rotnitzky [47], such an estimator may have

a closed form solution or require an optimization algorithm to solve the equation.

One example derived from the general efficient estimating equation framework

is the augmented inverse probability of treatment weighted estimator (AIPTW)

[47, 45, 25], demonstrated originally for censoring, but later applied equivalently

to estimating causal effects of exposure. For the simple dataset O = (W,A, Y ), the

efficient influence function of the exposure-specific mean, ψa = E(Y a), was derived

in Equation (2.6). Treated as an estimating equation, this equation can be set equal

to zero and solved for the parameter ψa. This can easily be accomplished in closed
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form, resulting in the AIPTW estimator

ψ̂a
AIPT =

I(A = a)

Pr(a | W )
{Y − E(Y | A = a,W )}+ E(Y | A = a,W ).

Similarly, Robins, Rotnitzky and Zhao (1995) [49, 48] produced semiparametric ef-

ficient estimators for the censoring-free mean outcome in the context of repeated

measures. Robins and Rotnitzky developed an efficient Cox proportional hazards

model for censored survival data [47].

For the longitudinal setting with time-dependent confounders

O = (L0, A0, L1, A1, ..., AK−1, LK = Y ), described in Section 2.1.2, Bang and Robins [1]

described an alternative decomposition of the likelihood of the marginal exposure-

specific mean and thereby derived a closed-form efficient influence function for ψā =

E(Y ā). Recall that ā = (a0, a1, ..., aK−1) denotes a fixed, longitudinal exposure pat-

tern and āt = (a0, a1, ..., at) denotes the pattern truncated at time t. Define the

exposure-specific conditional expectation

Q̄K = E(Y | L̄K−1, ĀK−1 = āK−1).

Then, iteratively define

Q̄t = E(Q̄t+1 | L̄t−1, Āt−1 = āt−1), t = K, ..., 1.

Using the property of iterated expectation, the parameter of interest can then be

written as E(Y ā) = E(Q̄1). To use this decomposition in a type of G-computation

estimation, each of the Q̄t’s can be fit with statistical models and the parameter
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estimate obtained by taking the empirical mean of the fit of Q̄1. The estimator can

then be described as a function of Q̄t, t = K, ..., 1.

Van der Laan and Gruber [74] demonstrate that one way to obtain the Bang and

Robins efficient influence function for this parameter is to project the IPTW gradient

I(Ā=ā)

Pr(ā|L̄K−1,āK−1)
Y −ψā onto each component of the density Q0. Q0 is comprised of the

conditional density of each Lt, t = 0, ..., K (as described in Equation (2.1)). These

projections result in the efficient influence function (or canonical gradient) defined

in terms of the Q̄t’s, resulting in a summation of the components

D∗(t)(O) =
I(Ā = ā)

Pr(Ā = ā | L̄t−1, Āt−2)
(Q̄t+1 − Q̄t), t = 1, ..., K, and

D∗(0)(O) = Q̄1 − ψā

where Q̄t+1 is defined as Y for notational simplicity and A−1 is null for the same

reason.

Bang and Robins present their estimator in terms of a series of regressions

(sequentially solving each of the components D∗(t)), until finally the estimate for

the parameter is set as the empirical mean of Q̄1.

While semiparametric efficient and double robust, efficient estimating equation-

based estimators can sometimes be unstable under small misspecifications of the

density models [25] because they are unbounded and use inverse probabilities that can

become arbitrarily small in certain situations. This sensitivity to modeling violations

demonstrated the need for stability in double robust estimation.
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2.3.3 Targeted Maximum Likelihood Estimation

Targeted Maximum Likelihood Estimation (TMLE) [78], described in the origi-

nal paper as the unification of maximum likelihood estimation and estimating func-

tion based estimation, is a method that constructs efficient plug-in estimators. Sup-

pose, as before, that the parameter ψ can be defined as a function ψ = Ψ(P0) where

P0 is a member of a statistical model space M. (To be specific, Ψ may take a

subcomponent of P0 as an argument.)

First, the initial density estimate Pn is fit using a choice of modeling method.

The TMLE procedure creates a parametric submodel P0(ϵ) so that 1) P0(0) = P0,

and 2) the score (which can be defined more generally in terms of a loss function)

is proportional to the efficient influence function, i.e. d/dϵL{P0(ϵ)} |ϵ=0∝ D∗(P0).

The fit for ϵ is obtained by a maximum likelihood procedure, or more generally, by

minimizing a loss function, so that ϵ̂(1) = argminϵd/dϵL{Pn(ϵ)}. The updated fit is

then P
(1)
n = P

(1)
n (ϵ̂).

This procedure might need to be iterated (by creating a fluctuation of P
(1)
n and

updating in the same way to get P
(2)
n , and so on) until the iteration produces no

update (i.e. ϵ(k) = 0). If this series of updates converges, the limiting distribution

P
(inf)
n is a solution of the efficient influence function set to zero, D∗(P

(inf)
n ) = 0 [78].

Consequently, the plug-in estimator Ψ(P
(inf)
n ) is semiparametric efficient.

The same simple example

Section 2.3.1 described the derivation of the efficient influence function for n

independent, identically distributed data of form (W,A, Y ) for the exposure-specific
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mean parameter, ψa = E(Y a). The TMLE construction of this estimator is given

in [51].

A G-computation plug-in estimator for this parameter is

ψ̂a
GCOMP = Ψ(P (1)

n ) =
1

n

n∑
i=1

En(Y | A = a,W = wi)

where Q̄
(1)
n,Y = En(Y | A = a,W = wi) (a component of P

(1)
n ) can be estimated with

a generalized linear model, for instance. An example of a fluctuation that can be

used in the update is

logit{Q̄(2)
n,Y (ϵ

(1))} = logit{Q̄(1)
n,Y }+ ϵ(1)Cn(Pn).

We have that this fluctuation satisfies the first criterion because Q̄
(2)
n,Y (0) = Q̄

(1)
n,Y . The

second criterion requires that the score of the fluctuated density (with respect to a

loss function) be proportional to the efficient influence function. Using the logistic

loss function (and relying on the smoothness of the function of ϵ and the positivity

assumption), the score is

d

dϵ
L{P0(ϵ)} |ϵ=0 = − d

dϵ

{
Y log Q̄

(2)
n,Y (ϵ) + (1− Y )[1− log{1− Q̄

(2)
n,Y (ϵ)}]

}
∝ Y

1

Q̄
(1)
n,Y

exp{logitQ̄(1)
n,Y }

[1 + exp{logitQ̄(1)
n,Y }]2

Cn−

(1− Y )(1− Q̄
(1)
n,Y )

exp{logitQ̄(1)
n,Y }

[1 + exp{logitQ̄(1)
n,Y }]2

Cn

= Cn

[
Y {1− Q̄

(1)
n,Y } − (1− Y )Q̄

(1)
n,Y

]
= Cn{Y − Q̄

(1)
n,Y }.
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The score can therefore be made proportional to the first component of the efficient

influence function in Equation (2.6) by setting Cn = I(A = a)/Prn(a | W ) which

had previously been left undefined. The second component of the efficient influence

function is proportional to the score of the baseline variable as a result of the use of

the empirical distribution. Rosenblum and Van der Laan [51] show clearly why no

additional update is required. Intuitively, this is because the empirical distribution

used in the initial fit is the nonparametric maximum likelihood estimate for the

unconditional distribution of the baseline covariate, and therefore the best possible

fit.

The next step in the procedure is to minimize

L{P0(ϵ
(1))} |ϵ=0= −Y log Q̄

(2)
n,Y (ϵ

(1)) + (1− Y )[1− log{1− Q̄
(2)
n,Y (ϵ

(1))}]

with respect to ϵ(1) in order to obtain the fit ϵ̂(1). This minimization can be con-

veniently performed using an intercept-free logistic regression fit, taking Y as the

outcome and Cn as the lone covariate. Then, the updated density estimate is

Q̄
(2)
n,Y (ϵ̂

(1)) = expit

[
logit{Q̄(1)

n,Y }+ ϵ̂(1)
I(A = a)

Prn(a | W )

]
.

As the variable Cn remains the same, no further updates are required (i.e. conver-

gence is immediate). The final estimate of the parameter is obtained by plugging

Q̄
(2)
n,Y into the function Ψ.

TMLE methods for longitudinal parameters

Van der Laan (2010) [73] developed a TMLE method for the estimation of causal

effects of multiple time point exposures. Assuming a binary decomposition of the
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time-dependent variables (which must include all time-dependent confounders), he

derived a simplified form of the efficient influence function. This could naturally be

used in a one-step TMLE procedure (i.e. with only one update step needed for each

density) using G-computation as the plug-in estimator. A two time point version of

this method is demonstrated and implemented in Chapter 4 of this thesis for a single

binary time-dependent confounder.

The difficulty with this method is primarily that it relies upon the binary de-

composition of potentially non-factor time-dependent variables. This problem can

be partially overcome by transforming each time-dependent variable into (possibly

ordered) factor levels. However, since the method requires that each factor level be

modeled, a large number of time-dependent variables, factor levels, or time points can

all exponentially inflate the computational complexity of the procedure (similar to

the computational problems involved in using the discrete G-computation estimator

for large numbers of time points).

Van der Laan and Gruber (2012) [74] produced a more computationally conve-

nient longitudinal TMLE estimator using the Bang and Robins (2005) [1] sequential

decomposition of the efficient influence function (see Section 2.3.2) and a corre-

sponding G-computation-type plug-in estimator. A detailed explanation of this type

of TMLE estimator is given in Chapter 5 of this thesis. It provides an improvement

on the original longitudinal TMLE because it can naturally incorporate a large num-

ber of time-dependent confounders without requiring additional models to be fit. In

addition, the number of models fit increases linearly with the number of time points.
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Super Learner applied to TMLE

Computing a TMLE requires fitting all density components present in the ef-

ficient influence function, but it does not prescribe a method for doing so. Even

when all confounders have been identified, parametric methods like main terms gen-

eralized linear models may produce misspecified fits for the baseline density com-

ponents. Therefore, Van der Laan [73] suggests using nonparametric method Super

Learner [75, 36, 37] in order to produce fits of any required density components

without relying on the assumption that a specific parametric model holds true.

Briefly, Super Learner is a nonparametric predictive method that involves fitting

a library of user-specified models to the data. For each model, the cross-validated

estimate and model loss are calculated (using a randomized partitioning the dataset).

The Discrete Super Learner then takes the estimate with lowest cross-validated loss

and uses it as the final estimate. The (non-discrete) Super Learner instead uses

a logistic model to combine the estimates from the different models in a way that

minimizes the cross-validated risk over all possible weighted combinations. Van der

Laan, Polley and Hubbard [75] show that Super Learner will do no worse in terms of

cross-validated loss (such as mean-squared error) than the most successful method in

the library, and in practice produces fits with less error (calculated on a validation set

or with cross-validation). In a later paper, Polley and Van der Laan [36] demonstrate

the finite-sample performance of Super Learner for both simulated and real data in

which they conclude that the Discrete Super Learner is “an adaptive and robust

estimator selection procedure for small samples” and that Super Learner minimizes

over-fitting even over a large library.
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Super Learner allows a user to implement TMLE while removing parametric

modeling assumptions, and therefore assists in creating a fully nonparametric causal

inference method. In addition it removes the obligation to choose a modeling method

for the density components, which can be beneficial in that it is unknown a priori

which method will perform best in a given scenario.
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CHAPTER 3
Objectives

Three studies were undertaken whose manuscripts form this thesis. The primary

objectives in pursuing these projects were to further the development of TMLE

methodology in the longitudinal context, evaluate recent methodology, and utilize

these methods appropriately in real data analysis. A secondary goal was to clearly

explain the context, methods, and benefits of TMLE to a growing and uninitiated

audience.

In the first manuscript (Chapter 4), we apply a property of the score function of

generalized linear models to enhance a targeted longitudinal estimator so that it can

be constructed for any generalized exponential family member loss function. When

the modeling is performed parametrically, this method naturally incorporates any

outcome that can be assigned an exponential family member distribution.

In the second manuscript (Chapter 5), we describe several different substitution

estimators for longitudinal data and produce a guide for implementation of the se-

quential longitudinal TMLE produced by Van der Laan and Gruber [74]. We focus on

a case study of the PROmotion of Breastfeeding Intervention Trial (PROBIT) data

[27, 28] involving estimation of the causal effect of breastfeeding on gastrointestinal

infections in infants.
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The third manuscript (Chapter 6) develops the methodology for fitting a marginal

structural model to a survival outcome using TMLE, building on the general lon-

gitudinal method for the intervention specific mean outcome of Van der Laan and

Gruber [74].
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CHAPTER 4
Targeted Maximum Likelihood Estimation for Marginal

Time-Dependent Treatment Effects under Density Misspecification

Preamble to Manuscript 1. The first general theoretical framework for

semiparametric efficient estimation with TMLE was proposed by Van der Laan [73].

The construction of the two time point case of this TMLE was demonstrated for a

binary outcome by Rosenblum and Van der Laan [53]. The theoretical contribution

of the following manuscript, published in Biostatistics, is a careful description of the

construction (and implementation) of the two time point TMLE with an outcome

that can naturally be prescribed a generalized exponential family member distri-

bution. This is done using a well-known property of the generalized linear model

with the canonical link function. Specifically, it demonstrates how one can choose a

link function that is related to the distribution of an exponential family member in

the TMLE procedure, but can otherwise perform all density estimation using non-

parametric methods. This manuscripts also contains one of the first applications of

TMLE in a longitudinal setting, and the only application using a count variable as

the outcome of interest. In addition, the extensive simulation study presented in this

manuscript provides compelling evidence of the benefits of TMLE and a practical

demonstration of its theoretical properties.
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Abstract. Targeted maximum likelihood methods have been proposed to es-

timate treatment effects for longitudinal data in the presence of time-dependent

confounders. This class of methods has been mathematically proven to be doubly

robust and to optimize the asymptotic estimating efficiency among the class of regu-

lar, semiparametric estimators when all estimated density components are correctly

specified. We show that methods previously proposed to build a one-step estimator

with a logistic loss function generalize to a generalized linear loss function, and so

may be applied naturally to an outcome that can be described by any exponential

family member. We evaluate several methods for estimating unstructured marginal

treatment effects for data with two time intervals in a simulation study, showing that

these estimators have competitively low bias and variance in an array of misspec-

ified situations, and can be made to perform well under near-positivity violations.

We apply the methods to the PROmotion of Breastfeeding Intervention Trial data,

demonstrating that longer term breastfeeding can protect infants from gastrointesti-

nal infection.
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4.1 Introduction

In medical and public health settings, the marginal effect of a treatment, in-

tervention or exposure can often be of interest. In the presence of time-dependent

confounders that are affected by previous treatment, it becomes necessary to adjust

for this confounding in order to produce an unbiased estimate of the desired causal

parameter. The traditional approaches of either including the time-dependent con-

founders in a conditional model or ignoring them altogether both lead to biased

estimation [43]. Unbiased estimates of marginal treatment effects can be produced,

for example, using inverse probability weighted estimators [46, 21], a type of esti-

mating equation, and G-computation [44], a maximum-likelihood approach. Both of

these methods consistently estimate marginal effects under correct specification of

certain components of the underlying density.

Under near-positivity violations (or sparse data), inverse probability weighting

is notorious for producing very large weights, leading to highly variable effect esti-

mators. Methods exist to control the size of these weights [2, 85], the most popular

of which are simple, but ad hoc [8, 84] and arbitrarily trade a small increase in bias

for what are typically large gains in efficiency.

G-computation is a type of substitution (or plug-in) estimator. Substitution

estimators use an estimate of the underlying data-generating density in order to

make inference about a parameter [5].

Targeted maximum likelihood estimation (TMLE) yields a new class of substi-

tution estimators that offer several attractive properties. The procedure modifies

the underlying density estimate in a specific way to produce asymptotic efficiency of
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estimation in a class of semiparametric estimators of the parameter of interest, and

to potentially reduce the bias arising from partially misspecified density models. We

use TMLE to refer to either targeted maximum likelihood estimation or estimator

where it is possible to do so without ambiguity.

In this paper, we demonstrate the construction of the longitudinal TMLE for

two time intervals for an outcome that can be ascribed a loss function associated

with a generalized exponential family. In Section 4.2, we summarize the framework

and properties of TMLE. In Section 4.3, we extend the methodology of [53] for two

time points so as to incorporate this type of loss function for the final time point.

To evaluate the proposed benefits of this TMLE method for the estimation of a

marginal expected outcome under given exposure, we conduct a simulation study

in Section 4.4, comparing commonly used methods under various types of misspec-

ification of the models for the underlying data-generating mechanism. Finally, in

Section 4.5, we apply the methods to study the effect of breastfeeding on the number

of gastrointestinal tract infections in infants.

4.2 Background: targeted estimation

An “influence function” governs the asymptotic behaviour of an asymptotically

linear estimator. The efficient influence function is the influence function that has

minimal variance in the class of regular semiparametric estimators of a given param-

eter. Therefore, inference conducted with an estimator associated with the efficient

influence function will be optimally efficient in this class [71]. Certain types of effi-

cient estimators in causal inference will also inherit the double robustness property,
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only requiring that one of the exposure or outcome models is correctly specified in

order to guarantee consistent estimation [25].

TMLE is characterized by modifications of the density estimates used in the

plug-in estimation. This is carried out so that the resulting estimate is the root

of the efficient influence function. This procedure results in doubly robust, locally

efficient estimators and can be applied to all path-wise differentiable parameters.

The estimators respect the constraints of the parameter of interest (as they are

substitution estimators) and, unlike efficient estimating equations, are guaranteed to

produce only one solution [73].

We reiterate the steps of the general TMLE procedure. Suppose that we ob-

serve identically and independently distributed data from n subjects. The TMLE

is constructed by first obtaining an initial data density or likelihood fit, p0n. This

estimate is then updated by creating a fluctuation p0n(ϵ) of the original density fit,

parametrized by ϵ, ensuring that 1) p0n(ϵ) is equal to p
0
n when ϵ = 0, and 2) given a

loss function, the score of the fluctuation function (with parameter ϵ) linearly spans

the efficient influence function of the target parameter. Then, given a fixed ini-

tial density estimate p0n and a loss function L, the submodel loss is minimized with

respect to ϵ so that ϵ̂ = argminϵ
1
n

∑n
i=1 L{p0n(ϵ)} (an example of this would be like-

lihood maximization where the negative log-likelihood is used as the loss function).

The estimate ϵ̂ is then plugged into the fluctuation function to define the updated

density p1n. These updates are iterated until convergence (although the examples

given in [51] specifically demonstrate useful applications of TMLE when only one

update is needed for convergence). Finally, the resulting density estimate is used to
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calculate an estimate of the targeted parameter. As shown in [78], if this procedure

converges, it results in an estimator with the appealing properties described above.

For longitudinal data with binary intermediate variables, the TMLE was demon-

strated with logistic working models with a binary outcome by [53], and for a survival

outcome by [69]. Practical benefits of TMLE procedures for a point-source treatment

(competitive mean-squared errors and robustness to misspecification and positivity

violations) have been observed in simulation (e.g., [18, 38, 69]). However, the perfor-

mance of the longitudinal TMLE has yet to be compared with prevailing longitudinal

methods (in particular, the efficient and doubly robust estimator proposed by [1]).

In addition, its construction has not yet been demonstrated with the incorporation

of a generalized linear loss function.

4.3 Construction

4.3.1 Data and efficient influence function

We consider data with a longitudinal structure. Each subject i contributes an

observation of the form O = (L0, A0, L1, A1, Y ) where At is a binary covariate at

time t indicating whether or not a subject was treated/exposed, and L1 represents

a binary intermediate covariate. Y is the final outcome of interest measured at time

t = 2.

For this application, we are interested in evaluating the marginal effects of ex-

posure on the final outcome. For now, the parameter of interest is considered to be

ψa0,a1 = E(Ya0,a1), the marginal mean of the final outcome under the fixed regime

(a0, a1). The exposure pattern (a0, a1) = (1, 1) would indicate exposure at both time

intervals.
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The form of the efficient influence function for a fixed regime of A0 = a0 and

A1 = a1 (as constructed in [73] for any outcome) is the sum of the three components

D0(O) =E(Y | L0, A0 = a0, A1 = a1)− ψ,

D1(O) =
I(A0 = a0)

p(A0 = a0 | L0)
{L1 − E(L1 | L0, A0 = a0)}×

{E(Y | L0, A0 = a0, L1 = 1, A1 = a1)

− E(Y | L0, A0 = a0, L1 = 0, A1 = a1)}, and

D2(O) =
I(A0 = a0)I(A1 = a1)

p(A0 = a0 | L0)p(A1 = a1 | L0, A0 = a0, L1)
×

{Y − E(Y | L0, A0 = a0, L1, A1 = a1)}.

Van der Laan [73] derived this efficient influence function as the projection of the

IPTW gradient onto the tangent space orthogonal to the Hilbert space of the nuis-

sance parameter. Each of the components of this efficient influence function cor-

responds to a mean-zero projection of the gradient in a different dimension of this

tangent space. General theory for finding semiparametric efficient estimators and

their related influence functions can be found in Tsiatis [71].

4.3.2 Specifying the initial density estimate

The underlying data-generating density must first be estimated. The joint den-

sity p(Y,A1, L1, A0, L0) factors into a product of conditional distributions:

p(L0)p(A0 | L0)p(L1 | L0, A0)p(A1 | L0, A0, L1)p(Y | L0, A0, L1, A1).

Each of the conditional components is fit using a model of choice. As a simple

example, a logistic regression may be used to fit the density components with binary
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outcomes, and a generalized linear model may be used to estimate the conditional

density of Y . Finally, p(L0) is fit with an empirical distribution.

4.3.3 Determining loss functions and clever covariates

The so-called clever covariate method of constructing TMLEs was demonstrated

by [78]. The resulting estimators for the effect of an intervention at a single time point

are equivalent to those first created by [61]. [52] demonstrated the implementation

of generalized linear loss functions in the context of single time point randomized

trials, and [18] implemented a logistic loss function for a continuous outcome.

In the longitudinal context developed in [73], the update to the estimate of E(Y |

L0, A0 = a0, L1, A1 = a1) is made first. The subsequent intermediate variable(s) are

then updated backwards through time, each using the updated estimates from the

future. This produces a closed form for the fluctuation functions, only requiring one

round of updates.

The first clever covariate is defined to update the conditional expected outcome

E0
Y = E(Y | L0, A0, L1, A1). A generalized linear loss can be expressed as

LY (θ) = −
{
Y θ − b(θ)

a(η)

}
where a(η) is the family-specific dispersion factor that depends on the nuisance

parameter η. Note that this is simply the log-likelihood of an exponential family

member (minus a term that is independent of θ). In the corresponding density,

the mean of Y is E(Y |θ) = b′(θ). Let g be the canonical link function such that

g{E(Y |θ)} = θ. Using a Gaussian family member, for example, this loss function

simplifies to a squared-error loss.
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Allow the fluctuation of the conditional mean of the outcome to take the form

E0
Y (ϵ1) = g−1{g(E0

Y ) + C1ϵ1}. (4.1)

This fluctuation produces no update when ϵ1 = 0, as required.

We wish to determine the form of the clever covariate C1 in order for the score

(derivative of the loss function) to be proportional to the last component of the

efficient influence function, D2. First, we insert the fluctuated mean in Equation

(4.1) into the loss function (note that we plug in θ = gE1
Y (ϵ1) = g(E0

Y ) + C1ϵ1) and

obtain

LY (ϵ1) = −
[
Y {g(E0

Y ) + C1ϵ1} − b{g(E0
Y ) + C1ϵ1}

a(η)

]
.

Then, the loss-based score at zero is

dLY (ϵ1)

dϵ1

∣∣∣∣
ϵ1=0

= −
(
C1

a(η)
[Y − b′{g(E0

Y )}]
)
,

= −
{
C1

a(η)
(Y − E0

Y )

}
.

Setting

C1 = C1(L0, A0, L1, A1) =
I(A0 = a0)I(A1 = a1)

p(A0 = a0 | L0)p(A1 = a1 | L0, A0 = a0, L1)
,

we have that the score at zero is indeed proportional to the last component of the

efficient influence function. Note that the clever covariate takes the form of the IPTW

estimate for the mean of the potential outcome under exposure pattern (a0, a1). In
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particular, a subject who does not follow the fixed exposure pattern would have a

zero value for this covariate.

The dispersion factor of a general exponential family may only be dependent on

the nuisance parameter, η. Therefore, it need not be estimated as its value will be

absorbed into the estimate of the coefficient ϵ1.

Because minimizing the loss function is equivalent to maximizing a likelihood in

this example, the coefficient ϵ1 can be estimated using a generalized linear model with

single covariate C1(L0, A0, L1, A1) and no intercept, taking the estimate of g(E0
Y ) as

the offset. Once the estimate ϵ̂1 is obtained, define E1
Y = E0

Y (ϵ̂) = g−1{g(E0
Y ) +

C1(L0, A0, L1, A1)ϵ̂1} as the updated expectation for Y (i.e. plug in the estimates of

C1 and ϵ1 into Equation (4.1)).

For the update to the intermediate variable fit, the fluctuation function for

the conditional density is similarly described by a fluctuation of the probability

p0L1
= p0(L1 = 1|L0, A0), that was previously estimated. The fluctuation is given as

p0L1
(ϵ2) = logit−1{logit(p0L1

) + C2ϵ2}. (4.2)

The intermediate variable is binary, and so we can use a logistic loss function to

determine the update, which is a special case of the generalized linear loss func-

tion with θ = logit(p0L1
) and b(θ) = log(1 − p0L1

). The loss function simplifies to

−
[
L1 log p

0
L1

+ (1− L1){1− log(1− p0L1
)}
]
.

The choice for clever covariate C2 becomes apparent when the score is calculated

at ϵ2 = 0. This score takes the local form
dLL1

(ϵ2)

dϵ2
|ϵ2=0= C2{L1 − E(L1 | L0, A0)}.

In order to have this score equal the efficient influence component D1(O), C2 can be
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defined as

C2(L0, A0) =
I(A0 = a0)

p(A0 = a0 | L0)
× {E1(ϵ1)(Y | L0, A0 = a0, L1 = 1, A1 = a1)

− E1(ϵ1)(Y | L0, A0 = a0, L1 = 0, A1 = a1)}.

Note that the conditional expectations of Y are calculated under the updated density

(using the clever covariate and ϵ̂1 found in the previous update), and calculated

conditional on L1 = l1 for l1 = {0, 1}, A0 = a0 and A1 = a1.

The intermediate variable density component p0L1
(ϵ2) is updated as before by

minimizing the loss function with respect to ϵ2. This can be done by fitting a no-

intercept logistic regression using p0L1
as an offset and the estimate of C2(L0, A0) as

the lone covariate. The estimate of the coefficient of C2 is ϵ̂2, which is then used to

update the density. Therefore, let

p1L1
= p0L1

(ϵ̂2) = logit−1{logit(p0L1
) + C2(L0, A0)ϵ̂2}

.

For D0(O), the development in Section 3 of [51] shows that specifying a par-

ticular fluctuation function for the baseline density (p(L0) in our case) results in no

update.

4.3.4 Using the updated density to estimate the final parameter

After estimating the two clever covariates (C1, C2) and using maximum likeli-

hood to solve for ϵ̂ = (ϵ̂1, ϵ̂2), the updated density p1n(ϵ̂) is obtained. If these updating

steps are used, convergence occurs in the first iteration.
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The targeted parameter ψa0,a1 can then be calculated using G-computation [15])

with the updated density. For this simple example, the targeted maximum likelihood

G-computation is

Ψ{p1n(ϵ̂)} =
1

n

n∑
i=1

∑
l={0,1}

E1(ϵ̂1)(Y | L0 = li0, A0 = a0, L1 = l, A1 = a1)×

p1n(ϵ̂)(L1 = l | L0 = li0, A0 = a0).

It is important to note here that while the ϵ̂ coefficients are constant, the clever

covariates are functions of the observed variables. When conditioning on A0 = a0,

for instance, these values must therefore also be altered in the clever covariates.

4.3.5 Modification for continuous outcome under positivity violations

In a situation where data sparsity leading to near-positivity violations exists, the

denominators of the clever covariates may become very small for certain individuals,

leading to inflated clever covariate values which may in turn produce unstable mean

estimates. This has been shown to be particularly true when using squared loss

functions with linear models. [18] have shown that the use of scaling and a logistic-

loss function for the update step can result in improved estimation under these

conditions. While not an issue in the applied analysis of this paper, this modification

proved to be essential in the simulation study where near-positivity violations were

produced.
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4.4 Simulation

4.4.1 Methods

For this simulation study, four estimators of the parameter ψ1,1 were compared:

(i) the TMLE, (ii) an untargeted G-computation, (iii) an inverse probability of treat-

ment weighted (IPTW) estimator with stabilized weights, and (iv) Bang and Robins’

(2005) doubly robust estimator. We considered parametric models that were cor-

rectly specified in accordance with the true data-generating distributions, as well as

model specification or data generation that was varied to represent three different

types of misspecification that arise in practice: 1) missing confounders, 2) nonlinear

dependence on covariates, and 3) data sparsity. In the data sparsity scenario, mod-

ified versions of both the TMLE and Bang and Robins’ estimator were also used in

the estimation. No truncation of inverse weights was used in any of the methods.

For each scenario, we tested the performance of the models for sample sizes

of n = 200, 1,000 and 10,000. Details of the data generation are given in the

Supplementary material (available at Biostatistics online). We present measures of

the bias, standard error, root mean-squared error, and percent confidence interval

coverage. The standard error was calculated using a nonparametric bootstrap. The

root mean-squared error was calculated using the squared errors of the difference

between the model estimate and the true parameter value for each of the 1,000

generated datasets. The percent coverage refers to the proportion of runs where the

2.5th and 97.5th percentiles of the bootstrap estimates contained the true parameter

value.
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We also simulated data with a Poisson outcome and model misspecification

due to omitted confounders. We refer the interested reader to the Supplementary

material (available at Biostatistics online) for the Poisson outcome results, as well

as those for the Normal outcome with incorrectly-specified nonlinear effects.

4.4.2 Simulation results: omitted confounder

For the first situation, data were generated from a density that had a confound-

ing variable acting at both time points. In order to see how misspecification affects

the different models, we demonstrated the effect of omitting the confounder from

different parts of the models (the exposure, the outcome or both, as applicable).

Each of the three models assumed linear dependence on the covariates.

Table 4–1 presents the results for each of the four estimators under correct

specification, or with the misspecification of the exposure, the outcome (and inter-

mediate), or both. A given model was misspecified by omitting the confounder from

the model. Since G-computation relies only on outcome specification, misspecifying

the outcome was the same as total misspecification. Similarly, inverse probability

weighting depends only on the exposure model.

Under correct specification, the TMLE had a magnitude of bias and coverage

similar to inverse probability weighting, G-computation and Bang and Robins’ esti-

mator. For n = 200, 1,000 and 10,000, both TMLE and Bang and Robins’ estimator

consistently had higher standard errors. When the exposure model was misspecified,

only the IPTW estimator exhibited a large degree of bias for all values of n. For the

misspecified outcome model, G-computation suffered the most with large asymptotic

bias. Bang and Robins’ estimator seemed to converge slower than the TMLE and
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Table 4–1: Simulation results for various omitted confounder scenarios. Each esti-
mate is calculated over 1,000 datasets. The true value of the parameter is ψ1,1 = 4.35.

Correct Specification Misspecified Exposure
% Bias SE* rMSE % Cover† % Bias SE rMSE % Cover

n = 200
TMLE -13 27 27 94 -22 25 25 95
G-COMP -10 23 23 95 -10 23 23 95
IPTW -2 25 25 94 440 23 30 84
BR -12 33 28 95 -11 28 27 95

n = 1, 000
TMLE -12 12 12 93 -11 11 11 93
G-COMP -14 10 10 94 -14 10 10 94
IPTW -14 11 11 93 430 10 21 53
BR -13 12 12 94 -11 12 12 94

n = 10, 000
TMLE -3 4 4 93 -3 4 4 92
G-COMP -2 3 3 94 -2 3 3 94
IPTW -3 3 4 94 443 3 20 0
BR -3 4 4 92 -4 4 4 93

Misspecified Outcome Total Misspecification
% Bias SE rMSE % Cover % Bias SE rMSE % Cover

n = 200
TMLE -10 27 27 93 436 25 31 86
G-COMP -437 23 30 84 -437 23 30 84
IPTW -2 25 25 94 440 23 30 84
BR -20 28 27 94 437 26 32 87

n = 1, 000
TMLE -12 12 12 93 437 11 22 59
G-COMP 426 10 21 54 426 10 21 54
IPTW -14 11 11 93 430 10 21 53
BR -12 12 12 93 438 11 22 58

n = 10, 000
TMLE -3 4 4 93 451 4 20 0
G-COMP 440 3 19 0 440 3 19 0
IPTW -3 3 4 94 443 3 20 0
BR -3 4 4 93 448 4 20 0

All values except for coverage given as ×102 the original value.
SE, The nonparametric bootstrap standard error is computed using 200 resamples for each drawn
dataset of size n, the mean of the SE is then taken over the 1,000 generated datasets; †Cover, The
coverage is by bootstrap 2.5th and 97.5th percentiles.
rMSE, root-mean-squared error; TMLE, targeted maximum likelihood estimation; G-COMP, G-
computation; IPTW, inverse probability of treatment weighting; BR, Bang and Robins’ estimator.
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the IPTW estimator. When both models were misspecified all four models were

similarly biased.

4.4.3 Simulation results: data sparsity

We considered two different levels of data sparsity leading to near-positivity vio-

lations resulting from heavy dependence on the covariates in the treatment decision.

The TMLE method with a Gaussian loss function (i.e. minimizing mean-squared

error) was expected to perform very poorly in this case (biased estimation in addi-

tion to inflated variance) so we also tested the abilities of the TMLE using a logistic

loss function for a continuous outcome. To do so, we correctly specified the outcome

density using a linear regression model. We then shifted and scaled the prediction

from this model,

E(Y ∗) = {E(Y )−min(Y )}/{max(Y )−min(Y )}

and used a logistic loss function for the update step, following the approach of [18]

for unbounded data generation. Bang and Robins’ estimator was also given added

robustness to the data sparsity by scaling the outcome to [0, 1] and predicting the

outcome using logistic regression rather than linear regression (and thereby misspec-

ifying the estimation of the conditional outcome density).

The results of the model fits on the data with near-positivity violations are

recorded in Table 4–2. As anticipated, the TMLE procedure with a squared error

link did very poorly for small samples in particular, as did the Bang and Robins’

estimator with linear outcome model. In the severe case, they both performed very

poorly for all values of n. G-computation also performed as expected, producing the
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best inference by far over all sample sizes, with negligible bias and ideal coverage.

The logistic TMLE at smaller samples was less sensitive to data sparsity than the

logistic Bang and Robins’ estimator, resulting in lower bias and mean-squared error.

The stabilized IPTW performed worse than logistic TMLE in terms of bias, but had

lower standard errors, resulting in lower mean-squared error. At n = 200, extreme

data sparsity in a small percentage of generated datasets produced inflated standard

error estimates for the linear TMLE and Bang and Robins’ estimator, creating an

inflated and unreliable mean standard error. For instance, with mild data sparsity

at n = 200, Bang and Robins’ estimator’s mean bootstrap-estimated standard error

was approximately 21, but the median was 7 (and similarly for the TMLE).

4.4.4 Other results

Data with a normal outcome and nonlinear dependence on covariates were gen-

erated and then modeled incorrectly using only linear terms. The targeted maximum

likelihood estimator maintained low bias for misspecification of either data density

component, and generally performed similar to Bang and Robins’ estimator. When

data were generated with a Poisson outcome and a similar omitted confounder sce-

nario was evaluated, the results closely reflected those from the omitted confounder

scenario in Section 4.4.2. Additional details regarding the full simulation study are

available in the Supplementary material (available at Biostatistics online).

4.5 Example

4.5.1 The PROBIT Trial

The PROmotion of Breastfeeding Intervention Trial (PROBIT) was a cluster-

randomized trial that introduced the WHO/UNICEF Baby Friendly Initiative, a
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Table 4–2: Simulation results for two levels of near-positivity violations. Each
estimate is calculated over 1,000 datasets. The true value of the parameter is
ψ1,1 = 4.338.

Mild Data Sparsity Severe Data Sparsity
% Bias SE* rMSE % Cover† % Bias SE rMSE % Cover

n = 200
TMLE 233 3,110 441 93 - - - -§
TMLElog 114 91 95 93 18 83 99 93
G-COMP 13 39 39 94 9 31 31 95
IPTW 113 49 57 92 91 41 52 92
BR 1,128 2,119 913 96 - - - -§
BRlog 196 112 114 95 85 97 112 95

n = 1, 000
TMLE 20 76 68 93 857 20,131 8,708 93
TMLElog -8 40 43 93 -52 49 56 92
G-COMP 3 18 18 94 -4 14 14 95
IPTW 11 26 33 92 63 25 37 91
BR -79 100 103 92 -4,068 868 4,182 93
BRlog -1 47 49 92 -58 56 63 93

n = 10, 000
TMLE -7 15 15 92 -5,809 1,611 8,427 94
TMLElog -3 13 14 93 -1 23 26 94
G-COMP -1 6 6 94 -3 4 4 94
IPTW -12 10 11 92 11 12 19 91
BR -9 17 18 93 -175 144 212 93
BRlog 1 14 15 93 24 25 27 93

All values given as ×102 the original value.
*SE, The nonparametric bootstrap standard error is computed using 200 resamples for each drawn
dataset of size n, the mean of the SE is then taken over the 1,000 generated datasets; †Cover, The
coverage is by bootstrap 2.5th and 97.5th percentiles.
rMSE, root-mean-squared error; TMLE, targeted maximum likelihood estimator; TMLElog, tar-
geted maximum likelihood estimator with logistic model for outcome; G-COMP, G-computation;
IPTW, inverse probability of treatment weighting; BR, Bang and Robins’ estimator; BRlog, Bang
and Robins’ estimator with logistic model for outcome. §Model results in extremely high bias and
standard error.
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breastfeeding promotion program, to selected hospitals in the republic of Belarus

[27]. The purpose of the trial was to evaluate the effect of the intervention on

health outcomes including gastrointestinal tract infection. Healthy, full-term, single-

ton breastfed infants of mothers who intended to breastfeed (n = 17,044) weighing

≥2,500 g were enrolled soon after birth and followed up at 1, 2, 3, 6, 9, and 12

months of age for various measures of parental behaviours, size and health, including

number of gastrointestinal infections over each time interval.

We perform a simplified analysis using the data of the formO = (L0, A0, L1, A1, Y ).

The variable L0 is a vector-valued covariate containing all suspected baseline con-

founders of the duration of breastfeeding and infection. The exposures A0 and A1

indicate whether the mother is still breastfeeding at 3 months and at 6 months,

respectively. The intermediate variable L1 is whether the infant had an infection be-

tween 3 and 6 months. The outcome variable Y is the number of infections counted

between 6 and 12 months.

We wish to examine whether the duration of breastfeeding has an effect on the

number of gastrointestinal tract infections reported between 6 and 12 months. A

potentially important binary intermediate variable is whether or not the infant had

any infections between 3 and 6 months of age. Observed baseline confounders are:

mother’s education, mother’s smoking status, mother’s age, family history of allergy,

number of previous children, whether the birth was by cesarean section, gender of

child, gestational age, Apgar score for health of the newborn, presence of infection

before 3 months, geographic region, and the weight, height and head circumference

at birth.
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Only three regimes (a0, a1) exist because breastfeeding is generally a monotone

process. We are interested in three different effects: 1) the effect of breastfeeding up

to 3 months (but not until 6 months) versus not attaining 3 months, 2) the effect of

breastfeeding up to 6 months versus stopping between 3 and 6 months, and 3) the

effect of breastfeeding up to 6 months versus not attaining 3 months. These effects

correspond to the estimates δ1 = ψ1,0 − ψ0,0, δ2 = ψ1,1 − ψ1,0, and δ3 = ψ1,1 − ψ0,0

where ψa0,a1 = E(Ya0,a1) is the marginal mean outcome under specified treatment.

We used generalized linear models to fit all density components for each method.

The TMLE was implemented with a Poisson loss function, corresponding with the

count outcome, and both the G-computation and Bang and Robins’ estimator were

fit using Poisson distributions to model the mean outcome.

4.5.2 Results

Out of the 17,044 enrollments, 15,642 (92%) had complete data for the two time

intervals. For simplicity, we performed a complete case analysis, discarding the 8%

of observations with missing data. Characteristics of the cohort including missing

data summaries are provided in Table 4–3. Most notably, the infection counts are

very low, with only 828 (4.9% of the full cohort) with one infection, 56 (0.3%) with

two infections, 3 (0%) with three infections, and 1 (0%) with six infections between

6 and 12 months.

Three of the four methods use some variety of inverse probability weights (G-

computation being the exception). Using histograms and univariate summaries, each

set of calculated weights was examined in order to assess whether the positivity

assumption was violated. No excessively large weights were noted.
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Table 4–3: Characteristics of the 17,044 mother-infant pairs in the PROBIT dataset.

Characteristic
Observations Missing
N % N %

Median age of mother (years) 23 (21,27)∗

Male child 8,827 52
Median gestational age (months) 40 (39,40)
Cesarean 1,974 12
Median infant weight (kg) 3.4 (3.2,3.7)
Median Apgar score† 9 (8,9) 5 0.0

(A0) Breastfed at 3 months 11,101 65
(A1) Breastfed at 6 months 7,176 42

(L1) Infection by 3 months 593 3·5 1,087 6.4
(Y ) Infection count between 6 and 12 months 1396 8.2

1 infection 828 4.9
2 infections 56 0.3
3 infections 3 0.0
6 infections 1 0.0

∗For numeric variables, the inter-quartile range is given.
†The Apgar score is an assessment of newborn health (range 1–10) where 8+ is vigorous, 5–7 is
mildly depressed and 4 or less is severely depressed [13]. We observed a range of (5–10) due to
entry restrictions on weight.
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The nonparametric bootstrap was used to estimate the standard error and con-

fidence intervals for each estimator. This was accomplished by taking 200 resamples

with replacement of sample size 15,642. The endpoints of the bootstrap 95% con-

fidence intervals were the 2.5th and 97.5th quantiles of the bootstrap resampled

estimates.

Table 4–4 shows the estimates, standard errors and confidence intervals for each

method applied to each of the three parameters of interest. The estimates for the

effects of breastfeeding exposure are all negative, indicating that breastfeeding has

a preventative impact on gastrointestinal infection. The effect of breastfeeding up

to 3 months (compared with not reaching 3 months) was not found to be signifi-

cantly different from zero at the 95% confidence level by all methods. The effect

of breastfeeding for 6 months compared with feeding for at least 3 months but less

than 6 was estimated at -0.019 by TMLE (the largest estimate by magnitude). This

means that the expected number infection counts is decreased by 0.019 if an infant’s

breastfeeding is extended up to 6 months. Here, all methods agreed on the direction

and significance of the difference. The third parameter is the effect of breastfeeding

for over 6 months, compared to less than three months. This effect is the strongest

(it is the sum of the previous two parameters), and is found to be significant by

all methods. The TMLE results suggest that breastfeeding for 6 months when com-

pared with breastfeeding for fewer than three months decreases the expected number

of gastrointestinal infections experienced between 9 and 12 months of age by 0.026.

This effect estimate corresponds with a number needed to treat (NNT) of 38.
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Table 4–4: Breastfeeding effect estimates at 3 and 6 months for each model.

Model Estimate SE∗ 95% CI†

Effect of breastfeeding for 3 months vs. <3 months
TMLE -7 6 (-17,5)
G-comp -9 6 (-21,6)
IPTW -7 5 (-18,5)
BR -8 7 (-19,5)

Effect of breastfeeding for 6+ months vs. 3 months
TMLE -19 6 (-31,-8)
G-comp -16 5 (-26,-7)
IPTW -15 5 (-24,-7)
BR -17 6 (-27,-5)

Effect of breastfeeding for 6+ months vs. <3 months
TMLE -26 5 (-33,-17)
G-comp -25 5 (-33,-15)
IPTW -22 4 (-30,-14)
BR -25 5 (-33,-14)

All values given as ×103 the original value.
∗SE: The bootstrap standard error was computed using 200 resamples from the data set of size
n=15 642.
†The estimated confidence interval is the interval between the 2.5th and 97.5th bootstrap
percentiles.
TMLE, targeted maximum likelihood estimator; G-COMP, G-computation; IPTW: inverse
probability of treatment weighting; BR, Bang and Robins’ estimator.

The TMLE estimated an expected infections count of 0.072 for infants breastfed

less than 3 months. A reduction in the expected number of infections of 0.007

for infants breastfed for 3-6 months compared with those breastfed for less than

3 months therefore corresponded with a 10% reduction. The mean count for 3-6

months of breastfeeding was estimated at 0.066, so the risk difference corresponded

with an estimated 30% expected reduction. In addition, the expected reduction when

comparing <3 months to 6+ months of breastfeeding was estimated at 36%.
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4.6 Discussion

In this paper, we have carefully demonstrated the construction of the two time

interval TMLE using a generalized linear loss function. While we implemented the

method using parametric models, all conditional densities may alternatively be fit

through any means desired (including regression and nonparametric methods) while

the update step is performed with respect to the chosen generalized linear loss func-

tion. We have thus shown how a longitudinal TMLE with a chosen loss function can

be fit without resorting to parametric modeling assumptions. We have performed a

systematic comparison of the performance of the longitudinal TMLE to competing

methods under several challenging data scenarios. In addition, we applied the TMLE

methodology to estimate the impact of breastfeeding on gastrointestinal infections.

To the best of our knowledge, this is the first application of TMLE to a longitudinal

estimation problem with a count outcome.

In our simulation study, TMLE did not produce a reduction in finite-sample

bias or variance for correctly specified densities compared with the G-computation

substitution estimator. The two doubly robust methods performed comparably in

general, but the logistic TMLE proved more stable under near-positivity violations

than Bang and Robins’ estimator with the logistic outcome. However, we were able

to stabilize the TMLE without misspecifying the underlying densities (which was

not true for Bang and Robins’ estimator).

[38] contributed to the debate initiated by [25] by demonstrating that certain

versions of the TMLE procedure for continuous outcomes can control bias better

than traditional doubly robust methods in such cases as near-positivity violations
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and model misspecification. We show correspondingly that this TMLE performs very

well in the two time intervals case and does no worse than two non-doubly robust

methods under dual misspecification. With a small variation in implementation,

TMLE can also be made to be stable under near-positivity violations.

We also acknowledge the very recent development of a new TMLE for longi-

tudinal data by [74], which is an extension of the [1] estimator. This method is

computationally efficient, requires fewer data structure constraints than the longi-

tudinal TMLE that we have evaluated, and can also be implemented to respect

the global bounds of the parameter of interest. Future work will involve extensive

comparisons of this alternative TMLE.

4.7 Supplementary material for Manuscript 1: Simulation details

4.7.1 Comment on estimation of the standard error by bootstrap

In our simulation study, we generated data that came close to violating the

practical positivity assumption required when using inverse probability of treatment

(IPTW), targeted maximum likelihood estimation (TMLE), and Bang and Robins’

estimator (to varying degrees of sensitivity). In several scenarios, the bootstrap

resamples created resampled datasets that had more extreme levels of data spar-

sity. The estimates of these resampled datasets (and subsequently the bootstrapped

standard error estimates) were subsequently inflated.

For a data analysis problem, however, it is important to diagnose data sparsity

in the bootstrap resamples, even if they don’t exist in the full data. And it is

best to avoid bootstrap resampling in the face of any data sparsity. Other methods
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to estimate the standard error exist, including a large-sample estimate using the

influence curve [76], but we did not utilize them in this study.

4.7.2 Normal outcome, omitted confounder

The data were generated in the form (U ,L0,A0,L1,A1,Y ) so that, as before, At

was treatment at time t. The confounding variable U is a Bernoulli random variable,

taking the value of one with a probability of 1/2. The baseline variable L was

generated as a Normal variate with mean 1 and variance 1/16. At t = 0, treatment

was obtained with probability

pa0 = logit−1(1/10L0 + U).

The intermediate binary variable L1 was one with probability

pl1 = logit−1(1/2− 2L0 + 1/2A0 + 2U).

The second treatment, at t = 1, was obtained with probability

pa1 = logit−1(1/2− L0 + 1/10A0 + 1/10L1 + U),

and the final outcome was generated as

Y = 3 + 1/10A0 + 1/2A1 + 1/2L1 + U + ξ

where ξ ∼ N (0, 4) is noise.
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4.7.3 Normal outcome, nonlinearity

In this situation, we created four different types of data scenarios, and tested

the four models. The scenarios were: linearity, nonlinearity in the exposure, non-

linearity in the outcome (and intermediate), and nonlinearity in both the exposure

and outcome (referred to as total nonlinearity). All of the models that were fit as-

sumed linearity in the covariates, so they were misspecified when any nonlinearity

was present.

The basic linear data generation for this situation was specified as follows:

L0 ∼ N (1, 1/16)

A0 ∼ Bernoulli{pa0 = logit−1(1/2L0)}

L1 ∼ Bernoulli{pl1 = logit−1(1/2− 2L0 + 1/2A0)}

A1 ∼ Bernoulli{pa1 = logit−1(1/2− 4/5L0 + 1/10A0 + 1/10L1)}

Y = 1/2 + L0 + 1/2A0 + 3/2A1 + 3L1 + ξ

where ξ ∼ N (0, 4) is random error.

Nonlinear misspecification of the exposure was imposed by changing pa0 to

p̃a0 = logit−1{cos(L0 + 3/5)3}

and pa1 to

p̃a1 = logit−1[2/5(1− A0) cos{1/6(L0 + 2)2}+ 2/5A0 sinL
2].

The trigonometric functions were used to induce polynomial-type slopes on the usual

range of the baseline covariate while keeping the range of probabilities bounded in
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order to avoid positivity violations. The other variables (baseline, intermediate and

outcome) were generated linearly (as in Situation 1).

Nonlinear misspecification of the intermediate and outcome variables was im-

posed by changing pl0 to

p̃l0 = logit−1{1 + 1/2A0L
2
0 + 1/2A0 − exp(L0/3)}

and the outcome generation to

Y = −6/5 + 9/2L1L
2
0 + A0L

2
0 + 2A1L1 + ξ.

The remaining variables (baseline and treatments) were generated in the same way

as in the linear scenario.

Finally, the model was totally misspecified when both the exposure, the inter-

mediate and outcome variables were all generated as nonlinear in their covariates.

We combined all of the misspecifications described above for this scenario.

The results in Table 4–5 provides the estimates, standard errors, root-mean-

squared errors and percent coverage for each model in the various data-generating

scenarios. As in the previous situations, both the TMLE and Bang and Robins’

estimator appeared to have larger small-sample standard errors. For the linear (cor-

rectly specified) data generation, all four models performed comparably in terms of

bias and coverage over various values of n. Generating treatment using nonlinear

models did not substantially affect estimation, although the IPTW estimator re-

mained biased for n = 10, 000. When the outcome and intermediate variables were

generated nonlinearly, G-computation was the most affected, resulting in large bias
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and coverage which decreased with increasing n. Bang and Robins’ estimator and

TMLE both performed well. The IPTW estimator had smaller standard errors, but

remained unbiased for all values of n. When all of exposure, intermediate and out-

come were generated nonlinearly, inverse propensity weighting produced much larger

bias and coverage was sometimes as low as 0%. Targeted maximum likelihood and

G-computation remained biased and behaved similarly. Bang and Robins’ estima-

tion had half the bias for n = 1, 000 and 10,000, and had consistently high coverage

over the different sample sizes.

4.7.4 Normal outcome, data sparsity

The baseline, intermediate and outcome variables were generated as in the linear

specification in the nonlinear case. For mild data sparsity, the exposure status was

generated by two Bernoulli variables with means

pa0 = logit−1(−5 + 4L0) and

pa1 = logit−1(−6 + 4L0 + A0 + 2L1),

respectively. For severe data sparsity, the means were changed to

pa0 = logit−1(−8 + 8L0) and

pa1 = logit−1(−10 + 8L0 + 2A0 + 4L1).

4.7.5 Poisson outcome, omitted confounder

We evaluated the performance of the TMLE with a Poisson loss function for

a Poisson-generated outcome under unmeasured confounding. As in the omitted

confounder case, the exposure, intermediate and outcome variables were generated
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conditional on a confounder that was sometimes not included in the model. The

confounder was omitted from different parts of estimation to misspecify the exposure

models, outcome models, or all components.

The data for this simulation were generated in the same way as described in the

scenario for an omitted confounder with a Gaussian outcome, except the outcome

was generated as a random draw from a Poisson distribution with mean

λY = 3 + 1/10A0 + 1/2A1 + 1/2L1 + U,

where, as before, U is the sometimes-omitted confounder. In the correct specification

scenario, both exposure and outcome models (when used in the estimator) correctly

include the variable U . Misspecified exposure means that U was incorrectly omitted

from the exposure model, misspecified outcome means it was omitted from both the

intermediate and outcome models, and the scenario “total misspecification” indicates

that U was not used at all in the estimation.

The results of this simulation scenario are displayed in Table 4–6. Under correct

specification, TMLE competed very closely with the other estimators. When the

exposure was misspecified, only inverse probability weighting was highly biased, with

substantially greater standard errors as well. Under a misspecified outcome model,

G-computation is biased and produced higher standard errors. It was clear that the

misspecified outcome caused higher standard errors for TMLE as compared to its

previous performance. Inverse probability weighting therefore outperformed TMLE

in terms of standard error. Both inverse probability of treatment weighting and

TMLE were unbiased as expected. Finally, when the confounder was never included
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and all models were incorrectly specified, all four methods were biased. The targeted

maximum likelihood estimator had slightly less bias and marginally higher standard

errors, resulting in better coverage for the smallest sample size and generally better

root mean-squared error. The results from Bang and Robins’ estimator were nearly

identical to those from the TMLE, for all situations and sample sizes. For the

correctly specified scenario, the mean value of the bootstrap-estimated standard

errors differed unexpectedly from the root-mean square error for Bang and Robins’

estimator. Upon investigation, this was found to be due to data sparsity at some

levels of the covariates for fewer than 2% of the generated datasets. This data sparsity

caused occasional large weights which subsequently led to the unstable bootstrap

standard error estimates.
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Table 4–5: Simulation results for various scenarios involving nonlinear covariates.
Each estimate is calculated over 1,000 datasets.

Correct Specification Nonlinear Exposure
ψ1,1 = 4.338 ψ1,1 = 4.338

% Bias SE* rMSE % Cover† % Bias SE rMSE % Cover
n = 200
TMLE -19 32 33 94 -7 32 32 94
G-COMP -6 28 28 94 -4 28 28 94
IPTW -10 28 29 94 1 29 29 94
BR -20 34 33 95 -5 34 32 95

n = 1, 000
TMLE 1 14 14 95 14 14 14 94
G-COMP 1 14 14 95 17 13 13 94
IPTW -9 13 12 95 27 13 13 94
BR 0 14 14 95 9 14 14 94

n = 10, 000
TMLE 5 4 4 94 -2 4 4 95
G-COMP 2 4 4 94 -1 4 4 94
IPTW 2 4 4 94 10 4 4 94
BR 4 5 4 94 -7 4 4 94

Nonlinear Outcome Total Nonlinearity
ψ1,1 = 4.353 ψ1,1 = 4.353

% Bias SE rMSE % Cover % Bias SE rMSE % Cover
n = 200
TMLE -53 49 50 94 60 48 49 94
G-COMP -279 44 46 93 62 46 46 95
IPTW -44 28 29 94 3,402 28 150 00
BR -42 51 50 95 -96 51 50 95

n = 1, 000
TMLE 22 22 22 93 108 22 22 92
G-COMP -236 20 22 92 103 20 21 94
IPTW -43 13 12 95 3,403 13 149 00
BR 20 22 21 93 -56 22 22 94

n = 10, 000
TMLE 3 7 7 94 104 7 8 90
G-COMP -247 6 12 57 101 6 8 88
IPTW -32 4 4 92 3414 4 149 00
BR 4 7 7 94 -55 7 7 93

All values given as ×102 the original value.
*SE: The nonparametric bootstrap standard error is computed using 200 resamples for each drawn
dataset of size n, the mean of the SE is then taken over the 1,000 generated datasets; †Cover: The
coverage is by bootstrap 2.5th and 97.5th percentiles.
rMSE, root-mean-squared error; TMLE, targeted maximum likelihood estimator; G-COMP, G-
computation; IPTW, inverse probability of treatment weighting; BR, Bang and Robins’ estimator.
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Table 4–6: Poisson outcome: simulation results for various omitted confounding
scenarios. Each estimate is calculated over 1,000 datasets. The true value of the
parameter is ψ1,1 = 94.611.

Correct Specification Misspecified Exposure
% Bias SE* rMSE % Cover† % Bias SE rMSE % Cover

n = 200
TMLE -12 419 412 95 -12 419 411 95
G-COMP -9 416 407 95 -9 416 407 95
IPTW -2 453 438 95 1,726 557 1,721 17
BR -11 579 413 95 -13 420 412 95

n = 1, 000
TMLE -10 188 187 94 -10 188 187 94
G-COMP -10 186 187 94 -10 186 187 94
IPTW -10 196 196 94 -1,715 248 1,641 00
BR -10 188 187 94 -10 188 187 94

n = 10, 000
TMLE 5 59 62 93 5 59 62 93
G-COMP 6 59 61 93 6 59 61 93
IPTW 6 62 64 93 1,735 78 1,643 00
BR 5 59 62 93 5 59 62 93

Misspecified Outcome Total Misspecification
% Bias SE rMSE % Cover % Bias SE rMSE % Cover

n = 200
TMLE 3 472 467 95 1,692 561 1,694 18
G-COMP 1,698 545 1,692 17 1,698 545 1,692 17
IPTW -2 453 438 95 1,726 557 1,721 17
BR -16 453 426 96 1,697 610 1,701 19

n = 1, 000
TMLE -10 209 208 94 1,675 250 1,605 00
G-COMP 1,687 243 1,614 00 1,687 243 1,614 00
IPTW -10 196 196 94 1,715 248 1,641 00
BR -10 192 190 94 1,676 250 1,605 00

n = 10, 000
TMLE 6 66 69 92 1,697 79 1,608 00
G-COMP 1,708 77 1,618 00 1,708 77 1,618 00
IPTW 6 62 64 93 1,735 78 1,643 00
BR 5 60 62 93 1,697 79 1,607 00

All values given as ×102 the original value.
*SE, The nonparametric bootstrap standard error is computed using 200 resamples for each drawn
dataset of size n, the mean of the S.E. is then taken over the 1,000 generated datasets; †Cover, The
coverage is by bootstrap 2.5th and 97.5th percentiles.
rMSE, root-mean-squared error; TMLE, targeted maximum likelihood estimator; G-COMP, G-
computation; IPTW, inverse probability of treatment weighting; BR, Bang and Robins’ estimator.

77



CHAPTER 5
Effect of Breastfeeding on Gastrointestinal Infection in Infants: A

Targeted Maximum Likelihood Approach for Longitudinal Data With
Censoring

Preamble to Manuscript 2. Previous applications of TMLE for longitudinal

data (e.g. as implemented in Manuscript 1), initially used only in simple contexts,

produces computational challenges for more complex data structures [69]. It is based

on G-computation which is computationally complex for many time points and in-

termediate variables [82]. Van der Laan and Gruber [74] therefore produced a com-

putationally simpler TMLE method for longitudinal data. In this manuscript, the

theoretical background for this estimator is described, and an implementation of their

method is presented in the context of a case study. This is the first demonstration

of this longitudinal method in an applied data analysis, where it is readily imple-

mented in a dataset with six time points and censored observations. In addition, the

simulation study in this manuscript showcases the robustness of this TMLE method

under near-positivity violations where it outperforms a related efficient estimating

equation approach.
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University, Montréal, Québec, Canada

†Division of Biostatistics, School of Public Health, University of California,

Berkeley, USA

Submitted July 2012

79



Abstract. The PROmotion of Breastfeeding Intervention Trial (PROBIT)

randomized a program encouraging breastfeeding to new mothers. The original

studies indicated that this intervention successfully increased duration of breastfeed-

ing, and lowered rates of gastrointestinal tract infections in newborns. Additional

scientific interest lies in determining the causal effect of extending breastfeeding du-

ration on the number of gastrointestinal infections. In this study, we estimate the

marginal exposure-specific mean infection count for various lengths of breastfeeding.

We demonstrate the method of Targeted Maximum Likelihood Estimation (TMLE)

for time-dependent exposure-specific means in the context of this application. We

compare this method (implemented both parametrically and using a data-adaptive

algorithm) to other causal methods for this situational example. In addition, a sim-

ulation study was conducted with data generation structurally similar to the PRO-

BIT example. We varied the specification of the data generation to demonstrate

the abilities of this TMLE method under several scenarios, including unmeasured

confounding and near positivity violations. TMLE was compared to G-computation,

inverse probability of treatment weighting, and efficient estimating equations.
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5.1 Introduction

The PROmotion of Breastfeeding Intervention Trial (PROBIT) [27, 28] was un-

dertaken in order to obtain evidence from a randomized trial of the effect of longer

duration of breastfeeding on infection in newborns. This was done by randomizing

an intervention that supported breastfeeding by encouraging exclusivity and dura-

tion. In the PROBIT study, the relationship between this breastfeeding intervention

and gastrointestinal tract infection was originally evaluated using an intention-to-

treat analysis with results indicating a significant reduction in infection incidence for

infants whose mothers had been assigned to the intervention group [27]. While it’s

reasonable to assume that the effect of intervention was due to breastfeeding, the

estimated effect is clearly biased due to the intent-to-treat analysis and “noncompli-

ance” in the study.

However, real scientific interest also lies in the causal effect of breastfeeding on

gastrointestinal infection. One of the challenges involved in determining this effect

is the confounding effect of infection, the presence of which may be associated with

future discontinuation of breastfeeding. Since the probability of the presence of in-

fection at each time point might also be reduced through breastfeeding, presence of

infection can be described as a potential time-dependent confounder. As infection is

also hypothesized to be affected by previous breastfeeding status, standard regres-

sion methods (including or excluding the time-dependent confounder) may produce

a biased estimate of the causal parameter [43]. Causal methods are therefore re-

quired to isolate the desired effect, which is also obscured by multivariate baseline

confounding, and by participant dropout.
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Modeling for longitudinal data that takes into account time-dependent con-

founders predicted by past exposure often involves weighting methods, such as inverse-

probability-of-treatment weighting for marginal structural models [21, 46]. These

weighting methods can be inefficient and often unstable, and their shortcomings have

since spurred the development of new estimators with better properties. Estimating

equation methodology using the efficient influence curve for the parameter of inter-

est [76, 71] produces estimators that are doubly robust (only requiring the correct

specification of the exposure models or the outcome models for unbiased estimation)

and regular semiparametric efficient when correctly specified. Targeted Maximum

Likelihood Estimation (TMLE) [78] rivals efficient estimating equation methods as

it inherits the stability and boundedness properties (respect for global constraints)

of substitution estimation as well as the double robustness and efficiency that comes

from estimation using the efficient influence curve.

[73] established a method of targeted estimation for longitudinal data based on

a formulation of the efficient influence curve that relies on a binary decomposition of

the intermediate variables (the time-dependent confounders). This method has been

described and implemented by [53], [62] and [7] for two time points, and [69] for a

survival outcome. However, the implementation of this method for large numbers

of time points results in heavy computational requirements and a restriction on the

form of the data. More recently, [74] revisited an alternative decomposition of the

efficient influence curve, first proposed by [1] that allows for a more flexible and

simpler implementation of TMLE for longitudinal data.
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This paper demonstrates a sequential implementation of the TMLE procedure

first proposed in [74] for estimation of a marginal treatment effect for longitudinal

data. The sequential TMLE approach is used to estimate the causal effect of breast-

feeding duration on gastrointestinal tract infection in infants using data from the

PROBIT. In addition, we compare the sequential TMLE approach to other causal

techniques for longitudinal data in a simulation study.

5.2 The PROBIT data

In the PROBIT, healthy, full-term, singleton infants of mothers who intended to

breastfeed, weighing at least 2500g, were enrolled soon after birth and followed up at

1, 2, 3, 6, 9, and 12 months of age for various measures of health and size, including

number of gastrointestinal infections over each time-interval. At each follow-up visit,

it was established whether the mother continued to breastfeed.

17,044 mother/infant pairs were recruited into the trial. Of these, eight were

missing some necessary baseline information, and were removed from the analysis.

The remaining 17,036 subject pairs were used in the analysis. Characteristics of the

complete dataset (including missing data summaries) are presented in Table 5–1.

Measured baseline potential confounders of the effect of breastfeeding on infec-

tion (and predictors of outcome) were chosen to be mother’s education, mother’s

smoking status during pregnancy, mother’s age, family history of allergy, number of

previous children, whether the birth was by cesarean section, gender of child, gesta-

tional age, Apgar score for health of the newborn, geographic region, and the weight,

height and head circumference at birth.
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Table 5–1: Characteristics at baseline of the 17,044 mother-infant pairs in the PRO-
BIT dataset.

Characteristic Summary N. Missing
Numeric variables Median IQRa

Age of mother (years) 23 (21,27)
N. previous children 0 (0,1)
Gestational age (months) 40 (39,40)
Infant weight (kg) 3.4 (3.2,3.7)
Apgar scoreb 9 (8,9) 5
Head length (cm) 35 (34,36) 3

Binary variables N. %
Smoked during pregnancy 389 2.28
History of allergy 750 4.40
Male child 8827 52
Cesarean 1974 12

NOTE: bThe Apgar score is an assessment of newborn health (range 1-10) where 8+ is vigorous,
5-7 is mildly depressed and 4- is severely depressed [13]. A range of 5-10 was observed in PROBIT
due to entry restrictions on weight and health at baseline.

aIQR: inter-quartile range.
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Exposure at a given time point was whether the child had been breastfed up

until that time. The binary intermediate variable at a given time was whether or

not gastrointestinal infection occurred in the interval immediately preceding the time

point. The outcome is the total number of infections occurring up until 12 months

of age.

Aside from a minimal amount of missing baseline information, information was

lost due to participant dropout, which was observed to occur at various times after

the baseline visit. The number of censored subjects at each time point is described

in Table 5–2. Mothers may have left the study for individual reasons that depended

on subject-specific characteristics, health and experience.

Table 5–2: Censoring, number of infections and mothers still breastfeeding by time
point

Time point 1 2 3 4 5 6
Month 1 2 3 6 9 12

N. censored 284 500 326 491 717 139
Cumulative N. 284 784 1110 1601 2318 2457
Cumulative N. % 1.66 4.60 6.52 9.40 13.61 14.42

N. with infections 171 232 230 443 518 408
N. of infections 173 235 236 472 544 439
N. breastfeeding 15,392 13,128 10,765 6,893 4,717 -

At each visit, the number of gastrointestinal infections since the last visit were

counted. In addition, breastfeeding status at that time was obtained. There is

therefore uncertainty about exact time-ordering of each infection and breastfeeding

cessation within a time interval. By defining the exposure as breastfeeding status at

time point t, we can consider that this intervention point occurs after infection counts
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Figure 5–1: Time-ordering of the variables in the PROBIT study. Data were collected
at baseline and six follow-up times. At each follow-up time point, breastfeeding status
(At) and presence of infection over the past interval (Lt) were noted. Censoring
occurring at time t (Ct = 1) indicates that later breastfeeding and infection status
were not observed.

measured over the previous interval. With six visits, and the outcome assessed at

the sixth visit, this means that only the first five exposure nodes are considered in

the analysis. However, we observe six censoring times (occurring before each of the

six follow-up times). Figure 5–1 gives a graphic display of the time-ordering of the

observed data.

See Table 5–2 for a summary of the infection counts and exposure status at each

time point. It is clear from this table that a child having more than one infection

during a given time-interval was somewhat uncommon.
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5.3 Targeted estimation for longitudinal data

Suppose we observe longitudinal data (identical to the PROBIT data structure)

of the form O = (W,C1, L1, A1, C2, L2, ..., AK−1, CK , LK = Y ). Let At denote expo-

sure at a time point t, and the censoring indicator Ct indicate whether subjects have

dropped out of the study before the tth time point. The vector C = (C1, ..., CK)

indicates a subject’s monotone censoring pattern, so that we let C = 0 mean that a

subject was never censored. W is the collection of potentially confounding variables

at baseline, Lt are intermediate measurements taken at time t, and Y is the outcome

of interest.

Following the Neyman-Rubin model [54], define the counterfactual Lā,C=0
t as

the observation, Lt, an individual would have produced under fixed exposure history

ā = (a1, ..., aK−1), having been fully observed. The target of inference is the marginal

mean counterfactual outcome, ψā,C=0 = E(Y ā,C=0). The standard causal missing

data problem arises from only observing individuals under one exposure pattern

over a subset of the time period.

For the example at hand, exposure At is whether breastfeeding was ongoing at

time point t, intermediate measurements Lt, t = 1, ..., K − 1 indicate whether the

infant had any gastrointestinal infections between time points t − 1 and t, and the

outcome Y is the number of infections that occurred up until time point K. W is the

set of baseline potential confounders of the effect of breastfeeding on gastrointestinal

infection. For this application, this set is also chosen to be sufficient to adjust for

censoring.
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5.3.1 The G-computation method

G-computation [15] is a likelihood-based approach to estimating a causal pa-

rameter. Suppose our data O consist of n independently and identically distributed

draws from a true underlying distribution P0. This density may be decomposed

corresponding to the time-dependent structure of the data as

P0 =
K−1∏
t=1

P0(At | Pa(At))
K∏
t=1

P0(Ct | Pa(Ct))︸ ︷︷ ︸
g0

K∏
t=1

P0(Lt | Pa(Lt))︸ ︷︷ ︸
Q0

where Pa(X) represents all variables preceding X in time (the graph-theoretical

concept of “parents”; [34]). Q0 is the density component of the L-variables, and g0

is the distribution of the exposure and censoring variables.

Give a choice of fixed longitudinal exposure, ā, we can define the distribution of

the corresponding counterfactual variables L̄ā,C=0
K as

P ā,C=0
0 =

K∏
t=1

P0(Lt | C̄t = 0, Āt−1 = āt−1, L̄t−1),

where Āt = (A1, ..., At) and L̄t = (W,L1, ..., Lt) represent the respective histories of

these variables up until time point t (and correspondingly define C̄t = (C1, ..., Ct)).

Similarly, āt = (a1, ..., at) is the component of the fixed regime up until time point

t. The targeted parameter of interest can then be described as EP ā,C=0
0

Y ā,C=0 where

the expectation is taken under this P ā,C=0
0 .

G-computation is a substitution (or plug-in) estimator, defined by a smooth

functional, Ψ, that takes a density estimate from the set M and returns a real-

valued parameter estimate. A fit of the density, pā,C=0
n , is obtained and substituted
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into the function Ψ to produce parameter estimate ψ̂ā,C=0 = Ψ(pā,C=0
n ). When the

density is correctly specified, this is an unbiased estimate of the true parameter

ψā,C=0 = Ψ(P ā,C=0
0 ).

For the given data (with binary intermediate variables Lt, 1 ≤ t ≤ K − 1), the

G-computation estimator for parameter ψā,C=0 is

ψ̂ā,C=0 =
∑
W

∑
l1={0,1}

· · ·
∑

lK−1={0,1}

En(Y |L̄K−1 = l̄K−1, ĀK−1 = ā, C = 0)×

pn(LK−1 = lK−1 | L̄K−2 = l̄K−2, ĀK−2 = āK−2, C̄K−1 = 0)×

· · · pn(L1 = l1 | W,C1 = 0)pn(W ),

where pn and En represent empirically derived fits of the conditional expectations.

Therefore, conditional probabilities for Lt, 1 ≤ t ≤ K must be fit to produce a

G-computation estimate. This can be done using any parametric or nonparametric

method as desired. The density for the baseline variables W can be estimated using

the empirical density estimate so that pn(W = wi) = 1/n for each subject (with

realization wi).

To estimate the above, only a complete baseline vectorW is needed for a subject

to be included in the analysis (without requiring the use of additional missing data

likelihood augmentation or imputations).

5.3.2 Sequential G-computation formulation

As suggested by [1] and used by [74], an alternative formulation of the likelihood,

and therefore an alternative to the full likelihood G-computation, can be constructed

by taking sequential expectations of the outcome. Their result is an application of
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the probabilistic property of iterated expectation, specifically

E(Y ) = E{E(Y |X)}.

Calculation of the above mean allows the underlying density to be broken down into

two components: the conditional expectation of counterfactual Y given X and the

subsequent marginal expectation taken over the X values. The marginal mean under

exposure and full observation can then be reexpressed as

ψā,C=0 = E(Y ā,C=0)

= E{E(Y ā,C=0 | L̄āK−2,CK−1=0
K−1 )}

= E[E{E(Y ā,C=0 | L̄āK−2,CK−1=0
K−1 ) | L̄āK−3,CK−2=0

K−2 }]

= E[...E{E(Y ā,C=0 | L̄āK−2,CK−1=0
K−1 ) | L̄āK−3,CK−2=0

K−2 }... | W ] (5.1)

where L
āt−1,Ct=0
t represents the potential outcome of intermediate variable Lt under

no censoring up until time point t and the fixed intervention āt−1.

To effectuate this calculation and obtain an estimate of the parameter, a model

must be fit for each level of conditioning, beginning with the innermost expectation.

To more easily refer to each model fit, [74] described the conditional models of the

counterfactuals using Q-notation. Let

QK = E(Y ā,C=0 | L̄āK−2,CK−1=0
K−1 )

be the outcome expectation conditional on the full history, for those who are ex-

posed according to the regime ā and fully observed. The fit QK is obtained using a
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conditional modeling method. Then, recursively define

Qt = E(Qt+1 | L̄āt−2,Ct−1=0
t−1 ), t = K − 1, ..., 2

Q1 = E(Q2|W )

for each successive nested expectation (letting ā0 be the null set).

This alternative decomposition of the parameter space can be used to compute

the parameter of interest using the following algorithm. It is done by producing

model fits for each of the Q’s and taking a mean over all participants of the final Q1.

Specifically, the estimation algorithm proceeds as follows:

1. First, model the outcome Y given all of the covariate history, for only those

completely uncensored subjects with observed intervention ĀK−1 = ā. This

can be done using logistic regression or any appropriate prediction method.

(Alternatively, a general conditional expectation conditional on ĀK−1 can be

fit using all uncensored subjects and then evaluated at āK−1 in order to smooth

over all observations.)

2. Then, using the model produced in 1), predict the conditional outcome for

all subjects (including those censored), producing the fit Q̂K . This step will

require imputing a value into the unobserved intermediate variables for those

who were censored.

3. Model the conditional outcome from the previous step given the covariate an-

cestors of LK−1, only for those uncensored up until time K − 1 (i.e., sub-

jects with CK−1 = 0) and for those with observed intervention ĀK−2 = āK−2.
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(Again, this model can be alternatively fit using all uncensored subjects using

an expectation conditional on ĀK−2, and then evaluating at āK−2.)

4. Predict a new conditional outcome from this last model for all subjects, pro-

ducing the fit Q̂K−1.

Repeat steps 3 and 4 for each time point (going backwards in time) until a model

is obtained for the outcome conditional on only the baseline covariates, W . The pa-

rameter estimate is then obtained by taking a mean of the final conditional outcome

Q̂1 for all observations or, analogously, over all values of W (this is equivalent to

modeling the baseline covariates with empirical distributions).

Example using two time points

To clarify the above procedure, consider the simplified algorithm for the reduced

dataset with structure O = (W,C1, L1, A1, C2, Y ). Suppose Y is a count outcome,

measured after the second time-interval (t = 2). The single intervention A1 is binary,

the baseline W is continuous, and Ct, t = 1, 2 is the indicator of whether the subject

has been censored at time 1 or 2, respectively. This data structure, O, mirrors the

first two time points of the PROBIT data. Let the parameter of interest be ψ1,C=0 =

E(Y a1=1,C=0), the expected outcome under intervention and no censoring. This

corresponds with the mean population outcome when setting the two intervention

nodes to (C1 = 0) and (A1 = 1, C2 = 0).

A parametric version of the algorithm proceeds as follows:

1. Use a Poisson regression to model Y as a function of W and L1, for only

subjects who were never censored (C2 = 0) and experienced the intervention

(A1 = 1).
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2. Impute values of L1 for those who were censored at time t = 1. Then, using

the model fit in step 1, calculate the conditional expectations of the outcome

for all subjects given their observed or imputed values of W and L1.

3. Model the expected outcomes from step 2 using a Poisson regression conditional

on W . Fit this model only using subjects with C1 = 0.

4. Using the model from step 3, predict the conditional outcomes for all subjects

given their observed value of W .

5. Take a mean of the predicted conditional outcomes of step 4, over all subjects.

This is the estimate of the parameter of interest.

Note that the above process only fits two models regardless of the form or dimension

of the intermediate variable Lt. For a general longitudinal dataset, this procedure

fits one model per time point (where there is an intervention or censoring), so that

the number of modeling steps is independent on the form of the intervention, the

baseline variables and the intermediate variables.

5.3.3 Efficient estimation for longitudinal data

Both G-computation algorithms described here require correct specification of

different decompositions of the underlying data-generating form. Working instead

with a semiparametric efficient estimator would produce estimators with asymptoti-

cally minimal variance among semiparametric estimators and give the added benefit

of double robustness [76, 71]. A simple way of obtaining such beneficial properties is

to estimate a formulation of the efficient influence curve for the parameter of interest,

and solve it as an estimating equation by setting it equal to zero.
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Corresponding to the original G-computation factorization of the likelihood, [73]

presented a representation of the efficient influence curve for a longitudinal form with

binary intermediate variables. Similarly, [69] modified the corresponding theory for

survival data. The alternative formulation for the efficient influence curve is given

by [1] and [74], allowing for a general longitudinal form and much easier estimation

procedures for higher dimensional or more complex longitudinal data.

Let gā,t(L̄t−1) be the estimate of the probability associated with obtaining a given

history of exposure up until time t− 1, and no censoring up until time point t, as a

function of the observed counterfactual history, L̄
āt−2,Ct−1=0
t−1 , for t = 2, ..., K (letting

a0 be the empty set). Exceptionally, let g1(W ) be the probability of being uncensored

at the first time point, conditional on baseline covariates, W (and not dependent on

ā). These probabilities can be estimated as, for instance, a product of conditional

probabilities (for exposure and non-censoring at each time point conditional on the

history) estimated using logistic regression. As derived and explained for a general

longitudinal structure in Van der Laan & Gruber, the components of the efficient

influence curve can then be written recursively for the PROBIT data as

Dt =
I(Āt−1 = āt−1, Ct = 0)

gā,t
(Qt+1 −Qt) for t = K, ..., 2, (5.2)

D1 =
I(C1 = 0)

g1
(Q2 −Q1), and

D0 = (Q1 − ψ̂ā,C=0).

where QK+1 = Y is defined for notational convenience (and the dependencies of some

components repressed).
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With each of the g and Q components estimated using any given prediction

method, the parameter ψā,C=0 can be estimated by setting the sum of the K + 1

components equal to 0 and solving for ψ̂ā,C=0.

5.3.4 TMLE using the alternative G-computation formulation

TMLE for the point treatment mean in a longitudinal setting

The sequential G-computation method described in Section 5.3.2 is a plug-in

estimator because it is a function of a underlying densities, in this case formulated as a

sequence of conditional expectations. The general TMLE procedure begins with some

choice of plug-in estimator, but improves upon this estimator by updating the density

estimates according to specific rules which we detail below. This produces efficient,

doubly robust estimators. This general procedure has been described previously, for

example, by [78, 18, 51].

Details regarding the construction of the sequential longitudinal estimator are

given by [74]. The first step in the TMLE procedure is to fit the conditional densities

{Qt, t = 1, ..., K} using a method of choice. For the update step, the logistic loss

function is chosen even for our case of integer-valued outcome (reduced to proportions

by shifting and scaling to [0,1]) due to the boundedness properties of the inverse of its

canonical link function. The logistic loss becomes particularly valuable when there

is sparsity at certain levels of the covariates or exposure [18].

The next step is to fluctuate each of the density estimates {Q̂t, t = K, ..., 1},

going backwards through time, with respect to a new parameter, ϵt. The fluctuation

function for each Q̂t(ϵt) can be described as

logitQ̂1
t (ϵt) = logitQ̂t + ϵtGt, t = 1, ..., K
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for some expression Gt. Again letting Q̂K+1 = Y , the optimal value for ϵt is found

by minimizing the empirical mean of the logistic loss function

L{Q̂1
t (ϵt)} = −[Q̂t+1 log{Q̂1

t (ϵt)}+ (1− Q̂t+1) log{1− Q̂1
t (ϵt)}],

which is equivalent to solving the empirical mean score (or derivative of the loss

function) at zero. This requires that the function Gt is defined and estimated.

The above fluctuation function is required to satisfy two conditions: 1) it must

equal the original when ϵt = 0, and 2) the derivative with respect to ϵt of the loss

function at ϵt = 0 must span the efficient influence curve. The first condition is

clearly satisfied when ϵt = 0. Taking the derivative of the loss function with respect

to ϵt gives:

dL(Q̂1
t (ϵt))

dϵt

∣∣∣∣
ϵt=0

= Gt(Q̂t+1 − Q̂t), t = 1, ..., K.

Therefore, the score spans the efficient influence curve when Gt is defined as

Gt(Āt−1, Ct, L̄t−1) =
I(Āt−1 = āt−1, Ct = 0)

gā,t
.

The fluctuation step is carried out by minimizing the loss function, L{Q̂1
t (ϵt)},

with respect to ϵt. This is equivalent to running a no-intercept logistic regression

with offset Q̂t and unique covariate Gt(Āt−1, Ct, L̄t−1). Let ϵ̂t be the estimate of the

coefficient for Gt, which is the maximum likelihood estimate (or equivalently, the

minimum loss-based estimate) for ϵt.

Once all of the densities have been updated to give {Q̂1
t , t = K, ..., 1}, the

parameter ψā,C=0 is estimated as the mean of Q̂1
1 over all subjects, i.e. ψ̂ā,C=0 =

1
n

∑
iQ

1
1(W = wi) (where wi is the observed baseline vector for subject i).
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Procedure for the PROBIT data

We observed the following procedure in our estimation of the parameter ψā,C=0,

for a given exposure history ā. As described above, our interpretation of the structure

of the PROBIT dataset is O = (W,C1, L1, A1, C2, L2, ..., A5, C6, L6 = Y ). There are

six intervention nodes: censoring can occur at any of them, and exposure is measured

at the later five. All subjects are breastfeeding at the baseline, so that exposure

pattern is uniquely determined by breastfeeding cessation by a given time point.

1. Fit models for the exposure and censoring indicators at each time point, given

all history up until that time point. Obtain predicted values for each subject’s

probability of obtaining exposure status at, and each subject’s probability of

being observed at each time point. These must be calculated conditional on

fixed exposure history āt−1 and having been observed up until the given time

point.

• In particular, given the monotone nature of breastfeeding exposure, if ā =

(1, 0, 0, 0, 0), for instance, the predicted probability of not breastfeeding

at time 3 will be one for all participants, since it’s conditional on stopping

before time 2.

2. Using the predictions from step 1, fit the propensities,

g1(W ) = pn(C1 = 0 | W ), and

ga,t(L̄t−1) = pn(C1 = 0 | W )
t∏

k=2

{pn(Ck = 0 | Āk−1 = āk−1, Ck−1 = 0, L̄k−1)×

pn(Ak−1 = ak−1 | Āk−2 = āk−2, Ck−1 = 0, L̄k−1)}
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for t = 2, ..., 6, and where A0 and a0 should be considered the null set.

3. Set Q̂7 = Y , where Y is rescaled to [0,1]. Then, for t = 6, ..., 1,

• For the subset of subjects with Āt−1 = āt−1 and Ct = 0, fit a model for

E(Q̂t+1 | L̄t−1). Using this model, predict the conditional outcome for

all subjects and let this vector be denoted Q̂t (this may require imputing

values in L̄t−1 for censored subjects).

• Construct “clever covariate” Gt(Āt−1, L̄t−1) = I(Āt−1 = āt−1, Ct = 0)/gā,t.

• Update the expectation by running a no-intercept logistic regression with

the fit logit(Q̂t) as an offset, and clever covariate Gt as the unique covari-

ate. Let ϵ̂t be the estimated coefficient of Gt.

• Update the fit of Qt by setting

Q̂1
t = expit{logit(Q̂t) + ϵ̂tGt(Āt−1 = āt−1, Ct = 0, L̄t−1)}

and obtaining a predicted value of Q̂1
t for all subjects (which may again

require filling in values for L̄t−1 for those who were censored earlier).

• Note that for t = 1, Q̂t is only conditional onW , and it is initially modeled

only for subjects with C1 = 0.

4. Having fit Q̂1
1, take the mean of this vector of values over all subjects. This is

a targeted estimator for ψā,C=0.

5.4 Analysis of the PROBIT

The PROBIT data were analyzed by both G-computation methods, TMLE with

parametric modeling of the sequential conditional means and conditional probabil-

ities of exposure and censoring (logistic main terms regression for binary exposure
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and censoring, and for the outcome shifted and scaled to [0,1]), TMLE with Super

Learner to model the underlying densities, and a stabilized inverse probability of

treatment weighted (IPTW) estimator. All models were implemented directly in

R Statistical Software [39] with the exception of Super Learner which we fit using

the R library SuperLearner [37]. Super Learner produces fits for each method in

a library, and then estimates the ideal combination of these results based on the

k-fold cross-validated error. The library we utilized included main terms logistic

regression, generalized additive modeling [19], the mean estimate, nearest neighbour

algorithm [35], multivariate adaptive regression spline models [31], and a stepwise

AIC procedure (stepAIC from [83]).

A stabilized IPTW estimator was computed by obtaining the solution of

E

{
(Y − ψ̂IPTW

ā,C=0 )
I(Ā5 = ā, C = 0)

gā,6

}
.

This is the influence curve of the stabilized IPTW.

The standard errors for all methods except the G-computations were calculated

using the sandwich estimator, which uses the form of the influence curve to ap-

proximate the asymptotic variance. The standard error of the estimate is found by

estimating the influence curve value for each subject and then taking the empirical

standard error of the 17,036 squared values. Confidence intervals were calculated

assuming Normality of the estimator, taking limits to be a distance of 1.96 times

the estimated standard error from the estimate. The standard errors for the G-

computation methods were estimated using nonparametric bootstrap by resampling

the full dataset with replacement 200 times, recalculating the estimates, and taking
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the standard error of the estimates. Confidence intervals were calculated by taking

the 2.5th and 97.5th quantiles of the resampled estimates.

The estimates of the marginal expected number of infections up until one year of

age, for the six different breastfeeding patterns, are presented in Table 5–3. Specifi-

cally, the exposure patterns considered were exposure to breastfeeding terminated in

the interval preceding the given followup date. The table presents the estimate under

each method for each follow-up time, along with the 95% confidence interval. The dif-

ferent methods give roughly similar results, with the notable exception of sequential

G-computation. This method deviates in particular in its results for breastfeeding

duration of over nine months. A chart with a visual display of the results for TMLE

with Super Learner is presented in Figure 5–2(a). This method (along with all of

the other methods with the exception of sequential G-computation) gives decreasing

point-estimates for the number of infections as breastfeeding duration is increased.

Inference regarding the treatment differences of sequential pairwise comparisons

estimated using TMLE with Super Learner is summarized in Figure 5–2(b). The

differences relating pairwise comparisons of breastfeeding termination between im-

mediately subsequent study intervals are consistently estimated as negative. The

corresponds with decreasing expected infection counts for longer duration of breast-

feeding. However, the TMLE with Super Learner estimation method only finds the

last pairwise comparison to be significantly different from zero at the 95% confidence

level.

Additional interesting comparisons can be made. In particular, the expected

difference between ceasing breastfeeding before one month, compared to between
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Table 5–3: Marginal mean number of infections by duration of breastfeeding.

Method Estimate 95% C.I. Estimate 95% C.I

0-1 months 1-2 months
G-Comp (likelihood) 0.20 (0.16,0.22) 0.15 (0.14,0.18)
G-Comp (sequential) 0.19 (0.16,0.25) 0.17 (0.15,0.20)
TMLE with SL 0.18 (0.15,0.20) 0.16 (0.14,0.18)
parametric TMLE 0.18 (0.15,0.20) 0.16 (0.14,0.18)
IPTW 0.20 (0.16,0.23) 0.16 (0.14,0.18)

2-3 months 3-6 months
G-Comp (likelihood) 0.13 (0.12,0.14) 0.11 (0.10,0.13)
G-Comp (sequential) 0.15 (0.13,0.19) 0.12 (0.12,0.14)
TMLE with SL 0.14 (0.13,0.15) 0.12 (0.11,0.13)
parametric TMLE 0.14 (0.12,0.15) 0.12 (0.11,0.13)
IPTW 0.14 (0.13,0.15) 0.12 (0.11,0.13)

6-9 months over 9 months
G-Comp (likelihood) 0.10 (0.09,0.12) 0.10 (0.09,0.11)
G-Comp (sequential) 0.12 (0.10,0.22) 0.16 (0.11,0.46)
TMLE with SL 0.12 (0.10,0.13) 0.10 (0.09,0.11)
parametric TMLE 0.11 (0.10,0.13) 0.10 (0.08,0.12)
IPTW 0.12 (0.10,0.13) 0.11 (0.09,0.13)

NOTE: G-Comp: G-computation, using both methods described in the text: likelihood in Sec-
tion 5.3.1, sequential in Section 5.3.2; TMLE: Targeted Maximum Likelihood Estimation; SL:
Super Learner; IPTW: inverse probability of treatment weighting (stabilized).
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Figure 5–2: (a) Plot of marginal expected counts for termination of breastfeeding
occurring in the interval preceding the time point. (b) Expected differences between
exposure patterns with 95% confidence intervals. The pairwise exposure patterns
compared are termination of breastfeeding in one interval compared to termination
in the immediately following interval. Both summaries of the results are obtained
using TMLE with Super Learner.

three and six months was estimated as -0.06 (95% CI: -0.08,-0.03). The expected

difference between breastfeeding for between three and six months compared to over

9 months was -0.02 (95% CI: -0.04,-0.01). Finally, the overall difference between

breastfeeding for less than one months versus more than nine months was estimated

by TMLE with Super Learner as -0.08 (95% CI: -0.10,-0.05). This overall difference

in the effect corresponds with a Number Needed to Treat (NNT) of 13 to avoid one

gastrointestinal infection during the first year of life. This can roughly be compared

with the intention-to-treat result in the original PROBIT study [27], where they

obtained a NNT of 24 for the presence of any gastrointestinal infection over the
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first year when contrasting subjects who did and did not receive the breastfeeding

intervention.

5.5 Simulation study

5.5.1 Data generation and modeling

A simulation study was performed where data were generated to have the same

structure as the PROBIT dataset. Specifically, the simulated data were of the form

O = (W,U,C1, L1, A1, C2, L2, ..., A5, C6, L6) where exposure, At, t = 1, .., 5 is binary,

Ct, t = 1, .., 6 is the censoring indicator (and therefore also monotone), Lt, t = 1, .., 5

is binary and Y =
∑6

t=1 Lt is a count variable. W and U are one-dimensional Gaus-

sian random variables, representing baseline confounders. Exposure was generated

as conditional on the baseline variables and immediate preceding covariates at ev-

ery time point. In particular, breastfeeding was specifically made to be less likely

to continue when infection was indicated at the current time point. Breastfeeding

exposure is also monotone, and so it was only possible at a given time point if the

subject was still breastfeeding at the previous one. Censoring was missing at ran-

dom, conditional on baseline covariates and most recent infection status; censoring

was less likely if breastfeeding continued at the previous time point and more likely if

an infection occurred at the previous time point. Infections were generated as being

dependant on baselines, and indicators of exposure for the past two visits, so that

longer duration of breastfeeding decreased the probability of infection. Finally, The

count outcome was created as the sum over six binary variables indicating infection

at each time-interval (each of the first time-intervals Lt plus an additional one at

time 6).
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The parameter ψā = E(Yā,C=0) was estimated for ā = (1, 1, 1, 1, 1). In other

words, we estimated the marginal expected value under full exposure and without

censoring. This was done under three scenarios: with no unmeasured confounders

(and correct propensity model when estimated), unmeasured confounding, and near

positivity violations. The model contained unmeasured confounders when U was

left out of the estimation procedure. Near positivity violations were generated by

making the covariates highly predictive of the exposure and censoring. Details of the

data generation can be found in the Supplementary Materials.

For computational efficiency, we restricted ourselves to a smaller sample size

for the simulation study. Therefore, to make our models estimable, we made the

probability of infection at each time point greater than what was observed in the

PROBIT. One result of this decision was that the parameter of interest had a true

value of 2.01, much higher than what was estimated for the application.

Five hundred datasets of 1,000 observations were generated for each of the three

data-generating scenarios. The performance of the TMLE for each of these datasets

was compared to a correctly specified G-computation, an incorrectly specified se-

quential formulation of the G-computation formula, a stabilized IPTW estimator,

and the estimate found by solving the efficient influence curve in Equation (5.2)

like an estimating equation (EE). Standard errors were computed using both non-

parametric bootstrap resampling (details in the footnote of Table 5–4) and influence

curve inference where available. These methods for estimating the standard errors

were compared, as well as the mean coverage obtained under their use.
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As a small departure from the real data, the simulated data allowed only one in-

fection at each time interval (as opposed to more than one event). The G-computation

used the information that the outcome was a sum of the first five binary infection

variables, and the additional binary variable, L6, measured at time t = 6. Thus

Y =
∑5

t=1 Lt + L6, so that the G-computation simplified to

1

n

∑
l1={0,1}

· · ·
∑

lK={0,1}

[{
5∑

t=1

(Lt) + E(L6|L̄5 = l̄5, Ā5 = ā5, C = 0)

}
×

5∏
t=2

{
p(Lt = lt|L̄t−1 = l̄t−1, Āt−1 = āt−1, C̄t = 0)

}
p(L1 = l1|W,C1 = 0)

]
.

Note that using the information regarding the number of infections at each

time-interval for the PROBIT data analysis would have required fitting multinomial

models in the likelihood G-computation. With so few subjects having more than one

infection at any given time, we did not feel that substantial information could be

added by increasing the complexity of the model for the applied example by using a

similar approach.

5.5.2 Simulation results

The results of each of the models run on the datasets simulated under the three

data-generating scenarios are displayed in Table 5–4. With no unmeasured con-

founders, likelihood G-computation and IPTW were both fully correctly specified.

Likelihood G-computation performed better than IPTW in terms of mean-squared

error, standard error, and bias. The IPTW influence curve produced a conservative

estimate of the standard error, and therefore an inflated confidence interval. Be-

cause of the way the data were generated, the Q-components used in the sequential
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G-computation, TMLE and EE were incorrectly specified. Due to double robustness,

the TMLE and EE were both unbiased with comparatively small standard errors, and

mean-squared errors. For the TMLE and EE, the influence curve and bootstrapped

estimates of the standard error were very similar. Sequential G-computation per-

formed worst of all, with the highest bias, standard error, and mean-squared error.

When a baseline confounder was omitted from the analysis (in the second sce-

nario), all of the models were misspecified in all components (including the exposure

models and the estimates of the underlying densities). Likelihood G-computation

produced far more bias, but similar standard error, mean-squared error and cov-

erage when compared to the previous scenario. Sequential G-computation suffered

in terms of bias, mean-squared error, and coverage. In terms of MSE, the TMLE

and EE again performed the best of all the estimators, and did not do much worse

with one confounder unmeasured as compared to the previous scenario where no

confounders were omitted. IPTW also did not do much worse than in the previous

scenario, though the influence curve estimate of the standard error was again found

to be conservative.

Under near positivity violations, the correctly specified likelihood G-computation

performs very well as it does not estimate a probability of exposure. The incorrectly

specified sequential G-computation performed poorly with high bias and low cov-

erage. The stabilized IPTW was unbiased, but had higher standard errors than in

previous scenarios, and was also affected in terms of coverage. The EE was sensitive

to the positivity violations that we generated, and produced a biased estimate with a
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Table 5–4: Marginal mean outcome under always-exposed, by scenario. True value
= 2.01

Method % bias SE (IC) SE (BS)a MSE % COV (IC) % COV (BS)b

no unmeasured confounders
G-Comp (likelihood) -0.1 - 0.07 0.003 - 94.4
G-Comp (sequential) 2.4 - 0.12 0.016 - 96.0
parametric TMLE -0.3 0.06 0.06 0.003 96.6⋄ 94.2
IPTW -0.4 0.13 0.10 0.010 97.8⋄ 92.2⋄
Efficient EE -0.2 0.06 0.06 0.003 94.2 94.0

unmeasured confounder
G-Comp (likelihood) 1.1 - 0.07 0.004 - 94.4
G-Comp (sequential) 4.4 - 0.04 0.023 - 81.4⋄
parametric TMLE 0.8 0.07 0.06 0.004 96.0 93.0
IPTW 0.6 0.12 0.10 0.010 98.6⋄ 94.2
Efficient EE -0.9 0.06 0.06 0.004 93.8 93.4

positivity violations
G-Comp (likelihood) 0.0 - 0.06 0.003 - 96.2
G-Comp (sequential) 5.8 - 0.13 0.027 - 76.4
parametric TMLE -0.8 0.06 0.08 0.005 92.2⋄ 95.4
IPTW -0.7 0.14 0.13 0.019 94.2 90.6⋄
Efficient EE 2.1 0.16 0.29 0.057 93.8 92.2⋄

NOTE: SE (IC): standard error calculated using the influence curve; SE (BS): standard error
calculated using the nonparametric boostrap; MSE: mean-squared error calculated over the simu-
lated datasets; COV: mean coverage; TMLE: Targeted Maximum Likelihood Estimator; G-Comp:
G-computation; IPTW: (stabilized) inverse probability of treatment weighting; Efficient EE: esti-
mating equation using the efficient influence curve.

aThe bootstrap standard error was computed using 200 resamples from the data set of size
n=17,036; bThe estimated coverage is the % of times that the true value falls between the 2.5th
and 97.5th bootstrap percentiles. ⋄ Indicates a coverage significantly different from 95% (2-sided
z-test, 0.05 significance level).
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means squared error that was over twice the size of the incorrectly specified sequen-

tial G-computation. Contrastingly, the TMLE produced a low-bias, low-standard

error estimate, with a mean-squared error comparable to that of the likelihood G-

computation.

5.6 Discussion

In this article, we applied five different causal methods to the PROBIT data to

obtain estimates of the marginal expected number of infection counts under the six

possible breastfeeding patterns. TMLE with parametric and Super Learner density

estimation produced the smallest standard errors. Sequential G-computation seemed

unstable in this example, with occasionally high standard errors that resulted in very

large confidence intervals. The difference between TMLE fit with parametric models

and Super Learner was not great, potentially due to the limitations of our chosen

library, or a good fit from the parametric regressions. We did however see a slight

decrease in the standard error of the parameter estimate when the TMLE was fit

with Super Learner, which may be due to the better initial fit of the underlying

density. To our knowledge, this is the first time this sequential TMLE method has

been applied to a real data example.

Our original goal for the PROBIT analysis was to investigate whether longer-

term breastfeeding would result in lower expected numbers of infections for the first

12 months after birth. To this end, we presented the results of TMLE with Super

Learner for comparing different exposure patterns. We did not observe significant re-

sults for extending breastfeeding by one time interval (with the exception of stopping

before 9 months vs. extending past 9 months). However, we did see that comparing
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larger differences in breastfeeding duration led to statistically and clinically signifi-

cant results, corresponding to the protective effect of breastfeeding observed in the

original PROBIT intention-to-treat analysis.

A causal interpretation of the analysis of the PROBIT data requires the usual

causal assumptions, including the sequential randomization assumption (no unmea-

sured confounding). This pinpoints a limitation in the causal interpretability of our

results, as the complexities of the substantive matter make it challenging to believe

that we identified all the common causes of breastfeeding cessation and infections

[29]. In addition, we must assume that there is no interference between study units

(mother and infant pairs) and that only one version of the treatment is applied to

all units (together referred to as the stable unit treatment variable assumption, or

SUTVA; [56]).

In the simulation study, we generated three different types of data scenarios, and

tested the performance of five reasonable longitudinal estimators. While a correctly

specified likelihood computation (G-computation) will perform optimally, estimators

based on the efficient influence curve are more stable under misspecification. Recall

that both of the doubly robust estimators presented in the simulation study were

always misspecified in the Q-components for the data generated. And yet, they

performed comparatively to the correctly specified G-computation in the first two

scenarios. In the scenario where we generated near positivity violations, efficient

estimation without the use of plug-in estimation suffered from instability, while the

TMLE remained stable, and still comparable to the optimal performance of the

likelihood G-computation.
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5.7 Supplementary material for Manuscript 2: Simulation details

The data in the simulation study was generated in order to resemble the PRO-

BIT data, with structure O = (W,U,C1, L1, A1, C2, L2, ..., A5, C6, L6) where expo-

sure, At, t = 1, .., 5 is binary, Ct, t = 1, .., 6 is the censoring indicator (and therefore

also monotone), Lt, t = 1, .., 5 is binary and Y =
∑6

t=1 Lt is a count variable. W and

U are one-dimensional Gaussian random variables, representing baseline confounders.

In Section 5 of the main text, we heuristically summarize the data generation. The

major differences between the generated data and the PROBIT data is that the gen-

erated outcome is a summation over the binary intermediate variables, and the sam-

ple size for the generated data was made to be smaller for computational efficiency,

leading to the computational necessity of making unrealistically large probabilities

of infection at each time point.

We generated slightly altered data for each of the three scenarios, namely, correct

propensity estimation, unmeasured confounding, and positivity violations. We used

the following functions (written in R Statistical Software version 2.13.2, [39]) to

generate the data for the correct and unmeasured confounding (data_cor) and near

positivity violations (data_pos) scenarios:

########################################################

#Robust expit function (allowing for large values of x)

expit<-function(x){

z<-exp(x)/(1+exp(x))

z[is.na(z)]<-1

return(z) }

########################################################

########################################################

#CORRECT/UNMEASURED CONFOUNDING DATA GENERATION

#bf decreases prob of infection (2 time points)
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#infection increases prob of censoring

#infection increases prob of later infection

#bf decreases prob of censoring

#censoring decreases prob of subsequent bf

#br at time t only possible if bf at time t-1

data_cor<-function(i,ssize){

set.seed(i*5436)

W<-rnorm(n=ssize)/4+1

U<-rbinom(n=ssize,size=1,prob=0.5)

c1<-expit(-3+0.01*W+0.5*U)

C1<-rbinom(n=ssize,size=1,prob=c1)

mu1<-expit(1.5-2.5*W+U)

L1<-rbinom(n=ssize,prob=mu1,size=1)

p1<-expit(1+W+1.5*U-0.5*C1-1*L1)

A1<-rbinom(n=ssize,size=1,prob=p1)

C2<-rep(1,ssize)

c2<-expit(-3+0.5*W+2*L1+0.5*U-1.2*A1)[C1==0]

C2[C1==0]<-rbinom(n=length(c2),size=1,prob=c2)

mu2<-expit(1-1*W+0.1*L1+0.5*U-0.5*A1)

L2<-rbinom(n=ssize,prob=mu2,size=1)

A2<-rep(0,length=ssize)

p2<-expit(1.5*W[A1=1]-1*L2[A1==1]+U[A1==1]-0.5*C2[A1==1])

A2[A1==1]<-rbinom(n=length(p2),size=1,prob=p2)

C3<-rep(1,ssize)

c3<-expit(-2+0.07*W+2*L2+0.5*U-1.2*A2)[C2==0]

C3[C2==0]<-rbinom(n=length(c3),size=1,prob=c3)

mu3<-expit(2-1*W+0.1*L2+0.5*U-A2-0.5*A1)

L3<-rbinom(n=ssize,prob=mu3,size=1)

A3<-rep(0,length=ssize)

p3<-expit(1+W[A2==1]-1*L3[A2==1]+U[A2==1]-0.5*C3[A2==1])

A3[A2==1]<-rbinom(n=length(p3),size=1,prob=p3)

C4<-rep(1,ssize)

c4<-expit(-2.5+0.07*W+2*L3+0.5*U-1.2*A3)[C3==0]

C4[C3==0]<-rbinom(n=length(c4),size=1,prob=c4)
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mu4<-expit(2-1*W+0.1*L3+0.5*U-A3-0.5*A2)

L4<-rbinom(n=ssize,prob=mu4,size=1)

A4<-rep(0,length=ssize)

p4<-expit(1+1*W[A3==1]-1.5*L4[A3==1]+U[A3==1]-0.5*C4[A3==1])

A4[A3==1]<-rbinom(n=length(p4),size=1,prob=p4)

C5<-rep(1,ssize)

c5<-expit(-2+0.07*W+2*L4+0.5*U-1.2*A4)[C4==0]

C5[C4==0]<-rbinom(n=length(c5),size=1,prob=c5)

mu5<-expit(1-1*W+0.2*L4+0.5*U-A4-0.5*A3)

L5<-rbinom(n=ssize,prob=mu5,size=1)

A5<-rep(0,length=ssize)

p5<-expit(0.5+W[A4==1]-1.5*L5[A4==1]+U[A4==1]-0.5*C5[A4==1])

A5[A4==1]<-rbinom(n=length(p5),size=1,prob=p5)

C6<-rep(1,ssize)

c6<-expit(-1.5+0.07*W+2*L5+0.5*U-1.2*A5)[C5==0]

C6[C5==0]<-rbinom(n=length(c6),size=1,prob=c6)

#use to get Y

mu6<-expit(-1.8-1*W+0.7*L5+0.5*U-A5-0.5*A4)

L6<-rbinom(n=ssize,prob=mu6,size=1)

Y<-L1+L2+L3+L4+L5+L6

L1[C1==1]<-NA

A1[C1==1]<-NA

L2[C2==1]<-NA

A2[C2==1]<-NA

L3[C3==1]<-NA

A3[C3==1]<-NA

L4[C4==1]<-NA

A4[C4==1]<-NA

L5[C5==1]<-NA

A5[C5==1]<-NA

Y[C6==1]<-NA

return(as.data.frame(cbind(W,L1,L2,L3,L4,L5,Y,A1,A2,A3,A4,A5,C1,C2,C3,C4,C5,C6,U)))

}

########################################################
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########################################################

#DATA GENERATION FOR NEAR POSITIVITY VIOLATIONS

data_pos<-function(i,ssize){

set.seed(i*5436)

W<-rnorm(n=ssize)/4+1

U<-rbinom(n=ssize,size=1,prob=0.5)

c1<-expit(-3+0.01*W+0.5*U)

C1<-rbinom(n=ssize,size=1,prob=c1)

mu1<-expit(1.5-2.5*W+U)

L1<-rbinom(n=ssize,prob=mu1,size=1)

p1<-expit(-5+8*W+1.5*U-0.5*C1-1*L1)

A1<-rbinom(n=ssize,size=1,prob=p1)

C2<-rep(1,ssize)

c2<-expit(-3+0.5*W+2*L1+0.5*U-1.2*A1)[C1==0]

C2[C1==0]<-rbinom(n=length(c2),size=1,prob=c2)

mu2<-expit(1-1*W+0.1*L1+0.5*U-0.5*A1)

L2<-rbinom(n=ssize,prob=mu2,size=1)

A2<-rep(0,length=ssize)

p2<-expit(1+1.5*W[A1=1]-1*L2[A1==1]+U[A1==1]-0.5*C2[A1==1])

A2[A1==1]<-rbinom(n=length(p2),size=1,prob=p2)

C3<-rep(1,ssize)

c3<-expit(-2+0.07*W+2*L2+0.5*U-1.2*A2)[C2==0]

C3[C2==0]<-rbinom(n=length(c3),size=1,prob=c3)

mu3<-expit(2-1*W+0.1*L2+0.5*U-A2-0.5*A1)

L3<-rbinom(n=ssize,prob=mu3,size=1)

A3<-rep(0,length=ssize)

p3<-expit(2*W[A2==1]-1*L3[A2==1]+U[A2==1]-0.5*C3[A2==1])

A3[A2==1]<-rbinom(n=length(p3),size=1,prob=p3)

C4<-rep(1,ssize)

c4<-expit(-2+0.07*W+2*L3+0.5*U-1.2*A3)[C3==0]

C4[C3==0]<-rbinom(n=length(c4),size=1,prob=c4)

mu4<-expit(2-1*W+0.1*L3+0.5*U-A3-0.5*A2)

L4<-rbinom(n=ssize,prob=mu4,size=1)
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A4<-rep(0,length=ssize)

p4<-expit(1+1*W[A3==1]-1.5*L4[A3==1]+U[A3==1]-0.5*C4[A3==1])

A4[A3==1]<-rbinom(n=length(p4),size=1,prob=p4)

C5<-rep(1,ssize)

c5<-expit(-2+0.07*W+2*L4+0.5*U-1.2*A4)[C4==0]

C5[C4==0]<-rbinom(n=length(c5),size=1,prob=c5)

mu5<-expit(1-1*W+0.2*L4+0.5*U-A4-0.5*A3)

L5<-rbinom(n=ssize,prob=mu5,size=1)

A5<-rep(0,length=ssize)

p5<-expit(2*W[A4==1]-1.5*L5[A4==1]+U[A4==1]-0.5*C5[A4==1])

A5[A4==1]<-rbinom(n=length(p5),size=1,prob=p5)

C6<-rep(1,ssize)

c6<-expit(-18+8*W+4*L5+8*U-1.2*A5)[C5==0]

C6[C5==0]<-rbinom(n=length(c6),size=1,prob=c6)

#use to get Y

mu6<-expit(-1.8-1*W+0.7*L5+0.5*U-A5-0.5*A4)

L6<-rbinom(n=ssize,prob=mu6,size=1)

Y<-L1+L2+L3+L4+L5+L6

L1[C1==1]<-NA

A1[C1==1]<-NA

L2[C2==1]<-NA

A2[C2==1]<-NA

L3[C3==1]<-NA

A3[C3==1]<-NA

L4[C4==1]<-NA

A4[C4==1]<-NA

L5[C5==1]<-NA

A5[C5==1]<-NA

Y[C6==1]<-NA

return(as.data.frame(cbind(W,L1,L2,L3,L4,L5,Y,A1,A2,A3,A4,A5,C1,C2,C3,C4,C5,C6,U)))

}

The only differences between the two functions given above are the coefficients

given to the some of the independent variables at each step.
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Several methods were tested for each of the data generation scenarios described.

The methods are G-computation, sequential G-computation, parametric TMLE, in-

verse probability of treatment weighting (IPTW), and estimating equations using the

efficient influence function (EE). For the correct propensity and near positivity vio-

lations scenarios, both of the confounders U and W were included in the estimation

procedures. For the unmeasured confounding scenario, only W was included.
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CHAPTER 6
Marginal Structural Modeling of a Survival Outcome with Targeted

Maximum Likelihood Estimation

Preamble to Manuscript 3. This manuscript continues with the develop-

ment of the longitudinal TMLE method described in Manuscript 2. This study

demonstrates the modification of this method for survival analysis, both for the

exposure-specific marginal mean parameter (equivalent to a saturated MSM) and

for two different types of MSMs. It presents a different modeling approach than

that taken by Rosenblum and Van der Laan [50] who also demonstrate a method for

estimating the parameters of a MSM with TMLE. The theory and the simulation

study in this manuscript show that the logistic MSM for the hazard (which can be

estimated using TMLE) is equivalent to the IPTW MSM described in [21] which is

also used to estimate the parameters of a Cox proportional hazards MSM. TMLE is

compared to IPTW and standard techniques in a case study of HIV and Hepatitis

C virus (HCV) co-infected patients where the effect of HCV clearance on end-stage

liver disease (ESLD) is estimated. The dataset used in the analysis had different

types of missing data and data sparsity which inspired the use of multiple imputa-

tions to help adjust for missing information. While the clinical results of this analysis

are inconclusive, the use of TMLE proved to be beneficial as this method resulted in

lower variance estimation than IPTW.i
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Abstract. When estimating causal parameters in survival analysis, the ana-

lyst must take into consideration the presence of baseline confounders, loss to follow-

up, and time-dependent confounders in the longitudinal data structure. Marginal

structural models (MSM) can be used to model the effect of an exposure on a survival

outcome. We demonstrate the doubly robust and semiparametric-efficient method

of Targeted Maximum Likelihood Estimation (TMLE) applied to estimating both

the marginal exposure-specific probability of survival and the parameters of a MSM

with a survival-type outcome. We show the theoretical derivation of the efficient

influence functions for the parameters of two different MSMs and how they can be

used to produce variance approximations for parameter estimates. A simulation

study demonstrates the unbiasedness of TMLE for estimating the survival curve and

a hazard MSM and compares the method to inverse probability of treatment weight-

ing methods. Finally, we undertake an analysis of the Canadian Co-infection Cohort

Study where we used TMLE to estimate the impact of clearance of the Hepatitis C

virus on the time to end-stage liver disease in subjects infected with both Hepatitis

C and HIV.
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6.1 Introduction

Standard survival modeling (such as Kaplan-Meier or Cox proportional hazards

modeling) relies on the assumption that censoring and survival are independent,

which is a highly unlikely supposition in many scenarios. In addition, standard

methods ignore or over-adjust time-dependent confounders [43].

Marginal structural models (MSM) [46] have been developed to estimate the

effect of time-dependent exposure on the outcome in the presence of time-dependent

confounders that are affected by previous treatment. In the survival context, MSMs

have been developed to estimate the parameters of a Cox proportional hazards model

[21]. Despite their mathematically convenient form and widespread usage, the inter-

pretation of the parameters of a Cox proportional hazards model is often challenging

[69, 20] leading to the desire for alternative semiparametric survival models.

Weighting methods such as inverse probability of treatment weighting (IPTW)

[8, 86] and substitution estimators such as G-computation [44] have been developed

to overcome this problem, and correctly incorporate baseline and time-dependent

covariates when the models are correctly specified.

Semiparametric efficient estimators in causal inference have also been produced

for the survival context [47, 61, 1] giving the added advantage of double-robustness

where only a component of the underlying density must be correctly specified for

asymptotic unbiasedness [25]. These methods are sometimes called doubly-robust

IPTW estimators or estimating equations, but all of them produce estimates that

solve a corresponding efficient influence function (equivalently, efficient influence

curve) for the target parameter set equal to zero.
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Targeted Maximum Likelihood Estimation (TMLE) is a framework that pro-

duces semiparametric efficient estimators, and can be used for all pathwise differ-

entiable parameters. TMLE [78] creates a substitution estimator, computed as a

function of estimated components of the underlying data-generating function. How-

ever, TMLE differs from standard substitution estimation as the underlying density

fits are updated in order to solve the equation of the efficient influence curve set

equal to zero, and thereby produce semiparametric efficient inference in the class of

regular asymptotically linear estimators [76, 71]. Like IPTW and G-computation,

TMLE allows for confounding adjustment, but unlike either of these methods, it is

also double-robust. In addition, TMLE offers improvements over efficient estimating

equation methodology, in that it will never produce multiple solutions, and that it

preserves the natural bounds of the targeted parameter in estimation. The flexibility

of the estimating framework allows improvements in estimation that can give TMLE

an additional advantage in challenging situations such as data sparsity [18]. TMLE

has been used to produce semiparametric efficient, double-robust estimators for sur-

vival parameters [74, 69], general longitudinal parameters [73, 53, 62, 74], and MSMs

for longitudinal data [51].

In this paper we explore several ways of modeling survival with TMLE: directly

constructing survival curves, and using marginal structural models to summarize the

log-odds of survival and the hazard function, respectively. Variance estimates for each

of these methods will be made possible using efficient influence curve inference, which

allows us to construct a closed-form solution for the large-sample approximations of

the variance of the different estimators. We illustrate and assess the feasibility of
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our methods by performing an analysis on a cohort of patients co-infected with HIV

and the Hepatitis C Virus (HCV), investigating the effect of the clearance of HCV

on risk for end-stage liver disease.

6.2 Background

Estimation with TMLE requires that the target parameter be identified as a

differentiable function of a component of the underlying data density. Let Ψ be a

differentiable function that takes an argument in a model space M and value in the

space of real numbers (or vectors). Then, our parameter can be defined as ψ = Ψ(Q),

for some Ψ as described, and where Q ∈ M is some component of the underlying

data density, P . Treating the function Ψ as a substitution estimator, we can estimate

Q using a dataset, O, and plug it into the function Ψ so that the estimate of the

target parameter becomes ψ̂ = Ψ(Q̂).

Loosely, the influence curve of a regular, asymptotically linear (RAL) estimator

is the component of the estimator that determines its asymptotic properties. Suppose

one observes n sets of independent, identically distributed subject-specific data, O =

{Oi, i = 1, .., n}. The influence curve of the estimator Ψ(Q̂) is a function of the data

and denoted D(P )(O) (with subject-specific components D(P )(Oi)). The influence

curve can be defined as

n1/2[Ψ(Q̂)− ψ] = n−1/2

n∑
i=1

D(P )(Oi) + oP (1)

where oP (i) is a random term than converges to zero in probability [76, 71]. By an

application of the Central Limit Theorem, this implies that

n1/2[Ψ(Q̂)− ψ] →D N{0, E[D(P )D(P )T ]}
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so that the influence curve provides a large-sample approximation for the variance of

the estimator. Specifically, V ar[Ψ(Q̂)] ≈ 1/nV ar[D(P )]. There is a lower variance

bound in the class of influence curves of RAL estimators, and the unique influence

curve that attains this bound is called the efficient influence curve [71].

The general TMLE procedure is described in [78]. TMLE is defined by the

procedure of updating the estimate, Q̂, of the component of the data density used

in the substitution estimator Ψ(Q̂) in order to produce inference using the efficient

influence curve. For example, TMLE is often implemented using the G-computation

formula with carefully constructed updates for the density estimates [53].

Estimators based on the efficient influence curve are favoured for having low

variance. For many causal parameters, estimation with the efficient influence curve

is also doubly-robust [25]. This means that, while two components of the underlying

density P must be fit, the estimator is asymptotically unbiased if either of the com-

ponents is correctly specified. In the examples of the longitudinal TMLEs presented

in this paper, only the exposure mechanism or the outcome models must be correctly

specified in order for the method to be asymptotically unbiased.

6.3 Modeling theory and procedures

A general strategy for fitting a MSM for survival with TMLE is as follows:

1. Estimate the marginal probability of survival for each defined exposure category

at each time point using a TMLE procedure. These probabilities describe the

values of the survival curves for different exposure groups at different time

points.
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2. If the survival curve is not monotonic decreasing in t, one can perform a least-

squares projection onto the space of monotone functions.

3. Estimate the efficient influence curve for the probability of survival for each

exposure group at each time point. This can be used to build point-wise con-

fidence intervals for the survival curves.

4. Choose a MSM specification: Choose a function of the counterfactual outcome

and a linear specification for the mean. In this paper, we give examples using

the log-odds of survival and hazard function. Fit the chosen MSM by per-

forming a regression of the function of the estimated probabilities of survival

for each unique time point/exposure pattern (e.g. the log-odds or the hazard

function at each different exposure pattern at each time point) conditional on

the mean model. This produces estimates of the MSM parameters.

5. Obtain variance estimates of the marginal structural parameters by calculating

the efficient influence curve for each parameter. This is done using the estimates

of the efficient influence curve for the survival curves.

6.3.1 TMLE for a survival outcome

Van der Laan and Gruber [74] developed a TMLE for the marginal exposure-

specific mean outcome in a general longitudinal setting. In this section, we use their

methodology to obtain an estimate of the survival curve and the influence curve of

the estimator (and therefore, the approximate variance of the estimator).

Let T ā denote the survival time obtained under exposure pattern

ā = (a0, a1, ..., aK−1), defined according to the Neyman-Rubin counterfactual model

[54]. The parameters of interest are the exposure-specific, censoring-free survival
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probabilities Sā(t) = P (T ā > t) for a fixed exposure pattern ā at discrete time

points t = 1, ..., K (which we will also refer to as the survival curve under exposure

ā at time t). The survival curve can also be constructed separately for individual

subgroups, V , if that is of interest.

Suppose we observe independent and identically distributed discretized survival

times, T , and censoring times, C, for n subjects. In addition, we have information

about a time-dependent exposure of interest and potentially confounding covariates

at each time point. A corresponding censored data structure (without other vari-

able missingness) can be described as O = (L0,A0, Y1,L1,A1, Y2, ...,AK−1, YK),

where the subscripts indicate a time-ordering. The vector-variable L0 contains

baseline variables (potential confounders). The bivariate intervention nodes At =

(At(1), At(2)), t = 0, ..., K − 1 indicate categorical exposure and censoring status,

respectively, at each time point. Specifically, At(2) = 0 indicates that a subject is

uncensored at time t (i.e. C > t), and At(2) = 1 indicates censoring prior to or at

time t (C ≤ t). Time-dependent variables Lt, t = 0, ..., K − 1 contain information

about any time-dependent confounders. Yt, t = 1, ..., K is the survival status at time

t where Yt = 1 indicates continued survival (so that Yt = 1 if and only if T > t). We

also let Āt, L̄t and Ȳt indicate the variable history up to and including time t.

In order to describe the formulation of the efficient influence curve first developed

by Bang and Robins [1] and used by Van der Laan and Gruber [74] to develop the

TMLE, fix a time t ≤ K and define

Qā
t (t) = P (T ā > t | Āt−1(1) = āt−1, At−1(2) = 0, L̄t−1, Yt−1).
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Note that this conditional probability is zero if there was failure at the previous time

point, i.e. if Yt−1 = 0. Recursively define (going backwards starting with j = t)

Qā
t (j − 1) = E(Qā

t (j) | Āj−2(1) = āj−2, Aj−2(2) = 0, L̄j−2, Yj−2), j = t, ..., 2.

Each Qā
t (j − 1) is therefore defined by taking the conditional mean, Qā

t (j) and

marginalizing over the intermediate covariate Lj−1. Finally, the parameter Sā(t)

can be identified as E(Qā
t (1)). Therefore, this target parameter is defined as a func-

tion of the sequential conditional means. Each of these Q’s can be modeled, and an

estimate of the target parameter can be produced by taking an empirical mean of

the fit Q̂ā
t (1) (calculated for each subject) over the baseline confounders.

Define exposure and censoring-free probabilities for a given exposure pattern

among the at-risk population as

gā(t) =
t∏

j=1

Pr(Aj(1) = aj | Āj−1(1) = āj−1, Aj(2) = 0, L̄j−1, Yj−1 = 1)

Pr(Aj(2) = 0 | Āj−1(1) = āj−1, Aj−1(2) = 0, L̄j−1, Yj−1 = 1).

The efficient influence curve, Dā,t for the parameter Sā(t) = P (T ā > t) can be

written as the sum of the t+ 1 components

Dā,t(j + 1) =
I(Āt−1 = āt−1, At−1(2) = 0)

gā(t− 1)
(Yt −Qā

t (t)),

Dā,t(j) =
I(Āj−2 = āj−2, Aj−2(2) = 0)

gā(j − 2)
(Qā

t (j)−Qā
t (j − 1)) for j = t, ..., 2, (6.1)

Dā,t(1) = Qt(1)− Sā(t).
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Fitting procedure

For a given t and ā, a TMLE estimate for the parameter Sā(t) can be obtained

using the procedure given in [74]. Start with j = t. For convenience of notation,

set Qā,∗
t (j + 1) = Yt = I(T > t) (generally, the ∗-notation will indicate an updated

fit produced according to the TMLE methodology). Fit the conditional expectation

Qā
t (j) = E(Qā,∗

t (j + 1) | Āj−1(1) = āj−1, Aj−1(2) = 0, L̄j−1, Yj−1) as the initial fit,

Q̂ā
t (j), calculated for all subjects (zero for those not at-risk). For example, this fit

could be produced using logistic regression for all at-risk subjects. To update the fit

for those at-risk, set Qā,∗ to a fluctuation of Q̂ā
t (j) with respect to a parameter, ϵt(j):

logit{Qā,∗
t (j)} = logit{Q̂ā

t (j)}+ ϵt(j)
1

gā(j − 1)
. (6.2)

To fit the update by obtaining an estimate for ϵt(j), perform a regression, amongst

those at-risk, of Q̂ā,∗
t (j + 1) with offset Q̂ā

t (j) and unique covariate I[Āj−1(1) =

āj−1, Aj−1(2) = 0]/ĝā(j − 1). Set ϵ̂t(j) to be the estimate of the coefficient of this

covariate. Then update the original fit by plugging ϵ̂t(j) into Equation (6.2) and

obtain a fit for all at-risk subjects (the fit for those who previously failed remains

zero). We will then refer to the updated conditional expectation for all subjects as

Q̂ā,∗
t (j).

Repeat the above procedure for j = t − 1, ..., 1. After the last iteration, the fit

Q̂ā,∗
t (1) is predicted for all subjects. The parameter estimate Ŝā(t) is obtained by

taking the mean of Q̂ā,∗
t (1) over all subjects.

This procedure can be repeated for each time point t = 1, ..., K to obtain an

estimate of the survival curve S ā(t) for all values of t. One can then estimate different
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survival curves for each fixed exposure pattern of interest. Let each full exposure

pattern, defined up until the maximum time K − 1, be denoted āl. Let a given

exposure pattern up until time t be denoted ālt. We will use M to represent the

number of unique truncated exposure patterns ālt. We can calculate M survival

estimates, one for each truncated exposure pattern, ālt.

6.3.2 MSM for the log-odds of survival

A model for the log-odds of survival can be described as

log
Sāl(t)

1− Sāl(t)
= XT

l,tβ, for all unique patterns ālt

where XT
l,tβ represents the form of the linear specification of the model. Let X be

the design matrix, potentially including functions of āl and t. Let Xl,t represent the

R-dimensional row of the design matrix corresponding with exposure āl and time

t, represented as a column vector. For example, if the MSM was a linear model

with an intercept and a linear term for time, then for each unique pattern ālt∗ for

the time point t∗, Xl,t∗ = (1, t∗)T . The design matrix can also contain subgroups

if S was calculated separately for the components of a categorical variable, V , and

although we do not include conditioning in our notation for simplicity, the following

development easily extends to such a case. Finally, let β denote the vector of coef-

ficients corresponding with the columns of the design matrix. Therefore, since there

are M estimates for the survival function, the dimension of the matrix X is R by M ,

corresponding with a β-vector of length R.
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The parameter β can be defined as

argmaxβE
∑
l,t

log
{
[expit(XT

l,tβ)]
I(T āl>t)[1− expit(XT

l,tβ)]
I(T āl≤t)

}
,

i.e. the maximum log-likelihood for the logistic model with marginal mean specifi-

cation expit(XT
l,tβ).

We are interested in estimation of β, which can be implicitly written as a func-

tion of the parameters S = (Sāl(t), for all unique values of ālt) through the score

equation:

0 = U(S,β) =
∑
l,t

Xl,t

(
Sāl(t)− expit(XT

l,tβ)
)
; Sāl(0) = 1.

In order to derive the efficient influence function for β, we will use the Functional

Delta Method [79]. In this context, it states that for a parameter β = β(S) that

can be written as a function of other parameters whose efficient influence functions,

Dāl,t are already known, the efficient influence function for β is equal to

Dβ =
∑
l,t

dβ(S)

dSāl(t)
Dāl,t. (6.3)

By the implicit function theorem, the derivative in Equation (6.3) can be obtained

using

dβ(S)

dSāl(t)
= −

[
dU(S,β)

dβ

]−1
dU(S,β)

dSāl(t)
. (6.4)

We have that

dU(S,β)

dβ
= −

∑
l,t

Xl,tX
T
l,t

exp(XT
l,tβ)

(1 + exp(XT
l,tβ))

2
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is a matrix with dimension R×R, and

dU(S,β)

dSāl(t)
= Xl,t

is a column vector of length R. The two above components can be numerically

evaluated and combined to form a column vector of length R using Equation (6.4).

The efficient influence function can be derived by combining Equation (6.4) with

Equation (6.3) and simplifying slightly:

Dβ =

[∑
l,t

exp(XT
l,tβ)

(1 + exp(XT
l,tβ))

2
Xl,tX

T
l,t

]−1 ∑
l,t

Xl,tDāl,t.

Since the influence curveDāl,t can be numerically evaluated for each of the n subjects,

we obtain a matrix of dimension n×R, representing the joint influence components

for β.

Fitting procedure

Treating each of the functions Sāl(t) as an outcome (so that there are M “ob-

servations”, one for each unique exposure pattern and time), fit a logistic regression

with a chosen linear specification and a logit link. This will produce the point es-

timate of β. To obtain variance estimates, fit the efficient influence curve for β

for each subject by estimating each of the components as described in Section 6.3.2

and combining them as indicated. Then, for each of the R columns of the resulting

matrix the empirical variance is the estimated variance for the corresponding MSM

coefficient estimate of β.
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6.3.3 MSM for the hazard function

If desired, it is also possible to model the discrete hazard function, λā(t) =

P (T ā = t | T ā ≥ t) using a logistic model. As shown in [11], when the hazard at all

time points is small, this model is approximately equivalent to a Cox model (as the

estimated odds ratio provides a good approximation of the hazard ratio).

As before, let XT
l,tβ denote the linear specification of the MSM where X is the

design matrix and β is the vector of regression coefficients of length R and the

parameter of interest. The parameter β can be defined as the value that maximizes

the log-likelihood of a logistic model

β = argmaxβE
∑
l,t

log
{
[expit(XT

l,tβ)]
I(T āl=t)[1− expit(XT

l,tβ)]
I(T āl>t)

}
so that only subjects with T āl > t contribute to the likelihood at a given time

point. By passing the expectation through the linear expression and noting that

P (T āl = t) = P (T āl = t, T āl ≥ t) = P (T āl = t | T āl ≥ t)P (T āl ≥ t) (and similarly

P (T āl > t) = P (T āl > t | T āl ≥ t)P (T āl ≥ t)), this expression simplifies to

argmaxβ
∑
l,t

Sāl(t− 1)
{
λāl(t) log[expit(X

T
l,tβ)] + [1− λāl(t)] log[1− expit(XT

l,tβ)]
}

where Sāl(0) = 1. This corresponds to the maximum log-likelihood for a logistic

regression with outcome λāl(t) and weights Sāl(t− 1).

Once again, β can be written implicitly as a function of the marginal survival

parameters through the score equation corresponding to the above expression:

0 = U(S,β) =
∑
l,t

Sāl(t− 1)Xl,t

(
Sāl(t)− Sāl(t− 1)

Sāl(t− 1)
− expit(XT

l,tβ)

)
.
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We then obtain

dU(S,β)

dβ
= −

∑
l,t

Sāl(t− 1)Xl,tX
T
l,t

exp(XT
l,tβ)

(1 + exp(XT
l,tβ))

2

and that for each unique exposure patterns ālt,

dU(S,β)

dSāl(t)
= Xl,t −

∑
m:{ālt⊂āmt+1}

Xm,t+1[1 + expit(XT
m,t+1β)].

The above summation is taken over all m for which the truncated exposure pattern

ālt is a subset of the pattern āmt+1 (or, equivalently, āmt = ālt) so that in particular,

Sām(t) = Sāl(t).

Substituting these expressions into Equation (6.4) gives a form for dβ(S)/dβ

which can then be substituted into Equation (6.3) to produce the form of the efficient

influence function for the parameters of the MSM:

Dβ =

[∑
l,t

Sāl(t− 1)Xl,tX
T
l,t

exp(XT
l,tβ)

(1 + exp(XT
l,tβ))

2

]−1

∑
l,t

Xl,t −
∑

m:{ālt⊂āmt+1}

Xm,t+1[1 + expit(XT
m,t+1β)]

Dāl,t.

The efficient influence function components can be calculated for each subject, pro-

ducing an influence matrix of dimension n×R.

Fitting procedure

To obtain the point estimates of the MSM parameters, first calculate the haz-

ard functions for each exposure pattern and time using λāl(t) = {Sāl(t) − Sāl(t −

1)}/Sāl(t − 1). Then, using these values as outcome measurements, fit the logistic

regression with a choice of linear specification, with weights equal to Sāl(t− 1). The
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variance estimates are obtained as in the previous model, by fitting the efficient in-

fluence function matrix for the β parameter and taking the empirical variance of

each column.

6.4 Simulations

To demonstrate the performance of the TMLE for survival data with time-

dependent confounders, we generated data of the form

(W,A1, L1, Y1, ..., A5, L5, Y5) using known data-generating functions. W is a con-

tinuous baseline confounder, At, t = 1, ..., 5 are the binary exposure variables and

Yt, t = 1, ..., 5 are the survival indicators at each time point. The exposure is

monotone (once exposed, always exposed). Lt is a binary variable that acts as a

time-varying confounder. Each variable (unless determined by the monotonicity of

exposure and survival) was generated dependent on the baseline and the covariate

values at the previous time point according to the general rule that exposure reduces

the probability of survival at the next time point as do higher values of Lt. Censor-

ing was not included in the simulation study (with the exception of administrative

censoring from the end-of-study, which occurred after the fifth time point for all

subjects). Code for the data generation is provided in the supplementary materials.

The TMLE method described in the previous sections was evaluated in its ability

to predict S ā=1(5), the probability of survival at the fifth time point under the

counterfactual condition of having all subjects exposed at the first time point. The

TMLE was compared to the Adjusted Kaplan-Meier Estimator (AKME), the inverse

probability of treatment weighting method for the Kaplan-Meier curve described

in [86]. Both methods were implemented using logistic regressions to estimate all
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probabilities. The standard error for TMLE was estimated using its efficient influence

function, and for AKME using the non-parametric bootstrap. The non-parametric

bootstrap was performed by taking 500 resampled data sets with replacement from

the complete data set. Each resampled data set was the same size as the original.

The standard error was found by taking the standard deviation of the estimates

calculated from the resampled data sets. The 95% confidence intervals for TMLE

were estimated using the Normal approximation and the standard error from the

efficient influence function. The confidence intervals for AKME used the 2.5th and

97.5th quantiles of the estimates from 500 bootstrap resamples.

Because of the way the data were generated, the models for each of the Qā
t (j)’s in

the TMLE procedure were always misspecified (even when they included the correct

set of confounders). It was possible to correctly specify the exposure model, so

the unbiasedness of the TMLE in this simulation study is a result of the method’s

double-robustness.

In the simulation study, 1,000 data sets were drawn with sample sizes 2,500 and

5,000. AKME and TMLE were both implemented so that the exposure models were

correctly specified. Table 6–1 (top) shows the simulation results for the estimation

of the counterfactual probability of survival at the final time point under a history of

always being exposed. For both sample sizes, AKME and TMLE perform very simi-

larly, both producing unbiased estimates, and identical mean-squared errors (MSE)

and standard errors (SE). Coverage was also close to 95% for both methods.

TMLE was then evaluated in its ability to estimate the parameters of a marginal

structural model for the hazard (Section 6.3.3). The model evaluated was logitλāl(t) =
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Table 6–1: Simulation results for (above) the probability of survival at time five under
always-exposed, and (below) the coefficient of cumulative exposure in the hazard
model (β1). Correct exposure model used. Estimates taken over 1,000 generated
datasets. True value for survival = 0.274; true value for MSM = 0.099

Method Bias MSE SE % COV

Survival
n = 2500

TMLE <0.001 0.001 0.024 94.3
AKME <0.001 0.001 0.024 94.7

n = 5000
TMLE <0.001 <0.001 0.017 96.0
AKME <0.001 <0.001 0.017 95.9

MSM
n = 2500

TMLE <0.001 <0.001 0.028 96.3
IPTW-MSM <0.001 <0.001 0.025 94.4

n = 5000
TMLE <0.001 <0.001 0.019 96.2
IPTW-MSM <0.001 <0.001 0.018 94.5

MSE: mean squared error calculated over the 1000 datasets; SE: influence curve estimate of the
standard error for TMLE, and bootstrap resampled estimate for AKME and IPTW-MSM; % COV:
percent coverage, calculated for IPTW using quantiles of the bootstrap-resampled estimates; TMLE:
Targeted Maximum Likelihood Estimator; AKME: adjusted (inverse-weighted) Kaplan-Meier curve;
IPTW-MSM: inverse probability of treatment weighted marginal structural model.
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β0+β1cum(ālt)+β2t where β1, the coefficient for the cumulative number of past times

exposed, was the parameter of interest. Since the data was not generated from this

MSM, the β parameters represent a likelihood projection of the survival probabili-

ties at each time point onto a linear model [33]. TMLE was compared to the IPTW

method for fitting the hazard MSM described in [21]. The IPTW was fit with un-

stabilized weights and its standard error was estimated using the nonparametric

bootstrap (with the same specifications as for AKME). The MSM results in Table 6–

1 (bottom) indicate that while both methods produced unbiased inference, for the

lower sample size, TMLE had a slightly higher estimated standard error, resulting in

slightly inflated confidence intervals and coverage. The standard errors for n = 5, 000

coincided for the two methods.

6.5 The impact of HCV clearance on ESLD

The Canadian Co-Infection Cohort (CCC) study [26] follows a population of

patients co-infected with HIV and HCV recruited from 16 Canadian centres. Par-

ticipants are scheduled for appointments every six months, with data collected on

status of treatments, lab tests describing disease progression, and drug and alcohol

use at each follow up visit. While all patients were exposed to HCV, which can pro-

duce permanent damage to the liver when the infection becomes chronic, some clear

the virus either through natural immunity or after HCV treatment. Our scientific

question of interest is whether the clearance of HCV reduces the rate of onset of

end-stage liver disease (ESLD).

At the time of data extraction, the study had collected data on 1,055 individuals.

Ten were described as transgendered and were removed from the analysis (due to
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their small number). Of those remaining, 778 had not cleared HCV at the time of

cohort entry and had not yet been diagnosed with ESLD. Among those still actively

co-infected with HCV (as determined by the presence of HCV RNA in plasma) and

at-risk for ESLD, 38 had Hepatitis B and were excluded from the analysis as chronic

Hepatitis B is itself a very strong risk factor for progressive liver disease. Therefore,

740 subjects were included in the analysis. The median follow-up in this subgroup

was two years after baseline, sometimes including missed visits.

Potential baseline confounders were considered to be age, HIV duration, HCV

duration, gender, and education. Potential time-dependent confounders (collected at

baseline and at subsequent visits) were CD4 cell count, whether the participant was

receiving antiretroviral therapy, HCV treatment status, and whether the participant

had reported drinking alcohol in the past six months.

Characteristics of the sample used in the analysis are given in Table 6–2. Miss-

ing data were present, including the baseline covariates. The population generally

consisted of patients who had been infected with HCV and HIV for a long duration.

While most were receiving antiretroviral therapy to control their HIV infection, few

received treatment for HCV. Approximately 25% of the sample was female.

We chose to perform the analysis using six visits after the baseline visit (equiv-

alent to a follow-up of three years) due to the data becoming excessively sparse

afterwards. Subjects often missed their biannual visits, and in addition, the time-

varying covariates, exposure and development of ESLD were all subject to irregular

(i.e. non-monotone) missingness. We assumed that exposure was monotone: if a
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Table 6–2: Characteristics at baseline of the 740 co-infected subjects.

Characteristic Summary N. Missing
Numeric variables Median IQR
Age (years) 44 (39,50) 2
HIV duration (years) 11 (6,16) 20
HCV duration (years) 18 (11,25) 4
CD4 cell count 380 (242,540) 16

Binary variables N. %
Female 227 25 1
Education: ≥ high school 760 83 0
Taking ARVs 735 80 1
Currently treated for HCV 28 3 0
Drank alcohol in past 6 months 455 50 3

ARV: Antiretroviral therapy; IQR: inter-quartile range.

patient had cleared HCV, we considered them permanently clear. Using the as-

sumption of monotonicity, we were able to complete some of the missing exposure

data. Similarly, the outcome event (diagnosis of ESLD) carries the assumption of

monotonicity, which also allowed us to logically impute some values. Subjects often

dropped out of the study, without documentation. A subject was assumed to be cen-

sored if they missed three visits in a row, or died from a cause unrelated to ESLD.

If a subject died from liver complications, they were considered to have experienced

the event. Table 6–3 reports the counts for the number of subjects at risk and the

failure incidence at each time point, by exposure status (when known, and when

unknown). The time-dependent exposure status is defined as having cleared HCV

at some previous time. Therefore, a subject would be included in the “unexposed”

group until clearing HCV, at which point they would be considered part of the “ex-

posed” group. Exposure status is unknown if the subject had not yet been observed
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to have cleared HCV and no test was done at that time point (often due to a missed

visit).

Table 6–3: Number at-risk and failure incidence by time point and exposure status
(when known)

Status Visit 1 2 3 4 5 6

Unexposed N. at-risk 380 294 214 159 102 78
N. failed 22 16 12 4 4 4

Exposed N. at-risk 29 62 80 85 84 76
N. failed 0 3 1 1 1 2

Unknown N. at-risk 320 325 216 195 197 162
N. failed 14 9 10 4 5 3

Many subjects had an unknown exposure status at various time points. These subjects were omitted
from the table calculations for any time points that their exposure status was uncertain, but were
included in the analysis with the help of multiple imputation.

The data structure can be described as O = (W,L1, A1(1), A1(2), Y1, ...,

L6, C6, A6(1), A6(2), Y6) where W is the collection of baseline covariates, Lt is the

multivariate time-dependent confounders, At(1) is whether or not HCV has been

cleared, At(2) is a censoring indicator, and Yt is an indicator for ESLD at time t.

Due to the large amount of missing data in the data set (in particular, due to

many missed visits), we chose to employ multiple imputations [59] as part of our an-

alytical strategy to account for non-censoring missingness. The validity of multiple

imputations relies on the assumption that the data are missing at random condi-

tional on the variables used to impute. In addition, it relies on correct specification

of the imputation models. We built the imputation models using all of the variables

included in the analysis (time-varying confounders, baseline confounders, exposure
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and outcome). The imputation models chosen allowed each variable to be imputed

conditional on previously or simultaneously collected variables so that future infor-

mation was never used. Multivariate Imputation by Chained Equations (MICE) was

performed using the R package mice [72]. After a burn-in of 20 draws, 50 impu-

tations were drawn with 20 lagged iterations each. Logistic regression was used to

impute all binary variables, and Bayesian linear regression was used for all normal

variables (including CD4 cell count, which was imputed on a logistic scale). Each

analytical method used was performed on each imputed data set, and the estimates

and standard errors obtained were combined according to the usual methodology

introduced in [59] to produce the final inference.

The probabilities of survival for both exposure states at each time point were

calculated using the Kaplan-Meier estimator, the Adjusted Kaplan-Meier Estimator

(AKME) [86], and a version of the TMLE described above. AKME incorporated

inverse probability weighting to adjust for censoring and non-randomized exposure.

All probabilities were estimated with logistic regression using the baseline, previous

time point covariates, and an indicator of whether or not the visit was missing in

each model. Unlike the simulation study, exposure patterns were not considered in

this analysis, so the probabilities of exposure at times t (used in both AKME and

TMLE) were modified to be the probabilities of ever being exposed prior to time

t. Due to the sparsity of failures among the exposed subjects, we implemented a

reduced model for the outcome (but not the exposure or censoring) in the TMLE

procedure. The reduced model was selected primarily based on substantive knowl-

edge and computational feasibility.
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The survival curves estimated with Kaplan-Meier, AKME, and TMLE, all us-

ing multiple imputations, are presented in Figure 6–1 for both exposure groups.

Each point on the curves can be interpreted as the estimate of the counterfactual

survival at time t for a subject who has been exposed prior to time t. The curve

representing the mean probabilities of remaining ESLD-free when exposed appears

to be underestimated at each time point by the unadjusted Kaplan-Meier estima-

tor. TMLE and AKME give very similar estimates, with TMLE often estimating a

slightly higher probability of remaining ESLD-free. For the counterfactual survival

curve for an unexposed population, the unadjusted Kaplan-Meier again appears to

underestimate the probabilities of remaining free of ESLD compared to the adjusted

methods. Subfigure 6–1(c) compares the survival curves for the exposed and unex-

posed with TMLE. From this graph, we observe that the estimated probability of

remaining ESLD-free under HCV clearance is higher than without clearance.

Figure 6–2 presents the TMLE estimates and 95% confidence intervals of the

survival curves for exposed and unexposed at each time point. The large confidence

intervals are a consequence of the sparse data and exceed the parameter bounds due

to the assumption of normality, which could be corrected with the development of

an exact confidence interval or usage of the nonparametric bootstrap.

A MSM for the hazard of developing ESLD was defined using a logistic mean

model: logitλa(t) = γ0 + γ1a(t) + γ2t where a(t) is the binary exposure status at

time t, and λa(t) is the counterfactual hazard at time t for exposure status a(t). A

negative value for γ1 would indicate that clearing HCV has a protective effect against
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Figure 6–1: Survival curves for subjects (a) unexposed and (b) exposed at given time.
Curves were calculated with inverse probability of treatment weighting (IPTW),
unadjusted Kaplan-Meier (K-M), and Targeted Maximum Likelihood Estimation
(TMLE).
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Figure 6–2: Survival curves for subjects (a) unexposed and (b) exposed at given time.
Curves were calculated with Targeted Maximum Likelihood Estimation (TMLE).
For each imputed dataset, the variance was estimated using the influence curve. The
total variance was calculated by combining the variance of the estimate for each
imputed dataset and the variance between the estimates from the imputed datasets.
Pointwise 95% confidence intervals were calculated using estimate ± 1.96*SE.
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developing ESLD (as it decreases the hazard of failing). A positive value for γ2 would

mean that hazard increases over time.

This MSM was fit using the three different methods shown in Table 6–4, each

incorporating the multiple imputations. The unadjusted logistic regression was fit

for all subject-times, with a robust sandwich estimator to estimate the standard er-

ror of each coefficient (using R library sandwich [87, 88]). The MSM was also fit

using IPTW (adjusting for both non-randomized exposure and censoring) with sta-

bilized weights. The standard errors were estimated using the same robust sandwich

estimator. The TMLE was fit by combining the estimates for the survival curves in

order to model the hazard as described in Section 6.3.3.

The results for γ1 indicate that the coefficient for exposure status was estimated

as −0.34 but not significantly different than zero at the 0.05 level when using the

naive method (which does not adjust for confounding or dependent dropout). TMLE

and IPTW estimated an effect magnitude of −0.38. TMLE had a 34% smaller stan-

dard error than IPTW, but neither estimator found a significant effect of interest.

Including the indicator for a missing visit in the exposure model made an impor-

tant difference in this analysis, because excluding the indicator resulted in a TMLE

estimate for γ1 of -0.50 (SE=0.33).

All of the models yielded a negative parameter estimate for γ2, but only the

unadjusted method concluded that it was statistically significant. TMLE and IPTW

produced estimates with much smaller magnitudes which were more plausible results

as a marginal hazard of ESLD that decreases with time is unlikely. The incorrect

estimate produced by the unadjusted model may result from sicker patients leaving
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the study so that the cohort appears to be improving in health, and therefore, the

hazard appears to decrease over time. Here, the standard error for TMLE was

approximately half the size of the IPTW standard error.

Table 6–4: MSM results: Logistic model for hazard of developing end-stage liver
disease.

Method Est SE 95% CI p-val
γ1 Coefficient of exposure status

Unadjusted -0.34 0.33 (-0.95,0.28) 0.28
IPTW -0.38 0.49 (-1.34,0.58) 0.49
TMLE -0.38 0.32 (-1.01,0.25) 0.24

γ2 Coefficient of time
Unadjusted -0.13 0.07 (-0.26,-0.00) 0.04
IPTW -0.05 0.20 (-0.44,0.34) 0.80
TMLE -0.06 0.09 (-0.25,0.12) 0.58

Unadjusted: Unweighted logistic regression, standard error calculated using robust sandwich es-
timator; IPTW: Inverse probability of treatment weighted logistic regression, standard error cal-
culated using robust sandwich estimator; TMLE: Targeted Maximum Likelihood Estimation for
survival data, standard error calculated from efficient influence curve. Each method was performed
on 50 multiply-imputed datasets and the results or each analysis combined according to [59].

6.6 Discussion

Many parameters and types of marginal structural models can be defined to

compare survival curves, and we have demonstrated how to construct a TMLE for

two different model types. The model for the hazard that we implemented for both

the simulation and the example can be directly compared with the well-known IPTW

method for estimating a MSM with pooled logistic regression, and when the hazard

at all time points is small, to a marginal structural Cox model [21, 11].

In this paper we also used this method of estimating survival curves and a MSM

for the hazard in an example where we evaluated the effect of clearing HCV on time-

to-ESLD. A major challenge particular to the TMLE was the necessity to fit outcome
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models for failure at every time point. The rarity of events in the CCC data made

this very difficult, even after using multiple imputations to fill in the missing values.

In particular, our original goal was to compare different exposure patterns (much

like in the simulation study and described in the methods) but were prevented by

the sparsity in the outcome. IPTW does not require fitting an outcome model, and

may therefore be more flexible in similar situations. However, from the results of the

example, even our reduced outcome model appeared to produce an improvement in

the estimation of the MSM by TMLE, so it may generally be worthwhile to attempt

to fit a TMLE even in a challenging data environment.

Clearance of HCV occurs both spontaneously and due to HCV treatment, and

the subsequent risk of liver damage might differ depending on the situation. However,

subgroup analysis is prohibited by the data sparsity described and is therefore not

possible with the currently available information. Partially due to different types

of viral clearance, the causal relationship of viral clearance on ESLD may indeed

be more complicated than was represented in our simple MSM. Further analyses

should also consider the different ethnic groups participating in the study, including

the Aboriginal subpopulation (representing 15% of our sample) who may clear HCV

more easily than the general population [32, 64]. Due to the potentially complex

confounding due to ethnicity that was not fully addressed (primarily due to data

sparsity), this analysis should be taken primarily as an illustration of the TMLE

method.

Multiple imputations were used to adjust for missing values. The validity of this

method relies on the assumption that the missing values were missing at random [55]
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(only dependant on observed variables) conditional on the variables used in the

imputation models. This methodology was fundamental in allowing us to use as much

of the information in the data set as possible, as the missingness was often irregular

(comprising of both intermittently missing visits and additional missingness in the

covariates) and the usable sample size was not large. We preferred to use multiple

imputations over simpler imputation methods which require stronger (and in our

opinion, untenable) assumptions about the nature of the missing data [3]. We found

complete case analysis to be impossible as very few subjects had complete data.

Multiple imputations have been proposed for and used in causal inference studies

[58, 70, 66, 65].

Assessments of the performance of the TMLE for estimating marginal longi-

tudinal or survival parameters described in this paper and comparisons to other

causal methods have also been obtained through simulation study in [74] and [63].

In our simulation study, we confirmed the unbiasedness of this TMLE under mis-

specification of the outcome model when estimating the survival curve (a partial

demonstration of its double-robustness). We also numerically confirmed the unbi-

asedness and efficiency of the extension of the method for estimating the parameters

of a marginal structural model, again under misspecification of the outcome models.

The slightly higher standard errors obtained for TMLE when compared to IPTW

can be explained by the different methods used to estimate the variance. For IPTW,

we used nonparametric bootstrap resampling. For TMLE, we used the influence

curve-based sandwich estimator, which is known to be conservative for misspecified

Q-models [77].
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6.7 Supplementary material for Manuscript 3: Simulation details

6.7.1 Target parameter of the IPTW

Here we show that the inverse probability of treatment weighted (IPTW) esti-

mator for the hazard model used in the simulation study and the example targets

the same parameter of interest as the TMLE.

Let λβ(ā, t) = expit(XT
l,tβ) be the logit-linear model for the hazard. The param-

eter estimated by the Targeted Maximum Likelihood Estimator was defined as

argmaxβ
∑
l,t

Sāl(t− 1) {λāl(t) log(λβ) + [1− λāl(t)] log(1− λβ)} .

Factoring out λāl(t) gives

argmaxβ
∑
l,t

Sāl(t− 1)λāl(t) {[log λβ − log(1− λβ)] + log(1− λβ)}

= argmaxβ
∑
l,t

Sāl(t− 1)λāl(t)

{
log

[
λβ

(1− λβ)

]
+ log(1− λβ)

}
.

To maximize this expression, the derivative with respect to β can be taken and the

resulting expression set to zero. This results in

∑
l,t

Sāl(t− 1)λāl(t)

{
d

dβ
log

[
λβ

(1− λβ)

]
+

d

dβ
log(1− λβ)

}
=

d

dβ
(λβ)

1

λβ(1− λβ)
[λāl(t)− λβ]

=
d

dβ
logit(λβ) [λāl(t)− λβ] = 0.
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Noting that logit(λβ) = XT
l,tβ is the linear specification so that the derivative with

respect to β is the vector of variables in the marginal structural model. The above

score equation is therefore the logistic regression defined on the counterfactuals that

is solved by the IPTW-MSM.

6.7.2 Data simulation

We generated data of the form (W,A1, L1, S1, ..., A5, L5, S5) using known data

generating functions. W is a continuous baseline confounder, At, t = 1, ..., 5 are the

binary exposure variables and St, t = 1, ..., 5 are the survival indicators at each time

point. The exposure generated was monotone (once exposed, always exposed). Lt

is a binary variable that acts as a time-varying confounder. Each variable (unless

determined by the monotonicity of exposure and survival) was generated dependent

on the baseline and the covariate values at the previous time point according to the

general rule that exposure reduces the probability of survival at the next time point

as do higher values of Lt. Censoring was not included in the simulation study.

We used the following function (written in R Statistical Software version 2.13.2,

[39]) to generate the data:

data_surv_new<-function(i,ssize){

set.seed(i*5436)

W<-rnorm(n=ssize)/4+1

#TP1

p1<-expit(-4.2+2.5*W)

A1<-rbinom(n=ssize,size=1,prob=p1)
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mu1<-expit(1+W+0.5*A1)

L1<-rbinom(n=ssize,size=1,prob=mu1)

s1<-expit(2+W-0.7*L1-0.5*A1)

S1<-rbinom(n=ssize,size=1,prob=s1)

#TP2

A2<-rep(0,length=ssize)

p2<-expit(-3.2+1*W+1.2*L1)

A2[A1==0&S1==1]<-rbinom(n=sum(A1==0&S1==1),size=1,prob=p2[A1==0&S1==1])

A2[A1==1&S1==1]<-1

mu2<-expit(1+L1+0.5*A2)

L2<-rbinom(n=ssize,size=1,prob=mu2)

S2<-rep(1,ssize)

s2<-expit(1.6+W-0.7*L2-0.5*A2)

S2[S1==1]<-rbinom(n=sum(S1==1),size=1,prob=s2[S1==1])

S2[S1==0]<-0

#TP3

A3<-rep(0,length=ssize)

p3<-expit(-2.9+1*W+1.2*L2)

A3[A2==0&S2==1]<-rbinom(n=sum(A2==0&S2==1),size=1,prob=p3[A2==0&S2==1])

A3[A2==1&S2==1]<-1
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mu3<-expit(1+L2+0.5*A3)

L3<-rbinom(size=1,prob=mu3,n=ssize)

S3<-rep(0,ssize)

s3<-expit(2.5+0.8*W-0.7*L3-0.5*A3)

S3[S2==1]<-rbinom(n=sum(S2==1),size=1,prob=s3[S2==1])

S3[S2==0]<-0

#TP4

A4<-rep(0,length=ssize)

p4<-expit(-2+0.5*W+1.2*L3)

A4[A3==0&S3==1]<-rbinom(n=sum(A3==0&S3==1),size=1,prob=p4[A3==0&S3==1])

A4[A3==1&S3==1]<-1

mu4<-expit(1+L3+0.5*A4)

L4<-rbinom(prob=mu4,size=1,n=ssize)

S4<-rep(0,ssize)

s4<-expit(1.2+W-0.7*L4-0.5*A4)

S4[S3==1]<-rbinom(n=sum(S3==1),size=1,prob=s4[S3==1])

S4[S3==0]<-0

#TP5

A5<-rep(0,length=ssize)

p5<-expit(-1+0.5*W+1.2*L4)
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A5[A4==0&S4==1]<-rbinom(n=sum(A4==0&S4==1),size=1,prob=p5[A4==0&S4==1])

A5[A4==1&S4==1]<-1

mu5<-expit(1+L4+0.5*A5)

L5<-rbinom(prob=mu5,size=1,n=ssize)

S5<-rep(0,ssize)

s5<-expit(1+0.5*W-0.7*L5-0.5*A5)

S5[S4==1]<-rbinom(n=sum(S4==1),size=1,prob=s5[S4==1])

S5[S4==0]<-0

#If dead, make missing

A2[S1==0]<-NA

L2[S1==0]<-NA

A3[S2==0]<-NA

L3[S2==0]<-NA

A4[S3==0]<-NA

L4[S3==0]<-NA

A5[S4==0]<-NA

L5[S4==0]<-NA

return(as.data.frame(cbind(W,L1,L2,L3,L4,L5,A1,A2,A3,A4,A5,S1,S2,S3,S4,S5)))

}
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CHAPTER 7
Conclusions

7.1 Summary

The three manuscripts (Chapters 4–6) presented in this thesis describe a body

of work all within the context of the estimation of causal parameters in longitudi-

nal data settings using Targeted Maximum Likelihood Estimation. The first work

(Chapter 4) demonstrates the flexibility of construction in a simplified longitudinal

context, obtained by varying the TMLE loss and fluctuation function in a coordi-

nated manner. The second work (Chapter 5) shows how the construction of a TMLE

is also flexible in the choice of plug-in estimator used, and investigates a different type

of longitudinal TMLE that can be used easily for more complicated data structures.

This study goes a step further and also incorporates Super Learning, a nonparametric

multi-library machine learning method, into the estimation procedure, consequently

illustrating how TMLE can be implemented as a fully nonparametric method. The

final manuscript (Chapter 6) demonstrates how survival data with time-dependent

confounding may be analyzed in the same way as longitudinal data. It shows how

TMLE can be used to estimate the parameters of an unsaturated marginal structural

model. This last study applies the longitudinal estimator described in the second

manuscript to a survival context and describes a challenging analysis that fully takes

advantage of the flexibility of this estimator to naturally incorporate many time-

dependent confounders.
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The simulation studies in each chapter add to a growing understanding of the

finite sample performance of TMLE. In the first manuscript, the simulation study

exhibits the benefits of TMLE over other causal estimators, in particular in terms of

double robustness and stability under misspecification. The simulation study in the

second manuscript demonstrates a key benefit of using TMLE over efficient estimat-

ing equations; in the situation with near-positivity violations, the TMLE produced

far less bias and smaller standard errors than the related estimating equation. In the

third manuscript, the simulation study is used to demonstrate the unbiasedness of

the TMLE for estimation of both a saturated and unsaturated MSM in the survival

context when partially misspecified.

The first and second manuscripts also contain different analyses of the PROBIT

study, with the objective of estimating the impact of breastfeeding on gastrointestinal

tract infections in infants. The first PROBIT analysis utilizes a simplified version

of the dataset (two time-intervals and only subjects with complete data) in order to

demonstrate the TMLE method described in the first manuscript. The second, more

sophisticated, analysis uses the full six follow-up times and allows for censoring.

The TMLE method described in the second manuscript is used to estimate the

expected number of infections if the population of mothers had been breastfeeding

for different durations of time, adjusting for loss to follow-up in addition to both

baseline and time-dependent confounding. The comparison between these different

regimens suggests that a longer duration of breastfeeding might decrease the number

of infections in the defined population of infants.
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The third manuscript presents an analysis of the effect of clearing the Hepatitis

C virus on the occurrence of end-stage liver disease. The TMLE method described in

the second manuscript was implemented for this case study, chosen for its ability to

easily include many time-dependent confounders without added modeling steps. The

large amount of missing data in the exposure, intermediate variables and outcome

(the majority of which came from missed visits) led to the incorporation of multiple

imputation by chained equations within the TMLE procedure. This analysis did

not find a statistically significant effect of viral clearance on the time-dependent

hazard of ESLD, but this could be attributed to the large amount of missing data,

the relatively small number of subjects who had cleared the virus, or the various

modeling choices. Additional investigation involving different choices of analytic

methods may be beneficial.

7.2 Future work

The application in the third manuscript demonstrated how useful the method

of multiple imputations can be when performing an analysis in the presence of non-

dropout missing data. In this manuscript, we employed the method in a somewhat

ad-hoc fashion. Further work on this topic would involve formalizing the inclu-

sion of multiple imputations in the TMLE framework and then comparing different

methods for missing data under scenarios with missing information on the baseline

confounders, exposure, time-dependent confounders, or outcome. This work would

assist analysts using TMLE in deciding which missing data method would be most

appropriate when faced with different types of missing data.
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The effects of clearance of HCV on risk of ESLD could also be investigated

further by considering more carefully the different ways that the virus can be cleared,

which is also related to the different ethnic groups participating in the study. The

Canadian Co-Infection Cohort is an ongoing study, so further substantive analyses

could benefit from the collection of additional data. In particular, different MSMs

could be investigated with the help of clinical investigators. As a methodological

improvement, it would potentially be beneficial to reduce the parametric assumptions

by incorporating a Super Learner to fit the exposure, censoring and outcome densities

(as was done in the second manuscript).

On a larger scale, I plan on proceeding with additional work on different TMLE

methods for structural nested models in the context of longitudinal data where the

sequential randomization assumption is not expected to hold [22].

7.3 Concluding remarks

Targeted maximum likelihood estimation is a beneficial modeling choice for a

number of reasons, most notably due to gains in efficiency, double-robustness and

flexibility of implementation (i.e. usage of Super Learner, choice of loss function,

etc). The study of TMLE is also instructive because of the importance of selecting

the target parameter. This emphasizes the need to understand and carefully identify

the parameter that is being estimated in the analysis. Better understanding of

this modeling option should prove useful for causal inference specialists, and more

widespread usage of TMLE could result in better estimation and improvements in

statistical practice.
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