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ABSTRACT 

PKR-like endoplasmic reticulum (ER) kinase (PERK), an ER transmembrane Ser/Thr protein 

kinase, is part of the unfolded protein response (UPR) and a key regulator of pancreatic β cell 

function and homeostasis. PERK phosphorylates the eukaryotic initiation factor 2 (eIF2) on its α 

subunit at Ser51 leading to attenuation of translation in stress conditions. Previously, we showed 

that the adaptor protein Nck1 modulates translation by directly interacting with the β subunit of 

eIF2 and assembling a phosphatase complex that dephosphorylates eIF2αSer51. In this thesis, we 

unveil the role of Nck1 in modulating PERK in pancreatic β cells. Using pancreatic mouse 

insulinoma MIN6 β cells stably expressing an Nck1-specific shRNA, we show that silencing Nck1 

enhances PERK basal activity and signaling. We also show that Nck1, through its SH2 domain, 

directly binds PERK phosphorylated on Tyr561 (pY561) and thereby, limits PERK activity. In 

agreement with this concept, the activity of PERK Y561F, which escapes phosphorylation and 

Nck1 binding, was increased compared to wild-type PERK. Interestingly, Nck1 deficiency in 

MIN6 cells enhances insulin content in a PERK-dependent manner, by increasing insulin 

biosynthesis. In addition, Nck1-silenced MIN6 cells survive better to stress relevant to diabetes. 

Therefore, we hypothesized that PERK basal activity plays a role in determining β cell sensitivity 

to stress. Mechanistically, we provide evidence that silencing Nck1 in MIN6 cells enhances 

autophagy associated with PERK-induced sestrin2 and pAMPK signaling. Furthermore, we 

demonstrated that the PERK-Nrf2-dependent antioxidant response and the prosurvival Akt were 

constitutively activated in these cells. In conclusion, silencing Nck1 in pancreatic β cells enhances 

PERK basal activity, which in turn initiates signaling processes promoting a cellular adaptive 

response improving β cell function and resilience. Overall, my thesis provides insights on signaling 
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pathways that enhance the robustness of pancreatic β cells, making them more efficient in 

producing insulin and more resistant to stresses related to diabetes. 
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RÉSUMÉ 

PKR-like ER kinase (PERK), une protéine kinase de type sér/thr exprimée à la membrane du 

réticulum endoplasmique (RE), est une composante importante de la réponse au stress causé par 

l’accumulation de protéines mal conformées dans le RE, connue sous le nom de UPR (unfolded 

protein response). Plusieurs études ont démontré que PERK joue un rôle régulateur important dans 

la fonction et l’homéostasie des cellules β du pancréas. En condition de stress, PERK phosphoryle 

la sous-unité α du facteur d’initiation eIF2 sur la Ser51, ce qui réprime la traduction. Précédemment, 

nous avons montré que la protéine adaptatrice Nck1 module la traduction en interagissant 

directement avec la sous-unité β de eIF2 et en favorisant la formation d'un complexe incluant la 

phosphatase PP1 qui déphosphoryle eIF2αSer51. Dans cette thèse, nous dévoilons le rôle de Nck1 

dans la modulation de l’activité de PERK dans les cellules β pancréatiques. En utilisant des cellules 

MIN6 dérivées d'un insulinome de souris,  nous avons montré que l’expression stable d’un shRNA 

contre Nck1, qui diminue significativement l’expression de Nck1, augmente spontanément 

l'activité basale et la signalisation de PERK. Nous avons également découvert que Nck1 atténue 

l’activité de PERK en se liant directement par son domaine SH2 à la tyrosine Y561 phosphorylée 

de PERK. En accord avec ces résultats, nous avons montré qu’une mutation de PERK qui empêche 

sa phosphorylation sur Y561 (Y561F) et son interaction avec Nck1 augmente son activité. Par 

ailleurs, il est intéressant de noter que la diminution de l’expression de Nck1 dans les cellules 

MIN6 améliore leur contenu en insuline suivant l’augmentation de la biosynthèse d’insuline de 

manière PERK-dépendante. De plus, la déplétion de Nck1 permet aux cellules MIN6 de mieux 

survivre en condition de stress reliés au diabète. Par conséquent, nous avons émis l'hypothèse que 

l'activité basale de PERK joue un rôle important dans la survie des cellules β face à un stress. En 
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accord avec cette hypothèse, nous avons mis en évidence que la diminution des niveaux de Nck1 

dans les cellules MIN6 augmente l’autophagie à travers l’induction de la protéine sestrin2 et 

l’activation de l’AMPK. De même, nous avons démontré que l’expression de gènes 

cytoprotecteurs contre le stress oxydatif par le facteur de transcription Nrf2 (dépendante de PERK) 

et la protéine kinase Akt sont activées de façon constitutive dans ces cellules. En conclusion, la 

diminution de Nck1 dans les cellules β pancréatiques augmente l'activité basale de PERK, qui à 

son tour déclenche des processus de signalisation aboutissant à une réponse adaptative cellulaire 

qui améliore la fonction et la survie des cellules β pancréatiques. Dans l'ensemble, ma thèse fournit 

de nouvelles informations sur les voies de signalisation qui contribuent à la robustesse des cellules 

β pancréatiques en améliorant la production d'insuline et la résistance aux stress associés au 

diabète. 
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PREFACE 

This thesis was written in accordance with the guidelines for a manuscript-based thesis issued by 

the Faculty of Graduate and Post-Graduate (doctoral) studies of McGill University. 

This thesis consists of a general introduction, one published article, a manuscript under revision, a 

general discussion, and a section describing contribution to original research. 

Appendix 1 describes additional original research I produced, related to my project and potentially 

useful for future research.  
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1.1  Regulation of glucose homeostasis: overview  

In order to sustain a healthy body function, vertebrates including mammals must be able to 

maintain blood glucose levels within a limited range (4-7 mM) regardless of food intake and 

energy expenditure (Saltiel & Kahn, 2001). The pancreas is a central organism in the regulation of 

blood glucose (Figure 1.1). To do so, the pancreas synthesizes and secretes two hormones: insulin 

and glucagon. Insulin decreases blood glucose levels by stimulating responsive tissues to uptake 

glucose, while glucagon increases glucose release into the blood from storage tissues. When blood 

glucose levels increase upon food intake, the pancreas releases insulin, which activates insulin 

signaling in a number of insulin-responsive tissues, namely liver, skeletal muscle and adipose 

tissue to control blood glucose levels (also collectively called peripheral insulin-sensitive tissue). 

The primary role of insulin is to stimulate glucose uptake by the skeletal muscle, adipose tissue 

and liver (Pessin et al, 1999). In skeletal muscle and liver, glucose undergoes glycogenesis to be 

stored in the form of glycogen, while in adipose tissue, glucose is stored as triglycerides (TG). In 

addition, insulin prevents hepatic glucose production and release by inhibiting glycogenolysis, the 

breakdown of glycogen into glucose, and gluconeogenesis, a process involving glucose production 

from non-carbohydrate sources such as lactic acid and certain amino acids (Pilkis & Granner, 

1992). Finally, insulin inhibits secretion of glucagon from glucagon-producing cells (Bonner-Weir 

& Orci, 1982). On the other hand, when the body faces conditions leading to low blood glucose 

levels, such as fasting, the pancreas releases glucagon, which stimulates the breakdown of 

glycogen to glucose (glycogenolysis) in liver, as well as activates hepatic gluconeogenesis to 

promote release of glucose (Chiasson et al, 1975; Magnusson et al, 1995). In addition, adipose 

tissue responds to glucagon by breaking down triglycerides into free fatty acids (lipolysis) 
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(Lefèbvre & Unger, 1972; Lefebvre, 1983). Overall, all these processes contribute to maintain 

blood glucose levels under control, allowing for a healthy body state. It is well known that 

perturbations arising in one or more of these processes lead to important diseases such as diabetes.  

1.2  The pancreas  

The pancreas displays exocrine and endocrine functions involved in regulating digestion 

and metabolism in mammals. In fact, the pancreas consists of two types of tissues: the exocrine 

and the endocrine tissues (Figure 1.2). The exocrine tissue composed mainly of acinar and 

centroacinar cells accounting for about 90% of the pancreas, is responsible for the production of 

digestive enzymes. The endocrine tissue, accounting for less than 10% of the pancreas, resides in 

clusters called islets of Langerhans that are responsible for maintaining glucose homeostasis by 

producing and secreting hormones. Islets of Langerhans are made up of different cell types: the α, 

β, δ, ε and the pancreatic polypeptide (PP) cells (Weir & Bonner-Weir, 1990). Pancreatic β cells 

synthesize and secrete insulin in the blood in response to various stimuli, primarily glucose 

(McGarry & Dobbins, 1999), while pancreatic α cells synthesize and secrete glucagon. The 

remaining cell types make up a minority of cells in the islets. δ cells secrete somatostatin, which 

inhibits the secretion of insulin and glucagon as well as slows down absorption of nutrients from 

the gastrointestinal tract (Fujimoto et al, 1974). The pancreatic polypeptide (PP) cells secrete 

pancreatic polypeptide that inhibits the release of somatostatin and digestive enzymes, and the ε 

cells secrete ghrelin, which regulates appetite by acting as a neuropeptide in the central nervous 

system (Wierup et al, 2002; Prado et al, 2004; Dickson et al, 2011). β cells make up 50-80% of the 

islets, and display different distribution patterns depending on the species. In murine islets, β cells 

are concentrated in the middle of the islet and surrounded by α cells, while in humans, α and β 
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cells are heterogeneously distributed in the islets (Brissova et al, 2005; Cabrera et al, 2006) . The 

following section is dedicated to describing pancreatic β cell physiology, including mechanisms 

involved in insulin biogenesis and secretion, and their role in regulating glucose metabolism and 

the development of pathological conditions. 

1.3  Pancreatic β cell physiology  

As already mentioned, the main function of pancreatic β cells is to secrete insulin in 

response to glucose (Campbell et al, 1982). The process of insulin production and secretion 

involves highly efficient mechanisms responsible for ensuring biosynthesis, packaging, 

transportation, and finally release of insulin, and this area has been the subject of extensive 

research since the discovery of insulin.  

1.3.1  Insulin biosynthesis, maturation and trafficking 

Insulin was first isolated in 1921 by the collaborative work of Frederick Banting, Charles 

Best and James Collip in the laboratory of James Macleod at the University of Toronto in Canada. 

Later, insulin’s tertiary monomeric structure was crystallized in 1926 by x-ray crystallography 

(Abel, 1926). Insulin is a small protein (6 kDa) composed of two chains (A and B), which are 

connected together by two disulfide bonds. A third disulfide bond within chain A is also present 

to help establish the tertiary structure of insulin (Figure 1.3C). In most species, chain A is 21 aa 

long while chain B is 30 aa long. The amino acid sequence, as well as the position of the 3 disulfide 

bonds are highly conserved among species. These similarities in insulin among species allowed 

the use of insulin from animals in humans (De Meyts, 2004). While insulin is encoded by one gene 
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is most species, rats and mice have 2 insulin genes that are expressed equally in islets (Clark and 

Steiner, 1969). 

1.3.1.1  Insulin synthesis and folding 

Being made up of two chains, it was initially thought that insulin is synthesized as two 

separate peptides. However, early studies showed that insulin is synthesized as a single polypeptide 

precursor named preproinsulin (Steiner & Oyer, 1967). Preproinsulin is composed of a signal 

peptide, the insulin B-chain, a connecting 23-31 aa long peptide called a C-peptide, and the insulin 

A-chain (Figure 1.3A). The amino terminal signal peptide of preproinsulin interacts with cytosolic 

nucleoprotein signal recognition particles (SRP) and drives co-translational translocation, a 

process whereby preproinsulin is moved across the endoplasmic reticulum (ER) membrane into 

the ER lumen as it is translated (Egea et al, 2005). During this process, the signal peptide of 

preproinsulin is enzymatically cleaved by a signal peptidase to generate proinsulin (Patzelt et al, 

1978) (Figure 1.3B). Such enzymatic cleavage is essential to prevent misfolding of proinsulin 

(Stoy et al, 2007). Proinsulin, now composed of an amino terminal B-chain, a carboxyl terminal 

A-chain and the C-peptide, aligns itself to take its tertiary structure. The C-peptide is believed to 

promote parallel alignment of chains A and B in order for the disulfide bonds to be created 

(Markussen & Schiff, 1973). The three intramolecular disulfide bonds establishing proinsulin’s 

native tertiary structure are formed by the action of a number of ER-resident chaperones including 

the thiol-disulfide oxidoreductase protein disulfide isomerase (PDI) (Tang et al, 1988) and the ER 

oxidoreductins 1α (ERO1α) and 1β (ERO1β) (Zito et al, 2010; Wright et al, 2013). 
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1.3.1.2  Insulin granule packaging and maturation 

Once its tertiary structure is established, proinsulin is delivered to the trans-Golgi network 

(TGN) where it gets concentrated with other granular components to be sorted in clathrin-coated 

immature granules. The sorting process in pancreatic β cells is highly efficient, with more than 

99% of proinsulin molecules getting sorted in granules (Rhodes & Halban, 1987). As opposed to 

other related secretory proteins which are released continuously through a constitutive secretory 

pathway (Nagamatsu & Steiner, 1992), proinsulin undergoes sorting and secretion through a 

regulated secretory pathway (Rhodes & Halban, 1987). How proinsulin, as opposed to other 

secretory proteins, is uniquely recognized by the regulated secretory machinery to be sorted in 

immature granules is still under debate. Different models have been proposed for this, but all agree 

that proinsulin must possess unique features allowing its recognition as a target for sorting and 

packaging in the TGN (Molinete et al, 2000). Whether this recognition involves membrane 

receptors or not, remains to be elucidated. In one model, the sorting of proinsulin into immature 

granules involves recognition by specific receptors on the TGN membrane. A slightly different 

version of this model reports the involvement of other accessory proteins in the recognition and 

association between proinsulin and a TGN membrane receptor. In a third model, the aggregation 

of proinsulin and other granular constituents in slightly acidic Ca2+- and Zn2+-rich areas around 

the TGN membrane by itself triggers membrane reorganization and recruitment of cholesterol in 

preparation for vesicle formation. In all these models, the association of proinsulin at the 

membrane of the TGN induces the formation of immature granules budding from the TGN 

(Molinete et al, 2000).  
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The maturation process of insulin granules includes acidification of the granule internal 

environment, conversion of proinsulin to insulin, and loss of the clathrin coating (Orci et al, 1986; 

Orci et al, 1987). Mild acidification of the immature granules is already achieved by the presence 

of Ca2+ and Zn2+. Further acidification requires the action of an ATP-dependent proton pump 

present on the vesicles, which contributes to the decrease of intravesicular pH levels (Rhodes et 

al, 1987; Davidson et al, 1988). This leads to optimal activation of endoproteolytic enzymes 

prohormone convertases (PC1/3 and PC2) that cleave proinsulin at both ends of the C-peptide to 

generate intermediate products. The final step to complete the processing of insulin requires 

carboxypeptidase E (CPE), which trims out basic residues at the carboxyl termini, leading to 

production of equimolar amounts of mature insulin and C-peptide (Figure 1.3C), with very small 

percentage of residual proinsulin (Kemmler et al, 1972; Steiner & Philipson, 2000). Potential 

biological activity for the C-peptide has been reported in several studies. Indeed, C-peptide 

administration was found to be beneficial for vascular permeability, ATPase activity and 

microcirculation in diabetic patients (Wahren et al, 1994), and prevented neural and vascular 

dysfunctions in diabetic rats (Ido et al, 1997). Nonetheless, a physiological role for the C-peptide 

still remains controversial. Time-wise, the maturation process of granules takes between 30 and 

150 minutes after synthesis (Liu et al, 2014a). Based on pancreatic islet studies, the number of 

insulin secretory granules ranges from 5-10,000 per cell, with each granule carrying about 300,000 

insulin molecules (Pouli et al, 1998; Fava et al, 2012) . 

1.3.1.3  Insulin granule trafficking and secretion  

The secretion pattern of insulin from pancreatic β cells has long been established to be 

biphasic (Curry et al, 1968). The first phase of insulin secretion occurs rapidly, within the first 5 
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minutes upon glucose stimulation, while the second phase of insulin secretion, although lower in 

intensity than the first phase, is prolonged, reaching a plateau at 25-30 minutes (Curry et al, 1968). 

Further investigation indicated that the two phases of insulin secretion pattern correspond to two 

distinct pools of mature insulin granules: the readily releasable pool (RRP), pre-docked at the 

plasma membrane, corresponding to the first phase of insulin secreted, and the reserve pool found 

internally within the cytoplasm, corresponding to the second phase of insulin secretion (Figure 

1.4) (Wang & Thurmond, 2009). Pre-docked RRP insulin granules readily fuse with the plasma 

membrane and release insulin upon an influx of Ca2+ into cells, thereby establishing the first phase 

of secretion (Daniel et al, 1999). Pre-docked insulin granules, as opposed to the reserve pool, reside 

within 50 nm from the plasma membrane, localized with Ca2+ channels to increase efficiency in 

Ca2+ detection and subsequent fusion (Wiser et al, 1999; Gaisano, 2014). The second phase of 

insulin secretion implies more complex events since insulin has to be newly synthesized, 

processed, and secreted for the duration of the increase of blood glucose and to replenish the stores 

of insulin initially depleted in the first phase secretion, therefore explaining the time needed for 

this second phase to be established. These steps involve a number of mechanisms including 

trafficking to the plasma membrane, docking, priming and finally fusing with the plasma 

membrane to release insulin. In addition, the second phase insulin secretion needs recruitment of 

granules through actin cytoskeleton for fusion (Wang & Thurmond, 2009).  

Early transport of insulin granules in the cell requires microtubule formation and kinesin 

machinery driven by ATP. In agreement, glucose stimulation has been shown to induce formation 

of microtubules (Howell & Tyhurst, 1986). This subsequently helps deliver granules to the cortical 

actin filaments near the periphery of the cell. Numerous studies reported that nutrient stimulation 
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also leads to actin remodeling in pancreatic β cells (Figure 1.5A), which then facilitates 

mobilization of insulin granules to the plasma membrane (Wang & Thurmond, 2009). On their 

surface, insulin granules express proteins belonging to a highly conserved family of proteins called 

SNAREs (Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptors), which 

mediate mobilization of vesicles, and ensure recognition and attachment between vesicles and 

target membranes (Sollner et al, 1993).  Insulin granules express vesicle associated membrane 

protein 2 (VAMP2), a vesicle-SNARE (v-SNARE), while the plasma membrane expresses 

syntaxin1 and synaptosome associated protein of 25 kDa (SNAP25) target-SNAREs (t-SNAREs). 

Under basal condition, filamentous actin (F-actin) acts as a transportation track for insulin 

granules, but prevents interaction between v-SNAREs on insulin granules and t-SNAREs on the 

plasma membrane. Upon glucose stimulation, transient disruption of the interaction between F-

actin and t-SNAREs allows access of the insulin granules to the plasma membrane (Thurmond et 

al, 2003). Remodeling of F-actin upon nutrient stimulation has been shown to mechanistically 

involve activation of the small GTPases Cdc42 (cell division control protein 42) and Rac1, whose 

activation leads to recruitment, binding and activation of p21-activated kinase 1 (Pak1) (Nevins & 

Thurmond, 2003; Li et al, 2004).  Paks are known regulators of actin cytoskeletal reorganization 

in yeast and mammals (Harden et al, 1996; Sells et al, 1997; Leeuw et al, 1998) and Cdc42 was 

shown to play a major role in 2nd phase insulin secretion. Indeed, ablation of either Cdc42 or Pak1 

led to disruption of glucose-induced 2nd phase insulin secretion (Wang et al, 2007; Wang et al, 

2011). Using specific inhibitors of several Ser/Thr kinases, it was demonstrated that the signaling 

cascade downstream of Pak1, which includes activation of Ser/Thr kinases Raf1, MEK1/2, and 

Erk1/2 is responsible for F-actin remodeling and granule mobilization to the plasma membrane in 

pancreatic β cells (Figure 1.5B) (Kalwat et al, 2013). 
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Insulin exocytosis involves a machinery of various proteins that regulate tethering, priming 

and fusion (Figure 1.6). Tethering is the process by which physical interaction between the granule 

and plasma membrane occurs, prior to the interaction between SNARE complexes (Whyte & 

Munro, 2002). It requires the formation of a multi-subunit complex of different exocyst proteins 

such as Sec5 (Kee et al, 1997; Xie et al, 2013) in a small GTPase activity-dependent manner 

(Moskalenko et al, 2002), thereby establishing tethering of granules on plasma membrane (Figure 

1.6A). Although exocyst formation deficiency does not inhibit tethering, it does however lead to a 

loss of subsequent SNARE interaction (Grote et al, 2000). Priming of granules requires the 

presence of SNAREs on both the granules and the plasma membrane, as well as Sec1/Munc18-

like proteins (SM), which are involved in the formation of the SNARE complex (Sudhof & 

Rothman, 2009). V-SNAREs and t-SNAREs assemble together in a complex to allow priming of 

insulin granules on the plasma membrane (Sollner et al, 1993). First, the SM protein Mammalian 

uncoordinated 18 (Munc18), binds to syntaxin1 in its closed conformation. With the aid of priming 

factor Mammalian uncoordinated 13 (Munc13), Munc18 induces a conformational change of 

syntaxin1 allowing it to take an open conformation (Rhee et al, 2002). Subsequently, Munc18 acts 

as a clamp to hold together VAMP in between SNAP25 and syntaxin1 (Figure 1.6B), allowing the 

granules to reach the priming state on the plasma membrane (Gaisano, 2014). The final stages 

leading to fusion require accessory protein complexin (a clamping fusion protein) to hold the 

SNARE assembly close enough to the plasma membrane to allow fusion of the lipid bilayers as 

soon as the protein synaptotagmin (a phospho-lipid binding protein, Ca2+- binding protein) detects 

Ca2+ influx, and induces a conformational change to the SNARE assembly (Figure 1.6C-D) 

(Krishnakumar et al, 2011; Li et al, 2011).  
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1.3.2  Glucose-stimulated insulin secretion (GSIS)  

The most potent stimulus of insulin secretion by β cells is glucose (Figure 1.7). When blood 

glucose levels increase as a result of food intake, glucose is transported into β cells through glucose 

transporter 2 (GLUT2) (Thorens, 1992). Once in the cell, glucose is converted to glucose-6-

phosphate by glucokinase, as part of the glycolysis process. Taking place in the cytosol, glycolysis 

produces 2 molecules of ATP, NADH and pyruvate. Pyruvate then enter the mitochondria and get 

oxidized as part of the Krebs cycle, producing Acetyl-CoA and other products including NADH, 

ATP and CO2. Finally, products from the Krebs cycle undergo oxidative phosphorylation at the 

cisternae membrane of the mitochondria. Briefly, NADH are utilized by the electron transport 

chain complexes to pump protons from the matrix into the intermembrane space, and eventually 

the ATP synthase utilizes the potential energy created by the electrochemical gradient of protons 

to generate ATP molecules (Newgard & McGarry, 1995; Henquin, 2000; Straub & Sharp, 2002). 

The increase of ATP to ADP ratio in cells will result in closing of ATP-sensitive potassium 

channels (KATP), leading to accumulation of potassium ions in the cell and membrane 

depolarization (Ashcroft et al, 1984; Cook & Hales, 1984; Aguilar-Bryan & Bryan, 1999). 

Subsequently, voltage-gated Ca2+-channels are activated leading to an influx of Ca2+ into the 

cytosol, allowing fusion of insulin vesicles pre-docked at the plasma membrane and release of 

insulin into the blood (Kelly et al, 1991; Rolland et al, 2001). In addition to these mechanisms, 

glucose-6-phosphate can be metabolized into dihydroxyacetone phosphate (DHAP) and 

subsequently to glycerol-3-phosphate (Gly3P), which can generate lipid metabolic coupling 

factors that can also enhance insulin secretion (Eto K, 1999; Bender K, 2006).  
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1.3.3  Fatty acid-stimulated insulin secretion  

Although glucose is the main stimulus for pancreatic β cell insulin secretion, studies have 

shown that free fatty acids (FFAs) amplify insulin secretion under both normal and elevated blood 

glucose levels (Pelkonen et al, 1968; Crespin et al, 1969; Stein et al, 1996; Dobbins et al, 1998). 

While acute exposure of β cells to FFAs potentiates GSIS (Stein et al, 1996), chronic exposure 

eventually leads to β cell dysfunction (Prentki et al, 2002; El-Assaad et al, 2003; Poitout et al, 

2006). FFA regulation of insulin secretion may occur through different mechanisms. On one hand, 

FFAs can undergo facilitated diffusion into β cells at normal or low glucose levels (Hamilton & 

Kamp, 1999). Intracellular FFAs then gets converted to the lipid signaling molecule long-chain 

Acyl-coenzyme A (LC-CoA), which is transported to the mitochondria by the carnitine 

palmitoyltransferase 1 (CPT1). The process of Acyl-CoA oxidation in the mitochondria increases 

the production of NADH and FADH2, which generates ATP (Nolan et al, 2006). Under high 

glucose conditions, increase in ATP/ADP ratio leads to inhibition of the AMP-activated kinase 

(AMPK), and this activates the Acetyl-CoA carboxylase (ACC), which converts glucose-derived 

Acetyl-CoA to Malonyl-CoA, which in turn inhibits CPT1 activity. Therefore, Acyl-CoA 

produced from lipid metabolism cannot undergo lipid oxidation in the mitochondria given CPT1 

is inhibited (Nolan et al, 2006). Increased cytosolic Acyl-CoA promotes accumulation of 

intracellular calcium, facilitating fusion of insulin granules at the plasma membrane, thereby 

promoting insulin exocytosis (Prentki et al, 2002). As already mentioned, glucose can also 

participate in triglyceride (TG) and FFA cycling, where esterification of LC-CoA to TG and 

diacylglycerol (DAG) is promoted by the glucose product Gly3p, concomitant with glucose 

activating lipolysis to reactivate LC-CoA, resulting in insulin secretion (Prentki & Corkey, 1996; 
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Prentki et al, 2002). On the other hand, FFAs can directly stimulate insulin secretion through direct 

binding and activation of the FFA receptor 1 G-protein coupled receptor (GPR40/FFA1) by a 

mechanism independent from the intracellular metabolism of FFAs (Briscoe et al, 2003; Itoh et al, 

2003; Alquier et al, 2009). Different types of FFA have been shown to activate GPR40 including 

medium and long-chain saturated and unsaturated FFAs (Briscoe et al, 2003). Although not fully 

understood, it is believed that the signaling mechanism of FFA-stimulated insulin secretion 

through GPR40 involves the activation of the G protein α subunit Gq/11 which in turn activates 

phospholipase C (PLC) that hydrolyzes the phospholipid phosphatidylinositol 4, 5-diphosphate 

(PIP2) to 1, 2 diacylglycerol (DAG) and inositol 1, 4, 5-triphosphate (IP3). DAG then activates 

protein kinase D1 (PKD1), which triggers F-actin depolymerization leading to insulin granule 

exocytosis. In addition, IP3 production leads to opening of Ca2+ channels on the ER membrane 

that allow calcium entry into the cytoplasm, but this was shown to have a minor contribution 

towards exocytosis (Poitout, 2003; Ferdaoussi et al, 2012; Mancini & Poitout, 2013). Through 

GPR40 activation, FFAs contribute towards half of the acute insulin secretion (Mancini & Poitout, 

2013). Although both phases of insulin secretion are enhanced by FFAs, the impact on second 

phase is stronger (Ferdaoussi et al, 2012).  

1.3.4  Insulin signaling in insulin-responsive tissues 

Once secreted into blood, insulin is accessible to insulin-sensitive tissues such as liver, 

adipose tissue and skeletal muscle. Insulin signaling initiated in these tissues results in uptake of 

glucose, which contributes to the regulation of glucose homeostasis. Insulin triggers signaling by 

binding to the insulin receptor (IR), a receptor tyrosine kinase (RTK) expressed on insulin-

responsive tissues (De Meyts, 2004; Lawrence et al, 2007). Functional IR is a tetrameric protein 
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complex consisting of two extracellular α, and two transmembrane β subunits linked by disulfide 

bridges. Structure-wise, the insulin receptor is kept inactive by the inhibitory regulation of α 

subunits on the β subunits, which harbor the tyrosine kinase activity. When insulin binds to the α 

subunits, conformational changes allow activation of the β subunits by autophosphorylation of the 

kinase domains leading to additional conformational changes and increased kinase activity 

(Cohen, 2006; Taniguchi et al, 2006; De Meyts, 2008). Specific phosphorylated tyrosine residues 

on the β chains contribute to optimal IR tyrosine kinase activation while others create docking sites 

for phospho-tyrosine-binding proteins, such as insulin receptor substrates (IRS).   

Six different members of the IRS family have been identified: IRS1-6 (Sun et al, 1991; Sun 

et al, 1995; Lavan et al, 1997; Fantin et al, 1998; Cai et al, 2003). While IRS1 and IRS2 are widely 

and highly expressed in different tissues, IRS3 is mainly expressed in adipocytes and brain, and 

IRS4 is limited to embryonic tissue. IRS5 is expressed ubiquitously but mostly in liver and 

kidneys, while IRS6 is expressed in skeletal muscle. Of all members identified, IRS1 and IRS2 are 

the most implicated in mediating insulin biological actions and glucose homeostasis. Indeed, liver 

or skeletal muscle-specific disruption of both IRS1/2 highly phenocopied IR gene (Insr) deficiency 

in liver or skeletal muscle of mice, respectively (Michael et al, 2000; Biddinger et al, 2008; Dong 

et al, 2008; Long et al, 2011). Whole body IRS1-/- mice are smaller in size, glucose intolerant, and 

insulin resistant compared to wild-type mice (Araki et al, 1994; Tamemoto et al, 1994). However, 

the strongest phenotype was observed in IRS2-/- mice that developed diabetes, due to the dual 

effects of IRS2 deficiency in both insulin-responsive tissue which caused insulin resistance, and 

pancreatic β cells, which led to diminished insulin secretion (Withers et al, 1998). IRS3-/- mice 

displayed no defects in growth or glucose homeostasis (Liu et al, 1999), while IRS4 deficiency in 
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mice was found to have very mild effects on glucose homeostasis (Fantin et al, 2000). Interestingly, 

overexpression of both IRS3/4 in cells impaired IRS1/2-dependent signaling (Tsuruzoe et al, 

2001). Although IRS5 and IRS6 were activated upon IR activation, the signaling pathways 

triggered downstream were different from the classical pathway activated during insulin signaling 

involved in glucose homeostasis (Cai et al, 2003). 

IRS proteins are composed of pleckstrin-homology (PH) and phospho-tyrosine-binding 

(PTB) domains near the N-terminus and both account for IRS interaction with IR. IRS center and 

C-terminus regions contain tyrosine residues that can be potentially phosphorylated by IR upon 

binding, and this generates binding sites on IRS for SH2 domain-containing proteins, leading to 

activation of various signaling pathways. IRS proteins can also undergo serine/threonine 

phosphorylation, which has been mostly associated with negative regulation of IRS activity and 

insulin signaling. Indeed, Ser/Thr phosphorylation of IRS1 was shown to decrease its tyrosine 

phosphorylation (Mothe & Van Obberghen, 1996), triggering dissociation from IR (Paz et al, 

1997), and finally leading to its degradation (Pederson et al, 2001). In addition, Ser307 on IRS1 has 

been associated with negative regulation of insulin signaling (Aguirre et al, 2002). However, more 

recently, studies have introduced the view of Ser/Thr IRS phosphorylation as a positive regulator 

of insulin signaling. As opposed to the above-mentioned study, Ser307 phosphorylation on IRS was 

found to promote insulin sensitivity in mice (Copps et al, 2010).  

The most-studied SH2-domain-containing binding proteins that associate with tyrosine 

phosphorylated IRS allowing for activation of insulin signaling transduction are 

phosphatidylinositol 3-kinase (PI3K) (Myers et al, 1994), adaptor protein growth factor receptor-

bound protein 2 (Grb2) (Skolnik et al, 1993) as well as the protein tyrosine phosphatase SHP2 
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(Kuhne et al, 1993). Other binding proteins exist but they are less well-studied. PI3K is responsible 

for triggering the classical insulin signaling pathway involving Akt activation, while the Grb2/Sos 

activates the mitogen-activated protein kinases (MAPK) pathway (Figure 1.8). SHP2 also 

regulates insulin signaling at the MAPK pathway level. 

1.3.4.1 PI3K-Akt pathway 

PI3K is the most important SH2-domain-containing protein that binds IRS and mediates 

most of the metabolic effects of insulin. PI3K is composed of a regulatory (p85) and a catalytic 

(p110) subunits. Activation of the catalytic subunit occurs upon interaction of the SH2 domains of 

the regulatory subunit p85 with specific phospho-tyrosine residues on IRS proteins. This 

interaction relieves the inhibition imposed on the catalytic subunit by the regulatory subunit (Yu 

et al, 1998). Activated PI3K phosphorylates 3’-hydroxyl group of PIP2 to generate 

phosphatidylinositol 3, 4, 5-triphosphate (PIP3). PIP3 is a plasma membrane phospholipid that 

recruits proteins containing a PH domain such as the 3-phosphoinositide-dependent protein kinase 

1 (PDK1) and the Ser/Thr protein kinase Akt/PKB. One of the most critical events in insulin 

signaling is the activation of Akt/PKB following its phosphorylation on Thr308 by PDK1 once 

recruited at the plasma membrane, because of the wide range of diverse pathways activated 

downstream of Akt (Mora et al, 2004). Further activation of Akt involves additional Akt 

phosphorylation on Ser473 by the mammalian target of rapamycin complex 2 (mTORC2) 

(Sarbassov et al, 2005). Three Akt isoforms, which share a high degree of aa identity exist in 

mammals (Akt1-3). The distribution of each isoform, its cellular localization and downstream 

signaling targets define the importance in glucose homeostasis (Taniguchi et al, 2006). While both 

Akt1 and Akt2 are widely expressed, with Akt2 being enriched in insulin-responsive fat and liver 
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tissues, Akt3 expression is limited to the nervous system (Chan et al, 1999). Indeed, Akt3 had no 

role in glucose homeostasis (Tschopp et al, 2005), and while Akt1 deficiency in mice leads to 

growth retardation, no metabolic abnormalities are observed (Chen et al, 2001; Cho et al, 2001b). 

On the other hand, Akt2 is the isoform most implicated in insulin signaling and glucose 

homeostasis. Akt2 deletion in mice triggers diabetes development due to dysfunctionality in 

glucose utilization and hepatic glucose output (Cho et al, 2001a). In agreement, human Akt2 

mutations in the kinase domain trigger insulin resistance and diabetes development (George et al, 

2004). Finally, Akt2 deficiency impairs insulin-stimulated glucose uptake in adipocytes (Bae et al, 

2003; Jiang et al, 2003).  

Activated Akt regulates the activity of various targets regulating proliferation, motility, 

growth, survival, glucose homeostasis, and cell survival (Figure 1.9). Among these, Akt activation 

induces plasma membrane translocation of the glucose transporter 4 (GLUT4) in skeletal muscle 

and adipose tissue, and activation of glycogen synthase in liver, thereby promoting glucose uptake 

and glycogen synthesis, respectively. It has been reported that Akt translocation of GLUT4 to the 

plasma membrane is mediated by the GTPase activating protein (GAP) Akt Substrate of 160 kDa 

AS160 (Kane et al, 2002; Sano et al, 2003). Indeed, Akt phosphorylates and inhibit AS160 GAP 

activity, thus allowing activation of Rab small GTPases involved in cytoskeletal reorganization 

enabling GLUT4 translocation (Sano et al, 2003). In addition, Akt phosphorylates and inhibits 

glycogen synthase kinase 3 (GSK3), which negatively regulates glycogen synthase and ATP citrate 

lyase, controlling glycogen and fatty acid synthesis respectively (Frame & Cohen, 2001). 

Moreover, Akt induces activation of the mammalian target of rapamycin complex 1 (mTORC1), 

which through activation of the Ser/Thr protein kinase S6 (S6K) and phosphorylation of the eIF4 
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binding proteins (4EBP1) increases protein synthesis, proliferation and cell growth (Wang & 

Proud, 2006). Briefly, Akt activates mTORC1 by phosphorylating and inhibiting the tuberous 

sclerosis complex 2 (TSC2) (Inoki et al, 2002), which along with TSC1 heterodimerizes and acts 

as a GAP for the small GTPase Rheb. Once TSC1/2 activity is inhibited by Akt activation, active 

Rheb participates in activating mTORC1 complex. Furthermore, Akt activation leads to 

phosphorylation of the transcription factor forkhead box protein O1 (FOXO1), leading to its 

nuclear exclusion, ubiquitination, and degradation (Brunet et al, 1999). In summary, Akt controls 

numerous pathways that in addition to promoting cell proliferation, survival and migration in 

response to extracellular signals, are also crucial regulators of whole body glucose metabolism and 

homeostasis. 

1.3.4.2 Ras-MAPK pathway 

Insulin signaling also leads to activation of the Ras-MAPK pathway by IR recruitment and 

tyrosine phosphorylation of IRS1 and Shc (Figure 1.8).  Shc proteins are phospho-tyrosine binding 

adaptor proteins with an N-terminal PTB domain and a C-terminal phospho-tyrosine-binding SH2 

domain (Rozakis-Adcock et al, 1992; Luschnig et al, 2000). Tyrosine phosphorylation of IRS1 

and Shc at the IR allows recruitment and binding of Grb2 and guanyl nucleotide exchange factor 

son of sevenless (Sos) to IRS1 and Shc (Skolnik et al, 1993; White, 1998). IRS1-Grb2-Sos and 

Shc-Grb2-Sos complexes trigger activation of the small GTPase Ras, which then binds and 

activates Raf. Raf then initiates a cascade of phosphorylation and activation of dual-specificity 

kinases Mek1 and Mek2, which phosphorylate MAPK/Erk1 and Erk2 on Ser/Thr/Tyr residues 

resulting in their activation. Activated Erks have various targets including p90 ribosomal S6 kinase 

(p90RSK) and others to promote gene expression mediating cell growth, differentiation and 
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proliferation (Pouyssegur et al, 2002). Ras comes in different isoforms: H-Ras, N-Ras and K-Ras 

which are ubiquitously expressed (Hancock & Parton, 2005). The Raf proteins also come in 

different isoforms: A-Raf, B-Raf and C-Raf which are differentially regulated, and activate the 

MAPK pathway differentially in duration and intensity (Wellbrock et al, 2004).  

1.3.5  Insulin signaling in pancreatic β cells  

Studies on the role of insulin in pancreatic β cells used to generate controversial data. 

Initially, it was thought that since pancreatic β cells continuously produce and secrete insulin, 

insulin would have a minimal effect on β cell function due to the fact that continuous exposure to 

insulin may desensitize β cells. In agreement with this view, early studies showed that daily insulin 

injections reduced pancreatic insulin content and β cell mass (Best & Haist, 1941). However, 

increasing reports now support a positive role for insulin in regulating β cell proliferation, mass 

and survival. Indeed, β cell-specific IR knockout (βIRKO) mice display an age-dependent decrease 

in β cell mass due to β cell apoptosis, which leads to impaired glucose tolerance and GSIS 

(Kulkarni & Zisman, 2003; Otani et al, 2004). In addition, knockout of IRS2 leads to development 

of a type 2 diabetes (T2D)-like phenotype with reduced β cell mass, impaired glucose tolerance 

and insulin secretion (Kubota et al, 2000). Also, diabetic and pre-diabetic patients carrying the 

IRS1 Arg972 polymorphism that impairs IRS1 function, display pancreatic β cell dysfunction 

linked to defects in insulin secretion (Federici et al, 2001). Moreover, pancreatic β cell-specific 

deletion of PDK1 induce progressive hyperglycemia leading to diabetes. This was due to decreased 

proliferation and enhanced sensitivity to apoptosis leading to decreased β cell number and size, 

which ultimately causes loss of β cell mass (Hashimoto et al, 2006). Interestingly, overexpression 

of active Akt in pancreatic β cells enhanced cell size and total islet mass, while improving glucose 
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tolerance and robustness against stresses (Tuttle et al, 2001). Inversely, pancreatic β cell-specific 

expression of a kinase dead Akt impaired glucose tolerance due to a deficiency of insulin 

exocytosis, and increased mice susceptibility to high fat diet (HFD)-induced diabetes development 

(Bernal-Mizrachi et al, 2004). Furthermore, specific deletion of Rictor, the subunit involved in 

mTORC2 complex formation, in pancreatic β cells reduced glucose tolerance, β cell mass 

proliferation, insulin content and GSIS, which further emphasizes the importance of Akt activity 

in pancreatic β cells (Gu et al, 2011). To elucidate the role of mTORC1 signaling, conditional 

deletion of TSC2 (βTSC2-/-) in pancreatic β cells was implemented, and mice displayed lower 

serum glucose levels, improved glucose tolerance and increased β cell mass (Rachdi et al, 2008). 

Similarly, β cell-specific ablation of TSC1 (βTSC1-/-) enhanced β cell function due to increased 

mTORC1 activity (Mori & Guan, 2012). Finally, upregulation of mTORC1 signaling through 

Rheb overexpression in pancreatic β cells increased β cell mass and maintained euglycemia which 

further confirms the essential role of insulin signaling in pancreatic β cell function (Hamada et al, 

2009). 

1.4  Pancreatic β cell-associated diseases 

1.4.1  Type 1 diabetes (T1D) 

 Type 1 diabetes, formerly known as insulin-dependent diabetes, was first described in 

the 1970s as a chronic autoimmune disease caused by T-lymphocyte cell-mediated autoimmune 

attack on pancreatic β cells leading to their destruction and absolute insulin deficiency (Bottazzo 

et al, 1974; Atkinson & Maclaren, 1994). T1D results in hyperglycemia and ketoacidosis, where 

the body switches to metabolizing fatty acids and producing ketone bodies, which if left untreated 

leads to death. It affects people with genetic susceptibility in combination with certain 
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environmental factors that together contribute to the development of autoimmune attack on β cells 

(Atkinson & Eisenbarth, 2001). By the time of diagnosis, 70-80% of pancreatic β cells are 

destroyed (Rowe, 1923). T1D accounts for about 5-10% of diabetic cases and mostly appears 

during childhood. In fact, it is the primary cause of diabetes in children under 10 years (Daneman, 

2006). Standard treatment for type 1 diabetic patients consists of administration of exogenous 

insulin, that could be provided manually or through an automatic insulin pump. More experimental 

treatments include artificial pancreas, which combines glucose monitoring and insulin pump, and 

islets transplantation. However, the success rate of artificial pancreas is still quite low and islets 

transplantation requires permanent use of immunosuppressive drugs to avoid destruction of the 

transplanted islet cells, which makes these approaches still not widespread. Therefore, T1D still 

remains a major cause of morbidity in affected patients. Many studies have been dedicated to 

identifying and understanding risk factors that could serve as predictors of this disease to prevent 

its development. Combination screenings of genetic, immune and metabolic markers provided 

interesting candidates potentially predicting the risk to develop T1D. One of these markers is the 

islet cell autoantibodies (ICA), which helped in understanding T1D in terms of classification and 

diagnosis (Bottazzo et al, 1974). One of the most well studied animal model for T1D is the non-

obese diabetic mouse (NOD) (Makino et al, 1980) which revealed that genetic predisposition 

comes from mutations in major histocompatibility complex (MHC), but other loci also influence 

the risk factor for the disease (Melanitou et al, 2003; Atkinson & Rhodes, 2005).  Other 

susceptibility genes identified are HLA haplotypes DR3 and DR4. In addition, T1D can be caused 

by environmental factors such as viral infection (Fairweather & Rose, 2002), toxins or stress that 

lead to autoimmune destruction of pancreatic β cells. Although T1D is unpreventable, it is 

suggested that immunosuppressive drugs can prevent pancreatic β cell destruction during the latent 
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autoimmune stage (Bluestone et al, 2010). Immunosuppressive therapies were also found to slow 

T1D progression (Herold et al, 2013; Lebastchi et al, 2013).  

1.4.2  Type 2 diabetes (T2D)  

T2D, which accounts for 80% of overall diabetes incidence, is a growing disease estimated 

to affect 300 million people worldwide by 2025 (Zimmet et al, 2001). The fast growth of T2D is 

attributed to the modern changes in lifestyle, where nutrient intake increase came in parallel with 

a decrease in physical activity. The main hallmarks of T2D are insulin resistance and β cell 

dysfunction. It is well-accepted that prior to becoming diabetic, people develop insulin resistance 

in insulin-responsive tissues, leading to fasting hyperglycemia (Martin et al, 1992). As a result of 

insulin resistance, pancreatic β cells undergo expansion in order to compensate for the increased 

demand to produce more insulin (Dor et al, 2004; Rankin & Kushner, 2009). Resilient β cells are 

capable of handling increased insulin demand to keep the glucose levels under control. However, 

sustained demand imposed on β cells triggers damage and exhaustion leading to apoptosis, and 

consequently development of T2D. Therefore, the turning point in the development of T2D is the 

onset of β cell dysfunction (Porte, 2001; Prentki et al, 2002). T2D is strongly associated with 

insulin resistance and obesity. In particular, visceral obesity is a leading factor in developing 

insulin resistance, and an important risk factor to develop T2D. However, not all insulin resistant 

subjects develop T2D, and only 20% of obese subjects develop T2D (Meier, 2008). Studies on 

human islets from obese non-diabetic patients showed an increase in β cell volume, indicating an 

ability for compensatory expansion in response to obesity-induced insulin resistance (Butler et al, 

2003). On the other hand, T2D patients, whether obese or non-obese, displayed a decrease in β 

cell mass compared to weight-matched non-diabetic subjects, indicating that loss of β cell mass is 
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a determinant factor in T2D development (Butler et al, 2003). In addition, it was determined that 

β cell apoptosis is the main mechanism by which β cell mass is lost (Butler et al, 2003). These 

studies confirm that not all obese subjects develop diabetes, depending on the ability of their 

pancreatic β cells to compensate, which can be influenced by genetic factors (Marchetti et al, 

2008). It is reported that at the time of diagnosis, more than 50% of β cell mass is lost, and this 

loss starts years before diagnosis (Holman, 1998).  

Pancreatic β cells synthesize and secrete insulin in response to glucose to ensure tight 

regulation of glucose/energy metabolism and homeostasis. Although physiological levels of 

glucose and fatty acids are required to establish a healthy pancreatic β cell function, chronic 

exposure to nutrients contributes to β cell dysfunction through various mechanisms. The terms 

used in literature to refer to these conditions are glucotoxicity, lipotoxicity and glucolipotoxicity 

(Unger & Grundy, 1985; Unger, 1995; Prentki et al, 2002). In studies on rat insulinoma pancreatic 

INS832/13 β cells and human islets, the effects of glucolipotoxicity on β cell dysfunction were 

found to be synergistic compared to the separate effects of glucotoxicity or lipotoxicity (El-Assaad 

et al, 2003). One of the main reasons that continuous exposure of β cells to increased levels of 

glucose and fatty acids leads to pancreatic β cell dysfunction is the fact that increased insulin 

demand triggers reactive oxygen species (ROS) production (Tanaka et al, 2002). Indeed, insulin 

biosynthesis by β cells involves extensive endoplasmic reticulum oxidative folding activity to 

support the formation of disulfide bonds that are required for assembly of proper folded insulin 

precursor. Experimental data demonstrated that insulin biosynthesis results in extensive 

production of side products such as reactive oxygen species (ROS) (Tu & Weissman, 2004; Sevier 

& Kaiser, 2008). Accumulation of such reactive side products or any defect in processes regulating 
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them can significantly contribute to β cell dysfunction on the long term (Prentki & Nolan, 2006). 

Pancreatic β cells are particularly vulnerable to oxidative stress (Robertson RP, 2003) due to low 

expression of anti-oxidant enzymes (Baynes, 1991) and eventually, insulin synthesis decreases in 

exhausted pancreatic β cells. In addition, glucolipotoxicity shifts the fatty acid metabolism 

mechanism to produce toxic material such as ceramides (Chang-Chen et al, 2008). Moreover, 

glucolipotoxicity leads to aberrant DNA methylation of genes involved in β cell function, which 

impairs insulin at the transcriptional and translational levels (Hu et al, 2014). Although the 

characteristics and features of pancreatic β cell failure have been the focus of many studies, the 

importance of each feature and the mechanisms underlying them are still subject of investigation. 

Research aiming at identifying markers of pancreatic β cell dysfunction and providing a better 

mechanistic understanding of pancreatic β cell physiology are crucial determinants for the 

development of novel therapies to prevent and/or cure T2D in humans. 

1.4.3 Maturity-onset diabetes of the young (MODY) 

Maturity-onset diabetes of the young (MODY) is one of the different subtypes of 

monogenic diabetes. MODY is a non-autoimmune, autosomal dominantly inherited single gene 

disorders resulting in primary defects of pancreatic β cell function. These underlying causes of β 

cell defects are mutations in single genes involved in developmental and/or functional aspects of 

pancreatic β cell physiology (Murphy et al, 2008). MODY, as the name implies is usually 

diagnosed at a very young age up to young adulthood in subjects presenting with hyperglycemia 

and typical diabetes symptoms, even though many do not represent symptoms and are identified 

for their strong familial diabetes inheritance. Although MODY patients have defects in β cell 

function, residual endogenous insulin secretion persists in patients. Several subtypes of MODY 
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have been identified, each caused by mutations in a specific gene involved in pancreatic β cell 

function. MODY1 is caused by mutations of the transcription factor hepatic nuclear factor 4α 

(HNF4A), which is essential for early pancreatic development as well as expression of essential β 

cell genes (Vaxillaire & Froguel, 2008). MODY2 is caused by mutations in the glucokinase 

enzyme (Gck) involved in glycolysis of glucose (Froguel et al, 1993). MODY3 is caused by 

mutations in the hepatocyte nuclear factor 1α (HNF1A) also involved in differentiation of 

pancreatic β cells. MODY4 results from mutations of the important β cell transcription factor 

pancreatic and duodenal homeobox 1 (PDX1) (Murphy et al, 2008). MODY1/2/3 are the most 

frequent subtypes of MODY, with MODY cases accounting for 1-2% of all T2D cases. It is 

estimated that prevalence of MODY based on the UK population is 70-110 per million (Shields et 

al, 2010). The importance of correctly diagnosing MODY patients lies in the fact that MODY 

patients, compared to T2D patients, may not require insulin for treatment and are more sensitive 

to sulfonylurea medication, a treatment that induces insulin secretion by binding and inhibiting 

KATP channels (Vaxillaire et al, 2012). Although MODY is classified as a monogenic form of 

diabetes, several studies have identified common polymorphisms in genes implicated in MODY 

to associate with increased risk for T2D (Winckler et al, 2007; Vaxillaire et al, 2008; Voight et al, 

2010). 

1.4.4  Diabetes as an ER stress disease 

A substantial amount of research describes diabetes (T1D and T2D) as an ER stress disease. 

ER stress is a condition where the ER luminal homeostatic environment is perturbed, by 

accumulation of improperly folded proteins. Many studies provide evidence showing that diabetes 

is an ER-stress induced disease. In the case of T1D, pancreatic β cells undergo apoptosis as a result 
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of the T-cell and macrophage-mediated autoimmune attack, which acts by releasing cytokines into 

pancreatic β cells. Cytokines induce ER stress by depleting the ER Ca2+ reserve, leading to β cell 

death (Araki et al, 2003; Cardozo et al, 2005). Indeed, restoring the capacity of the β cells to 

withstand ER stress protected mice against T1D (Engin et al, 2013). In relation to T2D, one of the 

examples of ER stress-induced T2D is the Akita mouse model (Hong et al, 2007). Akita mice 

harbor a point mutation in the Insulin 2 gene (Ins2C96Y), which impairs folding of proinsulin in the 

ER. This prevents proinsulin trafficking into Golgi apparatus, and misfolded proinsulin 

accumulates in the ER, leading to ER stress. Eventually, the unresolvable stress induces 

dysfunction and apoptosis in pancreatic β cells and leads to development of diabetes (Wang et al, 

1999). In this model, the second murine insulin gene Ins1, generates a non-mutant proinsulin but 

is trapped in the ER along with the mutant proinsulin leading to ER stress-induced β cell apoptosis 

(Wang et al, 1999; Hodish et al, 2010). In humans, accumulation of islet amyloid polypeptide 

(hIAPP) in pancreatic β cells contributes to development of T2D. IAPP is a polypeptide expressed 

and secreted along with insulin in human β cells, but accumulation of proIAPP in β cells can 

generate toxic oligomers leading to ER stress (Haataja et al, 2008). Indeed, islet amyloid deposits 

were found in islets of 90% of T2D patients (Cnop et al, 2005). In addition, genetic studies showed 

that mutations in the insulin gene leading to misfolded insulin also lead to diabetes (Steiner et al, 

2009). Furthermore, increased expression of ER stress mediators in transplanted islets during 

isolation may contribute to cell death of transplanted islets (Negi et al, 2012). In conclusion, the 

development of T2D can evolve as a result of ER stress mediating pancreatic β cell dysfunction. 

Therefore, cellular mechanisms involved in responding to ER stress must play an essential role in 

pancreatic β cell function.  
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1.5  The unfolded protein response (UPR) and its role in pancreatic β cells 

1.5.1  ER stress and the UPR: Overview 

The ER is the site of secretory and transmembrane protein synthesis, folding, post-

translational modification, and vesicle-mediated export in cells. It also acts as a dynamic huge 

reservoir for Ca2+, as well as a site for lipid synthesis and modification. In the ER, synthesized 

polypeptides undergo a number of modifications including glycosylation, lipidation, and oxidative 

disulfide bond formation in order to reach their ‘native’ correctly folded conformation. Different 

ER-resident chaperones and enzymes bind to synthesized polypeptides and participate together to 

generate properly folded proteins, which then undergo anterograde trafficking into the TGN and 

finally get packaged into vesicles. Thiol-disulfide oxidoredcutases, such as PDI, is one family of 

chaperones responsible for oxidation, isomerization and reduction of disulfide bonds (Kaufman, 

1999; Kaufman, 2002; Ron, 2002). In addition, lectin chaperones such as calnexin (CNX) and 

calreticulin (CALR) are involved in binding and assisting in the folding of proteins carrying 

monoglycosylated N-linked glycans (Ellgaard & Frickel, 2003). Moreover, chaperone families 

HSP70, with its main member Bip/Grp78, and HSP90, and its member Grp94 bind to newly 

synthesized proteins to facilitate folding (Ellgaard & Helenius, 2003). In order to ensure best 

cellular output and quality control, misfolded or unfolded proteins are recognized by the chaperone 

proteins and retained in the ER through direct interaction. These improperly folded proteins are 

then cleared from the ER through activation of ER-associated degradation (ERAD), a process that 

targets unfolded/misfolded proteins and expels them from the ER to the cytoplasm where they 

undergo proteasomal degradation (Tsai et al, 2002). ER homeostasis can be perturbed by various 

conditions including nutrient deprivation, depletion in calcium levels, mutations in proteins 
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synthesized or ER chaperones, as well as pharmacological agents, all leading to accumulation of 

unfolded/misfolded proteins in the ER lumen giving rise to ER stress (Lee, 1992). In other words, 

disequilibrium between proteins entering the ER and the folding capacity of the ER leads to ER 

stress. ER stress induces activation of a network of signaling pathways called the unfolded protein 

response (UPR), which counteracts the stress imposed on the ER by increasing the folding capacity 

of the ER to overcome the stress. Three ER transmembrane proteins are responsible for sensing 

ER stress and executing the UPR signaling pathways: IRE1α (Inositol-requiring enzyme 1α), 

ATF6 (Activating transcription factor 6), and PERK (PKR-like endoplasmic reticulum kinase) 

(Figure 1.10). Once activated, these proteins trigger translational modulation of cellular proteins 

and transcriptional activation of UPR genes to serve three main purposes: attenuate general protein 

translation to reduce overload of newly synthesized proteins to process by the ER, increase 

expression of chaperones and other proteins that contribute to expand the folding capacity of the 

ER, and finally enhance the clearance of misfolded proteins in the ER. These steps are all aimed 

to re-establish ER homeostasis. However, when these stress conditions cannot be resolved, damage 

becomes irreversible and apoptosis is induced by the UPR machinery. Being mainly secretory 

cells, pancreatic β cells are under constant demand to synthesize and secrete insulin, making it 

essential for the ER to ensure tight control over production of insulin as well as ensure efficient 

clearance of any accumulation of misfolded proteins. In the next sections I will discuss the UPR 

in detail, as well as its role in pancreatic β cells. 

1.5.2  IRE1 

IRE1 is a type I ER transmembrane protein, which gets anchored to the lipid membrane by 

a stop signal sequence that directs its N-terminal domain to face the ER lumen side during its 
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synthesis. IRE1 was first discovered in yeast as a stress sensor (Cox et al, 1993; Mori et al, 1996). 

As opposed to higher eukaryotes, IRE1 is the only stress sensor expressed in yeast. In mammals, 

2 isoforms of IRE1 exist: IRE1α, ubiquitously expressed, and IRE1β, expressed in epithelial cells 

of the intestine and the stomach (Tirasophon et al, 1998; Wang et al, 1998). IRE1α possesses an 

N-terminal ER luminal domain, an ER transmembrane domain and a C-terminal cytoplasmic 

segment harboring distinct Ser/Thr protein kinase and endoribonuclease activities (Cox et al, 1993; 

Sidrauski & Walter, 1997). IRE1α is kept inactive through its luminal domain interaction with BiP 

in normal conditions. Upon ER stress, BiP dissociates from IRE1α to bind misfolded proteins, 

allowing IRE1α dimerization and trans-autophosphorylation. Dimerization of IRE1α appears to be 

driven by its luminal domain (Zhou et al, 2006), but besides dimerizing, IRE1α also has the ability 

to oligomerize and form clusters in response to ER stress (Credle et al, 2005). Following 

dimerization and activation of the kinase activity, the endoribonuclease activity of IRE1α is 

enhanced mainly due to conformational change of the IRE1α cytoplasmic segment following 

activation of the kinase domain (Shamu & Walter, 1996; Welihinda & Kaufman, 1996). 

Endoribonuclease-active IRE1α induces splicing of the X-box binding protein 1 (XBP1) mRNA 

to remove a 26-base pair intron to produce the spliced XBP1 (XBP1s) upon religation by the tRNA 

ligase RTCB (Yoshida et al, 2001a; Calfon et al, 2002; Lee et al, 2002; Tanaka et al, 2011; Jurkin 

et al, 2014; Kosmaczewski et al, 2014). XBP1s is a stable form of the XBP1 mRNA that upon 

production translocates to the nucleus and transcriptionally activates UPR gene targets (Yoshida 

et al, 2001a; Calfon et al, 2002). XBP1s has been shown to regulate transcription of UPR-related 

genes involved in protein folding, protein entry into the ER and ERAD (Lee et al, 2003; Shaffer 

et al, 2004). In addition, active IRE1α mediates the regulated IRE1-dependent decay (RIDD), a 

process of regulated decay of specific mRNAs to alleviate protein folding overload imposed on 
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the ER during ER stress (Hollien & Weissman, 2006; Han et al, 2009; Hollien et al, 2009). In 

Drosophila melanogaster, RIDD was shown to target mRNAs encoding secretory pathway-related 

proteins (Hollien & Weissman, 2006). The kinase-active IRE1α also recruits Tumour necrosis 

factor receptor-associated factor 2 (TRAF2), which activates MAP kinase kinase kinase ASK1 

leading to Jun N-terminal kinase (JNK) activation (Urano et al, 2000; Nishitoh et al, 2002). JNK 

activation is believed to promote apoptotic signaling from IRE1α through phosphorylation and 

inhibition of Bcl-2 and Bcl-XL anti-apoptotic proteins, as well as activation of pro-apoptotic 

proteins such as Bim and Bid (Weston & Davis, 2007).  

IRE1α and its signaling are essential for body function. Systematic deletion of IRE1α in 

mice is embryonically lethal at E12.5 due to liver hypoplasia caused by placental loss of IRE1α 

(Iwawaki et al, 2009). Re-expression of IRE1α in the placenta rescues the lethal phenotype and 

the liver function but mice still develop hyperglycemia, hypoinsulinemia, as well as display 

decreased immunoglobulin (Ig) levels and abnormalities in exocrine pancreatic and salivary gland 

tissues (Iwawaki et al, 2009; Iwawaki et al, 2010).  Liver-specific deletion of IRE1α renders liver 

susceptible to lipid accumulation when exposed to ER stress (Zhang et al, 2011). On the other 

hand, IRE1β-/- mice survive but have increased susceptibility to experimental induction of colitis 

(Bertolotti et al, 2001). In addition, whole body XBP1 knockout in mice is embryonically lethal at 

E12-13.5 due to anemia, hepatic hypoplasia and reduced hematopoiesis (Reimold et al, 2000). 

Although re-expression of XBP1 in the liver rescues mice from lethality, they die shortly after 

birth due to deficiencies in secretory organs such as the exocrine pancreas and salivary glands (Lee 

et al, 2005). Indeed, targeted deletion of XBP1 in B lymphocytes (Reimold et al, 2001; Iwakoshi 

et al, 2003), macrophages (Martinon et al, 2010), acinar gastric cells (Huh et al, 2010), or 
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pancreatic acinar cells (Hess et al, 2011) causes dysfunctionalities of these cells. However, liver-

specific XBP1-/- mice display hypocholesterolemia, hypotriglyceridemia, reduced hepatic 

lipogenesis (Lee et al, 2008), and are protected against hepatotoxicity (Hur et al, 2012). In 

conclusion, while XBP1 function was shown to be important in different cell types, XBP1 

deficiency in the liver seemed to be beneficial for hepatic cells. 

Both IRE1α and XBP1 activities are implicated in pancreatic β cell function. A 

physiological role for IRE1α in pancreatic β cells was specifically demonstrated and it has been 

proposed that depending on the intensity and duration of IRE1α activation, different cellular 

processes and functions are influenced (Lipson et al, 2006). Indeed, transient glucose stimulation 

triggers physiological activation of IRE1α, which mediates insulin biosynthesis, but chronic 

exposure to glucose induces IRE1α hyperactivation and XBP1 splicing associated with 

suppression of insulin biosynthesis (Lipson et al, 2006). Indeed, activation of IRE1α by chronic 

glucose exposure is believed to trigger decay of insulin mRNA through RIDD (Lipson et al, 2008). 

Interestingly, chronic activation of IRE1α is associated with insulin resistance and diabetes (Ozcan 

et al, 2004; Ozcan et al, 2006; Eizirik et al, 2008; Scheuner & Kaufman, 2008). In addition, recent 

studies suggest that ER stress, through production of XBP1s, and regulation of glucose metabolism 

and insulin secretion leads to T2D (Park et al, 2010; Winnay et al, 2010; Zhou et al, 2011). On the 

other hand, β cell-specific deletion of XBP1 leads to reduced GSIS, β cell loss and hyperglycemia, 

as well as hyperactivation of IRE1α which triggers RIDD-dependent degradation of proinsulin 

mRNA  (Lee et al, 2011). Therefore, physiological activation of IRE1α and its downstream 

signaling pathway contributes to maintaining proper pancreatic β cell function, while chronic 

activation of the pathway can have detrimental effects on pancreatic β cell function. 
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1.5.3  ATF6 

 ATF6 is a type II ER transmembrane protein, which is targeted to the lipid membrane by a 

signal anchor sequence that targets its C-terminal domain towards the ER lumen side during 

synthesis at the ER membrane. ATF6 is also kept inactive through its association with BiP at the 

ER lumen (Yoshida et al, 1998; Haze et al, 1999). In mammalian cells, ATF6 exists in two 

isoforms, α and β, both ubiquitously expressed and localized at the ER (Yoshida et al, 1998; Haze 

et al, 2001). ATF6 consists of an ER luminal domain interacting with BiP, a transmembrane 

domain and a cytoplasmic segment containing a basic leucine zipper (bZIP) transcription factor 

moiety (Haze et al, 1999; Yoshida et al, 2000). Upon ER stress, BiP dissociates from the luminal 

portion of ATF6, allowing ATF6 to translocate to the Golgi (Chen et al, 2002; Shen et al, 2002). 

At the Golgi, ATF6 is cleaved within its luminal domain by Site-1 protease (S1p), and within its 

lipid bilayer spanning domain by Site-2 protease (S2p), releasing a N-terminal cytosolic fragment 

(ATF6f) that translocates to the nucleus to act as a transcription factor (Haze et al, 1999; Ye et al, 

2000). Once in the nucleus, ATF6 binds to ER stress response element (ERSE) (Yoshida et al, 

1998; Yoshida et al, 2000; Yoshida et al, 2001b) to activate UPR genes involved in protein folding 

and ERAD (Haze et al, 1999; Lee et al, 2002; Yamamoto et al, 2007).  

 Since ATF6α/β knockout mice were embryonically lethal (Yamamoto et al, 2007), several 

studies focused on investigating the role of ATF6 α and β separately. Whole body knockout of 

ATF6α mice kept on HFD display hepatic and renal steatosis, accompanied by glucose intolerance, 

suggesting a role for ATF6 in regulating these processes (Usui et al, 2012). While the wild-type 

mice fed on HFD exhibited expansion of pancreatic β cell mass, ATF6α-null mice failed to do so 

and displayed pancreatic β cell ER stress (Usui et al, 2012). In addition, ATF6α deficiency in Akita 
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heterozygous mice exaggerated the Akita phenotype by displaying increased hyperglycemia and 

reduced insulin content compared to heterozygous Akita mice (Usui et al, 2012). Altogether, these 

studies suggest that ATF6 is important for pancreatic β cell homeostasis. Furthermore, depletion 

of ATF6α in rat insulinoma pancreatic β cells (INS-1 832/13) enhanced ER stress-dependent cell 

death, accompanied by reduced BiP mRNA and protein levels, and increased JNK activation 

(Teodoro et al, 2012). Although ATF6β-/- mice and mouse embryonic fibroblasts (MEFs) lacking 

ATF6β were indistinguishable from their wild-type counterparts  (Yamamoto et al, 2007), 

silencing ATF6β in INS-1 832/13 cells increased susceptibility of β cells to apoptosis under 

chronic ER stress conditions, but did not impair induction of most UPR genes (Odisho et al, 2015). 

1.5.4  PERK 

PERK is a type I ER transmembrane protein that consists of an ER luminal domain, a 

transmembrane domain and a cytoplasmic domain which harbors a Ser/Thr protein kinase activity 

(Figure 1.11A) (Harding et al, 1999). The luminal domain of PERK regulates its activation by 

interacting with BiP. Under ER stress, dissociation of BiP allows PERK dimerization and 

activation following PERK autophosphorylation on several sites including Thr980 in the activation 

loop of the kinase domain (Harding et al, 1999; Bertolotti et al, 2000). PERK was isolated as a 

gene encoding an eIF2α kinase expressed at high levels in the pancreas (Shi et al, 1998; Sood et 

al, 2000). Indeed, activated PERK phosphorylates the eukaryotic initiation factor 2 α-subunit 

(eIF2α) on Ser51 (Harding et al, 1999; Marciniak et al, 2006). The uniqueness about PERK 

compared to the other ER stress sensors is that PERK by phosphorylating eIF2α, has the ability to 

attenuate general protein synthesis (Sood et al, 2000), thereby decreasing the protein load imposed 

on the ER during stress conditions. Paradoxically, PERK-induced attenuation of translation 
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increases translation of specific proteins such as the activating transcription factor 4 (ATF4), a 

transcription factor regulating the expression of a number of genes involved in cellular processing 

such as lipid and amino acid metabolism, protein folding, oxidative stress and apoptosis (Scheuner 

et al, 2001; Vattem & Wek, 2004). Overall, PERK regulates various mechanisms that aim to reduce 

ER load of new proteins to process, and produce proteins that contribute to re-establish ER 

homeostasis. In addition to regulating general protein synthesis through eIF2α phosphorylation in 

ER stress conditions, PERK also regulates the ability of cells to survive oxidative stress by 

phosphorylating and activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription 

factor involved in activating an antioxidant cell response (Cullinan et al, 2003).  

Interestingly, apart from being a Ser/Thr protein kinase, recent studies confirmed that 

PERK also displays a tyrosine protein kinase activity. While earlier studies using mass 

spectrometry showed that PERK can be phosphorylated on tyrosine residues (Ma et al, 2001), 

autophosphorylation of a specific tyrosine residue (Y615) in the PERK kinase domain was 

implicated in optimal activation of PERK in response to ER stress (Su et al, 2008). In Chapter 2, I 

will also report the identification of a novel phosphotyrosine residue (Y561) in the PERK 

juxtamembrane domain, which plays a significant role in limiting PERK activation. Altogether, 

these findings reveal that in addition to being regulated by phosphorylation on threonine residues, 

tyrosine phosphorylation on specific sites differentially regulates PERK activation. 

1.5.4.1  Structural basis of PERK activation 

The crystal structure of the mouse PERK kinase domain reveals PERK as a homodimer 

and that PERK phosphorylated on Thr980 adopts a conformation ready to bind eIF2α (Cui et al, 
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2011). Based on structural analysis, a “line-up” model for activation of PERK was proposed, where 

a PERK dimer in a back-to-back conformation approaches another dimer to perform trans 

autophosphorylation to activate each other’s kinase domain (Cui et al, 2011). It was also suggested 

that unfolded proteins could bind multiple PERK luminal domains, allowing oligomerization of 

PERK homodimers, but this model still needs additional validation. Also, this study shed light on 

the structural components of the kinase domain, which contains two distinct subdomains: the small 

N-terminal and the long C-terminal lobes. While the N-lobe provides an interface for PERK 

dimerization, the C-lobe forms a long activation loop where Thr980 is phosphorylated, providing 

further stabilization to the activation loop, which then acts as a platform for substrate 

phosphorylation (Cui et al, 2011). Based on the homology between the luminal domains of PERK 

and IRE1α, it was suggested that the mechanism by which unfolded proteins induce PERK and 

IRE1α activation is highly similar. PERK and IRE1α, both bind to BiP in an ATP-dependent 

manner, while ADP-bound BiP has a higher affinity for unfolded proteins than the sensors, leading 

to BiP dissociation when ATP levels are low during ER stress (Sou et al, 2012). Finally, a recent 

study reported a novel tetrameric organization of the luminal domain of PERK, which could 

correlate with higher state of PERK activation (Figure 1.11B) (Cararra et al 2015).  

1.5.4.2  PERK signaling: phosphorylation of eIF2α 

The eukaryotic initiation factor 2 (eIF2) is required for initiation of translation, and is 

regulated by guanine nucleotide exchange and phosphorylation. EIF2 is composed of three 

subunits: α, β, and γ. The α subunit is a regulatory subunit phosphorylated on a serine residue at 

position 51 (Ser51) in various stress conditions (Harding et al, 1999; Sood et al, 2000). The β 

subunit is involved in interacting with mRNA and recognizing the initiation codon on mRNA. It 
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also interacts with other initiation factors such as eIF2B, and other proteins such as Nck1 (Kebache 

et al, 2002; Hinnebusch, 2005). The γ subunit is the main docking site for either GDP or GTP, and 

contains a tRNA binding cavity. When bound to GTP, active eIF2 forms the 43S pre-initiation 

complex with the methionine-loaded initiator methionyl tRNA (Met-tRNA) and the 40S ribosomal 

subunit to initiate translation.  The 43S complex is required to associate with the target mRNA 

along with other eIFs to scan for the initiation codon AUG. Once the initiation codon is reached, 

GTP on eIF2 undergoes hydrolysis and eIF2 is released from the complex in an inactive form 

(Gebauer & Hentze, 2004). In order to reactivate eIF2, the guanine nucleotide exchange factor 

eIF2B interacts with eIF2 and promotes the exchange of GDP for GTP, then eIF2 is released in an 

active GTP-bound form (Pavitt, 2005) (Figure 1.12). When PERK gets activated, it phosphorylates 

eIF2α on Ser51. eIF2B, which is expressed in limited amount compared to eIF2, has higher affinity 

for phosphorylated eIF2αSer51 than non-phosphorylated eIF2 (Sudhakar et al, 2000). This leads to 

sequestration of eIF2B and attenuation of global protein translation due to reduced GDP-GTP 

exchange on eIF2, and subsequently reduced initiation of translation (Rowlands et al, 1988). Early 

studies on the role of PERK in mouse embryonic stem cells showed that loss of PERK sensitizes 

cells to ER-stress induced cell death due to loss of eIF2α phosphorylation (Harding et al, 2000b). 

Decreasing the load of translation by cyclohexamide (inhibitor of protein biosynthesis) was able 

to ameliorate the cell phenotype (Harding et al, 2000b), showing that regulation of general protein 

synthesis through PERK-eIF2α is important for the cellular adaptive response to stress.  

Interestingly, eIF2α is also a substrate for other eIF2α kinases which are activated under 

different cellular stress conditions. In addition to PERK activated upon ER stress, those kinases 

include: the heme-regulated inhibitor (HRI) activated upon iron or heme deficiency (Han et al, 
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2001), the general control non-derepressible-2 (GCN2) activated upon amino acid deprivation by 

uncharged tRNA (Natarajan et al, 2001; Zhang et al, 2002b) and the double-stranded RNA-

dependent protein kinase (PKR) activated upon viral infection (de Haro et al, 1996). Although 

activated by different stresses, the signaling pathway common to eIF2α phosphorylated by all 

eIF2α kinases is defined as the integrated stress response (ISR).  

1.5.4.2.1  ATF4 translational upregulation and signaling 

In ER stress conditions, phosphorylation of eIF2αSer51 by PERK results in attenuation of 

protein translation, as a mechanism to reduce protein load on the ER machinery (Harding et al, 

1999; Marciniak et al, 2006). But this paradoxically upregulates translation of ATF4 mRNA 

(Karpinski et al, 1992; Harding et al, 1999; Koumenis et al, 2002; Ameri et al, 2004; Lu et al, 

2004). ATF4 belongs to the ATF/CREB (activating transcription factor/ cyclic AMP response 

element binding proteins) family of basic-region leucine zipper (bZIP) transcription factors (Hai 

& Curran, 1991). ATF4 mRNA contains two upstream open reading frames (uORFs), which act 

differentially on ATF4 translation (Vattem & Wek, 2004). UORF1 is a positive-acting element, 

which in conditions of low availability of active eIF2 ternary complex allows initiation of ATF4 

translation. On the other hand, during abundance of eIF2 ternary complex, ribosomal scanning and 

re-initiation occurs also at the uORF2. UORF2 acts as an inhibitory element in ATF4 translation, 

because it overlaps the coding region of ATF4 and engages a stop codon (Figure 1.13). Under ER 

stress conditions, phosphorylation of eIF2α leads to a decrease in active ternary complex 

formation. This gives time for the ribosomes to scan through uORF2 of ATF4 without re-initiation. 

By the time the ternary complexes associate with the scanning ribosome, the coding region of 

ATF4 has been reached (Vattem & Wek, 2004). As an active transcription factor, increased levels 
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of ATF4 promote transcriptional activation of genes involved in amino acid biosynthesis transport, 

metabolism and resistance to oxidative stress (Harding et al, 2003). In addition, ATF4 

transcriptionally activates genes encoding ER chaperones including BiP and Grp94, UPR-

associated transcription factors such as XBP1, and components of the machinery for ATF6 

processing. One of the most characterized targets of ATF4 is the CCAAT/enhancer binding protein 

(C/EBP) homologous protein (CHOP), a bZIP transcription factor and mediator of ER stress-

induced apoptosis (Ron & Habener, 1992; Ma et al, 2002). CHOP activates a number of pro-

apoptotic genes including death receptor 5 (DR5) and the pro-apoptotic member of Bcl-2 family, 

Bim (Puthalakath et al, 2007). CHOP also induces the expression of growth arrest and DNA 

damage-inducible 34 (GADD34), a regulatory subunit of the phosphatase complex PP1 

responsible for dephosphorylating eIF2α (Connor et al, 2001). GADD34 is part of a negative 

feedback mechanism that controls protein translation re-initiation (Brush et al, 2003; Ma & 

Hendershot, 2003; Novoa et al, 2003). Indeed, induced expression of an active GADD34 that 

induces dephosphorylation of eIF2α leads to inhibition of ATF4 expression (Blais et al, 2004). 

Moreover, ATF4 enhances expression of autophagy genes including MAP1LC3B, ATG5, ATG12, 

and BECN1 (Rouschop & Wouters, 2009; Rzymski et al, 2009; Cao & Kaufman, 2012). 

Autophagy is a conserved lysosomal-based degradation process of intracellular constituents. It has 

been proposed that autophagy plays a prosurvival role as part of the adaptive response of the UPR 

(Bernales et al, 2006; Yorimitsu et al, 2006). Stable ATF4 expression was shown to protect cells 

by inducing autophagy through upregulation of the microtubule-associated protein 1 light chain 3 

beta (LC3B), an important component in the autophagy process (Milani et al, 2009). ATF4 also 

indirectly enhances autophagy through upregulation of sestrin2 (Sesn2) protein expression 

(Bruning et al, 2013). Sesn2 belongs to a family of stress-inducible proteins known to maintain 
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metabolic homeostasis against age- and obesity-related diseases (Budanov et al, 2002). Sesn2 

expression leads to activation of AMPK, which in turn plays a role attenuating mTORC1 activity, 

thereby releasing the inhibition imposed by mTORC1 activity on the autophagy process (Budanov 

& Karin, 2008; Lee et al, 2010). Therefore, this pathway is proposed to play an important role in 

regulating cell survival upon ER stress (Figure 1.14). 

1.5.4.3  PERK signaling: phosphorylation of Nrf2 

The second identified direct PERK substrate is the transcription factor Nrf2 (erythroid-

derived 2-like 2), involved in PERK-dependent cell survival (Cullinan et al, 2003). Nrf2, part of 

the Cap ‘n’ Collar (CNC) family of basic leucine zipper (bZIP) transcription factors (Andrews et 

al, 1993), is ubiquitously expressed and activated in response to oxidative stress (Hayes & 

McMahon, 2001). Nrf2 is regulated by the E3 ubiquitin-protein ligase Cullin3 (Cul3) and the 

substrate adaptor Keap1 (Kelch-like ECH-associated protein 1). In normal conditions, Keap1 

represses Nrf2 expression by directly binding to the Neh2 (Nrf2-ECH homology) domain of Nrf2 

(Itoh et al, 1999), allowing Cul3-dependent ubiquitination and proteasomal degradation of Nrf2 

(Cullinan et al, 2004; Zhang et al, 2004; Furukawa & Xiong, 2005). Under oxidative stress, Keap1 

dissociates from Nrf2, allowing Nrf2 translocation to the nucleus (Figure 1.15). Different 

mechanisms were proposed to explain Keap1 dissociation from Nrf2. In one model, oxidative and 

electrophilic stress leads to an attack on the cysteine residues of Keap1, which induces Keap1 

conformational change and disrupts interaction with Nrf2 (Zipper & Mulcahy, 2002). It was also 

proposed that phosphorylation of Nrf2 introduces a modification that favors dissociation of Nrf2 

from Keap1 (Huang et al, 2000). This is likely the mechanism by which PERK enables Nrf2 

translocation to the nucleus. Dissociation of the Nrf2-Keap1-Cullin3 complex allows Nrf2 
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stabilization in the cytoplasm and subsequent translocation to the nucleus. Once in the nucleus, 

Nrf2 heterodimerizes with the small Maf transcription factors, and induces transcriptional 

activation of antioxidant response element (ARE)-containing genes such as HO-1 (Heme-

oxygenase 1) and NQO1 (NADPH dehydrogenase quinoneoxireductase 1) (Itoh et al, 1997; Chan 

& Kan, 1999). Interestingly, Nrf2 is also reported to dimerize with ATF4 to promote expression 

of survival genes (He et al, 2001). In addition to its activation of antioxidant gene expression, Nrf2 

contributes to expression of genes involved in proteasome-mediated ERAD in pancreatic β cells 

under ER stress (Lee et al, 2012b). 

1.5.4.4  PERK links between ER and oxidative stress 

 Elucidating signaling pathways triggered by PERK helped in understanding its crucial role 

in coordinating various cellular stress responses. Indeed, Nrf2 being a master regulator of oxidative 

stress response and ATF4 being a key player in mediating the ER stress response are both under 

the regulation of PERK. In addition, both ATF4 and Nrf2 interact to promote expression of 

antioxidant response element-dependent genes (He et al, 2001). On the other hand, increasing the 

capacity of the ER for protein folding can enhance the production of ROS, which then initiates a 

strong antioxidant response to protect cells against damage. Therefore, PERK activation of both, 

ATF4- and Nrf2-pathways, contribute to promote cell survival against stress conditions (Cullinan 

& Diehl, 2006). It is known that ubiquitin-mediated proteolysis and ERAD machinery are also 

enhanced during ER stress (Jarosch et al, 2003). PERK-mediated Nrf2 activation leads to 

expression of genes also involved in proteasomal degradation (Kwak et al, 2003), further 

emphasizing the role of Nrf2 in enhancing the ability of the cell to survive during stresses. 
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1.5.4.5  Role of PERK in pancreatic β cells 

The first indication of a role for PERK in pancreatic β cell physiology was the discovery 

of mutations in the gene encoding PERK, the eukaryotic initiation factor 2α kinase 3 (EIF2AK3), 

in Wolcott-Rallison Syndrome (WRS) patients (Delepine et al, 2000). WRS was first described by 

Drs. Wolcott and Rallison, who identified 3 affected siblings with an early-onset form of diabetes 

(Wolcott & Rallison, 1972). WRS is an insulin-requiring diabetes that manifests during the first 6 

months of life, where patients are diagnosed with hyperglycemia. In addition, WRS patients 

manifest other characteristics including skeletal dysplasia, hepatic dysfunction, renal failure, 

exocrine pancreatic insufficiency, as well as mental retardation (Senee et al, 2004; Rubio-Cabezas 

et al, 2009; Ozbek et al, 2010). Although WRS is a rare autosomal recessive disease, it is the most 

frequent cause of permanent neonatal diabetes mellitus in consanguineous families (Rubio-

Cabezas et al, 2009; Julier & Nicolino, 2010). Different mutations in EIF2AK3, all resulting in 

PERK loss of function have been reported (Senee et al, 2004; Rubio-Cabezas et al, 2009; Ozbek 

et al, 2010). These include nonsense or frameshift mutations leading to premature termination of 

PERK or missense mutations in the PERK kinase domain. All missense mutations are located 

within or in the vicinity of the PERK kinase domain, whereas frameshift and nonsense mutations 

are spread out over the length of the protein (Julier & Nicolino, 2010).  

The mouse model of PERK deficiency remarkably reproduces the WRS characteristics. 

Briefly, PERK deficient mice display permanent neonatal diabetes, growth retardation, skeletal 

dysplasia, hepatic dysfunction and pancreatic exocrine deficiency. These mice display 

hyperglycemia and reduced insulin serum levels shortly after birth, associated with a progressive 

loss of pancreatic β cells, which was initially attributed to apoptosis (Harding et al, 2001; Zhang 
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et al, 2002a). Exocrine pancreatic insufficiency and luminal distension of the ER in both endocrine 

(islets) and exocrine (acinar) tissues were also observed (Harding et al, 2001). In addition, PERK 

knockout mice display skeletal dysplasia and bone anomalies making mice smaller in size 

compared to wild-type mice (Zhang et al, 2002a). Later on, extensive studies performed using 

different pancreatic and β cell-specific PERK deletion demonstrated that specific loss of PERK in 

pancreatic β cells during fetal development led to diabetes. Indeed, the loss of β cell mass due to 

PERK deficiency was a result of insufficient β cell differentiation and proliferation, as opposed to 

β cell death (Zhang et al, 2006). At birth, β cell mass was lower in PERK deficient mice, and the 

difference was exacerbated with time. The fact that β cell mass expands during late fetal and 

neonatal stage (Kaung, 1994) accounts for the progressive difference seen between wild-type and 

PERK knockout mice, where wild-type mice expand β cell mass while PERK knockout mice fail 

to do so, and with time hyperglycemia develops (Zhang et al, 2006). In addition, induced 

expression of PERK in pancreatic β cells in PERK knockout mice rescued β cell function and 

diabetic phenotype (Zhang et al, 2006). Further studies using adenoviral-mediated expression of a 

dominant negative PERK (AdDN-PERK) in rat insulinoma β cells (INS832/13) demonstrated that 

PERK activity is required for insulin transcription, content and secretion, as well as β cell 

proliferation (Feng et al, 2009). Although insulin content was decreased by expressing a dominant 

negative PERK in INS832/13 cells, retention of proinsulin in the ER was also observed, without 

evidence of increased protein synthesis. Confirmed in PERK-deficient pancreatic β cells (Gupta et 

al, 2010), these findings challenge the belief that dysfunction of PERK-deficient β cells is due to 

ER stress secondary to uncontrolled protein translation associated with overload of the ER. 

Interestingly, accumulation of proinsulin was attributed to defects in ER and Golgi anterograde 

trafficking as supported by the finding that downregulation of PERK using shRNA in INS832/13 
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cells impaired proinsulin trafficking (Gupta et al, 2010). Recently, attempts to uncouple the role 

of PERK in pancreatic embryogenesis from its role in mature pancreatic β cells was made possible 

using PERK small molecule inhibitors in pancreatic β cells (Harding et al, 2012). In fact, inhibition 

of PERK activity in β cells using the small inhibitor GSK2606414 led to increased proinsulin 

synthesis, as well as accumulation of immature proinsulin in the ER. These findings on the role of 

PERK on insulin trafficking contrast those previously reported by Gupta et al. (2010). However, 

the degree of inhibition of PERK activity can account for the difference. In fact, in Gupta et al. 

(2010) study, PERK was downregulated using shRNA, while in the other, Harding et al. (2012) 

used a pharmacological PERK inhibitor, which might lead to a more profound inhibition of PERK 

activity than shRNA. Nonetheless, a significant role of PERK in proper trafficking of proinsulin 

through the ER and Golgi has been clearly established. 

Even though studies using various mice models mainly limited the role of PERK to the 

early stages of neonatal development (Zhang et al, 2006), a recent study reported that PERK is 

also essential to maintain adult pancreatic β cell function (Gao et al, 2012). Through the generation 

of an acutely inducible PERK knockout model, it was shown that the loss of PERK in adult 

pancreas results in progressive development of hyperglycemia due to insufficient insulin 

production. This was associated with a reduction in islets size and integrity, preceded by 

accumulation of immature insulin and compromised β cell morphology associated with ER 

distension. Even though β cell proliferation markers were normally induced, proliferation was not 

sufficient to maintain β cell mass, as β cell death was observed secondary to the loss of PERK. 

Finally, β cell-specific PERK deletion in mice led to rapid development of diabetes, suggesting an 

autonomous effect of PERK deletion in β cells (Gao et al, 2012). The discrepancy between this 
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study and Zhang et al. study on PERK’s role during embryogenesis (Zhang et al, 2006) might be 

explained by the approaches used to knockout PERK, as previously, embryonic PERK deletion 

was driven during late stages of embryogenesis, thereby probably led to a slow decline of PERK 

levels during embryogenesis (Hamanaka et al, 2005). 

1.5.4.6  Role of eIF2α in pancreatic β cells 

Further understanding of the role of PERK signaling in pancreatic β cell function came 

from studies investigating the role of eIF2α. Early studies showed that mice harboring homozygous 

knockin of eIF2αSer51Ala mutant (eIF2αA/A), a non-phosphorylatable form of eIF2α, die within 

hours after birth due to severe hypoglycemia and defective gluconeogenesis (Scheuner et al, 2001). 

Those mice also display decreased β cell mass leading to deficiency in insulin production, but no 

deficiencies in other cell types in the islets (Scheuner et al, 2001). To overcome the developmental 

defect and further understand the role of eIF2α phosphorylation in β cells, β cell-specific eIF2α 

transgenic mice were generated (Back et al, 2009). Briefly, ubiquitous expression of wild-type 

eIF2α was induced in eIF2αA/A mice to restore the developmental defect, then using the estrogen 

receptor-Cre recombinase fusion protein under the control of the rat insulin II promoter, the 

expression of wild-type eIF2α was deleted. In this model, specific β cell loss of eIF2α 

phosphorylation led to a severe diabetic phenotype caused by unregulated proinsulin synthesis, 

defective intracellular ER trafficking, increased oxidative damage, and reduced stress response 

and gene expression (Back et al, 2009). This study provided a great demonstration for the crucial 

role of controlling protein synthesis in pancreatic β cells function, and how overloading β cells 

with proteins to synthesize and process leads to β cell dysfunction and death. Interestingly, these 

studies, along with the PERK deficiency studies also highlighted specificity in defects associated 
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with the loss of either PERK or eIF2α in pancreatic β cells. Indeed, defects associated with PERK 

depletion in INS832/13 cells was not related to increased protein translation (Feng et al, 2009), as 

opposed to pancreatic β cells expressing eIF2αA/A displaying uncontrolled protein translation 

(Back et al, 2009). 

1.5.4.7  Role of Nrf2 in pancreatic β cells 

Pancreatic β cells are susceptible to oxidative stress due to low expression of anti-oxidant 

genes, and the intrinsic nature of β cells in producing ROS associated with insulin synthesis and 

processing (Li et al, 2008). Recent evidence highlighted a positive role for Nrf2 in protecting 

pancreatic β cells against various stress. Indeed, several studies reported that Nrf2-silenced β cells 

are more susceptible to ER stress- and oxidative stress-induced cell death (Lee et al, 2012b; Li et 

al, 2014b; Fu et al, 2015).  In addition, enhanced Nrf2 activity suppressed the onset of diabetes 

and preserved pancreatic islets in db/db mice (Uruno et al, 2013).  Finally, activation of Nrf2 

secondary to Keap1 deficiency in mice protects pancreatic β cells against nitrosative and oxidative 

stress in diabetic mouse models (Yagishita et al, 2014).  

1.5.5  PERK signaling in regulating cell fate 

Although UPR signaling initiates both prosurvival (Ron & Walter, 2007) and proapoptotic 

(Hetz et al, 2011) signals upon ER stress, the exact mechanism that switches the cell state from 

survival to apoptosis still remains an active topic of investigation. The type, intensity and duration 

of stress and the UPR arms temporal activation pattern are all probably involved in playing a role 

in determining cell fate. Related to the type of stress, pharmacological ER stress inducers such as 

Thapsigargin (Tg) can have fatal effects based on induction of irreversible damage, as opposed to 
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physiological stress conditions that induce the UPR in a milder fashion. Interestingly, secretory 

cells, such as pancreatic β cells are known to face constant challenges targeting ER homeostasis. 

For example, transient increase in blood glucose activates the UPR secondary to the acute need of 

insulin biosynthesis, but activation of the UPR in that case steers towards increasing the folding 

capacity of the ER, and then shuts off once glucose levels decrease. Therefore, physiological ER 

stress activates UPR signaling, but not UPR-mediated expression of apoptotic genes (Rutkowski 

et al, 2006). In addition, differential activation of the UPR arms at different stages during stress 

can tilt the balance towards cell death. For example, under persistent ER stress conditions, IRE1α 

activity is shut down in human cells (Lin et al, 2007), while PERK activity is maintained (Lin et 

al, 2009). In that case, the XBP1s prosurvival signaling is inhibited, while the proapoptotic CHOP 

expression is induced and leads to cell death (Hetz et al, 2011). Increasing evidence suggests that 

the structural organization of the UPR sensors upon ER stress is also very important in determining 

their activity level and type of signal that will be transduced. The structural pattern of organization 

of the UPR sensors may trigger different UPR activity as a reflection of the intensity of UPR signal 

in correlation with the ER stress inducer per se. For example, artificial dimerization of IRE1α leads 

to increased XBP1 splicing, but did not induce JNK activation and mRNA degradation (Han et al, 

2009). Related to PERK signaling, it is believed that different states of PERK structural 

organization (dimers vs tetramers) is determinant of the intensity of PERK signaling in switching 

from prosurvival to proapoptotic (Carrara et al, 2015). Mechanistically, CHOP induction has been 

shown to be the main mediator of apoptosis in response to ER stress (Rutkowski et al, 2006). 

However, ER stress conditions that mildly activate the UPR fail to induce cell death even though 

CHOP levels are increased. This was attributed to the instability of CHOP and GADD34 mRNAs 

in these conditions. Indeed, it was shown that although low levels of Tg treatment initially 
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increased CHOP expression, it was lost 24 h later, allowing cells to survive. Therefore, ER stress-

induced cell death occurs only when enhanced expression of proapoptotic proteins is maintained 

in response to prolonged ER stress and UPR activation (Rutkowski et al, 2006). To understand 

better how PERK signaling leads to cell death, the role of ATF4 and CHOP in this process was 

further investigated. In a recent study, CHOP function as a direct inducer of apoptotic signals was 

challenged by the findings that CHOP signal induced by ATF4 is actually enhancing expression 

of genes involved in protein synthesis, not apoptosis. Indeed, overexpression of CHOP alone did 

not induce cell death, while ATF4 overexpression did. Chromatin immunoprecipitation (CHIP) 

and RNA sequencing (RNAseq) analysis demonstrated that ATF4 and CHOP expression in MEFs 

transcriptionally activate target genes involved in protein synthesis, as opposed to genes involved 

in inducing cell death. In agreement, increased GADD34 expression following ATF4 and CHOP 

induction leads to increased protein translation. Thereby, induction of ATF4, CHOP and 

GADD34, by promoting protein synthesis, generates ROS, decreases ATP levels and leads to cell 

death if ER stress is not resolved (Han et al, 2013). On the other hand, ATF4 promotes autophagy 

at least through inducing the expression of sesn2. A remarkable study that distinguished between 

the effects of ATF4 on autophagy and CHOP induction in relation with cell survival established a 

strong correlation between ATF4-induced CHOP and cell apoptosis in response to ER stress while 

ATF4-induced autophagy correlated with enhanced cell survival (Matsumoto et al, 2013). 

Therefore, a model was proposed in which upon ER stress, ATF4 triggers autophagy, and 

according to the stress intensity and duration, later ATF4-dependent induction of CHOP leads to 

apoptosis (Matsumoto et al, 2013). Furthermore, treating cells with different ER stress conditions 

showed that GADD34 delays CHOP induction by negatively regulating eIF2αSer51 signaling, 

which induces ATF4 and CHOP expression leading to cell death. Indeed, depletion of GADD34 
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in ER stressed cells enhanced cell apoptosis in correlation with increased CHOP expression in 

response to tunicamycin-induced ER stress but not sodium fluoride (NaF). This indicates that in 

cells surviving to GADD34 depletion, an alternative mechanism favoring ATF4-autophagy signal 

might be activated as opposed to ATF4-CHOP signal (Iwasaki et al, 2015). Therefore, PERK 

activity and signaling is an essential determinant of cell fate in response to stress, and 

understanding the mechanisms regulated by PERK is important to understand how and when cells 

can undergo apoptosis. 

1.6  The adaptor proteins Nck 

Most cellular processes involve transduction of extracellular signals through RTKs and 

plasma membrane receptors devoid of catalytic activity to the intracellular environment, triggering 

a coordinated cellular response (Pawson, 1993). In these processes, adaptor proteins play an 

important role in assembling molecular complexes that enable signal transduction. Amongst 

different families of adaptor proteins, the Nck family has been well characterized in coupling 

signal transduction from activated plasma membrane receptor tyrosine kinases (RTKs) to specific 

intracellular effectors regulating crucial cellular responses such as actin cytoskeleton 

reorganization (Pawson & Scott, 1997).  

Nck (non-catalytic region of tyrosine kinase) family includes Nck1 and Nck2, which are   

47 kDa Src Homology (SH) domain-containing adaptor proteins consisting of three N-terminal 

SH3 and one C-terminal SH2 domains (Lehmann et al, 1990; Braverman & Quilliam, 1999). Nck 

are ubiquitously expressed, but at different levels in different tissues, and detected in various  

intracellular environments including cytosol, nucleus and cytoplasmic surface of the ER (Li et al, 
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1992; Park & Rhee, 1992; Lawe et al, 1997; Latreille & Larose, 2006). Lacking enzymatic activity, 

Nck adaptor proteins couple activated plasma membrane receptors with or without protein tyrosine 

kinase activity, as well as tyrosine phosphorylated cytosolic proteins to effector targets (Li et al, 

1992; Park & Rhee, 1992; Nishimura et al, 1993; Holland et al, 1997; Schlaepfer et al, 1997; 

McCarty, 1998; Stein et al, 1998; Chen et al, 2000). Nck form molecular complexes with tyrosine 

phosphorylated proteins via the SH2 domain, which recognizes and binds specific phosphotyrosine 

residues, while the SH3 domains bind proline-rich sequences on effector proteins (Cohen et al, 

1995; Pawson, 1995). NCK1 cDNA was isolated in 1990 from a human melanoma expression 

library through its non-specific interaction with an antibody directed against the abundant 

melanoma associated protein MUC18 (Lehmann et al, 1990). Later, a mouse Nck2 cDNA was 

isolated from the screening of an expression library using the autophosphorylated cytoplasmic 

region of the epidermal growth factor receptor (EGFR) (Margolis et al, 1992). Nck homologous 

genes have also been identified in various species including a unique Nck gene in Drosophila 

melanogaster (Dock, Dreadlock) and Xenopus laevis (Nck) while two genes encode Nck proteins 

in human (NCK1 and NCK2), and mouse (Nck1, and Nck2/Grb4). In mouse, Nck1 gene is located 

at q21 locus of chromosome 3 while Nck2 is located at q21 locus of chromosome 2 (Huebner et 

al, 1994; Vorobieva et al, 1995). Although encoded by independent genes, Nck1 and Nck2 share 

68% amino acid identity (Vorobieva et al, 1995; Chen et al, 1998; Braverman & Quilliam, 1999). 

The aa identity even increases to 82% in the SH2 domain, and to 78%, 85% and 75% in the 1st, 2nd 

and 3rd SH3 domains, respectively (Buday et al, 2002). This suggests the existence of functional 

redundancy between Nck1 and Nck2 to a certain extent, but increasing evidence support also 

specific roles for each Nck isoform. In vivo Nck functional redundancy was demonstrated by the 

absence of any obvious phenotype following the knockout of either Nck in mice (Bladt et al, 2003). 



 

50 

 

Nonetheless, early embryonic lethality of the double Nck knockout embryos revealed a crucial role 

for these proteins during development (Bladt et al, 2003). The exact cause of lethality is unknown, 

but fibroblasts derived from these embryos displayed defects in cell motility and lamellipodia 

formation that might be essential during embryogenesis.  

1.6.1  Nck domains and binding partners 

As mentioned above, both Nck1 and Nck2 consist of three SH3 domains and a single SH2 

domain. Without differentiating between Nck1 and Nck2, the first identified Nck SH2 domain 

binding partners were activated epidermal growth factor receptor (EGFR) and platelet-derived 

growth factor receptor (PDGFR) (Chou et al, 1992; Li et al, 1992; Meisenhelder & Hunter, 1992; 

Park & Rhee, 1992). Via their SH3 domains Nck were found to bind to intracellular proteins such 

as IRS (Lee et al, 1993), Src (Chou et al, 1992), and Sos (Ras exchange factor) (Hu et al, 1995), 

thereby assembling molecular complexes involved in intracellular signal transduction. Overall, 

Nck binding proteins include a wide variety of proteins with different activities or associated with 

specific cellular functions and the list is growing as research on Nck binding partners keeps 

advancing (Figure 1.16).  

Recent studies improved our understanding of Nck-dependent protein interactions. Indeed, 

the Nck SH2 domain mediates Nck interaction with phosphotyrosine residues in a specific amino 

acid sequence matching pYDXV(S/A/T/Y)X(D/E), where pY is the phosphotyrosine residue and 

X is any amino acid (Songyang et al, 1993), while the SH3 domains have been described to interact 

with classical PXXP proline-rich motif or non-classical core consensus motif RXXK (Mayer, 

2001; Aitio et al, 2008).  Although Nck1 and Nck2 share high identity in their SH2 domains, 
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specific binding partners for each SH2 domain have been reported (Frese et al, 2006). For example, 

PDGFR was reported to bind both Nck1 and Nck2, but this was involving two different pTyr 

residues. In fact, PDGFR pY751 appears to be a specific binding site for Nck1 (Nishimura et al, 

1993) while pY1009 is Nck2-specific (Chen et al, 2000). Moreover, a phosphopeptide derived from 

Tir (translocated intimin receptor), a bacterial protein from enterohaemorrhagic Eschericia coli, 

that is translocated and phosphorylated into the host cell upon infection was identified as the 

strongest natural binding ligand of Nck1 and Nck2 (Frese et al, 2006). Using sequential mutations 

of the pTir peptide, optimal binding profiles were generated for both Nck1 and Nck2 SH2 domains. 

Based on this approach, the Arf GTPase-activating protein GIT1, involved in actin cytoskeletal 

reorganization, was identified as a binding partner of Nck1 and Nck2 through its pY383. However, 

it was shown that PDGF pY1009 binds by both Nck1 and Nck2 while PDGFR pY751 failed to bind 

Nck, either Nck1 or Nck2 (Frese et al, 2006). Interestingly, few binding partners were found to be 

exclusive for Nck2. These include the RTKs Ephrin receptor B1 (Cowan & Henkemeyer, 2001; 

Bong et al, 2004) and Ephrin receptor B2 (Su et al, 2004), and Disabled-1 (Dab-1) (Pramatarova 

et al, 2003), all of which are proteins mediating neuronal signaling.  

1.6.2  Nck regulation 

Early studies revealed that Nck is phosphorylated upon activation of various membrane 

receptors in various cell types (Li et al, 1992; Meisenhelder & Hunter, 1992; Park & Rhee, 1992). 

Indeed, Park et al. demonstrated that following activation of a variety of membrane receptors such 

as EGFR and PDGFR, phosphorylation of Nck on Ser/Thr and tyr residues increased and they 

proposed that this might alter Nck’s function (Park & Rhee, 1992). Similarly, epidermal growth 

factor (EGF) stimulation in A431 human skin carcinoma cells, platelet-derived growth factor 
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(PDGF) stimulation in murine fibroblast NIH 3T3 cells, and high-affinity receptor for IgE (FcɛRI) 

stimulation in leukemia RBL-2H3 cells, all resulted in enhanced phosphorylation of Nck on tyr, 

ser and thr residues (Li et al, 1992). Furthermore, Nck was found to be constitutively 

phosphorylated on ser residues in resting NIH 3T3 cells. Finally, angiotensin II, which binds and 

activates the G-protein-coupled receptor (GPCR) angiotensin II receptor in rat aortic smooth 

vascular muscle cells was shown to induce phosphorylation of Nck on ser residues (Voisin et al, 

1999). The biological relevance of Nck phosphorylation and Nck phosphorylated sites still remains 

to be identified, but it is believed that post-translational modifications such as phosphorylation 

may specifically and temporally regulate Nck interaction with its binding partners or its subcellular 

localization (Takeuchi et al, 2010).  

Nck binding activity was proposed to be regulated by a self-inhibitory intramolecular 

interaction, where the basic amino acid sequence of the linker region between the SH3.1 and SH3.2 

domains interacts with the acidic region of SH3.2 domain (Takeuchi et al, 2010).  This 

intramolecular interaction was suggested to contribute to discriminate between low- and high-

affinity binding partners for the SH3.2 domain, with only high-affinity binding partners being 

efficient in competing with the SH3.2 domain-mediated auto-inhibitory interaction. Interestingly, 

Nck phosphorylation in the linker region between the SH3.1 and SH3.2 domains can modulate the 

ability of Nck to interact with other proteins. Indeed, Nck phosphorylation can prevent Nck 

intramolecular interaction, thus keeping Nck in an open conformation favoring protein interactions 

(Takeuchi et al, 2010).   

Only limited studies addressed regulation of Nck expression, but in the past it has been 

suggested that Nck expression is modulated by insulin sensitivity in insulin target tissues. In fact, 
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decreased levels of Nck proteins were observed in liver of streptozotocin-treated rats, a T1D 

insulin-dependent model (Bonini et al, 1995a), but were significantly increased in adipose tissue 

and liver of spontaneously obese insulin-resistant diabetic KKAy mice, a T2D non-insulin 

dependent model (Bonini et al, 1995b). In agreement with lower levels of Nck in insulin sensitive 

tissues, Nck mRNA levels were decreased in skeletal muscle of endurance-trained rats, which are 

more sensitive to insulin compared to sedentary rats (Kim et al, 1999). More recently, it was shown 

that upon T cell receptor (TCR) activation, Nck is ubiquitynated and subjected to proteasomal 

degradation. Specifically, interaction of the E3 ubiquitin-protein ligase Cbl-b with the SH3 

domains of Nck upon TCR activation was reported to be required for Nck ubiquitination (Joseph 

et al, 2014). In addition, proteasomal-mediated degradation of Nck by fibroblast growth factor 2 

(FGF2) prevents apoptosis in cancer cells (Li et al, 2013). Interestingly, Nck1 expression levels 

were significantly reduced in skeletal muscle from mice lacking the non-receptor tyrosine 

phosphatase PTP1B, but the underlying mechanism still remains to be elucidated (Panzhinskiy et 

al, 2013). Finally, upregulation of Nck2, but not Nck1, has been linked to melanoma progression 

(Labelle-Cote et al, 2011), but here again the mechanism regulating Nck2 expression needs further 

investigation.  

1.6.3  Nck physiological functions 

The first clues indicating a biological function for Nck came from studies showing that in 

Drosophila melanogaster, mutations in Dock, the Nck homolog, impair photoreceptor guidance 

and targeting (Garrity et al, 1996; Hing et al, 1999). From these studies, it was proposed that Nck 

links cell surface receptors to actin cytoskeletal reorganization (Figure 1.17). In the past decades, 
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many studies confirmed a role for Nck in regulating actin cytoskeletal dynamics, but through the 

years, Nck has been also shown to regulate other cellular processes that will be described below. 

1.6.3.1  Nck and embryonic development  

The earliest study revealing a role for Nck in embryogenesis was performed by Tanaka et 

al., in which microinjection of Nck mutants in Xenopus laevis embryos demonstrated that Nck 

contributes towards embryonic dorsoventral patterning. Specifically, dominant negative Nck 

mutants with non-functional SH domains led to embryos with altered mesoderm cell migration 

during gastrulation (Tanaka et al, 1997). Although this study provided evidence of a role for Nck 

in embryonic development in vertebrates, it was not until Nck knockout mice were generated that 

we further appreciated the function of Nck in embryogenesis. As reported above, the lack of 

apparent phenotype of the knockout of either Nck1 or Nck2 in mice suggests in vivo functional 

redundancy. However, early embryonic lethality of the double Nck knockout embryos at day E9.5 

revealed an essential role for Nck during embryogenesis (Bladt et al, 2003). Even though the exact 

cause of lethality is unknown, Nck double knockout embryos failed to undergo chorion-allantoic 

fusion and axial rotation, as well as closure of cephalic neural folds, suggesting important defects 

in actin reorganization in these embryos.  

1.6.3.2  Nck and actin cytoskeletal remodeling 

A wide variety of Nck SH3 binding partners are involved in actin cytoskeletal dynamics 

(Figure 1.16), in agreement with Nck regulating this process. Indeed, Nck is well-known for its 

role in linking activated plasma membrane receptors with or without protein tyrosine kinase 

activity to effector proteins regulating actin polymerization associated with cytoskeletal 
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remodeling. In fact, through its SH3 domains Nck interacts with WASP (Wiskott-Aldrich 

syndrome protein) (Rivero-Lezcano et al, 1995), WIP (Wiskott-Aldrich syndrome protein-

interacting protein) (Anton et al, 1998), Pak (Hing et al, 1999), and guanine nucleotide exchange 

factors (such as Trio and Vav) (Pauker & Barda-Saad, 2011) to control cytoskeletal rearrangement 

in response to a wide variety of external stimuli such as growth factors, stress conditions and 

extracellular matrix (Figure 1.17). Through these interactions, Nck is implicated in a wide variety 

of actin-based cellular events and some of them will be discussed below.  

1.6.3.2.1  Cell migration 

Reorganization of the cytoskeleton is the basis for morphological and functional changes 

inducing cell migration (Friedl & Wolf, 2010). Cell migration involves a number of steps which 

include establishing a front-rear axis polarity, cycling of membrane protrusions, followed by 

adhesion to surface, forward propulsion then disengagement of the rear end of the cell 

(Lauffenburger & Horwitz, 1996). Actin polymerization requires the activation of actin-related 

proteins 2 and 3 (Arp2/3) complex (Higgs & Pollard, 1999) under the control of the WASP family 

proteins (WASP, N-WASP, WAVE and WASH)  (Welch & Mullins, 2002; Legg et al, 2007). 

Activation of WASP proteins is achieved by the small Rho GTPase Cdc42 in collaboration with 

the membrane phospholipid PIP2 (Egile et al, 1999; Higgs & Pollard, 1999; Prehoda et al, 2000; 

Rohatgi et al, 2000). The role of Nck in this process is to recruit WASP at the plasma membrane 

level in close proximity of Cdc42 and PIP2. Therefore, Nck cooperates to achieve WASP 

activation and stimulation of Arp2/3-dependent actin polymerization (Rohatgi et al, 2001; 

Tomasevic et al, 2007). Indeed artificial clustering of Nck SH3 domains at the plasma membrane 

led to localized actin polymerization (Rivera et al, 2004), through a mechanism involving 
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phosphoinositides and small Rho GTPases Cdc42 and Rac1 in mediating WASP- and N-WASP-

activation of Arp2/3 complex (Tomasevic et al, 2007; Rivera et al, 2009). In agreement, Nck was 

shown to be essential for migration and establishing directionality of endothelial cells by 

maintaining the front-rear axis of polarity and formation of membrane protrusions and adhesion 

turnover by activating the small Rho GTPases Cdc42 and Rac1 (Chaki et al, 2013), further 

contributing to our understanding of the mechanisms by which Nck coordinates cytoskeletal 

dynamics.  

1.6.3.2.2  Axonal guidance 

Axonal guidance is a process during neural development by which neurons through their 

axon precisely reach the right target. Growing axons rely on sensorimotor structures at their 

leading edge called growth cones (Letourneau & Cypher, 1991; Letourneau et al, 1992). Growth 

cones direct axon projections based on signal transduction from extracellular cues to changes in 

actin cytoskeletal dynamics (Tanaka & Sabry, 1995). A well-known example of axonal guidance 

is the development of Drosophila melanogaster eye structure. Each unit of the Drosophila adult 

eye contains 8 photoreceptor neurons called R cells, each of which sends an axonal projection 

towards glial cells during the development of the eye structure at the larval/pupal stages. One of 

the most powerful genetic systems to identify essential components of axonal guidance was the 

study of mutations impairing R cell axonal projection in the Drosophila eye. Using this approach, 

Dock, the Nck orthologue, was found to be required for photoreceptor R cell axonal guidance 

based on the finding that mutations in Dock resulted in defects of R cell projection and targeting 

patterns (Garrity et al, 1996). In addition, Dock was detected at the growth cone of R cells (Garrity 

et al, 1996) and expression of wild-type human Nck in Dock mutants in Drosophila rescued the 
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defects in R cell projections (Rao & Zipursky, 1998), emphasizing the importance of Nck in 

linking growth cone receptor signaling to the actin cytoskeletal changes leading to directional 

guidance of R cell projections. Mutagenesis analysis also identified Nck domains required for 

proper axonal guidance in R cells. Through expression of different Nck proteins harboring specific 

non-functional SH domain mutations, it was found that only the 2nd SH3 domain (SH3.2) was 

required for R cell growth cone connectivity restoration. Other domains, including the SH2 were 

redundant and dispensable, although required for other processes such as fiber pattern formation 

in the inner optic ganglia (Rao & Zipursky, 1998). Furthermore, studies performed to identify 

signaling mechanisms implicated in axonal guidance involved Drosophila Pak in this process 

(Hing et al, 1999). Pak not only colocalized at the growth cone with Dock, but directly interacts 

with Dock SH3.2 domain through its N-terminal PxxP motif (Hing et al, 1999). In agreement with 

a functional relevance for the Dock-Pak interaction in Drosophila eye development, loss of Pak in 

R cells, like Dock mutations, resulted in normal axogenesis and extension of R cell axons into the 

brain, but growth cones failed to establish connectivity with their correct targets (Hing et al, 1999). 

Mechanistically, Pak comprises of a Ser/Thr kinase domain that gets activated by binding through 

its CRIB (Cdc42- and Rac-interacting binding) domain to Rho family GTPases Rac1 or/and Ccd42 

(Manser et al, 1994; Manser et al, 1997; Sells & Chernoff, 1997). In addition, Pak constitutively 

binds to Pix (Pak-interacting exchange factor), a guanine nucleotide exchange factor for 

Rac/Cdc42 (Manser et al, 1998). Therefore, Dock binding to activated guidance receptor leads to 

the recruitment of the Pak/Pix complex at the growth cone plasma membrane, where by interacting 

with and activating Rac/Cdc42, results in activation of Pak and associated actin reorganization 

mediating axonal guidance (Hing et al, 1999).  
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Through its SH2 domain, Dock associates with at least three axonal guidance receptors, 

including the fly ortholog of human insulin receptor (InR) (Song et al, 2003), Down syndrome cell 

adhesion molecule (DSCAM) (Schmucker et al, 2000), and Repulsive guidance receptor 

Roundabout (Robo) (Fan X et al, 2003) and through it SH3 domains, it constitutively interacts 

with the netrin receptor DCC (Deleted in Colorectal Cancer) (Li et al, 2002). Dock not only 

propagates signal transduction from cell surface receptors to intracellular effector proteins, but it 

also controls signal intensity and duration. By recruiting the non-receptor protein tyrosine 

phosphatase PTP61F (homolog of human PTP1B), Dock modulates InR signaling in R cells (Wu 

et al, 2011). Indeed, compound eye overgrowth resulting from InR overexpression in Drosophila 

was abrogated by co-expressing Dock and PTP61F. Mechanistically, it was shown that Dock, by 

recruiting PTP61F to the InR, facilitates InR dephosphorylation, thus tightly regulates InR 

signaling (Wu et al, 2011). On the other hand, Dock was also detected in motor neurons axon 

growth cones in Drosophila embryo, and loss of Dock during axonogenesis delays synaptic 

formation by RP3 motor neurons, thus inducing central nervous system defects (Desai et al, 1999). 

The important role of Nck in motor neuron function has also been demonstrated in mice, where 

Nck-deficient mice displayed locomoter defects characterized by a hopping gait caused by 

multiple axon guidance defects (Fawcett et al, 2007). 

1.6.3.2.3  Pathogen infection 

Nck is implicated in pathogen infection through its role in regulating actin polymerization 

(Gruenheid et al, 2001; Rietdorf et al, 2001). Enteropathogenic Esherichia coli (EPEC), which is 

responsible for severe infant diarrhea (Chen & Frankel, 2005), following adhesion to intestinal 

enterocytes (Moon et al, 1983), introduces its bacterial protein Tir (translocated intimin receptor) 
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into the host cell membrane (Kenny et al, 1997). This allows binding of intimin (bacterial outer 

membrane protein) to Tir, inducing Tir phosphorylation on tyrosine residues by host cell protein 

tyrosine kinases (Luo et al, 2000). Gruenheid et al. demonstrated that Nck directly binds activated 

Tir phosphorylated on pY474 through its SH2 domain, mediating through its SH3 domains the 

recruitment and activation of N-WASP, consequently activating the Arp2/3 complex (Gruenheid 

et al, 2001). These events initiate actin polymerization and pedestal formation beneath adherent 

bacteria causing the disease. The role of Nck in this process was further confirmed by showing 

that Nck null host cells are resistant to Tir-induced actin polymerization (Gruenheid et al, 2001). 

Similarly, Nck is involved in Vaccinia virus infection (Frischknecht et al, 1999) . Indeed, following 

intracellular replication, Vaccinia virus triggers the expression of the viral envelope protein A36R, 

which once phosphorylated on Y112 recruits Nck through its SH2 domain. In host cells, this leads 

to actin polymerization and formation of motile plasma membrane projections beneath the virus, 

again through Nck-dependent N-WASP and Arp2/3 activation  (Frischknecht et al, 1999). 

1.6.3.2.4  Nephrin signal transduction in podocytes  

Blood filtration by the kidney depends on the integrity of the glomerular filtration barrier, 

a specialized blood filtration interface consisting of three major components: the fenestrated 

endothelial cells, the glomerular basement membrane (GBM), and the podocytes (Kriz, 2007). 

Podocytes are highly differentiated and specialized epithelial cells, which comprise the outer layer 

of the kidney’s blood filtration barrier. Their unique structure results from three structurally and 

functionally different regions: the main cell body, the major processes and the foot processes (FPs) 

(Mundel & Kriz, 1995). Major processes extend from the main body and split into FPs, which 

compose a network of interdigitating actin-rich extensions connected to other FPs from 
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neighboring podocytes via the slit diaphragm (SD), a specialized multiprotein intercellular 

junction (Mundel & Kriz, 1995). One key component of the slit diaphragm is a transmembrane 

adhesion protein called Nephrin (Ruotsalainen et al, 1999). Member of the immunoglobulin (Ig) 

superfamily, nephrin is critical for formation and maintenance of foot processes in podocytes 

(Ruotsalainen et al, 2000). Mutations in the nephrin gene, NPHS1, result in failure of FPs 

morphogenesis, and development of congenital nephrotic syndrome of the Finnish type (Kestila et 

al, 1998). Through its extracellular IgG domains, Nephrin creates cis and trans-hemophilic 

interactions with other nephrin molecules on adjacent podocytes, thereby forming the tight 

junctions of the slit diaphragm (Barletta et al, 2003; Khoshnoodi et al, 2003). Nephrin transduction 

of extracellular signals from SD to intracellular regulation of podocyte actin dynamics depends on 

its phosphorylation on tyrosine residues in its cytoplasmic domain by members of the Src family 

kinases (SFKs) (Verma et al, 2003). In two independent studies, a critical role for Nck in nephrin 

activation inducing actin remodeling and foot processes formation was uncovered (Jones et al, 

2006; Verma et al, 2006). Indeed, podocyte-specific deletion of Nck2 in Nck1-/- mice was shown 

to prevent formation of foot processes and led to development of nephrotic range proteinuria 

(Jones et al, 2006). It was shown that upon phosphorylation of nephrin on specific tyrosine 

residues, Nck binds nephrin through its SH2 domain and induces actin reorganization (Jones et al, 

2006; Verma et al, 2006). Interestingly, three nephrin phosphorylated tyrosine residues, Y1176, 

Y1193 and Y1217 are contained within the pYDXV sequence matching the perfect consensus binding 

motif for the SH2 domain of Nck (Jones et al, 2006; Li et al, 2006; Verma et al, 2006; Blasutig et 

al, 2008). Then, through its SH3 domains, Nck was found to bind N-WASP, leading to Arp2/3 

activation and actin cytoskeletal rearrangement (Lu et al, 1997; Rohatgi et al, 2001). In addition, 

the nephrin-Nck-Pak signaling cascade was suggested to contribute to preserving the 
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morphological characteristics of podocytes (Zhu et al, 2010). Mechanistically, Nck binding to 

phosphotyrosine residues on nephrin allows recruitment of Pak to nephrin and Pak’s subsequent 

phosphorylation (Zhu et al, 2010). Further confirming the role of Nck in maintaining the 

glomerular filtration barrier, loss of Nck in adult podocytes in mice led to foot processes abnormal 

morphology (Jones et al, 2009). Finally, Nck was recently reported to also play a role in nephrin 

tyrosine phosphorylation (New et al, 2013). Indeed, Nck1 and Nck2 curiously promote nephrin 

phosphorylation in vitro and this process depends on functional Nck SH3 domains. Supporting 

this, specific loss of Nck in mice podocytes, in which podocyte injury occurs, displays loss of 

nephrin tyrosine phosphorylation (Jones et al, 2009). 

1.6.3.2.5  T cell receptor and FasL signaling 

T cell receptor (TCR) signaling in T lymphocytes involves activation of signaling 

mechanisms targeting actin cytoskeletal reorganization. Nck has been reported to be recruited by 

the activated TCR complex, but its role in mediating TCR signaling and function is controversial 

(Lettau et al, 2009). T cell receptor signaling relies on activation of the protein tyrosine kinases 

Fyn, Lck and Zap-70, which induce the formation of molecular complexes implicating adaptor 

proteins such as Nck (Burkhardt et al, 2008). Nck is involved in TCR signaling regulating actin 

dynamics through its interaction with CD3ε, a component of the TCR complex, and regulators of 

actin cytoskeleton like the guanine exchange factor Vav and the adaptor protein SLP-76 

(Wunderlich et al, 1999; Gil et al, 2002; Zeng et al, 2003; Takeuchi et al, 2008; Barda-Saad et al, 

2010; Borroto et al, 2013). On the other hand, Nck regulates actin cytoskeletal organization in T 

cells by interacting with TSAd (T cell specific adaptor), which promotes Nck interaction with Lck 

and SLP-76 (Hem et al, 2015). Whether interaction of Nck with CD3ε, TSAd or both represents 
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the mechanism whereby TCR activation induces actin polymerization events needs further 

investigation. However, it is still believed that upon TCR stimulation, Nck modulates actin 

polymerization by recruiting WASP to molecular activator complexes (Zeng et al, 2003; Barda-

Saad et al, 2010). Finally, Nck was recently implicated in survival and differentiation of T cells as 

well as maintaining the threshold for TCR responsiveness (Lu et al, 2015). 

Nck also functionally interacts with the death factor Fas ligand (FasL), a type II 

transmembrane protein member of the tumor necrosis factors (TNF) family (Suda et al, 1993). In 

unstimulated T cells and natural killer cells, FasL is kept in special lysosomal vesicles to prevent 

uncontrolled activation. Upon recognition of a target cell expressing FasL receptor (CD95), FasL-

containing lysosomal vesicles translocate to the cell-cell interaction site forming the 

immunological synapse, where FasL binds CD95 (Lettau et al, 2007; Lettau et al, 2008). Nck, by 

interacting with a proline-rich motif within the FasL cytoplasmic segment, recruits FasL-

containing vesicles to cell-cell contact sites through actin-based modulation (Wenzel et al, 2001; 

Lettau et al, 2006).   

1.6.3.3  Nck and cellular proliferation 

The role of Nck in proliferation has been established downstream of EGFR and PDGFR 

(Chou et al, 1992; Li et al, 1992; Meisenhelder & Hunter, 1992; Park & Rhee, 1992). Nck has also 

been implicated in oncogenesis where overexpression of Nck in NIH3T3 cells altered cell 

morphology and induced cell transformation. Indeed, it was demonstrated that Nck overexpression 

by 5 fold of endogenous levels enhanced formation of foci in NIH3T3 cells (Chou et al, 1992; Li 

et al, 1992). It was also shown that Nck2 was overexpressed in human metastatic melanoma 
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compared to non-metastatic melanoma, further suggesting a role for Nck in human cancer (de Wit 

et al, 2005). Furthermore, human primary melanoma cells overexpressing Nck2 displayed 

enhanced cell proliferation, migration and invasion in vitro, as well increased melanoma-derived 

tumor growths in vivo (Labelle-Cote et al, 2011).  

In addition, Nck has been implicated in B cell receptor (BCR)-mediated proliferation and 

B cell survival, but in contrast to Nck’s effects in T cells, Nck appears to modulate B cell processes 

through actin-independent mechanisms (Castello et al, 2013). Indeed, Nck is recruited to the BCR 

complex by binding to the Src kinase Lyn, which associates with the immunoglobulin α subunits 

of the activated BCR complex through the non-ITAM (immunoreceptor tyrosine-based activation 

motif) phosphorylated pY204. This results in recruitment of BCAP (B-cell adapter for PI3K) by 

Nck in the BCR complex and activation of PI3K signaling in B cells, thereby promoting B cell 

proliferation and survival (Castello et al, 2013). 

1.6.3.4  Nck and translation 

Our laboratory was the first to uncover a role for Nck in modulating protein translation 

through its direct interaction with the β subunit of eIF2 (Kebache et al, 2002; Kebache et al, 2004; 

Cardin et al, 2007). Indeed, we showed that Nck1 overexpression enhances cap-dependent and       

-independent protein translation and in parallel, Nck is detected in polysomes-enriched fractions. 

Mechanistically, we uncovered that Nck assembles a holophosphatase complex containing the 

Ser/Thr protein phosphatase PP1c and the adaptor protein CReP (constitutive repressor of eIF2α 

phosphorylation), which targets PP1c to eIF2 (Figure 1.18) (Latreille & Larose, 2006). Therefore, 

we proposed that Nck as a component of the CReP/PP1c holophosphatase complex contributes to 
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maintain eIF2α hypo-phosphorylated, thereby favoring translation. In agreement with a role for 

Nck in eIF2α phosphorylation, we reported that Nck deficiency in MEFs increases basal levels of 

eIF2αSer51 phosphorylation and signaling (Latreille & Larose, 2006). In addition, we discovered 

that overexpression of Nck1 selectively limits eIF2αSer51 phosphorylation by a subset of eIF2α-

kinases, including PERK, HRI and PKR, but not GCN2 (Kebache et al, 2004; Cardin et al, 2007). 

Although the exact mechanism by which Nck1 modulates only a subset of eIF2α-kinases was not 

elucidated at that time, these findings suggest an additional mechanism besides mediating 

eIF2αSer51 dephosphorylation. Otherwise, the effects of Nck would have been non selective 

towards eIF2α kinases. In agreement, a few years later we demonstrated that Nck1 overexpression 

reduced PKR-mediated eIF2αSer51 phosphorylation by directly interacting with and limiting PKR 

activation (Cardin & Larose, 2008). However, whether this mechanism also accounts for Nck 

modulation of PERK- and HRI-induced eIF2αSer51 phosphorylation, and to what extent GCN2 

differs to escape Nck1 regulation still remain to be addressed. 

Nonetheless, further supporting a role for Nck in regulating translation, it was recently 

reported that Nck1 directly assembles a cytoplasmic capping complex including a capping enzyme 

(CE) and a 5’kinase involved in converting a 5'- end monophosphate mRNA to a 5' diphosphate 

for subsequent addition of guanylic acid (GMP) by the CE (Mukherjee et al, 2014). Therefore, the 

impact of Nck on protein translation can be through a combined modulation of eIF2αSer51 

phosphorylation and cytoplasmic capping. 
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1.6.3.5  Nck and the UPR 

As reported above, our laboratory uncovered that Nck1 modulates ER stress-induced 

PERK-dependent eIF2αSer51 phosphorylation while it also impacts ER stress-induced cell death, 

thus implicating Nck in the UPR (Kebache et al, 2004; Latreille & Larose, 2006). In addition, Nck 

was also implicated in IRE1α signaling, where Nck1 was shown to negatively regulate IRE1α-

mediated activation of Erk-1 in an in vitro reconstitution system (Nguyen et al, 2004). 

Interestingly, in this study Nck was found to directly associate with IRE1α through two of its SH3 

domains in unstimulated conditions, thereby potentially preventing IRE1α signaling leakage. 

However, in response to IRE1α activation, Nck was proposed to dissociate from IRE1α, probably 

through IRE1α conformational changes allowing IRE1α activation and signaling targeting Erk-1 

activation (Nguyen et al, 2004).   

Further evidence for a role of Nck1 in modulating the UPR was obtained from high fat diet 

fed Nck1-/- mice, which were protected against obesity-induced glucose intolerance and insulin 

resistance without a change in HFD-induced body weight gain (Latreille et al, 2011). In agreement 

with others (Ozcan et al, 2004), in HFD-induced obesity in wild-type mice, characterized by 

glucose intolerance and peripheral insulin resistance, we observed signs of ER stress in insulin 

target tissues such as liver, adipose tissue and to some extent skeletal muscle. ER stress was defined 

by hyperactivation of IRE1α and PERK, as well as their respective downstream signaling markers 

(pJNK, XBP1s, peIF2αSer51, ATF4, CHOP) in these tissues. In these conditions, sustained 

activation of the IRE1α-JNK pathway, through direct JNK-mediated phosphorylation of IRS-1 at 

Ser307, was linked to insulin resistance (Ozcan et al, 2004). Interestingly, Nck1-/- mice fed a HFD 

were less glucose intolerant and more insulin sensitive than obese wild-type mice. In addition 
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activation and signaling from IRE1α and PERK were attenuated in liver of HFD Nck1-/- mice, 

correlating with enhanced hepatic insulin signaling and improved glucose homeostasis. 

Accordingly, correlating with a role for Nck1 in activation of the UPR, we demonstrated that 

transient silencing of Nck1 in human hepatocellular carcinoma HepG2 cells reduced ER stress-

induced IRE1α activation and signaling while promoting insulin signaling (Latreille et al, 2011). 

Furthermore, our group recently obtained strong evidence that the effects of silencing Nck1 on 

IRE1α in HepG2 cells might be mediated through downregulation of the non-receptor protein 

tyrosine phosphatase PTP1B, which is required for optimal IRE1α activation and signaling (Hui, 

L., unpublished data).  

1.6.3.6  Nck and insulin signaling 

Nck was implicated in insulin signaling by studies showing that through its SH2 domain, 

Nck associates with IRS1 phosphorylated on Y147 (pY147) in insulin-stimulated cells (Lee et al, 

1993). This binding site on IRS1 was found to be Nck-specific among the SH2 domain-containing 

proteins known to bind tyrosine phosphorylated IRS1 (Grb2, Shc, p85 of PI3K). In contrast, Nck2 

was also reported to directly bind IRS1, but in a phosphotyrosine-independent manner involving 

two out of the three SH3 domains of Nck2 (Tu et al, 1998; Tu et al, 2001). Although these studies 

provide evidence that Nck could play a role in modulating insulin signaling by interacting with 

IRS proteins, the biological relevance of these Nck-dependent interactions with IRS proteins still 

await to be demonstrated. Nevertheless, we provided strong evidence that Nck1 is implicated in 

limiting insulin signaling (Li et al, 2014a). In fact, we demonstrated that silencing Nck1 in HepG2 

cells and Nck1 deficiency in primary hepatocytes leads to enhanced basal and insulin-induced 

PI3K/Akt signaling, associated with FOXO1 nuclear exclusion and increased glycogen synthase 



 

67 

 

activity. Mechanistically, we proposed that loss of Nck1 in HepG2 cells and liver enhances insulin 

signaling by downregulating the non-receptor protein tyrosine phosphatase PTP1B, a known 

negative regulator of growth factor signaling including insulin (Li et al, 2014a).  
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1.7  Figures for Chapter 1  

 

Figure 1. 1 Regulation of glucose homeostasis by insulin and glucagon.  

When blood glucose levels increase, the pancreas releases insulin, which acts on peripheral tissues 

to induce glucose uptake and storage, as well as inhibit hepatic glucose production and release. On 

the other hand, a decrease in blood glucose levels induces release of glucagon from the pancreas, 

which triggers hepatic glucose production through breakdown of glycogen and gluconeogenesis, 

along with breakdown of fat in adipose tissue to free fatty acids, all contributing to an increase of 

glucose and free fatty acids in the blood. 
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Figure 1. 2 Organization of the pancreas.  

The pancreas is made up of exocrine tissue, which consists of acinar, centroacinar and ductal cells, 

and endocrine tissue composed of different types of cells (α, β, δ, ε, and pancreatic polypeptide 

(PP) cells) organized in structures called islets of Langerhans. Adapted from (Efrat & Russ, 2012).  
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Figure 1. 3 Insulin structure and processing.  

(A) Insulin is synthesized as a precursor polypeptide called preproinsulin composed of a signal 

peptide, insulin chains A and B and a C-peptide. (B) In the ER, the signal peptide is cleaved to 

produce proinsulin, and disulfide bonds are formed between chains A and B, and within chain A. 

(C) Proinsulin is transported to the TGN and gets packaged into vesicles, where it is finally cleaved 

to produce the C-peptide and mature insulin consisting of chains A and B.  
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Figure 1. 4 Insulin secretion pattern.  

Pancreatic β cells secrete insulin in a biphasic manner in response to nutrient stimulation. The first 

phase of secretion corresponds to an early and quick spike in release of a population of insulin 

granules known as readily releasable pool (depicted in green). The second phase of insulin 

secretion corresponds to a lower level but more continuous release of a population of insulin 

granules that requires synthesis of insulin and granule mobilization to the plasma membrane 

(depicted in red).  Adapted from (Rorsman & Renstrom, 2003). 
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Figure 1. 5 Insulin granule trafficking.  

(A) Processes involved in nutrient-driven insulin granule mobilization and exocytosis: Glucose 

increases intracellular Ca2+ levels in pancreatic β cells leading to fusion of pre-docked insulin 

granules with the plasma membrane (1). Glucose metabolism also stimulates actin filament 

remodeling to allow mobilization of the reserve pool to reach the plasma membrane, where 

VAMP2 expressed on insulin granules can interact with plasma membrane SNAREs Syntaxin and 

SNAP25 (2). In addition, glucose stimulates modulation of microtubule machinery in order to 

facilitate transport of insulin granules to the cortical actin filaments (3). (B) Mechanisms involved 

in actin filament remodeling: upon glucose stimulation, activated small Rho GTPase Cdc42 

recruits Pak1 and activates it, which prompts activation of Raf/MEK/ERK signaling cascade. (A) 

adapted from (Wang & Thurmond, 2009) and B from (Kalwat et al, 2013). 
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Figure 1. 6 Insulin granule exocytosis.  

Secretory granule (SG) exocytosis includes tethering, priming and then fusing of the granules with 

the plasma membrane to release content. (A) Tethering of insulin granules involves formation of 

a multi-subunit exocyst complex (including Sec5) that allows tethering of the granules to the 

plasma membrane, and Munc18 binds to the closed form of Syntaxin. (B) Priming requires the 

assistance of Munc13 to change Syntaxin conformation to an open form, which allows the 

formation of the SNARE complex (Syntaxin-VAMP-SNAP25). The SNARE complex also binds 

Ca2+ channels to allow optimal response upon Ca2+ entry into cells. (C) Fully primed granules are 

now held close to the plasma membrane by the interaction of the SNARE complex. (D) Fusion is 

stimulated when Synaptotagmin detects Ca2+ influx, becomes activated and stimulates a 

conformational change of the SNARE complex. Figure adapted from (Gaisano, 2014). 
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Figure 1. 7 Glucose-stimulated insulin secretion.  

Pancreatic β cells express GLUT2 transporter protein that facilitates entry of glucose into β cells. 

Upon glucose metabolism through glycolysis and oxidative phosphorylation (steps 1 and 2), ATP 

levels increase inducing closure of ATP-sensitive potassium channels (KATP) (step 3). Closing of 

the KATP channels stimulates opening of calcium channels due to plasma membrane depolarization 

(step 4). Ca2+ entry into cells stimulates fusion of insulin granules with the plasma membrane, 

thereby releasing insulin into the extracellular environment (step 5). Additional coupling factors 

derived from the cooperative action of glucose and fatty acid metabolism also contribute to insulin 

secretion (step 6). Figure taken from (Mancini & Poitout, 2013). 
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Figure 1. 8 Insulin signaling pathways. 

Binding of insulin to the insulin receptor (IR) induces IR activation through a conformational 

change that triggers autophosphorylation of the IR on tyrosine residues. IR activation triggers 

different signaling pathway, the most important being the IRS-PI3K-Akt, as well as the IRS- or 

Shc-Ras-MAPK. Depicted on the right side, activated IR recruits and phosphorylates IRS proteins 

on tyrosine residues, creating docking sites for effectors proteins. Interaction of tyrosine 

phosphorylated IRS with the regulatory p85 subunit of PI3K leads to activation of the p110 

catalytic subunit, which generates PIP3 from PIP2. PIP3 recruits PDK1 and Akt at the plasma 

membrane, resulting in PDK1-mediated activation of Akt through phosphorylation on Thr308, and 

further activation of Akt is achieved by the mTORC2 complex which phosphorylates Akt on 
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Ser473. Akt then results in mTORC1 complex formation and activation through inhibition of 

TSC1/2 complex activity. In summary, Akt activation triggers processes involved in protein 

synthesis and growth. On the other hand, IR activation also recruits the adaptor protein Shc, which 

gets phosphorylated on tyrosine residues, and creates binding sites for the Grb2-Sos complex. 

Upon recruitment and binding, Grb2-Sos binds and activates Ras, which then initiates a cascade 

of activation/phosphorylation events starting at Raf1, and going through MEK and ERK proteins. 

This pathway activates cell proliferation processes. Figure adapted from (Jung & Suh, 2014). 
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Figure 1. 9 Insulin signaling in peripheral tissue.  

IR activation upon insulin binding allows recruitment and phosphorylation of IRS proteins on 

tyrosine residues, creating docking sites for the regulatory p85 subunit of PI3K, which activates 

PI3K. PIP3, generated by PI3K recruits PDK1 and Akt. Akt is activated by PDK1 and mTORC2 

through phosphorylation. Only two Akt targets are depicted in this figure: Akt phosphorylates and 

inactivates GSK3, releasing its inhibition of glycogen synthase, thus increases glycogen formation. 

Akt also phosphorylates and inactivates AS160, thus activating Rab, a small GTPase involved in 

translocation of GLUT4 to the plasma membrane and glucose uptake. Adapted from 

(Wojtaszewski & Richter, 2006). 
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Figure 1. 10 Unfolded protein response (UPR) signaling.  

Accumulation of improperly folded proteins induces the activation of ER stress sensors 

transmembrane proteins: IRE1α (a), PERK (b) and ATF6 (c). Activation of these proteins 

assembles a signaling network resulting in attenuation of global protein synthesis and activation 

of a wide selection of UPR target genes involved in ER protein folding and quality control 

processes. IRE1α activation leads to mRNA XBP1 splicing, selective mRNA degradation (RIDD) 

and JNK activation. PERK induces phosphorylation of eIF2αSer51, associated with attenuation of 

general protein synthesis, and phosphorylation of Nrf2 to activate antioxidant gene expression. 

ATF6 activation involves its translocation to the Golgi, where it gets processed to release an active 

ATF6 transcription factor that translocates to the nucleus and induces gene expression. Adapted 

from (Hetz et al, 2013). 
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Figure 1. 11 PERK structure.  

(A) PERK monomer structure consists of an N-terminal luminal domain, which harbors a BiP 

binding site (pink rectangle), a transmembrane (TM) domain, and a cytosolic domain containing a 

protein kinase domain. (B) Model representation of dimer and tetramer formation of PERK with 

different phosphorylation efficiencies that could also represent different PERK activation states. 

Adapted from (Hetz et al, 2011) for (A), and (Carrara et al, 2015) for (B). 

  



 

80 

 

 

Figure 1. 12 eIF2α regulation.  

eIF2 activity is regulated by guanine nucleotide exchange and phosphorylation. Active eIF2-GTP-

bound structure forms a ternary complex with the methionine initiator tRNA (Met-tRNA) and the 

small 40S ribosomal subunit (not shown), in order to initiate translation. Once this step is 

completed, eIF2-GTP is hydrolyzed to eIF2-GDP, which could undergo a novel cycle of activation 

by interacting with the guanine nucleotide exchange complex eIF2B. In ER stress conditions, 

eIF2α phosphorylated on Ser51 by PERK binds with higher affinity to eIF2B and sequesters eIF2B, 

thereby decreasing the availability of active eIF2-GTP. Figure adapted from (Gebauer & Hentze, 

2004). 

  



 

81 

 

 

Figure 1. 13 Translational regulation of ATF4.  

ATF4 mRNA translation is regulated by two upstream open reading frames (uORFs) in its 5’ 

untranslated region (UTR) (purple rectangles). Under physiological conditions, the ternary 

complex of eIF2-tRNA-40S is present abundantly allowing for ribosomes to initiate translation at 

uORF1 (AUG1). Because the ternary complex is highly available, the ribosomes remain associated 

to the mRNA and often initiate back at uORF2 (AUG2), an inhibitory site of ATF4 translation due 

to its overlapping with the coding region of ATF4 (green rectangle), thereby suppressing ATF4 

translation. However, under ER stress leading to eIF2αSer51 phosphorylation, availability of the 

ternary complex is low, allowing the ribosomes to scan through the 5’ untranslated region and skip 

uORF2 start codon (AUG2), thus enabling translation of ATF4 mRNA at uORF3 (AUG3). Taken 

from (Holcik & Sonenberg, 2005). 
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Figure 1. 14 ATF4 direct and indirect activation of autophagy.  

ATF4 activates autophagy through either direct upregulation of autophagy genes or induction of 

Sesn2, which contributes to autophagy by activating AMPK. Activated AMPK attenuates 

mTORC1 activity by activating TSC1/2 heterodimer and inhibiting the mTOR subunit Raptor. 

Attenuation of mTORC1 activity releases the inhibition imposed on autophagy. In addition, 

AMPK acts directly on autophagy through activating phosphorylation of autophagy initiating 

kinase (Ulk1). Figure adapted from (Kim et al, 2011). 
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Figure 1. 15 Nrf2 regulation.  

Nrf2 is regulated by the Keap1-Cullin 3 complex. Keap1 associates with Cullin 3 (Cul 3) through 

its N-terminal BTB domain. On the other side, Keap1 interacts through its C-terminal Kelch motif 

to either ETGE or DLG motifs found in the Neh2 domain of Nrf2. Under basal conditions, 

formation of the Cul3-Keap1-Nrf2 complex leads to ubiquitination of Nrf2 by the action of Cul3 

E3 ligase, and subsequent degradation of Nrf2. Under oxidative and electrophilic stress, cysteine 

residues on Keap1 BTB and intervening region (IVR) domains are attacked causing a 

conformational change leading to disruption of the Keap1-Nrf2 interaction, thus allowing Nrf2 to 

escape degradation and undergo translocation to the nucleus in order to heterodimerize with Maf 

(a transcription factor) and bind to antioxidant response elements, thereby activating antioxidant 

gene expression. Adapted from (Kansanen et al, 2012). 
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Figure 1. 16 Nck linear structure and identified binding partners.  

Nck is composed of 3 N-terminal SH3 domains and 1 C-terminal SH2 domain. Known Nck-

binding proteins are reported under their corresponding domain of interaction. * (Li et al, 1992), 

** (Hake et al, 2008). Figure adapted from (Labelle-Cote & Larose, 2011) and updated from 

recent literature. 
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Figure 1. 17 Nck mediates membrane receptor signaling to effector proteins regulating 

actin cytoskeletal rearrangement.  

Schematic representation of some of the molecular complexes associated with Nck and involved 

in regulation of actin cytoskeletal rearrangement. (1) Represents adherens junction formation. 

Cadherin activation upon intercellular contact allows Src kinase to phosphorylate cortactin on 

tyrosine residues. Nck binds through its SH2 domain to cortactin, and recruits to the complex 

effector proteins involved in actin rearrangement such as WIP and WASP. (2) Represents 

invadopodia formation. Upon integrin activation, Src phosphorylates Tks5. This induces Tks5 

binding to Nck, which then recruits actin machinery including WASP and Arp2/3. (3) Represents 

adhesion complex forming downstream of integrin, including activation of focal adhesion kinase 

(FAK) that binds Nck. (4) Lamellipodia formation requires actin cytoskeleton reorganization. This 
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involves Rac1 GTPase, GEF Dock1 and Elmo adaptor protein complex formation, which 

contributes to the activation of Rac1. Nck2, by associating with FAK and Dock1, helps to direct 

the molecular complex Dock1-Elmo near Rac1 to promote actin polymerization. Figure adapted 

from (Labelle-Cote & Larose, 2011).  
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Figure 1. 18 Nck modulation of eIF2α downstream signaling and protein translation.  

Nck bound to the β subunit of eIF2 recruits a holophosphatase complex containing the catalytic 

subunit of Ser/Thr protein phosphatase 1 (PP1) and the PP1c adaptor protein CReP, thereby 

regulating dephosphorylation of eIF2αSer51, downstream signaling and protein translation. 

Adapted from (Latreille & Larose, 2006). 
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1.8  Rationale and Objectives of the study 

Our laboratory previously demonstrated that Nck1 modulates ER stress-induced 

phosphorylation of eIF2αSer51 (Kebache et al, 2004). We also showed that genetic inactivation of 

Nck in mouse embryonic fibroblasts (MEFs) leads to spontaneous induction of eIF2αSer51 

phosphorylation and downstream signaling targets including ATF4 and GADD34, as well as 

impacts survival to prolonged ER stress (Latreille & Larose, 2006). Although this study provided 

an interesting mechanism underlying the regulation of eIF2αSer51 phosphorylation by Nck1 

(Latreille & Larose, 2006), it did not address whether Nck1 also modulates activity of PERK, the 

important eIF2α kinase contributing to the UPR activated upon ER stress and which is known to 

play a major role in regulating pancreatic β cell function in physiological and pathological 

conditions (Shi et al, 1998; Delepine et al, 2000; Harding et al, 2001). Therefore, the main 

objective of my study was to address whether Nck1 modulates PERK activity. Having determined 

that Nck1 regulates PERK activation, I further investigated the underlying mechanism and the 

effects of silencing Nck1 on pancreatic β cell function and survival to diabetes-related stresses. 

 

 

  



 

89 

 

2 CHAPTER 2. Interaction of Nck1 and PERK 

phosphorylated at Y561 negatively modulates PERK activity 

and PERK regulation of pancreatic β-cell proinsulin content 

Lama Yamani, Mathieu Latreille, and Louise Larose 

 

 

 

 

 

 

 

 

Reproduced with permission from Molecular Biology of the Cell.  2014, Vol. 25 (5), 702-711  
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2.1 Preface 

Previous work in Dr. Larose’s laboratory revealed that Nck1 interacts with eIF2β and 

regulates the phosphorylation of the eIF2α (Kebache 2002, 2004; Latreille, 2006). Interestingly, 

upon ER stress, PERK activity (as marked by pThr980), was decreased in Nck-/- MEFs with a 

rescued NCK1 expression compared to Nck-/- MEFs (Kebache et al, 2004). This suggested that 

Nck, in addition to its regulatory role of eIF2α phosphorylation modulates PERK activity. 

Therefore, I monitored PERK activity in Nck-/- MEFs under unstressed and ER stress conditions. 

I showed that genetic deletion of Nck enhanced PERK activity under ER stress conditions, as well 

as basal conditions. Based on these results, I investigated the mechanisms by which Nck regulates 

PERK. We revealed that Nck1 directly interacts with PERK through its SH2 domain on the PERK 

juxtamembrane domain, and identified pY561 PERK as the binding site, and that mutating this site 

to phe (F), a nonphosphorylatable residue, abolishes the interaction. To elucidate the role of pY561 

on PERK in vivo, I studied the interaction in a relevant biological system where PERK activity is 

essential. Based on that, I used mouse insulinoma pancreatic β cells MIN6. Increased PERK pY561 

levels in MIN6 cells delayed PERK activation upon ER stress. Similarly, we showed in vitro that 

Y561F PERK mutant was catalytically more active than wild-type PERK, indicating that the 

phosphorylation of PERK on Y561 limits PERK activity. Then, to study the role of Nck1 in MIN6 

cells and PERK activity, I stably expressed shRNA against Nck1, which efficiently reduced Nck1 

expression, and showed that PERK activity and signaling increased under basal conditions. In 

addition, I showed that Nck1 downregulation prompts pY561 dephosphorylation in MIN6 cells, 

which correlates with a faster activation of PERK. More importantly, Nck1 reduction in MIN6 

cells enhanced insulin levels in a PERK-dependent manner. The increase in insulin levels was 
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shown to be due to increased insulin synthesis. These findings also correlated with increased 

insulin content in isolated islets from Nck1-/- mice compared to wild-type counterparts.  This is the 

first study to report a role for Nck1 in pancreatic β cell function through regulation of PERK 

activity, and identifies a novel phosphorylated site on PERK as well as a PERK binding partner. 

2.2 Abstract 

PERK, the PKR-like endoplasmic reticulum (ER) kinase, is an ER transmembrane 

serine/threonine protein kinase activated during ER stress. In this study, we provide evidence that 

the Src-homology domain-containing adaptor Nck1 negatively regulates PERK. We show that Nck 

directly binds to phosphorylated Y561 in the PERK juxtamembrane domain through its SH2 

domain. We demonstrate that mutation of Y561 to a nonphosphorylatable residue (Y561F) 

promotes PERK activity, suggesting that PERK phosphorylation at Y561 (pY561PERK) negatively 

regulates PERK. In agreement, we show that pY561PERK delays PERK activation and signaling 

during ER stress. Compatible with a role for PERK in pancreatic β cells, we provide strong 

evidence that Nck1 contributes to PERK regulation of pancreatic β cell proteostasis. In fact, we 

demonstrated that down-regulation of Nck1 in mouse insulinoma MIN6 cells results in faster 

dephosphorylation of pY561PERK, which correlates with enhanced PERK activation, increased 

insulin biosynthesis, and PERK-dependent increase in proinsulin content. Furthermore, we report 

that pancreatic islets in whole-body Nck1-knockout mice contain more insulin than control 

littermates. Together our data strongly suggest that Nck1 negatively regulates PERK by interacting 

with PERK and protecting PERK from being dephosphorylated at its inhibitory site pY561 and in 

this way affects pancreatic β cell proinsulin biogenesis. 



 

92 

 

2.3 Introduction 

The endoplasmic reticulum (ER) is a subcellular organelle responsible for the synthesis, 

processing, and quality control of transmembrane and secretory proteins. Perturbation of ER 

homeostasis leads to accumulation of misfolded proteins and causes ER stress. This triggers the 

activation of three ER transmembrane proteins: inositol-requiring enzyme 1α (IRE1α), PKR-like 

endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6), which 

together initiate a cytoplasmic signaling network defined as the unfolded protein response (UPR) 

(Ron & Walter, 2007). The UPR encompasses a translational and transcriptional program that 

helps cells alleviate ER stress. However, chronic or irreversible ER stress initiates a UPR-mediated 

apoptotic pathway that induces cell death (Szegezdi et al, 2006).  

PERK, a type I ER transmembrane Ser/Thr protein kinase, is activated after dimerization 

and autophosphorylation induced by ER stress (Shi et al, 1998; Harding et al, 1999). Activated 

PERK phosphorylates the α-subunit of the eukaryotic initiation factor 2 (eIF2α) at Ser-51, which 

results in translation attenuation but paradoxically promotes translation of the activating 

transcription factor 4 (ATF4), which controls an important part of the UPR transcriptional program 

(Harding et al, 2000b; Vattem & Wek, 2004). Of interest, a role for PERK in pancreatic β cells 

was highlighted after the discovery of the Wolcott-Rallison syndrome (WRS), a neonatal/early 

infancy form of diabetes caused by mutations in the human PERK gene resulting in PERK loss of 

function (Delepine et al, 2000). Furthermore, PERK−/− mice, which phenocopy WRS dysfunctions, 

also display postnatal hyperglycemia, which was initially attributed to the loss of pancreatic β cell 

mass associated with a dramatic increase in β cell apoptosis (Harding et al, 2001; Zhang et al, 

2002a). However, it was later demonstrated that the loss of β cell mass in PERK−/− mice is not due 
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to apoptosis. It instead results from reduction in β cell proliferation and differentiation during the 

neonatal period, which impedes postnatal gain of pancreatic β cell mass (Zhang et al, 2006). 

Finally, conditional deletion of PERK in young adult or mature mice significantly increased β cell 

death, revealing that PERK also contributes to the maintenance of β cell function in adults. 

However, β cell proliferation was dramatically increased, highlighting that PERK regulates β cell 

function in adults through a different mechanism than that during early postnatal development 

(Gao et al, 2012). A direct role for PERK in β cell proliferation and proinsulin/insulin content was 

further supported by the fact that acute inhibition of PERK generated by adenoviral vector-

mediated expression of a dominant-negative Perk mutant lacking the kinase domain in INS 832/13 

rat insulin-secreting β cells (AdDN-Perk INS 832/13 β-cells) led to reduced proliferation and 

insulin content (Feng et al, 2009). Unexpectedly, this study also showed that although insulin 

content was reduced, proinsulin was abnormally retained in the ER, suggesting an additional role 

for PERK in trafficking and maturation of secretory proteins. In agreement, shPerk-expressing 

INS 832/13 β-cells in which PERK protein level was reduced by 56–66% decreased insulin 

synthesis, and defective ER-Golgi anterograde proinsulin trafficking was also observed (Gupta et 

al, 2010). In contrast, acute inhibition of PERK using a specific PERK pharmacological inhibitor 

(PERKi) in mouse insulinoma MIN6 cells increased proinsulin synthesis (Harding et al, 2012). 

However, PERKi still induced rapid buildup of insoluble proinsulin associated with a subtle defect 

in proinsulin maturation, further supporting the concept that PERK is required for proper ER 

quality control of proinsulin folding and trafficking. The discrepancy regarding the effects of 

PERK inhibition on insulin synthesis might be explained by the different degree of PERK 

inhibition reached using short hairpin RNA (shRNA) or pharmacological inhibitor. We previously 

reported that Nck regulates PERK-mediated eIF2αS51 phosphorylation (Kebache et al, 2004; 
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Latreille & Larose, 2006). Nck is a Src-homology (SH) domain-containing adaptor protein, 

consisting of three N-terminal SH3 domains and one C-terminal SH2 domain (Chen et al, 1998). 

Nck is well known to couple activated receptor tyrosine kinases (RTKs) through its SH2 domain 

to SH3 domain-bound effectors involved in actin cytoskeleton remodeling (Rivera et al, 2006; 

Abella et al, 2010). In mammals, two different genes encode highly identical Nck isoforms, Nck1 

and Nck2, which are believed to be functionally redundant (Vorobieva et al, 1995; Chen et al, 

1998; Braverman & Quilliam, 1999). Recently PERK was shown to be phosphorylated at Tyr-615 

in its kinase domain, and this modification was found to be essential for maximal PERK activation 

upon ER stress (Su et al, 2008). In this study, we report that PERK phosphorylation at Tyr-561 

(Y561) in the juxtamembrane creates a specific binding site for Nck and limits PERK activation. 

Furthermore, we provide strong evidence that this interaction regulates the ability of pancreatic β 

cells to synthesize proinsulin. 

2.4 Materials and methods 

2.4.1 Cells  

Cos-1 cells and MEFs were cultured in high-glucose Dulbecco’s modified eagle medium (DMEM; 

Invitrogen, Burlington, ON, Canada) supplemented with 10% fetal bovine serum (FBS; 

Invitrogen), 0.75 mg/ml penicillin, and 0.1 mg/ml streptomycin and kept at 37°C in a 95% O2–

5% CO2 environment. Mouse insulinoma (MIN6) cells were cultured in high-glucose DMEM as 

reported but with 0.55 μM β-mercaptoethanol and 15% FBS. 
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2.4.2 Cell treatments  

Thapsigargin (Tg; Sigma, St. Louis, MO), dithiothreitol (DTT; Roche, Mississauga, ON, Canada), 

and protein tyrosine phosphatase inhibitors (peroxide derivative of Na3VO4 [Sigma] and bpVPhen) 

were used as indicated in figure legends. Cos-1, MIN6, and PERK−/− MEF cells transfected with 

indicated plasmids using Lipofectamine Plus (Invitrogen) were lysed 48 h posttransfection in lysis 

buffer (Latreille & Larose, 2006) and total cell lysates subjected to either immunoblotting or 

immunoprecipitation. 

2.4.3 Antibodies  

PERK polyclonal antiserum was obtained after rabbit immunization with a GST chimera of the 

PERK cytoplasmic segment (amino acids [aa] 537–1114) (Harding et al, 1999). PERK 

phosphospecific Y561 (pY561 PERK) polyclonal antibody was generated by GenScript (Genscript 

USA, Piscataway, NJ) using a synthetic phosphopeptide derived from PERK juxtamembrane 

domain (QTESKpYDSVSADVS). Pan Nck (Nck) antibody recognizes both Nck isoforms 

(Lussier & Larose, 1997). Nck1 polyclonal antibody was generated as previously reported 

(Latreille et al, 2011). Human peIF2αSer52 (mouse peIF2αSer-51) antibody was from BioSource 

International (44-728G; Medicorp, Montreal, QC, Canada). pThr981 PERK (Sc-32577), eIF2α (Fl-

315), pTyr (PY99), GST (B-14), GFP (B-2), RasGAP, insulin (H-86), and GLUT2 (H-67) 

antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA). pSer/Thr antibodies were from 

BD Transduction Laboratories (Lexington, KY), and β-actin antibody (AC-74) was from Sigma. 

All other chemicals were from standard commercial sources. 
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2.4.4 Constructs  

Plasmids encoding GST chimera of the PERK cytoplasmic segment (GST-cPERK, aa 537–1114) 

WT, kinase dead (K618A), Myc-PERK fulllength WT, and K618A were provided by David Ron 

(University of Cambridge, Cambridge, United Kingdom). GST-cPERK mutated in Y561F was 

generated by overlapping PCR using the primers 5′-

ACTGACATCGGCACTCACGGAGTCGAATTTACTTTCAGTCTGGCACTG-3′ and 5′-

GACTCCGTGAGTGCCGATGTCAGT-3′. MycPERK full-length Y561F mutant was obtained 

by site-directed mutagenesis (Mutagenex). Recombinant Nck proteins were produced by thrombin 

cleavage of purified bacterially produced GST-Nck. GFP-Nck1 full length, the three SH3 domains 

(3SH3, aa 1–267), and the SH2 domain (SH2, aa 268–377) were generated by subcloning 

corresponding cDNAs into pEGFP-C1 (Clontech, Mountain View, CA). All constructs were 

confirmed by DNA sequencing. 

2.4.5 In vitro binding assays  

GST and GST-cPERK WT or K618A (100 ng) bound on glutathione beads were incubated with 

recombinant Nck1 or Nck2 (100 ng) for 3 h at 4°C in the binding buffer (Latreille & Larose, 2006). 

Beads were washed with binding buffer, and proteins were recovered in Laemmli buffer and 

subjected to SDS-PAGE. Nck was revealed by immunoblot using Nck antibody and enhanced 

chemiluminescence as recommended by the manufacturer (Amersham GE Healthcare, 

Piscataway, NJ). Transfected Cos-1 cells were washed with phosphate-buffered saline (PBS) and 

lysed in binding buffer. GST-cPERK (5–10 μg) was used in pull-down experiments performed at 

4°C for 3 h. Bound proteins were resolved by SDS-PAGE and subjected to immunoblotting. 
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2.4.6 In vitro kinase assays  

In vitro eIF2α phosphorylation assays were performed by incubating recombinant His-eIF2α (300 

ng) and GST-cPERK (200 ng) in kinase buffer (10 mM Tris-HCl, pH 7.4, 50 mM KCl, 2 mM 

MgCl2, 1 mM DTT, 0.2 mM phenylmethylsulfonyl fluoride, 2 μg/ml leupeptin, 4 μg/ml aprotinin). 

Reactions were initiated by adding [γ-32P]ATP (10 μCi) in a final volume of 25 μl, incubated for 

30 min at 30°C, and then stopped with Laemmli buffer. Samples were subjected to SDS-PAGE 

and dried gels exposed for autoradiography. 

2.4.7 Phosphoamino acid analysis  

In vitro 32P-labeled GST-cPERK WT (200 ng) produced as described was subjected to SDS-PAGE 

and transferred onto polyvinylidene fluoride (PVDF) membrane, and upon autoradiography the 

corresponding PERK band was excised and washed with H2O. Hydrolysis was performed for 1 h 

at 100°C in 6 N HCl. Lyophilized supernatants were resuspended in buffer at pH 1.9 containing 1 

mg/ml phosphoserine, phosphothreonine, and phosphotyrosine as internal standards. 

Phosphoamino acids were separated by twodimensional electrophoresis (pH 1.9 and 3.5) on TLC 

plates (EM Sciences), visualized by autoradiography, and identified according to ninhydrin-

stained standards. 

2.4.8 shNck1 MIN6 cells  

A mouse shRNA Nck1 was designed according to RNA interference oligoRetriever using the 

sequence of a mouse small interfering RNA (siRNA; Nck1 (Integrated DNA Technologies, 

Coralville, IA) efficient in decreasing Nck1 expression in transient transfection. This shNck1 was 
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subcloned into MSCV-LMP retroviral vector (Open Biosystems, Fisher Scientific, Ottawa, ON, 

Canada) to obtain mouse shNck1 flanked by microRNA-30 sequence and confirmed by 

sequencing. Retroviral productions of the empty LMP and the shNck1-containing LMP were 

achieved according to classic procedures. MIN6 cells infections were established by adding the 

appropriate virus preparation and medium at a ratio of 1:1 in the presence of Polybrene (8 μg/ml). 

Stable pools of control and shNck1 MIN6 cells were selected in medium containing puromycin. 

2.4.9 Isolated pancreatic islets  

Isolated islets (110–200) obtained as described (Peyot et al., 2004) were subjected to acid-ethanol 

extraction (0.2 M HCl in 75% ethanol) to determine insulin content using radioimmunoassay 

(Linco Research, St. Charles, MO). In parallel, isolated islets were lysed in Tris-EDTA containing 

0.5% Triton X-100 to quantify protein using Bio-Rad assay (Bio-Rad, Mississauga, ON, Canada) 

and DNA using SYBR green. 

2.4.10 Insulin biosynthesis  

Control and shNck1 MIN6 cells were incubated for 1 h in MIN6 cell medium lacking methionine 

and cysteine and supplemented with 15% dialyzed FBS. Cells were then labeled using 

[35S]Met/Cyst labeling protein mix (Perkin Elmer, Woodbridge, ON, Canada) at 100 μCi/ml for 

30 min. Cells were then washed with ice-cold PBS and lysed, and 400 μg of protein from cell 

lysates was used to immunoprecipitate insulin. Samples were run on a 6 M urea/16% tricine gel 

and transferred onto a PVDF membrane before being dried and exposed for detection of 35S label 

incorporated into insulin using a phosphoimager (Typhoon FLA 9500; GE Canada, Mississauga, 

ON, Canada). 
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2.4.11 Statistics  

Statistical significance was determined using Student’s t test with p ≤ 0.05. In all tests, two groups 

with only one changed parameter were compared. Mann-Whitney test was used for the indicated 

experiments. 

2.5 Results 

2.5.1 Nck regulates PERK  

We previously showed that mouse embryonic fibroblasts (MEFs) lacking Nck 

(Nck1−/−;Nck2−/−) display increased basal levels of eIF2α phosphorylated at Ser-51 (peIF2αS51), 

concomitant with up-regulated expression of UPR markers, including ATF4, Gadd34, Grp94, and 

BiP (Latreille & Larose, 2006). However, the effect of Nck deficiency on PERK activity was not 

addressed. To investigate PERK activation in Nck1−/−;Nck2−/− MEFs, we measured the levels of 

PERK phosphorylated at Thr-980. MEFs lacking Nck spontaneously displayed significantly 

increased levels of PERK phosphorylated at Thr980 (pThr-980) compared with wild-type (Figure 

2.1A). In addition, upon thapsigargin (Tg)-induced ER stress, Nck1−/−;Nck2−/− MEFs also 

displayed increased levels of pThr-980 PERK compared with wild-type (Figure 2.1B). In 

unstressed cells, PERK migrates as a doublet of 130-150 kDa that is proposed to represent 

differential species of phosphorylation states of the protein (Harding et al, 1999). Conversely, ER 

stress results in PERK migration toward 170 kDa, representing hyperphosphorylation of the 

protein. The shift in PERK migration toward 170 kDa was more pronounced in Nck1−/−;Nck2−/− 

MEFs compared with controls (Figure 2.1B, PERK blot), supporting PERK hyperactivation in 

cells depleted of Nck. In agreement, ER stress-induced peIF2αS51 levels also significantly 
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increased in MEFs lacking Nck regardless of an apparent increase in eIF2α compared with controls 

(Figure 2.1B). These results reveal that Nck negatively controls PERK activation in unstressed and 

ER stress conditions. 

2.5.2 Nck and PERK interact in vitro 

 To determine whether Nck interacts with PERK, we performed in vitro binding assays 

using glutathione S-transferase (GST) chimera of the cytoplasmic segment of PERK (GST-

cPERK) and recombinant Nck proteins. Using this approach, we observed that both Nck1 and 

Nck2 directly interact with GST-cPERK but not with GST alone (Figure 2.2A). In this setting, the 

GST moiety of GST-cPERK acts as a dimerizing module causing activation of the PERK kinase 

activity (Harding et al, 1999). In agreement, GST-cPERK wild-type (WT) migrates slowly on 

SDS-PAGE compared with the GST-cPERK catalytically inactive K618A mutant (Figures 2.2B). 

Using Cos-1 cell lysate, we demonstrated that GST-cPERK WT interacts with endogenous Nck, 

whereas GST-cPERK K618A fails to bind Nck (Figure 2.2B). These results indicate that the 

interaction of Nck with PERK is direct and dependent on PERK kinase activity. Nck contains three 

SH3 domains known to recognize proline-rich sequences, followed by one SH2 domain engaging 

phosphotyrosine residues in target proteins (Figure 2.2C) (Chen et al, 1998; Braverman & 

Quilliam, 1999). To define the molecular determinant(s) mediating Nck and PERK interaction, we 

expressed GFP-Nck1 WT and deletion mutants in Cos-1 cells and performed pull-down assays 

using GST-cPERK. Deletion of the Nck1 SH2 domain (3SH3) abrogated binding to PERK, 

whereas deletion of the three SH3 domains (SH2) did not impair this interaction (Figure 2.2C). 

Therefore we conclude that the SH2 domain of Nck1 mediates the interaction with PERK. PERK 

is highly phosphorylated on serine and threonine residues upon activation, but studies established 
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that PERK is also phosphorylated on tyrosine, which is essential for optimal PERK activation (Su 

et al, 2008). Our finding that Nck interacts with PERK through its SH2 domain strongly suggests 

that GST-cPERK is indeed phosphorylated on tyrosine. Therefore we examined phosphorylation 

of GST-cPERK by immunoblotting using appropriate antibodies. In contrast to the catalytically 

inactive GST-cPERK K618A, we found that GST-cPERK WT is phosphorylated on serine and 

threonine (pSer/Thr), including Thr-980, and on tyrosine, as reported previously (Figure 2.2D) (Su 

et al, 2008). Furthermore, phosphoamino acid analysis of GST-cPERK revealed the presence of 

phosphoserine, phosphothreonine, and phosphotyrosine residues (Figure 2.2E). These results 

demonstrate that PERK activity correlates with PERK autophosphorylation on serine/threonine 

and tyrosine residues in vitro and strongly suggest that PERK tyrosine phosphorylation might 

mediate direct interaction with Nck. 

2.5.3 Identification of pY561 in the PERK juxtamembrane domain as the Nck-binding site 

 We screened PERK cytoplasmic amino acid sequence and found that mouse PERK Y561 

(human Y565) perfectly matches the Nck SH2 domain consensus binding motif 

pYDXV(S/A/T/Y)X(D/E) (Figure 2.3A) (Frese et al, 2006). This motif is highly conserved among 

mammalian PERK orthologues but is absent in Caenorhabditis elegans and Drosophila 

melanogaster (unpublished data). In addition, the PERK Y561 surrounding amino acid sequence 

revealed a high degree of homology with Nck SH2 domain-binding sequences identified in 

enteropathogenic Escherichia coli Tir, nephrin, and Git-1 proteins (Gruenheid et al, 2001; Frese 

et al, 2006), suggesting that phosphorylation of PERK at Y561 could be a potential binding site for 

Nck. To address this, we generated a PERK mutant in which Y561 is replaced by a 

nonphosphorylatable phenylalanine (Y561F) and tested its ability to interact with Nck. GST-
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cPERK Y561F failed to bind Nck in pull-down experiments (Figure 2.3B). However, GST-cPERK 

Y561F migrates like the active GST-cPERK WT on SDS-PAGE (Figure 2.3B, Coomassie 

staining), suggesting that it is catalytically active. This was confirmed by detection of pThr-980 

on GST-cPERK Y561F, although GST-cPERK Y561F displayed a significant decrease in overall 

tyrosine phosphorylation compared with WT (Figure 2.3C). Together these results demonstrate 

that pY561, which markedly contributes to PERK global tyrosine autophosphorylation, mediates 

PERK interaction with Nck. 

2.5.4 Phosphorylation of PERK at Y561 modulates PERK activity 

 To address whether phosphorylation of PERK at Y561 affects PERK activity, we carried 

out a comparative analysis of GST-cPERK WT and Y561F ability to phosphorylate recombinant 

His-eIF2α in vitro in the presence of [γ-32P]ATP. We observed that incorporation of radioactivity 

into His-eIF2α was significantly increased in reactions performed with GST-cPERK Y561F 

compared with WT (Figure 2.4A), suggesting that phosphorylation at Y561 negatively regulates 

PERK activity. This was further confirmed in PERK−/− MEFs transiently overexpressing full-

length PERK WT, Y561F, or K618A, in which we assessed peIF2αS51 in response to ER stress. 

In agreement with our in vitro observations, we found that in response to dithiothreitol (DTT) 

treatment, peIF2αS51 levels were increased in PERK−/− MEFs expressing PERK Y561F compared 

with WT (Figure 2.4B and Supplementary Figure S2.1). In contrast, PERK−/− MEFs expressing 

the catalytically inactive PERK K618A mutant failed to induce peIF2αS51 upon DTT treatment, 

demonstrating that DTT-induced peIF2αS51 is specific to PERK in these conditions. These results 

demonstrate that PERK Y561F displays enhanced ER stress-induced peIF2αS51, further supporting 
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a negative regulatory role for PERK Y561 phosphorylation in regulating PERK activation and 

signaling. 

2.5.5 PERK is phosphorylated at Y561 in MIN6 cells 

To detect PERK phosphorylation at Y561, we generated a specific antibody against a 

synthetic phosphopeptide encompassing the amino acid sequence surrounding mouse PERK Y561. 

We hypothesized that phosphorylation of PERK at Y561 (pY561) would occur upon ER stress, given 

that previous studies showed that PERK phosphorylation on specific tyrosine residues was 

detected in this condition (Su et al, 2008; Krishnan et al, 2011; Bettaieb et al, 2012). However, we 

could not detect pY561 PERK in control or Tg-treated MIN6 cells (unpublished data). The difficulty 

in detecting pY561 PERK could be due to its low levels or fast cycling between phosphorylated and 

unphosphorylated states in vivo. Therefore, to stabilize tyrosine phosphorylation of PERK, we 

treated MIN6 cells with pervanadate (PV), a nonspecific tyrosine phosphatase inhibitor, and 

subsequently assessed pY561 PERK by immunoblotting. Of interest, we detected high levels of 

pY561 PERK and a new PERK species with distinct mobility in PV-treated cells (Figure 2.5A, left). 

It is noteworthy that PV treatment did not activate PERK, as neither pThr-980 PERK nor peIF2αS51 

levels were increased in this condition. Treating MIN6 cells with bpVPhen, another pY 

phosphatase inhibitor (Posner et al, 1994), also led to PERK phosphorylation at Y561 without 

altering PERK activation and signaling (Figure 2.5A, right). To demonstrate that the 

immunoreactive band detected with the pY561 PERK antibody is specific, we transfected MIN6 

cells with PERK WT, Y561F, or K618A and treated them with PV. As expected, immunoblotting 

of total cell lysates with pY561 PERK antibody showed a positive signal only in cells 

overexpressing PERK WT (Figure 2.5B). Collectively these data provide strong evidence that 
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PERK is phosphorylated at Y561 in unstressed cells. Supporting the labile nature of pY561 PERK, 

we observed rapid loss of PERK phosphorylation at Y561 upon washing out PV (Figure 2.5C, lanes 

1–5). Of interest, treating cells with thapsigargin upon PV removal greatly accelerated 

dephosphorylation of PERK at Y561 (Figure 2.5C, lanes 6–10). We obtained similar findings using 

DTT to induce ER stress (Supplementary Figure S2.2A). In agreement, the PERK species that 

migrate faster in PV-pretreated MIN6 cells disappeared concomitantly with the loss of pY561 

PERK upon PV removal, and this was accelerated by ER stress (Figure 2.5C and Supplementary 

Figure S2.2A). Together these results demonstrate that ER stress promotes pY561 PERK 

dephosphorylation. 

To determine whether PERK phosphorylation at Y561 modulates ER stress-induced PERK 

activation and signaling, we followed pThr-980 PERK and peIF2αS51 in ER-stressed MIN6 cells 

pretreated or not with PV (Figure 2.5D). As expected, pThr-980 PERK increased upon ER stress, 

in agreement with PERK activation in cells not pretreated with PV (Figure 2.5D, lanes 1–5). 

Conversely, pY561 PERK decreased upon thapsigargin treatment in PV-pretreated MIN6 cells and 

inversely correlated with increased levels of peIF2αS51 (Figure 2.5D, lanes 6–10). Of interest, PV 

pretreatment resulted in lower levels of Tg-induced pThr-980 PERK and peIF2αS51, demonstrating 

that phosphorylation of PERK at Y561 correlates with reduced PERK activation and signaling. 

Similar results were observed in PV-pretreated MIN6 cells exposed to DTT (Supplementary 

Figure S2.2B) and bpVPhen-pretreated Cos-1 cells exposed to Tg or DTT (Supplementary Figure 

S2.2C). Collectively these data suggest that pY561 PERK impairs ER stress-induced PERK 

activation and signaling. 
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2.5.6 Nck interacts with pY561 PERK in MIN6 cells  

Given that PERK is phosphorylated at Y561 in PV-treated MIN6 cells (Figure 2.5) and that 

Nck interacts with pY561 PERK in vitro (Figure 2.3B), we assessed whether Nck and pY561 PERK 

interact in vivo by performing classic coimmunoprecipitation assays using MIN6 cells pretreated 

or not with PV. For this, Nck immunoprecipitates were probed for pY561 PERK. As shown in 

Figure 2.6, pY561 PERK was detected in Nck immunoprecipitates from PV-pretreated MIN6 cells, 

and this interaction decreased over time upon Tg exposure (Figure 2.6 and Supplementary Figure 

S2.3A). These results show that the interaction of Nck with PERK occurs in unstressed cells and 

is rapidly lost when levels of pY561 PERK decrease upon ER stress. 

2.5.7 Nck1 modulates PERK and proinsulin levels in pancreatic β cells  

To assess the importance of Nck1 in regulating PERK, we generated MIN6 cells stably 

expressing a specific shRNA against Nck1 (shNck1), which show >80% down-regulation of Nck1 

(Figure 2.7A). We then demonstrated that down-regulation of Nck1 in MIN6 cells significantly 

increased PERK activation (pThr-980) and signaling (peIF2αS51) in unstressed conditions (Figure 

2.7A). Moreover, we observed that down-regulation of Nck1 in PV-pretreated cells increased the 

rate of Tg-induced pY561 PERK dephosphorylation and correlated with increased levels of 

peIF2αS51 (Figure 2.7B and Supplementary Figure S2.3B). These results suggest that Nck1 

protects pY561 PERK from being dephosphorylated during ER stress and thereby limits PERK 

activation and signaling. Given that PERK physiological activity controls proinsulin synthesis and 

processing in pancreatic β cells (Gupta et al, 2010; Harding et al, 2012), we assessed proinsulin 

levels in shNck1 MIN6 cells that display increased physiological PERK activity. Of interest, we 
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found that together with increased PERK activity (Figure 2.7A), proinsulin levels were 

significantly up-regulated in shNck1 MIN6 cells (Figure 2.8A). Increased proinsulin appears to be 

specific since the levels of GLUT2 and RasGAP were not changed in shNck1 MIN6 cells. In 

addition, we demonstrated that increased proinsulin levels correlate with increased proinsulin 

synthesis, as supported by increased [35S]Met/ Cyst incorporation into insulin in shNck1 MIN6 

cells compared with control cells (Figure 2.8B). In agreement with PERK-mediated modulation of 

proinsulin levels, we demonstrated that overexpression of PERK at low levels (transfection of 0.5–

2.0 μg) in MIN6 cells slightly enhanced PERK activation and proinsulin content (Supplementary 

Figure S2.4). However, consistent with PERK activation inducing attenuation of general 

translation, we found that higher levels of PERK overexpression (transfection of 5 and 10 μg) led 

to marked PERK activation and reduced proinsulin content. To demonstrate that PERK mediates 

the effect of downregulating Nck1 on proinsulin content, we overexpressed the catalytically 

inactive PERK K618A in shNck1 MIN6 cells. We expect that overexpression of PERK K618A 

will counteract PERK physiological activity by dimerizing with endogenous PERK. Accordingly, 

we demonstrated that PERK K618A significantly reverses the effect of downregulating Nck1 on 

proinsulin levels in MIN6 cells (Figure 2.8C). We extended the significance of these findings by 

measuring insulin levels in isolated pancreatic islets of Nck1−/− mice. We observed that Nck1−/− 

islets displayed increased insulin content compared with Nck1+/+ islets (Figure 2.8D). Collectively 

our results provide strong evidence that in absence of ER stress, Nck1 binding to PERK protects 

PERK from being dephosphorylated at its negative regulatory site pY561 and thereby limits PERK 

activation and signaling. Furthermore, our findings indicate that Nck1 is a negative regulator of 

PERK activation and PERK-mediated proinsulin biosynthesis in pancreatic β cells. 
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2.6 Discussion 

 PERK, a member of the UPR, is activated in response to stress impairing ER homeostasis. 

In these conditions, it induces phosphorylation of eIF2α at Ser-51, which attenuates mRNA 

translation initiation, thereby decreasing general protein synthesis (Harding et al, 2000b). In the 

present study, we provide strong evidence that the SH2/SH3 domain-containing adaptor protein 

Nck1 is a negative regulator of PERK, which affects β cell proinsulin synthesis in physiological 

conditions. Indeed, we show that stable depletion of Nck1 in MIN6 cells results in enhanced 

physiological PERK activity, accompanied by increased proinsulin synthesis. As reported by 

others (Gupta et al, 2010), these results confirm that physiological PERK activity positively 

regulates proinsulin biosynthesis, as opposed to its well-established role as a negative regulator of 

general protein synthesis through phosphorylation of eIF2αSer-51 under ER stress conditions 

(Harding et al, 2000a). However, whereas partial PERK depletion in INS832/13 cells was reported 

to specifically decrease proinsulin biosynthesis (Gupta et al, 2010), acute pharmacological 

inhibition of PERK in MIN6 cells increased proinsulin biosynthesis (Harding et al, 2012). This 

discrepancy on the role of PERK on proinsulin biosynthesis can be due to the degree of PERK 

inhibition achieved by the different approaches used to modulate PERK activity and its regulation 

of general protein synthesis. Indeed, partial decrease in PERK activity by shPerk down-regulates 

proinsulin biosynthesis without affecting β cell general protein synthesis (Gupta et al, 2010), 

whereas the robustness of the effect of acute and complete inhibition of PERK activity by small 

molecules (PERKi) could increase proinsulin biosynthesis through nonspecific increase of global 

protein synthesis (Harding et al, 2012). 
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2.6.1 Nck directly interacts with and negatively regulates PERK  

Nck couples activated receptor tyrosine kinases (RTKs) to effectors that promote RTK 

intracellular signaling (Chen et al, 1998). Of interest, our study demonstrates an alternative role 

for Nck in regulating PERK signal transduction. In fact, as for RTKs, Nck, through its SH2 

domain, directly interacts with tyrosine-phosphorylated PERK, but in contrast to mediating RTK 

signaling, it dampens PERK activation and signaling. Supporting this, we showed that Nck directly 

interacts with PERK phosphorylated at Y561 and that PERK mutation Y561F, which abolished Nck 

binding, promotes PERK activation and signaling. Furthermore, we showed that in response to ER 

stress, Nck1 down-regulation resulted in faster PERK pY561 dephosphorylation and activation. 

These results suggest that phosphorylation of PERK at Y561 regulates Nck1 and PERK interaction, 

whereas Nck1 binding to PERK delays PERK pY561 dephosphorylation and activation upon ER 

stress. Taken together, our results also suggest that the interaction between Nck1 and PERK is 

dynamic because it requires PERK phosphorylation at Y561, which is dependent on PERK kinase 

activity, as demonstrated by the inability of the PERK-inactive mutant K618A to be tyrosine 

phosphorylated at Y561 and to interact with Nck1. However, it remains to be determined whether 

Nck1 participates in a feedback mechanism to restore PERK inactivation when ER stress is 

resolved or inactivating PERK after reaching a threshold level of PERK activation during ER 

stress.  

Previous reports identified several proteins regulating PERK activity through direct 

interaction with PERK luminal or cytoplasmic domains. Among these, GRP78/BiP, an ER 

chaperone that binds to PERK luminal domain, prevents PERK dimerization (Bertolotti et al, 2000; 

Hendershot, 2004). Protein kinase inhibitor of 58 kDa (p58IPK), which acts as a co-chaperone for 
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BiP in the ER (Rutkowski et al, 2007), is also part of a negative feedback loop through its direct 

interaction with PERK luminal domain, leading to inhibition of PERK kinase activity during late 

phases of the UPR (Yan et al, 2002b; van Huizen et al, 2003). In addition, calcineurin, a 

cytoplasmic Ca2+-dependent phosphatase that is upregulated and activated upon ER stress, 

interacts with the cytoplasmic domain of preactivated PERK to further promote PERK activation 

(Bollo et al, 2010). Finally, PARP16, an ER-anchored protein member of the poly(ADP-ribose) 

polymerase family facing the cytoplasm, interacts with PERK and is required for PERK activation 

upon ER stress, as well as being sufficient for PERK activation in the absence of ER stress (Jwa 

& Chang, 2012). We demonstrate for the first time that Nck1, which is detected at the ER (Latreille 

& Larose, 2006), directly interacts with PERK cytoplasmic domain through the phosphorylation 

of Y561 in the PERK juxtamembrane region and that this interaction is PERK kinase and Nck1 

SH2 dependent. We provide evidence that PERK is phosphorylated at Y561 in vivo and demonstrate 

that substitution of Y561 with a phenylalanine enhances PERK catalytic kinase activity, as 

monitored by phosphorylation of eIF2αS51. We show that phosphorylation of PERK at Y561 delays 

PERK activation and signaling upon ER stress and that PERK phosphorylation at Y561 is rapidly 

lost in response to ER stress. Collectively these novel findings strongly suggest a negative 

regulatory role for PERK phosphorylation at Y561 on PERK activation. Previous studies reported 

that PERK is phosphorylated on tyrosine residues (Ma et al, 2001; Su et al, 2008). In particular, 

PERK tyrosine phosphorylation in the kinase domain at Y615 was associated with optimal 

activation of PERK under ER stress (Su et al, 2008), but our findings reveal that PERK 

phosphorylation at Y561 negatively regulates PERK activation. Of interest, Nck, which directly 

binds to pY561PERK, dissociates from PERK upon ER stress, correlating with PERK pY561 

dephosphorylation and activation. In addition, we show that Nck1 protects pY561PERK from 
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dephosphorylation. Together these data support a role for Nck1 in negatively regulating PERK 

activation by interacting with and protecting pY561PERK from being dephosphorylated.  

Nck1 could negatively regulate PERK through various mechanisms. In the absence of 

stress, Nck1 bound to PERK juxtamembrane domain prevents spontaneous PERK dimerization 

(i.e., through an allosteric or steric mechanism). During ER stress, PERK reaches a threshold level 

of functional activity (i.e., PERK Thr-980, eIF2αS51), whereas Nck1 re-association to the 

juxtamembrane domain of PERK contributes to restoring inactive PERK monomeric states. 

Alternatively, Nck1 binding to PERK juxtamembrane domain allosterically regulates BiP 

interaction with PERK to control both PERK basal activity and activation upon ER stress. On the 

other hand, binding of Nck1 to the PERK juxtamembrane domain induces changes in PERK 

conformation (e.g., allosteric modulation or sterical hindrance), which disfavors its cytoplasmic 

domain interaction with activators such as calcineurin during the early phase of UPR activation.  

Association of Nck1 with PERK phosphorylated at Y561 could hinder recognition by 

tyrosine phosphatase(s) dephosphorylating PERK at pY561, thereby limiting its activation. 

Conceptually, the latter mechanism is supported by our findings that PERK mutation at Y561 for a 

phenylalanine promotes PERK activation and down-regulation of Nck1 in MIN6 cells accelerates 

dephosphorylation of pY561PERK and PERK activation upon ER stress. Protein tyrosine 

phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP) are highly related ER 

tyrosine phosphatases (Andersen et al, 2001) known to modulate PERK activation and signaling 

in MIN6 cells (Bettaieb et al, 2011; Bettaieb et al, 2012). Although down-regulation of PTP1B 

results in enhanced PERK activation and signaling, TCPTP down-regulation has the opposite 

effect (Bettaieb et al, 2011). Because increased PERK phosphorylation at Y561 correlates with 
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decreased PERK activation during ER stress, we suggest that TCPTP, as opposed to PTP1B, can 

mediate dephosphorylation of PERK at Y561 to facilitate PERK activation. On the other hand, 

PTP1B deficiency enhances PERK activation and signaling in brown adipose tissue, possibly 

through increased PERK phosphorylation at Y615 (Bettaieb et al, 2012). Given that Nck interacts 

with PTP1B through its SH3 domains (Clemens et al, 1996), Nck bound to PERK can recruit 

PTP1B to dephosphorylate PERK at Y615, thereby promoting PERK inactivation. Whether TCPTP 

dephosphorylates pY561PERK or Nck hampers dephosphorylation of pY561PERK by TCPTP or 

recruits PTP1B and PERK in a common complex requires further investigation.  

Finally, as an adaptor protein, Nck1 bound to PERK through its SH2 domain could couple 

PERK to PERK negative regulator(s) bound to its SH3 domains. In fact, we previously showed 

that Nck1 overexpression decreases both basal and ER stress-induced eIF2αS51 phosphorylation, 

whereas MEFs lacking Nck spontaneously display high levels of peIF2αS51 and PERK 

downstream signaling markers (Kebache et al, 2004; Latreille & Larose, 2006). In addition, we 

provided evidence that Nck1 assembles a holophosphatase complex containing the Ser/Thr 

phosphatase PP1c and eIF2, which could be responsible for the decrease of peIF2αS51 in cells 

overexpressing Nck1 (Kebache et al, 2004; Latreille & Larose, 2006). Here we show that MEFs 

lacking Nck and MIN6 cells with low levels of Nck1 display enhanced PERK activation, revealing 

that Nck1 contributes to negative regulation of PERK. Therefore consistent with our previous 

findings (Kebache et al, 2004; Latreille & Larose, 2006), it is possible that Nck1, while bound to 

PERK, brings PP1c in close proximity, maintaining PERK dephosphorylated on critical Ser/ Thr 

residues involved in PERK activation. 
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2.6.2 Nck1 modulates proinsulin biosynthesis and content in pancreatic β cells by 

regulating PERK 

We discovered that proinsulin levels are significantly increased in Nck1-depleted MIN6 

cells as well as insulin levels in pancreatic isolated islets of Nck1−/− mice. We provide strong 

evidence that Nck1, by regulating physiological PERK activity, affects proinsulin biosynthesis. 

However, how PERK, known to attenuate translation during ER stress, promotes proinsulin 

biosynthesis in physiological conditions needs further investigation. Our study provides new 

insights into the dynamic regulation of PERK and further supports an important physiological 

function for PERK in pancreatic β cells. Overall it relies on original findings that provide new 

perspectives on understanding β cell function and dysfunction. 
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2.8 Figures for Chapter 2 

 

Figure 2. 1 Lack of Nck enhances PERK activity.  

(A) PERK activity (pThr-980) in Nck+/+ and Nck−/− MEFs. Equivalent amount of proteins (50 μg) 

from total cell lysates prepared from three independent culture dishes for each genotype were 

subjected to immunoblotting with indicated antibodies. (B) Nck+/+ and Nck−/− MEFs were left 

untreated (lanes 1 and 2) or treated with 1 μM Tg for 10 min (lanes 3–8). Cell lysates (50 μg of 

protein) from independent culture dishes were analyzed by immunoblotting with the indicated 

antibodies. Bar charts show ratio of pThr-980 PERK to total PERK in unstressed cells (A) and 

pThr-980 PERK to total PERK and peIF2αS51 to total eIF2α upon Tg treatment as determined by 

densitometry (B). Data are means ± SEM (n = 3; *p = 0.004, **p < 0.001, #p = 0.01). 
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Figure 2. 2 Nck and PERK interaction. 

(A) In vitro binding of recombinant GST-cPERK WT and Nck. Nck1 or Nck2 bound to GST-

cPERK was revealed by immunoblotting using a panNck antibody, and GST-cPERK was revealed 

using a GST antibody. (B) Pull-down assays using GST and GST-cPERK WT or catalytically 

inactive (K618A) incubated with Cos-1 cell lysates. Bound endogenous Nck was revealed by 

immunoblotting using a panNck antibody, and a GST antibody was used to show GST proteins. 

(C) Schematic representation of GFP-Nck1 full length and deletion mutants (left). Pull-down 
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assays using GST and GST-cPERK WT incubated with Cos-1 cell lysates expressing indicated 

GFP-Nck1 constructs. GFP-Nck1– related proteins in cell lysates and pull-down assays were 

revealed by immunoblotting using a GFP antibody. (D) Phosphorylation of GST-cPERK WT and 

K618A (100 ng) was monitored using indicated antibodies. GST-proteins were revealed by 

immunoblotting using a GST antibody. (E) Two-dimensional phosphoamino acid analysis of GST-

cPERK WT subjected to in vitro autophosphorylation in the presence of [γ-32P]ATP. 

Phosphoserine, phosphothreonine, and phosphotyrosine are indicated. Data are typical of three 

independent experiments. 
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Figure 2. 3 PERK juxtamembrane pY561 is the Nck-binding site.  

(A) Alignment of amino acids in the PERK orthologues juxtamembrane domain showing a 

conserved tyrosine residue (mouse Y561) matching the Nck SH2 domain consensus binding motif 

(Frese et al, 2006) found in enteropathogenic E. coli Tir, Git-1, and nephrin proteins (Gruenheid 

et al, 2001; Frese et al, 2006). (B) Left, pull-down assay using GST and indicated GST-cPERK 

proteins incubated with Cos-1 cell lysates. Bound endogenous Nck was revealed by 

immunoblotting using a panNck antibody (n = 3). Right, purified, bacterially expressed GST-
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cPERK proteins (1 μg) were resolved on SDS–PAGE and stained with Coomassie blue. (C) Global 

phosphorylation on tyrosine and at Thr-980 of GST-cPERK WT and Y561F mutant (100 ng) 

shown by immunoblotting with the indicated antibodies. Bar chart represents the ratio of global 

tyrosine phosphorylation of respective GST-cPERK over total GST-cPERK determined by 

densitometry. Data are mean ± SEM (n = 3; *p < 0.001). 
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Figure 2. 4 PERK Y561F mutation enhances PERK catalytic activity.  

(A) Phosphorylation of recombinant His-eIF2α by GST-cPERK WT and Y561F mutant in in vitro 

kinase assay. Bar chart shows quantification by densitometry of His-eIF2α phosphorylation 

normalized for the amounts of eIF2α and GST-cPERK present in the reactions. Data are mean ± 

SEM (n = 3; *p < 0.01). (B) PERK−/− MEFs transiently transfected with empty vector (Mock), 

full-length PERK WT, Y561F, or K618A cDNAs were treated 48 h later with 1 mM DTT for 0, 

20, or 60 min. Cell lysates normalized for protein content (50 μg of protein) were subjected to 

immunoblotting with indicated antibodies. Shown are three independent experiments, with 

peIF2αS51/total eIF2α ratio, as determined by densitometry, reported under the blots. 
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Figure 2. 5 PERK phosphorylation at Y561 delays PERK activation and signaling in MIN6 

cells. 

(A) Left, MIN6 cells were left untreated (lane 1) or treated with 100 μM PV for 20 min (lanes 2 

and 3). Cell lysates (50 μg of protein) were subjected to immunoblotting with indicated antibodies. 
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Right, MIN6 cells were left untreated (–) or treated (+) with bpVPhen (200 μM, 10 min). Total 

cell lysates (50 μg of protein) from independent culture dishes were simultaneously subjected to 

immunoblotting using indicated antibodies (n = 3). (B) Specificity of the pY561 PERK antibody. 

MIN6 cells transiently transfected with empty vector (Mock), PERK WT, Y561F, and K618A 

cDNA-containing vectors were, 24 h later, left untreated (lanes 1–4) or treated with 100 μM PV 

for 20 min (lanes 5–8). Total cell lysates (50 μg of protein) were subjected to immunoblotting with 

indicated antibodies (n = 3). (C) MIN6 cells were pretreated with 100 μM PV for 20 min (lanes 1–

10) and then washed with PBS and either left untreated (lanes 1–5) or treated with 1 μM Tg (lanes 

6–10) for indicated times. Cell lysates (50 μg of protein) were subjected to immunoblotting using 

indicated antibodies. (D) MIN6 cells were left untreated (lanes 1–5) or pretreated with 100 μM PV 

for 20 min (lanes 6–10). Then cells were washed with PBS and treated with Tg at 1 μM for 

indicated times. Cell lysates (50 μg of protein) were subjected to immunoblotting using indicated 

antibodies. Data are representative of three independent experiments. 
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Figure 2. 6 Nck interacts with PERK phosphorylated at Y561 in MIN6 cells. 

MIN6 cells were left untreated (lanes 1 and 2) or pretreated with 100 μM PV for 20 min (lanes 3–

6) and then washed with PBS and treated with Tg (1 μM) for indicated times (lanes 3–6). Cell 

lysates (500 μg of protein) were subjected to Nck immunoprecipitation (IP: Nck), and Nck 

immunoprecipitates were subjected to immunoblotting with anti– phospho-Y561 PERK antibody. 

Total cell lysates (50 μg of protein) were subjected to immunoblotting with indicated antibodies 

(IB). 
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Figure 2. 7 Nck1 modulates PERK activation and phosphorylation at Y561 in MIN6 cells.  

(A) LMP-EV and LMP-shNck1 MIN6 cell lysates (50 μg of protein) from six independent culture 

dishes were subjected to immunoblotting with indicated antibodies. Bar charts show the ratio of 

pThr-980 PERK to total PERK and peIF2αS51 to total eIF2α determined by densitometry. Data are 

mean ± SEM (n = 3; *P < 0.001, **P = 0.002, Mann–Whitney). (B) LMP-EV and LMP-shNck1 

MIN6 cells were pretreated with 100 μM PV for 20 min and then washed with PBS and further 

treated with 1 μM Tg for 0, 7, and 15 min. Cell lysates (50 μg of protein) were subjected to 

immunoblotting with indicated antibodies (n = 3). 
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Figure 2. 8 Nck1 modulates proinsulin levels and insulin biosynthesis in MIN6 cells and 

insulin content in isolated pancreatic islets.  

(A) LMP-EV and LMP-shNck1 MIN6 cell lysates (50 μg of protein) from independent culture 

dishes were subjected to immunoblotting with indicated antibodies. Bar charts show quantification 
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by densitometry of the indicated protein levels. Data are mean ± SEM (n = 3; #p = 0.036). (B) 

[35S]Met/Cyst incorporation into insulin immunoprecipitates (IP; top) and total cell lysate proteins 

(TCL) from LMP-EV and LMP-shNck1 MIN6 cells. Bar chart represents quantification in 

arbitrary units of [35S]Met/Cyst incorporation into insulin IPs. Data are mean ± SEM (n = 4; *p = 

0.047). (C) Total cell lysates (50 μg of protein) prepared from independent culture dishes of 

shNck1 MIN6 cells transiently transfected with pcDNA3.1 (Mock) or pcDNA3.1-PERK K618A 

(K618A) were subjected to immunoblotting using the indicated antibodies. Bar chart shows the 

ratio of proinsulin to RasGAP as determined by densitometry. Data are mean ± SEM (n = 3; *p < 

0.001). (D) Insulin levels in Nck1+/+ and Nck1−/− isolated pancreatic islets. Data are mean ± SEM 

(n = 6; *p < 0.05). 
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Supplementary figure S2. 1 PERK Y561F mutation enhances ER stress-induced PERK-

mediated peIF2αS51.  

PERK-/- MEFs transiently expressing  PERK WT or Y561F mutant were treated 48 hr later with 1 

mM DTT for indicated times. Total cell lysates (50 µg protein) were subjected to immunoblotting 

using indicated antibodies. An inserted black line on PERK immunoblot specifies that PERK WT 

and Y561F samples were simultaneously processed, but from two different gels (n=3).   
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Supplementary figure S2. 2 PERK phosphorylation at Y561 delays PERK activation and 

signaling in MIN6 cells. 

(A) MIN6 cells untreated (lanes 1 and 7) or pretreated with 100 µM PV for 20 min (lanes 2-6 and 

8-12) were washed with PBS and then treated with 10 mM DTT (lanes 2-6) or not (lanes 8-12) for 

indicated times. Total cell lysates (50 µg protein) were subjected to immunoblotting with indicated 
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antibodies. (B) MIN6 cells untreated (lanes 1-5) or pretreated with 100 µM PV for 20 min (lanes 

6-10) were washed with PBS and then treated with 10 mM DTT for indicated times. Total cell 

lysates (50 µg protein) were subjected to immunoblotting with indicated antibodies. (C) Cos-1 

cells untreated (-) or pretreated with pbVphen (100 µM, 10 min) were washed with PBS and then 

untreated (-) or treated with Tg (0.5 µM) or DTT (0.5 mM) for 20 min. Total cell lysates (50 µg 

protein) were subjected to immunoblotting using indicated antibodies. Ratios of peIF2αS51/eIF2α 

established by densitometry quantification upon normalisation to untreated cells are reported. Data 

are representative of 3 independent experiments.   
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Supplementary figure S2. 3 Nck interacts with PERK and modulates PERK activity.  

(A) MIN6 cells were pretreated with 100 µM PV for 20 min, then washed and either left untreated 

(-) or treated with 1 µM Tg for 30 min. Total cell lysates (500 µg protein) were subjected to Nck 

immunoprecipitation and Nck immunoprecipitates were subjected to immunoblotting with 

indicated antibodies. Total cell lysates (50 µg protein) were probed by immunoblotting with 

indicated antibodies. (B) LMP-EV and LMP-shNck1 MIN6 cells were pretreated with 100 µM PV 



 

129 

 

for 20 min, then washed with PBS and either left untreated (-) or treated with 1 µM Tg for 10 min. 

Total cell lysates (50 µg protein) were subjected to immunoblotting using indicated antibodies. 

Bar chart shows the ratio of pY561 PERK determined by densitometry in Tg-treated compared to 

untreated cells. Data are mean ± SEM (*P<0.007) and are representative of 3 independent 

experiments.   
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Supplementary figure S2. 4 Overexpression of PERK modulates proinsulin levels in MIN6 

cells. 

Total cell lysates (50 µg protein) from MIN6 cells transiently transfected with empty vector 

(Mock) or increasing amounts of plasmid encoding PERK WT were subjected to immunoblotting 

with indicated antibodies. Bar chart shows densitometry of proinsulin levels. Data are mean ± 

SEM (*P<0.001). Data are representative of 3 independent experiments. 
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3.1 Preface 

In the previous chapter, we identified Nck as a binding partner and a regulator of PERK 

activity and signaling. We also demonstrated that Nck1 silencing or deletion increases insulin 

levels in pancreatic β cells and determined that it was PERK-dependent in the case of Nck1-

silenced MIN6 cells. In chapter 3, I further investigate the role of Nck1 silencing in MIN6 cells. 

Here, I show that in agreement with increased insulin content, Nck1-silenced MIN6 cells display 

increased number of mature secretory granules, without impairment of general cell or ER 

morphology. Interestingly, we observed that Nck1-silenced MIN6 cells were protected against 

diabetes-related stresses. Correlating with that, Nck1-silenced MIN6 cells were more resistant to 

PERK activation in response to diabetes-related stresses. However, pharmacological induction of 

ER stress induced similar levels of PERK activation and cell death in both control and Nck1-

depleted MIN6 cells. I then investigated cellular mechanisms triggered by the spontaneous 

induction of PERK activity in unstressed cells, as they might contribute towards cell survival. I 

revealed that Nck1-silenced MIN6 cells display enhanced autophagy in a PERK-dependent 

manner. In addition, the direct PERK substrate Nrf2, responsible for activating the antioxidant 

gene program in cells, was upregulated. Finally, Akt activation, which is considered a prosurvival 

mechanism, was also enhanced. Altogether, these adaptive mechanisms contribute to generate 

robust pancreatic β cells that produce more insulin and are protected against diabetes-related 

stresses.   
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3.2 Abstract 

Increasing evidence strongly support a critical role for PERK in regulating pancreatic β cell 

function. In agreement, we previously reported that enhancing PERK basal activity, by silencing 

the SH domain-containing adaptor protein Nck1 in pancreatic β cells, increased insulin content in 

a PERK-dependent manner. Here we report that Nck1-deficient MIN6 cells display normal overall 

morphology while as expected increased number of secretory granules. Furthermore, we 

demonstrate that cell survival to diabetes-relevant stresses is increased, while cell viability in 

response to chemical endoplasmic reticulum (ER) stress inducers is not changed. In agreement, 

PERK activation in Nck1-depleted MIN6 cells exposed to palmitate was significantly reduced 

while it remained strongly induced by the ER stress inducer thapsigargin. Interestingly, silencing 

Nck1 in MIN6 cells results in increased PERK basal activity and expression of the PERK 

downstream target sestrin2, which promotes autophagy by attenuating mTORC1 activation 

through AMPK-dependent and -independent mechanisms. Accordingly, activated AMPK was 

increased, mTORC1 signaling decreased, and autophagy markers increased in Nck1-silenced 

MIN6 cells. Increased autophagy was recapitulated in Nck1-/- mice pancreatic β cells. In addition, 

basal levels of the PERK substrate Nrf2 and its antioxidant gene targets (HO-1 and Nqo1) were 

upregulated in Nck1-silenced MIN6 cells, revealing an active PERK-Nrf2 signaling in these cells. 

Finally, Akt activation was increased in Nck1-silenced MIN6 cells. Altogether, this study 

demonstrates that Nck1 silencing in pancreatic β cells promotes PERK activation and signaling to 

protect β cells against pathological stresses. These findings further provide new perspectives to 

advance our understanding of molecular mechanisms and signaling systems regulating pancreatic 

β cell fates.  
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3.3 Introduction 

Increasing evidence from studies in humans, and findings from cell cultures and animal 

models strongly support an important role for the PKR-like endoplasmic reticulum kinase (PERK) 

in pancreatic β cell function and insulin biogenesis. Indeed, a role for PERK in pancreatic β cells 

was first highlighted by the discovery that the Wolcott-Rallison Syndrome (WRS) in humans, a 

neonatal/early infancy form of diabetes characterized by a critical reduction in β cell mass and 

function is caused by loss of function mutations in the PERK gene (Delepine et al, 2000). 

Furthermore, PERK-/- mice phenocopy WRS dysfunctions, and display diminished β cell mass due 

to reduced proliferation and differentiation during the neonatal period, consequently inhibiting 

postnatal gain of β cell mass (Harding et al, 2001; Zhang et al, 2002a; Zhang et al, 2006). In 

addition, acute inhibition of PERK through adenovirus-mediated expression of a dominant 

negative PERK mutant lacking its kinase domain in rat insulin-secreting β cells (INS 832/13) led 

to reduced cell proliferation and insulin content (Feng et al, 2009). Surprisingly, proinsulin was 

abnormally retained in the ER of these cells, which implicates PERK in maturation and trafficking 

of proinsulin. Of interest, conditional deletion of PERK in young or mature adult mice significantly 

increased β cell death even though β cell proliferation was increased (Gao et al, 2012). This reveals 

that PERK contributes to maintain β cell function also in adults, but apparently through a different 

mechanism than during early postnatal development. 

PERK was initially defined as a serine/threonine protein kinase activated in conditions 

altering the endoplasmic reticulum (ER) homeostasis (Shi et al, 1998; Harding et al, 1999). 

However, recent studies revealed that PERK also displays tyrosine kinase activity that mediates 

its autophosphorylation on tyrosine residues and contributes to regulate its activation (Su et al, 
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2006; Yamani et al, 2014). ER stress-induced activated PERK phosphorylates the α-subunit of the 

eukaryotic initiation factor 2 (eIF2α) on Ser51, resulting in attenuation of general translation, which 

helps to recover ER homeostasis by reducing the biosynthetic burden (Harding et al, 2000b; 

Vattem & Wek, 2004; Ron & Walter, 2007). Paradoxically, this promotes translation of ATF4 

(Activating Transcription Factor 4), which controls an important transcriptional program with 

complex outputs (Vattem & Wek, 2004). Under physiological conditions inducing transient PERK 

activation, ATF4 is protective by regulating expression of genes that contribute to the adaptation 

of cells to stress conditions created by short-lived oxygen and nutrient deprivation, and 

ER/oxidative stress (Harding et al, 2003; Ameri et al, 2004; Blais et al, 2004). Concomitantly, 

PERK also directly phosphorylates the transcription factor nuclear factor (erythroid-derived 2)-like 

2 (Nrf2), facilitating its nuclear translocation and subsequent transcription of target genes, whose 

protein products contribute to redox homeostasis and cell survival to stress (Cullinan et al, 2003; 

Cullinan & Diehl, 2004; Yagishita et al, 2014), and prevent onset of diabetes (Uruno et al, 2013). 

In addition, ATF4 was shown to dimerize with Nrf2 to promote the expression of anti-oxidant 

genes such as heme oxygenase-1 (HO-1) (He et al, 2001; Cullinan & Diehl, 2006), suggesting 

cooperation between PERK downstream signaling events in physiological conditions. In contrast, 

in pathologic settings created by the persistence of stress conditions, sustained PERK-peIF2α-

ATF4 signaling induces prolonged expression of C/EBPα-homologous protein GADD153 

(CHOP) (Harding et al, 2000b; Vattem & Wek, 2004), which triggers expression of genes that 

guide cells towards apoptosis (Tabas & Ron, 2011). Altogether these studies provide evidence 

supporting that cellular response to stress can adopt diametrically different directions determined 

according to the intensity and duration of activation of the PERK-peIF2α-ATF4 signaling pathway 

(Matsumoto et al, 2013). 
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Autophagy is a cellular process involving the formation of autophagosomes, small double 

layer membrane vesicles that sequestrate intracellular components to be targeted to bulk lysosomal 

degradation. Under physiological settings, basal levels of autophagy mediate clearance of extra or 

dysfunctional organelles or macromolecules, ensuring quality control essential to cellular 

homeostasis (Xie & Klionsky, 2007; Levine & Kroemer, 2008). However, autophagy is enhanced 

in response to various stresses, providing crucial substrates for energy production and metabolic 

function engaged in protecting cells against deleterious conditions like nutrient-scarce conditions 

(Klionsky & Emr, 2000). Interestingly, numerous studies highlighted the importance and 

protective role of autophagy in pancreatic β cell function and resistance to stress, and demonstrated 

that impairment of autophagy leads to pancreatic β cell dysfunction and death (Ebato et al, 2008; 

Jung et al, 2008; Choi et al, 2009; Quan et al, 2012).  

We previously reported that silencing Nck1 in pancreatic β cells MIN6 enhances PERK 

basal activity, leading to PERK-dependent increased insulin biosynthesis and content (Yamani et 

al, 2014). Nck (non-catalytic region of tyrosine kinase) are 47 kDa adaptor proteins containing 

three Src Homology (SH) 3 domains and one SH2 domain (Lehmann et al, 1990; Braverman & 

Quilliam, 1999). Nck family, composed of the highly homologous Nck1 and Nck2 proteins 

encoded by two different genes  (Chen et al, 1998; Braverman & Quilliam, 1999), mediate 

intracellular signal transduction by coupling cell surface receptors to specific downstream effectors 

(McCarty, 1998). Nck1 and Nck2 have been involved in critical biological processes, including 

embryonic development (Bladt et al, 2003), actin cytoskeletal reorganization (Bokoch et al, 1996; 

Galisteo et al, 1996), axonal guidance (Garrity et al, 1996), proliferation (Li et al, 1992) and the 

unfolded protein response (UPR) (Kebache et al, 2004; Nguyen et al, 2004; Latreille & Larose, 



 

137 

 

2006). In the present study, we report that stably silencing Nck1 in MIN6 cells is protective against 

cell death induced by stress of pathological relevance to diabetes. In parallel, we demonstrated that 

silencing Nck1 in MIN6 cells enhances PERK basal activity, phosphorylation of eIF2αS51, and 

ATF4 mRNA and nuclear protein levels. In accordance, we showed that in a PERK-dependent 

manner autophagy is enhanced, and antioxidant gene expression increased in MIN6 cells depleted 

of Nck1. Given autophagy and antioxidant response clearly aid β cell survival to stress (Ebato et 

al, 2008; Choi et al, 2009; Quan et al, 2012), our findings provide strong evidence that silencing 

Nck1 in MIN6 cells enables PERK activation, initiating a signaling network that contributes to 

improve β cell function and resistance to pathological stress relevant to diabetes. 

3.4 Material and Methods 

3.4.1 Cell Culture   

Control and shNck1 MIN6 cells were generated as previously described (Yamani et al, 

2014). Cells were cultured in high glucose Dulbecco’s Modified Eagle’s Medium (DMEM, 

Invitrogen) supplemented with 15% fetal bovine serum (FBS, Invitrogen), 0.75 mg/ml penicillin 

and 0.1 mg/ml streptomycin (Invitrogen), 0.55 µM β-Mercaptoethanol (Sigma) and kept at 37°C 

in a 5% CO2 environment.  

3.4.2 Transmission Electron Microscopy  

Control and shNck1 MIN6 cells were plated in 4-well plates under regular medium 

conditions. Cells were washed twice with 1X PBS and then fixed with 2.5% glutaraldehyde 

(Electron Microscopy Science (EMS)) in 0.1 M sodium cacodylate buffer (EMS) overnight at 4°C. 

Samples were washed 3 times with 0.1 M sodium cacodylate (washing buffer) for a total of 1 h, 

then post-fixed with 1% aqueous osmium tetroxide (Mecalab) and 1.5% aqueous potassium 
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ferrocyanide (Sigma) for 2 h, followed by washing three times with washing buffer for a total of 

15 min. Samples were dehydrated with acetone (Fisher Scientific) in increasing concentrations: 

30%, 50%, 70%, 80%, 90% and 3X with 100% each for 8-15 min. Infiltration was performed with 

Epon (Mecalab)/acetone: 1:1 overnight, 2:1 all day, 3:1 overnight and pure Epon next day for 4 h. 

Embedding was done with appropriate labels then polymerized in 60°C oven 48 h. Samples were 

trimmed and cut in 90-100 nm thick sections with UltraCut E ultramicrotome (Reichert-Jung) and 

placed onto a 200 mesh copper grid (EMS). Sections were stained with Uranyl acetate (EMS) for 

8 min, then Reynold’s lead (EMS) for 5 min. For morphology, cells were analyzed using FEI 

Tecnai 12 120 kV transmission electron microscope (TEM) equipped with an AMT XR80C 8 

megapixel CCD camera. 

3.4.3 Cell Treatments  

Thapsigargin (Tg, Sigma) and dithiothreitol (DTT, Roche) treatments were as indicated in 

figure legends. Palmitate (PA, Sigma) was prepared in 3 mM stock solution conjugated with 5% 

fatty acid free BSA (Roche) in Hepes-balanced Kreb’s-Ringer bicarbonate buffer (119 mM NaCl, 

4.74 mM KCl, 2.54 mM CaCl2, 1.19 mM MgCl2, 1.19 mM KH2PO4, 25 mM NaHCO3, 10 mM 

Hepes, pH 7.4) by shaking overnight at 37°C. The stock solution was then diluted at the desired 

concentration in culture medium. D-Glucose (Sigma) stock solution was 2 M and diluted to desired 

concentration in culture medium. Thiazolyl Blue Tetrazolium Bromide (MTT, Sigma) and 

Bafilomycin A1 (BafA1, Sigma) were used as indicated in figure legends. Cell transient 

transfection with empty or myc-tagged kinase dead PERK (K618A) plasmids was performed using 

Lipofectamine 2000 (Invitrogen) as recommended by the manufacturer. Cells were lysed 48 h post 

transfection in lysis buffer as previously described (Latreille & Larose, 2006). Total cell lysate 
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was subjected to Western blotting using antibodies described below. For mCherry-GFP-LC3 

transient transfection, lipofectamine 3000 was used and cells were visualized 24 h post 

transfection. 

3.4.4 MTT viability assay  

Cell viability was analyzed using MTT assay. Cells were plated at 2x105 cells/well in 24-

well plates and the next day exposed to indicated compounds for 24 h. MTT solution prepared 

fresh at 5 mg/ml in PBS was diluted 1:6 in regular medium and added to each well (600 µl) at the 

end of the treatment. Incubation was pursued at 37°C for 3.5 h. MTT solution was then removed 

and 500µl/well of DMSO was then added. Absorbance was measured at 570 nm using EnSpire 

Multimode plate reader (Perkin Elmer).  

3.4.5 Western blot analysis and antibodies  

Cells were washed in cold PBS and lysed on ice using lysis buffer as reported above. Cell 

lysates were then centrifuged and supernatant used for Western blot analysis.  Where indicated, 

RIPA buffer (50 mM Hepes pH 7.4, 1% Triton X-100, 1% Sodium deoxycholate, 0.1% SDS, 150 

mM NaCl, 10% Glycerol, 1.5 mM MgCl2, 1 mM EGTA, 1 mM sodium orthovanadate, 10 mM 

Sodium pyrophosphate, 100 mM Sodium fluoride) supplemented with protease inhibitors was used 

to lyse cells. Where indicated, crude nuclear extracts were generated as previously described 

(Meury et al, 2010). PERK and Nck1-specific polyclonal antibodies were previously described 

(Yamani et al, 2014). ATF4 (H-290), CHOP/GADD153, Nrf2 (C-20), pThr981 PERK, and RasGAP 

(B4F8) antibodies were purchased from Santa Cruz. Actin, pThr308 Akt, Akt, pAMPK, AMPK, 

Caspase 3, Cyclin D1, eIF2α, FOXO1, PARP, PERK (C33E10), SQSTM1 (p62), pp70S6K, 

p70S6K, p4EBP1 and 4EBP1 were from Cell Signaling while pSer52 eIF2α, Alexa Fluor 488 dye, 
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and Alexa Fluor 568 dye were purchased from Life Technologies. Antibodies against Sens2 and 

LC3B were purchased from Proteintech and Sigma respectively.  

3.4.6 mRNA expression analysis by qRT-PCR   

From control and shNck1 MIN6 cells, total RNA was extracted using TRIzol (Invitrogen) 

following the manufacturer recommendations. Reverse-transcription to cDNA was performed 

using High Capacity cDNA Reverse Transcription kit (Applied Biosystems). PCR reactions were 

prepared using Power SYBR Green PCR Master Mix (Applied Biosystems). qRT-PCR data were 

normalized to Cyclophilin b mRNA expression levels. All primers used for PCR reactions are 

listed in supplementary Table S3.1. 

3.4.7 Confocal microscopy  

For cell immunofluorescence analysis, cells were plated on cover slips in 4-well plates and 

next morning fixed using 4% formaldehyde solution in PBS for 15 min at room temperature. Fixed 

cells were blocked and permeabilized in 5% serum and 0.3% Triton X-100 solution for 1 h 

incubation at RT. Then, cells were incubated overnight at 4°C in a primary antibody solution 

containing the Nrf2 antibody (1:200) in 1% BSA/0.3% Triton X-100, and followed by 1 h 

incubation at RT with red Alexa-fluor 568 as a secondary antibody. Finally, cells were briefly 

stained with DAPI (4’, 6-diamidino-2-phenylindole). Coverslips were mounted on slides for image 

capturing. Images were taken using LSM780 confocal microscope and analyzed using ImageJ. 

For tissue immunofluorescence staining, three pairs of Nck1+/+ and Nck1-/- male mice 

generated in house from Nck1+/- mice previously obtained from Dr. Tony Pawson (Toronto, 

Canada) were used to provide pancreatic tissue to analyze LC3 distribution in β cells. Briefly, 

pancreatic tissue sections (4 µm) were dewaxed, then rehydrated with successive washes in 100%, 
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90%, 80%, 70%, and 50% ethanol. Sections were permeabilized using 0.1% Triton X-100 in PBS 

and rinsed with 1% H2O2 in PBS before to be blocked in 10% serum containing 0.1% Triton X-

100 in PBS for 1 h incubation at RT. Primary antibody was prepared in PBS with 1% serum/0.1% 

Triton X-100 containing LC3 antibody. Alexa Fluor 488 (2-3 h in the dark at RT) was used as 

secondary antibody. Tissue sections were DAPI-stained, washed with PBS and coverslips mounted 

on slides. Pictures were taken using LSM780 confocal microscope and analyzed with ImageJ. 

3.4.8 Statistical analysis  

Results are expressed as mean ± standard error of mean (SEM). Significance was assessed 

using unpaired two-tailed Student’s t-test, with p<0.05 considered as statistically significant. Bar 

charts represent mean of at least 3 independent experiments, unless otherwise indicated. 

3.5 Results 

3.5.1 Increased number of insulin secretory granules in Nck1-silenced MIN6 cells  

We previously reported that Nck1-silenced (shNck1) MIN6 cells display increased insulin 

biosynthesis and content compared to control MIN6 cells (Yamani et al, 2014). In accordance, we 

showed that isolated pancreatic islets from Nck1-/- mice also contain more insulin than control 

(Nck1+/+) mice islets. In Nck1-deficient MIN6 cells, increased insulin biosynthesis may overload 

the ER folding capacity, creating ER distension. To assess whether insulin-related changes impact 

MIN6 cell morphology, we performed electron microscopy analysis on control and shNck1 MIN6 

cells (Figure 3.1A). Overall, we did not detect striking morphological differences between both 

cell subtypes, except that shNck1 MIN6 cells display more insulin secretory granules. Following 

close examination, we determined that the number of mature insulin secretory granules, defined 

as membrane-bound electron-dense cores surrounded by electron-transparent halos, were 
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significantly higher (~1.6 fold) in shNck1 MIN6 cells compared to control (Figure 3.1B). These 

findings demonstrate that increased insulin content in Nck1-depleted MIN6 cells (Yamani et al, 

2014) results from a real increase in mature insulin secretory granules rather than accumulation of 

insulin in intracellular processing structures such as the endoplasmic reticulum (ER) or the Golgi.  

3.5.2 Nck1-silenced MIN6 cells are protected against diabetes-relevant stresses 

Given that silencing Nck1 in MIN6 cells has a positive effect on insulin synthesis and 

processing, we proposed that it may influence survival of pancreatic β cells to stress. To test this 

hypothesis, we compared control and shNck1 MIN6 cells abilities to survive diabetes-relevant 

stresses. Both cell subtypes grown in regular MIN6 cell culture medium were left untreated or 

exposed to various stresses for 24 h and cell viability was assessed by determining the number of 

living cells using the colorimetric MTT ( 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) assay. Following oxidative stress induced by 100 µM H2O2, shNck1 MIN6 cells already 

displayed higher cell viability compared to control cells, but the protective effect of silencing Nck1 

was statistically significant when cell death is greater in response to a higher concentration of H2O2 

(200 µM) (Figure 3.2A).  Similarly, when MIN6 cells were exposed to the saturated lipid palmitate 

(PA) known to induce lipotoxicity, Nck1-silenced cells displayed enhanced viability (Figure 

3.2B). Similar to H2O2, the positive effect of silencing Nck1 on MIN6 cells survival is more 

important at higher concentration of PA (1mM vs 0.5mM). Finally, silencing Nck1 in MIN6 cells 

also significantly decreased cell death in response to high glucose (30 mM) (Figure 3.2C). 

Therefore, silencing Nck1 in MIN6 cells appears to be protective against cell death induced by 

oxidative stress, lipotoxicity and glucotoxicity, all of which are relevant to the onset of diabetes.  
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To rule out that increased cell proliferation in shNck1 MIN6 cells could contribute to 

increased viability as measured using MTT, we compared the number of viable cells using this 

assay in control and shNck1 MIN6 cells over 4 days of culture in regular growth condition. As 

reported in Figure S3.1A, using MTT assay we observed similar proliferation rates in both cell 

subtypes. Further confirming that silencing Nck1 does not affect MIN6 cell proliferation, we 

demonstrated that the levels of the proliferation marker cyclin D1 were comparable in control and 

shNck1 MIN6 cells (Figure S3.1B).  

To demonstrate further that silencing Nck1 protects MIN6 cells against apoptosis-mediated 

cell death, we measured proapoptotic markers in PA-treated cells. Western blot analysis showed 

that after PA exposure, shNck1 MIN6 cells significantly display lower levels of both of the 

classical apoptotic markers, cleaved PARP and caspase 3 (Figure 3.2D), confirming that shNck1 

MIN6 cells are protected against lipotoxicity-induced apoptosis.  

To explore whether silencing Nck1 in MIN6 cells also protects against cell death induced 

by chemical agents creating ER stress that activates the UPR, a condition contributing to β cell 

dysfunction and apoptosis (Oyadomari et al, 2002), we evaluated cell survival following 24 h 

exposure to thapsigargin (Tg) and dithiothreitol (DTT), both agents known to induce ER stress. 

Surprisingly, silencing Nck1 in MIN6 cells failed to protect against cell death induced by the strong 

ER stress inducers Tg (1 µM) or DTT (10 mM) (Figure 3.2E). These results indicate that silencing 

Nck1 protects pancreatic β cells against pathological stresses, but not from strong agents that 

induce ER stress. These findings suggest that according to the intensity and the type of stress, 

differential mechanisms could determine pancreatic β cell fate.  



 

144 

 

3.5.3 Silencing Nck1 in MIN6 cells attenuates PA-induced PERK activation and signaling 

We previously reported that silencing Nck1 in MIN6 cells enhances basal PERK activity 

and signaling (Yamani et al, 2014). To determine whether PERK contributes to cell survival to 

diabetes-relevant stresses in Nck1-silenced MIN6 cells, in preliminary experiments we compared 

PERK activation and signaling in control and shNck1 MIN6 cells up to 24 h following either PA 

or Tg exposure (Figure S3.2). As we previously reported (Yamani et al, 2014), untreated shNck1 

MIN6 cells present higher basal levels of PERK activation as shown by increased phosphorylated 

PERK (pPERK) immunoreactive signal in untreated cells (Figure S3.2, time 0). However, during 

PA exposure, control cells displayed a gradual increase in PERK activity peaking between 4 to 8 

h (Figure S3.2A) while in shNck1 MIN6 cells, PA-induced PERK phosphorylation, which also 

was maximal between 4 to 8 h, appeared to be lower. In contrast, both control and shNck1 MIN6 

cells displayed similar levels of PERK phosphorylation during the time course of Tg exposure 

(Figure S3.2B). These data suggest that the intensity of PERK activation during PA exposure 

differs between control and shNck1 MIN6 cells while in response to Tg, both cell subtypes show 

similar levels of PERK activation. To further demonstrate this, we analyzed PERK 

phosphorylation in control and shNck1 MIN6 cells after 8 h exposure to either PA or Tg (Figure 

3.3). Our findings confirmed that exposure of control cells to PA or Tg resulted in robust PERK 

activation as indicated by marked increased PERK phosphorylation. In contrast, shNck1 MIN6 

cells displayed attenuated PERK phosphorylation upon PA exposure (Figure 3.3A) even though 

Tg-induced PERK phosphorylation was comparable in both cell subtypes (Figure 3.3B). In 

addition, we followed PERK signaling by measuring the levels of phosphorylated eIF2α on Ser51 

in control and shNck1 MIN6 cells upon PA and Tg exposure. Similarly to what we observed for 

PERK phosphorylation, peIF2αSer51 in shNck1 MIN6 cells was significantly lower upon PA 
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exposure compared to control cells (Figure 3.3A) while in response to Tg, peIF2αSer51 was 

induced to the same extend in both cell subtypes (Figure 3.3B). Altogether, these results indicate 

that Nck1-silenced MIN6 cells, which display increased PERK basal activity, are more resistant 

to PA-induced PERK activation. In agreement with the ability of these cells to survive better to 

PA exposure, we propose that increased PERK basal activity and signaling following Nck1 

silencing in MIN6 cells likely launches an adaptive pathway that promotes survival to stresses 

relevant to diabetes. 

3.5.4  Silencing Nck1 in MIN6 cells promotes ATF4 expression without significantly 

inducing CHOP expression 

PERK is recognized to influence cell fate in response to stress. Indeed, transient low levels 

of PERK activation are believed to promote cell survival while sustained PERK hyperactivation 

and signaling is associated with apoptosis (Rutkowski et al, 2006). Therefore, we hypothesize that 

the slight increase in PERK basal activation in shNck1 MIN6 cells initiates an adaptive response 

that protects pancreatic β cells to stresses inducing mild activation of PERK. To further support 

this hypothesis, we determined ATF4 and CHOP mRNA and nuclear protein levels, two PERK 

signaling downstream targets that contribute to establish the balance between survival and 

apoptosis upon PERK activation. Correlating with increased PERK basal activity and signaling in 

shNck1 MIN6 cells, we found that both ATF4 mRNA and nuclear protein levels were significantly 

increased compared to control cells (Figure 3.4A-B). CHOP mRNA levels followed the same trend 

although never reached significant levels in shNck1 MIN6 cells (Figure 3.4A). More importantly, 

CHOP nuclear protein levels were not detected in both control and shNck1 MIN6 cells, indicating 

that PERK basal activity in shNck1 MIN6 cells does not induce CHOP protein expression (Figure 
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3.4B). Altogether, these findings support that Nck1-depleted MIN6 cells are inclined towards a 

PERK-mediated prosurvival adaptive state associated with increased ATF4 expression, which is 

however insufficient to lead to the activation of the apoptotic CHOP pathway. 

3.5.5 Depletion of Nck1 in pancreatic β cells enhances autophagy  

PERK was previously shown to play a role in inducing autophagy (Kouroku et al, 2007) 

and increasing evidence support a protective role for autophagy in pancreatic β cell function and 

survival (Ebato et al, 2008; Choi et al, 2009; Quan et al, 2012). Therefore, we assessed autophagy 

in control and shNck1 MIN6 cells by monitoring the levels of LC3II and p62, two well-known 

markers of autophagy. Interestingly, we detected increased levels of the lipidated form of LC3 

(LC3II) and p62 in shNck1 MIN6 cells compared to control cells, suggesting increased autophagy 

in shNck1 MIN6 cells (Figure 3.5A). To visualize enhanced autophagy in Nck1 silenced MIN6 

cells, we transiently transfected control and shNck1 MIN6 cells with a plasmid encoding mCherry-

GFP tagged LC3, and given autophagosomes are LC3-positive cytoplasmic punctate structures, 

we followed mCherry signal. As shown in Figure 3.5B, shNck1 MIN6 cells displayed more 

mCherry-positive punctate structures representing autophagosomes compared to the diffuse 

cytoplasmic mCherry signal in control cells. We then determined whether increased levels of 

autophagy markers observed in shNck1 MIN6 cells results from an increase in autophagosomes 

formation or a decrease in lysosomal degradation. Serum-starved MIN6 cells were treated or not 

with Bafilomycin A1 (BafA1), a lysosomal autophagosomes fusion inhibitor and as expected, 

BafA1 treatment induced LC3II accumulation in both cell subtypes (Figure S3.3). However, the 

levels of LC3II were higher in shNck1 MIN6 cells compared to control cells at both 2 and 4 h of 

BafA1 treatment, demonstrating that silencing Nck1 in MIN6 cells promotes autophagy. To 
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determine whether increased autophagy is PERK-dependent, shNck1 MIN6 cells were transiently 

transfected with a plasmid encoding a kinase inactive PERK (K618A) 48 h before assessing LC3II 

and p62 levels. As shown in Figure 3.5C, Western blots showed that expressing a kinase inactive 

PERK decreased both LC3II and p62 levels, demonstrating that the positive effect of silencing 

Nck1 in MIN6 cells on autophagy is PERK-mediated (Figure 3.5C).  

To confirm that silencing Nck1 promotes autophagy in pancreatic β cells in an in vivo 

context, we performed LC3 immunofluorescent staining using an LC3-specific antibody on 

pancreatic tissue sections from 22 weeks old Nck1+/+ and Nck1-/- mice fed a normal chow diet 

(Figure 3.5D). DAPI staining in blue indicates the nuclei, while the gray to white range signal 

represents the intensity of LC3 staining diffusely distributed in the cytosol or concentrated in 

punctate structures indicative of autophagosomes. Confocal images showing different islet regions 

of 3 pairs of pancreatic tissue from Nck1+/+ and Nck1-/- mice show increased LC3 positive punctate 

structures in β cells of Nck1-/- mice compared to Nck1+/+ mice. These observations recapitulate our 

findings using MIN6 cells and further support a role for Nck1 in regulating autophagy in pancreatic 

β cells. 

3.5.6 Silencing Nck1 in MIN6 cells increases sestrin2-pAMPK-mTORC1 signaling and 

Akt activation  

To delineate the mechanism by which silencing Nck1 enhances autophagy in pancreatic β 

cells, we focused on the recent discovery that through ATF4, PERK increases the expression of 

the stress-inducible protein sestrin2 (Sesn2) (Bruning et al, 2013), which is reported to promote 

autophagy by attenuating mTORC1 activation through AMPK-dependent and -independent 
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mechanisms (Budanov & Karin, 2008; Maiuri et al, 2009; Lee et al, 2010; Parmigiani et al, 2014; 

Peng et al, 2014). Interestingly, we found that shNck1 MIN6 cells display increased Sesn2 levels 

compared to control cells (Figure 3.6A). In accordance, activation of AMPK (pAMPK) was 

increased while mTORC1 activity, as monitored by the levels of phosphorylated p70S6K and 

4EBP1, was decreased in shNck1 MIN6 (Figure 3.6B). As Sens2, through inhibiting mTORC1 or 

regulating PTEN, was reported to promote Akt activation (Lee et al, 2012a; Zhao et al, 2014), we 

determined that silencing Nck1 in MIN6 cells resulted in increased Akt activation (Figure 3.6C, 

pAktThr308). Further supporting Akt activation, FOXO1, whose nuclear expression is decreased 

by Akt activation, was found to be reduced in crude nuclear extracts from Nck1-silenced MIN6 

cells (Figure 3.6D). These findings strongly support that silencing Nck1 in MIN6 cells promotes 

Sens2-mediated signaling that regulates mTORC1 and Akt activity.  

3.5.7 Silencing Nck1 in MIN6 cells increases Nrf2 nuclear localization and expression of 

antioxidant genes 

Nrf2, a previously identified direct PERK substrate, transcriptionally activates antioxidant 

genes to counteract oxidative stress (Cullinan et al, 2003; Cullinan & Diehl, 2004). Interestingly, 

Nrf2 is regulated by Sens2 (Bae et al, 2013), which is increased in shNck1 MIN6 cells. Therefore, 

we compared Nrf2 levels in control and shNck1 MIN6 cells, and observed that the levels of Nrf2 

were higher in shNck1 MIN6 cells (Figure 3.7A). In addition, we investigated Nrf2 distribution 

using immunofluorescence staining of Nrf2 and confocal imaging. Nrf2 signal intensity was 

determined in nuclear regions of both control and shNck1 MIN6 cells, and suggested increased 

nuclear Nrf2 localization in shNck1 MIN6 cells (Figure 3.7B). Finally, we evaluated Nrf2 activity 

by analyzing mRNA expression levels of the antioxidant genes Nqo-1 and HO-1, and found that 
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these genes were upregulated in Nck1-silenced MIN6 cells (Figure 3.7C), demonstrating that 

silencing Nck1 in MIN6 cells increases Nrf2 transactivation of antioxidant genes. 

3.6 Discussion   

Previous work from our group demonstrated that by interacting with PERK, Nck1 

contributes to the regulation of insulin biosynthesis and insulin content in pancreatic β cells MIN6 

in culture as well as in mouse pancreatic islets (Yamani et al, 2014). In this study, we now report 

that silencing Nck1 in MIN6 cells promotes cell survival to high glucose, palmitate and oxidative 

stress while it attenuates palmitate-induced PERK activation and signaling. Alongside, we found 

that PERK basal activity and signaling associated with autophagy and expression of antioxidant 

genes were increased upon silencing Nck1 in MIN6 cells. Furthermore, we showed that enhanced 

autophagy was recapitulated in Nck1-/- mice pancreatic β cells, suggesting that the effects of 

silencing Nck1 in MIN6 cells in vitro are relevant in vivo. Altogether our findings strongly suggest 

that silencing Nck1 in pancreatic β cells, by slightly activating PERK, implemented an adaptive 

signaling network that is protective against insults relevant to β cell pathology (Figure 3.8). 

However, this adaptive state, established following silencing Nck1 failed to protect β cells against 

chemical ER stress inducers such as thapsigargin and DTT, which strongly activate PERK. As 

proposed by others (Ma et al, 2002; Carrara et al, 2015), under these conditions the intensity of 

PERK activation and signaling probably reach an irreversible threshold altering the balance 

between pathways that support adaptation and survival, and those guide cells towards apoptosis. 

Thus, we propose that Nck1 in MIN6 cells contributes to determine the intensity of PERK 

activation and signaling that underlies differential survival rates to various types of stresses (Figure 

3.8). 
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Mechanistically, how Nck1 exactly modulates PERK activity still remains to be elucidated. 

Crystal structure of mammalian PERK luminal domains recently illustrated the existence of 

dimeric and tetrameric states (Carrara et al, 2015). Given that PERK mutations abrogating tetramer 

formation resulted in lower PERK activity and phosphorylation of eIF2α, it was suggested that the 

dimers and tetramers may represent different levels of PERK activation states with the conversion 

to tetramers being higher levels of PERK activation and signaling as induced by chemical ER 

stress agents. We previously reported that Nck1 interacts with and limits ER stress-induced PERK 

activation (Kebache et al, 2004; Latreille & Larose, 2006; Yamani et al, 2014). In agreement, we 

showed that silencing Nck1 enhances PERK basal activity and signaling, although to a lower 

extent compared to ER stress-induced PERK activation (Yamani et al, 2014). It is then possible 

that Nck1 limits PERK activation by hampering its dimerization while silencing Nck1 facilitates 

spontaneous PERK dimer formation (Figure 3.8), which through autophosphorylation is sufficient 

to slightly, but significantly activate PERK as reported by others (Ma et al, 2002).  

Our study identifies Nck1 as a novel regulator of autophagy in pancreatic β cells. Increasing 

evidence support an essential role for autophagy in pancreatic β cell homeostasis. Indeed, 

pancreatic β cell-specific deletion in mice of Atg7 (Autophagy related 7), an important component 

of the autophagy system, led to hyperglycemia and hypoinsulinemia attributed to a decrease in β 

cell mass (Jung et al, 2008). They also demonstrated ER distension in autophagy-deficient 

pancreatic β cells, suggesting that autophagy plays an important role in quality control of protein 

folding. Moreover, mice with autophagy-deficient pancreatic β cells displayed greater glucose 

intolerance compared to wild-type mice when fed a high fat diet, further highlighting the 

importance of autophagy in maintaining pancreatic β cell function in stress conditions (Ebato et 
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al, 2008). In addition, mice with autophagy-deficient pancreatic β cells were more susceptible to 

develop diabetes due to a compromised unfolded protein response (Quan et al, 2012). Finally, 

impaired autophagy in rodent pancreatic β cells expressing the human islet amyloid polypeptide 

(hIAPP) resulted in hIAPP oligomer formation and amyloid accumulation in pancreatic islets, 

leading to increased β cell death and concomitant decreased β cell mass associated with the 

development of Type 2 diabetes (Kim et al, 2014a; Rivera et al, 2014; Shigihara et al, 2014). 

Among different mechanisms underlying autophagy, activation of PERK and phosphorylation of 

eIF2αSer51 were both involved in ER stress-induced Atg5-Atg12-Atg16 complex-dependent 

conversion from LC3-I to -II, an important step in the formation of autophagosomes (Kouroku et 

al, 2007). In addition, PERK was recently shown to protect against liver damage during obesity by 

stimulating autophagy through upregulation of the stress-inducible protein Sesn2 (Park et al, 

2014). Expression of Sesn2, induced by the ER stress-activated transcription factors CCAAT-

enhancer-binding protein β (c/EBPβ) (Park et al, 2014) and ATF4 (Bruning et al, 2013) was 

reported to promote autophagy by attenuating mTORC1 activation through AMPK-dependent and 

independent mechanisms (Lee et al, 2010; Parmigiani et al, 2014). Altogether, these findings 

strongly support the existence of a significant intertwining relationship between PERK signaling 

and autophagy. In agreement, we demonstrate that silencing Nck1 in MIN6 cells promotes Sesn2 

expression and signaling that correlates with attenuation of mTORC1 signaling and enhanced 

PERK-induced autophagy. These findings strongly suggest that Nck1, by modulating PERK 

activity, plays an important role in regulating autophagy. 

Increased survival to oxidative stress upon silencing Nck1 in MIN6 cells strongly suggests 

an efficient antioxidant response, which could reflect adaptation to higher metabolic demand to 
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keep up with enhanced insulin biosynthesis activity in these cells (Yamani et al, 2014). 

Accordingly, in MIN6 cells depleted of Nck1 we found upregulation and enhanced nuclear 

translocation of the transcription factor Nrf2, a direct PERK substrate and key regulator of a 

pathway responsible for sensing and responding to oxidative stress (Cullinan et al, 2003; Nguyen 

et al, 2009). Further supporting that activation of Nrf2 may mediate the protective effect of 

silencing Nck1 in MIN6 cells against oxidative stress a recent study reported that Nrf2 silencing 

in MIN6 cells, or the knockout Nrf2 in pancreatic islets results in sensitizing cells to oxidative 

damage (Fu et al, 2015). Furthermore, it was shown that pre-activation of Nrf2 in MIN6 cells 

protects against reactive oxygen species (ROS)-mediated cell damage (Li et al, 2014b; Fu et al, 

2015). Therefore, increased PERK basal activity in Nck1-deficient MIN6 cells may directly 

promote constitutive Nrf2 activation mediating cell survival to oxidative damage. On the other 

hand, silencing Nck1 may also decrease MIN6 cells susceptibility to death induced by oxidative 

stress through PI3K-Akt activation of Nrf2, a prosurvival mechanism in response to oxidative 

stress (Wang et al, 2008; Zou et al, 2013). Akt activation in MIN6 cells depleted of Nck1 may 

result from the inhibition of the mTORC1-dependent negative feedback loop leading to PI3K 

inhibition since mTORC1 activity was attenuated in these cells.  Supporting this, a recent study 

illustrated an important role for PERK-dependent phosphorylation of eIF2αSer51 in dictating cell 

death or survival to oxidative stress by activating Akt (Rajesh et al, 2015). Indeed, it was 

demonstrated that peIF2αSer51 has a prosurvival function against oxidative stress by 

downregulating mTORC1 activity, which promotes Akt activation. Thus, silencing Nck1 may 

protect against oxidative stress-induced β cell death through PERK direct activation of Nrf2, or 

indirectly through peIF2αSer51-induced Akt activation. Alternatively, silencing Nck1 may 

promote cell survival through a PERK-independent mechanism mediating Akt activation. Further 
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experiments are required to evaluate whether interdependence of PERK-dependent or independent 

activation of Akt accounts for adaptation of Nck1-depleted MIN6 cells to oxidative stress.  

Our findings support a model in which Nck1 plays a significant role in regulating PERK 

activation and signaling that determine pancreatic β cell fates to insults relevant to diabetes (Figure 

3.8). In this model, silencing Nck1 in MIN6 cells leads to a subtle increase in basal activity of 

PERK, sufficient to enhance ATF4 expression and Nrf2 nuclear accumulation. ATF4 is known to 

upregulate the expression of Sesn2, which induces AMPK activation and attenuation of mTORC1 

signaling that finally leads to enhanced autophagy and activation of Akt. Concomitantly, enhanced 

Nrf2 nuclear translocation promotes the expression of antioxidant genes, which contribute to 

improve β cells ability to survive oxidative stress. Although we present ATF4- and Nrf2-mediated 

signaling mechanisms independently, increasing evidence support an intertwining relationship 

between these pathways. Indeed, Sesn2 was reported to promote the activation of Nrf2 by 

enhancing autophagy-dependent degradation of Keap1, a suppressor of Nrf2 (Bae et al, 2013), 

while AMPK activity was shown to upregulate Nrf2 levels (Onken & Driscoll, 2010; Zimmermann 

et al, 2015). Moreover, ATF4 was reported to act as a binding partner for Nrf2 to induce expression 

of antioxidant genes (He et al, 2001).   

This study clearly demonstrates that silencing Nck1 in pancreatic β cells promotes PERK 

basal activity and dependent signaling leading to enhanced autophagy and Nrf2-dependent 

antioxidant genes expression, which together confer an adaptive state that improve pancreatic β 

cells ability to withstand and overcome various stresses. Our findings are novel, and point toward 

that sensitizing PERK is beneficial for pancreatic β cell function and resistance to stress.  
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3.8 Figures for Chapter 3 
 

 

Figure 3. 1 Electron microscopy of control and Nck1-silenced MIN6 cells.  

(A) Representative electron micrographs of control (Ctrl) and Nck1-silenced (shNck1) MIN6 cells 

(n=3 per group). Left panels: scale bar is 2 µm. Right panels represent respective magnified (4X) 

sections, scale bar: 500 nm. (B) Total number of mature insulin secretory granules per indicated 

MIN6 cell subtype. n=3, * significantly different from Ctrl (p<0.0001). 
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Figure 3. 2 Silencing Nck1 protects MIN6 cells against diabetes-related stresses.  

Cells were treated with indicated agents for 24 h before to be subjected to MTT assays as described 

in Materials and Methods. Treatments include (A) H2O2 100 µM (n=2), 200 µM (n=6, *p<0.01), 

(B) Palmitate (PA) 0.5 mM (n=4, *p<0.05), 1 mM (n=4, *p<0.01), and (C) Glucose 30 mM (n=4, 

*p<0.05). Bar charts represent % cell viability in treated cells normalized to respective untreated 

cells. (D) Total cell lysates from cells treated 24 h with PA (1 mM) were subjected to Western blot 

analysis. Full length (FL) and cleaved (CL) respective proteins are indicated. Western blot images 

are typical representative of 3 independent experiments performed in triplicate and bar charts are 

quantitation of 3 experiments. *p<0.001, **p<0.0001. (E) Cells treated for 24 h with Thapsigargin 

(Tg 1 µM, n=6) or Dithiothreitol (DTT 10 mM, n=3) before to be subjected to MTT assays. Bar 

charts represent % cell viability of treated cells normalized to respective untreated cells.  
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Figure 3. 3 Stress-induced PERK activation in control and Nck1-silenced MIN6 cells.  

Total cell lysates from indicated MIN6 cells untreated or treated for 8 h with (A) 1 mM PA or (B) 

1 µM Tg were subjected to Western blot with indicated antibodies. Western blot images and bar 

charts quantitation is representative of 3 independent experiments performed in triplicate. Black 

bars represent control (Ctrl) cells while gray bars represent shNck1 cells. Significant difference is 

indicated in (A) as *p<0.01, **p<0.05 for pPERK/PERK, and *p<0.005, **p<0.01, #p<0.05 for 

peIF2α/eIF2α; and in (B) *p<0.005, **p<0.0001 for both pPERK/PERK and peIF2α/eIF2α.  
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Figure 3. 4 ATF4 and CHOP expression in control and Nck1-silenced MIN6 cells.  

(A) mRNA levels of ATF4 and CHOP in control (Ctrl) and shNck1 MIN6 cells as determined by 

qRT-PCR. Values were normalized to the housekeeping gene Cyclophilin b (Cycb). Data are mean 

± SEM (n=9, *p<0.05). (B) Crude nuclear extracts from Ctrl and shNck1 MIN6 cells were 

subjected to Western blot using indicated antibodies. Last lane represents Ctrl cells treated with 

Tg (8 h). Bar chart is quantitation of ATF4 normalized to nuclear marker Lamin A/C from 3 

independent experiments performed in triplicates. Data are mean ± SEM (n=3, *p<0.05). 
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Figure 3. 5 Silencing Nck1 enhances autophagy in pancreatic β cells.  

(A) Total cell lysates from control (Ctrl) and shNck1 were subjected to Western blot using 

indicated antibodies. For LC3, upper band is LC3I and lower band is LC3II, the lipidated form of 

LC3. Bar charts are quantitation of 4 independent experiments performed in triplicate, *p<0.05. 

(B) Confocal microscopy images (63X) from control (Ctrl) and shNck1 MIN6 cells transiently 

transfected with mCherry-GFP-LC3 plasmid (0.5 µg, n=3). (C) Total cell lysates from shNck1 

MIN6 cells transiently transfected with pcDNA3.1 (Mock) or pcDNA3.1-PERK K618A (K618A) 

were subjected to Western blot using indicated antibodies. Bar charts represent ratio of quantified 

immunoreactive signals from 3 independent experiments performed in triplicate (*p<0.05, 

**p<0.001). (D) LC3 immunofluorescence staining confocal microscopy images of pancreatic 

tissue sections from 22 weeks old Nck1+/+ and Nck1-/- mice (n=3 per group). Punctate LC3 staining 

is revealed by white dots and DAPI-stained nuclei in blue. Scale bar: 5 µm. 

  



 

163 

 

 



 

164 

 

Figure 3. 6 Silencing Nck1 in MIN6 cells enhances Sesn2-pAMPK-mTORC1 signaling and 

Akt activation.  

Total cell lysates from control (Ctrl) and shNck1 MIN6 cells were subjected to Western blot using 

indicated antibodies. Western blots images are representative of at least 3 independent experiments 

performed in triplicate. Bar charts are densitometry quantitation of the ratio of (A) Sesn2/RasGAP 

(n=4, *p<0.05) and pAMPK/AMPK (n=5, *p<0.001), (B) pp70S6K/p70S6K and p4EBP1/4EBP1 

(n=3, *<0.05), (C) pAkt/Akt (n=5, *p<0.05), and (D) nuclear FOXO1 protein levels and bar chart 

represents FOXO1/LaminA/C ratio (n=3, *p<0.005). 
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Figure 3. 7 Silencing Nck1 in MIN6 cells promotes Nrf2 nuclear localization and expression 

of Nrf2-target antioxidant genes.  

(A) Total cell lysates (RIPA buffer) from control (Ctrl) and shNck1 MIN6 cells were subjected to 

Western blot using indicated antibodies. Western blot images are typical of 3 independent 

experiments performed in triplicate. Bar charts show the ratio of Nrf2/RasGAP as determined by 

densitometry quantitation of individual bands (n=3). (B) Control (Ctrl) and shNck1 MIN6 cells 

were fixed and subjected to immunofluorescence staining with Nrf2 antibody. Confocal 

microscopy images are representative of 3 independent experiments. Nuclear DAPI staining is 

shown in blue, and Nrf2 shown in gray. Scale bar: 2 µm. Bar Chart shows quantitation of Nrf2 

signal intensity in nuclear regions (n=3, ImageJ). (C) HO-1 and NqO-1 mRNA levels in control 

(Ctrl) and shNck1 MIN6 cells as determined by qRT-PCR. Values were normalized to the 

housekeeping gene Cyclophilin b (Cycb). Data are mean ± SEM (n=9, *p<0.05, **p<0.0005). 
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Figure 3. 8 PERK regulation of adaptive or apoptotic response.   

Previous work from our group has demonstrated that by interacting with PERK, Nck1 limits PERK 

activation (Yamani et al, 2014). Therefore, in absence of Nck1, PERK basal activity, potentially 

increased through facilitated PERK dimerization, initiates an adaptive response involving ATF4 

and Nrf2 regulation of genes that contribute to improve β cell function and survival. Basal 

autophagy, increased through ATF4/Sestrin2-mediated attenuation of mTORC1 activity, further 

contributes to the adaptive response. In contrast, under ER stress condition, PERK 

activation/signaling is strongly induced and leads to increased ATF4 and CHOP expression 

associated with β cell death potentially through apoptosis. 
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Supplementary Figure S3. 1 Proliferation in control and shNck1 MIN6 cells.  

(A) Control (Ctrl) and shNck1 MIN6 cells plated at low density on day 0 were grown over 4 days 

in regular medium. Cell number was assessed every day from day 1 to 4 using MTT assays. 

Results, expressed as mean ± SEM, were normalized according to day 1. (B) Total cell lysates 

from control (Ctrl) and shNck1 MIN6 cells were subjected to Western blot using cyclin D1 and 

RasGAP antibodies. Left, representative Western blots with the indicated antibodies from 3 

independent experiments performed in triplicate. Right, ratio of densitometry quantitation of cyclin 

D1/RasGAP expressed as mean ± SEM from 3 independent experiments.  
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Supplementary Figure S3. 2 Time course of PERK activation in palmitate (PA)- and 

thapsigargin (Tg)-treated  control and shNck1 MIN6 cells.  

Control (Ctrl) and shNck1 MIN6 cells were exposed to (A) PA 1 mM or (B) Tg 1 µM for 0 to 24 

h. At indicated time points, total cell lysates were prepared and further subjected to Western blot 

with pPERK and PERK antibodies (n=1).   
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Supplementary Figure S3. 3 Enhanced autophagosomes formation in shNck1 MIN6 cells. 

Control (Ctrl) and shNck1 MIN6 cells were serum starved for 2 or 4 h in presence or absence of 

Bafilomycin (BafA1)  (100 nM). Total cell lysates were subjected to Western blot with LC3 and 

RasGAP antibodies. Results are representative of 3 independent experiments. LC3II is indicated 

by the arrow and RasGAP represents loading control.  
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Supplementary Table S3. 1 Primer sequences used for qRT-PCR analysis. 
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4 CHAPTER 4. General discussion and future perspectives 

 

  



 

173 

 

In the past decade, several studies focused on understanding ER stress-induced UPR related 

molecular mechanisms leading to cell survival or cell death. Although recent progress has provided 

new insights adding to the complexity of the UPR signaling network, the exact mechanisms that 

carry out the transition from survival to apoptotic signals are not yet clearly understood. Identifying 

UPR-associated molecular mechanisms that favor cell survival as opposed to cell death is 

important as these can be powerful therapeutical targets to control cell dysfunction leading to the 

development of diseases. Altogether, the studies presented in this thesis uncover a PERK-mediated 

adaptive response initiated following silencing of the Src homology domain-containing adaptor 

protein Nck1 in pancreatic β cells.  

4.1 Nck binds to PERK and regulates PERK activity 

Our lab was the first to implicate the adaptor proteins Nck in the regulation of the UPR, 

where Nck1 overexpression was shown to increase mRNA translation by attenuating ER stress-

induced eIF2αSer51 phosphorylation (Kebache et al, 2002; Kebache et al, 2004). Mechanistically, 

we provided strong evidence that Nck modulates translation by directly interacting with the β 

subunit of eIF2 (eIF2β) (Kebache et al, 2002) and the Ser/Thr protein phosphatase 1 (PP1c) that 

promotes dephosphorylation of phospho-eIF2αSer51 (Kebache et al, 2004; Latreille & Larose, 

2006). Interestingly, we also uncovered that rescued expression of Nck1 in Nck-/- MEFs decreased 

phosphorylation of PERK on its activation site pThr980 under ER stress (Kebache et al, 2004), 

suggesting that in addition to regulating the levels of phosphorylated eIF2αSer51, Nck1 negatively 

regulates PERK activity. Pursuing this hypothesis, I showed that Nck1 modulates PERK activity 

by directly interacting with PERK (Chapter 2). In fact, my work revealed that both Nck1 and Nck2 

directly interact with PERK. We demonstrated that Nck1/PERK interaction involves the SH2 
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domain of Nck1 and PERK phosphorylated on Y561, a novel autophosphorylation site in the PERK 

juxtamembrane domain (Figures 2.2-2.3). Furthermore, I demonstrated that PERK activity and 

downstream signaling in Nck1/2-deficient MEFs were increased compared to wild-type MEFs, in 

both basal and ER stress conditions (Figure 2.1), confirming that Nck not only regulates UPR 

signaling at the level of eIF2αSer51 phosphorylation, but also at the level of PERK.  

Knowing that PERK is highly expressed and plays a crucial role in pancreatic β cell 

proteostasis and homeostasis (Delepine et al, 2000; Harding et al, 2001; Zhang et al, 2002a), I 

further addressed the significance of Nck1/PERK interaction in pancreatic β cells. By co-

immunoprecipitation experiments involving endogenous proteins, I first confirmed Nck binding 

to PERK phosphorylated on pY561 in mouse insulinoma pancreatic β cell line MIN6 (Figure 2.6). 

Then, I hypothesized that Nck, as an adaptor protein interacting with PERK via its SH2 domain, 

may recruit through its SH3 domains a tyrosine protein phosphatase, such as PTP1B, in close 

proximity of PERK to mediate PERK pY561 dephosphorylation, to regulate PERK activation. Such 

PTP1B-dependent PERK modulation has been previously described, as PTP1B dephosphorylates 

PERK on pY619, thereby regulating PERK activity (Bettaieb et al, 2011; Krishnan et al, 2011). 

However, Nck1 depletion in MIN6 cells, rather than decrease, enhanced PERK activation and 

signaling while decreased PERK phosphorylation on Y561, making Nck1 protective of PERK 

phosphorylation on Y561 (Figure 2.7). Accordingly with phosphorylation of PERK on Y561 

negatively modulating PERK activation, I demonstrated that it inversely correlates with PERK 

activation in MIN6 cells and that the activity of a PERK Y561F mutant, which escapes 

phosphorylation and Nck binding, was increased compared to PERK wild-type (Figure 2.4). 

Therefore, I proposed that Nck1 interaction with PERK phosphorylated on Y561 limits PERK 
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activation (Figure 2.5). Alternatively, it could also illustrate that by itself PERK phosphorylation 

on Y561 maintains PERK in a closed conformation, which favors monomeric PERK state and 

prevents unwanted PERK activation. Addressing basal and ER stress-induced activity of 

phosphomimetic PERK mutants (Y561E, Y561D) could further improve our understanding of the 

biological relevance of PERK phosphorylation on Y561. Although additional investigation is 

required to further discriminate between these potential models, my first study identified a novel 

PERK autophosphorylation regulatory site (Y561) and Nck1 as a novel interacting partner and 

regulator of PERK activation.   

4.2 Other PERK binding proteins 

 PERK has been shown to be regulated by different effectors through direct interaction in a 

number of studies. One of the earliest binding proteins identified was GRP78/Bip, which binds 

PERK luminal domain, and prevents PERK dimerization and subsequent activation (Bertolotti et 

al, 2000; Hendershot, 2004). The co-chaperone of Bip in the ER, p58IPK, also binds PERK luminal 

domain as part of a negative feedback mechanism to turn off PERK kinase activity during late 

stages of the UPR (Yan et al, 2002a; van Huizen et al, 2003). In addition, the ER protein disulfide 

isomerase A6 (PDIA6) binds PERK and negatively regulates PERK signaling, as it does for IRE1α 

upon binding to the IRE1α luminal domain (Eletto et al, 2014). Therefore, Bip, p58IPK, and PDIA6 

are all negative regulators of PERK. On the other hand, the Ca2+-dependent phosphatase 

Calcineurin interacts with pre-activated PERK on its cytoplasmic domain to further enhance its 

activation upon ER stress (Bollo et al, 2010). In addition, PARP16, an ER-anchored ADP-

ribosyltransferase protein, was found to induce PERK activity upon ER stress by interacting with 

PERK cytoplasmic domain and ADP-ribosylating PERK (Jwa & Chang, 2012).  Moreover, 
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transducing β-like 2 (TBL2) was identified as a new PERK binding protein, which interacts with 

the cytoplasmic region of PERK upon ER stress. TBL2 was found to preferentially bind the 

phosphorylated active form of PERK, and interestingly, positively regulate ATF4 protein 

expression, affecting neither PERK activity nor peIF2αS51 levels (Tsukumo et al, 2014). Finally, 

the small GTPase Rheb, known to positively regulate mTORC1 activity, was also shown to interact 

with PERK, eliciting PERK signaling pathway and negatively regulating general protein synthesis 

(Tyagi et al, 2015). 

Based on the above findings, it can be reasonable to propose that luminal-based interactions 

with PERK negatively regulate PERK activity and signaling, while most cytoplasmic-based 

interactions involving an area surrounding the kinase domain of PERK elicit PERK activity and 

signaling. However, little is known of potential PERK regulation by interacting with its 

juxtamembrane domain. We have shown that through its SH2 domain, Nck1 binds PERK 

juxtamembrane domain on pY561. We also showed that this interaction limits PERK activity, since 

downregulation of Nck1 or Y561F point mutation primed PERK activity and signaling. But how 

does Nck1 regulate PERK activity? In order to elucidate the mechanism by which Nck1 regulates 

PERK activity, the role of phosphorylation of Y561 in the juxtamembrane domain should also be 

further understood. It is well known that phosphorylation in the juxtamembrane domain in several 

RTKs, such as the PDGFR and the ephrin receptors, is involved in the regulation of RTKs 

activation process. Specifically, it was shown that the juxtamembrane domain adopts a closed 

conformation and creates a barrier on the activation loop of the kinase domain when its tyrosine 

residues are not phosphorylated. However, upon stimulation, phosphorylation of tyrosine residues 

in the juxtamembrane domain adds a bulky charged group that induces conformational change 
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removing this barrier and allows activation of the kinase domain (Holland et al, 1997). Here, we 

demonstrate that loss of Y561 phosphorylation in PERK juxtamembrane domain leads to increased 

PERK kinase activity. This could be due to the fact that the phosphorylated juxtamembrane domain 

at Y561 prevents interaction between different monomers, thereby regulating PERK activity. In that 

case, loss of Y561 phosphorylation in the juxtamembrane domain leads to enhanced PERK activity 

by promoting PERK dimerization. By protecting Y561 phosphorylation, Nck1 may be hindering 

the spontaneous dimerization of PERK. On the other hand, Nck1 binding to PERK may 

allosterically affect the interaction of PERK luminal domain with Bip or any of the inhibitory 

PERK-binding partners. In addition, Nck1 interaction at pY561 PERK could recruit a phosphatase 

(such as PTP1B) through its SH3 domains, and allow PTP1B to dephosphorylate PERK on other 

activating tyrosine residues in the PERK kinase domain such as pY615 previously identified as a 

positive regulatory site for PERK activation (Su et al, 2008) and a target of PTP1B (Krishnan et 

al, 2011). Finally, Nck1 may inhibit or prevent PERK interaction with other PERK-binding 

regulators that positively enhance its activity. 

4.3 Role of protein tyrosine phosphatases 

The fact that phosphorylation of PERK on Y561 increased in pervanadate-treated cells, a 

general tyrosine phosphatase inhibitor, suggests the involvement of a tyrosine phosphatase in 

dephosphorylating PERK at pY561, or activation of a protein kinase mediating this phosphorylation 

event, which we believe is PERK according to our data showing that recombinant active PERK is 

phosphorylated on Y561 in vitro (Figure 2.2). Protein tyrosine phosphatase 1B (PTP1B) and T cell 

protein tyrosine phosphatase (TCPTP), two non-receptor tyrosine phosphatases have been shown 

previously to regulate PERK’s activity in a different manner (Bettaieb et al, 2011). PTP1B and 



 

178 

 

TCPTP share 72% sequence identity within their catalytic domains, as well as highly similar 

tertiary structure (Andersen et al, 2001; Tiganis & Bennett, 2007). PTP1B is attached to the 

cytoplasmic side of the ER while TCPTP is ubiquitously distributed in cells. Both PTP1B and 

TCPTP were shown to regulate IR activity and signaling. Indeed, PTP1B and TCPTP negatively 

modulate IR signaling through dephosphorylation of the IRβ at Y1162/Y1163 (Salmeen et al, 2000; 

Galic et al, 2003; Galic et al, 2005). In MIN6 cells, knocking down of PTP1B was shown to 

enhance PERK activity and signaling while in contrast, knocking down of TCPTP has the opposite 

effect on PERK activation and signaling (Bettaieb et al, 2011). To identify a potential protein 

phosphatase involved in PERK pY561 dephosphorylation, I measured the levels of pY561PERK in 

PTP1B-deficient and TCPTP heterozygous MEFs (Appendix 1). I showed that pY561PERK 

increased in both PTP1B-deficient and TCPTP heterozygote MEFs compared to their wild-type 

counterparts, suggesting that both tyrosine phosphatases might be involved in regulating PERK 

phosphorylation on pY561.  

Interestingly, both PTP1B and TCPTP have been recently implicated in pancreatic β cell 

function.  PTP1B deficiency delayed onset of diabetes in IRS2-/- mice (Kushner et al, 2004). 

However, silencing PTP1B in MIN6 cells was shown to sensitize β cells toward apoptosis in 

response to lipotoxicity and glucolipotoxicity (Bettaieb et al, 2011). In agreement, HFD feeding 

in pancreatic-specific PTP1B-/- mice lead to exacerbation of glucose intolerance due to loss of 

GSIS (Liu et al, 2014b). On the other hand, isolated islets from PTP1B-/- mice fed a normal chow 

diet (NCD) led to increased β cell mass and increased β cell proliferation, and this phenotype was 

recapitulated in MIN6 cells following PTP1B downregulation. In those mice, pancreatic β cells 

displayed an increase in Akt activation and GSIS, but no increase in β cell insulin content. Finally, 
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streptozotocin-treated PTP1B-/- mice displayed β cell mass and function recovery compared to 

wild-type mice (Fernandez-Ruiz et al, 2014). On the other hand, pancreatic-specific deletion of 

TCPTP generated glucose intolerance caused by lower GSIS and lower insulin content in mice fed 

a HFD. These findings were recapitulated in ex-vivo pancreatic islets, as well as in MIN6 cells 

treated with TCPTP inhibitor, or transfected with an shRNA silencing TCPTP expression (Xi et 

al, 2015). Although both PTP1B and TCPTP are potential candidates for dephosphorylation of 

pY561PERK, I believe that the best candidate is TCPTP. Indeed, TCPTP deficiency in MEFs 

increased pY561PERK (Appendix 1), correlating with the finding that TCPTP downregulation in 

MIN6 cells reduce PERK activity and signaling (Bettaieb et al, 2011). In addition, as already 

mentioned above, TCPTP deficiency in mice pancreatic β cells or MIN6 cells resulted in 

dysfunctionalities (Xi et al, 2015), which could be due to insufficient PERK activity, that leads to 

decreased β cell resilience facing stress conditions. It would be interesting to determine PERK 

activity in TCPTP and PTP1B-deficient pancreatic β cells in mice. Further investigation is required 

to better understand the exact contribution of these phosphatases to the process of pY561 PERK 

dephosphorylation and to mechanistically elucidate how they regulate PERK activity. 

4.4 Nck1 silencing and pancreatic β cell insulin levels 

One of the most striking findings in my first study is that pancreatic islets from Nck1-/- mice 

display an increase in insulin content. Similarly, Nck1 silencing in MIN6 cells increased insulin 

levels in a PERK-dependent manner, due to enhanced proinsulin synthesis rather than abnormal 

accumulation of proinsulin in these cells. In agreement, electron microscopy analysis demonstrated 

that Nck1-silenced MIN6 cells displayed bigger and increased number of secretory granules, while 

general morphology was preserved. In short, silencing Nck1 in MIN6 cells promotes proinsulin 
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synthesis and content (Figure 2.8) without altering ER morphology (Figure 3.1), and these findings 

might represent robust β cells, with a higher capacity to synthesize, process and store proinsulin.  

4.5 Nck1 silencing and pancreatic β cell survival 

Increased proinsulin synthesis implies that the ER workload must be greater in Nck1-

silenced MIN6 cells and potentially generate more ROS production that could make these cells 

more vulnerable to stress. Surprisingly, Nck1-silenced MIN6 cells are more resistant to glucotoxic, 

lipotoxic or oxidative stress, all stresses relevant to β cell dysfunction associated with type 2 

diabetes (Figure 3.2). However, Nck1-silenced MIN6 cells are not protected against 

pharmacological induction of ER stress using thapsigargin or dithiothreitol. Therefore, it appears 

that silencing Nck1 in MIN6 cells elicits a protective cellular response to mild stress, but not to 

very strong stress targeting the ER. To identify the mechanisms by which Nck1 silencing protects 

MIN6 cells against certain stresses, we further analyzed PERK activation in these conditions. 

Interestingly, we discovered that palmitate-induced PERK activation in Nck1-silenced MIN6 cells 

was attenuated compared to control cells while Tg-induced PERK activation was similar in both 

shNck1 and control MIN6 cells (Figure 3.3). This clearly illustrates that according to intensity and 

duration of PERK’s activation, cell fate might adopt diametrically different directions. For 

example, while a short term treatment with palmitate for 1 h led to increased general mRNA 

translation, after 72 h, it was reported to inhibit protein translation to the same extent as a 4 h 

thapsigargin treatment (Hatanaka et al, 2014). Further supporting this concept, a recent study 

demonstrated that different types of stresses, such as low glucose and thapsigargin, can activate 

different PERK-mediated mechanisms leading to drastically different cell fates (Shin et al, 2015). 
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Mechanistically, I provided strong evidence revealing that the antioxidant Nrf2 pathway, 

autophagy and Akt activation are all upregulated in Nck1-silenced MIN6 cells and could contribute 

to create an adaptive response, which generates cells that are more resistant to mild stress. As Nrf2 

is a direct target of PERK and synergizes with ATF4 activity (Cullinan et al, 2003), I predicted 

that it could be activated in Nck1-silenced MIN6 cells. Indeed, I found that both Nrf2 nuclear 

localization and dependent gene expression of antioxidant genes were increased in these cells. 

Although a statistically significant level of Nrf2 nuclear localization was not reached upon 

depletion of Nck1, its increase was sufficient to significantly upregulate expression of Nrf2-target 

genes (Chapter 3). Therefore, I believe that together all these changes contribute to a better control 

of ROS levels and related resilience to mild stress in Nck1-silenced MIN6 cells.  

Besides increased PERK activation and signaling involving Nrf2, I also discovered that 

autophagy was enhanced in a PERK-dependent manner in Nck1-silenced MIN6 cells. Autophagy 

is a cellular degradation-recycling system for aggregated proteins and damaged organelles to 

regenerate new pools of materials for cellular needs (Klionsky & Emr, 2000). Several studies 

investigating the effect of metabolic stress on autophagy showed that even though metabolic stress 

such as high glucose and saturated fatty acids increase autophagosome formation, autophagy 

turnover was impaired and ultimately leads to cell death (Mir et al, 2015). Mechanistically, 

physiological stresses such as palmitate initially activate mTORC1, which blocks autophagy and 

simultaneously contribute to increase mRNA translation and ER protein load (Hatanaka et al, 

2014). Eventually, longer exposure triggers sustained activation of the UPR due to increased 

protein load, which blocks mRNA translation and ultimately leads to β cell death (Hatanaka et al, 

2014). In this thesis, I report that upregulation of Sesn2, by inducing activation of AMPK, inhibits 
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mTORC1 activity in Nck1-silenced MIN6 cells. Therefore, I believe that activation of AMPK 

leading to attenuation of mTORC1 activity contributes to increased autophagy steering towards an 

increased adaptive capacity in these cells (Figure 3.5).  

In addition to increasing the capacity of the ER and autophagy, Akt activation in Nck1-

silenced pancreatic β cells can play a role in protecting cells against lipotoxic, glucotoxic and 

oxidative stress-induced apoptosis (Figure 3.6C). Akt is known to promote nuclear exclusion and 

degradation of FOXO1 via phosphorylation (Biggs et al, 1999), a process that we also observe in 

Nck1-silenced MIN6 cells (Figure 3.6D). Early induction of FOXO1 activity has been shown to 

promote palmitate-induced apoptosis (Martinez et al, 2008). On the other hand, expression of a 

dominant negative FOXO1 protected cells against palmitate-induced cell death (Martinez et al, 

2008). Interestingly, our group has recently demonstrated that silencing Nck1, which 

spontaneously enhances PI3K/Akt signaling in HepG2 cells correlates with reduced FOXO1 

nuclear localization (Li et al, 2014a). Therefore, increased phosphorylation/activation of Akt in 

Nck1-silenced MIN6 cells potentially leads to nuclear exclusion and degradation of FOXO1, 

thereby preventing FOXO1-dependent apoptotic signaling during stress. In addition, nuclear 

expression of FOXO1 and ATF4 in osteoblasts was shown to have a synergistic effect in inhibiting 

pancreatic β cell proliferation, further highlighting a negative role for FOXO1 expression in cells 

(Kode et al, 2012). Moreover, a recent study showed that upon mild metabolic stress, such as low 

glucose, Akt phosphorylation is increased in a PERK-dependent manner, activating an adaptive 

response that enables cell survival (Shin et al, 2015). Eventually, once Akt activation is dampened, 

cells undergo apoptosis (Shin et al, 2015). It has also been shown that in response to oxidative 

stress, peIF2αS51 can determine cell fate through activation of Akt (Rajesh et al 2015). Specifically, 
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it was shown that under oxidative stress, proficiency in eIF2αS51 phosphorylation facilitates Akt 

activation through downregulation of mTORC1 activity and enhances cell survival (Rajesh et al, 

2015).  

 The main role of pancreatic β cells is to synthesize and release insulin in response to high 

glucose. Proinsulin represents 20% of total β cell mRNAs (Van Lommel et al, 2006) and glucose 

regulated insulin translation can account for up to 50% of total protein synthesis in β cells (Schuit 

et al, 1988). One intriguing finding is that Nck1 silencing in MIN6 cells enhances eIF2αSer51 

phosphorylation while at the same time leads to increased proinsulin synthesis. Although this 

might seem contradictory since eIF2αSer51 phosphorylation is known to attenuate general protein 

synthesis, it also promotes preferential translation of specific mRNAs. The best example of that is 

ATF4, whose translational expression increases upon eIF2αSer51 phosphorylation. Also, basal 

activation of PERK could promote upregulation of specific RNA binding proteins that bind and 

stabilize insulin mRNA and allow its recruitment to ribosomal fractions for preferential increased 

synthesis. Although PERK and eIF2α deficiency phenotypically lead to pancreatic β cell 

dysfunction, differences in protein synthesis were observed. Mice with β cell-specific mutation in 

eIF2α preventing its phosphorylation (eIF2αS51A) display β cell dysfunction due to their inability 

to attenuate protein translation, thus overloading the ER and creating ER stress, which leads to 

apoptosis (Scheuner et al, 2005). On the other hand, pancreatic islets from PERK-/- mice showed 

no difference in protein translation compared to islets from wild-type mice (Gupta et al, 2010). 

Similarly, INS832/13 β cells transfected with dominant negative PERK showed no difference in 

general protein synthesis compared to control cells (Feng et al, 2009). Interestingly, 

downregulating the expression of PERK in INS832/13 cells reduced proinsulin levels by about 
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half. Moreover, PERK deficiency led to defects in protein processing associated with apoptosis 

(Gupta et al, 2010). Finally, there was no obvious pancreatic β cell defect in mice lacking other 

eIF2α kinases: HRI, PKR, or GCN2, further highlighting the exclusive importance of PERK 

among eIF2α kinases in pancreatic β cell function and homeostasis (Yang et al, 1995; Han et al, 

2001; Zhang et al, 2002b). All combined, these findings indicate that PERK, in addition to its role 

in eIF2αSer51 phosphorylation, plays a distinct and essential role in pancreatic β cell proteostasis 

and resilience.  

Upon ER stress, the UPR is activated in order to expand the folding capacity of the ER. 

Uniquely, PERK activation attenuates general protein synthesis by phosphorylation of eIF2α on 

Ser51 to prevent overloading of the ER with newly synthesized proteins to process. Depending on 

the type and intensity of the stress, as well as the UPR signaling, cells survive or undergo apoptosis. 

Palmitate has been shown to induce PERK activation and downstream translational and 

transcriptional signaling in primary rodent and human β cells (Cunha et al, 2008). In cases of 

transient or periodic stresses, the UPR is activated, allowing cells to respond, and then return to 

basal physiological state when the stress subsides (Figure 4.1A). In contrast, if the stresses are 

chronic, PERK remains activated and signals towards prominent induction of CHOP, which 

contributes to ER stress-induced cell death (Oyadomari et al, 2001). In agreement, CHOP 

depletion partially protects INS832 cells against palmitate-induced apoptosis (Cunha et al, 2008). 

However, in the case of silencing Nck1, basal PERK activity and signaling are enhanced, thereby 

promoting Nrf2-antioxidant signaling, increased autophagy, and Akt activation, which all together 

increase the folding capacity and function of the ER, and fine tunes an adaptive response that 

renders cells more resilient to stresses (Figure 4.1B). It is important to note that enhanced basal 
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PERK activity and signaling in Nck1-silenced MIN6 cells, although significant, is weak compared 

to ER stress-induced PERK activation and signaling. In agreement, spontaneous increase in PERK 

activity and signaling does initiate proapoptotic signaling, but on the long run is sufficient to 

generate an adaptive state that is protective against mild stresses relevant to type 2 diabetes. 

4.6 Possible role for Nck1 in other tissues 

The findings in my thesis studies pertain to the role of Nck1 in pancreatic β cells, but this 

could be expanded in other tissue. We previously reported a beneficial role for Nck1 deficiency in 

mice fed a HFD (Latreille et al, 2011). Indeed, our group previously demonstrated that obesity-

induced activation of ER stress in liver and adipose tissue was attenuated in Nck1 null mice fed a 

HFD. Specifically, HFD Nck1 null mice showed decreased hepatic PERK activity and signaling 

compared to HFD wild-type mice. In addition, liver from Nck1 null mice on HFD was more insulin 

sensitive as we observed increased in vivo hepatic insulin-induced Akt phosphorylation (Latreille 

et al, 2011). Furthermore, we also demonstrated that Nck1 deficiency in HepG2 cells also leads to 

increased insulin signaling, as insulin-dependent Akt activation was enhanced (Latreille et al, 

2011; Li et al, 2014a). In conclusion, the concept that by sensitizing PERK signaling, silencing 

Nck1 has a protective role might apply to other cell types or tissues. However, given that PERK 

activity is crucial for pancreatic β cell function, I believe that the protective effect of Nck1 

regulation of PERK activity may be more biologically relevant in pancreatic β cells.  

4.7 Future perspectives 

Based on our findings, spontaneously enhancing PERK basal activity and signaling in 

pancreatic β cells improve β cell function and response to mild stress by promoting an adaptive 

state that expands the ER capacity to synthesize and process insulin, and enhances a signaling 
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network steering towards cell survival. To further validate the significance of my findings, I 

hypothesize that reducing Nck1 expression in heterozygous Akita mice should delay loss of 

pancreatic β cell function and apoptosis. Akita mice harbor a mutation in Ins2 gene, which results 

in accumulation of misfolded insulin in the ER, creating ER stress that eventually induces β cell 

death (Wang et al, 1999). Silencing Nck1 specifically in Akita pancreatic β cells is expected to 

enhance ER folding capacity and function, as well as antioxidant response, which enable β cells to 

survive better than in control Akita mice β cells. Therefore, I predict that silencing Nck1 in Akita 

pancreatic β cells could prevent progression of hyperglycemia and β cell loss, classical hallmarks 

of T2D development in heterozygous Akita mice.  

On the other hand, the novel emerging concept that in β cells, sensitizing PERK by 

preventing its interaction with Nck1 creates robust β cells equipped with an efficient ER in its 

capacity to produce and secrete bioactive insulin, and protect β cells from stress, strongly suggest 

that preventing Nck1 and PERK interaction could be a potential significant target for the 

development of therapies promoting β cell functionality and resilience. To block the interaction 

between PERK and Nck1 in β cells, our laboratory has designed a phosphopeptide representing 

the minimal sequence for PERK binding to Nck1 (PERKpY561: ENKpYDSVSGE). As controls, 

the same peptide unphosphorylated, harbouring the Y/F substitution or scrambled are also 

considered. As phosphopeptides per se show low cell membrane penetration, these peptides have 

been synthesized conjugated to the cell penetrating peptide TAT (GRKKRRQRRRPQ) from HIV, 

a powerful system to deliver phospho/unphosphopeptides into cells (Kim et al, 2014b). 

Preliminary experiments using MIN6 cells revealed that these peptides efficiently enter the cells. 

Furthermore, we observed that the peptide representing the minimal PERK sequence to bind Nck1 
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appears to spontaneously increase basal levels of PERK activity and signaling while the negative 

control peptides failed to do so. Additional experiments are in progress to further validate the 

effects of the peptide that prevents Nck1/PERK interaction, but we are confident that this approach 

as a proof of principle, will confirm that efficient sensitization of PERK physiological basal 

activity contributes to promote β cell function and survival to stresses relevant to diabetes. For 

people with high risk of developing diabetes, targeting Nck1 and PERK interaction in pancreatic 

β cells can be efficient in preventing cell dysfunction and development of diabetes.   

In conclusion, this thesis reports novel findings demonstrating that Nck1 through its SH2 

domain binds PERK phosphorylated at Y561 and by protecting this site against dephosphorylation, 

Nck1 limits PERK activation and signaling. Therefore, my findings revealed Y561 in the PERK 

juxtamembrane as a novel PERK autophosphorylation site that plays a significant role in 

preventing unwanted PERK activation. In addition, I provided strong data demonstrating that  

priming PERK basal activity and signaling by silencing Nck1 in pancreatic β cells leads to fine 

tuning of adaptive mechanisms involved in protecting β cells against mild stresses that otherwise 

induce β cell apoptosis. Collectively, data reported in this thesis shed more light on mechanisms 

regulating pancreatic β cell proteostasis and homeostasis, and contribute to open new avenues for 

developing efficient therapeutical approaches to prevent β cell dysfunction and diabetes onset, but 

also treat and/or cure type 2 diabetes.  
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Figure 4. 1 Nck1 modulation of the UPR through PERK signaling increases the robustness 

of pancreatic β cells in response to stresses.  

(A) In pancreatic β cells, activation of the UPR under transient or periodic stresses allows 

protection and survival of cells. With continuous exposure to strong or chronic stresses, pancreatic 

β cells become exhausted, and strong activation of the UPR leads to initiation of proapoptotic 

signaling pathways. (B) Nck1 silencing in pancreatic β cells enhances basal activation of PERK 

and its signaling pathway, which includes activation of autophagy, antioxidant Nrf2, and Akt. 

These pathways fine tune the adaptive response by expanding the folding capacity of the ER and 

function, while increasing insulin synthesis. Consequently, pancreatic β cells become robust in the 

face of metabolic stresses that can result in β cell dysfunction. 
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5 CHAPTER 5. Contribution to original research 
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In chapter 2, I demonstrated that genetic deletion of Nck in mouse embryonic fibroblast 

cells (MEFs) increases PERK activity under ER stress conditions as well as basal conditions. In 

addition, I showed that Nck binds through its SH2 domain to PERK at pY561 on the juxtamembrane 

domain, making Nck one of the few PERK-binding proteins identified thus far. Moreover, I 

revealed that Nck1 binding to PERK negatively regulates PERK kinase activity. Furthermore, I 

showed that stable downregulation of Nck1 expression in MIN6 cells enhances PERK activity and 

its signaling pathway. More importantly, Nck1 depletion in MIN6 cells increases insulin levels in 

a PERK activity-dependent manner, and that the increase is due to enhanced proinsulin synthesis. 

In parallel, isolated islets from Nck1-/- mice were found to have more insulin content compared to 

islets from wild-type mice. Together, my study describes novel molecular mechanisms regulating 

the activity of PERK and pancreatic β cell function.  

In chapter 3, I investigate the effect Nck1 silencing would have on pancreatic β cell survival 

against stresses. First, I visually displayed using electron microscopy that Nck1-silenced MIN6 

cells contain more mature insulin granules. I then demonstrated that Nck1 silencing in MIN6 cells 

enhances survival to diabetes-related stresses such as glucotoxicity, lipotoxicity, and oxidative 

stress, and that survival correlated with lower level of PERK activation after exposure to stress. I 

determined that PERK subtle activation in Nck1-silenced MIN6 cells upregulates 3 different 

prosurvival mechanisms: autophagy, antioxidant Nrf2, and Akt activation. All these pathways 

equip cells with a stronger adaptive response that can better handle stress. This is the first study 

that links PERK activity with autophagy in pancreatic β cells. It also introduces a remarkable 

aspect on enhancing pancreatic β cell function through modulation of PERK activity. In 
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conclusion, I showed that a subtle increase in PERK activity by silencing Nck1 generates robust 

pancreatic β cells capable of surviving stresses related to diabetes. 
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6 Summary and Conclusion 
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This thesis reports a study that supports a role for Nck1 in PERK activation and pancreatic 

β cell function. First, I demonstrated that Nck1 interacts with PERK in an SH2-pY561-dependent 

manner in vitro and in mouse insulinoma pancreatic β MIN6 cells. Mutated PERK Y561F, which 

escapes phosphorylation at the mutated residue, abolishes Nck1/PERK binding, and enhances 

PERK kinase activity compared to wild-type PERK. Inversely, increased phosphorylation at Y561 

in MIN6 cells delayed PERK activation upon ER stress. I then generated MIN6 cells depleted of 

Nck1 expression using shRNA against Nck1. Nck1 depletion in MIN6 cells increased PERK basal 

activity and signaling. Interestingly, these cells displayed increased insulin content in a PERK-

dependent manner, resulting from enhanced insulin biosynthesis. I then demonstrated that Nck1-

silenced MIN6 cells display increased survival to diabetes-related stresses, and this increase 

correlated with lower PERK activation in response to the stress. Furthermore, I showed that Nck1-

silenced MIN6 cells displayed a PERK-dependent increase in autophagy, increased Nrf2-

antioxidant gene expression, and finally increased Akt activation. Altogether, these pathways 

enhance the adaptive response of Nck1-silenced MIN6 cells, which increases the survival of 

pancreatic β cells against diabetes-related stresses.  

In conclusion, the work presented in this thesis strongly demonstrate that a subtle increase 

of PERK activity and signaling fine tunes downstream molecular mechanisms, which enhances 

the adaptive response of pancreatic β cells against stresses. These findings provide insights on the 

mechanisms that can be potential therapeutical targets to generate resilient pancreatic β cells that 

better survive diabetes-related stresses.  
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7 Appendix 1 

pY561 PERK levels are increased in protein tyrosine 

phosphatase 1B (PTP1B)-deficient MEFs, and T cell protein 

tyrosine phosphatase (TCPTP) heterozygous MEFs  
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Figure appendix 1. Levels of pY561 PERK are modulated by the non-receptor protein 

tyrosine phosphatases PTP1B and TC-PTP. Total cell lysates from indicated MEF genotypes 

were analyzed by immunoblotting using indicated antibodies. Images and bar charts represent 

three independent experiments. (A) Levels of pY561 PERK in PTP1B+/+ and PTP1B -/- mouse 

embryonic fibroblasts. (B) Levels of pY561 PERK in TCPTP+/+ and TCPTP+/- mouse embryonic 

fibroblasts.  
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