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ABSTRACT 

Male factor infertility accounts for a large proportion of infertility cases and for the 

most part may in fact be related to lifestyle and/or exposure to toxic substances.  

Cyclophosphamide (CPA) is an alkylating agent commonly used in chemo- and 

immunosuppressive therapies and is a known germ cell toxicant. Men often become 

infertile after being treated with this drug. In rats, paternal CPA treatment leads to 

decreased sperm quality as well as defective early embryo development and negative 

progeny outcomes. The goal of the studies presented in this thesis was to evaluate the 

effect of chronic CPA treatment on the male germ cell transcriptome in order to gain a 

better understanding of how these cells respond to such an insult. In the first objective, 

we evaluated the effect of CPA treatment on the expression of microRNAs in isolated 

pachytene spermatocytes and round spermatids. We showed for the first time that a 

therapeutic drug such as cyclophosphamide alters the expression of miRNAs in male 

germ cells and that these may be involved in the germ cell response to toxic exposures.  

In the second objective we evaluated the effect of CPA treatment on genome wide gene 

expression in male germ cells. In addition to many transcripts involved in zinc binding 

being altered in both cell types following CPA treatment, we found that the expression of 

members of ZIP family of zinc transporters and zinc transport was increased in 

pachytene spermatocytes. This led us to believe that zinc may play an important role in 

the male germ cell response to CPA. In the third objective we examined whether zinc 

could protect male germ cells from CPA toxicity. We found that zinc supplementation 

decreased CPA induced oxidative stress and DNA damage in male germ cells. 

Collectively, the studies presented in this thesis contribute to our basic understanding of 



iv 
 

male germ cell responses to toxic substances and suggest a potential role for zinc in 

protecting male germ cells against detrimental effects of CPA treatment.  
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RÉSUMÉ 

Une large proportion des cas d’infertilité dans les couples peut être attribuée à un 

facteur mâle, souvent causé par le mode de vie ou l’exposition à des substances 

toxiques. Parmi ces substances, la cyclophosphamide (CPA), agent alkylant 

antinéoplastique et immunosuppresseur, est reconnue pour ses effets toxiques sur les 

gamètes mâles. De nombreux troubles de la fertilité sont en effet rapportés chez les 

hommes ayant été traités à la CPA. En outre, l’exposition de rats mâles à la CPA altère 

la qualité de leurs spermatozoïdes, entraînant des effets néfastes sur leur progéniture 

dès le début du développement embryonnaire. Le but de ces travaux de thèse était de 

mieux comprendre comment réagissent les cellules germinales mâles face à un 

traitement chronique à la CPA en faisant l’analyse de leur transcriptome. Notre premier 

objectif était d’évaluer l’effet de la CPA sur l’expression des microARNs dans les 

spermatocytes pachytènes et les spermatides rondes. Nous avons ainsi démontré pour 

la première fois qu’une exposition à une substance thérapeutique peut altérer 

l’expression des microARNs, des changements potentiellement associés à la réponse 

physiologique des cellules germinales aux substances toxiques. Dans un deuxième 

temps, nous avons évalué l’effet de la CPA sur l’expression des ARN messagers dans 

les spermatocytes pachytènes et spermatides rondes. Nous avons non seulement 

démontré que la CPA modifiait l’expression de transcrits impliqués dans les complexes 

de zinc, mais surtout que l’expression de transporteurs de zinc de la famille ZIP et le 

transport de zinc lui-même étaient accrus dans les spermatocytes pachytènes. Ces 

résultats établissent le rôle fondamental du zinc dans la réponse physiologique des 

cellules germinales à la CPA. Enfin, dans un troisième objectif, nous avons évalué le 
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potentiel du zinc dans la protection des cellules germinales contre les dommages 

causés par la CPA. Nous avons ainsi pu observer que, dans les cellules germinales 

mâles, une supplémentation en zinc produit une diminution des niveaux de stress 

oxydant et des dommages à l’ADN associés au traitement à la CPA. Considérés dans 

leur ensemble, ces résultats permettent une meilleure compréhension de la réponse 

physiologique des cellules germinales face aux substances toxiques, et mettent en 

lumière le potentiel du zinc dans la protection des cellules contre les effets nocifs de la 

CPA.    
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McGill University. References are included at the end of each chapter. The first chapter provides 

an introduction to the male reproductive system and background information on materiel relevant 

to this thesis including spermatogenesis,  male germ cell transcriptome, defense and repair 

mechanisms and finally the concept of male mediated reproductive toxicology focusing on the 

chemotherapeutic and immunosuppressant drug cyclophosphamide. The chapter concludes with 

the rational and objectives of this thesis. Chapter 2 has been submitted for publication. Chapter 3 

is a published manuscript and is available in Biology of Reproduction; 95(1):22, 1-12, 2016. 

Chapter 4 is in preparation for submission.  Connecting texts are included in between chapters to 

ensure continuity. Chapter 5 is a general discussion of the findings presented in this thesis as 

well as their significance in the field of reproductive toxicology. Finally, a list of original 

contributions is provided. 
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CHAPTER 1 

 

 

INTRODUCTION 
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1.1 The Male Reproductive System Anatomy: and Physiology 

 The male reproductive system is composed of multiple components (Fig.1-1): 1) 

testes that are responsible for spermatogenesis and steroidogenesis; 2) the excurrent 

duct system (epididymides, vasa deferentia, ejaculatory ducts and urethra) responsible 

for the storage and transport of germ cells; 3) the accessory glands (prostate, seminal 

vesicles and bulbourethral glands) that are responsible for the production and secretion 

of constituents of the seminal fluid; and 4) the external genitalia from which sperm cells 

and seminal fluid exit the body. The purpose of these components is to develop, 

maintain and store the male germ cell – the spermatozoon; produce and to secrete the 

sex hormones (testosterone, estradiol) that drive spermatogenesis [1] and are 

responsible for secondary male sex characteristics [2]; and finally deliver the mature 

sperm cells to female reproductive tract.  

1.1.1 The Testes 

 The testes are a pair of oval shaped organs located in the scrotal sac outside the 

abdominal cavity. They are composed of two internal compartments, the interstitium and 

seminiferous tubules, encapsulated within a layer of connective tissue, the tunica 

albuginea [3]. The steroid producing Leydig cells along with peritubule myoid cells, 

macrophages and blood vessels and lymphatics compose the interstitial space [4], while 

the Sertoli and the developing germ cells compose the seminiferous tubules [3]. The 

main functions of the testes are the production and secretion of male sex hormones 

(steroidogenesis) and the production of male germ cells (spermatogenesis). Although  
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Figure 1-1. Schematic overview of the male reproductive system, organization of 

the seminiferous epithelium and spermatogenesis. Gonadotropin releasing 

hormone (GnRH) secreted from the hypothalamus cause release of follicle stimulating 

hormone (FSH) and luteinizing hormone (LH) from the pituitary into the peripheral 

circulation. LH stimulates the production of testosterone in the testis which drives 

spermatogenesis and is responsible for male characteristics.  The testis is composed of 

seminiferous tubules which contain layers of germ cells at different stages of 

development: the seminiferous epithelium. The process of spermatogenesis begins with 

the spermatogonial stem cells (SPG), at the base of the seminiferous epithelium, which 

undergo a series of mitotic divisions and differentiate into 1° spermatocytes (SPC). The 

1° spermatocytes undergo the first meiotic division to become 2° spermatocytes. Round 

spermatids (RS) are produced from the second meiotic division, and go through 

spermigenesis, becoming elongated spermatids (ES) and then spermatozoa (SPZ). The 

spermatozoa are released into the lumen (spermiation) and continue to mature while 

traveling through the epididymis. Created in part using images from Servier Medical Art 

(www.servier.com), licensed under a Creative Commons Attribution 3.0 Unported 

License and adapted from Encylopedia Britannica, inc. 

(http://www.britannica.com/science/spermatogensis). 

  

http://www.britannica.com/science/spermatogensis
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these 2 functions occur in separate areas of the testis, both steroidogenesis and 

spermatogenesis are regulated by signaling between the two compartments [5].  

1.1.2 Steroidogenesis 

 The function and development of the male and female reproductive systems 

depend on the complex interplay between the hypothalamus, pituitary and the gonads, 

known as the hypothalamic-pituitary-gonadal (HPG) axis. In the male reproductive 

system, signals from the central nervous system are responsible for steroidogenesis 

which ultimately drives spermatogenesis (Figure 1-1). Gonadotropin releasing hormone 

(GnRH) is synthesized in the hypothalamus by GnRH neurons and secreted in pulses 

into the hypophyseal portal blood stream. The portal stream carries GnRH to the 

gonadrope cells located in the pituitary, where it binds the GnRH receptors (GnRHR), 

eliciting a downstream signalling cascade resulting in the synthesis and secretion of the 

gonatropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), into the 

peripheral circulation. In the testes, FSH acts directly on Sertoli cells via the FSH 

receptor (FSHR) to synthesize essential factors for germ cell development [6], while LH 

mediates its actions via the LH receptor (LHR) in Leydig cells resulting in steroid 

production. 

 The major steroid hormone produced in the testis is testosterone. In response to 

LH, the Leydig cells produce testosterone from cholesterol in a pulsatile manner [7]. The 

pathway for the synthesis of testosterone is depicted in Figure 1-2. The testis is 

responsible for 95% of circulating testosterone, that influences many target tissues such 

bone, muscle, fat, skin, as well as the cardiovascular and central nervous systems [8- 
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Figure 1-2. Testosterone synthesis in Leydig cells. Luteinizing hormone (LH) binds 

the LH receptors (LHR) of Leydig cells initiating a cascade of molecular events including 

cholesterol transport into mitochondria, aided by steroidogenic acute regulatory protein 

(stAR) and translocator protein (TSPO), production of pregnenolone from cholesterol by 

P450scc, translocation of pregnenolone from the mitochondria to the smooth 

endoplasmic reticulum (SER) and conversion of prognenolone to testosterone via a 

series of reactions involving the enzymes 3β-HSD, 17α-OH-lase, C17-20-lyase and 17-

KSR. Testosterone then freely diffuses across the cellular membrane. Created in part 

using images from Servier Medical Art (www.servier.com), licensed under a Creative 

Commons Attribution 3.0 Unported License and adapted from Zirkin and Chen (2000) 

[405]. 
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12]. Testosterone is also the main driver of spermatogenesis [1]. Testosterone does not 

act directly on male germ cells, but rather exerts its effects via the androgen receptor 

(AR) in Sertoli cells [13-15].  

1.1.3 Spermatogenesis 

 Spermatogenesis is a complex process during which, through a series of tightly 

regulated steps, a diploid spermatogonial stem cell is transformed into a highly 

specialized and compact haploid spermatozoon (Fig. 1.1). As the germ cells develop, 

they move from the basement membrane (basal compartment) towards the lumen 

(luminal compartment) of the seminiferous tubule. The entire process lasts 

approximately 35 days in mice, 52 days in rats and 72 days in humans [16, 17].  

 Germ cell development requires support from the Sertoli cells: irregularly shaped 

somatic cells located on the basement membrane of the seminiferous tubules with 

cytoplasmic extensions that reach towards the luminal space [18]. Tight junctions 

between Sertoli cells create the blood-testis-barrier (BTB) [19-21], that serves to provide 

an optimal environment for germ cell development and also protects the germ cells from 

toxic substances and the immune system [22, 23]. This barrier divides the seminiferous 

tubules into the basal and luminal compartments [20]. The Sertoli cells are in direct 

contact with the germ cells and provide support by secreting various nutrients and 

glycoproteins important for germ cell development (reviewed in [24, 25]). Sertoli cells 

can support a fixed number of germ cells, and thus maximum sperm output is 

dependent on Sertoli cell number [26]. 
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 Spermatogenesis can be divided into three separate phases: mitosis, meiosis 

and spermiogenesis (Fig. 1-1).  

 During the mitotic phase, a spermatogonial stem cells (As) located in the basal 

compartment divide to replicate themselves in order to replenish the stem cell 

population and to provide pairs of spermatogonia (Apr) that will begin spermatogenesis. 

The Apr go through a series of synchronous divisions leading to the formation of chains 

of aligned spermatogoia (Aal) . The Aal mature synchronously into more differentatiated 

spermatogonial cell types: A1 → A2 → A3 → A4 → intermediate (In) → B [27-30].  The B 

spermatogonia differentiate into the pre-leptotene spermatocytes, cross the BTB into 

the adluminal compartment [31], begin DNA synthesis [32] and enter the meiotic phase 

of spermatogenesis.  

 During the meiotic phase of spermatogenesis, diploid spermatocytes go through 

two divisions, one reductional (meiosis I) and one equational (meiosis II) to become 

haploid cells. During meiosis I, the diploid primary spermatocytes (pre-leptotene) go 

through prophase I consisting of several stages based on the appearance of the 

chromosomes: 1) leptotene – the chromosomes, consisting of sister chromatids, 

condense into visible filamentous strands 2) zygotene – synapsis between homologous 

chromosomes begins 3) pachytene – synapsis is completed and recombination 

between homologous chromosomes occurs 4) diplotene –  homologous chromosomes 

begin to unsynapse 5) diakinesis – separation of the chromosomes. This is followed by 

metaphase I, anaphase I and telophase I and the result is the production of two haploid 

secondary spermatocytes. These secondary spermatocytes then undergo meiosis II, 

that involves the separation of the two sister chromatids and results in the formation of 
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four haploid spermatids [5]. Although four spermatids are formed from a single primary 

spermatocyte, these cells remain connected by cytoplasmic bridges [33] allowing 

sharing of cellular products [34]. 

 The resulting haploid spermatids next undergo a remarkable differentiation 

process to become the ultra-specialized spermatozoa, a process called spermiogenesis 

[5].  During this phase of spermatogenesis, extensive chromatin remodeling occurs: the 

majority of the histones are removed and replaced with transition proteins and finally 

protamines [35], leading to a highly compacted, elongated nucleus that is 

transcriptionally quiescent [36]. Important changes in cellular morphology also occur: 

the cytoplasm elongates and is reorganized to form a tail with a flagellum surrounded by 

mitochondria and the acrosome on the anterior half of the head [37, 38]. At the end of 

the differentiation process, very little cytoplasm is retained. The final event in 

spermiogenesis is spermiation, where the spermatozoa are released into the lumen to 

be transported through the efferent ducts to undergo maturation in the epididymis.  

1.1.4 The sperm chromatin structure 

 Extensive chromatin remodelling takes place during spermiogenesis resulting in 

a nucleus that is roughly 10% the volume of a somatic cell nucleus and a remarkably 

compacted DNA structure. To achieve this, the chromatin goes from a classical histone 

bound nucleosome structure to a mostly protamine bound highly condensed toroid 

structure [39] (Fig. 1-3).. Protamines are small, arginine and cysteine rich, basic 

proteins exclusively expressed in male germ cells [40, 41]. Mice and humans express 2 

variants, Prm1 and Prm2, while rats only express Prm1 [42]. The positive charges of the  
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Figure 1-3. Schematic overview of the sperm chromatin structure. During 

spermiogenesis, the chromatin transitions from a somatic histone-bound DNA solenoid 

structure to a mostly protamine-bound DNA structure. Compaction is aided and 

stabilized by the association of zinc ions with protamines. The protamine bound 

chromatin forms highly condensed toroids and that are stacked closely together and 

connected by short stretches of linker DNA. DNA is attached to the nuclear matrix at 

matrix attachment regions (MAR). Although the majority of DNA is protamine bound, a 

fraction of DNA remains histone-bound. Created in part using images from Servier 

Medical Art (www.servier.com), licensed under a Creative Commons Attribution 3.0 

Unported License. 
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arginine residues neutralize the negative charge of the phosphodiester DNA backbone, 

reducing the electrostatic repulsion between chromatin and thus allowing formation of 

the toroids [39] [43]. The cysteine residues provide thiol groups that permit the formation 

of inter- and intramolecular cross-linking disulphide bonds between the protamines, 

further condensing the chromatin [44]. Zinc ions participate in these bonds by forming 

zinc bridges between the thiol groups of the cysteine residues and also possibly 

interacting with imidazole groups of histidine residues, stabilizing the DNA protamine 

structure in a similar way to zinc-finger DNA binding proteins [45-47]. This condensed 

packaging of sperm DNA renders the sperm transcriptionally quiescent and also 

protects the genetic material.  

 Approximately 15% of human and 1-2% of mouse sperm DNA remains packaged 

with histones in somatic cell like nucleosomes [48]. The locations of the retained 

nucleosomes seem to be non-random and appear to be enriched with developmentally 

critical genes, suggesting a role in early embryonic development [49, 50]. 

 Finally, on a larger scale, sperm chromatin is also organized in the nucleus by a 

network of proteins and RNAs, also present in the nuclei of somatic cells, called the 

nuclear matrix [51]. The regions where the chromatin attach to the nuclear matrix are 

sequence specific and termed matrix attachment regions (MARs) [52]. Interestingly, 

these MARs may also correspond to sites of histone retention [53]. The proper structure 

of the sperm nuclear matrix is important for DNA replication in early embryo 

development [54, 55]. The structural features of the sperm chromatin serve to protect 

the DNA from damage and also perhaps poise specific regions for use in early 

embryonic development. 
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1.1.5 The seminiferous epithelium cycle and spermatogenesis staging 

In the adult testis, germ cells at all stages of differentiation are present at any given 

time. However these different germ cells are arranged in a set of defined cellular 

associations that can be used to stage the seminiferous epithelium [38, 56] (Fig. 1-4). 

Cellular morphology and the changes in the appearance of the acrosome that 

characterize the different steps in spermatid development are used to identify the 

different cellular associations that define the stages.  There are 6 stages in the human, 

12 stages in the mouse and 14 stages in the rat seminiferous epithelial cycles [37, 57]. 

These different stages progress sequentially and repeatedly along the seminiferous 

tubules in order to assure the continuous production of spermatozoa, a phenomenon is 

referred to as the spermatogenic wave [58]. 

 

1.2 The Germ Cell Transcriptome 

 The testis displays the most complex transcriptome compared to other tissues 

including the brain, heart, liver and kidney [59]. The source of this complexity stems 

primarily from the pachytene spermatocytes and round spermatids. The intricate 

differentiation processes and need for the transcripts required for late steps of 

spermatogenesis to be transcribed and stored before nuclear condensation and 

transcriptional quiescence drives the high transcriptional activity of these cells. 

Additionally, the substantial chromatin remodelling that occurs during meiosis and 

spermiogenesis allows for a permissive chromatin state, leading to promiscuous  
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Figure 1-4. Schematic representation of the seminiferous cycle of the rat. During 

spermatogenesis, a stem cell goes through a series of processes to become a 

spermatozoon. This figure depicts the defined germ cell associations that can be 

observed at any given time in the seminiferous tubules. These defined associations are 

used to stage the semiferous epithelium. The rat has 14 stages (columns). Adapted 

from Dym and Clermont (1970) [376]  
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transcription [59]. Protein coding mRNAs, the small non-coding as well as long non-

RNAs have all been shown to play important roles in the regulation of spermatogenesis. 

1.2.1 Messenger RNAs 

 Gene expression profiles from the testis and male germ cells differ significantly 

from other tissues and somatic cells and display many testis-enriched or -specific 

transcripts [60-62]. In fact, it is estimated that 4% of the mouse genome is dedicated to 

the expression of testis-specific/predominant genes [63]. While some of the transcripts 

are for different homologues or splice variants, many transcripts are for unique proteins 

with testis-specific functions. Although testis specific gene expression studies began 

over 20 years ago, there are still new transcripts being discovered today [64]. The 

different germ cell types possess a variety of enriched or testis-specific transcripts and 

display distinct gene expression profiles owing to the unique cellular differentiation 

processes they undergo and the unique structures they develop. Round spermatids 

display the most enriched or specific transcripts, followed by the pachytene 

spermatocytes, while spermatogonia display the least [60]. Well known examples of 

germ cell enriched or specific genes are synaptonemal complex 3 (Sycp3), part of the 

synaptonemal complex that is essential for meiotic recombination and the transition 

proteins (Tp1/2) and protamines (Prm1/2) which, although transcribed in the round 

spermatids, are only translated when required during later stages in development for 

chromatin remodelling [60, 65, 66].  

 The unique and highly coordinated steps of spermatogenesis require an equally 

unique and tightly regulated gene expression program mediated through transcriptional 
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and posttranscriptional mechanisms. Many differences in the regulation of transcription 

between germ cells at different stages of differentiation have been documented giving 

male germ cells a unique gene expression program. For instance, many factors and 

components of the transcriptional machinery are over-expressed in the testis compared 

to somatic tissues [67].  Furthermore, male germ cells express many testis specific 

transcription factors, chromatin associated factors and components of the transcriptional 

machinery that are often paralogs of those used by somatic cells [68-70]. Additionally, 

the mechanisms by which some factors are activated are different from those found in 

somatic cells, as is the case for CREM, which bypasses the requirement for 

phosphorylation in germ cells by acting with activator of CREM in testis (ACT) [71]. 

Finally, epigenetic mechanisms also allow for the unique germ cell transcriptome: the 

promoters of testis specific genes, while often highly methylated in somatic tissues, are 

hypo-methylated in germ cells [70]. 

 Male germ cells also possess many mechanisms for post-transcriptional 

regulation of gene expression that occur at different steps of the RNA processing 

pathway. Alternative splicing is widespread in the testis [72] and can alter coding 

properties, stability, and spatial/temporal expression of transcripts [73-75]. Different 

splicing factors and splice variants seem particularly important for meiotic germ cells 

[75, 76]. 

  Because transcripts needed for the later steps of spermiogenesis need to be 

transcribed and stored before transcriptional quiescence, mRNA stability and 

translational control are essential. Transcripts can be stabilized by the lengthening of 

the poly(A) tail [77, 78] and associated poly(A) binding proteins [78, 79]. However more 
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importantly, many RNA binding proteins (RBPs) are enriched or specifically expressed 

in the testis [80]  that bind, store and protect mRNA transcripts in ribonucleioprotein 

(RNP) granules, such as the chromatoid body, until they are translated [81]. The 

chromatoid body, located in the cytoplasm of spermatids, is a germ cell specific RNA 

processing centre that contains numerous RBPs and mRNA processing machinery [82]. 

Many non-coding RNAs (discussed below) also locate to the chromatoid body, 

suggesting they too play a role in post-transcriptional control in male germ cells. 

Although the mature spermatozoa are essentially devoid of cytoplasm, the 

compact structure contains a complement of RNAs [83, 84]. It remains unclear whether 

the retained RNAs are merely a footprint of spermatogenesis or are specifically retained 

and have functional roles that may influence embryo development. The complement of 

mRNAs retained in sperm from infertile men differs from that of fertile men, suggesting 

that sperm RNAs may play a role in fertility and serve as useful biomarkers [85-87]. 

Additionally, sperm mRNA transcripts can be altered by exposure to environmental 

toxicants [88] and paternal diet [89], possibly reflecting toxic insult to male germ cells 

during spermatogenesis or perhaps indicating a specific response in preparation for 

fertilization and embryogenesis in a stressful environment. Whether the mRNA 

transcripts found in the 1-5 fg of sperm RNA [90], compared to the 1ng of oocyte RNA 

[91], play a role in embryo development is still unknown. However, as discussed below, 

small non-coding RNAs retained in mature spermatozoa seem to play a role in 

transmitting paternal environmental experience to offspring. 

1.2.2 Non-coding RNAs 
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 Although most of the human genome is transcribed, only a small fraction of these 

transcripts are protein coding [92, 93]. Originally thought of as artifacts or junk [94, 95], 

there is ever increasing evidence that non-coding RNAs play crucial roles in cellular 

function via chromatin remodelling and post-transcriptional control mechanisms [96-98]. 

Furthermore, the importance of these transcripts in the development of male germ cells 

is apparent. 

1.2.2.1 MicroRNAs 

 MicroRNAs are evolutionary conserved, single stranded non-coding RNAs 20-

24nt in length. Most miRNAs are transcribed by RNA polymerase II (RNA Pol II) and 

initially form a distinctive hairpin loop structure [99].This pri-miRNA is then processed by 

Drosha and its cofactor DGCR8 into an approximately 70nt long pre-miRNA [100-102] 

and then shuttled out of the nucleus by EXP5 [103, 104]. In the cytoplasm, the pre-

miRNA is cleaved by Dicer into approximately 22nt long double stranded RNA which is 

loaded onto an AGO protein forming the miRNA-induced silencing complex (miRISC). 

One of the 22nt strands will remain in miRISC as the mature miRNA while the other will 

be degraded. MicroRNAs can also be generated through other, non-canonical pathways 

[105]. 

 The miRISC mediates post-transcriptional regulation of gene expression via base 

complementarity between the 5’ end seed region of the miRNA and the 3’UTR of target 

mRNAs [106-109], however there is also evidence for binding in coding regions [110-

114] . The binding of the miRISC to its target leads to either mRNA degradation, 

translational repression or sequestration into cellular compartments (RNPs as 
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discussed above) [115-117]. The base complementarity between the miRNA and its 

target does not need to be perfect [118-120], therefore one miRNA can target multiple 

mRNAs and an mRNA can be targeted by multiple miRNAs. To add to this complexity, 

miRNAs have recently been implicated in regulating N6-methyladenosine (m6A) 

modifications on mRNA[121], a modification that influences RNA structure [122] and 

possibly stability and translation of transcripts [123, 124].  

 MicroRNAs are abundantly expressed in testes and some testis-specific or 

preferred miRNAs have been identified [125-127]. Additionally, profiling studies have 

demonstrated differential expression patterns throughout spermatogenesis [125, 127], 

indicating a role for miRNAs in germ cell development and differentiation. The 

importance of miRNA-mediated post-transcriptional control for the regulation of 

spermatogensis has been demonstrated in several genetically modified mouse models. 

The ablation of Dicer in spermatogonial progenitor cells [128], spermatogonia [129] and 

spermatids [130]  and Drosha in spermatogonia [131] have revealed the requirement for 

miRNA biogenesis machinery and miRNAs for meiotic progression, spermatocyte 

survival and most strikingly spermatid development. Sertoli cell miRNAs are also 

important for spermatogenesis as Sertoli cells lacking Dicer fail to properly support germ 

cells [132, 133].   

 Individual miRNAs have also been shown to have important functions throughout 

spermatogenesis. Figure. 1-5 illustrates the known roles of individual miRNAs in male 

germ cells. Several miRNAs are important for spermatogonial stem cell maintenance, 

self-renewal and differentiation [134-139]. Despite the fact that meiotic and post-meiotic 

germ cells are the main source of miRNA production in the testis [125] and that lack of  
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Figure 1-5. MicroRNAs in male germ cells. Roles for very few miRNAs have been 

found in different germ  cell types and shown in green ellipse). MicroRNAs that have 

been identified as exclusively or highly expressed in the different cell types are shown in 

blue circles. Adapted from  Kotaja (2014) [406] and Chen et al. (2017) [407] 

  



 

23 
 

miRNA biogenesis machinery leads to spermatogenic defects at these stages, very little 

is known about the functions of individual miRNAs in these cells. It would be logical for 

miRNAs to play a role in translational control of transcripts that are required in later 

stages of germ cell development once transcription has ceased. Indeed, miR-469 has 

been shown to target and block translation of transition protein 2 (Tp2) and protamine 2 

(Prm2) transcripts in pachytene spermatocytes and round spermatids [140] while miR-

122a cleaves Tp2 transcripts in post-meiotic cells [141]. These studies would suggest 

that miRNAs are involved in the regulation of chromatin remodelling via post-

translational control mechanisms. Additionally, a handful of other miRNAs have also 

been found to play a role in meiotic entry [142-144] and apoptosis [145]. 

 Although there are no known functions for miRNAs in the mature sperm, sperm 

born miRNAs have been shown to be transmitted to the oocyte at fertilization and play a 

role in early embryogenesis  [146]. Interestingly, the miRNAs present in the nucleus of 

the sperm have been shown to transmit diet and stress phenotypes to offspring [89, 

147-150]. Although there is still much unknown in the world of miRNAs, the evidence 

suggests the miRNAs that are produced in germ cells are not only important for 

spermatogenesis but also for embryo development. 

1.2.2.2 PiwiRNAs 

 PiwiRNAs are 24-31 nt long transcripts that interact with the Piwi (Milli and Miwi 

proteins in mammals) family of AGO proteins. In mammals, they are expressed almost 

exclusively in the testis and can be classified, based on their expression patterns, as 

pre-pachytene piRNAs (Mili interacting) and pachytene piRNAs (Miwi interacting) [151-
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155]. It has been proposed that the primary role of these small non-coding RNAs is the 

suppression of transposable elements (TE) [154, 156]. piRNAs may do this by 3 

separate mechanisms: 1) by sequence complimentarity and TE degradation in a 

complex process called the ping pong loop [157, 158]; 2) the recruitment of factors to 

induce heterochromatin formation at targeted sequences [159, 160]; and 3) DNA 

methylation of TE promoters [161]. However recent data suggests that many of the 

pachytene piRNAs are derived from mRNA coding sequences [162] and may also be 

involved in inducing mRNA decay in elongating spermatids [163]. The importance of 

piRNAs in spermatogenesis can be seen in knockout mouse models. The loss of pre-

pachytene piRNA activity by deletion of Mili leads to spermatogenic arrest between the 

zygotene and early pachytene stages of meiosis I [164], while with loss of pachytene 

piRNA acitivity by Miwi deletion leads to arrest at the early round spermatid stage [165]. 

Interestingly, piRNAs and their machinery are highly enriched in RNP granules such as 

the chromatoid body, suggesting they may play a role in RNA translational control [82]. 

1.2.2.3 Long Non-Coding RNAs 

 Long non-coding RNAs (LncRNA) are mRNA-like transcripts over 200nt long with 

no protein coding capacity. Their expression patterns are highly tissue-specific, and are 

they most abundant in the brain and testes [166].  Additionally, male germ cells display 

distinct stage specific lncRNA expression patterns, suggesting an important role in germ 

cell development [167, 168]. These non-coding RNAs are thought to regulate gene 

expression in multiple ways. They can act as competitors for DNA binding proteins, 

such as transcription factors and RNA binding proteins, either by interacting with the 

proteins or by binding complementary DNA or RNA sequences [169-173]. LncRNAs can 
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also recruit epigenetic modifiers to chromatin, thus playing a role in DNA methylation 

and histone modifications [174-176]. Finally lncRNAs can also be precursor RNA 

molecules and can be further processed to form smaller non-coding RNAs [177, 178]. A 

handful of studies have identified roles for individual lncRNAs in X-chromosome 

inactivation [179], spermatogonia [180-182] and meiosis [183]. However, functions of 

lncRNAs in the testes largely remain to be elucidated 

1.2.2.4 Other non-coding RNAs 

 Many other non-coding RNAs have been identified in the testis. However these 

have been much less studied. These include endogenous small interfering RNAs, 

circular RNAs, and transfer RNA (tRNA) derived small RNAs. 

 Endogenous small interfering RNAs (endo-siRNAs), are similar in size (21-23 nt) 

and function to miRNAs [184]. Both are first processed DICER and cause mRNA 

transcript degradation. Endo-siRNAs are also involved in heterochromatin formation 

[185]. However, while miRNAs function in the RISC with any of the 4 AGO protein family 

members, endo-siRNAs only interact with AGO2 [186]. Endo-siRNAs have been found 

abundantly in male germ cells [187]. However, deletion of AGO2 does not lead to any 

spermatogenic defects, suggesting that endo-siRNAs do not play a critical role in male 

germ cell development [188]. 

 Circular RNAs (circRNAs are a newly identified class of small-non coding RNAs 

that form closed continuous loops and are derived from exons and introns of coding 

sequences [189, 190]. They are believed to function as miRNA sponges [191] and 

cis/trans regulators of transcription [192], and possibly also as translation templates 
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[193]. They can also interact with RBPs [190], suggesting possible functions in post-

transcriptional control [190]. circRNAs are present in the testis and seminal fluid [194, 

195]. Many circRNAs indentified in the testis are unique and derived from genes 

involved in spermatogenesis [195]. Specific roles for these small RNAs and whether or 

not they are critical for spermatogenesis remain unknown.  

 Transfer RNA (tRNA) derived small RNAs (tsRNAs) are 18-26nt small non-

coding RNAs that result from specific cleavage of tRNAs and not simply their random 

degredation [196, 197]. Their functions and targets are not well known, but they may 

play a role in transposable element silencing [198, 199]. tsRNAs are relatively abundant 

in mature sperm where they have been shown to transfer dietary phenotypes to 

offspring [196, 198, 200]. tsRNAs are also present in male germ cells and testicular 

sperm but less abundantly than in mature sperm, suggesting that sperm born tsRNAs 

are accumulated during epididymal transit [198]. 

 

1.3 Germ cell defense and repair mechanisms 

1.3.1 Oxidative Stress 

1.3.1.1 Oxidative stress and damage 

 Oxidative stress is a cellular condition where levels of reactive oxygen species 

(ROS) become elevated, causing damage to lipids, proteins and DNA and has been 

implicated in several diseases. ROS are highly reactive, oxygen containing molecules 

that can be classified as radicals or non-radicals. The highly reactive radical species 
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contain at least one un-paired electron in their outer orbital and include superoxide (O2
• -

), oxygen radical (O2
••), hydroxyl (OH•), hydroxyperoxyl (HO2

•) alkoxyradicals (RO•) and 

peroxyl radicals (ROO•). The non-radical ROS species are not radicals but lead to free 

radical formation and include hydrogen peroxide (H2O2), singlet oxygen (1O2) and ozone 

(O3) [201].  

 ROS can be generated endogenously and exogenously (Fig. 1-6). ROS are 

formed naturally as by-products of metabolism.  Under normal physiological conditions, 

they are required for various functions including the immune response [202], cell 

signalling pathways [203], response to mitogens [204], and sperm capacitation [205]. 

Mitochondrial enzymes,  NADPH oxidases and xanthine oxidases [207] are important 

sources of O2
• -. Additionally, non-enzymatic reactions can create electrons that leak 

from the electron transport chain (ETC) and react with molecular oxygen to form O2
• -

[208]. This “primary” ROS can then be protonated to form hydroxyperoxyl (•HO2) which 

can easily pass through membranes and cause damage. Additionally, O2
• -can react 

with other molecules such H2O2 and NO to create “secondary” ROS that are highly 

damaging, the •OH and ONOO- radicals. The •OH radical can also be produced from 

H2O2 and iron via Fenton reactions [209]. Additional sources of endogenous ROS 

include, but are not limited to, auto-oxidation reactions [210], NADPH oxidases [211], 

xanthine oxidase [207], lipoxygenase [212], and cytochrome P450 [213]. 

 Exogenous sources of ROS come from radiation, air pollution [214], cigarette 

smoke [215], alcohol, heavy/transition metals [216], acrylamide (chemical exposure or 

food) [217] and drugs [218]. Once  
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Figure 1-6. Reactive oxygen species, antioxidant and cellular damage. The O2
•-, 

•OH and -ONOO radicals can be formed endogenously or from oxidative insult which 

can cause damage to biomolecules. Antioxidant enzymes neutralize these radicals. 

Superoxide dismutase (SOD) transforms O2 into H2O2 which can be further broken 

down into H2O and O2 by catalase (CAT), gluatathione peroxidases (GPX), gluatathione 

(GSH) or peroxiredoxins (PRDX). The OH radical can be formed from H2O2 via reaction 

with O2 or Fenton reaction and neutralized by either GPX or PRDXs. The -ONOO 

radical, formed by the reaction of O2 with NO, can be neutralized by PRDXs. 

Additionally, non-enzymatic antioxidants such as vitamins E and C can act as ROS 

scavangers and zinc can prevent endogenous production of ROS and fenton reactions 

and structurally stabilize SOD. Red arrows represent ROS production; Blue arrows 

represent ROS neutralization; AO = ROS scavengers. 
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inside the body, compounds are degraded and metabolized into free radicals that can 

then produce ROS and damage biomolecules. 

 High levels of ROS lead to damage of nucleic acids, proteins and lipids. The 

highly active OH reacts with the purine bases of DNA and RNA as well as the DNA 

backbone creating damaging DNA and RNA lesions such as the well characterized 8-

oxo-2’-deoxyguanosine (8-oxodG) [219] and 7, 8-dihydro-8-oxo-guanosine (8-oxoG) 

[220]. These lesions, if left un-repaired lead to decreased DNA integrity, dysregulation 

of gene expression, mutagenesis, carcinogenesis and various pathological conditions. 

Although less reactive than •OH, O2
• - and H2O2 can interact with membrane lipids, 

initiating lipid peroxidation, a cascade of oxidative reactions that lead to the formation of 

toxic DNA and protein damaging end products [221]. ROS can also attack the amino-

acid backbone of proteins causing oxidation of side-chain residues, formation of 

carbonyls, peptide bond cleavage and protein-protein cross links, leading to loss of 

protein structure and function [222, 223]. Furthermore, elevated levels of  O2
• -and H2O2 

can reduce the activity of catalase and glutathione peroxidases, key players in the 

cellular defense mechanisms against ROS [224-226] [vasudevan 1990 - 224][Blum 

1985 - 225][Day 2012 - 226] .   

 While cells have developed mechanisms to repair the damaged caused by ROS, 

cells that have reduced or have lost repair capabilities, such as spermatozoa, are at a 

greater risk of harmful effects of free radicals. 

1.3.1.2 Defense against oxidative stress 
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 Cellular mechanisms have evolved to protect against the formation of free 

radicals and prevent oxidative damage. This vast antioxidant defense system is made 

up enzymatic and non-enzymatic antioxidants.  

1.3.1.2.1 Enzymatic antioxidants 

 In the testis, high levels of oxidative stress initiates a response involving NfKB 

mediated induction of several enzymatic enzymes [227]. 

 Superoxide dismutase (SOD) is present mainly in 3 forms (SOD1, 2 and 3) that 

differ in structure and cellular location. However, all 3 serve the same purpose: catalyze 

the breakdown of •O2
- into O2 and H2O2 (Fig. 1-6). SOD1, also known as Cu/ZnSOD is 

found abundantly in the cytoplasm and also in the nucleus and mitochondria [228, 229]. 

The Cu ion provides the catalytic activity while the zinc ion provides structural stability to 

the enzyme [230]. A deficiency in either of these ions leads to loss of enzymatic 

function. SOD2 is also known as MnSOD because the catalytic function of the enzyme 

is executed by a Mn ion. It is predominantly found in the mitochondria [231]. Finally, 

SOD3, also known as ECSOD and SOD-Ex, is similar to SOD1 in structure but is 

located in the extracellular space [232]. 

 All 3 SODs are expressed in the testis [233-235]. The activity of SOD1 is critical 

in male germ cells, as a knockout mouse model of the enzyme increased cell death and 

damage under increased stress conditions, such as heat and aging [236, 237]. 

Additional evidence for the importance of SOD activity is the remarkably high level of 

SOD2 and SOD3 expression in the testis [233, 235].   
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 Catalase (CAT) catalyzes the degradation of H2O2 into H2O and O2, preventing 

the production of •OH via Fenton reaction. A group of 4 heme molecules bound to Fe is 

the catalytic centre of the enzyme. They are mostly located in peroxisomes, except in 

erythrocytes where it is also located in the cytoplasm [238]. Catalase is found in the 

testis, although it is less abundant than SOD1 and 2 [233]. Compared to SOD1, 

catalase may play a less important role in the testis , as deletion results in a less severe 

phenotype than SOD1 deletion, even under stress [237].This is due to the presence 

antioxidant enzymes capable of H2O2 detoxification. However, over-expression seems 

to have a protective function in male germ cells against age related increases in 

oxidative stress [239]. 

 Glutathione peroxidase (Gpx) and glutathione reductase (GR). Glutatione 

peroxidases also catalyze the detoxification of H2O2 into H2O by reduction with 

glutathione. Glutathione reductase regenerates the glutathione.  There are several Gpxs 

and the activity of many of them is dependent on selenium [240]. Gpx4 is the most 

highly expressed in the testis and its deletion causes reduced fertility [241]. Additionally, 

decreased Gpx activity, increased levels of oxidative stress and germ cell loss are 

observed the testes of selenium deficient mice [242]. 

 Peroxiredoxins (PRDX) also catalyze the detoxification of H2O2, but unlike CAT 

and GPX, their activity is metal ion independent. Thioredoxin (TRX) and thioredoxin 

reductase (TRD) are involved in regenerating the active form of PRDX [243]. A specific 

form of PRDX4 is present in the testis and its deletion leads to increased oxidative 

stress and testicular degeneration [244, 245]. Additionally PRDX6 has been shown to 

play an important role in sperm motility and protection against oxidative stress [246].  
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1.3.1.2.2 Non-enzymatic antioxidants 

 Zinc. Aside from being an essential cofactor for SOD1, zinc also plays additional 

roles as an antioxidant. Zinc is an important stabilizer of protein structures, including 

some that can influence levels of oxidative stress. The Cox4 subunit of cytochrome c 

oxidase of ETC requires zinc to properly function and loss of zinc binding alters the 

structure of Cox4 and disrupts the ETC, which can lead to the release of electrons 

[247].  Zinc has been shown to protect enzymatic activities in the presence of oxygen by 

protecting sulfhydryl groups from oxidation and formation of intramolecular disulfide 

bonds [248]. Zinc can also compete with redox active metals such Fe and Cu for 

binding sites on membranes and proteins, thus preventing Fenton reaction mediated 

production of •OH and lipid peroxidation [249, 250]. The anti-oxidant capabilities of Zn 

have been demonstrated in many tissues, including the testis, where Zn deficiency 

leads to increased oxidative stress. Furthermore, zinc has been shown to protect the 

testis against cadmium and lead induced oxidative damage [251, 252].  

 Vitamins E and C. Vitamin E (α-tocopherol) is a powerful lipophilic antioxidant 

and the most important inhibitor of lipid peroxidation. It is a powerful free radical 

scavenger because it can react with lipid peroxides (•ROO) faster that they can react 

with themselves [210]. Vitamin E is critical for spermatogenesis and has been shown to 

protect the testis against free radicals induced by polychlorinated biphenyl (PCBs) 

compounds [253], cadmium [254], formaldehyde and cyclophosphamide [255].  
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 The water soluble vitamin C (ascorbic acid) acts as an antioxidant by reacting 

with O2, HO2, OH and RO2 radicals to form a far less reactive ascorbyl radical, that is 

then further oxidized into dehydroascorbic acid (DHA). In this way it acts as a free 

radical scavenger [210]. It is also involved in the reduction of vitamin E, maintaining it in 

its active state. The enzyme dehydroascorbate reductase maintains vitamin C in its 

active state, dehydroascorbate, is highly expressed in the testis [256]. Vitamin C has 

been shown to protect the testis against oxidative stress induced by arsenic [257], 

PCBs [252], cadmium [253] and alcohol [258].  

1.3.2 DNA damage 

 It has been estimated that in the mammalian genome over 105 DNA lesions are 

produced per cell per day as a result of replication errors and cellular metabolism. In 

addition, exogenous substances, including radiation, environmental chemicals and 

drugs, can also damage DNA. 

1.3.2.1 DNA damage types 

 DNA can be damaged in various ways. One of the most common types of 

damage is single-strand breaks (SSBs); these are discontinuations in one of the two 

DNA strands. These types of lesions can lead to genetic instability, mutations and cell 

death. Furthermore SSBs can turn into highly toxic double strand breaks (DSBs) that 

are breaks in both DNA strands. If left unrepaired, DSBs lead to genomic instability, 

deregulation of cellular function and cell death. 

 Base mismatches arise during DNA replication or recombination after exposure 

to a damaging agent and can involve erroneous repair, insertions, deletions or 
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misincorporated bases. Base modifications are damaging chemical modifications to 

DNA bases. These can be caused by oxidation (ex: 8-oxodG), alkylation (ex: 6-O-

methylguanine) and radiation (ex: pyrimidine dimers and 5-hydroxyuracil).  Both base 

mismatch and modifications distort the structure of the DNA helix [259]. The damaged 

bases can also lead to the formation of DNA intra-strand and inter-strand crosslinks and 

DNA-protein crosslinks [260].  

 In response to the various types of damage, cells have developed the ability to 

repair DNA using several different mechanisms. The DNA damage response (DDR) is 

multilayered and consists of sensors, inducers and effectors. 

1.3.2.2 DNA repair pathways 

1.3.2.2.1 Nucleotide-excision repair 

 The nucleotide-excision repair (NER) pathway has the ability to repair 

mismatched base pairs and bulky adducts, oxidation and DNA intra-strand crosslinks. 

The versatility in substrates of NER lies in the many different proteins that assemble at 

the site of damage [259]. NER functions via a “cut and patch” mechanism where a 

section of single stranded DNA (ssDNA) (~24-32 nt in length) is excised and then 

replaced using the sequence of the remaining non-damaged strand as a template. NER 

can be subdivided into two sub-pathways: the global genome NER (GG-NER) which 

detects and repairs damage throughout the genome and the transcription-coupled NER 

(TC-NER), a more rapid pathway that removes damaged bases during transcription. In 

GG-NER, damaged DNA detection is accomplished by XPC/RAD23B proteins which 

recognize the thermodynamic destabilization of the DNA double helix and recruit the 
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TFIIH complex to unwind the DNA [261, 262]. In TC-NER, damaged DNA is recognized 

through stalling of RNA Pol II [263]. The repair mechanism in both sub-pathways is then 

the same. A second damage recognition factor, XPA, is recruited [264, 265] and then 

the endonucleases XPG and XPF/ERCC1 cleave the damaged DNA strand [266]. This 

is followed by synthesis and ligation of the new strand by DNA polymerases and DNA 

ligases [267, 268]. The NER pathway is cell cycle independent and thus active in both 

dividing and non-dividing cells. 

1.3.2.2.2 Base-excision repair 

 In contrast to NER, the base-excision repair (BER) pathway removes the less 

bulky adducts that do not distort the double helix structure. The most well-known lesion 

repaired by this pathway is 8-oxodG, which is generated during oxidative stress [269]. 

Other modifications that can be repaired by this pathway include methylation and 

deamination [260]. Detection and recognition of the damaged base is accomplished by 

specific glycosylases that cleave the base from the deoxyribose. The excision of the 

base creates apurinic or apyrimidic sites which are then cleaved by the apurinc or 

apyrimidic nuclease APE1 [260]. The resulting ssDNA lesion is repaired via the short 

patch (SP) (1 nt) or long patch (LP) (2-20 nt) pathways that involves the replacement of 

the missing nucleotides by DNA Pol β and sealing of the remaining DNA nick by the 

XRCC-LIG3α complex or LIG1[270]. The BER pathway is also cell cycle independent. 

1.3.2.2.3 Mismatch repair 

 The mismatch repair (MMR) pathway recognizes and repairs base-base 

mismatches and insertion deletion loops (IDLs) that arise during DNA replication and 
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homologous recombination [271].  In this pathway, the MSH1-6 recognizes the 

mismatched bases or IDLs in newly synthesized DNA. Discrimination between the 

nascent and original strands appears to be facilitated by the association of the MSH 

proteins to the DNA replication machinery [272]. Subsequently MLH1 and MLH3 are 

recruited and cleave the mismatched base. The resulting base is then excised by 

EXO1, followed by synthesis of the DNA segment by DNA polymerase and sealing of 

the nick by DNA ligase [260]. As this repair mechanism is coupled with DNA replication, 

it is mainly active in dividing cells. 

1.3.2.2.4 Double-strand break repair 

 The first step in the response to a DSB is the recognition of the site of damage. 

Early after the formation of a DSB, histone variant H2AX becomes phophylated on 

serine 139 by ataxia telangatasia mutated (ATM) [273]. The phosphorylated form of 

H2AX, γ-H2AX, indicates the site of DSBs. The number and size of γ-H2AX foci 

correspond to the level of damage [274, 275]. γ-H2AX plays an essential role in the 

recruitment, accumulation and maintenance of DNA repair proteins to sites of damage 

and loss of H2AX phosphorylation results in impaired formation of irradiation induced 

foci  [276-278]. One such protein that is recruited by γ-H2AX is P53 binding protein 1 

(53BP1) [276-278]. 53BP1 plays an important role in DSB repair by recruiting additional 

repair factors to the site of DSB and involved in repair pathway selection [279, 280]. 

Loss of either γ-H2AX or 53BP1 results in increased sensitivity to radiation, growth 

retardation and reduced infertility. Additionally, while litters sired from 53PB1 knockout 

mice were smaller, male H2AX mutated mice were infertile [277] suggesting a role for 

DSB repair in male germ cells [2819]. Indeed, γ-H2AX foci are prominently visible on 
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the sex chromosomes in pachytene spermatocytes and may play a role in meiotic 

pairing, meiotic sex chromosome inactivation and the formation of the sex body [282]. 

 Two different repair pathways are available to repair DDBs: homologous 

recombination (HR) or non-homologous end joining (NHEJ) 

1.3.2.2.4.1 Homologous recombination 

 The homologous recombination (HR) pathway repairs DSBs in an error free 

manner employing sister chromatids. Facilitated by the γH2AX DNA damage signalling 

cascade, the DSB is first recognized by the MRN complex (comprised of MRE11, 

RAD50 and NBS1) [283] and recruitment of ATM and other mediators such as BRCA2 

ensues. The DSB break is then resected to form ssDNA possibly through the activity of 

EXO1 [284]. RAD51 is recruited by BRAC2 to the ssDNA and forms nucleoprotein 

filaments [285]. The RAD51-ssDNA complex then invades the intact homologous DNA 

region on the sister chromatid. Once the complementary sequence is recognized, the 

DNA strand is elongated with help of RAD54 and DNA polymerase forming a 

displacement loop (D-loop) [286]. The resolution of the D-loop can then be completed 

by the synthesis-dependent strand annealing (SDSA) mechanism that avoids crossing 

over and reduces the potential genomic rearrangement. This is in contrast to the 

resolution of the D-loop in meiotic recombination, where cross over is achieved through 

the formation of a double Holliday junction [287].  

1.3.2.2.4.2 Non-homologous end joining 

 The non-homologous end joining (NHEJ) repair pathway is used to repair DSBs 

when homologous chromosomes are not available, as is the case in haploid cells. NHEJ 
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rapidly repairs DSBs by directly joining broken DNA ends. For this reason it is inherently 

error prone, often resulting in lost genomic information at the DSB site. In the first step 

of NHEJ, the Ku70/80 heterodimer binds DSBs and recruits the active protein kinase 

complex DNA-PK, which stabilizes and aligns the DSB ends. The nuclease Artemis 

resects the DNA to provide the appropriate ends gap filling by DNA polymerase and 

ligation by LIG4. NHEJ is the predominant pathway of DSB repair in mammalian cells. 

There is competition between HR and NHEJ repair. Pathway selection depends on the 

cell cycle stage and appears to involve competition between BRCA1 and 53BP1 [280].  

1.3.2.2.5 RNA directed DNA damage repair 

 Roles for RNA transcripts in the DDR have recently emerged. Recent studies 

have shown that DSBs induce the expression of a class of small RNAs (~21 nt), called 

DSB-induced RNA (diRNAs), that originate from the sequences in proximity to the 

damaged DNA [288, 289]. It is currently thought that diRNAs bound to AGO2 of the 

RISC, play a role in HR by recruiting RAD51 to the site of DSBs through complimentary 

sequence pairing [290].  

 Evidence is emerging that RNA transcripts can be used as templates to direct 

DSB, challenging the belief that HR occurs only between DNA. This DNA repair 

mechanism is present in viruses and has also been shown to function in yeast [291].  

Various miRNAs have also been shown to influence the DDR by targeting genes 

involved in DNA repair, damage response and cell cycle checkpoint [92]. 

1.3.2.3 DNA damage repair in male germ cells 
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 In male germ cells, DNA repair is required for meiotic recombination as well as 

the repair of damaged DNA that occurs during chromatin compaction. Many of the 

proteins involved in the different repair pathways are expressed in the different germ 

cell types, indicating that these pathways are active in the testis.  

1.3.2.3.1 Spermatogonia 

 The proper repair of DNA damage in spermatogonia is critical because damage 

incurred by the stem cell population could lead to the generation of a large number of 

mutant gametes. The high level of mitotic activity in spermatogonia leads to an 

increased probability of DNA damage due to replicative errors. However because 

spermatogonia are actively dividing cells they can utilize both HR and NHEJ to repair 

damaged DNA. Although high levels of genes and proteins related to the BER as well 

as their activities have been shown in the testis [292], the extent to which BER is active 

in spermatogonia is unknown. However, the NER activity in spermatogonia, although 

lower than in somatic cells, is higher than in pachytene spermatocytes and round 

spermatids [293]. Additionally, the MMR related proteins MSH2 and PMS2 are highly 

expressed in spermatogonia compared to both spermatocytes and spermatids 

suggesting that MMR plays a role in the repair of replication related DNA damage [294]. 

Thus multiple repair pathways are present at the early stages of spermatogenesis. 

1.3.2.3.2 Spermatocytes 

 The ability of spermatocytes to repair damaged DNA has been demonstrated 

using unscheduled DNA synthesis assays [295-297]. The HR pathway is highly active in 

early spermatocytes due to meiotic recombination [298]. Many homologues of RAD51 
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are highly expressed in the testis [299]. The localization of one such homologue, DMC1, 

to the synaptonemal complex is essential for meiosis as deletion of this protein leads to 

failure of synapsis [300]. Whereas HR is highly active in the early spermcatocytes, 

NHEJ seems to play a larger in DNA repair role in the late spermatocytes [301]. The 

BER related proteins MPG, UNG and APEX are expressed in spermatocytes. In 

addition, the activities of these proteins were higher than in somatic cells but did not 

differ from round spermatids [302]. The Ogg1 glycosylase, responsible for repair of 8-

oxo-dG lesions, is most highly expressed in spermatocytes. NER is active in pachytene 

spermatocytes although less than in spermatogonia. Additionally, the NER related 

proteins Ercc1 and Xpf, that are also involved in HR, are highly expressed in 

spermatocytes. However, Ercc deletion does not cause meiotic defects and instead 

leads to increased DNA damage throughout the testis [303]. This suggests that Ercc1 

and NER play a role in mediating DNA repair in germ cells. The MMR is critical for 

spermatocytes. Several MMR genes, Msh2, Mh3 Pms2 as well as the testis specific 

Msh4 and Msh5, are highly expressed in spermatocytes. Additionally the deletion of any 

of these genes leads to meiotic arrest with defects in homologous recombination [299]. 

Therefore although the MMR plays a role in repairing DNA damage caused during 

mitotic DNA replications in spermatogonia, its main role is repairing damage incurred 

during meiotic recombination.  

1.3.2.3.3 Spermatids 

 The germ cells ability to repair damaged DNA declines drastically post-

meiotically [295, 297, 304, 305]. DNA repair remains possible in round spermatids and 

activity of the NER and BER pathways is similar to that of spermatocytes [291, 300]. 
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However the expression of proteins involved in MMR begin to decline at the round 

spermatid stage [294]. As would be expected of a haploid cell, HR is no longer active. 

Instead DSB are repaired through NHEJ. However this process is slow in round 

spermatids [301]. 

 All the major DNA repair pathways appear to be less functional in late spermatids 

compared to early spermatids and other germ cell types [299, 306]. Additionally, 

components of the MMR and NER pathways that are present throughout 

spermatogenesis, decline after meiosis, reaching undetectable levels in elongating 

spermatids [299]. BER related proteins MPG and APEX are still expressed in elongating 

spermatids [302], but Ogg1 expression and excision of 8-oxo-dG lesions is reduced 

[307]. The highest levels of DNA damage are observed in sperm, when germ cells are 

exposed to toxic agents as late spermatids [305]. Some studies suggest that no DNA 

repair occurs in elongating spermatids [307, 308]. Unlike other germ cell types, 

elongating spermatids do not display unscheduled DNA synthesis after exposure to 

damaging agents [304]. This is mainly attributed to the transcriptional quiescence and 

highly condensed state of DNA by protamines that would hinder access of the DNA 

repair machinery to damaged sites. However the expression of γH2AX in elongating 

spermatids during chromatin condensations suggests that some level of DNA repair is 

possible via NHEJ, at least in the context of normal spermiogenesis [309]. Spermatids 

undergo transient DNA strand breaks in order to relax DNA structure in the final 

protamination steps of sperm chromatin remodelling [310, 311]. These DNA strand 

breaks, which occur mainly in intergenic regions [312], are repaired by the late steps of 
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spermiogenesis [310, 311]. The ability of elongating spermatids to repair DNA damage 

caused by exogenous sources has yet to be observed. 

1.3.2.3.4 Spermatozoa 

 The shedding of the cytoplasm and highly condensed DNA leave mature 

spermatozoa devoid of any DNA repair mechanisms. However, the very nature of the 

compacted nucleus also provides a level of protection from exogenous sources of DNA 

damage.  

 Any damage that is carried in the spermatozoon will be transmitted to the oocyte 

at fertilization and can affect embryo development. While male germ cells lose their 

ability to repair DNA as they differentiate, the oocyte maintains DNA repair activity 

throughout oogenesis and provides the necessary machinery to respond to damaged 

spermatozoal DNA after fertilization. The maternal DNA damage response to DSBs can 

be seen as early as the prepronuclear stage of development in zygotes sired from rats 

chronically exposed to radiation or cylophosphamide [312, 313]. The efficiency of the 

maternal DDR, as assessed using knockput models, plays an important role in the 

transmission of aberrant genetic material to progeny [315]. Unfortunately, DNA damage 

that is acquired during germ cell development can escape the maternal repair 

machinery or be improperly repaired [316]. Therefore when it comes to fertility and 

progeny outcomes, it is necessary to consider paternal exposures.  

 

1.4 Paternal exposures and male mediated reproductive toxicology 
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 It is estimated that nearly 30% of infertility cases are solely due to male factor 

infertility [315]. While a small percentage of cases can be explained by genetic factors, 

many may in fact be related to lifestyle and/or exposure to toxic substances. 

Epidemiological studies have provided evidence that paternal exposures can adversely 

affect sperm quality and fertility. However, animal models have been crucial in providing 

direct evidence that paternal exposures can lead to adverse effects on male germ cell 

development and have consequences to progeny.  

1.4.1 Environmental exposures 

 Chemicals in the environment have the potential to damage male germ cells. 

Epidemiological studies have shown that high levels of air pollution from coal 

combustion is associated with increased sperm DNA fragmentation [318]. After exposed 

of animals to industrial air pollution or its components, the formation of DNA adducts in 

spermatocytes, spermatids and spermatozoa, as well as DSBs and hypermethylation of 

sperm DNA have been demonstrated. An increase in germ line mutations has also been 

observed in animals exposed to industrial air pollution or one of its toxic component 

benzo(a)pyrene [319-321]. Embryos sired by animals exposed to benzo(a)pyrene 

display altered miRNA and mRNA transcripts involved in DNA damage response, 

transcription and chromatin modifications [322]. This suggests that paternal exposure to 

toxic substances found in air pollution can not only damage male germ cells but also 

affect embryo development. 
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 Many other environmental exposures such as pesticides, insecticides and 

plasticizers act as endocrine disruptors that can have multigenerational effects that are 

passed on through the germline via DNA methylation.  

1.4.2 Lifestyle exposures 

 Paternal lifestyle factors play an important role in germ cell quality. Factors such 

as occupational exposure to toxic substances (lead and pesticides) [323], cigarette 

smoking [324, 325] as well as diet and obesity [326] have all been associated with 

decreased sperm quality and fertility in humans. 

 In animal models, exposure to cigarette smoke causes increased oxidative stress 

[327] and germ cell death [328] in the testis. Sperm from exposed animals display 

increased DSBs, decreased chromatin quality and increased mutations. These cigarette 

smoke-induced defects result in reduced fertility as well as impaired embryo 

development [329-331]. In addition, exposure to side stream (second hand) smole also 

leads to DSB and heritable germ line mutations [330, 332]. The damaging effects of 

cigarette smoke on male germ cells are not surprising. However, in the last few years, 

evidence that stress, diet and exercise can influence sperm quality and progeny has 

also emerged. 

 In mice, paternal stress altered the DNA methylation [333, 334] and miRNA 

content in sperm [147, 148]. It is postulated that the changes in methylation and miRNA 

in the sperm are transmitted to embryo and reprogram neurodevelopment leading to 

altered stress response and metabolic function. Interestingly, two separate studies 

showed that the injection of spermatozoal miRNAs from stressed fathers into fertilized 
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eggs recapitulates the altered stress response phenotype in progeny [147, 149].  A high 

fat diet seems to have a plethora of effects on male germ cells. Mice fed a high fat diet 

had altered mRNA and miRNA expression in the testis [335] and increased levels of 

DNA damage and oxidative stress in mature sperm [336]. A paternal high fat diet results 

in impaired early embryo development [337]. It also leads to alter glucose metabolism 

and obesity in progeny [335]. The effects of a high fat diet on progeny may be mediated 

by the observed altered DNA methylation [338], histone distributions[339], miRNAs [89, 

335, 338] and tRNAs in the sperm. As with paternal stress, the injection of miRNAs and 

of tRNAs into fertilized eggs was able to recapitulate the high fat diet phenotype [89, 

200].  

 These studies not only suggest that germ cell quality can be affected by paternal 

lifestyle but also that epigenetics and RNAs play a role in transmitting damage to 

progeny. 

1.4.3 Therapeutic drug exposures 

 The effect of paternal therapeutic drug exposures on sperm quality and fertility in 

humans has been well studied, especially in the case of chemotherapeutic drugs and 

radiation. The well documented time and doses make it easy to make clear associations 

between the drug treatment and reproductive effects. A large follow-up study of 

childhood cancer survivors found that individuals who were not sterile were only half as 

like to conceive than their siblings [340]. Patients treated with chemotherapy for either 

testicular cancer or Hodgkin lymphoma have significant damage in to their sperm, even 
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two years post-treatment [341-343]. However, variability is always high in human 

populations. 

 Cancer therapies are extremely cytotoxic and unfortunately unspecific. Because 

of the high activity and dynamic processes that occur during spermatogenesis, male 

germ cells are particularly sensitive to the effects of cytotoxic agents. Numerous animal 

studies have characterized the effects and mechanisms of toxicity of these agents on 

the male reproductive system as well as on progeny outcome. Ionizing radiation (IR) is 

regularly used in cancer therapy and one of the most well studied therapeutic germ cell 

toxicants. It causes DNA damage by the generation of free radicals. The accumulation 

of ionizing radiation-induced DNA damage leads to apoptosis. In the testis 

spermatogonia are most sensitive due to their high mitotic activity, followed by 

spermatocytes. Ionizing radiation often leads to azoospermia because of the complete 

loss of spermatogonial stem cells. Any remaining viable spermatogonia may still be 

damaged and go on to produce damaged spermatozoa. Low dose IR progeny outcome 

studies indicate that damage induced at all stages of spermatogenesis is capable of 

leading to increased fetal loss. However, meiotic cells were most sensitive to the 

induction of malformations [344]. Another well characterized cancer treatment is with 

the chemotherapeutic agent cyclophospamide 

 

1.5 Paternal exposure to cyclophosphamide 

1.5.1 Mechanism of action and pharmacokinetics of cyclophosphamide 
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 Cyclophosphamide (CPA) is a commonly used cytotoxic alkylating agent. It is 

used to treat various cancers including malignant lymphomas, leukaemias, 

neuroblastoma, retinoblastoma and carcinomas of the ovary, breast, endometrium and 

lung [345]. It is often used in combination with other chemotherapeutic agents. CPA is 

also used in the treatment of various immune disorders including graft rejection, 

rheumatoid arthritis, autoimmune skin diseases, multiple sclerosis, systemic vasculitides 

and systemic lupus erythromatousus and to prepare for bone marrow transplants 

(reviewed in [345]). CPA can be administered orally or parenterally. The regimen for 

chemotherapy varies greatly but ranges from 2-6 mg/kg body weight (low dose) to over 

6000 mg/m2 body surface area (high dose). In immunosuppressive therapy, typical 

doses are 100 – 200 mg/day (~1.6-3.3 mg/kg body weight base on 60 kg), while for 

bone marrow transplant up to 240 mg/kg is administered over a 4 day period (reviewed 

in [345]). 

 CPA itself is a prodrug and is activated by cytochrome P450 (CYP450) in hepatic 

microsomes to form 4-hydroxycyclophosphamide (4-OHCPA) which exists in equilibrium 

with aldophosphamide (Fig. 1-7) [346, 347]. CYP isoenzymes CYP2A6, 2B6, 3A4, 3A5, 

2C9, 2C18 and 2C19 have been shown to be involved in the activation of 

cyclophosphamide [345].  4-OHCPA can readily diffuse through membranes [348]. It is 

non-toxic but very unstable. The cytotoxic drug is formed by spontaneous 

decomposition into phosphoramide mustard by β-elimination of acreoline [349]. Through 

the formation of aziridinyl ion intermediates, phosphoramide can then alkylate 

nucleophiles such as proteins and most importantly DNA at the N-7 position on guanine 

[350]. The resulting intra- and interstrand crosslinks and DNA protein crosslinks cause 



 

48 
 

DNA strand breaks, replication arrest and apoptosis [351-354]. The by-product of 

phosphoramide mustard formation, acreoline, is a highly reactive aldehyde. It can also 

covalently bind to DNA and proteins to form interstrand DNA crosslinks and DNA-

protein crosslinks [355]. Additionally, acrolein increases levels of ROS and depletes 

levels of glutathione. Asides from its role in protection against oxidative stress, 

gluthathione can act as a scavenger of electrophiles and may protect cells against CPA 

by preventing the breakdown of 4-OHCPA into phosphoramide mustard. Thus acrolein 

depletion of gluthathione promotes the cytotoxicity of CPA [356]. 

 

The half-life of CPA in humans ranges between 5-9 hours [345]. The major 

pathway by which cyclophosphamide is detoxified and eliminated is the aldehyde 

dehygrogenase (ALDH) catalyzed formation of carboxyphosphamide from 

aldophosphamide [345, 357-360]. Other pathways are shown in Figure 1-7. Finally, 

CPA and its metabolites are eliminated through the urine [345].  
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Figure 1-7. Metabolism and mechanism of action of cyclophosphamide. CPA is a prodrug 

that is activated and converted into 4-hydroxycyclophosphamide and aldophosphamide in the 

liver by cytochrome P450 enzymes. A portion is also directly inactivated. 4-

hydroxycyclophosphamide and aldophosphamide exist in equilibrium and can be further 

metabolized and inactivateded by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase 

(ALDH) respectively. These 2 metabolites can diffuse into cells and undergo β-elimination to 

produce the metabolites that are responsible for the majority of CPA toxicity: phosphoramide 

mustard and acrolein. These metabolites can alkylate DNA and proteins causing cellular 

damage. Both phosphoramide mustard and acrolein can be inactivated by glutathione (GSH). 

Blue arrows = metabolism/activation of CPA; Green arrows = detoxification/inactivation of CPA; 

Red arrows = mechanism of action. dR = deoxyribose sugar. Adapted  from de Jonge (2005) 

[345]. 
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1.5.2 Effects of cyclophosphamide on male reproductive function 

1.5.2.1 Human 

 Multiple studies have shown that men treated with CPA often become 

oligozoospermic or azoozpermic [361-363]. In some cases, all patients became 

azoospermic within 6 months of being treated and as early as 4 months. The 

penetrance and duration of these phenotypes is dependent on the dose. Cumulative 

doses over 19 g/m2 body surface area lead to prolonged azoospermia, while doses 

below can still lead to azoospermia, but sperm formation usually resumes after 

treatment [364]. In combination therapy with doxorubicin, dacarbazine and vincristine, 

cumulative doses of CPA of over 7.5 g/m2 were associated with long term azoospermia 

or oligozoospermia [365]. Recovery of spermatogenesis is possible; however, about half 

of men who were azoospermic at the end of cyclophosphamide treatment remained 

azoospermic for up to 5 years post-treatment [366]. CPA treatment in pre-pupertal boys 

can lead to long-term oligozoospermia and azoospermia. In two long-term follow-up 

studies, nearly half of the patients were either oligozoospermic or azoospermic a mean 

of 12 years post-treatment [367, 368]. The results of these studies indicate that in 

humans cyclophosphamide causes severe damage to spermatogonia. Despite low 

proliferative-rate of pre-pubertal spermatogonia, cyclphophamide treatment during 

childhood can lead to long-term spermatogenic defects. 

1.5.2.2 Non-human reproductive system 

 Mice and rats have been used to study the effects and mechanisms of action of 

CPA on the male reproductive system. Chronic low dose CPA treatment does not affect 
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the reproductive organ weights, endocrine status, sperm number or fertility in male rats 

[369, 370]. However, more in depth studies show that CPA treatment affects the male 

germ cells, embryo development and progeny outcomes in a dose and stage dependent 

manner (Fig. 1-8) [369-371].  

1.5.2.2.1 Male germ cells 

 CPA treatment causes increased damage to sperm DNA at high acute and 

chronic low doses [371, 372]. The timing of exposure and effects can be used to 

determine the susceptibility of the germ cell stages. In rats, a drug is targeting the active 

mitotic spermatogonia if effects are observed after 7-9 weeks, the meiotic germ cells 

after 5-6 weeks, spermiogenesis in early to mid-spermatids after 3-4 weeks, and 

maturation and epidydimal transit of late spermatids and sperm after 1-2 weeks [17, 

368] (Fig.1-8). The highest level of DNA strand breaks was observed 3 weeks after both 

high-dose and chronic low dose CPA treatment [371]. Additionally, decreased levels of 

protamination and chromatin condensation were observed [373]. This indicates that the 

most damaging effects of CPA occur in elongating spermatids at a key time in germ cell 

development when chromatin remodelling begins, transcription is shutting down and the 

expression of DNA repair genes is decreased. Consequently, active DNA repair in 

response to CPA insult, as assessed by the unscheduled DNA synthesis (UDS) assay, 

is impaired and damaged spermatozoa are produced [296].   
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Figure 1-8. The specificity of the susceptibility of male germ cells to damage after 

treatment with chronic low dose of cyclophosphamide. The impact of chronic low-dose 

exposure of male rats to cyclophosphamide on the occurrence of germ cell damage (red),  early 

embryo events (green) and progeny outcome (blue). The effect of CPA treatment is dependent 

on when, during spermatogenesis and spermatozoal maturation, the germ cells are first 

exposed to the drug. Figure was created in part using images from Servier Medical Art 

(www.servier.com), licensed under a Creative Commons Attribution 3.0 Unported License. 
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 The number of spermatozoa with numerical chromosomal abnormalities 

(aneuploidy) after CPA treatment is increased after 9 weeks of chronic treatment but not 

6 weeks. Cytogenetic studies in mice given a single acute dose of CPA pre-meiotically 

show damage to the synaptonemal complex and disrupted chromosomal disjunction 

leading to a significant increase in hyperploidy in metaphase II spermatocytes [374, 

375]. These studies suggest that there is a critical window before the pachytene stage, 

likely leptotene or zygotene, where CPA treatment interferes with the chromosome 

segregation and recombination events that occur at the later stages of  meiosis. 

Although the germ cells were exposed as spermatogonia, these cells possess extensive 

apoptotic programs to eliminate damaged cells and are most susceptible germ cell to 

radiation induced apoptosis [376-378]. Indeed, following an acute high dose of CPA, 

pronounced levels of apoptosis were seen in spermatogonia compared to other germ 

cell types [379]. Early spermatocytes are also susceptible to CPA induced chromosomal 

damage as evidenced by the formation of micronuclei [380]. Acute high doses of CPA 

induced high levels of γH2AX foci in spermatocytes and impaired meiotic progression in 

vitro. Despite the increased number of H2AX foci observed in spermatocytes, meiotic 

progression was not impaired after chronic low dose CPA treatment [381]. The lack of 

meiotic arrest despite induced damage raises concerns about the function of protective 

mechanisms, including cell cycle check points, in spermatocytes after chronic exposure 

to CPA.  

 In line with this, the evaluation of the expression of stress response genes in 

pachytene spermatocytes, round and elongating spermatids following acute high dose 

and chronic low dose CPA treatment suggests that germ cell protective mechanisms 
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become repressed over time [382, 383]. While acute CPA treatment resulted in an 

increase in the expression of genes involved in DNA repair and stress response 

(especially in round spermatids), chronic CPA treatment had a net down-regulating 

effect on the expression of genes involved in DNA repair, oxidative stress and cell cycle 

genes in both pachytene spermatocytes and round spermatids. The expression of 

genes involved in translational control were altered exclusively in round spermatids after 

chronic CPA treatment which could result in defective storage and regulation of 

transcripts necessary for the later steps of spermatogenesis. The observed changes in 

expression of sperm head and nuclear matrix proteins in mature sperm after CPA 

treatment may be a consequence of altered gene expression in round spermatids [373, 

384]. 

 Altogether, animal studies indicate that cyclophosphamide induces damage to 

the developing male germ cells at which point three different scenarios may occur: 1) 

the damage to the cell will lead to apoptosis; 2) the damage will be completely repaired; 

and 3) the damage will not be completely repaired and damaged spermatozoa with 

altered DNA, protein expression (and possibly RNAs as well) will be produced. The 

highest levels of damage appear to occur at the time in development when the germ 

cells lack the ability to repair DNA damage. However, chronic treatment with CPA also 

decreases the expression of DNA repair genes in the normally repair-competent 

spermatocytes and round spermatids, suggesting that damage incurred in these cells 

may not be fully repaired. This damage can then be transmitted to the oocyte at 

fertilization and have consequences to embryo development and progeny outcome. 
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1.5.3 Effects of paternal cyclophosphamide on fertilization, embryo development and 

progeny 

 Paternal CPA treatment has dose-dependent and time-specific effects on 

progeny outcome (Fig. 1-8). Increased post-implantation loss was first observed after 2 

weeks of chronic low dose CPA treatment of male rats and hit a plateau at 4 weeks of 

treatment. Pre-implantation loss was highest after 5-6 weeks of CPA treatment. After 7-

9 weeks of CPA treatment, an increase in malformed (hydrocephaly, edema and 

micrognathia) and growth retarded fetuses was observed [369, 370]. The timing 

indicates that post-implantation loss is at its highest when germ cells are first exposed 

during spermiogenesis, pre-implantation loss occurs when germ cells are first exposed 

as spermatocytes and the malformations result from exposure as spermatogonia [369, 

370]. The effects of CPA treatment on pregnancy outcome were reversible, with levels 

of pre-implantation or post-implantation loss returning to normal within 4 weeks [385]. 

Furthermore, exposure of the post-meiotic germ cells to cyclophosphamide led to 

behavioural abnormalities, such as learning deficits, in progeny [386, 387]. Interestingly, 

the adverse outcomes, such as post-implantation loss, fetal malformations and 

behavioural effects, were heritable and also observed in progeny sired by the offspring 

of CPA treated male rats [388, 389].  

 Studies on early embryo development have been undertaken to determine the 

mechanisms by which paternal CPA treatment affects pregnancy and progeny 

outcomes. At the cellular level, embryos sired from CPA treated rats displayed reduced 

cell proliferation and numbers as early as gestational day 3 (4-8 cell stage embryos) 

[390] and a dying inner cell mass at the blastocyst stage (day 7 of gestation) [391]. 
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Ultimately, the embryos lost the cell-cell contacts that are necessary for normal 

development, leading to the observed post-implantation death [392].  

 At a more molecular level, sperm chromatin decondensation and the formation of 

the paternal pro-nucleus were accelerated in embryos sired from CPA treated males 

[314]. This is consistent with the findings that CPA treatment causes DNA damage, 

decreased chromatin compaction and alterations to components of the sperm nuclear 

matrix [373]. Precocious RNA synthesis suggests that the accelerated formation of the 

male pronucleus causes a dysregulation the zygotic gene activation [393] . Additional 

evidence for an effect of paternal CPA treatment on the developmental clock is 

premature histone H4-K5 hypermethylation and DNA hypomethylation in the male 

pronucleus of zygotes from CPA damaged sperm [394]. The accelerated events of early 

embryo development may be the result of a heightened response to the damaged 

paternal genome and activation the maternal DNA repair machinery.  

 Increased DNA strand breaks were observed in one-cell embryos indicating that 

the sperm from CPA treated males were capable of fertilization despite damaged DNA 

[395]. The maternal response to the damaged paternal genome was activated as early 

as the pre-pronuclear stage as the formation of H2AX foci increased during sperm 

chromatin decondensation [314]. Expression of genes the NER, MMR and HR DNA 

repair pathways were increased and localization of DNA repair marker 53BP1 and 

PARP1 to damage paternal genome was increased [395, 396].  

 Thus paternal CPA treatment leads to altered early events of embryo 

development. Although, the maternal DNA damage response is active in CPA sired 
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embryos, it may not be sufficient to overcome the high levels of damage to paternal 

chromatin and result in early embryonic death or the survival of embryos with improperly 

repaired DNA and progeny that present with malformations and behavioural defects. 

Additionally, the altered epigenetic marks in the early embryo could represent a 

mechanism by which the effects of paternal CPA treatment are transmitted to multiple 

generations.  

 The findings of the studies on paternal exposures to toxic agents such as CPA 

and the consequences to the embryo highlight not only the need to better understand 

the underlying mechanisms, but also the need to develop strategies to protect male 

germ cells. 

 

1.6 Protective strategies for male reproductive health 

 With medical advancements, more men of reproductive age being treated for 

cancer survive and wish to father children.  Although regulatory agencies are now 

demanding more studies to better characterize the reproductive toxicities of drugs, the 

use of germ cell toxic substances remains unavoidable for the treatment of many 

diseases. Strategies to protect male germ cells and thus preserve fertility in men treated 

with potentially toxic agents are limited. The only current option available to men 

undergoing chemotherapy is the collection and cryopreservation of sperm samples 

before beginning therapy for later use with assisted reproductive technologies (ART) 

[397]. The use of a protective shield is also used in regimens that include radiation 

therapy. In the development of a treatment plan, fertility preservation is often overlooked 
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by oncologists and not discussed with patients [398-400] . Furthermore, the process of 

cryopreservation can introduce DNA damage and ART is costly and not without risks. 

Therefore the development of simple and effective germ cell protective strategies is 

needed. 

     

1.7 Formulation of the project 

 It is clear the CPA is toxic to male germ cells. Although there has been extensive 

research on the effects of CPA on germ cells, we still do not know the full extent of how 

male germ cells respond to this toxic insult. The advancements in molecular biology 

methods and technologies have made it possible to evaluate the transcriptome. The 

purpose of the studies presented in this thesis is to evaluate the effect of chronic CPA 

treatment on the male germ cell transcriptome in order to gain a better understanding of 

how the meiotic and post meiotic germ cells respond to such an insult. The knowledge 

gained from these profiling experiments can then be put towards developing strategies 

to protect male germ cells and biomarkers to detect germ cell toxicity. 

The objectives of this thesis are: 

1) Evaluate the effect of cyclophosphamide treatment on miRNA profiles in 

pachytene spermatocytes and round spermatids 

2) Evaluate the effect of cyclophosphamide treatment on genome wide gene 

expression profiles in pachytene spermatocytes and round spermatids 

3) Determine whether male germ cells can be protected against CPA induced 

damage by zinc supplementation. 
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For these studies, adult male Sprague Dawley rats were gavaged with 6 mg/kg CPA 

daily, 6 days per week for 4 weeks. The Sprague-Dawley rat is the most widely used 

model in toxicological studies and was the animal model used for many of the studies 

described above. The chronic low dose of 6 mg/kg per day is clinically relevant and 

equivalent to the low doses used in chemotherapy maintenance and 

immunosuppressive therapies used in humans. We evaluated the pachytene 

spermatocytes and round spermatids after 4 weeks of CPA treatment. These cells were 

chosen because 1) they represent germ cells at different stages of: meiotic and post 

meiotic development; 2) chronic CPA treatment beginning at these two stages resulted 

in the highest levels of pre- and post-implantation loss in previous mating studies 

[369,370]; 3) they are the most transciptionally active cells in the testis; and 4) the ability 

to collect and isolate cells using the STA-PUT method.The elongating spermatids were 

omitted from these studies because with this collection method the isolated fractions are 

contaminated with residual bodies and thus transcripts evaluated would not be 

representative of what is actually present in the germ cells. The length of treatment 

ensures that the germ cells were exposed to CPA from the time they were 

spermatogonia. Although the spermatogonial stem cells are of interest, these cells 

possess extensive DNA repair and apoptotic pathways, as mentioned previously, and 

exposure to toxic substances at this stage in germ cell development usually results in 

proper repair of the damage or cell death [376-378]. 

 We evaluated not only whole genome protein coding mRNA expression but 

miRNA expression because of their role in post-transcriptional control of gene 

expression, a control mechanism important for germ cell development. Although miRNA 
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expression has been shown to be altered by other toxic substance (such as ethanol, 

valproic acid and lead) in other tissues, it has never been evaluated in the context of 

male germ cells following exposure to a therapeutic drug.  

 

The results from the second aim suggested that stress caused by chronic CPA 

treatment results in an increased zinc requirement. Zinc plays an important role in the 

defence against oxidative stress [230, 248-252], is important for DNA binding proteins, 

including some involved in DNA repair [401-404] and plays a role in sperm chromatin 

structure[46]. Thus, we examined whether zinc supplementation along with CPA 

treatment would help protect male germ cells against CPA insult.  
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ABSTRACT 

MicroRNAs (miRNAs), a class of small non-coding RNAs, have emerged as 

major players in post-transcriptional gene regulation and are implicated in various 

cellular functions in normal and disease states. Although numerous miRNAs have been 

identified in the testis, their roles in regulating the highly specific events that occur in the 

different germ cell types throughout spermatogenesis remain largely unknown. 

Furthermore, whether male germ cell miRNA expression is altered in response to or as 

a consequence of exposure to a toxic agent is unknown. Here we examine miRNA 

expression profiles in pachytene spermatocytes and round spermatids obtained from 

control rats and from rats treated with a chronic low dose of cyclophosphamide, a male 

germ cell toxicant. We observed that pachytene spermatocytes and round spermatids 

display vastly different miRNA expression profiles, reflecting their different 

developmental stages and possibly influencing the cellular response to toxic insult. 

Chronic low dose cyclophosphamide treatment altered the miRNA profiles in both 

pachytene spermatocytes and round spermatids. Target prediction analyses revealed 

that miRNAs altered by cyclophosphamide treatment may be involved in the response 

to cellular stress and damage. However, many are also involved in processes that are 

crucial for proper germ cell development. This study suggests that pachytene 

spermatocytes and round spermatids display distinct miRNA profiles that can be altered 

by cyclophosphamide treatment. The observed changes may be part of a response and 

repair mechanism to cyclophosphamide-induced damage or a dysregulation that 

disrupts normal germ cell development. 
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INTRODUCTION 

MicroRNAs are a family of small non-coding RNAs that are 21-24 nucleotides 

long. Their role in mRNA degradation and translational repression via the RNA-induced 

silencing complex (RISC) makes them important mediators of post-transcriptional gene 

regulation [1]. The large volume of research on miRNAs indicates that proper miRNA 

expression is crucial for normal cellular function, including proliferation, differentiation, 

metabolism and apoptosis. Dysregulation of miRNAs is associated with many diseases 

such as cancer, inflammation, neurodegeneration and cardiovascular, liver and 

autoimmune diseases [2]. Additionally, miRNA expression in various tissues, such as 

the liver, brain and kidney, is altered after exposure to toxic substances [3]. This would 

suggest that altered miRNAs may either mediate defense or repair mechanisms or 

contribute to cellular injury in response to a toxic insult.    

The importance of miRNAs in spermatogenesis has been revealed by germ line 

specific knock outs (KO) of DICER and DROSHA, two endonucleases important for 

miRNA biogenesis. These KO animals present with severe defects in meiotic and post-

meiotic germ cells [4-7]. Although numerous miRNAs have been identified in the testis, 

the functions of the majority of these remain unknown.  However there is emerging 

evidence that some of these play roles in processes crucial for germ cell development. 

Several miRNAs have been shown to be important for spermatogonial maintenance, 

meiotic entry, apoptosis and the regulation of TP2 and PRM1 expression [8-17]. 

Additionally, miRNAs are present in mature sperm and are proposed to play a role in 
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early embryo development [18].  Considering the complexity of spermatogenesis and 

the male germ cell transcriptional program, a role for miRNAs in the regulation of key 

events is evident. Therefore any exposure that alters miRNA expression in male germ 

may affect the proper development of male germ cells.   

Cyclophosphamide (CPA), an alkylating agent and known germ cell toxicant, is 

commonly used in cancer and immunosuppressive therapies. Previous studies have 

shown that CPA treatment causes an increase in DNA damage and oxidative stress in 

male germ cells and a decrease in sperm chromatin quality [19-24]. Paternal exposure 

of developing male germ cells to CPA leads to adverse progeny outcomes [25, 26]. The 

molecular mechanisms responsible for the toxic effects of CPA and how male germ 

cells respond to this insult are still not well understood. We have previously shown that 

mRNA expression in both pachytene spermatocytes and round spermatids was altered 

after CPA treatment. However whether CPA treatment, or any other toxic substance, 

can alter miRNA profiles in male germ cells has, to our knowledge, never been 

examined. We hypothesise that miRNA expression profiles in pachytene spermatocytes 

and round spermatids will be altered by chronic low dose CPA treatment. The altered 

miRNAs may serve to mediate defense mechanisms or lead to some of the detrimental 

effects we have previously seen after CPA treatment. 

MATERIAL AND METHODS 

Animals 

Adult male Sprague-Dawley rats (350-400g; Charles River Canada, St-Constant, 

QC, Canada) were kept on a 12 hour light, 12 hour dark cycle and had access to food 
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and water ad libitum. After 1 week of acclimatization, rats were randomly assigned to 1 

of 2 treatment groups and gavaged daily with saline (vehicle control) or CPA (CAS 

6055-19-2; Sigma Chemical Co., St. Louis, MO) 6 mg/kg of body weight, 6 days per 

week for 4 weeks. This dose is a clinically relevant dose and has been used in previous 

animal studies examining the effect of CPA on the male germ cells [19, 21-24].  All 

animal care and handling were done in accordance with the guidelines outlined by the 

Canadian Council on Animal Care (McGill Animal Resources Centre protocol 2144). 

Germ cell isolation and collection 

At the end of 4 weeks of treatment, rats were euthanized by CO2 asphyxiation 

and decapitation. Male germ cells were isolated and collected by velocity sedimentation 

(STA-PUT; Proscience, Don Mills, ON, Canada) as described by Bellve et al [27]. and 

modified by Aguilar-Mahecha et al [28]. Briefly, the testes were removed, decapsulated 

and seminiferous tubules were digested with collagenase (Sigma Chemical Co., St. 

Louis, MO) and further digested with trypsin (type 1; T8003; Sigma Chemical Co., St, 

Louis, MO) and DNAse I (DN-25, Sigma Chemical Co., St. Louis, MO). Seminiferous 

tubules were subsequently physically dissociated in the presence of DNAse I and 

filtered through a 70µm nylon mesh to obtain a mixed germ cell suspension. Cells were 

washed 3 times with RPMI 1640 medium (Life Technology, Grand Island, NJ) 

containing 0.5% bovine serum albumin (BSA; Sigma Chemical Co., St. Louis, MO) and 

filtered through a 55µm nylon mesh. A total of 5.6 x 108 cells was loaded into a velocity 

sedimentation cell separator apparatus and separated by unit gravity sedimentation with 

a 2%-4% BSA gradient in RPMI. Fractions containing pachytene spermatocytes and 

round spermatids were identified visually by phase-contrast microscopy. Fractions with 
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over 80% purity for pachytene spermatocytes and over 85% purity were pooled, 

pelleted and frozen at -80°C until further processing. 

RNA extraction  

Total RNA was extracted from isolated pachytene spermatocyte and round 

spermatid samples using TRIzol Reagent (Life Technologies, Carlsbad, CA) and 

cleaned using the RNeasy mini Kit columns (Qiagen, Mississauga, ON, Canada) 

according to the  manufacturer’s supplemental protocol to collect total RNA containing 

small RNAs. Total RNA concentrations were determined by spectrophotometry 

(Nanodrop 2000; Nanodrop Technologies, Wilmington, DE, USA). RNA quality and the 

presence of small RNAs was determined by electrophoresis (BioAnalyzer 2100 Expert; 

Agilent Technologies, Santa Clara, CA). Only samples with an RNA integrity number 

above 8 and containing small RNAs were used for microarray experiments.   

miRNA Microarrays and Data Analysis 

Total RNA from isolated pachytene spermatocytes and round spermatids was 

labeled and hybridized to rat miRNA microarrays (Sure Print Rat miRNA 8x15K 

microarray Release 16.0, Agilent Technologies) following the manufacturer’s protocol. 

Raw data were quantile normalized and further analyzed using Genespring software 

version 12.0 (Agilent Technologies, Santa Clara, CA). A moderated t-test (p<0.05) was 

used to determine statistically significant differences in miRNA expression between 

samples from control and CPA treated animals. miRNA targets were predicted 

bioinformatically using two miRNA target databases, TargetScan and miRNA.org, via 
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Genespring Software. Only targets that were predicted by both databases were 

considered in the analysis. 

RESULTS AND DISCUSSION 

miRNA profiles differ between pachytene spermatocytes and round spermatids 

This study, to our knowledge, is the first to look at miRNA profiles in purified rat 

spermatogenic cells. Using miRNA microarrays we assessed differences in miRNA 

expression in purified pachytene spermatocytes and round spermatids, two populations 

of male germ cells at different stages of differentiation.  Principle component analysis 

(PCA) was used to reduce the dimensionality of miRNA expression sets and allow for 

visualization of relationships between groups (Fig. 2-1). PCA indicated clear differences 

in miRNA expression profiles between the two germ cell types. Samples of pachytene 

spermatocytes and round spermatids clustered separately along the primary (x) 

component. The two different cell types accounted for 65% of the variance in miRNA 

expression. Therefore, as shown previously [29, 30], and similar to gene expression, 

miRNA profiles in germ cells show phase specific expression patterns.  

The arrays contained 677 probes, corresponding to 677 different miRNAs: 229 

miRNAs (34%) were present in pachytene spermatocytes, while 218 miRNAs (32%) 

were present in round spermatids (Fig. 2-2a). Although there was considerable overlap 

among the miRNAs present in both pachytene spermatocytes and round spermatids, 

nearly half (46%) of these miRNAs were differentially expressed between the two cell 

types (Fig. 2-2b), and among nearly half of these the differential expression was greater 

than 2-fold.  Additionally, 26 miRNAs were uniquely expressed in pachytene 
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spermatocytes and 15 miRNAs were uniquely expressed in round spermatids. In total, 

pachytene spermatocytes had 81 miRNAs displaying increased expression levels 

compared to round spermatids, while round spermatids had 53 miRNAs displaying 

increased expression compared to pachytene spermatocytes (Fig. 2-3a and b). These 

differentially expressed miRNAs include some that have been identified in the handful of 

prior studies profiling miRNAs in germ cells. Members of the miR-34 and miR-449 

families were preferentially expressed in male germ cells and have previously been 

shown to be highly expressed in meiotic germ cells and post-meiotic germ cells [16, 31]. 

Loss of both these families (but not individually) leads to infertility, indicating that these 

two miRNA families have an important but redundant function [16, 32]. Members of both 

families target transcripts involved in the E2F-pRb pathway [17], a pathway whose 

suppression allows male germ cells to exit from the mitotic cell cycle and enter meiosis 

[16, 33]. We found that members of both these families were present in both cell types 

and displayed increased expression in pachytene spermatocytes compared to round 

spermatids.  

The most differentially expressed miRNA between the 2 cell types was miR-

146a, whose expression was increased 62 fold in round spermatids compared to 

pachytene spermatocytes. miR-146a is thought to play a role in the control of retinoic 

acid-induced spermatogonial differentiation as it is highly expressed in undifferentiated 

spermatogonia and is drastically down-regulated by retinoic acid [11]. The role that this 

miRNA may play in the differentiating haploid round spermatids is unclear. However, 

RARα, is predicted to bind the miR-146a promoter [34] and RARα KO mice display 
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defects in spermiation [35, 36]; thus increased miR-146a expression in round 

spermatids may play a role in proper spermatid development and release.  

Differentially expressed miRNAs in pachytene spermatocytes and round 

spermatids are predicted to target multiple mRNAs 

In mammalian cells, the base complementarity between a miRNA and the 3’UTR 

of its target does not need to be perfect, resulting in a single miRNA potentially targeting 

multiple transcripts and a single transcript also being targeted by multiple miRNAs [37-

39]. Bioinformatic databases were used to predict biological targets of the differentially 

expressed miRNAs present in pachytene spermatocytes and round spermatids. The 81 

miRNAs with increased expression in pachytene spermatocytes were predicted to target 

500 mRNAs (Fig. 2-3a) while the 53 miRNAs with increased expression in round 

spermatids are predicted to target 432 mRNAs (Fig. 2-3b). Predicted targets were 

compared to differentially expressed genes between pachytene spermatocytes and 

round spermatids from previously published gene expression microarray data ([40];GEO 

dataset GSE79471). In pachytene spermatocytes, 297 predicted targets were 

differentially expressed compared to round spermatids. In round spermatids 239 

predicted targets were differentially expressed compared to pachytene spermatocytes. 

In both cell types, these altered predicted targets represent just over 2% of the 

transcripts that are differentially expressed between pachytene spermatocytes and 

round spermatids. These data indicate that transcript cleavage/degradation by these 

differentially expressed miRNAs may play a small role in regulating differences in gene 

expression between the 2 cells types. Indeed several studies suggest that the primary 

action of miRNAs is to inhibit mRNA translation [41-44] and that translational repression 
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does not necessarily lead to RNA degradation [44-47]. Additionally, it has also been 

suggested that miRNAs are involved in regulating N6-methyladenosine (m6A) 

modifications on mRNA [48], a modification that can influence the RNA structure [49] 

and possibly expression levels, translation, nuclear retention, splicing and stability of the 

transcript [50-62]. The m6A modification has also been implicated in regulating 

transcript translation in oocytes during meiotic maturation [63]. Thus, although the 

differences in miRNA expression that we observed do not lead to degradation of their 

targets, these differentially expressed miRNAs may be influencing gene expression and 

cellular functions in alternate ways. 

Targets of Differentially expressed miRNAs in pachytene spermatocytes and 

round spermatids are involved in important cellular processes 

Although many targets of the differentially expressed miRNAs also display 

differential expression at the transcript level, the miRNAs may also be regulating gene 

expression at the translational level. We used Gene Ontology (GO) analysis of all the 

predicted targets to evaluate how differentially expressed miRNAs may influence 

cellular processes and germ cell development (Fig. 2-4a and b). While many of the 

differentially expressed miRNAs target genes that are involved in similar processes 

such as cell communication, the regulation of transcription, the response to stress and 

the regulation of cell death, some miRNAs also target processes specific to germ cell 

type. miRNAs that were up-regulated in pachytene spermatocytes have targets that are 

involved in meiotic processes such as meiotic nuclear division, DNA recombination and 

regulation of the cell cycle. Alternatively, targets from miRNAs that were increased in 

round spermatids play roles in chromatin organization processes such as histone 
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modifications and chromatin and RNA binding. Thus, male germ cells express specific 

miRNAs that are involved in cell type specific processes that are crucial for proper 

spermatogenesis. Indeed miRNAs have shown to be crucial for male germ cell 

development as the loss of miRNA biogenesis leads to severe defects or 

spermatogenenic arrest [4, 5, 7]. Which miRNAs are essential and whether some play 

redundant roles remains largely unknown. 

Of great interest, we saw that the response to chemical is a very prominent term 

found in the target analysis of pachytene spermatocytes but appears less important in 

round spermatids. This suggests that the miRNAs expressed in pachytene 

spermatocytes may have a larger influence on this cell type’s ability to respond to 

chemical insult compared to the round spermatids. The capacity of male germ cells to 

repair DNA damage decreases after meiosis as germ cells differentiate [64-67]. The 

level of DNA damage in spermatozoa is at its highest when male germ cells are first 

exposed to toxic agents as spermatids, a time when germ cells become transcriptionally 

quiescent [26, 68]. It is possible that miRNAs play a role in the differential response and 

DNA repair capacities of male germ cell types. 

Chronic low-dose CPA treatment alters miRNA profiles in pachytene 

spermatocytes and round spermatids 

We assessed the impact of chronic low-dose CPA treatment on miRNA 

expression in pachytene spermatocytes and round spermatids. To our knowledge, this 

is the first study to assess the effect of a drug on miRNA profiles in isolated germ cells. 

PCA was used to examine the relationships between samples (Fig. 2-5a and b). 
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Pachytene spermatocyte and round spermatid samples from CPA treated and control 

animals separate along the z axis indicating differences in miRNA expression profiles 

after CPA treatment in both cell types. 

The majority of the 229 miRNAs found expressed in untreated pachytene 

spermatocytes were still expressed after CPA treatment. However 4 miRNAs were no 

longer detectable after CPA treatment, while 10 miRNAs were expressed solely after 

CPA treatment (Fig. 2-6a and Table 2-1). Of the miRNAs common to both treatment 

groups, 7 were significantly up-regulated and 5 were significantly down regulated by 

CPA treatment (Fig. 2-6c and Table 2-1). In total, the expression of 26 miRNAs was 

altered by CPA treatment, corresponding to approximately 11% of miRNAs expressed. 

MicroRNA-483 expression was especially affected and was up-regulated over 7-fold 

compared to control. Although there is no known role for this miRNA in male germ cells, 

miR-483 has been shown to decrease sensitivity to cisplatin treatment in tongue 

squamous cell carcinoma via down regulation of FIS1 leading to decreased 

mitochondrial fission [69]. Chronic low dose CPA treatment does not result in germ cell 

apoptosis [70]. In contrast, CPA induces apoptosis with an acute high dose of 70 mg/kg. 

We hypothesize that up-regulation of miR-483 may be involved in the survival of 

pachytene spermatocytes after CPA treatment possibly through the same mechanism 

mentioned above.   

Interestingly, CPA treatment altered the expression of miR-211*, miR-449a and 

miR-494 which have also been shown to be dysregulated in the hippocampus following 

lead exposure [71] and miR-30a which was also up-regulated in the hippocampus 

following cocaine administration [72]. In addition, miR-185 was also up-regulated in 
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blood cells after chronic exposure to benzene [73]. These miRNAs may be part of  a 

general cellular response to toxic exposures. 

Comparable to pachytene spermatocytes, the majority of the 218 miRNAs 

expressed in untreated round spermatids were still expressed after CPA treatment (Fig. 

2-6b). Some miRNAs were unique to the treatment group: 9 miRNAs were only 

expressed in control samples and 4 miRNAs were only expressed after CPA treatment 

(Fig. 2-6b and Table 2-2). Additionally, of the miRNAs common to both treatment 

groups, 3 miRNAs were significantly up-regulated and 1 was significantly down-

regulated by treatment (Fig. 2-6d and Table 2-2). Overall CPA altered the expression 17 

miRNAs in round spermatids, approximately 8% of the total miRNAs expressed. The 

miRNAs altered by CPA treatment in round spermatids are listed in Table 2. MicroRNA-

125b* expression was especially affected and was increased over 9-fold after CPA 

treatment. Although the miRNA from the opposite arm, miR-125b has been shown to 

promote cell proliferation and prevent cell death in various cancer cells [74], no known 

function of miR-125b* has been found.  

The expression of miR-134 was increased in round spermatids following CPA 

treatment. Other DNA damaging agents (doxorubicin etoposide and ionizing radiation) 

have been shown to up-regulate the expression miR-134 in ovarian cancer cells [75]. 

Additionally, over-expression of miR-134 resulted in increased H2AX phosphorylation (a 

marker of DNA damage response) and improved the efficiency of DNA repair by non-

homologous endjoining (NHEJ), an important DNA repair pathway for the haploid round 

spermatids. MiR-134 may be increased in round spermatids in response to CPA in 

order to repair damaged DNA. However, sperm show the highest levels of DNA damage 
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when they are first exposed to CPA as spermatids, indicating that the DNA repair 

mechanisms in these cells are not sufficient to overcome CPA insult.  

Other substances have also been shown to alter some of the same miRNAs as 

the ones we have shown in round spermatids in this study in other tissues. MiR-192, 

which was no longer expressed after CPA treatment, is decreased in hepatocytes after 

toxic doses of acetaminophen [76] and increased in these same cells after exposure to 

silica nanoparticles [77]. The expression of miR-134 mentioned above, is also increased 

in the hippocampus after cocaine administration [72]. Thus, these miRNAs may be 

responsive to toxic insults and indicators of cellular toxicity. 

Similar to our previous gene expression data [40], CPA treatment altered the 

expression of more miRNAs in pachytene spermatocytes than in round spermatids. The 

number of miRNAs with increased expression after CPA treatment was nearly double 

the number of decreased miRNAs in pachytene spermatocytes suggesting that CPA 

treatment may have a positive effect on miRNA expression in this cell type. These 

results diverge from previous data that suggests that CPA has a negative impact on 

mRNA expression in pachytene spermatocytes [40]. In contrast, in round spermatids the 

number of miRNAs with increased expression was slightly less compared to the number 

of miRNAs with decreased expression after CPA treatment. Suggesting, similar to our 

results from mRNA expression studies, that in round spermatids CPA treatment has a 

more uniform effect on miRNA expression. 

Interestingly, 2 miRNAs are altered by CPA treatment in both cell types but in 

opposite directions. Both miR-196c and miR-340-3p are only detectable after CPA 
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treatment in pachytene spermatocytes whereas in round spermatids neither is 

expressed after CPA treatment. These results indicate that chronic low-dose CPA 

treatment affects miRNA profiles differently in pachytene spermatocytes and round 

spermatids. Neither of these miRNAs have known roles in spermatogenesis.  However, 

miR-196c is downregulated in oxidative stress induced renal injury, indicating it may 

have a role in the cellular response to oxidative stress and toxic substances [78]. miR-

340-3p has been shown to be down-regulated in whole testis after heat stress [79] and 

is potentially involved in regulating mTOR signaling by targeting MID1, a regulator of 

mTOR [80]. Thus altered miR-340-3p expression may play a role in differential germ cell 

response to stress and damage. 

CPA altered miRNAs are predicted to target multiple mRNAs in pachytene 

spermatocytes and round spermatids 

In pachytene spermatocytes, the 26 CPA altered miRNAs are predicted to target 

608 mRNAs while the 17 CPA altered miRNAs in round spermatids are predicted to 

target 398 miRNAs (Fig. 2-7a and b). To determine whether the differentially expressed 

miRNAs may be altering gene expression at the transcript level, predicted targets were 

compared to previously published microarray data from CPA treated and control 

pachytene spermatocytes and round spermatids [40]. Differentially expressed predicted 

targets and their regulation in pachytene spermatocytes and round spermatids are listed 

in Tables 2-1 and 2-2 respectively. The majority of the differentially expressed mRNA 

targets of up-regulated miRNAs in pachytene spermatocytes and round spermatids 

were decreased by CPA treatment, fitting the general model of miRNAs decreasing the 

stability of target mRNAs. However, many of the differentially expressed targets of the 
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decreased miRNAs were also decreased by CPA treatment in both cell types, reflecting 

the complexity of regulation of gene expression by miRNAs. These results suggest that 

miRNAs may play a role in the stability of a subset of predicted target mRNAs in 

response to CPA treatment.  

Multiple miRNAs can potentially target a single mRNA. This was observed in our 

dataset as many altered mRNAs were predicted to be regulated by 2 or more altered 

miRNAs. For example, Slc39a14 (ZIP14) is up-regulated after CPA treatment in 

pachytene spermatocytes and predicted to be a target of 4 altered miRNAs. Two of 

these (miR-195 and miR-497) are significantly down-regulated after CPA treatment. We 

previously showed that members of ZIP family of zinc transporters (including ZIP14) 

were up-regulated in response to CPA insult and lead to an increase in zinc uptake [40]. 

As zinc levels need to be tightly controlled, miRNAs may provide germ cell with a 

mechanism to finely tune the expression of zinc transporters and zinc transport in 

response to toxic substances.  

Predicted targets of CPA altered miRNAs are involved in processes important for 

response to CPA treatment and proper germ cell development 

GO analysis of the predicted targets was used to examine how differentially 

expressed miRNAs are involved in the germ cell response to CPA treatment (Fig. 2-8a 

and b). Targets of the CPA altered miRNAs in both cell types are involved in the 

response to stress, DNA damage and oxidative stress and the regulation of cell death, 

crucial processes for cell survival and countering the effects of CPA. The response to 

DNA damage is a more prominent term associated with the targets of altered miRNAs 
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from pachytene spermatocytes compared to the round spermatids. Additionally, targets 

are also involved in DNA recombination, a DNA repair pathway available to 

spermatocytes but not round spermatids, indicating that these altered miRNAs may be a 

pachytene spermatocyte specific response to repair DNA damage. Thus the differences 

in germ cell DNA repair capacity and the differences in susceptibility to damaging 

agents such as CPA may in part be modulated by miRNAs. 

Many targets are also involved in the regulation of transcription, spermatogenesis 

and cell differentiation and communication, indicating that CPA altered miRNAs may 

also lead to the disruption of cellular function. We have previously shown that CPA 

treatment causes a net down-regulation of mRNA expression in pachytene 

spermatocytes [40], an observation that may be the result of CPA altered miRNAs that 

target genes involved in the regulation of transcription.  

Interestingly, consistent with our previous study [40], the altered miRNAs in both 

cell types are predicted to target numerous transcripts involved in zinc binding, 

suggesting that zinc is involved in the germ cell response to CPA. 

Processes essential to spermatogenesis may be affected by CPA via miRNA 

expression. Some targets of the altered miRNAs in pachytene spermatocytes are 

involved in DNA recombination and meiotic nuclear division. Indeed, we have previously 

shown that along with extensive DNA damage, acute CPA treatment impaired meiotic 

progression. In contrast, chronic CPA treatment did not impair meiotic progression 

despite increased levels of DNA damage [81]. Additionally, targets of altered miRNA 

were also involved in DNA damage checkpoint.  Therefore it is possible that altered 



131 
 

miRNA expression may be involved in the survival of damaged germ cells and their 

progression through meiosis.  As targets of altered miRNAs in round spermatids are 

involved in DNA and chromatin binding, the CPA altered miRNAs may affect chromatin 

remodelling that occurs later on in spermiogenesis. CPA treatment results in decreased 

DNA compaction and changes in sperm head and nuclear matrix proteins [22, 23], 

leading to decreased sperm chromatin quality.  

In conclusion, we have shown that pachytene spermatocytes and round 

spermatids display distinct miRNA expression profiles that can be altered by chronic 

CPA treatment. The miRNAs may be altered as a cellular response to CPA induced 

damage or may be dysregulated leading to the negative effects previously observed in 

male germ cells after CPA treatment. Other toxic agents have also been shown to alter 

some of the same miRNAs in other tissues; however to our knowledge this is the first 

study to examine the effect of a toxic agent on meiotic and post-meiotic germ cells. 

Together these studies suggest that some miRNAs are associated with toxic exposure 

and may be useful as biomarkers. Finally, as roles for the majority of miRNAs in male 

germ cells have yet to be defined, further investigation of miRNAs in the context of both 

normal physiological function and in response to toxic agents is warranted. 
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TABLES 

Table 2-1. miRNAs and their mRNA targets significantly altered by CPA treatment in 

pachytene spermatocytes. 

miRNA Regulation of miRNA 
(CPA vs control) 

Altered mRNA 
target 

Regulation of mRNA 
(CPA vs control) 

rno-miR-483 ↑ 7.84 Sulf1 
Ace 
Aqp1 

Control only 
↑ 1.52 
Control only 

rno-miR-494 ↑ 1.48 Sulf1 
Aqp1 
Slc18a1 

Control only 
Control only 
Control only 

rno-miR-211* ↑ 1.30   
rno-miR-328a* ↑ 1.19 Slc39a5  
rno-miR-188 ↑ 1.18 Neurod1 Control only 
rno-miR-150* ↑ 1.16   
rno-miR-30d ↑ 1.08 Slc18a1 

Neurod1 
Control only 
Control only 

rno-miR-129 CPA only Cacng2 
Slc39a14 

Control only 
↑ 1.57 

rno-miR-138-1* CPA only   
rno-miR-185 CPA only Clec10a 

Slc39a14 
Control only 
↑ 1.57 

rno-miR-196c CPA only   
rno-miR-208* CPA only   
rno-miR-22* CPA only   
rno-miR-340-3p CPA only   
rno-miR-3561-5p CPA only   
rno-miR-671 CPA only Rgs7bp CPA only 
rno-miR-678 CPA only   
rno-miR-30a* ↓ 1.10   
rno-miR-362* ↓ 1.13   
rno-miR-195 ↓ 1.26 Cd200 

Sema4f 
Capn6 
Slc39a14 

Control only 
Control only 
Control only 
↑ 1.57 

rno-miR-497 ↓ 1.21 Cd200 
Sema4f 
Capn6 
Slc39a14 

Control only 
Control only 
Control only 
↑ 1.57 

rno-miR-449a ↓ 1.34 Capn6 Control only 
rno-miR-146a Control only   
rno-miR-194 Control only Abcb4 Control only 
rno-miR-3544 Control only   
rno-miR-505 Control only Cxcl3 Control only 
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Table 2-2. miRNAs and their mRNA targets significantly altered by CPA treatment in 

round spermatids. 

miRNA Regulation of miRNA 
(CPA vs control) 

Altered mRNA 
target 

Regulation of mRNA 
(CPA vs control) 

rno-miR-125b* ↑ 9.20   
rno-miR-134 ↑ 2.00 Il27 CPA only 
rno-miR-3573-3p ↑ 1.18   
rno-miR-138 CPA only Wfdc2 CPA only 
rno-miR-181b CPA only Gucy1b3 

Cept1 
Control only 
Control only 

rno-miR-186 CPA only Arl6ip6 
Gucy1b3 
Cept1 
Aldh6a1 

Control only 
Control only 
Control only 
CPA only 

rno-miR-3564 CPA only   
rno-miR-1949 ↓ 1.40 Cyp4x1 

Gpr179 
Fsd2 
Pramef12 

↑ 1.88 
CPA only 
CPA only 
Control only 

rno-miR-106b* Control only   
rno-miR-1188-3p Control only   
rno-miR-192 Control only   
rno-miR-196c Control only   
rno-miR-32* Control only   
rno-miR-340-3p Control only   
rno-miR-547* Control only   
rno-miR-582* Control only   
rno-miR-92b Control only   
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FIGURE LEGENDS 

Figure 2-1. Principle component analysis (PCA) showing differential miRNA expression 

profiles in isolated pachytene spermatocytes and round spermatids. (n=5)  

 

Figure 2-2. MiRNA expression in pachytene spermatocytes and round spermatids. 

Venn diagram showing the numbers of miRNAs that are unique to pachytene 

spermatocytes and round spermatids and those that are common between the cell 

types (a). The differential expression of miRNAs common to both cell types is shown in 

(b). Fold change is based on expression levels in pachytene spermatocytes vs round 

spermatids. (n=5) p<0.05 

 

Figure 2-3. Target prediction of diffrentially expressed miRNAs and differentially 

expressed mRNA targets between pachytene spermatocytes (a) and round spermatids 

(b).  

 

Figure 2-4. GO analysis of target of miRNAs that are differentially expressed in 

pachytene spermatocytes (a) and round spermatids (b). The relative size of the GO 

term corresponds to the relative number of targets that fit that term. 

 

Figure 2-5. Principle component analysis (PCA) showing distribution of CPA-treated 

and control  pachytene spermatocytes (a) and round  spermatid (b) samples. (n=5) 
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Figure 2-6. Changes in miRNA expression after CPA treatment. Venn diagram of 

miRNAs in both control and CPA-treated samples and those that are exclusively 

expressed in one treatment group in pachytene spermatocytes (a) and round 

spermatids (b). Number of miRNAs that are significantly altered after CPA treatment in 

pachytene spermatocytes (c) and round spermatids (d). (n=5) p<0.05 

 

Figure 2-7. Target prediction of CPA altered miRNAs and mRNA targets that are 

altered after CPA treatment in pachytene spermatocytes (a) and round spermatids (b). 

 

Figure 2-8. GO analysis of predicted targets of miRNAs that altered after CPA 

treatment in pachytene spermatocytes (a) and round spermatids (b). The relative size of 

the GO term corresponds to the relative number of targets that fit that term. 
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Figure 2-1. Principle component analysis (PCA) showing differential miRNA expression 

profiles in isolated pachytene spermatocytes and round spermatids. (n=5)  
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Figure 2-2. MiRNA expression in pachytene spermatocytes and round spermatids. 
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Figure 2-3. Target prediction of diffrentially expressed miRNAs and differentially 

expressed mRNA targets between pachytene spermatocytes and round spermatids. 
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Figure 2-4. GO analysis of target of miRNAs that are differentially expressed in 

pachytene spermatocytes and round spermatids. 
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Figure 2-5. Principle component analysis (PCA) showing distribution of CPA-treated 

and control pachytene spermatocytes and round spermatid samples.  
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Figure 2-6. Changes in miRNA expression after CPA treatment. 
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Figure 2-7. Target prediction of CPA altered miRNAs and mRNA targets that are 

altered after CPA treatment in pachytene spermatocytes and round spermatids. 

 

 

 

 

 

 

 

 

Pachytene Spermatocytes Round Spermatids a) b) 

26 

 miRNAs 

608 

Predicted Targets 

11 Targets ↓  
3 Targets ↑ 

 CPA vs Control  

17  
miRNAs 

398 

Predicted Targets 

4 Targets ↓ 

5 Targets ↑ 

CPA vs Control 



154 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2-8. GO analysis of predicted targets of miRNAs that altered after CPA 

treatment in pachytene spermatocytes and round spermatids 

a) 

b) 
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CONNECTING TEXT 

The studies in Chapter 2 of this manuscript examined the expression of miRNAs in 

isolated male germ cells, specifically pachytene spermatocytes and round spermatids 

and the effect of chronic CPA treatment on miRNA profiles in these cells. These studies 

suggest differences in miRNA profiles in both cell types which could influence germ cell 

response to toxic exposure. Importantly, these studies also demonstrate for the first 

time that CPA treatment can alter the expression of miRNAs that are involved in the 

response to oxidative stress, DNA damage and spermatogenesis. In Chapter 3, the 

germ cell response to CPA treatment and the effects on the transcriptome are further 

examined by whole genome gene expression analysis in isolated pachytene 

spermatocytes and round spermatids.  
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ABSTRACT 

Adequate zinc levels are required for proper cellular functions and for male germ cell 

development. Zinc transport is accomplished by two families of zinc transporters, the 

ZIPs and the ZnTs, that increase and decrease cytosolic zinc levels, respectively. 

However, very little is known about zinc transport in the testis. Furthermore, whether 

cytotoxic agents such as cyclophosphamide (CPA), a known male germ cell toxicant, 

can affect zinc transport and homeostasis is unknown. We examined zinc transporter 

expression and zinc transport in pachytene spermatocytes (PS) and round spermatids 

(RS) in a normal state and after exposure to CPA. We observed differences in the 

expression of members of the ZnT and ZIP families in purified populations of PS and 

RS. We also observed that RS accumulate more zinc over time than PS. The 

expression of many zinc binding genes was altered after CPA treatment. Interestingly, 

we found that the expression levels of ZIP5 and ZIP14 were increased in PS from 

animals treated daily with 6 mg/kg CPA for 4 wk but not in RS. This up-regulation led to 

an increase in zinc uptake in PS but not in RS from treated animals compared to 

controls. These data suggest that CPA treatment may alter zinc homeostasis in male 

germ cells leading to an increased need for zinc. Altered zinc homeostasis may disrupt 

proper germ cell development and contribute to infertility and effects on progeny.  
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INTRODUCTION 

Zinc is an essential trace element that is important for growth and development, 

metabolism, brain and immune system function, and reproduction [1]. It is present in 

varying amounts in different tissues and organs [2]. At the cell level, zinc is necessary 

for proper cellular function because it binds more than 10% of all proteins [3], is a co-

factor for over 300 enzymes, and is required for more than 2000 transcription factors [4]. 

Zinc has an important function in modulating oxidative stress through its roles in 

antioxidant enzymes, the electron transport chain [5, 6], in preventing Fe/Cu Fenton 

reactions [7, 8], in endoplasmic reticulum ER protein misfolding [9, 10], and inhibition of 

NADPH oxidase activity [11, 12]. Moreover, apart from being important in DNA-protein 

binding through zinc finger proteins, DNA repair enzyme activity is influenced by zinc 

levels, indicating its importance in DNA damage repair [13-15].  

Because zinc is an essential trace element, its levels need to be tightly 

controlled. This is accomplished by two families of zinc transporters: the ZIP family and 

the ZnT family of zinc transporters; these transporters work in an opposite fashion to 

regulate cytosolic zinc. The ZIP family is composeed of 14 members and increases 

cytosolic zinc by importing zinc from the extracellular spaces and releasing zinc from 

intracellular spaces [16]. The ZnT family is consists of 10 members and decreases 

cytosolic zinc by exporting zinc into the extracellular space and sequestering zinc into 

intracellular spaces [17].  

The importance of zinc in reproduction is very apparent in the male reproductive 

system. Tissue zinc concentration is greatest in the prostate, and semen contains very 
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high concentrations of zinc [18]. Zinc is proposed to play an important role in sperm 

chromatin condensation by stabilizing chromatin structure [19]. Zinc is also abundant in 

the testis, where it is present in all stages of germ cells [20]. Zinc deficiency studies 

have been convincing in demonstrating the importance of zinc in male reproductive 

function, as zinc deficiency leads to increased oxidative stress, DNA damage, and 

apoptosis in the testis and an arrest in spermatogenesis [21-25]. On the other hand, 

zinc overload also has the same detrimental effects on spermatogenesis [26]. 

It is clear that proper control of zinc levels is essential in the testis; however, very 

little is known about zinc transport in male germ cells. Only two studies have described 

the presence of select members of both the ZIP and ZnT families in human and mouse 

testes [27, 28], while a third study measured the kinetics of zinc transport in spermatids 

[29]. No studies have investigated whether exposure to drugs or chemicals toxic to 

germ cells alters zinc transport. 

Cyclophosphamide (CPA) is an alkylating agent commonly used in cancer and 

immunosuppression therapies and is a known male germ cell toxicant [30-38]. Men 

treated chronically with CPA have an increased incidence of azoospermia and 

oligozoospermia [30]. Studies in animal models have shown that CPA causes increased 

DNA damage [31] and oxidative stress [32] in male germ cells, as well as a decrease in 

sperm chromatin quality [33-36]. The detrimental effects on the male germ cells in turn 

lead to adverse progeny outcomes that are time-specific and dose-dependent [37]. 

Post-implantation loss is greatest at 4 wk after the initiation of treatment, whereas pre-

implantation loss is greatest 5 to 6 wk after the initiation of treatment [37], respectively 

corresponding to targeting spermatids and spermatocytes [38]. The underlying 
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molecular mechanisms of CPA toxicity and how male germ cells respond to such an 

insult remain to be elucidated. 

Given the important role of zinc in spermatogenesis and in mediating oxidative 

stress and DNA damage and the lack of knowledge of zinc transporters in germ cells, 

we examined the expression of ZIP and ZnT family members and zinc transport in 

purified populations of male germ cells in a normal state and after treatment with CPA.    

MATERIALS AND METHODS 

Animals 

Adult male Sprague-Dawley rats (350–400 g; Charles River Canada, St-

Constant, Qc, Canada) were maintained on a 12L:12D cycle and had access to food 

and water ad libitum. After 1 wk of acclimatization, rats were randomly assigned to 1 of 

2 treatment groups and gavaged with saline (vehicle) or CPA (CAS 6055-19-2; Sigma 

Chemical Co., St. Louis, MO), 6 mg/kg body weight, 6 days per week for 4 wk. All 

animal care and handling were done in accordance with the guidelines outlined by the 

Canadian Council on Animal Care (McGill Animal Resources Centre protocol 2144). 

Germ Cell Isolation and Separation  

After 4 wk of treatment, rats were euthanized by CO2 asphyxiation. 

Spermatogenic germ cells were isolated and separated using a velocity sedimentation 

method (STA-PUT; Proscience, Don Mills, ON, Canada) as described by Bellve et al. 

[39] and modified by Aguilar-Mahecha et al. [40]. Briefly, testes were removed, 

decapsulated, and digested by incubation with collagenase (Sigma Chemical). After a 
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brief washing, seminiferous tubules were further digested by incubation with trypsin 

(type 1; T8003; Sigma Chemical) and DNase I (product DN-25; Sigma Chemical). 

Seminiferous tubules were subsequently dissociated in the presence of DNase I and 

filtered through 70-μm nylon mesh, followed by washing with RPMI 1640 medium (Life 

Technologies, Grand Island, NJ) containing 0.5% bovine serum albumin (BSA; Sigma 

Chemical) and filtering once more through 55-μm nylon mesh. A total of 5.6 × 108 cells 

suspended in 25 ml of RPMI medium containing 0.5% BSA was loaded into a velocity 

sedimentation cell separator apparatus and separated by unit gravity sedimentation with 

a 2%–4% BSA/RPMI gradient. Pachytene spermatocyte- and round spermatid-

containing fractions were identified by phase-contrast microscopy. Fractions with more 

than 80% (pachytene spermatocyte) and 85% (round spermatid) purity were pooled and 

either pelleted and frozen at −80°C for further processing or cultured overnight (see 

below). 

RNA Extraction and Microarray  

Total RNA was extracted from frozen pachytene spermatocyte and round 

spermatid fractions using TRIzol reagent (Life Technologies) and cleaned using RNeasy 

mini kit columns (Qiagen, Mississauga, ON, Canada). Total RNA concentration was 

determined by spectrophotometry (Nanodrop 2000; Nanodrop Technologies, 

Wilmington, DE), and quality was determined by electrophoresis (BioAnalyzer 2100 

Expert; Agilent Technologies, Santa Clara, CA). Only RNA samples with an RNA 

integrity number higher than 8 were used for microarray and quantitative reverse 

transcriptase-PCR (qRT-PCR) experiments. Total RNA was reverse transcribed, 

labeled, and hybridized to rat gene expression arrays (SurePrint G3 rat GE 8 × 60K 
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microarrays; Agilent Technologies) following the manufacturer's instructions (one-color 

microarray-based gene expression analysis protocol; Agilent). Raw data were quantile-

normalized and further analyzed using GeneSpring version 12.0 software (Agilent 

Technologies). Student t-test was used to determine statistically significant differences 

in gene expression between treated and control samples. Genes that were significantly 

altered were further filtered using a 1.5-fold cutoff. Gene Ontology analysis (GeneSpring 

software) and Ingenuity Pathway Analysis software (Qiagen) were used to further 

characterize altered transcripts. All data were placed in Gene Expression Omnibus 

database (under accession number GSE79471; NCBI). 

Real-time qRT-PCR 

Real-time qRT-PCR validation of microarray results was done by two-step qRT-

PCR. Reverse transcription was done with 50 ng of total RNA input using a high-

capacity RNA-to-cDNA kit (Applied Biosystems, Foster City, CA), following the 

manufacturer's instructions. Complementary DNA (cDNA) was diluted 1:2, and qRT-

PCR was carried out using TaqMan gene expression assays and reagents (Applied 

Biosystems), following the manufacturer's instructions (OneStepPlus real-time PCR 

system; Applied Biosystems). The list of accession numbers for the primers is available 

in Table 1. The expression levels of all genes of interest were determined using the 

cycle threshold (ΔΔCt) method and normalized to the expression of 18S rRNA [41]. All 

samples were run in triplicate for each primer. 

Protein Extraction and Western Blotting 
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Total protein was extracted from both the pachytene spermatocytes and round 

spermatids by using transmembrane protein extraction reagent (Fivephoton 

Biochemicals, San Diego, CA), following the manufacturer's instructions; total protein 

concentrations were determined by Bradford assay using a protein assay reagent (Bio-

Rad, Saint-Laurent, Qc, Canada). Samples were resolved on 10% (w/v) polyacrylamide 

gels and then transferred onto polyvinylidene fluoride membranes. Membranes were 

blocked in 10% non-fat cow's milk in TBS 0.1%-Tween-20. Proteins were detected 

using antibodies specific for ZIP5 (1:1000 dilution; product ARP44143_P050; Aviva 

Systems Biology, San Diego, CA) and β-actin (1:5000 dilution; code sc-1616; Santa 

Cruz Biotechnology, Dallas, TX) diluted in 5% non-fat milk/TBS-0.1% Tween and 

incubated overnight at 4°C. Primary antibodies were followed by horseradish 

peroxidase-linked secondary antibodies (donkey anti-rabbit immunoglobulin G [product 

NA93V]; 1:25 000 dilution; GE LifeSciences, Mississauga, ON, Canada; donkey anti-

goat immunoglobulin G; 1:10 000 dilution; product sc-2056; Santa Cruz Biotechnology) 

diluted in 5% non-fat milk/TBS-0.1% Tween-20, incubated for 2 h at room temperature. 

Protein bands were detected by electrochemiluminescence prime Western blotting 

detection reagent (GE LifeSciences). 

Germ Cell Culture  

After germ cell separation, pachytene spermatocytes and round spermatids were 

seeded (pachytene spermatocytes at 100 × 105 cells/well; round spermatids at 300 × 

105 cells/well) into 96-well cell culture plates (Costar 3595; Corning Life Sciences, 

Tewksbury, MA) in phenol red-free Dulbecco modified Eagle medium/F12 medium; Life 

Technologies) with streptomycin and penicillin G added and supplemented with HEPES, 
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lactic acid, and fetal bovine serum, as adapted from the method of LaSalle et al. [42]. 

Cells were cultured overnight for approximately 11 hours at 32°C in 5% CO2. 

Zinc Uptake Assay  

After overnight culture, cells were removed from culture plates and transferred to 

1.5-ml microcentrifuge tubes. Cells were incubated with 1 μM Fluozin3-AM (Molecular 

Probes, Eugene, OR) in Live Cell Imaging solution (Molecular Probes) for 1 h at 32°C. 

Following incubation and washing, cells were resuspended in imaging solution 

containing Hoechst nuclear stain (2,5′-bi-1H-benzimidazole, 2′-[4-ethoxyphenyl]-5-[4-

methyl-1-piperazinyl]; Invitrogen, Burlington, ON, Canada) and incubated for 5, 15, 30, 

or 45 min at 32°C with 100 μM ZnSO4. After 45 min, TPEN (500 μM N,N,N′,N′-

tetrakis[2-pyridylmethyl] ethane-1,2-diamine; Sigma Chemical) was added for 30 min to 

chelate zinc. Propidium iodide (PI; Invitrogen) was used to evaluate cell viability. After a 

second wash in imaging solution, cells were transferred to a 96-well cell carrier 

(PerkinElmer, Woodbridge, ON, Canada) plate with an optically clear bottom. The plate 

was spun down at 300g at 4°C for 5 min and immediately scanned (Operetta HTS 

imaging system; PerkinElmer) at 20× magnification, with 15 fields of view per well. 

Image analysis software (Columbus version 2.2; PerkinElmer) was used to quantify the 

mean fluorescent signals from individual cells in each well. 

Statistical Analyses 

Results are expressed as mean ± standard error of the mean (SEM) and were analyzed 

using Student t-test in Prism version 6 software (GraphPad Software, Inc., LaJolla, CA). 
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RESULTS 

Pachytene Spermatocytes and Round Spermatids Show Differences in Gene 

Expression Profiles 

We assessed the differences in gene expression in purified pachytene 

spermatocytes and round spermatids, two germ cell populations at different stages of 

differentiation. Principle component analysis (PCA) was used to reduce the 

dimensionality of the gene expression data sets and allow for easier discernment of the 

general relationships of groups (Fig.3-1). As expected, PCA indicated clear differences, 

accounting for approximately 78% of the variance in gene expression profiles between 

pachytene spermatocytes and round spermatids.  

Expression of the ZIP Family Zinc Transporters in Pachytene Spermatocytes and 

Round Spermatids 

The expression of members of the ZIP family of zinc transporters, responsible for 

increasing cytosolic zinc, in pachytene spermatocytes was evaluated and compared 

with that in round spermatids. All members of this family of zinc transporters were 

expressed to various degrees in both of the germ cell types (Fig. 3-2a). The most 

abundantly expressed member in both of the cell types was ZIP3, followed by ZIP4; 

both members were present at levels up to 2 orders of magnitude higher than the lowest 

expressed member, ZIP2. These differences in expression of ZIP transporters are even 

more evident when visualized on the linear scale (Supplemental Fig. S3-1a; all 

Supplemental Data are available online at www.biolreprod.org). Additionally, the 

expression levels of the different ZIP family members vary between the two cell types 
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(Fig. 3-2b). The largest difference in expression was seen with ZIP12, which was 

greater than 5 times more abundant in round spermatids than in pachytene 

spermatocytes, followed by ZIP11, which was almost 4 times more abundant in round 

spermatids. In contrast, ZIP7 was almost 3.5 times more abundant in pachytene 

spermatocytes than in round spermatids. ZIP4, the second most abundant ZIP member 

in the two cell types, was present in pachytene spermatocytes at levels more than 2 

times those found in round spermatids. 

Expression of the ZnT Family Zinc Transporters in Pachytene Spermatocytes and 

Round Spermatids 

The expression of members of the ZnT family of zinc transporters, responsible 

for decreasing cytosolic zinc, in pachytene spermatocytes was evaluated and compared 

with that in round spermatids (Fig. 3-2c). ZnT family members were expressed to 

various degrees in both of these cell types. The most abundantly expressed ZnT family 

members in both cell types were ZnT3 and ZnT1, which were expressed at levels more 

than 2 orders of magnitude higher than the lowest expressed members, ZnT2, ZnT4, 

and ZnT5. These differences in the expression of ZnT transporters were even more 

evident when visualized on a linear scale (Supplemental Fig. S3-1b). The expression of 

ZnT members differed significantly between the two cell types, with the exception of 

ZnT3, ZnT9, and ZnT10 (Fig. 3-2d). The largest difference was seen with ZnT6, which 

was greater than 5 times more abundant in pachytene spermatocytes than in round 

spermatids. In addition, ZnT1, the second most abundant ZnT member in both cell 

types, was expressed at a level almost 5 times higher in round spermatids than in 

pachytene spermatocytes. 
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Zinc Transport in Pachytene Spermatocytes Compared to Round Spermatids 

Considering the differences in expression of zinc transporters, we next evaluated 

zinc transport over time in both pachytene spermatocytes and round spermatids by live 

cell imaging using a fluorescent zinc probe. Within 5 min after the addition of zinc, the 

mean fluorescent signal in both cell types increased by 10% above baseline levels and 

continued to increase steadily (Fig. 3-3, a, b, and c). There were statistically significant 

differences in zinc uptake between the two cell types at 45 min after the addition of zinc; 

at this time the mean fluorescent signal in round spermatids was increased above that 

of pachytene spermatocytes by 18% above baseline (Fig. 3-3c). The addition of TPEN, 

an intracellular zinc chelator, decreased the fluorescence signal to levels well below 

baseline, indicating that the observed fluorescence signal was indeed from zinc (Fig. 3-

3d). If alterations in membrane integrity were to account for the differences seen in zinc 

accumulation, round spermatids would be expected to have decreased membrane 

integrity. However, membrane integrity, as assessed by PI staining, showed a 

decreased number of cells with PI signal in round spermatids compared to that in 

pachytene spermatocytes (5% vs. 16% of cells, respectively) (Supplemental Fig. S3-

2a), supporting the results obtained in the zinc uptake assay. 

Chronic Low Dose CPA Treatment Alters Gene Expression in Pachytene 

Spermatocytes and Round Spermatids 

We assessed the impact of chronic low-dose CPA treatment on gene expression 

in pachytene spermatocytes and round spermatids by using whole-rat genome 

microarrays. Principal component analysis was used to examine relationships between 
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samples (Fig. 3-4, a and b). Samples from CPA-treated animals and control animals 

separated along the y and z axes. The analysis also revealed differences in gene 

expression profiles after CPA treatment in both of the cell types. 

Of the 30 507 probe sets present on the arrays, 20 449 (67%), corresponding to 

13 524 known genes, were considered expressed in both CPA-treated and control 

pachytene spermatocyte samples (Fig. 3-5a). A number of these known genes were 

significantly altered and had a 1.5 or greater fold change with respect to treatment (Fig. 

3-5c). Nearly twice as many genes were down-regulated than were up-regulated after 

treatment. Additionally, more than 10 times more genes were reduced to undetectable 

levels after CPA treatment than were induced (Fig. 3-5a). These results suggest that 

CPA treatment may have a repressive effect on gene expression in pachytene 

spermatocytes.  

In round spermatids, 20 972 probe sets (68.8%), corresponding to 13 939 known 

genes, were present in both treated and control samples (Fig. 3-5b). The number of 

known genes significantly altered over 1.5-fold after treatment in round spermatids and 

was similar to the number in pachytene spermatocytes (Fig. 3-5d). However the 

numbers of known genes that were down- and up-regulated after CPA treatment were 

approximately equal. Similarly, although the number of genes that was induced after 

treatment in round spermatids was greater than the number of genes repressed, the 

differences were not as striking as in the pachytene spermatocytes (Fig. 3-5d). The 

comparable numbers of transcripts or known genes that were induced or up-regulated 

and repressed or down-regulated suggest that CPA treatment has a greater effect on 

gene expression in round spermatids.   
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Expression of Members of the Slc39a (ZIP) Family of Zinc Transporters Is 

Increased in Pachytene Spermatocytes After CPA Treatment 

Bioinformatic analysis using ingenuity pathway analysis was used to further 

characterize transcripts that were significantly altered by CPA treatment. As expected, 

genes involved in the response to stress, response to DNA damage, DNA repair, 

regulation of cell death, and spermatogenesis were altered after CPA treatment in 

pachytene spermatocytes and round spermatids (Fig. 3-6, a and b). Unexpectedly, 

many genes involved in ion transport and zinc binding were altered in both of the cell 

types after CPA treatment. Supplemental Tables S3-1 and S3-2 list the genes involved 

in zinc binding and transport. In both of the cell types, treatment altered the expression 

of many genes involved in transcription, including multiple zinc finger proteins (Fig. 3-6, 

c and d). Both estrogen-related receptor alpha (Essra) and PR domain containing 13 

(Prdm13) were altered by CPA treatment in both cell type, although in opposite 

directions. Of particular interest were four members of the ZIP family of zinc 

transporters, Zip5, Zip6, Zip13, and Zip14, which were all significantly up-regulated in 

pachytene spermatocytes after CPA treatment (Figs. 3-6a and and 3-7, a–d). The 

expression of these zinc transporters, or any others, was not altered in round 

spermatids (Supplemental Fig. S3-3). 

Real-time qRT-PCR assay was used to validate the microarray results in 

pachytene spermatocytes and confirmed the significantly increased expression of Zip5 

and Zip14 (Fig. 3-7, e and h). However, Zip6 and Zip13 were not significantly up-

regulated (Fig. 3-7, f and g). The results from the qRT-PCR experiment were 
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remarkably similar to those from the microarray results, reflecting the sensitivity of the 

microarray experiment. 

Western blots were analyzed to determine whether the changes in expression of 

Zip5 and Zip14 transcripts translated to proteins. The results revealed that ZIP5 levels 

were 2.26-fold up-regulated in pachytene spermatocytes (Fig. 3-8a). Protein expression 

levels were also verified in the round spermatids to determine whether altered transcript 

levels in pachytene spermatocytes could carry over into the more differentiated germ 

cells; ZIP5 levels in round spermatids were not significantly affected by CPA treatment 

(Fig. 3-8b). The protein levels of ZIP14 were not assessed due to the lack of a specific 

antibody. 

Chronic Low-Dose CPA Treatment Results in an Increase in Zinc Uptake in 

Pachytene Spermatocytes  

Whether the increased expression of ZIP5 and ZIP14 resulted in an increase in 

zinc accumulation was assessed by live cell imaging using a fluorescent zinc probe and 

monitoring the fluorescence signal over time after the addition of zinc (Fig. 3-9, a and c). 

The mean fluorescence signal in pachytene spermatocytes from CPA-treated animals 

was significantly increased above that of control cells by 24% above baseline levels at 

45 min after addition of zinc. Addition of the intracellular zinc chelator TPEN decreased 

the fluorescence signal to levels well below baseline, indicating the specificity of the 

fluorescent zinc probe (Fig. 3-9e). The number of cells with a positive PI signal was not 

significantly different between the two treatment groups (Supplemental Fig. S3-2b), 

indicating that the differences in zinc accumulation between cells from CPA treated 
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animals and control cannot be explained by a detrimental effect of CPA on membrane 

integrity. 

Chronic Low Dose CPA Treatment Does Not Increase Zinc Uptake in Round 

Spermatids 

The effect of CPA treatment on zinc uptake was also determined in round 

spermatids which did not have altered expression of zinc transporters (Fig. 3-9, b and 

d). After the addition of zinc the fluorescent zinc signal increased over time in round 

spermatids from both treated and control animals; however, there was no significant 

difference in fluorescent signal between the two groups at any time point. Again, 

consistent with the pachytene spermatocytes, there were no significant differences in 

the number of cells with PI signal between round spermatids from CPA-treated and 

control animals (Supplemental Fig. S3-2c). These results indicate that CPA treatment 

does not affect zinc transport in round spermatids. 

DISCUSSION 

Despite clear evidence of the importance of zinc in male germ cell development 

and fertility, there is little understanding of zinc transport in the testis. Here we examined 

the expression of ZIP and ZnT family members and zinc transport in purified 

populations of male germ cells in a normal state and after treatment with CPA. We 

found that both pachytene spermatocytes and round spermatids expressed many 

members of both families of zinc transporters and that the level of expression of some 

transporters differed between the two cell types. Additionally, we found that round 

spermatids accumulated more zinc over time than pachytene spermatocytes. Treatment 
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with the alkylating agent CPA led to an increase in the expression of ZIP5 and ZIP14 in 

pachytene spermatocytes but not in round spermatids. Consistent with our expression 

data, CPA treatment resulted in an increase in zinc uptake in pachytene spermatocytes 

but not in round spermatids. 

Many studies have investigated differences in gene expression between different 

germ cell types. However, no studies have investigated zinc transporters in particular. 

Furthermore, only a few studies have addressed the expression of zinc transporters in 

the testis. To our knowledge, our study is the first to evaluate the expression of all 

members of the ZnT and ZIP families in purified populations of pachytene 

spermatocytes and round spermatids. Other studies have investigated the expression of 

select transporters in whole-testis homogenates or immunohistochemically [27, 28, 43-

47].   

In previous studies,  ZnT1 was detected immunohistochemically in Sertoli cells 

but not in germ cells in mouse and human testes [27, 43], whereas ZnT7 showed strong 

immunoreactivity in mouse spermatocytes and spermatids [44]. At the mRNA level, 

ZnT1, ZnT2, and ZnT3 have been found in mouse testis homogenates and purified 

Sertoli cells [45, 46]. We found that both ZnT1 and ZnT3 are highly expressed in both 

pachytene spermatocytes and round spermatids. All other ZnT family members were 

also expressed in both cell types with the exception of ZnT2 in pachytene 

spermatocytes and ZnT8 and ZnT10 in round spermatids.  

ZIP family members 5, 6, and 8 have been detected in spermatogonia, 

spermatocytes, spermatids and spermatozoa in human testis biopsies [27]. ZIP1 was 
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detected only in spermatids and spermatozoa and ZIP14 was not detected in any cell of 

the human testis [27]. In mice, ZIP14 has been localized to spermatogonia;  ZIP5, ZIP8 

and ZIP10 have been localized to spermatocytes;  ZIP6, ZIP8 and ZIP10 have been 

localized in round spermatids;  ZIP1 and  ZIP6 have been localized in elongating 

spermatids; and ZIP5 has been localized in Sertoli cells [28]. At the transcript level, the 

testis has shown the highest level of expression of ZIP3 [47]. Similarly, we found ZIP3 

was the most abundant ZIP transporter in both germ cell types, pachytene 

spermatocytes and round spermatids. In our study we also found the expression of 

ZIP5, ZIP6, ZIP8 and ZIP10 in pachytene spermatocytes and ZIP6, ZIP8 and ZIP10 in 

round spermatids at the mRNA level. Transcripts for all other members of the ZIP family 

were also found. 

The expression of most of the different ZnT and ZIP family members in germ 

cells may serve a compensatory role as ZnT or ZIP knock out models have not shown 

any obvious reproductive phenotype [16, 17]. In fact, testis zinc levels are not altered in 

either ZnT3 or ZIP3 knockout mice [48, 49]. However, fertility was not specifically 

evaluated in these models. 

The expression of many of the zinc transporters differed between pachytene 

spermatocytes and round spermatids. Considering this, we next examined whether 

there were differences in zinc accumulation in these cells. We found that round 

spermatids took up more zinc over time than pachytene spermatocytes. To our 

knowledge, this is the first study to compare zinc transport in these germ cell types. A 

previous study investigated the kinetics of zinc transport in spermatids (round and 

elongating) using 65Zn labeling, and found a temperature-independent fast kinetic 
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component which corresponded to extracellular zinc binding, followed by a temperature-

dependent slower kinetic component which corresponded to an active transport of zinc 

into the cell [29]. Inside the cell, zinc was primarily bound to organelles or large 

cytoskeletal elements. Zinc efflux was slower than influx, presumably due to a slow 

release of zinc from intracellular organelles and binding sites. Our study was not 

designed to assess the kinetics of zinc influx and efflux in the germ cells. However, from 

our results we can postulate that the zinc kinetics of pachytene spermatocytes are 

different from those of round spermatids. 

The observed differences between zinc transporter expression and zinc uptake in 

pachytene spermatocytes and those in round spermatids likely reflect cell- and stage- 

specific zinc requirements. Because zinc plays an important role in sperm chromatin 

condensation, it is possible that round spermatids may accumulate more zinc for use in 

later stages of spermiogenesis than pachytene spermatocytes do. The significance of 

the differences in zinc transporter expression and zinc transport, as well as the specific 

roles played by zinc in these two germ cell types, warrant further investigation. 

We also evaluated the effect of CPA on global gene expression in pachytene 

spermatocytes and round spermatids. We found that CPA treatment repressed and 

down regulated many genes in pachytene spermatocytes, suggesting a global 

repression of transcription. The dysregulation of transcripts in round spermatids was 

more evenly distributed. As expected CPA treatment altered the expression of genes 

involved in the response to stress.  The results from this study are consistent with those 

of a previous study from our laboratory where we showed that chronic CPA treatment 

resulted in a decrease in the expression of transcripts involved in the stress response in 
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pachytene spermatocytes and round spermatids [50]. Interestingly, acute CPA 

treatment resulted in an increase in gene expression, particularly in round spermatids 

[51]. Other cancer treatment regimens, such as the combination of bleomycin, 

etoposide, and cis-platinum, have been shown to alter gene expression in male germ 

cells [52]. Unexpectedly, we found that many transcripts involved with zinc were altered 

after CPA treatment, including members of the ZIP family of zinc transporters. 

Changes in zinc transporter expression have been associated with 

neurodegenerative diseases, immunological impairment, and cancer progression and 

metastasis [53]. The potential for a xenobiotic to modulate the expression of zinc 

transporters, to our knowledge, has not been tested. Here we show that chronic 

treatment with CPA up-regulated the expression of two zinc transporters, ZIP5 and 

ZIP14, in pachytene spermatocytes. ZIP5 was highly up-regulated after CPA treatment. 

ZIP5 has been localized to the basolateral membranes of intestinal enterocytes and 

pancreatic acinar cells [54, 55]. In periods of dietary zinc deficiency, ZIP5 is internalized 

and degraded [55]. These data and results from ZIP5 knockout mice suggest that ZIP5 

plays a role in intestinal zinc excretion and zinc accumulation/retention in the pancreas 

[55, 56].   

ZIP14 expression was also increased after CPA treatment. ZIP14 is most 

abundantly expressed in the liver where it has been localized to the plasma membrane 

of hepatocytes and is upregulated in response to inflammation through interleukin-6 (IL-

6), IL-1β and nitric oxide, leading to increased hepatic zinc uptake and contributing to 

hypozincemia [57, 58]. ZIP14 has high expression in the duodenum, at the apical 

membrane of polarized cells, where it is thought to play a role in zinc absorption [59]. 
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Additionally, ZIP14 may have a function in chondrocyte and adipocyte differentiation via 

signalling pathways involving zinc [60-62]. 

What roles these zinc transporters play in male germ cells are unknown. Neither 

the expression of ZIP5 nor of  ZIP14 in the testis was affected by moderate zinc 

deficiency [28]. However, the expression of zinc transporters was assessed only  in 

whole testis. Whether zinc deficiency affects the expression of different zinc 

transporters in germ cells at different stages of development is unknown.  

We next asked whether the increased expression of ZIP5 and ZIP14 would lead 

to greater zinc uptake. Using a fluorescent zinc probe, we measured an accumulation of 

zinc that was greater in pachytene spermatocytes from CPA-treated animals than in 

controls. Consistent with the expression data, no increase in zinc uptake was observed 

over time in round spermatids. The fact that ZIP transporters and zinc transport were 

increased in pachytene spermatocytes but not round spermatids may be due to inherent 

differences in the two cell types. Perhaps pachytene spermatocytes are better suited to 

adapt and respond to CPA treatment. Indeed, although proliferating premeiotic and 

meiotic germ cells respond to alkylating agents, postmeiotic germ cells and 

spermatozoa are more susceptible [63, 64].  

Previously we and others have shown that CPA treatment causes oxidative 

stress and DNA damage in male germ cells [31]. We propose that this stress leads to 

an increased zinc requirement in these cells. Pachytene spermatocytes may respond to 

a CPA-induced zinc deficiency by increasing the expression of ZIP5 and ZIP14, which 

leads to greater zinc uptake. A previous study showed that, in the testis, ZIP6 and 
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ZIP10 expression levels were decreased in response to moderate zinc deficiency [28]. 

However, it is possible that germ cells, in particular pachytene spermatocytes, respond 

differently to different stressors, in this case dietary zinc deficiency versus cellular stress 

caused by CPA, by altering the expression of different zinc transporters. ZIP5 and 

ZIP14 are not the most abundant zinc transporters expressed in the pachytene 

spermatocytes; however they may be the ZIP transporters most involved in responding 

to cellular insult by a toxic agent. Whether chronic low dose-CPA treatment causes zinc 

deficiency in male rats was not assessed in this study. However, considering the known 

importance of zinc in transcription, along with our observations of an apparent global 

repression in gene expression, and the altered expression of many transcription factors 

that we observed after CPA treatment may also indicate a state of zinc deficiency in 

pachytene spermatocytes.  Additionally, high doses of CPA administered to male rats 

have been shown to result in reduced serum and testis zinc levels [65]. 

Sperm chromatin from CPA- treated rats has decreased protamination and 

sulfhydryl groups [34]. Because zinc plays an important role in sperm chromatin 

structure [19], we propose that a decrease in zinc levels in the germ cells may be 

responsible for the reduced sperm chromatin quality observed after CPA treatment.  

Treatment with an acute high dose but not a chronic low dose of CPA impairs 

meiotic progression in pachytene spermatocytes [66]. It is possible that altered zinc 

homeostasis in pachytene spermatocytes is involved in this impairment. Zinc is 

important for meiotic progression in oocytes [67-69], but it is not known whether it plays 

an important role in meiosis in male germ cells. The lack of impairment after chronic 

CPA treatment may in fact be due to the cells adapting by increasing zinc uptake. 
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In conclusion, the expression of ZIP and ZnT family members as well as zinc 

transport differ in purified populations of pachytene spermatocytes and round 

spermatids. Importantly, we have shown that an alkylating agent such as CPA is 

capable of modulating the expression of zinc transporters in male germ cells, leading to 

changes in zinc uptake. Considering the importance of zinc in proper cellular function 

and spermatogenesis, any changes in the regulation of zinc levels have the potential to 

alter normal spermatogenesis. How these changes affect germ cell survival, 

development, and quality will need to be examined further. These novel data have 

important implications for understanding damage to male germ cells from toxic agents 

as they suggest that zinc homeostasis is altered after CPA treatment. Zinc 

supplementation could potentially be an interesting strategy to protect male germ cells 

from damage induced by toxic agents such as CPA. 
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TABLES 

Table 3-1. Primers used in qRT-PCR 
 

Gene Name Accession no. TaqMan Assay no. 

Slc39a5 NM_001108728.1 Rn01527167_m1 
Slc39a6 NM_001024745.1 Rn01405813_m1 
Slc39a13 NM_001039196.1 Rn01485759_m1 
Slc39a14 NM_001107275.1 Rn01468336_m1 
18s NM_213557.1 Rn01428913_gH 
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Supplemental Table 3-1. Genes involved with zinc that are significantly altered by CPA 

treatment in pachytene spermatocytes. p<0.05 

Down-Regulated After CPA 
Treatment  

Up-Regulated After CPA  
Treatment 

Fold Change Gene Symbol Fold Change Gene Symbol 

-1.63 Mmp11 2.25 Slc39a5 

-1.52 Ace 1.62 Slc39a14 

-1.52 Zfp169 1.51 RGD1564243 

-1.5 Adam4 1.33 Limd1 

-1.48 Triml1 1.32 Erap1 

-1.43 Clip1 1.22 Champ1 

-1.43 Prdm13 1.21 Trim32 

-1.42 Adam24 1.2 Sirt5 

-1.39 Lhx2 1.2 Gpatch8 

-1.38 March7 1.2 Gtf2b 

-1.38 Sp2 1.17 Ubr7 

-1.36 LOC100360593 1.17 Nr2c2 

-1.33 Sun1 1.16 Rnf180 

-1.31 Zfp385d 1.14 Slc39a6 

-1.3 Chd5 1.14 Akap8 

-1.28 Prkcg 1.13 Zfp622 

-1.28 Dpf3 1.13 Zfp191 

-1.27 Sec23a 1.13 Kdm2a 

-1.26 Zfp36l1 1.13 Srek1ip1 

-1.24 Ring1 1.13 Slc39a13 

-1.23 Zdhhc1 1.11 Esrra 

-1.23 Zhx3 1.08 Brpf1 

-1.23 Usp44 
  -1.21 Man2b2 
  -1.2 Glis1 
  -1.2 Foxp4 
  -1.2 Rc3h1 
  -1.19 Zfp385a 
  -1.18 Nrd1 
  -1.11 Sharpin 
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Supplemental Table 3- 2. Genes involved with zinc that are significantly altered by 

CPA treatment in round spermatids. p<0.05 

Down-Regulated After CPA 
Treatment  

Up-Regulated After CPA  
Treatment 

Fold Change Gene Symbol Fold Change Gene Symbol 

-1.87 Zc3h12b 2.69 Fbxo40 

-1.54 Zfp40 2.24 Trim58 

-1.38 Rarg 1.54 Zbtb33 

-1.34 Egr4 1.51 Vdr 

-1.33 Zfp532 1.5 Nrap 

-1.26 Zfp142 1.43 Pparg 

-1.23 Mtr 1.41 Rapsn 

-1.22 Zfp655 1.37 Zfp385c 

-1.18 Deaf1 1.36 Zfp219 

-1.16 Car7 1.36 Mmp8 

-1.16 Zfr 1.34 Adamts9 

-1.16 Zfp318 1.31 Zbtb41 

-1.13 Rc3h2 1.31 Prdm13 

-1.11 Lasp1 1.3 Mss51 

-1.11 Esrra 1.3 Lonrf2 

-1.11 Rnf216 1.3 LOC680200 

-1.1 Hinfp 1.26 Zfp280d 

  
1.26 Scrt1 

  
1.24 Nupl2 

  
1.23 Mmel1 

  
1.23 Zfp513 

  
1.22 Zzef1 

  
1.21 Zfp263 

  
1.21 Rnf44 

  
1.19 Zfp827 

  
1.18 Rnf5 

  
1.17 RGD1565844 

  
1.15 Zfp652 

  
1.14 Zfp414 
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FIGURE LEGENDS 

Figure 3-1. Principal Component Analysis (PCA) showing distribution of pachytene 

spermatocytes and round spermatids in a 3D plot. Pachytene spermatocyte (n=5) and 

round spermatids (n=6) occupy distinct spaces. 

Figure 3-2. Expression of zinc transporters in male germ cells. Log scale mRNA 

expression levels of (a) ZIP family and (c) ZnT family of zinc transporters in pachytene 

spermatocytes and round spermatids. Fold change of expression levels of (b) ZIP 

members and (d) ZnT members in pachytene spermatocytes versus round spermatids. 

N=5 pachytene spermatocytes, N=6 round spermatids. *P<0.05 

Figure 3-3. Zinc transport in pachytene spermatocytes and round spermatids. High 

throughput imaging of fluorescent zinc probe Fluozin-3am bright field in (a) pachytene 

spermatocytes (n=8) and (b) round spermatids (n=5) incubated with 100 nm ZnSO4 for 

0, 5, 15, 30 or 45 minutes and after the addition of the zinc chelator TPEN. (c) 

Quantification of fluorescence intensity over time and (d) after addition of TPEN, as a 

percentage of baseline values. *P<0.05. Scale Bar 50µM. 

Figure 3-4. Principle component analysis showing distribution of CPA treated and 

control (a) pachytene spermatocyte (n=5) and (b) round spermatid (n=6) samples. 

Figure 3-5. Changes in mRNA expression of known genes after CPA treatment. Venn 

diagram of known genes that are expressed in both control and CPA treated samples 

and those that are exclusively expressed in one treatment group in (a) pachytene 

spermatocytes (n=5) and (b) round spermatids (n=6). Numbers of known genes that are 
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significantly altered over 1.5 fold after CPA treatment in (c) pachytene spermatocytes 

and (d) round spermatids. P>0.05 

Figure 3-6. Functional characterization of genes significantly altered by CPA treatment. 

Pie charts show the prevalence of different GO terms associated with genes altered by 

CPA treatment in (a) pachytene spermatocytes and (b) round spermatids. Functional 

analysis of altered genes involved in zinc ion binding in (c) pachytene spermatocytes 

and (d) round spermatids. 

Figure 3-7. CPA increases the mRNA expression of members of the ZIP family of zinc 

transporters. The expression of ZIP family members is significantly increased after CPA 

treatment in pachytene spermatocytes as shown by microarray results (a-d) and qRT-

PCR validation (e-h). N=5, *P<0.05. 

Figure 3-8. CPA treatment increases ZIP5 expression at the protein level.  The protein 

expression of ZIP5 is increased in (a) pachytene spermatocytes but not in (b) round 

spermatids after CPA treatment. N=3, *P<0.05 

Figure 3-9. Zinc Transport in pachytene spermatocytes and round spermatids after 

CPA treatment. High throughput imaging of fluorescent zinc probe Fluozin-3am and 

bright field of (a) pachytene spermatocytes and round spermatids (b) from treated and 

control animals, incubated with 100 nm ZnSO4 for 0, 5, 15, 30 or 45 minutes and after 

the addition of the zinc chelator TPEN. Quantification of fluorescence intensity over time 

in (c) pachytene spermatocytes and (d) round spermatids as a percentage of baseline 

values.  Quantification of fluorescence after addition of TPEN, as a percentage of 

baseline values in (e) pachytene spermatocytes and (f) round spermatids. Pachytene 
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spermatocytes N=9 CPA, N=8 control; round spermatids N=5. *P<0.05. Scale Bar 50 

µM. 

Figure S3-1. Linear mRNA expression of (a) ZIP and (b) ZnT family members in 

pachytene spermatocytes and round spermatids. Pachytene spermatocytes N=5, round 

spermatids N=6 *P<0.05 

Figure S3-2. PI staining in male germ cells.  Analysis of membrane integrity by 

propidium iodide staining in (a) control pachytene spermatocytes and round spermatids 

and CPA treated (b) pachytene spermatocytes and (d) round spermatids. *p<0.05 

Figure S3-3. mRNA expression of zinc transporters was not altered after CPA 

treatment in round spermatids. Microarray results for (a) ZIP5 (b) ZIP6 (c) ZIP13 (d) 

ZIP14. 
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Figure 3-1. Principal Component Analysis (PCA) showing distribution of pachytene 

spermatocytes and round spermatids in a 3D plot.                                                                                                                   
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Figure 3-2. mRNA Expression of zinc transporters in male germ cells.  
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Figure 3-3. Zinc transport in pachytene spermatocytes and round spermatids. 
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Figure 3-4. Principle component analysis showing distribution of CPA treated and 

control pachytene spermatocyte   
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Figure 3-5. Changes in mRNA expression of known genes after CPA treatment.  
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Figure 3-6. Functional characterization of genes significantly altered by CPA treatment. 
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Figure 3-7. CPA increases the mRNA expression of members of the ZIP family of zinc 

transporters. 
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Figure 3-8. CPA treatment increases ZIP5 expression at the protein level. 
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Figure 3-9. Zinc Transport in pachytene spermatocytes and round spermatids after 

CPA treatment. 
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Figure S3-1. Linear expression of ZIP and ZnT family members in pachytene 

spermatocytes and round spermatids. 
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Figure S3-2. PI staining in male germ cells.   
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Figure S3-3. Expression of zinc transporters was not altered after CPA treatment in 

round spermatids. 
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CONNECTING TEXT 

The results presented in Chapter 3 indicate that chronic low dose CPA treatment alters 

the expression of numerous transcripts involved in zinc binding including members of 

the ZIP family of zinc transporters. Additionally, zinc uptake was increased in germ cells 

isolated from CPA treated males. These results, along with altered expression of 

miRNAs predicted to target zinc binding proteins (Chapter 2), suggest that zinc may 

play a role in the germ cell response to CPA treatment. We proposed that the stress 

incurred by male germ cells from chronic CPA treatment leads to an increased 

requirement for zinc. We hypothesized that zinc supplementation may be able to 

alleviate some of the toxic effects of CPA treatment.  

In Chapter 4 of this manuscript we examined the ability of zinc to protect male germ 

cells from CPA toxicity. This was accomplished by supplementing male rats with zinc 

along with chronic CPA treatment. At the end of the treatment period, the ability of zinc 

to protect male germ cells against CPA induced oxidative stress and DNA damage was 

assessed by live cell imaging and confocal microscopy. 
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ABSTRACT 

There is a need to develop strategies to protect male germ cells against toxic 

agents used in chemotherapy. Cyclophosphamide (CPA), a commonly used 

chemotherapeutic and immunosuppressant drug and a germ cell toxicant, leads to an 

increase in zinc uptake in male germ cells, suggesting an increased requirement for 

zinc. Zinc is an essential trace element that plays important roles in the defence against 

oxidative stress and DNA damage. In the present study we tested the hypothesis that 

zinc supplementation would protect male germ cells from CPA induced oxidative stress 

and DNA damage. We found that zinc supplementation reduced oxidative stress in 

isolated pachytene spermatocytes and round spermatids when compared to CPA 

treatment. The γH2Ax signal and foci size, as an indication of DNA damage, and 53BP1 

signal, as an indication of DNA repair, were also decreased in animals that received 

zinc supplementation when compared to CPA alone. The results from this study 

suggest a potential role for zinc supplementation in protecting male germ cells against 

CPA insult. 
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INTRODUCTION 

The incidence of cancers that affect men of reproductive age has risen worldwide 

[1-3]. Although advancements in treatment regimen have drastically improved cancer 

survival rates [3], the therapies used are gonadotoxic and leave many men infertile [4]. 

This is an important issue for the quality of life for survivors, as these men often have a 

strong desire to have children. Currently, the only available fertility preservation strategy 

is sperm cryopreservation prior to the start of treatment and later use with assisted 

reproductive technologies [5]. However, fertility preservation is often overlooked during 

the development of a treatment plan [6, 7]. Therefore, strategies to protect male germ 

cells from the gonadotoxic agents used in chemotherapy are needed. 

One such agent is cyclophosphamide (CPA), an alkylating drug and known germ 

cell toxicant. Men who are treated with this drug often become oligozoospermic or 

azoospermic [8-10]. Animal models have shown that CPA treatment leads to increased 

oxidative stress [11] and DNA damage [12, 13] in the developing male germ cells that 

cause a decrease in sperm chromatin quality [14-16]. This in turn results in adverse 

effects on embryo development and progeny outcome [17-22]. Thus, there is a need to 

better understand how male germ cells respond to such toxic insult. 

We have previously shown that male germ cells respond to CPA insult by 

increasing the expression of members of the ZIP family of zinc transporters and 

increasing zinc uptake [23]. Zinc is an essential trace element that plays important roles 

in the defence against oxidative stress and DNA damage. Zinc is involved in mediating 

oxidative stress by acting as a co-factor for SOD1 [24], providing structural stability to 
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enzymes that influence oxidative stress levels (such as subunits of the cytochrome c 

oxidase in the electron transport chain)[25], protecting sulfhydryl groups against 

oxidation [26] and by competing  with the redox active copper and iron ions to prevent 

Fenton reaction mediated lipid peroxidation [27, 28]. Zinc is also an important structural 

component for DNA binding proteins including many involved in DNA repair and zinc 

levels have been shown to influence their activity [29-32]. Additionally, zinc is essential 

for spermatogenesis as zinc deficiency leads to increased germ cell apoptosis, oxidative 

stress and DNA damage and can also lead to an arrest in spermatogenesis [33-40]. 

Therefore, we hypothesized that zinc supplementation would protect male germ cells 

against CPA induced oxidative stress and DNA damage. 

 

Materials and Methods 

Animals 

Adult male Spraque-Dawley rats (300-350g) were purchased from Charles River 

Canada (St-Constant, Québec). Animals were maintained on a 12 hours light/12 hours 

dark cycle and had access to food and water ad-libitum. After one week of 

acclimatization animals were randomly assigned to one of four treatment groups (Fig. 

4-1) and received the following by gavage: 0.9% saline 6 days/week for 5 

weeks(SAL/SAL), ZnCl2 (20mg/kg, Sigma Chemical Co., St. Louis, MO) 6 days/week 

for 5 weeks (ZN/SAL), saline 6 days for 1 week followed by CPA (6 mg/kg, CAS 6055-

19-2, Sigma Chemical Co., St. Louis, MO) 6 days/week for 4 weeks (SAL/CPA), or 

ZnCl2 (20mg/kg) 6 days for 1 week followed by ZnCl2 (20 mg/kg) in combination with 
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CPA (6mg/kg) for 4 weeks (ZN/CPA). The CPA dose of 6 mg/kg is a clinically relevant 

dose and this treatment regimen has been used in previous animal studies examining 

the effect of CPA on the male germ cells [14, 16, 41-43] and leads to altered 

expression of genes involved in zinc binding and increased zinc transport in male 

germ cells [23]. The dose and treatment paradigm of zinc supplementation is based on 

a previous study that observed that daily gavage with 20 mg/kg of ZnCl2 reduced the 

toxic effects of cigarette smoke on the reproductive system of male rats [44, 45]. 

Animals were either euthanized for germ cell collection (n=10) or anaesthetized for 

blood and tissue collections and perfusions (n=6). All animal care and handling were 

done in accordance with the guidelines outlined by the Canadian Council on Animal 

Care (McGill Animal Resources Centre protocol #2144). 

 

Tissue and blood collection 

At the end of treatment animals were anaesthetized with Isofluorane (induction: 

5%, O2 1.0L/min; maintenance: 2.5%, 0.8L/min). Whole blood was collected from the 

saphenous vein, left to clot at room temperature and spun down at 1000 x g. Serum 

was collected and frozen at -80°C until further use. Right testes and epididymides were 

removed and weighed. Testes were flash frozen in liquid nitrogen and kept at -80°C 

until further use for testicular sperm count and zinc levels. 

Testis Fixation 

Left testes were fixed by whole animal perfusion of anaesthetized animals using 

modified Davidson’s Fluid (mDF; 30% of 40% formaldehyde, 15% ethanol, 5% glacial 
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acetic acid and 50% distilled H2O) [46] as described previously [47]. Briefly, a round 

ended gavage syringe was inserted through the left heart ventricle and clamped in the 

aorta of anaesthetized animals. Blood was cleared through an incision in the right 

atrium with saline before perfusing with mDF. Perfused testes were collected and fixed 

further in mDF for 24hrs followed by dehydration and paraffin embedding. 

Testicular Sperm counts 

Testicular sperm counts were done as previously described [48]. Briefly, a piece 

of frozen testis was weighed and homogenized (Polytron PT 10-35 GT, 15000 RPM; 

Brinkman Instruments) for two 15 second periods with a 30 second interval in 2ml of 

buffer containing 0.9% NaCl, 0.1% thimerosal (Sigma), and 0.5% Triton X-100 (Sigma). 

Sperm heads were counted using a hemocytometer. 

Testosterone Levels 

Serum testosterone levels were measure using an enzyme-linked 

immunosorbent assay (ELISA) kit (IBL America) according to the manufacturer’s 

instructions. 

Testicular Zinc Measurement 

Fragments of flash frozen testes were carefully weighed, crushed, lyophilized 

overnight and then desiccated under vacuum another 24 hours. Tissue was digested to 

release zinc by the addition of nitric acid (67%) and incubated overnight. Lipids were 

dissolved by the addition of hydrogen peroxide (30%) dropwise over the course of 1 

hour followed by incubation at 92°C for 1 hour. Digested samples were diluted to 50ml 
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and zinc levels were measured by inductively coupled plasma optical emission 

spectrometry (ICP-OES) (Agilent Technologies). Lobster hepatopancreas – TORT-3 

(National Research Council Canada) was used as a certified reference material. 

Germ cell separation and isolation 

At the end of treatment, rats were euthanized by asphyxiation with CO2 and then 

decapitated. Male germ cells were isolated using the STA-PUT velocity sedimentation 

method as previously described by Bellve et al. [49] and modified by Aguilar-Mahecha 

et al. [50]. Briefly, testes were removed, decapsulated and the seminiferous tubules 

were digested with collagenase (Sigma Chemical) and further digested with trypsin 

(type 1; T8003; Sigma Chemical). The seminiferous-tubules were then physically 

dissociated in the presence of DNAse (product DN-25; Sigma Chemical) and then 

filtered through 70μm nylon mesh. The mix germ cell suspension was washed three 

times in 0.5% bovine serum albumin (BSA) and filtered through a 55μm nylon mesh to 

obtain a single cell suspension. A total of 5.6 x 108 cells were loaded into the STAPUT 

velocity sedimentation chamber and separated on a 2%-4% BSA gradient. Fractions 

containing spermatocytes and round spermatids were identified by phase contrast 

microscopy. Fractions with over 80% purity for pachytene spermatocytes and over 85% 

purity for round spermatids were pooled. A total of six germ cell separations met the 

purity cut off and were used for further experiments. 

Germ cell culture 

After germ cell separation, pachytene spermatocytes and round spermatids were 

seeded (pachytene spermatocytes - 100 x 105 cells/well; round spermatids – 300 x 105 
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cells/well) into 96 well cell culture plates (Costar 3595; Corning Life Sciences, 

Tewksbury, MA) in phenol-red-free media (DMEM/F12 medium; Life Technologies, 

Grand Island, NJ) with Streptomycin and Penicillin G added and supplemented with 

HEPES, lactic acid and FBS, adapted from La Salle et al [51]. Cells were cultured 

overnight for approximately 11 hours at 32°C and 5% CO2. 

Germ Cell ROS Measurement 

After overnight culture, germ cells were removed from culture plates and 

transferred to 1.5ml microcentrifuge tubes. Cells were incubated for 30min at 32°C in 

Live Cell Imaging Solution (MolecularProbes) with 50 µM CellRox DeepRed Reagent 

(Invitrogen, Burlington, ON) and Hoechst (2,5′-bi-1H-benzimidazole, 2′-[4-

ethoxyphenyl]-5-[4-methyl-1-piperazinyl]; Invitrogen, Burlington, ON). After washing, 

cells were transferred to a 96-well Cell Carrier (PerkinElmer, Woodbridge, ON) plate 

with an optically clear bottom. Plate was spun down at 300 g at 4°C for 5 minutes and 

immediately scanned by the Operetta HTS imaging system (PerkinElmer, Woodbridge, 

ON) at 20X magnification with 15 fields of view per well. Columbus 2.2 image analysis 

software (PerkinElmer, Woodbridge, ON) was used to quantify the mean fluorescent 

signals from individual cells in each well. 

Immunofluorescent Staining 

Blocks of paraffin embedded testes were sliced into 5µM sections and mounted 

on charged slides. Tissue was deparaffinized (Histoclear, Diamed Inc) and rehydrated 

through a graded ethanol series. Antigen retrieval and permeabilization were achieved 

by boiling slides for 10 minutes in sodium citrate buffer (0.01 M sodium citrate, 0.05% 
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Tween-20, pH 6.0). Non-specific binding was blocked with 10% normal goat serum for 

1hr at room temperature, primary antibodies (γH2Ax 1:500,Millipore; 53BP1 1:500, 

Novus Biologicals) for 1 hour at 37°C, secondary antibodies (goat anti-mouse Alexa 

488, goat anti-rabbit Alexa 546 1:1000, Thermofisher) for 45 minutes at room 

temperature, 4’-6’-diamidino-2-phenylindole (DAPI, 1:1000) combined with lectin PNA 

from Arachis hypogaea (peanut) Alexa Fluor 647 conjugate (1:400, Thermofisher) for 10 

minutes at room temperature. Slides were mounted with Permafluor antifade mountant 

(Thermofisher), left at room temperature to dry for 24 hours before being stored at 4°C 

until imaging. 

Image Analysis 

Images were captured using a multiphoton Leica TCS SP8 MP microscope with 

20x and 63x objectives. Images from Z-stacks were reconstituted into three-dimensional 

images and analyzed using Imaris Software version 9.1.2 (Bitplane, Switzerland). 

Quantification of the number of positive cells, mean fluorescence per cell, and co-

localization for both γH2AX and 53BP1 was done with images at lower magnification. A 

minimum of 100 tubules per animal were selected manually and analyzed 

independently. Individual cells were identified by DAPI nuclear staining using the Imaris 

surfaces function and proper identification was verified visually. The fluorescent signal 

from the channels of both γH2AX and 53BP1 was obtained for each cell in each tubule. 

Cells were considered positive if the signal was above the set threshold. Data from 

controls with no primary antibody were used to set threshold. Fluorescence signal was 

analyzed across all tubules and also by seminiferous cycle stage. Tubules were visually 
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staged by the presence and appearance of PNA staining of the acrosome and grouped 

into 4 stage categories: stages I-IV, V-VIII, IX-XI and XII-XIV (Supp. Fig 1.).  

Analysis of γH2AX foci volume was done with reconstituted three-dimensional 

images at higher magnification. Individual foci were identified and the volumes of a 

minimum of 300 foci were obtained per animal using the Imaris surfaces function. The 

average foci volume was calculated. The distribution of foci volume was determined by 

the percentage of the total number of foci in different volume categories: <0.1, 0.11-

0.49, 0.5-0.99, 1-2.49, 2.5-4.99, 5.00-9.99, 10.00-14.99, 15.00-19.99, 20-24.99, 25-

29.99 µm3 and >30 µm3.  

Statistical Analysis 

Data were analysed using one-way ANOVA with Tukey’s multiple comparison 

correction with Graphpad Prism version 5. Results are expressed as means with 

standard error of the means. 

 

RESULTS 

Effect of cyclophosphamide treatment and zinc supplementation on physiological 

parameters 

The effects of chronic CPA treatment and zinc supplementation on body and 

tissue weights are shown in Figure 4-2. Body weight was assessed weekly to determine 

the effect of chronic CPA treatment and zinc supplementation on the overall health of 

the animals. Neither CPA treatment nor zinc supplementation had a significant effect on 
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body weight at the end of treatment (Fig. 4-2a). However, the amount of weight gained, 

shown as the percentage of initial body weight, was lower in both the CPA treated and 

zinc supplemented groups (Fig 4-2b). On average rats in these groups gained 26% less 

weight compared to control rats and rats that receive zinc only. 

The weights of the testes were not altered by CPA treatment or zinc 

supplementation (Fig. 4-2c). Epididymal weights were slightly increased by 16% in rats 

that received CPA with zinc supplementation (Fig. 4-2d). However, this weight increase 

was not accompanied by an increase in sperm production (Fig. 4-2e). Testicular sperm 

counts were not altered by either CPA treatment or zinc supplementation.  

Serum testosterone levels were directly assessed by ELISA at the end of 

treatment. There was no significant difference in testosterone levels between any of the 

groups indicating that neither CPA treatment nor zinc supplementation affects 

steroidogenesis (Fig. 4-3a). 

Elemental zinc levels were measured spectroscopically in whole testis. As 

expected, the zinc supplemented rats tended to have more elevated zinc levels than 

non-zinc supplemented rats (Fig.4-3b). However, this trend did not reach statistical 

significance.  

Zinc supplementation reduces CPA induced oxidative stress 

The ability of zinc supplementation to protect male germ cells against CPA 

induced oxidative stress was examined by live cell imaging with a fluorescent probe for 

reactive oxygen species. Representative fluorescent images of cells from each 

treatment group are shown in Figure 4-4 (a-d). Pachytene spermatocytes from control 
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and zinc only animals displayed similar fluorescent signal that were not statistically 

different, indicating that zinc supplementation alone does not cause additional oxidative 

stress in these cells (Fig. 4-4e). The mean fluorescent signal from pachytene 

spermatocytes from CPA-treated animals was significantly increased above the signal 

from saline and zinc control cells by 43% and 51% respectively indicating that CPA 

treatment leads to elevated levels of reactive oxygen species in these cells. The mean 

fluorescent signal from cells from animals treated with CPA and supplemented with zinc 

was 34% lower than the fluorescent signal from CPA only cells. Furthermore, the 

fluorescent signal from the zinc supplemented cells was not significantly different from 

controls. These data indicate that zinc supplementation reduces CPA induced reactive 

oxygen species to levels that are similar to those in control, thus protecting pachytene 

spermatocytes from oxidative stress. 

The effect of zinc supplementation on oxidative stress was also assessed in 

round spermatids by live cell imaging. Representative images of the cells from each 

treatment group are shown in figure 4-5 (a-d). The fluorescent signal from cells from the 

zinc control group was similar to that of the saline control cells, indicating that zinc does 

not cause oxidative stress in these cells. Similar to pachytene spermatocytes, CPA 

treatment caused a 23% and 25% increase in fluorescent signal above saline and zinc 

control levels (Fig. 4-5e). The fluorescent signal in round spermatids from zinc 

supplemented animals was reduced to 68% of the signal observed in cells from animals 

treated with CPA alone and was similar to levels found in controls. Although this trend is 

similar to what was observed for the pachytene spermatocytes, these results did not 

reach statistical significance. 
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Zinc supplementation protects male germ cells against CPA induced DNA 

damage 

Cyclophosphamide alkylates DNA causing DNA double strand breaks and 

crosslinks[52]. This damage leads to the phosphorylation of histone variant H2AX 

(γH2AX) initiating a cascade of downstream events, including recruitment of proteins 

such as 53BP1, that culminates in the repair of the damaged DNA[53]. We examined 

the effect of CPA treatment and zinc supplementation on DNA damage and repair by 

immunofluorescent staining of seminiferous tubules for γH2AX and 53BP1. 

Representative images of tubules stained for γH2AX from each treatment group 

are shown in figure 4-6 (a-d). The intensity of γH2AX staining differed between the 4 

treatment groups (Fig. 4-6e). Fluorescent intensity was highest in tubules from animals 

treated with CPA and was nearly double that of the saline control and triple the zinc 

control. The number cells per tubule that were positive for γH2AX was also increased by 

over 1.5 fold in the CPA group compared to controls, indicating an increase in DNA 

damage after CPA treatment (Fig. 4-6g). Interestingly, γH2AX signal and the number of 

positive cells in the zinc control was only 60% that of the saline control, suggesting that 

zinc supplementation can reduce the endogenous levels of DNA damage. Most 

importantly, fluorescent signal for γH2AX in tubules from the zinc supplemented group 

was reduced to approximately 30% of the levels observed in CPA only group and was 

similar to the signal observed in the zinc control. The number of cells positive for γH2AX 

signal was also reduced 2-fold compared to CPA only.  
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To further analyze these findings, we staged the tubules based on the 

appearance PNA staining of the acrosome and grouped them into 4 categories: stages 

I-IV, V-VIII, IX-XI and XII-XIV (Supplemental Fig. S4-1). Representative images of 

γH2AX staining in the different stages in all 4 treatment groups are shown in 

supplemental figures S4-2 to S4-5. We observed a similar trend when the data were 

broken down into stages. The γH2AX intensity and number of cells positive for γH2AX 

signal were consistently highest in animals treated with CPA only across all 4 stage 

groupings (Fig. 4-6f and h). The zinc control also consistently had lower signal intensity 

and less positive cells compared to the saline control. Finally, across all 4 stage 

groupings, the γH2AX signal intensity and number of positive cells was reduced in the 

zinc supplemented group compared to CPA only, and similar to the saline and zinc 

controls. The highest intensity value for all four treatment groups was found in tubules 

that were stages XII-XIV. This corresponds to stages that contain spermatogonia, 

meiotic germ cells (zygotene, pachytene and secondary spermatocytes) and late step 

spermatids (12-14) [54]. The strongest staining was seen in cells along the basement 

membrane, suggesting damage to spermatogonia and early spermatocytes.  

While these data display strong trends consistently indicating that CPA causes 

increase DNA damage that is decreased with zinc supplementation, the limited number 

of samples analyzed did not permit these trends to reach statistical significance. 

The sizes of γH2AX foci are indicative of the level of damage : small foci indicate 

regular cellular functions whereas larger foci indicate elevated DNA damage from a 

toxic substance [55]. Thus, γH2AX foci volume was analyzed in sections from all 

treatment groups. Representative images are shown in Figure 4-7 (a-d). In both control 
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samples, the distribution of foci volume was similar, with a majority of the foci (82% for 

saline control; 77% for zinc control) falling between 0.1-10μm3 (Fig. 4-7e and f). The 

average volume of γH2AX foci in the zinc control was approximately 6μm3, slightly 

larger than the saline control which was around 4μm3 (Fig. 4-7i). However, this 

difference is negligible compared to the differences observed in samples from CPA 

treated animals. The distribution of foci volume from CPA treated animals appears 

broader when compared to controls, with 59% of γH2AX foci falling in between 0.1 and 

10 μm3.(Fig. 4-7g). Most strikingly, 15% of γH2AX foci were over 30μm3, while less than 

1% in the saline control and only approximately 3% in zinc control were larger than 

30μm3. The average foci volume in CPA samples was 15μm3 and significantly different 

from both saline and zinc controls. This indicates that CPA causes an increase in DNA 

damage in male germ cells. Zinc supplementation led to a γH2AX foci size distribution 

resembling those of controls (Fig. 4-7h). Similar to controls, the majority of foci (82%) 

fell between a volume of 0.1-10μm3 and just over 1% of foci had a volume larger than 

30μm3. Additionally, zinc supplementation significantly decreased the average volume 

of foci over 3-fold compared to CPA treatment only (Fig. 4-7i). These results indicate 

that CPA treatment causes an increase in DNA damage in male germ cells that can be 

reduced with zinc supplementation. 

To determine if there was any treatment effect on DNA repair we also assessed 

the expression of 53BP1 by immunofluorescence in seminiferous tubules. Similar to 

results for γH2AX signal,  fluorescent staining for 53BP1 was highest in animals treated 

with CPA and increased over 1.5 fold compared to saline control and over 3 fold 

compared to zinc control (Supplemental Fig. S4-6e). The number of cells positive for the 
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marker was increased in CPA treated animals compared to controls (Supplemental 

Fig.S4-6g). In line with the previous results, the signal and number of cells positive for 

53BP1 were reduced in the zinc control compared to the saline control. Zinc 

supplementation decreased 53BP1 signal to levels similar to control and to 40% of the 

signal observed from CPA treatment alone. The number of cells positive for the marker 

was also decreased by 23% in the zinc supplemented group compared to CPA alone. 

These results indicate that DNA repair activity is increased in response to CPA 

treatment and decreased with zinc supplementation. 

Representative images of 53BP1 staining in the different stages in all 4 treatment 

groups are shown in supplemental figures S4-2 to S4-5. When the results are broken 

down by stage, the same trends remain across all stage categories, with 53BP1signal 

and positive cells being highest in the CPA treated (Supplemental Fig. S4-6f and h) . 

However, in contrast to γH2AX results, there does not appear to be any differences in 

53BP1 expression between the groups of stages. 

Co-localization of the γH2AX foci with 53PB1 signal was analyzed in order to 

relate the increase in DNA damage with the DNA repair response (Fig. 4-6I). In all 

treatment groups the majority of γH2AX signal co-localized with 53BP1, indicating DNA 

repair at the sites of damage. However the number of cells positive for γH2AX and 

53BP1 was slightly lower in the two controls than in the CPA treated and zinc 

supplemented groups. Similar trends were observed when the data were broken down 

into different spermatogenesis stages (Fig. 4-6j, supplemental Fig. S4-2 to S4-5). 

Additionally, as with the 53BP1 staining, there were no differences between the stages 

in the number of cells that were positive for γH2AX and 53BP1. These results suggest 



223 
 

that DNA repair pathways are activated in response to DNA damage and not altered by 

CPA or zinc treatment.  

Similar to the analysis of γH2AX fluorescence intensity, across all tubules and 

the different tubule stages, consistent trends were observed with 53BP1 fluorescence 

intensity and the colocalization of the two markers. These trends suggest DNA repair 

activity in response to CPA induced DNA damage. However these results did not reach 

statistical significance due to the limited sample size. 

 

DISCUSSION 

Zinc is an essential trace element that is important for normal cellular and 

physiological functions, including spermatogenesis. In the present study, male rats were 

treated with CPA and supplemented with 20 mg/kg of ZnCl2. This dose has previously 

been shown to protect male germ cells against cigarette induced oxidative stress and 

improve sperm quality [44, 45]. Here we show that zinc supplementation protects male 

germ cells against oxidative stress and DNA damage caused by chronic low dose CPA 

treatment.  

We have previously shown that chronic low dose CPA treatment has adverse 

effects on male germ cells and progeny outcome without any overt effects on the male 

reproductive system [17, 56]. Here we confirm these findings, showing that CPA 

treatment does not alter serum testosterone or testis and epididymis weights. In 

addition, daily treatment with zinc had no effect on reproductive parameters. Although 

CPA treatment with zinc supplementation led to a slight increase in epididymal weights, 
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this was not accompanied by an increase in sperm production. Our previous studies 

showed a decrease in testicular sperm counts after 9 weeks of chronic CPA treatment 

[17] which was not observed after this 4 week treatment period for any of the treatment 

groups. It is possible that, similar to the above mentioned studies with cigarette smoke, 

that zinc supplementation could improve sperm counts after 9 weeks of CPA treatment. 

CPA treatment has been shown in many studies to increase levels of lipid 

peroxidation and decreased the expression of SOD, catalase (CAT), glutathione (GSH)  

and glutathione peroxidase (GPX) in whole testis [11]. However the oxidative stress 

response in specific testicular cell types is less well known. We have previously shown 

that the expression of genes involved in the defence against oxidative stress is 

decreased in isolated pachytene spermatocytes and round spermatids after chronic low 

CPA treatment, indicating an impaired antioxidant status [57]. In the present study we 

show that CPA treatment causes increased levels of ROS in isolated pachytene 

spermatocytes and round spermatids. Furthermore, we show that zinc supplementation 

reduces levels of ROS to control levels, thus protecting male germ cells from oxidative 

damage. Other non-enzymatic antioxidants, including alpha-tocopherol-succinate (pro-

vitamin-E)[58], lipoic acid [59, 60], ascorbic acid (vitamin C) [61], melatonin [62] and 

lycopene [63], and natural plant derived products, such ginseng [64] and green tea [65], 

have also been shown to protect male germ cells against CPA induced oxidative stress. 

The antioxidant activity of these compounds is different from zinc, and they act mainly 

by scavenging ROS and inducing the expression and activity of antioxidant enzymes. 

The main mechanism of action of CPA is DNA damage via alkylation creating 

inter- and intra-strand crosslinks [66]. The phosphorylation of histone variant H2Ax is an 
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early marker of DNA damage and also plays an additional role in the formation of the 

sex body, as evidenced by the strong signal observed in sex chromosomes in 

spermatocytes [67]. Additionally, the sex body fails to form in H2Ax deficient mice 

leading to defects in meiotic pairing [68].  As expected, in our study we observed an 

increase in γH2AX signal, an early marker of DNA double strand breaks [53], in tubules 

from CPA treated animals compared to controls. This increased signal was the result 

from DNA damage caused CPA treatment as γH2AX signal in the sex body in 

spermatocytes was observed across all treatment groups.  Furthermore, we analyzed 

the volume of the γH2AX foci: small foci indicate regular cellular function while larger 

foci indicate elevated damage from toxic substances [55]. We observed an increase in 

the volume of γH2AX foci in tubules from CPA treated animals indicating increased 

DNA damage from CPA treatment. An increase in large γH2AX foci has also been 

observed in the decondensing sperm chromatin in the paternal pronucleus of zygotes 

sired by CPA treated male rats [69, 70].  In addition to its role in the defence against 

oxidative stress, zinc is also essential for many DNA binding proteins including proteins 

involved in the DNA damage response such as XPA, RPA, PARP, OGG1, BRCA1, APE 

and P53 [29-32]. In the present study, we found that zinc supplementation in CPA-

treated rats decreased γH2AX signal and foci sizes to levels similar to controls, 

indicating that zinc can protect male germ cells against CPA induced DNA damage.  

DNA repair activity was examined by 53BP1 immunoreactivity. We that found 

DNA repair was active in all treatment groups but highest after CPA treatment. The 

number of cells that were positive for γH2AX and 53BP1 was highest in the CPA treated 

compared to the zinc supplemented and the control groups, suggesting that there is a 
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proportion of sites of H2AX phosphorylation in the zinc supplemented and control 

samples that do not recruit downstream DNA repair proteins. We propose that this 

difference is because the observed foci in these group are mostly due to normal cellular 

processes rather than detrimental DNA damage. In support of this, it has been shown 

that the smaller sized, normally occurring, γH2AX foci do not recruit DNA repair 

proteins, including 53BP1[55].  

The protective effect of zinc against chemotherapy toxicity has also been shown 

in other studies. Zinc L-carnosine is a mucosal protective agent and was shown to 

decrease oxidative stress and inflammation in the bladder of mice treated with a single 

high dose of cyclophosphamide [71]. Zinc has also been shown to protect against 

cisplatin induced nephrotoxicity [72]. These studies indicate that zinc may not only play 

a protective role in preventing off target damage to the testis but also other tissues. 

Zinc, in the form of zinc acetate, also improves Sertoli cells function after cisplatin 

treatment [73]. Whether the CPA dose used in our study specifically affects Sertoli cells 

has not been investigated. However, acrolein, an active CPA metabolite, has been 

shown to alter Sertoli cell function [74]. The combination of antioxidants, including zinc, 

selenium and vitamins C and E, has been shown to improve sperm motility and 

morphology and decrease germ cell loss in rats treated with the chemotherapy cocktail 

bleomycin, etoposide and cisplatin [75]. Thus the use of antioxidants such as zinc may 

be useful in mediating some of the toxic side effects in patients undergoing 

chemotherapy. In one small study, zinc supplementation in conjunction with chemo- and 

radiation therapy in patients with advanced nasopharyngeal carcinoma was shown to 

decrease tumour reoccurrence and also improve patient survival [76]. Although more 
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mechanistic studies would be required, this suggests that zinc supplementation could 

help mediate some of the toxic side effects in patients without decreasing the efficacy of 

the drug treatment.  

In conclusion, we have shown that zinc supplementation can reduce CPA 

induced oxidative stress and DNA damage. Whether zinc supplementation can also 

reverse the previously observed effects of paternal CPA treatment on sperm quality and 

progeny outcomes remains to be seen. However this study suggests that zinc may be 

useful as a supplement to include in treatment plans for men with cancer to help protect 

male germ cells. 
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FIGURE LEGENDS 

Figure 4-1. CPA treatment and zinc supplementation paradigm. Rats were divided into 

4 treatment groups: Saline control (SAL/SAL): 0.9% saline x 5 weeks; zinc control 

(ZN/SAL): 20 mg/kg ZnCl2 x 5 weeks; CPA treated (SAL/CPA): 0.9% saline x 1 week, 

then 6 mg/kg x 4 weeks; zinc supplemented (ZN/CPA): 20 mg/kg ZnCl2 only x 1 week 

followed by 20 mg/kg ZnCl2 and 6 mg/kg CPA x 4 weeks. Rats were treated 6 days per 

week by oral gavage.  

Figure 4-2. Effects of CPA treatment and zinc supplementation on weights and sperm 

counts. The mean a) body weight; b) weight gained (percentage gain from starting 

weight); c) epididymis weight; d) testis weight; and g) testicular sperm count, are 

displayed (n=6) p<0.05  

Figure 4-3. Effect of CPA treatment and zinc supplementation on testosterone and zinc 

level. The mean a) serum testosterone and b) testicular zinc levels are displayed. (n=6). 

Figure 4-4. Zinc supplementation protects pachytene spermatocytes from CPA induced 

oxidative stress. Representative images from of live cells incubated with a fluorescent 

probe for ROS from a) saline control, b) CPA treated, c) zinc control and d) zinc 

supplemented. Quantification of fluorescent signal from images is shown in e). (n=6); 

Bar = 10μm; p<0.05. 

Figure 4-5. Zinc supplementation protects round spermatids from CPA induced 

oxidative stress. Representatiive images from of live cells incubated with a fluorescent 

probe for ROS from a) saline control, b) CPA treated, c) zinc control and d) zinc 
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supplemented. Quantification of fluorescent signal from images is shown in e). Bar = 

10μm; (n= 6)  

Figure 4-6. Zinc supplementation decreases CPA induced DNA damage in male germ 

cells. Representative images for a) saline control, b) CPA treatment, c) zinc control and 

d) zinc supplemented.  Quantification of γH2AX Intensity (e,f), number of γH2AX 

positive cells per tubule (g,h) and number of  cells positive for γH2AX and 53BP1 (i,j) in 

all tubules (left) and per tubule stage (right). (n=3); Bar = 100μM 

 Figure 4-7. γH2AX foci volume are reduced with zinc supplementation. Representative 

images of foci in a) saline control, b) zinc control, c) CPA treated, and  d) zinc 

supplemented  and distribution of foci volume for each group (e-h). Average volume of 

foci is displayed in i). White arrow = small foci; yellow arrow = sex body; red arrown = 

large foci, blue arrow = foci in elongating spermatids. (n=3) Bar = 10μm; p<0.05 

Figure S4-1. Staging of seminiferous tubules. Stages were determined by PNA staining 

of the acrosome and grouped into 4 categories. Adapted from Dym and Clermont 

(1970). 

Figure S4-2. Immunofluorescent staining for γH2AX and 53BP1 in stages I-IV 

(Category 1). Bar = 40μm 

Figure S4-3. Immunofluorescent staining for γH2AX and 53BP1 in stages V-VIII 

(Category 2). Bar = 40μm 

Figure S4-4. Immunofluorescent staining for γH2AX and 53BP1 in stages IX-XI 

(Category 3). Bar = 40μm 
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Figure S4-5. Immunofluorescent staining for γH2AX and 53BP1 in stages XII-XIV 

(Category 4). Bar = 40μm 

Figure S4-6. Zinc supplementation decreases the level of DNA repair in male germ 

cells. Representative images for a) saline control, b) CPA treatment, c) zinc control and 

d) zinc supplemented.  Quantification of 53BP1 Intensity (d,f), number of 53BP1 positive 

cells per tubule (g,h) and in all tubules (left) and per tubule stage (right). (n=3); Bar = 

100μM 
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Figure 4-1. CPA treatment and zinc supplementation paradigm. 
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Figure 4-2. Effects of CPA treatment and zinc supplementation on weights and sperm 

counts. 
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Figure 4-3. Effect of CPA treatment and zinc supplementation on testosterone and zinc 

level. 

  

0

1

2

3

4

150

160

170

180

190

200

210

Testis Zinc (µg/g) 

Serum T (ng/ml) 

10 

0 

A 

B 



244 
 

0

50

100

150

200

Fluorescence Intensity 

A B 

C D 

E 

SAL/SAL 

ZN/SAL 

SAL/CPA 

ZN/CPA 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4. Zinc supplementation protects pachytene spermatocytes from CPA induced 

oxidative stress. 
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Figure 4-5. Zinc supplementation protects round spermatids from CPA induced 

oxidative stress. 
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Figure 4-6. Zinc supplementation decreases CPA induced DNA damage in male germ 

cells. 
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Figure 4-7. γH2AX foci volume are reduced with zinc supplementation. 
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Category 1 Category 2 Category 3 Category 4 

Adapted from Dym and Clermont, 1970  

Figure S4-1. Staging of seminiferous tubules.  

 

 

 

 

 



249 
 

SAL/CPA 

SAL/SAL 

ZN/CPA 

ZN/SAL 

γH2AX 53BP1 γH2AX + 53BP1  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4-2. Immunofluorescent staining for γH2AX and 53BP1 in stages I-IV 

(Category 1). 
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Figure S4-3. Immunofluorescent staining for γH2AX and 53BP1 in stages V-VIII 

(Category 2).  
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Figure S4-4. Immunofluorescent staining for γH2AX and 53BP1 in stages IX-XI 

(Category 3). 
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Figure S4-5. Immunofluorescent staining for γH2AX and 53BP1 in stages XII-XIV 

(Category 4).  
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Figure S4-6. Zinc supplementation decreases the level of DNA repair in male germ 

cells 
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5.1 Summary 

The main objective of this thesis was to provide a greater understanding of the male 

germ cell response to the toxic effects of CPA. The first chapter introduced background 

information on several topics that are fundamental to this thesis, such as 

spermatogenesis, germ cell transcriptome, germ cell defense mechanisms and male 

mediated reproductive toxicology. Furthermore, this introductory chapter reviewed the 

current knowledge of the effects of paternal CPA treatment on male germ cells, embryo 

development and progeny outcome.   

The work presented in this thesis began by profiling the transcriptome of male germ 

cells after chronic exposure to low dose cyclophosphamide treatment. In the second 

chapter of this thesis we describe the miRNA profiles in isolated pachytene 

spermatocytes and round spermatids, highlighting key differences in expression 

patterns between the meiotic and post meiotic germ cells. Importantly we also show that 

miRNA profiles are altered by CPA treatment. To our knowledge, this is the first study to 

1) profile miRNAs in isolated rat pachytene spermatocytes and round spermatids and 2) 

examine the effect of a therapeutic drug on miRNA profiles in developing male germ 

cells. The altered miRNAs in both cell types were predicted to target transcripts involved 

in basic cellular function and proper germ cell development as well as processes 

important for the response to toxic agents. Interestingly, many miRNA targets in both 

cell types were also involved in zinc ion binding. 

In the third chapter, whole genome gene expression profiles were examined in 

isolated pachytene spermatocytes and round spermatids. Previous studies have only 
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profiled a subset of stress response genes in isolated germ cells. We show that CPA 

treatment not only alters the expression of genes involved in stress response but also 

that of other unexpected genes that are involved in zinc binding and transport. Using 

live cell imaging and a fluorescent zinc probe, we also showed that zinc transport was 

increased in pachytene spermatocytes from CPA treated animals.  

 The common finding of miRNA targets and transcripts involved in zinc binding 

and transport from chapters two and three led us to the hypothesize that zinc may be 

playing an important role in the germ cell response to CPA exposure. Specifically, we 

propose that CPA treatment alters zinc requirements due to elevated levels of oxidative 

stress and DNA damage. In order to compensate, the expression of zinc transporters 

and zinc transport is increased in male germ cells. The observed changes in expression 

of miRNAs and transcripts related to zinc may reflect changes in zinc homeostasis. In 

the fourth chapter of this thesis we investigated whether zinc could alleviate the 

gonadotoxic effects of CPA treatment. We found that zinc supplementation protects 

male germ cells against CPA induced oxidative stress and DNA damage. 

This final chapter will address some of the key findings presented in this thesis and 

discuss their significance as well as the clinical implications. Potential future research 

directions that further build upon the current findings will also be outlined. Additionally, 

concerns and limitations pertaining to the experiments and design will be considered.  

 

5.2  Integrating miRNA expression into toxicogenomic studies 
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It is well established that miRNAs play a significant role in male germ cell 

development. Before exploring the effect of CPA on miRNA expression, we profiled 

miRNA expression in isolated pachytene spermatocytes and round spermatids from 

untreated Sprague-Dawley rats. The importance of this work is highlighted by the fact 

that previous studies have typically examined miRNA profiles in whole testes [1, 2], 

while a handful have looked at the expression of miRNAs in isolated germ cells [3-5]. 

The advantage of examining miRNAs in isolated germ cells is that unlike in whole testis 

experiments, we can relate miRNA expression to the unique processes that the different 

germ cells undergo during development. While the majority of previous studies were 

done in mice, we looked at miRNAs in the Sprague Dawley rat, the standard model for 

toxicology testing. Thus the data we generated provides baseline miRNA profiles that 

can be used to further understand the role miRNAs play in these two germ cell types 

during normal germ cell development and how they may be perturbed by exposures to 

toxic agents. 

The finding that miRNA profiles differed between the pachytene spermatocytes and 

round spermatids is not surprising and reflects the different developmental stages of 

these cells. Our data indicate that pachytene spermatocytes and round spermatids 

utilise different miRNAs to regulate similar processes. It also suggests that the observed 

difference in miRNA expression might be involved in the differential response of the two 

cell types to CPA treatment. MicroRNA expression was altered in both pachytene 

spermatocytes and round spermatids after CPA treatment. Whether these altered 

miRNAs are the result of a specific adaptive response or general dysregulation due to a 

toxic insult is unclear.  
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Other studies have identified changes in miRNA expression in other tissues after 

exposure to toxic substances, including benzo(a)pyrene [6], alcohol [7, 8] , tobacco [9, 

10], cocaine [11], cisplatin [12], valproic acid [13] and acetaminophen [14]. Some of the 

miRNAs associated with these toxic exposures were also altered in male germ cells in 

our dataset after CPA treatment. However, similarly to our work, specific roles for many 

of the miRNAs altered by these toxic exposures have yet to be identified.  Various 

miRNAs have been identified as biomarkers for neurotoxicity, liver toxicity, kidney 

toxicity and cardiotoxicity (reviewed in [15]). Additionally, miRNA profiles have been 

examined to predict the outcome of chemotherapy for various cancers. For example, 

several miRNAs have been associated with large B cell lymphoma resistance to the 

combined chemotherapy R-CHOP (rituximab, CPA, doxorubicin, vincristine and 

prednisone) and are predictive of poor survival outcomes [16-18]. The dysregulated 

miRNAs that we identified in male germ cells after CPA treatment could also be used as 

biomarkers for male germ cell toxicity and used by the pharmaceutical industry and 

regulatory agencies to assess the gonadotoxic potential of drugs and chemicals.  

Target prediction algorithms are useful tools to determine what transcripts a miRNA 

could regulate [19, 20] and what processes it could influence; in-vitro luciferase reporter 

assays can further validate the target prediction [21]. However, this simplistic prediction 

is complicated by a number of variables. First, miRNAs can target multiple transcripts 

and a given transcript can be targeted by multiple miRNAs [22]. Second, the predicted 

target mRNA must also be expressed in the same cell as the miRNA. Finally, miRNA 

targeting causes not only transcript translation repression and degradation but can also 

act in other ways such as regulating N6-methyladenosine (m6A) modifications of RNAs 
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[23]. This modification on mRNA can influence not only the transcript stability but also 

its localization within the cell [24]. Thus the predicted target transcripts of a miRNA may 

be modulated at the level of the transcript, protein or cellular localization. Surprisingly 

there was very little overlap between the predicted targets of CPA altered miRNAs and 

the differentially expressed mRNAs after CPA treatment. We propose that this could be 

the result of miRNAs acting at the translational level of gene expression. Therefore, 

proteomic studies should be undertaken to further understand how miRNAs that are 

altered by CPA treatment might influence gene expression.    

To better understand the roles or consequences of CPA altered miRNAs, over-

expression and knock-down experiments could be done and the effects on cell survival, 

DNA damage, meiotic progression and chromatin reorganization assessed. In cell lines 

or primary cultures of many cells, in-vitro over expression or knockdown can easily be 

accomplished using miRNA mimics and antagonists. However these types of studies 

are very challenging in male germ cells. Although efforts and advancements have been 

made, in-vitro spermatogenesis is still not possible [25]. Additionally, male germ cells do 

not adhere to the culture dish, making it difficult to properly wash the cells. Furthermore, 

the above techniques typically work in mitotically active cells. Although spermatocytes 

can be pushed to progress through meiosis [26], round spermatids do not divide. 

Finally, germ cells do not survive in culture for extended periods of time and survival is 

reduced under stressful conditions such as advanced age and oxidative stress [27]. 

These difficulties could be overcome by artificially over-expressing or knocking down 

miRNAs in-vivo by intra-testicular injection of miRNA mimics or antagonists. This 

method has successfully been used to assess the role of miR-124 in the biogenesis of 
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the acrosome in male germ cells [28] and miR-150 in steroidogenesis in Leydig cells 

[29]. Thus this method is suitable for examining miRNA function in both testicular 

somatic and germ cells. Future experiments to assess the roles of altered miRNAs on 

germ cells could include the use of intra-testicular injection of miRNA mimics and 

antagonists.  

In our experiments, commercial whole genome microarrays were used to profile 

miRNAs. The advantage of using microarrays is the ease and affordability with which 

one can assess a large number of RNA transcripts. However, one disadvantage is that 

the expression profiling is limited to the probes that are present on the arrays. At the 

time of our miRNA profiling experiments, the microarrays used were based on miRBase 

release 16.0 and contained probes for the 677 miRNAs identified in the rat at the time. 

New miRNAs are being identified regularly and the miRBase miRNA database is 

updated to reflect these. We are currently at miRBase release 22.0 and 764 mature 

miRNA sequences have been identified to date in the rat. In contrast, 1978 miRNAs 

have been identified in mouse and 2654 miRNAs have been identified in humans [30-

34]. Thus it is conceivable that the newly identified miRNAs  that have not yet been 

identified in rat and that were not on our microarrays could also be altered by CPA 

treatment.  

An alternative method to examine miRNA expression is RNAseq. With continuous 

technological advancement, RNAseq is becoming more affordable and the large data 

sets that these experiments generate more manageable. The advantage of RNAseq is 

that data obtained is not limited to currently identified transcripts [35]. New miRNAs as 
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well as other non-coding RNA species can be identified based on the sequences and 

the structures these transcripts are predicted to form.  

These other non-coding RNAs (piRNAs, lncRNAs, circRNAs, endo-siRNAs and 

tsRNAs) have all been identified in the testis and could potentially be affected by CPA 

treatment. The ability of a drug to modulate the expression of these RNA species in 

male germ cells has not been examined.  In contrast, paternal diet has been shown to 

alter tsRNA expression in mature spermatozoa in mice [36, 37]. Similarly, sperm 

miRNAs can be altered by paternal diet and stress [38-42]. These altered sperm born 

tsRNAs and miRNAs can transmit the dietary and stress phenotypes. Extraordinarily, 

the simple injection of tsRNAs or miRNAs isolated from the sperm of male mice fed high 

fat/low protein diets or chronically stressed into control zygotes was capable of 

recapitulating the dietary and stress phenotypes [36, 38, 40, 41]. Future studies to 

understand how chronic paternal CPA treatment leads to the negative embryo 

development and progeny outcomes we have previously observed should include the 

investigation of altered sperm born miRNAs and other RNA species such as tsRNAs. 

 

5.3  Gene expression in male germ cells: profiling the response to toxic 

exposures 

Male germ cells display distinct gene expression profiles that reflect their stage of 

development [43-47]. These differences in gene expression indicate that different germ 

cells may display different susceptibilities to toxic exposures. For example, previous 

studies have shown that spermatids are most susceptible to the damaging effects of 
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CPA treatment [48-50] while spermatogonia are most susceptible to the effects of 

radiation [51]. Indeed, the expression of stress response genes has previously been 

shown to differ between pachytene spermatocytes, round spermatids and elongating 

spermatids [52]. The expression of stress response genes differed between these three 

cell types following acute and chronic CPA treatment [53, 54]. Similarly, gene 

expression profiles differ between different cancers and even between patients with the 

same type of cancer, and have been used to predict the susceptibility and resistance of 

different cancers to chemotherapy, including CPA [55-59]. Additionally studies have 

shown that the development of chemo-resistance is accompanied by changes in gene 

expression profiles. For example, the development of CPA resistance in prostate 

tumours is accompanied by changes in expression of genes involved in coagulation 

[60].  Large databases have been created to curate all the data that have been 

generated from these types of studies in order to facilitate the correlation of differences 

in gene expression signatures with diagnosis, prognosis and prediction of therapy 

sensitivity and resistance [61-64].  

In chapter 3, we profiled whole genome gene expression in pachytene 

spermatocytes and round spermatids. We found that both cell types displayed distinct 

gene expression profiles following CPA treatment. Many of these differentially 

expressed genes were involved in processes important for the response to CPA 

treatment such as the response to stress, response to DNA damage, DNA repair, 

regulation of cell death, and spermatogenesis. It would be interesting to compare the 

gene expression results from our study with the available data in the databases 

mentioned above. The information obtained from such a bioinformatic analysis could 
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provide additional information on the mechanisms of action of CPA, and the differential 

response of male germ cells to the toxic effects of CPA treatment. Furthermore, this 

information could also help predict the effect of other chemotherapeutic agents on male 

germ cells. 

Strikingly, we found that CPA treatment has an apparent repressive effect on gene 

expression in pachytene spermatocytes. In a previous study, the expression of stress 

response genes was also decreased in male germ cells after chronic CPA treatment 

[53]. The reason behind this is unclear. Indeed DNA crosslinks and damage would be 

expected to interfere with transcription. GO analysis of the altered genes and targets of 

the altered miRNAs revealed that CPA affects genes involved in transcriptional 

regulation. The changes in zinc binding proteins and potential effect of CPA treatment 

on zinc homeostasis (discussed in chapters 3 and 4 and below) may also affect 

transcription.  

Interestingly, the DNA lesions induced by the bifunctional alkylating agents nitrogen 

mustard, melphalan, chlorambucil and cisplatin have been shown to result in in-vitro 

transcription termination [65, 66]. Conversely the cyclophosphamide derivative 4-S-

(propionic acid)-sulfidocyclophosphamide did not have the same effect [65]. However, 

RNA synthesis was decreased by CPA in an in-vitro tumour system, and differed 

between CPA sensitive and resistant tumours [67]. CPA functions by not only alkylating 

DNA but also by alkylating proteins creating DNA-protein crosslinks [68, 69]. Proteomics 

analysis in human fibrosarcoma cells exposed to the active CPA metabolite 

phosphoramide mustard  has revealed that a large number of the proteins that form the 

DNA-protein crosslinks are involved in transcriptional regulation, mRNA/RNA 
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processing and chromatin organization [70]. Thus alkylation of these proteins may 

contribute to the decrease in transcription that we observed. Interestingly, other 

chemotherapeutic agents have been shown to affect components of the transcriptional 

machinery. The DNA intercalating drug doxorubicin down regulates the expression and 

inhibits the activity of RNA polymerase II [71, 72]. In addition, bleomycin reduces RNA 

synthesis [73] and mediates the cleavage of a variety of RNAs including mRNAs [74]. 

How CPA treatment or other chemotherapeutic agents affect transcription in male germ 

cells is unknown.  

Our results indicate that transcription may be more affected in pachytene 

spermatocytes than in round spermatids. The reason for this is unclear. Future 

experiments to assess transcription in male germ cells need to be done. It will be 

interesting to assess if zinc supplementation reverses the effect of CPA on gene 

expression through zinc binding proteins either by microarray or RNAseq.. The ability of 

CPA to affect RNA synthesis could be assessed and compared in isolated pachytene 

spermatocytes and round spermatids using commercially available Click-It RNA 

labelling kits to monitor the incorporation of 5-ethynyl uridine (EU). Additionally, 

modification of these kits allows the capture of nascent RNAs for further analysis of 

gene expression. Proteomic analysis of CPA induced DNA-protein crosslinks in isolated 

germ cells to assess whether CPA is directly affecting transcriptional machinery by 

alkylation could further shed light on the effect of CPA on gene expression. Additionally, 

these experiments could also indicated whether DNA-protein crosslinks are altering 

chromatin remodelling events that occur in male germ cells during meiosis and 

spermiogenesis. 
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Finally, as mentioned in the above section about miRNA expression, the effect of 

CPA treatment on mRNA profiles in mature sperm should be assessed. Other toxic 

substance such as carbendazim (a fungicide) and 2,5-hexanedione (a component of 

gasoline) have been shown to alter the mRNAs contained in sperm from rats [75]. 

Additionally, studies have shown that mRNA (and miRNA) profiles are different between 

fertile and infertile and smoking and non-smoking men [76-81](and reviewed in [82]). 

While roles for sperm born RNAs in embryo development are widely unknown, altered 

RNA signatures could be used as biomarkers for testicular toxicity. These signatures 

could be used in drug development and in clinical practice to predict pregnancy 

outcomes. 

 

5.4  Zinc: An essential trace metal for the male germ cell response to CPA? 

The advantage of using transcriptomics approaches is the possibility of uncovering 

novel mechanisms in the cellular response to toxic agents such as CPA. It is not 

surprising that paternal CPA treatment altered the expression of genes involved in 

stress response mechanisms such as DNA repair, oxidative stress and heat shock 

proteins in male germ cells [53]. Unexpectedly, using a whole genome profiling, we 

found CPA treatment altered the expression of many transcripts that code for proteins 

involved in zinc binding and transport.  

Zinc is an essential trace metal that is found ubiquitously in the body [83]. 

Importantly, male reproductive tissues display high concentrations of zinc [84]. 

Physiologically, zinc is necessary for growth and development, lipid metabolism and 
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normal brain, immune and reproductive function [85]. The importance of zinc at the 

molecular level is evident as over 10% of proteins are zinc binding [86]: these include 

more than 2000 transcription factors and other DNA binding proteins as well as 300 

enzymes that require zinc to function properly [87].   

Cellular zinc levels need to be tightly controlled, and this is accomplished by two 

families of zinc transporters: The ZIP (Slc39a) and ZnT (Slc30a) families. ZIP members 

function in zinc influx into the cytoplasm from extracellular spaces [88] and intracellular 

organelles while ZnT members function in zinc efflux from cell and sequester cytosolic 

zinc into intracellular organelles [89]. 

 Relative to other tissues, especially the brain, knowledge about these transporters 

in the testis is sparse [90-93]. Considering the importance of adequate zinc levels for 

proper spermatogenesis [94-100], this is surprising. The work presented in this thesis is 

significant because it is the first to examine the expression of all members of the ZIP 

and ZnT zinc transporters the testis let alone isolated pachytene spermatocytes and 

round spermatids. We found that members from both these families are expressed in 

both cell types to different degrees. The significance of the levels of expression of 

individual transporters and of the observed differences in expression between the cell 

types is unclear.   

At the structural level, ZIP transporters contain eight transmembrane domains with 

the N- and C- termini facing the extracellular space. Histidine-rich loop domains are 

present between transmembrane domains 3 and 4. The particularly amphipathic 

transmembrane domains 4 and 5 are thought to form the cavity through which zinc is 
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transported. The conserved residues of these regions are believed to be crucial for zinc 

transport function [101]. The 14 ZIP transporters are subdivided into 4 classes based on 

their sequences (Figure 5-1) [88, 102]. ZIP 9 is the sole member of subclass I. Subclass 

II contains ZIPs 1, 2 and 3. ZIP2 is only found in mammalian cells suggesting that it is 

the most recently evolved ZIP member [103]. The sole member of GufA subclass, 

ZIP11 family appears to be most ancestral ZIP and contains less histidine residues than 

other ZIP members [103].The majority of the mammalian ZIP transporters (ZIP 

4,5,6,7,8,10,12,13 and 14) are members of the LIV-1 subclass which contain additional 

histidine residues and a highly conserved putative metalloprotease motif. 

The ZnT family of zinc transporters are composed of six transmembrane domains, 

with N- and C- terminals facing the intracellular space [88]. The conserved 

histidine/serine rich loop between transmembrane domains 4 and 5 is thought to be 

important for zinc binding [104]. The 10 ZnT members can be classified into 4 

subfamilies based on their sequence (Figure 5-1) [89]: subclass I contains ZnT 5 and 7, 

subclass II contains ZnT2,3,4 and 8, subclass III contains ZnT1 and 10 and subclass IV 

contains ZnT6 and 9 [102].  
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Figure 5-1. Phylogeny and classification of  the mammalian ZIP and ZnT zinc 

transporters. ZIP family can be classified into 4 groups: I (green), II (red), gufA (orange) and 

LIV-I (blue). ZnT family members can be classified into 4 groups: I (green), II (red), III (blue) and 

IV (orange). Adapted from Jeong et al (2013) [88] and Huang et al (2013) [89].  
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The subfamily classifications of both ZIPs and ZnTs do not appear to have any 

influence of the localization or function of these zinc transporters (Figure 5-2). The 

purpose of the expressing multiple members of these transporters in male germ cells is 

unknown. Indeed certain members were more highly expressed than others. However 

there was no enrichment of any subfamily of ZIPs or ZnTs in either pachytene 

spermatocytes or round spermatids. The expression of the different members of the ZIP 

and ZnT members may reflect the localization of different members to specific cellular 

compartments (figure 5-=2) and be related to specific roles. In support of this idea is the 

finding that residues that are upstream of the first transmembrane domain in ZnTs 

usually contain subcellular targeting signals and vary greatly between family members 

[89]. 

 Knock out models of different ZIP and ZnT family members have failed to show any 

fertility phenotypes (reviewed in [88, 89]), suggesting functional redundancy for many of 

these transporters. To gain further insight into the role zinc transporters in male germ 

cells, investigation into the subcellular localization of ZIPs and ZnTs are needed as well 

as proper characterization of the consequences of ZIP and ZnT knockout on germ cell 

development.  
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Figure 5-2. Cellular localization of members of the mammalian ZIP and ZnT zinc 

transporters. ZIP family members (red transporters) increase intracellular zinc levels 

by importing zinc from the extracellular space or releasing it from organelles. ZnT family 

members (blue transporters) decrease intracellular zinc by exporting zinc out of the cell 

or sequestering it into organelles. Members of both the ZIP and ZnT families have been 

localized to the plasma membrane, lysosomes, Golgi and endoplasmic reticulum (ER). 

Figure was created in part using images from Servier Medical Art (www.servier.com) , 

licensed under a Creative Commons Attribution 3.0 Unported License and adapted from 

Jeong et al (2013) [88] and Huang et al (2013) [89]. 
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We found that chronic CPA treatment altered the expression of four members of the 

ZIP family of zinc transporters in pachytene spermatocytes: ZIP5, ZIP6, ZIP 13 and 

ZIP14. This is the first evidence that zinc transporter expression and zinc transport can 

be influenced by a drug and involved in stress response. Previously, the expression of 

some ZIP transporters, including ZIP6 and ZIP10 in the testis [91], has been shown to 

be influenced by zinc status (reviewed in [88, 105]). In yeast, this is mainly through 

binding of ZAP1, a transcriptional activator, to the zinc responsive element (ZRE) in the 

promoter of zinc related genes [106, 107]. Additionally, aging [108], hormones 

(testosterone, prolactin and thyroid hormone) [109-111], cadmium [112], cigarette 

smoke [113] , glucose and inflammation [114] have been shown to alter ZIP transporter 

expression. 

The expression of metallothioneins, another group of important regulators of cellular 

zinc concentration, were not altered in either pachytene spermatocytes or round 

spermatids after CPA treatment. These cysteine rich proteins have the ability to bind 

and release zinc via the thiol groups,and can thus act as a sink or a source of 

intracellular zinc. 

We hypothesised that male germs cells take up more zinc in order to protect 

themselves from CPA treatment by acting as an antioxidant and a cofactor for DNA 

repair proteins. An additional and perhaps alternative mechanism could be through 

signalling pathways. In support of this theory, ZIP14 has been shown to control G-

protein coupled receptor-mediated signaling in the growth plate, pituitary gland and liver 

[115].  Zinc has been shown to play important roles in intracellular signaling by acting as 

a second messenger [116], inhibiting the activity of enzymes, such as caspases [117, 
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118] and MAPK [119], and modulating signaling pathways including NF-κB [120, 121].  

Thus increased zinc uptake in male germ cells after CPA treatment might be affecting 

germ cell survival through intracellular signaling. To investigate this possibility, the 

activity of caspases and MAPK and NF-κB signaling pathways could be assessed in 

male germ cells after CPA treatment with and without the zinc chelator TPEN. 

An important question is by which mechanism CPA is regulating zinc transporter 

expression. Since both ZIP5 and ZIP14 are zinc responsive [88], it is possible that CPA 

treatment led to a reduction in zinc concentration resulting in increased ZIP expression. 

However, we did not see a significant decrease in testicular zinc concentrations after 

CPA treatment. Since we observed altered ZIP expression specifically in pachytene 

spermatocytes, it is possible that CPA treatment reduced zinc concentrations in a cell 

specific manner. Therefore analyzing the zinc concentration in different germ cell types 

instead of the whole testis could be useful. This could be accomplished in testis 

sections using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-

MS) or X-ray fluorescence microscopy (XRFM) which allows mapping of the distribution 

of zinc ions in tissues with sub-cellular spatial resolution (reviewed in [122]). 

 Interestingly, ZIP14 is a predicted target of miR-497, a miRNA that we observed 

was down-regulated in pachytene spermatocytes after CPA treatment. ZIP5 has been 

shown to be targeted by miR-328 and miR-193a and predicted to be a target of miR-

30b-3p [123]. After CPA treatment, none of these miRNAs were altered.  However miR-

328a*, which is predicted in-silico to target ZIP5 but to a lesser extent [123], was 

significantly up-regulated after CPA treatment in pachytene spermatocytes. Additionally, 

closely related miR-30d and miR-30a* were altered after CPA treatment. Thus miRNAs 



274 
 

altered by CPA treatment may be involved in modulating changes in ZIP transporter 

expression. The luciferase reporter gene assays and the use of miRNA mimics and 

antagonists as outlined in the previous section could be used to examine this 

relationship. 

Changes in zinc transporter expression and zinc transport as a protective and 

adaptive response in male germ cells to CPA treatment merit more investigation. Future 

studies could include the investigation of whether the loss of the up-regulated 

transporters in male germ cells abolishes the CPA increase in zinc uptake and 

intensifies the toxic effects of CPA treatment, including DNA damage, oxidative stress 

and cell death. Whether other ZIP transporters might be dysregulated to compensate for 

this loss could also be assessed. The effect of over expression of ZIP transporters on 

germ cell response to CPA treatment could also be examined. Similar to what was 

described in the previous section, these studies could be accomplished using in-vivo 

gene transfer and RNAi based techniques. Intra-testicular injection of DNA constructs 

has been shown to result in successful integration into the germ cell genome [124] and 

robust expression of transgenes [125]. Alternatively, germ cell specific K.O. and 

transgenic animals could be generated. With the arrival of CRISPR technology, the 

generation of animals, including rats, with genetically modified male germ cells is now 

possible [126].  

 

5.5  Oncofertility: on the quest to protect male germ cells during chemotherapy 
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Human exposures to environmental and therapeutic toxicants, especially 

chemotherapeutic agents, during germ cell development are contributing factors to male 

subfertility [127-129]. Classic chemotherapeutic drugs were developed on the basis that 

the vast majority of normal cells are quiescent and that rapidly dividing and 

metabolically active cells, such as cancerous cells, are particularly sensitive to 

perturbations in DNA synthesis [130]. Unfortunately, this selectivity (or lack thereof) 

means that frequently dividing normal cells, such as hair follicles, myelopoietic bone 

marrow cells, intestinal epithelial cells and male germ cells are also targeted by 

chemotherapeutic agents. Additionally, the chromatin remodelling and transcriptional 

quiescence that occur in the later steps of spermatogenesis make the male germ cells 

especially vulnerable to DNA damaging agents [131]. 

  Oncofertility merges the fields of oncology and reproductive research in order to 

provide and develop options for the reproductive future of cancer patients. As outlined 

previously in Chapter 1, methods to preserve fertility in male cancer patients are 

currently limited to sperm cryopreservation [132]. Thus simple methods that could help 

mitigate some of the toxic effects of chemotherapy on male germ cells are needed. 

The unexpected findings that CPA treatment altered 1) the expression of miRNAs 

with predicted targets involved in zinc binding; 2) the expression of mRNAs that code for 

zinc binding proteins and transporters; and 3) zinc transport in male germ cells led us to 

investigate whether zinc supplementation could protect male germ cells from CPA. The 

results from Chapter 4 revealed that zinc supplementation reduced levels of oxidative 

stress and DNA damage induced by chronic low-dose CPA treatment. The specific 

mechanisms by which zinc supplementation reduces CPA induced oxidative stress and 
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DNA damage were not investigated. However there is sufficient evidence in the 

literature about the cellular and molecular roles of zinc to speculate on how it may 

protect male germ cells against CPA treatment. As described in chapter 1, zinc can act 

as an antioxidant through several different mechanisms [133-137]. Moreover, zinc 

deficiency causes elevated levels of oxidative stress and oxidative damage in the testis 

[100].  

Another important regulator of intracellular zinc levels and oxidative stress is the 

family of metallothieniens. These cysteine rich proteins have the ability to bind and 

release zinc via the thiol groups, and can thus act as a sink or a source of intracellular 

zinc [138]. Additionally, metallothioneins are thought to have important ROS scavenging 

abilities [139, 140]. The expression of transcripts for metallothioneins was not altered 

after CPA treatment. However, it is possible that the protective effect of zinc 

supplementation on CPA induced ROS is due, at least in part, to metallothioneins, as 

zinc in an important regulator of these proteins. This possibility merits further 

investigation. 

In addition to its role as an antioxidant, zinc plays a structural role in many proteins, 

most notably zinc finger proteins (reviewed in [141]). Zinc finger proteins are most often 

DNA binding and include not only a large number of transcription factors but also 

components of the DNA repair machinery. For example, the DNA damage repair 

proteins XPA and RPA of the NER pathway [142], OGG1 [143] and PARP1 [144] of the 

BER pathway and BRCA1 of the homologous repair pathway [145] all contain zinc 

binding motifs.  The importance of zinc for DNA repair has been shown by the increase 

in DNA damage [146, 147] and decrease in the activity of some of these enzymes, such 
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as PARP [148, 149], in zinc deficient models. Importantly, zinc repletion is rapidly able 

to reverse these effects [147].  

The tumour suppressor protein p53 plays an important role in regulating the events 

that lead to DNA repair (reviewed in [150]) and also male germ cell death [151-153]  by 

binding specific DNA sequences to transcriptionally activate downstream targets. The 

DNA-binding domain of p53 is stabilized by the tetrahedral coordination of a zinc ion 

[154, 155]. Zinc depletion has been shown to reduce p53 DNA binding activity by 

altering the stability and the DNA-binding domain conformation [147]. Additionally, the 

ability of zinc to restore p53 conformation and activity of mutant p53  in cancer cells in-

vitro and in-vivo [156, 157] has led to the development of a new class of drugs termed 

zinc metallochaperones, to re-establish chemo sensitivity in cancers with p53 mutations 

[158, 159]. These drugs act by binding extracellular zinc, diffusing across the plasma 

membrane and releasing it intracellularly thereby increasing intracellular zinc [160].  

Despite finding a protective effect of zinc supplementation, we did not observe a 

decrease in zinc concentration in the testes of CPA treated rats. It is possible that rather 

than deplete zinc levels, zinc availability in germ cells is decreased due to an increased 

demand in response to CPA insult. More studies are needed to tease apart specific 

mechanisms of the protective role of zinc. These studies would include investigating the 

anti-oxidant activity of zinc by measuring malondialdehyde (MDA) and 4-

hydroxynonenal (4-HNE) levels, bi-products of lipid peroxidation, 8-oxodG and 8-oxoG, 

markers of DNA and RNA oxidative damage, as well as Cu/ZnSOD activity in male 

germ cells.  
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Our immunofluorescent studies indicated increased DNA damaged after CPA 

treatment, especially in spermatogonia and early spermatocytes, and that the level of 

damage was reduced with the addition of zinc. However, changes in zinc transporters 

and transport were observed in isolated pachytene spermatocytes and the protective 

effects of zinc in oxidative stress were observed in both pachytene spermatocytes and 

round spermatids. Thus it would be of importance that DNA damage levels be directly 

assessed in these cell types. The single cell gel electrophoresis (COMET) assay can be 

used to evaluate DNA damage at the level of the individual cells [161]. We have 

previously employed the COMET assay to evaluate mature sperm integrity [50], but the 

use of this assay on the developing germ cells will provide additional information on the 

susceptibility of germ cell types to CPA damage and further support a role for zinc and 

zinc transport in protecting male germ cells from DNA damage. The ability of zinc to 

decrease DNA damage by improving DNA repair activity could be addressed by 

measuring the activity of DNA repair enzymes OGG1 and PARP1 and DNA binding 

capacity of p53 in germ cells treated with CPA and supplemented with zinc. 

In addition to mechanistic studies, more extensive studies are required to evaluate 

the full potential of zinc in protecting male germ cells from CPA induced damage and 

preventing the negative progeny outcomes that have previously been described. A 

longer treatment period would need to be done to evaluate the effect of CPA treatment 

and zinc supplementation on a full cycle of spermatogenesis in rats. A similar study to 

the original studies done over 30 years ago to evaluate chronic CPA treatment on the 

male reproductive system and pregnancy outcome is necessary [48, 49]. In this 

proposed study, male reproductive organ weights (testis, epididymis, prostate, seminal 
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vesicles), reproductive hormones (testosterone, LH, FSH), testicular sperm counts, 

sperm motility and morphology and testicular histology would be assessed at the end of 

a 9 week treatment period. Throughout the treatment period, mating studies would be 

undertaken at different time points to evaluate effects of zinc supplementation in 

different cell types as done previously. This would include evaluation of mating activity, 

pre-implantation loss, post-implantation loss and evaluation of live born pups.  

An important addition to these mating studies will be the evaluation of the sperm 

chromatin quality after zinc supplementation. The importance of zinc in sperm chromatin 

structure and the detrimental effect of CPA treatment on chromatin condensation and 

integrity was described in Chapter 1. Several available assays could be used to 

examine the potential of zinc supplementation in improving sperm chromatin quality 

after CPA treatment. The sperm chromatin susceptibility assay (SCSA) evaluates sperm 

chromatin integrity using FACS by measuring the susceptibility of sperm DNA to acid 

denaturation using the DNA stain acridine orange that fluoresces green when 

associated with double stranded DNA and red when associated with single stranded 

DNA [162]. This technique has previously been used to demonstrate the detrimental 

effects of zinc deficiency and CPA on sperm chromatin integrity [163, 164]. The level of 

compaction of sperm DNA can be assessed using the fluorescent  chromomycin A3 

staining (CMA3) and  monobromobinane thiol labelling (mBBr) assays which indicate 

the amount protamine present and the extent to which the protamines are cross-linked 

by di-sulfide bonds [165, 166]. These have previously been used to assess the effects 

of CPA on mature sperm [164]. The COMET assay mentioned above and used 

previously will also be useful to directly evaluate the ability of zinc supplementation to 
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prevent CPA treatment to induced DNA strand breaks in mature sperm [161]. 

Additionally, since zinc supplementation was able to decrease CPA induced oxidative 

stress in germ cells, the level of oxidative DNA damage can be assessed by 

immunofluorescent staining for 8-oxodG in mature sperm. 

A limitation in our zinc supplementation study was the use of a single concentration 

of zinc. A dose response pilot study would be necessary to determine the optimal 

concentration of zinc that will protect male germ cells from CPA toxicity without causing 

any systemic toxicity. Zinc is considered to be relatively non-toxic. Zinc toxicity occurs at 

high doses (above 100-300 mg/day in adults) and can lead to gastrointestinal upset, 

headaches, copper deficiency and impaired immune function [167]. Interestingly, zinc 

toxicity in the testis of mice results in similar effects as zinc deficiency:  germ cell death, 

arrest of spermatogenesis and decreased sperm count [168]. The dose given in our 

study is well below the maximum tolerated dose in rats (over 250 mg/kg of diet) [169] 

and also below the concentrations which are gonadotoxic [168]. Finally, different types 

of zinc supplements or delivery methods are available. Zinc sulfate (ZnSO4), zinc 

acetate (Zn(OAc)2) and zinc picolinate (ZnPic) have also been used in animal models to 

protect against cisplatin toxicity [170, 171] and inflammatory conditions [172, 173]. 

Another interesting option would be to examine the effectiveness of the new zinc 

metallochaperone drugs that help transport zinc across membranes [158, 160]. 

 

5.6 Integrating zinc supplementation into clinical practice 
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The use of complementary or alternative medicines (CAM), including supplements, 

is widespread. It is estimated that as much as 20-50% of cancer patients use some form 

of CAM depending on the country [174-176]. Canada and the United States have some 

of the highest rates of CAM use [174]. Patients resort to CAM as an approach to 

exhaust all possibilities in search of a successful treatment or in the hopes of reducing 

some of the toxic side effects associated with chemotherapy [177]. An important 

question to consider is whether supplements used with chemotherapy can antagonize 

the anti-cancer effects of these drugs. Currently, the use of supplements, predominantly 

antioxidants, with chemotherapy is controversial. Although there are no specific 

guidelines, both the American and Canadian Cancer societies and the National Cancer 

Institute advise patients to discuss the use of any supplements with their physicians 

[178-180].  

Many clinical trials have been carried out assessing the use of different 

antioxidant supplements with chemo- and radiotherapy (reviewed in [181]). Many of 

these supplements show potential in reducing chemo- and radio-therapy induced 

toxicities. For example, several studies have indicated that coenzyme Q10 (CoQ10) is 

capable of reducing cardiotoxicity in patients receiving different combinations of 

chemotherapy, including fluorouracil, doxorubicin, daunorubicin, cyclophosphamide and 

vincristine, and radiation therapy [182-184]. A few trials have examined the use of 

selenium supplementation. They showed a decrease in nephrotoxicity and bone marrow 

suppression in patients treated with cisplatin [185] and  a decrease in gastrointestinal 

upset, loss of appetite, weakness and hair loss in patients that received combination 

chemotherapy (doxorubicin, CPA, vincristine and prednisolone) [186] or radiation 
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therapy [187, 188]. With the exception of one clinical trial that showed an increased rate 

of cancer reoccurrence and mortality in patients who were smokers while undergoing 

radiotherapy and being supplemented with α-tocopherol and β-carotene [189], the vast 

majority of trials have not reported any adverse effects associated with antioxidant 

supplementation. Clinical trials that are designed to examine the effect of antioxidant 

supplementation on clinical outcome and survival are rare. The trials that have looked at 

clinical outcomes and survival in patients receiving supplements (vitamin A, vitamin E 

and ellagic acid) saw no significant difference between the supplemented and control 

groups [190-193]. The exception is melatonin, a potent antioxidant that plays various 

roles in regulating circadian rhythms, sleep, aging and tumour growth [194]. Clinical 

trials in patients receiving various chemotherapeutic agents (including cisplatin, 

etoposide, mitoxantrone, fluorouracil, doxorubicin, CPA, vincristine, gemcitabine, 

oxaliplatin and paclitaxel) have shown that melatonin not only decreases 

myelosuppression and neurotoxicity but also improves the clinical response to 

chemotherapy, increases tumour regression and increases overall patient survival [195-

200]. Thus, although there is very little information available to date, it is possible that 

antioxidant supplementation could protect patients from the toxic side effects of cancer 

treatment without altering their efficacy. At minimum, there doesn’t seem to be any 

danger in adding antioxidant supplementation to cancer treatment plans. 

The use of zinc in cancer patients has been less well studied. A handful of 

clinical trials have been done; they show that zinc supplementation decreased mucositis 

[201], dysphagia [202]  and the incidence of opportunistic bacterial and fungal infections 

[203] in patients receiving radiation therapy. Importantly, in patients with head and neck 



283 
 

cancer receiving radiotherapy and patients receiving concomitant radiotherapy and 

chemotherapy (fluorouracil and cisplatin), zinc supplementation improved the three year 

local tumour reoccurrence rate and the 5 year local tumour reoccurrence rate and 

overall survival respectively [204, 205].  

Considering the importance of zinc for the immune system [206], zinc may 

improve patient survival by enhancing immune function. Zinc deficiency has been 

associated with decreased interleukin-2 (IL-2) production [207], a key event in the 

activation and proliferation of T-lymphocytes, and zinc supplementation stimulates IL-2 

production in-vivo and in-vitro [208-210]. Thus zinc could increase the production of 

anti-tumour T-cells. In support of this, IL-2 administration is capable of mediating tumour 

regression in humans [211] and was the first immunotherapy approved for cancer 

treatment (reviewed in [212]).  

In addition to its immunomodulatory role, zinc supplementation may improve 

patient survival rate via cytotoxic effects on cancer cells. Zinc sulfate (ZnSO4) had a 

cytotoxic effect on cultured human leukemia myelogenous leukemia cell lines (K562) 

without causing damage to normal human lymphocytes [213]. In addition, the cancerous 

cells showed increased DNA damage compared to normal human lymphocytes when 

exposed to H2O2 in the presence of zinc sulfate (ZnSO4). These in-vitro results suggest 

that zinc can protect normal cells while enhancing the cytotoxicity of damaging agents 

such as H2O2 in cancerous cells. Moreover, zinc ionophores have been shown to inhibit 

proliferation and decrease survival of A549 human lung and PC3 human prostate 

cancer cell lines [214]. Interestingly, these ionophores were also able to limit tumour 

growth of A549 and PC3 cells in xenograft models with no observable toxicity[215].  
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 Our study was not designed to assess the effect of zinc supplementation on the 

efficacy of CPA treatment. Animal models for the diseases that are commonly treated 

with CPA could be used to assess both the germ cell protective effect of zinc 

supplementation and potential for either interfering or even improving CPA efficacy. Two 

leukemia rat models are available that are commonly used in pre-clinical testing [216, 

217]. The APL model generated in Brown Norway rats in particular may be useful as it 

has previously been used to test the efficacy of CPA treatment combined with 

radiotherapy in treating acute myelocytic leukemia [217].  The effect of zinc 

supplementation on CPA efficacy in these animal models could be evaluated 

haematologically and by assessing the overall survival of the animals. An alternative 

method would involve using luciferase or GFP transfected human cancer cell lines 

xenografted into immune deficient mice. Using this method, the effect of zinc 

supplementation on the efficacy of CPA treatment for leukemia [218] and other diseases 

such as neuroblastoma [219], retinoblastoma [220] and lung cancer [221] could be 

evaluated by fluorescence activated cell sorting (FACS) of blood and bone marrow 

samples [218] and in-vivo imaging of tumour formation and metastasis [219-221]. These 

types of studies would need to be integrated into zinc supplementation dose 

optimization studies. 

 Thus, although zinc shows promise in protecting male germ cells from the toxic 

effects of CPA, additional studies are still needed before chemotherapy supplemented 

with zinc can be implemented in clinical practice. 
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5.7 Conclusion 

Concerns over paternal exposure to toxic agents, such as cyclophosphamide, 

and the effects on fertility and progeny have provided the basis for the studies in this 

thesis.  In this thesis we used transcriptomics to gain further knowledge about the 

effects of CPA treatment on the developing male germ cells. We found that CPA 

treatment alters the expression of miRNAs and mRNAs in a cell specific manner in both 

pachytene spermatocytes and round spermatids. Most unexpectedly, we found a role 

for zinc and zinc transporters in the germ cell response to toxic effect of CPA treatment. 

Together, these studies suggest that CPA treatment alters zinc requirements in male 

germ cells as a consequence of increased oxidative stress and DNA damage. The 

reduced availability of zinc is reflected by changes in expression of transcripts for and 

miRNAs that target zinc binding proteins. In response, germ cells increase zinc import 

via the up-regulation of zinc transporters. Finally, zinc supplementation can protect the 

male germ cells from CPA induced oxidative stress and DNA damage (Figure 5.3). 

This thesis provides important information and novel insights into the germ cell 

response to CPA insult. Furthermore, it provides preliminary evidence for the potential 

use of zinc supplementation in reducing the germ cell toxic effects of chronic CPA 

treatment. 
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Figure 5-3. Summary of thesis findings. Cyclophosphamide treatment causes 

increased oxidative stress and DNA damage in male germ cells leading to an increased 

demand for zinc. In response, the expression of members of the ZIP family of zinc 

transporters and intracellular zinc transport are increased. MicroRNAs may play a role 

in the effect of CPA treatment by post-transcriptional control of the expression of genes 

involved with zinc binding, response to oxidative stress and DNA damage and 

spermatogenesis. Zinc supplementation decreased CPA induced oxidative stress and 

DNA damage in male germ cells. Thus zinc plays an important role in the germ cell 

response to CPA treatment and has the potential to protect germ cells against toxic 

exposures. Figure was created in part using images from Servier Medical Art 

(www.servier.com) , licensed under a Creative Commons Attribution 3.0 Unported 

License. 
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5.9 Original Contributions 

1) Profiled miRNA expression in isolated pachytene spermatocytes and round 

spermatids from male Sprague-Dawley Rats. Other studies have only examined 

miRNA expression in whole testis or isolated germ cells from mice 

2)  Profiled miRNA expression after chronic CPA treatment in isolated pachytene 

spermatocytes and round spermatids. This is the first study to show that a 

therapeutic agent can alter miRNA expression in male germ cells. 

3)  Examined the expression profiles of all 14 members of the ZIP and all 10 

members of the ZnT families of zinc transporters in isolated pachytene 

spermatocytes and round spermatids. Other studies have only shown the 

expression of select zinc transporters in male germ cells 

4) Determined differences in the expression of ZIP and ZnT transporter expression 

in isolated pachytene spermatocytes and round spermatids. 

4) Developed a live cell imaging assay using the zinc fluorescent probe Fluozin3-

AM and hight-content screening to measure zinc uptake in male germ cells. 

5) Determined differences in zinc uptake over time between isolated pachytene 

spermatocytes and round spermatids. 

6) Examined whole genome gene expression after chronic CPA treatment in 

isolated pachytene spermatocytes and round spermatids. Previously, only the 

expression of stress response genes was examined after CPA treatment in these 

cells. 
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8) Reported that CPA treatment has an apparent repressive effect on gene 

expression in pachytene spermatocytes. 

7) Associated chronic CPA treatment with changes in the expression of miRNAs 

and genes involved with zinc in pachytene spermatocytes and round spermatids.  

9) Reported increased expression of members of the ZIP family of zinc transporters 

(ZIP5, ZIP6, ZIP13, ZIP14) in pachytene spermatocytes after chronic CPA 

treatment. 

10) Determined that zinc uptake is increased in pachytene spermatocytes after CPA 

treatment in comparison to control. 

11) Showed that CPA treatment increases levels of reactive oxygen species using 

the fluorescent probe CellROX and live imaging of male germ cells. Although 

increased oxidative stress has been previously shown, this is the first study to 

show increased ROS levels visually in isolated cultured pachytene 

spermatocytes and round spermatids after CPA treatment.  

12) Demonstrated that zinc supplementation can decrease CPA induced increased 

levels of ROS in isolated pachytene spermatocytes and round spermatids. 

13) Determined a distinct distribution pattern of γH2Ax foci volume in germ cells in 

the testis cross-sections from CPA treated animals compared to controls. 

14) Determined that CPA treatment results in γH2Ax foci with larger volume in testis 

sections compared to controls. 
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15) Demonstrated that zinc supplementation can reduce levels of DNA damage 

caused by CPA treatment in male germs. 

 

 

 

 

 

 

 

 

 

 

 

 

 


