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Abstract

A numerical model is being developed for ice forecasting which is based on a gran-
ular dynamics approach. This model] is intended to analyse the movements of broken
ice fields at the mesoscale; i.e. for length scales of the order of 100 km and time scales
of the order of a few days. It will therefore be useful for navigation, for the operation
of offshore drilling platforms and for commercial fishing. At the mesoscale, the forces
governing the motion of ice floes are: wind drag, water drag, Coriolis force and the
contact forces arising from internal collisions. Expressions are developed to evaluate in
the most accurate manner the drag exerted by the water and by the wind on individual
ice floes by considering non-linear effects. The second aspect of the present work is
to modify the inter-particle contacts such that their tangential contribution involves
clastic deformation of the ice floes. The effects of an incrementally slipping friction
force model are studied for a system where the conditions vary from a quasi-static to a
rapid flow regime. Under these circumstances the model is found to adequately repro-
duce the behaviour of small scale laboratory experiments using aluminum cylinders.
Computations performed with tangentially rigid particles yield a system which is very
unstable in its behaviour. The analysis of the macroscopic variables, made in order
to determine how a broken ice field is affected by the shearing cffects of the particles,
shows that for a rapidly flowing field the elastic contribution to the contact shear force
is minor, if not negligible, when one considers long time averages or instantaneous val-
ues. It appears from these investigations that attention must be paid to the problem
of ice floes flowing under quasi-static or transitional conditions.



Résumé

Un modéle numérique de type dynamique moléculaire cst mis au point pour étudier
la rhéologie de la banquise fracturée dans les régions nordiques. Ce modéle est utilisé
pour faire I’étude a la mésoéchelle, c'est-a-dire pour une échelle de longueur de l'ordre
de 100 kin et une échelle de temps de i'ordre de deux jours, Il sera utile, entre autres
pour la navigation, les opérations des plate-formes pétroli¢res et la péche commerciale.
Les forces qui régissent le mouvement de la banquise a la mésoéchelle sont: le frottement
du vent et de l'eau, la force de Coriolis et les forces de contact dues aux collisions entre
particules. Les effets non linéaires du vent et des courants sont étudiés et des équations
sont développées pour en tenir compte. Le deuxieme aspect de ce travail est d’améliorer
la modélisation des contacts inter-particulaires en considérant la déformation élastique
dans la direction tangentielle des contacts. Les effets d'un nouveau modele de force tan-
gentielle qui prend en compte un tel comportement ont €té étudiés dans différents cas.
Dans un premier temps, la transition entre un régime quasi-statique et un éconlement
rapide, a partir d’'un empilement de cylindres en aluminium, a été simulée. Les résultats
numériques concordent de facon satisfaisante avec les observations expérimentales. Ce
n’est cependant pas le cas lorsque la déformation tangentielle des particules n'est pas
considéréde. Une analyse détaillée d'un écoulement rapide de banquise fracturée est
menée par la suite pour observer les effets du cisaillement des particules. Le caleul
des variables macroscopiques, moyenndes ou instantanées, montre que ces effets sont
minimes pour ne pas dire négligeables. D’apreés ces résultats, il semble qu'unc attention
particuliéere devra étre portée sur les écoulements de banquise en régime quasi-statique
ou transitionnel.

-
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1 Introduction

There is a great economic demand for ice forecasting at the mesoscale where marine
activities, such as navigation, the operation of offshore drilling platforms and commer-
cial fishing, take place. The mesoscale involves time scales of the order of two days
and length scales of the order of 100 km. The offshore economic zones of Canada are
the Gulf of Saint-Lawrence, the Beaufort Sea and the Labrador Sea. At present, the
models being used for ice forecasting are continuum models that are suitable for large
length and time scales and they can not, therefore, satisfy the existing economic needs.
In order to study ice rheology at the mesoscale, a research program has been initiated.
This program involves collaboration between McGill University, the Ice Centre of En-
vironment Canada (AES), and the National Research Council of Canada. A model is
being developed in which broken ice fields, due to their discrete nature, are considered
to be a two-dimensional granular medium. Thus, the movements and interactions of
ice floes are studied by granular dynamics simulations involving floe collisions. The
ice floes are considered to move under the action of wind drag, water drag, and the
Coriolis force. Normal and tangential contact forces are evaluated at contacts between
floes.

The focus of the present work is on the improvement of the model such that it
better reflects the interactions between the air, the ice floes, and the water and that
the floe collisions be more properly treated. The thesis has two objectives:

- to develop expressions for the wind and water drag such that their non-linear effects
are accounted for by the model,

and



- to study the effects of an incrementally slipping tangential force model which involves
elastic deformation of the floes in the tangential direction of their contacts.

In the following chapter the effects of the atmosphere and ocean on the motion of
ice floes are considered. A general discussion of granular materials and of the numerieal
methods used to investigate their dynarmics, are given in Chapter 3. The details of the
discrete element model are presented in this chapter. The expressions for the wind and
water drag acting on individual ice floes are developed in Chapter 4. In Chapter 5, the
effects of particles shearing are investigated through granular dynamics simulations of
a two-dimensional granular material that undergoes a transition from a quasi-static
to a rapid flow regime. The behaviour of a broken ice field is analysed, in the same
chapter, by simulations performed with the use of the incrementally slipping friction

force model. A summary is given and some conclusions are drawn in the last chapter

of the thesis.



2 The Effects of the Atmosphzre and Ocean on
the Motion of Ice Floes

2.1 Equations of motion for a rotating system

Geophysical fluids evolve in a rotating system at an angular velocity 0 of 7.292 x
10-5s~1. These fluids are subjected to forces that can be regarded as either fundamental
or apparent. The fundamental forces are those corresponding to Newton’s second law
for motion taking place in a system having coordinates that are fixed in space. These
forces are due for instance, to friction, pressure and gravitation. The apparent forces
are those s3sociated with a system having a frame of reference rotating with the earth.
The Coriolis and centrifugal forces belong to this category.

The equations of motion for the geophysical fluids can be obtained by first consid-
ering a fluid element connected to the earth’s center through a vector R. The absolute
time variation of R has two components: the velocity of the particle relative to the
earth’s surface and the velocity of the rotating system at the location of the fluid

element, i.e.

d.R d.R
dt dt

+ 22 x R. (1)
The subscripts a and r denote absolute and relative variations respectively. The accel-

eration is expressed as the variation of the velocity with time such that

dVe _ 4.V,
dt ~  dt

+ Q x V, (2)
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Figure 1: Components of the Coriolis force acting on a fluid element located in the
northern hemisphere and moving eastward.

Substituting equation (1) in the previous equation and neglecting the variation with

time of £ the absolute acceleration becomes

d.Va _ d. V.
dt ot

+20 x V, - R, (3)

where 2 2 x V is the Coriolis acceleration and 1* R,? is the centripetal acceleration.
The component of R perpendicular to the axis of rotation of the earth is termed R, and
is illustrated in Figure 1. The Coriolis acceleration, or the Coriolis force per unit mass,
acts in a plane perpendicular to § and to V,. The Coriolis force can be divided into
two components as shown in Figure 1, one acts in the vertical direction and the second
one acts at w/2 from the velocity vector in the horizontal plane. For the northern

hemisphere considered in Figure 1 and for a fluid element located at angle ¢ from the



equator and moving in the east direction there will be a component, —2Qucosy , of
the force acting towards the sky and a second one,—2Qusing, pointing south. Since
the Coriolis force acts in a direction perpendicular to the fiuid element, it can modify
the direction of the fluid but not its speed.

The summation of the fundamental forces, I F, acting on the fluid element having

a density p corresponds to i%lp and thus equation (3) can be written as follows

DV _ 'g 4 ZF

The subscript 7 has been omitted in the above equation since all the velocity terms
involved are relative to the earth, this convention will prevail from now on. The
fundamental forces acting on the fluid element are those related to a pressure gradient,
to gravitation and to viscosity. To the gravitat-ic;nal force, which is the attraction of
the earth on the fluid element, is added the centrifugal force Q2R,, to create the force
known as gravity. The gravity force per unit mass, g, is everywhere normal to the
earth’s surface and therefore has a direction which slightly deviates from the earth’s
center except at the equator. Viscous forces are present in all geophysical fluids and
result from internal friction between neighboring layers of fluid. They can be expressed
as Vr/p where the viscous stresses, 7, for a Newtonian fluid are linearly related to the
velocity gradient by the fluid viscosity such that 1 = pVV. The viscous forces can
therefore be expressed as ¥V?V, where v is the kinematic viscosity. The fundamental
forces now being clearly defined it is possible to express the equations of motion for

the geophysical fuids as follows



%:f=-%vp—2nxv+g+uv?v. (5)
The friction forces just calculated are for laminar flows. The viscous effects are of
significance in relatively small layers at the earth’s surface or at the water surface
where vertical shear is important. For the usual cases where turbulence is predominant
the stresses will correspond to the momentum fluxes due to turbulent motion. These
turbulent or Reynold’s stresses are associated with the velocity fluctuations and are
approximated using an eddy viscosity coefficient, which is a property of the flow rather

than a property of the fluid.
2.2 The geostrophic approximation

In meteorology and in oceanography the various phenomena observed such as tides
and cyclones are studied according to a scale analysis. This technique consists of
evaluating the different terms of equation (5} and estimating the order of magnitude
of the variables as well as the amplitude of their fluctuations and the characteristic
dimensions of their fiuctuations. The comparison of the different terms will permit
us to eliminate the weakest ones and thus to simplify the solution of the equations of
motion. There are five distinct scales: planetary, synoptic, mesoscale, local, and finally
the microscale. The following are some examples of the phenomena associated with
these scales: tides are studied at the planetary scale, cyclones at the synoptic scale,
fronts at the mesoscale, convection at the local scale and waves at the microscale.
The purpose of this section is to introduce the geostrophic approximation and for

that we need to know more about the synoptic scale. The length of this scale is 10°
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metres for the atmosphere and 10° metres for the ocean; its time scale is of the order of a
few days for both environments. At the synoptic scale the horizontal components of the
pressure gradient and of the Coriolis force are of the same order of magnitude and nearlv
balance each other. The other terms of equation (5) are at least one order of magnitude
smaller and can be neglected in the analysis of the synoptic scale. Conserving only the
Coriolis and the pressure gradient terms from equation (5) we obtain the geostrophic

approximation

18p

~In = e ©
1dp

= -2 7

fu = —5 ™

where f is the Coriolis parameter corresponding to 2Q2sin¢, and u, and v, are the
respective = and y components of the geostrophic velocity. The expression for the
geostrophic velocity vector can thus be written as follows

1

V, = k x —=Vp, 8

where k is a unit vector in the vertical direction. The establishment of the geostrophic
winds can be visualized by looking at a parcel of air moving from an area of high
pressure to one of low pressure (Figure 2). The fluid particle is first subjected to a
pressure force perpendicular to the isobars that will cause the particle to rise. Once
the movement is initiated the Coriolis force, which is perpendicular to the fluid’s ve-

locity, tends to deviate the fluid’s trajectory to the right. As the velocity of the fluid

7
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Figure 2: The establishment of the geostrophic wind (northern hemisphere); F,, is the
pressure-gradient force, and F. the Coriolis force.

element increases the Coriolis force increases proportionally. The particle’s dircction
will be modified until it becomes parallel to the isobars, at this point the Coriolis force

associated with the velocity of the particle will balance the pressure gradient force,
2.3 Pure wind-drift currents and the Ekman spiral

Wind drift is a force of major importance for the upper ocean. Water currents are
principally caused by the presence of a horizontal pressure gradient resulting from sea
surface tilt, and by the action of the wind blowing on the sea surface. If we consider the
ocean as being divided into a series of thin layers where on the topmost layer a wind
stress 7 is applied, then this layer will exert a shear stress 7 — d7 on the underlying
layer. This second layer will itself exert a frictional stress on the third layer that will

be decreased by dr. Thus, for a fluid element of the first layer and of mass pdz dz dy



. the net frictional force acting on it is

or or
dr dy (1~ (7 — é;dz)) = 3 dr dy d:

and this force per unit mass is %/p. The motion of a volume element of fluid is
determined by the frictional forces, the Coriolis force and by the pressure gradients

acting on it and therefo1.: will follow these equations

du 1 3p 1 31',
—_ - = ——a - 9
dt fo poz + p 8z’ (%)

dv 10p 187,
— R i 10
dt+fu p6y+p6:: (10)
. Writing the above equations for a laminar steady flow and for a Newtonian fluid we

obtain

fv = _L% v@ (11)

T por 922’

18p 0%v

= ——— —. 12
fu >3y + v 772 (12)

As mentioned previously the Coriolis force can only modify the direction of the fluid
element and thus, only the two remaining forces tend to accelerate the fluid. The effects
of sea surface tilt and of wind drift can be considered separately such that the velocity
will have two components, one due to pressure and the other due to friction. The
component of the velocity uniquely related to the pressure gradient is the geostrophic

current. The second component associated with the wind stress is the Ekman velocity

o ;



Wind stress
force

Top frictional

Coriolis
Frictional drag force Bottom frictional
force drag force
Top Layer Second Layer

Figure 3: Balance of forces acting on fluid element for Ekman wind-drift currents [von
Schmind, 1980).

derived by Ekman [1905] who considered the nonaccelerated pure wind drift currents
for an ocean infinitely deep and unbounded in the horizontal. For pure wind-drift
currents the equations of motion can be written in terms of total derivatives and are

simply the following

- fvg = vd—::TE, (13)
&
fug = v—3. (14)

where the subscript E stands for Ekman. The balance of the forces acting on the two
topmost layers is illustrated in Figure 3. As shown in this figure the resisting force for
the first layer becomes the driving force for the second layer. Solutions for ug and vg

can be obtained by first differentiating equation (13} twice and then substituting the

10



expression for d®vg/dz? in (14) such that the following equation is obtained

d"ug
dz4

+(%

Yug = 0, (15)
which has the following general solution

ug = Ble“-i-i]:/&g + Bge—(l-i-l'):/tss + Bse(l—l'):fﬁg + B.,e‘“‘”‘”‘ (16)

where 6 is defined as /2v//f. In order to evaluate the constants By, By, By and B,
the boundary conditions have to be stated. First, it is assumed that the wind blows in

the r direction and that according to Newton’s law of viscosity the stress is given by

duE -
T= g = (17)
and consequently
dvg
0 = = lz=0 -
a dz 0 (18)

At great depths the wind drift currents disappear such that

Ug |:=—oo =0 (19)

and
VE |r=—ce = 0. (20)

11



At this point it is possible to obtain the expressions for ug and vg as functions of the

depth =
Tép .2
up = Ei— e*/%E sm(gg+-}). (21)
TJE :/8E = T
Ve = — e’ cos(— + —). 22
E \/§,U ( c 4) ( )

At the water surface where z = 0 the velocity components are

Tép . W

- = — - 2
ugp I:—O \/iﬂ 51n(4)v ( 3)
Té
Ve |__0 = —7_2—2 COS(-}). (24)

The surface velocity vector V, has a magnitude of 76¢/v/2 u. Therefore, the water

velocity at the surface is

This vector points in a direction 45° to the right of the wind direction in the Northern
Hemisphere for which this solution was obtained. For the case of Southern Hemisphere
the water current is directed 45° to the left of the wind stress. The magnitude of the
velocity vector decreases exponentially with depth and its direction is modified such
that it gradually turns clockwise. When the velocity vectors for several depths are

sketched on the same plane, a spiral is formed as shown in Figure 4; it is known as

12



Figure 4: Ekman spiral for wind drift in the northern hemisphere [von Schmind, 1980).

the Ekman spiral. Ekman defined the depth at which the frictional forces produced
by the wind become negligible as the ‘depth of frictional resistance’. At this depth,
corresponding to —még, the water current is in a direction opposite to the surface
current.

The mass transports in the z and y directions are found by integrating, in the 2
direction, the corresponding velocity components multiplied by the fluid density. The

following mass transports are obtained from the integrations

Mt = 0! (26)
rH?
My = ——27'. (27)

The total mass transport is in the negative y direction or in other words is directed 90°

cum sole to the wind direction. The flux transverse to the isobars in the Ekman layer

13



is a mechanism of dissipation of kinetic energy and therefore the preceding theory, ap-
propriate for the laminar case, is not applicable quantitatively to the real environments
but still provides a good idea of the processes that take place in the upper ocean.
2.4 The oceanic boundary layer and the balance of forces for
ice floes

In northern regions the ocean is covered with ice. In some areas, like the Labrador sea
or in the marginal ice zone of the Arctic, the ice cover is fractured, forming floes having
sizes that can range from a few meters to several kilometers. The characteristics of the
ice floes vary with the seasons. During the summer, for example, they become smaller
and the ice is less resistant. The motion of the ice floes is primarily dictated by the
action of the wind. The momentum induced by the wind is transported downward by
the ice cover to the water and to the planetary boundary layer such that the shear stress
acting at the ice-water interface generally resists the motion of the ice floes. Moreover
the ice floes are subjected to a Coriolis force which is significant at high latitudes, to
a pressure gradient force resulting from sea surface tilt and also to contact forces due
to internal collisions.

A study having a major impact in the field of ice dynamics was conducted in the
early seventies in the Arctic ocean. It was called Arctic Jce Dynamics Joint Experiment
(AIDJEX). The purpose of AIDJEX was to “understand quantitatively the intcraction
between the fields of motion of the atmosphere, the pack ice, and the ocean”. In the
1972 pilot study of AIDJEX an investigation, consisting of taking velocity measure-
ments for the ice, the wind and the water currents, was done at several stations. The

water currents were measured at several depths underneath the ice floes, on which
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the stations were located, down to 50 meters. These field data were used by Hunkins
[1974] in order to find the balance of forces for several ice floes, and that for different
time intervals. Water stresses were calculated based on the momentum exchange in
the surface boundary layer. The other external forces, consisting of wind drag, Coriolis
force and pressure gradients, were calculated based or the velocity measurements of
the ice and wind.

The momentum integral method used by Hunkins [1974] to evaluate the water
stresses will now be briefly presented and it will be followed by the details of the
computations of the other forces. The water velocities recorded in the field study were
averaged over twelve hours in order to minimize the fluctuations related to turbulence
and to inertial oscillations. Hodographs of the current velocitics measured at several
depths between 0 and 50 meters are presented in Figure 5. On the hodographs are
given the two velocity components of the water currents for several depths. Beside
each point is written the corresponding depth and these points are connected by lines
on the graphs. The 0 depth corresponds to the base of the ice which is 2 m below sea
level. The dashed line on the hodographs corresponds to the surface boundary layer
in which the frictional forces are more significant than the Coriolis effects. Below 2 m
is the Ekman layer where changes in the current’s direction and speed are significant.
The spirals obtained on the hodographs do not correspond exactly to the theoretical
Ekman spiral since the velocity decreases sporadically and the rotation of the current is
merely gradual. Underneath the Ekman layer the frictional effects are non-existent and
the current is quasi-geostrophic. From the hodographs obtained in his study, Hunkins

(1974) determined that the geostrophic current was between 25 and 50 m from the
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surface.
The z (east) and y (north) components of the ice-water stress, 7,, were evaluated

using the vertically integrated form of the equations of motion

aMz
ot - fMy = Tory (28)
% + M, = Ty, (29)

where f is the Coriolis parameter described in §2.2 and M, and M, are the mass

transports given by

0

M, = Pulu — ug)d (30)
Hg
0

M, = pu(v — vy)dz, (31)
Hg

where Hg is the depth of frictional influence chosen to be 25 m. The geostrophic
velocity components, u, and'vg, were evaluated at this depth and were considered to
be constant throughout the Ekman layer. The water density, p,,, was taken to be
1.0 g/cm3, The time dependent terms were evaluated by taking the hourly differences

between mass transports.

The air shear stresses were determined through the following drag law

Ta = Pa CaV102 (32)

where C, is the air drag coefficient taken to be 1.5 x 1072, p, is the air density of
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. 0.00125 g/cm? and Vg is the 10-m surface wind velocity. The Coriolis force for an ice
floe having a thickness h of 2.5 m , a density p; of 0.9 g/cm?, and being located at a

latitude of 75° was evaluated using the following relationships

F = pihfu, (33)

Fy = —pihfu, (34)

where u; and v; are the two respective z and y components of the ice velocity. The

pressure forces were computed using the geostrophic velocity components as follows

sz = "'Pihfvga (35)

. pr = B hfug. (36)

The ice was assumed to drift under balanced forces such that the internal ice force due
to floe collisions was evaluated as the residual from the force diagram. In Figure 6
are sketched the force vectors acting on four ice floes as well as their velocity vectors.
As shown in this figure the internal forces play quite an important role in ice motion.
The wind and water stresses were found to point generally in opposite directions and
to have a strong correlation in their magnitude as shown in Figure 7 where the two
stresses averaged over 12 hours are plotted versus time for a one month period for
AIDJEX's main camp. The Coriolis force, the water and wind drag forces are found

to be of the same magnitude while the pressure gradient force is less significant.



Fe
Vl 'I\
- S~ T
Tet
t’
Fint
o112
1224

as 141V
131VT2 ¢ :
cynansemt

[+] [[+]
cm/eec A
12~24 0-12
171V 8w

Figure 6: Balance of forces on ice for 12-hour intervals when winds exceeded 5 cm/s.
Ice velocity, v;, in cm/s; air-ice stress, 7,; ice-water stress, T,; Coriolis force, F;
pressure-gradient force F,,; and internal ice force F;,[Hunkins, 1974].

19



f
i
‘!
.‘l
- P -
R
0
bl
L
Vo
N
« i -
3 b
£ LR
toh
5 N S
i :
a8 b= 1

[ “ f
! \ \Y-' 7
L1 L1 11 1 t°="t 1 L it L. b 141111 21 1 )
o T s 10 3 0 7]
MARCH Arni,

Figure 7: Ice-water (solid line) and air-ice (dashed line) stress at 1972 AIDJEX main

camp based on 12-hour means. Direction of air-ice stress reversed for comparison
[Hunkins, 1974].

20



2.4.1 Evaluation of water stresses in sea ice models

The water drag force vector acting on an ice floe is colinear with the ice velocity vector
relative to the water current. In oceanographic studies, the geostrophic currents are
more easily evaluated than thosge at the surface. It is therefore important to be able to
determine the angle formed by the water stress vector and the relative velocity vector
between the ice and the geostrophic current. This angle 3, as shown in Figure 8, is
referred to as the boundary layer turning angle or simply as the water turning angle.
McPhee [1980] has used field data of the AIDJEX study of 1975 to determine the water
turning angie as well as a simple expression for the water shear stress. The data used
were for the melt season during which the fragmented ice pack is not able to support as
much stress as in the winter. McPhee [1980] has demonstrated that for several weeks
in 1975 the ice was free of internal forces. This period of free drift was identified by
considering inertial oscillations, ice-wind currents statistics and simulations of ice drift
for the AIDJEX stations. During such a period, the wind stress is balanced by the
Coriolis force and by the water stress, The balance of forces is shown in Figure 8. As
sketched on this figure the water stress lies at an angle 8 counterclockwise from the line
of action of the relative velocity vector V between the ice and the geostrophic current.
For a 20-day period at the height of the melt season, ice velocity measurements were
made at the four camp stations twice daily. The wind was measured at a height of 10
m and realistic estimates of the mass of the ice floes, of the wind drag coefficient and of
the geostrophic currents were made. The water stresses were evaluated from the force
balance for cases where the relative ice speed was greater than 8 cm/s; 95 points were

determined and plotted on a scatter diagram shown in Figure 9. From a least-squares
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Figure 8: Schematic of the free-drift force balance.
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Figure 9: Kinematic water stress versus relative ice speed [McPhee, 1980].
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exponential fit the following relationship for the water stress was found

|To| = 0.0046 V20 (37)

From this result it appears reasonable to evaluate the water stresses threugh a quadratic
relationship as shown in the graph. The drag coefficient found by a fit of a quadratic
expression is 0.0055. This drag coefficient is high, as expected, since the bottom of
the ice was observed to be rough. A drag coefficient of 0.0034 was evaluated at one of
the AIDJEX camps during the year of 1972 where the ice was considerably smoother
[McPhee and Smith, 1976). The drag coefficient evaluated from the relative velocity
hetween the ice and the geostrophic current is usually called the geostrophic drag
coefficient. The value of the drag coefficient is related to the under ice surface roughness
and to the depth at which current measurements are made.

From the balance of forces obtained in the free drift period, the boundary layer
turning angle 8 was evaluated to be 23.6° on average. For the 1972 pilot study of the
AIDJEX camp, a mean value of 24° was found [McPhee and Smith ,1976). The water
stress is to be determined from idealized boundary layers assuming a constant turning

angle as follows [Hibler, 1981]

Tw = Cy'[V cosB+k xV sinf] (38}

where C\,’ is a constant having units of kg m~2s™! in a linear drag law, or it corresponds
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to

CwJr = pw Cyu Ivl (39)

when the stresses are evaluated using a quadratic relationship. In the above equations
Py is the water density and C,, is the dimensionless drag coefficient. As mentioned
previously, the drag coefficient and the turning angle vary according to the depth at

which the water currents are measured.

2.4.2 Surface winds and air stresses

In section 1.2 we have seen that at the synoptic scale the pressure gradient force and the
Coriolis force nearly balance each other and that under such an equilibrium the wind
blows parallel to the isobars. In the 500 m or so above the earth’'s surface, frictional
forces are important due to the significant roughness present at the surface of the earth.
At the standard anemometer height of 10 m, a force balance is reached for the wind
blowing at a counterclockwise angle o to the isobars as illustrated in Figure 10. This
angle is analogous to the water turning angle. The magnitude of the friction force
and of a is proportional to the wind speed and strongly depends on the roughness of
the surface over which the wind blows. The component of the friction force along the
isobars is balanced by the corresponding component of the Coriolis force such that the
more significant the friction force is, the greater the cross-isobars angle must be, The
winds at 10 m above the ocean correspond to about two thirds of their geostrophic
speed whereas this ratio is reduced by up to one third for winds blowing over the

ground. The air turning angle a is usually between 10° and 20° for water surfaces

24



Fp

frictim(
\ \ Fe
.-"J"{‘

Figure 10: Balance of forces in a surface wind (northern hemisphere}.

1000 mb

surface
wind

1004 mb

and 40° or more for ground surfaces. The friction forces diminish slowly with height,
consequently the wind speed increases correspondingly and the turning angle gradually
decreases. The atmospheric layer where the frictional forces are present is called, as in
the ocean, the Ekman layer.

The presence of ice on the water surface considerably increases the surface friction
and mean values for & were found, from various studies, to vary from 22° to 42° and
their reduction factors of surface to geostrophic winds, Vjp/Vg, were found to be 0.5
to 0.8. Fissel and Tang [1991] have conducted a study for the Newfoundland Shelf
and have found turning angles of 20° for near shore locations, of 35° in the pack ice
interior and of 42° near the ice edge. The seasonal variations of a were observed during
AIDJEX by Carsey [1980]. For the spring a minimum mean turning angle of 19.2° was
found versus a maximum of 31.4° for the fall. According to Fissel and Tang [1991] the
considerably higher values obtained for the turning angles in the Newfoundland shelf

are related to to the very high roughness of the ice cover and to the small floe sizes.
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Overland [1985] has done a literature review of ice-atmosphere interaction studies and
reports that the air drag is greater over storm-broken ice.

The drag exerted by the wind on the ice is related to the relative velocity between
the wind and the ice, but the wind stress can be accurately evaluated by neglecting
the ice velocity since it represents only a few percent of the wind velocity. The wind

stress, assuming a constant turning angle, is determined as follows [Hibler, 1981]

To = Co'[Va cosa+k x V, sina) (10)

where C,’ is defined differently depending wether a linear or a quadratic drag law is
used. In a linear drag law C,' is a constant, having units of kgm™2s~!. When the

stresses are estimated by a quadratic relationship C,’ corresponds to
Yy aq

Ca' = pa Ca|Val (41)

where C, is a dimensionless drag coeflicient and p, is the air density. In the two
previous equations, V, is the wind velocity corresponding to the geostrophic wind
evaluated from barometric maps. If the 10-m surface wind is used in equation (40) and
(41) « is zero due to the fact that the wind stress is colinear with the wind’s velocity

vector.
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3 Granular Dynamics Simulations Procedures

This chapter describes the discrete element model that is being used to investigate the
dynamics of the marginal ice zone. The fractured ice cover is considered to be a two
dimensional granular medium and the simulations are done according to a molecular
dynamics approach which is cornmonly used to study granular flows. Before presenting
the details of the numerical procedure involved in the ice floe problem, some physical
aspects of granular materials and of their flows will be discussed and then followed by

an overview of the granular dynamics type of computations.
3.1 What is a granular material ?

Matter is encountered in a granular form in nature as well as in industry. A granular
material consists of a large number of solid particles whose interstices are filled by a
fluid. The fluid in which the solid particles are dispersed can be air when we think
of powders for example, or a liquid when slurries, pastes or suspensions are involved.
The following are some examples of granular media: food stuff such as cereals, sugar
or flour, animal feed, sand, granular snow, metal and ceramic powders. What is very
particular about granular material is that sometimes it behaves like a solid and at other
times like a liquid. Consider, as an example of this phenomenon, the pile of mustard
grains shown in Figure 11 A. This pile is stable and in static equilibrium when its slope
is less than a certain value called the angle of repose. Past this value the grains that
will be added to the pile will flow on the sides forming an avalanche. It is possible to
see a thin layer of the grains flowing at the surface of the pile as in Figure 11 B. One

can consider the static pile as behaving like a solid, whereas a liquid-like behaviour is
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associated with the avalanche.

A parameter describing the internal behaviour of a pile is the internal friction angle
of the material, ®, which is closely related to the angle of repose. The internal friction
angle is defined by the Mohr Coulomb yield criterion. This theory states that failure
will occur on a plane when the shear stress acting on this plane becomes equal to the

product of the normal stress o with the tangent of the friction angle, @, such that

lr] = octan . (42)

The internal friction angle depends on the geometry of the particles and also on their
roughness. The more angular the particles are, the greater & is.

Another very interesting characteristic of a granular material is its capacity of
forming arches such that only a small fraction of the material can sustain most of the
weight of a pile. In a cereal box, for example, the grains on the sides are sustained by
friction and these forces are transmitted to the other grains by inter-particle contacts
developing a force network.- Under these conditions the grains at the bottom of the
box are not being crushed since there is barely any weight resting on them. Some
experiments have been performed involving plexiglass cylinders that were submitted
to a vertical pressure. Plexiglass has the property of being optically anisotrapic such
that when the cylinders were subjected to a polarized light it was possible to observe
the force network developed between particles. A picture of the cylinders’ pile is shown
in Figure 12 and the brightest cylinders are those transmitting the vertical constraint.

As expected, only a small fraction of the cylinders are supporting the weight. The
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Figure 11: A. Mustard grain pile in static equilibrium. B. Avalanche of a thin layer at
the top of the pile [Jaeger and Nagel, 1992].
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Figure 12: Plexiglass cylinders subjected to a vertical pressure. The lightened cylinders
are those transmitting the constraint [Jaeger and Nagel, 1992).

capacity of the particles to make arches is present in most high concentration granular

flow regimes.
3.2 Granular Flows

Flows of granular material take place in many environments and under various condi-
tions. Some examples are

- sediment transports in rivers,

- manipulation of pharmaceutical products in industry,

- snow avalanches,

- the mixing of aggregates utilized in the making of asphalt or concrete in

a rotating cylinder,

- land slides
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Figure 13: Photograph of ice floes taken in the marginal ice zone of the East Greenland

Sea. The largest floes have diameters of approximately 50 m [Leppéranta and Hibler,
1987).

and the subject of the present study;

- the movements of ice floes forming a broken ice field.
From field observations made in the East Greenland marginal ice zone, Leppéranta
and Hibler [1987] noticed that “... the ice pack could be considered an almost ideal
two-dimensional granular medium”. A picture of the ice floes covering a surface of

approximately 0.7 km? was taken from their paper and is presented in Figure 13.

3.2.1 Granular flow regimes

Bagnold [1954] has classified granular flows in three distinct regimes:

- a macro-viscous regime for granular flows in which the normal and shear stresses
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are proportional to the velocity gradient and in which the viscosity is dominant,

. a grain-inertia regime where the particles’ interactions control the flow behaviour

as opposed to the interstitial fluid effects that are negligible in their flow regime,

-and an intermediate regime that Bagnold called transitional.
In the grain-inertia regime Bagnold was able to find an expression for the stresses where
they depend on the square of the velocity gradient. Such a relationship between the
stresses and the velocity gradient was developed by expressing the particles’ motion
in terms of the mean velocities and the velocity fluctuations. The analogy between
Bagnold’s analysis and the kinetic theory of gases has led other researchers to develop
kinetic theories for granular materials. Furthermore, the velocity fluctuations are re-
ferred to as granular temperature because of their similarity with the thermal motions of
the molecules of a gas. The major difference between molecular interactions and those
of the bulk solid’s particles is that in the latter energy is dissipated. The computer
approach commonly used to investigate dry flows of granular materials is the granular
dynamics type of simulations. This numerical procedure is discrete in the sense that

the movements of individual particles are studied.

3.2.2 Computer simulation of granular flows

The behaviour of granular flows developed in naturé or in experiments is not well un-
derstood. This is primarily because of the difficulty of making measurements, in the
laboratory or in industrial settings, of the interesting parameters, such as densities or
velocities, without disturbing the flow. In computer simulations, this kind of problem

is not encountered since the state of the system is known at all times. Recordings of
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the particles’ positions, velocities and contact forces are used to obtain stress distri-
butions or to determine the granular temperature of the system. An analysis of the
instantaneous values of the different parameters can be done and good averages can
also be computed.

In the domain of experiments, various types of problems have been investigated:
uniform shear flows generated in an annular cell, chute flows down an inclined bed, the
development of roll waves at the surface of a granular material flowing down a rough
plane, and avalanches in rotating drums. Simulations of some of these experiments
have been performed and their results have been compared with the experimental
ones and also with the kinetic theories’ predictions. Many of the simulations done
involve two-dimensional flows where the particles are modeled as circular disks. In
order to compare the 2-D simulations with the theoretical and experimental results,
a relationship is established between the 2-D and the 3-D solids fractions based on
an equivalent inter-particle spacing. Three-dimensional flows have also been simulated
where the grains were considered to be spherical.

In computer simulations the motion of the individual particles is governed by New-
ton's laws. The particles collide with one another giving rise to normal and tangential
contact forces. Between the collisions the particles follow a trajectory which is a func-
tion of time. An external force field such as gravity can be applied to the system.
In granular dynamics simulations, the particles are treated as heing hard or soft. The
hard particle model implies instantanecus and binary collisions while the soft approach
permits multiple contacts of a finite duration. The latter is more appropriate for high

concentration flows in or close to the quasi-static regime. Different computational

34



schemes are used depending on how the particles are modeled. The computational box
in which the particles are enclosed can have two types of boundaries, either solid or pe-
riodic. The former are used when walls or beds are involved and the latter are applied
when it is desired to increase significantly the computational region. Solid walls may
consist of particles or they may be flat surfaces. The Lees-Edward boundary conditions
arc appropriate for the analysis of shear flows of infinite flow fields [Lees and Edward,

1972].
3.3 The actual computational formulation of the ice problem
3.3.1 Governing equations of motion; wind and water drag forces

The present model is concerned with deformations at the mesoscale; i.e. for length
scales of the order of 100 km and time scales of the order of 2 days. The forces acting
on sea ice at such scales are the wind and water drag as well as the Coriolis force. In
addition to these three kinds of forcing, the ice floes are subjected to contact forces
as was underlined in the previous chapter. The ice floes are considered to move in
response to these forces and the equation of balance of momentum for a single floe can
therefore be written as follows
du

m—o = -mfkxu + AT, - AT, + S F, (43)

i=l

where u is the linear velocity, m is the mass of the ice floe, ¢ is the time, k is a unit
vector in the vertical direction, f is the Coriolis parameter, 7, and T,, are the air and

water stresses, A is the floe area and 31, F; is the vector sum of the n contact forces
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acting on the floe. The water shear stress is evaluated according to the linear drag law
shown in equation (38) with a constant C,,’ of 0.0126 kgm~2s~! [Flato and Hibler,
1989]. Similarly, the wind shear stress is evaluated according to the linear drag law
of equation (41) with C,’ taken to be 0.652 kgm~2s~! [Flato and Hibler, 1989]. The
wind and water drag forces are considered to act on the top and bottom surfaces of

the ice floes.

The conservation of angular momentum, for a floe having a radius R, is based on

the following equation

I— = Y% -T, (44)

where I is the moment of inertia, which corresponds to 1/2m R? | w is the angular
velocity, 37, T; is the sum of the torques developed by the inter-particle contacts
and T, is the viscous resisting torque acting at the ice-water interface. The latter is

expressed as follows [Savage, 1992}

T, = gc.., cos fw R, (45)

Wind arag, water drag and the Coriolis force are assumed to act through the center of
the floe and thus they induce no rotation. Ouly the torques arising from the collisions
cause the floe to spin, and these rotational movements are resisted by the water shear

stress at the floe’s bottom surface.
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Figure 14: Loading and unloading force-displacement behaviour for elastic-plastic
spheres during quasi-static normal displacement calculated using a finite element mode
[Walton, 1992). -

3.3.2 Contact force models

Collisions with the soft particle model take place over many time steps during which
energy is dissipated in the normal and tangential directions of the contacts. The normal
contact forces between two particles are computed according to a force-displacement
model. An elastic-perfectly-plastic constitutive model was used to determine the effec-
tive normal force displacement curve for a sphere impacting a wall [Walton, 1992]. The
sphere was moved toward the wall, subsequently withdrawn, and then moved back to
the wall again for several cycles in order to obtain the loading-unloading curve shown
in Figure 14. From this graph we see that the loading and unloading forces are al-
most linearly dependent on the displacement with the unloading curve steeper than
the loading one. The slope of the unloading curve increases linearly with the maximum

contact force attained during loading. This behaviour suggests that collisions between
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particles can be closely approximated by a linear spring acting between two rigid bod-
ies. Walton and Braun [1986] presented a latching spring model that approximates
the behaviour shown in Figure 14 and in which the normal forces are related to two

different spring constants (Figure 15)

N = K|« for loading, (46)

and

N = Ky (e — a,) for unloading, (47)

where « is the overlap of the two contacting particles and a, is the value of @ when
N becomes zero. The energy dissipation corresponds to the area under the curve of
Figure 15. The ratio of the moduli K; and K3 is related to the restitution cocfficient

e, which is constant over the whole simulation, as follows
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K,
e = \/;2 (48)

Tangential forces are also considered to act at the interface between floes in a
direction opposite to the relative tangential velocity. The magnitude of the tangential

force T is calculated according to a Coulomb friction coefficient, 1 = tan @, such that

T = puN. (49)

3.3.3 Boundary conditions and nondimensionalization

Situations involving different kinds of wind force fields have been simulated, these wind
ficlds were either uniform, cyclonic or anti-cyclonic. For the cases where the wind field
consists of a vortex the array of ice floes is enclosed by four solid boundaries. For
the case of a uniform wind, a solid boundary is placed at the right hand side, a free
boundary occurs on the left, and periodic boundaries are applied in the direction of
the flow. Computations conducted under these conditions will be presented in a later
chapter.

It is convenient to use a dimensionless form of the governing equations in the com-
putations. Comparisons with field conditions or with other studies can be easily done
afterwards. The largest floe diameter D is used as a reference length. Time and veloc-
ity reference values are respectively taken to be \/M and D/ \/M , where A is
the mass of the largest floe [Savage, 1992). In the preliminary computations, the ma-
terial property values were taken to be: K; = 2.5 x 105 N/m, p = 0.91 x 10% kg/m?,

p# = 0.3, and e varied from 0.2 to 0.8.
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3.3.4 Program logic

A number of particles are located in a rectangular array bounded by two or four rough
walls depending on the wind conditions. Initially, each particle is given a small random
velocity. Wind and water drag cause the motion to begin, and, after a short period of
time, collisions occur giving rise to contact forces.

A short time interval is used in order to have several time steps during each colli-
sion. The neighbors of each particle are regularly checked for contacts. The overlapping
distance of two particles, ¢, is calculated and, depending on whether the particles are
approaching or retreating from each other, K, or K, is used in the evaluation of the
contact force. The tangential force is then computed after determining the direction of
the relative tangential velocity. Forces from all contacts are then added for each par-
ticle and the equations of balance of momentum are integrated over the time step in
order to give the particles new positions and velocities. The calculations are repeated

for the following time steps .
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4 Non-Linear Effects of Water and Air Drag

4,1 Introduction

In §2.3.1 we showed how the drag exerted by the water and by the wind on the hor-
izontal surfaces of the ice floes is evaluated. The air shear stress is determined using

the following linear relationship

Ta = Ca’ Ba va (50)

where C,’ is a constant, V, is the wind velocity and B, is a matrix involving the

boundary layer turning angle o, i.e. the angle between the air stress vector and the

direction of the geostrophic wind

cosa —sinag
B, = . .
sinag cosa

In a similar fashion the water shear stress resisting the motion of the floe is expressed

as

where C\,' is the linear water drag coefficient, u is the ice floe velocity, and 2 is the angle
between the water stress vector and the ice velocity vector relative to the geostrophic
current. It is assumed that the water current velocity outside the viscous houndary
layer is negligible compared to the ice floe velocity u.

A more realistic water shear stress would be proportional to the square of the

relative velocity between the ice floe and the water current. The use of a quadratic
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drag law no longer allows the effects of the floe spin and of the translational motion
to be superposed. The development of expressions for the water drag force and for
the viscous resisting torque, using quadratic relationships to relate the stresses to the
relative velocities, is presented in this section. In a similar fashion an expression for the
wind drag force is derived. The new formulations of the stresses require the appropriate
dimensionless wind and water drag coefficients. A literature review of these drag

coefficients is presented along with the analyses.

4.2 Water drag force

The two components of the water shear stress acting on the bottom surface of an

individual ice floe can be written as follows

Twr = Pu Cuw €080 |[Vy = V| (Ve = Vz) = pu Cy sinf [V, = V| (Vi — V), (52)

Twy = Puw Cu 8N [Vy = V| (Ve = V2) + pu Cy c0sf |V, = V| (Vi — V). (53)

In the previous equations p,, is the water density, V,, is the water current velocity,
and V is the linear velocity at a particular point on the floe. The latter consists of
the velocity of the center of gravity, V., to which is added the contribution due to
the floe rotation. These velocity vectors are sketched in Figure 16a. A small elemental
area dA with a force vector dF acting on it is represented in Figure 16b. The two
C6;ltributi0ns of the velocity vector of this element are sketched in Figure 16¢ as well
as the water velocity vector. Values of Cy,, the quadratic drag coefficient, for different

types of ice and for water currents measured at different depths are given in Table 1.

43



dF

dA

do

a) b)

c)

Figure 16: Diagram defining coordinate systems, velocity vectors and elemental areas,
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The geostrophic depth is the depth at which the frictional effects induced by the wind
blowing on the water surface, or on the ice floes, vanish and where the current is estab-
lished by the Coriolis and pressure gradient forces. The turning angle 3 associated with
the geostrophic current was evaluated by McPhee [1980] and by McPhee and Smith
[1976]; it appears that § is consistent from year to year and that it has an average
value of 24°. McPhee [1978, 1979] has performed an investigation on turning angles
related to water currents measured within the viscous layer but the results he obtained
were not reliable due to large errors in current meter measurements and directions.
This suggests that the water stresses and their directions should be evaluated using
geostrophic or surface currents since the values of the turning angles for other water
depths are not known. When surface currents are involved, the turning angle is zero

since the stresses act in the direction of the ice velocity relative to the surface current.

Investigator Ice Type Reference Depth (m) Cux10?
McPhee and Smith [1976] smooth geostrophic 3.40
McPhee [1980] rough geostrophic 5.50
McPhee [1979] rough 2.0 20.00
Madsen and Bruno [1986] smooth 2.0 5.46
Madsen and Bruno [1986] rough 2.0 15.00
Madsen and Bruno [1986] slighty rough 5.1 4.07
Madsen and Bruno [1986] slighty rough 1.1 8.40

Table 1: Representative values of the water drag coefficients.
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For the time being, we will take the turning angle to be zero such that the two

components of the elemental force acting on a small element dA are the following

dF, = pu Cy [Vu = V| (Ve = Vi) r dr df, (54)

dFy, = py Cy |Vu—=V| (Vi = V,) r dr df. (55)

This assumption is only temporary and is made in order to simplify a number of terms
involved in the derivation of the drag force. The computer program used to conduct
the simulations integrates the equations of motion for the r and y directions and
consequently we must express the drag forces in terms of their r and y components,
The force components F, and F, are determined by integrating dF, and dF; over the
. floe area. In order to reduce the number of terms involved in the integrations another
reference axis is chosen. The new z axis, which we will call 7/, is along the vector
Vy — V. Since the angles that V,, and V., make with the z axis are known (V,, is
constant throughout the computer simulation and V, is computed at every time step),
the angle by which the reference axes are shifted can be expressed in terms of these
two vectors and of their angles. Defining ¢ as being the angle between V., and the
axis, € as the angle between V, and the r axis then -, the angle formed by V, -V,

and the x axis is expressed as follows

|Vy|sine — |V o|sing

= arctan .
7= A [Vw]cose — |V | cos(

(56)

The new set of axes as well as the vector V,, — V, are shown in Figure 17. The



Figure 17: Diagram defining the z' coordinate system.

magnitude of V, — V, corresponds to

Vo= Vel = V2 —2[V[[Vy|cos(e — ¢) + V2. (57)

The relative velocity vector, V,, — V, needed to find the z' and 3 components of the

force, is expressed in terms of its # and r components in the following equation

Vo =V = (—wr — |V,|sin8) eg + [V, cos? e,, (58)

where V. corresponds to V,, — V.. An equivalent way to write dF,s and dFy is the

following

dFy = py, Cyp (Vy — V)2 cosn r dr df, (59)
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Figure 18: Diagram defining velocity vectors on the z’ coordinate system.

dFy = py Cw (Vy— V) singr dr df (60)

where 7 is the angle that V,, — V makes with the z' axis. By looking at Figure 18, it

can be seen that

Yy
cos(n — 0) = VoV’ (G1)

and

Uy

sin(n - 9) = W (52)

Combining these two equations, we obtain

v, cosd + v sinf

cosn = VooVl (63)
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v,.8in 8 + vy cosf

sin = Vo= V] (64)

Substituting for v and for v,, the previous equations become
cosn = 2|V cosii;— I_V{f||—— wr sin(?1 (65)
sinn = I—:—;—‘f-io—;gl. (66)

We can now write the expressions for dF,s and dFy,

dFy = py Curfw?r? + 2wr|V,|sind + |V (=|V.| —wrsing + 2|V.|cos?§) r dr d8

(67)

dFy = py, Cy \/w2r2 + 2wr|V,|sin@ + [V, [? (—wrcosf) rdrdd. (68)
We can divide dF,/ into three components

dFy = pu CuyJw?r? + 2wr|V,|sin + [V |2 (—[V.|)rdrd8, (69)

dFy = py Cuyfw?r? + 2wr|V,|sind + V|2 (—wrsin)rdrdf, (70)

dFy = py Cy\fw?r? + 2wr|Ve|sing + [V |2 (2|Vc|cos? ) r dr db. (71)

There is no closed form solution to the integrals of equations (68) to (71), so we must
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integrate them numerically. In order to do this numerical integration, the nondimen-
sionalization of the variable r was required. This variable was nondimensionalized by
R, the radius of the floe for which the force is to be calculated, yielding a new varinble
z which corresponds to r/R and ranges from 0 to 1. The first component, dF}, of the

elemental force can be written as follows

_ ro_g Juw?r?  2wr|Vsin@ |V ]2 ,r
dFy = —py CulVel 5 R w‘/;R2+ ar— g (12)

and finally in terms of z and of a new parameter G corresponding to |V.|/wR, dF}

takes on the following form

dF) = —py Cy|V|RPwz V22 +2Gzsinb + G?dz dd. (73)

In a similar fashion dF}, dF; and dF,, are expressed as follows

dFy = —py Cpw® R* 22 sinfv22+2G 2z sinf + G dzdf, (74)

dFy = 2 py Cy|V | RPwzcos?8V22 +2G 2z sind + G2 dz d0, (75)
dFy = —p, Cpw? R* 2% cos8V22 +2G 2z sind + G2 dz db. (7G)

The parts of dF\,dF,, dF; and dF, that contain the variables z and § will be called
dF,,dF,, dFy and dF‘;» respectively.

dFy = 222 +2Gzsinf + G2dzdb, (77)
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. dFy = 2% sinfvz2+2Gzsinf + G?dz dd, (78)

dFy = zcos?0V2?+2G z sinf + G2 dz db, (79)

dE, = 2% cos8V22 +2G z sinf + G? dz db. (80)

The above expressions were integrated numerically for # ranging from 0 to 27 and =
varying from 0 to 1. The integrals were computed for several values of G. The integral
of dF,, was found to be zero for any value of G. This result was to be expected since the
elemental forces acting in the ' direction are uniquely related to the angular velocity
of the disk. The results obtained from the integration of each of the three components
of dF,. were plotted against the parameter G. A public domain software SciPlot was

usced to determine functions that fit each of these curves. These functions are written

. below

2x 1

fo [ dF, ~ ~0.3147+ 3.1754V/0.5340 + G2, (81)
2x p1

fo [ dfy ~ 0.78 tanh(1.5016 G), (82)
2r 1 L

/0 [ dfy ~ —0.0103 + 15716 V0.4466 + G7. (83)

The numerical results obtained from the numerical integration of dF,,dFy, dFy and
dfy» are plotted in Figures 19 to 21 with their respective curve fits. Now that the

three force components are evaluated, F» can be written in the following manner

Fo = py Cy[~|V R w (—0.3147 + 3.17541/0.5349 + G?) — w? R*0.78 tanh(1.5016 G)

+ 2|V | R*w(~0.0193 + 1.5716 V0.4466 + G?)]. (84)
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Figure 20: Numerical values of the elemental force £, as a function of the parameter

G.

52



N -0.0193+l.57|6‘4(0.4466+62)
| o  numerical results
40
30 -
im
20 |
10 |
o L ’
=30 -20 -10 0 10 20 30

Figure 21: Numerical values of the elemental force Fy, as a function of the parameter
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Figure 22: Numerical values of the elemental force T}, as a function of the parameter
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Writing the previous equation in terms of w,|V|, and R we obtain

Fo =~ p, C,[0.3147 [V | R®w — 3.1754,/0.5349 |V | RSw? + |V.|* R*

v
- w2R40.78tanh(1.5016| "')—0.0386 |Ve| R? w

wr

+ 31432 1/0.4466 |V.|2 RS w? + [V|* RS). (85)

For an ice floe having a zero rotational velocity, the above equation reduces to

—3.1754 R? p,, C,, |V|* which is very close to the exact expression —7 R2? p,, C,, |V |*.
The last step in our derivation is to shift back the axes in order to obtain the proper
components of the water drag force. This can be done by multiplying F,» by the cnsine
of « to obtain F,, and by sin~y to obtain F,. Furthermore, the effects of the viscous
boundary layer must be included if geostrophic currents are used in the simulations.
This is done by reintegrating the turning angle # which had been neglected temporar-

ily. Finally, we obtain for F, and F), the following expressions

F, = cosf cosy Fp — sinfl siny Fp, (86)

F, = sinf cosy F + cosf siny Fo. (87)
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4.3 Viscous resisting torque

The torques arising from collisional contacts with neighboring ice floes are resisted by
the water shear stress on the bottom of the ice floe. The elemental torque resisting
the spin of the floe is equal to r, the arm, multiplied by dFj,, the compcnent of the
elemental force in the @ direction. Since dFy = 75 r dr df, the elemental torque can be

written as

dT = 74 r? drdf (88)

where

Ty = py Cu|Vw — V|(vs cos f — v, sin 3). (89)

Substituing for v, and v, the stress in the # direction can be expressed as

T = pw Cuw Jw?r? + 2wr|V|sind + |V |2 [(—wr — |V |sin8) cos § — [V,| cosfsin 3].
(90)

The elemental torque can be divided into three components

dT} = —p,, Cy, cosf wr® \/wzr2 + 2wr|V|sin8 + |V.|2 dr d8, (91)

dTy = —p,, Cy cosf |V,| 2 sind \/u?r"’ + 2wr|V,|sin8 + |V,|? dr db, (92)

dTy = —p,, Cy sinf [V,| r? cos@ yJw?r? + 2wr|V |sinb + [V 2 dr d§.  (93)
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After nondimensionalization of r we find

dTy = —p,, Cy cosBw? R® 22 V22 +2G 2 sinf + G? d= 48, (94)

dT; = ~p, Cy cosf |V w R* 2* sinf V22 +2Gzsinf + G2 dz df,  (95)

dTy = —py, Cy, sin B |V| w R* 2% cos V22 +2G =z sinb + G2 dz df.  (96)

The part of dT; containing the z and & terms, dT3, is identical to dl-"‘y, and is therefore
equal to zero when integrated. Moreover, we observe that dT, corresponds to dF.
After curve fitting the values obtained by the numerical integration of d77}, the following

function was found to fit the results

2r rl —_——
fo fo AV +2Gz o0+ G2 dzdf ~ —0.1979+ 1.5908 V07515 + G2, (97)

The numerical results and the above function are plotted in Figure 22. The expression
for the torque developed in this section is not affected by the rotation of the axes by
the angle v and consequently it does not need to be modified. The torque is to be

evaluated using the following expression

T = py Cy cosf [ —w?R%(~0.1979+1.5908 v0.7515 + G2)— |V .| wR"(0.78 tanh(1.5016 G))],
(98)

and in terms of [V|, w, and R, the above equation becomes
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T =~ p, C, cosf [0.1979 w® R® — 1.5908 /0.7515 w4 R1O 4 |Vf2 w? RS

Vv 2
- 0.78 |V, w R*tanh(1.5016 LT;Z';)]. (99)

4.4 Air drag force

The ice speed corresponds to only 3 to 5 percent of the wind’s speed and thus it is
not necessary to use the relative velocity vector between the air and the ice floe in the
calculations of the stresses. The x and y components of the air drag force are given by

the following relationships

Fiz = po Co 27R? |V,| [cos@ u, — sina v,), (100)

Fay = po Ca 2rR? |V,| sina u, + cosa v,], (101)

where p, is the air density, C, is the dimensionless air drag coefficient, and u, and
v, are the z and y components of V,, the wind velocity. The drag coefficients are
usually evaluated from winds measured at the standard anemometer height which is
10 m. A literature review of the drag coefficients evaluated from several studies is
presented in Overland [1985). The 10-m drag coefficients reported by 28 studies vary
from 1.2 x 1073 to 3.7 x 1073. The lowest values correspond to a smooth ice surface
and the largest to rough ice. Overland [1985] has observed that the nature of the ice
surface is not the sole characteristic influencing the amount of drag exerted by the
wind. Indeed, the concentration of ice on the water surface, the air temperature, the

stability of the atmosphere and the size of the ice floes are important factors in the

87



. determination of drag coefficients. Overland [1985] has grouped in a table (Table 2)
the 10-m drag coefficients for smooth ice, for the Arctic pack, for the marginal seas,

and for the inner and outer marginal ice zones (MIZ).

. . Tn< '—SU- Tu < _5‘.
Ice Regime Characreristics T, ~0 Z, < 300m Z, >40 m
Smooth ice large. flat floes 1.5+ 1.5
Arctic pack large range of floe sizes, large L7 2640
pressure ridges, C, >0.9
Marginal seas  broken, first-year ice, C; = 2V 2.7 3.0%
0.9, occasional big floes
Inner MIZ small floes., rafted, C, = 2.6' o ar
0.8-0.9
Outer MIZ C, =04 2
C. = 0.3, rubble field a8
. Table 2: Composite table of air drag coefficients referred to 10-m winds (10°C,) as

a function of ice and meteorological regime [Overland, 1985).

For a specific environment, the drag coefficients are expressed as a function of
the meteorological regime. From this table we can observe that the drag coefficients
increase as the floe size decreases and that for the same type of ice cover the drag
coefficient increases for temperatures below —5° C and for an atmospheric boundary
layer not constrained by a low inversion height, Z;. Overland [1985] defines large floes
as those having lengths of the order of 1 km or more. The marginal ice zone is a
region close to the open water in which the ice floes havi: more rounded features than
in other regions. The data reported by Overland [1985] are for the MIZ of Greenland

and for the Bering Sea. Marginal seas include the Gulf of Saint-Lawrence away from



the MIZ, the coasta! Beaufort sea, Bothnia Sea and Bay, the northern Sea of Okhotsk
and Bering Sea and the Robeson Channel.
When the surface drag coefficient is known, the geostrophic drag cocfficient can be

derived using the following relationship

Cs = Cro (Vio?/Va?). (102)

In Figure 23 are plotted the air stresses evaluated using surface and geostrophic winds
for the Caribou station of AIDJEX [Coon, 1980]). The stresses were computed for a
20-day period. The 10-m drag coefficient was taken to be 2.7 x 103, For the stresses
computed with the geostrophic wind, a turning angle of 25° was used and C, was
calculated using equation (102) with the 20-day mean of (V}92/V,2). As illustrated in

Figure 23, the stresses calculated with both types of wind are in very good agreement.
4.5 Summary and concluding remarks

Simple expressions were developed to evaluate the drag exerted by the water and by
the air on individual ice floes in the most accurate manner. These drag forces have to
be evaluated at every time step in the course of the simulations. The water drag has
two contributions; one resisting the translational motion of the floe and the other its
spin. Equation (86) must be used to evaluate the = component of the drag force while
the y component is given by equation (87). The final equation for the water resisting
torque is given by equation (98). The z and y components of the air drag are given by
equation (100) and (101), respectively.

The linear relationships that are currently used to conduct the computer simulations
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Figure 24: Water stress versus relative ice speed.

tions are appropriate for winds close to 10 m/s and for ice velocities relative to the
water current of approximatelv 0.1 m/s. Some computer simulations, involving a lin-
ear drag law, were performed for a rectangular array of ice floes with a solid boundary
on one side. There is a geostrophic wind blowing parallel to this boundary at a ve-
locity of 10 m/s and there is no geostrophic water current. High concentrations of ice
develop close to the solid boundary due to the fact that the Coriolis force, which acts
perpendicularly to the velocity, pushes the floes toward this direction. A spatial and
time averaged floe velocity of 0.175 m/s was calculated. This velocity is much larger
than the expected value of 0.1 m/s. In Figure 24 are plotted the water stresses eval-
nated from the two relationships, linear and quadratic. From this figure we can see
that the water stresses calculated in the simulations, using the linear drag law, were

underestimated by 26 percent. This difference is not negligible and it appears that it
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Figure 25: Wind stress versus geostrophic wind speed.

is not an easy task to determine in advance what the ice velocity will be.

Fissel and Tang [1991] present in their paper Response of sea ice drift to wind
Jorcing on the Northeastern Newfoundland Shelf, geostrophic winds that were derived
from meteorological data for 1988, Their data show that the geostrophic wind speed
was uniformly distributed from a few m/s to 30 m/s. In Figure 25 are plotted the air
stresses, evaluated according to both relationships, for geostrophic wind speed varving
from 0 to 30 m/s. From this graph, we observe that a variation of the wind speed from
10 to 15 m/s yields an error of 41 percent in the stresses calculated with the linear
relationship, The model that we are currently developing will he used to predict the
movements of ice floes over lengths of the order of 100 km and for periods of a fow
days. During such short periods of time, high variations in the wind’s speed strongly

affects the ice motion and the model must be able to adequately reflect these cffects.
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Moreover, the winds over regions of this length scale are not likely to be uniform; that is
the case for a vortex wind field where the wind is very strong at the center of the vortex
and decreases with radial distance. There can be a factor of three or more between
the magnitude of the wind at the center and that at the margin. It appears from these
examples that the linear drag laws, which were developed for large time and length
scale models, are not suitable for the problems in the present study. Therefore, the
relatively simple quadratic relationships derived in this chapter should be incorporated
in the discrete element model ;- ~on as possible in order to obtain the most reliable

results,
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5 A Friction Model Involving Shear Deformation
of Individual Ice Floes

A tangential contact force model is introduced in the present chapter. It takes account
of the elastic deformation that can occur because of the tangential contact forces. Sim-
ulations of inclined chute flows of a two-dimensional granular medium were conducted
with the incrementally slipping friction force model, and with the Colombic model (cf.
§3.3.1), in order to compare their performance. Finally, the numerical code used to
simulate the dynamics of broken ice fields was modified to allow shear deformation of
the individual ice floes and a study was performed to observe how this change affects

the overall behaviour of the field.

5.1 Incrementally slipping friction force model

The tangential contact forces were modeled (cf. §3.3.1) using a Coulomb-type friction
coefficient p corresponding to the tangent of the static friction angle ¢ such that the
friction force is T = uN, where N is the normal force. The particles were considered
to be ‘rotationally rigid’ such that no shear deformation of the particles was possibie in
the tangential direction of the contact. The direction of the friction forces was found by
evaluating the relative slip velocity, of the two particles, at their contact point. Since
the tangential force normally tends to oppose the motion, it was considered to act in
a direction opposite to the relative slip velocity. It can be easily demonstrated that
this model is inappropriate for the static case. Consider for example a block having
a weight W and resting on a bed inclined at an angle & from the horizontal, where

@ is smaller than ¢. According to the Conlombic model, the tangential force applied
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on this block has a magnitude of W sin ¢ and is acting upward along the plane. This
computed tangential force is greater than the component of the weight along the plane
and consequently could cause the block to move up the planc. In the following time
step, the tangential force would have the same magnitude, but would act down the plane
since the block has a velocity vector pointing in the opposite direction. This example
illustrates that the above friction force model does not adequately simulate static and
quasi-static flows of granular material. It also suggests that tangential contacts might
not be properly treated in rapid flows.

This Coulombic friction force model will be replaced in the discussion that follows
by the incrementally slipping friction force model of Walton and Braun [1986], which
allows for shear deformation of the particles. The Walton-Braun (WB) model was
based upon the studies of Mindlin [1949] and Mindlin and Deresiewicz [1953]. Their
expression for the tangential force is for elastic spheres having an elastic Hertzian
normal stress distribution in the contact regions. The friction force is a function of
the tangential displacement, It increases in magnitude until the limiting value of uN
is reached. A major assumption made by Mindlin is that the tangential displacement
does not affect the Herztian normal stress distribution. Mindlin’s expression for the
tangential force T, for a sphere of radius R, as a function of the increment in tangential

displacement, As, is as follows
16GaAs \**
= -l - 103
T [1 (- Gesm) 1
where G is the shear modulus, v is Poisson’s ratio, and a is the Hertzian contact
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radius corresponding to (E*NR)!/3, where E" is related to Young’s modulus through
the expression E* = %(’—'Eﬁ). The WB model is an approximation of Mindlin’s model
for spheres. The tangential force is evaluated using an effective tangential stiffness K;
associated with a non-linear spring. This parameter has an initial value of K, and
decreascs with tangential displacement until it becomes effectively zero at full sliding,
when T' = uN. The tangential force is a history dependent quantity and is evaluated,

for a time step i + 1, as follows

T‘H'l = T‘.+Kg As (104)
where K, is given by
7"_ - Tq Y
K =K, (1 - m) (105)

when the tangential displacement, for two contacting particles, starts taking place.
The slip, As, which is the relative tangential displacement between two time steps, has
a positive value in this direction causing T to increase. If the tangential displacement
reverses direction, As becomes negative, T is reduced and the following expression for
the tangential stiffness must be used

(106)

T — T v
I{f=Ko(1‘— T“) .

T —uh;

When the tangential displacement reverses a second time, K, is evaluated using equa-

tion (105). This pattern is continued for further reversals. In expressions (105) and
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Figure 26: Tangential force generated by the incrementally slipping friction force modecl
with a constant normal force and an ever increasing amplitude alternating tangential
displacement (4 = 1/3) [Walton and Braun, 1986).

(106), 7 is a constant parameter. According to Mindlin’s theory ¥ = i, but it is
mentioned in Walton [1992] that a value of 1 or 2 better simulates frictional contacts
involving plastic deformation. Another parameter appearing in the last two equations
is 7", which is initially zero and takes on the value of 7" whenever the slip reverses
direction. The graph of the tangential force versus displacement for a constant normal
force is given in Figure 26. In the first segment of the curve which begins at the origin,
T is increasing and equation (105) was used to evaluate the tangential stiffness. The
tangential force is acting in a direction opposite to the relative slip velocity. In the
second section of the curve where the slip has changed direction and the force is still
positive, the force vector acts in the same direction as the relative tangential velocity

until the point where T on the graph becomes negative. This section is associated with
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the recovery of tangential strain energy by the material during the rebound. When the
slip reversed direction T took on the value of T' calculated for this time step. For the
following time steps T is scaled in proportion to the changes of NV such that

Nt

Sl (107)

w1 =T N,

The scaling of T* is a compromise of Mindlin’s theory in which the entire tangential
force displacement curve scales with the normal force. With this scaling, changes of
T are allowed when there is no tangential displacement. Walton and Braun [1986]
have decided to check the tangential force against the limiting value of uV rather than
scaling T this way.

The above model was checked for a simple two-dimensional static case. Following
Wealton and Braun [1986], the ratio of the initial tangential stiffness to the normal
stiffness was chosen to be 0.8 and v was arbitrarily set to 1. Twenty disks were
dropped in an open box. The particles did not quickly come to rest, but instead the
svstem became very agitated and at a certain point it virtually exploded, propelling
the particles out of the box. After a detailed examination of the values calculated
for the tangential forces it was observed that sometimes they would reverse direction
suddenly acd then have a magnitude of u/N. This situation was found to occur when
rapid changes of N, from one time step to another, took place. Negative values of
K, were then obtained due to the fact that T; was scaled according to N to beco.ne
T*iy1, whereas T; was not modified. A solution to this problem was to scale T} before

calculating K, in addition to T";. When a tangential displacement occurs, T}, is
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Figure 27: Experimental setup for the chute flows of aluminum cylinders.

evaluated according to the change in N but also according to the increment in slip,
whereas T;4+; only depends on the variation of the normal force when As is zero. With

this minor change, the static case described previously was properly simulated.
5.2 Inclined chute flows of granular material

Experiments involving aluminum cylinders piled on a rough bed were performed by
Olivier Pouliquen in the Bulk Solids and Suspensions Laboratory at McGill and were
subsequently simulated through molecular dynamics type computations, These ex-
periments are considered to be two dimensional because there is no movement of the
cylinders in the lateral direction and no side friction. The apparatus for this experi-

ment is shown in Figure 27. The bed had a length of 1.2 m and a width of 8 cm. The
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rough surface consisted of plastic cylinders glued side by side on the bed and having
a diameter of 2.5 mm. The aluminum cylinders were 6 cm in length. Half of them
had diameters of 2 mm and the remaining half were 3 mm in diameter (mean diam-
eter d=0.25 mm). At the two extremities of the bed the particles were constrained
by two walls. The cylinders were initially arranged on the bed such that depth, h,
was constant over the whole bed. A wire passing through a pulley was used to slowly
raise one end of the bed. As the bed was inclined some local rearrangements of the
cylinders occurred and at a specific moment practically all the cylinders flowed down
the bed. This phenomenon will be referred to as an avalanche. The experiments were
performed for 1, 2.5, 4, 7 and 11 layers of cylinders. Each case was repeated 6 to 7 times
for which the cylinders had different initial arrangements. The bed angles at which
the avalanches were initiated were recorded and plotted against the number of cylinder
layers in Figure 28. The effective static friction angles, ¢, are found to increase with
the reduction in depth of the granular material. The range of values of the recorded
angles (‘error bands’) for a specific depth varies from 1° for 1 layer to 3° for a layer
3 particle diameters deep. On average, a range of 2.3° was obtained. Thesec results
are comparable to those that would be obtained with an infinitely long bed covered

uniformly with cylinders because of the two end walls that were used.

5.2.1 Granular dynamics simulations of avalanches of aluminum cylinders

The experiment just described involves the transitions from static conditions to quasi-
static and finally to a rapid flow of a granular material. The system is in static

equilibrium when there is no movement of the particles, whereas the conditions are
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Figure 28: Effective static friction angles measured experimentally versus the nondi-
mensional depth.

quasi-static when the particles are in a slow motion, when there is local rearrangement
or just before the avalanche. The goal of these computations is to check the proposed
tangential force model before rapid flow occurs. As noted previously, it was expected
that the Coulombic tangential force model should fail during static or quasi-static con-
ditions. This is what was observed when the experiment with aluminum cylinders was
simulated with the Coulombic model. The simulations were more successful when the
WB model was used to determine the friction contact forces. The numerical code nsed
for the ice floe problem has been adapted to simulate the experimentz with aluminum
cylinders. The slight modifications made to the original code are presented below and

they are followed by the computational results for the two types of simulations.
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5.2.2 Problem formulation

The siraulations of the above two-dimensional experiment were done using rough circu-
lar disks to represent the granular medium. The disks had a uniform random diameter
distribution ranging from 0.6 D to 0.8 D, where D is the largest diameter encountered
in the experiments. The reason why such a distribution was chosen, and not one of
2/3 D to D as in the experiment, is that a more stable initial arrangement was easier
to obtain with this distribution. The external forces involved in the ice floe problem,
i.e. air drag, water drag and the Coriolis force, have been replaced by gravity. The

governing equation of motion for an individual cylinder is expressed as follows

mZ = mg+ 3 F, (108)

i=1

where m is the mass of the cylinder, t is the time, g is the gravitational acceleration and
i1 F; is the summation of the n forces arising from the particle’s contacts with its
ncighbors. According to the nondimensionalization presented in Chapter 3, the grav-
itational acceleration, which has units of m/s?, is nondimensionalized in the following

manner
. M

where D is the diameter of the largest cylinder and is therefore 3 mm; M is the mass
of the largest cylinder corresponding to p,t LxD?/4 and has a numerical value of 1.13 g

since the density of the aluminum is 2.66 g/cm3. The normal loading stiffness, K, was
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chosen to be 20 kN;/m. This value is certainly less than the real one but it has been
found that the various results that can be determined through numerical simulations,
such as the stresses, are not too sensitive to the varistions of KX, as long as it remains
within a certain range where it is sufficiently stiff. Besides, a lower K} permits the use
of a larger time step since the contact time for a collision is inversely proportional to
VK. With these values, g*, the dimensionless gravity, is 0.0002. The latching spring
force model is still used to evaluate the normal forces at contacts between cylinders.
The encrgy dissipation associated with the normal direction of the contacts is related to
a coefficient of restitution e which was set to 0.5. The unloading spring stiffness is found
through equation (48), from which we can deduce that K, has a value of 80 kN/m.
There is one material property which is left to define and it is the aluminum-aluminum
friction factor u. This parameter is required for both tangential contact force models.
The value of y was determined experimentally using two pairs of cylinders, In each
pair the two cylinders are connected by two small sticks of equal length as illustrated
in Figure 29. One set of cylinders is resting perpendicularly on the other pair which
is initially horizontal and sui)aequently inclined. The angle at which the tcp cylinders
start moving is the friction angle and it was measured to be 19.5°, corresponding to a

factor of 0.355.

5.2.3 Simulation procedure

The bed is made up of 10 particles adjacent to each other and having a diameter of
2.1 mm. Periodic boundary conditions are applied in the eventual direction of the flow.

The particles are initially arranged in a regular array and are given random velocity

74



Figure 29: Experimental arrangement used to determine the aluminum-aluminuin fric-
tion coefficient.

vectors. Under the action of gravity, they fall on the bed already inclined at 10° from
the horizontal and then they flow downward for a short period of time until a quite
stable arrangement is attained. After the particles have come to rest the bed angle
is incremented at a rate of 5.9° per second. Animation software developed by Martin
Serrer at NRC, Ottawa, was used to visualize the simulations. It has been a very useful
tool to observe some behaviour or details that are difficult to detect from numerical

results alone,

5.2.4 Results

The simulations were first performed with the earlier Coulombic friction force model

for 5 and 7.5 layers of particles. The bed angles corresponding to the initiation of flow
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were approximately 19° for 5 layers and 17° for 7.5 layers. These results are not in
agreement with the experimental data plotted in Figure 28, from which we can deduce
that these angles should be around 23°. From the animations it was observed that the
system was constantly agitated such that it was very difficult to say at which exact
moment the avalanches took place. The particles were always flowing very slowly down
the bed and sometimes they would move more rapidly and then stop.

With the use of the incrementally slipping friction force model, the behaviour of
the particles from the beginning of a simulation up to the occurrence of the avalanche
is in gocd agreement with the experiments. As the bed is raised there is no movement
of the particles besides some local rearrangements similar to those observed during
the experiments. The bed angles corresponding to the beginning of the flow were
determined with a precision of 1°. For some trials the top layer would start moving,
followed by the second and so on, all of which would take place in a relatively short
period of time correspording to a bed increment of 1°. For the majority of the cases
studied, the whole system would fail within a time interval corresponding to an angle
change of 0.25° after which all of the particles were in movement. In thesc simulations
the ratio of initial to normal loading stiffness was 0.8 and -« was set to 1. The simulations
weie done for 1, 3, 5 and 7.5 layers of 10 particles and each case was repeated for several
samples.

The static friction angles recorded irom the simulations are plotted in Figure 30. As
this graph illustrates, the numerical simulations properly reprocuced the experimental
behaviour. We can observe that there is : large scatter of the angles determined from

the numerical simulations. This can be explained by the fact that a relatively small
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Figure 30: Effective static friction angles, observed numerically, versus the nondimen-
sional depth.

number of particles was used in the simulations, such that when an unstable or a
very stable region developed it had a significant influence on the whole system because
of the periodic boundary conditions. Thus, low angles are due to the presence of a
more unstable region whereas high angles are related to arrangements having a greater
stability. The average values obtained numerically and experimentally are plotted in
Figure 31. It appears from this graph that the two results have the same trend even
though the numerical values become slightly lower than the experimental one as the

depth of granular material increases.

5.2.5 Stress analysis

It is possible to treat a granular material as a continuum at length scales that are

much larger than a particle diameter. On this basis, the equations describing the
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Figure 31: Comparison of experimental and numerical mean effective static friction
angles versus the nondimensional depth.

stress variations in a medium inclined at an angle 8 from the horizontal and having a

density p are

Aoy, O

y + el pgsin b, (110)
80,z OT
—_—t—= . 1
e +3y pgcosd (111)

In the casc that we are studying, there is no stress variation along the bed, i.e. in the

y direction, and thus the above expres...- : s reduce to

g—; = pgsin, (112)
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= pgcosé. (113)

These equations tell us that the stresses normal to the bed, as well as the shear stresses,
should vary linearly with depth. In the course of granular dynamics simulations of a
bulk solid it is possible to determine the instantaneous stress tensor acting over a

surface V using the following relationship [Walton, 1992}

S = %/'Efijrij- (114)

i

The above equation evaluates the so-called potential part of the stresses due to the
force transferred from a particle i to another particle j arising from the repulsive force
fi;. The vector joining the two particles’ centers is r;;. It is important when dealing
with rapidly flowing granular material to also evaluate the kinetic contribution to the
stresses which is related to the velocity fluctuations of the particles. In the present
situation we are concerned with static or quasi-static conditions and thus this contri-
bution is negligible. The four stress components, 0., 0, 0., and o,,, were calculated
just before failure of the bulk solid occurred. This stress analysis was performed for
two cases, trials (1) and (2), involving 5 layers of particles and for two other trials,
(3) and (4), where the depth was of 7.5 particles. The width of the computational
area, i.e. in the = direction, was divided into rectangular bands having a width of
approximately 1 particle diameter and for which the four components of the stresses

were calculated (Figure 32). The normal stresses g,, have strong fluctuations from one
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Figure 32: Stress components acting on a rectangular section.

bin to another. This is certainly related to the shape of the bin which is quite thin in
the direction in which the oy stresses act and thus the values calculated are not too
accurate. The shear stresses, 0., and o,,, were found to be almost equal, as expected,
for a symmetric stress tensor. The normal and shear stresses are plotted versus the
depth of granular material in’ Figures 33 to 36. Irom these graphs we observe that o,
and o, vary linearly with depth as expected. Linear regression was used to obtain
equations fitting 0., and g.,. The ratio of the slopes of these equations was calculated
for the four cases and were found to be very close to the tangent of the bed inclination,
This is in agreement with the theoretical predictions of equations (113) and (114). The
bed inclinations at which the stresses were computed for cases (1) to (4) and their

corresponding theoretical angles are given in the following table.
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bed inclination

measured theoretical
(1} 20.5° 19.3°
(2) 22.7 24.5°
(3) 20.5° 21.8°
(4) 20.5° 19.0° |

Table 3: Comparison of the bed inclinations observed numerically with the theoretical
angles evaluated from the stress components. Cases (1) and (2): 5 particle diameters
deep; cases (3) and (4): 7.5 particle diameters decp.

Two conclusions can be drawn from these results:

- The use of the WB model to define the tangential forces developed at contacts between
particles yields accurate values for the stresses.

. The static equilibrium equations appropriate for a continuum are found to accurately
describe the stresses developed in a granular material made of a relatively small number
of layers of particles.

5.3 Analysis of the effects of the incrementally slipping fric-

tion force model in simulations involving ice floes

Computations involving a rectangular array of 48 ice floes moving under the action of
wind drag, water drag and Coriolis force were performed in order to study any difference
that the incrementally slipping tangential model could produce. As the sketch of the
computational box in Figure 37 illustrates, the ice floes were contained between two
parallel rough boundaries of 8 particles each and by periodic boundaries along the
other edge. All the particles were of the same size and had a diameter, D, of 7 km.
A uniform geostrophic wind of 9.35 m/s was applied at various angles, ¢, from the

right boundary and the turning angle was taken to be 22.5° for both atmogpheric and
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Figure 33: Stress components versus the nondimensional depth in a pile of 5 layers of
particles, case (1).
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Figure 34: Stress components versus the nondimensional depth in a pile of 5 layers of
particles, case (2).
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Figure 35: Stress components versus the nondimensional depth in a pile of 7.5 layers
of particles, case (3).
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Figure 36: Stress components versus the nondimensional depth in a pile of 7.5 layers
of particles, case (4).
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Figure 37: Computational box for ice floes simulations.

oceanographic boundary layers. The wind and water drag forces were evaluated from
the linear relationships presented in Chapter 3. The coeflicient of restitution was set to
0.5, the friction coefficient to 0.3 and the ice floes were considered to have a thickness

ofl m.

5.3.1 Observations and comparisons

Initially, each particle was given a small random velocity. Under the action of the
wind, the floes started to flow and they were subsequently pushed by the Coriolis force
toward the right solid boundary. The numerical results were processed by dividing the
computational box into 9 bins for which velocities, concentrations and stresses were
evaluated. The first step was to compare the long time averages of these variables, The

resulting stress distributions are plotted in Figure 38 for a wind blowing parallel to the
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Figure 38: Average stress components versus the nondimensional distance from the
right solid boundary, ¢ = 90°, turning angle=22.5°, D=0.7 km.

boundaries, and in Figure 39 for a wind inclined at 45°. From these graphs it is obvious
that the average stresses, which were computed over 250,000 time steps, are nearly
equivalent for the simulations performed with the WB model and with the Coulombic
model. Cases involving two other wind angles, 25° and 65°, were also investigated and
the stress distributions obtained were similar to those given in Figures 38 and 39. In
all situations, velocity profiles and concentrations were found to be almost equivalent.
for the two models. These resuits have led us to investigate the instantancous stresses
generated by the two models. The 0., normal stresses, for the bin next to the wall, are
plotted versus the time step, t, in Figures 40 and 41. The first graph is for a 90° wind
and the second for a wind inclined at 45°. It is surprising how the stresses have the same
trend even though the stresses computed for the simulations involving the Coulombic

friction model fluctuate from one time step to another. We have demonstrated that,
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right solid boundary, { = 45°, turning angle=22.5°, D=0.7 km.
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Figure 40: Instantaneous stress components versus time, ¢ = 90°, turning angle=22.5°,
D=0.7 km.
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Figure 41: Instantaneous stress components versus time, { = 45°, turning angle=22.5°,
D=0.7 km.

with the Coulombic tangential force model, the particles are constantly subjected to
large tangential forces such that the stresses at a point or over an areaof 1 or 2 pnrtiélcs
are necessarily wrong. Spatial averaging over 1 bin, which contains approximately 8
particles, appears to be sufficient to smooth these variations and to yield stresses that
are close to the exact values. The same behaviour was observed for the oy, and shear
stresses and thus there is no need to present them. The reason the stresses are zero
for a certain period of time when there is a geostrophic wind blowing parallel to the
boundaries, is that the floes collect on the solid boundary and afterwards bounce hack
towards the interior region up to the point where they no longer touch, and finally the
Coriolis force pushes them back toward the boundary.

The animation software was used to visualize the simulations, but no difference

in the overall behaviour or in the development of the contact network was observed.
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There was one exception, though, for the study case where the wind was inclined at
45° from the boundary. Indeed, it took 41,000 additional time steps, i.e. 36 hours in
real time, for the ice floes to reach their steady flow configuration with the WB model.
This difference is not negligible. It suggests that under transitional regimes the ice floes
may behave differently, according to the friction force model, just as the cylinders did
when they started to move at angles lower than expected when they were simulated
with the Coulombic tangential model.

In order to further investigate the effects of the WB model, we made some compnu-
tations to determine how much slip takes place between contacting particles. This was
done by calculating the ratio of the tangential force to the normal force for approxi-
mately 100,000 contacts. The histogram obtained for a wind blowing parallel to the
solid boundary is given in Figure 42. From this graph, we observe that only 27 percent
of the contacts experience full sliding.

The same type of computation was done for a wind blowing at 45° from the bound-
ary but for individual bins (Figure 43). The behaviour of a sample of non-uniform size
floes, having diameters varying from 5 to 9 km, was examined for the same wind forc-
ing. Slightly more slipping was found to occur with the non-uniform size distribution
(Figure 44).

From these observations we can conclude that tangential forces implying shear
deforination of the particles do not influence the behaviour of an ice field which is
flowing under steady conditions. But, the results obtained with simulations invoiving
aluminum cylinders suggest that we have to be careful with transitional regimes and

also with static or quasi-static conditions. Such conditions may be developed by the

88



percentage of contacls

0 0.05 0.1 0.15 0.2 0.25 0.3

TN

Figure 42: Histogram of the ratios of the tangential to the normal force, ¢ = 90°,
turning angle=22.5°, D=0.7 km.
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Figure 43: Histogram of the ratios of the tangential to the normal force for individual
bins, ( = 45°, turning angle=22.5°, D=0.7 km.
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Figure 44: Histogram of the ratios of the tangential to the normal force for individual
bins and for a non-uniform size distribution, { = 45°, turning angle=22.5°,

presence of a drilling platform behind which ice floes coliect and develop high pressures.
The estimation of the forces generated by the ice cover on this platform by simulations
conducted with the Coulombic model may very likely be wrong. It is suggested that
further cases should be studied in order to determine the conditions under which it
might be necessary to include an incrementally slipping friction force model in the

numerical code which is currently being used.
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6 Summary and Conclusions

The development of a discrete element model for ice forecasting based on a granular
dynamics approach is presented in this study. Some concepts of oceanography and of
meteorology which are related to the motion of ice floes, such as the Ekman boundary
layer and the turning angles, were reviewed. A discussion of the different kinds of
forcing that govern the movements of ice floes based on field investigations was pre-
sented. The ice floes experience drag forces exerted by the wind and water currents.
They are also subjected to a pressure gradient force resulting from sea surface tilt, to a
Coriolis force, and finally to contact forces that arise from internal collisions. We have
seen that ice floes can be treated as a granular material such that their movements
and interactions can be studied by granular dynamics simulations. The details of the
numerical model, which involves floe collisions and motion under the action of wind
drag, water drag and Coriolis force, were given.

The non-linear effects of the wind and water currents on ice floe motion were studied
and expressions for the drag forces were developed for circular ice floes. An equation
was derived for the water drag force by numerically integrating the stresses, which
depend on the square of the ice velocity relative to the water current, over the floe
arca. The rotational movements of the ice floes are resisted by the water shear stress
at the bottom surface of the floe and, thus, an expression for the viscous torque was
developed following the same procedure as for the linear drag force. The air drag force
is given by an expression which has a relatively simple form since it relates the stresses
to the square of the wind's velocity, the ice floe velocity being negligible. All these

expressions require information that is calculated in the course of the simulations, such
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as the floes’ linear and angular velocities as well as iuput parameters’ values such as
the wind’s velocity, the water current, the floes’ diameter. the drag coefficients and the
boundary layers’ turning angles.

The discrete element model has been modified in order to take into account the
elastic deformation of the ice floes that occur because of the tangential contact forces.
This was achieved by incorporating an incrementally slipping friction force model in the
numerical code. In order to test the effects of this tangential force model, simulations
of inclined chute flows of a granular material, in this case aluminum cylinders, were
performed. More specifically, the transition from a quasi-static regime to a rapid flow
was studied. The simulations were found to adequately reproduce the experimental
behaviour. A stress analysis was conducted from which it appeared that the state
of stress of the system can be accurately evaluated numerically. Simulations that
were performed with the earlier Coulombic friction force model used in the ice flae
problem yielded inadequate results. Subsequently, numerical simulations of a broken
ice field, subjected to different wind conditions, were performed and an analysis was
done in order to observe the effects of the incrementally slipping friction force model.
The time average stress and velocity distributions were found to be nearly identical
for simulations performed with the two tangential force models. The instantaneous
stresses follow the same trend although those calculated when the Coulombiec model
was involved fluctuate strongly. Computations were performed to evaluate the ratio of
the tangential force to the normal force in order to observe the amount of slip taking
place at contacts between particles. For a geostrophic wind blowing parallel to the solid

boundaries limiting the computational area, 27 percent of the contacts were found to
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experience full sliding. This value is lowered by 10 percent for a wind inclined at 45°
from the boundary on which the ice floes collect. The ahove results are for floes having
the same diameter. Slipping was found to increase significantly when the field consisted

of floes having a non-uniform size distribution.
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