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Abstract

A numerical model is being developed for ice forecasting which is based on a gran­
ular dynamics approach. This model is intended ta analyse the movements of brokcn
icc fields at the mesoscale; Le. for length scales of the order of 100 km and time scales
of the arder of a few days. It will therefore be useful for navigation, for the operation
of offshœ'c drilling platforms and for commercial fishing. At the mesoscale, the forces
governing the motion of ice floes are: wind drag, water drag, Coriolis force and the
contact forces arising from internai collisions. Expressions are developed to evaluatc in
the most accurate manner the drag exerted by the water and by the wind on individual
ice fioes by considering non-linear effects. The second aspect of the present work is
to modify the inter-partiele contacts such that their tangential contribution involves
elastic deformation of the ice floes. The effeets of an incrementally slipping friction
force model arc studied for a system where the conditions vary from a quasi-static to a
rapid fiow regime. Under these circumstances the model is found ta adequately repro­
duce the behaviour of small scale laboratory experiments using aluminum cylinders.
Computations perfonncd with tangentially rigid particles yield a system which is very
unstable in its behaviour. The analysis of the macroscopic variables, made in order
to detennine how a broken ice field is affected by the shearing effects of the particles,
shows that for a rapidly fiowing field the elastic contribution to the contact shear force
is minor, if not negligible, when one considers long time averages or inst.antaneous val­
ues. It appears from these investigations that attention must be paid to the problem
of ice fioes flowing under quasi-static or transitional conditions.
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Résumé

Un modèle numérique de type dynamique moléculaire est mis au point pour étudier
la rhéologie de la banquise fracturée dans les régions nordiques. Cc modèle esl utilisé
pour faire l'étude à la mésoéchelle, c'est-à-dire pour une échelll' dl' longueur de l'ordre
de 100 km et une échelle de temps de l'ordre de deux jours. Il sera utile, l'nt1'1' autrl'S
pour la navigation, les opérations des plate-formes pétrolières ct la pêche commerciale.
Les forces qui régissent le mouvement de la banquise à la mésoéchellesont: le frotteml'nl
du vent et de l'eau, la force de Coriolis et les forces d" contact dues aux collisions enlre
particules. Les effets non linéaires du vent et des courants sont étudiés ct des équations
sont développées pour en tenir compte. Le deuxième aspl'ct de ce travail est d'améliorer
la modélisation des contacts inter-particulaires en considérant. la déformation éh.tique
dans la dirp.ction tangentielle des contacts. Les effets d'un nouveau modèle de forcI' tan­
gentielle qui prend en compte un tel comportement ont été étudiés dans différl'nts cas.
Dans un premier temps, la transition entre un régime quasi-statique et un écoulement
rapide, à partir d'un empilement de cylindres en aluminium, a été simulée. Les résultats
numériques concordent de façon satisfaisante avec les observations expérimentales. Ce
n'est cependant pas le cas lorsque la déformation tangent.ielle des particules n'est pas
considérze. Une analyse détaillée d'un écoulement rapide de banquise fracturée est
menée par la suite pour observer les effets du cisaillement des particules. Le calcul
des variables macroscopiques, moyennées ou instantanées, montre que ces effets sont
minimes pour ne pa.~ dire négligeables. D'après ces résultat.s, il semble qu'une attention
particulière devra être portée sur les écoulements de banquise en régime quasi-st.atique
ou transitionnel.
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• 1 Introduction

•

•

There is a great economic demand for ice forecasting at the mesoscale where marine

activities, such as navigation, the operation of offshore drilling platforms and commer­

cial fishing, take place. The mesoscale involves time scales of the order of two days

and length scales of the order of 100 km. The offshore economic zones of Canada are

the Gulf of Saint-Lawrence, the Beaufort Sea and the Labrador Sea. At present, the

models being used for ice forecasting are continuum models that are suitablc for large

length and time scales and they can not, therefore, satisfy the existing economic needs.

In order to study ice rheology at the mp.soscale, a research program has been initiated.

This program involves collaboration between McGill University, the Ice Centre of En­

vironment Canada (AES), and the National Research Council of Canada. A model is

being developed in which broken ice fields, due to their discrete nature, are considered

to be a two-dimensional granular medium. Thus, the movements and interactions of

ice f10es are studied by granular dynarnics simulations involving f10e collisions. The

ice f10es are considered to move under the action of wind drag, water drag, and the

Coriolis force. Normal and tangential contact forces are evaiuated at contacts bctween

f1oes.

The focus of the present work is on the improvement of the mode! such that it

bctter reflects the interactions between the air, the ice f1oes, and the water and that

the f10e collisions be more proper1y treated. The thesis has two objectives:

. to develop expressions for the wind and water drag such that their non-linear effccts

are accounted for by the mode!,

and
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• 1.0 study the efi'ects of an incrementally slipping tangential force modcl which involves

elastic deformation of the fioes in the tangential direction of thl'ir contacts.

In the following chapter the efi'ects of the atmosphere and ocean on the motion of

ice fioes are considered. A general discussion of granular materials and of the nllmeril'lIl

methods used 1.0 investigate their dynamics, are given in Chapter 3. The details of the

discrete element model are presented in this chapter. The expressions for the wind and

water drag acting on individual ice fioes are developed in Chapter 4. In Chapter 5, the

efi'ects of particles shearing are investigated through granular dynamics simulations of

a two-dimensional granular material that undergoes a transition from a qlla.~i-static

1.0 a rapid fiow regime. The behaviour of a broken ice field is analysed, in t.he same

chapter, by simulations performed with the use of the incrementally slipping friction

force mode!. A summary is given and some conclusions are drawn in the last chapt.cr

of the thesis.

2



• 2 The Effects of the Atmosph-are and Ocean on
the Motion of Ice Floes

2.1 Equations of motion for a rotating system

Geophysical f1uids evolve in a rotating system at an angular velocity n of 7.292 x

10-55-1. These f1uids are subjected to forces that can be regarded as either fundamentai

or apparent. The fundamental forces are those corresponding to Newton's second law

for motion taking place in a system having coordinates that are fixed in space. These

forces are due for instance, to friction, pressure and gravitation. The apparent forces

are those E.lSociated with a system having a frame of reference rotating with the earth.

•
The Coriolis and centrifugai forces belong to this category.

The equations of motion for the geophysicai fluids can be obtained by first consid-

ering a fluid element connected to the earth 's center through a vector R. The absolute

time variation of R has two components: the velocity of the partide relative to the

earth 's surface and the velocity of the rotating system at the location of the f1uid

element, i.e.

(1)

•

The subscripts a and r denote absolute and relative variations respectively. The accel-

eration is expressed as the variation of the velocity with time such tnat

(2)

3
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Figure 1: Components of the Coriolis force acting on a f1uid clement located in the
northern hemisphere and moving eastward.

Substituting equation (1) in the previous equation and neglecting the variation with

time of (} the absolute acceleration becomes

(3)

•

where 2 (} x V is the Coriolis acceleration and (}2 R"2 is the centripetal acceleration.

The component of R perpendicular to the axis of rotation of the earth is termed Rp and

is illustrated in Figure 1. The Coriolis acceleration, or the Coriolis force per unit ml\SS,

acts in a plane perpendicular to n and to V r • The Coriolis force can be divided into

two components as shown in Figure l, one acts in the vertical direction and the second

one acts at 'Ir/2 from the velocity vector in the horizontal plane. For the northem

hemisphere considered in Figure 1 and for a f1uid element located at angle I{J from the

4



• eqllator and moving in the cast direction there will be a component, -2f!u cos <p , of

the force acting towards the sky and a second one,-2f!u Shl <p, pointing south. Since

the Coriolis force acts in a direction perpendicular to the f1uid element, it can modify

the direction of the f1uid but not its speed.

The summation of the fundamental forces, I: F, acting on the f1uid clement having

a density p corresponds to d.;:;. P and thus equation (3) can be written as follows

DV = _ 2 f! x
Dt

(4)

•

•

The subscript r has been omitted in the above equation since all the velocity terms

involved are relative to the earth, this convention will prevail from now on. The

fundamental forces acting on the f1uid element are those related to a pressure gradient,
.

to gravitation and to viscosity. To the gravitational force, which is the attraction of

the earth on the f1uid element, is added the centrifugai force f!2Rp to create the force

known as gravity. The gravity force per unit mass, g, is everywhere normal to the

earth 's surface and therefore has a direction which slightly deviates from the earth 's

center except at the equator. Viscous forces are present in all geophysical f1uids and

resllit from internai friction between neighboring layera of f1uid. They can be expressed

as 'ilT/p where the viscous stresses, T, for a Newtonian f1uid are linearly related to the

velocity gradient by the f1uid viscosity such that T = JI'ilV. The viscous forces can

therefore be expressed as v'il2V, where v is the kinematic viscosity. The fundamental

forces now being clearly defined it is possible to express the equations of motion for

the geophysical f1uids 88 follows

5



• DV
Dt

1
= --Vp - 2fl x V + g + vV2V.

P
(5)

•

•

The friction forces just calculated are for laminar f1ows. The viscous effcct.s arc of

signilicance in relatively small layers at the earth's surface or at the wat.cr surfacc

where vertical shear is important. For the usual cases where turbulence is predominant

the stresses will correspond to the momentum fluxes due to turbulent motion. These

turbulent or Reynold 's stresses are associated with the velocit.y fluctuations and arc

approximated using an eddy viscosity coeflici~nt, which is a property of the f10w rather

than a property of the f1uid.

2.2 The geostrophic approximation

ln meteorology and in oceanography the various phenomena observed such as tides

and cyclones are studied according to a scale analysis. This technique consists of

evaluating the different terms of equation (5) and estimating the order cf magnitude

of the variables as wel1 as the amplitude of their fluctuations and the characteristic

dimensions of their fluctuations. The comparison of the different terms will permit

us to eliminate the weakest ones and thus to simplify the solution of the equations of

motion. There are live distinct scales: planetary, synoptic, mcsoscale, local, and linally

the microscale. The fol1owing are sorne examples of the phenomena associated with

these scales: tides are studied at the planetary Reale, cyclones at the synoptic scale,

fronts at the mesoscale, convection at the local scale and wavcs at the microscale.

The purpose of this section is to introduce the geostrophic approximation and for

that we need to know more about the synoptic scale. The length of this scale is 106

6



• metres for the atmosphere and 105 metres for the ocean; its time scale is of the order of a

few days for both environments. At the synoptic scale the horizontal components ofthe

pressure gradient and of the Coriolis force are of the same order of magnitude and nearlv

balance each other. The other terms of equation (5) are at least one order of magnitude

smaller and can be neglected in the analysis of the synoptic scale. Conserving only the

Coriolis and the pressure gradient terms from equation (5) we obtain the geostrophic

approximation

-1 vg =

l!Lg =

(6)

(7)

• where 1 is the Coriolis parameter corresponding to 2!1sinep, and !Lg and vg are the

respective x and y components of the geostrophic velocity. The expression for the

geostrophic velocity vector can thus be written as follows

1
- k x pIVp, (8)

•

where k is a unit vector in the vertical direction. The establishment of the geostrophic

winds can be visualized by looking at a pareI'l of air moving from an area of high

pressure to one of low pressure (Figure 2). The f1uid partiele is first subjected to a

pressure force perpendicular to the isobars that will cause the partiele to rise. Once

the movement is initiated the Coriolis force, which is perpendicular to the f1uid's ve-

locity, tends to deviate the f1uid's trajectory to the right. As the velocity of the f1uid

7
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pa~-_---..--Vg

____-+,~,::-,o:...::...-------+--1000 mb

,,/ "Fe Fe__....,....:" IOO4mb

Fpf,'-,'_' _T 1008mb

Fp
-------r-:-------+--- 996 mbFp

______________ 1010mb

Figure 2: The establishment of the geostrophic wind (northern hemisphere); FI' is the
pressure-gradient force, and Fe the Coriolis force.

• element increases the Coriolis force inereases proportionally. The partic1e's direction

will be modified until it becomes parailei to the isobars, at this point the Coriolis force

associated with the velocity of the partic1e will balancp. the pressure gradient force.

2.3 Pure wind-drift currents and the Ekman spiral

Wind drift is a force of major importance for the upper ocean. Water currents arc

principally caused by the presence of a horizontal pressure gradient resulting from sea

surface tilt, and by the action of the wind blowing on the sea surface. If we consicler the

ocean as being divided into a series of thin layera where on the topmost layer a wind

•

streBB T is applied, then this layer will exert a shear streBB T - dT on the underlying

layer. This second layer will itself exert a frictional stress on the third layer that will

be decreased by dT. Thus, for a f1uid element of the firat layer and of mass pdz dx dy

8



• the net frictional force acting on it is

aT
dx dy (T - (T - az dz))

aT
- az dx dy d:

•

•

and this force per unit mass is ~; / p. The motion of a volume element of f1uid is

determined by the frictional forces, the Coriolis force and by the pressure gradients

acting on it and therefOl': will follow these equations

du
Iv

1 ap 1 aTr (9)- --- + paz'dt pax

dv 1 ap ~ aTy (10)- + lu - --- +dt pay paz

Writing the above equations for a laminar steady f10w and for a Newtonian f1nid we

obtaill

- Iv =
1 ap a2u

(11)--- + v a"pax z'

lu =
1 ap a2v

(12)--- + v az2 'pay

As mentioned previously the Coriolis force can only modify the direction of the f1uid

clement and thus, only the two remaining forces tend to accelerate the f1uid. The efi'ects

of sea surface tilt and of wind drift can be considered separately snch that the velocity

will have two components, one due to pressure and the other due to friction. The

component of the velocity uniquely related to the pressure gradient is the geostrophic

current. The second component associated with the wind stress is the Ekman velocity

9
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/
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•
Figure 3: Balance of forces acting on f1uid element for Ekman wind-drift currl'nts [von
Schmind, 1980].

derived by Ekman [1905] who considered the nonaccelerated pure wind drift cnrrents

for an ocean infinitely deep and unbounded in the horizontal. For pure winc!-clrift

currents the equations of motion can be written in terms of total derivatives ancl are

simply the following

-IvE = (13)

(14)

where the subscript E stands for Ekman. The balance of the forces acting on the two

topmost layers is illustrated in Figure 3. As shown in this figure the resisting force for

•
the first layer becomes the driving force for the second layer. Solutions for UE and l'E

can be obtained by first differentiating equation (13) twice and then substituting the

10



• expression for rflvE/dz2 in (14) such that the following equation is obtained

(15)

•

which has the following general solution

where {jE is defined as J2vjf. In order 1.0 evaluate the const.ants BI, B2, B3 and B'l

the boundary conditions have 1.0 be stated. First, il. is assumed that the wind blows in

t.he x direction and that according 1.0 Newton 's law of viscosity the stress is given hy

(1 i)

and consequently

•

At great depths the wind drift currents disappear such that

UE 1.=-00 = 0

and

VE 1:=-00 = O.

11
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•
At this point it is possible to obtain the expressions for li" and l'l'as functions of th"

depth =

The surface velocity vector V. has a magnitude of roE/..J2/l. Therl'fore, the water•

roI' '/6. ' (= 11"
liE = -- c' 0 Slll - + -),

..J2Ji 0E 4

roI' '/6E (= 11")VI' = --- c' cos - + - .
..J2Ji 0E 4

At the water surface where z = 0 the velocity components are

roI' . 11"

uEI.=o= ..J2Ji Slll (4')'

roI' 11"
VI' I,~o = - ..J2Ji eos(4')'

velocity at the surface is

(21)

(22)

(23)

(24)

V. ..J2v. '2" .J. (25)

•

This vector points in a direction 45° to the right of the wind direction in the Northem

Hemisphere for which this solution was obtained. For the case of Southem Hemisphl'fl'

the water current is directed 45° to the left of the wind stress. The magnitude of the

velocity vector decreases exponentially with depth and its direction is modificd such

that it gradually turns clockwise. When the velocity vectors for several depths are

sketched on the same plane, a spiral is formed as shown in Figure 4; it is known liS

12
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Figure 4: Ekman spiral for wind drift in the northem hemisphere [von Schmind, 1980].

the Ekman spiral. Ekman defined the depth at which the frictiona! forces produced

by the wind become negligible as the 'depth of frictiona! resistance'. At this depth,

corresponding to -Til'E, the water current is in a direction opposite to the surface

current.

The mass transports in the x and y directions are found by integrating, in the z

direction, the corresponding velocity components multiplied by the fluid density. The

following mass transports are obtained from the integrations

(26)

(27)

•
The total mass transport is in the negative y direction or in other words is directed DO·

cum sole to the wind direction. The flux transverse to the isobars in the Ekman layer
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is a mechanism of dissipation of kinetic energy and therefore the preceding theory, ap­

propriate for the laminar case, is not applicable quantitatively t.o the real environments

but still provicles a good idea of the processes that take place in the upper ocean.

2.4 The oceanic boundary layer and the balance of forces for
ice Hoes

In northern regions the ocean is covered with ice. In sorne areas, like the Labrador sea

or in the marginal ice zone of the Arctic, the ice cover is fractured, forming floes having

sizes that can range from a few meters to several kilometers. The characteristics of the

ice floes vary with the seasons. During the summer, for example, they become smaller

and the ice is less resistant. The motion of the ice floes is primarily dictated by the

action of the wind. The momentum induced by the wind is transported downward by

the ice cover to the water and to the planetary boundary layer such that the shear stress

acting at the ice-water interface generally resists the motion of the ice floes. Moreover

the ice floes are subjected to a Coriolis force which is significant at high latitudes, to

a pressure gradient force resulting from sea surface tilt and also to contact forces due

to internal collisions.

A study having a major impact in the field of ice dynamics was conducted in the

early seventies in the Arctic ocean. It was called Arctic [ce Dynamics Joint Experiment

(AIDJEX). The purpose of AIDJEX was to "understand quantitatively the interaction

between the fields of motion of the atmosphere, the pack ice, and the ocean". In the

1972 pilot study of AIDJEX an investigation, consisting of taking velocity measure·

ments for the ice, the wind and the water currents, was done at several stations. The

water currents were measured at several depths underneath the ice floes, on which

14
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the stations were located, down to 50 meters. These field data were used by Hunkins

[1974] in order to find the balance of forces for several icc floes, and that for different

time intervals. Water stresses were calculated based on the momentum exchange in

the surface boundary layer. The other external forces, consisting of wind drag, Coriolis

force and pressure gradients, were calculated based on the velocity measurements of

the ice and wind.

The momentum integral method used by Hunkins [1974] to evaiuate the water

stresses will now be briefly presented and it will be fol1owed by the details of the

computations of the other forces. The water velocities recorded in the field study were

averaged over twelve hours in order to minimize the fluctuations related to turbulence

and to inertial oscillations. Hodographs of the current velocitics measured at several

depths between 0 and 50 meters are presented in Figure 5. On the hodographs are

given the two velocity components of the water currents for several depths. Beside

each point is written the corresponding depth and these points are connected by lines

on the graphs. The 0 depth corresponds to the base of the ice which is 2 m below sea

level. The dashed line on the hodographs corresponds to the surface boundary layer

in which the frictional forces are more significant than the Coriolis effects. Below 2 m

is the Ekman layer where changes in the current 's direction and speed are significant.

The spirals obtained on the hodographs do not correspond exactly to the theoretical

Ekman spiral since the velocity decreases sporadically and the rotation of the current is

merely gradual. Underneath the Ekman layer the frictional effects are non-existent and

the current is quasi-geostrophic. From the hodographs obtained in his study, Hunkins

[1974] determined that the geostrophic current was between 25 and 50 m from the
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Figure 5: Hodographs of absolute currents for 12-hour intervals with ice drift grcatcr
than 9 rn/s. Depths in meters below ice base. North at top of page. Local standard
time [Hunkins, 1974].
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• surface.

The x (east) and y (north) components of the ice-water stress, To, were evaluated

using the vertically integrated form of the equations of motion

ôMz fMuôt
- Toz ,

ôMu + fMu - Tou,
ôt

(28)

(29)

where f is the Coriolis parameter described in §2.2 and Mz and Mu are the mass

transports given by

•
Mz - l Pw(u - ug)dz,

HE:

Mu - iO Pw(V - Vg)dz,
HE:

(30)

(31)

where HE is the depth of frietional influence chosen to be 25 m. The geostrophic

velocity components, ug and vg , were eva1uated at this depth and were considered to

be constant throughout the Ekman layer. The water density, Pw, was taken to be

1.0 gfcm3• The time dependent terms were eva1uated by taking the hourly differences

between mass transports.

The air shear stresses were determined through the following drag law

(32)

•
where C. is the air drag coefficient taken to be 1.5 x 10-3, P. is the air density of

17



• 0.00125 g/cm3 and V IO is the 10-m surface wind velocity. The Coriolis force for an ice

floe having a thickness h of 2.5 m , a density Pi of 0.9 g/cm3, anel being located at a

latitude of 75° was evaluated using the following relationships

Fez = pihfvi,

Fey = -pihfu;,

(33)

(34)

where Ui and Vi are the two respective x and y components of the ice velocity. The

pressure forces were computed using the geostrophic velocity componl'nts as follows

•
Fp% = -pihfvg ,

Fpy = Pi h f Ug•

(35)

(36)

•

The ice was assumed to drift under balanced forces such that the internai ice force due

to floe collisions was evaluated as the residual from the force diagram. In Figure 6

are sketched the force vectors actiug on four ice floes as well as their velocity vectors.

As shown in this figure the internai forces play quite an important raie in ire motion.

The wind and water stresses were found to point generally in opposite directions and

to have a strong correlation in their magnitude as shown in Figure 7 where the two

stresses averaged over 12 hours are plotted versus time for a one month periml for

AIDJEX's main camp. The Coriolis force, the water and winrl drag forces arc found

to be of the same magnitude while the pressure gradient force is less significant.

18
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Figure 6: Balance of forces on ice for 12-hour intervais when winds exceeded 5 cm/s.
Ice velocity, Vi, in cm/si air-ice stress, Tai ice-water stress, T wi Coriolis force, Fei
pressure-gradient force Fp; and internal ice force Fint[Hunkins, 1974).
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Figure 7: Ice-water (so\id \ine) and air-ice (dashed \ine) stress at 1972 AIDJEX main
camp based on 12-hour means. Direction of air-ice stress reversed for comparison
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2.4.1 Evaluation of water stresses in sea ice models

The water drag force vector acting on an ice f10e is colinear with the ice velocity vector

relative to the water current. In oceanographie studies, the geostrophic currents are

more easily evaluated than those at the surface. It is therefore important to be able to

determine the angle formed by the water stress vector and the relative velocity vector

between the ice and the geostrophic current. This angle {J, as shown in Figure 8, is

referred to as the boundary layer turning angle or simply as the water turning angle.

McPhcc [1980] has used field data of the AIDJEX study of 1975 to determine the water

turning angle as weil as a simple expression for the water shear stress. The data used

were for the melt season during which the fragmented ice pack is not able to support as

much stress as in the winter. McPhee [1980] has demonstrated that for several weeks

in 1975 the ice was free of internal forces. This period of free drift was identified by

considering inertial oscillations, ice-wind currents statistics and simulations of ice drift

for the AIDJEX stations. During sucb a period, the wind stress is balanced by the

Coriolis force and by the water stress. The balance of forces is shown in Figure 8. As

sketched on this figure the water stress lies at an angle f3 counterc1ockwise from the line

of action of the relative velocity vector V between the ice and the geostrophic: current.

For a 20-day period at the height of the melt season, ice velocity measurements were

made at the four camp stations twice daily. The wind was measured at a height of 10

m and realistic estimates of the mass of the ice f1oes, of the wind drag coefficient and of

the geostrophic currents were made. The water stresses were evaluated from the force

balance for cases where the relative ice speed was greater than 8 cm/s; 95 points were

determined and plotted on a scatter diagrarn shown in Figure 9. From a least-squares
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Figure 9: Kinematic water stress versus relative ice speed [McPhee, 1980).
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• exponential fit the fo11owing relationship for the water stress was found

17"wl = 0.0046 V 2
.
U5

• (37)

•

From this result it appears reasonable to evaluate the water stress<'s thrC'ugh a quadmtic

relationship as shown in the graph. The drag coefficient found by a fit of a quadmtic

expression is 0.0055. This drag coefficient is high, as expected, since the bottom of

t.he ice was observed to be rough. A drag coefficient of 0.0034 was evaluat.ed at. one of

the AIDJEX camps during the year of 1972 where the icI' was considerably smoot.her

[McPhee and Smith, 1976J. The drag coefficient evaluated from t.he relative velocity

bet.ween the icI' and t.he geostrophic current is usua11y ca11ed the geostrophic dmg

coefficient. The value of the drag coefficient is related to the under icI' surface roughn<'ss

and to the depth at which current measurements are made.

From the balance of forces obtained in the free drift period, the bOllndary layer

t.urning angle fJ was evaluated to be 23.6° on average. For the 1972 pilot study of the

AIDJEX camp, a mean value of 24° was found [McPhee and Smit.h ,1976]. The water

st.ress is to be determined from idealized boundary layers assuming a constant turning

angle as fo11ows [Hibler, 1981]

7"w = Cw 1 [V cosfJ + k x V sinfJ] (38)

•
where Cu' 1 is Il constant having units of kg m-2 S-I in Il linear drag law, or it corresponds
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• to

Cw ' = Pw Cw IVI (39)

•

•

when the stresses are evaluated using a quadratic relationship. In the above f'CluatiOlIR

Pw is the water density and Cw is the dimensionless drag coefficient. As mentioned

previously, the drag coefficient and the turnillg angle vary according to the c1epth at

which the water currents are measured.

2.4.2 Surface winds and air stresses

In section 1.2 we have seen that at the synoptic scale the pressure gradient force and the

Coriolis force nearly balance each other and that under sueh an equilibrium the wind

blows parallel to the isobars. In the 500 m or 50 above the earth '5 surfnee, frictiona!

forces are important due to the significant roughness present at the surfnee of the earth.

At the standard anemometer height of 10 m, a force balance is renehed for the wind

blowing at a counterc1ockwise angle a to the isobars as illustrated in Figure 10. This

angle is analogous to the water turninp; angle. The magnitude of the friction force

and of a is proportional to the wind speed and strongly depends on the roughneRR of

the surface over which the wind blows. The component of the friction force along the

isobars is balanced by the corresponding component of the Coriolis force such that the

more significant the friction force is, the greater the cross-isobars angle must be. The

winds at 10 m above the ocean correspond to about two thirds of their geostrophic

speed whereas this ratio is reduced by up to one third for winds blowing over the

ground. The air turning angle a is usually between 100 and 200 for water surfnees
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Figure 10: Balance of forces in a surface wind (northern hemisphere).

and 40° or more for ground surfaces. The friction forces diminish slowly with height,

consequently the wind speed increases correspondingly and the turning angle gradually

• decreases. The atmospheric layer where the frictional forces are present is called, as in

the ocean, the Ekman layer.

The presence of ice on the water surface considerably increases the surface friction

and mean values for ct were found, from various studies, to vary from 22° to 42° and

thejr reduction factors of surface to geostrophic winds, Vio/Va, were found to be 0.5

to 0.8. Fissel and Tang [1991] have conducted a study for the Newfoundland Shelf

and have found turning angles of 20° for near shore locations, of 35° in the pack ice

interior and of 42° near the ice edge. The seasonal variations of Cl' were observed during

•

AIDJEX by Carsey [1980]. For the spring a minimum mean turning angle of 19.2° was

found versus a ma.ximum of 31.4° for the faii. According to Fissel and Tang [1991] the

considerably higher values obtained for the turning angles in the Newfoundlancl shelf

are related to to the very high roughness of the ice cover and to the small f10e sizes.
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• Overland [1985] has done a literature review of ice-atmosphere interaction stllclies and

reports that the air drag is greater over storrn-broken ice.

The drag exerted by the wind on the ice is related to the relative \'l'lodty hetwel'n

the wind and the ice, but the wind stress can be accurately evaluated by nl'glccting

the ice velocity since it represents only a few percent of the wind vclodty. Thl' wincl

stress, assuming a constant tuming angle, is determined as follows [Hihll'r, 1981J

T. = Ca'[V. cosa+kxV. sinn] (.10)

•
where C.' is defined differently depending wether a linear or a quadratic drag law is

used. In a linear drag law C.' is a constant, having units of kgm-2 s- l . When the

stresses are estimated by a quadratic relationship C. ' corresponds to

ca' = P. C. IV.I (41 )

•

where C. is a dimensionless drag coefficient and P. is the air density. In the two

previous equations, V. is the wind velocity corresponding to the geostrophic wincl

evaluated from barometric maps. If the 10-m surface wind is liser! in eqllation (40) ami

(41) a is zero due to the faet that the wind stress is colinear with the wind 's velodty

vector.
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• 3 Granular Dynamics Simulations Procedures

•

•

This chapter describes the discrete element model that is being used to investigate the

dynamics of the marginal ice zone. The fractured ice cover is considered to be a two

dimenRionai granular medium and the simulations are done according to a molecular

dynamics approach which is commonly used to study granular flows. Before presenting

the details of the numerical procedure involved in the ice floe problem, sorne physical

aspects of granular materials and of their flows will be discussed and then followed by

an overview of the granular dynamics type of computations.

3.1 What is a granular material ?

Matter is encountered in a granular forrn in nature as weIl as in industry. A granular

material consists of a large number of solid partic1es whose interstices are filled by a

f1uid. The f1uid in which the solid partic1es are dispersed can be air when we think

of powders for example, or a liquid when slurries, pastes or suspensions are involved.

The following are sorne examples of granular media: food stuff such as cereals, sugar

or f1our, animal feed, sand, granular snow, metal and ceramic powders. What is very

particular about granular material is that sometimes it behaves like a solid and at other

times like a liquid. Consider, as an example of this phenomenon, the pile of mustard

grains shown in Figure 11 A. This pile is stable and in static equilibrium when its slope

is less than a certain value called the angle of repose. Past this value the grains thnt

will be added to the pile will f10w on the sides forrning an avalanche. It is possible to

see a thin layer of the grains f10wing at the surface of the pile as in Figure 11 B. One

can consider the static pile as behaving like a solid, whereas a liquid-like behaviour is
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• associated wi th the avalanche.

A parameter describing the internaI behaviour of a pile is the· internaI friction angle

of the material, cI>, whicb is cIosely related to the angle of repose. The internai friction

angle is defined by the Mohr Coulomb yield criterion. This theory states that failure

will occur on a plane when the shear stress acting on this plane becomes equaI to the

product of the normaI stress q with the tangent of the friction angle, cI>, such that

11'1 = q tan cI>. (42)

•

•

The internai friction angle depends on the geometry of the particles and aIso on their

roughness. The more angular the particles are, the greater cI> is.

Another very interesting cbaracteristic of a granular matcriaI is its capacity of

forming arches sucb that only a smaIl fraction of the material can sustain most of the

weight of a pile. In a cereaI box, for example, the grains on the sides are sustained by

friction and these forces are transmitted to the other grains by inter-particle contacts

developing a force network. Under these conditions the grains at the bottom of the

box are not being crushed since there is barely any weight resting on them. Sorne

experiments have been performed involving plexiglass cylinders that were submitted

to a vertical pressure. Plexiglass has the property of being opticaIly anisotropie sncb

that when the cylinders were subjected to a polarized Iight it was possible to observe

the force network developed between particles. A picture of the cylinders' pile is shown

in Figure 12 and the brightest cylinders are those transmitting the verticaI constraint.

As expected, only a smaIl fraction of the cylinders are snpporting the weight. The
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Figure 11: A. Mustard grain pile in static equilibrium. B. Avalanche of a thin layer at
the top of the pile [Jaeger and Nagel, 1992].
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Figure 12: PlexiglllBs cylinders subjected to a vertical pressure. The Iightened cylinders
are those transmitting the constraint [Jaeger and Nagel, 1992].

• capacity of the particles to make arches is present in most high concentration granular

flow regimes.

3.2 Granular Flows

Flows of granular material take place in many environments and under various condi-

tions. Sorne examples are

· sediment transports in rivers,

· manipulation of pharmaceutical products in industry,

· snow avalanches,

· the mixing of aggregates utilized in the making of lIBphalt or concrete in

a rotating cylinder,

· land slides
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Figure 13: Photograph ofice floes taken in the marginal ice zone of the East Greenland
Sea. The largest floes have diameters of approximately 50 m [Leppiiranta and Hibler,
1987].

and the subject of the present study;

. the movements of ice floes forming a broken ice field.

From field observations made in the East Greenland marginai ice zone, Leppiiranta

and Hibler [1987] noticed that "... the ice pack could be considered an almost ideal

two-dimensional granular medium". A picture of the ice floes covering a surface of

approximately 0.7 km2 was taken from their paper and is presented in Figure 13.

3.2.1 Granular flow regimes

Bagnold [1954] has classified granular flows in three distinct regimes:

. a macro-viscous regime for granular flows in which the normal and shear stresses
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are proportional to the velocity gradient and in which the viscosity is dominant,

. a grain-inertia regime where the particles' interactions control the f10w bchaviour

as opposed to the interstitial fluid effects that are negligiblc in their f10w regime,

·and an intermediate regime that Bagnold called transitional.

In the grain-inertia regime Bagnold was able to find an expression for the stresses where

they depend on the square of the velocity gradient. Such a relationship bctween the

stresses and the velocity gradient was developed by expressing the particles' mot,ion

in terms of the mean velocities and the velocity fluctuations. The analogy between

Bagnold's analysis and the kinetic theory of gases has led other researchers to devclop

kinetic theories for granular materials. Furthermore, the velocity fluctuations are re­

ferred to as granular temperature because of their similarity with the thermal motions of

the molecules of a gas. The major difference between molecular interactions and those

of the bulk solid's particles is that in the latter energy is dissipated. The computer

approach commonly used to investigate dry flows of granular materials is the granular

dynarnics type of simulations. This numerical procedure is discrete in the sense that

the movements of individual particles are studicd.

3.2.2 Computer simulation of granular flows

The behaviour of granular f10ws developed in nature or in experiments is not weil un­

derstood. This is primarily because of the difticulty of making measurements, in the

laboratory or in industrial settings, of the interesting pararneters, such as densities or

velocities, without disturbing the flow. In computer simulations, this kind of problem

is not encountered since the state of the system is known at ail times. Recordings of
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the particles' positions, velocities and contact forces are used to obtain stress distri­

butions or to determine the granular temperature of the system. An analysis of the

instantaneous values of the different pararneters can be donc and good averages can

also be computed.

In the domain of experiments, various types of problems have been investigated:

uniform shear flows generated in an annular cell, chute flows down an inclined bed, the

development of roll waves at the surface of a granular material flowing down a rongh

plane, and avalanches in rotating drums. Simulations of sorne of these experiments

have been performed and their results have been compared with the experimental

ones and also with the kinetic theories' predictions. Many of the simulations donc

involve two-dimensional flows where the particles are modeled as circnlar disks. In

order to compare the 2-D simulations with the theoretical and experimental results,

a relationship is established between the 2-D and the 3-D solids fract.ions based on

an equivalent inter-particle spacing. Three-dimensional flows have also been simnlated

where the grains were considered to be spherical.

In computer simulations the motion of the individual particles is governed by New­

ton 's laws. The particles collide with one another giving rise to normal and tangential

contact forces. Between the collisions the particles follow a trajectory which is a fnnc­

tion of time. An external force field such as gravity can be applied to the system.

In granular dynamics simulations, the particles are treated as being hard or soft. The

hard particle model implies instantaneous and binary collisions while the soft approach

permits multiple contacts of a fini te duration. The latter is more appropriate for high

concentration flows in or close to the quasi-static regime. Different computational
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schemes are used dcpending on how the partic1es are modcled. The complltational box

in which the partic1es are enc10sed can have two types of boundarics, either solid or pc­

riodic. The former are used when walls or beds are involved and the latter are appIied

when it is desired to increase significantly the computational region. SoIid walls may

consist of partic1es or they may be fiat surfaces. The Lees-Edward boundary conditions

arc appropriate for the analysis of shear flows of infinite f10w fields [Lees and Edward,

1972].

3.3 The aetual computational formulation of the ice problem

3.3.1 Governing equations of motion; wind and water drag forces

The present model is concerned with deformations at the mesoscale; i.e. for length

scales of the order of 100 km and time scales of the arder of 2 days. The forces acting

on sea ice at such scales are the wind and water drag as well as the Coriolis force. In

addition ta these three kinds of forcing, the ice floes are subjected ta contact forces

as was underIined in the previous chapter. The ice floes are considered ta move in

response to these forces and the equation of balance of momentum for a single f10e can

therefore be wri tten as follows

du
mdi: - -mfk X u + AT. - ATw

n

+ L:F;,
i=1

(43)

•

where u is the Iinear velocity, m is the mass of the ice fioe, t is the time, k is a unit

vector in the vertical direction, f is the Coriolis parameter, T Q and T tu are the air and

water stresses, A is the floe area and Ei',,1 Fi is the vector sum of the n contact forces
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• acting on the floe. The water shear stress is evaluatt'd according to the linear drag la\\'

shown in equation (38) with a constant Cw ' of 0.0126 kg m-2 s-I [Flato and Ribler.

1989]. Similarly, the wind shear stress is evaluated according to the linear drag ln\\'

of equation (41) with Ca' taken to be 0.652 kgm-2 s- 1 [Flato and Hibler, 1989]. The

wind and water drag forces are considered to act on the top and bottom surfaces of

the ice floes.

The conservation of angular momentum, for a floe having a radius R, is based on

the following equation

I~ =
dt

n

}:Ti - T.
1=1

(44)

•
where l is the moment of inertia, which corresponds to 1/2 m R2 , w is the angulnr

velocity, ~i=l T; is the sum of the torques developed by the inter-particle contacts

and T. is the viscous resisting torque acting at the ice-water interface. The latter is

expressed as follows [Savage, 1992]

7l" 4
T. - '2Cw cosfJwR . (45)

•

\vind arag, water drag and the Coriolis force are assumed to act through the center of

the floe and thus they induce no rotation. Only the torqnes arising from the collisions

cause the floe to spin, and these rotationa! movements are resisted by the water shear

stress at the floe's bottom surface.
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Figure 14: Loading and unloading force-displacement behaviour for elastic-plastic
spheres during quasi-static normal displacement calculated using a finite element model
[Walton, 1992].

3.3.2 Contact force models

Collisions with the soft particle model take place over many time steps during which

energy is dissipated in the normal and tangential directions of the contacts. The normal

contact forces between two particles are computed according to a force-displacement

mode!. An elastic-perfectly-plastic constitutive model was used to determine the effec­

tive normal force displacement curve for a sphere impacting a wall [Walton, 1992]. The

sphere was moved toward the wall, subsequently withdrawn, and then moved back to

the wall again for several cycles in order to obtain the loading-unloading curve shown

in Figure 14. From this graph we see that the loading and unloading forces are al­

most liuearly dependent on the displacement with the unloading curve steeper than

the loading one. The slope of the unloading curve increases linearly with the maximum

contact force attained during loading. This behaviour suggests that collisions between
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"0 a
Di.placement

Figure 15: Force displacement diagram.

particles can be c10sely approximated by a linear spring acting between two rigid bod­

ies. Walton and Braun [1986J presented a latching spring model that approximnt.es

the behaviour shown in Figure 14 and in which the normal forces are related ta t.wo

different spring constants (Figure 15)

and

for loading,

for unloading,

(46)

(47)

•

where Q is the overlap of the two contacting particles and Qo is the value of (\' when

N becomes zero. The energy dissipation corresponds to the nrea under the cllrve of

Figure 15. The ratio of the moduli KI and K2 is related to the restitution coefficient

e, which is constant over the whole simulation, as follows
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(48)

Tangential forces are a1so considered to act at the interface between floes in a

direction opposite to the relative tangential velocity. The magnitude of the tangential

force T is calculated according to a Coulomb friction coefficient, J.l = tan eJ.>, such that

T - J.lN.

3.3.3 Boundary conditions and nondimensionalization

(49)

•

•

Situations involving different kinds of wind force fields have been simulated, these wind

fields were either uniform, cyclonie or anti-cyclonic. For the cases where the wind field

eonsists of a vortex the array of ice floes is enclosed by four solid boundaries. For

the case of a uniform wind, a solid boundary is placed at the right hand side, a free

boundary occurs on the left, and periodie boundaries are applied in the direction of

the flow. Computations conducted under these conditions will be presented in a Inter

chapter.

It is convenient to use a dimensionless form of the govcrning equations in the com-

putations. Comparisons with field conditions or with othcr studies can be easily donc

aftcrwards. The largest floe diameter D is used as a refercnce lcngth. Time and veloc­

ity refcrcncc values are respectively taken to he JM / K, and D /JM / K" where M is

the mass of the largest floe [Savage, 1992]. In the preliminary computations, the ma­

tcrial property values were taken to be: KI = 2.5 X 105 N/m, p = 0.91 X 103 kg/m3,

J.l = 0.3, and e Yaried from 0.2 to 0.8.
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3.3.4 Program logic

A number of partic1es are located in a rectangular array bounded by two or four rollgh

walls depending on the wind conditions. initially, each partic1e is given a small random

velocity. Wind and water drag cause the motion to begin, and, after a short perio<\ of

time, collisions occur giving rise to contact forces.

A short time interva1 is used in order to have several time steps during each colli­

sion. The neighbors of each partic1e are regularly checked for contacts. The overlapping

distance of two particles, a, is calculated and, depending on whether the partic1es are

approaching or retreating from each other, KI or K2 is used in the l'valuation of the

contact force. The tangential force is then compllted after determining the direction of

the relative tangential velocity. Forces from all contacts are thcn added for each par­

ticle and the equations of balance of momentum are integrated over the time Btep in

order to give the particles new positions and velocities. The ca1clllations arc repeatcd

for the following time steps .
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• 4 Non-Linear Effects of Water and Air Drag

4.1 Introduction

In §2.3.1 we showed how the drag exerted by the water and by the wind on the hor-

izontal surfaces of the ice f10es is evaluated. The air shear stress is determined Ilsing

the following linear relationship

(50)

where C.' is a constant, V. is the wind velocity and BQ is a matrix involving the

boundary layer turning angle a, i.e. the angle between the air stress vector and the

•
direction of the geostrophic wind

B = ( c?sa
Q sIDa

-sina ) .
cos a

In a similar fashion the water shear stress resisting the motion of the f10e is expressed

as

'T'w = Cw ' Bp u (51)

•

where Cw ' is the linear water drag coefficient, u is the ice floe velocity, and (3 is the angle

between the water stress vector and the ice velocity vector relative to the gcostrophie

cUITent. It is assumed that th~ Il'ater current velocity olltside the viscous hOllnclary

layer is negligible compared to the ice f10e velocity u.

A more realistic water shear stress would be proportional to the square of the

relative velocity between the ice f10e and the water CUITent. The use of a qlladratic

42



•

•

•

drag law no longer allows the effects of the floe spin and of the translational motion

to be superposed. The development of expressions for the water drag force and for

the viscous resisting torque, using quadratic relationships to relate the stresses to the

relative velocities, is presented in this section. In a similar fashion an expression for the

wind drag force is derived. The new formulations of the stresses require the appropriate

dimensionless wind and water drag coefficients. A literature review of these drag

coefficients is presented along with the analyses.

4.2 Water drag force

The two components of the water shear stress acting on the bottom surface of an

individual ice floe can be written as follows

Twr - Pw Cw cosfJ IVw - VI (Vwr - Vr) - Pw Cw sinfJ IVw - VI (Vwu - lt;,), (52)

TwU - Pw Cw sinfJ IVw - VI (Vwr - Vr) + Pw Cw cosfJ IVw - VI (Vwu - lt;,). (53)

In the previous equations Pw is the water density, Vw is the water current velocity,

and V is the linear velocity at a particular point on the f1oe. The latter consists of

the velocity of the center of gravity, V og , to which is added the contribution due to

the floc rotation. These velocity vectors are sketched in Figure 16a. A small elemental

area dA with a force vector dF acting on it is represented in Figure 16b. The two

contributions of the velocity vector of this element are sketched in Figure 16c as weil

as the water velocity vector. Values of Cw, the quadratic drag coefficient, for different

types of ice and for water currents measured at different depths are given in Table 1.

43



•

•

a)

Olt

b)

•
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c)

Figure 16: Diagram defining coordinate systems, velocity vcctors and elemental arellB.
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The geostrophic depth is the depth at which the frictional efi"ects induced by the wind

blowing on the water surface, or on the ice Hoes, vanish and where the current is estab­

lished by the Coriolis and pressure gradient forces. The turning angle f3 associated with

the geostrophic current was evaluated by McPhee [1980] and by McPhee and Smith

[1976]; it appears that f3 is consistent from year to year and that it has an average

value of 24°. McPhee [1978, 1979] has performed an investigation on turning angles

related to water currents measured within the viscous layer but the results he obtained

were not reliable due to large errora in current meter measurements and directions.

This suggests that the water stresses and their directions should be evaluated using

geostrophic or surface currents since the values of th'J turning angles for other water

depths are not known. When surface currents are involved, the turning angle is zero

Binee the stresses act in the direction of the ice velocity relative to the surface current.

Investigator IceType Reference Depth (m) Gtux 103

McPhee and Smith [1976] smooth geostrophic 3.40

McPhee [1980] rough geostrophic 5.50

McPhee [1979] rough 2.0 20.00

Madsen and Bruno [1986] smooth 2.0 5.46

Madsen and !3runo [1986] rough 2.0 15.00

Madsen and Bruno [1986] slighty rough 5.1 4.07

Madsen and Bruno [1986] slighty rough 1.1 8.40

Table 1: Representative values of the water drag coefficients.
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• For the time being, we will take the tuming angle to be zero such that the two

components of the elemental force acting on a small element dA. are the following

dF. - Pw CW IVw - VI (vw. - V.) r dr dll,

dF~ - Pw CW IVw - VI (Vw~ - V~) r dr dll.

(54)

(55)

This assumption is only temporary and is made in order to simplify a number of terms

involved in the derivation of the drag force. The computer program used to conduct

the simulations integrates the equations of motion for the x and y directions and

consequently we must express the drag forces in terms of their x and y components.

The force components F. and F~ are determined by integrating dF. and dF~ over the

• floe area. In order to reduce the number of terms involved in the integrations anotlll'r

reference axis is chosen. The new x axis, which we will call x', is along the vector

V w - V cg' Since the angles that V w and V cg make with the x a."<is are known (Vw is

constant throughout the computer simulation and V cg is computed at every time step) ,

the angle by which the reference axes are shifted can be expressed in terms of these

two vectors and of their angles. Defining ç as being the angle between V cg and the x

axis, E as the angle between V w and the x axis then "'(, the angle formed by V w - V cg

and the x axis is expressed as follows

"'(= (56)

•
The new set of axes as weil as the vector Vw - V cg are shown in Figure 17. The
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r

• x'

Figure 17: Diagram defining the x' coordinate system.

magnitude of V w - V eg corresponds to

(57)

The relative velocity vector, V w - V, needed to find the x' and 11 components of the

force, is expressed in terms of its 0 and r components in the following equation

Vw - V = (-wr -IV.I sinO) eg +IV.I cosO er, (58)

where V. corresponds to Vw - V.g • An equivalent way to write dFz' and dFy' is the

following

•
dFz' - Pw Cw (Vw - V)2 cos 17 r dr dO,
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e

x'

•

e

Figure 18: Diagram defining velocity vectors on the x' l'oordinate systt'm.

dFy' = Pw Cw (Vw - V)2 sin.,., r dr dO (60)

where .,., is the angle that Vw - V makes with the x' axis. By looking lit Figure 18, it

cao be seen that

•

)
Vr

cos(.,.,-O = IV.. -VI'

and

• Vo

sm(.,., - 0) = IV.. _ VI'

Combining these two equations, we obtain

Vr cos 0 + Vo sin 0
cos.,., = IV.. -VI
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• . vrsinO + vscosO
sm 77 = IV", _ VI

Substituting for Vs and for Vr , the previous equations become

. -wrcosO
sm 77 = IV", - VI'

We can now write the expressions for dFz • and dFu'

(64)

(65)

(66)

dFu' = Pw Cwvw2r2 +2wriVeisinO + IV.12 (-wrcosO) r dr dO.

• dFz' - p", C",Jw2r2 + 2wrlV.1 sinO + IV.12 (-JVel- wrsin 0 + 21V,1 cos20) rdr dO

(67)

(68)

We can divide dFz ' into three components

dFI = Pw Cwvw2r2 + 2wriVeisinO + IVel2 (-IVeD r t/r dO, (60)

dF2 = Pw Cwvw2r2 + 2wriVeisinO + IVel2 (-wrsinO) rdr dO, (70)

dF3 = Pw Cwvw2r2 + 2wr lVcI sinO + IVel2 (21VcI cos20) r dr dO. (71)

•
There is no closed form solution to the integrals of equations (68) to (71), so we must
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• integrate them numerically. In order to do this numerical integration, thc nondilllf'lI­

sionalization of the variable r was required. This variable was nondimf'IlSionalized by

R, the radius of the f10e for which the force is to be calculated, yielding 1\ new variable

z whkh corresponds to riR and ranges from 0 to 1. The first componf'nt, dFI> of the

elemental force can be written as follows

C 1 I
r 3 w2 r 2 2wrIV.lsin(J IV.12 [T d(J

dFI - -Pw w V. RR W w2R2 + w2R2 + w2R2( R ' (72)

and finally in terms of z and of a new parameter G corresponding to IV.l/wR, dFI

takes on the following form

• (73)

In a similar fashion dH, dF3 and dFv' are expressed as follows

dF2 = -pwCww2R4z2sin(JVz2+2Gzsin(J+G2dzd(J, (74)

dF3 = 2 Pw CW IV.I R3 w zcos2(Jvz2+ 2 G z sin (J +G2 d:: dO, (75)

(70)

The parts of dFI. dF2, dF3 and dFv' that contain the variables z and (J will be calleel

dF\, dF2, dF3 and dFv' respectively.

•
dFI - zvz2+2Gzsin(J+G2dzd(J,
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• dF2 = Z2 sin IJ J Z2 + 2 G z sin IJ + G2 dz dIJ, (78)

dF.1 = z cos2IJJz2+ 2 G z sinIJ + G2 dz dIJ, (7D)

dty' = z2 cos IJJz2 + 2 G z sin IJ + G2 dz dlJ. (80)

The llbove expressions were integrated numerically for IJ ranging from 0 1.0 211" and ::

vllrying from 0 1.0 1. The integrals were computed for several values of G. The integral

of dFy' was found 1.0 be zero for any value of G. This result was 1.0 be E'xpected since t.he

l'lemental forces acting in the y' direction are uniquely relat.ed 1.0 the angular velodt~,

of the disk. The results obtained from the integration of each of the three componcnts

of dF" were plotted against the parameter G. A public domain software SciPlot was

Ilsed 1.0 determine functions that fit each of these curves. These fllnctions are writtl'n

• helow

r2~ rIJo Jo dFI ~ -0.3147 + 3.1754JO.534D + G2,

r2~ t .
Jo Jo dF2 ~ 0.78 tanh(1.5016 G),

r2~ rI .
Jo Jo dF.1 ~ -0.0193 + 1.5716 v'0.4466 + G2.

(81)

(82)

(83)

•

The nllmerical results obtained from the numerical int.egrat.ion of dÈ'l' dÈ'2' dÈ'3 and

dty' are plotted in Figures ID 1.0 21 with their respective curve fits. Now thal. t.he

t.hrce force components are evaluat.ed, F" can be written in t.he following manner

F" ~ Pu, Cw [ -IVel R3
w (-0.3147 + 3.1754JO.5349 + G2) - w2 R4 0.78 tanh(1.5016 G)

(8~)
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Figure 19: Numericai values of the elementai force Fil as a fundion of the parallll'!l'r
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Figure 20: Numericai values of the elementai force F2• as a function of the paraml'!.1'r
G.
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Figure 21: Numerical values of the elemental force Fa. as a function of the parametcr
G.
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Figure 22: Numerical values of the elemental force T2• as a function of the paraml.'ter
G.
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Writing the previous equation in terms of w, IVel, and R we obtain

Fr> ::::: Pw Cw(0.3147 IVeIR3W-3.1754JO.5349 IVel2 R6 w2 + IVel4R4

w2 R40.78tanh(1.5016 IVeI ) -0.0386 IVe 1 R3 W
wr

+ 3.1432 J0.44661VcJ2 R6 W2 + IVcl4 R6]. (85)

For an ice f10e having a zero rotational velocity, the above eqllntion redllccs to

-3.1754 R 2 Pw CW IVcl2 which is very close to the exact expression -11" R2 Pw CW IVc12.

The last step in our derivation is to shift back the axes in order to ohtnin the proper

components of the water drag force. This can be done by multiplying Fr> by the cflsine

of '"( to obtain Fr, and by sin'"( to obtain Fv• Furthermore, the eifects of the viscolls

boundary layer must be included if geostrophic currents are used in the simulations.

This is done by reintegrating the turning angle fi which had been neglected temporar­

ily. Finally, we obtain for Fr and Fv the following expressions

•

Fr = cosfi cos'"( Fr> - sinfi sin'"( Fr"

Fv - sin fi cos'"( Fr> + cos fi sin'"( Fr>.
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• 4.3 Viscous resisting torque

The torques arising from collisional contacts with neighboring ice f10es are resisted by

the water shear stress on the bottom of the ice f1oe. The elemental torque resisting

the spin of the f10e is equal to r, the arro, multiplied by dFo, the compcnent of the

elemental force in the 0 direction. Since dFo = TO r dr dO, the elemental torque can be

written as

where

dT - TO r 2 drdO (88)

(89)

• Substituing for Vr and Vo the stress in the Ddirection can be expressed as

TO = pw Cwvw2r2 + 2wrIVei sinD + lVel2 [(-wr -IVel sin 0) cosf3 -IVel cosOsinf3].

(90)

The elemental torque can be divided into three components

•

dTl = -Pw Cw cosf3 wr3 vw2r2 + 2wriVeisinO + IVcl2 dr dO, (91)

dT2 = -Pw Cw cosf3 IVel r2 sinD vw2 r2 + 2wrIVei sinO + lVel2 dr dO, (92)

dT3=-PwCw sinf3 IVe1 r2 cosDVw2r2+2wrIVelsinO+IVcI2drdO. (93)
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After nondimensiona!ization of r we find

dT, = -Pw Cw cosf3 W2 RS
Z3 JZ2+ 2Gz sinO + (J'l ci: dO, (9·1)

dT2 = -Pw Cw cosf3IV.1 W R4 z2 sinO J z2+2Gz sinO+(J'l dz dO, (95)

dT3 = -Pw Cw sinf3 IV.I W R4 z2 CORO J Z2+ 2 G: sin 0 + OZ d: dO. (96)

The part of dT3 containing the z and 0 terms, dT3, is identica! to dFv' and is therefore

equa! to zero when integrated. Moreover, we observe that dT2 corresponds to iF2•

After curve fitting the values obtained by the numerica! integration of dT" the following

function was found to fit the results

• [2~[' __
Jo Jo z3v'z2+ 2 G z sinO + OZ dzdO RI -0.1979 + 1.5908 v'O.7515 + OZ. (97)

•

The numerica! results and tlie above function are plotted in Figure 22. The expresRion

for the torque developed in this section is not affected by the rotation of the axeR by

the angle "t and consequently it does not need to be modified. The torque is to be

evaluated using the fol1owing expression

T RI Pw Cw cosf3 [_W2RS(-0.1979+1.5908 JO.7515 + OZ)-IV.I wR4(0.78 tanh(1.5016 C)) l,
(98)

and in terms of IV.I, w, and R, the above equation becomes
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•
T :::l Pw Cw cosfJ [0.197!J W2 RS - 1.5908 ';0.7515 w4 RIO + IVcl2 w2 R6

0.781Vcl W R4 tanh(1.5016 ~~~:)]. (!JO)

4.4 Air drag force

The ice speed corresponds to only 3 to 5 percent of the wind's speed and thus it is

not necessary to use the relative velocity vector between the air and the ice floe in the

calculations of the stresses. The x and y components of the air drag force are given by

the following relationships

•
F.r = P. C. 27rR2 IV.I [cosa u. - sin a v.], (100)

(101)

•

where P. is the air density, C. is the dimensionless air drag coefficient, and u. and

v. are the x and y components of V., the wind velocity. The drag coefficients are

usually evaluated from winds measured at the standard anemometer height which is

10 m. A literature review of the drag coefficients evaluated from several studies is

presented in Overland [1985J. The lO-m drag coefficients reported by 28 studies vary

from 1.2 x 10-3 to 3.7 X 10-3• The lowest values correspond ta a smooth ice surface

and the largest to rough ice. Overland [1985J has observed that the nature of the ice

surface is not the sole characteristic influencing the amount of drag exerted by the

wind. Indeed, the concentration of ice on the water surface, the air temperature, the

stability of the atmosphere and the size of the ice floes are important factors in the
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• determination of drag coefficients. Overland [1985] has grouped in a table (Table 2)

the lO-m drag coefficients for smooth ice, for the Arctic pack, for the marginal seas,

and for the inner and outer marginal ice zones (MIZ).

Table 2: Composite table of air drag coefficients referred to lO-m winds (103Co ) as
a function of ice and meteorological regime [Overland, 1985].•

1« Rogimo Characlerislics
T" < -5°,

T" _00 Z,<300m
Smoolh ico largo. flal floos 1.5u 1.5h

Arclic pack largo range of floo sizos. largo 1.71 2.6...·"
prossuro ridgos. C, >0.9

Marginal soas brokon. ficsl-"oar ico. Ci = 2.2' 2.71t

0.9. occasional big floos
lnnor MIZ small floos. raflod. C, = 2.6' 3.(1'

0.8-0.9
OUlor MIZ C, = 0.4 2.2'

Ci = 0.3. rubble field :!.8'"

T" < _~c.

Z,>400m

3.0"

3.7'

•

For a specific environment, the drag coefficients are expressed as a function of

the meteorological regime. From this table we can observe that the drag coefficients

increase as the floe size decreases and that for the same type of ice coyer the drag

coefficient increases for temperatures below -50 C and for an atmospheric boundary

layer not constrained by a low inversion height, Zj. Overland [1985] dcfines large floes

as those having lengths of the order of 1 km or more. The marginal ice zone is a

region close to the open water in which the ice floes hav,~ more roundccl fcatures than

in other regions. The data reported by Overland [1985] arc for the MIZ of Greenland

and for the Bering Sea. Marginal seas include the Gulf of Saint-Lawr<'nce away from
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• the MIZ, the coastal Beaufort sea, Bothnia Sea and Bay, the northern Sea of Okhotsk

and Bering Sea and the Robeson Channel.

When the surface drag coefficient is known, the geostrophic drag cocfficient can bc

derived using the following relationship

Ca = CIO (Vio 2IV. 2). (102)

•

•

In Figure 23 are plotted the air stresses evaluated using surface and gcostrophic winds

for the Caribou station of AIDJEX [Coon, 1980]. The stresses were computed for a

20-day period. The 10-m drag coefficient was taken to be 2.7 x 10-3• For the strcsses

computed with the geostrophic wind, a turning angle of 25° was used and Ca was

calculated using equation (102) with the 20-day mean of (Vio 2IV. 2). As illustrated in

Figure 23, the stresses calculated with both types of wind are in very good agreemcnt.

4.5 Summary and eoncluding remarks

Simple expressions were developed to evaluate the drag exerted by the water and by

the air on individual ice f10es in the most accurate manner. These drag forces have to

be evaluated at every time step in the course of the simulations. The water drag has

two contributions; one resisting the translational motion of the f10e and the other its

spin. Equation (86) must be used to evaluate the x component of the drag force while

the y component is given by equation (87). The final equation for the water rcsisting

torque is given by equation (98). The x and y components of the air drag are given by

equation (100) and (101), respectively.

The linear relationships that are currently used to conduct the computer simulations
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Figure 23: Air stress for Caribou, days 181-201 (30 June-20 July 1975). Upper plot,
east-west component; lower plot, north-south component. Data points are from surface
winds and the Hne is from geostrophic winds [Coon, 1980].
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Figure 24: Water stress versus relative ice speed.

lions are appropriate for winds close to 10 mis and for ice velocities relative to the

water current of approximately 0.1 rn/s. Sorne computer simulations, involving a Iin-

ear drag law, were performed for a rectangular array of ice Hoes wi th a solid boundary

on one side. There is a geostrophic wind blowing parallel to this boundary at a ve-

locity of 10 mis and there is no geostrophic water current. High concentrations of ire

dcvelop close to the solid boundary due to the fact that the Coriolis force, which aets

pcrpendicularly to the velocity, pushes the Hoes toward this direction. A spatial and

lime averaged Hoe velocity of 0.175 mis was calculated. This velocity is much larger

than the expected value of 0.1 rn/s. In Figure 24 are plotted the water stresses eval-

uated from the two relationships, Iinear and quadratic. From this figure we can sec

that the water stresses calculated in the simulations, using the linear drag law, wcre

underestimated by 26 percent. This difference is not negligible and it appears that it
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Figure 25: Wind stress versus geostrophic wind speed.

is not an easy task to determine in advance what the ice velocity will be.

Fissel and Tang [1991] present in their paper Response of .çea ice drift to ",inti

forcing on the Northeastern Newfoundland Shelf, geostrophic wine!s that were deriv('e!

from meteorological dat.a for '1988. Their data show that the geostrophic wind sp('('d

was uniformly distributed from a few mis to 30 rn/s. In Figure 25 are plottcd the air

stresses, evaluated according to both relationships, for geostrophic wind speed varying

from 0 to 30 rn/s. From this graph, we observe that a variation of the wind speed from

10 to 15 mis yields an error of 41 percent in the stresses calculated with the !inenr

relationship. The model that we are currently developing will he usee! to predict. the

•
movements of icI' fioes over lengths of the order of 100 km ane! for perioe!s of a fl'w

days. During such short periods of time, high variations in the wind's speed strongly

affects the ice motion and the model must be able to adequatcly refiect these effect.s.
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Moreover, the winds over regions ofthis length scaie are not likely to be uniform; that is

the CMe for a vortex wind field where the wind is very strong at the center of the vortex

and decreases with radiai distance. There can be a factor of three or more betwf'l'n

the magnitude of the wind at the center and that at the margin. It appears from tlwse

examples that the linear drag laws, which were developed for large time and l!'ngth

scaie models, are not suitable for the problems in the present study. Therefore, t.he

relativcly simple quadratic relationships derived in this chapter should be ineorporat.!'c\

in the discrete element model ", ·'on as possible in order to obtain the most reliahlc

results.

63



•

•

•

4.6 References

Banke, E.G. and Smith, S.D. 1971. Wind stress over ice and over water in the Beaufort
Sea. J. Geophys. Res" 76, 7368-7374.

Banke, E.G. and Smith, S.D. and Anderson, j. 1976. Recent measurements of wiud
stress on arctic sea ice. J. Fish. Res. Board. Can., 33, 2307-2317.

Coon M.D. 1980. A Review of AIDJEX Modeling. Sea Ice Processes and Modc!s,
edited by R.S. Pritchard, University of Washington Press, Seattle, 12-27.

Fissel, D.B. and Tang, C.L. 1991. Response of sea ice drift 1.0 wind forcing on the
Northeastern Newfoundland Shelf. J. Geophys. Res., 96, 18,397-18,409.

Flato, G.M. and Hibler, W.D. 1989. The effect of ice pressure on marginal ice zone
dynamics. IEEE Trans. on Geoscience and Remote Sensing, 27, 514-521.

Madsen, O.S. and Bruno, M.S. 1986. A methodology for the determination of drag
coefficients for ice floes. Proceedings of the Fifth Internationa/ Offshore Mechanics and
Arctie Engineering Symposium, American Society of Mechanical Engineers, New York,
4,410-417.

McPhee, M.G. 1978. AIDJEX Oceanographic Data Report. AIDJEX Bill/utin, 39,
33-78.

McPhee, M.G. 1979. The effect of the oceanic boundary layer on the mean free drift.
of pack ice: Application of a simple mode!. J. Phys. Oceanogr., 9, 388-400.

Mcphee, M.G. 1980. An analysis of pack ice drift in summer. Sea let Processes and
Mode/s, edited by R.S. Pritchard, University of Washington Press, Seattle, 62-75.

McPhee, M.G. and Smith, J.O. 1976. Measurement of the turbulent boundary layer
under pack ice. J. Phys. Oceanogr., 6, 696-711.

Overland, J .E. 1985. Atmospheric boundary layer structure and drag coefficients over
sea ice. J. Geophys. Res., 90, 9029-9049.

Savage, S.B. 1992. Marginal ice zone dynamics modelled by computer simulat.ions in­
volving floe collisions. Report for the contract 91-1547/5471, prepared for the IME of
the National Research Council Canada.

Smith, S.D., Banke, E.G. and Johannessen, O.M. 1970. Wind stress and turhulence
over ice in the Gulf of St. Lawrence. J. Geophys. Res., 75, 2803-2812.

Walton, O.R. and Braun, R.L. " ~86. Viscosity and temperature calculations for w;­

semblies of inelastic frietional disks. J. Rhe%gy, 30, 949-980.

64



• 5 A Friction Model Involving Shear Deformation
of Individual Ice Floes

•
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A tangential contact force model is introduced in the present chapter. It takes account

of the elastic deformation that cau occur because of the tangential contact forces. Sim-

Illations of inclined chute flows of a two-dimensional granular medium were conducted

with the incrementally slipping friction force model, and with the Colombic model (cf.

§3.3.1), in order to compare their performance. Finally, the nllmerical code used to

simulate the dynamics of broken ice fields was modified to allow shear deformation of

the individual ice floes and a study was performed to observe how this change affects

the overall behaviour of the field.

5.1 Incrementally slipping friction force model

The tangential contact forces were modeled (cf. §3.3.1) using a Coulomb-type friction

coefficient p. corresponding to the tangent of the static friction angle tP such that the

friction force is T = p.N, where N is the normal force. The particles were considcred

to be 'rotationally rigid' such that no shear deformation of the particles was possible in

the tangential direction of the contact. The direction of the friction forces was found by

evaluating the relative slip velocity, of the two particles, at their contact point. Since

the tangential force normally tends to oppose the motion, it was considered to act in

a direction opposite to the relative slip velocity. It can be ea.~ily demonstrated that

this model is inappropriate for the static case. Consider for example a block having

a weight W and resting on a bed inclined at an angle () :rom the horizontal, where

() is smaller than tP. According to the Coulombic model, the tangential force applied
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on this block has a magnitude of W sin t/J and is acting upward along the plane. This

romputed tangential force is greater than the component of the weight along the planl'

and consequently could cause the block 1.0 move up the planc. In th" following tiull'

step, the tangential force would have the same magnitude, but would net down the plaul'

since the block has a velocity vector pointing in the opposite direction. This eXllmple

iIlustrates that the above friction force model does not adequately simulate statk and

quasi-static fIows of granular material. Il. also suggests that tangential cont~cts might

not be properly treated in rapid fIows.

This Coulombic friction force model will be replaced in the discussion thal. follows

by the incrementally slipping friction force model of Walton and Braun [1986]. which

allows for shear deformation of the particles. The Walton-Braun (WB) model W1L~

based upon the studies of Mindlin [1949J and Mindlin and Deresiewicz [1953J. Thl'ir

expression for the tangentiai force is for elastic spheres having an elastic Hertzilln

normal stress distribution in the contact regions. The friction forre is a function of

the tangential displacement. Il. inrreases in magnitude unti! the limiting value of JIN

is reached. A major assnmption made by Mindlin is that the tangentilll displllcement

does not affect the Herztian normal stress distribution. Mindlin 's expression for f.l1('

tangentiai force T, for a sphere of radius R, as a function of the increment in tangentilll

displacement, ll.s, is as follows

[ (
16 Ga ll.s ) 3/2]

T = /-lN 1 - 1 - (3(2 _ v)/-lN (103)

•••
where G is the shear modulus, v is Poisson '5 ratio, and a is the Hertzian contact
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• radius corresponding to (E· N R)I/3, where E· is related to Young's modulus throllgh

the expression E· = ~ (1-;'). The WB model is an approximation of Mindlin's model

for spheres. The tangential force ia evaluated using an effective tangential stiffness Kt

associated with a non-linear spring. This parameter has an initial value of K. and

decrel!S::ô .....it.h tangential displacement until it becomes effectively zero at full sliding,

when T = J1.N. The tangential force is a history dependent quantity and is evaluated,

for a time step i + 1, as follows

•
where K, is given by

(
Ti -T· )1

Kt = K. 1 - J1.N
j

_ T.

(104)

(105)

when the tangential displacement, for two contacting particles, starts taking place.

The slip, ~s, which is the relative tangential displacement between two time steps, has

a positive value in this direction causing T to increase. If the tangential displacement

reverses direction, ~s becomes negative, T is reduced and the following expression for

the tangential stiffness must be used

(
T· - T,. )1

Kt = K. 1 - T. _ J1.lv
i

(106)

•
When the tangential displacement reverses a second time, Kt is evaluated using equa­

tion (105). This pattern is continued for further reversais. In expressions (105) and
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Figure 26: Tangential force generated by the incrementally slipping friction force model
with a constant normal force and an ever increasing amplitude a1ternating tangential
displacement (-y = 1/3) [Walton and Braun, 1986J.

• (106), "'1 is a constant parameter. According to Mindlin's theory "'1 = 4, but it is

mentioned in Walton [1992J that a value of 1 or 2 better simulates frictionai contacts

involving plastic deformation. Another parameter appearing in the last two equations

is T", which is initially zero and takes on the value of T whenever the slip reverses

direction. The graph of the tangentiel force versus displacement for a constant normal

force is given in Figure 26. In the first segment of the curve which begins at the origin,

T is increasing and equation (105) was used to evaluate the tangential stiffness. The

tangential force is acting in a direction opposite to the relative slip velocity. In the

second section of the curve where the slip has changed direction and the force is still

positive, the force vector acts in the same direction as the relative tangential velocity

•
until the point where T on the graph becomes negative. This section is associated \\'ith
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• the recovery of tangential strain energy by the material during the rebound. When the

slip reversed direction T" took on the value of T calculated for this time step. For the

following time steps T" is scaled in proportion to the changes of N such that

T " - T"'INi+J 1Hl - 1 Ni . (107)

•

•

The scaling of T" is a compromise of Mindlin's theory in which the entire tangential

force displacemÈmt curve scales with the normal force. With this scaling, changes of

T are allowed when there is no tangential displacement. Walton and Braun [1986)

have decided to check the tangential force against the limiting value of p.N rather than

scaling T this way.

The above model was checked for a simple two-dimensionai static case. Following

Walton and Braun [1986), the ratio of the initial tangential stiffness to the normal

stiffness was chosen to be 0.8 and 1 was arbitrarily set to 1. Twenty disks were

dropped in an open box. The particles did not quickly come to rest, but instead the

system became very agitated and at a certain point it virtually exploded, propelling

the particles out of the box. After a detailed examination of the values calculated

for the tangential forces it was observed that sometimes they would reverse direction

suddenly :u;d then have a magnitude of p.N. This situation was found to occur when

rapid changes of N, from one time step to another, took place. Negative values of

KI were then obtained due to the fact that T" i was scaled according to N to beco:.ne

T" ;+1> whereas 'li was not modified. A solution to this problem was to scale 'li bcfore

calculating Kt in addition to T";. Wheu a tangential displacement occurs, 'li+J is
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Figure 27: Experimental setup for the chute flows of alllminum cylinders.

evaluated according to the change in N but also according to the increment in slip,

whereas 11+1 only depends on the variation of the normal force when t:1s is zero. Wi th

this minor change, the static case described previously was properly simulated.

5.2 Inclined chute flows of granular material

Experiments involving aluminum cylinders piled Oll a rough bed were performed hy

Olivier Pouliquen in the Bulk Solids and Suspensions Laboratory at McGiII and were

subsequently simulated through molecular dynamics type computations. TheRe ex-

periments are considered to be two dimensional because there is no movement of the

cylinders in the lateral direc~ion and no side friction. The apparatus for this experi­

ment is shown in Figure 27. The bed had a length of 1.2 m and a width of 8 cm. The
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rough surface consisted of plastic cylinders glued side by side on the bed and having

a diameter of 2.5 mm. The aluminum cylinders were 6 cm in length. Half of them

had diameters of 2 mm and the remaining half were 3 mm in diameter (mean diam­

eter d=O.25 mm). At the two extremities of the bed the particles were constrained

by two walls. The cylinders were initially arranged on the bed sucb that depth, h,

was constant over the whole bed. A wire passing through a pulley was used to slowly

raise one end of the bed. As the bed was inclined some local rearrangements of the

cylinders occu~ed and at a specific moment practically ail the cylinders f10wed down

the bed. This phenomenon will be referred to as an avalanche. The experiments were

performed for 1, 2.5, 4, 7 and 11layers of cylinders. Each case was repeated 6 to 7 times

for which the cylinders had different initial arrangements. The bed angles at which

the avalanches were initiated were recorded and plotted against the number of cylinc!er

layers in Figure 28. The effective static friction angles, t/J, are found to increase with

the reduction in depth of the granular material. The range of values of the recordC'c!

angles ('error bands') for a specific depth varies from 1° for 1 layer to 3° for a layer

3 particie diameters deep. On average, a range of 2.3° was obtained. These results

are comparable to those thst would be obtained with an inlinitely long bed covered

uniformly with cylinders because of the two end walls that were used.

5.2.1 Granular dynamics simulations of avalanches of aluminum cylinders

The experiment just described involves the transitions from static conditions to quasi­

static and finally to a rapid f10w of a granular materiol1. The system is in static

equilibrium when there is no movement of the particles, whereas the conditions are
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Figure 28: Effective static friction angles measured experimental1y versus the nondi­
mensionai depth.

quasi-static when the particles are in a slow motion, when there is local rearrangemC'nt

or just before the avalanche. The goai of these computations is to check the proposcd

tangential force model before rapid f10w occurs. As noted previollsly, it was expected

that the Coulombic tangentiai force model should fail during static or quasi-static con-

ditions. This is what was observed when the experiment with alllminllm cylinders was

simulated with the Coulombic mode!. The simulations were more Buccessful when the

WB model was IIsed to determine the friction contact forces. The numerical code lIsed

for the ice f10e problem has been adapted to simulate the experiment.~with aluminllm

cylinders. The slight modifications made to the original code arc presented below and

they are followed by the computational results for the two types of simulations.
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• 5.2.2 Problem formulation

The sir.lulations of the above two-dimensional experiment were done using rough circu-

lar disks to represent the granular medium. The disks hoo a uniform random diameter

distribution ranging from 0.6 D to 0.8 D, where D is the largest diameter encountered

in the experiments. The reason why such a distribution was chosen, and not one of

2/3 D to D as in the experiment, is that a more stable initial arrangement was easier

to obtain with this distribution. The extemal forces involved in the ice floe problem,

Le. air drag, water drag and the Coriolis force, have been replaced by gravity. The

governing equation of motion for an individual cylinder is expressed as follows

•
n

= mg+ LF;,
i=l

(108)

where m is the mass of the cylinder, t is the time, g is the gravitational acceleration and

L:i'=1 F; is the summation of the n forces arising from the partic1e's contacts with its

neighbors. According to the nondimensionalization presented in Chapter 3, the grav­

itational aceeleration, whieh has units of m/s2, is nondimensionalized in the following

manner

• M
g =g­

DKI
(109)

•
where D ia the diameter of the largest eylinder and is therefore 3 mm; M is the ma.'lR

of the largest eylinder eorresponding to Pal L7rD2/4 and has a numerieal value of 1.13 g

sinee the density of the a1uminum is 2.66 g/cm3• The normalloOOing stiffness, KI, wa.~
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chosen to be 20 kNim. Thi~ value is certain1y 1ess than the real one but it h88 bcen

found that the various resu1ts that can be determined through numerica1 simulations,

such as the stresses, are not too sensitive to the varia.tions of KI as long 88 it remains

within a certain range where it is sufficiently still'. Besides, a 10wer KI permits the use

of a 1arger time step since the contact time for a collision is inverse1y proportional to

,fKï. With these values, g', the dimension1ess gravity, is 0.0002. The 1atching spring

force mode1 is still used to evaluate the normal forces at contacts between cylinders.

The eDl~rgy dissipation associated with the normal direction of the contacts is re1ated to

a coefficient of restitution e which was set to 0.5. The un10ading spring still'ness is founc!

through equation (48), from which we can deduce that [(2 has a value of 80 kN/m.

There is one material property which is 1eft to define and it is the a1uminum-a1uminum

friction factor p.. This parameter is required for both tangential contact force models.

The value of p. Wlill determined experimental1y using two pairs of cylinders. In each

pair the two cylinders are connected by two smal1 sticks of equa11ength as illustratec!

in Figure 29. One set of cylinders is resting perpendicu1ar1y on the other pair which

is initial1y horizontal and subsequently inclined. The angle at which the tep cylinders

stnrt moving is the friction angle and it was measured to he 19.5", corresponding to a

factor of 0.355.

5.2.3 Simulation procedure

The bed is made up of 10 partic1es adjacent to each other and hnving a diameter of

2.1 mm. Periodic boundary conditions are applied in the eventual direction of the f1ow.

The partic1es are initial1y arranged in a regular array anc! are given random velocity
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Figure 29: Experimental arrangement used to determine the aluminum-aluminum fric­
tion coefficient.

vectors. Under the action of gravity, they fall on the bed already inclined at 100 from

the horizontal and then they f10w downward for a short period of time unti! a quite

stable arrangement is attained. After the particles have come to rest the bed angle

is incremented at a rate of 5.90 per second. Animation software developed by Martin

Serrer at NRC, Ottawa, was used to visualize the simulations. It has been a very useful

tool to observe sorne behaviour or details that are difficult to detect from numerical

results alone.

5.2.4 Results

The simulations were first performed with the earlier Coulomhic friction force model

for 5 and 7.5 layers of particles. The bed angles corresponding to the initiation of f10w
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were approximately 19° for 5 layera and 17° for 7.5 layera. These results are not in

agreement with the experimental data plotted in Figure 28, from which we can deduc-e

that these angles should be around 23°. From the animations iÎ was observed that the

system was constantly agitated such that il. was very diflicult 1.0 sayat which exact

moment the avalanches took place. The particles were always fiowing very slowly down

the bed and sometimes they would move more rapidly and then stop.

With the use of the incrementally slipping friction force model, the behaviour of

the particles from the beginning of a simulation up 1.0 the occurrence of the avalanc-he

is in good agreE'ment with the experiments. As the bed is raiscd there is no movement

of the particles besiàp.s some local rearrangements similar 1.0 those observed during

the experiments. The bed angles corresponding 1.0 the beginning of the fiow were

deterrnined with a precision of 1°. For sorne trials the top layer would start moving,

follower! by the second and so on, all of which would take place in a relatively short

period of time corresponding 1.0 a bed increment of 1°. For the majority of the cases

studied, the whole system would fail within a loime interval corresponding 1.0 an angle

change of 0.25° after which aIl of the particles were in movement. In these pimulations

the ratio of initial 1.0 norrnalloading stiffness was 0.8 and -y was set ta 1. The simulations

Wl','e done for 1, 3, 5 and 7.5 layera of 10 particles and each case was repeated for several

samples.

The static friction angles recorded irom the simulations are plottcd in Figure 30. As

this gmph illustrates, the numericalsimulations properly reproc'uced the experimental

behaviour. We can observe that there is ,large scatter of the angles determined from

the numerical simulations. This can be explained by the fact that a relatively small
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Figure 30: Effective static friction angles, observed numerical1y, versu:; the nondimen­
sional depth.

number of partic1es WRB used in the simulations, such that ",hen an unstable or a

very stable region developed it had a significant influence on the ",hole system because

of the periodic boundary conditions. Thus, low angles are due to the presence of a

more unstable region whereas high angles are related to arrangements having a greater

stability. The average values obtained numerically and experimentally are plotted in

Figure 31. It appears from this graph that the two results have the same trend even

though the numerical values become slightly lower than the experimental one as the

depth of granular material increases.

5.2.5 Stress analysis

It is possible to treat a granular material as a continuum at length scales that are

mnch larger than a partic1e diameter. On this basis, the eqnations describing the
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Figure 31: Comparison of experimental and numerical mean effective static friction
angles versus the nondimensional depth.

stress variations in a medium inclined at an angle () from the horizontal and hnving a

density p are

8u 8r .
8~Y + 8x =pgsm(),

8un 8r
8x + 8y = pgcos().

(110)

(111)

In the casc that we are studying, there is no stress variation along the bed, Le. in the

y direction, and thus the above expreb.> !B reduce to

•
8r . ()
8x = pgsm ,
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• au..ax =pg cos (}. (113)

These equations tell us that the stresses normal to the bed, as weil as the shear stresses,

should vary linearly with depth. In the course of granular dynamics simulations of a

bulk solid it is possible to determine the instantaneous stress tensor acting over a

surface V using the following relationship [Walton, 1992]

1
S - v'Lfijfij.

;>i
(114)

The above equation eva1uates the so-called potential port of the stresses due to the

• force transferred from a particie i to another particle j arising from the repulsive force

fij. The vector joining the two particles' centers is fij. It is important when dealing

with rapidly f10wing granular material to also eva1uate the kinetic contribution to the

stresses which is related to the velocity fluctuations of the particles. In the present

situation we are concerned with static or quasi-static conditions and thus this contri-

bution is negligible. The four stress components, Urr ' uvv' urv and UVr , were calculated

just before failure of the bulk solid occurred. This stress analysis was performed for

two cases, trials (1) and (2), involving 5 layers of particles and for two other trials,

(3) and (4), where the depth was of 7.5 particles. The width of the computational

area, Le. in the x direction, was divided into rectangular bands having a width of

•
approximately 1 particle diameter and for which the four components of the stresses

were calculated (Figure 32). The normal stresses uvv have strong fluctuations from one
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Figure 32: Stress components acting on a rectangular section.

bin to another. This is certainly related to the shape of the bin which is quite thin in

• the direction in which the O'vv stresses act and thus the values calculated arc not too

accurate. The shear stresses, 0'rv and 0'vr , were found to be almost equal, as expectccl,

for a symmetric stress tensor. The normal and shear stresses are plotted versus the

depth of granular material in' Figures 33 to 36. I?rom these graphs we observe that Urr

and O'rv vary linearly with depth as expected. Linear regression was useel to obtaill

equations fitting O'n and O'rv' The ratio of the slopes of these eqllations Wllb calclIlatccl

for the four cases and were found to be very close to the tangent of the bed inclination.

This is in agreement with the theoretical predictions of equations (113) and (114). The

bed inclinations at which the stresses were computed for cases (1) to (4) and their

eorresponding theoretical angles are given in the fol1owing table.
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bed inclination

measured theoretical
(1) 20.5° 19.3°
(2) 22.7° 24.5°
(3) 20.5° 21.8°
(4) 20.5° 19.0°

Table 3: Comparison of the bed inclinations observed numerically with the theoretical
angles evaluated from the stress components. Cases (1) and (2): 5 particle diameters
deepi cases (3) and (4): 7.5 particle diameters decp.

Two conclusions can be drawn from these results:

. The use of the WB model to define the tangential forces developed at contacts between

particles yields accurate values for the stresses.

. The static equilibriuTTI equations appropriate for a continuum arc found to accurately

describe the stresses developed in a granular material made of a relatively small number

of layers of particles.

5.3 Analysis of the effects of the incrementally slipping fric­
tion force model in simulations i.nvolving ice floes

Computations involving a rectangular array of 48 ice Boes moving under the action of

wind drag, water drag and Coriolis force were performed in order to study any differ('nce

that the incrementally slipping tangential mode: could produce. As the sketch of the

computational box in Figure 37 illustrates, the ice Boes were contained between two

parallel rough boundarics of 8 particles each and by periodic boundaries along the

other edge. Ali the particles were of the SaIne size and had a diameter, D, of 7 km.

A uniform geostrophic wind of 9.35 m/s was applied at various angles, (, from the

right boundary and the turning angle was taken to be 22.5° for both atmoEpheric and
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Figure 34: Stress compollents versus the nOlldimensional "l'l'th in Il pile of .'j laycrs of
l'articles, case (2).
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Figure 36: Stress compolients versus the nondimensional depth in a pile of 7.5 layers
of partic1es, case (4) .
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Figure 37: Computational box for ice 1I0es simulations.

• oceanographie boundary layers. The wind and water drag forces were evaluated from

the Iinear relationships presented in Chapter 3. The coefficient of restitution \Vas set to

0.5, the friction coefficient to 0.3 and the ice 1I0es were considered to have a thickness

ofl m.

•

5.3.1 Observations and comparisons

Initial1y, each partic1e was given a small random velocity. Under the action of the

wind, the 1I0es started to 1I0w and they were subsequently pushed by the Coriolis force

toward the right solid boundary. The numerical results were processed by divicling the

computational box into 9 bins for which velocities, concentrations and stresses were

evaluated. The first step was to compare the long time averages of these variables. The

resulting stress distributions are plotted in Figure 38 for a wind blowing parallel to the
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Figure 38: Average stress components versus the nondimensional distance from 1he
right solid boundary, ç = 90°, turning angle=22.5°, D=0.7 km.

boundaries, and in Figure 39 for a wind inclined at 45°. From these graphs il. is ohvious

that the average stresses, which were computed over 250,000 time steps, are nparl.l·

equivalent for the simulations performed with the WB moclel and with the Coulomhi<-

model. Cases involving two other wind angles, 25° and 65°, were also investigated and

the stress distributions obtained were similar to those given in Figures 38 and 39. lu

all situations, velocity profiles and concentrations were found 1.0 he almost cquivllknt.

for the two models. These results have led us 1.0 investigate the inst.antaneous stresses

generated by the two models. The (lu normal stresses, for the bin next to the wall. are

plotted versus the time step, t, in Figures 40 and 41. The first graph is for a 90° wind

and the second for a wind inclined at 45°. Il. is surprising how the stresses have the same

trend l'ven though the stresses computed for the simulations involving the Coulomhk

friction model fiuctuate from one time step to another. We have demonstratc'd that,
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Figure 39: Average stress components versus the nondimensional distance from the
right solid boundary, (= 45·, tuming angle=22.5°, D=0.7 km .
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Figure 40: instantaneous stress components versus time, ( = 90°, tuming angle=22.5°,
D=0.7 km.
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Figure 41: Instantaneous stress components versus time, ( =45°, turning angle=22.5°,
D=O.7 km.

\Vith the Coulombic tangential force model, the particles are constantly subjected to

large tangential forces such that the stresses at a point or over an area of 1 or 2 particles

are necessarily wrong. Spatial averaging ovec 1 bin, which contains approximatdy 8

particles, appears to be sufficient to smooth these variations and to yicld stresses that

are close to the exact values. The same behaviour was observed for the (1~~ and shear

stresses and thus there is no nced to present them. The reason the stresses are zero

for a certain period of time when there is a geostrophic wind blowing parallel to the

boundaries, is that the floes collect on the solid boundary and afterwards bounce back

towards the interior region up to the point where they no longer touch, and finally the

Coriolis force pushes them back toward the boundary.

The animation software was used to visualize the simulations, but no diffcrcnce

in the overall behaviour or in the development of the contact nctwork was ohserved.
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There was one exception, though, for the study case where the wind was incIiucd at

45° from the boundary. Indeed, it took 41,000 additional time steps, Le. 36 hours in

real timc, for the icp flues to reach their steady flow configuration with the WB mode!.

This difference is not negligible. It suggests that under transitiona! regimes the ice floes

may behave differently, according to the friction force model, jnst as the cylinders dic!

when they started to move at angles lower than expected when they were simulated

with the Coulombic tangential mode!.

ln order to further investigate the effects of the WB model, we made sorne compn­

tations tu determine how much slip takes place between contacting particles. This was

done by calculating the ratio of the tangential force to the normal force for approxi­

mately 100,000 contacts. The histogram obtained for a wind blowing parallel to the

solid bonndary is given in Figure 42. From this graph, we observe that only 2i percent

of the contacts experience full sliding.

Tlw same type of computation was done for a wind blowing at 45° from the bound­

ary but for individual bins (Figure 43). The behaviour of a sample of non-uniform size

floes, having diameters varying from 5 to 9 km, was examined for the same wind forc­

ing. Slightly more slipping was found to occur with the non-uniform size distribution

(Figure 44).

From these observations we can conclude that tangential forces implying shear

deformation of the particles do not influence the behaviour of an ice field which is

flowing under steady conditions. But, the results obtained with simulations involving

alnminum cylinders suggest that we have to be careful with transitional regimes and

also with static or quasi-static conditions. Such conditions may be developed by the
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presence of a drilling platform behind which ice Hoes collect and develop high pressures.

The estimation of the forces generated by the ice cover on this platform by simulations

conducted with the Coulombic model may very likely be wrong. It is suggestrd that

further cases should be studied in order to determine the conditions under which it

might be necessary to include an incrementally slipping friction force moclcl in the

numerical code which is currently being used.
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• 6 Summary and Conclusions
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The development of a diserete element model for ice forecasting based on a granlllar

dynamics approach is presented in this stlldy. Sorne concepts of oceanography and of

meteorology which are rclated to the motion of ice lIoes, such as the Ekman boundary

layer and the turning angles, were reviewed. A discussion of the different kinds of

forcing that govern the movements of iee lIoes based on field investigations was pre­

sented. The iee lIoes experienee drag forces exerted by the wind and water currents.

They are also subjected to a pressure gradient force resulting from sea surface tilt, to a

Coriolis force, and finally to contact forces that arise from internai collisions. We have

seen that icc lIoes l'an be treated as a granular material such that their movements

and interactions l'an be studied by granular dynamics simulations. The details of the

nllmerical model, which involves lIoe collisions and motion under the action of wind

drag, water ùrag and Coriolis force, were given.

The non-linear effects of the wind and water currents on ice floe motion were studied

and expressions for the drag forces were developed for circular ice floes. An eqllation

was derived for the water drag force by numerically integrating the stresses, which

depend on the square of the ice velocity relative to the water current, over the lIoe

area. The rotational movements of the ice floes are resisted by the water shear stress

at the bottom surface of the floe and, thus, an expression for the viscous torque was

developed following the same procedure as for the linear drag force. The air drag force

is given by an expression which has a relatively simple forro since it relates the stresses

to the square of the wind's velocity, the ice lIoe velocity being negligible. Ail these

expressions require information that is calculated in the course of the simulations, such
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as the floes' linear and angular velocities as weil as iuput parameters' mlues snch liS

the wind's velocity, the \Vater current, the floes' diameter, the drng coefficients Ilnd th.,

boundary layers' turniüg angles,

The discrete elemeut model has been modified in order to take into account tll<'

elastic deformation of the ice floes that occur because of the tangent.ial eontact forces.

This \Vas achieved by incorporating an incrementally slipping friction force mode! in tll<'

numerical code. In order to test the effects of this tangential force mocle!, simulations

of inclined chute flo\Vs of a granular material, in this case aluminum eylinders, \Ver!'

performed. More specifically, the transition from a quasi-static regime 1.0 a rnpid flo\V

\Vas studied. The simulations \Vere found to adequately reproduce the experimental

behaviour. A stress analysis \Vas conducted from which it appeared that the state

of stress of the system can be accurately evaluated numerically. Simulations that

were performed \Vith the earlier Coulombic friction force model used in the ice floc

problem yielded inadequate results. Subsequently, numerÎcal simulations of a broken

ice field, subjected to different \Vind conditions, \Vere performed and Iln analysis \VilS

done in order to observe the effects of the incrementally slipping friction force mode!.

The time average stress and velocity distributions \Vere found 1.0 he nearly identical

for simulations performed \Vith the two tangential force models. The instantaneous

stresses follow the same trend although those calculated \Vhen the CoulomhÏC' model

\Vas involved f1uctuate strongly. Computations were performed to evaluate the rntio nf

the tangential force to the normal force in order to observe the amonnt of slip taking

place at contacts between particles. For a geostrophic wind blowing parallcl tn the solid

boundaries limiting the computational area, 27 percent of the contacts were fonnd to
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experience full sliding. This value is lowered by 10 percent for a wind incliner! at 45°

from the boundary on which the ice f10es collect. The ahove results are for floes having

the same diameter. Slipping was found to increase significant1y when the field consisted

of lloes having a non-uniform size distribution.
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