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Abstract

Filters constitute an essential trol for manipulating the spectral content of a

signal. While there is a plethora of filtering tools, both in the hardware and software

domain, the majority of them are geared towards engineers and scientists, rather

than sound designers and electroacoustic composers. The "common-practice"

approach is to consider filters as post-production tools. This can be restrictive if

filters are to be used as artistic tools, dynamically involved in the shaping of the

sound. This thesis was written with this apprœch in mind. Its aim is a) to provide a

survey of the various digital recursive filters, enabling a filter designer te choose the

one that suits bis needs, b) to teach filter designers, such as electroacoustic

composers and sound designers how to calculate digital filter coefficients, and c)

implement filter algorithms using the familiar syntax of computer music languages

such as Csound and SuperColiider.
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Résumé

Les filtres constituent un outil essentiel pour la manipulation du contenu spectral

d'un signal. Bien qu'il y ait abondance d'outils de filtrage, tant logiciels qu'au

niveau "hardware", la plupart sont destinés aux ingénieurs et scientifiques plutôt

qu'aux compositeurs et musiciens en électroacoustique. L'approche communément

adoptée consiste à considérer les filtres comme des outils de post-prcxluction. Ceci

peut être restrictif si une utilisation artistique des filtres est souhaitée durant le

processus de création du son. C'est dans cette optique qu'a été écrite cette thèse.

Ses objectifs sont a) de proposer une vue d'ensemble des divers filtres numériques

récursifs pom permettre au compositeur de choisir le mieux adapté à ses besoins, b)

d'enseigner au musicien et/ou ingênieur du son comment calculer les coefficients du

filtre numérique, et c) d'implémenter les algorithmes de filtrage en utilisant la

syntaxe de langages classiques en Informatique Musicale tels que Csound et

SuperCollider.
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1.

Digital Filters. A Sound Designer's Approach

1.1 Introduction

The concept of filters in music has been around since the invention of

musical instruments. Although musicians may not realize it, a musical instrument

such as a guitar or a drum can he considered a filter. The shape of the guitar lxxly,

for example, greatly affects the spectrum of the sound produced by the instrument

That is exactly what a filter does; it alters the characteristics of a sound as we shall

see later in more detail. Our ears and our mouth are other familiar filter examples:

they process and alter the characteristics of any SOlmd we hear or produce.

Computer music composers and sound designers have undoubtedly come

across filters in their effort to make their sounds realistic or even unrealistic. Who

hasn't used reverb for example, even on the level of a basic sound synthesis

course? The pioneers of computer music leamed to process sounds using analog

systems, since only analog circuits existed during the first stages of electronic

music. Moog synthesizers included octave or 3rd-octave filters, as weil as basic

low-pass and high-pass filters, which were activated by plugging in cables to the

right inputs. Later, in the late seventies and early eighties, the development of

digital circuits 100 to the explosion of digital signal processing. At first, due to

memory and speoo limitations, multi-purpose systems capable of implementing

various digital filter algorithms were limited. Later on, the introduction of micro

processors and the growth of personal computers changed the field drastically.

Today, most personal computers are capable of real-time audio production and

manipulation of any digital filter algorithm.

Unfortunately, the majority of tools for digital filtering today, is geared

towards sound engineers rather than sound designers. The reason for this is that

they are usually created with engineering applications in mind. On the other hand,

there are applications for electroaeoustic and computer music composers, but these

are mostly editing and mixing tools which offer inadequate control mechanisms for
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precise filter manipulations. It was the author's observation and belief that

electroacoustic and computer music composers should he able to use digital filtering

tools based on their needs, and more important, use tools that they are familiar

with. They should not have to be expert C programmers, or masters of complex

analysis in order to he able 10 build digital filters.

This thesis is written with this premise in mind. As a result, 1have chosen

to gather the basic information necessary for a tutorial for filter designers on how 10

build digital recursive filters. Complex analysis was avoided and only basic algebra

knowledge is needed to follow the text The reader will find an analytica1 step by

step method for building digital recursive filters using t'ive different responses. The

method used is that of the bilinear transform. It then becomes bis choice as 10 what

tilter bis work needs. Moreover, complete examples are given on how to implement

the various digital fùter algorithms, using computer music languages such as

Csound and SuperCollider. As 1 stated previously, my rationale was that the filter,

an instrument in itself, should he part of the code that produces the sound

1.2 Available Digital Filtering Tools

Equalizers

Equalizers are devices whose primary function is to modify the

characteristics of the signal passing through them. They do so by dividing the

spectrum of the signal in three (low, mid, high) or more bands, for each one of

which a fixed number of parameters such as gain, bandwidth, center frequency,

ete., can he adjusted. Equalizers are found in recording-studio audio consoles, as

separate hardware devices, and as computer software units (for example, as part of

the effects of a software mixinglediting application). Equalizers can he classified in

the following groups:

a) Rotary-Knob Equalizers. The equalizer's control mechanism is a rotary

knob. Rotary potentiometers vary the amount of boost or eut, while rotary switehes

are usually used for frequency selection.

b) Parametric Equalizers. They are called parametric because they offer
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separate control of the center frequency, the bandwidth, and the amount of boost or

cut for each frequency band.

c) Graphie Equalizers. They use a series of slide potentiometers to achieve

the desired amount of boost or attenuation. The relative positions of the faders

provide a graphic description of the output response.

d) Digital EquaIizers. Digital equalizers are often equipped with both analog

and digital signal inputs and outputs. Their advantage is that they are programable: a

set of desired parameters can he stored in the memory for later use.

The problem with all types of equalizers is that they are more or less "black

boxes" to an electroacoustic composer or sound designer. Information such as

which type of response has been implemented, or what order of filter has been used

is not readily available. With an equalizer you are basically "stuck" with the

company's specifications.

Software Toois

There are numerous software tools available for digital filtering. Among

themare:

Kyma [1] a graphical design language ofreal-time sounds and effects, that

runs on both Macintosh and Windows platforms. The user can design sounds by

connecting modules chosen from a palette of prototypes. Among its capabilities are

waveshaping, sampling, spectral analysislresynthesis, and filtering. The "catch"

with Kyma is that you need Capybara to run it. Capybara is a multiprocessor DSP

box used to realize the sounds you design using Kyma.

MatZab [2] a commercial interactive system and programming language for

general scientific and technical computation and visualization. It provides an

extensive numher of "toolboxes", which are prepackaged functions and visual

tools. Among them is the Signal Proeessing TooZbox, which can he used for the

design of any analog or digital filter. Leading edge signal PfOC("ssing technologies,

such as wavelets and advanced spectral analysis are included, as weil as graphical

demonstrations that allow for exploration of the various filter parameters.

Filter Designer [3] created to serve as a tool for electroacoustic composers.

It provides a graphica1 environment for digital filter design and implementation,

giving the user control over the various filter parameters. The program can process
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sound files either as a stand-alone application. or in conjunction with Csound.

Among the responses used are Bunerworth. Chebyshev. and Inverse Chebyshev.

Music-oriented software applications also include digital signal processing

uni15. An example is Deck II [4]. Deck II is a digital mixing and editing program.

which replaces the traditional multitraek tape recorder, the tape editing block, and

the mixing board. Instead of recording sound to tape. it is stored in a digital format

on a hard drive. 115 effects menu includes delays. nonnalization. parametric EQs.

ete. As in the case of equalizers, the user doesn't know and cannot choose the type

of response or the order of filter used. As weIl. Deck II cannot be used as a

compositional tool (at least not in the sense of creating audio signals as in the case

of computer music languages).

Computer Music Languages

Sound synthesis and signal processing languages are used widely by

electroacoustic and computer music composers for composition and manipulation of

sound. It is of no surprise then that such languages offer filtering tools. Examples

of such languages are Cmix [5]. Csound [6]. and SuperCollider [7].

Cmix was developed by Paul Lansky at Princeton University as a tool for

processing sound files. It contains both independent programs for operating on

soundfiles, as weIl as a collection of routines which aid in writing sound

processing code in C. It offers filters such as alI-pass, alI-pole. comb. as weIl as

ellipse. Ellipse is a stand-alone Cmix program which processes signals through an

elliptical filter, whose coefficients are generated by filter, a Fortran77 program

which provides a set of coefficients based on the user's input of design values.

Csound was developed by Barry Vercoe at the Media Lab of M.I.T. Audio

signals can be routed through various processing units. Among them are filters or

signal modifiers such as tone. a lst-order recursive low-pass filter, a series of

Butterworth 2nd-order filters (low, high, band-pass, band-reject), ete. As in the

case of Cmix, the user can write his own Cmodules, Le. create his own signal

generators and modifiers, and import them to Csound.

Both Csound and Cmix are ASCII based environments. Furthermore, the

user has to define the parameters controlling bis "instrument" before execution of

the program, and can only change them between runs. This is not the case with
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SuperCollider. SuperCollider, developed by James McCartney at the University of

Texas Austin, is a sound synthesis programming language that offers real-time

manipulation of the various parameters controlling the signals. This is achieved by

means of a Graphical User Interface (GUI), which offers sliders, buttons, and

other easily edited control tooIs. While the current SuperCollider version does not

support C-imports, the author bas announced that this capability will he included in

the next version. Basic filters are available such as one-pole high-pass filters, band

pass filters, ete.

Languages such as Csound and SuperCollider are the ideal envi.ronment for

creating filtering tools. Their syntax is weIl understood by most electroacoustic

composers, and they can choose to implement filters either as a C-imported module,

or by just using the signal processing toois built in the languages, which is the

approach of this thesis.
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2.

Filters in the Analog Domain

2.1 Filters: An Introduction

Filters are used to modify the amplitude and phase characteristics of the

spectral components of a signal, without altering any of its frequency constituents.

The characteristics of a filter are described by itsfrequency response, which can he

derived experimentally. A test sine wave, with given amplitude and phase

characteristics, can he used as an input 10 the filter. The ratio of the amplitude of the

output signal to the amplitude of the input signal gives the amplitude response of the

filter, and the ratio of the phase of the output signal to the phase of the input signal

gives its phase response. The combination of amplitude and phase response gives

us the response of the filter in the frequency domain. The characteristics of a filler

can he described in the rime domain as weIl, by what is known as its impulse

response. The impulse response of a filter descrihes the signal emitted by the filler

in response to an impulse, which is a unit sample input

Filters can be classified into four basic groups according to the shape of

their amplitude response. Low-Pass filters let all frequencies below a chosen cutoff

frequency f c to pass through unaffected,while attenuating all frequencies above it

Figure 2.1 shows an examplc of the amplitude response of a low-pass filter. High

Pass filters on the other hand, will let a1l frequencies above a chosen cutoff

frequency f e to pass through unaffected, while attenuating all frequencies helow it

Figure 2.2 is an example of the amplitude response of a lUgh-pass filter. As figures

2.1 and 2.2 illustrate, the point of transition from the stop-band to the pass-band

and vice versa, defines the position of the cutoff frequency f co and is usually taken

at the point where the amplitude response changes by a factor of .707 (or -3 dB).

Band-Pass filters will let all frequencies within a selected band to pass

through unaffected, while attenuating all ftequencies outside the band. The band is

defined by its bandwidth BW, which is the difference between an upper and a
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lower cutoff frequency f .. -fi. A band-pass fiIter is also characterized by its center

frequency,fo = f ..;fl . A quality factor Q can be defined to describe the

characteristics of band-pass fliters, as Q= (fol BW3dB). Figure 2.3 shows the

amplitude response of a band-pass filter. Band-reject fiIters will attenuate ail

frequencies within a selected band, while letting through unaffected ail frequencies

outside the bandwidth. They are aIso characterized by a center frequency f0' and a

bandwidth BW. Figure 2.4 shows the amplitude response of a band-reject fiIter.

This thesis studies five different types of amplitude responses: a) the

Butterworth response, b) the Chebyshev response, c) the Inverse Chebyshev

response, d) the Bessel response, and e) the Elliptic response. Before we examine

these responses in more detail, we have to present the concept of analog transIer

functions.

Figure 2.1: Ampliblde response of a low-pass filter.

•

~
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Figure 2.2: Amplitude response of a high-pass fùter

fi fO fu
Figure 2.3: Amplitude response of a band-pass fIlter.

f

8



• 9

01------

-3

f

•

Figure 2.4: Amplitude response of a band-reject fllter.

2.2 Analûg Transfer Functions

Let us start with some definitions. A system is said to he Iinear if it

obeys the superposition principle: if the system's responses are y 1 (t), Y 2 (t), for

xdt), x 2 (t) inputs respectively, then the system's response to the input

axdt) + bx2(t) is aydt)+ by2(t).

A system can also he rime-invariant, if its response does not change with

rime, and causal, if its output depends on present and past inputs, as weil as past
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outputs. Such a system, which is also continuous in rime, Le. ana/og, can he

described by a function of the form:

(2.1)

which is known as the trans/er junction of the system. The variable s is related to

the frequency (JJ of the system by a relation of the form s = 0"+ iœ, which represents

a mathematical model of analysis (complex analysis), that can he used for finding

the zeros and poles of eq. (2.1), or, in other words, the values for which the

numerator and denominator ofeq. (2.1) become zero respectively. For example, let

us consider a simple transfer function of the tyPe:

G(s) 1
i+J2s+l

(2.2)

•

If we try to fmd the mots of the denominator of (2.2), Le. the values that make it

zero, we are bound to come across the value FT. Complex analysis overcomes

that obstacle by simply defining an imaginary unit i, such that i 2 =-1. While it has

no direct physical meaning, it allows us to express the roots of eq. (2.2). These

values can he depicted on the s-plane, as we can see in Figure 2.5.
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Imaginary(s)=ro

o

-.707

o

.707

-.707

Real(s)=cr

Figure 2.5: Transfer function pales on the s-plane

It can he shown [8] that the analog transfer function describing a system is related

10 its amplitude response A(f), by an equation of the form:

AV)=G(s:x;(-s) (2.3)

•

The reason (2.3) is very important is that for a given amplitude response A(f), the

design of the corresponding digital filter will he based on the analog prototype

function G(s), as we will see later in the text.
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The Butterworth low-pass amplitude-squared function is defined by:

(2.4)

12

.!..

where k represents the order of the corresponding transfer function, and

-.la
E=(10 _-1)2

(2.5)

In eq. (2.5) (J)e (or fJ is the radian (or cyclic) pass-band edge frequency of the

fIlter, and ap416 its pass-band amplitude. The Butterworth response is often called

the maximally fiat response, because no other response has a smoother transition

through the pass-band !o the stop-band. The phase response is also very smooth,

making it the ideal candidate when low phase distortion is required. Equation (2.4)

shows that when (J)= 0, the response will have unity gain, whereas for (J)= (J) c = 1,

the gain at the nonna1ized pass-band edge will depend on the value ofe, which, as

eq. (2.5) shows, is related to the pass-band ripple. In many developments, it is

convenient to normalize the frequency scale by selecting (J)c= 1 rad! s. This allows

for considerable freedom in designing fIlters, since a normalized transfer function

can easily be unnonnalized to any other frequency. The order of a Butterworth filter

depends on the specifications set by the user. For given amplitudes and frequencies

at the pass-band and stop-band respectively, the order is given by:

•

-.la -.la
log[(10 --1)1(10 --1)]

na
. 210g(0) _10),..)

Figure 2.5 shows a typical Butterworth low-pass amplitude response.

(2.6)
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.707

where k represents both the order of the Chebyshev polynomial and the order of the

corresponding transfer function, and e is given by eq. (2.5). Chebyshev

polynomials can he calculated by:

•

te f
Figure 2.5: Amplitude response of a low-pass Butterworth filter, for 0=6.

2.4 The Chebyshev Response

The basic Chebyshev amplitude response is defined by:

C,/ID)=cos[kcos-l(ID)J. ID~ 0

C,/ID)=cosh[kcosh -1(ID)J. ID >0

(2.7)

(2.8)
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The constant a determines the proper de gain leveLWhen the desired maximum gain

is unity, a= 1.

Chebyshev filters a1low for variation or ripple in the pass-band of the fIlter.

Their transition characteristics are steeper in comparison to the Butterworth ones.

This means that certain user specifications can he satisfied with lower order

Chebyshev than with Butterworth filters. However, their phase response is not as

linear as the phase response of Butterworth filters. For user-selected pass-band and

stop-band frequencies and amplitudes, the oroer of a Chebyshev filter is given by:

(2.9)

•

Figure 2.6 shows the form of the Chebyshev amplitude response.

AdS+............... ,.----,
2dB

te t
Figure 2.6: Chebyshev amplitude response for k = 3 and 2 dB pass-band ripple.
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The amplitude-squared Inverse Chebyshev response is defined by:

A2(f) e2C~( IDJ CI) ) e2C~(f/f)

1+e2c~(ID/ID) 1+e2C~(f,1f)

15

(2.10)

with e given by eq. (2.5) and the Chebyshev polynomials by eq. (2.8).

Whereas me response of ordinary Chebyshev tilters is equiripple in the pass-band

and maximally fiat in the stop-band, the Inverse Chebyshev response has a

maximally fiat magnitude in the pass-band and equal ripples in the stop-band. The

frequency (J)s (or f s) now dermes the beginning of the stop-band. The Inverse

Chebyshev response provides better transition characteristics than the Butterworth

response, and better phase response than the standard Chebyshev response. For

user-specified frequencies and amplitudes at the pass-band and the stop-band

respectively, the oroer of an Inverse Chebyshev tilter is given by:

1-.1. -.1.-cosh-W(10 --1)1(10 __1)]2}
nie

cosh-I (IDIItJpl ID-J
(2.11)

We cao observe that the arder of an Inverse Chebyshev tilter is given by exactly the

same formula as the standard Chebyshev filter. Figure 2.7 shows the form of the

Inverse Chebyshev amplitude response.

2.6 The Elliptic Response

The Cauer or Elliptic low-pass amplitude-squared function is defined by:

•
(2.12)
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where e is given by eq. (2.5), (J) is the radian frequency, and R,Jf) are the

Chebyshev Rational Functions, given by:

(2.13)

•

In equation (2.13), Qj represents the zeros of the functions R,.( (J)). Elliptic filters

are characterized by equiripple response in both the pass-band and the stop-band.

Figure 208 shows the form of the elliptic function response for k =5. With elliptic

filters is possible to specify both the maximum ripple level in the pass-band. and the

minimum attenuation level in the stop-band.

A
dB

1

.707 .

êI sqrt (1+ r:;2) . o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o •••~o. o •• o. o. 0 o. o. o. o. o. o. o. o. 0 0 0 • o.

fe f1 f
Figure 2.7: Inverted Chebyshev amplitude response for le =60



• 17

~....

•

fe f1 f
Figure 2.8: Elliptic fWlCtion amplitude response with k =5.

2. 7 The Bessel Response

The amplimde-squared Bessel reSJX>nse is given by:

where J~..«(j)) are Bessel polynomials [Appendix A]. The constant bo of the

numerator is given by:
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(2.15)

•

Eq. (2.15) shows that, for a given order of ffiter n, the value ofb 0 and therefore the

numerator of (2.14) is constant. Therefore, only the denominator can become zero

for certain frequencies, which makes Bessel filters alI-pole ffiters. The important

parameter of these filters is their linearity of phase. Linearity of phase assures

constant rime delay, which means that rime delay is independent of frequency. Time

delays occur naturally in the transmission of a signal through space, such as on a

coaxial cable, but cao also he provided by delay ffiters. Because of their property,

Bessel filters are also known as MFID or Maximally Flat Time-Delay ffiters. Their

pass-band response is not as fiat as for the Butterworth response, and their stop

band attenuation is not as great at a given frequency as for either the Butterworth, or

the Chebyshev response of the same order. Figure 2.9 shows the form of the

amplitude response for a Bessel type ffiter.

Acts

f
Figure 2.9: Fonn of the amplitude response of an MFTD filter.
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The responses we have examined can he classified into two groups. The

Butterworth, Chebyshev, Inverse Chebyshev, and Elliptic responses constitute the

fust group. They are all characterized by a non-lïnear phase response. The Bessel

response helongs to the second group, and is characterized by a fairly linear phase

response. The choice of a response from one of the two groups depends on the type

of application. Applications such as data transmission, where the signal is to he

interpreted by digital hardware, and image processing, where the signal is used to

reconstruet an image which is to he interpreted by the human eye, require the delay

characteristic to he fairly fiat Bessel filters are more suitable for such applications.

On the other hand, the human ear is quite tolerable to phase distortion.

Therefore, applications such as speech, or musical signal processing can use a type

of response from the tirst group. The choice of a filter response from the fust group

depends again on the application. In terms of phase characteristics, Butterworth

filters have the smoothest phase curve, followed by Inverse Chebyshev filters,

Chebyshev filters, with the last choice heing the Elliptic filters. In other

applications, where time-domain characteristics are important, ripples in the

frequency response cause irregularities, such as echoes in the rime response. For

such applications, Butterworth and Inverse Chebyshev filters are more desirable.

Butterworth filters are the ones most commonly used in the industry. They

are mathematically simple, and they offer smooth gain response, as weIl as

reasonably good phase response. However, for some applications they are

unsuitable. Such applications require a more uniform transmission of frequencies in

the pass-band, as weIl as a sharper rate of cutoff. Instead of achieving this by

increasing the order oÎ the Butterworth ÏÙter, Chebyshev filters can he used.

Chebyshev filters are very useful in applications where the magnitude of the

transfer function is ofprimary concerne If the equal ripples are desired in the stop

band, and the pass-band is fiat, then Inverse Chebyshev filters can he used. If the

equal-ripple property is required in both pass-band and stop-band, then Elliptic

fùters can he used. Elliptic filters offer excellent attenuation versus filter order but

very poor phase response, and should he used only when the phase response is not

criticaL
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3.

Filters in the Digital Domain

3.1 Digital Filters

Digital filters are used to modify the spectrum of a digital signal. We can

think of them as "black boxes", which have a signal input, an in-the-box method

used to process the signal, and a signal output. The way the "black box" or digital

filter operates is described by its complex ttansfer functionH(z), where z is the

complex frequency variable related to the frequency of the signal by an equation of

the form z = eÏl1J
• The amplitude \H(z)1 of the digital transfer function describes the

frequency response of the filter, whereas its phase, phase(H(z), describes the

filter' s phase response. The z transform provides a means of describing a

waveform in the z domain. Ifx(n) is a discrete waveform, its z ttansform is given

by:

-
X(z)= L x(n)z-a

a=--
(3.1)

•

The term z-II denotes an nth sample delay operator. For example, z-1 will delay the

signal one sample, i.e. x(n)z-1 = x(n-l).

The usefulness of H(z) is depieted in Figure 3.1:
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X(z) ----II.~I""____H_(_Z_) ----4.~Y(z)=H(z)X(z)

Input filter output

Figure 3.1: Operation of a digital fIlter in the z domain.

If we know H(z) for a filter, we can calculate the z transform of its response to a

signal by multiplying H(z) by the z transform of the input signal. In other words,

Y(z)
H(z)= X(z) (3.2)

If a digital filter is linear, causal, and time-invariant, its output can he described by

an equation of the form [9]:

Il N

y(n)= I ~(n- i)- I b~(n-i)
i=O ;=1

(3.3)

•

If the second part of eq. (3.3) is equal to zero, Le. ail coefficients b i are 0, the

filter's output depends only on present and past inputs. Such filters are cailedfinite

impulse response filters or FIR, since zero input will eventuaily cause zero output

If, on the other hand, one or more of the b i coefficients are non-zero, the filter's

response depends on previous outputs as weil, and in theory can last for ever. Such

filters are called infinite impulse response filters, or TIR. They are also called

recursive, since sorne part of the output is fed back into the filter's input Digital

recursive or IIR filters are said to he unstable, because their output can grow
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infinitely. The focus of this thesis is on such UR filters. More specifically,

analytical methods are presented for building digital recursive filters whose transfer

function follows responses such as Butterworth, Chebyshev, Inverse Chebyshev,

Bessel, and Elliptic. Figure 3.2 shows a typical realization example of an UR filter:

y(n)

Figure 3.2: A lypical realization of a 3rd-order IIR filtel'.

Let us now find an analytical expression for the digital transfer function H(z), by

applying the transformation of eq. (3.1) to eq. (3.3). We get:

•
1/ N

Y(z)= l ~-iX(Z)- l br-iY(z)
i=O icI

(3.4)
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Combining now (3.2) and (3.4) we get:

(3.5)

Both polynomials of the numerator and denorninatoT of (3.5) can he faetored, i.e.

written as produets of first arder terms:

Il

TI (l-Z~-l)

H(Z)=q,-,-:i:-:-l _

TI (l-P,[l)
i=l

(3.6)

Equation (3.6) is very useful because it gives what is called the zeros andpoles of

the filrer. Zeros are all the values Z j that will cause the numerator to become zero,

and poles are all the values P j, that will cause the denominator to become zero.

Zeros cause a valley, whereas poles place peaks in the amplitude response of the

filter. Figure 3.3 shows examples of zeros and poles.

•

ftus

fkHz fkHz
Figure 3.3: Amplitude responses of an alI-zero, and an aIl-pole tiller.
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Similarly to the representation of the poles and zeros of an analog transfer function

on the s-plane (section 2.2), the poles and zeros of a digital transfer function can be

depieted on the z-plane, as shown in Figure 3.4:

lm z

Regions of
instability

~----I~ Rez

Region of
stability

Figure 3.4: Permissible areas for the poles of H{z)

The unit circle ofFigure 3.4 represents the condition for stability of a digital filter.

The radius of the circle represents the permissible frequencies, ranging from zero to

the Nyquist frequency. If a digital filter bas poles that reside on, or outside the unit

circle, the filter will he unstable resulting in output that may grow out of range and

not retum to zero when the input signal is removed.



• 3.2 Digital Low-Pass Filter Design. The Bilinear

Transformation Method

25

The bilinear transformation method is an approximation method used to

derive digital filters that, for any excitation, have approximately the same time

domain response as the original analog filter. If the analog transfer function is given

by:

(3.7)

then, the corresponding digital transfer function can he derived using a

transformation of the form [10]:

1-z-1

s=c-
1 +Z-I

(3.8)

where the constant C is chosen 50 that the frequency scale of the desired filter is

scaled to the proper range for the desired application. In the case of a low-pass

filter, is given by:

c=).pJt( nf~ )
f.

(3.9)

where À, is a low-pass reference radian frequency, f c is the cutoff frequency, and

fil is the sampling rate frequency. Substitution of (3.8) to (3.7) yields the equivalent

digital tilter transfer function:

•
(3.10)
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The problem then of calculating the digital filter coefficients of (3.10) hecomes a

matter of expressing them in terms of their analog counterparts of eq. (3.7), using

the transformation of eq. (3.8). The results of these calculations are tabulated for

filter orders from 1 to 6 [11], though any desired order can he calcu1ated using the

above described method. The analog coefficients A i and Bi can he calculated for

various types of responses. Appendix A provides the reader with the complete

analog low-pass transfer functions for the Butterwonh, Chebyshev, Inverse

Chebyshev, Bessel, and Elliptic responses. Ba.sed on the desired response and filter

order, the reader can derive the analog ttansfer function using the equations of

Appendix A, and then use the formulas of the following tables to calculate the

desired digital filter coefficients. For the less "mathematically inc1ined" reader,

Appendix B provides a different method of analog, low-pass filter coefficients

derivation, based on data found in the literature.

Table 3.1

Digital Filter Coefficients in Terms of Analog Coefficients

k=l, lst order k=2, 2nd order

A·B +B C A-B +B C+B c=0 ] 0 ] :
Go .(Ao+AF)/A

Go.(Ao+A/+A:è)/A
G].(Ao-A]C)/A

G].(2Ao-2A:è)lA
b]·(80-B]C)/A

G: .(Ao-A/+A:è)/A

b].(2Bo-2BF:)lA

D:.(Bo-B]C+B
2
è)lA
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•

Digital Filter Coefficients in Tenns of Analog Coefficients

k=3, 3rd order k=4, 4th arder

A -B +B C+B CZ+B C A-B +B C+B è+B C+B e'
o 0 / : J o 1 2 J •

ao-(Ao+AF +\CZ +AJCJ)lA ao-(Ao+A
I
C+A

2
CZ+ApJ +A.e')lA

a/-(3Ao+A/C-A
2
CZ-JAJC)lA a

l
-(4Ao+2AF-2AJC -4A.e')lA

a: -(3Ao-A/C-A:C: +JApJ)/A a
2
-(6Ao-2A:è +6A..e')/A

aJ -(Ao-AF+It:CZ-AJC)/A aJ-(4Ao-2AF +2AJC -4A.e')lA

b/-(3Bo+BF-B:CZ-3BpJ)lA a. -(A
o
-AF+A

2
è-AJd +A.C<)lA

b: R(3Bo-BIC -B:CZ +3BJC)lA b1-(4Bo+2BIC -2BJC -4B.e')lA

bJ -(Bo-BF+B:CZ-BpJ)/A b: -(6Bo-2B:è +6B.C<)lA

bJ-(4Bo-2BIC +2BJd -4B.C<)lA

b. -(Bo-BF+B:CZ-BJd +B.C<)lA

Table 3.3

Digital Filter Coefficients in Tenns of Analog Coefficients

k=5, 5th order k=6, 6th order

A-B +BC+Bè+BC+Be'+BcJ A-B +B C+B C2+B Cl+B c4+B cJ+B c'o 1 : J • , 012 l4' 1

ao-(Ao+AF+A:CZ +AJCJ +A.e' +A,C')/A a -(A +A C+A C2+A Cl+A C4+A C'+A c')lA
0012 l4' 1

a/-(SAo+3AF+A:è-AJC J-3A.e'-SA,cJ)/A a -(6A +4A C+2A CZ-2A C4-1A cJ-6A c')lA
101: 4 SI

a: -(JOAo+2AF-2A:CZ-2AJcJ +2A.C<+JOA,cJ)/A a -(UA +SA C-2A CZ-3A Cl-A C4+SA cJ+UA c')/A
201: l4 SI

aJ -(JOAo-2AIC-2A:CZ +2AJcJ +2A.e' -JOA,cJ)lA a -120A -lA C:+4A C4-2OA c')/A

a. -(SAo-JAF+A:C= +AJCJ-3A.e'+SA,C')/A
JO: 4 1

a -(JSA -SA C-A è+3A CJ_A C4-SA cJ+JSA. c')/A

a, -(Ao-A/C+A:è -AJC + A.e' -A,cJ)/A
4 DI: J 4'6

a -(6A -4A C...2Â C"-2A C4+4A cJ -6A c')lA
b/-(SBo+JB/C+B:CZ-BJCJ -3B.C< -SB,cJ)/A

SOI24"

a -(A -A C+A C2-A CJ+A C4-A C'+A c')lA
b: -(JOBo+2BF-2B:CZ-2BJcJ +2B.e'+J08,c')/A 6 012 J 4' ,

b -(6B +4B C +2B c' -2B C4-1B cJ -6B c')/A
bJ -(JOBo-2B/C-2B:c'+2BJcJ +2B.c'-JOB,CJ)lA 101: 4"

b -(UB +SB C-2B c'-3B CJ-B C4+SB cJ+UB c')/A
b. -(SBo-3BF+B

2
è +B,cJ -3B.e' +SB,cJ)/A 201: l4' 6

b -1208 -4B C:+4B C4-20B c')lA
bJ-(Bo-BF+B

2
CZ-B,cJ+ B.C< _B,CJ)lA JO: 4 1

b -(JSB -SB CoB è+3B C'-B C4-SB c'+JSB c')/A
4 DI: J 4"

b -(6B -4B C+2B C2-2B c4+4B CS -6B c')lA
SOI 2 4'6

b -(B -B C+B C2-B CJ+B C4-B CS +B c')/A
6 012 J 4 JI
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Digital high-pass transfer funetions can he derived from an analog

low-pass transfer funetion. The transformation is given by [12]:

1 +Z·1
s=C-

1_z· 1

where the constant C is now given by:

C=À.,1an( 11fc )
f,

(3.11)

(3.12)

Therefore, if H(s) is the analog low-pass transfer function, the digital high-pass

transfer functiOIi will he given by:

H(z)=H(s= CO +Z-1) )
1 -1-z

(3.13)

Another way in which the digital high-pass transfer function may he derived is

directly from the digitallow-pass transfer function. If Hhp(Z) and Hliz) are the

high- and low-pass digital transfer functions respectively, their relationship is given

by:

(3.14)

•

Let us now see how equation (3.14) affects the calculation of digital high-pass filter

coefficients. The general form of the digital transfer function (3.10) can he rewritten

as:
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(3.15)

What equation (3.15) means is that the digital high-pass filter coefficients will he

exaetly the same as the digitallow-pass filter coefficients, with the only difference

being the change of sign of the odd-numbered coefficients.

3.4 Band-Pass Digital Filter Design

Digital recursive band-pass filters can also he designed directly from a low

pass analog transfer function, using a form of the bilinear transformation. The

transformation that has to he used is given by [13]:

where

and

1tBW
C=Â.,.cot(--)

f.

21ifoD=2cos(-)
f.

(3.16)

(3.17)

(3.18)

•
In the above formulas, BW is the bandwidth of the fil ter, and f 0 its center

frequency. Therefore, ifH(s) is the analog transfer function of a low-pass filter, the

digital transfer function of the corresponding band-pass filter will he given by:
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(3.19)

From equation (3.16) we note that if the 1ow-pass prototype transfer

function is of order le, the resulting arder of the digital band-pass transfer function

will he 2k. Let us, for examp1e, derive the 2nd-order band-pass digital transfer

function, and the corresponding digital coefficients. Using (3.7) and (3.16), we

have:

(3.20)

which results in:

(3.21)

•

Comparison of (3.21) and equation (3.10) gives the digital 2nd-order band-pass

filter coefficients:

Ao+AJC AJCD
~ B +B C' ~= Bf/+BJCo J

AO-AJC
(3.22)t;

Bo+BJC

bi

BJCD BO-BJC
Bo+BJC' bz Bo+BIC

The same method may he used for any other desired order.
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Finally, the bilinear transformation method can he used for band-rejection

filter design. The transformation now is given by [14]:

where

nBW
C=Â.,Jan(--)

f.

(3.23)

(3.24)

and Dis given by (3.18). Then, the digital transfer function for the band-rejection

case will he given by:

1_z·2

H(z)=H(s=C 1 2 )
1-Dz· +z·

(3.25)

Using (3.25) and the method described in the previous section, we can get the

digital transfer band-rejection functions for any desired oroer. Again, if k is the

order of the prototype transfer function, the order of the resulting digital band

rejection function will he 2k. As an example, we give the 2nd-order digital transfer

band-rejection function and the corresponding digital coefficients. We get:

(3.26)

•
Comparing (3.26) and (3.10), we get the 2nd-order band-rejection digital filter

coefficients:



•
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(3.27)
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4.

Digital Filter Design in Csound and

SuperCollider

4.1 A Complete Example Implemented in Csound

Let us now apply the method described earlier, to build a 3rd-order digital

Butterworth high-pass filter in Csound. For a 3rd-order digital filter, eq. (3.3)

gives the following input-output difference equation:

Y(Il)=t;X(n)+t;X(1l-1) +/ZzX(n-2)+t;X(Il-3)

-bJY(n-1)-b,y(n-2)-bsY(Il-3)

witl} corresponding digital transfer fu.nction (from 3.5):

(4.1)

(4.2)

•

First, we have to derive the analog low-pass filter coefficients for a Butterworth

3rd-order low-pass filter. According 10 the method presented in Appendix B, the

transfer function will consist of one lst-order stage function term and one 2nd

order stage function term as follows:

Cl C. 1 1 1
His)=--*· * (4.3)

s+Cl I+Bs+C~ s+ 1 l+s+1 1+2s+21+?

where we have assumed the normalized case of roc = 1radis, and substituted the

values of the coefficients Ci and B, using Table B.l of the same appendix.
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Comparing (3.7) with (4.3) we get the analog coefficients for a 3rd-order

Butterworth low-pass filrer:

Ao=1,A/=O,A 2=O,AJ =O

Bo=1,B/=2,B2=2,BJ=1
(4.4)

Now, we can use the formulas of Table 3.2 to derive the digital coefficients for a

Butterworth 3rd-order low-pass filter. We get:

A=1+2C+2C2 +CJ

1 3 3 1
t;=A",t;=A"' t;=A"' t;=A"
b/=3+2C-2C2 -3CJ

b2=3-2C-2C2 +3CJ

bJ =1-2C+2C2-CJ

(4.5)

The next step is to convert the coefficients of (4.5) to high-pass digital fi1ter

coefficients. Using (3.13) or (3.14) we get:

A=1+2C+2C2+CJ

1 3 3 1
t;=A"' t;=-A" , t;=A"' a,=-A"
b]=-(3+2C-2C2-3CJ

)

b2=3-2C-2C2+3CJ

bJ=-(1-2C+2C2-CJ
)

(4.6)

•
The value of the constant C will he calculated using eq. (3.12). Now we are ready

to build a 3rd-order high-pass Butterworth filter in Csound. The header of the

orchestra '.vil.1 he:
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sr=44100

kr = 44100

ksmps = 1

nchnls = 1

It is important to notice the choice of the control-rate value kr. Since the output of

IIR filters is calculated on a per sample basis (eq. 4.1), Csound must assure that

one sample is calculated per control period, which explains the choice of sr = kr.

Remember that the numher of samples calcu1ated in a control period is given by

ksmps=sr/kr. By choosing sr=kr, we assure that ksmps=l. Let us now look at the

frrst part of equation (4.1). We see that the input signal has to he delayed by one,

two, and three samples respectively. We can do that by using Csound's signal

modifier delay1 which delays signals by one sample. A second-order delay can he

created using delay1 twice, and similarly, a third-order delay can he created using

delay1 three rimes. Let us now consider the second pan of eq. (4.1). The order of

the filter is 3, therefore, three intermediate output variables aout], aout2, and aout3

will he used, which correspond to the values of y(n-1 J, y(n-2J, and y(n-3J of eq.

(4.1). The current sample output value will he aout. During the calculation of the

tirst sample, ooly the lst term of (4.1) gives output Then. during the calculation of

the 2nd sample, the output aout becomes the value of aout] , which is used, along

with the current and previous input values (created by using delay1), for the

calculation of the new value of the output aout. It is not until the calculation of the

4th sample that aU terms of eq. (4.1) hegin contributing to the final output aout.

Therefore, the procedure is to always have the last three values of outputs, along

with the current and the last three values of inputs, giving the value of the current

output

The body of the orchestra follows:

;Calculate the value ofthe constantC using eq. 3.12•

insu 1

idur=p3

icut=p4

iscale=p5

;duration ofthe test soundfile

;user provided cutofffrequency

;scalingfactor for the final output



•

•

36

ivar =sin(3.14159*ieut/sr)/cos(3.14159*icullsr)

;Calculale thefilter coefficients ofeq. (4.6), using the powerfunction ipow

ivarsqrd ipow ivar,2 ;the termC2 ofeq 4.6

ivarcbd ipow ivar,3 ;the termC3 of eq. 4.6

id) =1/(1+2*ivar+2*ivarsqrd+ivarcbd)

ial =-3*iaO

ïa2 =3*id)

ia3 ==-id)

ibl =-(3+2*ivar-2*ivarsqrd-3*ivarcbd)*iaO

ib2 =(3-2*ivar-2*ivarsqrd+3*ivarcbd)*iaO

ib3 =-(1-2*ivar+2*ivarsqrd-ivarcbd)*iaO

;/nitialize the intermediate output variables used

aoutl initO

aout2 initO

aout3 initO

;The sound sample that will he filtered is imported in Csound using soundin.

ainput soundin tltest_sound" ;the input signalfile

;Creare a 3rdordo delay

adell delayl ainput

ade12 delayl adell

ade13 delayl ade12

;Ca1culate the output signal

aout =idJ*ainput+ial*adell+ïa2*ade12+ïa3*ade13-ibl*aoutl-ib2*aout2-ib3*aout3

;Apply recUTsionformula: y(n-l) =y(n), y(n-2) =y(n-l), etc.

aout3=aoUl2

aout2 =aoutl

aoutl = aout
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;Provide a simple exponential segment envelopefor the output signal

aenv expseg .1 ,.1*idur,1 ,idur*.8,1 ,idur*.l,.1

out aout*aenv*iscale

endin

;output the signal

A sample score file which controls duration, cutoff frequency, and scaling

of the final output would be of the form:

;instr stIJTt dur

il 10 10

il 20 10

e

curoff scale

5000 4.3

1()()()() 8.5

•

4.2 SuperCollider: A General Overview

SuperCollider is a real-rime sound synthesis programming language,

currently running on the Power Macintosh platform. The brainchild of James

McCartney, it was first published in 1996 as a combination of Pyrite and Synth-O

Matic. Pyrite is a MAX [15] object with powerfullist processing capabilities, and

Synth-o-Matic was a non-real-rime synthesis program.

The architecture of the audio engine of the program is based on the concepts

of samples, subframes, frames, audio rate, and control rate. The number of

samples per second is the audio rate, and audio rate values change each sample

period. On the other hand, control rate values change each subframe, which is a

multiple of a number of samples. Fmally, a frame is a multiple of the subframe size.

It determines the latency between computation and performance ofevents, since it is

the size of the audio buffer sent to the Sound Manager.

In order for the user to produce sound, his functions must be registered

with the Digital Signal Processing or DSP engine of the program. The registered

functions, or DSP tasks, are called every subframe until they are removed from

their DSP stage. Four stages are supported, ranging from 0 to 3, and are executed

in oroer. This allows the user to schedule various tasks accordingly.
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SuperCollider provides the user with:

• A higher levellanguage.

übject-oriented programming with single inheritanee is supported. The user

can define classes, as extensions of functions, and methods, that overload any

built-in functions. Also, the "archaic" distinction of Music-N type languages

between an orchestra and a score has not been implemented. Instead, the user can

create and control the performance of bis instrument from the same file.

• A Graphical User Interface.

The GUI menu of the program allows the user to create and manipulate

Sliders, Range Sliders, Buttons, Radio Buttons, Check Boxes, Strings, and

Graphics. These can be used during the execution of the program 10 offer real-time

control of the various parameters of the code. Figure 4.1 shows an example of a

SuperCollider GUI.

Along with the GUI menu, the user is provided with menus for Table,

Audio, and Envelope windows. While the current version does not support editing

of the contents of Audio windows, the Envelope and Table windows can be

modified either by using the mouse or within the program.

• MIDI control.

U sing the rich palette of MIDI functions available, the user can control

incoming MIDI data, such as notes on and off, piteh bend, program changes, and

aftertouch. Also, MIDI Map Faders, found in the GUI menu lets the user map

screen faders 10 MIDI controllers.

• Real rime garbage collection.

Real-rime garbage collection simplifies dynamic instantiation of synthesis

processes. The user is guaranteed an upper hound on the collection rime and does

not have to worry about the deletion procedure.

• Rowing ofaudio.

Sound input cao come from either a user-specified fIle or the Sound

Manager. Sound output can go 10 an output file, or the Sound Manager, or hoth.

• Task scheduIing.

Scheduling of events cao be relative ta a real-time clock, or a beat clock.

Real-rime clock scheduling allows the user to add and remove events from a real

time clock scheduler, as well as implement priority queues. On the other hand,

tempo-based scheduling is relative to a beat clock. This allows the user to keep
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separate musicallines synchronised, while the tempo changes.

• A large library offunctions.

The functions for processing and controlling audio are divided into four groups.

Audio rate functions stan with a capital A, and output a signal buffer of samples

each control period. The control period is defined as the sampling rate (usually 44.1

KHz) divided by the subframe, which is a multiple of samples that can he selected

in the "Set Globals" dialogue of the Synth menu.

Control rate functions stan with a capital K, and output a single float value each

control period. This makes them ManY rimes faster than an audio rate function for

control purposes.

Polledfunctions stan with a capital P, and can he called at intermittent rimes after

they are created, for example, at the heginnings of notes.

The above three groups of functions all come in pairs. The frrst function of

the pair can he thought of as the definition of the process' and the second function

of the pair as the generation of the process defined by the first function. The last

group of functions cao he used directly, without the use of the pair scheme. These

include:

•

oBitwise Operations:

oBoolean. Operations :

oDSP Miscellaneous :

oFunctions and Frames:

oGraphies Functions :

oGenerai list :

oList lterators :

olist Ordering :

oList Sets:

functions that operate on the bit leveL

functions that enable Boolean logic

calculations.

functions that control the Digital Signal

Processing engine of the program.

functions which can refer to arguments and

variables that were defined in a lexically (i.e.

textually) enclosing function, even if that

enclosing function bas completed execution.

functions that make use of the graphics

capabilities of SuperCollider.

functions that process lists .

functions that iteratively process lists.

functions that manipulate the ordering of the

elements of lists.

functions that process sets of lists.
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oMath Complex :

oMath TranscendentaI :

oMathInfix:

oMath Unary :

OMoreMath:

oMIDI Functions:

oMisc Functions :

oNumerical List:

oPattern Streams :

oPattern Threads :

oRandom Numbers :

oScheduIing :

oTempo ScheduIing:

oTextI/O:

40

functions that perform operations with

complex numbers.

functions such as sqrt, log, exp, as weIl as

trigonometric functions.

operators such as *, {, +, -, as weIl as

various math functions.

numbc'T ?rocessing functions such as abs,

floor, sign, etc.

another yet group of math functions which

perform operations such as round, truncate,

clip, ete.

functions that control the interaction of the

program with MIDI.

includes functions for printing messages,

getting the rime, ete.

functions that process lists of numbers.

pattern stream creation functions allow the

user ta generate complex nested sequences of

data.

pattern thread functions are similar ta Pattern

Streams, except that threads manage the order

of execution of functions in rime instead of

the ordering of data.

functions used for random numbers

generation, as weIl as generation of numbers

according ta distributions such as bemoulli,

gaussian, ete.

functions that control the scheduling of

events.

functions that allow the user to schedule

events relative ta a beat clock rather than a

real-rime clock.

functions that perform text and files related

tasks.



• oWave Functions :
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functions that allow the user to define and

manipulate waves, as well as import audio

files.

•
Figure 4.1: An example of a SuperCollider GUI.
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Let us now build a 4th-order 3 dB digital band-pass Chebyshev filter in

SuperCollider. For a 4th-order digital filter, eq. (3.3) gives the following input

output difference equation:

Y(Il)=q,.x(n)+a,z(n-1)+a.z,x(n-2)+a,x(n-3)+a"x(n-4)

-b
1
y(n-1)-b,y(n-2)-b;y(n.-3)-b'-y(n.-4)

(4.7)

From the discussion on band-pass digital filter design, we know tha.t a 4th-order

digital band-pass transfer function can he derived from the corresponding 2nd-order

low-pass analog transfer function. Therefore, we first have 10 derive the 2nd-order

low-pass Chebyshev analog transfer function. Using either equations (A4.1)

(A4.5) of Appendix A, or Table B.3 of Appendix B we get:

.7079478
Hds

) .7079478+ .6448996s+s%

Then, comparison of (4.8) with eq. (3.7) gives:

Ao=.7079478. Bo=.7079478

B1=·6448996.B2=1

(4.8)

(4.9)

•

Now we can derive the 4th-order digital band-pass coefficients by applying the

transformation of eq. (3.16) to (4.8), and compare our results with (3.10). By

doing so we get:
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~

Bo
z •

Bo+BJC+BzC

az=O. a.z=-2~. a;=o.a,,=~

bJ
BJCD+2BzC

zD

Bo+BJC+BzCz

bz
2Bo-BzCzD-2BzCz (4.10)

Bo+BJC+BzCz

bJ
BJCD-2BzC

zD

Bo+BJC+BzCz

b4

Bo-BJC+BzCz

Bo+BJC+BzC
2

Now, let us substitute the values of (4.9) to (4.10). We get:

1
~ 1+.91094C+l.41253C2

az=O. a.z=-2~ a,=O. a,,=~

bJ=-(.6448996CD+2C
z
D) .70~78

bz=-(2*.7079478-C
z
VZ-2C

z
) .70~78

bJ=(.6448996CD-2C
z
D) .70~78

b4=(.7079478-.6448996C+C
z
) .70~78

(4.11)

•
The coefficients C and D will he calculated by equations (3.17) and (3.18)

respectively. The code for the filter-instrument, fully commented, follows:

defaudioout L R;
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Defaudioout defines the audio output buffers for the left and right channels. L and

R represent the left and right outputs of the Sound Manager, but output can also be

directed 10 a file.

defaudioin Lin Rin;

Defœuiioin declares a buffer for reading input audio. The input audio can come

from either a sound file or the Sound Manager.

defaudiobuf the sound;

Defaudiobuf defines an audio buffer which is needed for instantaneous access to

audio.

deftable env;

Deftable is used for defming tables. The defined tables can be selected from the

Table menu and can be modified using the mouse.

defdelay cl( 0.1);

defdelay c2(0.1);

defdelay c3(0.1);

defdelay c4(0.1);

Defdelay is used to declare buffers for delay lines. The number in parenthesis

specifies the maximum delay rime.

init{

--load the test soundfile

loadAudio(the_sound, "soundfile.aiff');

}

The init function is called after successful compilation of the code. In our case, it is

used to load the sound file 10 be processed.

start{

--Call thefilter instrument

instrl;

}
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The stan function is executed first when the execution of the code hegins. In our

case it just calls the filter instrument instr1, which activates the DSP engine of the

system.

instr1{

--Define variables used in the code

var sI, s2, s3, s4;

var xl, xl, rl, x4;

var iaO, ÙJ1, ïa2, ia3, ia4;

var ib1, ib2, ib3, ib4;

--Define the delay times (1 - 4 sample delays)

sI =0.000022675;

s2 = 0.000045351;

s3 = 0.000068027;

s4 = 0.000090702;

Sïnce we are building a 4th-order band-pass tilter the delay rimes will he: lIsr,2Isr,

3lsr, and4/sr, with sr=44100 Hz.

--Initia/ize signal variables

asig = 0;

asig1 = 0;

asig2 = 0;

asig3 = 0;

asig4 = 0;

x =Abufrd (the_sound, 0.0, 1.0); --Read the signalfrom the buffer

Abufrd creates an audio buffer reader. In our case there is no offset, and the speed

of scanning through the file is normal.

--Create a 4th ordo delay

xl =Adelay(cl, sI);

x2 = Adelay(c2, s2);

x3 = Adelay(c3, s3);
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x4 = Adelay(c4, s4);

Adelay is used to create simple delay lines. The first parameter in the parenthesis is

the buffer that was declared using defdelay, and the second parameter specifies the

initial delay rime in seconds. Note that the values of the parameters S j have to be

calculated and provided by the user, since SuperCollider doesn't support a one

sample delay operator.

--Provide an envelopefun.ction

amp = Atransient(env, 305, -9.dbamp, 0, 'dspRemove);

Atransient creates an audio rate transient generator function for the amplitude

envelope which uses the wave table env as the amplitude curve. Note that after the

specified duration, the function dspRemove is called. DspRemove removes the

envelope task from the DSP engine, which assures that the engine won't get filled

with DSP tasks.

(

t=x.value; --Readfrom the input audio buller

•

--Get the GUI controlled valuesfor centerfrequency and bandwidth

icenter = gedtemValue(l);

ibandwidth = gedtemValue(3);

The user can change the values of center frequency and bandwidth during

execution, which are then passed to the DSP engine by the fnnction gedtemValue.

--ealcu/ate the filter coejficients

ivar = 11 tan(3.14159 * ibandwidth 1sr);

iscale = 2 * cos(628318 * icenter 1sr);

iaO = 11(1 + (0.91094 * ivar) + (1.41253 * (ivar**2)));

ial = 0;

ia2 =neg(2) * iaO;

ia3 =0;

io4 =idJ;

ib1 = neg(l) * ((0.6448996 * ivar * iscale) + (2 * (ivar ** 2) * iscale)) * iaO 1
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0.7079478 ;

ib2 = neg(1) * ((2 * 0.7079478) - ((ivar ** 2) * (iscale ** 2)) - (2 * (illar ** 2))) *
iaO 10.7079478;

ib3 ::: ((0.6448996 * ivar * iscaIe) - (2 * (ivar ** 2) * iscale)) * iaO 10.7079478;

iM = (0.7079478 - (0.6448996 * ivar) + (ivar ** 2)) * iaO 10.7079478;

The filter coefficients are calculated by the DSP engine at a rate defined by the

subframe size, which is set by the user in the Set Glabais of the Synth Menu. Note

that for digital recursive filters, as it was explained in the Csound instrument earlier,

one sample must he calculated per control period. Therefore, the sub-frame size

must he equal to 1.

--CalcuJate the output signal according to eq. 4.7

asig = (iaO*t) + (ial*xl.(t)) + (ia2*x2.(t)) + (ia3*x3.(t)) + (ia4*x4.(t)) 

(ibl*asigl) - (ib2*asig2) - (ib3*asig3) - (ib4*asig4);

--Apply recursion formula

asig4 = asig3;

asig3 = asig2;

asig2 = asig1;

asigl = asig;

(asig *1 amp.value).out(L).out(R); --output the scaled signal

--Stop the engine when soundfile is over

ifnow. > 305 then

dspKill(1 );

end.if
}.dspAdd(l);}

One of the great features of SuperCollider is its ability ta provide real-rime GUI

controls for the instrument
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Figure 4.2: GUI window for Chebyshev 4th-order band-pass filter.

Figure 4.2 shows the interface for the center frequency and bandwidth of the filter,
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•

which can he controlled by the user dming execution rime. Figure 4.3 shows the

envelope applied to the signal before its output

Figure 4.3: Table window of the amplitude envelope.

49
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Figure 4.4 shows the original signal being processed.

Figure 4.4: Audio window of the loaded sound file.

50
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5.

Conclusion

This thesis has studied digital recursive or UR fi1ters. Five different

responses have been examined; Butterworth, Chebyshev, Inverse Chebyshev,

Bessel, and Elliptic. The reader is given enough information on how to choose the

response matehing the needs of his applications. A method was presented for

calculating the corresponding analog filter coefficients first, and then, using the

bilinear transformation method, convert them to the digital domain. Complete

examples implementing filter algorithms were given in two computer music

languages, Csound and SuperCollider. Csound is currently more popular since it

has been available for a longer rime and on various platforms. SuperCollider is

currently running only on the Power Macintosh. It offers real-rime processing

capabilities as well as GUI editing tools. These features, along with a series of

improvements that the new version is expected to introduce, make it the author's

frrst choice as a powerful real-rime processing sound synthesis too1. As described

in the introduction, the author's intention was to provide filter designers, such as

sound designers and electroacoustic and computer music composers, with a tutorial

on how to build digital recursive filters using tools that are familiar to them. As

well, the strategy was based on viewing filters as another instrument in the

designer'slcomposer's pallet, not as a post-production editing tool. This explains

the choice of implementing the filters using computer music languages instead of a

programming language such as C, for example.

Any order of a desired filter can he calculated using the presented method.

For higher orders of filters, however, the method involves tedious calculations.

Appendix B addresses this problem by realizing higher order systems as a cascade

or produet of lower orcier functions. If the analog function can he represented as:

•
G(s)= Gls)Gls)...GJs)

then, the resulting discrete transfer funetion will he [16]:

(5.1)
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H(z)=Hlz)Hlz)...Hjz)
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(5.2)

where. again. the transformations of (3.8, 3.11. 3.16. 3.23) are used.

The choice of the bilinear transform as the method of conversion from the

analog ta the digital domain is justified by its relative simplicity and accuracy. Two

other methods that can he used are the Impulse-Invarialu:e method, and the Step

Invariance method. Accading 10 the Impulse-Invariance method [17]. the impulse

response of the digital system must he the same, or proportional to the

corresponding impulse response of the prototype analog füter at sampling points.

Figure 5.1 illusttates that.

g(t) h(n)

t
Figure 5.1: The Impulse-Invariance method.

t

•

Designing DR filters using the impulse-invariance method is more difficult than

using the bilinear transfonn method. Determining the impulse response

corresponding to the reference analog function can he non-trivial, depending on the

complexity of the analog function. Also, aliasing mors can occur. especially if the

filter doesn't have sharp cutaff characteristics.

The Step-Invariance method [18] consists of defining unit step sequence
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response values of the digital filter as being equal to the sampled values of the unit

step response of the reference analog filter. Figure 5.2 illustrates the step-invariance

method.

h (n)
s

t
Figure 5.2: 1be Step-Invariance method.

t

•

Similar 10 the impulse-invariance method, aliasing problems will occur if the

amplirude response of the filter is IlOt sharply band-limited.

Finally, a few words about the non-mathematical nature of the thesis. It was

the author's intention to provide sound designers with a rutorial, ie. a how-to guide

on digital recursive filters. His main concem was not to present an in-depth

mathematical analysis of the subject; there is vast literature on that, a representative

sample ofwhich is presented in the bibliography. However, there is enough

mathema.tical information presented in the text. An effort has been made though not

10 make it crucial for the understanding of the techniques presented.
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Appendix A

Complete Analog Low-Pass Transfer Functions

A.1 Bessel Transfer Function

The complete, analog, nth-order low-pass transfer function of the Bessel

response is given by the following formula:

where

bO bo
HssfS)=-.- S·B(lls)

Lb.S i

i=O

(A1.I)

(A1.2)

The Bessel polynomial B(lIS) can he expressed in terms of Bessel functions as

follows:

•

B 1 1 ffœ 1 jJ,) ie»(-)=- - f(_ rI (œ)- (œ 'leiœ f 2 li -y y

where

J œ =œY - (-1jor'
y() L ~i+Y'/n • 1)

i-O 1. V+l+

Ji co) are the Bessel functions, and

(A1.3)

(A1.4)



• 1
v=n+-

2

r(x) is the gamma fonction given by:

-
r(.r)=f r·1e·tdl

o
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(Al.5)

(Al.6)

For the purposes of Bessel filters x is an integer n =1, 2, 3, ..., which transforms

(Al.6) to:

ITn)= (n-1)1

A.2 Butterworth Transfer Function

(Al.?)

The complete, analog, low-pass nth-order transfer function of the

Butterworth response is given by the following formulas:

•

n(B~

Hs)S) rr(S2:Bl_+B~'m=O.1 •.... ~ -1. ifn even-
Rrr(B~

Hs)S) n- 2 • m=O.1•...• n
2
-1 -1. ifn odd

(S +R) (S +B1.+Bz-)
•

In the above formulas we have:

B -- 2Rœ~8 17m rrY

B
2m

= (Ptcof( 8,,)) 2+ (Rsi1 (8,,) F

(A2.1)

(A2.2)

(A2.3)
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with

%(2m+n+1) n.
8...- 2n • m=O.1...• 2 -1. i/neven

%(2m+n+1) n-1.
8... 2n .m=O.1····T-1.i/nodd

and

1-.1. --
R=(l0 --1) 2a

A.3 Elliptic or Cauer Transfer Function

(A2.4)

(A2.5)

The complete, low-pass, analog, nth-order transfer function of the Elliptic or Cauer

response is given by the following formulas:

•

... ...

where

(A3.1)

(A3.2)



G,.

•

•

with

where

and

B1.=-2G.

B =cT+oi:z. • •

cn.{f(m).rtjdJ(f(m).rtjsn.(vo'~ )cn.(vO'~)

1-dJ({f(m).rtjs~(vo' ~1-rt )

sn.[f(m).r~vO'~)
co. ,-;--;-

1-M[f(m).rtjsn.2(Vo.1 1 - rt )

1

CEI(rt)sc-1(e-1.1or)

nCE/(Ior)

CEI(rtX2m+1) n.
(Cm) n. • m=0.1····. 2 -1. ifn. ~"!n.

+Im ) CEI(rtX2m+2) =01 n.-1 -1 if dd
Il' n. • m • •...• 2 . n. 0
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(A3.3)

(A3.4)

(A3.5)
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rt=~
œ..""

-.1. 1

m=(10 --1)7
-.1.

10 --1

sn(Il.Ic)=sin(~)

cn(Il.Ic)=cos(~)

sC(Il.Ic)=tar(~)

d1(1l.1c)= :

with

• -2..
1l(~.Ic)=I(1-klsin2x) 2dx

o

A.4 Chebyshev Transfer Function
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(A3.6)

(A3.7)

The complete, analog, nth-order low-pass, transfer function of the Chebyshev

response is given by the following formulas';

•
m

(A4.1)



• sinh(D)II(B.,l n-l .
Hc.•(S) .. . m=O,l, ...• --, ifn odd

(5 + sinh(D))II (S2+B1• +B.,l 2
•

In the above formulas we have:

B1.=2sillJr.(D)sin(tP,)

B.=(-sir.h(D)sin(tP,)j+(cosh(D)cos(tP,)f

with

1r(2m+l) O' n 1 if41. 2n • m= .1 ...• 2 -. neven

n(2m+1) n-1.
41. 2n • m=O.1···· T -1. ifn odd

and

1·.1. --
D siTlh-1[(lO --1) 2 J

n

A.S Inverse Chebyshev Transfer Function
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(A4.2)

(A4.3)

(A4.4)

(A4.5)

The complete, analog, nth-order low-pass transfer function of the Inverse

Chebyshev response is given by the following formulas:

•
II (B.,lII(S2+A 1,.5+A.,l

HdS ) IT(A.,lIT(S2+B
1
,.5+B:-J' m=O.1•...• ~ -1. ifn eW!n

• •

(A5.!)
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•

In the above formulas we have:

B1.=-20'.

B_=<Ç+w~

A1.=O.O

with

0'.
0'=-";';;;"'-
• dl +m'l• •

- m.
m. ~d +m'l. .

where

d.=-siM(D)sin(q,,.)
m~=cosh(D )cos(q,,.)
m..=sec(q, ,.)

and

n(2m+1) Il
CP. 211 • m=O.1···· 2 -1. ijllevell

n(2m+1) 11-1
CP. 211 .m=O.l····T -l.ijllodd
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(AS.2)

(AS.3)

(AS.4)

(AS.S)

(AS.6)
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and
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(AS.?)
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Appendix B

Analog Bessel, Butterworth, Chebyshev,

Inverse Chebyshev, and Elliptic Filter Data

While Appendix A offers a direct way rD calculate analog filter coefficients for any

chosen response of any order, another shorter method will be presented here based

on filter data found in the literature [19]. The low-pass transfer funetions of the

responses we examine can he factored in terms of 2nd-order stage junctions, if the

order of the fIlter is even. If the order of the fùter is odd, a single 1st-order stage

function must he included. In the case of Butterworth, Chebyshev, and Bessel

filters, the 2nd-order stage fi.lnction is of the form:

(B.I)

In the case of Inverse Chebyshev and Elliptic fùters, the 2nd-order stage function is

oftheform:

~ (s2+ACli)
G(s) ----

s2+Bcocs+Cœ;

The !st-order stage function is the same for ail five responses:

(B.2)

(B.3)

•
If, for example, the order of the filter is 3, then the corresponding transfer function

would he the produet of one term of the form (B.l) or (B.2), and one term of the

form (B.3). If the order of the filter is 4, then two terms of the form (B.l) or (B.2)

will he used. We now give coefficients A, B, C, for orders 2 to 5 for aIl five
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•

Butterworth Low-Pass Filter Data

Ordern B C

2 1.414214 1.00000o

3 1.00000o 1.00000o

- 1.00000o

4 .765367 1.00000o

1.847759
1

1.00000o

5 .618034 1.00000o

1.618034 1.00000o

- 1.()()()()OO

Table B.2

Bessel Low-Pass Fùter Data

Ordern B C

2 3.00000o 3.00000o

3 - 2.322185

3.677815 6.459433

4 5.792421 9.140131

4.207579 11.487800

5 - 3.646739

6.703913 14.272481

4.649349 18.156315
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Chebyshev 3 dB Pass-Band Ripple Width Low-Pass Filter Data

Ordern B C

2 .644900 .707948

3 .298620 .839174

- .298620

4 .170341 .903087

.411239 .195980

5 .109720 .936025

.287250 .377fX'F.)

- .177530

TableB.4

Inverse Chebyshev 30 dB Minimum StoJrBand Loss Low-Pass Filter Data

Ordern A B C

2 32.606961 1.413164 1.031123

3 5.976366 .933370 1.058740

1.134320

4 2.951050 .630988 1.061509

17.199978 2.169970 1.512100

5 2.056891 .443052 1.053952

5.385010 1.697486 1.542401

1.470208
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•

Elliptic 3 dB Pass-Band Ripple Width

Ordern A B C

2 16.341050 .802210 .825047

3 2.638395 .234092 .888381

- - .352928

4 1.416828 .480516 .344290

5.211857 .086865 .958043

5 1.775450 .233483 .677491

1.133895 .031739 .984644-

- - .301724
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