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Abstract

Two of the fundamental questions that arise in the manufacturing industry concern-

ing every type of manufacturing process are:
1. Given an object, can it be built using a particular process?

2. Given that an object can be built using a particular process, what is the best
way to construct the object?

The latter question gives rise to many different problems depending on how best is
qualified. We address these problems for two complimentary categories of manufac-
turing processes: rapid prototyping systems and casting processes. The method we
use to address these problems is to first define a geometric model of the process in
question and then answer the questions on that model.

In the category of rapid prototyping systems, we concentrate on stereolithog-
raphy, which is emerging as one of the most popular rapid prototyping systems.
We model stereolithography geometrically and then study the class of objects that
admit a construction in this model. For the objects that admit a construction, we
find the orientations that allow a construction of the object.

In the category of casting processes, we concentrate on gravity casting and in-
jection molding. We first model the process and its components geometrically. We
then characterize and recognize the objects that can be formed using a re-usable
two-part cast. Given that a cast of an object can be formed, we determine a suitable
location for the pin gate, the point from which liquid is poured or injected into a
mold. Finally, we compute an orientation of a mold that ensures a complete fill and

minimizes the number of venting holes for moids used in gravity casting processes.
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Résumé

Deux questions fondamentales dans 'industrie manufacturiére concernant tous les
procédés de fabrication sont:

1. Y a-t-il un procédé de fabrication spécifique pour un objet donné ?

2. Etant donné qu’un objet peut &tre construit par un procédé spécifique; quelie

est la meilleure méthode de fabrication pour cet objet?

Plusieurs problemes découlant de cette derniére question peuvent étre énoncés selon
la fagon dont meilleure est définie. Ces problémes sont considérés pour deux catégories
complémentaires des procédés manufacturiers: les systémes de conception de proto-
types et les procédés de moulage. La méthode employée pour résoudre ces problemes
consiste a définir un modele géométrique du procédé en question et & répondre aux
questions liées au modéle.

Dans la catégorie des systémes de conception de prototypes, nous nous con-
centrons sur la stéréolithographie, une méthode de fabrication qui gagne de plus en
plus de popularité. On modéle la stéréolithographie d’une maniére géométrique pour
ensuite étudier la classe d’objets pour lesquelles une construction selon ce modele
est possible. Pour de tels objets, on cherche les orientations permettant une telle
construction.

Dans la catégorie des procédés de moulage, nous nous concentrons sur les méthodes
par gravité et par injection. D’abord, nous modelons ie procédé et ses composantes
géométriquement. Par la suite, les objets, qui peuvent étre formés par des moules
ayant deux parties et étant réutilisables, sont reconnus grace a leurs caractéristiques.
Un point d’injection satisfaisant par lequel le liquide peut étre introduit ou injecté
est ensuite déterminé pour ces moules. Finalement, pour les moules utilisés dans
un procédé par gravité, 'orientation du moule est déterminée de sorte que le moule

soit entiérement rempli avec un nombre minimal de poches d’air.
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Chapter 1

Introduction

In the mamifacturing industry, there are many different types of production meth-
ods such as injection molding, gravity casting, NC machining, laser sculpting, au-
tomated welding and 3-D printing (stereolithography), available to construct an
object. However, every manufacturing process imposes certain restrictions on the
types of objects that can be constructed as well as the way a given object ray be
built. For example, a sphere cannot be built in one setup using 3-axis NC machin-
ing, but can be easily built using injection molding or gravity casting. Also, the best
way of constructing a cube using stereolithography is to place it on one of its faces.
This leads to two fundamental questions concerning every type of manufacturing

process:
1. Given an object, can it be constructed using a particular process?

2. Given that an object can be built using a particular process, what is the best
way to construct the object?

The latter question gives rise to many different problems depending on how best
is qualified. The gecmetry of the object, coupled with the restrictions imposed
by the particular manufacturing process under consideration, play a vital role in
determining the answer to these questions,

The importance of these questions is quite evident. For example, when design-
ing an object to be built by a certain type of manufacturing process, currently an
engineer must always keep in mind the process used to construct the object. This
limits the creativity of the engineer since the question of design feasibility must be

kept in mind while creating the object. In fact, the engineer is never really quite
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CHAPTER 1. INTRODUCTION 2

sure whether the object can be built since no formal method exists to determine the
feasibility of an object for most manufacturing processes. To resolve this problem,
a practical algorithm is needed to determine, given an arbitrary cbject, whether or
not it can be built using any of the known manufacturing processes. The benefits
of such a system would be two-fold. Firstly, an engineer would have an algorithm
to verify whether an object can be created using a particular manufacturing process
(i.e. a type of automatic design verification}. Secondly, a list of the possible man-
ufacturing processes that can build a particular object would allow an engineer to
design something and then determine which manufacturing process would be most
cost, efficient. In fact, two of the primary ways of reducing costs in manufacturing

engincering, according to [83], are to
1. Determine whether the product as designed and developed is producible.

2. Determine the manufacturing process allowing production within product spec-

ifications at the lowest cost.

In this thesis, we address these fundamental issues for several manufacturing
processes. In order to better understand the power as well as the limitations of each
manufacturing process under consideration, we first develop a mathematical model
of the process, and then analyze the class of objects that can be constructed under
the given model. Having established that an object can be constructed, we then see
what is the best way to construct the object in this model.

This approach for understanding a particular manufacturing process is not novel.
Many different mathematical models of different manufacturing processes have al-
ready been studied [44]. Traditionally, models atiempt to reflect the physics behind
a production method. As a result, the models are fairly complicated involving dif-
ferential equations, fluid dynamics, thermodynamics and so forth. In fact, many of
these models form the backbone of simulation programs that simulate a particular
process. Although these models may accurately reflect the particular process be-
ing modelled, they are quite complex and difficult to analyze. The novelty in our
approach comes from the way we model a process. Our approach is to extract the
geometric essence of the manufacturing processes we consider and answer questions
from a purely geometric perspective. These results do not eradicate the need for
simulations, however, our solutions are conceptually and computationally simple

and provide a first approximation that may greatly reduce the time needed to find



CHAPTER 1. INTRODUCTION

better solutions through simulation. In fact, our solutions to the problems in Chap-
ters 3, 4, 5, and 7 provide an alternative to the trial and error approach currently
used [2, 71]. The more vital the role that the geometry of the preblem plays, the
better our solutions are. '

We present relatively simple discrete geometric models of the processes under
investigation. The objects we study are polygons and polyhedra. These objects can
be handled by almost all CAD/CAM systems [1, 8, 9]. Of the diverse manufacturing
processes, only NC machining has been studied extensively from this perspective
[42]. We investigate problems concerning manufacturing processes that fall into two
different but related categories.

The first category of manufacturing processes comprises rapid prototyping sys-
tems (see [6] for details). As suggested by the name of this category, all manulac-
turing processes used to build prototypes fall into this category. These systems are
used in the design phase. While designing an object, these systems can be used to
produce three dimensional prototypes of a given object which provide much more
information to the designer, as well as to the eventual producer of the object, than
do two dimensional drawings of the object. Rapid prototyping systems have been
gaining more importance in recent years since this technology is becoming affordable
and saving companies such as GM, FORD and IBM millions of dollars, Currently,'
rapid prototyping is an $8 billion per year business and demand is growing at 80
to 90 per cent a year [36]. Stereolithography is emerging as the dominant process
in this category. According to Marshall Burns (physicist, consultant and author of
‘Automated Fabrication: Improving Productivity in Manufacturing’, published by
PTR Prentice-Hall Inc.), stereolithography is going to start a revolution in the man-
ufacturing industry and in 20 to 25 ycars will be as cominon as computer printers.
In Chapter 6, we study, from a geometric perspective, the powers as well as the lim-
itations of stereolithography by characterizing the objects that can be constructed
by stereolithography. '

Once the design of an object has been completed, the next step is production.
The second category of manufacturing processes we study entails casting processes,
which has always been one of the most popular methods used to mass "'ﬁroduce
objects [71, 31, 47, 81, 32]. Basically, a casting process is a manufacturing process
that uses a mold or cast to produce an object. A mold or cast, as defined in [17],

refers to the whole assembly of parts that make up a cavity into which liquid is
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poured to give the shape of the desired component when the liquid hardens. The
importance of this category is evident since many of the objects we see everyday such
as cups, forks, door knobs, and most plastic objects are built using casting processes.
The processes that we study from this category fall into two main groups: injection
molding and gravity casting. Each of the two methods produces an object by filling
a mold or cast of the given object with a liquid, and removing the object once the
liquid has hardened (see Figure 1.1). The difference between the two methods is
that liquid is injected using pressure into the mold in injection molding processes
whereas liquid is poured into the mold and gravity is the sole force acting on the

liquid in gravity casting processes [32].

liquid poured here

V

Object Cast of object

Figure 1.1: An object and its cast.

In Chapter 7, we study the problem of determining given an object, modelled
by a simple polyhedron, whether or not a two-part cast of the object can be made.
Currently, the two-part cast is the most popular type of cast used in manufacturing.
Casts comnsisting of more than two parts are difficult to produce and are not as
efficient to use as the two-part casts.

If a cast of a prototype object can be made, a cast designer is then faced with
the problem of determining a suitable location for the pin gate. The pin gate is
the point on the mold from which the liquid is poured or injected into the cavity.
The location of the pin gate plays an important role in determining whether or not
an object built by one of the two manufacturing processes will have many surface
defects. Many factors play a role in determining a suitable location for the pin gate.
In Chapter 3, we analyze the different geometric factors involved in the location

of a suitable pin gate and present algorithms for determining pin gate locations
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o

satisfying certain geometric criteria.

Once a cast of an object has been built, finding a favorable orientation of the
mold that minimizes surface defects and allows the most complete fill also becomes
a challenge. We model the geometric aspects of the filling of a mold for gravity
casting and determine an orientation that minimizes the number of venting holes
and allows the most complete fill. Chapters 4 and 5 concentrate on this problem for
molds modelled as simple polygons and simple polyhedra, respectively.

The chapters in this thesis are not ordered in the sequence presented here, but

they are ordered such that geometric tools and techniques developed in one chapter

can be used in a later one.



Chapter 2
Notation and Preliminaries

In this chapter, we review some of the notation and terminology of this thesis.
Notation and terminology specific to a particular chapter will be introduced in that
chapter. For more detailed definitions, the reader can refer to O’Rourke [64], or
Preparata and Shamos [69].

The model of computation assumed throughout the thesis is the real RAM.
In the real RAM model, each storage location is capable of holding a single real
number, and the following operations are primitive and available at unit cost (or

unit time):
1. Arithmetic operations.
2. Comparisons between two reals.
3. Indirect addressing of memory.
4. Square roots.

A simple polygon P is a simply connected subset of the plane whose boundary
is a closed chain of line segments. A polygon P is denoted by a set of vertices
V1,Y2,...,VUn-1, ¥, such that each pair of consecutive vertices is joined by an edge,
including the pair {v,,v1}. Unless stated otherwise, the vertices are assumed to
be in clockwise order, so that the interior of the polygon lies to the right as the
boundary of the polygon is traversed. '

The open interior of the polygon P is denoted by int(P), the boundary by P,
and the open exterior by ezt(P). The boundary is considered part of the polygon;
that is, P = int(P) U &P.
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Given a line segment e, the line containing e is denoted by L{e). A convex edge of

. & simple polygon refers to an edge e where both endpoints of e are convex vertices.

Similarly, a reflex edge of a simple polygon refers to an edge e where both endpoints
of e are reflex vertices.

Given two points ¢ and b in the plane, [¢b] and (ab) denote respectively the
closed and open line segments between the two points. A chord of a polygon is a
line segment between two points on the polygon boundary such that the open line
segment is contained in the interior of the polygon. A chord divides a polygon into
two subpolygons.

We define a simple polyhedron P as in O’Rourke [64]. The boundary of P is a

finite collection of planar, bounded convex polygonal faces such that

1. The faces are disjoint or intersect properly. (A pair of faces intersect properly
if either they have a single vertex in common or have two vertices, and the

edge joining them, in common.)

2. The link of every vertex is a simple polygonal chain. (Triangulate the faces
that have vertex v on their boundary. The link of v is the collection of edges

opposite v in all the triangles incident to v.)

3. The one-skeleton is connected. (The one-skeleton is the graph of edges and

vertices of the polyhedron.)

The boundary is closed and is denoted as 3P. The boundary encloses a bounded
region of space, denoted as int(P). The polyhedron consists of the boundary and
its interior, (i.e. P = int(P)U OP). The (unbounded) ezterior of P is denoted as
ezt(P). As this thesis only deals with simple polyhedra, we will refer to them as
polyhedra in the remainder of the thesis. The vertices and the edges of the faces
are the vertices and the edges of the polyhedron. The open interior of the faces are
called the facets of the polyhedron. Therefore, for a facet f, the closure of the facet
is the face and denoted cl( f).

For two polyhedra P and @ whose interiors lie on different sides of a plane &,
and which are both bounded by the same facet f that lies inside k, we define the
union of P and Q as the polyhedron with all vertices of P and @, with all facets of

P and @ except f, and with all edges of P and @ except the ones ¢-ntained in A
. that bound two parallel facets.
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The intersection of 2 polyhedron with an arbitrary plane results in a collection
(possibly empty) of simple polygons (or line segments or points) lying on the plane.
A polygon in this collection will be referred to as a sectional polygon. Notice that
a sectional polygon divides the polyhedron into two simple polyhedra. Thus in this
sense a sectional polygon is the three dimensional equivalent to a chord in a polygon.

By a direclion we mean an equivalence class of oriented parallel lines. A given
direction © will be specified by a point on a unit circle in the following way. Let C
be a unit circle with center 0. Let = be a point on the boundary of the circle such
that rey(oz) is parallel to and with the same orientation as @. Then direction ©
is represented by the point z. (Refer to Figure 2.1). A point that is diametrically
opposite to z on the unit circle represents the inverse or opposite direction to © and
. is denoted by opp(©). A right (left) normal to a given direction © is an equivalence
class N of oriented parallel lines with the property that every member of N is
orthogonal to © and oriented to the right (left) of ©. The right normal of © will be
denoted by N*(0) and the left normal will be denoted by N~(O).

X NI‘I(X ) ~

X
_ +
N I N&)

opp(x )
opp(x ) | .

Directions on the c
unit circle NH™x)

Figure 2.1: Illustrating the representation of directions.

An equivalence class of parallel lines H will be specified by a pair of points p; and
p2 that are diametrically opposite on the unit circle, such that the line determined
by the two points is parallel to a linein H. A normalto a linein H is an equivalence
class N of pa.rallél lines with the property that every member of IV is orthogonal to
H. Given an oriented direction ©, we define the normal to ©, denoted by N(0),
as the equivalence class of parallel lines that are orthogonal to ©. Notice that the

two points representing the normal divide the boundary of the unit circle into two
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semi-circles. Wé refer to the open semi-circle containing the point representing the
direction © as ilic open normal semi-circle or the open normal half-plane of @ and
denote it as NH(@). The closed semi-circle is denoted by NH[®]. The open semi-
circle not containing the point representing the direction of © will be denoted by
NH*®(©). Similarly, the closed semi-circle not containing the point is NH[O].

Given two points a and b on the unit circle, let arcla,d] and arc(e,b) denote
respectively the closed and open arcs of the unit circle from a to b in the clockwise
direction.

Similarly, we represent the set of all directivns in 3-space by the points on the
surface of a unit sphere (see Figure 2.2 for definitions to follow). Let § be the unit
sphere centered at the origin 0. Any point p on S represents the direction p. A
point that is diametrically opposite to p on the unit sphere represents the inverse
or opposite direction to direction p and is denoted by opp(p). Notice that all the
points s on the boundary of S with the property that 08 - 3p = 0 (- represents
the inner product) form a great circle. We denote this great circle by N(p) since
all these points are directions that are crthogonal to p. The great circle N(p)
divides the sphere into two half-spheres. The open half-sphere containing p will
be denoted as NH(p) and ihe closed half-sphere by NH[p]. The open and closed
half-spheres not containing p will be denoted by NH(p) and NH¢[p], respectively.

When considering the angle between two vectors, we always mean the smaller angle
unless stated otherwise.

. T opp(p)
NH (p)
\
N(p)

~NH(p)
—-—
+ Z
Figure 2.2: The sphere of directions.

For a.aon-vertical plane k, we denote by h* and 2~ the open half-spaces above
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and below k, and by cl(h*) and ¢l(h~) the closed half-spaces above and below & . If
h is vertical but does not contain a line paralle] to the y-axis, then A% and A~ denote
the open half-spaces bounded by & that contain the points (0, 00,0) and (0, —o0,0),
respectively. If h is vertical and contains a line parallel to the y-axis then A% and
h~ denote the open half-spaces bounded by £ that contain the points (00,0,0) and
(—00,0,0), respectively.



Chapter 3

Pin Gate Location

3.1 Introduction

In this chapter, we consider the problem of determining a suitable location {or the pin
gate. The pin gate is the point on the mold from which the liquid is poured or injected
into the cavity. The location of the pin gate plays an important role in determining
whether or not an cbject built by one of the two manufacturing processes will
have surface defects. Many factors play a role in determining a suitable location
for the pin gate when considered from the point of view of fluid dynamics and
physics of the whole molding process. To date, trial and error, guided by engineering
experience, has been the main method in determining a suitable location for the pin
gate [47, 71, 86]. However, through this experience, a few of the key characteristics

of an ideal location for a pin gate have been uncovered.

If the distance from the gate to the extremities of the mold cavity is too

great, the metal freezes prematurely, and misruns result. [47]

This quote points out one of the key problems faced by cast designers. In order
to avoid this problem, designers must place the pin gate at a location where the
distance from it to the extremities of the mold cavity is not too great. Another key
characteristic of casts that leads to surface defects is the presence of many “sharp
corners or overhanging or protruding sections...” [2]. These “sharp corners” disrupt
the flow of molten liquid leading to surface defects. Therefore, the pin gate must
be placed in a location such that the flow of moltex liquid from the gate does not

encounter too many sharp corners or make too many turns. For an overview of

11
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the many other factors causing defects in molds and casts, the reader is referred to
[47, 2].
These observations allow one to deduce the following properties for a good loca-

tion for a pin gate:

Property 1: The maximum distance from the pin gate to any point in the object
should be small.

Property 2: The maximum number of turns the liquid takes on its path from the

pin gate to any point in the object should be small.

When viewed from a purely geometric perspective, these problems can indeed
be solved optimally. The geometric solutions provide an initial approximation that
can aid in the search for a suitable location. In this chapter, we solve the pin gate
location problem for molds modelled as simple polygons which find applications in
polymer molds. In practice, many 3-dimensional objects are almost flat so that in
effect they can be considered as 2-dimensional. Therefore the 2-dimensional theory
is more important than may appear at first glance, and sheds some light on the
3-dimensional problem.

The two properties that a pin gate should satisfy have several geometric inter-
pretations. Property 1 can be interpreted as the point inside the simple polygon
whose maximum distance to any point in the object is minimized. If distance is
measured in the Euclidean metric, this point is referred to as the constrained Eu-
clidean center. Sometimes a pin gate is constrained to lie on the boundary of the
mold. In such a case, Property 1 can be interpreted as the point on the bound-
ary of the simple polygon whose maximum distance to any point in the polygon
is minimized with respect to all points on the boundary. This point is referred to
as the boundary-constrained Euclidean center. On the other hand, distance can be
measured by the geodesic metric, i.e., the minimum distance the liquid must travel
inside the mold to reach a destination. In this case, Property 1 places the pin gate
at the geodesic center, which by definition is constrained to lie inside the polygon,
and the boundary-constreined geodesic center, respectively.

Property 2 can be interpreted as the link metric. The link metric measures the
number of turns in a path between two points. For example, if two points can be
joined by a line segment, then they are at link distance 1. The points inside a simple
polygon, whose link distance to any other point in the polygon is minimized, are
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referred to as the link center. If the pin gate is constrained to the boundary, then

it is referred to as the boundary-consirained link center,

3.2 Constrained Fuclidean Center

In this section, we show how to find the point inside a simple polygon P as well
as the point on §P whose maximum Euclidean distance to every point of P is
minimized. These points are known as the Euclidean center constrained to lie in the
polygon, and the Fuclidean center constrained to lie on the boundary of the polygon,
respectively.

We first review the problem of finding the Euclidean center. Given aset Sof n
points in the plane, the Euclidean center is the center of the smallest circle enclosing
the points of 5. This problem has a rich history. We summarize as in [69]. The
search for an efficient algorithm seems to have begun in 1860 by Sylvester [82]. Later,
Rademacher and Toeplitz [72] noted that the smallest enclosing circle is unique and
is either the circumecircle of three points of the set or defined by a diametrical pair.
This immediately gives an O(n?) algorithm. Elizinga and Hearn [33, 34] improved
this to O(n?). Much work was done from an Operations Research perspective by
viewing the problem as a minimax facility Jocation problem, where the Euclidean
center is the point whose greatest distance to any point of the set is minimized
[41, 84, 48]. An O(nlogn) time solution to this problem was proposed by Shamos
and Hoey [77], but Bhattacharya and Toussaint [10] pointed out some errors in [77]
and subsequently proposed an alternate O(nlogn) time solution. Preparata [66)
and Melville [60] also proposed an alternate O(nlogn) time solution. However, no
Q(nlog n) time lower bound for the problem was known. A search for a resolution to
this problem ensued, culminating in the discovery of an elegant ©(n) time solution
to the problem by Megiddo [57].

The Euclidean center of the vertices of a simple polygon may be a good candidate
for the location of the pin gate, but the center might lie outside the polygon (see
Figure 3.1). Therefore, the location of the center must be constrained to lie inside the
polygon or or its boundary since otherwise it cannot serve as a pin gate. Therefore,
given an object modelled as a simple n vertex polygon, we wish to find the point lying
inside the polygon whose maximum Euclidean distance to any point is minimized

with respect to all points in the polygon. Since the furthest neighbor of a point
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Euclidean Center

Figure 3.1: Euclidean center outside polyson.

must be a vertex, we can restrict our attention to finding the point lying inside
the polygon whose maximum Euclidean distance to any wvertex is minimized with
respect to all points in the polygon. We also want the point on tlie boundary whose
maximum Euclidean distance to any vertex is minimized with respect to all points
on the boundary. Although the Euclidean center is unique, the Euclidean center
constrained to lie inside the polygon as well as the Euclidean center constrained to

lie on the boundary of the polygon need not be unique, as depicted in Figure 3.2.

3.2.1 Center Constrained to a Polygonal Region.

We solve a slightly more general problem than the one mentioned in the introduction.
Suppose we are given a set S = {s1,5,...,5x} of k points (in general position) in
the plane E2, and an n vertex simple polygon P. We wish to find the point ¢ in P
whose maximum distance to any point in S is minimized. If ¢ is not constrained to
liein P, then it is the Euclidean center of S. However, we refer to ¢ as the Euclidean
center of S constrained to P and denote it by ECp(S).

QOur algorithms make use of the furthest point Voronoi diagram of the set S,
denoted as FPVD(S). Given a point z € EZ, we let #(z) denote the furthest neigh-
bors of z in S, that is the set of points in S such that d(z, ¢(z)) = maxyes d(z,y)
where d is the Euclidean distance function. The FPVD(S) partitions the plane into
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V(b)

pid V(c) ~

Euclidean Center

Figure 3.2: Constrained Euclidean center may not be unique.

unbounded convex cells, V(s;), such that for any point p € V(s;), s; € ¢(p). This
structure can be computed in O(nlogn) time [69]. A list of the many geometric
properties of the furthest point Voronoi diagram can be found in [62, 69, 10].

We first review some properties of the Euclidean center which will help us in

finding its constrained counter-part.

Lemma 3.2.1 [69, 10] The Euclidean center of S lies on the midpoint of the di-

ameter of the set S, DIAM(S), provided that the circle with DIAM(S) as diameter
contains the set S.

Lemma 3.2.2 [69, 10] If the Euclidean center does not lie on the midpoint of
DIAM(S), then it lies on the vertez of the FPVD(S) that yields the smallest span-

ning circle.

These two lemmas characterize i;he location of the Euclidean center. When
considering the constrained version of the problem, notice that if the Euclidean

center happens to lie inside the constraining polygon, then it is also the constrained
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Euclidean center. However, difficulties arise when the Euclidean center does not lie

inside the polygon. These difficulties are resolved in the following lemmas.

Lemma 3.2.3 The Euclidean center of S constrained to lie in P is the midpoint of
DIAM(S) provided that the diametral circle contains the set S, and the midpoint is

contained in P.

Proof: Follows from Lemma 3.2.1. "

Before tackling the problem of determining the location of ECp(S) when it is
not on the midpoint of DIAM(S), we first establish a lemma that will prove useful.
Let a, b be two points in § such that both a and b are on the convex hull of S, {ab] is
- not the diameter of S, and V{a) and V' (b}, the two cells of FPVD(S) representing
a and b, respectively, are adjacent and separated by an edge e. Let z be a point on

the interior of e, and let € > 0 be any small constant.

Bisector of [ab]

rd

Figure 3.3: Nlustration for proof of Lemma 3.2.4.

Lemma 3.2.4 There ezists a point y € e with d(z,y) < ¢ such that d(y, a) < d(z,a)
and d{y,b) < d(z,b).

Proof:  See Figure 3.3. The edge e must lie on the bisector of line segment [ab],
since the points on e are equidistant from both a and 4. The points a,b,z must
form a triangle because otherwise [ab] would be the diameter. Since z is contained

in int(e), let y be a point on e in A(abz) such that d(z,y) < e. The lemma follows.
.
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Lemma 3.2.5 If||S|| > 1 then a point b of S cannot lie in V(b).

Proof: Let z € S be a point distinct from b. Note that d(b,b) = 0, however,
d(b,z) > 0 which contradicts the fact that b € V(b).

We now complete the characterization of ECp(S).

Lemma 3.2.6 If the Fuclidean center of S constrained to lie in P is not the mid-

point of DIAM(S), then it lies on one of the following points that yields the smallest
spanning circle:

1. a vertez of the FPVD(S) contained in P,

2. a proper intersection point of the FPVD(S) and the boundary P,

3. a vertez of the polygon P,

4. a point x on an edge e of P with the properly that Vy € e, if ¢(y) = ¢(z) then
d(y, ¢(z)) 2 d(=, ¢(z))-

Proof: If ECp(S) does not lie on any of the points mentioned in the statement
of the lemma, then it must lie in one of the regions described in the following four

cases. We show that each of these cases leads to a contradiction. For simplicity of
exposition, let ¢ = ECp(S).

Case 1: cis a point in the interior of a cell of the FPVD(S), and in int(P). Let
V(b) be the cell containing c. By the Jordon Curve Theorem [64], line segment,
[be) must intersect dP or V{(b) since b ¢ V(b) by Lemma 3.2.5. Let z be the
intersection point closest to ¢. The point z must be in V(b). Therefore the
circle centered at z with radius d(z, b) encloses the set S. However, d(z,d) <

d{c,b) by construction. Hence, we have a contradiction.

Case 2: cis a point in the interior of a cell of the FPVD(S), and in the interior
of an edge e of P but does not satisfy the property that Vy € e, if ¢(y) = ¢(c)

then d(y, ¢(c)) > d(c, ¢(c)). Since the latter property is not satisfied, a point -

z € e such that ¢(z) = ¢(c) and d(z, ¢(c)) < d(c, ¢(c)) must exist. However,
the very existence of = contradicts that ¢ is the constrained Euclidean center

since the circle centered at z with radius d(z, ¢(c)) en:(ilpses S.
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Case 3: cis a point in the interior of an edge e of the FPVD(S), and in int(P).
Let V(a) and V(b) be the two cells separated by the edge e. Since c is not on
the diameter of the set S, by Lemma 3.2.4 we know that tiere exists a point
T in e and in int(P) such that d(z,a) < d(¢,a) and d(z,b) < d(c,b). This

... contradicts that c is the constrained Euclidean center.

Case 4: ¢ is a point in the interior of an edge e, of the FPVD(S), and in the
interior of an edge e, of P such that e, and e, intersect but not properly.

Same argument as Case 3.

Lemma 3.2.3 and Lemma 3.2.6 characterize the location of ECp(S). We outline the
following algorithm to compute this point.
Algorithm 1: FEuclidean Center of P constrained to lie in S
Input: A set of points § = {s1,52,...,5,} and asimple polygon P = {p1,p2,...,Pn}.
Output: ECp(5)
1. Compute the FPVD(S).
Compute DIAM(S).
Compute the circle C having DIAM(S) as diameter.

- W

Preprocess P in O(nlogn) time for point inclusion testing in O(logn) time
using the algorithms of Kirkpatrick [45] or Sarnak and Tarjan [75].

5. If the midpoint of C is contained in P and all the points of S are contained in
C then exit with the midpoint of DIAM(S).

6. Compute the set of vertices of FPVD(S) contained in P. Let V. represent this
set.

7. Compute the set of intersections I. = {i1,1s,...,1x} of P with FPVD(S).

8. Partition each edge e; of F such that for every pair of points z,y € e;, we have
that ¢(z) = ¢(y). Denote the j** partition of e; by e;;.

9. Dor each e;;, compute the point on e;; closest to ¢(e;;). If this point is not an

endpoint of e;;, place it in the set E..
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. 10. Let P, represent the vertices of P. For each point ¢ in V,, I, P, E., compute

the smallest spanning circle with center ¢. Let SP represent this set.

11. Select all the smallest circles in SP:, and output their centers and the radius.

Notice that we assumed that the number of vertices of P equals the number of
points in S. Clearly, this need not be the c_asé; however, this assumption simplifies

the complexity of notation. It is stra.ightfoi-ward to repeat the complexity analysis
when P and S have different cardinalities.

Theorem 3.2.1 Given a set of points S = {51,32,...,5’;} and a simple polygon
P = {p1,p2,...,Pn}, we can compute the Euclidean center of § constrained lo le
in P in time O(nlogn + k) where n is the size of the input and k is the number of
intersections between the edges of the FPVD(S) and P.

Proof: The correctness of the algorithm follows from Lemmas 3.2.3 and 3.2.6.
Let us analyze the complexity of the algorithm. Step 1 of the algorithm can
be computed in O(nlogn) time using the algorithm of Shamos [69]. Step 2 can be
computed in O(n log n) time by first computing the convex hull of S'and then finding
the diameter of the convex hull. Preprocessing for point inclusion can be done in
O(nlogn) using the algorithm of Kirkpatrick {45] or Sarnak and Tarjan [75]. Step 5
can be achieved in O(nlogn) time by using the point inclusion test. Step 6 can be
done in O(nlogn) time using the point inclusion test. Step 7 can be computed in
O(nlog n+ k) time where k is the number of intersections between P and FPVD(S)
using the algorithm of Chan [18]. If we color the segments in FPVD(S) blue and
the edges of P red, then the algorithm of [18] reports the intersections along each
edge of P in sorted order. Once these intersection points have been computed, Step
8 and 9 can be achieved in O(n + k) time. Step 10 can be computed in O(n + k)
time since it takes constant time to compute the circle and there are O(n+ k) points
in the set SP. Finally, Step 11 can be computed in O(n + k). Therefore, the total
complexity of the algorithm is O(nlogn + k) time. u

For simple polygons, k can be O(n?), however, for convex polygons, we notice
the following: a line segment can intersect a convex polygon only twice. Therefore,

since FPVD(S) consists of O(n) line segments, there can only be O(n) intersections
. between FPVD(S) and an n vertex convex polygon. Therefore, we have:
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Corollary 3.2.1 Given a set of points § = {s1,52,...,3,} and a convez polygon
P ={p1,p2,...,Pn}, we can compute the Euclidean center of S constrained to lie in

P in time O(nlogn) where n is the size of the input.

3.2.2 Center Constrained to a Polygonal Chain

With a slight modification, Algorithm 1 can compute the Euclidean center con-
strained to lie on the boundary of the polygon, denoted as ECyp(S). These modi-

fications are outlined below.

Lemma 3.2.7 The Euclidean center of S constrained to lie on the boundary of P
is the midpoint of DIAM(S) provided that the diametral circle contains the set S,
and the midpoint is on the boundary of P.

Proof: Follows from Lemma 3.2.1. i n

Lemma 3.2.8 If the Fuclidean center of S constrained to lie on the boundary of
P is not the midpoint of DIAM(S), then it lies on one of the following points that

yields the smallest spanning circle:
1. a vertex of the FPVD(S) on the boundary of P,
2. an intersection point of the FPVD(S) and the boundary P,

3. a vertex of the polygon P,

4. a point x on an edge e of P with the property that Yy € e, if ¢(y) = ¢(z) then
d(y, $(z)) 2 d(z, ¢(z)).

Proof: If EC5p(S) does not lie on any of the points mentioned in the statement

of the lemma, then it must lie in one of the regions described in the following four

cases. We show that each of these cases leads to a contradiction. For simplicity of
exposition, let ¢ = ECyp(S).

Case 1: cis a point in the interior of a cell of the FPVD(S), and in ¢nt(P). This

cannot happen since ¢ must be on the boundary of P.

" Case 2: cis a point in the interior of a cell of the FPVD(S), and in the interior
of an edge e of P but does not satisfy the property that Vy € e, if ¢(y) = ¢(c)
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then d(y, ¢(c)) = d(c, ¢(c)). Since the latter property is not satisfied, a point
z € e such that ¢(z) = ¢(e) and d(z, (c)) < d(c, #(c)) must exist. However,
the very existence of = contradicts that c is the constrained Euclidean center

since the circle centered at = with radius d(z, ¢(c)) encloses S.

Case 3: cis a point in the interior of an edge of the FPVD(S), and in int(P).

Again, ¢ cannot lie in int(P) since it is constrained to the boundary.

Case 4: c is a point in the interior of an edge e, of the FPVD(S), and in the
interior of an edge e, of P such that e, and e, intersect but not properly. Let
V(a) and V(b) be the two cells separated by the edge e,. Since ¢is not on the
diameter of the set S, by Lemma 3.2.4 we know that there exists a point z in
e, and in e, such that d(z,a) < d{e,a) and d(x,b) < d(c,b). This contradicts
that ¢ is the constrained Euclidean center.

Lemma 3.2.7 and Lemma 3.2.8 characterize the location of ECyp(S). The modifi-

cations to Algorithm 1 for computing these points are straight{forward. Therefore,
we conclude with the following.

Theorem 3.2.2 Given a set of points S = {s1,52,...,5,} and e simple polygon
P = {p1,p2,...,pn}, we can compute the Luclidean center of S constrained to lie
on the boundary of P in time O(nlogn + k) where n is the size of the inpul and k
is the number of intersections between the edges of the FPVD(S) and P.

Corollary 3.2.2 Given a set of points S = {s1,52,...,8:} and a convezr polygon
P = {p1,p2,...,pa}, we can compute the Euclidean cenler of S constrained to lie

on the boundary P in time O(nlogn) where n is the size of the input.

3.3 Constrained Geodesic Center

Both versions of the constrained Euclidean center serve as good first approximations
for the locations of the pin gate. However, in some cases the constrained Euclidean
center may not be a point satisfying Property 1, as intended (see Figure 3.4). In fact,
it may be quite bad in the sense that the liquid may have to travel quite far despite

the fact that the pin gate is located at the constrained or boundary-constrained
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Euclidean center. The reason is that the Euclidean distance of the pin gate to all
the points may not be a good measure of the actual distance the liquid must travel
inside the polygon. For example, in Figure 3.4, the Euclidean center, constrained
Euclidean center and boundary-constrained Euclidean center all lie on the same
vertex indicated on the polygon. However, the distance that the liquid must travel
inside the polygon from that point to vertex v is quite large compared to vertex ¢.
Although for convex or “near” convex objects, the Euclidean metric may be good,
it seems that the geodesic metric may serve as a better approximation since liquid

is travelling inside the polygon.

Constrained
Euclidean Center

Figure 3.4: Constrained Euclidean center may not be a good approximation for the
best pin gate location.

In the geodesic met}ic, the distance between two points inside a simple poly-
gon is defined as the length of the shortest path connecting the two points inside
the polygon. The geodesic center of a simple polygon is the point whose maximum
geodesic distance to any other point in the polygon is minimized. Therefore, by defi-
nition, the geodesic center of a simple polygon lies inside the polygon. Although the
geodesic center and boundary-constrained geodesic center may serve as better a.p;
proximations for the location of a pin gate, computing both centers is more difficult

than their Euclidean counter-parts as we shall see.
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3.3.1 Geometric Properties

The problem of computing the geodesic center of a simple n vertex polygon P,
denoted GC(P), was first tackled by Asano and Toussaint [7]. They gave an
O{n®loglogn) time algorithm for computing the center. In [7], it is shown that
the geodesic center is unique and located on a vertex of the geodesic furthest point
Voronot diagram of P, denoted GFPVD(P). The GFPVD(P), like its Buclidean
counter-part, divides the polygon P into cells V(v;), such that the locus of points
in V(v;) is further from v; than any other vertex of P (with distance measured
with the geodesic metric). Later, Pollack, Rote and Sharir [65] reduced the com-
plexity of computing the geodesic center to O(nlogn) time. They used a different
approach and achieved their time bound by a modification of Meggide’s technique.
Recently, Aronov et al.[3] presented an O(n logn) time algorithm for compuling the
GFPVD(P), thus providing an alternate O(n log n) time solution for computing the
center, Therefore, to compute the geodesic center of a simple polygon, any one of
the above algorithms may be used, however, all of these algorithms are complicated
and involved.

The problem of computing the boundary-constrained geodesic center of a simple
polygon P, denoted as GC(8P), has not previously been addressed. We concen-
trate on solving this problem. Like its Euclidean counter-part, the geodesic center
constrained to the boundary is not necessarily unique, and not necessarily an in-
tersection point of GFPVD(P) and P. Figure 3.2 shows an example of this. If an
algorithm for computing the geodesic center already exists, the following heuristic

may serve as a good approximation of the boundary-constrained geodesic center.

Heuristic 3.3.1 A heuristic for computing the boundary-constrained geodesic cen-

ter ts to compute the point on the boundary closest to the geodesic center.

In some cases, this heuristic actually gives the boundary-constrained geodesic
center, as seen in Figure 3.2. In the next section, we present an O(nlogn) time
algorithm to compute the boundary-constrained geodesic center exactly. The main
idea behind the algorithm is the following. We divide the polygon boundary into
polygonal chains such that the geodesic furthest neighbor of any point on a given
chain is the same. Then, we compute for each chain, the point, which we call the
candidate for that chain, whose distance to the furthest neighbor is the smallest

compared to any other point on the chain. We select the smallest candidates as the
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geodesic center constrained to the boundary. We modify an algorithm of Suri [79],
similar to [3], to compute this.

Given two points a, b in a polygon P, there is a unique geodesic path connecting
a,bin P. We denote this path by w(a,b) and its length by de(a,b). Since geodesic
distance is a metric, the triangle inequality holds. Therefore, we have that de(z,y) <
dg(z,2)+dg(z,y) for every three points z,y, z in P. The geodesic furthest neighbors
of a point z in P, denoted by ¢(z), are the set of points y in P such that dg(z,y) =
maxy ep{dc(z,2)}. Asano and Toussaint [7] showed that the geodesic furthest
neighbor of a point is always a convex vertex of the polygon. The geodesic diameter
of a polygon P, denoted as GDIAM(P), is determined by the pair of points in P
whose geodesic distance is maximum over all pairs of points in P. If two shortest
paths do not share a point, we say they are disjoint; otherwise, we say that the
paths intersect.

An important property of geodesics, at the heart of the algorithm, is the Crossing

Property described in the following lemma.

Lemma 3.3.1 (Crossing Property) [79] Let p1,p2,ps,ps be four points in this
order on the boundary of P. Suppose that p3 € ¢(pz) and ps € ¢(p1). Then we also
have py € ¢(p1) and ps € ¢(p2).

To compute the boundary-constrained geodesic center, we first compute a con-
strained geodesic decomposition of the boundary of polygon P, which is a decompo-
sition of the boundary of P into polygonal chains (¢;,¢s, . . ., ¢) such that Ui, ¢; = P
and for every z,y € ¢, ¢#(z) = ¢(y). We denote this decomposition as 9-CGD(P).
Given this decomposition, the constrained geodesic center can be easily identified,
as shall be shown in the next section. The crossing property is the key behind
the algorithm. It suggests a divide-and-conquer approach to solving the problem
of computing the constrained geodesic decomposition of 3P. We first consider a
restricted version of the decomposition problem, and then we show how to use its

solution to compute the whole decomposition.

3.3.2 Restricted Geodesic Decomposition

The restricted version of the decomposition problem is described as follows. Let
U = (a,.--,u) be the counterclockwise chain from point u, to point u; on the

boundary of P. Let V = (vc,...,vs) be the clockwise chain from v, to v; on the
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boundary of P, such that both chains are disjoint except possibly at the endpoints.
The set of points which are the furthest neighbors of z restricted to V is denoted by
dv(z). We want to decompose U into polygonal chains (¢, ¢2,...,¢,') such that
UL, &/ = U and for every z,y € ¢/, ¢v(z) = ¢v(y). We refer to this decomposition
as the restricted decomposition of U/ with respect to V, denoted by RGDv(U).

Let u,, Up, V4, v, be four points on 8P appearing in that order in a counterclock-
wise traversal of 0P. Plug, up;vc, v4) denotes the region of P obtained by joining the
counterclockwise chain of P {rom u, to u; and the clockwise chain of dF from v,
to vg with m(ug,v.) and w(us,va) (see Figure 3.5). We say that a polygonal region
R C P is geodesically convez if for every pair of points z,y € I, we have that
n(z,y) € R.

Figure 3.5: Plu,, us; ve, va) is shaded.

Lemma 3.3.2 [79] Plug, us; ve, va] 15 geodesically conver.
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Lemma 3.3.2 implies that the restricted geodesic decomposition of U with re-
spect to chain V can be done entirely within Plu,, us; v, v4). Below, we outline the

algorithm to compute this decomposition.

Algorithm 2: RGD(Plue, us; ve, v4})
1. If Plu,,up; v, vq) is degenerate then
Find a vy € [ve, .- ., vd] such that dg(ua, vm) = max{dg(ue,v;)lc < j < d};
Find the point umip € [te,...,us) such that de(umin, Um)
= min{dg(u;,vm}la <1 < b}
Oulput Umin, Um, [Uas - - -, Ub), de{Umin, U )-
2. Else if (b —a) < 2 and wu,,u; are vertices then
Determine ¢(u,) and ¢(u).
If $(ua) = ¢(uy) then
let v = ¢(ua).
Find point tmin 0n [ta, us] such that de(Umin, vm)
= min{dg(p,vm)|p € [a, us]}.
Qutput Upin, Um, [Uas Us), 46 (Umin Um ).
Else
Compute partition points zy,z,...,z, on edge [uzus).
Sort these partition points including the endpoints.
Let [uy, ug,. . ., uszo] be the points ordered on edge [u,, us)-
let k= [(s+2)/2].
Find a vy € [ve,...,v4] such that dg(uk, vm)
= max{dg(u,vj)lc < j < d}
Construct and triangulate Plu,, ts; v, v4) and Plug, up; ve, m);
. Call RGD(Plua, uk;vm,vd]) and RGD(Plug,us; ve, vm)).
3. Else if (b~ a) <2 and u,,ub.are not both vertices then
Determine ¢(u,) and ¢(us).
If ¢(uqs) = ¢(us) then
let vy, = d(u.).

Find point umin on [ug, us) such that de(Umin) vm)
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= min{dg(p, Um)lp € [um ub]}‘
Qutput Umin, Um, [Ua, Us)s G (Umin, Um )-

Else

solve directly by computing upper envelopes.
4, Else
let k& = [(a + b)/2]
Find a v, € [ve,-..,vq] such that de{uk,vm) = max{dg(us,v;)lc < j < d}
Construct and triangulate Plu,,ug; vm, v4] and Plug, up; ve, Unl;

Call RGD(P[ua, ug; vm, v4]) and RGD(Pluk, up; ve, vm]).

Not only does algorithin RGD compute the restricted geodesic decomposition
of U into polygonal chains (¢',¢d,...,¢,) such that Ui, ¢’ = U and for every
T,y € ¢, dv(z) = dv(y), but for each chain ¢’ it computes the point on the chain
whose distance to its furthest neighbor is minimum. We prove the correctness of
the algorithm and at the same time, elaborate on some of the steps such as how to
compute the partition in Step 2.

We say that Plu,, us; v, val is degenerate if w(ug, v:) and 7(uy, vq) are not disjoint.
Given a degenerate instance of Plu,,us;ve, vg] computing the decomposition of I/
with respect to V is straightforward. Let = be a point on 7 (u,,v.) (7 (us, v4). Every
shortest path between a point y in U and a point z in V must contain z. Therefore,
the point v; of V furthest from z is also the point furthest from all points in U. The
point vy can be computed by traversing the shortest path tree of z. Since this tree

can be computed in linear time [40], we conclude with the following.

Lemma 3.3.3 If Plua,us;ve,va] is degenerate and vy is the furthest point from
z € 7(Ug,ve) N w(up,va), then the point vy on V is ¢v(z) for all z € U. The point

vy can be computed in time proportional to the size of Plug,us; ve,va).

Given an instance of P{ug,us;ve,vd), if (%a,..., %) is a polygonal chain, then
by the crossing property, we can divide the chain in half and recurse. However, if
u, and u; are the endpoints of an edge, it is not clear how to proceed. In such a
situation, we resolve the problem by partitioning the edge into subedges. We require
the following property on each subedge s; of [u,, us]. For every pair of points z,y on

3;, we want the shortest path from z to every vertex v; on (v.,...,v4) to be identical
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to the shortest path from y to v; except for the first link. We refer to this property
as the path-invariant property of a subedge.

To see how to compute a partition of the edge respecting the path-invariant
property, let us look at Figure 3.6. In Figure 3.6(a), notice that once the shortest
paths from v; to u;, and v; to ug are computed, the path-invariant partition of the
edge falls out by extending the edges in both paths to [u;,ug]. In this partition
of the edge, every point on a subedge (wu;,u;,;) has the same shortest path to v;
except for the first link. To extend this partition to two vertices, see Figure 3.6(b). -
In Figure 3.6(b), the partition with respect to v; and v;,; differs by only one point
located between ug and uz. Again, each subedge has the property that for every
point on the subedge, the shortest paths to both v; and v;41 are the same except
for the first link. By continuing in this manner, the edge can be partitioned with

respect to the chain (ve,...,vq).

|
|
|
|
|
|
|
|

u U, g U, uguy o ow,uuy, ug u un, u

4
on of edge (U, ) With respect tov, . Partition of edge (1,Yg ) with respect tov, andvy,; .

(a) ®)

Figure 3.6: Partitioning an edge.

Let m be the size of Plua,us; v, v4l. Since Plug,up;ve, vq) is triangulated, the
shortest path tree of u, and uy can be obtained in O(m) time using the algorithm
of [40]. Once the shortest path trees have been computed, all the partition points
on the edge can also be obtained in O(m) time, by traversing the two trees. Finally,

O(mlogm) time is used to sort the partition points. Hence, we conclude with the



CHAPTER 3. PIN GATE LOCATION 29

following,.

Lemma 3.3.4 Given an instance of Plug,us;ve,vd] of size m, where [ua,up) is
an edge, we can partition in O(mlogm) time the edge [uq,up) into subedges such
that each subedge respects the path-invariant property with respect to the chain
(vey« -y 0d).

The reason we partition the edge into subedges, when faced with an instance of
Plug, up; v, v4] where [uq, up) is an edge, is quite simple. First, it allows us to continue
the divide-and-conquer algorithm. Second, the base problem that we are faced with
at the end of the recursion can be solved directly because of the path-invariant
property. As the algorithm computes the decomposition of the U chain, eventually
in Step 3, we are faced with an instance Plu,, us; ve, V4] where u,, up are the endpoints
of a subedge respecting the path-invariant property, and (v.,...,vq) is a polygonal
chain. Because of the path-invariant property, we know that the distance from a
vertex v; € (vc,...,v4) to a point = on [ug,us) has the form k& + VET + 2% where
ky is a constant whose value is the geodesic distance from v; to the last vertex, say
v, before z on n{v;, z), and VE? + 22 is the distance from v; to = with k as the
orthogonal distance between the line L containing [u,, ] and v, and z represents
the distance between =z and the point on L that is the orthogonal projection of v
onto L. Consider the example in Figure 3.7. The constant k, accounts for the
distance from v; to v;4. By the path-invariant property, this value is the same for
all points on the subedge. The distance from v;;» to = is accounted for by k% + 22,

Let d,;(z) denote the distance function from v; € (vey.--,vg) to a point z in
[1ta, us]. These functions are simple and can be used to solve directly the decompo-
sition of [u,, us] into subedges such that for each point in the subedge, the furthest
neighbor is the same vertex of (v.,...,vs). This can be achieved by computing the
upper envelope of the functions d,;(z) for all v; € (v,,...,va). The following lemma

gives the key to solving this in time that is linear in the size of the problem instance.

Lemma 8.3.5 Let p1,p2, pa,ps be four points in this order on the boundary of P.
IfdG(Pl,P«:) > de{p1, ps) then da(pz, pa) > do(p2, p3).

Proof: Suppose da(p1, p4) > de(p1,p3) and dg(p2,pa) > dg(pz,p4) We see that
da(p1, ps) + da(pa, p3) > dg(pl, pa) + dg(p2,ps). By the relative positions of the

points, x(p;, p3) must intersect #(p2, p4). Let z be a point on this intersection.
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Figure 3.7: Distance function from subedge to vertex.

By the triangle inequality, dg(p1,ps} < do(p1,2) + do{z, p4), and dg(pz,ps) <
da(p2,z) + da(z, ps). But since x € 7(p1, p3) N 7(p2, pa), we contradict our assump-

tion, proving the lemma. n

The above lemma implies that we can compute the upper envelope in linear
time simply by inserting the functions in the order (v.,...,v4) or the reverse order.
Both arguments are symmetric. Let us look at an example to see why this is
so. Suppose we are inserting the functions in the order d,,(z),d,,_,(z),..., dw ().
Consider the example in Figure 3.8 where the first three functions have been inserted.
The upper envelope consists of d,,(z) between u, and vy, dy,_,(z) between uy and
uz, and d,, ,(x) between up and u;. The next function to be added is d,,_,(z).
If dy, () is below dy, ,(z) between u; and u, then it cannot lie on the upper
envelope because if it did, we would have a situation contradicting Lemma 3.3.5. If
dv,_, (2) intersects d,,_,(z) between u; and u; then we update the upper envelope
by adding the intersection point, but we no longer need to compare d,,_,(z) with
any other function on the upper envelope by Lemma 3.3.5. Finally, if d,,_,(z) is

above d,,_,(z) between us and u; then remove the intersection point ug, remove
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dy, ,(z) from the upper envelope, and repeat the test on the next piece of the
upper envelope, namely d,,  (x). Therefore, when we add the functions in the
order dy,(z),dys,_,(z),...,dy.(2), the amount of time spent adding a function can
be determined in constant time plus the time proportional to the number of functions

and intersection points deleted which is linear time overall. We conclude with the
following lemma. '

Figure 3.8: Computing upper envelopes.

Lemma 3.3.6 Given an instance of Plug, up; v, va] where [tq, uy) 15 @ segment with
the path-invariant property, [u,,us] can be decomposed, in time proportional to the

size of Plug,up;ve,va], inte subedges such that for each point in the subedge, the
furthest neighbor is the same vertex of (ve,...,vs).

The algorithm to compute RGDy(U) stems from the crossing property described
in Lemma 3.3.1. We show that this property holds at all levels of recursion. The
algorithm is initiated with a call to RGD(P[u,, Us; Ve, va]). At each invocation, the
algorithm either makes two recursive calls with smaller problem instances or solves
the problem directly. The calling relation forms a binary tree, which we refer to as

the recursion tree. A node of this tree having two children is an instance of RGD
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where two recursive calls were made. A leaf of the recursion tree is an instance of
the problem that is solved directly. The root of the tree represents the initial call.

The depth of a node in the tree represents its level of recursion.

Lemma 3.3.7 Let U = (uq,...,us) and V = (v,,...,vq). Given an initial call of
RGD(Plug,us; Ve, v4]), every recursive call RGD(Plug, u,; vs, vi}) has the property
that for all z € (uq,...,u,), we have that dv(z) € (vsy...,01).

Proof: We proceed by induction. The initial call has the property that for every
z € U, ¢y(z) isin V. Let us assume, by induction, that all subproblems at depth &
in the recursion tree have the desired property. We show that all problems at depth
k 4+ 1 have the desired property given that the property holds at depth k.

There are only two places in the algorithm where a recursive call takes place.
Let us first look at the call in Step 4. The same argument holds for the other call in
Step 2. Let Plugy,u,;v,,v:] be an instance of a problem at depth k. By induction,
we know that for all z € (uy,...,u.), we have that ¢y(z) € (va,...,v). In Step
4, Plug,uys;vs, vy is split into two instances, Plug,ur;vm,vp] and Plug, u,; vy, Um).
By the crossing property, we know that for all z € (u,,...,us), we have ¢y(z) €
(vmy.--,vp) and for all z € (uz,...,u.), ¢v(z) € (vs,...,vm). Thus, the lemma

follows by induction. n

We are now in a position to prove the correctness of algorithm RGD.

Theorem 3.3.1 Algorithm RGD correctly computes the restricted geodesic decom-
position of chain U with respect to V.,

Proof: By Lemma 3.3.7, if the root of the recursion tree is an instance of
RGD(P[ua,us; vc,vq]) with the property that for all z € (u,,...,us), we have that
év(z) € (vey-..,vq), then all recursive calls, i.e. all other nodes of the tree, have
this property. Therefore, the correctness of the restricted geodesic decomposition of
U with respect to V rests on the correctness of the leaves of the recursion tree, that
is, the instances of RGD that solve the problem directly.

If the leaf instance is degenerate, then the problem is solved directly in Step
1. The correctness of this step is proved in Lemma 3.3.3. If the problem is solved
directly in Step 2 (in the first if statement), then the correctness is verified by the
crossing property. Similarly, if the problem is solved directly m “e first part of Step
3, the correctness is guaranteed by the crossing property. Finaily, if the problem is
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solved directly by computing upper envelopes in Step 3, then it is correct by Lemma

3.3.6. Since, we have shown that all instances where the problem is solved directly

are correct, the theorem follows. m

We now turn our attention to the complexity analysis of algorithm RGD. We
show that the algorithm runs in O(nlogn) time and uses O(n) space. To do this, we
first show that there are O(log n) levels of recursion. Then we show that an instance
of RGD(Plu,,us; ve,v4]) (excluding recursive calls and sorting of partition points)
runs in time proportional to the size of Plua,up; ve, v4). Finally, we show that the
total size of all polygons at a particular level of recursion is O(n). The main ideas

in the complexity analysis to follow stem from the analysis given in Suri{79).

Lemma 3.3.8 Algorithm RGD(Plus,us;ve,va)) Tuns in lime proportional to the

size of Plug, up; v, va), ezcluding recursive calls and sorting partition points.

Proof: Let m be the size of Plu,,us;ve, va). Step 1 runs in time-O(m), by Lemma
3.3.3. A furthest neighbor of a point in P[u,, us; ve, v4] can be found in O(m) time
using the algorithm of [40]. Therefore, the first part of Step 2 runs in O(m) time.
Because of the structure of Plu,,up; v,, va), constructing and triangulating the two
subpolygons in the second part of Step 2 (in the Llse statement) and in Step 4
can be done in O{m) by a simple algorithm in [79] or a more complex algorithm of
Chazelle [19]. Since we are excluding the sorting of partition points, Step 2 and Step

4 can be done in O(m). Finally, Step 3 can be achieved in O(m) time as proved in

Lemma 3.3.6. The lernma follows. =

We first show that the number of distinct edges among all the polygons con-
structed by algorithm RGD is O(n), where n is the size of the polygon in the initial
invocation. Recall that Plu,,us; ve, v4) denotes the region of P obtained by joining
the counterclockwise chain of 0P from u, to uy and the clockwise chain of P from
v, to vy with 7(us,v.)} and w(us,v4) (see Figure 3.5). We refer to 7(u,,v.) and
w(us,v4) as connecting paths. There are three types of edges in Plu,, tp; ve,v4]- An
edge that belongs to 0P is a primary edge, an edge that is a subedge of an edge
belonging to dP is a partition edge, and an edge that belongs to a connecting path
is a connecting edge. The number of distinct primary edges is O(n) since all primary

edges are contained in the initial polygon. We now show that there are O(n) distinct
partition edges and connecting edges.
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Lemma 3.3.9 Let B be a simple polygon. Let a,c be two arbitrary but fired points
on lhe boundary of B and let b, d be two other points on the boundary of B such that
a,b,c,d appear in this order in a counterclockwise traversal of the boundary of B.
Then, all edges of w(b,d), ezcept perhaps three, belong to E(a) U E(c), where E{a)
denoles the set of edges in the shortest path tree of B from the point a.

Proof: The proof is identical to the proof of Lemma 4 in Suri [79], except there
are three edges rather than one that do not belong to E(a)U E(c) since we consider
points on the boundary of the polygon whereas Suri was dealing with vertices of the

polygon. ]

Lemma 3.3.10 The total number of partition points added is O(n) where n is the
size of the initial instance of RGD(Plug,up; ve,vd)-

Proof: Let Plu,,us; ve,vq) represent the initial n vertex polygon. We have
U = (Uay...,us) and V = (vg,...,vq). Let n, represent the number of vertices
in the U chain and n, the number in the V chain. We refer to an instance of
RGD(Plug,ur; vs,v]) where [ug,u,] is an edge of P and (vs,...,v:) is a polygonal
chain belonging to 4P as a partition instance.

Notice that a vertex in the V chain can appear in only two partition instances,
since each time during the execution of RGD that the V chain is divided, only the
dividing vertex appears in common in the two ensuing subinstances. Therefore, we
can conclude that at most 2n, vertices from the V' chain are considered among all
partition instances.

Partition points are created by extending the edges in the shortest path between
a vertex v; in the V chain and a vertex u; in the U chain. So the number of partition
points introduced is bounded by the number of distinct edges of all the shortest paths
considered to create the partition points. By Lemma 3.3.9, all but three edges of
x(vi,u;) appear in E(u,)U E(us). The size of E(u,)U E(u;) is O(n). Since at most
2n, vertices of the V chain are considered, there are at most 3 - 2n, € O(n) edges

not accounted for by E(u.)U E(u;). Therefore, a total of O(n) partition points are
introduced. L

Since a total of O(n) partition points are added given that the size of the initial
instance of RGD(P[u,, us; Ve, v4)) is n, we conclude that the total time spent sorting

all partition points is O(nlogn). Therefore we have the following.
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Lemma 3.3.11 Given an initial instance of RGD(P[ua,us; ve,va]) of size n, the
total time spent sorting partition points is O(nlogn).

Lemma 3.3.12 There are O(logn) levels of recursion whers n is the size of the
initial instance of RGD(P[itq, up; Ve, va)).

Proof: Let I = (¢1,72,...,%n) represent the the longest root to leaf path in the
recursion tree. Each i; of the path II represents the problem instance occurring
at recursion level & along the path. On any root to leafl path, there can be only
one partition instance. Let us suppose that II has a partition instance and let 1,
represent it. The argument is similar if II does not have a partition instance.
From i; to ip, at each step, the U chain is divided in half as seen in Step 4 of
algorithm RGD. Therefore, there are Oflogn) instances from i; to the partition
instance. At the partition instance i,, by Lemma 3.3.10, at most O(n) points are
introduced. Again, from 1, to i,,, at each step the partitioned edge is divided in
half as seen in Step 2. So, the length of the path from i, to i, is also O(logn).
Therefore, I has length O(log n). Since the longest root tc leaf path in the recursion

tree has length O(logn), there are O(log n) levels of recursion. "

Lemma 3.3.13 There are O(n) distinct edges among all polygons constructed by
RGD(Plug, up; ve, vyg))-

Proof: By Lemma 3.3.12, the height of the recursion tree is O(logn) where n is
the size of Plu,,us;v., vg]. Since the recursion tree is a binary tree, there are O(n)
nodes in the tree. This means that at most O(n) polygons are constructed in total.
Since each polygon has two connecting paths, at most O(n) connecting paths are
constructed in total.

Now, a connecting path joins a point u; on the U chain to a point »; on the V
chain. By Lemma 3.3.9, all but three edges of 7 (u;, v;) appear in E(u,)UE(uy). The
size of E(uqs)U E(us) is O(n). Since at most O(n) connecting paths are constructed,
there are at most O(n) edges not accounted for by E(u,) U E(u;). This adds up to
a total of O(n) distinct connecting edges. By Lemma 3.3.10, there are only O(n)
distinct partition edges. By definition, there are only O(n) distinct primary edges.

The lemma follows. »
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All that remains to be shown is that the summed complexity of all the polygons
constructed in one particular level of recursion is O(n). To do this, we show that
a distinct edge can belong to only a constant number of polygons in a particular
level of recursion. By the construction of polygons in Step 2 and Step 4, we see that
partition edges and primary edges cannot occur in two polygons at the same level
of recursion. This follows from the way the U/ chain and V chain are divided. We
now show that a connecting edge can only occur in a constant number of polygons
on the same level of recursion.

In order to show this, we must consider the connecting edges as directed. All
connecting paths are directed {from the U chain to the V chain. Therefore, the
edges of the connecting paths are arcs that are directed from one chain to the other.
Consider the two paths in I"igure 3.9. Both are connecting paths from the U/ chain
to the V chain, and both have the edge e in common. However, ¢ is directed one way
in one of the paths and the opposite way in the other. This distinction is important

in the analysis to follow.

Edge e directed

u a
one way

Edge e directed
the other way

Figure 3.9: Directed edges must be considered.

Lemma 3.3.14 [79] Let ay,az,as, by, by, b3 be siz points in this order in a coun-
terclockwise traversal of P. Suppose that the directed shortest paths w(ay,b,) and

#(a3, bs) have a directed edge e in common. Then, the same directed edge e also is
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tncluded in the shortest path m(as,by).

We only need to consider non-degenerate polygons at the same level of recursion.
Given a degenerate polygon at recursion level 7, algorithm RGD solves the problem
directly at this stage. Therefore, since the degenerate polygon is derived from a

non-degenerate polygon at level i — 1, the complexity of the degenerate polygon can
be accounted for by the non-degenerate ‘parent’.

Lemma 3.3.15 Let Plua,, us,; ey, V4, |, Plthay, Usy] Vogs Vdg), @nd Pltay, sy Vey, Vag ] be
three non-degenerate polygons that occur et the same level of recursion, such that
g b <ay<bh<az<by and ey <dy < ¢y <dy < ¢ <dy. Then, the direcled

connectiz.q paths of Plua,, Up,; Ve, V4, ] and Pluay, Us,; Ves, Vay] are edge-disjoint.

Proof:  See Figure 3.10. The proof of this lemma is similar to the proof of

Figure 3.10: Ilustration for Lemma 3.3.15

Lemma 7 in [79]. Suppose that the two directed connecting paths w(zy,31) and
w(z3,ys) share an edge e, where z; € {ug,,us,} and z3 € {uq;,us,}. Then by
Lemma 3.3.14, 7(u,,,v,) and w(us,,vy,) must also share edge e, contradicting the

fact Plug,, us, ] Ves Va,] s not degenerate. n

Theorem 3.3.2 Algorithm RGD computes the restricted geodes’~ decomposition of

chain U with respect to V using O(nlogn) time and O(n) space given an input of
size n. -
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Proof: The correctness of the algorithm is shown in Theorem 3.3.1. Let Plug, us; ve, va)

be the input polygon of size n to algorithm RGD. By Lemma 3.3.8, we know that ex-
cluding recursive calls and sorting partition points, algorithm RGD(Plu,, u,; vs,v1])
runs in time proportional to the size of Plug, u,;vs, vy

The size of all the polygons constructed at the same level of recursion is O(n) by
Lemma 3.3.13 and Lemma 3.3.15. There are O(logn) levels of recursion. Hence, the
total time spent, excluding sorting partition points, is O(nlogn) By Lemma 3.3.11,

the time to sort all partitions points is O(nlog n). The theorem follows. n

In the next section, we show how to use the restricted geodesic decomposition to

solve our initial problem of computing the geodesic decomposition of the boundary.

3.3.3 Geodesic Center Constrained to the Boundary

To compute the geodesic decomposition of the boundary of a simple polygon, we
apply the algorithm for restricted decomposition three times. The following lemma
of Surif79] provides the key.

For the following lemma, we assume that (ui,ua,...,u,) is the counterclockwise
sequence of vertices of polygon P. We let (u,,...,us) denote the counterclockwise
chain of 8P from u, to up. Let u; be an arbitrary vertex of P. Let u; € ¢(u;) be
a geodesic furthest neighbor of u;, and u, € ¢(u;) be a geodesic furthest neighbor
of u;. It is possible that u; = uy. Let us assume, without loss of generality, that
u;, uj, Ug 15 the order of these vertices in a counterclockwise traversal of P starting

at vertex u;, then we have the following lemma.

Lemma 3.3.16 [79] Let u; be an arbitrary vertez of P. Let u; € ¢(v;) and let

uy € ¢(uj), such that u;, u;, and uy are in this order in a counterclockwise traversal

of P.

1. for any vertez w; € (uy,...,u;), there exists another vertez um € (u;,...,u;)

satisfying um € ¢(wr),

2. for any vertez u; € (u;,...,ut), there ezists another vertez uy, € (uy,...,u:,.
satisfying um € $(wr),

8. for any vertez uy € (uy,...,u;), there exists another vertez uy, € (Us, ..., uj. ..

satisfying um € ¢(w),

ey Uf)

1”’:)
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From the above lemma, we can conclude that to compute the geodesic decompo-

sition of P, we simply solve the following three instances of the restricted geodesic
decomposition of P.

Instance 1 The U chain is (u;,...,u;) and the V chain is (uj,... ,u;_.; e ).
Instance 2 The U chain is (u;,...,u;) and the V chain is (ug,...,ui ..., u5).
Instance 3 The U chain is (u,...,u;) and the V chain is (ui,...,u;,...

Therefcre, we have the following theorem.

Theorem 3.3.3 The geodesic decomposition of a simple polygon can be computed

in O(nlogn) time and O(n) space given an input of =ize n.

Once the geodesic decomposition of a polygon P L:as been computed, the boundary-
constrained geodesic center can be computed as follows. Let (cy,¢2,. .., ¢;) represent
the polygonal chains in the geodesic decomposition of the boundary of P where

i_1ci = P and for every z,y € ¢;, ¢(2) = ¢(y). For each c;, compute the point
T € ¢;, with the property that the geodesic distance from z to ¢(z) is smallest com-
pared to all other points in ¢;. In other words, dg(z, #(z)) = minyye,{da(y, ¢(¥)}-
The point z is referred to as the candidate for the chain ¢;. In fact, algorithm RGD
already computes the candidates for each chain as seen in steps 1, 2 and 3 of the
algorithm. We conclude with the following theorem.

Theorem 3.3.4 The boundary-constrained geodesic center of polygon P is the can-
didate &*, such that dg(z*, $(z*)) = miny candidates y{9c(¥: $(¥)}-

Proof:  Suppose that z* is not the boundary-constrained geodesic center of poly-
gon P. Let z be the boundary-constrained geodesic center of polygon P. Now, z
is on some chain ¢; of the geodesic decomposition of P. Since it is the boundary-
constrained geodesic center of polygon P, it must be the candidate for chain ¢;. The
geodesic distance from z* to ¢(z*) is less than or equal to the geodesic distance
from z to ¢(z) by definition. If dg(z*, #(z*)) < dg(z,¢(2)), then z cannot be the
boundary-constrained geodesic center. If dg(z*, ¢(z*)) = de(z, #(2)), then z* is also

a boundary-constrained geodesic center. Both are contradictions, thereby proving

the theorem. n



CHAPTER 3. PIN GATE LOCATION 40

3.3.4 Geodesic Center Constrained to a Polygonal Region

In this section, we address the problem of computing the geodesic center of a simple
polygon P constrained to lie inside a simple polygon ), where @ is contained in P.
We denote this center as GCq(P). If Q equals P then we simply have the geodesic
center of the polygon P. We can further restrict the geodesic center to lie on the
boundary of polygon @, denoted GCag(P). In this case, if () equals P, then we have
the geodesic center constrained to the boundary of P. The reason we differentiated
the problem of computing the geodesic center constrained to the boundary from
this problem is that we use the geodesic furthest point Voronoi diagram to solve
this problem, but to solve the former problem, we were able to avoid computing the
geodesic furthest point Vorenoi diagram by modifying Suri’s algorithm {79]. The
arguments we use to soive this problem are similar to the arguments used to solve
the Euclidean center constrained to a polygon region.

Since in this and the following subsection we make extensive use of the GFPVD(P),
let us review a few of its properties. In order to use the algorithm of [3], we assume
that no vertex is geodesically equidistant from two other vertices. This can always
be guaranteed by applying a slight perturbation to the vertices if the condition is
violated. Like its Euclidean counter-part, GFPVD(P) partitions P into cells, V(p;),
such that for every point p € V(p;), the point p; is a furthest geodesic neighbor of
p. A vertex of the GFPVD(P) is a point that is geodesically equidistant to three
vertices furthest from it. An edge between two Voronoi vertices is either a straight
edge or a hyperbolic arc. Finally, the boundary of a Voronoi cell consists of a con-
catenation of straight edges and hyperbolic arcs. For more geometric properties of

geodesic furthest point Voronoi diagrams, the reader is referred to [3, 4]-

Lemma 3.3.17 [{, 65] The geodesic center of a simple polygon P lies on the mid-
point of the geodesic diameter of P (GDIAM(P)) or on a vertex of the GFPVID{P).

When the geodesic center of the polygon P lies on the midpoint of the geodesic
diameter, it has a special property. Let bis(a,b) represent the geodesic bisector of
a and b inside P, i.e. for every point z on bis(a, b), de(z, ) = do(z,b). Let a,b be

two points of polygon P, then we have the following.

Lemma 3.3.18 If the midpoint m of w(a, b) lies on the interior of the edge separat-
ing cells V(a) and V(b) of GFPVD(P), then m is the geodesic center P and w(a,b)

is the geodesic diameter of P.
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Proof: We proceed by contradiction. Suppose m is not the geodesic center, and
let ¢ be the geodesic center. The bisector bis(a,b) partitions polygon P into two
parts. Let P, represent the part where Yz € P,,dg(z,a) < dg(z,b) and P, be the
part where Vz € P,,dg(z,b) < dg(z,a). If c is on bis(a, b), then dg(c,a) > dg(m,a)
since m is on w(a,b) and geodesics are unique. If ¢ € P, then dg(c,b) > dg(m,b)
since 7(c, b) must intersect bis(a, b) at some point z by the Jordan Curve Theorem
and dg(z,b) > dg(m,b). Similarly, if ¢ € P; then dg(c,a) > dg(m,a). Therefore,
by contradiction, m must be the geodesic center. Since m is the geodesic center, it

follows that =(a,d) is a geodesic diameter. .

Before continuing, we need a few definitions. Let @, b, ¢ be three points in a
simple polygon P. The geodesic angle Zabe is the smaller of the two angles between
the first link on the geodesic path from b to a and the first link on the path from b
to c. Now, consider the paths n(a,b), 7(b,¢c), and =(a,c). There exist points o', ¥,
and ¢ such that the paths = (a,b) and = (e, ¢) intersect in the path = (a,a’), the paths
x(b,¢) and (b, ) intersect in the path =(b,0), and the paths =(¢,a} and =(e, b)
intersect in the path (¢, ¢). The three paths x(a’,¥), w(¥,c), and 7(c,a’) form
what is known as a geodesic triangle, denoted Aa't'¢ (see Figure 3.11). The vertices
a’, b, ¢, are the only convex vertices of the geodesic triangle and are referred to as

the peaks of the triangle. Pollack et al.[65] proved the following property concerning
geodesic triangles.

Lemma 3.3.19 [65] If the geodesic angle Lba'c at @' is greater than or equal to 7 /2,
then dg(b, c) > dg(d’, b),da(a’, )

Lemma 3.3.20 The geodesic center of P constrained to lie in ) is the midpoint m
of GDIAM(P) provided that m is the geodesic center of P and lies in Q.

Proof: Follows from Lemma 3.3.17.

To address the problem of determining the location of GCq(P) when it does not
satisfy the conditions of the above lemma, we establish the following lemmas. Let
a,b be two vertices of P such that they each have a corresponding cell V(a) and
V(b), respectively, which are adjacent separated by an edge e in GFPVD(P). Also,
7(a,b) is not the geodesic diameter of P. Let z be a point on the interior of ¢, and

let € > 0 be any small constant.
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b.b’

Iigure 3.11: A Geodesic Triangle.

Lemma 3.3.21 There exists a point y € e with dg(z,y) < € such that dg(y,e) <
de(z,a) and de(y, b) < dg(z,b).

Proof:  The edge e must lie on bis(a,d), since the points on e are equidistant
from both a and 4. The point z must be a peak of the geodesic triangle formed by
the paths #(z, a), 7(z, ), and =(a, b) since otherwise z would be on the path = (a, )
which would imply that w(a,b) was a geodesic diameter by Lemma 3.3.18. Also, a
portion of e must be contained in the geodesic triangle, since z is on the interior
of e. Let y be a point on e in the geodesic triangle. Since the geodesic angle Zayb
must be no greater than m, by Lemma 3.3.19 we conclude that dg(y,a) < dg(z, a)
and dg(y,b) < da(z,b). The lemma follows. . l

Lemma 3.3.22 A point b of P cannot lie in V().

Proof: Let z € P be a point distinct from b. If b € V(b) then dg(b,b) = 0.
However, dg(b, z) > 0 which contradicts the fact that b € V(). C
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. We now complete the characterization of GCq(P).

Lemma 3.3.23 If the geodesic center of P censtrained to lie in @ is not the mid-
point of GDIAM(P), then it lies on one of the following points:

1. a vertex of the GFPVD(P) contained in @,

2. a proper intersection point of the GFPVD(P) and the boundary of Q,

3. a verter of the polygon Q,

4. a point z on an edge e of Q@ with the property that Vy € e, if ¢(y) = ¢(z) then
da(y, ¢(z)) 2 do(z, ¢(z)).

Proof: If GCq(P) does not lie on any of the points mentioned in the statement
of the lemma, then it must lie in one of the regions described in the following four

cases. We show that each of these cases leads to a contradiction. For simplicity of
exposition, let ¢ = GCq(P).

Case 1: cis a point in the interior of a cell of the GFPVD(P), and in int(@). Let
V(b) be the cell containing ¢. By the Jordon Curve Theorem [64], = (bc) must
intersect 0P or V(b) since b & V(b) by Lemma 3.3.22. Let = be the intersection
point closest to ¢. The point = must be in V(). Therefore b is a furthest
neighbor of both z and ¢. However, dg(z, b) < dg(c, b) by construction. Hence,

we have a contradiction.

Case 2: cis a point in the interior of a cell of the GFPVD(P), and in the interior
of an edge e of ) but does not satisfy the property that Vy € e, if ¢(y) = ¢(c)
then de(y, ¢(c)) > dg(c, ¢(c)). Since the latter property is not satisfied, a
point z € e such that ¢(z) = ¢(c) and dg(z, #(c)) < de(c, ¢(c)) must exist.
However, the very existence of z contradicts that ¢ is the geodesic center of P
constrained to lie in Q.

Case 3: cis a point in the interior of an edge e of the GFPVD(P), and in int(Q).
Let V(a) and V(b) be the two cells separated by the edge e. Since ¢ is not
the midpoint of the geodesic diameter of P, by Lemma 3.3.21 we know that
there exists a point z in e and in int(P) such that ds(z,a) < dg(c,a) and
. de(z,b) < dg(c, b). This contradicts that ¢ is GCq(P).
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Case 4: c is a point in the interior of an edge e, of the FPVD(S), and in the
interior of an edge ¢, of P such that e, and e, intersect but not properly.

Same argument as Case 3.

We outline the algorithm to compute GCq(P).

Algorithm 3: Geodesic Center of P constrained to lie in

Input: A simplepolygon P = {p1,p2,...,pn}, and asimple polygon @ = {¢1,492,.-+,qn}
with @ C P.

Output: GCq(P)

1. Compute the GFPVD(P) using the algorithm of Aronov et al.[3].
2. Compute. GC(P) using the algorithm of Pollack et al.[65].

3. Preprocess. @ in O(nlogn) time for point inclusion testing in O(logn) time
using the algorithms of Kirkpatrick [45] or Sarnak and Tarjan [75].

4. If GC(P) is contained in @} then exit with GC(P) as GCq{P).

5. Preprocess P for shortest path queries using the algorithm of Guibas and Her-
shberger [39].

6. Compute the set of vertices of GFPVD(FP) contained in ¢. Let V, represent
this set.

7. Compute the set of intersections I. = {41,1,...,1x} of @ with GFPVD(P)
using the algorithm of Chan[18].

8. Partition each edge e; of @ such that for every pair of points z,y € e;, we have
that ¢(z) = ¢(y). Denote the jt* partition of e; by e;;.

9. For each e;;, compute the point on e;; closest to ¢(e;;). If this point is not an

endpoint of ¢;;, place it in the set E..
10. Let P, represeut the vertices of Q.
11. Let CAN =V, UI.UP.UE.,.
12. Find the st of points G = {x € CAN | dg(z, ¢(z)) = mingecan da(y, 4(y))}
13. Output the set G.
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Notice that we assumed that the number of vertices of ) equals the number of
vertices of P. Clearly, this need not be the case, however, this assumption simplifys
the complexity of notation. It is quite straightforward to repeat the complexity
analysis when P and @ have different cardinalities.

Theorem 3.3.5 Given a polygon P = {py, p2,...,pn} and a polygon Q@ = {q1,q2,..-,qu}
contained in P, we can compute the geodesic center of P constrained o lie in () in
time O(n(n+k)) where n is the size of the input and k is the number of intersections

between the edges of the GFPVD(P) and Q.

Proof: The correctness of the algorithm follows from Lemmas 3.3.20 and 3.3.23.

Let us analyze the complexity of the algorithm. Step 1 of the algorithm can be
computed in O(nlogn) time using the algorithm of Aronov et al.[3]. Step 2 can be
computed in O(nlogn) time using the algorithm of Pollack et al.[65]. Preprocessing
for peint inclusion can be done in O(nlogn) using the algorithm of Kirkpatrick
[45] or Sarnak and Tarjan [75]. Step 5 can be achieved in O(nlogn) time by using
the algorithm of Guibas and Hershberger[39]). By preprocessing the polygon for
shortest path queries, in O(log n) time the geodesic distance between two points can
be recovered and in O(logn + m) time the geodesic path between two points can be
recovered where m is the length of the path. Step 6 can be done in O(nlogn) time
using the point inclusion test. Computing the intersections between GFPVD(P),
which consists of straight edges and hyperbolic arcs, and @, which consists only of
straight edges, can be computed in O(nlogn + k) time where k is the number of
intersections between @ and GFPVD(P) using the algorithm of Chan [18]. Once the
intersection points have been computed, Step 8 can be achieved in O(klogn) time.
In Step 9, to compute the point on e;; closest to ¢(ei;), we first compute the geodesic
path from the endpoints of e;; to ¢(e;;) in O(logn + m) time where m is the length
of the two paths using [39]. Once the two paths have been computed, finding the
point geodesically closest to ¢(e;;) can be done O(m) time in the manner described
in Subsection 3.3.2. Note that O(m) € O(n). Step 9 is executed O(max{k,n})
times, thus the complexity is O(n(n + k)). Step 12 can be computed in O(k) time.
Therefore, the total complexity of the algorithm is O(n(n + k)) time. .
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3.3.5 Geodesic Center Constrained to a Polygonal Chain

With a slight modification, Algorithm 3 can compute the geodesic center of P con-
strained to lic on the boundary ¢, GCaq(P). These modifications are outlined

below.

Lemma 3.3.24 The geodesic center of P constrained to lie on the boundary of @
is the midpoint m of GDIAM(S) provided that m is the geodesic center of P and
lies on the boundary of Q.

Proof: Tollows from Lemma 3.3.17. =

Lemma 3.3.25 [f the geodesic center of P constrained to lie on the boundary of @
is not the midpoint of GDIAM(P), then it lies on one of the following points:

1. a vertex of the GFPVD(P) on the boundary of @,
2. a proper intersection point of the GFPVD(P) and the boundary of @,

3. a vertex of the polygon @,

4. a point z on an edge e of Q with the property that Yy € e, if ¢(y) = ¢(z) then
dg(y, 8(z)) = do(z, 4(z)).

Proof: Similar case analysis as the proof of Lemma 3.3.23. -

Lemma 3.3.24 and Lemma 3.3.25 completely characterize the location of GCaq(P).
The modifications to Algorithm 3 for computing these points are straightforward.

Therefore, we conclude with the following,.

Theorem 3.3.6 Given a polygon P = {p1,p2;...,0n} and a polygon @ = {q1,q2,.+++qn}
contained in P, we can compute the geodesic center of P constrained to lic on the
boundary of Q in time O(n(n + k)) where n is the size of the input and k is the
number of intersections between the edges of the GFPVD(P) and Q.

3.4 Constrained Link Center

In this section, we consider the second property attributed to a good pin gate lo-

cation. Recall that the second property states that the maximum number of turns
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that the liquid takes on its path from the pin gate to any point in the object should
be small. The link metric provides a geometric interpretation of this property. The
link metric measures the number of turns or bends in a path between two points.
We need a few definitions about link paths before continuing.

The link distance between two points z and y inside a polygon P, denoted
dr(z,y), is the minimum number of edges in any polygonal path connecting z
and y without intersecting the boundary of P. A path wy(z,y) between z and
y is a minimum link path provided that the number of edges in wp(z,y) is equal
to dr(z,y). The k-neighborhood or k-disk about a point = € P is defined as
Ni(z) = {y € P | dr(z,y) £ k}, and the covering radius c(z) of = is the smallest &
such that P C Ni(z). The link radius is defined by r,(P) = mingep () and the
link center of P is defined by LC(P) = {z € P | ¢(z) = r.(P)}. In essence, the link
center is the sef of points in P whose maximum link distance to any point in P is
minimized, precisely the set of potential pin gates satislying the second property of
a suitable pin gate.

We review the problem of computing the link center of a simple n vertex polygon
P. The problem of computing the link center was first addressed by Lenhart et
al.[51] who provided a simple O(n?) time algorithm to compute LC(P}. Note that
the link center of P is not necessarily a point as is the case with the geodesic center
of P, but the link center may in fact be a geodesically convex region contained in
P. Later Djidjev et al.[25] reduced the time complexity of computing LC(P) to
O(nlogn). Therefore, to compute the link center of a simple polygon, either of
these two algorithms may be used.

The problem of computing the link center constrained to the boundary of a
polygon P, denoted as LC(8P), has not been addressed. In this section, we provide
a simple algorithm to compute the set LC*(8P) which is a subset of LC(GP). In
some cases LC*(9P) is in fact be equivalent to LC(9P).

3.4.1 Link Center Constrained to the Boundary

In this section, we provide a simple algorithm for computing LC*(8P), which is a

subset of LC(GP). The following very simple observations form the basis of the
algorithm.

Observation 3.4.1 If LC(P)N QP is non-empty, then LC(OP) = LC(P)NJP.
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Observation 3.4.2 If a poinl z & LC(P) is visible from a point z € LC(P), then

c(z) is one greater than c(z).

Two points z, ¥y in polygon P are said o be visible provided that the line segment
[z,¥] is in P. Given a set of points X in polygon P, the strong visibility set of X
in Pis {z € P|Vz e X,[zz] € P} and the weak visibility set of X in P is
{z € P|3ze€ X,[zz2] € P}. If X happens to be a simple polygon inside P, Ghosh
[38] has shown that the weak visibility set of X in P is also a simple polygon, referred
to as the weak visibility polygon of P from X and denoted by WVP(X, P). We now

outline the algorithm.

Algorithm 4: Compule LC*(9P)
1. Compute LC(P).
2. Let LC, = LC(P)N@P. If LC, is non-empty, exit with LCj.
3. Compute the weak visibility polygon of P from LC(P).
4. Let LC; = WVP(LC(P), P) N 8P. Exit with LC,.

If LC, is non-empty, then LC(9P) is equal to LCy. If on the other hand, 7.C;
is empty, then the set LC, must be a subset of LC(OP) since the link center of the
polygon is contained strictly in the interior of P and the covering radius of every
point in LC; is one greater than the covering radius of a point in the link center.
The complexity of the algorithm is dominated by Step 1 which can be computed in
O(nlogn) time using the algorithm of [25]. A simple modification to the algorithm
in [25] is needed to compute the intersection of LC(P) with the boundary of P in the
same time complexity. Step 3 can be performed in O(n) time using the algorithm
of [38). The parts of WVP(LC(P), P) that are part of the boundary of P can
be identified during the computation of the weak visibility polygon. Therefore, we
conclude with the following theorem.

Theorem 3.4.1 LC*(9P) can be computed in O(nlogn) time.

3.5 Discussion

Of the solutions presented in this chapter, computing the Euclidean center, with

or without constraints, as well as the link center, with or without constraints, are
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both conceptually and computationally simpler than computing the geodesic center.
However, the Euclidean center may not always be a good candidate for the location
of a pin gate as pointed out in Section 3.3. The link center considered alone may
also not be a suitable candidate since liquid inside a mold does not nccessarily
travel along a link path. Combining these two constraints may provide a better
approximation (e.g. computing the Euclidean center constrained to lie in the link
center).

The geodesic center, although computationally more expensive, seems Lo be a
better measure in terms of the distance the liquid travels inside a mold. A combina-
tion of the link and geodesic centers may reap the benefits of both propertics of an
ideal pin gate location being satisfied. For example, computing the geodesic center

constrained to lie in the link center may provide a better solution than considering
the geodesic center by itself.



Chapter 4

Gravity Casting in Two

Dimensions

4.1 Introduction

‘Mold orientation during fill is a cut-and-try process to find the most favorable
position.” [71]

The above quote points out one of the key problems in gravity casting: find a
favorable orientation for a mold during fill that allows the most complete fill and
minimizes the numnber of surface defects. This problem is difficult when the focus
is on the fluid dynamics and physics of the whole molding process. However, when
viewed from a purely geometric perspective, finding a favorable mold orientation
no longer need be a cut-and-try process. Qur motive in this chapter is to study
gravity casting from a geometric perspective and presers algorithms to find mold
orientations that allow the most complete fill for molds modelled as simple polygons.

We begin by defining a geometric model of the graviiy casting process referred to

as the gravity model.

4.1.1 Geometric Model

The point on the polygon boundary from which the liquid is poured into the polygon
is called the pin gate. A venting hole is a point from which only air and not any
liquid is allowed to escape. The pin gate is considered to be a venting hole. We

assume that neither the liquid being poured into the mold, nor the air in the mold

50
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are compressible. Finally, we assume that air cannot bubble out through the liquid.

-

Pin Gate
and also
Venting
Hole

Advancing front
of liquid filling
from pin gate.

Figure 4.1: Illustration of the gravity model.

The sole force acting on the liquid is gravity. When a direction of gravity is
not specified, we assume, for simplicity of exposition, that it arts in the negative
y-direction. Thus, if only one pin gate is used, we assume it to be a point on the
boundary with the highest y-coordinate, since otherwise, the polygon cannot be
completely filled.

When liquid is poured into a polygon, the level of the liquid rises in the direction
opposite that of gravity. We assume that the advancing front of the rising liquid is
a line. The lowest horizontal line such that all the liquid in the polygon is contained
below it, is defined as the level line.

It is possible for the level line to be higher than the level of the liquid in some
section of the polygonal mold. For example, the situation depicted in Figure 4.2
can occur while the mold is being filled with liquid. Thus we define a level chord
to be the horizontal chord representing the level of liquid in the subpolygon lying
below the chord. The region inside the polygon and above the level line contains
air, Similarly, the subpolygon containing the level chord, below the level line inside
the polygon, contains air above the level chord.

When the level line contains the pin gate, we say the polygon is mazimally filled.
A region containing air in a maximally filled polygon is called an air pocket. The
highest point (there may be more than one) of an air pocket in a maximally filled

mold is the peak of the air pocket. A polygon is said to be k-fillable if there exists
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-4-—7 _— pin gate

Gravity

level line

Figure 4.2: Level line and level chord.

a fixed orientation of the polygon, a placement of the pin gate and a placement of
k—1 venting holes such that when liquid is poured into the polygon through the pin
gate, there are no air pockets when the polygon is maximally filled. A polygon is
said to be k-fillable with re-orientation provided that the polygon can be re-oriented
and filled from a new pin-gate after partial filling from an initial orientation and
pin gate. We assume that after the completion of a partial filling, the liquid that is
poured into the polygon hardens. The number % in this case refers to the number of
times that the polygon needs to be re-oriented before it is completely filled. Notice
that both definitions are identical when & = 1. Unless stated otherwise, we will

always refer to k-fillable as filling from a fixed orientation.

4.2 The Decision Problem

The first problem we address is to determine given a simple polygon in a fixed
orientation, whether or not the polygon is 1-fillable in that orientation. We present
a linear time algorithm to solve this problem. Let ¢ be the point on the unit circle

representing the direction of gravity. We make the following key observation (refer
to Figure 4.3).

Observation 4.2.1 The peak of an air pocket is a local mazimum of polygon P

with respect to the direction of gravity. It is either a convex vertez v; of the polygon
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P such that ray(vyv;iiy) € NH(g) and ray(vivip) € NH(g) or a convex edge ¢; with
endpoints v; and vy, such that ray(vyv;_) € NH(g) and ray(vis1viq2) € NH(q).
Such a verter or edge will be referred to as a local mazimum vertezx or local mazimum

edge.

Local maximum edge

Gravity Local maximum vertex

Figure 4.3: Illustration of local maximum vertex and edge.

The above observation forms the basis of the following theorem characlerizing
1-fillable polygons. Given a point p (or horizontal edge ¢} in the plane, let h(p)
(h(e)) denote the horizontal line containing p (e).

Theorem 4.2.1 A polygon is I-fillable if and only if it contains one local mazimum

vertez or one local mazimum edge with respect to the direclion of gravity.

Proof:

(=>) We first show that a polygon with more than one local maximum vertex will
contain at least one air pocket when filled. We proceed by contradiction. Suppose a
polygon P containing at least two local maximum vertices can be maximally filled
with no air pockets. Let ¢; and ¢, be the two local maxima, with ¢; having the
larger y-coordinate.

Since both ¢; and ¢; are both local maxima, the polygonal chain between ¢; and
¢z contains a reflex vertex v or reflex edge e such that the vertices adjacent to v lie
above h(v) or the vertices adjacent to e lie above h{e). Let us assume it is a vertex
v. A similar argument holds for edge e.

Since the polygon can be maximally filled with no air pockets, at some point

in time while liquid is being poured in the polygon, there will exist a level chord
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(bc] containing v. Let b,v,c be the sequence of these three points when viewed in
clockwise order starting at b. Since v is a reflex vertex, both [vb] and [cv] are chords.
Let P, be the subpolygon consisting of the clockwise chain from b to v and the
edge [vb] and let P, be the subpolygon consisting of the clockwise chain from v to
¢ and the edge [vc]. Without loss of generality, let the pin gate be contained in F.
Polygon P, must contain some air since {bc] is a level chord.

Now, every path from a point in P, to the pin gate must intersect [vd]. But
this implies that the air in P is trapped since we assumed that air cannot bubble
through liquid. Thus, P contains an air pocket, contradicting the fact that P can
be filled with no air pockets. A similar argument holds for local maximum edges.

(<) We now show that a polygon with at least one air pocket when filled must
have more than one local maximum vertex or edge. Let P be a filled polygonal
mold with an air pocket. Let p be the peak of the air pocket, and pg be the pin
gate. By Observation 4.2.1, either p is a local maximum vertex or edge. Also, by
assumption, pg is the highest point on the polygon with respect to the direction
of gravity. Therefore, it is also a local maximum vertex or contained in a local
maximum edge. Since the pin gate cannot be the peak of an air pocket, the polygon

contains at least two local maxima. =

Corollary 4.2.1 A polygon P is I-fillable if and only if Yp € P, the shortest path

from p to the pin gate is monolonic with respect to the direction of gravity.

A chain C;;(P) is monotonic with respect to direction © if the projections of the
vertices p;, pit1,...,p;j onto a line L(Q) are ordered as the vertices in Ci;(P).

A simple linear time algorithm for the decision problem is implied by Theorem
4.2.1. By testing locally, with respect to the direction of gravity, every convex vertex
to determine whether or not it is a local maximum vertex, and testing every edge to
determine whether or not it is a local maximum edge, we can determine if a polygon
is 1-fillable with respect to the direction of gravity. In fact, the number of local
maximum vertices and edges determines the number of venting holes that need to

‘be placed in order to fill the polygon in the given orientation.

Lemma 4.2.1 The number of venting holes needed is equal to the number of local

mazimum vertices and edges.
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Proof: (=) We proceez by induction on the number of local maximum vertlices
and edges. Recall that gravity is assumed to point in the negative y direction.

Basis: The number of local maximum vertices or edges, maz, is 1. This implies
that the polygon is 1-fillable by Theorem 4.2.1. Thus, one venting hole is necessary.

Inductive Hypothesis: Assume that the number of venting holes needed = the
number of local maximum vertices and edges, when maz < k, k > 1.

Inductive Step: Let maz = k4 1. Suppose that polygon P has at least two
local maximum vertices. The argument is similar for local maximum edges.

Either the clockwise chain or counter-clockwise chain between the two local max-
ima contains a reflex vertex v or reflex edge e such that the vertices adjacent to v lie
above h(v) or the vertices adjacent to e lic above h(e). Without loss of generality,
let us assume that there is a reflex vertex v.

Extend a horizontal ray from v to the right until it intersects the polygon bound-
ary. Let ¢ be the intersection point. The chord [vi] partitions the polygon into two
subpolygons, P; and P;. Each has less than k+1 local maximum vertices or edges by
construction. Suppose P; has w > 1 local maximum vertices, then P, has k41 —w
local maximum vertices. Thus by the induction hypothesis, P; needs w venting
holes and P, needs k 4+ 1 — w venting holes. This totals to k4 1 venting holes in P,
as required.

(<)} Suppose one of the local maxima in P did not have a venting hole or pin
gate. Let v; represent that local maximum in P. Let z be the farthest point from
v; on [v;v;41] visible from v;_;. Triangle(vi-1,vi, %) contains neither a venting hole

nor a pin gate. Therefore it is an air pocket. "

Theorem 4.2.2 Given a simple polygon in a fizred orientation, in O(n) time one

can determine the minimum k for which the polygon is k-fillable.

Let us turn our attention to polygons with holes. A polygon with holes is defined
as a polygon P enclosing several other polygons Hy,..., Hj, the holes, such that
none of the boundaries of P, Hy,..., H; intersect and each of the holes is a simply
connected region. A polygon with holes is an object that can be constructed with
cores and inserts {47, 28]. In a polygon with holes, the peak of an air pocket may
not involve a vertex or edge of the polygon, but a vertex or edge of a hole (see

Figure 4.4). Therefore, there are two types of peaks of air pockets that may exist in
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‘ a polygon with holes. The first type was described in Observation 4.2.1. The other
type is described in the following observation.

Pin gate
e’

Gravity

Peak of an air pocket
caused by a hole

Peak of an air pocket
caused by a hole

Figure 4.4: 1-fillable polygon that is no longer 1-fillable because of holes.

Observation 4.2.2 A reflez vertez v or a reflez edge e of a hole H; in polygon P
is a peak of an air pocket provided that it is a local mazimum of bd(H;) with respect
to the direction of gravity (see Figure {.4). Such a vertex or edge will be referred to

as a reflex maximum vertex or reflex maximum edge.

This observation provides a characterization of the peaks of air pockets caused
by the presence of holes in a simple polygon. The characterization is similar to that

of the peaks of air pockets in simple polygons without holes. Therefore, we have the
following theorem,

Theorem 4.2.3 A polygon with holes is 1-fillable if and only if the polygon has only
one local mazimum vertex or edge with respect to the direction of gravity and none

of the holes have a reflez mazimum vertez or reflex mazimum edge.

Proof: Similar to the proof of Theorem 4.2.1. n
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Corollary 4.2.2 A polygon P with holes is 1-fillable if and only f Vp € P, the

shortest path from p to the pin gale is monotonic with respect lo the divection of
gravity.

Similar to the case of simple polygons without holes, to determine if a simple
polygon with holes is k-fillable, simply test with respect to the direction of gravity,
every convex vertex and convex edge of the polygon to determine whether or not
it is a local maximum and test every reflex vertex and reflex edge of the holes to
determine whether or not it is a reflex maximum. Since testing a vertex or edge can

be done in constant time, we have the following theorem.

Theorem 4.2.4 Given a simple polygon with holes and the direclion of gravity, one
can determine the minimum k for which the polygon is k-fillable in O(n) Lime where

n is the number of vertices of the polygon and the holes.

4.3 Determining all Directions of Fillability

In the previous section, we showed that given a simple polygon without holes and the
direction of gravity, we can determine in linear time the minimum & for which the
polygon is k-fillable with respect to gravity. The extension to polygons with holes
was immediate from Observation 4.2.2, so for simplicity of exposition, we continue
the discussion with simple polygons without holes.

Suppose that we are given a polygon and asked whether there exists an orienta-
tion of the polygon such that the polygon is 1-fillable with respect to the direction
of gravity. For example, the polygon in Figure 4.5 is 1-fillable in one orientation but
not in another. In this section, we show that in O(nlogn) time the complete range
of directions of gravity that allow the 1-fillability of a polygon can be determined. In
fact, in optimal ©(nlogn) time we can determine all the orientations of the polygon
that allow it to be k-filled where % is minimum over all orientations.

Let us examine the set of directions that cause a convex vertex to be a local
maximum. Given a convex vertex v; of polygon P, the set of directions for which

v; is a local maximum is defined as follows and will be denoted by M(v;) (refer to
Figure 4.6).

M(v;) = {V directions d || ray(vivis1) € NH(d) and ray{vivi,) € NH(d)}
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T

Polygon not 1-fillable with Same polygon 1-fillable
respect to gravity with respect to gravity

Figure 4.5: A polygon that is 1-fillable from one orientation but not another.

vy NH(ray( v, v; 13N NH(ray(v, v;_1))

ray(vyVvi_q) ray( "1"‘1+1)

Figure 4.6: When a convex vertex is a local maximum.

In the following lemma, we characterize the directions in the set M (w;).

Lemma 4.3.1 M(v;) = NH(ray(vivi—1)) N NH(ray(v;viy1))

Proof:  Let ri_y = ray(vivimy) and riyy = ray(vivig1). For v; to be a local max-
imum with respect to a given direction d, both r;—; and r;;; must be in NH(d).
Every direction § € NH(ri—y) N NH(r;31) is contained in M(v;) since both r;—y
and r;4; are contained in NH(#). Therefore let us consider an arbitrary direction
y € M(v;) that is not in NH(ri_1) N NH(ri+1). Then, one of r;; or ;4 is not
contained in NH(y), contradicting the fact that v; is a local maximum with respect

toy. u
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A convex edge can be a local maximum edge only when the direction of gravity
is orthogonal to the line containing the edge. Therefore, the proofs of Lemma 4.2.1
and Lemma 4.3.1 suggest the following algorithm to find the minimum number

of venting holes needed to fill a polygon given that it must be filled in only one
orientation.

Algorithm 5: Find orientation minimizing number of venting holes.

1. Find the direction that minimizes the number of local maximum vertices and
edges.

2. Place the pin gate at the global maximum. [This can be done in O(n) time].

3. Place a venting hole at every local maximum that is nol a global maximum.

[This can be done in O(n) time by just scanning the boundary of the polygon).

Let us elaborate on the first step. Each convex vertex has an open arc represent-
ing the set of directions that cause that vertex to be a local maximum. If vertex v;
is convex, we denote the arc by arc(a;,b;). Let A be the set of endpoints of all the
arcs. dSimilarly, each convex edge has a point representing the direction that causes
it to be a local maximum. If edge e; is convex, let p; represent this point. Let E be
the set of all of these points. Pick an arbitrary direction d ¢ E, and radially sort
AU E in a clockwise manner with respect to d. Let S = s;,57...55, represent this
sorted order.

We now perform a rotational sweep to determine the set of directions that min-
imizes the number of local maxima. Let ¢ be the number of vertices that are local
maxima with respect to d. Consider the first element of the sequence §. If s, is
the end of an arc, then we know that the directions represented by erc(d, s;) have
¢ local maxima and at direction s; have ¢ — 1 maxima. If s, is the beginning of an
arc, then we know that the directions represented by arc[d, s;] have ¢ local maxima
and the directions after s; have ¢+ 1 local maxima. Finally, if s, is a point of F,
then we know that the directions represented by arcld, s;) have ¢ local maxima, and
at direction s, there are ¢ + 1 local maxima. By proceeding in this manner, the
intervals on the unit circle induced by the set S are labeled with the number of local
maxima present for each interval of directions. By choosing all the intervals with
the smallest number, we have a complete description of all the directions from which

the given polygon can be filled with a minimum number of venting holes. Some care
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must be taken when the endpoints of arcs and points coincide. The details of this
technique may be found in [49]. The time complexity of this step is O(nlogn) due
to sorting.

The correctness of the algorithm follows from Lemma 4.2.1 and Lemma 4.3.1.
The time complexity of the algorithm is dominated by step 1. Therefore, the total
time complexity of the algorithm is O(nlogn).

Theorem 4.3.1 The minimum number of venting holes needed to fill a simple poly-

gon from one fized direction can be computed in O(nlogn) time.

In [35], it was shown that an Q(nlogn) lower bound exists for the problem of
determining the minimum number of venting holes to fill a simple polygon from one
fixed direction by a reduction from Element Uniqueness.

Notice that the technique used in Algorithm 1 is not restricted to finding an
orientation of a polygon that minimizes the number of local maxima. A local min-
imum can only be a convex vertex or convex edge, and the directions that cause
such a vertex or edge are defined similarly to the directions that cause them to be
local maxima. Therefore, this technique can be used to maximize the number of
local maxima, minimize the number of local minima, maximize the number of local
minima, minimize the combined number of local minima and maxima and maximize

the combined number of local minima and maxima.

Theorem 4.3.2 Given a simple polygon, in O(nlogn) time, we can find the set of
directions that minimize or mazimize the number of local minima, the number of

“local mazima or the combined number of local minime and mazima,

4.4 Fillability of Certain Classes of Polygons

As there is an Q(nlog n) lower bound for determining the orientation minimizing the
number of venting holes needed to fill a simple polygon, we study the relationship
between certain known classes of polygons and fillability, We show that for some

restricted classes of polygons, the optimal orientation for filling can be determined

in linear time.
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-
Direction of Monotonicity

Figure 4.7: Monotone polygon.

4.4.1 Monotone Polygons

A simple polygon P is a monoetone polygon if there exists a line L(©) such that
the boundary of P can be partitioned into two chains Cy;(P) and Cji(P) that are
monotonic with respect to @. (Refer to Figure 4.7).

Theorem 4.4.1 4 monotone polygon is I-fillable if it is oriented such that gravily
is a direction of monotonicity.

Proof: Let P be a monotone polygon oriented such that ¢ represents a direction
of monotonicity and the direction of gravity. Without loss of generality, let this
direction be the negative y direction.

If P is not 1-fillable, then by Theorem 4.2.1, it must contain at least two local
maxima with respect to the direction of gravity. Between these two local maxima,
there exists a reflex vertex v or reflex edge e such that the vertices adjacent to v
lie above h(v) or the vertices adjacent to e lie above h(e). The existence of such a

vertex or edge violates monotonicity. Therefore, a monotone polygon is 1-fillable. w

Since monotone polygons can be recognized in linear time [70] and the direction of
monotonicity delivered as a witness, Theorem 4.4.1 provides a linear time algorithm

for determining the optimal orientation of simple polygons if they are monotone.
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4.4.2 Weakly-Edge Visible Polygons and Star-Shaped Poly-

gons

Two points inside a polygon are said to be visible if the line segment between them
does not intersect the exterior of the polygon. A point p is weakly visible from an
edge e if thereis a point z on e such that p is visible from z.

A polygon P is edge visible if there is an edge in the polygon from which all the
points in the polygon are weakly visible. A polygon P is open-edge visible if there is
an edge e in P such that all points p are visible from some point z on e other than
the endpoints of the edge. _

Let P be an open-edge visible polygon. Without loss of generality, let (v,v;) be
the open edge from which the polygon is weakly visible. Let the polygon be oriented

such that gravity g~ is the clockwise normal to ray(vivs). (Refer to Figure 4.8).

v, .
1 2 Gravity

|

Open-cdge visible polygons are 1-fillable

Figure 4.8: Open-edge visible polygon.

Theorem 4.4.2 An open-edge visible polygon P with gravity g* is 1-fillable.

Proof:  For ease of exposition, let us assume that gravity is in the negative y-
direction. Without loss of generality, let v; be the pin gate. Let p be an arbitrary
point in P. Since P is open-edge visible, there must be a point z on (v,v;) that sees
point p, i.e. [pz] € P.

Let II be the shortest path from p to v; in polygon P. Since [v1p] is monotone
with respect to gravity, and II is a convex chain from p to v, contained in the

triangle(z,p,v1), II is monotone with respect to gravity. Therefore, the lemma
follows from Corollary 4.2.1. , ]
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Since open-edge visible polygons can be recognized in linear time [7, 74] and the
required edge delivered as a witness, Theorem 4.4.2 provides a linear time algorithm

for determining the optimal orientation of simple polygons if they are edge-visible.

Corollary 4.4.1 Any polygon that is weakly visible from a chord is 2-fillable with
re-orientation.

Star-shaped polygon with x in kernel

Figure 4.9: Star-shaped polygon.

A star-shaped polygon is a polygon that contains at least one point z from which
all points of the polygon are visible. The set of points from which all points are
visible is known as the kernel of the star-shaped polygon. The kernel of a star-shaped
polygon can be computed in O(n) time using the algorithm of Lee and Preparata
[50] or a point in the kernel of a star-shaped polygon can be computed in O(n)
time using Megiddo’s linear programming technique [57]. This implies that in O(n)
time, a chord can be found from which the star-shaped polygon is weakly visible.
However, a star-shaped polygon may not necessarily be 1-fillable. The star-shaped
polygon in Figure 4.9 is not i-fillable since there are always two local maxima with

respect to every direction. Therefore, we have the following.

Theorem 4.4.3 A star-shaped polygon is not necessarily I1-fillable but is always
2-fillable with re-orientation in O(n) time.
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4.4.3 Clam-Shell Polygons

A polygon is clam-shell if it can be partitioned into two chains Ci;(P) and Cji(P)
such that each chain can be removed from the mold by a single translation (not
necessarily in a common direction). In Figure 4.10, we have a polygon that is not
clam-shell. Clam-shell polygons were studied in [73] where the following result was

proved. (Refer to Figure 4.11).

Figure 4.10: Simple polygon that is not clam-shell.

Figure 4.11: Clam-shell polygon.

Theorem 4.4.4 [73] A polygon is clam-shell if and only if the boundary can be
decomposed into two chains, each monotonic to an arbitrary direction. Clam-shells

can be recognized in linear time.

Thus we see that this class is a generalization of monotonic polygons. Before showing
that all clam-shell polygons are 1-fillable, we establish some key properties of clam-
shell polygons. Let C;;(P) be monotonic with respect to some direction ©. The
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monotonicity of C;;{P) implies that the polygon P has only one local maximum

on the chain C;;(P) for all directions in arc[®,opp(©)). Therefore, we have the
following theorem.

Theorem 4.4.5 A clam-shell polygon is 1-fillable.

Proof:  Given a clam-shell polygon P, let C;;(P) be monotone with respect to
direction ©; and Cj;(P) be monotone with respect to direction O2. The intersection

arc[®1,0pp(01)] N arc[@2, opp(©2)] must be non-empty since both arcs are closed

semi-circles. . "

Since clam-shell polygons can be recognized in linear time [73] and the required
partition of the boundary delivered as a witness, Theorem 4.4.5 provides a linear

time algorithm for determining the optimal orientation of simple polygons il they
are clam-shell.
4.4.4 L-Convex Polygons

A polygon P is L-convex if Vz,y €P,3z € P such that [zz] € P and [y2] € P.
(Refer to Figure 4.12). From the definition of L-convexity, we see that a star-shaped

polygon is L-convex since all points are seen by a kernel point.

Figure 4.12: L-convex polygon.

Lemma 4.4.1 [{8] If P is an L-convez polygon, it has the property that for every
point z € P, there ezists a chord of the polygon containing z from which P is weakly
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visible.

The lemma proved in [43] is more general and applies to L-convex sets. TFrom
Corollary 4.4.1 together with the example of the star-shaped polygon that is not
1-fillable (Figure 4.9), we have the following,.

Theorem 4.4.6 An L-convez polygon is not necessarily 1-fillable but always 2-

fillable with re-orientation.

Lemma 4.4.1 only proves the exisience of the chord, but does not offer a method of
computing such a chord given an L-convex polygon. We now present an O(nlogn)
time algorithm to find such a chord. We first prove a few key lemmas.

Let £ be a point inside polygon P. The wvisibility polygon from z, denoted
by VP(x,), is the set of points in P visible from z. It is formally defined as
VP(z,P) = {z |z € Pand {zz] N P = [zz]} Let v; be an arbitrary vertex of an
L-convex polygon P, By Lemma 4.4.1, there must be a chord containing v; from
which P is weakly visible. Let us denote this chord ‘by C(v). Thus, C(v;) must be
contained in V P(v;, P). We will now show the relationship between a diagonal in
VP(v;, P) and C(v;). Let b be a vertex of V.P(v;, P). The chord [v;D] is a chord in
P and divides the polygon into two subpolygons, P, and B,. If both P, and P; are
weakly visible from [v;0], then we have found C(v;). Otherwise, we will show that
either P, or P, has to be weakly visible from [v;3].

Lemma 4.4.2 Either Py or Py or both are weakly visible from {v;b].

Proof: If both are weakly visible from {v;}] then the lemma holds. Suppose that
one of P, or P, is not weakly visible from [v;h].

Case 1: C(v) € P2. By Jordan’s Curve Theorem, every linc segment with one
endpoint in P; and one endpoint in P; must intersect [v;5]. P is weakly visible from
C(v:). This means Yz € P,,Jy € C(v;) such that [zy] € P. But then [zy] must
intersect [v;b]. Thus, P, is weakly visible from [v;3)].

Case 2: C(v;) € P;. Symmetric to case 1. n

Notice that if P is not weakly visible from [v;b] then C(v;) is contained in P; and
vice versa. Thus, C(v;) is either a diagonal of the polygon P or contained between
two consecutive diagonals. The question now becomes, how do we compute C(v;) if

it is contained between two consecutive diagonals?
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Consider the following situation. Let r and ! be two conseculive vertices in
V P(v;, P) such that P; is weakly visible from [v;!] but not [v;r] and P is weakly
visible from [v;r] but not [vil].

Let ay,a2,...,a, be the vertices in P; that are not weakly visible {rom [v;r].
They must be visible from [ir] since C(v;) is contained in the triangle(v;, {,7). Sim-
ilarly, let by, bo,...,b be the vertices of P, that are not weakly visible from [u;l).
They must also be visible from [ir]. Let a} be the point on [{r] farthest away from
{, from which a; is visible. Let @ = minyj<;<n |{la}]| . Similarly, let ) be the point
on [Ir] farthest away from r, from which b; is visible. Let b = minigice |[1h]]] . Let
S=anb.

Lemma 4.4.3 5 is not emply.

Proof:  Suppose § was empty. We know that C(v;) € triangle(l,r,v;). Now, if
C(v;)N[Ir] € b, then there would be some b; that was not weakly visible from C(v;)
which is a contradiction. Similarly, if C{v;) 0 [Ir] € @, then there would be some a;

that was not weakly visible from C(v;) which is a contradiction. "

Lemma 4.4.4 For every s € S, the polygon P is weakly visible from [v;s].

Proof: If a point p € P is weakly visible from both [v;l] and [vir] then it must
also be weakly visible from [v;s] since any line segment that intersects both [v;{] and
[vir] also intersects [v;s].

If p is not weakly visible from {v;r] then let p’ be the farthest point from ! from
which p is weakly visible. @ must be contained in [lp/]. Thus, p must be weakly
visible from [v;s]. A similar argument shows that if p is not weakly visible from {uv;l],

it is still weakly visible from [v;s]. u

Lemma 4.4.2 and Lemma 4.4.4 suggest the following algorithm.

Algorithm 6: Compute weakly visible segmeni

1. Choose a vertex vy € P. -

2. Compute V P(wv;, P) in O(n) time using the algorithm of Avis and Elgindy [30].
[Let {v1,...,vx} denote the vertices of V P(v, P)]

3. Triangulate V P(v, P) by inserting all diagonals d; = [v1v], 2 £ < k.

4. Let I=2,r=kF.
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Let s = [r/2]
Let P, be the polygon with vertices {vy, vr, Vig1y -+ -1 Vs }

Let P; be the polygon with vertices {vy, s, Vst1,- -+, e}

© = oo -

If both £y and P, are weakly visible from ds, exit with d;. [Use the algorithm
of Avis and Toussaint 7] to verify weak visibility from d, in O(n) time].
9. If r —1 =1 go to step 12. [two consecutive diagonals at this point].
10. If P is not visible from d,, then r = s, go to step 5.
11. If P, is not visible from d,, then I = s, go to step 5.

12. Compute @Ndin O(n) time using the algorithm of Avis and Toussaint [7]. Pick

any point s in 2N b and exit with [v;s].

The correctness of the algorithm follows {rom the discussion. Each step takes at
most O(n) time and we loop through steps 5 to 11 at most O(logn) times. Thus
the total time complexity of the algorithm is O(nlog n).

4.4.5 Weakly-Externally Visible Polygons

We have seen that the class of clam-shell polygons are 1-fillable and the class of star-
shaped polygons are 2-fillable. We have also seen that the class of L-convex polygons,
which contains the class of star-shaped polygons is also 2-fillable. A natural question
is whether the class of weakly-externally visible polygons is 2-fillable, since the class
of weakly-externally visible polygons contains the class of L-convex polygons (this is
shown in [43]) and the class of clam-shell polygons. A polygon is weakly-externally
visible if for every point z on its boundary there is an infinite ray emanating from
that point in some direction that intersects the boundary only at z. In fact, the class
of weakly-exte'rnally visible polygons is in some sense the largest class of interest
since it is the largest class of polygons that allows the pin gate to be placed anywhere
on its boundary, if we require the pin gate to be reachable by a line probe from
infinity. Consider the weakly-externally visible polygon in Figure 4.13. No matter
what direction we pour it from, at most only 1/4 of the arms will be completely
filled. But, 3/4 of the arms cannot be filled from a second pin gate and orientation.

Therefore, we have the following theorem.

Theorem 4.4.7 A weakly-ezternally visible polygon is not necessarily 2-fillable with
re-orientation.
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upper
arm

J

forearm arm

elbow (veriex)

Figure 4.13: Weakly-externally visible polygon.

We summarize the relation between fillability and some known classes of polygons
by the chart in Figure 4.14.
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2-Fillable
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Clam Shell

Open-Edge Visible

Figure 4.14: Summary of relation between fillability and classes of polygons.
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Chapter 5

Gravity Casting in Three

Dimensions

5.1 Introduction

In this chapter, we generalize the tools and techniques of the previous chapter to han-
dle molds modeled as simple polyhedra (see Figure 5.1). The conceptual approach
is identical to the two dimensional case, however, the technical details involved in

the three dimensional case are more complex, as expected.

o Figure 5.1: Gravity casting of a star-shaped object using one filling hole and two
additional venting holes.

71
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We show that given a mold, represented by a simple polyhedron with n vertices
in a fixed orientation, we can determine in O(n) time whether or not the mold can
be filled without forming air pockets. Thus, the time complexity of the decision
problem is the same whether we have polygonal molds or polyhedral molds. On the
other hand, the time complexity of finding all orientations that allow a k-filling for
minimum k for polygonal molds was shown to be O(nlogn) in the previous chapter,
but in this chapter, we are only able to achieve O(n?) for polyhedral molds. However,
we are able to justify this increase in time complexity by providing a pseudo-lower
bound for this problem. We reduce the problem ‘A+B = (7" to the three dimensional
mold filling problem. The problem ‘A+B=C7? is defined as follows: Given three
sets A, B, and C of n real numbers each, decide if there exists a € A, b € B and
¢ € C such that a + b = ¢. The best known algorithm for solving this problem uses
O(n?) time. Gajentaan and Overmars [37] have shown there exist many problems
in geometry that also reduce to ‘A4+B=C7?’, such as: ‘Given a set of n points in
the plane, are there three collinear points?’ and ‘Given a set of n rectangles in the
plane, do they cover a given rectangle RECT completely?’. Since the best known
algorithms take O(n?) time to solve any one of these problems, a problem which can
be reduced to one of these is referred to as an n?-difficult problem. Since the mold
filling problem is n2-difficult, improving on the quadratic bound seems difficult.

The interesting question that arises is whether one can improve the O(n?) time
bound for some restricted classes of polyhedra. We relate fillability to certain known
classes of polyhedra, namely, star-shaped, monotone, and facet-visible polyhedra. In
the case of star-shaped polyhedra, this reduces the time bound for finding an optimal

orientation to O(n) time as opposed to O(n?) time.

5.2 Preliminaries

In this chapter, it will be convenient to have the set of all directions in space be
represented by two planes. Although this is not standard, it will help simplify
the exposition. Let the plane z = —1, denoted by DP(), represent all directions
with a negative z-component, and the plane z = 1, denoted by DP), represent all
directions with a positive z-component. We do not consider the horizontal directions.
This assumption simplifies our discussion but is not an inherent limitation of our

methods. A point gin DP{™) or DP) represenﬁs the direction 69, where o represents
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the origin of E*. Given a direction d, represented by 67, we define opp(d) to be the
opposite direction. Thus, opp(d) is pointing in the direction of the vector qo.
A polygonal chain C' = pg,py1,. .., pn is monolonic with respect to direction © if

the projections of the vertices pg, py,--.,pn onto a line in direction © are ordered as
the vertices in C.

5.2.1 Geometric Model of Gravity Casting

We now generalize the gravity model. A mold is modeled by a simple polyhedron,
The point on the boundary of a mold through which the liquid is poured into the
polyhedron is called the pin gate. We assume that the pin gate is the only point
from which air is allowed to escape unless stated otherwise. A venting hole is a point
from which only air and no liquid is allowed to escape. We assume that neither the
liquid being poured into the mold, nor the air in the mold are compressible. Finally,
we assume that air cannot bubble out through the liquid.

The sole force acting on the liquid is gravity, When a direction of gravity is not
specified, we assume, for simplicity of exposition, that gravity points in the negative
z-direction. Thus, if only one pin gate is used, we assume it to be a point on the
boundary with the highest z-coordinate, since otherwise, the polyhedron cannot be
completely filled.

When liquid is poured into a polyhedron, the level of the liquid rises in the direc-
tion opposite that of gravity. We assume that the advancing front of the rising liquid
is a plane. The lowest horizontal plane such that all the liquid in the polyhedron is
contained below it, is defined as the level plane.

When the level plane contains the pin gate, we say the polyhedron is maezimally
filled. A region containing air in a maximally filled polyhedron is called an air
pocket. A polyhedron is said to be I-fillable if there exists a pin gatc and direction
of gravity such that when the liquid is'poured into the polyhedron through the pin
gate, there are no air pockets when the polyhedron is maximally filled. We call the
highest point (there may be more than one) of an air pocket in a maximally filled
mold, the peak of the air pocket. This leads to the following observation.

Observation 5.2.1 A polyhedron P in 3-space is said to be 1-fillable in direction
—z provided that for every point inside P there is ¢ +z-monotone path from it to

the z-mazimum of P. Thus, if a polyhedron is 1-fillable there exists an orientation
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of PP in which il is 1-fillable.

We extend the notion of fillability in the following two ways. A polyhedron is said
to be k-fillable if there exists a fixed orientation of the polyhedron, a placement of the
pin gaie and a placement of k — 1 venting holes such that when liquid is poured into
the polyhedron through the pin gate, there are no air pockets when the polyhedron
is maximally filled. A polyhedron is said to be k-fillable with re-orientation provided
that the polyhedron can be re-oriented and filled from a new pin-gate after partial
filling from an initial orientation and pin gate. We assume that after the completion
of a partial filling, the liquid that is poured into the polyhedron hardens. The
number k in this case refers to the number of times that the polyhedron needs to be
re-oricnied before it is completely filled. Notice that both definitions are identical
when £ = 1. Unless stated otherwise, we will always refer to k-fillable as filling from

a fixed orientation,

5.3 The Decision Problem

In this section we present an O(n) time algorithm to decide whether a polyhedron
P is 1-fillable given a fixed orientation of the polyhedron.

Let P be a simple polyhedron of which all facets are triangulated, and let v be
an arbitrary vertex of P. We define P, to be the union of the facets incident to v.
Let fi,..., fm be the sequence of facets of P, such that f; and f;41 are incident to
an edge denoted e;, and f,, and f; are incident to an edge e,. Let S, be a sphere
centered at v, such that S, only intersects the m edges incident to v, and no other

facets, edges or vertices of P.

Definition 5.3.1 A vertez v is a convex vertex of P provided that there ezists a
plane h,, with v € h,, such that S, N h, does not intersect the interior of P.

Let h; and h} denote the closed half-spaces below and above the plane h,,
containing the vertex v. Let A2 be the closed half-space bounded by the plane h,
with normal d, containing the vertex v and where ¢ € {—,+} is the opposite of the

sign of the z-component in d. Recall that we assume, for simplicity, that d is not a
horizontal direction.

Definition 5.8.2 A vertez v is a local maximum of P in direction £ provided that
P, lies in the closed half-space hS.
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We now prove the theorem used to establish the lincar time decision algorithm.

Theorem 5.3.1 A polyhedron P is I-fillable if and only if the orientation of P has

precisely one local mazimum in direction +z.

Proof:  We assume that gravity is in the —=z direction. Suppose that P is 1-
fillable, and suppose that P has more than one local z-maximum. Let ¢ be a local
z-maximum of P which is not the global z-maximum M of P. Let il be any path
from g to M. Since ¢ is a local z-maximum, II has negative value in its z-component
when it leaves ¢, contradicting Observation 5.2.1

On the other hand, suppose that P has only one local z- maximum M, which
must also be the global z-maximum of P. Let p be any point inside P, and let [ be
the facet of P hit by a ray emanating from p vertically upward. Let ¢ be the vertex
incident to this facet with maximum z-coordinate. Clearly, there is a +z-monotone
path from p to ¢ consisting of two segments. If ¢ = M we arc done, otherwise ¢ is
not a local z-maximum, and it must be incident to an edge with endpoints ¢ and ¢’

such that ¢’ has greater z-coordinate. We repeat the argument with ¢’ for ¢ until

the path reaches M. u

From this theorem, we see that given a polyhedron P and a direclion of gravity
g, to test 1-fillability of P with respect to ¢, we need only determine the number
of local maxima with respect to gravity. We can determine if a vertex is a local
maximum in time linear in the degree of the vertex [57]. This immediately gives us

a linear time algorithm to determine whether or not a polyhedron is 1-fillable from
a fixed orientation.

Theorem 5.3.2 Given a polyhedron P, we can determine in O(n) time whether or

not the polyhedron is 1-fillable with respect to gravity.

5.4 Determining all Directions of Fillability

In this section we will give an O(n?) time algorithm to find the orientation of a
given polyhedron P that minimizes the number of venting holes needed in order
to ensure a complete fill from a fixed orientation. This orientation is equivalent to
the orientation that minimizes the number of local maxima. The algorithm has two
stages. In the first stage, the fillability problem is transformed to a planar problem
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for a set of convex (possibly unbounded) polygons that cover the plane. In the
second stage, the following problem is solved: Given a set of n convex polygons in

the plane, find the point that is covered by a minimum number of them.

5.4.1 Transforming Fillability to Covering

Let P be a bounded polyhedron with n vertices, and assume that P is given by
its incidence graph (see e.g. [28]). First, we triangulate every facet of P (see e.g.
(19, 69]). We choose an initial orientation of P such that no edge of P is vertical.
Let v be any vertex of P. We extract the description of P, from the description
of P in time proportional to its size. Let fi,..., fm be the sequence of disjoint
facets incident o v, such that f; and fi4; are incident io an edge €; of P, (and fi
and fy are incident to an edge en). Let wy,...,wy, be the sequence of endpoints
corresponding to ey,...,€,, see Figure 5.2.

Suppose that v is a convex vertex. We define the cone C, of v to be the un-
bounded polyhedron consisting of v as its only vertex, m half-lines F, ..., Ey,, start-
ing at v, which contain the edges ey, ..., e, respectively, and m unbounded facets
bounded by E; and Fi4q (1 €7 <m —1), or E,; and E;. Since C, need not be a
convex polyhedron, but its only vertex is convex, we say that C, is a semi-conver
cone. Let CC, be the convex hull of C,, which is a convez cone. The half-lines that
are the edges of CC, are a subset of the edges of C,; we denote them by E; ,..., By,
where 1 <4; < --- < i; £ m. Finally, we define the normal cone NC, of the convex
cone CC, as follows. Let h;,,..., hi; be the set of planes that pass through v and are
perpendicular to F;,..., E;;. Let H,..., H;; be the closed half-spaces bounded
by hj,,...,h;; such that they contain E;,,..., E;;, respectively. Then NC, is the
convex region that is bounded by H; N---N H;;. Notice that if CC, is a sharp cone
then NC, is a blunt cone, and vice versa.

Fach convex vertex of the polyhedron P defines a convex region in DP™} or
DP™} or both, which corresponds to the directions with respect to which it is a local
maximum. Hence, P gives rise to O(n) convex regions in these planes. It follows
that a direction for which P has the smallest number of local maxima corresponds
to some point in the plane that is covered by the smallest number of convex regions.

The following lemma relates the normal convex cones to the direction planes, ppt)

and DP(H),
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Figure 5.2: Left: P,. Middle: the convex hull CC, of C,. Right: the convex cone
CC, and the normal cone NC,.

Lemma 5.4.1 For every convez vertez v of a polyhedron P such thal v coincides
with the origin o and direction d = 6§ where q is e point on one of the direction
planes, it holds that v is a local mazimum in (non-horizontal) direction —d if and
only if g € NC, 0 DPY) or g € NC, N DPW),

Proeof: Let £ be the half-line rooted at o with direction d. By construction, the
following equivalence holds for any convex vertex v located at o and ¢ € {—,+}:
There exists a plane h through v with normal d such that CC, C h°® if and only
if £ C interior(NC,) U NC,. Since the direction d is represented by the point
q = £N DP®), the lemma follows immediately. m

Therefore we first determine if v is a convex vertex. This is the case if and only if
v is an extremal point in the set {v,w,...,wn}. This is equivalent to the problem
of determining if v can be separated from {wy,...,wy} by a plane, which in turn
is equivalent to linear programming [27]. Therefore we can determine if v is convex
by linear programming in linear time (see e.g. [28, 57, 80]). If v is not a convex
vertex, then v is not a local maximum for any direction, and we stop considering
v. Otherwise, let h, be a plane that contains v and has w,...,w, to one side of
it. Such a plane is returned by the linear programming test. Let Al be a plane
parallel to k], which intersects all edges es,...,en. The intersection of &, with P,
is a simple polygon P, with m vertices (corresponding to €;,...,€n,) and m edges
(corresponding to fi,..., fm). We compute the convex hull of P, in linear time [56],

[59]- Let us denote the convex hull by CH(P,). Let &,...,&; be the sequence of
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vertices of CH(I—’,,), where 1 € ¢y < -+ < 1; £ m. These vertices correspond to
the edges e;,,...,ei; of P,. We have in fact computed the edges adjacent to v on
the convex hull of P,. This information gives us the description of the convex cone
CC\ of v in linear time. Furthermore, the normal cone NC, can also be computed
in additional linear time.

Translate NC, such that v coincides with the origin 0. Let Q{~) be the convex
polygon NC,NDP) and let Q) be NC,nDPM), Either Q4 is a bounded convex
polygon and Q{*) is empty, or vice versa, or both Q{~) and Q{*) are unbounded
convex polygons. The convex polygons have the following meaning: v is a local
maximum in a non-horizontal direction —d if and only if the half-line starting at the
origin o in direction d intersects the interior of one of the polygons Q{~) or Q{+). We
compute the convex polygons @) and Q) for all vertices of P, giving sets Q)
and Q) of at most n convex polygons in the planes DP{™) and DP™), respectively.
The total complexity of the polygons in Q) and Q) is O(n). The question: ‘Is
P 1-fillable?’ or ‘Is there an orientation of P such that it has only 1 maximum?’
‘translates to the question: ‘Is there a point in DP(™) or DP™) that is covered by only
one convex polygon?’ Similarly, the question of k-ﬁllability translates to deciding
whether there exists a point that is covered by only k convex polygons. We therefore

have established the following result:

Lemma 5.4.2 In O(n) time, the problem of k-fillability can be transformed to the

problem of finding a point in the plane covered by only k convex polygons.

5.4.2 Solving the Covering Problem

The next step in the algorithm involves solving the following problem: ‘Given a
set @ of n convex, but not necessarily bounded, polygons in the plane, with total
complexity O(n), find a point that is covered by the minimum number of polygons
of Q." Qur algorithm constructs the subdivision induced by Q, and associates to
each cell the number of polygons that contain it. |

The subdivision induced by @ without the numbering can be constructed deter-
ministically in O(n log n-+A) time by the algorithm of Chazelle and Edelsbrunner[20],
where A is the total number of intersection points of all polygons in Q. Alterna-
tively, a simpler randomized algorithm performs the task with the same time bound,

see Clarkson[21] or Mulmuley([61]. The size of A can be O(n?). Therefore, we obtain
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. a planar subdivision § with O(n?) vertices, edges and cells. Consider the graph G
which has a node for every cell of S, and an edge between two nodes if the corre-
sponding cells are incident to the same edge of §. The graph G has O(n®) nodes and
edges. Start at any node a;, and compute in O(n) time how many polygons of @
cover it. Store this number with a;. Start from e; with a depth {irst scarch. Lvery
edge (ai,a;) of G we traverse corresponds to going inside or outside a polygon of
Q, in which case we take the number of a;, add or subtract one [rom it, and assign
this number to a;. Thus the whole process of assigning values to cells of § requires
only O(n?) time. The cell with the minimum number assigned to it is covered by
the minimum number of polygons.

Returning to the k-fillability problem, the above algorithm finds the direction d
such that the polyhedron has the minimum number of local maxima, if we apply it

to both the set Q) of convex polygons in the plane DP) and QW) in the plane
DP™), We summarize the algorithm below.

Algorithm 7: Find all orientations such that P is fillable with minimum number
of venting holes.

1. Select all convex vertices of polyhedron P.
Compute the convex cone of each convex vertex.

Compute the normal cone of each convex cone. Call this set NC.

Ll

Intersect each normal cone in NC with DP™) and DP). Call this sct of
(possibly unbounded) convex polygons R.

5. Compute the arrangement Q) induced by R on DP™) and Q(-) induced by
R on DPU,

6. Find all regions on Q) and Q) covered by the least number of convex

polygons of the set R. These regions represent the orientations minimizing
the number of venting holes need to fill P.

We conclude with the following theorem.

Theorem 5.4.1 Given a simple bounded polyhedron P in 8-space, one can find in

'O(n?) time an orientation for P such that P is fillable with the minimum number

. of venting holes.
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5.5 A Reduction from Covering to 1-Fillability

In this scction, we present an Q(nlog n) time reduction from the rectangle covering
problem to the problem of 1-fillability of polyhedra. Since a reduction from the
‘A4 B = C ?’problem to rectangle covering is given in [37], it follows that 1-fillability
is at least at hard as ‘A+B=C7.

Theorem 5.5.1 The rectangle covering problem can be reduced to the I-fillability

problem in O(nlogn) time.

Proof: Let I be an instance of the rectangle covering problem, i.e., given a set R
of n rectangles in the plane, and also a rectangle RECT, decide if the union of the
reclangles in R cover RECT. We now describe the construction of a polyhedron P
such that it is 1-fillable if and only if the rectangle RECT is not covered by R.

h

recr [1 ON

Q4 1 p0
U“"‘ '4":"-
i \ &
ﬁh & o,

U~

Figure 5.3: Lelt: an instance of the rectangle covering problem. Middle: a rectangle
r; and its convex cone CC(r;). Right: the normal convex cone NC(r;) and the spike
8.

We associate the plane in which R and RECT lie with the plane z = —1, such
that the center of RECT is the point (0,0, —1). For every r; € R, we associate the
convex cone CC(r;) to be the cone with apex the origin o of 3-space, and whose
intersection with the plane z = —1 is the rectangle r;. Then we normalize CC(r;)
to obtain a convex cone NC(r;), and we intersect NC(r;) with the plane z = —1 to
obtain a possibly unbounded convex polygon @;. For each @Q;, we choose a point ¢;
in its interior such that all of the ¢; are distinct. (The convex hull of the ¢; should
contain the point (0,0, —1); if not, we add suitably chosen dummy rectangles to R
outside of RECT to enforce this.) Let h; be the plane through o with normal og;.
Translate A; in direction o§; by an amount such that the interior of h; N NC(r;) has

positive area, but is contained in a disk with diameter 1. Define the spike s; to be
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the polyhedron A} N NC(r;). Translate h; and the spike s; simultancously back in
direction g;o, such that h; passes through o again. |

Let 4 be the minimum distance between any two of the distinct points ¢;. Let T
be the maximum distance of any g; to the origin 0. Let § be a sphere centered at o
with radius at least 2’/ + 1. Translate every pair ; and s; in direction g;jo such
that h; is tangent to S (S C k7). By the choice of the radius of S and the arca of
h: 0 NC(r;) (the ‘base’ of the spike), no two spikes s; and s; intersect. Computc
the convex polytope P = (z 2 —1) N MNicicn b7 - By construction (the addition of
dummy rectangles), P is a bounded convex polyhedron. To P, we add each spike
s; on the facet of P that lies in h;. To finish the construction, we add one more
gadget to the facet contained in the plane z = —1. This is the new spike spger for
RECT, which 1s translated in the —z-direction over a distance so that its topmost

point penetrates the lower facet of P.

> | &

Figure 5.4: An example of the polyhedron constructed for theorem 5.5.1.

Without 2ll the spikes, P is a convex polyhedron, and thus has exactly one
maximum for every direction. The spike spgcT gives additional local maxima for
every direction corresponding to a point in z = —1 outside of RECT. The other
spikes give a local maximum for every direction that corresponds to a point inside
the corresponding rectangles of R. Hence, P is 1-fillable if and only if RECT is not
covered by the union of the rectangles in R. The construction can be performed in
O(nlogn) time using the half-space intersection algorithm of Preparata and Muller

[69].
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5.6 Fillability of Certain Classes of Polyhedra

In this section, we investigate the relationship between the notion of fillability and
certain known classes of restricted polyhedra. These results are relevant to the man-

ufacturing industry because in practice many objccts are not modeled by pelyhedra
of arbitrary shape complexity.

5.6.1 Monotone Polyhedra

A polygon P is monotonic in direction { if for every line L orthogonal to  that
intersects P, the intersection L N P is a line segment (or point). We generalize this

notion to 3-dimensions to obtain a large family of monotone polyhedra. We define

the class as follows.

Definition 5.6.1 A polyhedron P is weakly monotonic in direction ! if there cxisls
a direction | such that the intersection, of each plane orthogonal lo 1 that intersecls

P, is a simple polygon (or a line segment or point). The direction | is referred lo

as the direction of monotonicity.

Note that there exist many different classes of simple polygons [63], [69], {85].
By substituting one of these classes for the word simple in the above definition,
we obtain a score of families of weakly monotonic polyhedra. Thus we say that if
all the intersections are convez polygons, we have a weakly monotonic polyhedron
in the convex sense. If the intersections are monotone polygons, then we have a
weakly monotonic polyhedron in the monotone sense, and so on. Refer to Figure
5.5. Weakly monotone polyhedra have been previously investigated in the context
of movable separability of polyhedra [85].

Theorem 5.6.1 A weakly monotonic polyhedron P is 1-fillable if it is oriented such
that gravity points in the direction of monotonicity.

Proof: For ease of exposition, let us assume that gravity, g, is in the negative z-
direction. If we show that P has only one local maximum in the positive z-direction
then by theorem 5.3.1 we establish the theorem. Suppose that P had more than
one local maximum. Let m be a local maximum that is not the global z-maximum.

Let P, be the union of the facets incident to m, and let k., be the plane containing

m with normal g.
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Figure 5.5: Weakly Monotonic Polyhedron

Let Ay, be the lower closed half-space bounded by the plane k, with normal g,
containing the vertex m. By definition 5.3.2, we have that Py € 7. Since there is
a point with a greater z value than m, the intersection of h,, with P is not a simple

polygon, a contradiction. .

5.6.2 Facet-Visible Polyhedra and Star-Shaped Polyhedra

Two points inside a polyhedron are said to be visible if the line segment between
them does not intersect the exterior of the polyhedron. A point p is weakly visible
from a facet f if there is a point = on f such that p is visible from =z.

A polyhedron P is facet-visible if there is a facet of the polyhedron from which all
the points in the polyhedron are weakly visible. Let P be a facet-visible polyhedron.
Without loss of generality, let f; be the facet from which the polyhedron is weakly
visible, Let d* denote the direction of the interior normal to the facet.

Theorem 5.6.2 A facet-visible polyhedron P is 1-fillable if it is oriented such that
d* points in the direction of gravity.

Proof:  For ease of exposition, let us assume that gravity is in the negative z-

direction.

Let p;, an arbitrary point of the facet, be the pin gate. Let a be an arbitrary

—



CHAPTER 5. GRAVITY CASTING IN THREE DIMENSIONS 84

point in P. Since P is facet-visible, there must be a point b on f; that sces point a,
i.e [ab) € P.
Let II be the path = (a,b,p,) in P. Since II is monotone with respect to d*, the

theorem follows. n

Corollary 5.6.1 Every polyhed-on that is weakly visible from a scetional polygon is
2-fillable with re-orientation.

Figure 5.6: A star-shaped polyhedron that is not 1-fillable

A star-shaped polyhedron is a polyhedron that contains at least one point z from
which all points of the polyhedron are visible (see Figures 5.1 and 5.6 for a star-
shaped polyhedron). The set of points from which all points are visible is known
as the kernel of the star-shaped polyhedron. A point in the kernel of a star-shaped
polyhedron can be computed in O(n) time using Megiddo’s linear programming
technique [57]. This implies that in O(n) time, a sectional polygon can be found
from which the star-shaped polyhedron is weakly visible. However, a star-shaped
polyhedron may not necessarily be 1-fillable (see Figure 5.6). In fact, if a star-shaped
polyhedron is filled from one fixed orientation, it may need ((n) venting holes.

Theorem 5.6.3 A star-shaped polyhedron is not necessarily 1-fillable but can always
be 2-filled with re-orientation in O(n) time.

5.6.3 Other Restricted Polyhedra

In this subsection, we simply point out that improvements on the O{n?) time algo-
rithm have been found for polyhedra satisfying certain regularity conditions. These
are iocal conditions imposed on each convex vertex to ensure that the resulting con-

vex polygons that are obtained for the covering problem are fat (see {54, 46), that
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is, the ratio of the diameter of the polygon to its width is bounded by a constant.
The only reason algorithm 7 used O{n?) time due to the fact that the arrangement
of convex polygons can have O(n?) complexity. However, an arrangement of fat
convex pulygons does not have O(n?) complexity. Therein lies the improvement. A

detailed treatment of this topic can be found in [14].



Chapter 6

Stereolithography

6.1 Introduction

In this chapter, we consider the problem of deciding whether or not a design is feasi-
ble for a CAD/CAM system developed and patented by 3D Systems of Sylmar, CA
that employs a process called stereolithography (See Figure 6.1). Stereolithography
is emerging as the dominant process used for rapid prototyping. The components of
the stereolithography manufacturing process consist of a vat of liquid photocurable
plastic, a computer controlled table T on a stand S that can be moved up and down
in the vat and a laser L above the vat that can shine on the surface of the liquid
plastic and can move in a horizontal plane. The system works as follows. At the
first step the tabie is just below the surface of the plastic and the laser is controlled
to move about so that the light shines on the surface of the plastic and draws the
bottom-most cross-section of the object A being built. When the laser light contacts
the plastic, the plastic solidifies and so the first cross-section of the object is formed
and rests on the table. At the next step the table is lowered a small amount to allow
liquid to cover the hardened layer and the laser then draws the next cross-section of
the object. The light from the laser penetrates the liquid just deep enough so that
this cross-section is welded to the lower cross-section produced at the previous step.
This process is repeated until the entire object is formed. The direction given by a
normal to the table pointing from the laser is called the direction of formation for
the object.

There are some objects that can be formed only if the direction of formation is

chosen correctly. For example, in Figure 6.2, the object {(a) can not be formed in the

86
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Figure 6.1; Stercolithograpy system.

position shown. Consider what occurs when the cross-section is reached where the
surface S lies. The surface S is not supported below and so as it is formed it sinks
to the level of the table. However, if the object is formed in the opposite direction
as in Figure 6.2 (b) then stereolithography will succeed. Naturally, there are some

objects that can not be formed using stereolithography regardless of the direction
of formation chosen.

In order to better understand this manufacturing process, we define a mathe-
matical model of stereolithography (referred to as vertical stereolithography). Under

this model, we assume that each layer can be welded on to the previous such that no

Level of Hiquid 8

(a) ®)

- Figure 6.2: Infeasible and feasible directions of formation.
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part of the top layer hangs over the previous. We analyze the class of objects that
can be constructed under the assumptions of the model. Given an object {modclied
as a polygon or a polyhedron), we decide if a direction of formation exists that will
result in the successful construction of the object. Such a direction will be called a
valid direction of formation. We provide an O(n) time algorithm for finding a valid
direction of formation where n is the number of vertices of the object. Furthermore,
if the object is feasible, we report a description of all the orientations in which the
object can be made. We then define a more flexible model that more accurately
reflects the actual capabilities of stereolithography (referred to as varieble-angle
stereolithography). In this model, we assume that as cach layer is welded on Lo the
previous, the top layer may hang over the previous by a certain fixed amount. Again
we study the class of {easible objects for this model. We give an O(n) time algorithm

for polygons and O(nlogn) as well az O(n) time algorithms for polyhedra.

6.2 Vertical Stereolithography

We first define the geometric model of stereolithography referred to as veitical stere-
olithography.

A polygonal object is assumed to rest on the z-axis and a polyhedral object is
assumed to lie on the plane defined by ¥ = 0. For a given object A and direction of
formation d, let A; denote the object oriented and positioned according to d. For
Yo = 0, let Ay(yo) be the intersection of A with the line ¥ = yq for polygonal objects
and the plane y = yo for polyhedral objects. We refer to Ag(0) as the base of the
object (with respect to d). A point p of the object with y-coordinate yo is said to be
supported (with respect to a particular direction of formation) if all the points with
z (and 2) coordinates the same as p and positive y coordinate less than yo are in the
object. The cross-sections of the object are assumed to be infinitesimally thin and so
direction d is a valid direction of formation for an object if the resulting orientation
of the object is such that all points in the object are supported. An object is referred

to as feasible provided it has at least one valid direction of formation.
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6.2.1 DPolygonal Objects

In this subsection we consider the two-dimensional problem where the object A we
wish to form under the vertical stereolithography model is a simple polygon. Let
Vg, V1, - - - , Un—1 be the clockwise ordering of the vertices around A such that each pair
of consecutive vertices v;, v;4; is joined by an edge e; {all indices are taken modulo
n). For 1 <1 < n, let §; be the angle formed by e;_1 and e; in the interior of A. If
edge e; is such that 0;41 and 0; are both less than or equal to 7 /2 then ¢; is called
an acule edge. Il ¢; is an acute edge and at least one of 0;4; or 0; is strictly less than
7/2 then e; is said to be a strictly acute edge. Let n; denote the direction normal to
edge e; pointing out of the polygon. Let A be the set of all outer normals.

We first observe a simple geometric fact that wili be useful in establishing many
of the lemmas and theorems to follow. Let e; be an edge of polygon A. Let p be a

point on the open edge e;. Let r be a ray emanating from point p in direction d.

Observation 6.2.1 There ezists a point ¢ € r distinct from p such that (pg) is

contatned in ext(A) if and only if d-n; is positive (i.e. the angle between d and n;

is strictly less than ©/2).
We begin by showing that the base of a feasible object must be an edge.

Lemma 6.2.1 If d is a valid direction of formation for polygon A, then Ag(0) is
some edye of A.

Proof: If A4(0) is not an edge, then it must be a vertex, say v;. Since both v
and v;4, are above the line y = 0, at least one of the two cannot be supported by
Observation 6.2.1. n

The above lemma restricts our search for a valid direction of formation to the
outer normals of the edges of a polygon, namely the set A". Therefore, edge ¢; of
polygon A is said to be a valid base if n; is a valid direction of formation. A point
pin A, is said to be vertically visible from e; if the vertical line segment from p to

e; is contained in A,;. Thus, we ¢bserve the following

Observation 6.2.2 A polygon A, is feasible with valid base e; if and only if all

points in A,; are vertically visible from e;.

Although Observation 6.2.2 provides some insight into the structure of a feasible

polygon, the following characterization of feasible polygons is useful from a compu-
tational perspective.
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Lemma 6.2.2 An edge ¢; of Ay, is a valid base if and only if nin; <0(V1 < j < n,
j# 1)
Proof:

{=) Suppose e; is a valid base but there exists an edge €; such that n; - n; > 0.
Consider a point p on the open edge e;. Let ¢ be the orthogonal projection of p onto
the line L(e;). The open line segment (pq) must be contained in A,,. However, this
is impossible by Observation 6.2.1.

(<) Suppose that n;-n; <0 (V1 <7 <n,J3#1), but ¢ is not a valid base.
Then there must exist some point p in A,; that is not vertically visible from ¢; by
Observation 6.2.2. Let g be the orthogonal projection of p onto L(e;). Line segment
[pq] must intersect bd(A,,;) above L(e;) since p is not vertically visible from ¢;. Let
z be the intersection point of [pq} and bd(Ay,) closest to p. Let us assume for the
moment that z is on the open edge e;. Line segment {pz] must be in A,; since p is
in An; and z is the first intersection with the boundary. Let y be the intersection
of [zq] with bd(A,,) closest to z or g if no such intersection exists. Line scgment
(zy) is contained in ext(A,,). But this implies that ng - n; > 0 by Observation 6.2.1

which is a contradiction. A similar argument holds had z been a vertex. "

With this in mind, we uncover a key characteristic of valid bases, that leads to
a linear time algorithm.

Lemma 6.2.3 If e; is a valid base then e; is acute.

Proof: Suppose ¢; is a valid base that is not acute. Then either n;—y - n; > 0 or

ni1 - g > 0 or both. By Lemma 6.2.2 this contradicts the fact that e¢; is valid. =

(iven this characteristic, we completely characterize the convex objects that are
feasible. The following lemma shows that for a convex object A there is a simple

linear time test to find a valid base for A or report that none exists.

Lemma 6.2.4 Given a convez polygon A, the edge e; is a valid base if and only if
€; i3 acute.
Proof:

(=) If ¢; is a valid base, then by Lemma 6.2.3 it must be acute.

(<) Since e; is acute, extending e;_; and e;41 causes them to meet at a point

directly above some point of e;, thus forming a triangle with e; that is vertically
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visible from e;. By convexily, A must lie in this triangle and so for any point p in
A ihere is a point ¢ on ¢; vertically below p. Therefore, by Observation 6.2.2, e; is

a valid base. ]

The characterization of convex objects in Lemma 6.2.4 implies that a simple
examination of the angles between the edges of a convex object is sufficient to find
a valid base if one exists or report that the object is not feasible. For a non-convex
object, such local tests on the angles are insufficient to determine the feasibility of
an object, since such an object may have an acnte edge that is not a valid base.
For example, in Figure 6.3, edge e; is an acute edge but not a valid base of the
polygon since vertex v;—; is not supported. However, the following lemma shows the

relationship between the feasibility of a simple polygon and its convex hull.

Lemma 6.2.5 If simple polygon A,, is feasible with base e; then the convez hull of

Ay, 1s also feasible with base e,

Proof: Follows from Observation 6.2.2, Lemma 6.2.3 and Lemma 6.2.4. u

Since the convex hull of a simple polygon can be computed in linear time ([56],
[59]) and a convex polygon can only have at most 4 acute edges, we see that feasibility
of a simple polygon can be computed in linear time. The convex hull of a simple
polyhedron, however, cannot be computed in linear time, but can be computed in
O(nlogn) time (see [69]). Therefore, although this approach provides an optimal
solution to the problem in two dimensions, a solution in three dimensions will require
an additional logn factor. To this end, we explore the following alternate solution
that can be generalized to the three-dimensional version of the problem.

Let us first examine the restrictions that the existence of a strictly acute edge

puts on the feasibility of a non-convex polygon.

Lemma 6.2.6 If a simple polygon A is feasible and edge e; of A is strictly acute
then the set of all valid bases of A is a non-empty subset of {e;, €i—1, €41}

Proof: (Refer to Figure 6.3). Suppose that none of e;, e;_1 and e;y1 are valid.
Since e; is strictly acute, without loss of generality, assume that ¢; < = /2. Since A is
feasible, let e; be a valid base of A. Notice that n; cannot be contained in NH(n;)
since otherwise n; - n; > 0. Similarly, n; cannot be in arc|N*t(n;), opp(n;)) because

otherwise n; - niy; > 0. Also, n; cannot be in arclopp(n;), N~(n:)] since otherwise
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Figure 6.3: A non-convex object with an acute edge that is not a valid base.

n; - ni-1 > 0. But NH(n;) U arc[N*(n;), opp(n:i)) U arclopp{ni), N~(n;)] represents

all directions. Therefore, n; cannot exist. n

Lemma 6.2.3 guarantees that an acuie edge e; exists if A is [easible and Lemma
6.2.6 says that if a strictly acute edge e; exists then it is sufficient to test e;, ei_y
2ud e;yq for a valid base. We now consider what happens when e; is an acute edge
with both 0;41 and 0; equal to = /2. If A,, contains a unique edge ¢; such that n; is
opp(n;) then we label the edge e;op(3).

Lemma 6.2.7 If A is feasible and e; is an acute edge such that 0,4y = 9; = =/2
then the set of ¢l valid bases of A is a non-empty subset of {e;, €i-1, €it1,€wp(t) (if
it exists) }.

Proof: Similar to the proof of Lemma 6.2.6. m

With Lemma 6.2.7 we have characterized all polygons that are feasible. We

summarize with the following theorem.

Theorem 6.2.1 Given that A contains an acute edge e;, the set of all valid bases
of A is a non-empty subset of {€;, €j_1, €41, €1op(t) (if it ezists and 0i41 = 0; = 7/2)
} if and only if polygon A is feasible.

Proof: Follows from Lemma 6.2.3, Lemma 6.2.6, and Lemma 6.2.7. =

Determining whether or not a polygon has an acute edge can be achieved in O(n)
time, where n is the number of vertices of the polygon. Thus, in O(n) time, the
number of possible valid bases can be reduced to 3 or 4 by Theorem 6.2.1. Moreover,
by Lemma 6.2.2 we can test in O(n) time whether any of these candidate edges is

valid simply by testing its outward normal with the outward normals of all the other
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edges. Therclore, we can test a polygon A for feasibility and find all valid bases in
O(n) time.
Theorem 6.2.2 In O(n) time the feasibility of a polygonal object with n verlices

can be delermined and all valid bases identified when the object is feasible.

6.2.2 Polyhedral Objects

In this subsection we consider the three-dimensional case where the object is a
simple polyhedron. We want to find a facet of polyhedron A that is a valid base or
delermine that A is not feasible.

The following notation will be used in this subsection. Let A be a polyhedron
wilth n vertices. Given a facet f of a polyhedron, we denote the plane containing
f by P(f). For facet f of A, let f(1), f(2),..., f(ks) be the faceis of A that share
at least one edge with f. Let 6:(f) be the angle interior to A between the plane
P(f) and the plane P(f(i)) about the line of intersection of P(f) and P(f(:)). If
O:(f) <w/2foralle, 1 €1 < ky, then f is called an acute facet. If f is acute and
for some 7, 0;(f) < = /2, then f is said to be a sirictly acute facet. Let n(f) denote
the direction normal to facet f pointing out of the polyhedron. Let A be the set
of all outer normals. We show several properties analogous to those in the previous
subsection that will give rise to a linear time feasibility testing algorithm. We first
observe a simple geometric fact. Let f be a facet of polyhedron A. Let p be a point

on the facet f. Let r be a ray emanating from point p in direction d.

Observation 6.2.3 There exists a point ¢ € r distinct from p such that (pq) is

contained in ext(A) if and only if d - n(f) is positive (i.e. the angle between d and
n(f) is strictly less than = /2).

We begin by showing that the base of a feasible object must be a facet.

Lemma 6.2.8 If d is e valid direction of formation for polyhedron A, then A4(0)
is some facet of A.

Proof: If Ay(0) is not a facet, then it must either be an edge or a vertex. If it is
an edge e, then let f; and f; be the two facets adjacent to e. Since both facets lie
above a plane containing e, either n(f;) - d or n(f;) - 4 is positive. Without loss of
generality, assume it to be n(f;). By Observation 6.2.3 there is a point on the facet

fi that is not supported. A similar argument holds if A4(0) is a vertex. .
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The above lemma restricts our search for a valid direction of formation to the
outer normals of the facets of a polyhedron, namely the set A, Therelore, facet f
of polyhedron A is said to be a valid base provided that n(f) is a valid direction of
formation. A point p in A,y is said to be wvertically visible from f i the vertical

line segment from p to f is contained in A,(y). Thus, we observe the following.

Observation 6.2.4 A polyhedron A,y is feasible with valid base f if and only if

all points in Ay are vertically visible from f.

As in the two dimensional case, the following characterization of feasible polyhedra

will prove to be more uselul from a computational perspeclive.

Lemma 6.2.9 A facet f; of Ay, is a valid base if and only if n(f;)-n(f;) < 0 (for
all facets f; of Aysy, where f5 # f2). '
Proof:

(=) Suppose f; is a valid base but there exists a facet f; such that n(f;) -n(f;) >
0. Consider a point p on the facet f;. Let ¢ be the orthogonal projection of p onto
the plane P(f;). The line segment [pg] must be contained in A(y,). However, this
is impossible by Observation 6.2.3.

(<«=) Suppose that n(f;) - n(f;) < 0 for all facels f; of Aupy distinct from fi,
but f; is not a valid base. Then there must exist some point p in A,y that is not
vertically visible from f; by Observation 6.2.4. Let q be the orthogonal projectiun
of p onto P(f;). Line segment {pg] must intersect bd(A,y,)) above P(f;) since p is
not vertically visible from f;. Let z be the intersection point of [pg] and bd(Ausy)
closest to p. Let us assume for the moment that z is on the facet f;. Line segment
[pz] must be in A, since p is in A,y and = is the first intersection with the
boundary. Let y be the intersection of [zq] with bd(A,+,) closest to = or ¢ if no
such intersection exists. Line segment (zy) is contained in ext(Ang). But this
implies that n(f;) - n(f;) > 0 by Observation 6.2.3 which is a contradiction. A

similar argument holds for the case where z is a vertex or on an edge. "

Lemma 6.2.10 If facet f is a valid base for polyhedron A then f is acute.

Proof: Suppose that f is a valid base for A but f is not acute. Then there must

be some f(z) such that 8;(f) > =/2. However, this implies that n(f) - n(f(z)) > 0.
By Lemma 6.2.9, this contradicts the fact that f is valid. "
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In the special case of convex polyhedra, we see that a simple local test on each

facet suffices to determine if a facet is a valid base.

Lemma 6.2.1Y Let A be a convez polyhedron. Face f is a valid base if and only if

f is acute.

Proof:  Similar to proof of Lemma 6.2.4. n

It is no longer clear whether the feasibility of a convex polyhedron can be deter-
mined in O(n) time since a facet f of a polyhedron may have O(n) adjacent facets.
However, the total complexity of all adjacencies is linear by Euler’s formula (see
[11]). Therefore, testing all facets for validity by the local test implied in Lemma
6.2.11 can be done in O(n) time. We now turn our attention to polyhedral ob-
jects that are not necessarily convex. The following lemma shows the relationship

between the feasibility of a simple polyhedron and its convex hull.

Lemma 6.2.12 If simple polyhedron A,y is feasible with base f then the conver
hull of Anyyy is also feasible with base f.

Proof:  Follows from Observation 6.2.4, Lemma 6.2.10, and Lemma 6.2.11. n

Lemma 6.2.12 implies the following simple approach to determine if a given
polyhedron A is feasible. Compute the convex hull of A in O(nlogn) time. A
convex polyhedron can have at most 6 acute facets. Each acute facet of the convex
hull is a candidate base. Testing a facet can be done in linear time by Lemma
6.2.9. Therefore, determining feasibility of a simple polyhedron can be achieved in
O(nlogn) time. The complexity is dominated by the computation of the convex
hull. To circumvent the computation of the convex hull, we explore the following
approach which will lead to an optimal algorithm.

We first examine the restrictions placed on the feasibility of a polyhedron in the
presence of a strictly acute facet. Before doing so, we define the following geometric
term (see Figure 6.4). Let p be a point on the sphere of directions S. Let ¢ be any
point on S distinct from p and opp(p). We define A,(q) to be the point on N(p)
closest to ¢ (i.e. the intersection point closest to ¢ of N(p) with the great circle
through p and gq).

We show that if the polyhedral object A has a strictly acute facet f, then f or

one of its adjacent facets must be a valid base if the object is feasible.
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Figure 6.4: Illustrating A,(q)

Lemma 6.2.13 If polyhedron A is feasible and f is a sirictly acule facct then the
set of all valid bases of A 1is a non-empty subset of {f, f(1),..., f(kf)}.

Proof:  Suppose that none of f, f(1),... and f{k;) are valid. Since f is strictly
acute, without loss of generality, assume that 6;(f) < #/2. Since A is feasible, let f;

be a valid base of A. We see that n(f;) # opp(n(f)) since n(f(2)) - opp(n(f)) > O.
This implies that A,(s)(n(f;)) is properly defined. Now, we know that n(f;) cannot
be in NH(n(f)) for this would violate the validity of facet f; by Lemma 6.2.9.
Therefore, n(f;} must be in NH¢[n(f)].

We notice that An(s)(n(f(f)) is simply the outward normal of the edge of facet
f (which is a polygon) corresponding to the intersection of f(z) and f. It follows that
every open half-circle C N(n{f)) contains at least one point of A,(s){ f(1}), An(ny(f(2)), ...,
or Anny(f(kys)) since facet f is a simple polygon. Therefore, given a point z #
opp(n(f)) in NH¢[n(f)], there exists a facet f() adjacent to f such that A,p(z)-
Ann(n(fi)) > 0. Observe, however, that if two directions a,b € NH¢[n(f)] both
distinct from opp(n(f)) are such that Ans)(a) - Angsy(b) > 0, then a-b > 0. But this
implies that n{f;) cannot exist. "

If f is not strictly acute, we define fi,, analogously to eq,(i) in the previous
subsection. We have the following lemma.

Lemma 6.2.14 If polyhedron A is feasible and f is an acule, but not strictly acute,
facet then the set of all valid bases of A is @ non-empty subset of {f, f(1),..., f(ks),
Fuop (if it exists) }.

Proof:  Similar to the argument given in the proof of Lemma 6.2.13. L]
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These results were sufficient in the two-dimensional case to reduce the number
of candidate bases to at most 4. Unfortunately, in the 3-dimensional case, an acute
facet f may have O(n) adjacent facets. However, we are able to link the feasibility of
a f~o2t in a polyhedron to the feasibility of an edge in a polygon. Thus, we establish

the following theorem.

Theorem 6.2.3 Given that A has an acute facet f, polyhedron A is feasible if and
only if the set of all valid bases of A is a non-empty subset of {f, fiop (if it exists)
and at most | facets adjacent to f}. Moreover, the edges corresponding to the
intersection of [ with the at most | facets adjacent Lo f are valid edges for polygon
f.

Proof:

(=) If the set of valid bases of A is a non-empty subset of: f, fiop (if it exists)
and at most 4 facets adjacent to f, then by definition, A is feasible.

(<=) If A is feasible, we must show that the following facets of A are the only valid
bases: f, fip (if it exists) and at most 4 facets adjacent to f. Lemma 6.2.14 reduces
our task to showing that at most 4 facets adjacent to f can be bases. Suppose &
facets adjacent to f were valid bases. Let us denote them by f(4), f(i2),..., f(i5).
Notice that n(f(41)), n(f(42)), n(f(i3)), n(f(34)), and n(f(¢s)) are all contained in
NH¢[n(f)) since f is acute. Also, since they are all valid bases, n(f(2;)) - n(fi) <0
for all 1 < j £ 5 and for all facets fi # f(i;) of A by Lemma 6.2.9.

Let f(1), f(2),...,f(ks) be the facets adjacent to facet f. Since f is acute
n(f(1)),...,n(f(ky)) are all contained in NH¢[n(f)]. Observe that A, py(n(f(k)) is
properly defined for all 1 < k < k;. Since each of f(4;), f(%2),--., f(is) is a valid
base, we have that Ays)(n(f(2;))) - Aairy(n(f(k)) <0 for alll < j < 5 and all facets
f(k) adjacent to f distinct from f(¢;). We notice that An(sy(n(f(k)) is simply the
outward normal of the edge of facet f (which is a polygon) corresponding to the
intersection of f(k) and f. But this would mean that polygon f has 5 valid edges
by Lemma 6.2.2, contradicting Theorem 6.2.1. n

Therefore, the number of possible valid bases in a feasible polyhedron A is at
most 6. We summarize below the linear time algorithm to determine the feasibility

of a simple polyhedron. The algorithm takes a simple polyhedron A as input.

Algorithm 8: Delermine the feasibility of a simple polyhedron.
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1. Determine if A has an acute facet. If A does not have an acute {acet, exit (A
is not feasible).

2. Let f be the acute facet of A. Scan all other facets of A to determine if fi,,
exists.

3. Compute all possible valid edges of polygon f using the algorithm described
in Section 6.2.1. There are at most 4 edges. Let F' represent the facets of A
adjacent to these edges excluding facet f.

4. Let B be {f, fiop (if it exists) } U F'. The set B represents the candidate bases
of A. There are at most 6 facets in B by Theorem 6.2.3.

5. Test each facet f; € B to see if it is valid in the following way:
Check that the angle between normal n(f;) and all oth~r normals is no less

than /2. This can be done in linear time.

6. Output the valid bases.

The correctness of the algorithm follows from Theorem 6.2.3. As for the time
complexity, we see that step 1 can be done in O(n) time by Euler’s formula (see [11}).
Step 3 takes linear time by the algorithm given in Section 6.2.1. Furthermore, by
Lemma 6.2.9 testing each candidate facet can be done in O(n) time simply by testing
its outward normal with the outward normals of all the other facets. Since there are
only a maximum of 6 candidate facets, we conclude that testing a polyhedron A for

feasibility and finding all valid bases can be achieved in O(n) time.

Theorem 6.2.4 In O(n) time the feasibility of a polyhedral object with n vertices

can be determined and all valid bases identified when the object is feasible.

6.2.2 Relation to NC machiring

A 3-axis NC machine consists of a worktable, a spindle or milling cutter, and the
motors and controls for positioning the cutter and/or the worktable along the three
translational axes corresponding to the three axes of a Cartesian coordinate system
(see Held [42] for a discussion on the different types of NC machines). A cutter can
be viewed as a thin cylinder or rod rotating around its axis of symmetry. Without
loss of generality, assume this axis of symmetry of the cutter is parallel to the z-

axis, and that the object contacts the worktable on a face. Then, any polyhedron
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P constructed by a 3-axis NC machine has the following property: for every point
p on the surface of P (except for the base), there exists a ray emanating from p
parallel to the z-axis that does nct intersect any other point on P. This follows
from the fact that the cutter must reach the point and its movement is restricted to

translations along the three coordinate axes. Therefore, we have the following.

Theorem 6.2.5 A polyhedral object formed by 3-azis NC machining can be recog-

nized in linear time and can also be constructed by vertical stereolithography.

6.3 Variable-Angle Stereolithography

In practice, as the laser welds one cross-section on to the other, if the top layer
is “close enough” to the previous layer, it can be welded on. That is, the upper
layer may hang over the previous by a certain amount and still get welded on. To
model this mathematically, we define the followiug model referred to as wvariable-
angle stereolithography.

Intuitively, variable-angle stereolithography differs from vertical stereolithogra-
phy in the following way. As each layer is glued on by the laser, the topmost layer
can hang over the previous layer by the freedom allotted by some constant angle w.
More formally, we say that a point p with y-coordinate yq is w-supported with respect
to the direction of formation if there exists a point ¢ with positive y coordinate less
than yo such that the line segment [pq] is contained in the object and the smaller
angle between the direction of formation and the vector pq is less than or equal to
w. Clearly, w must be less than /2. Notice that variable-angle stereolithography
is a generalization of vertical stereolithography. The two are equivalent when w is
zero. An object can be built with respect to the parameter w if there exists an
orientation of the object such that all points above the base are w-supported. An

object that can be built with respect to the parameter w will be called w-feasible.

6.3.1 Polygonal Objects

The parameter w enlarges the class of objects that can be formed. In fact, with
w > 0, the base of an object no loniger need be a edge of the polygon. For example,

the polygon in Figure 6.5 is feasible (as long as both Za and /b are both less than
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Base of table

anglea

Direction of formation

Figure 6.5: A vertex that is a valid base.

or equal to w) with a vertex as base. For polygonal objects, we will assume that the
base of an object is always an edge, since building an object on a vertex is unstable.

We say that a point p in A,, is w-visible from e; if p is above L(e;) and there
exists a polygonal path II from p to e; such that Il € A,; and every vertex in II

(except for the vertex on ;) is w-supported by an adjacent vertex. Thus, we observe
the following.

Observation 6.3.1 A polygon A, is w-feasible with valid base ¢; if and only if all
points in Ay, are w-visible from e;.

A polygonal chain is said to be monotonic with respect to direction @ if the in-
tersection of every line parallel to N(©) with the chain is either empty or a point.

We observe the following property that is crucial to the development of a linear
algorithm.

Observation 6.3.2 If a point p is w-visible from e;, then there exists a path II from

p to e; that is monotone with respect to direction n;.

‘We present an alternate characterization of w-feasibility that will be useful from

a computational perspective.

Theorem 6.3.1 A polygon A, is w-feasible with valid base e; if and only if the
angle between n; and all other normals is no less than 7 /2 — w and the set of all

local minima with respect to n; is e;.
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Proof:

(<) Given that all n; distinct from n; are such that the smaller angle between
lnin; 2 w[2 — w, and all local minima are contained in ¢;, we will show that A, is
w-feasible with base e;, We do this by showing that every point in A,; is w-supported
by the following construction.

Let p € A,;. Assume that p € e;.

1. If p is contained in int(Ay,), then let ¢ be the intersection point below p and
closest to p of a vertical line through p and dd(A,,;).

2. If p is contained in the interior of an edge ¢, then let ¢ be the vertex adjacent

to e with lower y-coordinate. Such a vertex must exist since p is not a local

minimur.

3. If pis a vertex v, then let ¢ be the vertex adjacent to v with lower y-coordinate.

Such a vertex must exist since p is not a local minimum.

By construction, the smaller angle between p¢ and n; is no more than w. There-
fore, p is w-supported. If ¢ € e;, then we are done. If ¢ € e;, we must show that g is
w-supported. This can be done by repeating steps 1, 2, 3 with g. The construction
must end with a point on ¢; since ¢; contains all local minima with respect to n; and
with every iteration, the y-coordinate of the newly constructed point is decreased.

(=) Given that A, is w-feasible with valid base ¢;, we will show that the smaller
angle between n; and all other outer normals is greater than or equal to 7/2 —w
and that the set of all local minima with respect to n; is e;.

Suppose there exists an outer normal n; such that /nn; < 7/2 —w. Let pbea
point in the interior of e;. Since e; is an w-feasible base, there must exist a point ¢
such that p is w-supported by ¢. However such a ¢ does not exist because of n;.

Similarly, suppose there exists a local minimum point p that is not contained in

e;. Again, the point p is not w-supported. ) n

Theoreii1 6.3.2 For fized w, a polygon has o constant number of candidate edges

that can be valid bases. These candidate edges can be oblained in O(n) time.

Proof: Let k= [2x/(r/2—w)]. Cover the circle of directions with & closed arcs,

denoted by ay,as,...ak, having the following property. The angle spanned by each
of the arcs is exactly (x/2 - w).
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For edge €;, suppose that n; is contained in the open arc a;. If edge ¢; is o valid
base, then by Theorem 6.3.1 there are no other cuter normals in the open arc a;.
If n; had been on the end of the closed arc aj, then there can be at most onc other
normal on the other end of closed arc a;. Therefore, each closed arc can contain
the outer normal of at most 2 valid bases. Since there are k arcs, there can be at
most 2k valid bases. But & is a constant when w is fixed; therefore, there are only

a constant number of valid bases.

The algorithm for obtaining the valid bases follows from the discussion above. =

We now have all the tools needed to determine the w-feasibility of a simple
polygon in linear time. A brief outline of the algorithm follows. The algorithm

takes as input a simple polygon A and parameter w.

Algorithm 9: Determine the w-feasibility of a simple polygon.

1. Let B represent the set of candidate bases of A. There are only a conslant

number of edges in B and they can be computed in linear time using the
technique described in Theorem 6.3.2.

2. Test each edge e; € B to see if it is valid in the following way.

e Check that the angle between normal n; and all other normals is no less
than 7/2 — w. This can be done in linear time.

o Verify that the set of all local minima with respect to n; is ;. This can
be done in linear time using the algorithm described in Chapter 4 which
determine given a polygon, a specified edge, and a direction, whether the

edge is the set of all local minima with respect to the given direction.

3. Output the valid bases

Testing an edge to see if it is valid takes linear time. However, since the number
of edges tested is constant, step 2 is completed in linear time. The complexity of
the algorithm is linear in the size of the input since the time to complete each step

is at most linear. The correctness of the algorithm follows from Theorems 6.3.1 and
6.3.2.

Theorem 6.3.3 The feasibility of a simple polygon in variable-angle stereolithogra-
phy can be determined in O(n) time.
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Remark: The technique used to determine the feasibility of a simple polygon with
w = 0 provides an alternate linear time method to compute the feasibility in vertical

stereolithography.

6.3.2 Polyhedral Objects

Similar to the two-dimensional case, with w > 0, the base of an object no longer
need be a facet of the polyhedron (see Figure 6.5). However, we will assume that
the base of an object is always a facet of the polyhedron, since building an object
on a vertex or an edge is unstable.

We say that a point p in A,y is w-visible from a facet f if p is above the plane
P(f) and there exists a polygonal path II from p to f such that Il € A,(;y and the
smaller angle between every pair of edges in II is no more than w. Thus, we observe

the following.

Observation 6.3.3 A polyhedron A,y is w-feasible with valid base f if and only

if all points in A,y are w-visible from f.
We observe another property that is crucial to the development of a linear algorithm.

Observation 6.3.4 If a point p is w-visible from f, then the path Il fromp to f is

monotone with respect to direction n(f).

Theorem 6.3.4 A polyhedron Ay(s) is w-feasible with valid base f if and only if the
engle between n(f) and all other normals is no less than /2 — w and the set of all

local minima with respect to n(f) consists of facet f.

Proof:

(<) Given that all outer normals n(f;) distinct from n(f) are such that the
smaller angle between /n(f;)n(f) > /2 — w, and all local minima are contained
in f, we will show that A,(y) is w-feasible with base f. We do this by exhibit-

ing a construction such that every point in A,y is w-supported by the following

construction.
Let p € An(yy. Assume that p & f.

1. If pis contained in int(An(s)}, then let g be the intersection point below p and
closest to p of a vertical line through p and bd(An(s)).
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. 2. If p is contained in the interior of a facet f;, then let ¢ be a point on f; with
lowest y-coordinate.

3. If p is contained in the interior of an edge e, then let ¢ be a point with lowest

y-coordinate in one of the two facets adjacent to e.

4. If p is a vertex v, then let ¢ be a point with lowest y-coordinate in one of the
facets adjacent to v.

In all cases, ¢ will have a lower y-coordinate than p since p is not a local min-
imum. By construction, the smaller angle between pg and n(f) is no more than
w. Therefore, p is w-supported. If ¢ € f, then we are done. If ¢ € f, we must
show that ¢ is w-supported. This can be done by repeating steps 1, 2, 3, 4 with ¢.
The construction must end with a point on f since f contains all local minima with
respect to n(f) and with every iteration, the y-coordinate of the newly constructed
point is decreased.

(=) Given that A,y is w-feasible with valid base f, we will show that the
smaller angle between n(f) and all other outer normals is greater than or equal to
7 /2 — w and that the set of all local minima with respect to n(f) is e;.

Suppose there exists an outer normal n(f;) such that Zn(f;)n(f) < 7/2—w. Let
p be a point in the interior of f;. Since f is an w-feasible base, there must exist a
point ¢ such that p is w-supported by q. However such a ¢ does not exist because
of n(f;).

Similarly, suppose there exists a local minimum point p that is not contained in
f- Again, the point p is not w-supported.

Theorem 6.3.5 For fized w, a polyhedron has a constant number of candidate facets
that can be valid bases. These facets can be obtained in O(n) time.

Proof: Let us consider the spherical coordinates (¢, p) of the sphere of directions
S centered at the origin where the angle ¢ is in the set [0,27) and the angle p
is in the interval [—7/2,7/2]. We first divide the sphere of directions into k =
[m /({4 — w/2)] slices with parallel circles in the following way. Slice s; contains
all points where p € [7/2,7/2 — (7 /4 — w/2)]. Slice sy contains all points where
. p€[rf2—(n/t—-w/2),x]2 —2(x/4 —w(2)]. Slice s; contains all points where
peE[r/2— (1) rf4 —w/[2),n/2 —i(x/4—w/2)]. See Figure 6.7.
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Figure 6.6: Spherical Coordinates.

Iigure 6.7: Slices and pieces of the sphere of directions.

Each slice s; is further subdivided into m = [27/(7/4 — w/2)] pieces in the
~ following way. Piece s;; contains all points where ¢ € [0,7/4 —w/2] and p €
w2~ (i —1)n/4 —w/2),7/2 —i(n /4 — w[2)]. Piece s;; contains all points where
per/i—w/2,2(rfd—w/2)]and p € [7/2—-(i —I}7/4—w/[2),7[2—i(n /4 —w/2)].
Piece s;; contains all points where ¢ € [(j — 1)(x/4 — w/2),j(7 {4 — w/2)] and
peEm2—(i-1)(x/4 - w/2),n[2 —i(n]4—w/2)].

By construction, any pair of points in a piece s;;, represents a pair of directions
d; and d; such that the smaller angle between d; and d; is strictly less than 7 /2 —w.
Therefore, the outer normals of two feasible bases cannot lie in the same piece.

There are km pieces. Notice that km no more than #%/(7/2 — w)?. Since w is

fixed, km € O(1). Each piece can contain at most 1 feasible base. Therefore, there
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are O(1) feasible bases.

We now have all the tools needed to determine the feasibilily of a simple poly-
hedron in linear time. A brief outline of the algorithm follows. The algorithm takes

as input a simple polyhedron A and parameter w.

Algorithm 10: Determine the w-feasibility of a simple polyhedron.

1. Let B represent the set of candidate bases of A. There are only a constant
number of facets in B and they can be computed in linear time using the
technique described in the proof of Theorem 6.3.5.

2. Test ecach facet f; € B to see if it is valid in the following way.

o Check that the angle between normal n(f;) and all other normals is no less
than 7/2 — w. This can be done in linecar time.

o Verify that the set of all local minima with respect to n(f;) is fi. This can
be done in linear time using the algorithm described in chapter 5 which
determines given a polyhedron, a facet and a direction, whether the facet

is the set of all local minima with respect to the given direction.

3. Output the valid bases

Testing a facet to see if it is valid takes linear time. However, since the number
of facets tested is constant, step 2 is completed in linear time. The complexity of
the algorithm is linear in the size of the input since the time to complete each step is

at most linear. The correctness of the algorithm follows from Theorem 6.3.4, 6.3.5.

Theorem 6.3.6 The feasibility of a simple polyhedron in variable-angle stereolithog-
raphy can be determined in O(n) time.

Remark: The technique used to determine the feasibility of a simple polyhedron

with w = 0 provides an alternate linear time method to compute the feasibility in
standard stereolithography.

The initial assumption that the base of an object is always a facet of the given
polyhedron may be slightly weakened at the cost of a logn factor. One might argue
that although the construction of an object from a vertex or edge may be unstable,

it is reasonable to assume that the object is placed on a facet of the convex hull
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of the object. After the construction of the convex hull of the object, we see that
determining its feasibility under this weaker assumption can be done in linear time

from the discussion above. Therefore, we have the following.

Theorem 6.3.7 Given a simple polyhedron A, if the base of A can be a facet of its
convez hull, then feastbility in variable-angle stereolithography can be determined in

O(nlogn) time.



Chapter 7

Determining if an Object is
Castable

7.1 Introduction

In this chapter, we study the problem of determining whether a re-usable cast of an
object can be constructed. We say that a cast is re-usable provided that the cast can
be removed from the object without breaking the object or the cast parts. Thus,
such a cast can be used more than once in the construction of an object using a
casting process. The requirement to remove the cast parts without breaking them,
so that they may be re-used, imposes certain restrictions on the shape of the objects
that can be constructed. These are the restrictions we investigate in this chapter.
We concentrate on determining if a re-usable two-part cast of an object can be
made. Two-part casts are the most popular types of casts used today due to their
simplicity and efficiency. To construct a two-part cast, a prototype of the object is
first obtained (see Figure 7.1). The prototype is then divided into two parts along
a plane. The facet of each prototype part adjacent to the cutting plane is referred
to as the base. The first cast part is made by placing the base of the first prototype
part on a flat surface, and then adding sand around it. The part is then rotaied
such that the base is facing up, and the other prototype part is placed such that the
bases coincide. The second cast part is built by adding sand around this prototype
part while maintaining a channel into the cavity. Once the sand hardeus, the cast
of the prototype object is complete and the prototype parts can be removed. To

build a metal rendition of the prototype object with this cast, liquid metal is poured

108
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into the opening until it fills the cavity. After the metal solidifies, the cast parts are
removed from the object. The key to constructing a cast with this process is the
ability to remove the prototype object without breaking the cast. This property is
not restricted to casts built for manufacturing methods related to sand casting but
also applies to other metal casting methods [31, 87], as well as injection molding
and blow molding methods for plastics [71, 88]. The ability to remove the prototype
object from the cast without breaking the cast allows one to re-use the same cast
when mass-producing a particular object. Thus for several different manufacturing
methods involving casting, the geometry of the object determines its feasibility of

construction.

add sand

add sand sand cast of upper half

liquid metat &

forming the

metal obj
sand cast of lower half remove prototype halves ctal object

from the cast parts

Figure 7.1: Construction of an object by sand casting, using two halves of the object
as prototypes.

An object is castable if it can be manufactured by casting. In other words,
a cast of the object can be constructed such that each cast part can be removed
from the object without breaking the object or any of the cast parts. Geometric
and algorithmic issues of the castability of planar objects have been studied by
Rappaport and Rosenbloom [73]. In this chapter, we address casting of objects
modelled by polyhedra. In geometric terms, castability can be defined as follows

Definition 7.1.1 A simple polyhedron P is castable if there ezists a plane h such
that h* N OP is a weak lerrain in some orientation, and h~ N OP is a weak terrain
in some orientation. The plane h is called the casting plane. (A weak terrain may

contain edges and facets parallel to the orientation in which it is a terrain.)
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To manufacture a castable object (modelled as a polyhedron P), first determine
a casting plane k. The plane h divides P into two cast parts. Make cach cast part
from the prototype halves At NGP and A~ NJP. Since P is castable, the prolotype
halves can be removed from the cast parts, and later the manufactured object can be
removed from the cast parts. We consider three versions of the castability problem.
They differ in the way the cast parts may be removed from the polyhedron P

Figure 7.2 shows the three versions for planar polygons.

\

Figure 7.2: Three versions of the castability problem.

1. The two cast parts must be removed from P by one transiation each, in op-

posite directions, and normal to the casting plane (orthogonal cast removal).

2. The two cast parts must be removed from P by one translation each, and in

opposite directions (opposite cast removal).

3. The two cast parts must be removed from P by one translation each, in arbi-

trary directions (arbitrary cast removal).

Any convex polygon (in the plane) is castable in any of the three versions. In
three dimensions, the equivalent property does not hold for convex polyhedra; in
fact, some convex polyhedra are not castable in any of the three versions. In manu-
facturing, developing machines that perform orthogonal and opposite cast removal is
much simpler than machines that perform arbitrary cast removal. In fact, opposite
cast removal seems to be the most popular technique used [24, 71]. Furthermore, if

orthogonal or opposite cast removal is possible, it can be determined more efficiently.
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7.2 Preliminaries

A polyhedral surface S is called a weak terrain with respect to e direction d if any
line with orientation d intersects S in a point or a line segment. A polyhedron P
is called a weak terrain with respect to a facet @@ and a direction difOP-Qis a
weak terrain with respect to d. In the rest of this paper we use terrain to mean
weak terrain

For an arbitrary plane 4, we use A and k7 to denote h* and A~ translated so
that the bounding plane intersects the origin. Given direction d and facet f, we say
that f is compalible with d if the inner product between d and the outward normal
of facet f is non-negative (i.e. d makes an angle of at most /2 radians with the

outward normal of f). We say that f is incompatible with d if it is not compatible.

Observation 7.2.1 Let P b: a polyhedron and let b be a plane that intersects P.
The surface P N cl(h™) is a terrain for direction d if and only if every facel of P

that intersects h* is compatible with d.

Therefore, castability with respect to a plane % is only determined by the facets of
P that intersect A% and the ones that intersect h~. If A is a casting plane for P,
then h can be perturbed if this does not involve new facets intersecting h. In case

of orthogonal cast ramoval, the only perturbation allowed is translation.

Observation 7.2.2 For castability with orthogonal cast removal, we may assume
that the casting plane contains ai least one vertez of P. For opposite and arbitrary

cast removal, we may assume that the casting plane contains at least three vertices

of P.

7.2.1 The sphere of directions

Recall that we represent the space of all directions in 3-space by the points on the
surface of a sphere. Let north and sonth denote the points on & that represent the
Z and —Z directions. Let £ denote the equator (the set of points p € S, such that
op - Z=0).

Let P be a convex polyhedron, let & be a casting plane and let d; and dy be
the two cast removal directions, represented by points d; and d; on the sphere of

directions. We re-orient P and h such that north is normal to k, thus d; and d;
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cannot both lie in the upper hemisphere or the lower hemisphere. Without loss of
generality, let dy € NH[north] and dy € NH{[south).

Observation 7.2.3 If a facet f of P intersects h*, and f has its outward normal
represented by a point q on S, then q € NH[d]. Similarly, if f intersects h~, then

q € NH{[d,]. Therefore, if f intersects the casting plane h, then ¢ € NH[dy)N NH[d,)]
(vecall that f is open).

north 7

Figure 7.3: The sphere of directions. The shaded hemispheres are NI (d;) and
NH(d;), and the darker shaded region is their intersection.

Define C(d;) and C(d2) to be the great circles that bound NH(d;) and NH(d,).
If d; and dy are opposite, then C (d1) = C(ds), otherwise, C(dy} N C(d2) consists of
a pair of antipodal points on § different from north, and south.

For any point p € S — {north, south}, define A(p) to be the nearest point on the
equator (i.e., the intersection point of the equator £ with the great circle through

north and p nearest to p). By definition, we have
op -0X(p) 2 0. (7.1)

Furthermore, p and A(p) lie to the same side of any great circle through north and
south.

Assume that d; and d, are non-opposite in the following (see Figure 7.3). Define
C1z to be the great circle containing north, south and the points of C(d;) N C(dz).
Note that NH{d;]N NH|d,] does not intersect one of the (open) hemispheres defined
by Ciz. Let Hyz be this open hemisphere. By the above observation, any facet that
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has its outward normal in [y, cannot be intersected by the casting plane. We use

this fact in the following lemma.

Lemma 7.2.1 If a simple polyhedron P is castable in non-opposite directions with

casling plane h, then h contains an edge of P.

Proof: lLet @ = PNh. If @ consists of more than one connected component,
or if @ has holes, then kh cannot be a casting plane for P. Therefore, @ is a simple
polygon. Let ey,...,en be the clockwise sequence of edges bounding @ and let
q1,---,qm be the points on A NS that represent the outward normals of e;,...,enm.
Since h is chosen to be horizontal, q1,...,¢, € £. Every open half-circle in &
contains at least one point of ¢q,..., ¢m, because @} is a simple polygon.

Given that P is castable with respect to non-opposite directions dy and rfg,
assume that every e; is the intersection of a facet f; of P with the casting plane
(i.e. no edge of @ is an edge of P). Let Cy, and Hiz be as defined above, and let
e; be an edge of @ such that ¢; € £ N Hyp (see Figure 7.3). Let p; be the point
on S that represents the outward normal of f;. Then ¢; = A(p;), and by (7.1), we
know p; lies in Hy,. However, H;, does not contain any point in NH[d:]| N NH{dy],
so by Observation 7.2.3 the {facet f; cannot intersect the casting plane, which is a

contradiction. Thus kh contains an edge of P. ]

Lemma 7.2.2 If a stmple polyhedron P is castable with casting plane h and in

non-opposite directions, then h contains an edge of the conver hull of P.

Proof: Let P be castable with respect to non-opposite directions J; and ng If
the cast of P N cl{h*) can be removed in a direction dj, then the convex hull of
P N cl(ht) can also be removed in the direction J; The same statement holds for
direction d; and the cast of PN cl(h™).

Let @ = PN h. The convex hull of ¢ is the closure of a facet bounding both
CH(PNht) and CH(PN k™) (note that the convex hull is defined as a closed set).
As in the proof of the previous lemma, there exists an edge e; of the convex hull of
@ where the outward normal of the edge on plane & lies in H;;. We need to prove
that ¢; is also an edge of CH(P). Let f1 be the facet of CH (P N h*) incident to e;
and not in h. Define f; analogously for CH(P Nk~). Let ¢;, p1 and p; be the points
on h NS and S that represent the outward normals of e;, fi and f;, respectively.
Since fi and f; are incident to e;, we have A(p1) = A(p2) = ¢;, 50 p1, p2 and g;
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lie on a half-circle between north and south and in Hys. Since py € NH(d;) and
py € NH(d:) are both contained in Hyj, the half-circle through north, south, p, and
p2 must contain a point r that is not in NH[d,] nor in NH[da}. The plane k' with
normal or and containing e; has CH(P N h+) completely to the one side, with the
exception of cl{e;). Similarly, CH(P N k™) lies completely to the one side of A' with
the exception of ci(e;). Since these convex hulls lie to the same side, it follows that
P lies completely to the one side of A’ with the exception of the endpoints of ¢;, and

possibly e; itself (if e; is an edge of P). Therefore, ¢; is an edge of CH(P). "

Notice that the above two lemmas imply that il a polyhedron is castable, but
not with opposite cast removal, then the casting plane contains both an edge of P
and an edge of the convex hull of P (this might be the same edge). This will aid

considerably to determine castability with arbitrary cast removal.

7.2.2 Relation to linear programming

Let P be a polyhedron and let A be a plane. The plane /i partitions the set V of
vertices of P into three subsets Vi, Vit and V) of vertices in, above and below A,
respectively. Similarly, & partitions the set E of edges ol P in four subscts £, E,
E} and Ef of edges contained in k, intersecting &, above h and below A, respectively.
The set F of facets is partitioned in the same way. For any facet f € F, denote by
U(f) the closed half-space bounded by a plane supporting f, and such that for any
point in f, ¥(f) does not intersect the interior of P in an e-neighborhood of the

point. Denote by Wo(f) the same half-space, but translated such that the bounding
plane contains the origin. We define

gH(h) = cl(hé')ﬂ{ ﬂ‘l’o(f)} and  {7(k) = cf(ha)ﬂ{ ﬂ‘I’o(I)} -

FEFFUFY JeF uFy
The intersection of a set of half-spaces is called non-triviel if it contains more than
a single point. Denote by refl(b) the reflection of an object b through the origin (i.e.
every point in b is negated). We make the following observations.

Observation 7.2.4 The plane h is a casting plane for polyhedron P for arbitrary
cast removal if and only if £¥(h) and £~ (h) are both non-trivial.

Observation 7.2,5 The plane a is a casting plane for pelyhedron P for opposite

cast removal if and only if £¥(h) N refl(€~(R)) is non-trivial.
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Observation 7.2.6 Let h be a plane and let £ be « line perpendicular to h and
through the origin. The plane h is a casting plane for polyhedron P for orthogonal
cast removal if and only if £0 EY(R) N refl(£~(h)) is non-trivial.

With the above observations, we can test efficiently whether a given plane b is
a casting plane for P. Since the casting problem for a plane % and a polyhedron P
can be transformed in linear time to a linear programming problem in 3 dimensions,

the test requires only linear time [57].

Lemma 7.2.3 Given a polyhedron P and a plane h, one can test in linear time

whether h is a casting plane for P in any of the three versions for removing the cast.

Similarly, given a polyhedron and two cast removal directions (but not a casting
plane), one can test using linear programming whether the polyhedron is castable

with respect to those cast removal directions.

Lemma 7.2.4 Given a polyhedron P and two cast removal directions, one can test
in linear time whether there exists a casting plane h that allows removing the cast

parts in the given directions.

Proof: Let the two cast removal directions be d_; for 9PN ht and d_; for PNh™,
For every facet f of P, one can determine whether f should lie above the casting
plane % (is compatible only with cfl), below A (is compatible only with J;), may
intersect k (is compatible with both d; and dz) or is incompatible with the cast
removal directions. If there is a facet of P that is incompatible, then there does not
exist any casting plane for directions d, and d-;

The classification of the facets as “above”, “below”, and “intersect” imposes
a classification of the edges. Any edge is classified either as “above/above” (afa),
“above/below” (a/b), “above/intersect” (afi), “below/below” (b/b), “below/intersect”
(b/i) or “intersect/intersect” (i/i), corresponding to the classification of the two
facets incident to that edge.

Similarly, the classification of an edge determines where both endpoints of the
edge must lie. For example, if an edge is classified as (a/a) then both endpoints
must lie in A U h. We summarize the implications that the classification of the

edges has on their endpoints in the table below.
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edge class. | endpoints

(a/a) R*Uh

(a/i) bt Uk
(b/b) h= Uk
(b/3) h= Uk

(a/b) h

(if1) anywhere

The classification of the endpoints of edges, in turn, determines where the vertices
of P must lie. Since every vertex is adjacent to at least 3 edges, no vertex can be
adjacent to only (i/i) edges. Hence, one can decide for every vertex whether it
must be contained in A, lie in AT U h, or lie in A~ U h. We dualize the vertices to
planes, consider the half-spaces to the appropriate side of these planes, based on the
classification, and obtain a linear programming problem to decide whether a plane

h exists that has the appropriate location with respect to the vertices of P. ]

7.2.3 Antipodality properties

For opposite cast removal, we prove that if a casting plane intersects a facet, then
it intersects the boundary of that facet in antipodal pairs (note that this also holds

for orthogonal cast removal). This is an important property that is used to bound
the number of distinct casting planes.

Lemma 7.2.5 If the casting plane h intersects a facet f of a convez polyhedron P,
and also two vertices u and v in the closure of f, then for opposite cast removal,

vertices u and v must be antipodal in cl(f).

Proof:  Let u,v be two vertices in c¢!(f) N h, and assume that they are not
antipodal. Let hy be the plane that contains f. Since u and v are not antipodal,
there are two edges e, and e, in cl(f) incident to v and v, respectively, which lie
on the same side of kb and diverge in the plane hy (when directed away from ).

Suppose without loss of generality that e.,e, € h*. Let f,, fu be the facets incident
to ey, e, and different from f.
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north

south

S Sﬂhf

Figure 7.4: Illustrating the proof of Lemma 7.2.5.

We again represent the space of all possible directions in 3-space as a sphere
of directions with the casting plane as horizontal and north € h*. Let p; be the
point in. the (closed) northern hemisphere representing the outward normal of facet
f. The inward normal of f corresponds to a point —p; antipodal to py (see Figure
7.4). Since f, and f, are each incident to an edge of cl(f), we know that the points
representing their facet normals must be on open semi-circles A, and A, between py
and —p;. Let A, (respectively A,) be the intersection of A, (respectively A,) with
C(py). Let d be the casting direction for P N h+. By Observation 7.2.3, we know
that d must correspond to a point pg on C(ps) N k*.

Consider the great circle C{ps) = S N ky as a unit circle of directions. Call
the semicircle of C(py) intersecting h* the northern semicircle of C(p;). Define the
southern, eastern, and western semicircles analogously. Since f is a convex polygon,
we know that one of A\, and A, must be in the eastern semicircle and one must be in
the western semicircle. Without loss of generality, assume that A, is in the western
semicircle. Since e, and e, diverge in hy, A, and A, must be strictly south of some
non-vertical line L through the origin. This, along with the fact that A, and A, are

split between the eastern and western semicircles, implies that at least one of A,
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and ), is in the southern semicircle. Without loss of gencrality, suppose it is A,.
Since d is by assumption compatible with f,, ps must be in the northwest quadrant.
Similarly, A, must be in the northeast quadrant. Since A, and A, are strictly south
of L, and in opposite quadrants, py is incompatible with one of A, and \,. Without
loss of generality suppose pg is incompatible with A,. Recall that Nif{p,) denotes
the hemisphere of directions compatible with d. Since a point on A, (namely A,)
is outside NH(pq), and A, is an arc with its endpoints on C(py), all of A, must be
outside NH (p;). This implies that f, is incompatible with d, a contradiction. =

Corollary 7.2.1 Let h be a casting plane for a polyhedron P which intersecls e
facet f properly, and assume opposite cast removael. If I inlersects o vericr v and
properly intersects an edge e in the closure of f, then v is antipodal Lo bolh endpoints

of e. If h properly intersects two edges in the closure of f, then they arc parallel.

7.2.4 Convexity properties

In this subsection we derive some additional geometric propertics of convex polyhe-
dra that form the basis of faster algorithms. We also establish an important property
that relates the castability of a simple polyhedron to that of its convex hull.

If P is a convex polyhedron, then the linear programming problems defined by
P and a candidate casting plane h need not consider all facets of I, but only those
intersecting h and those adjacent to h. We make this more precise. For the subset
E;, of the edges of P contained in k, let F*(E;) denote the subset of '+ of facets

that contain at least one edge of E, in their closure. Define F~(£,) analogously.

Furthermore, we define

¢*(h) = cl(hg) ﬂ{ N ‘I’o(f)} and  ¢7(h) = cl(ha)ﬂ{ N ‘I’o(f)} -
Jeryx

fEFXUF+(Ey) i W= (Ey)
Lemma 7.2.6 If P is convez, ¢Y(h) = ¢+(h) and £~ (k) = ¢~ (h).
Proof: We only prove that £+(k) = ¢*(k); the other proof is similar. Further-
more, that £+(h) C ¢+ (k) is trivial, so we prove ¢¥(h) C £* (k).
If ¢*(h) only contains the origin then so does £*(h). Otherwise, let r be a half-
line originating at the origin and inside ¢+(h). If r & £*(h), then there is a facet
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f € Ff\ F*(E}) for which r ¢ Tg(f). Let U(f) denote the (closed) half-space
supporting f distinct from ¥(f). Since P is convex,

fc cl(h+)n{ N T(f)} -

JEFRYUF*(E,)
Since r € ¢*(h), it follows that the projection of any point in f parallel to r onto
h will lie in A N P, But since r € Uo(f), the line segment connecting a point in f
with this projection will be (partially) outside P, namely, in the neighborhood of f.

This contradicts the convexity of P. »

With Lemma 7.2.6, we conclude the following:

Lemma 7.2.7 The plane h is a casting plane for a convez polyhedron P for opposite
cast removal if and only if ¢ (k) N refl(¢~(R)) is non-trivial.

Lemma 7.2.8 Let h be a plane and let £ be a line perpendicular to h through the

origin. The plane h is a casting plane for a convez polyhedron P for orthogonal cast
removal if and only if £ ¢+ (k) N refi(¢~(R)) s non-trivial.

The {ollowing theorem forms the crucial link between simple polyhedra and con-

vex polyhedra in terms of castability.

Theorem 7.2.1 If a simple polyhedron P is castable, then the convexr hull of P is

ulso castable using the same casting plane and cast removal directions.
To prove the theorem, we first establish a few important lemmas.

Lemma 7.2.9 A convex polyhedron P is @ terrain with respect to a facet @ and
a direction d if and only if the vertices of P project into ¢l(Q)) when projected in
direction —d onto the supporting plane of Q.

Proof:

(=») 1If Pis a terrain with respect to a direction d and a facet @, then every point
of P projects into ¢/(Q) in direction —d.

(<) Suppose every vertex of P projects into ¢/(Q) in direction —d. Since P is
convex, the line segment from every vertex v to @ in direction —d must be inside P.

It follows that a ray with direction d from every vertex is outside P. By Observation
7.2.1, P is a terrain with respect to d and Q. o
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Lemma 7.2.10 If a polyhedron P is a terrain with respect to a divection d and facet
Q then CH(P) is a terrain with respect to d and CH(Q).

Proof:  Every vertex of P is on one side of the plane induced by Q; it follows
that the convex hull of Q must be a facet of CH(P). Since every vertex of CH(P)
is a vertex of P, every vertex of CH(P) must project into CH(Q) in direction d.
By Lemma 7.2.9, P is a terrain with respect d and CH(Q).

Lemma 7.2.11 Let h be plane, let Cy and Cy be conver polygons in h such that
Cy1 C Cy, and let S be a set of points entirely contained in one of the half-spaces
bounded by k. If CH(Cy US) is a lerrain with respect to a direction d and facet Cy,
then CH(C2 U S) is a terrain with respect o d and C,.

Proof:  Suppose that CH(C; U §) is a terrain with respect to d and Cy. By
Lemma 7.2.9, S projects inside C, in direction —d. Since Ci1 € C,, S also projects
inside C, in direction —d. By Lemma 7.2.9, CH (C2U S) is a terrain with respect
to direction d and facet Cs. "

Proof: (of Theorem 7.2.1)

Let P be a simple polyhedron, and let h be a casting plane for P with casting
directions d; for 8PN el(h+) and d; for AP N cl(h™). The polyhedron CH(PNAY)U
CH (P N h7) is also castable for casting plane A and directions d, and d; by Lemma
7.2.10. Denote P* = CH(PNh*) and P~ = CH(PNL™).

We need to show that Py = CH(P) is castable with casting plane h and casting
directions d and dy. Let Pf = CH(Py 0\ k%) and P; = CH(Py N k™). Since P*
is contained in P} and P~ is contained in Pj, the theorem follows from Lemma

7.2.1L. u

7.3 The number of distinct casting planes

Given a polyhedron P with vertex set V, two planes h; and hy are (combinatorially)
distinct if the partitioning of the facets into F+, F~, F< and F* they define is
different. By Observation 7.2.2, a trivial upper bound on the number of distinct

casting planes for a polyhedron with n vertices is O(n®).
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This scction gives a linear upper bound on the maximum number of distinct
casting planes for convex polyhedra in case of orthogonal and opposite cast removal
as well as a quadratic upper bound for arbitrary cast removal. The proofs are
constructive, i.e., sets of candidate casting planes of linear or quadratic size are
defined which contain all distinct casting planes. In the following sections we will

use these sets of candidate casting planes to determine castability efliciently.

7.3.1 Orthogonal and opposite cast removal

Observe that for orthogonal cast removal, a casting plane h can infersect a polyhe-

dron P as follows (these properties follow from the previous section):

1. A facel f that intersects h properly is perpendicular to h.

2. An edge that intersects h properly is perpendicular to & (because otherwise

one of the incident facets cannot be perpendicular).

3. Two vertices in the closure of a facet f and in h are antipodal in cl(f). Any

vertex and edge in the closure of f and intersecting k are antipodal in cl(f).
(See Lemma 7.2.5).

For opposite cast removal, we have the following properties of intersections of a
casting plane h and a polyhedron P:

1. The facets of F'* that intersect h properly have their outward normals such
that when translated to the origin, they span a plane or part of it (since
N{%o(f) | f € F*} must contain a line through o).

2. All edges that intersect & properly are parallel (otherwise the incident facets
span more than a plane).

3. Any two vertices in the closure of a facet f and in A are antipodal in cl(f).

Any vertex and edge in the closure of f and intersecting h are antipodal in
cl{f). (See Lemma 7.2.5.)

Let P be a convex polyhedron with n vertices. Since a linear upper bound on
the number of distinct casting planes in case of opposite cast removal implies the

same result for orthogonal cast removal, we only prove the opposite case.
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. Lemma 7.3.1 Given a convez polyhedron P, the number of distinct casting planes
that intersect some edge of P properly is at most linear in the number of vertices of

P for opposite cast removal.

Proof: Let E' be a maximal subset of parallel edges of P, and of which at least
one edge is properly intersected by some casting plane. By convexity of P, such a
casting plane must intersect the closure of all edges of E’, because no such closure
of an edge can be strictly above or below the casting plane. The cast removal
directions are parallel to the edges of E’, and by the classification dcfined in the
proof of Lemma 7.2.4, for every veriex v of P it is specified that cither v € LU LY
orv € hUR™ or v € k, for any casting plane h. Let V*, V™"and VC be these three
subsets of vertices, respectively. If V< contains three or more vertices, then at most
one distinct casting plane is possible for this direction. Otherwise, we consider the
following three cases. Note that since P is convex, by Lemma 7.2.6 we only need to

consider the facets that intersect b and those adjacent to an edge of P in k.

Case 1: VC is empty. In this case, the facets that intersect h are all the faccts
adjacent to the edges of E'. Let Gt be the entlpoints of E' contained in V*+
and let G~ be the endpoints of E' contained in ¥V~. For a plane to intersect
the closure of all edges of £’, it must separate Gt from G~. Since we are
considering opposite cast removal, a casting plane must contain at least three
vertices. The vertices that the casting plane may contain must come from the
set G = G* UG-, since V< is empty. Therefore, to bound the number of
distinct casting planes that intersect an edge of E’ properly, we must count

the number of planes that separate G* from G~ and contain at least three

vertices from the set G.

To do this, we dualize the set of vertices G* to a set of planes Dt and the
set of vertices G~ to a set of planes Dt. Let I be the convex polytope that
lies below all planes in Dt and above all planes in D~. The vertices of I are

precisely the duals of the planes. Therefore, there are O(|E;|) distinct planes.

Case 2: VC contains one vertex. Argument similar to case 1. Simply include the
vertex in V< in the sets G* and G~.

. Case 3: VC contains two vertices. Same argument as case 2.
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Thus, we see that the number of distinct casting planes that intersect an edge
of £’ properly is bounded by O(|£'|). Since every edge of P contributes to only one

subsct L' of parallel edges, the lemma follows by Euler’s formula. ]

The following lemma is the basis of an inductive argument to prove a linear

bound cn the number of distinct casting planes that intersect no edge properly.

Lemma 7.3.2 Given a convez polyhedron P, there exists a vertez v with constant
degree such that v participetes in a constant number of antipodal pairs on the incident

Jacels.

Proof: Let V, [2, # be the number of vertices, edges and facets of P. The summed
degree of all vertices D = 25 < 6V — 12. Every vertex has at least degree 3, thus
there must be at lcast ff/2 + 1 vertices of degree at most 8. The total number of
antipodal pairs, summed over all facets, is at most 3#/2 < 3V — 6, which implies
that the total vertex contribution in antipodal pairs, A, satisfies A < 6V — 12 [69].
Observe that every vertex of P participates in at least 3 antipodal pairs; at least
one in each incident facet. If all V/2+1 vertices of degree at most 8 are in at least 9
antipodal pairs on the incident facets, then A > 9(V/2+1)+3(V/2—1) = 6V +6,
a contradiction. Hence, there exists a vertex which is in at most 8 antipodal pairs

and with degree at most 8. n

Let kb be a candidate casting plane of P, and let @ = AN P. If @ contains three
consecutive vertices u, v, w that are also vertices of P, then each of u and w is either
an endpoint of an edge incident to v, or a vertex antipodal to v on the closure of
a facet f incident to v. We say that the plane through u,v,w is generated by v. It
follows that the set of candidate casting planes generated by v has size (d;'“) , where
d is the degree of v and a is the number of vertices antipodal to v in the closures
of the facets incident to v. Every casting plane h that does not intersect any edge
properly contains at least three vertices that are consecutive in A P, and therefore,

every such casting plane is generated by some vertex of P.

Theorem 7.3.1 Given a convez polyhedron P with n vertices, the mazimum num-

ber of distinct casting planes for P is O(n), assuming opposite removal of the cast

parts.

Proof:  First, assume that the casting plane & intersects some edge e of P properly.

By Lemma 7.3.1, there are O(n) distinct casting planes of this type.
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Next, we show that the number of casting planes that do not intersect any edge
properly is linear. Tor such a casting plane h, all vertices of the intersection polygon
Q = h N P are also vertices of .

The proof is by induction. Let v be a vertex of P of degree at most 8 and which
participates in at most 8 antipodal pairs (see Lemma 7.3.2). The number of casting
planes containing v which do not intersect any edges properly is bounded from above
by the number of planes generated by v, and hence, is constant. We remove v from
P and continue the count on the convex hull of the remaining vertices. We have
counted all distinct casting planes that contain v. Since any casting plane of P that
does not contain v and does not intersect any edge incident to v properly is also a

casting plane of CH(vertices of P — v), the lemma follows by induction. n

There is another interesting combinatorial bound on the complexity of the in-
tersection of all distinct casting planes with a convex polyhedron. Relerring to the
proof of Lemma 7.3.1, we notice that two distinct casting planes £; and fiy that
intersect an edge of E' properly are similar, because they define the same cast re-
muval directions, and they intersect the same closure of edges and facets. In other
words, if 2, and hs each intersect edges properly that are parallel, there cannot be
two vertices u, v strictly to the one side of £; and strictly Lo different sides of hy. We
use the term weakly equivalent for two such planes. Two planes are strongly dislinet
if they are not weakly equivalent. There are O{n) strongly distinct casting planes
for any convex polyhedron P with n vertices. We analyze the combinatorial com-
plexity of A N P, summed over all strongly distinct casting planes L. This quantity
is well-defined for opposite cast removal, since two weakly equivalent casting planes
have an equal-size intersection with P (although they may intersect different facets,
edges and vertices). We prove a bound of O(nlogn) on the summed complexity.
Note that when the sum is over all distinct casting planes (not strongly distinct), the
summed complexity can be ©(n?) if P has a set of {(n) parallel edges. The bound
makes use of a hierarchical decomposition of P that closely resembles the hierarchy
of Dobkin and Kirkpatrick [26]. It is the basis of the O{nlog? n) time algorithms

for casting of convex polyhedra with opposite cast removal.

Lemma 7.83.3 Given a convex polyhedron P with n vertices, there exists a subsel
V' of the vertices V' of size Q(n), such that each v € V' has degree at most 8 and is
antipodal to at most 12 vertices in facets incident to v,
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Proof: Similar to Lemma 7.3.2, one can prove that there are at least V /5 vertices
of degree at most 8 and in at most 12 antipodal pairs. (Otherwise, A > 13(3 — %)f’-{-

31+ lg)f/ =6V, a contradiction.) -

The following hierarchical decompaosition of P generates a set of planes that
contains all the candidate casting planes that do not intersect an edge properly.

The correctness follows from the proof of Theorem 7.3.1.

Algorithm 11: Compute all generated planes
1. Set 2= 1.
2. Cempute the antipodal pairs of the facets of P.

3. Sclect a subset V; of V' as in Lemma 7.3.3. For every vertex v € V;, generate
all planes through u,v,w. For every vertex v € V;, the number of generated
planes is at most (12: 8) = 190, thus O(n) for the whole subset.

4. Recompute the convex hull of the vertices of P minus the vertices of V;.

5. Repeat at step 2 with ¢ =7 + 1 unless P has no vertices left.

The number of generated planes is linear since each vertex generates a constant
number. Antipodal pairs computations take O(n) time and convex hull computa-
tions take O(nlogn) time, see e.g. (28, 69]. The total time taken by Algorithm 11
is given by the recurrence T'(n) < T((1 — a)n) + O(nlogn) where a > 1/5 is the

constant in the Q(n) of Lemma 7.3.3. This recurrence solves to T'(n) = O(nlogn).

Theorem 7.3.2 Given a convez polyhedron P with n vertices, the total complezity

of h N P, summed over all strongly distinct casting planes b for P, is O(nlogn) for

opposile cast removal.

Proof: In the following proof, we make a distinction between planes that are
generated, and other planes that can be casting planes. Planes of the second type
intersect some edge properly.

Consider a hierarchical decomposition of the vertices of P into sets V4,...,Vn
as described above. Observe that m € O(log n).

Let h be any plane, and let vy,...,v; be the sequence of vertices in A N P. We
first show that every consecutive subsequence ;,...,viyam—1 of vertices that also

are vertices of P (no proper intersections of edges of P with k) contains a vertex
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that generates k. To this end, observe that v; gencrates b if and only if v; isin a
vertex set V, with lower or equivalent index as its neighbors, thus il v;oy € ¥, and
vj41 € Vi, then r > s and t > s. Since there are only m vertex sets, any consecutive
sequence of 2m vertices contain at least one that that generates the plane h.

Consider the vertices v; that are proper intersections of & and an edge of P. Any
edge e gives rise to at most one strongly distinct casting plane, and therefore, the
total number of these vertices in £ N P, summed over all strongly distinet casting
planes, is linear.

Summarizing, the sequences of 1 N P summed over all strongly distinct casting
planes contain O(r) vertices that generate a casting plane, O(n) vertices that are
proper intersections of edges with a casting plane, and at most 2m — 1 vertices
in between. It {ollows that the total complexity of the intersections is O(nmn) =
O(nlogn). n
Corollary 7.3.1 Given a convez polyhedron P with n vertices, the number of planes
that intersect the interior of P but do not intersect any facels of P is O(n), and

the number of edges of P contained in these planes, summed over all planes, is

O(nlogn).

7.3.2 Arbitrary cast removal

We have shown that the number of casting planes that also allow opposile cast
removal is linear. For the other casting planes, we know from Lemma 7.2.1 that

they contain an edge of P. Since we may also assume that they conlain a third
vertex, we immediately conclude:

Theorem 7.3.3 Given a convez polyhedron P with n verlices, the number of dis-

tinct casting planes for P is O(n?), assuming arbitrary removal of the cast parts.

7.4 Algorithms for orthogonal and opposite cast

removal

In this section and the next, algorithms are presented for the computation of casting

planes, and hence, determining whether a given polyhedron is castable. This section

focuses on orthogonal and opposite cast removal.
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7.4.1 A simple algorithm for simple polyhedra

We compute O(n) candidate casting planes as follows. By Theorem 7.2.1, we need
only consider the casting planes of the convex hull of P. We first compute the
candidate casting planes that intersect some edge properly, and then the ones that
are gencrated. We only consider opposite cast removal; the case of orthogonal cast

removal only requires some straightforward changes.

Let [, ..., Ey be a partitioning of F into maximal sets of parallel edges. For each
E;, let V;* denote the upper endpoints of E;, V;~ the lower endpoints of ;, and V;*
the sct of vertices that must be contained in the casting plane for the cast removal
difccl.ion parallel Lo the edges of ;. We compute all planes that contain the vertices
of V&, separate V;* from V;~, and contain at least three vertices of V.UVt UV~ by
intersecting the corresponding set of half-spaces in dual space, as in Lemma 7.3.1,
Each vertex of the resulting polyhedron in dual space corresponds to a plane with
the desired properties. This gives O(] E;|) candidate casting planes. The intersection
of | E;| hall-spaces in 3-dimensional space can be computed in O(|E;|log | E;]) time,
see e.g. [28, 69]. Summed over all subsets Ey,..., Ex, we obtain O(n) candidate
casting planes in O(nlogn) time.

Second, we compute the other candidate casting planes in O(nlogn) time by
Algorithm 11. We conclude:

Lemma 7.4.1 Given a polyhedron P with n vertices, one can compute in O(nlogn)
time a set T’ of O(n) planes such that any casting plane h that contains at least three

vertices of P is contained in ', assuming opposite cast removal.

Theorem 7.4.1 Given a polyhedron P with n vertices, one can decide in O(n?)
time and linear space whether P is castable when the cast parts must be removed in

orthogonal or opposite directions.

Proof: If Pis a convex polyhedron, the theorem follows immediately from Lem-
mas 7.2.3, 7.2.4 and 7.4.1. If P is a simple polyhedron, we additionally apply
Theorem 7.2.1. "
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7.4.2 Walking around convex polyhedra

For convex polyhedra, the above result can be improved as follows. By Lemma 7.2.7
determining whether a plane A is a casting plane for P can be done by only con-
sidering the facets intersected by A and the facets incident {o the cdges that are
contained in & (this only holds for convex polyhedra). A linear program on this set
of facets tells us whether h is a casting plane. We also know, by Theorem 7.3.2,
that the total number of facets that we check, for all O(n) candidate casting planes,
is only O(nlogn). This will lead to an O(nlog®n) time algorithm for a convex
polyhedron P with n vertices. The algorithm is split up in two parts, cach of which
walks around the polyhedron to find the relevant facets. The first algorithm tests
eacl class of weakly equivalent planes that intersect some edge properly. The second
tests all remaining planes that are generated, in the terminology of Theorem 7.3.2.

Each edge defines a class of weakly equivalent casting planes. The traversal of
h N P is performed for a generic (i.e. partially specified) plane L in this class. If
any plane in the weak equivalence class is a valid casting plane, the lincar program
constructed by the traversal will find it. By Corollary 7.2.1 we know that any valid
casting plane must intersect a facet in antipodal faces. In the next algorithm we
take advantage of the fact that if we know the casting direction, and one of the faces
of intersection, there is a unique antipodal edge or vertex any valid casting plane

with this orientation must intersect. We preprocess the polyhedron for Algorithm
12 as follows:

1. With Algorithm 11, compute a hierarchical decomposition of P into O(log n)

vertex sets Wi,..., Vi, as in Theorem 7.3.2. Store with each vertex v all O(1)
planes generated by v.

2. For every facet f, store the outward normals of the facets that are incident to

an edge in the closure of f in a sorted list.

3. For every vertex, store the outward normals of its incident facets in a sorted

list (these are linearly ordered since they are incident to the same vertex).

These steps can be done in O(nlogn) time.

Algorithm 12: Test weak equivalence classes of planes that intersect an edge prop-
erly.
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‘ fur everyedge e; € E

if e; is untreated then

Trace N P for a generic casting plane h that intersects all edges parallel

to eq:
Let d be a direction parallel to e1, and let f; be a facet incident to ;.
qr—e,t—1
repeat
if g; is an edge then
mark ¢; as treated.
Let fi4) be the facet adjacent to ¢; distinct from f;.
else ¢; is a vertex
If (gi-1,9i,qi+1) Is a generated triple, mark it as treafed.

Check (in constant time) if ¢; is coplanar with every other vertex

discovered; if not then fail.

Find by binary search the facet or edge fi4; distinct from f; that
splits the facets incident to ¢; into those compatible with d and
those incompatible with d.

end if
Find by binary search the edge or vertex ¢;4; of fiy1 distinct from ¢;

that splits the edges of ¢l(fi41) into those where neighboring facet is
compatible with d and those where it is incompatible.

t—1i+1
until ¢; = e; or h has failed
if the walk returns to e; then

Determine by linear programming whether a plane exists that inter-
sects the closure of the edges discovered on the walk, and also the
discovered vertices {dualize the endpoints of the edges and the ver-
. tices as in the proof «{ Lemma 7.3.1 to obtain the constraints).
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If the LP is {easible, polyhedron P is castable with cast removal direc-

tions d and ~d, and the plane corresponding to the {casible solution

of the LP.
end if
end if
next Edge

We now need to test those candidate casting planes that intersect no edge prop-
erly. The key observation for the next algorithm is that any casting plane that

intersects no edge properly must be generated. For Algoritlun 13, we carry out the

additional preprocessing steps: -

1. For every vertex v of P, store the edges adjacent to v in clockwise order, so that
it is possible to determine by binary search for any query plane A containing
v, the facets or edges incident to v that A intersects.

2. For every facet f of P, store the vertices in the closure of f in clockwise order,
so that it is possible to determine by binary search for any query plane & which

edges or vertices in the boundary of f intersect A.

Each of these preprocessing steps can be carried out in O(nlog n) time, so the total
preprocessing time is O(nlogn).

For a given candidate casting plane h, we use v; to denote the i-th vertex of
@ = hN P discovered, and F}, to to denote the set of facets that intersect h properly
or are incident on an edge of P contained in h. It should be noted that triples

marked as treated in Algorithm 12 remain marked at the beginning of Algorithm
13.

Algorithm 13: Test all candidate planes that do not intersect an edge properly

for every generated triple (u, vy, v3)
if (u,v;,v2) has not been treated then

Let A be the plane through u,vi,vs. Mark (u,v1,vs) as treated. i « 2,
Fh Lo @

while we have not walked all the way around to v, or failed.
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Determine by binary search the edge or facet giy: that h intersects

clockwise from v;.
if ¢i41 is an edge e = (v;,v) then

Vipp & U

Add both facets adjacent to e to Fi.
else ¢;41 is a facet

Add f = gi41 to [y,

Determine by binary search what other vertex or edge ¢’ in the

boundary of f intersects .

Il ¢’ is an edge, then next Triple, since kb was tested with Algo-
rithm 12.

Otherwise, vy «— ¢
end if
if (v;.1,vi, vig1) is generated then

If (vi—1,v;,vi41) has already been treated, h cannot be a casting
plane: next Triple

Otherwise, mark (v;1,vi,vi41) as treated.
end if
te—141
next Step

Construct ¢+ (k) and ¢~ (k) from F},. Test by linear programming if ¢*{h)N
refl{¢~(h)) is non-trivial. If so, accept k as a casting plane, with the casting
directions given by the solution to the LP.

end if

next Triple

Theorem 7.4.2 Given a conver polyhedron P with n vertices, one can decide in

O(nlog® n) time and linear space whether P is castable when the cast parts must be
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removed in orthogonal or opposite directions.

Proof: The above algorithms attain the claimed time bound. This can be scen as
follows. The total preprocessing time is O(nlog n). Let us count the total number of
steps walking around the polyhedron in Algorithm 12. Since each edge is intersected
properly by at most one walk, we charge the step that intersccts an edge properly
to that edge. Consider the steps between two proper edge intecsections. We charge
those before the first generated triple encountered to the previous edge properly in-
tersected, and those after the first generated triple to the most recently encouniered
generated triple. From the proof of Theorem 7.3.2, we know that there are O(n)
triples and that every 2m € O(logn) consecutive vertices contain at least one gen-
erated triple. It follows that O(nlogn) steps are charged to generated triples and
edges. Since each walking step takes O(logn) time, Algorithm 12 takes O(n log® n)
time to generate linear programs.

For Algorithm 13, the time bound follows in a similar way; each step that dis-
covers a vertex is charged to the most recently encountered generated triple. Since
each edge is also discovered by at most one walk in Algorithm 13, we charge that
step to the edge. It follows that the second algorithm also takes O(nlogn) steps
and O(nlog® n) time to generate linear programs.

By Theorem 7.3.2, the total complexity of all linear programs generated by
both algorithms is O(nlogn), hence the total time to test all candidate plancs is
O(nlogn).

7.5 Algorithms for arbitrary cast removal

In this section we study the most general version of the casting problem: determine
whether a simple polyhedron P is castable when the cast parts may be removed
in arbitrary directions. Using Lemmas 7.2.1 and 7.2.2 and one more observation
on arbitrary cast removal, we obtain a simple O(n?logn) time and linear space
algorithm.

Let P be a polyhedron. We first test whether P admits opposite cast removal
using the simple O(n?) time algorithm of Theorem 7.4.1. If so, we are " one. Other-
wise, if P is convex, then, by Lemma 7.2.1, we only have to consider casting planes

that contain some edge of P. If P is non-convex, then, by Lemma 7.2.2, we only
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have to consider casting planes that contain an edge of the convex hull of P,

Observation 7.5.1 Let P be a polyhedron and h be a plane that contains an edge
e of the conver hull of P. Assume without loss of generality that e is horizontal and
that a vertical plane ezists which supports e and has P — cl(e) completely to the one

side.

o If PN cl(ht) is a terrain and P N cl(h™) is not a terrain, then no plare p

conlaining e for which PN h™ C u~ 5 a casting plane.

o If PN cd{ht) is not a lerrain and P N cl{h™) is a lerrain, then no plane u

containing e for which PN h*t C p* is a casting plane.

o If PNncl(h) and PN cl(h™) are both not a terrain, then no plane containing

e is a casling plane.

The above observation sets up a binary search for a casting plane that contains
some cdge ¢ of the convex hull of P (see Figure 7.5). First, compute the convex hull
of P. For any edge e of the convex hull, rotate P such that e is as in the observation.
Consider the n — 2 vertices that are not endpoints of e, and sort them by the order
in which a vertical plane supporting e encounters them if the plane starts rotating
about e. {The plane & can rotate in two directions about e. It is not important which
direction is chosen, as long as this choice is made consistently.) Assume without loss
of generality that the order is vy,...,v,_2. We test whether the plane A supporting
e and also containing v,/p_, is a casting plane by determining whether P N cl(h*)
is a terrain and P N ¢l/(h™) is a terrain. By the above observation, we can stop
considering e if both are not terrains. If both are terrains, we can also stop and & is
a casting plane. Otherwise, if only P N ¢I(hT) is a terrain, we continue the binary
scarch on vuf2,...,Vn-2, and if only P N cl(h™) is a terrain, we continue the binary
search on vy,...,V2-2. After at most [log,(n — 2)] steps, we have determined
whether there exists a casting plane that contains e. This leads to:

Theorem 7.5.1 Given e simple polyhedron P with n vertices, one can determine
in O(n?logn) time and linear space whether o casting plane for P ezists, when the

cast parts can be removed in arbitrary directions.

Proof: To decide whether opposite cast removal is possible we first apply The-

orem 7.4.1 and use O(n?) time. The computation of the convex hull of P requires
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O(nlogn) time. There are O(n) edges about which a plane is rotated. The sorting
of the vertices vy,...,vn_2 takes O(nlog n} time, and cach step of the binary scarch

takes linear time by Lemma 7.2.3. Hence, the above procedure takes O{n®logn)

time. .

Figure 7.5: Rotating a plane about an edge through P.

7.6 Discussion

In this chapter, we addressed the geometric version of the problem of determin-
ing whether a simple polyhedron can be manufactured using casting, and simple
algorithms that use O(n?) or O(n?logn) time and linear space based on linear pro-
gramming. These algorithms can be improved theoretically using partition trees
and their variants(52]. However, we have not presented these improvements since
we are mainly concerned with practical algorithms for casting. A detailed discussion
on the theoretical improvements can be found in [15]. We summarize our results

along with the theoretical improvements in the table below.
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orthogonal | opposite arbitrary
2 2 2
linear space convex polyhedra | O(nlog®n) | O(nlog®n) | O(n?logn)
simple polyhedra O(n?) O(n?) O(n?logn)
best results | convex polyhedra | O(nlog?n) | O(nlogin) | O(n*/?+¢)
(in theory) | simple polyhedra | O(n®%+) | O(n¥2+¢) | O(n¥+)

We note that more complicated objects can be made by using cores and in-
serts [31, 71, 87, 88). Their use slows down the manufacturing process and makes
it more costly, and therefore, should be avoided. However, some objects cannot
be made without the use of cores and inserts. It would be interesting to develop
algorithms that can determine when objects are castable with the use of cores and

inserts,



Chapter 8
Conclusions

In this thesis, we have explored the geometric aspects of a few fundamental problems
stemming from the manufacturing industry. The problems are taken from two com-
plimentary categories of manufacturing processes: rapid prototyping systems and
casting processes. This investigation only scratches the surface of the vast number
of applications of geometry in manufacturing. There exist many unanswered ques-
tions related to the topics covered in this thesis, and many related arcas remain

unexplored. We conclude with a list of open problems suggested by our rescarch.

Questions related to Manufacturing Processes

1. In the variable-angle stereolithography model, we assumed that an object can-
not be built on a vertex or edge since the object would not be stable. However,
in practice, objects may be constructed on a vertex or edge by introducing sup-
port stilts as the object is being built in order to maintain stability. It would

be interesting to incorporate this into the variable-angle model.

2. What is the maximum number of distinct casting planes in case of arbitrary

cast removal? We show an upper bound of O(n?), whereas the only lower
bound we have is linear.

3. For a convex polyhedron P, what is the maximum summed complexity of the
intersection of all distinct casting planes with P? We show an upper bound

of O(nlogn) in case of opposite cast removal, but the trivial lower bound is

linear.

136
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4.

10.

11.

12.

13.

14.

Give simple algorithms for casting that improve our simple O(n log? n), O(n?)

and O(n?logn) time algorithms.

Suppose that the casts may be removed with any motion. Give algorithms to

determine whether a polyhedron is castable in this case.

Suppose that we wish to determine castability of an object with non-linear

boundaries. Give (simple) algorithms that solve this problem.

Suppose that more cast parts are allowed. Determine for a polyhedron how

many cast parts are necessary.

Related to the previous problem, determine how many cores and inserts are

needed to manufacture an object by casting or molding.

. For some casting processes, it is not necessary that the cast parts be separated

by a plane. In these cases, every ceuvex polyhedron is castable. However, no

algorithms are known for cast removal of simple polyhedra.

We only presented algorithms for computing suitable locations of pin gates in
polygonal molds. Generalizing this to polyhedral molds would be interesting.
It would also be interesting to find approximate solutions for polyhedral molds,

as finding exact solutions seems difficult.

Reduce the time complexity of Algorithm 3, which finds the geodesic center
of P constrained to lie in Q. The time complexity is O(n(n + k)) but it seems
like O(nlogn + k) or at least o(n? + k) should be possible.

The algorithms to compute the optimal orientation of a mold as well as the

ones to locate a suitable pin gate have not been tested experimentally.

Generalize the algorithms to compute the optimal orientation of a mold to
handle more complex objects, such as objects with non-linear boundaries, or

of higher genus.

There are many other manufacturing processes that have not been analyzed
from this perspective such as processes with ceutrifugal forces for filling, or

laser sculpting.
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