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Abstract

Two of the fundamental questions that arise in the manufacturing industry concern­

ing every type of manufacturing process are:

1. Given an object, can it be built using a particuIar process?

2. Given that an object can be buiIt using a particuIar process, what is the best

way to construct the object?

The latter question gives rise to many different probIems depending on how best is

qualified. We address these probIems for two complimentary categories of manufac­

turing processes: rapid prototyping systems and casting processes. The method we

use to address these problems is to first define a geometric model of the process in

question and then answer the questions on that mode!.

In the category of rapid prototyping systems, we concentrate on stereolithog­

raphy, which is emerging as one of the most popular rapid prototyping systems.

We modeI stereolithography geometrical1y and then study the cIass of objects that

admit a construction in this mode\. For the objects that admit a construction, we

find the orientations that al10w a construction of the object.

In the category of casting processes, we concentrate on gravity casting and in­

jection molding. We first modeI the process and its components geometrically. We

then characterize and recognize the objects that can be formed using a re-usable

two-part cast. Given that a cast of an object can be formed, we determine a suitable

location for the pin gate, the point from which Iiquid is poured or injected into a

mold. FinalIy, we compute an orientation of a mold that ensures a complete fil1 and

minimizes the number of venting hoIes for molds used in gravity casting processes.
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Résumé

Deux questions fondamentales dans l'industrie manufacturière concernant tous les

procédés de fabrication sont:

1. Y a-t-il un procédé de fabrication spécifique pour un objet donné?

2. Etant donné qu'un objet peut être construit par un procédé spécifique; quelle

est la meilleure méthode de fabrication pour cet objet?

Plusieurs problèmes découlant de cette dernière question peuvent être énoncés selon

la façon dont meilleure est définie. Ces problèmes sont considérés pour deux catégories

complémentaires des procédés manufacturiers: les systèmes de conception de proto­

types et les procédés de moulage. La méthode employée pour résoudre ces problèmes

consiste a définir un modèle géométrique du procédé en question et à répondre aux

questions liées au modèle.

Dans la catégorie des systèmes de conception de prototypes, nous nous con­

centrons sur la stéréolithographie, une méthode de fabrication qui gagne de plus en

plus de popularité. On modèle la stéréolithographie d'une manière géométrique pour

ensuite étudier la classe d'objets pour lesquelles une construction selon ce modèle

est possible. Pour de tels objets, on cherche les orientations permettant une telle

construction.

Dans la catégorie des procédés de moulage, nous nous concentrons sur les méthodes

par gravité et par injection. D'abord, nous modelons le procédé et ses composantes

géométriquement. Par la suite, les objets, qui peuvent être formés par des moules

ayant deux parties et étant réutilisables, sont reconnus grâce à leurs caractéristiques.

Un point d'injection satisfaisant par lequel le liquide peut être introduit ou injecté

est ensuite déterminé pour ces moules. Finalement, pour les moules utilisés dans

un procédé par gravité, l'orientation du moule est déterminée de sorte que le moule

soit entièrement rempli avec un nombre minimal de poches d'air.
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Chapter 1

.!

Introduction

In the manufacturing industry, there are many different types of production metll­

ods such as injection molding, gravity casting, NC machining, laser sculpting, au­

tomated welding and 3-D printing (stereolithography), available to construct an

object. However, every manufacturing process imposes certain restrictions on the

types of objects that can be constructed as weIl as the way a given object may be

built. For example, a sphere cannot be built in one setup using 3-axis NC machin­

ing, but can be easily built using injection molding or gravity casting. AIso, the best

way of constructing a cube using stereolithography is to place it on one of its faces.

This leads to two fundamental questions concerning every type of manufacturing

process:

1. Given an object, can it be constructed using a particular process?

2. Given that an object can be built using a particular process, what is the best

way to construct the object?

The latter question gives rise to many different problems depending on how best

is qualified. The gecmetry of the object, coupled with the restrictions imposed

by the particular manufacturing process under consideration, play a vital role in

determining the answer to these questions.

The importance of these questions is quite evident. For example, when design­

ing an object to be built by a certain type of manufacturing process, currently an

engineer must always keep in mind the process used to construct the object. This

limits the creativity of the engineer since the question of design feasibility must be

kept in rnind while creating the object. In fact, the engineer is never really quite

1



sure whcther the object can be built since no formaI method exists to determine the

fcasibility of an object for most manufacturing processes. To resolve this problem,

a practical algorithm is needed to determine, given an arbitrary object, whether or

not it can be built using any of the known manufacturing prûcesses. The benefits

of such a system would be two-fold. Firstly, an engineer would have an algorithm

to verify whether an object can be created using a particular manufacturing process

(i.e. a type of automatic design verification). Secondly, a list of the possible man­

ufacturing processes that can build a particular object would allow an engineer to

design something and then determine which manufacturing process would be most

cost efficient. In fact, two of the primary ways of reducing costs in manufacturing

engineering, according to [83], are to

•
CHArTER 1. INTRODUCTION 2

1. Determine whether the product as designed and developed is producible.

2. Determine the manufacturing process allowing production within product spec­

ifications at the lowest cost.

In this thesis, we address these fundamental issues for several manufacturing

processes. In order to better understand the power as weil as the limitations of each

manufacturing process under consideration, we first develop a mathematical model

of the process, and then analyze the class of objects that can be constructed under

the given mode!. Having established that an object can be constructed, we then see

what is the be~t way to construct the object in this mode!.

This approach for understanding a particular manufacturing process is not nove!.

Many different mathematical models of different manufacturing processes have al­

ready been studied [44]. Traditionally, models attempt to refiect the physics behind

a production method. As a result, the models are fairly complicated involving dif­

ferential equations, fiuid dynamics, thermodynamics and so forth. In fact, many of

these models form the backbone of simulation programs that simulate a particular

process. Although these models may accurately refiect the particular process be­

ing modelled, they are quite complex and difficult to analyze. The novelty in our

approach cornes from the way we model a process. Our approach is to extract the

geometric essence of the manufacturing processes we consider and answer questions

from a purely geometric perspective. These results do not eradicate the need for

simulations, however, our solutions are conceptually and computationally simple

and provide a first approximation that may greatly reduce the time needed to find
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better solutions through simulation. ln fact, our solutions to the problems in Chap­

ters 3, 4, 5, and 7 provide an alternative to the trial and error approach cllrrently

used [2, 71]. The more vital the role that the geometry of the problem plays, the

better our solutions are.

We present relatively simple discrete geometric models of the processes under

investigation. The objects we study are polygons and polyhedra. These objects can

be handled by almost all CAD/CAM systems [l, S, 9]. Of the diverse manufacturing

processes, only NC machining has been studied extensively from this perspective

[42]. We investigate problems concerning manufacturing processes that faU into two

different but related categories.

The first category of manufacturing processes comprises rapid prototyping sys­

tems (see [6] for details). As suggested by the name of this category, all mal1ufac­

turing processes used to build prototypes fall into this category. These systems are

used in the design phase. While designing an object, these systems can be used to

produce three dimensional prototypes of a given object which provide much more

information to the designer, as weli as to the eventual producer of the object, than

do two dimensional drawings of the abject. Rapid prototyping systems have been

gaining more importance in recent years since this technology is becoming aITordable

and saving companies such as CM, FORD and IBM millions of dollars. Currently,

rapid prototyping is an $S billion per year business and demand is growing at SO

to 90 per cent a year [36]. Stereolithography is emerging as the dominant process

in this category. According to Marshall Burns (physicist, consultant and author of

'A,ltomated Fabrication: Improving Productivity in Manufacturing', published by

PTR Prentice-Halllnc.), stereolithography is going to start a revolution in the man­

ufacturing industry and in 20 to 25 ycars will be as comh1on as computer printers.

In Chapter 6, we study, from a geometric perspective, the powers as well as the lim­

itations of stereolithography by characterizing the objects that can be constructed

by stereolithography.

Once the design of an object has been completed, the next step is production.

The second category of manufacturing processes we study entails casting processes,

which has always been one of the most popular methods used to massproduce

objects [71,31,47, SI, 32]. Basically, a casting process is a manufacturing process

that uses a mold or cast to produce an object. A mold or cast, as defined in [17J,

refers to the whole assembly of parts that make up a cavity into which liquid is



poured to give the shape of the desired component when the liquid hardens. The

importance of this category is evident since many of the objects we see everyday such

as cups, forks, door knobs, and most plastic objects are built using casting processes.

The processes that we study from this category fall into two main groups: injection

molding and gravity casting. Each of the two methods produces an object by filling

a mold or cast of the given object with a liquid, and removing the object once the

liquid has hardened (see Figure 1.1). The difference between the two methods is

that liquid is injected using pressure into the mold in injection molding processes

whereas liquid is poured into the mold and gravity is the sole force acting on the

liquid in gravity casting processes [32].

•
CHAPTER 1. INTRODUCTION

Object

Iiquid poured here

t

Cast of object

4

Figure 1.1: An object and its cast.

In Chapter 7, we study the problem of determining given an object, modelled

by a simple polyhedron, whether or not a two-part cast of the object can be made.

Currently, the two-part cast is the most popular type of cast used in manufacturing.

Casts consisting of more than two parts are difficult to produce and are not as

efficient to use as the two-part casts.

If a cast of a prototype object can be made, a cast designer is then faced with

the problem of determining a suitable location for the pin gate. The pin gate is

the point on the mold from which the liquid is poured or injected into the cavity.

The location of the pin gate plays ail important role in determining whether or not

an object built by one of the two manufacturing processes will have many surface

defects. Many factors play a role in determining a suitable location for the pin gate.

In Chapter 3, we analyze the different geometric factors involved in the location

of a suitable pin gate and present algorithms for determining pin gate locations



satisfying certain geometric. criteria.

Once a c.ast of an object has been built, finding a favorable orientation of the

mold that minimizes surface defects and allows the most complete fill also becomes

a challenge. We model the geometric aspects of the filling of a mold for gravity

casting and determine an orientation that minimizes the number of venting holes

and allows the most complete fill. Chapters 4 and 5 concentrate on this problem for

molds modelled a.0 simple polygons and simple polyhedra, respectively.

The chapters in this thesis are not ordered in the sequence presented herc, but

they are ordered such that geometric tools and techniques developed in One chapter

can be used in a later one.

•
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Chapter 2

Notation and Preliminaries

In this chapter, we review sorne of the notation and terrninology of this thesis.

Notation and terrninology specific to a particular chapter will be introduced in that

chapter. For more detailed definitions, the reader can refer to O'Rourke [64], or

Preparata and Sharnos [69].

The mode! of computation assurned throughout the thesis is the real RAM.

In the real RAM model, each storage location is capable of holding a single real

nurnber, and the fol1owing operations are primitive and available at unit cost (or

unit tirne):

1. Arithmetic operations.

2. Comparisons between two reals.

3. Indirect addressing of mernory.

4. Square roots.

A simple polygon P is a simply connected subset of the plane whose boundary

is a closed chain of Hne segments. A polygon P is denoted by a set of vertices

Vt, V2, ••• , Vn-l> Vn such that each pair of consecutive vertices is joined by an edge,

including the pair {vn,Vt}. Unless stated otherwise, the vertices are assnmed to

be in clockwise order, so that the interior of the polygon lies to the right a.s the

boundary of the polygon is traversed.

The open interior of the polygon P is denoted by int(P), the boundary by ap,
and the open exterior by ext(P). The boundary is considered part of the polygonj

that is, P = int(P) Uâ?

6



CHAPTER 2. NOTATION AND PRELIMINARIES 7

Given a line segment e, the line containing e is denoted by L(e). A convex edge of

. a simple polygon refers to an edge e where both endpoints of e are convex vertices.

Similarly, a reflex edge of a simple polygon refers to an edge e where both endpoints

of e are reflex vertices.

Given two points a and b in the plane, [ab] and (ab) denote respectively the

closed and open line segments between the two points. A chord of a polygon is a

line segment between two points on the polygon boundary such that the open line

segment is contained in the interior of the polygon. A chord divides a polygon inLo

two subpolygons.

We define a simple polyhedron P as in O'Rourke [64]. The boundary of P is a

finite collection of planar, bounded convex polygonal faces such that

1. The faces are disjoint or intersect properly. (A pair of faces intersect properly

if either they have a single vertex in common or have two vertices, and the

edge joining them, in common.)

2. The link of every vertex is a simple polygonal chain. (Triangulate the faces

that have vertex v on their boundary. The link of v is the collection of edges

opposite v in all the triangles incident to v.)

3. The one-skeleton is connected. (The one-skeleton is the graph of edges and

vertices of the polyhedron.)

Th·e boundary is closed and is denoted as âP. The boundary encloses a bounded

region of space, denoted as int(P). The polyhedron consists of the boundary and

its interior, (i.e. P = int(P) U âP). The (unbounded) exterior of P is denoted as

ext(P). As this thesis only deals with simple polyhedra, we will refer to them as

polyhedra in the remainder of the thesis. The vertices and the edges of the faces

are the vertices and the edges of the polyhedron. The open interior of the faces are

caUed the facets of the polyhedron. Therefore, for a facet f, the closure of the facet

is the face and denoted clU).
For two polyhedra P and Q whose interiors lie on different sides of a plane h,

and which are both bounded by the same facet f that lies inside h, we define the

union of P and Q as the polyhedron with all vertices of P and Q, with all facets of

P and Q except f, and with all edges of P and Q except the ones CC'lltained in h

that bound two parallel facets.
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The intersection of a polyhedron with an arbitrary plane results in a collection

(possibly empty) of simple polygons (or line segments or points) Iying on the plane.

A polygon in this collection will be referred to as a sectional polygon. Notice that

a scctional polygon divides the polyhedron into two simple polyhedra. Thus in this

senlle a sectional polygon is the three dimensional equivalent to a chord in a polygon.

By a direction we mean an equivalence cIass of oriented paralleI Hnes. A given

direction 0 will be specified by a point on a unit circle in the following way. Let C

be a unit circle with center o. Let x be a point on the boundary of the circle such

that ray(ox) is parallei to and with the same orientation as 0. Then direction 0

is represented by the point x. (Refer to Figure 2.1). A point that is diametrically

opposite to x on the unit circle represents the inverse or opposite direction to 0 and

is denoted by opp(0). A right (left) normal to a given direction 0 is an equivalence

cIass N of oriented parallel lines with the property that every member of N is

orthogonal to 0 and oriented to the right (Ieft) of 0. The right normal of 0 will be

denoted by N+(0) and the left normal will be denoted by N-(0).

x

N (x) 1N+(x)
......_---'-- ----1....

1
opp(x)

x

opp(x)

Directions on the
unit circle

NH(x) .......

Figure 2.1: Illustrating the representation of directions.

An equivalence class of paralleI lines H will be specified by a pair of points Pl and

P2 that are diametrically opposite on the unit circ!e, such that the line determined

by the two points is parallel to a line in H. A normal to a line in H is an equivalence

c!ass N of parallellines with the property that every member of N is orthogonal ta

H. Given an oriented direction 0, we define the normal to 0, denoted by N(0),

as the equivalence class of parallellines that are orthogonal to 0. NotiCethat the

two points representing the normal divide the boundary of the unit circ!e inta two
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semi-cireles. We refer to the open semi-cirele containing the poiret representing the

direction e as ,h" open normal semi-cil'cle or the open normal /lillf-Illane of e and

denote it as NH(e). The elosed semi-cirele is denoted by NH[e]. The open semi­

drele not containing the point representing the direction of e will be denoted by

NHC(e). Similarly, the elosed semi-cirele not containing the point is NIIC[e].

Given two points a and b on the unit cirele, let a/'c[a, b] and aI'c(a, b) denote

respectively the elosed and open arcS of the unit cirele from a 1.0 b in the elockwise

direction.

Similarly, wc represent the set of ail directions in 3-space by the points on the

surface of a unit sphere (sec Figure 2.2 for definitions 1.0 follow). Let. S be the unit

sphere centered at the origin o. Any point l' on S represents t,he direction op. A

point that is diametrically opposite to l' on the unit sphere represents the ilwc','sc

or opposite direction to direction l'and is denoted by 01'1'(1'). Notice that ail the

points s on the houndary of S with the property that OS . op = 0 (. represents

the inner product) form a great cirele. We denote this great cirele by N(p) since

aU these points are directions that are orthogonal to p. The great circle N(p)

divides the sphere into two half-spheres. The open half-sphere containing p will

he denoted as NH(p) and the closed half-sphere by NH[p]. The open and closed

half-spheres not containing l' will he denoted hy NIIC(p) and NIIc[P], respectively.

When considering the angle between two vectors, we always mean the smaller angle

unless stated otherwise.

toPP(p)

Figure 2.2: The sphere of directions.

For a,:aon-vertical plane h, we denote hy h+ and h- the open half-spaces ahove



and below h, and by cl(h+) and cl(h-) the closed half-spaces above and below h . If

h is vertical but does not contain a line parallel to the y-axis, then h+ and h- denote

the open half-spaces bounded by h that contain the points (0,00,0) and (0, -00, 0),

respectively. If h is vertical and contains a line parallel to the y-axis then h+ and

h- denote the open half-spaces bounded by h that contain the points (00,0,0) and

(-00,0,0), respectively.

•
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Chapter 3

Pin Gate Location

3.1 Introduction

In this chapter, we consider the problem of determining a suitable location for the IJin

gale. The pin gate is the point on the mold from which the liquid is poured or injeeted

into the cavity. The location of the pin gate plays an important raie in determining

whether or not an abject built by one of the two manufacturing processes will

have surface defeets. M:1ny factors play a raie in determining a suitable location

for the pin gate when considered from the point of view of fluid dynamics and

physics of the whole molding process. Ta date, trial and error, guided by engineering

experience, has been the main method in determining a suitable location for the pin

gate [47, 71, 86]. However, through this experiellce, a few of the key characteristics

of an ideallocation for a pin gate have been Ullcoveœd.

If the distance from the gate ta the extremities of the mold cavity is tao

great, the metal freezes prematurely, and misruns result. [47]

This quote points out one of the key problems faced by cast designers. In arder

ta avoid this problem, designers must place the pin gate at a location where the

distance from it ta the extremities of the moid cavity is not tao great. Another key

characteristic of casts that leads ta surface defects is the presence of many "sharp

corners or overhanging or protruding sections..." [2]. These "sharp corners" disrupt

the f10w of molten liquid leading ta surface defects. Therefore, the pin gate must

be placed in a location such that the flow of malte" liquid from the gate does not

encounter tao many sharp corners or make tao many turns. For an overview of

11



the many other factors causing defects in molds and casts, the reader is referred to

[47,2J.
These observations allow one to deduce the following properties for a good loca­

tion for a pin gate:

•
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Property 1: The maximum distance from the pin gate to any point in the object

should be smal!.

Property 2: The maximum number of turns the liquid takes on its path from the

pin gate to any point in the object should be smal!.

When viewed from a purely geometric perspective, these problems can indeed

be solved optimally. The geometric solutions provide an initial approximation that

can aid in the search for a suitable location. In this chapter, we solve the pin gate

location problem for molds modelled as simple polygons which find applications in

polymer molds. In practice, many 3-dimensional objects are almost fiat so that in

effect they can be considered as 2-dimensiona!. Therefore the 2-dimensional theory

is more important than may appear at first glance, and sheds sorne light on the

3-dimensional problem.

The two properties that a pin gate should satisfy have several geometric inter­

pretations. Property 1 can be interpreted as the point inside the simple polygon

whose maximum distance to any point in the object is minimized. If distance is

measured in the Euclidean metric, this point is referred to as the constrained Eu­

clidean center. Sometimes a pin gate is constrained to lie on the boundary of the

mold. In such a case, Property 1 can be interpreted as the Foint on the bound­

ary of the simple polygon whose maximum distance to any point in the polygon

is minimized with respect to ail points on the boundary. This point is referred to

as the boundary-constrained Euclidean center. On the other hand, distance cao be

measured by the geodesic metric, i.e., the minimum distance the liquid must travel

inside the mold to reach a destination. In this case, Property 1 places the pin gate

at the geodesic center, which by definition is constrained to lie inside the polygon,

and the boundary-constrained geodesic center, respectively.

Property 2 can be interpreted as the Iink metric. The link metric measures the

number of turns in a path between two points. For example, if two points cao be

joined by a line segment, then they are at link distance 1. The points inside a simple

polygon, whose link distance to any other point in the polygon is minimized, are
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referred to as the link center. If the pin gate is constrained to the boundary, then

it is referred to as the boundary-constrained link center.

3.2 Constrained Euclidean Center

In this section, we show how to find the point inside a simple polygon P as well

as the point on 8P whose maximum Euclidean distance to every point of P is

minimized. These points are known as the Euclidean center c01lstrained to lie in the

polyg01l, and the Euclidean center c01lstrained to lie on the boundary of the polygon,

respectively.

We first review the problem of finding the Euclidean center. Given a set S of 11

points in the plane, the Euclidean center is the center of the smallest circle enc!osing

the points of S. This problem has a rich history. We summarize as in [69]. The

search for an efficient algorithm seems to have begun in 1860 by Sylvester [82]. Later,

Rademacher and Toeplitz [72] noted that the smallest enc!osing circ!e is unique and

is either the circumcircle of three points of the set or defined by a diarnetrical pair.

This immediately gives an 0(n4 ) algorithm. Elizinga and Hearn [33, 34] improved

this to 0(n2 ). Much work was done from an Operations Research perspective by

viewing the problem as a minimax facility location problem, where the Euc!idean

center is the point whose greatest distance to any point of the set is minirnized

[41, 84, 48J. An O(nlogn) time solution to this problem was proposed by Sharnos

and Hoey [77], but Bhattacharya and Toussaint [10] pointed out sorne errors in [77]

and subsequently proposed an alternate O(n log n) time solution. Preparata [66]

and Melville [60] also proposed an alternate O(nlogn) time solution. However, no

n(n log n) time lower bound for the problem was known. A search for a resolution to

this problem ensued, culminating in the discovery of an elegant 0(n) time solution

to the problem by Megiddo [57].

The Euclidean center of the verticcs of a simple polygon may be a good candidate

for the location of the pin gate, but the center might lie outside the polygon (see

Figure 3.1). Therefore, the location of the center must be constrained to lie inside the

polygon or on its boundary since otherwise it cannot serve as a pin gate. Therefore,

given an object modelled as a simple n vertex polygon, we wish to find the point lying

inside the polygon whose maximum Euclidean distance to any point is minimized

with respect to all points in the polygon. Since the furthest neighbor of a point
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•
Euclidean Center

Figure 3.1: Euclidean center outside polygon.
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must be a vertex, we can restrict our attention to finding the point Iying inside

the polygon whose maximum Euclidean distance to any vertex is minimized with

respect to ail points in the polygon. We also want the point on the boundary whose

maximum Euclidean distance to any vertex is minimized with respect to all points

on the boundary. Although the Euclidean center is unique, the Eudidean center

constrained to lie inside the polygon as weil as the Euclidean center constrained to

lie on the boundary of the polygon need not be unique, as depicted in Figure 3.2.

3.2.1 Center Constrained to a Polygonal Region

We solve a slightly more general problem than the one mentioned in th~ introduction.

Suppose we are given a set S = {Si, S2, ••• , Sk} of k points (in genel':11 position) in

the plane E2, and an n vertex simple polygon P. We wish to find the point c in P

whose maximum distance to any point in S is minimized. If c is not constrained to

lie in P, then it is the Euclidean center of S. However, we refer to c as the Euclidean

center of S constrained to P and denote it by ECp(S).

Our algorithms make use of the furlhest point Voronoi diagram of the set S,

denoted as FPVD(S). Given a point x E E2, we let l6(x) denote the furthest neigh­

bors of x in S, that is the set of points in S such that d(x,l6(x)) = maxyesd(x,y)

where d is the Euclidean distance function. The FPVD(S) partitions the plane into
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V(b)

4
1
1
1
1
1
1c

Euclidcan center constrained to boundary

l V(a)

V(c)
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Euclidean Center

Figure 3.2: Constrained Euclidean center may not he unique.

unhounded convex ceUs, V(Si), such that for any point p E V(Si), Si E tf>(p). This

structure can he computed in O(nlogn) time [69]. A list of the many geometric

properties of the furthest point Voronoi diagram can he found in [62, 69, 10].

We first review sorne properties of the Euclidean center which will help us in

finding its constrained counter-part.

Lemma 3.2.1 (69, JO] The Euclidean center of S lies on the midpoint of the di­

ameter of the set S, DIAM(S), provided that the circle with DIAM(S) as diameter

contains the set S.

Lemma 3.2.2 (69, JO] If the Euclidean center does not lie on the midpoint of

DIAM(S), then it lies on the vertex of the FPVD(S) that yields the sma/lest span­

ning circle.

These two lemmas characterize the location of the Euclidean center. When

considering the constrained version of the problem, notice that if the Euclidean

center happens to lie inside the constraining polygon, then it is also the constrained



Euclidean center. However, difficulties arise when the Euclidean center does not lie

inside the polygon. These difficulties are resolved in the following lemmas.•
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Lemma 3.2.3 The Euclidean center of S constrained to lie in P is the midpoint of

DIAM(S) provided that the diametral circle contains the set S, and the midpoint is

contained in P.

Proof: Follows from Lemma 3.2.1. •
Before tackling the problem of determining the location of ECp(S) when it is

not on the midpoint of DIAM(S), we first establish a lemma that will prove useful.

Let a, b be two points in S such that both a and b are on the convex hull of S, [ab] is

not the diameter of S, and V(a) and V(b), the two ceUs of FPVD(S) representing

a and b, respectively, are adjacent and separated by an edge e. Let x be a point on

the interior of e, and let € > 0 be any small constant.

Bisector of [ab]

/
b

y

x

a

Figure 3.3: Illustration for proof of Lemma 3.2.4.

Lemma 3.2.4 There exists a point y E e with d(x, y) < € such that d(y, a) < d(x, a)

and d(y,b) < d(x,b).

Proof: See Figure 3.3. The edge e must lie on the bisector of line segment [ab],

sinee the points on e are equidistant from both a and b. The points a, b, x must

form a triangle because otherwise [ab] would be the diameter. Since x is contained

in int(e), let y be a point on e in .6(abx) such that d(x,y) < €. The lemma follows.

•
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Lemma 3.2.5 If IISII > 1 then a point b of S cannot lie in V(b).

Proof: Let x E S be a point distinct from b. Note that d(b, b) = 0, howcver,

d(b,x) > 0 which contradicts the fact that b E V(b). •

We now complete the characterization of ECp(S).

Lemma 3.2.6 If the Euclidean center of S constrained to lie in P is not the mid­

point of DIAM(S), then it lies on one of the fol/owing points that yields the smal/est

spanning circle:

1. a vert~x. of the FPVD(S) contained in P,

2. a proper intersection point of the FPVD(S) and the bounda7'y P,

3. a vertex of the polygon P,

4. a point x on an edge e of P with the property that \;fy E e, if ,pey) = ,p(x) then

dey, ,p(x)) ;::: d(x, ,p(x)).

Proof: If ECp(S) does not lie on any of the points mentioned in the statoment

of the lemma, then it must lie in one of the regions described in the following four

cases. We show that each of these cases leads to a contradiction. For simplicity of

exposition, let c = ECp(S).

Case 1: c is a point in the interior of a cell of the FPVD(S), and in int(P). Let

V(b) be the cell containing c. By the Jordon Curve Theorem [64], line segment

[bc] must intersect 8P or V(b) since b 1. V(b) by Lemma 3.2.5. Let x be the

intersection point closest to c. The point x must be in V(b). Therefore the

circle centered at x with radius d(x, b) encloses the set S. However, d(x, b) <
d(c, b) by construction. Hence, we have a contradiction.

Case 2: c is a point in the interior of a cell of the FPVD(S), and in the interior

of an edge e of P but does not satisfy the property that \;fy E e, if ,p(y) = ,p(c)

then dey, ,pCc)) ;::: d(c, ,p(c)). Since the latter property is not satisfied, a point

xE e such that ,p(x) = ,pCc) and d(x, ,pCc)) < d(c, ,pCc)) must exist. However,

the very existence of x contradicts that c is the constrained Euclidean center

since the circle centered at x with radius d(x, ,pCc)) enc:loses S.



Case 3: c is a point in the interior of an edge e of the FPVD(S), and in int(P).

Let V(a) and V(b) be the two ceUs separated by the edge e. Since c is not on

the diameter of the set S, by Lemma 3.2.4 we know that tilere exists a point

x in e and in int(P) such that d(x,a) < d(c,a) and d(x,b) < d(c,b). This

contradicts that c is the constrained Euclidean center.

•
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Case 4: c is a point in the interior of an edge e. of the FPVD(S), and in the

interior of an edge ep of P such that e. and ep intersect but not properly.

Same argument as Case 3.

•
Lemma 3.2.3 and Lemma 3.2.6 characterize the location of ECp(S). We outline the

foUowing algorithm to compute this point.

Algorithm 1: Euclidean Center of P constrained to lie in S

Input: Aset of points S = {S1> 52, . .. , Sn} and a simple polygon P = {P1>P2, .. . , Pn}.

Output: ECp(S)

1. Compute the FPVD(S).

2. Compute DIAM(S).

3. Compute the circle C having DlAM(S) as diameter.

4. Preprocess P in D(n log n) time for point inclusion testing in D(log n) time

using the algorithms of Kirkpatrick [45] or Sarnak and Tarjan [75].

5. If the midpoint of G is contained in P and aU the points of S are contained in

G then exit with the midpoint of DlAM(S).

6. Compute the set of vertices of FPVD(S) contained in P. Let v;, represent this

set.

7. Compute the set of intersections le = {il' i2, ••• , ik } of P with FPVD(S).

8. Partition each edge Ci of P such that for every pair of points x, y E ei, we have

that <,6(x) = <,6(y). Denote the jlh partition of ei by eij'

9. Por each eij, compute the point on eij closest to <,6(eij). If this point is not an

endpoint of eij, place it in the set Ee•
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10. Let Pc represent the vertices of P. For each point c in Ve, Je, Pc, Ee, compute

the smallest spanning circle with center c. Let SP represent this set.

11. Select all the smallest circles in SP·, and output their centers and the radius.

Notice that we assumed that the number <,f vertices of P equals the v.umber of

points in S. Clearly, this need not be the c8"ê', however, this assumption simplifies

the complexity of notation. It is straightforward to repeat the complexity analysis

when P and S have different cardinalities.

Theorem 3.2.1 Given a set of points S = {SI, S2, ... , d,.} and a sim]Jle ]JOlygOll

P = {Pl'P2"" ,Pn}, we can compute the Euclidean center of S cOllstrained to lie

in P in time O(n log n + k) where n is the size of the input and k is the n1t1l1be7' of

intersections between the edges of the FPVD(S) and P.

Proof: The correctness of the algorithm follows from Lemmas 3.2.3 and 3.2.6.

Let us analyze the complexity of the algorithm. Step 1 of the algorithm can

be computed in O(nlogn) time using the algorithm of Shamos [69]. Step 2 can be

computed in O(n log n) time by first computing the convex hull of Sand then finding

the diameter of the convex hull. Preprocessing for point inclusion can he donc in

O(n log n) using the algorithm of Kirkpatrick [45] or Sarnak and Tarjan [75]. Step 5

can be achieved in O(n log n) time by using the point inclusion test. Step 6 can be

done in O(nlogn) time using the point inclusion test. Step 7 can be computed in

O(nlogn+ k) time where k is the number of intersections between P and FPVD(S)

using the algorithm of Chan [18]. If we color the segments in FPVD(S) blue and

the edges of P red, then the algorithm of [18] reports the intersections along each

edge of Pin sorted order. Once these intersection points have been computed, Step

8 and 9 can be achieved in O(n + k) time. Step 10 can be computed in O(n + k)
time since it takes constant time to comput.e the circle and there are O(n + k) points

in the set SP. Finally, Step 11 can be computed in O(n + k). Therefore, the total

complexity of the algorithm is O(nlogn + k) time. _

For simple polygons, k can be O(n2), however, for convex polygons, we notice

the following: a Hne segment can intersect a convex polygon only twiee. Therefore,

sinee FPVD(S) consists of O(n) Hne segments, there can only be O(n) intersections

between FPVD(S) and an n vertex convex polygon. Therefore, we have:



Corollary 3.2.1 Given a set of points S = {S1, S2, .. . ,sn} and a convex polygon

P = {Pi> P2, ... ,Pn}, we can compute the Euclidean center of S constrained to lie in

P in time O(n log n) where n is the size of the input.
•
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3.2.2 Center Constrained to a Polygonal Chain

With a slight modification, Algorithm 1 can compute the Euclidean center con­

strained to lie on the boundary of the polygon, denoted as ECap(S). These modi­

fications are outlined below.

Lemma 3.2.7 The Euclidean center of S constrained to lie on the boundary of P

is the midpoint of DIAM(S) provided that the diametral circle contains the set S,

and the midpoint is on the boundary of P.

Proof: Follows from Lemma 3.2.1. •

Lemma 3.2.8 If the Euclidean center of S constrained to lie on the boundary of

P is not the midpoint of DIAM(S), then it lies on one of the following points that

yields the smallest spanning circle:

1. a vertex of the FPVD(S) on the boundary of P,

2. an intersection point of the FPVD(S) and the boundary P,

9. a vertex of the polygon P,

4. a point x on an edge e of P with the property that Vy E e, if </>(y) = </>(x) then

d(y, </>(x)) ~ d(x, </>(x)).

Proof: If ECap(S) does not lie on any of the points mentioned in the statement

of the lemma, then it must lie in one of the regions described in the foUowing four

cases. We show that each of these cases leads ta a contradiction. For simplicityof

exposition, let e =ECap(S).

Case 1: e is a point in the interior of a ceU of the FPVD(S), and in int(P). This

cannat happen sinee e must be on the boundary of P.

, Case 2: e is a point in the interior of a ceU of the FPVD(S), and in the interior

of an edge e of P but does not satisfy the property that Vy E e, if </>(y) = </>(e)
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then d(y, .p(e)) ~ d(e, .p(e)). Since thelatter property is not satisfied, a point

xE e such that .p(x) = .p(e) and d(x, .p(e)) < d(e, .p(e)) must exist. However,

the very existence of x contradicts that c is the constrained Euclidean center

since the eircle centered al. x with radius d(x, .p(e)) encloses S.

Case 3: e is a point in the interior of an edge of the FPVD(S), and in int(P).

Ag"tin, e cannot lie in int(P) since it is constrained to the boundary.

Case 4: e is a point in the interior of an edge ev of the FPVD(S), and in the

interior of an edge ep of P such that ev and ep intersect but not properly. Let

V(a) and V(b) be the two cells separated by the edge ev. Since e is not on the

diameter of the set S, by Lemma 3.2.4 we know that there exists a point x in

ev and in ep such that d(x, a) < d(e, a) and d(x, b) < d(e, b). This contrudicts

that e is the constrained Euclidean center.

•
Lemma 3.2.7 and Lemma 3.2.8 characterize the location of ECap(S). The modifi­

cations to Algorithm 1 for computing these points are straightforward. Thereforc,

we conclude with the following.

Theorem 3.2.2 Given a set of points S = {Sl,S2, ... ,Sn} and a simple polygon

P = {Pl,P2, ... ,Pn}, we can compute the Euclidean center of S constrained to lie

on the boundary of P in time O(n log n + k) where n is the size of the input and k

is the number of intersections between the edges of the FPVD(S) and P.

Corollary 3.2.2 Given a set of points S = {SI, S2, . .. ,Sn} and a conv"x polygon

P = {Pl,P2, ... ,Pn}, we ean compute the Euclidean cer.ler of S constrained to lie

on the boundary P in time O(n log n) whel-e n is the size of the input.

3.3 Constrained Geodesie Center

Both versions of the constrained Euc1idean center serve as good first approximations

for the locations·of the pin gate. However, in sorne cases the constrained Euc1idean

center may not he a point satisfying Property 1, as intendfod (see Figure 3.4). In fact,

it may he quite had in the sense that the liquid may have to travcl quite far despite

the fact that the pin gate is located at the constrained or houndary-constrained



Euclidean center. The reason is that the Euclidean distance of the pin gate to all

the points may not be a good measure of the actual distance the liquid must travel

inside the polygon. For example, in Figure 3.4, the Euclidean center, constrained

Euclidean center and boundary-constrained Euclidean center al! lie on the same

vertex indicated on the polygon. However, the distance that the liquid must travel

inside the polygon from that point to vertex v is quite large compared to vertex c.

Although for convex or "near" convex objects, the Euclidean metric may be good,

it seems that the geodesic metric may serve as a better approximation since liquid

is travelling inside the polygon.

•
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c

v

Figure 3.4: Constrained Euclidean center may not be a good approximation for the
best pin gate location.

.

In the geodesic metric, the distance between two points inside a simple poly-

gon is defined as the length of the shortest path connecting the two points inside

the polygon. The geodesic center of a simple polygon is the point whose maximum

geodesic distance to any other point in the polygon is minimized. Therefore, by defi­

nition, the geodesic center of a simple polygon lies inside the polygon. Although the

geodesic center and boundary-constrained geodesic center may serve as better ap­

proximations for the location of a pin gate, computing both centers is more difficult

than their Euclidean counter-parts as we shall see.
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The problem of computing the geodesic center of a simple n vertex polygon P,

denoted GC(P), was first tackled by Asano and Toussaint [7]. They gave an

O(n3 loglogn) time algorithm for computing the center. In [7], it is shown that

the geodesic center is unique and located on a vertex of the geodesie fm'tltest I)oint

Voronoi diagram of P, denoted GFPVD(P). The GFPVD(P), like its Euclidean

counter-part, divides the polygon Pinto cells V(Vi), such that the locus of points

in V(Vi) is further from Vi than any other vertex of P (with distance measured

with the geodesic metric). Later, Pollack, Rote and Sharir [65] reduced the com­

plexity of computing the geodesic center to O(n log n) time. They used a different

approach and achieved their time bound by a modification of Meggido's techniquc.

Recently, Aronov et al.[3] presented an O(n log n) time algorithm for computing thc

GFPVD(P), thus providing an alternate O(nlog n) tim~ solution for computing the

center. Therefore, to compute the geodesic center of a simple polygon, any one of

the above algorithms may be used, however, all of these algorithms are complicated

and involved.

The problem of computing the boundary-constrained geodesic center of a simple

polygon P, denoted as GC(8P), has not previously been addressed. We concen­

trate on solving this problem. Like its Euclidean counter-part, the geodesic center

constrained to the boundary is not necessarily unique, and not necessarily an in­

tersection point of GFPVD(P) and P. Figure 3.2 shows an example of this. If an

algorithm for computing the geodesic center already exists, the following heuristic

may serve as a good approximation of the boundary-constrained geodesic center.

Heuristic 3.3.1 A heuristic for computing the boundary-constrained geodesic cen­

ter is to compute the point on the boundary closest to the geodesic center.

In sorne cases, this heuristic actually gives the boundary-constrained geodesic

center, as seen in Figure 3.2. In the next section, we present an O(nlogn) time

algorithm to compute the boundary-constrained geodesic center exactly. The main

idea behind the algorithm is the following. We divide the polygon boundary into

polygonal chains such that the geodesic furthest neighbor of any point on a given

chain is the same. Then, we compute for each chain, the point, which we calI the

candidate for that chain, whose distance to the furthest neighbor is the smallest

compared to any other point on the chain. We select the smallest candidates as the



geodesic center constrained to the boundary. We rnadify an algorithrn of Suri [79],

similar to [3], to compute this.

Given two points a, b in a polygon P, there is a unique geodesic path connecting

a, b in P. We denote this path by 1r(a, b) and its length by da(a, b). Since geodesic

distance is a metric, the triangle inequality holds. Therefore, we have that da(x, y) ::;

da(x, z) +da(z, y) for every three points x, y, z in P. The geodesic furthest neighbors

of a point x in P, denoted by q,(x), are the set of points y in P such that da(x, y) =

maxy zEP{da(x,z)}. Asano and Toussaint [7] showed that the geodesic furthest

neighbor of a point is always a convex vertex of the polygon. The geodesic diameter

of a polygon P, denoted as GDIAM(P), is determined by the pair of points in P

whose geodesic distance is maximum over ail pairs of points in P. If two shortest

paths do not share a point, we say they arc disjoint; otherwise, we say that the

paths interseet.

An important property of geodesics, at the heart of the algorithrn, is the Crossing

Property described in the following lemrna.

•
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Lemma 3.3.1 (Crossing Property) [79] Let Pl,P2,PS,P4 be four points in this

order on the boundary of P. Suppose that Ps E q,(P2) and P4 E q,(PI)' Then we a/so

have PS E q,(pJ) and P4 E q,(P2)'

To compute the boundary-constrained geodesic center, we first compute a con­

strained geodesic decomposition of the boundary of polygan P, which is a decompo­

sition of the boundary of Pinto polygonal chains (Cl, C2, ... ,Ct) such that Ul=l Ci = P

and for every x, y E Ci, q,(x) = q,(y). We denote this decomposition as Ô-CGD(P).

Given this decomposition, the constrained geodesic center can be easily identified,

as shall be shown in the next section. The crossing property is the key behind

the algorithm. It suggests a divide-and-conquer approach to solving the problem

of computing the constrained geodesic decomposition of ôP. We first consider a

restricted version of the decomposition problem, and then we show how to use its

solution ta compute the whole decomposition.

3.3.2 Restricted Geodesie Decomposition

The restricted version of the decomposition problem is described as follows. Let

U = (u., ... ,Ub) be the counterclockwise cltain from point U. to point Ub on the

boundary of P. Let V = (vc, ••• , Vd) be the clockwise chain from Vc to Vd on the



boundary of P, such that both dJains are disjoint except possibly at the cndpoints.

The set of points which are the furthest neighbors of x restrieted to V is denoted by

4>v(x). We want to decompose U into polygonal chains (Cl" C2',"" c.') such that

Ui=l Ci' = U and for every x, y Eco', 4>v(x) = 4>v(y). We refer to this decomposition

as the restrieted decomposition of U with respect to V, denoted by RGDv(U).

Let U., Ub, Vd, Vc be four points on ôP appearing in that order in a counterdock­

wise traversaI of ÔP. Plu., Ubj vc , Vd] denotes the region of P obtained by joining the

counterdockwise chain of ÔP from u. to Ub and the dockwise chain of ÔP [rom Vc

to Vd with 1l"(u., vc ) and 1l"(Ub, Vd) (see Figure 3.5). Wc say that a polygonal region

R C P is geodesically convex if for every pair of points x, y E il, wc have that

1l"(x,y) E R.
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Figure 3.5: P[u., Ubi vc, Vd] is shaded.

Lemma 3.3.2 {79} P[u., Ubj V c, Vd] is geodesically convex.
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Lemma 3.3.2 implies that the restricted geodesic decomposition of U with re­

spect ta chain V can be done entirely within P[u., Ubj Va, Vd]. Be' ùW, we outline the

algorithm to compute this decomposition.

Algorithm 2: RGD(P[u., Ub; va, Vd])

1. If P[u., Ubj Va, Vd] is degeneratê then

Find a VmE [va, ... ,VdJ such that do(u.,vm) = max{do(u.,vj)lc:::; j:::; d}j

Find the point Urn;n E [11.., •.. ,Ub] such that do (Umin> vm )

= min{do(u;,vm)la:::; i:::; b}.

2. Eise if (b - a) :::; 2 and Ua, Ub are vertices then

Determine <,b(u.) and <,b(Ub)'

If <,b(u.) = <,b(Ub) then

let Vrn = <,b(u.).

Find point Urnin on [U.,Ub] such that do (Umin> vrn )

Eise

Compute partition points Xl, X2,"" X, on edge [U.Ub].

Sort these partition points including the endpoints.

Let [11.1,11.2" .• ,11.'+2] be the points ordered on edge [U.,Ub].

let k = r(s + 2)/21-

Find a Vm E [Va, . .. ,Vd] such that do(Uk, Vrn )

= max{do(uk,Vj)lc:::; j:::; d}

Construct and triangulate P[u., Ukj Vrn , Vd] and P[Uk, Ub; Va, m]j

Cali RGD(P[u., Ukj Vrn , Vd]) and RGD(P[Uk, Ub; Va, vm ]).

3. Else if (b - a) :::; 2 and U.,Ub are not both vertices then

Determine q,(u.) and q,(Ub).

If <,b(I1..) = q,(Ub) then

let V m = .p(11..).

Find point I1.min on [u.,l1.bl such that do( I1.min, vm )
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Else

solve directly by computing upper envelopes.
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4. Else

let k = I(a + b)/21

Find a Vm E [ve>-" ,Vd] such that da(Uk,vm ) = max{da(Uk,Vj)lc ~ j ~ d}

Construct and triangulate P[ua,Uk; Vm , Vd] and P[Uk, Ub; Ve , vm ];

Not only does algorithrn RGD compute the rcstrietcd gcodcsic dccomposition

of U into polygonal chains (c,', c/, ... , c,') such that Ui=l co' = U and for cvery

x,y Eco', </>v(x) = </>v(y), but for each chain co' it computes the point on the chain

whose distance to its furthest neighbor is minimum. We prove the corrcctncss of

the algorithm and at the same time, elaborate on sorne of the steps such as how to

compute the partition in Step 2.

We say that P[ua, Ub; Ve , Vd] is degenerate if '1l"(Ua, ve) and '1l"(Ub, Vd) are not disjoint.

Given a degenerate instance of P[ua, Ub; Ve , Vd] computing the decomposition of U

with respect to V is straightforward. Let x he a point on '1l"(ua,Ve)n'1l"(Ub,Vd)' Every

shortest path between a point y in U and a point z in V must contain x. Therefore,

the point vI of V furthest from x is aiso the point furthest from al1 points in U. The

point vI can be computed by traversing the shortest path tree of x. Since this tree

can be computed in linear time [40], we conclude with the fol1owing.

Lemma 3.3.3 If P[ua, Ub; Ve, Vd] is degenerate and vI is the furthest point from

x E '1l"(Ua, Ve ) n '1l"(Ub, Vd), then the point vIon V is </>v(z) for ail z EU. The point

vI can be computed in time proportional to the size of P[ua, Ub; Ve, Vd].

Given an instance of P[ua,Ubi Ve, Vd], if (Ua, ... ,Ub) is a polygonal chain, then

by the crossing property, we can divide the chain in haU and recurse. However, if

Ua and Ub are the endpoints of an edge, it is not clear how to proceed. In such a

situation, we resolve the problem by partitioning the edge into subedges. We require

the fol1owing property on each subedge Si of [Ua, Ub]. For every pair of points x, y on

Si, we want the shortest path from x to every vertex Vj on (ve, . .. ,Vd) to be identical



ta the shortest path from y ta vi except for the first link. We refer ta this property

as the patll-invariant property of a subedge.

Ta sec how to compute a partition of the edge respecting the path-invariant

property, let us look at Figure 3.6. In Figure 3.6(a), notice that once the shortest

paths from Vi ta UI, and Vi ta Us are computed, the path-invariant partition of the

edge falls out by extending the edges in bath paths ta [UI, us]. In this partition

of the edge, every point on a subedge (Ui, Ui+tl has the same shortest path ta Vi

except for the first link. Ta extend this partition ta two vertices, see Figure 3.6(b)..

In Figure 3.6(b), the partition with respect ta Vi and Vi+l differs by only one point

locatcd between U2 and Ua. Again, each subedge has the property that for every

point on the subcdge, the shortestpaths ta both Vi and Vi+! are the same except

for the first link. By continuing in this manner, the edge can be partitioned with

respect ta the chain (vo, ... ,Vd)'

•
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U 1 U2 U J U4 Us 0
6

U7

Partition of cdge (u,u, ) with respecllov, .

(a)

U8 U 1 o2 0 3 U4 Us 0 6 U7 Ua

Partition of cdge (U,u, ) with respecllo vi andv,,,

(b)

Figure 3.6: Partitioning an edge.

Let m be the size of P[u., Ub; vo, Vd]. Since P[u., Ub; vo, Vd] is triangulated, the

shoftest path tree of U. and Ub can be obtained in O(m) time using the algorithm

of [40]. Once the shortest path trees have been computed, ail the partition points

on the edge can also be obtained in O(m) time, by traversing the two trees. Finally,

O(m log m) time is used to sort the partition points. Hence, we conclude with the
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Lemma 3.3.4 Given an instance of P[ua,Ub; v" Vd] of size m, whe7'e [ua, Ub] is

an edge, we can partition in O(m log m) time the edge [ua, Ub] into subedgcs such

that each subedge respects the path-invariant property with "espect ta the chain

(ve"",Vd)'

The reason we partition the edge into subedges, when faced with an instance of

P[ua,Ub; Ve,Vd] where [ua, Ub] is an edge, is quite simple. First, it allows us to continue

the divide-and-conquer algorithm. Second, the base problem that 've are faced with

at the end of the recursion can be solved directly because of the path-invariant

property. As the algorithm computes the decomposition of the U chain, cvcntual1y

in Step 3, we are faced with an instance P[ua,Ub; ve, Vd] where Ua, Ub arc the end points

of a subedge respecting the path-invariant property, and (ve, • •• ,Vd) is a polygonal

chain. Because of the path-invariant property, we know that the distance from a

vertex Vi E (ve, ... ,Vd) to a point x on [ua, Ub] has the form k1 +"fP +Z2 where

k1 is a constant whose value is the gcodesic distance from Vi to the last vertex, say

V" before x on 7r(Vi, x), and "fP + z2 is the distance from VI to x with k as the

orthogonal distance between the line L containing [ua, Ub] and V" and z rcpresents

the distance between x and the point on L that is the orthogonal projection of VI

onto L. Consider the example in Figure 3.7. The constant k1 accounts for the

distance from Vi to Vi+2' By the path-invariant property, this value is the same for

ail points on the subedge. The distance from Vi+2 to x is accounted for by "fP + Z2.

Let d.,(x) denote the distance function from Vi E (ve"",Vd) to a point x in

[ua, Ub]. These functions are simple and can be used to solve directly the decompo­

sition of [Ua, Ub] into subedges such that for each point in the subedge, the furthest

neighbor is the same vertex of (ve , ••• , Vd). This can be achieved by computing the

upper envelope of the functions d.,(x) for ail Vi E (ve, .•. , Vd)' The following lemm1lo

gives the key to solving this in time that is linear in the size of the problem instance.

Lemma 3.3.5 Let Pl> P2, P3, P4 be four points in this order on the boundary of P.

Ifda(Pl'pù> dG(Pl>P3) then dG(P2,P4) > dG(P2,P3).

Praof: Suppose dG(Pl,P4) > dG(Pl,P3) and dG(P2,P3) ~ dG(P2,P4)' We see that

dG(Pl>P4} + dG(P2,P3) > dG(Pl,P3) + dG(P2,P4)' By the relative positions of the

points, 7r(Pl, P3) must intersect 7r(P2, P4)' Let x be a point on this intersection.
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Figure 3.7: Distance function from subedge to vertex.
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By the triangle inequality, da(PI,P4) ~ da(PI, x) +da(X,P4), and da(p2'ps) ~

da(P2' x) +da(x, Ps). But since x E 7l"(PI, Pa) n 7l"(P2, P4), we contradict our assump­

tion, proving the lemma. _

The above lemma implies that we can compute the upper envelope in linear

time simply by inserting the functions in the order (ve , ••• , Vd) or the reverse order.

Both arguments are symmetric. Let us look at an example to see why this is

so. Suppose we are inserting the functions in the order dVd(X),dvd_,(X), ..• ,dvc(x).

Consider the example in Figure 3.8 where the first three functions have been inserted.

The upper envelope consists of dv.(x) between U. and UI, dVd_' (x) between Ul and

U2, and dVd_'(x) between U2 and Ub. The next function to be added is dVd_' (x).

If dVd_3 (x) is below dVd_, (x) between U2 and Ub then it cannot lie on the upper

envelope because if it did, we would have a situation contradicting Lemma 3.3.5. If

d.d_' (x) intersects d.d_> (x) between U2 and Ub then we update the upper envelope

by adding the intersection point, but we no longer need to compare dVd_'(x) with

any other function on the upper envelope by Lemma 3.3.5. Finally, if dVd_'(x) is

above dVd_, (x) between U2 and Ub then remove the intersection point U2, remove



dVd_'(x) from the upper envelope, and repeat the test on the next piece of the

upper envelope, namely dVd_ 1 (x). Therefore, when we add the fllnctions in the

order dVd(x), dVd_ 1 (x), ... ,dvo(x), the amount of time spent adding a fllnction can

be determined in constant time plus the time proportional to the Humber of functions

and intersection points deleted which is linear time overall. We conclud" with the

following lemma.
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d. (x)
d-2

-- \----

Figure 3.8: Computing upper envelopes.

Lemma 3.3.6 Given an instance of P[u., Ub; Vc , Vd] where [u., Ub] is a scgmcnt with

the path-invariant property, [u., Ub] can be decomposcd, in time proportionai to the

size of P[u., Ub; vc, Vd], into subedges such that for each point in the subcdge, the

furthest neighbor is the same vertex of (vc, ... ,Vd).

The algorithm to compute RGDv(U) stems from the crossing property described

in Lemma 3.3.1. We show that this property holds at all levels of recursion. The

algorithm is initiated with a call to RGD(P[u., Ub; Vc, Vd]). At each invocation, the

algorithm either makes two recursive calls with smal1er problem instances or solves

the problem directly. The calling relation forms a binary tree, which we refer to as

the recursion tree. A node of this tree having two children is an instance of RGD



CIiAPTER 3. PIN GATE LOCATION 32

where two recursive calls were made. A leaf of the recursion tree is an instance of

the problem that is solved directly. The root of the tree represents the initial calI.

The depth of a node in the tree represents its level of recursion.

Lemma 3.3.7 Let U = (u., ... ,Ub) and V = (ve,.,.,Vd). Given an initial cali of

RGD(P[u., Ub; Ve,Vd]), every recursive cali RGD(P[uq,UT; v., Vt]) has the property

thatfor ail xE (uq, ... ,uT), we have that 4>v(x) E (v.,. .. ,v,).

Proof: We proceed by induction. The initial cali has the property that for every

xE U, 4>v(x) is in V. Let us assume, by induction, that ail subproblems at depth k

in the recursion lree have the desired property. Wc show that ail problems at depth

k + 1 have the desired property given that the property holds at depth k.

There are only two places in the algorithm where a recursive cali takes place.

Let us first look at the cali in Step 4. The same argument holds for the other cali in

Step 2. Let P[uq , UT; v" v.] be an instance of a problem at depth k. By induction,

we know that for ail x E (u q , ••• , UT)' we have that 4>v(x) E (v" ... ,Vt). In Step

4, P[uq,UT; v., v,) is split into two instances, P[uq,Uk; Vm , vp ] and P[Uk, UT; v" vm ).

By the crossing property, we know that for ail x E (uq , ••• , Uk), we have 4>v(x) E

(vm, ... ,vp ) and for ail xE (Uk, ... ,UT), 4>v(x) E (V., ... ,vm ). Thus, the lemma

follows by induction. _

Wc are now in a position to prove the correctness of algorithm RGD.

Theorem 3.3.1 Algorithm RGD correctly computes the restricted geodesic decom­

position of chain U with respect to V.

Proof: By Lemma 3.3.7, if the root of the recursion tree is an instance of

RGD(P[u., Ub; Ve,Vd]) with the property that for ail x E (u., ... ,Ub), we have that

4>v(x) E (ve , ••• , Vd), then ail recursive calls, i.e. ail other nodes of the tree, have

this property. Therefore, the correctness of the restricted geodesic decomposition of

U with respect to V rests on the correctness of the leaves of the recursion tree, that

is, the instances of RGD that solve the problem directly.

If the leaf instance is degenerate, then the problem is solved directly in Step

1. The correctness of this step is proved in Lemma 3.3.3. If the problem is solved

directly in Step 2 (in the first if statement), then the correetness is verified by the

crossing property. Similar1y, if the problem is solved directly hi '.ne first part of Step

3, the correctness is guaranteed by the crossing property. Finally, if the problem is



solved directly by computing upper envelopes in Step 3, then it is correct by Lemma

3.3.6. Since, we have shown that all instances where the problem is solved direetly

are correct, the theorem follows. •
•
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We now turn our attention to the complexity analysis of algorithm RGD. We

show that the algorithm runs in O(n log n) time and uses O(n) space. To do this, wc

first show that there are O(log n) levels of recursion. Then wc show that an instance

of RGD(P[ua , Ub; vo, Vd]) (excluding recursive calls and sorting of partition points)

runs in time proportional to the size of P[ua , Ubj vo, Vd]. Finally, wc show that the

total size of all polygons at a particular levcl of recursion is O(n). The main ideM

in the complexity analysis to follow stem from the analysis given in Suri[79].

Lemma 3.3.8 A/gorithm RGD(P[ua , Ubj vo, VdJ) runs in lime ]J7"Opol'tiona/ ta the

size of P[ua , Ub; vo, Vd], excIuding recursive eaUs and sorting pal'lition points.

Proof: Let m be the size of P[ua, Ub; vo, Vd]. Step 1 runs in time O(m), by Lemma

3.3.3. A furthest neighbor of a point in P[ua, Ub; vo, Vd] can be found in O(m) time

using the algorithm of [40]. Therefore, the first part of Step 2 runs in O(m) time.

Because of the structure of P[ua , Ub; vo, Vd], constructing and triangulating the two

subpolygons in the second part of Step 2 (in the Else statement) and in Step 4

can be donc in O(m) by a simple algorithm in [79] or a more complex algorithm of

ChazeUe [19]. Since we are excluding the sorting of partition points, Step 2 and Step

4 can be donc in O(m). Finally, Step 3 can be achieved in O(m) time as proved in

Lemma 3.3.6. The lemma follows. •

We first show that the number of distinct edges among all the polygons con­

structed by algorithm RGD is O(n), where n is the size of the polygon in the initial

invocation. Recall that P[ua , Ub; Vo, Vd] denotes the region of P obtained by joining

the counterclockwise chain of 8P from Ua to Ub and the clockwise chain of 8P from

Vo to Vd with 1r(ua , vo) and 71"(Ub, Vd) (see Figure 3.5). Wc refer to 1r(ua , vo) and

1r(Ub, Vd) as connecting paths. There are three types of edges in P[ua , Ub; vo, Vd]. An

edge that belongs to aPis a primary edge, an edge that is a subedge of an edge

belonging to 8P is a partition edge, and an edge that belongs to a connecting path

is a connecting edge. The number of distinct primary edges is O(n) since aU primary

edges are contained in the initial polygon. We now show that there are O(n) distinct

partition edges and conneeting edges.



Lemma 3.3.9 Let B be a simple polygon. Let a, c be two arbitrary but fixed points

on the boundary of B and let b, d be two other points on the boundary of B such that

a, b, c, d appear in this order in a countercIockwise traversai of the boundary of B.

Then, aIl edges of 71"(b, d), except perhaps three, belong to E(a) U E(c), where E(a)

denotes the set of edges in the shortest path tree of B from the point a.

Proof: The proof is identical to the proof of Lemma 4 in Suri [79], except there

are three edges rather than one that do not belong to E(a) UE(c) since we consider

points on the boundary of the polygon whereas Suri was dealing with vertices of the

polygon. •
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Lemma 3.3.10 The total number of partition points added is O(n) where n is the

size of the initial instance of RGD(P[ua,Ub;Vc,Vd]).

Proof: Let P[ua, Ub; VCl Vd] represent the initial n vertex polygon. We have

U = (ua"'" Ub) and V = (vc , ... , Vd)' Let nu represent the number of vertices

in the U chain and nu the number in the V chain. We refer to an instance of

RGD(P[uq , Ur; V., v,]) .where [Uq , url is an edge of P and (V., ... ,v,) is a polygonal

chain belonging to 8P as a partition instance.

Notice thaf~ a vertex in the V chain can appear in only two partition instances,

since each timc during the execution of RGD that the V chain is divided, only the

dividing vertex appears in common in the two ensuing subinstances. Therefore, we

can conclude that at most 2nu vertices from the V chain are considered among aU

partition instances.

Partition points are created by extending the edges in the shortest path between

a vertex Vi in the V chain and a vertex Uj in the U chain. So the number of partition

points introduced is bounded by the number of distinct edges of aU the shortest paths

considered to create the partition points. By Lemma 3.3.9, aU but three edges of

71"(Vi, Uj) appear in E(ua) U E(Ub)' The size of E(ua) UE(Ub) is O(n). Since at most

2nu vertices of the V chain are considered, there are at most 3· 2nu E O(n) edges

not accounted for by E(ua) U E(Ub)' Therefore, a total of O(n) partition points are

introduced. _

Since a total of O(n) partition points are added given that the size of the initial

instance of RGD(P[ua,Ub; Vc,VdJ) is n, we conclude that the total time spent sorting

all partition points is O(nlogn). Therefore we have the foUowing.



Lemma 3.3.11 Given an initial instance of RGD(P[ua, Ub; Vo, Vd]) of size 1/., the

total time spent sorting partition points is 0(71. log 71.).•
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Lemma 3.3.12 There are O(logn) levels of recursion whe,"f. 71. is the size of the

initial instance of RGD(P[ua, Ub; vo, Vd]).

Proof; Let II = (i\, i 2 , ••• , i m ) represent the the longest root to leaf patÎl in the

recursion tree. Each i k of the path II represents the problem instance occllrring

at recursion level k along the path. On any root to leaf path, there can be only

one partition instance. Let us suppose that II has a partition instance and let i p

represent it. The argument is similar if II does not have a partition instance.

From il to i p , at each step, the U chain is divided in half as secn in Step 4 of

algorithm RGD. Therefore, there are O(log 71.) instances from il to the partition

instance. At the partition instance i p , by Lemma 3.3.10, at most 0(71.) points are

introduced. Again, from i p to i m , at each step the partitioned edge is divided in

half as seen in Step 2. So, the length of the path from i p to i m is also O(log 71.).

Therefore, II has length O(log 71.). Since the longest root tc leaf path in thc recursion

tree has length O(log 71.), there are O(log 71.) levels of recursion. _

Lemma 3.3.13 There are 0(71.) distinct edges among aIl polygons construeted by

RGD(P~ua' Ub; Vo,Vd]).

Proof: By Lemma 3.3.12, the height of the recursion tree is O(log 71.) where 71. is

the size of Plua , Ub; vo , Vd]. Since the recursion tree is a binary tree, there are 0(71.)

nodes in the tree. This means that at most 0(71.) polygons are constructed in tota!.

Since each polygon has two conneeting paths, at most 0(71.) conneeting paths are

construeted in tota!.

Now, a conneeting path joins a point Ui on the U chain to a point "i on the V

chain. By Lemma 3.3.9, all but three edges of1r(Ui, Vi) appear in E(ua)UE(ub)' The

size of E(ua)UE(ub) is 0(71.). Since at most 0(71.) conneeting paths are constructed,

there are at most 0(71.) edges not accounted for by E(u.) U E(ub)' This adds up to

a total of 0(71.) distinct connecting edges. By Lemma 3.3.10, there are only 0(71.)

distinct partition edges. By definition, there are only 0(71.) distinct primary edges.

The lemma follows. •



All that remains to be shown is that the summed complexity of all the polygons

constructed in one particular level of recursion is O(n). To do this, wc show that

a distinct edge can belong to only a constant number of polygons in a particular

level of recursion. By the construction of polygons in Step 2 and Step 4, we see that

parti tion edges and primary edges cannot occur in two polygons at the same level

of recursion. This follows from the way the U chain and V chain are divided. We

now show that a connecting edge can only occur in a constant number of polygons

on the same level of recursion.

In order to show this, we must consider the connecting edges as directed. All

connecting paths are directed from the U chain to the V chain. Therefore, the

edgcs of the connecting paths are arcs that are directed from one chain to the other.

Considcr the two paths in Figure 3.9. Both are connecting paths from the U chain

to the V chain, and both have the edge e in common. However, e is directed one way

in one of the paths and the opposite way in the other. This distinction is important

in the analysis to follow.

Edge e directed
the other way

•
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Edge e directed
oneway
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Figure 3.9: Directed edges must be considered.

Lemma 3.3.14 (79] Let al, a2, a3, bl , b2, b3 be six points in this order in a coun­

terclockwise traversaI of P. Suppose that the directed shortest patks ?l'(al, bl ) and

?l'(a3'~) have a directed edge e in common. Then, the sa,me directed edge e aiso is
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included in the shortest path 1r(a2' b2).
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We only need to consider non-degenerate polygons at the same level of reeursion.

Given a degenerate polygon at reeursion level i, algorithm RGD solves the problcm

direetly at this stage. Therefore, sinee the degenerate polygon is derived from a

non-degenerate polygon at level i -l, the eomplexity of the degencrate polygon ean

be accounted for by the non-degenerate 'parent'.

Lemma 3.3.15 Let P(ua1 , Ub1 ; V C1 , Vd 1], P[ua2 , Ub2 ; vC2 ' Vd2 ], and P[U a31 1lba; V ca , Vda ] he

three non-degenerate polygons that occur at the same level of l'eCIII'sion, such that

al ~ bl ~ a2 ~ b2 ~ a3 ~ bs, and Cs ~ ds ~ C2 ~ d2 ~ Cl ~ dl, Th en, the dÜ'ected

conneeti:::f, paths of P[uall Ub, j Vell Vd,] and P[ua" 1/b3 ; V e3> Vd3] a7'e cdge-disjoint.

Proof: See Figure 3.10. The proof of this lemma is similar to the l'roof of

Figure 3.10: Illustration for Lemma 3.3.15

Lemma 7 in [79]. Suppose that the two directed conneeting paths 1r(XI, yt} and

1r(X3,YS) share an edge e, where Xl E {Ua"Ub,} and Xs E {Ua3>Ub,}. Then by

Lemma 3.3.14, 1r(Ua.,ve,) and 1r(Ub"Vd,) must also share edge e, contradicting the

fact P[ua., Ub,; Vc" Vd,] is not degenerate. _

Theorem 3.3.2 Aigorithm RGD computes the restrict~d geodes;'" decomposition of

chain U with respect to V using O(nlogn) time and O(n) space given an input of

size n.



Proof: The correctness of the algorithm is shown in Theorem 3.3.1. Let P[ua, Ubj vc, Vd]

be the input polygon of size n to algorithm RGD. By Lemma3.3.8, we know that ex­

cluding recursive calls and sorting partition points, algorithm RGD(P[uq , Ur; VS) Vt])

runs in time proportional to the size of P[uq, Ur; VS) Vt].

The size of all the polygons constructed at the same level of recursion is O(n) by

Lemma 3.3.13 and Lemma 3.3.15. There are O(log n) levels of reculsion. Renee, the

total time spent, excluding sorting partition points, is O(n log n) By Lemma 3.3.11,

the time to sort all pàrtitions points is O(nlogn). The theorem follows. •

•
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In the next section, we show how to use the restricted geodesic decomposition to

solve our initial problem of computing the geodesic decomposition of the boundary.

3.3.3 Geodesie Center Constrained to the Boundary

To compute the geodesic decomposition of the boundary of a simple polygon, we

apply the algorithm for restricted decomposition three times. The following lemma

of Suri[79] provides the key.

For the following lemma, we assume that (Ut, U2, ••• , un) is the counterclockwise

sequence of vertices of polygon P. We let (ua, .. . , Ub) denote the counterclockwise

chain of 8P from Ua to Ub. Let Ui be an arbitrary vertex of P. Let Uj E </>(Ui) be

a geodesic furthest neighbor of Ui, and Uk E </>(Uj) be a geodesic furthest neighbor

of Uj. It is possible that Uj = Uk. Let us assume, without loss of generality, that

Uj, Uj, Uk is the order of these vertices in a counterclockwise traversaI of P starting

at vertex Uj, then we have the following lemma.

Lemma 3.3.16 ['l9] Let Uj be an arbitrary vertex of P. Let Uj E </>(Uj) and let

Uk E </>(Uj), such that Ui, Uj, and Uk are in this order in a counterclockwise traversai

ofP.

1. for any vertex u/ E (Uj, ... ,Uj), there exists another vertex Um E (Uj, ... ,Uj)

satisfying U m E </>(u/),

2. for any vertex u/ E (uj, .. . ,Uk), there exists another vertex Um E (Uk, ... , Uj, ... , Uj)

satisfying Um E </>(u/),

9. for any vertex u/ E (Uk, . .• ,Uj), there exists another vertex Um E (Ui, ... ,Uj, • .. , Uk)

satisfying Um E </>(u/),
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From the above lemma, we can conclude that to compute the geodesic dccompo­

sition of P, we simply solve the following three instances of the rcstrietcd gcodcsic

decomposition of P.

Instance 1 The U chain is (u;, ... ,Uj) and the V chain is (Uj, .•. , Uk, ... , u;).

Instance 2 The U chain is (uj, ... , Uk) and the V chain is (Uk, ... , U;, •.. , Uj).

Instance 3 The U chain is (Uk, ... ,U;) and the V chain is (u;, ... ,Uj"",Uk)'

Therd:;re, we have the following theorem.

Theorem 3.3.3 The geodesic decomposition of a simple polygon can be c01llJluted

in O(n log n) time and O(n) space given an input of ,oize n.

Once the geodesic decomposition of a polygon P has been computed, the boundary­

constrained geodesic center can be computed as follows. Let (c\, C2,"" Ct) represcnt

the polygonal chains in the geodesic decomposition of the boundary of P wherc

Ul=l c; = P and for every x,y E c;, ,p(x) = ,plY), For each c;, compute the point

x E c;, with the property that the geodesic distance from x to ,p(x) is smallest com­

pared to all other points in c;. In other words, da(x,,p(x)) = minvYEc;{da(y,.p(y)}.

The point x is referred to as the candidate for the chain c;. In fact, algorithm RGD

already computes the candidates for each chain as seen in steps 1, 2 and 3 of the

algorithm. We conclude with the following theorem.

Theorem 3.3.4 The boundary-constrained geodesic center of polygon P is the can­

didate x', such that da(x', ,p(x')) = mirrv candidates y{da(y, ,plY)}.

Proof: Suppose that x' is not the boundary-constrained geodesic center of poly­

gon P. Let z be the boundary-constrained geodesic center of polygon P. Now, z

is on sorne chain c; of the geodesic decomposition of P. Since it is the boundary­

constrained geodesic center of polygon P, it must be the candidate for chain c;. The

geodesic distance from x' to ,p(x') is less than or equal to the geodesic distance

from z to ,p(z) by definition. If da(x', ,p(x')) < da(z, ,p(z)), then z cannot be the

boundary-constrained geodesic center. If dG(x', ,p(x')) = dG(z, ,p(z)), then x' is also

a boundary-constrained geodesic center. Both are contradictions, thereby proving

the theorem. _
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In this section, we address the problem of computing the geodesic center of a simple

polygon P constrained to lie inside a simple polygon Q, where Q is contained in P.

We denote this center as GCQ(P). If Q equals P then we simply have the geodesic

centcr of the polygon P. We can further restrict the geodesic center to lie on the

boundary of polygon Q, denoted GCaQ(P). In this case, if Qequals P, then we have

the geodesic center constrained to the boundary of P. The reason we differentiated

the problcm of computing the geodesic center constrained to the boundary from

this problem is that we use the geodesic furthest point Voronoi diagram to solve

this problem, but to solve the former problem, we wcre able to avoid computing the

gcodesic furthcst point Voronoi diagram by modifying Suri's algorithm [79]. The

argumcnts we usc to solve this l'c::>blem are similar to the arguments used to solve

the Euc1idean center constrained to a polygon region.

Since in this and the following subsection we make extensive use of the GFPVD(P),

let us review a few of its properties. In order to use the algorithm of [31, we assume

that no vertex is geodesically equidistant from two other vertices. This can always

be guaranteed by applying a slight perturbation to the vertices if the condition is

violated. Like its Euc1idean counter-part, GFPVD(P) partitions Pinto cells, V(Pi),

such that for every point P E V(pi), the point Pi is a furthest geodesic neighbor of

p. A vertex of the GFPVD(P) is a point that is geodesically equidistant to three

vertices furthest from it. An edge between two Voronoi vertices is either a straight

edge or a hyperbolic arc. Finally, the boundary of a Voronoi cell consists of a con­

catenation of straight edges and hyperbolic arcs. For more geometric properties of

geodesic furthest point Voronoi diagrams, the reader is referred to [3, 4].

Lemma 3.3.17 (4, 55] The geodesic center of a simple polygon P lies on the mid­

point of the geodesic diameter of P (GDIAM(P)) or on a vertex of the GFPVD(P).

When the geodesic center of the polygon P lies on the midpoint of the geodesic

diarneter, it has a special property. Let bis(a, b) represent the geodesic bisector of

a and b inside P, i.e. for every point x on bis(a, b), dG(x, a) = dG(x, b). Let a, b be

two points of polygon P, then we have the fol1owing.

Lemma 3.3.18 If the midpointm of1l'(a,b) lies on the interior of the edge separat­

ing cells V(a) and V(b) of GFPVD(P), then m is the geodesic center P and 1l'(a, b)

is the geodesic diameter of P.



Proof: Vve proceed by contradiction. Suppose m is not the geodesic center, and

let c be the geodesic center. The bisector bisea, b) partitions polygon Pinto two

parts. Let p. represent the part where V.t; E p., da (x, a) < da (x, b) and Pb be the

part where Vx E Pb, da(x, b) < da(x, a). If c is on bis(a, b), then da(e, a) > da(m, a)

since m is on 7I"(a, b) and geodesics are unique. If e E p. then da(e, b) > da(m, b)

sinee 7I"(e, b) must intersect bis(a, b) at sorne point x by the Jordan Curve TheOl·em

and da(x, b) ~ da(m, b). Similarly, if e E H then da(e, a) > da(m, a). Therefore,

by contradiction, m must be the geodesic center. Since mis the geodesic center, it

follows that 7I"(a, b) is a geodesic diameter. _

•
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Before continuing, we need a few definitions. Let a, b, e be three points in a

simple polygon P. The geodesic angle Labe is the smaller of the two angles betwcen

the first link on the geodesic path from b to a and the first link on the path from b

to c. Now, consider the paths 7I"(a, b), 7I"(b, e), and 71" (a, cl. There exist points a', b',

and é such that the paths 71" (a, b) and 7I"(a, e) intersect in the path 7I"(a, a'), the paths

7I"(b, c) and 7I"(b, a) intersect in the path 7I"(b, b'), and the paths 7I"(c, a) and 7I"(c, b)

intersect in the path 7I"(c, é). The three paths 7I"(a', b'), 7I"(b', c'), and 7I"(é, a') form

what is known as a geodesic triangle, denoted f::.a'b'é (see Figure 3.11). The vertices

a', b', é, are the only convex vertices of the geodesic triangle and are referred to as

the peaks of the triangle. Pollack et a1.[65] proved the following property concerning

geodesic triangles.

Lemma 3.3.19 [65] If the geodesie angle Lba'e at a' is greater than or equal to 71"/2,

then da(b, c) > data', b), da (a', c)

Lemma 3.3.20 The geodesic center of P eonstrained to lie in Q is the midpoint m

of GDIAM(P) provided that m is the geodesie center of P and lies in Q.

Proof: Follows from Lemma 3.3.17. -
To address the problem of determining the location of GCQ(P) when it does not

satisfy the conditions of the above lemma, we establish the following lemmas. Let

a, b be two vertices of P snch that they each have a corresponding ceU V(a) and

V(b), respectively, which are adjacent separated by an edge e in GFPVD(P). Also,

7I"(a, b) is not the geodesic diameter of P. Let x be a point on the interior of e, and

let € > 0 be any small constant.
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Figure 3.11: A Geodesie Triangle.
•
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Lemma 3.3.21 There exists a point y E e with dG(x,y) < E such that dG(y,a) <
dG(x,a) and dG(y, b) < dG(x, b).

Proof: The edge e must lie on bisea, b), sinee the points on e are equidistant

from both a and b. The point x must be a peak of the geodesic triangle formed by

the paths 1I"(x, a), 1I"(x, b), and 1!"(a, b) sinee otherwise x would be on the path 1I"(a, b)

whieh would imply that 1l"(a, b) was a geodesic diameter by Lemma 3.3.18. Also, a

portion of e must be contained in the geodesie triangle, sinee x is on the interior

of e. Let y be a point on e in the geodesie triangle. Sinee the geodesie angle Layb

must be no greater than 11", by Lemma 3.3.19 we conc1ude that dG(y, a) < dG(x, a)

and dG(y, b) < dG(x, b). The lemma follows. •

Lemma 3.3.22 A point b of P cannot lie in V(b).

Proof: Let x E P be a point distinct from b. If b E V(b) then dG(b, b) = O.

However, dG(b, x) > 0 which contradicts the faet that b E V(b). •
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We now complete the characterization of GCQ(P).
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Lemma 3.3.23 If the geodesic center of P canstmined ta lie in Q is not the mid­

point of GDIAM(P), thon it lies on one of the following points:

1. a vertex of the GFPVD(P) contained in Q,

2. a proper intersection point of the GFPVD(P) and the boundal'Y ofQ,

3. a vertex of the polygon Q,

4. a point x on an edge e of Q wilh the propel'ly tltat \/y E e, if <p(y) = <p(x) lhcn

da(y, <p(x)) ~ da(x, <p(x)).

Proof: If GCQ(P) does not lie on any of the points mentioned in the statement

of the lemma, then it must lie in one of the regions described in the following four

cases. We show that each of these cases leads to a contradiction. For simplicity of

exposition, let c = GCQ(P).

Case 1: c is a point in the interior of a cell of the GFPVD(P), and in int(Q). Let

V(b) be the cell containing c. By the Jordon Curve Theorem [64], lI"(bc) must

intersect âP or V(b) since b1: V(b) by Lemma 3.3.22. Let x be the intersection

point closest to c. The point x must be in V(b). Therefore b is a furthest

neighbor of both x and c. However, da(x, b) < da(c, b) by construction. Hence,

we have a contradiction.

Case 2: c is a point in the interior of a cell of the GFPVD(P), and in the interior

of an edge e of Q but does not satisfy the property that \/y E e, if <Ply) = <p(c)

the!! da(y, <p(c)) ~ da(c, <p(c)). Since the latter property is not satisfied, a

point x E e such that <p(x) = <p(c) and da(x, <p(c)) < da(c, <p(c)) must exist.

However, the very existence of x contradicts that c is the geodesic center of P

constrained to lie in Q.

Case 3: c is a point in the interior of an edge e of the GFPVD(P), and in int(Q).

Let V(a) and V(b) be the two ceUs separated by the edge e. Since c is not

the midpoint of the geodesic diameter of P, by Lemma 3.3.21 we know that

there exists a point x in e and in int(P) such that da(x,a) < da(c,a) and

da(x, b) < da(c, b). This contradicts that c is GCQ(P).
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Case 4: e is a point in the interior of an edge Cv of the FPVD(S). and in the

interior of an edge Cp of P sueh that Cv and cp interseet but not properly.

Same argument as Case 3.

•
We outline the algorithm to compute GCQ(P).

Algorithm 3: Geodesie Center of P eonstrained to lie in Q

Input: A simple polygon P = {Pl. P2 •.. . ,Pn}, and a simple polygon Q = {qI, q2.·· .• qn}

with Qc P.

Output: GCQ(P)

1. Compute the GFPVD(P) using the algorithm of Aronov et aI.[3].

2. Comput;:: GC(P) using the algorithm of Pollack et aI.[65].

3. Preprocess Q in O(n log n) time for point inclusion testing in O(log n) time

using the algorithms of Kirkpatrick [45] or Sarnak and Tarjan [75].

4. If GC(P) is contained in Q then exit with GC(P) as GGQ(P).

5. Preprocess P for shortest path queries using the algorithm of Guibas and Her­

shberger [39].

6. Compute the set of vertices of GFPVD(P) contained in Q. Let 11" represent

this set.

7. Compute the set of intersections le = {il. i2•...• ik} of Q with GFPVD(P)

using the algorithm of Chan[18].

8. Partition each edge Ci of Q such that for every pair of points x, y E Ci. we have

that ,p(x) = ,ply). Denote the jlh partition of Ci by Cij.

9. For each Cij. compute the point on Cij c10sest to ,p(Cij). If this point is not an

endpoint of Ci;' place it in the set Ee•

10. Let Pc represellt the vertices of Q.

11. Let GAN = 11" U le U Pc U Ee.

12. Find the sd of points G = {x E GAN 1dG(x, ,p(x)) = min"eoAN dG(y, ,ply))}

13. Output the set G.



Notice that we assumed that the number of vertices of Q equals the number of

vertices of P. Clearly, this need not be the case, however, this assumption simplifys

the complexity of notation. It is quite straightforward to repeat the complexity

analysis when P and Q have different cardinalities.

•
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Theorem 3.3.5 Given a polygon P = {Pl> P2, . .. , Pu} and a polygon Q = {ql> Q2, ••• ,q.. }

contained in P, we can compute the geodesic center of P constmined to lie in Q in

time O(n(n+k)) where n is the size of the input and k is the number of intersections

bet-..oeen the edges of the GFPVD(P) and Q.

Proof: The correctness of the algorithm follows from Lemmas 3.3.20 and 3.3.23.

Let us analyze the complexity of the algorithm. Step 1 of the algorithm can be

computed in O(nlogn) time using the algorithm of Aronov et al.[3]. Step 2 can be

computed in O(n log n) time using the algorithm of Pollack et a1.[65]. Preprocessing

for point inclusion can be done in O(nlogn) using the algorithm of Kirkpatrick

[45] or Sarnak and Tarjan [75]. Step 5 can be achieved in O(nlogn) time by using

the algorithm of Guibas and Hershberger[39]. By preprocessing the polygon for

shortest path queries, in O(log n) time the geodesic distance between two points can

be recovered and in O(log n +m) time the geodesic path between two points can be

recovered where m is the length of the path. Step 6 can be done in O(n log n) time

using the point inclusion test. Computing the intersections between GFPVD(P),

which consists of straight edges and hyperbolic arcs, and Q, which consists only of

straight edges, can be computed in O(n log n + k) time where k is the number of

intersections between Q and GFPVD(P) using the algorithm of Chan [18]. Once the

intersection points have been computed, Step 8 can be achieved in O(k log n) time.

In Step 9, to compute the point on ei; closest to 1/>(ei;), we first compute the geodesic

path from the endpoints of ei; to 1/>(ei;) in O(log n +m) time where m is the length

of the two paths using [39]. Once the two paths have been computed, finding the

point geodesically closest to 1/>(ei;) can be done O(m) time in the manner described

in Subsection 3.3.2. Note that O(m) E O(n). Step 9 is executed O(max{k,n})

times, thus the complexity is O(n(n +k)). Step 12 can be computed in O(k) time.

Therefore, the total complexity of the algorithm is O(n(n +k)) time. _
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With a slight modification, Algorithm 3 can compute the geodesic center of P con­

strained to lie on the boundary Q, GCaQ(P). These modifications are outlined

below.

Lemma 3.3.24 The geodesic center of P constrained to lie on the boundary of Q

is the midpoint m of GD/AM(S) provided that m is the geodesic center of P and

lies on the boundary of Q.

Proof: Follows [rom Lemma 3.3.17. •

Lemma 3.3.25 If the geodesic center of P constrained to lie on the boundary of Q

is not the midpoint of GD/AM(P), then it lies on one of the following points:

1. a vertex of the GFPVD(P) on the boundary ofQ,

2. a proper intersection point of the GFPVD(P) and the boundary of Q,

3. a vertex of the polygon Q,

4. a point x on an edge e of Q with the property that Vy E e, if q,(y) = q,(x) then

dG(y,q,(x));::: dG(x,q,(x)).

Proof: Similar case analysis as the proof of Lemma 3.3.23. •
Lemma 3.3.24 and Lemma 3.3.25 completely characterize the location of GCadP).

The modifications to Algorithm 3 for computing these points are straightforward.

Therefore, we conclude with the following.

Theorem 3.3.6 Given a polygon P = {Pl, 1'2, ... , Pn} and a polygon Q = {ql1 Q2, ... , qn}

contained in P, we can compute the geodesic center of P constrained to lie on the

boundary of Q in time O(n(n + k)) where n is thesize of the input and k is the

number of intersections between the edges of the GFPVD(P) and Q.

3.4 Constrained Link Center

In this section, we consider the second property attributed to a good pin gate lo­

cation. Recall that the second property states that the maximum number of turns



that the liquid takes on its path from the pin gate to any point in the object should

be small. The link metrie provides a geomctric interpretation of this property. The

link metrie measures the number of tums or bends in a path between two points.

We need a few definitions about link paths before continuing.

The link distance between two points x and y inside a polygon P, denoted

dL(x, y), is the minimum number of edges in any polygonal path connecting x

and y without intersecting the boundary of P. A path ?rL(X, y) between x and

y is a minimum link path provided that the number of edges in ?rL(X, y) is equal

to dL(x,y). The k-neighborhood or k-disk about a point x EPis dcfined as

Nk(x) = {y EPI dL(x,y):::; k}, and the covering l"adius c(x) of x is the smallest k

such that P C Nk(x). The link radius is defined by 7'L(P) = minxEP c(x) and the

link center of Pis defined by LC(P) = {x EPI c(x) = 7'L(P)}, ln essence, the link

center is the set of points in P whose maximum link distance to any point in P is

minimized, precisely the set of potential pin gates satisfying the second property of

a suitable pin gate.

We review the problem of computing the link center of a simple n vertex polygon

P. The l'roblem of computing the link center was first addressed by Lenhart et

al.[51] who provided a simple 0(n2 ) time algorithm to compute LC(P). Note that

the link center of P is not necessarily a point as is the case with the geodesic center

of P, but the link center may in fact be a geodesically convex region contained in

P. Later Djidjev et 11.1.[25] reduced the time complexity of computing LC(P) to

O(nlogn). Therefore, to compute the link center of a simple polygon, either of

these two algorithms may be used.

The problem of computing the link center constrained to the boundary of a

polygon P, denoted as LC(8P), has not been addressed. In this section, we provide

a simple algorithm to compute the set LC*(8P) which is a subset of LC(8P). In

some cases LC*(8P) is in faet be equivalent to LC(8P).

•
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3.4.1 Link Center Constrained to the Boundary

In this section, we provide a simple algorithm for computing LC*(8P), which is a

subset of LC(8P). The following very simple observations form the basis of the

algorithm.

Observation 3.4.1 If LC(P) n 8P is non.empty, then LC(8P) = LC(P) n 8P.



Observation 3.4.2 If a point z if- LC(P) is visible from a point x E LC(P), then

c(z) is one greater than c(x).•
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Two points x, y in polygon Pare said to be visible provided that the !ine segment

[x, y] is in P. Given a set of points X in polygon P, the strong visibility set of X

in P is {z EPI V x E X, [xz] E P} and the weak visibility set of X in P is

{z EPI 3 x E X, [xz] E Pl. If X happens to be a simple polygon inside P, Ghosh

[38] has shown that the weak visibility set of X in P is also a simple polygon, referred

to as the weak visibility polygon of P from X and denoted by WVP(X, P). We now

outline the algorithm.

Algorithm 4: Compute LC'(ap)

1. Compute LC(P).

2. Let LCI = LC(P) n ap. If LCI is non-empty, exit with LCI .

3. Compute the weak visibility polygon of P from LC(P).

4. Let LC2 = WVP(LC(P), P) n ap. Exit with LC2 •

If LCI is non-empty, then LC(ap) is equal to LCI • If on the other hand, .T,Cl

is empty, then the set LC2 must be a subset of LC(ap) since the link center of the

polygon is contained strictly in the interior of P and the covering radius of every

point in LC2 is one greater than the covering radius of a point in the link center.

The complexity of the algorithm is dominated by Step 1 which can be computed in

O(n log n) time using the algorithm of [25]. A simple modification to the algorithm

in [25] is needed to compute the intersection of LC(P) with the boundary of P in the

same time complexity. Step 3 can be performed in O(n) time using the algorithm

of [38]. The parts of WVP(LC(P), P) that are part of the boundary of P can

be identified during the computation of the weak visibility polygon. Therefore, we

conclude with the fol1owing theorem.

Theorem 3.4.1 LC'(ap) can be computed in O(n log n) time.

3.5 Discussion

Of the solutions presented in this chapter, computing the Euclidean center, with

or without constraints, as weil as the link center, with or without constraints, are



both conceptually and computationally simpler than computing the geodesic center.

However, the Euc1idean center may not always be a good candidate for the location

of a pin gate as pointed out in Section 3.3. The link center considered aJone ll1ay

also not be a suitable candidate since liquid inside a ll10ld does not necessarily

travel along a link path. Combining these two constraints may provide a belter

approximation (e.g. computing the Euc1idean center constrained to lie in the link

center).

The geodesic center, although computationally more expensive, scems lo be a

better measure in terms of the distance the liquid travels inside a ll101d. A combina­

tion of the link and geodesic centers may reap the benefits of both properties of an

ideal pin gate location being satisfied. For example, computing the geodesic center

constrained to lie in the link center may provide a betler solulion lhan considering

the geodesic center by itself.

•
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•
Chapter 4

Gravity Casting in Two

Dimensions

4.1 Introduction

'Mold orientation during fill is a cut-and-try process to find the most favorable

position.' [71]

The above quote points out one of the key problems in gravity casting: find a

favorable orientation for a mold during fill that a1lows the most complete fill and

minimizes the number of surface defects. This problem is difficult when the focus

is on the fluid dynamics and physics of the whole molding process. However, when

viewed from a purely geometric perspective, finding a favorable mold orientation

no longer need be a cut-and-try process. Our motive in this chapter is to study

gravity casting from a geometric perspective and preserü; a1gorithms to find mold

orientations that allow the most complete fill for molds modelled as simple polygons.

We begin by defining a geometric model of the gravi'GY casting process referred to

as the gravity model.

4.1.1 Geometrie Model

The point on the polygon boundary from which the liquid is poured into the polygon

is called the pin gate. A venting hole is a point from which only air and not any

Iiquid is allowed to escape. The pin gate is considered to be a venting hole. We

assume that neither the Iiquid being poured into the mold, nor the air in the mold

50
"

li
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are compressible. Finally, we assume that air cannot bubble out through the liquid.

_-------7~in Gale
and also
Vcnting
Hole

Figure 4.1: Illustration of the gravity modeJ.

The sole force acting on the liquid is gravity. When a direction of gravity is

not specified, we assume, for simplicity of exposition, that it ar.ts in the negative

y-direction. Thus, if only one pin gate is used, we assume it to be a point on the

boundary with the highest y-coordinate, sinee otherwise, the polygon cannot be

completely filled.

When liquid is poured into a polygon, the level of the liquid rises in the direction

opposite that of gravity. We assume that the advancing front of the rising liquid is

a line. The lowest horizontalline such that all the liquid in the polygon is contained

below it, is defined as the level Zine.

It is possible for the levelline to be higher than the level of the liquid in sorne

section of the polygonal mold. For example, the situation depicted in Figure 4.2

can occur while the mold is being filled with liquid. Thus we define a level chard

to be the horizontal chord representing the level of liquid in the subpolygon lying

below the chord. The region inside the polygon and above the level line contains

air. Similarly, the subpolygon containing the level chord, below the levelline inside

the polygon, contains air above the level chord.

When the levelline contains the pin gate, we say the polygon is maximal/y fil/ed.

A region containing air in a maximally filled polygon is called an air poeket. The

highest point (there may be more than one) of an air pocket in a maximally filled

mold is the peak of the air pocket. A polygon is said to be k-fil/able if there exista
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Gravily

Figure 4.2: Levelline and level chord.
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a fixed orientation of the polygon, a placement of the pin gate and a placement of

k -1 venting holes such that when liquid is poured into the polygon through the pin

gate, there are no air pockets when the polygon is maximally filled. A polygon is

said to be k-fillable with re-orientation provided that the polygon can be re-oriented

and filled from a new pin-gate after partial filling from an initial orientation and

pin gate. We assume that after the completion of a partial filling, the liquid that is

poured into the polygon hardens. The number k in this case refers to the number of

times that the polygon needs to be re-oriented before it is completely filled. Notice

that both definitions are identical when k = 1. Unless stated otherwise, we will

always refer to k-fillable as filling from a fixed orientation.

4.2 The Decision Problem

The first problem we address is to determine given a simple polygon in a fixed

orientation, whether or not the polygon is I-fillable in that orientation. We present

a linear time algorithm to solve this problem. Let 9 be the point on the unit circle

representing the direction of gravity. We make the following key observation (refer

to Figure 4.3).

Observation 4.2.1 The peak of an air popket is a local maximum of polygQn P

with respect to the direction of gravity. ft is either a convex vertex Vi of the polygoli



P such that ray(vivi_l) E NH(g) and raY(llivi+!) E NH(g) or a COllVCX cdgc Ci wilh

endpoints Vi and Vi+! such that raY(ViVi_l) E N H(g) alld raY(Vi+IVi+2) E N H(g).

Such a vertex or edge will be refeITed to as a local maximum vertcx or local maximum

edge.

•
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Local maximum cdge

Gravity

~

Figure 4.3: Illustration of local maximum vertex and edge.

The above observation forms the basis of the following theorem characterizing

l-fillable polygons. Given a point p (or horizontal edge e) in the plane, let hep)

(h(e)) denote the horizontal !ine containing p (e).

Theorem 4.2.1 A polygon is l-fillable if and only if il conlains one local maximum

vertex or one local maximum edge with respect to the direction of gravily.

Proof:

(~) We first show that a polygon with more thau oue local maximum vertex will

contain at least one air pocket when filled. We proceed by contradiction. Suppose a

polygon P containing at least two local maximum vertices can be maximally filled

with no air pockets. Let Cl and ~ be the two local maxima, with Cl haviug the

larger y-coordinate.

Since bath Cl and C2 are both local maxima, the polygonal chain between Cl and

C2 cantains a reflex vertex V or reflex edge e such that the vertices adjacent to v lie

above h(v) or the vertices adjacent to e lie above h(e). Let us assume it is a vertex

v. A similar argument holds for edge e.

Since the polygan can be maximally filled with no air pockets, at sorne point

in time while liquid is being poured in the polygon, there will exist a level chord



[bel eontaining v. Let b, v, e he the sequence of these three points when viewed in

cloekwise order starting at b. Sinee v is a reflex vertex, both [vb] and [cv] are chords.

Let H be the subpolygon consisting of the clockwise chain from b to v and the

edge [vb] and let P2 be the subpolygon consisting of the clockwise chain from v to

c and the edge [ve]. Without loss of generality, let the pin gate be contained in P,.

Polygon Pl must contain sorne air sinee [be] is a level chord.

Now, every path from a point in Pl to the pin gate must intersect [vbJ. But

this implies that the air in Pl is trapped since we assumed that air cannot bubble

through liquid. Thus, H contains an air pocket, contradicting the fact that P can

be filled with no air pockets. A similar argument holds for local maximum edges.

(Ç=) Wc now show that a polygon with at least one air pocket when filled must

have more than one local maximum vertex or edge. Let P be a filled polygonal

mold with an air pocket. Let p be the peak of the air pocket, and pg be the pin

gate. By Observation 4.2.1, either p is a local maximum vertex or edge. AIso, by

assumption, pg is the highest point on the polygon with respect to the direction

of gravity. Therefore, it is also a local maximum vertex or contained in a local

maximum edge. Sinee the pin gate cannot be the peak of an air pocket, the polygon

contains at least two local maxima. _

•
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Corollary 4.2.1 A polygon P is l-fillable if and only ifVp E P, the shortest path

from p to the pin gate is monotonie with respect to the direction of gravity.

A chain Cii(P) is monotonie with respect to direction El if the projections of the

vertices pi, Pi+! , ... ,Pi onto a line L(El) are ordered as the vertiees in Ci; (P).

A simple linear time algorithm for the decision problem is implied by Theorem

4.2.1. By testing locally, with respect to the direction of gravity, every convex vertex

to determine whether or not it is a local maximum vertex, and testing every edge to

determine whether or not it is a local maximum edge, we can deterrnine if a polygon

is l-fillable with respect to the direction of gravity. In fact, the number of local

maximum vertices and edges determines the number of venting holes that need to

be placed in order to fill the polygon in the given orientation.

Lemma 4.2.1 The number of venting holes needed is equal to the number of local

maximum vertiees and edges.
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Proof: (=}) We proceed. by induction on the number of local maximum \'crtices

and edges. Recall that gravity is assumcd ta point in the negative y dircction.

Basis: The number of local maximum vertices or edges, max, is 1. This implies

that the polygon is l-fillable by Theorem 4.2.1. Thus, one venting hale is necessary.

Inductive Hypothesis: Assume that the number of venting hales needed = the

number of local maximum vertices and edges, when max S k, k :2: 1.

Inductive Step: Let max = k + 1. Suppose that polygon P has at least twa

local maximum vertices. The argument is sim.ilar for local maximum edges.

Either the c10ckwise chain or counter-c1ockwise chain between the two local max­

ima contai:1s a reflex vertex v or reflex edge e such that the vcrticcs adjacent ta v lic

above h(v) or the vertices adjacent ta e lie above h(e). Without loss of gcncrality,

let us assume that there is a reflex vertex v.

Extend a horizontal ray from v ta the right until it intersects the polygon bOUlld­

ary. Let i be tne intersection point. The chard [vi] partitions the polygon into two

subpolygons, Pl and P2 • Each has less than k+ 1 local maximum vertices or edges by

construction. Suppose Pl has w :2: 1 local maximum vertices, then P2 has k+1 - w

local maximum vertices. Thus by the induction hypothesis, Pl needs w venting

hales and P2 needs k +1- w venting hales. This totals ta k +1 venting hales in P,

as required.

(<=) Suppose one of the local maxima in P did not have a venting hale or pin

gate. Let Vi represent that local maximum in P. Let x be the farthest point from

Vi on [ViVi+l] visible from Vi-l. Triangle(vi_l,Vi,X) contains neither a venting hale

nor a pin gate. Therefore it is an air pocket. •

Theorem 4.2.2 Given a simple polygon in a fixed orientation, in O(n) time one

can determine the minimum k for which the polygon is k-fillable.

Let us turo our attention ta polygons with hales. A polygon with hales is defined

as a polygon P enc10sing several other polygons Hl, ... , Hk, the hales, such that

none ofthe boundaries of P, Hl, ... , Hk intersect and each of the hales is a simply

connected region. A polygon with hales is an abject that can be constructed with

cores and inserts [47,28]. In a polygon with hales, the peak of an air pocket may

not involve a vertex or edge of the polygon, but a vertex or edge ai a hale (see

Figure 4.4). Therefore, there are two types of peaks of air pockets that may exist in



a polygon with holes. The first type was described in Observation 4.2.1. The other

type is described in the following observation.•
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Pin gale-....

Gravity

Il j
Peak of an air poeke!
causcd by a baie Peak of an air poeke!

causcd by a baie

Figure 4.4: l-fillable polygon that is no longer l-fillable because of holes.

Observation 4.2.2 A reflex vertex v or a reflex edge e of a hole Hj in polygon P

is a peak of an air pocket provided that it is a local maximum of bd(Hj) with respect

to the direction of gravity (see Figure 4.4). Such a vertex or edge will be referred to

as a reflex maximum vertex or reflex maximum edge.

This observation provides a characterization of the peaks of air pockets caused

by the presence of holes in a simple polygon. The characterization is similar to that

of the peaks of air pockets in simple polygons without holes. Therefore, we have the

following theorem.

Theorem 4.2.3 A polygon with holes is l-fillable if and only if the polygon has only

one local maximum vertex or edge with respect to the direction of gravity and none

of the holes have a reflex maximum vertex or reflex maximum edge.

Proor: Similar to the proof of Theorem 4.2.1. •



Corollary 4.2.2 A polygon P with hales is l-fillable if and only If \:1]1 E l', the

shortest path from p ta the pin gate is monotonie with "espeet ta the di"ection of

gravity.
•

CHAPTER 4. GRAVITY CASTING IN TWO DIMENSIONS 57

Similar to the case of simple polygons without holes, to determine if a simple

polygon with holes is k-fillable, simply test with respect to the direction of gravity,

every convex ver'.ex and convex edge of the polygon to determine whether or not

it is a local maximum and test every reflex vertex and refiex edge of the holes to

determine whether or not it is a reflex maximum. Since testing a vertex or edge can

be done in constant time, we have the following theorem.

Theorem 4.2.4 Given a simple polygon with hales and the dh'cetion of gmvity, Ol1e

ean determine the minimum k for which the polygon is k-jillable in O(n) time whc,.c

n is the number of vertiees of the polygon and the hales.

4.3 Determining aH Directions of Fillability

In the previous section, we showed that given a simple polygon without holes and the

direction of gravity, we can determine in linear lime the minimum k for which the

polygon is k-fillable with respect to gravity. The extension to polygons with holes

was immediate from Observation 4.2.2, so for simplicity of exposition, we continue

the discussion with simple polygons without holes.

Suppose that we are given a polygon and asked whether there exists an orienta­

tion of the polygon such that the polygon is l-fillable with respect to the direction

of gravity. For example, the polygon in Figure 4.5 is l-fillable in one orientation but

not in another. In this section, we show that in O(n log n) time the complete range

of directions of gravity that allow the l-fillability of a polygon can be determined. In

fact, in optimal e(n log n) time we can determine all the orientations of the polygon

that allow it to be k-filled where k is minimum over all orientations.

Let us examine the set of directions that cause a convex vertex ta be a local

maximum. Given a convex vertex Vi of polygon P, the set of directions for which

Vi is a local maximum is defined as fol1ows and will be denoted by M(Vi) (rcfer to

Figure 4.6).

M(Vi) = {\:I directions d \1 ray(viVi+l) ENH(d) and ray(vivi_l) ENH(d)}
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Gravity

1
Palygan net I-fillable with
respecl ta gravity

Sanne polygan l-fillable
with respect ta gravity

Figure 4..5: A polygon that is l-fillable from one orientation but not another.

Figure 4.6: When a convex vertex is a local maximum.

In the following lemma, wc characterize the directions in the set M(Vi).

Lemma 4.3.1 M(Vi) = NH(ray(vivi_l)) n NH(ray(viVi+l))

Proof: Let ri_l = ray(vivi_l) and ri+l = ray(viVi+l)' For Vi to be a local max­

imum with respect to a given direction d, both ri_l and ri+l must be in N H(dl.

Every direction 8 E N H(ri_l) n N H(ri+l) is contained in M(Vi) since both ri_l

and ri+l are contained in N H(8). Therefore let us consider an arbitrary direction

y E M(Vi) that is not in NH(ri_l) n NH(riH)' Then, one of ri-l or riH is not

contained in NH(y), contradicting the fact that Vi is a local maximum with respect

~y. •
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A convex edge can be a local maximum edge only when the direction of gravity

is orthogonal to the line containing the edge. Therefore, the proofs of Lemma 4.2.1

and Lemma 4.3.1 suggest the fol!owing algorithm to find the minimum number

of venting holes needed to fil! a polygon given that it must be fil!ed in only one

orientation.

Aigorithm 5: Find orientation minimizing number of venting hales.

1. Find the direction that minimizes the number of local maximum verticcs and

edges.

2. Place the pin gate at the global maximum. [This can be dOlle in O(n) time].

3. Place a venting hole at every local maximum that is not a global maximum.

[This can be done in O(n) time by just scanning the boundary of the [)olygonJ.

Let us elaborate on the first step. Each convex vertex has an open arc represent­

ing the set of directions that cause that vertex to be a local maximum. If vertex Vi

is convex, we denote the arc by arc(ai, bi). Let A be the set of endpoints of al! the

arcs. Similarly, each convex edge has a point representing the direction that causes

it to be a local maximum. If edge Ci is convex, let Pi represent this point. Let E be

the set of all of these points. Pick an arbitrary direction d if. E, and radial!y sort

AUE in a clockwise manner with respect to d. Let S = SI, S2 ••• Sm represent this

sorted order.

We now perform a rotational sweep to determine the set of directions that min­

imizes the number of local maxima. Let c be the number of vertices that are local

maxima with respect to d. Consider the first element of the sequence S. If SI is

the end of an arc, then we know that the directions represented by arc[d, SI) have

c local maxima and at direction SI have c - 1 maxima. If SI is the beginning of an

arc, then we know that the directions represented by arc[d, Sil have c local ~axima

and the directions after SI have c + 1 local maxima. Final!y, if SI is a point of E,

then we know that the directions represented by arc[d, SI) have c local maxima, and

at direction SI there are c + 1 local maxima. By proceeding in this manner, the

intervals on the unit circ1e induced by the set Sare labeled with the number of local

maxima present for each interval of directions. By choosing al! the intervals with

the smallest number, we have a complete description of al! the directions from which

the given polygon can be filled with a minimum numberofventing holes. Sorne care
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must be taken when the endpoints of arcs and points 'coincide. The details of this

technique may be found in [49]. The time complexity of this step is O(n log n) due

to sorting.

The correctness of the algorithm fol!ows from Lemma 4.2.1 and Lemma 4.3.1.

The time complexity of the algorithm is dominated by step 1. Therefore, the total

time complexity of the algorithm is O(n log n).

Theorem 4.3.1 The minimum number of venting holes needed to fill a simple poly­

gon from one fixed direction can be computed in O(n log n) time.

ln [35], it was shown that an l1(nlogn) lower bound exists for the problem of

determining the minimum number of venting holes to fil! a simple polygon from one

fixed direction by a reduction from Element Uniqueness.

Notice that the technique used in Aigorithm 1 is not restricted to finding an

orientation of a polygon that minimizes the number of local maxima. A local min­

imum can only be a convex vertex or convex edge, and the directions that cause

such a vertex or edge are defined similarly to the directions that cause them to be

local maxima. Therefore, this technique can be used to maximize the number of

local maxima, minimize the number of local minima, maximize the number of local

minima, minimize the combined number of local minima and maxima and maximize

the combined number of local minima and maxima.

Theorem 4.3.2 Given a simple polygon, in O(nlogn) time, we canfind the set of

directions that minimize or maximize the number of local minima, the number of

'local maxima or the combined number of local minima and maxima.

4.4 Fillability of Certain Classes of Polygons

As there is an l1(n log n) lower bound for determining the orientation minimizing the

number of venting holes needed to fil! a simple polygon, we study the relationship

between certain known classes of polygons and fil!ability. We show that for sorne

restricted classes of polygons, the optimal orientation for filling can be determined

in linear time.
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..
Direction ofMonotonicity

Figure 4.7: Monotone polygon.

4.4.1 Monotone Polygons

61

A simple polygon Pis a monotone polygon if there exists a line L(0) sueh that

the boundary of Pean be partitioned into two ehains Cii(P) and Cii(P) that arc

monotonic with respect to 0. (Refer to Figure 4.7).

Theorem 4.4.1 A monotone polygon is l-fillable if it is orientcd such thal gmvily

is a direction of monotonicity.

Proof: Let P be a monotone polygon oriented such that g represents a direction

of monotonicity and the direction of gravity. Without loss of generality, let this

direction be the negative y direction.

If P is not 1-fillable, then by Theorem 4.2.1, it must contain at least two local

maxima with respect to the direction of gravity. Between these two local maxima,

there exists a reflex vertex v or reflex edge e sueh that the vertices adjacent to v

lie above h(v) or the vertices adjacent to e lie above h(e). The existence of such a

vertex or edge violates monotonicity. Therefore, a monotone polygon is 1-fillable. _

Since monotone polygons can be recognized in linear time [70] and the direction of

monotonicity delivered as a witness, Theorem 4.4.1 provides a linear time algorithm

for determining the optimal orientation of simple polygons if they are monotone.



4.4.2 Weakly-Edge Visible Polygons and Star-Shaped Poly­

gons•
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Two points inside a polygon are said to be visible if the !ine segment between them

does not Întersect the exterior of the polygon. A point p is weakly visible from an

edge e if there is a point x on e such that p is visible from x.

A polygon P is edge visible if there is an edge in the polygon from which ail the

points in the polygon are weakly visible. A polygon P is open-edge visible if there is

an edge e in P such that ail points p are visible from sorne point x on e other than

the endpoints o[ the edge.

Let P be an open-edge visible polygon. Without loss of generality, let (VIV2) be

the open edge [rom which the polygon is weakly visible. Let the polygon be oriented

such that gravity g" is the clockwise normal to ray(vlv2)' (Re[er to Figure 4.8).

VI ,---------------,

Open-cdge visible polygons ore l-fillable

Figure 4.8: Open-edge visible polygon.

Gravity

~

Theorem 4.4.2 An open-edge visible polygon P with gravity g* is l-fil/able.

Proof: For ease of exposition, let us assume that gravity is in the negative y­

direction. Without loss o[ generality, let Vt he the pin gate. Let p he an arhitrary

point in P. Since Pis open-edge visible, there must he a point z on (VIV2) that sees

point P, i.e. [pzlEP.

Let II he the shortest path from p to Vt in polygon P. Since [Vtp] is monotone

with respect to gravity, and II is a convex chain from P to Vt contained in the

triangle(z,p, Vt), II is monotone with respect to gravity. Therefore, the lp,mma

follows from Corollary 4.2.1. •



Since open-edge visible polygons can be recognized in linear time [7, 74] and the

required edge delivered as a witness, Theorem 4.4.2 provides a linear time algorithm

for determining the optimal orientation of simple polygons if they are edge-visible.
•

CHAPTER 4. GRAVITY CASTING IN TWO DIMENSIONS 63

Corollary 4.4.1 Any polygon that is weakly visible from a Ch07'd is 2-fil/able witl!

re-orientation.

Slar-shapcd polygon wilh x in kemel

Figure 4.9: Star-shaped polygon.

A star-shaped polygon is a polygon that contains at least one point x from which

all points of the polygon are visible. The set of points from which ail points are

visible is known as the kernel of the star-shaped polygon. The kernel of a star-shaped

polygon can be computed in O(n) time using the algorithm of Lee and Preparata

[50] or a point in the kerne1 of a star-shaped polygon cau be computed in O(n)

time using Megiddo's linear programming technique [57]. This implies that in O(n)

time, a chord cau be found from which the star-shaped polygon is weakly visible.

However, a star-shaped polygon may not necessarily be l-fillable. The star-shaped

polygon in Figure 4.9 is not l-fillable since there are always two local maxima with

respect to every direction. Therefore, we have the following.

Theorem 4.4.3 A star-shaped polygon is not necessarily l-fil/able but is always

2-fil/able with re-orientation in O(n) time.
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4.4.3 Clam-Shell Polygons
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A polygon is clam-shell if it ean be partitioned into two ehains Cij(P) and Cji(P)

sueh that each ehain ean be removed from the mold by a single translation (not

necessarily in a common direction). In Figure 4.10, we have a polygon that is not

clam-shell. Clam-shell polygons were studied in [73J where the following result was

proved. (Refer to Figure 4.11).

Figure 4.10: Simple polygon that is not clam-shel!.

Figure 4.11: Clam-shell polygon.

Theorem 4.4.4 [7al A polygon is clam-shell if and only if the boundary can be

decomposed into two chains, each monotonie to an arbitrary direction. Clam-shells

can be recognized in linear time.

Thus we see that this class is a generalization of monotonie polygons. Before showing

that ail c1am-shell polygons are l-fillable, we establish sorne key properties of c1am­

shell polygons. Let Cij(P) be monotonie with respeet to sorne direction 0. The



monotonicityof Cij(P) implies that the polygon P has only one local maximum

on the chain Cij(P) for ail directions in arc[8,opp(8)]. Therefore, we have the

following theorem.
•
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Theorem 4.4.5 A clam-shell polygon is l-fillable.

Proof: Given a clam-shell polygon P, let Cij(P) be monotone with respect to

direction 8 1 and Cji(P) be monotone with respect to direction 8 2 • The intersection

arc[8l, opp(8dJ n arc[8 2 , opp(8 2 )] must be non-empty since both arcs are closed

semi-circles. _

Since clam-shell polygons can be recognized in linear time [73] and the rcquired

partition of the boundary delivered as a witness, Theorem 4.4.5 providcs a linear

time algorithm for determining the optimal orientation of simple polygolls if they

are clam-shell.

4.4.4 L-Convex Polygons

A polygon P is L-convex ifVx,y EP,3z E P such that [xz] EPand [yz] E P.

(Refer to Figure 4.12). From the definition of L-convexity, we see that a star-shaped

polygon is L-convex since all points are seen by a kernel point.

Figure 4.12: L-convex polygon.

Lemma 4.4.1 f43] If P is an L-convex polygon, it has the property that for every

point x E P, there exists a chord of the polygon containing x from which P is weakly
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The lemma proved in [43] is more general and applies to L-convex sets. From

Corollary 4.4.1 together with the example of the star-shaped polygon that is not

1-fillable (Figure 4.9), wc have the following.

Theorem 4.4.6 An L-convex polygon is not necessarily 1-fillable but always 2­

fillable with re-orientation.

Lemma 4.4.1 only proves the existence of the chord, but does not offer a method of

computing such a chord given an L-convex polygon. We ~ow present an O(n log n)

time algorithm to find such a chord. Wc first prove a few key lemmas.

Let x be a point inside polygon P. The visibility polygon from x, denoted

by V P(x, ..0), is the set of points in P visible from x. It is formally defined as

V P(x, P) = {z 1 z EPand [xz] n P = [xz]} Let v; be an arbitrary vertex of an

L-convex polygon P. By Lemma 4.4.1, there m'ust be a chord containing V; from

which P is weakly visible. Let us denote this chord by C(v;). Thus, C(v;) must be

contained in VP(V;, P). Wc will now show the relationship between a diagonal in

VP(v;,P) and C(v;). Let b be a vertex of VP(v;,P). The chord [v;b] is a chord in

P and divides the polygon into two subpolygons, Pl and P2 • If both Pl and P2 are

weakly visible from [v;b], then we have found C(v;). Otherwise, we will show that

either Pl or P2 has to be weakly visible from [v;b].

Lemma 4.4.2 Bither Pl or P2 or both are weakly visible from [v;b].

Pro of: If both are weakly visible from [v;b] then the lemma holds. Suppose that

one of Pl or P2 is not weakly visible from [v;b].

Case 1: C(v;) E P2 • By Jordan's Curve Theorem, every lbc segment with one

endpoint in Pl and one endpoint in P2 must intersect [v;b]. Pl is weakly visible from

C(v;). This means "Ix E Pl ,3y E C(v;) such that [xy] E P. But then [xy] must

intersect [v;b]. Thus, Pl is weakly visible from [v;b].

Case 2: C(v;) E Pl' Symmetric to case 1. •

Notice that if Pl is not weakly visible from [v;b] then C(v;) is contained in Pl and

vice versa. Thus, C(v;) is either a diagonal of the polygon P or contained between

two consecutive diagonals. The question now becomes, how do we compute C(v;) if

it is contained between two consecutive diagonals?
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Consider the fol1owing situation. Let rand 1 be two consecutive vertices ill

V P(Vi, P) such that Pl is weakly visible from [vil] but not [Vi!'] and 10, is weakly

visible from [Vir] but not [vil].

Let ab a2, .. . , am be the vertices in Pl that are not weakly visible from [Vir].

They must be visible from [Ir] sinee C(Vi) is contained in the triangle(Vi, I,!-). Sim·

ilarly, let bl, b2, . .. , bt be the vertices of P2 that are not weakly visible from [vil].

They must also be visible from [Ir]. Let a: be the point on [It·] f11rthest 11way from

i, from which ai is visible. Let a = minl~i~m 1[lam. Similarly, let bi be the point

on [Ir] farthest away from r, from which bi is visible. Let b = min19~' [[11>:11. Let

5 = anb.

Lemma 4.4.3 S is not empty.

Proof: Suppose 5 was empty. We know that C(Vi) E triangle(l,r,v;). Now, if

C(Vi) n [Ir] fj. b, then there would be sorne bi that was not weakly visible from C(Vi)

which is a contradiction. Similarly, if C(Vi) n [Ir] fj. a, then there would be some ai

that was not weakly visible from C(Vi) which is a contradiction. _

Lemma 4.4.4 For every sE 5, the polygon Pis weakly visible from [ViS].

Proof: If a point pEP is weakly visible from both [vil] and [v;r] then it mnst

also be weakly visible from [ViS] sinee any line segment that intersects both [vil] and

[Vir] also intersects [ViS].

If p is not weakly visible from [Vir] then let p' be the farthest point from 1from

which p is weakly visible. a must be contained in [Ip']. Thus, p must be weakly

visible from [ViS]. A similar argument shows that if pis not weakly visible from [vil],

it is still weakly visible from [ViS]. -

Lemma 4.4.2 and Lemma 4.4.4 suggest the fol1owing algorithm.

Algorithm 6: Compute weakly visible segment

1. Choose a vertex VI E P.

2. Compute VP(VI, P) in O(n) time using the algorithm of Avis and Elgindy [30].

[Let {VI," ., Vk} denote the vertiees of V P(v, Pl]

3. Triangulate V P(v, P) by inserting ail diagonals di = [VIVi], 2 ~ i ~ k.

4. Let 1= 2, r = k.



5. Let s = Lr/2J

6. Let PI be the polygon with vertices {VI, Vt, Vl+b· .. ,vs }

7. Let P2 be the polygon with vertices {VI,v"vs+1""'vr }

8. If both E; and P2 are weakly visible from d., exit with d,. [Use the algorithm

of Avis and Toussaint [7] to verify weak visibility from ds in O(n) time].

9. If r - 1= 1 go to step 12. [two consecutive diagonals at this point].

10. If PI is not visible from d., then r = s, go to step 5.

11. If PI is not visible from d., then 1= s, go to step 5.

12. Compute an Ii in O(n) time using the algorithm of Avis and Toussaint [7]. Pick

any point s in "il n Ii and exit with [VIS].
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The correctness of the algorithm follows from the discussion. Each step takes at

most O(n) time and we Joop through steps 5 to 11 at most O(logn) times. Thus

the total time complexity of the algorithm is O(nlogn).

4.4.5 Weakly-Externally Visible Polygons

We have secn that the class of clam-shell polygons are l-fillable and the class of star­

shaped polygons are 2-fillable. We have also seen that the class of L-convex polygons,

which contains the class of star-shaped polygons is also 2-fillable. A natural question

is whether the class of weakly-externally visible polygons is 2-fillable, since the class

of wealdy-externally visible polygons contains the class of L-convex polygons (this is

shown in [43]) and the class of clam-shell polygons. A polygon is weakly-externally

visible if for every point x on its boundary there is an infinite ray emanating from

that point in sorne direction that intersects the boundary only at x. In fact, the class

of weakly-externally visible polygons is in sorne sense the largest class of interest

~ince it is the largest class of polygons that allows the pin gate to be placed anywhere

on its boundary, if we require the pin gate to be reachable by a line probe from

infinity. Consider the weakly-externally visible polygon in Figure 4.13. No matter

what direction we pour it from, at most only 1/4 of the arms will be completely

filled. But, 3/4 of the arms cannot be filled from a second pin gate and orientation.

Therefore, we have the following theorem.

Theorcm 4.4.7 A weakly-externally visible polygon is not necessarily 2-fillable with

re-orientation.



CHAPTER 4. GRAVITY CASTING IN TWO DIMENSIONS

arfil

clbow(vcrtcx)

Figure 4.13: Weakly-externally visible polygon.
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We summarize the relation between fillability and some known classes of polygons

by the chart in Figure 4.14.
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2-Fillable

I-Fillable

1Open-Edge Visible

Star-Shaped

Monotone

Figure 4.14: Summary of relation between fillability and classes of polygons.



Chapter 5

Gravity Casting in Three

Dimensions

5.1 Introduction

In this chapter, we generalize the tools and techniques of the previous chapter to han­

dIe molds modeled as simple polyhedra (see Figure 5.1). The conceptual approach

is identical to the two dimensional case, however, the technical details involved in

the three dimensional case are more complex, as expected.

Figure 5.1: Gravity casting of a star-shaped object using one filling hole and two
additional venting holes.

71
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We show that gi ven a mold, represented by a simple polyhedron with n vertices

in a fixed orientation, we can determine in O(n) time whether or not the mold can

be fil1ed without forming air pockets. Thus, the time complexity of the decision

problem is the same whether we have polygonal molds or polyhedral molds. On the

other hand, the time complexity of finding ail orientations that al10w a k-filling for

minimum k for polygonal molds was shown to be O(n log n) in the previous chapter,

but in this chapter, we are only able to achieve O(n2 ) for polyhedral molds. However,

we are able to justify this increase in time complexity by providing a pseudo-Iower

bound for this problem. We reduce the problem 'A+B= C?' to the three dimensional

mold filling problem. The problem 'A+B = C?' is defined as fol1ows: Given three

sets A, B, and C of n real numbers each, decide if there exists a E A, b E Band

cE C such that a + b = c. The best known algorithm for solving this problem uses

O(n2 ) time. Gajentaan and Overmars [37] have shown there exist many problems

in geometry that also reduce to 'A+B =C?', such as: 'Given a set of n points in

the plane, are there three col1inear points?' and 'Given a set of n rectangles in the

plane, do they coyer a given rectangle RECT completely?'. Since the best known

algorithms take O(n2 ) time to solve any one of these problems, a problem which can

be reduced to one of these is referred to as an n2 -difficult problem. Since the mold

fil1ing problem is n2-difficult, improving on the quadratic bound seems difficult.

The interesting question that arises is whether one can improve the O(n2
) time

bound for sorne restricted classes of polyhedra. We relate fillability to certain known

classes of polyhedra, namely, star-shaped, monotone, and facet-visible polyhedra. In

the case of star-shaped polyhedra, this reduces the time bound for finding an optimal

orientation to O(n) time as opposed to O(n2 ) time.

5.2 Preliminaries

In this chapter, it will be convenient to have the set of all directions in space be

represented by two planes. Although this is not standard, it will help simplify

the exposition. Let the plane z = -1, denoted by DpH, represent all directions

with a negative z-component, and the plane z = 1, denoted by DP(+), represent alÎ

directions with a positive z-component. We dO::lOt consider the horizontal directions.

This assumption simplifies our discussion but i:3 not an inherent limitation of our

methods. A point q in DP(-) or DP(+) represents the direction oq, where 0 represents



the origin of E 3
• Given a direction d, represented by oq, we define 01'1'(d) to be the

opposite direction. Thus, 01'1'(d) is pointing in the direction of the vector qo.
A polygonal chain C = Po, Pl> ... ,Pn is monotonie with respect to direction e if

the projections of the vertices Po, Pl> ... , Pn onto a line in direction e are ordered as

the vertices in C.
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5.2.1 Geometrie Model of Gravity Casting

We now generalize the gravity mode\. Arnold is modeled by a simple polyhedron.

The point on the boundary of a mold through which the liquid is poured into the

polyhedron is called the pin gate. We assume that the pin gate is the only point

from which air is allowed to escape unless stated otherwise. A venting hole is Il. point

from which only air and no liquid is allowed to escape. We assume that Ileither the

liquid being poured into the mold, nor the air in the mold are compressible. Finally,

weassume that air cannot bubble out through the liquid.

The sole foree acting on the liquid is gravity. When a direction of gravity is not

specified, we assume, for simplicity of exposition, that gravity points in the negative

z-direction. Thus, if only one pin gate is used, we assume it to be a point on the

boundary with the highest z-coordinate, sinee otherwise, the polyhedron cannot be

completely filled.

When liquid is poured into a polyhedron, the level of the liquid rises in the direc­

tion opposite that of gravity. We assume that the advancing front of the rising liquid

is a plane. The lowest horizontal plane such that ail the liquid in the polyhedron is

contained below it, i8 defined as the leve! plane.

When the level plane contains the pin gate, we say the polyhedron is maximally

filled. A region containing air in a maximally filled polyhedron is called an air

poeket. A polyhedron is said to be l-fillable if there exists a pin gate and direction

of gravity such that when the liquid i5 'Poured into the polyhedron through the pin

gate, there are no air pockets when the polyhedron is maximaily filled. We call the

highest point (there may he more than one) of an air pocket in a maximally filled

mold, the peak of the air pocket. This leads to the following observation.

Observation 5.2.1 A polyhedron P in 9-space is said to be l-fillable in direction

-z provided that for every point inside P there is a +z-monotone path from it to

the z-maximum of P. Thus, if a polyhedron is l-fillal-,Ie there exists an orientation
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We extend the notion of fillability in the following two ways. A polyhedron is said

to be k-fillable if there exists a fixed orientation of the polyhedron, a placement of the

pin gate and a placement of k -1 venting holes such that when liquid is poured into

the polyhedron through the pin gate, there are no air pockets when the polyhedron

is maximally filled. A polyhedron is said to be k-fillable with re-orientation provided

that the polyhedron can be re-oriented and filled from a new pin-gate after partial

filling from an initial orientation and pin gate. We assume that after the completion

of a partial filling, the liquid that is poured into the polyhedron hardens. The

number k in this case refers to the number of times that the polyhedron needs to be

re-oriented bcfore it is completely filled. Notice that both definitions are identical

when k = 1. Unless stated otherwise, we will always refer to k-fillable as filling from

a fixed orientation.

5.3 The Decision Problem

In this section we present an O(n) time algorithm to decide whether a polyhedron

P is l-fillable given a fixed orientation of the polyhedron.

Let P be a simple polyhedron of which all facets are triangulated, and let v be

an arbitrary vertex of P. We define Pv to be the union of the facets incident to v.

Let J1, . .. , Jm be the sequence of facets of Pv such that fi and fi+1 are incident to

an edge denoted ei, and fm and f1 are incident to an edge em. Let Sv be a sphere

centered at v, such that Sv only intersects the m edges incident to v, and no other

facets, edges or vertices of P.

Definition 5.3.1 A vertex v is a convex vertex of P provided that there exists a

plane hv , with v E hv , such that Sv n hv does not intersect the interior of P.

Let h;; and ht denote the closed half-spaces below and above the plane hv ,

containing the vertex v. Let h~ be the closed half-space bounded by the plane hv

with normal d, containing the vertex v and where 0 E {-, +} is the opposite of the

sign of the z-component in d. Recall that we assume, for simplicity, that d is not a

horizontal direction.

Definition 5.3.2 A vertex v is a local maximum of P in direction i provided that

Pv lies in the closed half-space h~.
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We now prove the theorem used to establish the linear time deeision algorithm.

Theorem 5.3.1 A polyhedron P is l-fillable if and only if the 07'ientatio71 of P has

precisely one local maximum in direction +z.

Proof: We assume that gravity is in the -z direction. Suppose that P is 1­

fillable, and suppose that P has more than one local z-ma.ximum. Let q he a local

z-maximum of P which is not the global z-maximum M of P. Let 11 be any path

from q to M. Since q is a local z-maximum, II has negative value in its z-component

when it leaves q, contradicting Observation 5.2.1

On the other hand, suppose that P has only one local z- maximum M, which

must also be the global z-maximum of P. Let p be any point inside P, and let f he

the facet of P hit by a ray emanating from p vertically upwarcl. Let q be the vertex

incident to this facet with maximum z-coordinate. Clearly, there is a +z-rnonotone

path from p to q consisting of two segments. If q = M we arc clone, otherwise q is

not a local z-maximum, and it must be incident to an edge with endpoints q and q'

such that q' has greater z-coordinate. We repeat the argument with q' for q until

the path reaches M. •

From this theorem, we see that given a polyhedron P and a direction of gravity

g, to test l-fillability of P with respect to g, we need only determine the number

of local maxima with respect to gravity. We can determine if a vertex is a local

maximum in time linear in the degree of the vertex [57J. This immediately gives us

a linear time algorithm to determine whether or not a polyhedron is l-fillable from

a fixed orientation.

Theorem 5.3.2 Given a polyhedron P, we can determine in O(n) time whether or

not the polyhedron is l-fillable with respect to gravity.

5.4 Determining an Directions of Fillability

In this section we will give an 0(n2 ) time algorithm to find the orientation of a

given polyhedron P that minirnizes the number of venting holes needed in order

to ensure a complete fill from a fixed orientation. This orientation is equivalent to

the orientation that minimizel the number of local maxima. The algorithm has two

stages. In the first stage, the fillability problem is transformed to a planar problem
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for a set of convex (possibly unboundcd) polygons that coyer the plane. In the

second stage, the following problem is solved: Given a set of n convex polygons in

the plane, find the point that is covered by a minimum number of them.

5.4.1 Thansforming Fillability to Covering

Let P be a bounded polyhedron with n vertices, and assume that P is given. by

its incidence graph (see e.g. [28]). First, we triangulate every facet of P (see e.g.

[19, 69]). We choose an initial orientation of P such that no edge of P is vertical.

Let v be any vertex of P. We extract the description of Pv from the description

of P in time proportional to its size. Let h, ... , fm be the sequence of disjoint

facets incident to v, such that fi and fi+l are incident to an edge ei of Pv (and fm

and fI are incident to an edge em ). Let WI, .•• , W m be the sequence of endpoints

corrcsponding to el," . ,em , see Figure 5.2.

Suppose that v is a convex vertex. We define the cone Cv of v to be the un·

boullded polyhedron consisting of vas its only vertex, m haU·1ines EI, ••• ,Em stad·

ing at v, which contain the edges el, ... , em , respectively, and m unbounded facets

bounded by E i and Ei+! (1 ::; i ::; m - 1), or E m and El, Since Cv need not be a

convex polyhedron, but its only vertex is convex, we say that Cv is a semi·convex

cone. Let CCv be the convex hull of Cv, which is a convex cone. The haU·1ines that

arc the edges of CCv are a subset of the edges of Cv; we denote them by Ei" . .. , Eij ,

where 1 ::; il < '" < i j ::; m. Finally, we define the normal cone NCv of the convex

cone CCv as follows. Let hi" ... , hi; be the set of planes that pass through v and are

perpendicular to Ei" ... , Ei;. Let Hi" ... , Hi; be the c10sed half·spaces bounded

by hi" ... , hi; such that they contain Ei" ... , E i;, respectively. Then NCv is the

convex region that is bounded by Hi, n... n Hi;- Notice that if CCv is a sharp cone

then NCv is a blunt cone, and vice versa.

Each convex vertex of the polyhedron P defines a convex region in DP(-) or

DP(+) or both, which corresponds to the directions with respect to which it is a local

maximum. Renee, P gives rise to O(n) convex regions in these planes. It fol1ows

that a direction for which P has the smallest number of local maxima corresponds

to sorne point in the plane that is covered by the smal1est number of convex regions.

The fol1owing lemma relates the normal convex cones to the direction planes, DP(-)
and DP(+).
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v

Figure 5.2: Left: Pv. Middle: the convex hull CCv of Cv. Right: the convex cone
CCv and the normal cone NCv'

Lemma 5.4.1 For every convex vertex v of a polyliedron P snch that v coincides

with the origin 0 and direction d = og where q is a point on one of the direction

planes, it holds that v is a local maximnm in (non-horizontal) direction -d if and

only if q E NCv n DpH or q E NCv n DP(+).

Proof: Let ebe the half-line rooted at 0 with direction d. By construction, the

following equivalence holds for any convex vertex v located at 0 and 0 E {-, +}:

There exists a plane h through v with normal d such that CCv ç hO if and only

if e ç interior(NCv) U NCv • Since the direction d is represented by the point

q = en DP(o), the lemma follows immediately. •

Therefore we first determine if v is a convex vertex. This is the case if and only if

v is an extremal point in the set {v, Wl, ... , wm }. This is equivalent to the problem

of determining if v can be separated from {Wl, ... ,wm } by a plane, which in turn

is equivalent to linear programming [27]. Therefore we can determine if v is convex

by !inear programming in linear time (see e.g. [28, 57, 80]). If v is not a convex

vertex, then v is not a local maximum for any direction, and we stop considering

v. Otherwise, let hv be a plane that contains v and has Wl, ••• ,Wm to one side of

it. Such a plane is returned by the !inear programming test. Let h~ be a plane

paraUel to h~ which intersects aU edges el, ... , em • The intersection of h~ with Pv

is a simple polygon Pv with m vertices (corresponding to el, ... , em ) and m edges

(corresponding to h, ... ,lm). We compute the convex hull of Pv in !inear time [56],

[59]. Let us denote the convex hull by CH(Pv ). Let ë;" ... ,ë;; be the sequence of
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vertices of CIJ(J\), where l S il < ... < i j S m. These vertices correspond to

the edges Ci, ••.• , Cii of Pu, We have in fact computed the edges adjacent to v on

the convex hull of Pu, This information gives us the description of the convex cone

CCu of v in !inear time. Furthermore, the normal cone NCu can also be computed

in additional linear time.

Translate NCu such that v coincides with the origin o. Let Q~-) be the convex

polygon NCunDpH and let Q~+) be NCunDP(+). Either Q~-) is a bounded convex

polygon and Q~+) is empty, or vice versa, or both Q~-) and Qi+) are unbounded

convex polygons. The convex polygons have the foUowing meaning: v is a local

maximum in a non-horizontal direction -d if and only if the half-line starting at the

origin a in direction d intersects the interior of one of the polygons Q~-) or Q~+). We

compute the convex polygons QH and Q(+) for aU vertices of P, giving sets Q(-)

and Q(+) of at most n convex polygons in the planes DPH and DP(+). respectively.

The total complexity of the polygons in QH and Q(+) is O(n). The question: 'ls

P l-fillable?' or 'ls there an orientation of P such that it has only l maximum?'

,translates to the question: 'ls there a point in DpH or DP(+) that is covered by only

one convex polygon?' Similarly, the question of k-fiUabi!ity translates to deciding

whether there exists a point that is coveredhy only k convex polygons. We therefore

have estab!ished the following result:

Lemma 5.4.2 In O(n) time, the problem of k-fillability can be transformed ta the

problem of finding a point in the plane covered by only k convez polygons.

5.4.2 Solving the Covering Problem

The next step in the algorithm involves solving the foUowing problem: 'Given a

set Q of n convex, but not necessarily bounded, polygons in the plane, with total

complexity O(n), find a point that is covered by the minimum number of polygons

of Q.' Qur algorithm constructs the subdivision induced by Q, and associa.tes to

each ceU the number of polygons that contain it.

The subdivision induced by Q without the numbering can be constructed deter­

ministically in O(n log n+A) time by the algorithm of ChazeUe and Edelsbrunner[20],

where A is the total number of intersection points of all polygons in Q. Alterna­

tively, a simpler randomized algorithm performs the task with the same time bound,

see Clarkson[21] or Mulmuley[61]. The size of A can be 0(n2). Therefore, we obtain

...;'



a planar subdivision S with 0(n2 ) vertices, edges and cells. Consider the graph G

which has a node for every cell of S, and an edge between two nodes if the corre­

sponding cells are incident to the same edge of S. The graph G has 0(n2 ) nodes and

edges. Start at any node al> and compute in O(n) time how many polygons of Q

coyer it. Store this number with al. Start from al with a depth first search. Every

edge (ai, aj) of G we traverse corresponds to going inside or outside a polygon of

Q, in which case we take the number of ai, add or subtract one from it, and assign

this number to aj. Thus the whole process of assigning values to cclls of S requires

only 0(n2
) time. The cell with the minimum number assigned to it is covered by

the minimum number of polygons.

Returning to the k-fillability problem, the above algorithm finds the direction <i

such that the polyhedron has the minimum number of local maxima, if we apply it

to both the set Q(-) of convex polygons in the plane DpH and Q(+) in the plane

DP(+). We summarize the algorithm below.
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Algorithm 7: Find al/ orientations such that P is fil/able with minim1t1n n",nbel'

of venting hales.

1. Select ail convex vertices of polyhedron P.

2. Compute the convex cone of each convex vertex.

3. Compute the normal cone of each convex cone. Call this set NC.

4. Intersect each normal cone in Ne with DP(+) and DpH. Call this set of

(possibly unbounded) convex polygons R.

5. Compute the arrangement Q(+) induced by R on DP(+) and QH induced by

R on DpH.

6. Find ail regions on Q(+) and QH covered by the least number of convex

polygons of the set R. These regions represent the orientations minimizing

the number of venting holes need to fill P.

We conclude with the following theorem.

Theorem 5.4.1 Given a simple bounded polyhedron P in 3-space, one can find in

O(n2 ) time an orientation for P such that P is fil/able with the minimum number

of venting hales.
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A Reduction from Covering to I-Fillability

In this section, we present an O(n log n) time reduction from the rectangle covering

problem to the problem of l-fiIlability of polyhedra. Since a reduction from the

'A+B = C ?'problem to rectangle covering is given in [37], it foIlows that l-fiIlability

is at least at hard as Y\+B= C ?'.

Theorem 5.5.1 The rectangle covering problem can be reduced to the l-fillability

problem in O(n log n) time.

Proof: Let l be an instance of the rectangle covering problem, i.e., given a set n
of n rectangles in the plane, and also a rectangle RECT, decide if the union of the

rectangles in n cover RECT. We now describe the construction of a polyhedron P

such that it is l-fillable if and only if the rectangle RECT is not covered by n.

Figure 5.3: Left: an instance of the rectangle covering problem. Middle: a rectangle
ri and its convex cane CC(Ti)' Right: the normal convex cane NC(Ti) and the spike
Si·

We associate the plane in which n and RECT lie with the plane z = -1, such

that the center of RECT is the point (0,0, -1). For every Ti E n, we associate the

convex cone CC(T,) to be the cone with apex the origin 0 of 3-space, and whose

intersection with the plane z = -1 is the rectangle Ti. Then we normalize CC(ri)

to obtain a convex cone NC(Ti), and we intersect NC(Ti) with the plane z = -1 to

obtain a possibly unbounded convex polygon Qi. For each Qi, we choose a point qi

in its interior such that aIl of the qi are distinct. (The convex hull of the qi should

contain the point (0,0, -1)j if not, we add suitably chosen dummy rectangles to n
outside of RECT to enforce this.) Let hi be the plane through 0 with normal oqi.
Translate hi in direction oqi by an amount such that the interior of hi n NC(ri) has

positive area, but is contained in a disk with diameter 1. Define the spike Si to be
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the polyhedron ht n NC(ri). Translate hi and the spike Si simult.aneously back in

direction qio, such that hi passes through 0 again.

Let., be the minimum distance between any two of the distinct points qi. Let l'

be the maximum distance of any qi to the origin o. Let S be a sphere ccntered at 0

with radius at least 21'li + 1. Translate every pair hi and Si in direction qio such

that hi is tangent to S (8 ç; hi). By the choice of the radius of 8 and the a,ea of

hi n NC(ri) (the 'base' of the spike), no two spikes Si dnd Sj intersect. Compute

the convex polytope P = (z?: -1) n n1$i$n hi. By constrnction (the addition of

dummy rectangles), P is a bounded convex polybeclron. '1'0 P, wc add each spike

Si on the facet of P tha!. lies in hi. '1'0 finish the construction, wc add one more

gadget to the facet contained in the plane z = -1. This is the new spike Sl1IlCT for

RECT, which is translated in the -z-direction over a distance sa that its topmost

point penetrates the lower facet of P.

Figure 5.4: An example of the polyhedron constructed for theorem 5.5.1.

Without all the spikes, P is a convex polyhedron, and thus has exactly one

maximum for every direction. The spike SRECT gives additional local maxima for

every direction corresponding to a point in z = -1 outside of RECT. The other

spikes give a local maximum for every direction that corresponds ta a point inside

the corresponding rectangles of n. Hence, P is l-fillable if and only if RECT is not

covered by the union of the rectangles in n. The construction can be performed in

O(n log n) time using the half-space intersection a!gorithm of Preparata and Muller

[68]. •



CHAPTER 5. GRAVITY CASTING IN THREE DIMENSIONS

• 5.6 Fillability of Certain Classes of Polyhedra

82

In this section, we investigate the relationship between the notion of fillability and

certain known classes of restricted polyhedra. These results are relevant to the l11an­

ufacturing industry because in practice many objcds are not modeled by polyhedm

of arbitrary shape complexity.

5.6.1 Monotone Polyhedra

A polygon P is monotonie in direction 1 if for every line L orthogonal to 1 thn.t

intersects P, the intersection Ln Pis a line segment (or point). We genemlize this

notion to 3-dimensions to obtain a /a1'!1e family of monotone polyhedra. Wc doline

the class as follows.

Definition 5.6.1 A polyhedron P is weakly monotonie in direction 1 if the7'e exists

a direction 1 such that the intersection, of each plane orthogonal to / that intersects

P, is a simple polygon (or a line segment or point). The direction 1 is referred to

as the direction of monotonicity.

Note that there exist many different classes of simple polygons [63], [69], [85].

By substituting one of these classes for the word simple in the above definition,

we obtain a score of families of weakly monotonie polyhedra. Thus we say that if

ail the intersections are convex polygons, we have a weakly monotonie polyhedron

in the convex sense. If the intersections are monotone polygons, then we have a

weakly monotonie polyhedron in the monotone sense, and so on. R.cfer to Figure

5.5. Weakly monotone polyhedra have been previously investigated in the context

of movable separability of polyhedra [85].

Theorem 5.6.1 A weakly monotonie polyhedron Pis l-fil/able if it is oriented such

that gravity points in the direction of monotonicity.

Proof: For ease of exposition, let us assume that gravity, g, is in the negative z­

direction. If we show that P has only one local maximum in the positive z-direction

then by theorem 5.3.1 we establish the theorem. Suppose that P had more than

one local maximum. Let m be a local maximum that is not the global z-maximum.

Let Pm be the union of the facets incident ta m, and let hm be the plane containing

m with normal g.
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Let h;;, be the lower c10sed half-space bounded hy the plane hm with normal g,

containing the vertex m. By definition 5.3.2, we have that Pm Eh;;,. Since there is

a point with a greater z value than m, the intersection of hm with P is not a simple

polygon, a contradiction. •

For ease of exposition, let us assume that gravity is in the negative z-

5.6.2 Facet-Visible Polyhedra and Star-Shaped Polyhedra

Two points inside a polyhedron are said to be visible if the line segment between

them does not intersect the exterior of the polyhedron. A point P is weakly visible

from a facet f if there is a point x on f such that p is visible from x.

A polyhedron P is facet-visible if there is a facet of the polyhedron from which ail

the points in the polyhedron are weakly visible. Let P be a facet-visible polyhedron.

Without loss of generality, let fI be the facet from which the polyhedron is weakly

visible. Let d' denote the direction of the interior normal ta the facet.

Theorem 5.6.2 A facet-visible polyhedron P is l-fillable if it is oriented such that

d' points in the direction of gravity.

Proof:

direction.

Let Pl> an arbitrary point of the facet, be the pin gate. Let a be an arbitrary



point in P. Since P is facet-visible, there must be a point bon !J that sees point a,

i.e. [ab] E P.

Let II be the path = (a, b,p,) in P. Since II is monotone with respect to d', the

theorem follows. •
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Corollary 5.6.1 Every polyhed"on that is weak/y visible fm1n a seetiona/po/ygon is

2-fil/ab/e with re-orientation.

Figure 5.6: A star-shaped polyhedron that is not 1-fillable

A star-shaped po/yhedron is a polyhedron that contains at least one point x from

which ail points of the polyhedron are visible (see Figures 5.1 and 5.6 for a star­

shaped polyhedron). The set of points from which ail points are visible is known

as the kernel of the star-shaped polyhedl'On. A point in the kernel of a star-shaped

polyhedron can be computed in O(n) time using Megiddo's linear programming

technique [57]. This implies that in O(n) time, a seetional polygon can be round

from which the star-shaped polyhedron is weakly visible. However, a star-shaped

polyhedron may not necessarily be 1-fillable (see Figure 5.6). In fact, if a star-shaped

polyhedron is filled from one fixed orientation, it may need !1(n) vent;ng holes.

Theorem 5.6.3 A star-shaped po/yhedron is not necessari/y l-fil/able Dut can a/ways

be 2-fil/ed with re-orientation in O(n) time.

5.6.3 Other Restricted Polyhedra

In this subseetion, we simply point out that improvements on the O(n2 ) time algo­

rithm have been found for polyhedra satisfying certain regularity conditions. These

are local conditions imposed on each convex vertex to ensure that the resulting con­

vex polygons that are obtained for the covering problem are fat (see [54, 46], that



is, the ratio of the diametcr of the polygon to its width is bounded by a constant.

The only reason algorithm 7 uscd O(n2 ) time due to the fact that the arrangement

of convex polygons can have O(n2 ) complcxity. However, an arrangement of fat

convex pt'!ygons does not have O(n2
) complexity. Therein lies the improvement. A

detai!ed treatment of this topic can he found in [14].

•
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Chapter 6

Stereolithography

6.1 Introduction

In this chapter, we consider the problem of deciding whether or not a design is feasi­

ble for a CAD/CAM system developed and patented by 3D Systems of Sylmar, CA

that employs a process cal1ed stereolithography (See Figure 6.1). Stereolithography

is emerging as the dominant process used for rapid prototyping. The components of

the stereolithography manufacturing process consist of a vat of liquid photocurable

plastic, a computer control1ed table T on a stand S that can be moved up and down

in the vat and a laser L above the vat that can shine on the surface of the liquid

plastic and can move in a horizùntal plane. The system works as fol1ows. At the

first step the table is just below the surface of the pla.1tic and the laser is control1ed

to move about so that the light shines on the surface of the plastic and draws the

bottom-most cross-section of the object A being built. When the laser light contacts

the plastic, the plastic solidifies and so the first cross-section of the object is formed

and rests on the table. At the next step the table is lowered a small amount to al10w

liquid to cover the hardened layer and the laser then draws the next cross-section of

the object. The light from the laser penetrates the liquid just deep enough so that

this cross-section is welded to the lower cross-section produced at the previous step.

This process is repeated until the entire object is formed. The direction given by a

normal to the table pointing from the laser is called the direction of formation for

the object.

There are sorne objects that can be formed only if the direction of formation is

chosen correctly. For example, in Figure 6.2, the object (a) can not be formed in the

86
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Figure 6.1: Stereolithograpy system.
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position shown. Consider what occurs when the cross-section is reached where the

surface S lies. The surface S is not supported below and so as it is formed it sinks

to the levcl of the table. However, if the object is formed in the opposite direction

as in Figure 6.2 (b) then stereolithography will succeed. Naturally, there are sorne

objects that can not be formed using stereolithography regardless of the direction

of formation chosen.

In order to better understand this manufacturing process, we define a mathe­

matical model of stereolithography (referred to as vertical stereolithography). Under

this model, we assume that each layer can be welded on to the previous such that no

Levcl oC Uquld S ./ -:;:>........................"'---"'....

(a)

0

/'

(bl

Figure 6.2: Infeasible and feasible directions of formation.
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part of the top layer hangs over the previous. We analyze the class of objects thal.

can he constructed under the assumptions of the mode!. Given an abject (modelled

as a polygon or a polyhedron), we decide if a direction of formation exists that will

result in the successful construction of the abject. Such a direction will be called a

valid direction of formation. We provide an O(n) time algorithm for finding a valid

direction of formation where n is the number of vertices of the abject. Furthermore,

if the abject is feasible, we report a description of all the orientations in which the

abject can be made. We then define a more flexible model that more accurately

re!lects the actual capahilities of stereolithography (referred ta as v<Ll"ù,vlc-<Lng/c

stel"colithography). In this model, we assume that as each layer is welded on ta the

previous, the top layer may hang over the previous by a certain fixed amollnt. Again

we study the class of feasible abjects for this mode!. We give an O(n) time algorit.hm

for polygons and O(nlogn) as well <lE O(n) time algorithms for polyhedra.

6.2 Vertical Stereolithography

We first define the geometric model of stereolithography refel'red to as ve>'1iC<Ll stere­

olithography.

A polygonal abject is assumed ta l'est on the x-axis and a polyhedral abject is

assumed ta lie on the plane defined by y = O. For a given abject A and direction of

formation d, let Ad denote the abject oriented and positioned according ta d. For

Yo :2:: 0, let Ad(YO) be the intersection of Ad with the line y = yo for polygonal abjects

and the plane y = Yo for polyhedral abjects. We refer ta Ad(O) as the base of the

abject (with respect ta dl. A point p of the objec:t with y-coordinate yo is said ta be

supported (with respect to a particular direction of formation) if all the points with

x (and z) coordinates the same as p and positive y coordinate less than Yo are in the

abject. The cross-sections of the abject are assumed 1.0 be infinitesimally thin and so

direction dis a valid direction of formation for an object if the resulting orientation

ofthe object is such that al! points in the abject are supported. An abject is referred

ta as feasible provided il. has al. least one valid direction of formation.
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In this subsection we consider the two-dimensional problem where the object A we

wish to form under the vertical stereolithography model is a simple polygon. Let

Vo, VI, .. . , Vn-I be the clockwise ordering of the vertices around A such that each pair

I)f consecutive vertices Vi, Vi+i is joined by an edge e, (al! indices are taken modulo

n). For 1 ::; i ::; n, let Oi be the angle formed by e,_l and ei in the interior of A. If

edge ei is such that 0'+1 and 0, are both less than or equal to 'Ir /2 then ei is cal!ed

an acute edge. If e, is an acute edge and at least one of Oi+! or Oi is strictly less than

'Ir/2 then e, is said to be a strict/y acute edge. Let ni denote the direction normal to

edge ei pointing out of the polygon. Let JI be the set of al! outer normals.

We first observe a simple geometric fact that will be useful in estab!ishing many

of the lemmas and theorems to fol!ow. Let ei be an edge of polygon A. Let p be a

point on the open edge e,. Let r be a ray emanating from point p in direction d.

Observation 6.2.1 There exists a point q E r distinct from p such that (pq) is

contained in ext(A) if and only if d· ni is positive (i.e. the angle between d and ni

is strict/y less than 'Ir /2).

We begin by showing that the base of a feasible object must be an edge.

Lemma 6.2.1 If d is a valid direction of formation for polygon A, then Ad(O) is

some edge of A.

Proof: If Ad(O) is not an edge, then it must be a vertex, say v,. Since both Vi-l

and Vi+! are above the !ine y = 0, at least one of the two cannot be supported by

Observation 6.2.1. •

The above lemma restricts our search for a valid direction of formation to the

outer normals of the edges of a polygon, namely the set JI. Therefore, edge ei of

polygon A is said to be a valid base if ni is a va!id direction of formation. A point

,pin An; is said to be vertically visible from ei if the verticalline segment from p to

ei is cont'l.Ïned in An" Thus, we (,bserve the following

Observation 6.2.2 A polygon An; is feasible with vaUd base ei if and only if all

points in An; are vertically visible from e;.

Although Observation 6.2.2 provides sorne insight into the structure of a feasihle

polygon, the fol!owing c1taracterization of feasihle polygons is useful from a compu­

tational perspective.



Lemma 6.2.2 An edge ei of An, is a valid base if and only ifni·nj :::; 0 (V 1 :::; j :::; n,

j fi).•
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Proof:

(=» Suppose ei is a valid base but there exists an cdge ej such thal ni . nj > O.

Consider a point p on the open edge ej. Let q be the orthogonal projcclion o[ p onlo

the line L(ei)' The open line segment (pq) must be contained in An;. HOlVcvcr, lhis

is impossible by Observation 6.2.l.

(-"") Suppose thal ni . nj :::; 0 (V 1 :::; j :::; n, j fi), but ei is nol a va!id b..tse.

Then there must exist sorne point p in An; that is not vertically visible [rom Ci by

Observation 6.2.2. Let q be lhe orthogonal projection o[ p onto L(ei). Lille segment

[pq] must intersect bd(An,l above L(ei) sinee pis Ilot vertically visible [rom Ci. Let

x be the intersection point of [pq] and bd(An,l ciosest to p. Let us assume [or lhe

moment that x is on the open edge ek. Line segment [px] must be in An; since p is

in An; and x is the first intersection with the boundary. Let y be the intersection

of [xq] with bd(An,l ciosest to x or q if no such intersection exists. Line segment

(xy) is contained in ext(An,l. But this implies thal nk' ni> 0 by Observation 6.2.1

which is a contradiction. A similar argument holds had x been a vertex. _

With this in mind, we uncover a key characteristic of valid bases, thal leads to

a linear time algorithm.

Lemma 6.2.3 If ei is a valid base then ei is acute.

Proof: Suppose ei is a valid base that is not acute. Then either ni-l . ni > 0 or

ni+l • ni > 0 or both. By Lemma 6.2.2 this contradicts the fact that ei is valid. _

Given this characteristic, we completely characterize the convex objects lhat are

feasible. The following lemma shows that for a convex object A there is a simplc

!inear time test to find a va!id base for A or report that none exists.

Lemma 6.2.4 Given a convex polygon A, the edge ei is a vaUd base if and only if

Ci ;5 acute.

Proof:

(=» If Ci is a va!id base, then by Lemma 6.2.3 it must be acute.

(<=) Since Ci is acute, extending Ci-l and CHI causes them to meet at a point

directly above sorne point of ei> thus forming a triangle with Ci that is vertical1y



visible from Ci. By convexiLy, A must lie in this triangle and so for any point p in

A Lherc is a point q on Ci vertically below p. Therefore, by Observation 6.2.2, Ci is

a valid base. _
•
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The charactcrizaLion of convex objects in Lemma 6.2.4 implies that a simple

examinaLion of the angles between the edges of a convex object is suflicient to find

a valid base if one exists or report that the object is not feasible. For a non-convex

object, such local tests on the angles are insuflicient to determine the feasibility of

an object, since such an object may have an acute edge that is not a valid base.

For example, in Figure 6.3, edge Ci is an acute edge but not a valid base of the

polygon since vedex Vi-2 is not supported. However, the following lemma shows the

rclationship bctwccn the fcasibiliLy of a simple polygon and its convex hull.

Lemma 6.2.5 If simple polygon An, is feasible with base Ci then the convex hull of

An, is also feasible with base Ci.

Proof: Follows from Observation 6.2.2, Lemma 6.2.3 and Lemma 6.2.4. _

Since the convex hull of a simple polygon can be computed in linear time ([56],

[59]) and a convex polygon can only have at most 4 acute edges, we see that feasibility

of a simple polygon can be computed in linear time. The convex hull of a simple

polyhedron, however, cannot be computed in linear time, but can be computed in

O(nlogn) time (see [69]). Therefore, although this approach provides an optimal

solution to the problem in two dimensions, a solution in three dimensions will require

an additional log n factor. To this end, we explore the fol1owing alternate solution

that can be generalized to the three-dimensional version of the problem.

Let us first examine the restrictions that the existence of a strictly acute edge

puts on the feasibility of a non-convex polygon.

Lemma 6.2.6 If a simple polygon A is feasible and edge ei of A is strictly acute

then the set of ail valid bases of A is a non-e:npty subset of {e;, e;-l, eiH}'

Proof: (Refer to Figure 6.3). Suppose that none of ei, ei-l and ei+l are valid.

Since ei is strictly acute, without loss of generality, assume that !Ji < 'Ir /2. Since A is

feasible, let ej be a valid hase of A. Notice that nj cannot he contained in NH(ni)

since otherwise nj' ni> O. Similarly, nj cannot he in arc[N+(ni), opp(ni)) hecause

otherwise nj . niH > O. Also, nj cannot he in arc[opp(ni), N-(ni)] since otherwise
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ni' ni_l > O. But N H(ni) U arc[N+(ni), opp(ni)) U aI'c[O]Jp(ni) , N-(ni)] represents

all directions. Therefore, ni cannot cxist. •

Lemma 6.2.3 guarantees that an acute edge ei exists if A is feasihlc and Lcmma

6.2.6 says that if a strictly acute edge ei exists then it is sufficient to test ei, ei-l

2.:td ei+l for a valid hase. We now consider what happens when Ci is an acute edgc

with both Oi+l and Oi equal to 1r/2. If An, contains a unique edge Ci snch that ni is

opp(ni) then we label the edge etop(i).

Lemma 6.2.7 If A is feaBibie and ei is an acute edge such that Oi+l = Oi = 1r /2

then the set of al! valid bases of A is a non-empty subset of {ei, Ci_l, ci+l,e'op(i) (if

it exists) }.

l'roof: Similar to the l'roof of Lernma 6.2.6. •
With Lemma 6.2.7 we have characterized all polygons that are feasible. We

summarize with the following theorem.

Theorem 6.2.1 Given that A contains an acute edge ei, thc set of ail valid bases

of A is a non-empty subset of {ei' ei-l, ei+!, e,op(i) (if it exists and Oi+l = Oi = 1r /2)
} if and only if polygon A is feasible.

Proof: Follows from Lemma 6.2.3, Lemma 6.2.6, and Lemma 6.2.7. •
Determiningwhether or not a polygon has an acute edge cau be achievedin O(n)

time, where n is the number of vertices of the polygon. Thus, in O(n) time, the

number of possible valid bases cau be reduced to 3 or 4 by Theorem 6.2.1. Moreover,

by Lemmâ. 6.2.2 we cau test in O(n) time whether any of these candidate edges is

valid simply by testing its outward normal with the outward normals of all the other



edges. Tb(lfcfore, we can test a polygon A for feasibility and find ail valid bases in

O(n) time.

Theorem 6.2.2 In O(n) time the feasibility of a polygonal object with n vertices

can iJe deter'mined and ail valid bases identified when the object is feasible.
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6.2.2 Polyhedral Objects

In this sllbsection we consider the three-dimensional case where the object is a

simple polyhedron. We want to find a facet of polybedron A that is a valid base or

dcLermine tbat A is not feasible.

The following notation will be Ilsed in this sllbsection. Let A be a polyhedron

with n vertices. Given a facet f of a polyhedron, we denote the plane containing

f by PU). For facct f of A, let f(l), f(2), ... , f(k j ) be the facets of A that share

at least one edge with f. Let OiU) be the angle interior to A between the plane

PU) and the plane PU(il) about the !ine of intersection of PU) and PU(il). If

OiU) ~ 1r/2 for ail i, 1 ~ i ~ kj, then f is called an acute facet. If f is acute and

for some i, OiU) < 1r /2, then f is said to be a strietly acute facet. Let nU) denote

the direction normal to facct f pointing out of the polyhedron. Let N be the set

of ail outer normals. We show several properties analogous to those in the previous

subsection that will give rise to a !inear time feasibility testing algorithm. We first

observe a simple geometric facto Let f be a facet of polyhedron A. Let p be a point

on the facet f. Let r be a ray emanating from point p in direction d.

Observation 6.2.3 There exists a point q E r distinct from p such that (pq) is

contained in ext(A) if and only if d· nU) is positive (i.e. the angle between d and

nU) is strictly less than 1r /2).

We begin by showillg that the base of a feasible object must be a facet.

Lemma 6.2.8 If d is a valid direction of formation for polyhedron A, then Ad(O)

is sorne facet of A.

Proof: If Ad(O) is not a facet, then it must either be an edge or a vertex. If it is

an edge e, then let fi and !; be the two facets adjacent to e. Since both facets !ie

above a plane containing e, either nUi) . d or n(!;) . d is positive. Without loss of

generality, assume it to be nUi). By Observation 6.2.3 there is a point on the facet

fi that is not supported. A similar argument holds if Ad(O) is a vertex. _
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The above lemma restricts our sem'ch for a valid direction of formation t.o the

outer normals of the facets of a polyhedron, namely the set N. Thercrore, facet. f
of polybedron A is said ta be a va/id base provided that n(J) is a valid directio'l of

formation. A point p in A,,(f) is said ta be vcr/.ically visible from f if the vertical

line segment from p ta f is contained in A,,(J). Thus., Wc observe the follo\\'ing.

Observation 6.2.4 A polyhedmn A,,(f) is feasible wi/.h valid bnse f if and only if

ail points in An(f) are ver/.ieally visible f1"O'" f.

As in the two dimensional case, the following characterization of feasible polyhedra

will prove ta be more useful from a computational perspective.

Lemma 6.2.9 A face/. fi of A,,(f,) is a valid base if and only ifn(f;). nUj) ::; 0 (for

all facets Ji of An(f,» where Ji i- fi).

Proof:

(=}) Suppose fi is a valid base but there exists a facet Ji such that n(f;)· n(fj) >
O. Consider a point p on the facet fj. Let q be the orthogonal projection of]> onto

the plane P(Ji). The line segment [pq] must be contained in An(f,)' I-Iowever, this

is impossible by Observation 6.2.3.

(ç,) Suppose that n(Ji)' n(Ji) :::; 0 for ail faccts Ji of A,,(f,) distinct. from fi,

but Ji is not a valid base. Then there must exist sorne point p in An(f,) that is not

vertically visible from Ji by Observati')ll 6.'2.4. Let q be the orthogonal projeet.i'"n

of ponta P(Ji)' Line segment [pqJ must intersect bd(A,,(f,») above P(Ji) since p is

not vertically visible from Ji. Let x be the interseet.ion point of [pq] and bd(A,,(f,»)

closest to p. Let us assume for the moment that x is on the facet Ji. Line segment

[px] must be in An(f,) since p is in A"(f,) and x is the first interseet.ion with the

boundary. Let y be the intersection of [xqJ with bd(A,,( l,») closest ta x or q if no

such intersection exists. Line segment (xy) is contained in ext(An(f,»). But this

implies that n(Ji) . n(Ji) > 0 by Observation 6.2.3 which is a contradiction. A

similar argument holds for the case where x is a vertex or on an edge. _

Lemma 6.2.10 If facet f is a valid base for polyhedron A then f is acute.

Proof: Suppose that f is a valid base for A but f is not acute. Then there must

be sorne f(i) such that O;(J) > -rr/2. I-Iowever, this implies that n(J)· n(J(i)) > O.

By Lemma 6.2.9, this contradicts the fact that f is valid. _



In the special case of convex polyhedra, we see that a simple local test on each

facet suffices to determine if a facet is a valid base.•
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Lemma 6.2.11" Let A be a canvex palyhedron. Face f is a valid base if and only if

f is acute.

Proof: Similar to proof of Lemma 6.2.4. •
It is no longer c1ear whether the feasibility of a convex polyhedron can be deter­

mined in O(n) time sinee a facet f of a polyhedron may have O(n) adjacent faeets.

However, the total complexity of all adjacencies is !inear by Euler's formula (see

[Il]). Therefore, testing all facets for validity by the local test implied in Lemma

6.2.11 can be done in O(n) time. vVe now tum our attention to polyhcdral ob­

jects that are not necessarily convex. The following lemma shows the relationship

between the feasibility of a simple polyhedron and its convex hull.

Lemma 6.2.12 If simple palyhedran An(f) is feasible with base f then the canvex

hull of An(f) is also feasible with base f.

Proof: Follows from Observation 6.2.4, Lemma 6.2.10, and Lemma 6.2.11. •

Lemma 6.2.12 implies the following simple approach to determine if a given

polyhedron A is feasible. Compute the convex hull of A in O(n log n) time. A

convex polyheuron can have at most 6 acute facets. Each acute facet of the convex

hull is a candidate base. Testing a facet can be done in !inear time by Lemma

6.2.9. Therefore, determining feasibility of a simple polyhedron can be achieved in

O(nlogn) time. The complexity is dominated by the computation of the convex

hull. To circumvent the computation of the convex hull, we explore the following

approach which willlead to an optimal algorithm.

We first examine the restrictions placed on the feasibility of a polyhedron in the

presence of a strictly acute facet. Before doing so, we define the following geometric

term (see Figure 6.4). Let p be a point on the sphere of directions S. Let q be any

point on S distinct from p and opp(p). We define >'p(q) to be the point on N(p)

c10sest to q (i.e. the intersection point c10sest to q of N(P) with the great circIe

through p and q).

We show that if the polyhedral object A has a strictly acute facet f, then for

one of its adjacent facets must be a valid base if the object is feasible.
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Lemma 6.2.13 If polyhedron A is feasible and f is a slrict/y acule facel then the

set of ail valid bases of A is a non-empty subsel of {J, f( 1), ... ,f(kf )}.

Proof: Suppose that none of f, f(l), ... and f(k f ) are valid. Since f is strictly

acute, without loss of generality, assume that O;(J) < r. /2. Since A is feasible, let fj

be a valid base of A. We see that n(J;) # opp(n(J)) since n(J(i))· opp(n(J)) > O.

This implies that Àn(fl(n(J;)) is properly defined. Now, we know that n(J;) cannet

be in N H(n(J)) for this would violate the validity of facet f; by Lemma 6.2.9.

Therefore, n(J;) must be in N HC(n(J)].

We notice that Àn(J)(n(J(i)) is simply the outward normal of the edge of facet

f (which is a polygon) corresponding to the intersection of f(i) and f. It fo11ows that

every open half-circle C N(n(J)) contains at least one point of Àn(fl(J(l)), Àn(J)(J(2)), ... ,

or Àn(J)(J(kf )) since facet f is a simple polygon. Therefore, given a point x #
opp(n(J)) in N HC[n(J)], there exists a facet f(i) adjacent to f such that Àn(J)(x),

Àn(J)(n(J;)) > O. Observe, however, that if two directions a, bENW[n(J)] both

distinct from opp(n(J)) are such that Àn(J) (a) . Àn(J)(b) > 0, then a· b > O. But this

implies that n(J;) cannot exist. _

If f is not strietly acute, we define ftop analogously to e,op(i) in the previous

subsection. We have the following lemma.

Lemma 6.2.14 If polyhedron A is feasible and f is an acute, but not strictly acute,

facet then the set of aIl valid bases of A is a non-empty subset of {I, f(l), ... J(kf ),

f.op (if it exists) }.

Proof: Similar to the argument given in the proof of Lemma 6.2.13. _



These results were sufficient in the two-dimensional case to reduce the number

of candidate bases to at most 4. Unfortunately, in the 3-dimensional case, an acute

facet f may have O(n) adjacent facets. However, we are able to link the feasibility of

a f~.cd. in a polyhedron to the feasibility of an edge in a polygon. Thus, we establish

the fol!owing theorem.

•
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Theorem 6.2.3 Given that A has an acute facet f, polyhedron A is feasible if and

only if the set of ail valid bases of A is a non-empty subset of {f, f,op (if it exists)

and at most 4 lacets adjacent to f}. Moreover, the edges corresponding to the

intersection of f with the at most 4 facets adjacent to f are valid edges for polygon

f·
Proof:

(=}) If the set of valid bases of A is a non-empty subset of: f, f,op (if it exists)

and at most 4 facets adjacent to f, then by definition, Ais feasible.

({=) If Ais fea.sible, we must show that the fol!owing facets of A are the only valid

bases: f, f,op (if it exists) and at most 4 facets adjacent to f. Lemma 6.2.14 reduces

our task to showing that at most 4 facets adjacent to f can be bases. Suppose 5

faccts adjacent to f were valid bases. Let us denote them by f(i 1 ), f(i2 ), ••• , f(i 5 ).

Notice that n(J(i1)), n(J(i2 )), n(J(i3 )), n(J(i4 )), and n(J(is)) are al! contained in

N HC[n(J)] since f is acute. AIso, since they are all valid bases, n(J(ij)) . n(Jk) ~ 0

for all 1 ~ j ~ 5 and for al! facets fk =f. f( ij ) of A by Lemma 6.2.9.

Let f(I),/(2), ... ,/(kj ) be the facets adjacent to facet f. Since f is acute

n(J(I)), ... ,n(J(kj )) are all contained in N HC[n(J)]. Observe that Àn(J)(n(J(k)) is

properly defined for all 1 ~ k ~ kJ• Since each of f(i 1 ), f(i2 ), ... , f(is) is a valid

base, we have that Àn(J) (n(J(ij))) . Àn(J)(n(J(k)) ~ 0 for alll ~ j ~ 5 and all facets

f(k) adjacent to f distinct from f(ij). We notice that Àn(J)(n(J(k)) is simply the

outward normal of the edge of facet f (which is a polygon)corresponding to the

intersection of f(k) and f. But this would mean that polygon f has 5 valid edges

by Lemma 6.2.2, contradicting Theorem 6.2.1. •

Therefore, the number of possible valid bases in a feasible polyhedron A is at

most 6. We summarize below the linear time algorithm to determine the feasibility

of a simple polyhedron. The algorithm takes a simple polyhedron A as input.

Aigorithm 8: Determine the feasibility of a simple polyhedron.
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1. Determine if A has an acute facet. If A does not have an acute facet, exit (A

is not feasible).

2. Let f be the acute facet of A. Scan all other facets of A to determine if J,oP
exists.

3. Compute aU possible valid edges of polygon J using the algorithm descl'ibed

in Section 6.2.1. There are at most 4 edges. Let F' represent the facets of A

adjacent to these edges excluding facet f.

4. Let B be {l, J,oP (if it exists) } U F'. The set B represents the candidate bases

of A. There are at most 6 facets in B by Theorem 6.2.3.

5. Test each facet fi E B to see if it is valid in the fo11owing way:

Check that the angle between normal nUi) and a11 othr normals is no less

than 'Ir/2. This can be done in linear time.

6. Output the valid bases.

The correctness of the algorithm foUows from Theorem 6.2.3. As for the time

complexity, we see that step 1 can be done in O(n) time by Euler's formula (see [11]).

Step 3 takes linear time by the algorithm given in Section 6.2.1. Furthermore, by

Lemma 6.2.9 testing each candidate facet can be done in O(n) time simply by testing

its outward normal with the outward normals of aU the other facets. Since there are

only a maximum of 6 candidate facets, we conclude that testing a polyhedron A for

feasibility and finding ail valid bases can beachieved in O(n) time.

Theorem 6.2.4 In O(n) time the feasibility oJ a polyhedral object with n vertices

can be determined and al! valid bases identified when the object is Jeasible.

6.2 ..3 Relation to Ne machining

A 3-axis NC machine consists of a worktable, a spindle or milling cutter, and the

motors and controls for positioning the cutter and/or the worktable along the three

translational axes corresponding to the three axes of a Cartesian coordinate system

(see Reid [42) for a discussion on the different types of NC machines). A cutter can

be viewed as a thin cylinder or rod rotating around its axis of symmetry. Without

1055 of generality, assume this axis of symmetry of the cutter is parallel to the z­

axis, and that the object contacts the worktable on a face. Then, any polyhedron



P constructed by a 3-axis Ne machine has the following property: for every point

p on the surface of P (except for the base), there exists a ray emanating from p

parallc1 to the z-axis that does Ilot intersect any other point on P. This follows

from the fact that the cutter must reach the point and its movement is restricted to

translat:ons along the three coordinate axes. Therefore, we have the following.

•
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Theorem 6.2.5 A polyhedral object formed by 3-axis NC machining can be recog­

nized in lineartime and can also be constructed by vertical stereolithography.

6.3 Variable-Angle Stereolithography

In practice, as the laser welds one cross-section on ta the other, if the top layer

is "close enough" 1.0 the previous layer, it can be welded on. That is, the upper

layer may hang over the previous by a certain amount and still get welded on. To

model this mathematically, we define the followil1g model referred to as variable­

angle stereolithography.

Intuitively, variable-angle stereolithography differs from vertical stereolithogra­

phy in the following way. As each layer is glued on by the laser, the topmost layer

cau hang over the previous layer by the freedom allotted by sorne constant angle w.

More formally, we say that a point p with y-coordinate ya is w-supported with respect

to the direction of formation if there exists a point q with positive y coordinate less

than Ya such that the line segment [pq] is contained in the object and the smaller

angle between the direction of formation and the vector pq is less than or equal to

w. Clearly, w must be less than 'Ir/2. Notice that variable-angle stereolithography

is a generalization of vertical stereolithography. The two are equivalent when w is

zero. An object can be built with respect to the parameter w if there exists an

orientation of the object such that all points above the base are w-supported. An

object that can be built with respect to the parameter w will be called w-feasible.

6.3.1 Polygonal Objects

The parameter w enlarges the class of objects that eau be formed. In fact, with

w> 0, the base of an object no longer need be a edge of the polygon. For example,

the polygon in Figure 6.5 is feasible (as long as both La and Lb are both less than
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or equal to w) with a vertex as base. For polygonal objects, we will assume that the

base of an object is always an edge, since building an obj<'d on a vertex is ullstable.

We say that a point p in An, is w-visible from ei if pis above L(ei) and there

exists a polygonal path II from p to ei such that II E An, and every vertex in II

(except for the vertex on ei) is w-supported by an adjacent vertex. Thus, we observe

the fol1owing.

Observation 6.3.1 A polygon An, is w-feasible with va/id base ei if and on/y if ail

points in An, are w-visib/e from ei.

A polygonal chain is said to be monotonie with respect to direction 0 if the in­

tersection of every Hne paral1el to N(0) with the chain is either empty or a point.

We observe the fol1owing prûperty that is crucial to the dcvelopment of a linear

a1gorithm.

Observation 6.3.2 If a point p is w-visible from ei, then there exists a path II from

p to ei that is monotone with respect to direction ni.

We present an a1ternate characterization of w-feasibility that will be useful from

a computational perspective.

Theorem 6.3.1 A polygon An, is w-feasib/e with va/id base ei if and only if the

angle between ni and aU other normals is no less than 'Ir /2 - w and the set of ail

local minima with respect to ni is ei.
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Proof:

({=) Given that ail ni distinct from ni are such that the smaller angle between

Lnini :::: 7r: /2 - w, and ail local minima are contained in ei, we will show that An; is

w-feasible with base ei. We do this by showing that every point in An; is w-supported

by the following construction.

Let pEAn;. Assume that p ~ ei.

1. If p is contained in int(AnJ, then let q be the intersection point below p and

c10sest to p of a vertical line through p and bd( AnJ.

2. If p is contained in the interior of an edge e, then let q be the vertex adjaeent

to e with lower y-coordinate. Such a vertex must exist sinee p is not a local

minimum.

3. If pis a vertex v, then let q be the vertex adjacent to v with lower y-coordinate.

Such a vertex must exist sinee p is not a local minimum.

By construction, the smaller angle between pq and ni is no more than w. There­

fore, p is w-supported. If q E ei, then we are done. If q ~ ei, we must show that q is

w-supported. This can be done by repeating steps 1, 2, 3 with q. The construction

must end with a point on ei sinee ei contains ail local minima with respect to ni and

with every iteration, the y-coordinate of the newly constructed point is decreased.

(=}) Given that An; is w-feasible with valid base ei, we will show that the smaller

angle between ni and ail other outer normals is greater than or equal to 7r: /2 - w

and that the set of alilocal minima with respect ta ni is ei.

Suppose there exists an outer normal ni such that Lnini < 7r: /2 - w. Let p be a

point in the interior of ei' Since ei is an w-feasible base, there must exist a point q

such that p is w-supported by q. However such a q does not exist because of ni'

Similarly, suppose there exists a local minimum point p that is not contained in

ei. Again, the point p is not w-supported. _

Theorem 6.3.2 For fixed w, a polygon has a constant number of candidate edges

that can be valid bases. These candidate edges can be obtained in O(n) time.

Proof: Let k = r27r:/(7r:/2-w)l Caver the circ1eof directions with k closed arcs,

denoted by al, a2, ••• ak, having the following property. The angle spanned by each

of the arcs is exactly (7r: /2 - w).



For edge Ci, suppose that ni is contained in the open arc aj' If edge Ci is a valid

base, then by Theorem 6.3.1 there are no other outer normals in the open arc aj.

If ni had been on the end of the closed arc aj, then there can be at most one other

normal on the other end of closed arc aj. Therefore, each closed arc can contain

the outer normal of at most 2 valid bases. Sincc there are k arcs, there can be at

most 2k valid bases. But k is a constant when w is fixedj therefore, there are only

a constant number of valid bases.

The algorithm for obtaining the valid bases follows from the discussion above. _

•
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We now have ail the tools needed to determine the w-feasibility of a simple

polygon in linear time. A brief outline of the algorithm follows. The algorithm

takes as input a simple polygon A and parameter w.

Algorithm 9: Determine the w-feasibility of a simple polygon.

1. Let B represent the set of candidate bases of A. There are on)y a constant

number of edges in Band they can be computed in linear time using the

technique described in Theorem 6.3.2.

2. Test each edge Ci E B to see if it is valid in the following way.

• Check that the angle between normal ni and ail other normals is no less

than 'Ir/2 - w. This can be done in linear time.

• Verify that the set of ail local minima with respect to ni is Ci. This can

be done in linear time using the algorithm described in Chapter 4 which

determine given a polygon, a specified edge, and a direction, whether the

edge is the set of alllocal minima with respect to the given direction.

3. Output the valid bases

Testing an edge to see if it is valid takes linear time. However, sinee the number

of edges tested b constant, step 2 is completed in linear time. The complexity of

the algorithm is linear in the size of the input since the time to complete each step

is at most linear. The correctness of the algorithm follows from Theorems 6.3.1 and

6.3.2.

Theorem 6.3.3 The feasibility of a simple polygon in variable-angle stereolithogra­

phy can be determined in O(n) time.



Remark: The technique used to determine the feasibility of a simple polygon with

w = 0 provides an alternate linear time method to compute the feasibility in vertical

stereolithography.
•
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6.3.2 Polyhedral Objects

Similar to the two-dimensional case, with w > 0, the base of an object no longer

need be a facet of the polyhedron (see Figure 6.5). However, ViC will assume that

the base of an object is always a facet of the polyhedron, since building an object

on a vertex or an edge is unstable.

We say that a point p in An(J) is w-visible from a facet f if p is above the plane

PU) and there exists a polygonal path II from p to f such that II E An(J) and the

smaller angle between every pair of edges in II is no more than w. Thus, we observe

the following.

Observation 6.3.3 A polyhedron An(f) is w-feasible with valid base f if and only

if ail points in An(J) are w-visible fmm f.

We observe another property that is crucial to the deve10pment of a linear algorithm.

Observation 6.3.4 If a point pis w-visible from f, then the path II from p to f is

monotone with respect to direction nU).

Theorem 6.3.4 A polyhedron An{j) is w-feasible with valid base f if and only if the

angle between n(f) and ail other normals is no less than "Ir/2 - w and the set of ail

local minima with respect to nU) consists of facet f.

Proof:

(<=) Given that ail outer normals n(fj) distinct from nU) are lluch that the

smaller angle between LnUj )n(f) ~ "Ir/2 - w, and ail local minima are contained

in f, we will show that An{j) is w-feasible with base f. We do this by exhibit­

ing a construction such that every point in An{j) is w-supported by the following

construction.

Let p E An{j). Assume that p ~ f.

1. If pis contained in int(An{j»), then let q be the intersection point below p and

c10sest to p of a verticalline through p and bd(An{j»).

-



2. If p is contained in the interior of a facet 1;, then let q be a point on J; with

lowest y-coordinate.•
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3. If pis contained in the interior of an edge e, then let q be a point with lowest

y-coordinate in one of the two faeets adjacent to e.

4. If p is a vertex v, then let q be a point with lowest y-coordinate in one of the

faeets adjacent to v.

In ail cases, q will have a lower y-coordinate than p since p is not a local min­

imum. By construction, the sma11er angle between pq and nU) is no more than

w. Therefore, p is w-supported. If q E J, then we are done. If q ri. J, wc must

show that q is w-supported. This can be done by repeating steps 1,2, 3, 4 with q.

The construction must end with a point on J sinee J contains a11local minima with

respect to nU) and with every iteration, the y-coordinate of the newly constructed

point is decreased.

('*) Given that An(J) is w-feasible with valid base J, we will show that the

smaller angle between nU) and a11 other outer normals is greô.ter than or equal to

'Ir/2 - w and that the set of a11 local minima with respect to nU) is ei.

Suppose there exists an outer normal nU;) such that LnU; )nU) < 'Ir /2 - w. Let
p be a point in the interior of 1;. Sinee J is an w-feasible base, there must exist a

point q such that p is w-supported by q. However such a q does not exist because

of nU;).
Similarly, suppose there exists a local minimum point p that is not contained in

f. Again, the point p is not w-supported.

•

Theorem 6.3.5 For fixed w, a polyhedron has a constant number oJ candidate Jacets

that can be vaUd bases. These facets can be obtained in O(n) time.

Proof: Let us consider the spherical coordinates (q" p) of the sphere of directions

S centered at the origin where the angle q, is in the set [0, 2'1r) and the angle p

is in the interval [-'Ir/2, 'Ir /2]. We first divide the sphere of directions into lé =
r'lr/('Ir/4 - w/2)l slices with paraUel circ1es in the foUowing way. Slice s) contains

all points where p E ['Ir/2,'Ir/2 - ('Ir/4 - w/2)]. Sliee S2 contains all points where

p E ['Ir/2 - ('Ir/4 - w/2),'Ir/2 - 2('Ir/4 - w/2)]. Sliee Si contains ail points where

p E ['Ir/2 - (i - l)('Ir/4 - w/2),-tr/2 - i('Ir/4 - w/2)]. See Figure 6.7.
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Figure 6.7: Slices and pieces of the sphere of directions.

Each slice Si is further subdivided into m = r21r/(1r/4 - w/2)l pieces in the

following way. Piece Sil contains ail points where </> E [0, 1r/ 4 - w/2J and p E

[1r/2 - (i - 1)(1r /4 - w/2), 1r/2 - i(1r /4 - w/2)J. Piece Si2 contains ail points where

</> E [1r/4-w/2,2(1r/4-w/2)] and p E [1r/2-(i-1)(1r/4-w/2),1r/2-i(1r/4-w/2)].

Piece Sij contains all points where </> E [U - 1)(1r/4 - w/2),j(1r/4 - w/2)] and

p E [1r/2 - (i -1)(1r/4 - w/2), 1r/2 - i(1r/4 - w/2)].
By construction, any pair of points in a piece Sij, represents a pair of directions

dl and d2 such that the smaller angle between dl and d2 is strict1y less than 1r/2 - w.

Therefore, the outer normals of two feasible bases cannot lie in the same piece.

There are km pieces. Notice that km no more than 1r2 /(1r/2 - W)2. Since w is

fixed, km E 0(1). Each piece can contain at most 1 feasihle base. Therefore, there
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are 0(1) feasible bases.
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•
We now have ail the tools needed 1,0 determine the feasibility of a simple poly­

hedron in linear time. A brief outline of the algorithm follows. The algorithm takes

as input a simple polyhedron A and parameter w.

Aigorithm 10: Determine the w-feasibility of a simple polyhedmn.

1. Let B represent the set of candidate bases of A. There are only a constant

number of facets in Band they can be computed in linear time using the

technique described in the proof of Theorem 6.3.5.

2. Test each facet fi E B 1,0 see if il, is valid in the fo\lowing way.

• Check that the angle between normal n(fi) and all ot.her normals is no less

than 11"/2 - w. This can be done in linear t.ime.

• Verify that the set of ail local minima with respect 1,0 n(Ji) is f;. This can

be done in linear time using the algorithm described in chapter 5 which

determines given a polyhedron, a facet and a direction, whether t.he facet

is the set of ail local minima with respect 1,0 the given direction.

3. Output the valid bases

Testing a facet 1,0 see if il, is valid takes linear time. However, since the number

of facets tested is constant, step 2 is completed in linear time. The complexity of

the algorithm is linear in the size of the input since the time 1,0 complete each step is

al, most linear. The correctness of the algorithm follows from Theorem 6.3.4, 6.3.5.

Theorem 6.3.6 The feasibility of a simple polyhedron in variable-angle slereolithog­

raphy can be determined in O(n) Ume.

Remark: The technique used ta determine the feasibility of a simple polyhedron

with w = 0 provides an alternate linear time method 1,0 compute the feasibility in

standard stereolithography.

The initial assumption that the base of an object is always a facet of the given

polyhedron may be slightly weakened al, the cost of a logn factor. One might argue

that although the construction of an object from a vertex or edge may be unstable,

il, is reasonable 1,0 assume that the object is placed on a facet of the convex hull
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of the object. After the construction of the convex hull of the object, wc sec that

determining its feasibility under this weaker assumption can be donc in !inear time

from the discussion above. Therefore, wc have the following.

Theorem 6.3.7 Given a simple polyhedron A, if the base of A can be a facet of its

convex !Lull, then feasibility in variable-angle stereolithography can be determined in

O(n log n) time.
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Determining if an Object

Castable

7.1 Introduction

•
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In this chapter, we study the problem of determining whether a re-usable cast of an

object can be constructed. We say that a cast is re-usable provided that the cast can

be removed from the object without breaking the object or the cast parts. Thus,

such a cast can be used more than once in the construction of an object using a

casting process. The requirement to remove the cast parts without breaking them,

so that they may be re-used, imposes certain restrictions on the shape of the objects

that can be constructed. These are the restrictions we investigate in this chapter.

We concentrate nn determining if a re-usable two-part cast of an object can be

made. Two-part casts are the most popular types of casts used today due to their

simplicity and efficiency. 1'0 construct a two-part cast, a prototype of the object is

first obtained (see Figure 7.1). The prototype is then divided into two parts along

a plane. The facet of each prototype part adjacent to the cutting plane is referred

to as the base. The first cast part is made by placing the base of the first prototype

part on a fiat surface, and then adding sand around it. The part is then rotated

such that the base is facing up, and the other prototype part is placed such that the

bases coincide. The second cast part is built by adding sand around this prototype

part while maintaining a channel into the cavity. Once the sand hardells, the cast

of the prototype object is complete and the prototype parts can be removed. 1'0

build a metal renditioll of the prototype object with this cast, liquid metal is poured

IDS



inLo the opening until it fills the cavity. After the metal solidifies, the cast parts are

removed from the object. The key. to constructing a cast with this process is the

ability to remove the prototype object without breaking the cast. This property is

not restricted to casts built for manufacturing methods related to sand casting but

also applies to other metal casting methods [31, 87], as well as injection molding

and blow molding methods for plastics [71,88]. The ability to remove the prototype

object from the cast without breaking the cast allows one to re-use the same cast

when mass-producing a particular object. Thus for several different manufacturing

methods involving casting, the geometry of the object determines its feasibility of

construction.

•
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add sand

~

sand cast of lower haif

add sand sand cast of upper half

remove prototype halves
from the cast parts

forming the
melal object

Figure 7.1: Construction of an object by sand casting, using two halves of the object
as prototypes.

An object is castable if if, can be manufactured by casting. In other words,

a cast of the object can be constructed such that each cast part can be removed

from the object without breaking the object or any of the cast parts. Geometrie

and algorithmic issues of the castability of planar objects have been studied by

Rappaport and Rosenbloom [73]. In this chapter, we address casting of objects

modelled by polyhedra. In geometric terms, castability can be defined as follows

Definition 7.1.1 A simple polyhedron P is castable iJ there e:z:ists a plane h such

that h+ n 8P is a weak terrain in some orientation, and h- n 8P is a weak terrain

in some orientation. The plane h is called the casting plane. (A weak terrain may

contain edges and Jacets paralIe! to the orientation in which it is a terrain.)



To manufacture a castable object (modelled as a polyhedroll Pl, first detcrmillC

a casting plane h. The plane h divides Pinto two cast parts. Make each cast part

from the prototype halves h+ n8P and h- n8P. Since P is castable, the prototype

halves can be removed from the cast parts, and later the manufactured object can be

removed from the cast parts. We consider three versions of the castability problem.

They differ in the way the cast parts may be removed from the polyhedron P.

Figure 7.2 shows the thrce versions for planar polygons.

•
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Figure 7.2: Three versions of the castability problem.

1. The two cast parts must be removcd from P by one translation each, in op­

posite directions, and normal to the casting plane (orthogonal cast removal).

2. The two cast parts must be removed from P by one translation each, and in

opposite directions (opposite cast removal).

3. The two cast parts must be removed from P by one translation each, in arbi­

trary directions (arbitrary cast removal).

Any convex polygon (in the plane) is castable in any of the three versions. In

three dimensions, the equivalent property does not hold for convex polyhedra; in

fact, sorne convex polyhedra are not castable in any of the three versions. In manu­

facturing, developing machines that perform orthogonal and opposite cast removal is

much simpler than machines that perform arbitrary cast removal. In fact, opposite

cast removal seems to be the most popular technique used [24, 71]. Furthermore, if

orthogonal or opposite cast removal is possible, it can be determined more efficient1y.
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A polyhedral surface S is called a weak terrain with respect to a direction i if any

line with orientation i intersects S in a point or a line segment. A polyhedron P

is called a weak terrain with respect to a facet Q and a direction J if 8P - Q is a

weak terrain with respect to i. In the rest of this paper we use terrain to mean

weak terrain

For an arbitrary plane h, we use kt and ho to denote h+ and h- translated so

that the bounding plane intersects the origin. Given direction J and facet f, we say

that f is compatibl__ with i if the inner product between J and the outward normal

of facet f is nOIl-negative (i.e. i makes an angle of at most 'Ir/2 radians with the

outward normal of J). We say that f is incompatible with iif it is not compatible.

Observation 7.2.1 Let Pb,; a polyhedron and let h be a plane that intersects P.

The surface 8P n cl(h+) ,s a terrain for direction i if and only if every face, of P

that intersects h+ is C01T!.patible with i.

Therefore, castability with reRpect to a plane h is only determined by the facets of

P that intersect h+ and the oneG that intersect h-. If h is a casting plane for P,

then h can be perturbed if this does not involve new facets intersecting h. In case

of orthogonal cast r~moval, the only perturbation allowed is translation.

Observation 7.2.2 For castability with orthogonal cast removal, we may assume

that the casting plane contains ai least one vertex of P. For opposite and arbitrary

cast removal, we may assume that ihe casting plane contains at least three vertices

ofP.

7.2.1 The sphere of directions

Recall that we represent the space of ail directions in 3-space by the points on the

surface of a sphere. Let north and sonth denote the points on S that represent the

z and -z directions. Let f: denote the equator (the set of points p E S, such that

OP' z= 0).
Let P be a c-:>nvex polyhedron, let h be a casting plane and let d;. and J; be

the two cast removal directions, represented by points dl and d2 on the sphere of

directions. We re-orient P and h such that north is normal to h, thus dl and d2



cannot both lie in the upper hemisphere or the lower hcmisphcre. Without loss of

generality, let dl E NH[north] and d2 E NH[south].•
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Observation 7.2.3 If a facet f of P interseets h+, and f has its outwU1'd nOl'11lal

represented by a point q on S, then q E NH[dl]. SimilU1'[Y, if f intersects h-, then

q E NH[d2]. Therefore, if f interseets the casting plane h, then q E NII[dl]nNH[d2]

(recall that f is open),

south

Figure 7.3: The sphere of directions. The shaded hemisphcres arc NII(dI) and
NH(d2 ), and the darker shaded region is their intersection.

Define O(dl ) and C(d2 ) to be the great circles that bound NH(dI) and NII(d2 ).

If Ch and ih are opposite, then C(dl ) = 0(d2 ), otherwise, C(dl ) n C(d2 ) consists of

a pair of antipodal points on S different from north, and south.

For any point p E S - {north, s01tth}, define À(p) to be the nearest point on the

equator (i.e., the intersection point of the equator E: with the grcat circlc through

north and p nearest to p). By definition, we have

-> --+
op' oÀ(p) ~ o. (7.1)

Furthermore, p and À(p) lie t,o the same side of any great circle through north and

south.

AssLme that Ch and d~ are non-opposite in the fol1owing (see Figure 7.3), Define

0 12 to be the great circle containing north, south and the points of O(dtl n C(d2).

Note that NH[dl]nNH[d21does not intersect one of the (open) hemispheres defined

by 0 12, Let H12 be this open hemisphere. By the above observation, any facet that
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has its outward normal in If12 cannot be intersected by the casting plane. We use

this fact in the foUowing lemma.

Lemma 7.2.1 If a simple polyhedron P is castable in non-opposite directions with

casting plane h, then h contains an edge of P.

Proof: Let Q = P n h. If Q consists of more than one connected component,

or if Q has holes, then h cannot be a casting plane for P. Therefore, Q is a simple

polygon. Let C;, ••• , Cm be the clockwise sequence of edges bounding Q and let

qt, ... ,qm be the points on h nS that represent the outward normals of c;, ... ,Cm.

Since h is chosen to be horizontal, q;, ... , qm E S. Every open half-circle in S

contains at least one point of q;, . .. , qm, because Q is a simple polygon.

Given that P is castable with respect to non-opposite directions ~ and d-;,
assume that every Ci is the intersection of a facet fi of P with the casting plane

(i.e. no edge of Q is an edge of P). Let C12 and H12 be as defined above, and let

Cj be an edge of Q such that qj E sn H12 (see Figure 7.3). Let Pj be the point

on S that represents the outward normal of !;. Then qj = >'(Pj), and by (7.1), we

know pj lies in H12. However, H12 does not contain any point in NH[dll n NH[d2J,
so by Observation 7.2.3 the facct Ji cannot intersect the casting plane, which is a

contradiction. Thus h contains an edge of P. •

Lemma 7.2.2 If a simple polyhcdron P is castable with casting plane h and in

non-opposite directions, then h contains an edgc of the convcx hull of P.

Proof: Let P be castable with respect to non-opposite directions d~ and ~. If

the cast of P n cl(h+) can be removed in a direction d~, then the convex hull of

P n cl( h+) can also be removed in the direction d;.. The same statement holds for

direction ~ and the cast of P n cl(h-).

Let Q = P n h. The convex hull of Q is the closure of a facet bounding both

CH(P n h+) and CH(P n h-) (note that the convex hull is defined as a closcd set).

As in the proof of the previous lemma, there exists an edge Cj of the convex hull of

Q where the outward normal of the edge on plane h lies in H12. We need to prove

that Cj is also an edge of CH(P). Let fI be the facet of CH(P n h+) incident to Cj

and not in h. Define f2 analogously for CH(P n h-). Let qj, Pl and P2 be the points

on h n Sand S that represent the outward normals of ci> f: and !2' respectively.

Since f: and f2 are incident to ci> we have >'(p:) = >'(P2) = qi> SO Pl, P2 and qj
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lie on a half-circle between north and south and in III" Since PI E NIJ(d l ) and

p, E NH(d,) are both contained in HI', the half·circle through nol·th, south, PI and

p, must contain a point r that is not in NH[dd nor in NII[d,]. The plane h' with

normal Dt and containing ej has CH(P n h+) completcly to the one side, with the

exception of cI(ej). Similarly, CH(P n h-) lies completcly to the one side of h' with

the exception of cI(ej). Since these convex Imlls lie to the same side, it follows that

Plies completely to the one side of h' with the exception of the endpoints of ej, and

possibly ej itself (if ej is an edge of Pl. Therefore, ej is an edge of CII(P). •

Notice that the above two lemmas imply that if a polyhedrol1 is castable, but

not with opposite cast removal, then the casting plane contains both an edge of P

and an edge of the convex hull of P (this might be the same edge). This will aid

considerably to determine castability with arbitrary cast removal.

7.2.2 Relation to linear programming

Let P be a polyhedron and let h be a plane. The plane h partitions the set V of

vertices of Pinta three subsets Vh, Vh+ and Vh- of vertices in, above and below h,

respectively. Similarly, h partitions the set E of edges of P in four subscts El.. Et,

Et and Eh of edges contained in h, intersecting h, above h and below h, respectively.

The set F of facets is partitioned in the same way. For any facet f E F, denote by

wU) the closed half-space bounded by a plane supporting f, and such that for any

point in f, wU) does not intersect the interior of P in an €-neighborhood of the

point. Denote by WoU) the same half-space, but translated such that the bounding

plane contains the origin. We define

and

The intersection of a set of half-spaces is called non-trivial if it contains more than

a single point. Denote by refl(b) the refiection of an object b through the origin (i.e.

every point in bis negated). We make the following observations.

Observation 7.2.4 The plane h is a casting plane for polyhedron P for arbitrary

cast removal if and only if ç+ (h) and ç- (h) are both non-trivial.

Observation 7.2.5 The plane il. is a casting plane for polyhedron P for opposite

cast removal if and only if ç+(h) n refl(ç-(h)) is non-trivial.
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Observation 7.2.6 Let h he a plane and let e he a line perpendicular to h and

through the origin. The plane h is a casting plane for polyhedron P for orthogonal

cast removal if and only if en ç+ (h) Il refi(ç- (h)) is non-trivial.

With the above observations, we can test eflieiently whether a given plane h is

a casting plane for P. Since the casting problem for a plane h and a polyhedron P

can be transformed in linear time to a linear programming problem in 3 dimensions,

the test requires only linear time [57].

Lemma 7.2.3 Given a polyhedron P and a plane h, one can test in linear time

whether h is a casting plane for P in any of the three versions for removing the cast.

Similarly, given a polyhedron and two cast removal directions (but not a casting

plane), one can test using linear programming whether the polyhedron is castable

with respect to those cast removal directions.

Lemma 7.2.4 Given a polyhedron P and two cast removal directions, one can test

in linear time whether there exists a casting plane h that al/ows removing the cast

parts in the given directions.

Proof: Let the two cast removal directions be .:4 for 8P n h+ and ;h for 8P nh-.

For every facet f of P, one can determine whether f should lie above the casting

plane h (is compatible only with .:4), below h (is compatible only with d~), may

intersect h (is compatible with both .:4 and d~) or is incompatible with the cast

removal directions. If there is a facet of P that is incompatible, then there does not

exist any casting plane for directions .:4 and ;ho
The classification of the facets as "above", "below", and "intersect" imposes

a classification of the edges. Any edge is classified either as "above/above" (a/a),

"above/below" (a/b), "above/intersect" (a/i), "below/below" (b/b), "below/intersect"

(b/i) or "intersect/intersect" (i/i), corresponding to the classification of the two

facets incident to that edge.

Similarly, the classification of an edge determines where both endpoints of the

edge must lie. For example, if an edge is classified as (a/a) then both endpoints

must lie in h+ U h. We summarize the implications that the classification of the

edges has on their endpoints in the table below.
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1 edge class.j endpoints 1

(a/a) h+ U h

(a/i) h+ U h

(b/b) h- u h

(b/i) h- U h

(a/b) h

(i/i) anywhere
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The classification of the endpoints of edges, in turn, determines where the verticcs

of P must lie. Since every vertex is adjacent to at least 3 edges, no vertex call be

adjacent to only (i/i) edges. Bence, one can decide for every vertex whether it

must be contained in h, lie in h+ U h, or lie in h- U h. We dualize the vertices to

planes, consider the half-spaces to the appropriate side of these planes, based Oll the

classification, and obtain a linear programming problem to decide whether a plane

h exists that has the appropriate location with respect to the vertices of P. •

7.2.3 Antipodality properties

For opposite cast removal, we prove that if a casting plane interseets a facet, then

it intersects the boundary of that facet in antipodal pairs (note that this also holds

for orthogonal cast removal). This is an important property that is used to bound

the number of distinct casting planes.

Lemma 7.2.5 If the casting plane h intersects a facet f of a convex polyhcdron P,

and also two vertices 1.1 and v in the dosure of f, then for opposite cast removal,

vertices 1.1 and v must be antipodal in dU).

Proof: Let 1.1, v be two vertices in dU) n h, and assume that they are not

antipodal. Let h, be the plane that contains f. Since 1.1 and v are not antipodal,

there are two edges eu and e. in dU) incident to 1.1 and v, respeetively, which lie

on the same side of h and diverge in the plane h, (when directed away from hl.

Suppose without loss of generality that eu, e. E h+. Let fu, f. be the facets incident

to eu, e. and different from f.
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Figure 7.4: I\lustrating the proof of Lemma 7.2.5.

We again represent the space of aIl possible directions in 3-space as a sphere

of directions with the casting plane as horizontal and norlh E h+. Let Pi be the

point in the (closed) northern hemisphere representing the outward normal of facet

J. The inward normal of J corresponds to a point -Pi antipodal to Pi (see Figure

7.4). Since Ju and Jv are each incident to an edge of dU), we know that the points

representing their facet normals must be on open semi-circles Au and Av between Pi

and -Pi. Let >'u (respectively >'.) be the intersection of Au (respectively A.) with

C(Pi). Let J be the casting direction for P n h+. By Observation 7.2.3, we know

that J must correspond to a point Pd on C(Pi) n h+.

Consider the great circle C(Pi) = 8 n hi as a unit cil'cie of directions. CalI

the semicircle of C(Pi) intersecting h+ the northern semicircle of C(Pi). Define the

southern, eastern, and western semicircles analogously. Since f is a convex polygon,

we know that one of >'u and >'. must be in the eastern semicircle and one must be in

the western semicircle. Without loss of generality, assume that >'u is in the western

semicircle. Since eu and e. diverge in hi> >'u and >'. must be strictly south of sorne

non-verticalline L through the origin. This, along with the fact that >'u and >'. are

split between the eastern and western semicircles; implies that at least one of >'u
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and Àv is in the southern semicircle. Without loss of generality, suppose it is Àu •

Since dis by assumption compatible with fu, Pd must be in the northwest quadrant.

Similarly, Àv must be in the northeast quadrant. Since Àu and '\v are strictly south

of L, and in opposite quadrants, Pd is incompatible with one of '\u alld '\v. Without

loss of generality suppose Pd is incompatible with Àv • Recall that NH(Pd) denotes

the hemisphere of directions compatible with d. Since a point 011 Av (nall1ely Àv)

is outside NH(pd), and Av is an arc with its endpoints on C(pd), ail of Av must be

outside NH(pd). This implies that fv is incompatible with d~ a contradiction. _

Corollary 7.2.1 Let h he a casting plane Jor a ]Jolyhed7'On l' lV/Lich inlersccts a

facet f properly, and assume opposite cast removal. [J h intersecis a vcl'/.ex v and

properly intersect.s an cdge e in the clOSU1'e of J, then v is anli]JOdallo bolh cnd]JOinls

of e. If h properly intersects tlVO edges in the closure oJ J, lhen lhey al'e ]Jllmllel.

7.2.4 Convexity properties

In this subseetion we derive sorne additional geometric properties of convex polyhe­

dra that form the basis of faster algorithms. We also estab!ish an important property

that relates the castability of a simple polyhedron to that of its convex huI!.

If P is a convex polyhedron, then the !inear programming problems dcfincd by

P and a candidate casting plane h nccd not considcr ail facets of F, but only those

intersecting h and those adjacent to h. We make this more precise. For the subset

Eh of the edges of P contained in h, let F+(Eh) denote the subset of F+ of facets

that contain at least one edge of Eh in their closure. Deline F- (Eh) analogously.

Furthermore, we deline

and q,-(h) == cl(h(j) n { n iIlOU)} .
JEF,~uF-(E.. )

Lemma 7.2.6 If P is convex, ç+(h) = q,+(h) and ç-(h) = q,-(h).

Proof: We only prove that ç+(h) = q,+(h); the other proof is similar. Further-

more, that ç+(h) ç q,+(h) is trivial, so we prove q,+(h) ç ç+(h).

If q,+(h) only contains th!" origin then so does ç+(h). Otherwise, let l' be a half­

line originating at the origin and inside q,+(h). If l' ri. ç+(h), then there is a facet



f E Ft \ F+(Eh ) for which r rt woU). Let WU) denote the (closed) half-spaee

supporting f distinct from wU). Since P is convex,

f C cl(h+) n { nWU)} .
fEF;:UF+(E,,)
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Since r E 4>+(h), it follows that the projection of any point in f parallel to r onto

h will lie in h n P. But sinee r rt woU), the line segment connecting a point in f
with this projection will be (partially) outside P, namely, in the neighborhood of f.
This contradicts the convexity of P. •

With Lemma 7.2.6, we conclude the following:

Lemma 7.2.7 The plane h is a casting plane for a convez polyhedron P for opposite

cast removal if and only if 4>+(h) n refi(4)-(h)) is non-trivial.

Lemma 7.2.8 Let h be a plane and let f. be a line perpendicular to h through the

origin. The plane h is a casting plane for a convez polyhedron P for orthogonal cast

removal if and only if f. n 4>+(h) n refi( 4>- (h)) is non-trivial.

The following theorem forms the crucialli!lk between simple polyhedra and con­

vex polyhedra in terms of castability.

Theorem 7.2.1 If a simple polyhedron P is castable, then the convez hull of P is

also castable using the same casting plane and cast removal directions.

To prove the theorem, we first establish a few important lemmas.

Lemma 7.2.9 A convez polyhedron P is a terrain with respect to a facet Q and

a direction d if and only if the vertices of P project into cl(Q) when projected in

direction -d onto the supporting plane of Q.

Proof:

(=» If P is a terrain with respect to a direction dand a faeet Q, then every point

of P projects into cl(Q) in direction-d.

(<=) Suppose every vertex of P projects into cl(Q) in direction -d. Since Pis

convex, the line segment from every vertex v to Q in direction -dmust be inside P.

It follows that a ray with direction dfrom every vertex is outside P. By Observation

7.2.1, P is a terrain with respect to dand Q. •



Lemma 7.2.10 If a polyhedron Pis a terrain with "espect to a dù'ection if and facet

Q then CH(P) is a terrain with ,'espect to if and CII(Q).

Proof: Every vertex of P is on one side of the plane induced by Qj it follows

that the convex hull of Q must be a facet of CII(P). Since every vertex of CII(P)

is a vertex of P, every vertex of CII(P) must project into CIl(Q) in direction d.
By Lemma 7.2.9, P is a terrain with respect Jand CIl(Q). •
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Lemma 7.2.11 Let h be plane, let C, and C2 be convex polygons in h snch that

C, ç C2 , and let S be a set of points entirely contained in one of the half-spaccs

bounded by h. If CIl(C, US) is a terrain with respect to a dÙ'ection if and facct Cl,

then CIl(C2 U S) is a termin with respect to J and C2 •

Proof: Suppose that CH(C, U S) is a terrain with respect to cl and C,. By

Lemma 7.2.9, S projects inside C, in direction -d. Since Cl ç C2 , S also projects

inside C2 in direction -d. By Lemma 7.2.9, CIl (C2 U S) is a terrain with respect

to direction ifand facet C2 • •

Proof: (of Theorem 7.2.1)

Let P be a simple polyhedron, and let h be a casting plane for P with casting

directions J, for 8P n cl(h+) and fh for 8P n cl(h-). The polyhedron CII(P n h+) U

CH(P n h-) is also castable for casting plane h and directions d~ and fh by Lemma

7.2.10. Denote P+ = CH(P n h+) and P- = CH(P n h-).

We need to show that PH = CH(P) is castable with casting plane h and casting

directions J, and fh. Let Pii = CH(PH n h+) and Pli = CH(PH n h-). Since P+

is contained in Pfi and P- is contained in Pli, the theorem follows from Lemma

7.2.11. •

7.3 The number of distinct casting planes

Given a polyhedron P with vertex set V, two planes h, and h2 are (combinatorially)

distinct if the partitioning of the facets into P+, P-, pc and px they define is

different. By Observation 7.2.2, a trivial upper bound on the number of distinct

casting planes for a polyhedron with n vertices is 0(n3 ).
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This section gives a linear upper bound on the maximum number of distinct

casting planes for convex polyhedra in case of orthogonal and opposite cast removal

as weB as a quadratic upper bound for arbitrary cast removal. The proofs are

constructive, i.e., sets of candidate casting planes of linear or quadratic size are

defined which contain aB distinct casting planes. In the following sections we will

use these sets of candidate casting planes to determine castability efIiciently.

7.3.1 Orthogonal and opposite cast removal

Observe that for orthogonal cast removal, a casting plane h can intersect a polyhe­

dron Pas follows (these properties follow from the previous section):

1. A facet J that intersects h properly is perpendicular to h.

2. An edge that intersects h properly is perpendicular to h (because otherwise

one of the incident facets cannot be perpendicular).

3. Two vertices in the closure of a facet f and in h are antipodal in d(J). Any

vertex and edge in the closure of f and intersecting h are antipodal in d(J).

(See Lemma 7.2.5).

For opposite cast removal, we have the following properties of intersections of a

casting plane h and a polyhedron P:

1. The facets of px that intersect h properly have their outward normals such

that when translated to the origin, they span a plane or part of it (since

n{Wo(J) 1f E FX} must contain a line through 0).

2. Ali edges that intersect h properly are parallel (otherwise the incident facets

span more than a plane).

3. Any two vertices in the closure of a facet f and in h are antipodal in dU).
Any vertex and edge in the closure of f and intersecting h are antipodal in

dU). (See Lemma 7.2.5.)

Let P be a convex polyhedron with n vertices. Since a linear upper bound on

the number of distinct casting planes in case of opposite cast removal implies the

same result for orthogonal cast removal, we only prove the opposite case.
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Lemma 7.3.1 Given a convex polyhedron P, the nllmber of distinct casting plallcs

that intersect some edge of P properly is at most linear in the number of vCl·tices of

P for opposite cast removaI.

Proof: Let E' be a maximal subset of paraUel edges of P, and of which at least

one edge is properly intersected by sorne casting plane. By convexity of P, such a

casting plane must interseet the closure of aU edges of E', because no such closme

of an edge can be strictly above or below the casting plane. The Cll."t removal

directions are paraUel ta the edges of E', and by the classification defined in the

proof of Lemma 7.2.4, for every vertex v of P it is specified that either v E h U h+

or v E h U h- or v E h, for any casting plane h. Let V+, V-' and VC be these three

subsets of vertices, respectively. If VC contains three or more vertices, then at most

one distinct casting plane is possible for this direction. Otherwise, we consider the

fol1owing three cases. Note that since P is convex, by Lemma 7.2.6 we only need ta

consider the facets that intersect h and those adjacent ta an edge of P in h.

Case 1: VC is empty. In this case, the facets that intersect h are aU the facets

adjacent ta the edges of E'. Let G+ be the entipoints of E' contained in V+

and let G- be the endpoints of E' contained in V-. For a plane ta interseet

the closure of all edges of E', it must separate G+ from G-. Since we are

considering opposite cast removal, a casting plane must contain at least three

vertices. The vertices that the casting plane may contain must come from the

set G = G+ U G-, since VC is empty. Therefore, ta bound the number of

distinct casting planes that intersect an edge of E' properly, we must count

the number of planes that separate G+ from G- and contain at least three

vertices from the set G.

Ta do this, we dualize the set of vertices G+ ta a set of planes 1)+ and the

set of vertices G- ta a set of planes 1)+. Let l be the convex polytope that

lies below ail planes in 1)+ and above ail planes in 1)-. The vertices of lare

precisely the duals of the planes. Therefore, there are O(IEd) distinct planes.

Case 2: VC contains one vertex. Argument similar ta case 1. Simply include the

vertex in VC in the sets G+ and G-.

Case 3: VC contains two vertices. Same argument as case 2.



Thus, wc sec that the number of distinct casting planes that intersect an edge

of E' properly is bounded by O(IE'I). Since every edge of P contributes to only one

subset E' of parallel edges, the lemma follows by Euler's formula. _
•
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The following lemma is the basis of an inductive argument to prove a linear

bound en the number of distinct casting planes that intersect no edge properly.

Lemma 7.3.2 Given a convex polyhedron P, there exists a vertex v with constant

degree such that v pa7,ticipates in a constant number of antipodal pairs on the incident

facets.

Proof: Let Y, Ê, 1;' be the number of vertices, edges and facets of P. The summed

degree of all vertices D = 2Ê :::; 6Y - 12. Every vertex has at least degree 3, thus

there must he at least Y/2 + 1 vertices of degree at most ~. The total number of

antipodal pairs, summed over all facets, is at most 3F /2 ::; 3Y - 6, which implies

that the total vertex contribution in antipodal pairs, A, satisfies A ::; 6Y - 12 [69].

Observe that every vertex of P participates in at least 3 antipodal pairs; at least

one in each incident facet. If ail Y/2+1 vertices of degree at most 8 are in at least 9

antipodal pairs on the incident facets, then A ;::: 9(V/2 +1) +3(Y /2 -1) = 6Y +6,

a contradiction. Bence, there exists a vertex which is in at most 8 antipodal pairs

and with degree at most 8, _

Let h be a candidate casting plane of P, and let Q= h n P. If Q contains three

consecutive vertices u, v, w that are also vertices of P, then each of u and w is either

an endpoint of an edge incident to v, or a vertex antipodal to v on the closure of

a facet f incident to v. We say that the plane through u, v, w is generated by v. It

follows that the set of candidate casting planes generated by v has size (d!"), where

d is the degree of v and a is the number of vertices antipodal to v in the closures

of the facets incident to v. Every casting plane h that does not intersect any edge

properly contains at least three vertices that are consecutive in hnp, and therefore,

every such casting plane is generated by sorne vertex of P.

Theorem 7.3.1 Given a convex polyhedron P with n vertices, the maximum num­

ber of distinct casting planes for P is O(n), assuming opposite removal of the cast

parts.

Proof: First, assume that the casting plane h intersects sorne edge e of P properly.

By Lemma 7.3.1, there are O(n) distinct casting planes of this type.
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Next, we show that the number of casting planes that do not intersect any cdge

properly is linear. For such a casting plane h, 11.11 vertices of the intersection polygon

Q = h n Pare also vertices of P.

The proof is by induction. Let v be a vertex of P of degrcc at most 8 and which

participates in at most 8 antipodal pairs (see Lemma 7.3.2). The number of casting

planes containing v which do not intersect any edges properly is bounded from above

by the number of planes generated by v, and hence, is constant. Wc remove v from

P and continue the count on the convex hul1 of the remaining vertices. Wc have

counted 11.11 distinct casting planes that contain v. Since any casting plane of P that

does not contain v and does not intersect any edge incident to v properly is also a

casting plane of CH(vertices of P - v), the lemma fol1ows by induction. •

There is another interesting combinatorial bound on the comp!exity of the in­

tersection of 11.11 distinct casting planes with a convex polyhedron. Refel'ring to the

proof of Lemma 7.3.1, we notice that two distinct casting planes h, and h, that

intersect an edge of E' proper1y are similar, because they define the sarne cast l'e­

mvval directions, and they intersect the same closure of edges and facets. ln other

words, if hl and h, each intersect edges properly that arc paral1el, there cannot be

two vertices u, v strictly to the one side of hl ami strictly to different sides of h,. Wc

use the term weakly equivalent for two such planes. Two planes arc strongly distinct

if they are not weakly equivalent. There are O(n) strongly distinct casting planes

for any convex polyhedron P with n vertices. We analyze the combillatorial com­

plexity of h n P, summed over 11.11 strollgly distinct casting planes h. This quantity

is we1l-defined for opposite cast removal, since two weakly equivalent casting planes

have an equal-size intersection with P (although they may intersect diffel'ent facets,

edges and vertices). We prove a bound of O(nlogn) on the summed complexity.

Note that when the sum is over 11.11 distinct casting planes (not strongly distinct), the

summed complexity can be 0(n') if P has a set of !1(n) para1lel edges. The bound

makes use of a hierarchical decomposition of P that closely resembles the hierarchy

of Dobkin and Kirkpatrick [26]. It is the basis of the O(nlog2 n) time algorithms

for casting of convex polyhedra with opposite cast removal.

Lemma 7.3.3 Given a convex polyhedron P with n vertices, there exists a subset

V' of the vertices V of size !1(n), such that each v E V' has degree at most 8 and is

antipodal to at most 12 vertices in facets incident to v.



Proof: Similar to Lemma 7.3.2, one can prove that there are at least V/5 vertiees

of degree at most 8 and in at most 12 antipodal pairs. (Otherwise, A ::::: 13(~ - k)V+
3( ~ + k)V = GV, a contradiction.) •
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The following hierarchical decomposition of P generates a set of planes that

contains ail the candidate casting planes that do not intersect an edge proper1y.'

The correctness follows from the proof of Theorem 7.3.1.

Algorithm 11: Compute ail generatcd planes

1. Set i = 1.

2. Compute the antipodal pairs of the facets of P.

3. Select a subset V; of V as in Lemma 7.3.3. For every vertex v E V;, generate

ail planes through u, v, w. For every vertex v E V;, the number of generated

planes is at most ('2;-8) = 190, thus O(n) for the whole subset.

4. Recompute the convex hull of the vertiees of P minus the vertiees of V;.

5. Repeat at step 2 with i = i + 1 unless P has no vertices left.

The number of generated planes is linear sinee each vertex generates a constant

number. Antipodal pairs computations take O(n) time and convex hull computa­

tions take O(nlogn) time, see e.g. [28, 69]. The total time taken by Algorithm 11

is given by the recurrence T(n) ::; T((l - a)n) + O(n log n) where a ::::: 1/5 is the

constant in the n(n) of Lemma 7.3.3. This recurrenee solves to T(n) = O(n log n).

Theorem 7.3.2 Givcn a convex polyhedron P with n vertices, the total complexity

of h n P, summed over ail strongly distinct casting planes h for P, is O(n log n) for

opposite cast removal.

Proof: In the fol1owing proof, we make a distinction between planes that are

generated, and other planes that can be casting planes. Planes of the second type

iutersect sorne edge proper1y.

Consider a hierarchical decornposition of the vertiees of Pinto sets v,., ... ,Vm

as described above. Observe that mE O(logn).

Let h be any plane, and let v" . .. ,Vk be the sequence of vertices in h n P. We

first show that every consecutive subsequence Vi, ••• , V,+2m-l of vertices that also

are vertices of P (no proper intersections of edges of P with h) contains a vertex
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that generates h. 1'0 this end, observe that Vj generates h if and on \y if Vj is in a

vertex set V. with lower or equivalent index as its neighbors, thus if Vj_l E \l, and

Vj+! E Vi, then r ~ sand t ~ s. Since there are only m vertex sets, any consecutive

sequence of 2m vertices contain at least one that that generates the plane h.

Consider the vertices Vi that are proper intersections of h and an edge of P. Any

edge e gives rise to at most one strongly distinct casting plane, and therdorc, the

total number of these vertices in h n P, summed over ail strongly distinct casting

planes, is linear.

Summarizing, the sequences of h n P summcd ovcr ail strongly distinct casting

planes contain O(n) vertices that gcnerate a casting plane, O(n) vertices that arc

proper intersections of edges with a casting plane, and at most 2m - 1 vcrticcs

in between. It follows that the total complcxity of the intersections is O(nm) =

O(n log n). •

Corollary 7.3.1 Civen a convex polyhedronP with n vertiees, the n1l1nbe'I' ofp/anes

that interseet the interior of P but do not interseet any facets of P is O(n), and

the number of edges of P eontained in these planes, summed over ail planes, is

O(n log n).

7.3.2 Arbitrary cast removal

We have shown that the number of casting planes that also allow opposite cast

removal is linear. For the other casting planes, wc know from Lemma 7.2.1 that

they contain an edge of P. Since we may also assume that they contain a third

vertex, we immediately conc1ude:

Theorem 7.3.3 Civen a convex polyhedron P with n vertices, the number of dis­

tinct casting planes for P is 0(n2 ), assuming arbitrary removal of the cast parts.

7.4 Algorithms for orthogonal and opposite cast

removal

In this section and the next, algorithms are presented for the computation of casting

planes, and hence, determining whether a given polyhedron is castable. This section

focuses on orthogonal and opposite cast removal.
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7.4.1 A simple algorithm for simple polyhedra
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We compute O(n) candidate casting planes as follows. By Theorem 7.2.1, we need

only consider the casting planes of the convex hull of P. We first compute the

candidate casting planes that intersect sorne edge properly, and then the ones that

are generated. We only consider opposite cast removal; the case of orthogonal cast

removal only requires sorne straightforward changes.

Let Ei> .. . ,Ek he a partitioning of E into maximal sets of parallel edges. For each

Ei , let Vi+ denote the upper endpoints of Ei , Vi- the lower endpoints of Ei , and Vic
the set of verticcs that must he contained in the casting plane for the cast removal

direction parallcl to the edges of Ei. Wc compute ail planes that contain the vertices

of Vic, separate Vi+ from Vi-, and contltin at ieast three vertices of Vic UVi+ UVi- by

intersecting the corresponding set of half-spaces in dual space, as in Lemma 7.3.1.

Each vertex of the resulting polyhedron in dual space corresponds to a plane with

the desired properties. This gives O(lEd) candidate casting planes. The intersection

of IEd half-spaccs in 3-dimensional space can be computed in O(IEd log \Ed) time,

see e.g. [28, 69]. Summed over ail subsets Et, ... , E k , we obtain O(n) candidate

casting planes in O(n log n) time.

Second, wc compute the other candidate casting planes in O(n log n) time by

Algorithm Il. We conclude:

Lemma 7.4.1 Given a polyhedron P with n vertices, one can compute in O(n log n)

time a set r ofO(n) planes such that any casting plane h that contains at least three

vertices of P is contained in r, assuming opposite cast removal.

Theorem 7.4.1 Given a polyhedrcJn P with n vertices, one can decide in O(n2)

time and linear space whether P is castable when the cast parts must be removed in

orthogonal or opposite directions.

Proof: If P is a convex polyhedron, the theorem follows immediately from Lem­

mas 7.2.3, 7.2.4 and 7.4.1. If P is a simple polyhedron, we additionally apply

Theorem 7.2.1. •
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7.4.2 Walking around convex polyhedra
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For convex polyhedra, the above result can be improved as fol1ows. By LemnuL 7.2.7

determining whether a plane h is a casting plane for P can be done by only con­

sidering the facets intersected by h and the facets incident to the edges that are

contained in h (this only holds for convex polyhedra). A iinear program on this set

of facets tel1s us whether h is a casting plane. We also know, by Theorem 7.3.2,

that the total number of facets that we check, for 11.11 O(n) candidate casting planes,

is only O(nlogn). This willlead 1.0 an 0(nlog2 n) time algorithm for a convex

polyhedron P with n vertices. The algorithm is split up in two parts, each of which

walks around the polyhedron to find the relevant facets. The first algorilhm tests

each c\ass of weakly equivalent planes that intersect some edge properly. The second

tests 11.11 remaining planes that are generated, in the terminology of Theorem 7.3.2.

Each edge defines a c\ass of weakly equivalent casting planes. The traversai of

h n P is performed for a generic (i.e. partia11y specified) plane h in this c\ass. If

any plane in the weak equivalence c\ass is a valid casting plane, the linear program

constructed by the traversai will find it. By Coro11ary 7.2.1 we know that any valid

casting plane must intersect a facet in antipodal faces. In the nexl algorithm we

take advantage of the faet that if we know the casting direction, and one of the faces

of intersection, there is a unique antipodaI edge or vertex any valid casting plane

with this orientation must interseet. We preprocess the polyhedron for Algorithm

12 as fo11ows:

1. With AIgorithm 11, compute a hierarchical decomposition of Pinto O(log n)

vertex sets "lit, ... ,Vm , as in Theorem 7.3.2. Store with each verlex v 11.11 0(1)

planes generated by v.

2. For every facet f, store the outward normals of the facets that are incident to

an edge in the c\osure of f in a sorted Iist.

3. For every vertex, store the outward normals of its incident facets in a sorted

list (these are linearly ordered since they are incident to the same vertex).

These steps can be done in O(n log n) time.

Algorithm 12: Test weak equivalence classes of planes that intersect an edge prop­

erly.
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fvr every edge el E E

if el is untreated then
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Trace h n P for a generic casting plane h that intersects ail edges parallel

to el:

Let J be a direction parallel to el, and let ft be a facet incident to el.

repeat

if qi is an edge then

mark q. as treated.

Let fi+1 be the facet adjacent to qi distinct from Ji.

cise qi is a vertex

If (qi-\, qi, qi+!) is a generated triple, mark it as treated.

Check (in constant time) if qi is coplanar with every other vertex

discoveredj if not then fail.

Find by binary search the facet or edge Ji+! distinct from fi that

splits the facets incident to q. into those compatible with J and

those incompatible with J.

end if

Find by binary search the edge or vertex qi+! of fi+! distinct from qi

that splits the edges of dU.+!) into those where neighboring facet is

compatible with J and those where it is incompatible.

i<-i+1

until qi = el or h has failed

if the walk returns to el then

Determine by linear programming whether a plane exists that inter­

sects the closure of the edges discovered on the walk, and also the

discovered vertices (dualize the endpoints of the edges and the ver­

tices as in the proof ,: Lemma 7.3.1 to obtain the constraints).
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If the LP is feasible, polyhedron P is caslable with cast removal direc­

tions J and -d, and the plane corrcsponding to the feasible solution

of the LP.

end if

end if

next Edge

We now need to test those candidate casting planes that intersect no edge prop­

erly. The key observation for the next algorithm is that any casting plane that

intersects no edge properly must be generated. For Algorithm 13, wc carry out the

additional preproccssing steps:

1. For every vertex v of P, store the edges adjacent to v in clockwise order, so that

it is possible to determine by binary search for any query plane h containing

v, the facets or edges incident to v that h interseets.

2. For every facet f of P, store the verticcs in the closure of fin c10ckwise order,

so that it is possible to determine by binary search for any query plane h which

edges or vertices in the boundary of f interseet /t.

Each of these preprocessing steps can be carried out in O(n log n) time, so the total

preprocessing time is O(n log n).

For a given candidate casting plane h, we use v; to denote the i-th vertex of

Q = hnP discovered, and Fh to to denote the set of facets that interseet h properly

or are incident on an edge of P contained in h. It should be noted that triples

marked as treated in Algorithm 12 remain marked at the beginning of Algorithm

13.

Algorithm 13: Test aIl candidate planes that do not intersect an edge properly

for every generated triple (U, VI, V2)

if (u, vt> V2) has not been treated then

Let h be the plane through U,Vt>V2. Mark (U,VI,V2) as treated. il- 2,

Fh 1- 0.

while we have not walked ail the way around to VIOl' failed.



Determine by binary search the edge or faeet qi+l that h interseets

clockwise from Vi.•
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if qi+1 is an edge e = (Vi, V) then

Vi+l +- V

Add both facets adjacent to e to Fh.

else qi+l is a facct

Determine by binary search what other vertex or edge q' in the

boundary of f intersects h.

If q' is an edge, then next Triple, sinee h was tested with Algo­

rithm 12.

Otherwise, Vi+ 1 <- q'

end if

if (Vi_l, Vi, Vi+l) is generated then

If (Vi-l, Vi, Vi+l) has already been treated, h cannat be a casting

plane: next Triple

Otherwise, mark (Vi-J, Vi, Vi+l) as treated.

end if

i<-i+1

next Step

Construct q,+(h) and q,-(h) from Fh. Test by linear programming if q,+(h)n

refi(q,- (h)) is non-trivial. If so, acccpt h as a casting plane, with the casting

directions given by the solution ta the LP.

end if

next Triple

Theorem 7.4.2 Given a convex polyhedron P with n vertices, one can decide in

O(nlog2 n) time and linear space whether Pis castable when the cast parts must be
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removed in orthogonal or opposite directions.
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Proof: The above algorithms attain the claimed time bound. This can be seen as

follows. The total preprocessing time is O(n log n). Let us count the totalnumber of

steps walking around the polyhedron in Algorithm 12. Since each edge is intersecled

properly by at most one walk, we charge the step that inters"Cts an edge properly

to that edge. Consider the steps between two proper edge intefsectiono. Wc charge

those before the first generated triple encountered to the previous edge properly in­

tersected, and those after the first generated triple to the most recently encountered

generated triple. From the l'roof of Theorem 7.3.2, we know that there arc O(n)

triples and that every 2m E O(logn) consecutive vertices contain at least one gen­

erated triple. It follows that O(n log n) steps are charged to generateci triples and

edges. Since each walking step takes O(log n) time, Algorithm 12 takes O(n log' n)

time to generate linear programs.

For Algorithm 13, the time bound follows in a similar way; each step that dis­

covers a vertex is charged to the most recently encountered generateci triple. Silice

each edge is also discovered by at most one walk in Algorithm 13, we charge that

step to the edge. It follows that the second algorithm also takes O(n log n) steps

and O(n log' n) time to generate linear programs.

By Theorem 7.3.2, the total complexity of ail linear programs generateci by

both algorithms is O(nlogn), hence the total time to test ail candidate planes is

O(n log n). _

7.5 Algorithms for arbitrary cast removal

In this section we study the most general version of the casting problem: determine

whether a simple polyhedron P is castable when the cast parts may be removed

in arbitrary directions. Using Lemmas 7.2.1 and 7.2.2 and one more observation

on arbitrary cast removal, we obtain a simple 0(n2 10gn) time and linear space

algorithm.

Let P be a polyhedron. We first test whether P admits opposite cast removal

using the simple 0(n2 ) time algorithm of Theorem 7.4.1. If so, we are .one. Other­

wise, if P is convex, then, by Lemma 7.2.1, we only have to consider casting planes

that contain sorne edge of P. If P is non-convex, then, by Lemma 7.2.2, we only
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have to consider casting planes that contain an edge of the convex hull of P.
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Observation 7.5.1 Let P be a polyhedron and h be a plane that contains an edge

e of the convex hull of P. Assume without loss of generality that e is horizontal and

that a vertical plane exists which supports e and has P - elle) completely to the one

side.

• If P n cl(h+) is a terrain and P n el(h-) is not a terrain, then no plane l'

containing e for which P n h- c 1'- is a casting plane.

• If P n el(h+) is not a terrain and P n el(h-) is a terrain, then no plane l'

containing e for which P n h+ c IL+ is a casting plane.

• If P n el(h+) (md P n el(h-) are both not a terrain, then no plane containing

e is a casting plane.

The above observation sets up a binary search for a casting plane that contains

sorne edge e of the convex hull of P (see Figure 7.5). First, compute the convex hull

of P. For any edge e of the convex hull, rotate P such that e is as in the observation.

Consider the n - 2 vertices that are not endpoints of e, and sort them by the order

in which a vertical plane supporting e encounters them if the plane starts rotating

about e. (The plane h can rotate in two directions about e. It is not important which

direction is chosen, as long as this choice is made consistently.) Assume without loss

of generality that the order is vI, .•• , Vn -2' We test whether the plane h supporting

e and also containing Vn /2-1 is a casting plane by determining whether P n el(h+)

is a terrain and P n el(h-) is a terrain. By the above observation, we can stop

considering e if both are not terrains. If both are terrains, we can also stop and h is

a casting plane. Otherwise, if only P n el(h+) is a terrain, we continue the binary

search on V n/2"'" V n-2, and if only P n el(h-) is a terrain, we continue the binary

search on VI, ••. , Vn/2-2' After at most pog2(n - 2)1 steps, we have determined

whether there exists a casting plane that contains e. This leads to:

Theorem 7.5.1 Civen a simple polyhedron P with n vertices, one can determine

in O(n2 log n) time and linear space whether a casting plane for P exists, when the

cast parts can be removed in arbitrary directions.

Proof: To decide whether opposite cast removal is possible we first apply The­

orem 7.4.1 and use 0(n2
) time. The computation of the convex hull of P requires



O(nlogn) time. There are O(n) edges about which a plane is rotated. The sorting

of the vertices V" ••• , V n-2 takes O(n log n) time, and each step of the binary SeaI'cl,

takes linear time by Lemma 7.2.3. Hence, the above procedure takes O(n2 Iogn)

time. •
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Figure 7.5: Rotating a plane about an edge through P.

7.6 Discussion

In this chapter, we addressed the geometric version of the problem of determin­

ing whether a simple polyhedron can be manufaetured using casting, and simple

algorithms that use O(n2
) or O(n2 10g n) time and \inear space based on \inear pro­

gramming. These algorithms can be improved theoretically using parti tion trees

and their variants[52]. However, we have not presented these improvements since

we are mainly concerned with practical algorithms for casting. A detailed discussion

on the theoretical improvements can be found in [15]. We summarize our results

along with the theoretical improvements in the table below.
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orthogonal opposite arbitrary

linear space
convex polyhedra O(n log2 n) O(n log2 n) O(n210g n)

simple polyhedra O(n2
) O(n2

) O(n210gn)

best results convex polyhedra O(n log2 n) O(nlog2n) O(n3/2+')

(in theory) simple polyhedra O(n3/ H ') O(n3/ H ') O(n3/ H ')
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We note that more complicated objects can be made by using cores and in­

serts [31, 71, 87, 88]. Their use slows down the manufacturing process and makes

it more costly, and thercfore, should be avoided. I-lowever, sorne objects cannot

be made without the use of cores and inserts. It would be interesting to develop

algorithms that can determine when objeets are castable with the use of cores and

inserts.
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Conclusions

In this thesis, we have explC'red the geometric aspects of a few fundamenLal problelllH

stemming from the manufacturing industry. The problems are taken from two COIll­

plimentary categories of manufacturing processes: rapid prototyping sysLems and

casting processes. This investigation only scratches the surface of the vasL number

of applications of geometry in manufacturing. There exist many unanswered ques­

tions related to the topics covered in this thesis, and many related areas remain

unexplored. We conclude with a list of open problems suggested by our research.

Questions related to Manufacturing Processes

1. In the variable-angle stereolithography model, we assumed that an object can­

not be built on a vertex or edge since the object would not be stable. I-lowever,

in practice, abjects may be constructed on a vertex or edge by introducing sup­

port stilts as the object is being built in order to maintain stability. lt would

be interesting to incorporate thiR into the variable-angle mode!.

2. What is the maximum number of distinct casting planes in case of arbi Lrary

cast removal? We show an upper bound of O(n2 ), whereas the only lower

bound we have is linear.

3. For a convex polyhedron P, what is the maximum summed complexity of the

intersection of all distinct casting planes with P? We show an upper bound

of O(n log n) in case of opposite cast removal, but the triviallower bound is

linear.

136
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4. Cive simple algorithms for casting that improve our simple O(n log2 n), O(n2
)

and O(n210gn) time algorithms.

5. Suppose that the casts may be removed with any motion. Cive algorithms to

determine whether a polyhedron is castable in this case.

6. Suppose that we wish to determine castability of an object with non-linear

boundaries. Cive (simple) algorithms that solve this problem.

7. Suppose that more cast parts are allowed. Determine for a polyhedron how

many cast parts are necessary.

8. Related to the previous problem, determine how many cores and inserts are

needed to manufacture an object by casting or molding.

9. For sorne casting processes, it is not necessary that the cast parts be separated

by a plane. In these cases, every couvex polyhedron is castable. However, no

algorithms are known for cast removal of simple polyhedra.

10. We only presented algorithms for computing suitable locations of pin gates in

polygonal molds. Generalizing this to polyhedral molds would be interesting.

It would also be interesting to find approximate solutions for polyhedral molds,

as finding exact solutions seems diflicult.

11. Reduce the time complexity of Aigorithm 3, which finds the geodesic center

of P constrained to lie in Q. The time complexity is O(n(n +k)) but it seems

like O(n log n +k) or at least o(n2 + k) should be possible.

12. The a1gorithms to compute the optimal orientation of a mold as weil as the

ones to locate a suitable pin gate have not been tested experimenta1ly.

13. Genera1ize the a1gorithms to compute the optimal orientation of a mold to

handle more complex objects, such as objects with non-linear boundaries, or

of higher genus.

14. There are many other manufacturing processes that have not been analyzed

from this perspective such as processes with centrifugai forces for filling, or

laser sculpting.
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