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Abstract

The aim of this Thesis is to obtain time-accurate solutions of the Navier-Stokes equa-
tions for laminar incompressible unsteady flows generated by oscillating boundaries
in an annular region made from two concentric cylinders. For this, a time-dependent
coordinate transformation is first used to obtain a fixed computational domain. The
resulting governing equations in the fixed domain are discretized in real time based
on a three-time-level implicit scheme. A pseudo-time integration with artificial com-
pressibility is then used to obtain the solution at a new real-time level. A factored
ADI scheme is used to reduce the resulting coupled discretized equations in delta
form to a set of decoupled scalar tridiagonal systems.

The method of solution has been applied to various 3-D unstcady flows in an-
nular geometries, as well as to 2-D annular flows. The numerical results obtained are
compared with those based on a mean position analysis, without transformation, for
small-amplitude oscillations. This comparison shows that the time-dependent coor-
dinate transformation is necessary to obtain accurate solutions for larger-amplitude
oscillations.

The mean-position approach has also been applied to the analysis of axially
variable annular configurations. The results obtained show more pressure recovery
after a diffuser section with 6° half-angle than in the case of 20° half-angle.

A comprehensive experimental study was conducted to validate the theoretical
results in the range of laminar flow. The results obtained were in good agreement with
the numerical results, specially with those obtained by the time-dependent coordinate
trensformation. Experiments were also conducted for turbulent flow.

Based on the theoretical models developed, a computational method has been
used to study fluid-structure interaction phenomena. It was applied to several cylin-
drical annular configurations in which one side of the annulus, the outer cylinder, is
assumed to be flexibly supported, and thus to be susceptible to flow-induced instabil-

ities. The structural and N-S equations were solved simultancously by employing the



numerizal method developed for the unsteady flow and a fourth-order Runge-Kutta
scheme for the structural motion. The numerical results thus obtained have predicted
“the stability of the structure for different annular geometries. The structure having
a uniform annular geometry was shown to be more damped, while the annular ge-
ometry with a backward facing step is less damped. The study of the structure for a
uniform annular geometry in tle case of rocking motion of the outer cylinder predicts

an instability in the form of flutter of the outer cylinder.
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Résumé

Pour obtenir les solutions précises en temps des équations de Navier-Stokes
pour des écoulements instationnaires générés par des parois vibrantes dans la région
comprise entre deux rylindres concentriques, on transforme d'abord les coordonnées
dépendant du temps afin de réduire le probleme & un domaine de calcul fixé dans
le temps. Les équations ainsi obtenues dans le domaine fixé sont discrétisées en
temps réel en utilisant une procédure implicite basée sur trois niveaux de temps. Une
intégration en pseudo-temps avec une compressibilité artificielle, est utilisée pour
réduire la solution a un nouveau niveau en temps réel. Un procédé de factorisation
ADI est utilisé pour réduire les équations discrétisées couplées obtenues dans une
forme delta en un system tridiagonal scalaire découplé.

Les solutions ont été appliquées aux espaces annulaires ainsi qu'a des ecoule-
ments annulaires 2-D. Les résultats numériques obtcnues sont comparées avec ceux
basés sur 1'analyse des positions moyennes, sans transformation, pour de petites am-
plitudes d'oscillation. Cette comparaison met en évidence que, la transformation des
coordonnées dépendant du temps conduit & des solutions plus exactes pour de larges
amplitude d’oscillations.

La méthode de position moyenne a été appliquée aux régions annulaires qui sont
axiallement variables (avec décrochement cdnique). Les résultats obtenus indiquent
une plus importante récupération de pression apreés le décrochement conique de demi-
angle 6° qu’apres celui de demi-angle 20°.

Une étude expérimentale détaillée a été développée pour valider les résultats
théoriques concernant les écoulements laminaires. Les résultats expérimentaux s'acco-
rdent avec les résultats numériques, spécialement avec ceux obtenus avec la transfor-
mation des coordonnées dépendant du temps. La procédure expérimentale a été
appliquée aux écoulements turbulents.

Basé sur les modeles théoriques utilisés, une méthode numérique a aussi été

utilisée pour étudier les phénomeénes d'interaction fluide-structure. Elle a été ap-

il



pliquée a plusicures configurations cylindriques annulaires. Pour ces configurations,
le cylindre externe est maintenu de maniere flexible et pourrait devenir instable sous
I’éffet de 1'écoulement. L’évolution du mouvement est suivie en temps pendant que
les équations de N-S et de la structure sont résolues simultanément en employant pour
I'équation de la structure la méthode de Runge-Kutta en quatre étapes. Les résultats
numdriques obtenus pour les oscillations libres du cylindre extérieur, ont permis de
prévoir la stabilité de la structure pour différentes géometries annulaires. La configu-
ration géométrique la plus stable est celle avec le cylindre interne uniforme, tandis que
la moins stable est celle avec le cylindre & décrochement droit. L'étude de la structure
pour le cas du cylindre interne uniforme, lorsque le cylindre extérieur est animé d'un
mouvement de bascule a montré des instabilités de flottement caractérisées par un

mouvement oscillatoire du cylindre externe,

iv
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No. 1 shown in Figure 8.7(a) at different frequencies for ¢ = 0.05375;
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No. 1 shown in Figure 8.4 at different frequencies of oscillation for
€ = 0.05375; the outer cylinder in rocking motion. Left figures, no
fluid flow; right figures, Re = 2800. Top, f = 20 Hz; middle, f = 30.4
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A sample of phase angle of the unsteady pressure with respect to the
displacement of the outer cylinder in rocking motion for € = 0.16125.
From top to bottom; f = 20 Hz, f = 30.4 Hz and f = 36 Hz. Left
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frequencies are o, f = 20 Hz; A, f = 30.4 Hz; », f = 40 Hz. Left
figures, Re = 5000; right figures, Re = 9000. The hinge is at X = 18.5,
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A sample of amplitude spectrum of the unsteady pressure from pres-
sure transducers; —No. 1; - - - No. 2 shown in Figure 8.7(b) for
backstep geometry at different frequencies for € = 0.05375. The outer

cylinder is in translational motion. Left figures, no fluid flow; right
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tudes of oscillation from top to bottom are: ¢ = 0.05375, ¢ = 0.1075
and ¢ = 0.16125 and the frequencies are o, f = 20 Hz; 4, f = 304
Hz; %, f = 40 Hz. Left figures, no fluid flow; right figures, Re = 2900.

A sample of phase angle spectrum of the unsteady pressure with re-
spect to the acceleration of the outer cylinder for pressure transducer
No. 1 shown in Figure 8.7(b) for backstep geometry at different fre-
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Left figures, no fluid flow; right figures, Re=2900. . ....... ..

A sample of phase angle of the unsteady pressure with respect to the
displacemet of the outer cylinder in translational motion for backstep
geometry and ¢ = 0.16125. From top to bottom; f = 20 Hz, f =304
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A sample of coherence spectrum of the unsteady pressure with respect
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Nondimensional unsteady pressure versus axial distance for transla-
tional motion of the outer cylinder (backstep geometry). The ampli-
tudes of oscillation from top to bottom are: ¢ = 0.05375, ¢ = 0.1075
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Hz; *, f = 40 Hz. Left figures, Re = 5000; right figures, Re = 9000.
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A sample of amplitude spectrum of the unsteady pressure from pres-
sure transducers; —,No. 1; - - - No. 2 shown in Figure 8.7(c) (diffuser
geometry) for & = 6° at different frequencies for ¢ = 0.05375. The
outer cylinder is in translational motion. Left figures, no fluid flow;

right figures, Re=2900. . .. ... .. .. ... ... ... .. ...,

Nondimensional unsteady pressure versus axial distance for transla-
tional motion of the outer cylinder (diffuser geometry with a = 6°).
The amplitudes of oscillation from top to bottom are: ¢ = 0.05375,
¢ = 0.1075 and ¢ = 0.16125 and the frequencies are: o, f = 20 Hz; A,

f = 30.4 Hz; =, f = 40 Hz. Left figures, no fluid flow; right figures,
Re = 2900.
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A sample of phase angle spectrum of the unsteady pressure with re-
spect to the acceleration of outer cylinder for pressure transducer No.
1 shown in Figure 8.7(c) for diffuser geometry with a = 6° at differ-
ent frequencies for ¢ = 0.05375; the outer cylinder is in translational

motion. Left figures, no fluid flow; right figures, Re = 2900.

-----

A sample of phase angle of the unsteady pressure with respect to the
displacemet of the outer cylinder in translational motion (diffuser ge-
ometry with a = 6°) for ¢ = 0.16125. From top to bottom; f = 20 Hz,
f = 30.4 Hz and f = 36 Hz. Left figures, no fluid flow; right figures,
Re = 2900. X is defined as z/H.
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A sample of coherence spectrum of the unsteady pressure with respect
to the acceleration of outer cylinder in translational motion from pres-
sure transducers No. 4 shown in Figure 8.7(c) for diffuser geometry
with a = 6° at different frequencies and ¢ = 0.16125; left figures, no

fluid flow; right figures, Re = 2900.
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Nondimensional unsteady pressure versus axial distance for transla-
tional motion of the outer cylinder (diffuser geometry with a = 6°).
The amplitudes of oscillation from top to bottom are: ¢ = 0.05375,
¢ = 0.1075 and ¢ = 0.16125 and the frequencies are: o, f = 20 Hg;
A, [ = 30.4 Hz; *, f = 40 Hz. Left figures, Re = 5000; right figures,
Re=9000. ....... e

A sample of amplitude spectrum of the unsteady pressure from pres-
sure transducers; —,No. 1; - - - No. 2 shown in Figure 8.7(c) (diffuser
geometry with o = 20°) at different frequencies for ¢ = 0.05375. The
outer cylinder is in translational motion. Left figures, no fluid flow;

right figures, Re=2900. ... ... .. ... ... ... . ... ...

Nondimensional unsteady pressure versus axial distance for transla-
tional motion of the outer cylinder (diffuser geometry with a = 20°).
The amplitudes of oscillation from top to bottom are: € = 0.05375,
€ = 0,1075 and € == 0.16125 and the frequencies are: o, f = 20 Hz; A,
f = 30.4 Hz; %, f = 40 Hz. Left figures, no fluid flow; right figures,
Re=2000. . ... .. . .. e

A sample of phase angle spectrum of the unsteady pressure with re-
spect to the acceleration of outer cylinder for pressure transducer No.
1 shown in Figure 8.7(c) for diffuser geometry with o = 20° at differ-
ent frequencies for e = 0.05375; the outer cylinder is in translational
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Chapter 1

Introduction

In nature, when structures submerged in quiescent or flowing fluids oscillate, the sur-
rounding fluid must participate in the motion; i.e., we have a coupled fluid-structure
motion and fluid-structure interaction. The result of this motion is sometimes pleas-
ant, as in musical instruments, and sometimes annoying, disagreeable or destructive,
as in the case for acoustical noise or damage to the structures. There are different
mechanisms of fluid-structure coupling and interaction; where oscillatory motion is
involved, this is sometimes called Flow-Induced Vibration or FIV.

Because of the possibly destructive nature of some of these phenomena, the
study of this subject is of great interest for design. Although flow-induced vibrations
are usually regarded as a secondary design consideration, at least until a failure
occurs, it has become increasingly important in recent years because designers are
using materials to their limit, causing structures to become progressively lighter,
more flexible and more prone to vibration. Since 1939, an extensive research effort
has been expended to find out the mechanisms involved in different kinds of flow-
induced vibrations; the methods of predicting the onset of vibration and whether
the system remains stable or becomes unstable have been discussed by Paidoussis
(1980,1983,1987,1993), Chen (1987), Blevins (1990).

The fluid and the structure are coupled through the forces they exert on each
other, as shown in Figure 1.1. In a very simple explanation, the fluid forces cause

the structure to deform; as the structure deforms, the boundaries of the flow change,
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and the fluid forces therefore change. Furthermore, just as the fluid exerts a force on
the structure, the structure exerts an equal but opposite force on the fluid; hence the

name of fluid-structure interaction.

Depending on the geometry and direction of the flow relative to the structure,
e.g., flow within or over the structure, the induced vibrations are categorized into
different types, such as cross flow-, axial (internal or external) flow-, and annular
flow-induced vibrations. Each of these types of vibrations arises from distinct fuid
dynamic phenomena that can be classified by the nature of the flow and the structure,
as shown in Figure 1.2. The most important ones, for example in the case of cross
flow are: (i) separation of the fluid and vortex shedding, (ii) turbulence buffeting, and
(1ii) Auid-elastic instabilities. As a practical examples of fluid-structure interactions,
the vortex shedding mechanism is well known and has been experienced by any fast
swimmer on his arms; or the internal tubular flow such as the large lateral force that
must be exerted by one holding a fire-hose at high discharge rates, and the thrashing,

snaking motions resulting when the fire-hose (or garden hose) is released.

As far as industrial applications are concerned, cylindrical structures subjected
to either internal or external flows are found in many engineering constructions,
particularly in the power-generating, chemical, and petrochemical industries; e.g., in
the form of piping of all kinds, marine risers, and chimneys; fuel pins, monitoring, and
control rods in nuclear reactors; heat exchanger tube arrays and bundles of electrical
conductors in transmission lines; and thin-walled shrouds and flow containnent shells
in nuclear reactors, aircraft engines, and jet pumps; to name but a few of the most

familiar such systems.

The vibrations and instabilities associated with internal flow in tubular and ex-
ternal axial flow around cylindrical structures are of limited practical concern, despite
their very considerable fundamental appeal. Most, but not all, engineering structures
are sufficiently stiff, so that unusually high flow velocities would be required for these

instabilities to occur. This, however, is not the case for instabilities associated with
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annular flows (Paidoussis 1987), where practical occurrences abound; a number of
such cases are presented in Paidoussis (1980).

The present Thesis is concerned with the vibration of cylindrical structures in
annular configurations, in still fluid or in axial flow in the annular passages. Some
of the practical situations where annular-flow-induced instabilities have occurred in
practice are: (i) control rods in guide tubes, fuel strings in coolant channels, and
feedwater spargers, in various types of nuclear reactors; and (ii) certain types of
jet pumps, pistons and valves. Figure 1.3 illustrates a jet pump, as an example
of such applications. It should be mentioned that annular-flow-induced instabilities
are sometimes referred to as leakage-flow-induced oscillations, or instabilities, which
reflects the fact that in most cases of practical concern, the annular flow passage is
quite narrow. Excellent reviews are given by Mulcahy (1983), Mateescu & Paidoussis

{(1985,1987)and Hobson & Jedwab (1990).

1.1 Previous Work on this and Related Problems

Cylindrical systems subjected to annular flow are notoriously prone to self-excited
vibration, and consequently to damage through wear and fatigue, or outright fracture.
Some work on stability of flexible cylinders in axisymmetrically confined flow was
undertaken by Paidoussis and co-workers (1979,1981). Since then, the research effort
on this topic, specifically applicable to narrow annuli was intensified and a number of
interesting papers on the subject may be found in the proceedings of various symposia
in this area, e.g., Paidoussis et al. (1984,1988,1992).

The first attempts to generate an analytical viscous model for the cylindrical
geometry are due to Hobson (1982) and Spurr & Hobson (1984). For the sake of sim-
plicity, Hobson considered a rigid cylindrical body, hinged at one point and coaxially
positioned in a flow-carrying duct, generally of nonuniform cross-sectional area; he
showed that, at sufficiently high flow velocities, oscillatory instability can occur, via

a negative damping mechanism. Moreover, the model was capable of dealing, in an
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approximate manner involving some degree of empiricism, with situations of sudden
constriction or enlargement in the flow passage. The analysis was extended to predict
the dynamical behaviour of an actual fuel assembly oscillating in a channel of arbi-
trary shape (Hobson 1984). Measurements of damping forces caused by flow between
two concentric cylinders were made by Hobson (1991) in which he compared the
experimental results with theory by making simple quasi-steady assumptions about
the frictional forces acting on the cylinder. It was shown that damping of cylindrical
structures due to annular flow arises from inlet or outlet effects and from frictional
effects in the annulus, both effects increasing with flow velocity. Also, he found that
the damping forces and pressure distribution along the annulus can be well predicted

if simple assumptions about the unsteady flow in the annulus are made.

Secveral approaches have been used by different authors to obtain theoretical
or experimental studies on fluid-structure interactions in very narrow annuli, or on
so-called leakage flows. Among them is the study of Ashurts & Durst (1980) on flow-
induced vibrations associated with shear-layer-induced flow oscillations in a symmet-
ric, two-dimensional, plane test section with a sudden expansion. Parkin & Watson
(1984) describe a physical model for explaining flow-induced vibration observed in
6° and 30° annular diffusers, where the centre-body forming the diffuser can move
radially. Their model is based on experimental evidence and accounts for both fluid
behaviour and structural response. This type of behaviour has relevance to the on-
load refuelling of advanced gas cooled reactors. Spur & Hobson (1984) conducted
some experiments in which they measured the unsteady forces caused by the flow
down an annulus formed between a fixed outer cylinder and a vibrating centre-body
and compared the results with those predicted using a linear small perturbation anal-
ysis. It was found that the forces are particularly sensitive to the amount of pressure
recovery which takes place when the annulus is terminated in an annular diffuser, and
that high pressure recovery leads to forces on the centre-body which are in phase with

centre-body velocity and therefore likely to lead to coupled fluid-structure self-excited
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vibrations.

Mulcahy (1988) obtained closed-form solutions for the flow damping (velocity-
dependent) and stiffness (displacement-dependent) forces acting on the vibrating
walls of a one-dimensional leakage-flow channel. He also checked the effect on sta-
bility of pressure drop and of nonuniform geometries by using a constriction at the
entrance of the annulus or varying the annular geometry via smoothly converging or
diverging widths. The final conclusion was that the minimum conditions necessary
for dynamic and static (divergence) instability are (i) a pressure loss at the upstream

end of the annulus and (ii) a divergent channel with a finite-length throat region.

Hobson & Jedwab (1990) studied the effect of eccentricity on the unsteady forces
on the centre-body of an annular diffuser. They carried out experiments and measured
the forces on the fixed or forced vibrating centre-body at different frequencies and
amplitudes within an annular diffuser. They found that periodic instability can be

initiated by increasing the forced vibration amplitude above a frequency-dependent
threshold.

Inada & Hayama (1990) theoretically and experimentally analyzed the viscous
fluid-dynamic forces and the moments acting on the walls of a one-dimensional, nar-
row, tapered passage when one wall is vibrating in single or coupled translational
and rotational modes. The fluid dynamic mass, damping and stiffness matrices are
determined, with the help of which the mechanism of instability generated by the

flow through the narrow passage is examined.

A more rigorous, purely analytical potential-flow model was formulated by Ma-
teescu & Paidoussis (1985), once again for a rigid-body (the “centre-body”) hinged
at one point and coaxially positioned in a flow-carrying conduit; free motions of the
centre-body were constrained by a rotational spring and a rotational dashpot at the
hinge point. The cross-sectional areas of the body and the conduit were genera'y
axially (and axisymmetrically) variable, but changes were smooth—precluding sud-

den constrictions or enlargements, but nevertheless allowing for a diffuser-type flow
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passage or a convergent one. In this inviscid analysis it was found that there is a
critical location of the hinge: if the hinge is situated downstream of that location,
then the system may lose stability at sufficiently high flow velocity when the negative
fluid-dynamic damping, associated with motions of the centre-body, overcomes the
mechanical damping; the necessary flow velocity becoming progressively smaller as
the hinge is moved farther downstream. The fluid-dynamic forces become larger as
the annular passage becomes narrower, destabilizing the system. It was also found
that a divergent flow passage (diffuser) destabilizes the system, whereas a convergent

one stabilizes it, as compared to the cylindrical geometry, which agrees with Hobson's

(1982) finding.

This rigid-body model was then extended to take into account, in an approx-
imate manner, viscous effects (Mateescu & Paidoussis 1987). One of the principal
findings of this work was that viscous effects stabilize the system, and that they be-
come more important as the annulus becomes narrower, which is reasonable on phys-
ical grounds. In this analysis an approximate solution of the Navier-Stokes equations
was obtained, in which viscosity related modification of the unsteady pressure is ob-
tained. Subsequently, the fluid dynamic pressures acting on the centre-body having
a rocking motion were measured and compared with the theoretical ones (Mateescu
et al. 1988). Good agreement between the two was found. To include the effects of
turbulence, albeit approximately, the potential solution was combined with a turbu-
lent mode) based on a power law for the velocity profile that fits the logarithmic form

fairly well (Mateescu et al. 1989).

In another investigation in which a flexible, as opposed to a flexibly mounted,
structure was used, the dynamical behaviour of the system of a cylinder beam with
fixed ends subjected to axial flow in a narrow annulus was studied (Paidoussis et
al. 1990). It was found that, as the annular gap becomes narrower, the system
loses stability by divergence at smaller flow velocities, provided the gap size is such

that inviscid fluid effects are dominant. For very narrow annuli, where viscous forces
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dominate, however, this trend is reversed, and further narrowing of the gap has a

stabilizing effect on the system.

In an early investigation, the stability of coaxial shells with annular flow was
conducted by Paidoussis et al. (1984) and it was found that, for annular flow, the
critical flow velocity is lowered as the annulus is made narrower. If both shells
are flexible, the instability threshold is lower than if the outer cylinder is rigid, the
system losing stability first in the antisymmetric modes. This model was subsequently
extended by Paidoussis et al. (1985) to take into account the steady viscous effects
due to the surface traction and pressurization (to overcome frictional pressure drop);
it was found that pressurization in the flow within the inner shell tends to stabilize
the system, as is physically reasonable. Similarly, pressurization in the annular flow
is destabilizing, if the outer shell is rigid. On the other hand, pressurization in the
anpular flow when both shells are flexible could either stabilize or destabilize the
system, depending on the system parameters; this becomes clear when it is realized
that in this case the effect on the inner shell is destabilizing, whereas it is stabilizing

on the outer shell, and that motions of the two are coupled.

Further development in this area has been achieved by the use of computational
models which involve simultaneous numerical integration of the Navier-Stokes equa-
tions for laminar flow, and the equation of motion of the structure (Paidoussis et al.
1992). To this end, a forced vibration of the outer (or inner) cylinder in an annular
configuration was considered in which the Navier-Stokes equations were linearized
and solved in the annulus for small amplitude oscillation of the cylinder, using prim-
itive variables Mateescu et al. (1991,1994), and a spectral collocation method (see
Canuto et al. (1987)) for unsteady annular flow in concentric and eccentric annuli,

again for small amplitude oscillation of the moving boundary (Matcescu et al. 1994).

Mateescu and his coworkers used a method in which the primitive variables
were considered. Further explanation of their work will be given in the subsequent

paragraphs and chapters. An intensive review regarding the methods using primitive
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variables to solve Navier-Stokes equations can be found in Rogers & Kwak (1990).
Most such methods can be classified into three groups. The first of these, and his-
torically one of the most commonly used primitive variables schemes, is the pressure
Poisson method, as first introduced by Harlow & Welch (1965). In this method, the
velocity field is advanced in time using the momentum equations. Then a Poisson
equation in pressure, which is formed from the momentum equations, is solved for
the pressure at the current time level, such that the continuity equation be satis-
fied at the next time level. In this method, the velocity and pressure are indirectly
coupled. The second group of methods can be classified as fractional step methods.
This idea was first introduced by Chorin (1968), and is characterized by first solving
for an intermediate velocity from the momentum equations, and then solving for the
pressure field that will map the intermediate velocity into a divergence-free velocity.
Computing the pressure field is usually accomplished by solving a Poisson equation
in pressure, which can be very time-costly. The third method is that of artificial
compressibility, which was used with much success by Mateescu and co-workers, and
which will be used in the present analysis. This third method was also first introduced
by Chorin (1967) for use in obtaining the steady-state solutions to the incompress-
ible N-S equations. Several authors have recently used this method successfully in
computing time-accurate problems. Merkle & Athavale (1987) presented solutions
using this approach in 2-D generalized coordinates. Soh & Goodrich (1988) have also
used this method to present solutions for a Cartesian mesh in 2-D. In the artificial
compressibility formulation, a pseudo-time derivative of pressure is added to the con-
tinuity equation, which directly couples the pressure and velocity. The equations are
advanced in physical time by iterating until a divergence-free velocity is obtained at

the new physical time level.

Similarity exists between this formulation and the fractional step method of
Choiin (1968), because his mapping of the intermediate velocity field to the divergence-
free velocity is based on the artificial compressibility approach. However, the artificial
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compressibility method is different in that it provides a direct coupling between the

pressure and velocity as they are advanced in time.

In the work done by Rogers & Kwak (1990), once again the artificial com-
pressibility approach is used to solve 2-D N-§ equations using an upwind differencing
scheme based on flux-difference splitting, to compute the convective terms. In an-
other work, Rosenfeld et al. (1991) used a fractional step method for solving the
time-dependent 3-D incompressible N-S equations in generalized coordinate systems.
They used the finite volume method, with a staggered mesh to discretize the govern-

ing equations, and solved the momentum equations by an approximate factorization

method.

The approach used by Mateescu et al. (1991,1994) which is based on three-
point-backward time discretization provides more accurate pressure results than the
Crank-Nicolson scheme used by Soh & Goodrich (1988). This is why in the present
work the former is adopted. In this approach, the solution to the momentum equa-
tions results in an unsteady pressure which is free of spurious oscillation; furthermore,
the equations are cast in delta form after the introduction of the pseudo-time relax-
ation, allowing one to solve the implicit semi-discretized equations by the Alternating
Direction Implicit (ADI) method along the exact same lines as in the method of ar-
tificial compressibility applied to the solution of steady-flow problems (Soh 1987) by

using any of the existing space discretization schemes.

The present work has generalized the earlier work by Mateescu and co-workers
(i) by taking more fully into account the nonlinearities in the N-S equations, (ii)
by applying the boundary conditions on the moving boundary, rather than at its
mean position —both of special interest for larger-amplitude oscillations— and (iii)
by extending it to deal with nonuniform annular geometries (Mekanik et al. 1993,
Mateescu et al. 1994). To carry out all these aims, the governing N-S equations
should be transformed in time and space, i.e., the physical domain of integration

should be transformed into a computational domain, for both the uniform annular
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geomnetry and the nonuniform ones. There are different methods to treat moving-

boundary problems.

The moving-boundary problems (MBPs) are a class of problems which can be
found in many engineering and scientific fields. Numerous papers can be found in
the literature which propose different methods for solving this class of problems.
In practice, MBPs have several applications, such as ice making, freezing of food,
diffusion of oxygen in body tissue, casting, melting (change of phase), crystal growth,
etc. For each application a specific method of grid adaptation or generation is used,

the purpose of which, in general, is to obtain accurate values for the field variables,

Early methods for solving moving boundary problems used body- or boundary-
fitted curvilinear coordinate systems and adaptive grids in which at each time step
a new grid was obtained through some grid-generation technique (algebraic, partial
differential; elliptic, hyperbolic, or parabolic), vide Thompson et al. (1985). Thames
et al. (1977) developed body-fitted coordinate systems to implement numerical solu-
tions for viscous and potential flows about arbitrary two-dimensional bodies. Their
solution is based on a technique of automatic numerical generation of a curvilinear co-
ordinate system having a coordinate line coincident with the body contour, regardless
of its shape. Thompson et al. (1977) presented a code for the numerical generation
of boundary-fitted curvilinear coordinate systems. In this code, the coordinate lines
are coincident with all boundaries of general multiconnected, two-dimensional regions
containing any number of arbitrarily shaped bodies. No restrictions are placed on the
shape of the boundaries, which may even be time-dependent. This approach provides
a rectangular computational field with a square mesh; no interpolation is required,
regardless of the shape of the physical boundaries, regardless of the spacing of the
curvilinear coordinate lines in the physical field, and regardless of the movement of
the coordinate system in the physical plane. Rai & Anderson (1982) introduced a new
technique that provides a simple way of moving the mesh points in physical space in

order to reduce the error in the computed asymptotic solution relative to that using
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a fixed mesh. Their adaptive grid technique has application in complex fluid flow
problems involving many dependent variables, curved stationary and moving bound-
aries, and systems of partial differential equations. Kansa (1988) set forth an explicit
moving-grid technique in which a moving frame is found in which the couservation
equations appear stationary in a least-squares sense. In this moving frame, which was
used to solve shock-wave problems, it is possible to drastically reduce or eliminate
the temporal truncation errors. Finally, Shyy (1988) used an adaptive grid method
to solve complex fluid flow problems such as uniform channel flow. An application of
a moving-finite-element, instead of moving-grid, method can be found in Djomehri
& George (1988). They used this method to solve the moving-boundary Stefan (heat
transfer between water and ice) problems. Although these methods provide solutions

for these problems, they are not efficient in terms of computation time and cost.

Several other methods were developed in which these deficiencies were some-
how removed from the solution of the problems. Ogawa & Ishiguro (1987) proposed
a new method for computing flow fields with arbitrary moving boundaries, which is
in the same line as the previous class of grid-generation methods. According to their
formulation, the computational coordinates fitted to the body move in space, con-
trary to the usual computational procedures. Thomas & Lombard (1979) formulate
a differential “geometric conservation law” that governs the spatial volume element
under an arbitrary mapping. Their method remedies the difficulties with mainte-
nance of global conservation and with computation of local volume elements under
time-dependent mapping that results from boundary motion. Warsi (1981) worked
out the solution of the N-S equations in conservative-law form in general nonsteady
coordinate systems in a simple and direct fashion, by manipulating some standard
vectors and tensors. Demird#ié¢ & Peric (1990) present a method that can be used
for both the Lagrangian and Eulerian solution of the N-S equations in a domain of
arbitrary shape, bounded by boundaries which move in any prescribed time-varying

fashion. Yeoh et al. (1990) used a boundary-fitted coordinate system to predict the
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shape and the movement of the solid-liquid interface in the course of a numerical

study of 3-D natural convection with phase change.

From all of the forgoing, it is obvious that an efficient way of handling this type
of problem should be adopted. In this respect, immobilization of the domain of in-
tegration was found to be a reascnable choice in solving moving-boundary problems,
at least to an acceptable extent. To immobilize the grids, a time-dependent trans-
formation must be used by which the governing equations and boundary conditions
are transformed from the moving physical domain into a stationary computational
domain (Thompson et al. 1974). Based on this type of transformation several prob-
lems have been solved in the last two decades. To mention just a few cases, Duda et
al. (1975) present a technique for the analysis of unsteady, two-dimensional diffusive
heat- or mass-transfer problems characterized by moving irregular boundaries. The
technique includes an immobilization transformation and a numerical scheme for the
solution of the transformed equations. Saitoh (1978) developed a numerical method
for multidimensional freezing problems in an arbitrary domain, using a boundary-
fixing method. Hsu et al. (1981) set forth a methodology for the numerical solution
of transient two-dimensional diffusion-type problems (e.g., heat conduction) in which
one of the boundaries of the solution domain moves with time. The moving bound-
ary is immobilized by a coordinate transformation, but the transformed coordinates
are, in general, not orthogonal. Faghri et al. (1984) used a nonmorthogonal, alge-
braic coordinate transformation to obtain a rectangular solution domain for solving
convection-diffusion problems. This transformation avoids the task of numerically
generating boundary-fitted coordinates. Finally, Ralph & Pedley (1988) worked out
a numerical solution for the N-S equations in a channel with a moving indentation,
which is close to the situation we have in the present work, using a time-dependent
coordinate transformation to resolve the boundary-condition difficulties arising from
the presence of the moving wall. With boundary immobilization, while the problem

becomes more complicated, it is ensured that the computational domain remains a
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fixed rectangle.

It is important to note that time-dependent coordinate transformations of the
partial derivatives of the governing equations introduces cross-derivative terms, which
is a characteristic of nonorthogonality of the grids. This, however, does not introduce
errors in the accuracy of the final solution of the problem if the grid skewness is not
large, as explained in Thompson et al. (1982) and verified by Braaten & Shyy (1986),
who also proved that grid skewness only affects the convergence of the numerical
solution. Therefore, in the present work the time- dependent transformation is used to
obtain a rectangular computational domain with an orthogonal grid, even though the
grid in the physical domain is nonorthogonal and skewed. Since boundary motions in
the problems considered in this work are such that the criteria set forth by Thompson
and co-workers for skewness of the grid are maintained (sce Chapter 6), it is not

necessary to be concerned about grid skewness in the solutions obtained.

1.2 The Contents of this Thesis

The scope of the research program undertaken in the present work is four-fold. First,
to use the method of artificial compressibility to perform the tinie-accurate integra-
tion of the unsteady incompressible Navier-Stokes equations in annular regions for
fluid flow in the laminar regime, taking into account the large motion of the oscillating
boundary (Mekanik et al. 1992}: this method will be used for all unsteady problems
treated in this Thesis. Second, to apply this method to nonuniform annular geome-
tries, again for large amplitudes motion of the moving boundary. Third, to investigate
experimentally the forced vibration of the annular problems with different geometries
(uniform, with backstep, and with diffuser-shaped annuli) by measurement of the uan-
steady pressure resulting from boundary oscillation in quiescent or flowing fluid in
the annulus, and to comprare the results with what was obtained from the theoretical
(numerical) study. Experimental results for turbulent fluid flows were also obtained

with an eye towards future extension of this work into the turbulent flow regime.
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Fourth, to theoretically couple the N-S equations and the equation of motion of the
moving body (in this study the outer cylinder), to determine the linear stability of
the structure for large-amplitude oscillation. It should be remarked that for all cases
mentioned, the small-amplitude (mean-position) analysis is also utilized, so as to
compare the theoretical small- and large-amplitude results, and the numerical with
experimental results, to the extent possible, and to eventually be able to conclude

that beyond a certain amplitude the small-amplitude solution is not reliable.

In Chapter 2, the physical problems with the special geometries that can be
found in practice and the related variahle physical parameters influencing the solu-
tions under consideration are defined. This is followed by introducing the unsteady
flow equations (i.e., the Navier-Stokes and continuity equations) in cylindrical coor-
dinates. Finally, the fluid forces resulting from the solution of the flow equations are
derived and the dynamical equation of motion of the structure, which is coupled with

the fluid equations through the fluid forces, is presented.

Chapter 3 covers the numerical formulation for unsteady annular flows with
small amplitudes of oscillation. This includes real time-discretization of the flow
equations, The introducing of the method of artificial compressibility, and the pseudo-
time formulation of the resulting equations. The equations obtained are discretized
in space by using a staggered grid and solved in delta form, which is efficient in terms

of computer time, using the (ADI) scheme.

In Chapter 4 the validation of the method ¢f solution introduced in the previous
chapter for 2-D and 3-D steady annular flow problems is discussed. Then, the cases
of 2-D and 3-D unsteady annular flows are treated and the related problems are
discussed both for uniform and nonuniform (backstep) annular geometries. For both
gecometries, the uncoupled translational and rotational motions of the moving outer
cylinder are considered. The results obtained for siv=ll-amplitude oscillations are
discussed and the effects of different parameters such as flow velocity, amplitudes

and frequencies of oscillation, the annular gap width, and the length of upstream and
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downstream fixed portions of the vibrating cylinder on the results are presented.

Chapter 5 is devoted to the solution of the fluid flow equations for nonuni-
form geometries (diffuser shapes). This is due to the fact that, during the solution
procedure of this type of annular geometries, one will obtain nonorthogonal highly
skewed computational grids in the annular space in the axial direction which will
have a negative effect on the accuracy of the solution. To overcome this problem,
a special space transformation is used to obtain physical as well as computational
orthogonal grids. The same procedure used for the time- and space-discretizations
of the N-S equations employed in Chapter 3 is also applied here to discretize these
equations in the transformed domain. It should be remarked that, for the special
case of a diffuser-shaped annulus, the small amplitude (mean-position) analysis is
used because of numerical difficulties, due to both the time-dependent and space
transformations. The numerical results obtained for this geometry are presented and
discussed in terms of different physical parameters affecting the solution. These fac-
tors include the amplitude (small amplitude only, the large-amplitude solution and
results will be presented in Chapter 6 for uniform and backstep geometries) and fre-
quency of oscillation, diffuser angle, annular gap width, fluid velocity, and the length

of the oscillating cylinder as well as the lengths of upstream and downstream fixed

portions.

Chapter 6 is devoted to the solution of the Navier-Stokes cquations using a time-
dependent coordinate transformation, and includes the development of the transfor-
mation equations and derivation of the partial derivatives in the transformed compu-
tational domain. Then, the transformed N-S equations are formed and the equations
are discretized in real- and pseudo-times. Spatial discretizations are implemented on
the same lines used in Chapter 4. The discretized equations are then solved using
the ADI scheme. There follows a discussion of grid skewness in the physical domain,
which is unavoidable due to the motion of the cylinder, although in the computa-

tional domain the grids are not skewed. The numerical results are presented and the
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mean-position analysis is compared with the time-dependent analysis.

Chapter 7 describes several ways of testing the convergence and accuracy of
the results vis-a-vis the effects of important parameters, such as the number of real
time-steps, the length of the system under consideration and the mesh, to name but
a few, on the numerical results and the accuracy of the numerical model used by

comparing the numerical and analytical results for a benchmark problem.

Chapter 8 is exclusively devoted to the experimental investigations. In this
chapter, the main apparatus with its specifications and characteristics, the ancillary
equipment, the instruments and the measuring devices are described. The prelimi-
nary experimental work, such as preparation of the apparatus and calibration of the
related devices, is explained. A complete description of the experimental procedure
is given for the two cases of translational and rocking motion of the outer cylinder.
Although the main objective of the theoretical and experimental work in this Thesis
is to study the fluid flow and its interaction with the structure in the laminar-flow
regime, the available equipment and facilities permit experimentation in the turbulent
regime. A complete set of measurements for different Reynolds numbers, including
those in the turbulence range, were obtained and the results for various geometries
are presented. The theoretical results obtained by both theoretical methods are
compared with the experimental results, and the validity of the results obtained by
time-dependent coordinate transformation is discussed. Finally, a discussion of the

related experimental errors conclude the work of this chapter.

In Chapter 9, fluid-structure interaction is considered, in which the Navier-
Stokes equations for 2-D and 3-D, either for the small-amplitude (mean position)
solution or the large-amplitude (time-dependent transformation) solution, are coupled
with the dynamical linear equation of motion of the system through either predictor-
corrector scheme or a fourth-order Runge-Kutta scheme. The coupled equations are
then solved numerically and the stability of the vibrating outer cylinder is discussed

in terms of its displacement versus time, regarding different factors influencing it,
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such as the flow velocity, fluid viscosity, Reynolds number, annular shape (uniform
or nonuniform), and amplitude of oscillation. The stability analysis also includes the
different motions of the outer cylinder such as translational or rocking motion.
Chapter 10 completes the Thesis with a summary of the important findings,
conclusions regarding the originality of the work done in this research and some

suggestions and recommendations for future work.
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Figure 1.1: Feedback between fluid and structure (reprinted from Blevins 1990).
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Chapter 2

Problem Formulation

2.1 Introduction

The importance of the problem was discussed in the previous chapter. In this chapter
the key elements of the formulation of the problem are introduced, which are at the
heart of the research presented in this Thesis. This is the set of basic equations of
fluid motion in their unsteady form, which eventually lead to the estimation of the

fluid-dynamic forces acting on a cylinder in an annular configuration.

The annular configurations considered consist of a centre-body concentrically
located in a cylindrical conduit, as shown in Figure 2.1. For an axially uniform
configuration, the radius of the inner cylinder is r; and the annular space between
the two cylinders is H; thus, the radius of the outer cylinder is r, = r, + H. The
centre-body is immersed in either quiescent fluid or a steady laminar flow. It is
generally the outer cylinder which is forced to execute oscillatory motion. These types
of annular geometry have applications in many engineering applications, such as the
one shown in Figure 2.2, illustrating the core of an advanced gas vnoled reractor during
the refuelling process. To model such a physical configuration nunteri.ally, each one
of the geometries of Figure 2.1 is redrawn in a special form in Figure 2.3. In this
figure several new parameters are introduced which are part of the final mathematical
model. It should be remarked that, exclusively in this analysis, the inner cylinder is

fixed and the outer one is forced to oscillate.
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The total length of the outer cylinder is divided into three parts. The upstream
and downstream parts of variable lengths L; and L, are kept stationary. The central
portion of the cylinder, L, executes oscillatory motions, either translational or rocking

around a fixed hinge as shown in Figure 2.4,

The radii of the cylinders, r; and rp, as well as the length of the oscillating
cylinder are variable. The annular widths downstream of the backstep or diffuser
sections are assumed to be appropriately larger than the corresponding upstream
section; moreover, the angle of the diffuser section is variable. Different values are
used for the flow velocity U including U = 0, the amplitude ¢, and the frequency
of oscillation f of the central part of the outer cylinder. Although during oscilla-
tion there arise physical discontinuities between the fixed upstream and downstream
portions and the central portion as shown in Figure 2.3, the derivatives of the flow
variables are taken to be continuous and hence no singularities arise due to these
discontinuities. Also, since there always are certain gaps between these fixed and
moving parts, for the computation it is assumed that no fluid leaks from these gaps.
Since the equations of fluid motion, as will be described in the next section, are in
non-dimensional form, the solutions obtained for these equations are applicable to

incompressible-fluid flow in the laminar regime.

The final goal in this Thesis is the stability analysis of the systems described
above. To this end, these systems are assumed to be affected by the fluid dvnamic
forces that result from the flow in the annulus and interact with the structure. These
oscillating structures have certain characteristics such as mass, damping and stiff-
ness. In the stability analysis, one looks for the changes caused by the presence of
quiescent or flowing fluid. As will be seen, the stability of the structure depends most
importantly on the fluid dynamic damping, although the fluid changes the charac-
teristics of the structure in other ways, e.g. by increasing the effective mass of the
whole system or affecting the effective stiffness of the structure. In this Thesis, the

stability analysis is applied to the system shown in Figure 2.4.

20



The outer cylinder oscillates either in translational motion in the y direction or
in rocking motion about the fixed point, as shown in Figure 2.4. The cylinder is rigid
but is flexibly supported, with support stiffness K and damping C. For the purpose
of evaluating the effect of fluid damping on the structure, the structural damping is
neglected. For the system shown in Figure 2.4 it is assumed that the outer cylinder
is displaced by a distance ¢ and then released. Due to the oscillation of the cylinder,
fluid forces are generated which interact with the structure; the final result of this
fluid-structure interaction is the dynamical behaviour of the cylinder (i.e., whether
it remains stable or becomes unstable), which is exclusively the topic of Chapter 9.
However, before this goal is reached, the fiuid forces should be determined by solving
the unsteady N-S equations in the annular region. As a first step toward this aim, the

fluid flow equations for incompressible fluids are introduced in the following section.

2.2 Basic Equations of Unsteady Flows

In unsteady flows, the three velocity components and the pressure are functions
of space and time. These four unknowns can be determined from the governing
equations, i.e., the continuity equation (conservation of mass) and the Navier-Stokes
equations (conservation of momentum).

In this analysis the viscosity and density are assumed to remain constant. Thus,

the continuity and N-S equations, without body forces, are expressed in dimensional

form as

V" .V =0, (2.1)

% F VL (VV) = _;__v-p' + VRV, (2.2)

respectively, where V* is the velocity vector, t* is the time, p° is the density, v is the

kinematic viscosity, and p* is the pressure.

In order to generalize the present problem, it is convenient to define the following
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non-dimensional parameters:

\'A P HV; L
== p= =HV", Re=-—2, t=>22,
A% 7 P prad V=H Re ” i

where V" is the reference velocity, and H is the annular gap width.

Using these parameters, one can write equations (2.1) and (2.2) as

V.V = 0, (2.3)
av 1
-4V (VV) = —Vp4+ V2V 24
and in compact form equation (2.4) is written as
ov
_a"t"' + Q(V,P) = Oa (2'5)

where in cylindrical coordinates Q(V,p) = [Qu(u, v, w, p), Qu(2, v, w, p), Qu{y, v, w,p))7.
The continuity equation and the components of Q(V,p) are given by
Ou 18(rv) low

v-v = am+r or +;W' (26)
. _ %uu)  18(rvu) 10(wu) 3p
Qulw,v,w,p) = or + r Or + r 08 k oz
1 [8%2z 18 ( ou 1 8%
" Re [555*:5;("5;) +rzw]' 27
_ O(wv) 10(rov) 18(wv) w? Jp
Qu(v,v,0,p) = oz + r Or + r 00 r + or
_ _1_ ?.EP_.FLE 1-_62 +_1.62_v_.2.a_w._1 (28)
Re |0z2 ror\ Or 2062 208 2|’ '
_ O(uw) | 19(rvw)  10(ww)  vw  10p
Qulwuvwp) = 5=+ =a =+ 5 T 7%

1 {6%w 10 { ow 18w 208v w
'RT.»[E_ m(’ﬂ*:%m’fﬁa—a‘rz]’ (29)

in which u, v and w are the axial, radial and circumferential non-dimensional velocity

components (V = 1u + é,.v + égw).
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Equations (2.3) and (2.4) are subject to initial and boundary conditions, which

may be stated as follows:

v = 0, w=0, at £ =0, in the annulus
vV =0, on the inner cylinder (2.10)

V = 0, on the fixed portions of the outer cylinder  (2.11)

and
V=V, on the moving boundary, (2.12)
where V), is the boundary velocity.

Also, depending on the method of solution, the boundary conditions are im-
posed either at the mean position of the outer cylinder (for small-amplitude oscilla-
tions; see Chapter 4), or at its true time-dependent position {as shown in Figure 2.5)
for larger-amplitude oscillations (see Chapter 6).

Therefore, the boundary conditions associated with the geometry of Figure 2.5

are given on the fixed inner cylinder R = R; as

Vy R,-,B,t) 0
ww((R,-,B,t) 0 } : (2.13)

and on the moving outer cylinder R, = R; + ®(0,t) according to Figures 2.5(b)
and 6.2

(2.14)

mn

vw(Ro,0,1) [de(t)/dt]) cos @
wy(Ro, 8,1) — [de(t)/dt])sin 8 } '

with no velocity in the axial direction (positive 8 is in the counterclockwise direction).
The known displacement of cylinder ¢, which is a function of time, provides the

necessary velocities [vy,, w7 at different time steps.

2.3 Dynamics of the Structure as a Result of Fluid
Forces

The fluid-dynamic forces, which are expressed in terms of inertial, damping and

stiffness components are evaluated based on the viscous-flow analysis developed in
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the following chapters. The steady and unsteady fluid-dynamic forces are obtained
by integrating the pressure and skin friction around the cylinder. These forces, which
will be obtained in later chapters, are necessary for the evaluation of stability if one
of the two elements of the annulus (the centre-body or the outer cylinder) is flexible
or flexibly mounted.

The resultant forces acting on the structure per unit length, including the un-
steady components, can be calculated by using the following stress equation in tensor
form

IL;=-pbi;+u (% 3—2‘) ) (2.15)
where du;/0z; represents the partial derivative of the velocity component in the i
direction with respect to the j coordinate, u is the dynamic viscosity, and §;; denotes
the Kronecker delta.

The steady viscous forces, which are dependent on the gradients of the motion
with respect to the axial direction, are derived from the longitudinal frictional force
and from the pressurization of the flow to overcome the pressure drop. In this analysis,
since these factors do not affect the problem, the steady forces will not be considered.

The unsteady viscous forces arise from normal and tangential friction forces
containing the effect of the viscous pressure distribution along the circumference
in a direction normal to the wall. Thus, the unsteady forces acting on the outer
cylinder per unit length due to its oscillatory motion can be obtained by multiplying
equation (2.15) by the unit vector normal to the outer cylinder and integrating the

result:
2x

F(t) = A (Ter lr=n, coS8 — T4 |r=p, sinf) R, d8, (2.16)
where 7, = [1;, and 7p = [[5. The stress components in terms of the gradients of

the radial and circumferential components of the unsteady-flow velocity and pressure

are written as

Tl(r00t) = —p+2ur, (217)

or
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ré8 ' dr r (2.18)

Tra(fs9|t) = f-‘(lav Ou w)-

The forces obtained from equation (2.16) are used in the equation of motion of
the structure to analyze the dynamics and stability of the system. Hence, one can

write

Mij+ Cy+ Ky = F(t), (2.19)

when translational motion of the cylinder is considered, where M,C and K are,
respectively, the mass, damping and stiffness of the cylinder (see Figure 2.4).
In the case of rocking motion, the equation of motion of the cylinder about the

hinge point shown in Figure 2.4 is written as
J6 + CO + K8 = M,(t), (2.20)

where M,(t) is the moment of the fluid forces about the fixed hinge point, J is
the moment of inertia of the cylinder about the hinge axis and € is the angular
displacement of the cylinder.

These equations are solved by a special method (Chapter 9) and the results
obtained determine whether the structure, which has been set in motion and interacts
with the fluid during its motion, remains stable or becomes unstable, as determined by
whether its displacement decreases or increases with time. In the case of negative fluid
damping, the system becomes unstable in an oscillatory manner (dynamic instability).
In addition to this, however, if the total (mechanical and fluid-induced) stiffness of
the system becomes negative, then the system loses stability by divergence (static

instability), irrespective of the damping.
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Figure 2.4; Schematic diagram showing the system considered for stability analysis.

21



Inner cylinder True position ‘

Tputer cylinder ‘ Mean Position °

(b) (1)

Figure 2.5: (a) Schematic diagram indicating the mean and the true maximum and
minimum positions of the outer cylinder during oscillations. (b) Cross-sectional view
of the annular space during oscillation (exaggerated amplitude), The boundary con-
ditions are applied either at the mean position or at the moving boundary.
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Chapter 3

Numerical Formulation for
Unsteady Annular Flows with
Low-Amplitude Oscillation

3.1 Introduction

The equations governing the unsteady fluid flow were introduced in Chapter 2. These
equations are solved in steady or nnsteady form depending on the requirement of the
particular problem undcr consideration. In both rases, when the numerical solution

is sought, these equations are discretized spatially and, for unsteady fluid flow, in

time as well,

To implement the numerical solution of the Navier-Stokes (N-5) equations, the
method employed for time and space discretizations of the equations to obtain a time-
accurate solution with the aid of artificial compressibility is explained in this chapter.
The auxiliary equations uses: in pseudo-time to ccuple the continuity and momentum
equations are derived, by which the solution proceeds to the next real-time step. To
solve the pseudo-time equations, the method of factorization is used leading to the
linear equations which can be solved by the ADI scheme (to be presented in what

follows).
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3.2 Time-discretization of the Navier-Stokes Equa-
tions

To diger~tize the t*me derivative which appears in the momentum equation, the three-
point backward implicit time-discretization scheme used by Matecescu et al. (1991} is
utilized. Thisscheme provides the accurate unsteady pressure, free of spurious numer-
ically induced osciliations, in contrast to the Crank-Nicolson discretization scheme
used for example by Soh and Goodrich (1988).

The method of artificial compressibility, which was introduced by Chorin (1967),
is also applied, in order to obtain the solution for the incompressible nonlinear N-§
equations for unsteady flow problems. Let us examine the reasons for requiring the
use of this method. For incompressible flows there are various possibilities for the for-
mulation of the problem. These include primitive-variable, stream-function/vorticity,
and vorticity/velocity methods. The primitive-variable approach offers the fewest
complications in extending two-dimensional calculations to three dimensions. The
primary difficulty with this approach is the specification of boundary conditions on
pressure which, nevertheless, can be eliminated by the specific numerical models uti-
lized. In our analysis the primitive-variable approach was recognized to be more
feasible and adaptable to our physical problems. On the other hand, we determined
to obtain time-accurate solutions of these equations by marching in time, which will
be used later in our special method for stability analysis. To carry out this task, the
continuity and momentum equations must somehow be coupled through the pressure
terms. The role of artificial compressibility is to perform this task, i.e., to introduce
the necessary coupling.

According to Chorin's method of artificial compressibility , the magnitude of
the change in the pressure at a given point in the field is directly proportional to the
magnitude of the divergence of the velocity field and inversely proportional to the

artificial compressibility factor.

The artificial compressibility factor comes from the artificial equation of state,
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i.e., pb = p', where p is the pressure at a point , p' is the artificial density, and & is the
artificial compressibility factor. Using the artificial compressibility in the continuity
equation implies that the density is a function of “pseudo-time”. The important thing
to note is that the artificial continuity equation is cast so that the density becomes
asymptotically constant with respect to time, at the end of the pseudo-time iterations
when the real continuity equation for an incompressible fluid is satisfied.

Before the artificial compressibilty is introduced into the equations of fluid mo-
tion, the N-S equations must be discretized in real-time. Hence, we first write equa-
tion (2.5) as

av

S +QV.p) =0. (3.1)

Introducing the three-point backward implicit time differencing scheme results in

3Vn+l -4V 4 Vn—l
2At

+ Q™ =0, (3.2)

where Q"+! = Q(V"*! p"*+!). From this discretization the value of V at time t"+! =
(n + 1)At is obtained, given the solution for previous values at time levels t* and
t*~!. Equation (3.2) together with the continuity equation which must be satisfied

at all times can be written (Mateescu et al. 1991) as
vn+l + ﬂQII-l-l = E° , (33)
V.Vl o= g (3.4)
where
2 n 1 n -1
ﬁ:EAt, E =§(4V e AR

The time integration procedure requires the initial conditions for V and p throughout
the fluid domain and the boundary conditions at the entrance and exit of the domain,
as well as at the fluid-structure interface as discussed in the previous chapter and as
will be addressed in Chapters 4-6 where the details of integration for each problem
are explained. Equations (3.3) and (3.4), which are a non-homogeneous system of

nonlinear equations, can be solved for V*"+! and p"+! n=1,...,N - 1.
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3.3 Pseudo-time Integration Based on Artificial
Compressibility

Equations (3.3) and (3.4) can be solved numerically by an iterative relaxation tech-
nique if we introduce a continuous auxiliary system in pseudo-time (Soh and Goodrich

1988) as

Vo s n

5;+V+ﬁQ = E", (3.5)
op _
'6—;+V-V = 0, (3.6)

where 7 is the pseudo-time , and é is the artificial compressibility coefficient; here
the hat denotes a transient value in pseudo-time. The time T is called here pseudo-
time, to be distinguished from the physical time t. From equations (3.5) and (3.6)
we can see that V and p become V=+! and p"*!, respectively, as the steady state is
reached asymptotically in pseudo-time. Consequently, the solution of the system (3.3)
and (3.4) is equivalent to the steady solution of the system (3.5) and (3.6). As we
see in (3.6), the divergence-free velocity field is not obtained until the steady state
is reached. Therefore, the system (3.5) and (3.6) has no physical meaning until
the numerical solution converges in pseudo-time. Since the pseudo-time 7 is purely
artificial, the time increment A7 can be taken as large as possible to expedite the
convergence to the steady state, within the limit of the numerical stability condition
based on the Courant number (see the discussions in Chapter 4 and Mateescu et al.
1994, Part 1) .

For the pseudo-time semi-discretization, an implicit Euler scheme in delta form

is used, namely

AV 4+ ATVEH L BATQPHY = ATE", (3.7)
Ap+ %v Vet =, (3.8)

where g indicates the solution at the pseudo-time level 7# = pA7. The terms AV and

Ap are given by V#+! — V# and p#+! — p#| respectively, and Q#+! = Q(Vr+H prthy
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is calculated at each pseudo-time step, while the non-homogeneous term E®, which
is also calculated at the beginning of the pseudo-time relaxation, is kept constant
throughout.

When the solution converges, at u = m, the pseudo-time derivatives AV and
Ap become zero, giving V™! = V™ and p™+! = p™, and equations (3.5) and (3.6)
reduce to (3.3) and (3.4), at which point Vmtl = Vol and ™+ = 57 where n+ 1
is the new real time step.

Introducing AQ = Q**! — Q* into the equations (3.7) and (3.8), to be
consistent with the V and p variables in delta form, and rearrenging the terms in
the equations, the final momentum and continuity equations in matrix delta form are

expressed as

(I+ AT)AV 4+ BATAQ = AT(E" - V¥ — 3Q"), (3.9)
Ap + %T-V -(AV) = ——"‘tg-v VB (3.10)

which is an implicit system of equations, nonlinearly coupled by the term AQ. Equa-

tions (3.9) and (2.10) can be written in global matrix form as
[T+ BAT(M.; + M, + My)] A¥ = ATS (3.11)
in which the matrices M, M,, and M, contain the spatial derivatives with respect

to z,r, and @ of the variable AY = [Au, Av, Aw, Ap]T. The vector S is given by

o [E -V -B8Qe

5= —(1/8)V - VH (3.12)

3.4 Spatial Discretization on a Staggered Mesh
3.4.1 Grid Generation

The numerical solution of partial differential equations requires some discretization
of the field into a collection of points or elemental volumes (cells). The differential

equations are approximated by a set of algebraic equations on this collection of points
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and volumes, and this system of algebraic equations is then solved to produce a set of
discrete values which approximates the solution of the partial differential system over
the ficld. The discretization of the field requires some organization for the solution
theicon to be efficient, i.e., it must be possible to readily identify the points or cells
neighbouring the computation site. Furthermore, the discretization must conform
to the boundaries of the region in such a way that the boundary conditions can
be accurately represented. This organization is provided by a coordinate system,
and the need for alignment with the boundary is reflected in the routine choice of
Cartesian coordinates for rectangular regions, polar(or cylindrical) coordinates for

circular regions, etc.

The use of coordinate line intersections iv define the grid points provides an
organizational structure which allows all computation to be done on a fixed square
grid when the partial differential equations of interest have been transformed so that
the curvilinear coordinates replace the Cartesian coordinates as the independent vari-
ables. The boundaries may also be in motion, either as specified externally, which
is the case in this Thesis, or in response to the developing physical solution. In any
case, the numerically generated grid allows all computation to be done on a fixed
square grid in the computational field which is always rectangular by construction.
In this chapter, a fixed grid related to the mean position of the moving boundary is
used by contrast with the analysis based on a time-dependent coordinate transforma-
tion, which will be explained in Chapter 6, in which the moving physical domain is

transformed into a fixed rectangular computational domain with an orthogonal mesh.

The finite difference method was used to discretize the spatial differential oper-
ators which are centrally differenced on a staggered grid. On curvilinear coordinate
systems the definition of order of a difference representation is integrally tied to a
point distribution function. The order is determined by the error behaviour as the
spacing varies with the points fixed in a certain distribution, either by increasing the

number of points or by changing a parameter in the distribution.
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The hyperbolic tangent and hyperbolic sine (stretching) functions are used to
obtain the best possible spatial resolution and concentrate more points in regions of
higher velocity gradients, for example, near solid walls. The hyperbolic tangent was
used to concentrate grid points normal to solid walls, while the hyperbolic sine was
used in flow problems involving a preferred flow direction, to distribute the points in
that direction. These distribution functions provide best accuracy for the difference
representation of differential operators {Vinokur 1983).

The hyperbolic tangent stretching function is constructed using the following

equations:
rj =10 +(r; —ro)(n) , (3.13)
where -
K(n) = % {1 + tanl:gil"(%_) 5))} , (3.14)

and the points are then located by taking integer values of 1, i.e., n=10,1,2,.....,7.
In the z-direction, which corresponds to the mean flow direction, we use the

hyperbolic sine distribution function, which reads

T; = Zo + (77 — Zo)x(§) , (3.15)
where ¢
inh ,
x(€) = Sl:in?—;) . (3.16)

The points are again located by taking integer values of £, = 0,1,2,....,I.
Indeed, the fluid equations are now considered to be solved on a normalized domain
with coordinates £/1,0 < £/I €1, and 5/J, 0 < /J <1, instead of on the original
physical domain with coordinates z, 19 € £ < z; and r, 7p < 7 £ r; and with

coordinate 8, 0 < 8 < 7 uniformly dist+ibuted along circumferential direction,

3.4.2 Spatial Differential Operators Based on a Staggered
Grid

By taking into account all the aforementioned considerations, and noting that the

problem of generating a curvilinear coordinate system can be formulated as a problem
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of generating values of the Cartesian coordinates in the interior of the rectangular
transformed region from specified values on the boundaries, in the present analysis,

for central differences, the first and second derivatives are evaluated as (see Figure 3.1)

df _ fim = fia

= et (3.17)
& d(4
Er::; T [dz \dr o=z

1 ..(.li _ ﬂ
Tiv12 — Ti-1/2 [(da:)z“_m (dx)r.--;,z] (3.18)

1 fin=fi  fi—= fiu1]

Tig12 — Ticyy2 LTkl — T Ti— -'Fi-ij

In the present analysis it was decided to use a staggered grid (such as that used
by Harlow & Welch 1965) instead of using a collocated one, for which the accuracy
of the solution deteriorates (see Patankar 1980). A sample of the staggered grid
used in the 2-D analysis of the problems is shown in Figure 3.2. In addition to
the benefit obtained, the staggered grid provides the possibility of simplifying the
boundary conditions for pressure. Thus, in the present analysis, using the staggered
grid frees the solution from the pressure to be described at the solid walls and reduces
the number of boundary conditions for the problem.

This advantage has, however, its own price. A computer program based on
a staggered grid must carry all the indexing and geometric information about the
locations of the velocity components and the pressure (especially in 2-D and 3-D
problems) and must perform certain interpolations as have been done in this analysis
and are described in the next section and subsequent chapters and appendices. But
the benefits of the staggered grid are well worth the additional trouble.

By considering Figure 3.2, the central A and backward V difference operators

are defined for 2-D problems as

ArY = ¥ -r¥,, ArY = ¥, ~1¥,
7 J J 7 J 2

v tw w v v v v w (3.19)
TJ- = TJ- —_ rj--l , TJ- = TJ' - TJ' .
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It is apparent that in this staggered grid the velocity components v and w are defined
at different grid points, namely at (r},6;) and (r},68)’) for v;, and wjx, which are
also different from the grid point where the pressure p;x is defined, i.e., (r},6}). The
r- and #-momentum equations and the continuity equation are differenced about the
points where v, w;x and pj are defined, respectively. Now the linear interpolation
of the velocity components using the difference operators (3.19) is impletnented here
for certain velocity components

v . w . U oy, L TH
ru _ Va1 Uik + VTT Visrk Vri vi-1k + V1 vjx

rd
Yy w ! Yy = w '
Arfyy Ar}
(3.20)
A = Yik Tt Viksl ot = Vi F Yik-1
v 2 i v 9 1

in which ru and rd stand for “upper” and “lower” from a certain radial position,
while 8f and #b stand for “forward” and “backward” of a certain circumferential
position; the derivation of the other components will be illustrated in Appendix
A. Meanwhile, the same difference operators will be used to evaluate Av and Aw
appearing in factored forms of equations (2.6-2.9) when they are cast in delta forms
which will be given in the section 3.5.

In this analysis, the grid has uniform spacing A8 in the circumferential di-
rection @ and is stretched in the radial direction in order to cluster more points
near the cylinder walls. Furthermore, the evaluation of the viscous derivative term
(1/r)(8/0r)(row/Or), as appears, for example, in equation (2.9), near the outer or
inner cylinder wall requires special treatment, as explained in Chapter 4 for 2-D
problems.

Now we are well prepared to write the N-S equations in difference form, using
equations (3.19) and (3.20) and the equations presented in Appendix A. The dis-
cretization of equations (2.6), (2.8) and (2.9), for example for 2-D problems, is thus

given by the following relations:

VY., — T Vik =TI 1Yi-1k | Wik — Wik 391
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(Qu)ix = m Ar [J+1(U (U;d)2

1 [ 7} L
- -p:g{ J:,‘ (Vjsr ke = UJ,k)—A_.:_‘:U.(ijk_Uj-l.k)}]

J-H
0}‘ 0! - wOb ab

Al

Pj+l.k—Pj.k+ 1 [

v v
Arj T'J-

(w.,)ﬁ] (3.22)

1 -vjvk"'l + vjlk"'l - 2 vJ'uk wgf - wgb -2
Re (r7)? | (AB)? Al dk]

1
— v, ru, ru v rd,_ rd
(Qw)j.k - w AW rj Uy, Wy —rj—l Uy Wy,
Tj &T;

1 | 7} ( i 1
~ Re Wigl ke — wJ.k) Ar;-‘_l (wjk Wit k)

1 wﬂ;’ — (W) + D1 — Pik
* ;?[( = zsa Bl Bk vy i (3.23)

- i Wy k+1 + Wik—-1— 2 Wik 1)3! - 'U e
Re (r}v)'z [ (A6)2 +2 Ab Wy k

The superscripts ru, rd, 8 f and b specify the upper and lower as well as forward and
backward compouents of the interpolated velocities as in (3.20) and similar equations.

The terms v,, and w, need special interpolations and are given in Appendix A.

3.5 Method of Solution Based on the ADI Scheme

Now we apply an approximate factorization (Hoffman 1989) to (3.11), thereby rewrit-

ing the implicit left-hand side of the equation as

[+ BAT(M, + M, + My)| A¥ = (I+SATM.)(I+BATM, )(I+BATM,)A¥ = A7S.
(3.24)
The nonlinear term in equation (3.9) appears as AQ. This term is linearized by

simply lagging the velocity component (Anderson et al. 1984) which, along with the
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AV components, in pseudo-time variation form are expressed as

[ Au gHtl g
AV = Au]= [ﬁ““—ﬁ“ ]

| Aw Wh! — e

[ A Qu Qﬁ.‘-l - Qﬁ
AQ = |AQ, | = | Qs =@ |,

L A Qu Qut - Qb

with, for example, AQ}, in cylindrical coordinates given by

d(a*Au) | 18(rdAu) + 18(wAu) 4 3(Ap)

AQ. = oz r 9 r 8 oz
1 [03Au) 10 ( 8(Au) 1 8%(Au)
B ﬁ[ 32 +?5¥(" ar )*'?5 o6 ] (3.25)

which is first-order accurate, consistent with the order of accuracy of the Euler
pseudo-time semi-discretization discussed previously.

An alternating direction implicit (ADI) scheme (Peaceman & Rachford 1955)
is used in this analysis in order to separate the numerical integration of the linear
system of equations (3.24). This is done by introducing the intermediate variables

AV = [Au,Av, Aw, Ap|T and AT = [Au, Av, Aw, Ap|T, thereby leading to

(I+B8AT™M,)AT = ArS, (3.26)
(1+B8A™,) AT = A¥, (3.27)
I1+8A™,)AY = AT. (3.28)

In, for example equation (3.26), the variables E,&,ﬂ, and Ki) are decou-
pled as well as the corresponding variables in equations (3.27) and (3.28). Then, for
each variable (Au, Av, Aw) and for each direction (z,r,8) the solving reduces to a

tridiagonal systems of equations. Since central differences are used to discretize the

spatial differential operators, only the resulting tridiagonal systems of equations need
to be solved, which is computationally efficient. The procedure for solving the specific

problems by using the matrix equations (3.26-3.28) in 3-D or the simplified form in
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2-D for different annular geometries will be explained in the related chapters.
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Figure 3.1: Portion of a one-dimensional stretched grid.
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Figure 3.2: Schematic representation of the 2-D staggered grid used to discretize the

non-linear unsteady annular flow equations.
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Chapter 4

2-D and 3-D Unsteady Annular
Flow Solutions: Method
Validation

To solve the unsteady Navier-Stokes (N-S) equations one needs to have an initial
condition. Here we use the steady state solution. This steady solution is obtained by
neglecting the first time-dependent term, i.e.,, V /8t in equations (2.2) and (2.4).
In the present analysis the N-S equations without body forces and the continuity
equation are solved numerically.

It has been shown (Mateescu et al. 1951} that the three-point backward time-
discretization along with the pseudo-time iterative relaxation method using artificial
compressibility can be used to solve certain problems in steady and unsteady flows.
Available analytical solutions are limited to cases where the annular passage is narrow
{Mateescu & Paidoussis 1985), which also limits the amplitude of oscillation to be
small, such that the ratio of the amplitude of oscillation to the annular gap width
remains small; or the annular passage is narrow and uniform (Matcescu & Paidoussis
1987, 1989).

For both steady and unsteady equations the numerical solution procedure is
the same regarding the spatial discretization and pseudo-time relaxation. Usually
the numerical solution for each model is compared with either an existing analytical

one or experimental results, if available, so as to validate the accuracy of the solution
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or the applicability of the model to the specific problem at hand.

In the study of viscous incompressible flow, it is necessary to obtain the velocity
vector V and the pressure p as functions of space and time. However, the complete
general solution for the N-S equations is still not possible because of analytical diffi-
culties and the lack of appropriate numerical models.

There are various approaches for working out the solution of the N-S and con-
tinuity equations in general, and in the present analysis in annular geometries. In
the first approach, assuming small-amplitude periodic motions of the structure, one
imposes a periodic motion on the confined fluid and decomposes the velocity into

stcady and unsteady components,
V(z,768,t) = V,(z,7,0) + Vy(z,7,6,%) ; (4.1)
the pressure is also expressed as the sum of steady and unsteady terms,
p(z,7,8,t) = ps(z,r,8) + pu{z,7,0,1). (4.2)
The equations for steady viscous flow are
(V,- V)V, = —%Vp,+VV2V,, V.V, =0. (4.3,4.4)

The system of equations in both steady and unsteady flows is solved subject to appro-
priate boundary and initial conditions, one of which is the impermeability, condition
at the surface of the oscillating structure.

For the steady-flow solution, equations (2.3) and (2.5) read
Q(V,p) =0, V.V =0, (4.5,4.6)
where the term Q(V,p) is expressed as

Q(V,p)=V-VV4+Vp- -él;vzv. (4.7)

The pseudo-time analogy of equations (4.5) and (4.6) for steady flow then becomes

v - B ap T —0.
5. +Q(V.p) =0, 5. TV V=0; (4.8,4.9)
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by applying the implicit BEuler scheme for semi-discretization and finally recasting

the equations in the form of equations (3.7) and (3.8) results in

AV + ATAQ = -—-ATQ¥, (4.10)
Ap+—A:S—TV-(AV) = —%fv-\‘/*', (4.11)

in which equation (4.10) is more simplified due to the fact that # = 1; the vector

equation (3.12) reduces to

- T
s=| o]

Since the procedure for discretizing the equations and solving the problem,
especially in the pseudo-time integration of the equations, is identical for steady and
unsteady annular flows, only the solution for the unsteady flow is described. As a
matter of fact, the steady solution of the N-S equations is the unsteady solution
for just one real time step and several pseudo-time steps; in this case the moving
boundary remains stationary.

In this analysis the major differences between the steady and unsteady solutions,
besides the boundary movement, is the method of selecting the artificial compress-
ibility factors and pseudo-time steps. For steady solutions of the N-S equations, the
selection of the artificial compressibility factor 6 and pseudo-time step A7 is done as
explained by Chorin (1967) and Soh (1987). To begin, we note that the reason for
introducing artificial compressibility is to allow the flow field to converge quickly to
an incompressible solution. Based on equation (3.6), we remark that the pressure
change at a point with respect to artificial time is large if 6 is small; for steady flows, 6
is related to the speed of propagation of a pressure disturbance by @ = 1/6'/2, where
a is the artificial sound velocity in the fluid. The method of artificial compressibility
reanires that the speed of fluid particles be less than the speed of sound or M, <1,
where M, is the artificial Mach number defined by M, = U,,.-/a . The solution will
not converge if the artificial Mach number is near zero, because a disturbance prop-

agates through too large a portion of the flow field if a is too large; but if the Mach

43



number is close to unity, the pressure disturbance propagates only slightly faster than
the maximum velocity and the magnitude of the disturbance is small.

The sclection of 6 depends on whether the flow is steady or unsteady. In the
steady flow problem, as explained in Soh (1987), the value of 6 depends on the

characteristics of ... square matrices of the following equation:

u 20 0 1 a1t v u 0 al®
vt v ¢ 0 3 | Y +}0 2v 1 Wl Y= 0, (4.12)
o 1/6 0 0|9 | p 0 1/6 0]%|p

where f = 1 and the characteristics of both square matrices are A\; = (u?412)1/2 A3 =
(u? +v?)/? & (u? + v? + 1/6)"/2, which indicates that two right-running waves at the
inlet and one left-running wave at the exit propagate into the computational domain.
This necessitates that a certain number of boundary conditions to be imposed at the
inlet and exit, namely u and v at the inlet and p at the outlet; p is given by the

following equation

vy 6(uv)+6(vv) 1 (8% 0%
dz dy Re

Pij = Pr2=-— /_ 32T 3;3)]12:7 dy, (4.13)

vz
see Soh (1987).

We choose é in such a way that the magnitudes of the eigenvalues are of the

same order as
Ay~ (u2 + U2)lf2+ (u2 + V2 + 1/6)1/2,
ha o~ |+ e?) 2 - (0?4 1760 (4.14)

According to this analysis, from equation (4.14) we conclude that these eigenvalues

have the same order if é is svlected to be

(4.15)

where g2 = u?+41? is some representative flow speed. Now, the pseudo-time increment,

AT, can be expressed as

(4.16)



where Az is a typical mesh spacing and Cr is the Courant number, which is a cri-
terion for the convergence of the numerical solution. This number can be chosen
appropriately to accelerate convergence.

For unsteady-flow problems, similar to the case of steady ones, we first need to
determinc the artificial compressibility factor é and the pseudo-time step A7. To that
end, the matrix equation (4.12) will be used with certain modifications, First, due to
unsteadiness of the flow field the real time ¢ in terms of 3 = 2At/3 will appear in the
equations. Second, to have an idea of the appropriate value of 6, it is not necessary to
solve the two-dimensional inviscid matrix equation (4.12). A one-dimensional model

problem from (3.5) and (3.6) will provide (Soh and Goodrich 1988)

9 [ F2ga plofa)l_
S5 e

where nonderivative aud nonhomogeneous terms are dropped for simplicity. The

eigenvalues of the square matrix in (4.17) are
Az = Bi % (822 + B/6)V2. (4.18)

They are real and distinct, so that the system (4.17) with artificial compressibility
is hyperbolic in pseudo-time, and subsonic in the sense that the eigenvalucs are of
opposite sign.

Since an eigenvalue of the system (4.17) is a wave propagation velocity, the
A's in (4.18) as explained before may be interpreted as waves travalling with and
against the fluid flow with a sound-like velocity, (8242 + 8/6)}/2, relative to the local
fluid flow. The local flow velocity in (4.18) is B instead of i, because that system
was derived in pseudo-time by using a three-point backward time discretization. The
choice of a value for § is optimal if the magnitudes of the cigenvalues are close to

each other /of the same order), as stated for the steady-flow problems by
Bt ~ Bi + (0% + B/6)'? ~ (822 + B/6)\? - B,

A good compromise can be reached if we take & to be 1/(342), ~ that the ratio

of the largest to the smallest eigenvalues becomes only 3 (Soh 1987). Again, since
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the flow model defined by (4.17) is similar to a subsonic compressible flow, it can
bhe characterized by an artificial Mach number M, = ¢/f06 = q\/ﬁ/_é R ‘/1_/3, in
which ¢ represents a characteristic flow speed as defined previously and § = 2At/3.
Thus, in the present analysis for unsteady flows, é is given by

1 * 2.
= mm— 4.1
é 2q2At”° (4.19)

where At is the real physical time-step.

The choice of ¢ is highly heuristic, especially for a fluid flow with no preferred
direction. However, equation {4.19) provides a plausible guideline for the artificial
compressibility. The estimation of the pseudo-time step A7 will follow the same
argument as in the case of steady-flow problems and it is based on relation (4.16)
with A = A,. For optimal values of § and A7, a physical understanding or qualitative
estimation of the flow field under consideration as wel! as numerical experiments are

necded,

4.1 2-D Unsteady Annular Flow Solutions

The time-accurate method of solution of the unsteady incompressible N-§S equations
equations was developed in Chapter 3. To obtain a numerical solution to these
equations in 2-D annular flows, the governing equations (3.26-3.28) are reduced
substantially, i.e., all derivatives with respect to z are equal to zero.

In addition, we assume that the inner cylinder remains fixed and the outer
cylinder undergoes transverse oscillations while its axis always remains parallel to
the axis of the inner cylinder; the dynamics of fluid flow induced by the movement of
the outer cylinder does not need to be necessarily dependent on axial flow. Therefore,
the equation of axial momentum is not solved and only the momentum equations in
the » and 8 directions and the continuity equation need to be considered. Further-
more, the equations are solved on a two-dimensional mesh spanning the radial and
circumferential coordinate directions. As far as the boundary conditions are con-

cerned, due to the two-dimensionality of the solution, there is no need to impose
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boundary conditions at the inlet or outlet. Since the geometry of the confined fiuid
changes with time as the outer cylinder undergoes oscillation, the method of solution
should be suitable for problems with a variable computational domain. An excel-
lent survey for various methods used for variable computational domains is given
by Thompson et al. (1982). In this chapter, the boundary conditions are imposed
at the mean position of the oscillating boundaries, which, as we shall see later, is
appropriate for the case of small-amplitude oscillations.

The geometry of the two-dimensional unsteady annular flow system is shown
in Figure 4.1 in which the mean position of the outer cylinder is indicated by a solid
line.

During the oscillation of vhe outer cylinder we assume that the boundary will
move with velocity U,(t), and the vertical displacement of the outer cylinder is

given by e(t). The boundary conditions associated with this geometry are given by

equations (2.13) and (2.14).

4.1.1 Differential Form of the Non-linear Navier-Stokes Equa-
tions

In the two-dimensional flow field illustrated in Figure 4.1(a), we write the matrices
M, and My as

M +1/8+1/(Rer?) -k fr afor
M, = { 0 M+ {r+1/(Rer?) 0 J,
(1/B67)(8/dr)(r) 0 0
N (2/Rer%)3/80 0
M, = [ —(2/R8T2)3/69 N+ 1/ﬂ (1/1‘)3/38 ] '
0 (1/B61)8/08 0

where

o arite) 1 8 (3
Me = =% Re;gfj(rar '

_ aire) 1 Py
Ne = =36 " Rerzo@@’
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and the components of Q(V, p) in the radial and circumferential directions and the
continuity equation are given by

19(rvv) + 19(wv) w? Jp

Q.(v,w,p) - or r 00 T +'a_,-
1 {18 ( 8v 18% 20w v
" Re [;5; (a—) t R e —] 420
_ lo(rvw)  18(ww)  vw 10p
Qw(vtwap) - r or + r 08 + r + r of
1 10 [ 8w 107w 28v w
" e [:a—r (*a?) o Tragg 2|0 (42
_ 18(rv) 10w /
v-v = r dr  rdf’ (4.22)

The matrix equations (3.26) and (3.27) in different sweeps are then written as

(I+8AT™™,) AT = ATS, (4.23)
(I+8ATM) A =AYV, (4.24)

where, in this case, A¥ = [Av, Aw, Ap|T and A¥ = [Av, Aw, Ap)T.

Hence, for 2-D problems the momentum and continuity equations to be dis-
cretized are limited to two matrix equations in the 7— and 68— directions, i.e., the
cquations (4.23-4.24).

In the r-sweep, the equations become

o Bv) | o(Bp) _ i#Ew

(1+A7)A + ﬁm[

ror or T
_ 10 (@)
Re | rdr T or r2
= AT(E} - - §QY), (4.25)
_ drivBw) #Bw 1 o [ o(Aw)\ Bw
Aw + ﬂAT[ ror T —ﬂrar(r or +Rr‘-’

= A(E" -9 — BQY), (4.26)
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—  ATIr 'A_v) AT N

— — B . i -
Bp+——— = V-V (4.27)
and in the 8-sweep
d(urAv) 1 8%Av)] o 2 6(Aw
Av + ﬁAT[ rd8  Re r2g62 =av- Rer? {4.28)
d(w+Aw)  9(Ap) 1 F*(Aw)
(L+Ar) 8w + ﬁm[ ro8 ' 186  Re r2o0
==, 2 9(Av)
= Aw+ Rer? 58 (4.29)
AT0(Aw)  —
Bp+ 5= =Dp, (4.30)

where Q# = Q,(o#,9#,p#), Q¢ = Qu(#*,4*,p*). The variables it = o +
Av, iHt! = * + Aw, p**! = p* + Ap are thus obtained by solving equations (4.25-
4.30). The solution proceeds to the next pseudo-time iteration step until convergence,
which is reached when Av, Aw, and Ap are equal to zero.

One can notice that equations (4.25) and (4.27) in the r-sweep and equa-
tions (4.29) and (4.30) in the 8-sweep are coupled. A decoupling procedure is used to
eliminate Ap and Ap from equations (4.25) and (4.29) with the aid of the continuity
equation (4.27) and equation (4.30), respectively. This is done in conjunction with the
discretization of equations (4.25)-(4.30) in the r- and #-directions. This finally ieads to
a set of scalar tridiagonal equations, corresponding to equations (4.25), (4.26), (4.28)
and (4.29), which are solved for Av, Aw, Av and Aw. Then, Ap and Ap can easilly
be calculated from equations (4.'27) and (4.30). Details of the discretizations are given
in Appendix A and the discretized tridiagonal forms of the equations are described
in the following paragraphs.

The r—momentum equation {4.25) in the r-sweep, after being coupled with the
continuity equation and in discretized form, is given by

B_Jj-l,k[ﬂAT { “’v'"dvr; Ty }_ AAT Y, ]

~— {—r
Y Ar? 7 ArY  ReAry bryAry Ary
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BAaT « VT d VTT
+Avjk [10+A-r+ rAT Tinv” Ars,, -1V, E—;’;

w v 2 v2
L1 1 ;+l + 5 + Arj + A'rr;-’ + A'rrj
Re \Arfy,, Ary 1] briAry - brigArdy

3

BAT (w ru VTi41 TiE ) BAT Y, ]

+OVj1e rYAT} Ti+1ty Ar?,,  ReArd,) bry, A _HAT
AT?
= ar(By - - QL) g Ar (T ViV Vi) (D

For a given 8 coordinate, 8y, setting up equation (4.31)foreach 7,2 < 7 < J-2,
where j is the grid index in the r—direction, gives a tridiagonal system of equations
which must be solved for Av;;. Note that j = J — 1 corresponds, for example, to
a solid wall (Soh 1987). This computation is done for each 8, 3 < k¥ £ K -1,
where k is the grid index in the §—direction. Hence, Av;y is calculated for all j and
k, except at the boundaries where we have them as the boundary conditions. The
reason that at 8, the calculation is not implemented is the usage of a staggered grid
plus the symmetry of the problem with regard to the plane of oscillation, which will
is explained in Appendix A. The left-hand side of equation (4.31) contains the terms
that come from using central differences for the viscous derivatives. These derivatives
are evaluated using non-central differencing near the solid walls as explained in the
following paragraphs. We note that A—pj',, is obtained from the continuity equation
after Avj is detertuined.

The 6-momentum equation in the r-sweep and in discretized form is written as

Aan ﬁAT v rd Vr;u 1“;-’_1
Avj-1k {rJTA?"_’ 7510 Ar?_, - ReAr?_,

BATY, BAT |, . V1Y AV
+AW; {1.0 + e =+ PEAT rva“—L-A ” 1V _EJ_
7

1 (] Ty BAT
TRe (Ar;-’ + Ar}’_,)] + Rery?

— BAT Vr? rY
AW & — |pUyru___1 _ J
Witk {r;.vm;.v 7% Zrv T ReAry

= Ar (B3 -9 - BQs),, - (432)
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Once again this is a tridiagonal system of equations to bx solved for Aw;. Therefore,

equation (4.32) is set up for each j and & in the domain of integration which includes

2<j<J—1and2<0< K -2.

The r-momentum equation in the #-sweep in discretized form reads

A"""“{r;a.a[ “\2) " Rering
BAT | of (1) ,,,,(1) 2
M"”‘{” a6 | \2) ¥ \3) T Reryat

ﬁAT (l) _ 1 AT _ 2(Aw,-.k+1 - ij.k)
+ Ak { A8 [w 2) ReriAd)f ™ Avj Re r¥2A9 - (433)

Equation (4.33)issctupfor2<j<J-2and 3 <k < K - 1. We recall that the

corresponding variables at j = J — 1 come from the wall boundary conditions.

The #-momentum equation in the f-sweep and in discretized form is derived as
BAT ab (1) At 1 1
Atje-1 {r;.vae Yw\2) T 5 7PA0  RervAo
,BA P 1 b 1 2 Ar 2
oo 2l ()0 @) ek F e
tAwj {1 ATt eag | \2) T¥ \2) T Rervas T T rPAD

. BAT | 4 (1) AT 1 1
+A“’""“{ rAg [‘” 2) 7 6 rPA0 ReryAd

2(Avjue1 — Dvjy)
Re ry2A8
Equation (4.34), after being solved by the tridiagonal matrix solver, will be the last

= Aw;k — ﬁwig ( Pije+1 = Kl-’j,k) + (4.34)
equation used in both r- and #-sweeps with the final result of circumferential velocity
difference, £ w. The pressure difference Ap is recovered from the continuity equation.
To implement the solution, equation (4.34)issetupfor2<j<J-land3 <k <
K — 2. The magnitudes of the variables at the grid points other than those cited
above are obtained by using the boundary values or symmetry conditions explained in
the following paragraphs. At this point we recall that after the increments Av, Aw,
and Ap are obtained in each pseudo-time step, the perturbed flow field parameters

v, w, and p are updated before the next real time step starts as
v = y* 4 Av, w't! = wf + Aw, P =p' +Ap,
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and at the next real time step all these increments have already become zero indicating

that the continuity equation (2.3) is satisfied; thus
Vm+l = Vn+l and ﬁm-i-l = ﬁn-i-l :

as explained in Chapter 3.

In order to initiate the time-integration procedure, initial conditions must be
provided for V!, V® and p', p° throughout the fluid domain, which indicates that the
solution is known at previous time levels t! and ¢°, The initial conditions required to
start the pseudo-time integration are taken to be €"*! on the moving boundary and
V", and p" inside the fluid field, i.e.,

&l =, Ve =V, ol =p, (4.35)

p=1 p=1 p=1

where on the boundary of the fluid domain the known displacement €' and velocity
Ut of the walls at the advanced time level t"*! are set as boundary conditions and
kept unchanged until the steady state has been reached in pseudo-time. The wall
displacement €"*! and velocity U%™! serve as driving terms to advance the solution to
time level (n41)At, along with the nonhomogeneous term E", which is also calculated
at the beginning of the pseudo-time relaxation and kept constant throughout. In the
case of 2-D problems Av and Aw are zero on a solid wall, even when the wall has
non-zero velocity. This is because the velocities v+ and w2*! of the wall at t"+! are
imposed as boundary conditions and remain fixed during the pseudo-time relaxation.

The annular-flow geometries under consideration throughout this analysis are
composed of two bodies of revolution which are concentric and where the space be-
tween them is filled with fluid. In addition, the vibration of either body is considered
to be constrained only in one plane, the plane of oscillation; therefore, the flow vari-
ables v and p for 2-D problems are assumed to be even functions of #, and w is an
odd function of 8; i.e., with respect to the plane of symmetry at § = 0and @ ==

(see Figure A.1)

Vj2 = Vi3, W) = —Wj3, Pi2 = Pi3,
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Vjk-1 = Vjk» Wik~2 = —Wjik, Pik~1 = Pjk

where k is the index in the #-direction.

As far as the movement of the solid walls is concerned, on the inner cylinder

the displacement €(t) is zero, while on the outer cylinder in the plane of symmetry it
is given by (see Figure 4.1)
Ew(t) = —&, cos U, (4.36)

with the velocity of the wall expressed by
éu(t) = €,Qsin QF, (4.37)

where € is the amplitude and §? is the circular trequency of the oscillation.

The evaluation of the viscous derivative term (1/r)(8/dr)(rd%/8r) near the
boundaries of the outer or inner cylinder requires special treatment. Indeed, by
looking at Figure 4.2, which clarifies the evaluation of viscous derivative in the z-r
plane and will be used later in this chapter, in the staggered grid a wall parallel
with the z-coordinate passes through the points where for example v; are defined,
and similarly a wall parallel with the r-coordinate passes through the points where
uy; are defined. Hence, the numerical evaluation of the viscous derivatives would
require points defined outside the physical boundaries. To handle this problem, we
use non-central differencing to compute the aforementioned derivatives and other
similar ones.

With reference to Figure 4.3 the viscous derivative (1/r}(3/8r)(rdw/dr) near

the inner cylinder wall is evaluated by

9 (r aw) 1 [r,, (ws,k ~ tf)z'k) v (% ke — 3ty + ;;wa.k)]
. . - 2 =N
ror\ or), . r¥Orf Ary Ery—3ry+ 1oy ’

(4.38)

where @, 4 is the wall velocity boundary condition,
A similar procedure applies for the evaluation of the same derivatives near the

outer cylinder wall or near a vertical wall in the plane of constant z such as in a
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region of discontinuity in the annular space; for instance, at the vertical face of a
step.

Introducing equations (4.38) into our discretized equations will result in slightly
modified equations (Beam and Warming 1978). We recall that Av and Aw are
zero on a solid wall, even when the wall has non-zero velocities; this is because
the velocity b, is imposed as a boundary condition and remains fixed during the
pseudo-time relaxation. The initial conditions also set the pertnrbations equal to zero,
before starting the vibration of the outer cylinder, and integration of the equation is
implemented until a periodic state in the solution is achieved, which takes at least
three harmonic cycles.

For 2-D problems, -ince there is no fluid velocity U, the Reynolds number,
which is defined in terms of the mean-flow velocity U, has no meaning; hence we
choose S1H to be the characteristic velocity, and the Reynolds number in the N-S
equations becomes the Stokes number, which is therefore related to the frequency of

the system, or Re = S = QH?/v, where Q is the circular frequency of oscillation.

4.2 3-D Unsteady Flow Solution for Uniform and
Nonuniform Annular Configurations

In this section, the analysis of the 3-D annular configuration with axial flow is per-
formed by solving the full nonlinear Navier-Stokes and continuity equations for small
amplitude oscillation (mean-position analysis) in 3-D. Therefore, all derivatives with
respect to z are kept, and the governing equations now are equations (3.26)-(3.28).
The mesh used in this analysis will be a 3-D mesh spanning in the z, r and @ direc-
tions. Since the flow is along the z-axis, the boundary conditions at the inlet and
outlet of the annular space and the initial conditions are required.

The geometry of the 3-D unsteady annular flow is shown in Figure 4.4 in which
the mean position of the outer cylinder is indicated by a solid line and the direction

of flow is shown by the velocity vector U. Once again, the moving boundary of the
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fluid (outer cylinder) has velocity U,(t) and the vertical displacement of the center of
the outer cylinder is given by €(t) for translational motion and by €(t, z) for rocking
motion. The velocities of the boundasy v, and w,. for the case of translational
motion are given by equations (2.14). For rocking motion, the velocities v, and w,,
are lincarly calculated with respect to the hinge position, as shown in Figure 4.5, and

they are given by equations
vy = €(f,T)cosf, w, = —€(t,x)sind, (4.39,4.40)

where é(t,z) = de(t,z)/dt, and €(t, z) is given by

e(t)() + 1)

et (4.41)

it
eft,x) = ——(-l:z: +
Iy
€(t) is given by equation (4.36), and !, and I, are constant, as shown in Figure 4.5.

4,2.1 Differential Form of the Non-linear Navier-Stokes and
Continuity Equations

In three-dimensional flow fields, equations (3.26-3.28) must be employed; they are

given here for reference as

—

(I+4AT™,)Af = ATS, (I+8ArMy)AF=AF, (I+8ArM,)Af =4AT,

where S is given by (3.12) and AW is the velocity vector defined in Chapter 3. Then

the matrices M., M,, and Mj are

L+1/8 0 0 8/8z
0 L0 0
M, = o 0oL 0 |

(1/86)3/6z 0 0 O
M 0 0 0
M= 9 M +1/8+1/(Rer?) —i#fr a/o-

=10 0 M+#/r+1/(Rer?) 0 |

0 (1/pér)a/ar)(r) 0 0
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N 0 0 0
M, =0 N (2/Rer?)3/08 0

710 —(2/Rer®)a/08 N +1/38  (1/r)0/08
0 0 (1/86r)8/26 0

where

My

Ny

d(aty) 1 d%p

dx Re dz2
_ A 10 (1
- ror Rerdr \ ar)/) '

AHury) 1 Py
r gP Rer2802

)

The nonlinear Navier-Stokes and continuity equations in terms of Q,, Qu, Qu,

and V .- V which will be used in different sweeps, in delta-form equations, as the

known explicit terms in pseudo-time, are

O(uu) + 19(rvu)  18(wu) + p

Qulv,v,w,p) = ===+ =5 00 Oz
L[, 10 (o), 10
Re |8z T ror \ or 2862 |’
_ Bwv)  18(rw)  18(wv) w® dp
Qulw, v, w,p) = ox + r or r 06 r Or
1 (8% 18 [ ov 10% 20w
- — == r=—] +
Re |8z2 " ror \'Or) r206% r239
_ O(ww) 19(rvw)  13(ww) vw 10p
Qulw,vw,p) = —— + =+ a0 T T Trag
1 [uw . 18 ouw + 18% 208y
Re [022 " ror \ or r2 go?
0w 10(rv) 10w
V-V = dr r Or rde’

(4.42)

w

+ 5 -r—z'] , (4.44)

(4.45)

The implicit left-hand sides of the matrix equations (3.26-3.28) are then written
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in the r-sweep:

— ari*Au) 1 @ ( 9(Au)
Au + ﬁAT[ r or Rerar(r ar )]
= AT (E}—i* - B QL), (4.46)
— ari* Bv)  9(Bp)  #Aw
(1+AT)Av + ﬁAr[ o + ar ”
_ L[ (8B} B
Re |radr ar 7
= AT(Er - —-p0QY), (4.47)
— Bro*Aw) Aw 1 9 ( 8(Aw)\ , Auw
Aw + par Vorar 7 —Rerar(r or -I-Rer2
= At (El - —-8Q8), (4.48)
Ap + %’56(:;”) = -961 V.V (4.49)
then, in the 8-sweep:
— wrAu) 1 3(Bu)]  ~
Ar + B AT [ 30~ Re yige | = At (4.50)
— B+ Av) LGQ('A_E) _ =~ 2 dAw)
Bv + BAr [ 798 Re 208 | OV Re vgp 0 45U
_— d(wrAw) 6(Ap) iaz(EIE)
(1+an)dw + ﬂm[ 730 ' 108  Re 12082
~ 2 9(Bv
—  ATd(Aw) —~—
and finally in the z-sweep:
AarAu)  dAp) 1 P(Au)]  —
(1+A7)Au + BAT [ p + 9z~ Re 02% = Au, (4.54)
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Ay 1 0%Av)]  —
Av + (AT [ 37 " Re 32 = Av, (4.55)
dlirAw) 1 HAw)| —
Aw + (AT [ 3 " Re 5.2 = Aw, (4.56)
ap+ ATA) _ x5 (457)

6 Oz

As we see in equation (3.9}, there are undifferentiated terms arising from ArAV
which we have included in M., M, and Mjy. These terms are not the only undiffer-
entiated terms appearing in our matrices, rather the terms which arise in cylindrical
coordinates; the terms —@Aw/r and Av/r2Re in the r-momentum equation, dAw/r
and Aw/,?Re in the §-momentum equation are also undifferentiated terms. In ad-
dition to these terms, there are some off-diagonal terms —/r, (2/Rer?)8/80 and
[—(2/Rer?)3/96) in the M, and M, matrices that will contribute coupling between
the velocity components Av and Aw in the - and 8-momentum equations. This cou-
pling indicates that the scalar tridiagonal systems of equations cannot be obtained
anymore when using the factored ADI scheme and eliminating the pressure with the
aid of the continuity equation. There is, however, a scalar tridiagonal solution for
this problem, based on equations (4.46-4.57), which affects (i) neither the overall
accuracy of the solution, oecause these terms are in A-form and ultimately become
zero; at the end of the pseudo-time integration, (ii) nor do they affect significantly
the overall implicit coupling and convergence rate of the pseudo-time iteration pro-
cedure. Indeed, when convergence has been reached in pseudo-time, it necessitates
that AV be zero, thus all the terms that have been dropped would then be zero in
any case, as are those that are kept. The accuracy in the results is cnsured by the
terms Q¥, Q¥, and Q¥ which are on the right-hand sides of equations (4.46-4.48),
and which are always calculated in their full form. In the present procedure, to re-
duce the problem to decoupled tridiagonal systems, the off-diagonal terms are lagged
and transferred to the right-hand side, as shown in the equations (4.51,4.52). In this

manner, the pseudo-relaxation procedure will reflect better the complete equations
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of fluid motion.
All the quantities in equations (4.46-4.57) are evaluated at the pseudo-time p

and the values of u, v, w, and p are updated at the end of each pseudo-time as
wtl = 4t 4 Au, it = ' 4 Av, WPt = 9 + Aw, Pl =54+ Ap,

and the solution progresses in pseudo-time till convergence is reached where u"*! =
amtl gtz Mt @t = M4 and p™t! = p™* in which n + 1 is the next
real-time step and m is the iteration number. The detailed numerical procedure and
the initial and boundary conditions required for the integration will be explained in
subsequent sections and in Appendix A.

In section 3.4.1 it was stated that a satisfactory grid generation and grid point
distribution are the major requirements for the numerical solution to be accomplished
successfully in terms of accuracy and stability. Based on the reasons explained in
Chapter 3, the grid generation in this section would follow the same procedure used
for 2-D analysis, with the exception that the grid points are now distributed in the
axial direction as well. The distribution functions used for grid point location are
given by equation (3.13) for the radial direction and (3.15) for the axial direction.
These distribution functions provide a good distribution of the grid points in the
domain of integration, as shown by Vinokur (1983) and Thompson (1985), and as
discussed in Chapter 3.

A typical staggered grid-point distribution in 3-D is shown in Figure 4.6 and
in isometric view in Figure 4.7. These diagrams are the result of superposition of
two sets of grid point distribution: one shown in Figure 4.8 and the other shown in
Figure 4.9, which are in the z-r and r-8 directions, respectively. Since u’s and w's
have identical r-positions, then r} = r¥...etc. As we see in Figures 4.6 and 4.7, the
pressure p is always located at the centre of a cell and is surrounded by either u and
v or by v and w, implying that the grid is also staggered in the #-direction. The grid

is stretched in the z- and r-directions, but not in the 8-direction.

Due to the specific location defined for w, a two-dimensional mesh, e.g., Fig-
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ure 4.8, is sufficient for numerical calculations because the solution starts, for example
for v, in the r-swzep, then it is followed by the #-sweep and finally by the r-sweep.
The same trend for sweeps is used for w and u. Figure 4.7 can be used to visualize
the elimination of the pressure terr: from the momentum equation by using the con-
tinuity equation. For instance, p;;« is between u,; and u;_y x in the z-direction,
between v;jx and v;j-14 in the r-direction, and between w; ;i and w; x—; in the
g-direction. Therefore, the r-momentum equation (4.47) is coupled with the conti-
nuity equation (4.49) to determine v; the f-momentum equation {4.52) is coupled
with (4.53) to determine w; and, uitimately, the r-momentum equation (4.54) is
coupled with (4.57) to determine u.

As explained in Chapter 3, the central A and backward V difference operators

in the r-direction are given by equation (3.19) and in the z-direction they are written

as
U — v y v j— u u
Az = z¥,—z}, Az} = Azl-=z},,

(4.58)
Vz}! = z¥ -1z}, Vz{ = zV -z} ,.

i

Again in a staggered grid, u;jx, vijk, Wijs and p; i are defined, respectively,
at (zf,7f,68), (=, 7}, 0%), (a},7},0F), and (z7,7},6}) and the z-, r-, f-momentum
and continuity equations are differenced about these points, respectively. As was
the case in 2-D analysis, the linear interpolations of the velocity components using

the difference operators (3.19) and (4.58) are given here for some of the velocity

components
v 2
oo = Vi1 Uik T VT, Uisi gk b = VE Uinigk + VI Ui
u U ¥ u - v k]
Az, Az
v . u . . v . . u ..
,U:rf = vzi-}-l Vij.k + V.‘Z,‘ Vitl .k U;b — VI,‘ Vi—1,5.k + Vm,‘_l Ui .k (4 59)
Y Azl ’ Y Az}, !
v . . R v , . u P
wf = Vi, Wik + Vi wigr 46 W™ = Vai wicrje + VI Wi
v Azt ' bt Azt , '

the equations for the other components are given in Appendix A. The same difference
operators will be used to evaluate Au, Av and Aw appearing in equations (4.46)-

(4.57). The evaluation of the viscous derivative terms near the outer or inner cylinder
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walls has to be done as was demonstrated for 2-D analysis. These viscous derivative

. terms are 9%9/8xz2, 8w 022, (1/r)(8/0r)(rd1/dr) and (1/r)(3/0r)(row/Or). They
are calculated by the following equations:
&% L [ tea B (8 B = 3P4 + § 64 (4.60)
gr?|__, = Ay Az} Sy - 3z)+ 73 T
=<1
*w _ L [fdeg = dea) _ (39w — 3tes + 5 Peg) (4.61)
dzt - Arl Az} % ¥ — 3z§ + %a:g ne
—*2
o (oY 1 [ (e m ) _ e (S =30 3 86.3)
rdr \ Or rrs T i Ary i 2 Ary ! %r{’ -3r3+ %r;‘,‘ ’
_ (4.62)
0 (a1 [ (-8 . (306w =3 + 396
rdr \ Or rart r§ Ary | 2 Arl ! %r‘l’ -3rf 4+ %r{,‘ '
(4.63)

A similar procedure applies for the evaluation of the same derivatives near the
outer cylinder wall or near a vertical wall in a plane of constant z; for instance, in a
region of discontinuity in the annular space, at the vertical face of a backstep.

We recall that Au, Av and Aw are zero on a solid wall even when the wall has
non-zero velocities. This is because the velocities i; , 9y j, Wiw and Wy ; are imposed
as boundary conditions and remain fixed during the pseudo-time relaxation. Finally,
it should be emphasized that the boundary conditions imposed on all equations to be
solved were such that all perturbations in the flow quantities must be equal to zero at
both the inlet and outlet of the domain, including velocity components and pressure.
The initial conditions were to set the perturbations equal to zero before starting the
vibration of the outer cylinder, and integration of the equa“*ion is implemented until
a periodic solution is achieved, which takes at least 3 harmonic cycles.

The solution to equations (4.46)-(4.57) will be obtained after they are dis-
cretized, using equaiions (3.19), (4.58), (4.59) and similar ones described in Ap-
pendix A. Thus, equations (4.42-4.45) are discretized first in the forms given by
equations (A.25), (A.31), (A.37) and (A.44). Then, equations (4.46)-(4.57) are dis-

cretized, which provide equations (A.45-A.56). These equations are used to solve the
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appropriate problem as described for 2-D analysis. The details of discretization are
given in Appendix A.

After the discretization is done, the solution procedure continues by the same
method as that used for 2-D problems: briefly, it starts by using the discretized
form of equations (4.42)-(4.45) in the discretized form of matrix equation (3.12) to
have the known explicit right-hand sides for the discretized form of (4.46)-(4.49).
These equations are then solved in different r-, 8- and z-sweeps to obtain Av, Aw,
Au, respectivaly, and finally Ap, by solving several sets of tridiagonal systems of
equations.

As far as the different sweeps are concerned, at a given pseudo-time step 74,
cquations (4.46)-(4.49) are set up for 1, 2 < i < I -1, forj,2 < 5 £ J -1,
and finally for k, 3 € & € K =1, and they are solved for Av, S{u, Au and K;’)
Equations (4.50)-(4.53) are solved to obtain Av, Aw, Au and Ap. The last four
equations (4.54)-(4.57) are solved in the same range of grid points to find Ay, Aw,
Au and Ap. At the points on the boundaries the values of u, v, w and p in all sweeps
are either given as boundary conditions or by interpolating and for extrcpolating
from the points inside the domain of integration or by using the fictitious points
outside the domain or by setting equal to zero, as the case requires, and in the same
way as for 2-D analysis. Use is made of the symmetry of the problem with respect
to the plane of oscillation (# = 0 and & = 7), t.e., the values of u, v, w, and p at the

grid points other than those mentioned previously are obtained from the following

equations:
Uij2 = Ui, Vij2 = Vij3, Wil = —~Wija, Pij2 =DPiia,
Uj k=1 = Uik s Uijk=1 = Vijk» Wi k-2 = —Wijk, Pijk-1 = Dijk-

In 3-D annular flow problems, the initial direction of flow is taken to be along
the z-axis. Therefore, the initial values for velocity and pressure should be defined
at the inlet and outlet of the domain, as well as on the fixed and moving boundaries.

The values for u, v and p are imposed at the inlet and outlet according to what
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has already been described for 2-D analysis (for v and p) to start the pseudo-time
solution. To get the 3-D solution we must first have a steady solution for flow in the
annular space before getting into the time-accurate solution procedure. This velocity
profile in the steady flow is given by the following nondimensional equation:

U'(r) 21 = (r/r1)® + (n* - l)ln(r/rl)/(lnn)]

U(r) = U, n?+1—(n2—1)/(Inn)

(4.64)

wliere U*(r) and U, are the dimensional axial and mean axial velocities in the annulus,
respectively, n = rpfr); we also set v = w = 0 for all grid points at the inlet. The
initial conditions inside the domain are given by V# = V" and p* = p" at the first
psendo-tinie step and on the boundaries as the velocity of the walls, Un+!, which
is kept constant. The velocities at the outlet of the annular space are obtained by
extrapolating the known values of the flow variables from inside the domain as given

by the following cquations {Anderson et ul 1984):

Az Az}
Urje = (1 + ATy )u-!-l,j.k - Ax},_lul-&j.k ) '(4-55)
ArY Az}
Vigk = (1 + ;‘ )vr-u.k - AI;-zvl 24k » (4.66)
Az Azy
o= 1 i — _n; . K
Wy gk ( + Az ?_2) Wiy ik Az‘,‘_zwf 2.k (4.67)

The pressure at the citlet is set equal to zero, nevertheless it can be calculated from

the integration of the normal momentum equation (Soh 1987) as

T r 04 T
1 [0 10 (0ov) 18 20w v
~ Re [ﬁ+é‘(a—)+‘55‘—zw-—2” dr. (4.68)

4.2.2 Solution of 2-D and 3-D Annular Flow Problems and
Numerical Results

2
p;\,k—pmk—-—] [ (uv) 16rvv)+h1_6(wv)_"2_

2-D Unsteady Flow Results
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To solve the Navier-Stokes and coptinuity equations in 2-D annular configura-
tions with small-amplitude oscillations of the outer cylinder, we neced to generate a
2-D mesh. This is done by choosing appropriate inner and outer radii, the stretching
function, and the number of grid points in the r- and #-directions. To reproduce the
results obtained by Bélanger (1991}, th< numerical computations have been performed
on a nondimensional mesh with inner radius r; == 9 and outer radius r, = 10 for a
Stokes number S = 300, which defines the vibreational characteristics of the system.
The results are shown in Figures 4.10-4.13, 1n which al! quantities are dimensionless.
Each cycle of the periodic motion was divided into 19 time steps. Initial conditions
for velocity and pressure in the fluid domain -were zero and cquations (4.31)-(4.34)
were solved until a periodic state was reached, which for a stable solution takes at
least 3 cycles. The mesh used was a 2-D mesh as shown in Figure 3.2, spanning the
circumferential direction between § = 0 and & = 7, and uniform in that direction.
The stretching function used in the r-direction was a hyperbolic tangent function, as
shown in equation (3.14). This mesh is composed of 24 x 24 grid points, where Arp,n

is equal to 0.020 when S = 300.

Figures 4.10-4.13 contain the curves representing the solutions for each of 5
instants t" within the harmonic cycle The five instants are obtained from t" =
2mn/N,n = 7,9,11,13 and 15 for the circumferential velocity component w, and
n = 3,5,7,9 and 11 for the results involving the pressure p; N is the number of
time steps, taken to be 19. Figure 4.10(a) presents the radial profiles of pressure
taken at § = 3,75° and Figure 4.10(b) presents the radial profiles of w at an azimuth
of # = 45°. Figure 4.11(a,b) presents circumferential profiles of the pressure p and
velocity component w, taken at r = 9.75. As pointed out previously, the results
obtained for small-amplitude oscillations are similar to those obtained by Bélanger,
although in his decoupling procedure of the discretized equations he neglected the
off-diagonal terms. Thus, a comparison between the results of the present analysis

and Bélanger results for 3-D unsteady flow will be made in the paragraph dealing
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with 3-D analysis. In Chapter 6, a comparison will be made between the 2-D and 3-D
results of this chapter and those obtained for large-amplitude oscillations. Aspects
of convergence and other numerical features are discussed in Chapter 7.

To obtain the amplitude and the phase angle with respect to the displacement
of the outer cylinder, or the real and imaginary parts of the velocity components and
pressure, a Fourier Transform was used which is defined by the following equation
{Cooley et al. 1969)

G(fe) = llez g(t)e i futgy (4.69)
T J-1)2 ’
where fi = kfy, i.e. the k*! harmonic of f; and g{t) is a periodic function with period

T. In discrete form, equation (4.69) is written as
N-1
G(k) = %,- Y g(n)e %, (4.70)
n=0

which is used in this analysis, where g(n) represents p, u,v, or w. Hence, Fig-
ure 4.12(a,b) presents the pressure amplitude and phase angle at different Reynolds
and Stokes numbers and for the potential flow solution. Figure 4.13(a,b) presents
the real and imaginary components of the pressure obtained for the same range of
Reynolds and Stokes numbers (where Re= 25 = 2wH? /v for the 2-D annular config-
uration). For these results the inner and outer cylinder radii are r; = 4 and r, = 5,
respectively. The nondimensional amplitude of oscillation is ¢ = 0.1. The mesh ased
has 12 x 15 grid points iu (r, 8)-plane. The pressure results obtained are at r = +.965
and 8 = 7.5°.
3-D Unsteady Flow Results

To solve the N-S and continuity equations in 3-D annular configurations, we
construct 3-D meshes as shown in Figure 4.7. The numerical computations have
been implemented for two sets of geometry. The first set is for small lengths of fixed
upstream and downstream portions, as shown in Figure 2.3. The second set was
devoted to larger lengths of these parts, to investigate the effect of fixed boundary
conditions on the perturbed fluid variables and on the propagation of the perturbed

pressure outside the domain of translational or rocking motion. The nondimensional
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annular gap width was also changed fromr; =9 and r, =10 to r; = 4.785 and r, =
5.785, to obtain results for both narrow and wide annular gaps; in the experimental
apparatus used in this research to investigate the unsteady pressure produced by the
forced vibration of the outer cylinder, the radii are r; = 4.785 and r, = 5.785, as will
be discussed in Chapter 8.

Two different meshes were used for the 3-D analysis. The first oneis 65x 12x 13,
spanning the axial, radial and circumfereniial directicns. This mesh is used when we
set L = 100, L; = 20, and L, = 20 (see Figure 2.3). A second mesh has 89 x 12 x 15
grid points in the computational domain, and it is used when L = 100, L, = 60,
and L; = 60. The stretching function used in the r-direction was the same as in
2-D analysis but in the axial direction the hyperbolic sine distribution function was
utilized instead of the hyperbolic tangent one; while in the #-dircction a uniform
distribution of grid points was used. Equations (4.46-4.57) were solved in this 3-D
computational domain until a periodic state was reached, as in the 2-D solution.

Due to the staggered nature of the grid points, the pressure cannot be calcu-
lated at 6 = 0 and § = 7. At these and other locations, which are affected by the
staggered grids, the pressure and other variables which are neither calculated nor
defined explicitly can be computed by interpolating between the adjacent node val-
ues. Also, on the boundaries no values are required to be supplied for the pressure.
As before, the computation can be done for different Reynolds and Stokes numbers,
always in the laminar regime. For quiescent fluid, in this analysis, in order to be able
to obtain a solution, one needs to supply the Reynolds number in the computational
program. This can be done by selecting the Stokes number (based on the frequency

of oscillation, annular gap width and fluid viscosity), and using the relations

2
Reo WH oo
v v

]

from which the nondimensional frequency w can also be written as w = QH/U =

25/Re.
In 3-D, as in 2-D, the time step At = T/N with N = 19 was used. For all
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of the problems treated in this Thesis the compressibility factor § and pseudo-time
step AT were chosen based on equations (4.15), (4.16) and (4.19). Initial guesses
were used for q and the Courant number, Cr, which is also based on the criteria
supplied by Chorin (1967), Soh (1987) and Soh and Goodrich (1988), and finally
implementing numerical experiments by correcting the values of § and A7 using
appropriate correction factors. In all computations, convergence was reached and
the iterations were stopped in pseudo-time when the rms values of the numerical
residuals of the momentum and continuity equations were all less than 10~4, which
is low enough to ensure that the governing equations of fluid motion are satisfied
for each real-time step. The residuals are the numerical evaluation of the right-hand
sides of equations (3.9) and (3.10) at the grid points —actually, equation (3.9) must
be divided by A7 and equation (3.10) by Ar/é.

Figure 4.14(a,b) presents the unsteady pressure amplitude and phase angle ver-
sus the axial length of the cylinder obtained for 3-D solution of a uniform annular
passage, at r = 9.965 and 6 = 7.5°. In Figure 4.14, a comparison is made between
the present results and Bélanger's results. They are almost the same, nevertheless
the discrepancics are most likely due to carrying out the complete solution of the N-S
equations in the present analysis vis-d-vis the Bélanger approach in which the sim-
plified N-S equations were considered. Figure 4.15(a,b) presents the circumferential
velocity w and its phase angle obtained at X = 50 and § = 45°. Figure 4.16 (a,b)
demonstrates the effect of amplitude of oscillation on the pressure; for small ampli-
tude oscillations it can be seen that the amplitude of the pressure increases almost
linearly with the amplitude of oscillation. In Figure 4.16(b) it is seen that the phase
angle increases (in the negative sense) for € = 0.2, but decreases as the amplitude
increases, which indicates that it appraoches the results of the potential-flow solution
at higher amplitudes, while for small amplitudes the change in phase angle is less

pronounced.

Figure 4.17 gives a set of solutions obtained at different Reynolds numbers. It
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is shown that this model can easilly handle higher flow rates, simply by keeping the
off-diagonal terms and performing minor modifications in the numerical solutions; in
contrast, the solution obtained by Bélanger was for a maximum Reynolds number
of Re = 250. This figure demonstrates that, as the Reynolds number is increased,
the pressure amplitudes are decreased, and at Re = 1000 and Re = 1500 the pressure
amplitudes become almost identical. Figure 4.18 presents the phase angle for pressure
at various Reynolds numbers. The same conclusion as before can be reached for this

figure regarding the effect of increasing the flow velocity on the phase angle.

Figure 4.19 presents the circumferential velocity w for different Reynolds num-
bers. This figure shows that the fully developed laminar-shape velocity profile for w
at lower Reynolds numbers tends to a shape similar to that of turbulent flows with
increasing Re. This is interesting from the point of view of shear force calculations
on the cylinder, i.e., larger shear forces are created at higher Reynolds numbers. Fig-
ure 4.20 presents the phase angle for w at various Reynolds numbers and it is seen
that the phase angle curves retain the same shape as Reynolds number is increased,

tending to a parabolic shape at high Reynolds numbers.

Figure 4.21 shows the effect of the extension of the fixed downstream and up-
stream portions of the computational domain on the numerical results. At lower
amplitudes of oscillation, i.e. ¢ = 0.1, it is clear that the perturbation pressure at
the upstream end approaches zero as it does at the downstream end (compare with
Figure 4.14(a)). But at higher-amplitude oscillations, even the axial extensions of the
fixed boundaries do not help, in this mean-position approach (for low-amplitude os-
cillations), to reduce the unsteady pressure to zero outside the oscillating portion, as
seen in Figure 4.21 for ¢ = 0.2 and € = 0.3. The curves for phase angle in Figure 4.21
indicate how the results depend on the extension of the boundaries as compared to

Figure 4.16(b).

Figure 4.14-4.21 are for an annulus with r; = 9 and r, = 10. To investigate

the effect of annular gap width and also to be able to compare the theoretical results
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with the experimental ones, the following figures were obtained for r; = 4.785 and
r, = 5.785. Figure 4.22 is similar to Figure 4.16 but for this different geometry;
here it is apparent that the pressure amplitude decreases due to the increase in
annular gap width. The results for phase angle in Figure 4.22(b) are more realistic
than those in Figure 4.16(b). Figure 4.23 is similar to 4.21, i.e., it is for extended
upstream and downstream portions, but is for this new geometry. The ripples shown
in pressure amplitudes are due to the discontinuities at the moving and fixed parts

of the cylinders. The same conclusion reached for Figure 4.21 applies to Figure 4.23.

Figure 4.24 presents pressure amplitudes at much higher frequencies and demon-
strates the effects on the pressure of (a) different amplitudes of oscillation and (b)
various frequencies, still for a quiescent fluid subjected to oscillation of the outer
cylinder. Finally, Figure 4.25 presents the same results as those of Figure 4.24 but
for fluid flow with Re = 2900. It should be remembered that the results obtained were
subjected to the constraint of small-amplitude oscillation and it is apparent from the
figures that for this model to produce acceptable results the amplitude of oscillation
must be € < 0.1 for narrow annular gaps —a conclusion which was also reached by

Bélanger (1991)— and ¢ < 0.05375 for wide annular gaps.

For the nonuniform annular geometries, such as a geometry with a backstep,
the N-S and continuity equations are solved on the 3-D mesh shown in Figure 4.26
in the (r, z)-plane and similar meshes for different #-planes. From this diagram, it is
seen that around the discontinuities at the upstream and downstream portions of the
moving cylinder and around the step, as well as close to the cylinder wall and centre-
line of the annulus, the grid points are clustered, by using the stretching functions
described before, so as to ensure the accuracy of the results. For this non-uniform

annular space, several meshes have been used which are classified in Table 4.1.

Figures 4.27 and 4.28 present the results obtained with the short axial length
of the vibrating cylinder and narrow annular gap (to reproduce the Bélanger results).

Mesh type A was used for these calculations. In these figures, the unsteady pressure
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14 15 8 10 0.2 ] 0.105 ] 40
14 15 8 10 0.2 | 0.105 | 40
14 15 3.78515.785 | 0.2 | 0.105 | 100

14 15 3.785 | 5.785 | 0.1 0.105 | 100

r—

Table 4.1: Different meshes used for numerical computations involving backstep.

p and circumferential velocity w with their respective phase angles were presented.
From Figure 4.27 it is clear that the unsteady pressure drops off after the backstep
due to the enlargement in the annular gap width, resulting in a reduction in the
magnitude of the perturbation velocities. Also, the pressure perturbaiion approaches
zero far downstream but not at the upstream end. The pressure phase curve also

shows a different behaviour as compared to Figure 4.14(b).

Figure 4.29 presents the unsteady pressure magnitude and phase angle for three
different amplitudes of oscillation. It is seen that the phase angle remains almost the
same while the amplitude increases appropriately. This was not the case for the
uniform annular geometry (compare with Figure 4.16(b)). Figure 4.30 demonstrates
the effect of extending the fixed upstream and downstream portions on the results
(cf. Figure 4.29), as was done in uniform annular cases. In this case it is seen that,
when using longer lengths for these portions which is shown in Table 4.1 for mesh
type B, the unsteady pressure approaches to its lowest possible values, The results of
Figure 4.31 were obtained using mesh type C for a wider annular gap. There are some
differences between these results and those of Figure 4.30, due to changes made in
the size of the annular space and in the length of the vibrating cylinder. Figure 4.32
presents the effect of using longer lengths for the fixed portions. The results show
that for this geometry and with the defined parameters, using longer cylinders would
not help too much in reducing the unsteady pressure to zero in the fixed-boundary

domains. For Figure 4.32 and subsequent ones, mesh type D was used.

Figures 4.33 and 4.34 are similar to Figures 4.24 and 4.25 and present the

effect of amplitude or frequency on the pressure for quiescent or Jowing fluids in
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an annular space with backstep. Some wiggles are seen in the pressure results of
Figure 4.34 which are obviously due to fluctuations of the pressure at higher Reynolds
numbers (producing vortices) after the step. This pressure loss and recovery which
is partly due to the oscillation of the outer cylinder is believed to be the main factor
causing vibration of the systems involving non-uniform annular passages; this will be
discussed in more detail in Chapter 9.

For uniform annular space with the outer cylinder in rocking motion, Fig-
ures 4.35-4.37 present the unsteady pressure and phase angle for quiescent and flowing
fluids at high frequency of oscilation of the outer cylinder. In this type of motion,
a similar mesh as used for uniform annular space analysis was utilized, and the ex-
tended fixed portions were used, i.e, L = 100, L, = 60, and Ly = 60, while r; = 4.785
and r, = 5.785. The hinge about which the rocking motion takes place is located
at X = 81.0. It should be emphasized that, due to the small-amplitude-motion as-
sumption, the effects of the amplitude of oscillation on the moving boundary were
neglected, even though at the upstream of the vibrating cylinder the amplitude of
oscillation is larger than that in the fictitious shaker position. Also, the boundary
conditions for the velocity on the vibrating wall were obtained using equations (4.39)-
(4.41). Once again, Figure 4.37 demonstrates that the assumption of small-amplitude
oscillation, will be valid when € < 0.05375 in the mean-position analysis.

Figures 4.38 and 4.39 present the unsteady pressure and phase angle for non-
uniform geometry (backstep) when the outer cylinder is in rocking motion. Here, the
hinge is located at X = 82.0 and the results are for quiescent and flowing fluids. The

effects of having a step are clearly shown in Figure 4.39 when there is a fluid flow.
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Figure 4.1: Schematic diagram of 2-D annulus (a) Oscillation of the outer cylinder
(b) The velocity components on the outer cylinder.
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Figure 4.2: Schematic representation of the grid points near the walls, for evaluation
of viscous derivatives, where the quantities u;, and v, ; are defined.
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Figure 4.3: Schematic representation of the grid points, for the evaluation of viscous
derivatives near the inner cylinder wall where the quantity w,, i has been defined.

Figure 4.4: Schematic representation of annular flow geometry in three dimensions,
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Figure 4.5: Schematic representation of the gcometry of outer cylinder during rocking
motion for boundary velocity calculation,
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Figure 4.6: Schematic representation of the staggered grid used in the spatial dis-
cretization of the three-dimensional nonlinear equations.
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Figure 4.7: Isometric view of the grid-point distribution in the 3-D analysis.
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Figure 4.8: Schematic representation of the staggered grid used in the spatial differ-
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Figure 4.10: Radial profiles of pressure p at § = 3.75° and radial profiles of circum-
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cycle.
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Figure 4.11: Circumferential profiles of pressure p and circumferential profiles of the
circumferential velocity component w at r = 9.75 for S = 300 at 5 instants t" within
the harmonic cycle.
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Figure 4.26: Mesh used in numerical computation for backstep geometry.
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Chapter 5

Three-Dimensional Solution for
Axially Variable Annular
Configurations

One of the important geometries which have been considered for a long time by
investigators as a major instability-producing system is the annular geometry with
a diffuser section. Examples are the self-excited vibrations of jet pumps used in
boiling water reactors (similar to that shown in Figure 1.3) and in the AGR flow
control device called gag bomb. Several investigations have been done on this type of
geometry to discover the underlying mechanism leading to instability of such systems.

There is a theoretical link between pressure recoveyy in the diffuser and reduced
stability which has also been established experimentally by Hobson (1984). He devel-
oped a closed-form analytical expression for the negative aerodynamic damping for
this type of geometry. In his theoretical model, he included skin friction in the anal-
ysis and proved that a diffuser can promote instability. He confirmed this conclusion
by measuring experimentally the aerodynamic forces acting on a cylinder oscillating
in a diffuser.

Spurr & Hobson (1984) have conducted a series of tests with the annulus ter-
minated in a diffuser with half-angles of 0°,2°%,4°, and 6°, and hence with a variable
amount of pressure recovery; such geometries can be found in some nuclear reactors

. It must be remarked in Figure 2.2 that the gas flow between channel and assembly
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can cause potential damaging vibration of the long, slender fuel assembly in a number
of ways, but it is recognized that the flow in the annular diffusing section immedi-
ately above the seal bore provides the main source of excitation. It is predicted that
the scal bore aerodynamics give rise to negative fluid damping whilst a reduction
in pressure recovery promotes stability. It has been shown that this mechanism is

typical of the diffuser with 6° half-angle.

Because of the importance of annular-flow-induced vibrations and instabilities
in systems with diffuser geometries, a special chapter is devoted to this topic. Hence,
in this chapter, the numerical solution of the N-5 and continuity equations is obtained
for concentric cylinders with two different diffuser half-angles, namely, 6° and 20°. In
the following sections the procedure is described for solving the flow equations on an
orthogonal grid rather than on skewed grid. The method of sqlution after coordinate

transformation is similar to the method described in Chapter 4.

5.1 Geometrical Configuration

The nonuniform annular space considered here consists of two concentric cylinders in
which the inner one has a diffuser shape as shown in Figure 5.1. In this figure, Hy is
the diffuser height which is equal to half of the annular gap, i.e., H; = H = R,— R;..
As mentioned before, the diffuser angle was chosen to be either o = 6° or a = 20°.
The characteristic length H and characteristic velocity U/ at the upstream of the
diffuser are used to non-dimensionalize the fluid flow equations. in this analysis, as
in the analysis for uniform annuli, the outer cylinder is composed of three parts: the
central part has length L and oscillates harmonically with frequency 2, or in non-
dimensional form w = QH /U; two fixed parts are situated upstream and downstream
of the central part with lengths L, and Ly. The equivalent non-dimensional forms of
Ro, Riy and R;4 are given by R,/H =1, Riy/H = iy and Ryy/H =rig=1r,—1-hy
respectively, where hy = Hy/H.
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5.2 Coordinate Transformation for Axially Vari-
able Annular Configurations

To sclve flow equations for nonuniform geometries one can use the mesh shown in
Figure 4.26, which is a schematic representation of the mesh used fcr backward-facing
step, spanning the r- and z-directions. The major step taken for the solution of the
flow equations in the diffuser-shaped annular spaces is the space transformation to
reduce the problem to the case of a backward facing step. This is required to solve
the problem on an orthogonal grid, rather than on a non-orthogonal one which could
arise due to the presence of the diffuser shape. This annular space transformation,
while complicating the problem by adding more terms to the equations, especially the
cross-derivative terms which are the characteristics of non-orthogonality, nevertheless
ensures that the derivatives are calculated on an orthogonal mesh.

In order to generalize the problem, it is necessary to transform the annular space
(r",z") in the physical domain of Figure 5.2(a) into the rectangular computational
domain (r,z) shown in Figure 5.2(b).

For this purpose, it is convenient to define the nondimensional transformation

equations as
_ Br* — Ri,e(x”)
= TR-ez) (5.1)

t=t, z=2", 60=6", Hy=R=Riy-Ra X=z}-1}, (52)

where ¢(z*) = Hy(z3—z")/ X, and the stared quantities indicate the physical domain.
This transformation is only for the region where the diffuser section is located, i.e.,
for z} € 2" < 23 in Figure 5.2(a).

All functions having continuous partial derivatives in the physical cylindrical
domain can be expressed in the form of functions in the computational domain by

the chain rule. Thus, one can write

o _ordo 8 8 _xo 9_0 8 _0 . .
dz*  9z*dr 0Oz’ &8r dr'dr' 99 89 ot ot ' '
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Using equations (5.3-5.6), the radial-direction derivatives of a function g in the
physical domain, in terms of the independent variables in the computational domain,

can be written as

89 _ Ordg A dg

or _ or or (:1:')3-;, (57)
&g (or 2, o 0%g
et = (ar ) 5 = 450 58
where the Jacobian of the transformation is given by
o _ Or R
Alz") = or* ~ R—¢(z")’ (5.9)
Since g = g(a,r), then
ar gr de . -
5:5—- = —6_65_: = /'1\1‘ J€ (.’12 ) [ E(I )] D(I ), (5.10)
o%r Rr* - Ri.R
—_—= . = B(z"), 5.11
507 = 2€(= ){m} (z") (5.11)
where B(z") may be re-written as
Tt~ Rl'u
B(z") = 2A(z")¢}(z") {—-— } , (5.12)
[R - (=)

and €(z") = —-H/X.
The axial-direction partial derivatives of g can, equivalently, be expressed in

terms of the independent variables of the computational domain as

dg _ 0r 8g  dg 39 39

3z Bz or t oz oz =Dz ) 31 ! (5.13)
g _ dg 0, 0% % . 0%
W—B( )a +D( )62+62+2D($)ar6z. (5.14)

In this manner, the partial differential equations in the physical domain for
concentric nonuniform annular diffusers can be discretized accurately in an orthogonal

computational domain with the finite-difference method.
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5.3 Transformed Form of the Navier-Stokes Equa-
tions in the Computational Domain

In this section the differential forms of the N-S and continuity equations are expressed
in terms of transformed coordinates z,r and @, by using the relations (5.7-5.14).
In three-dimensional flow fields, the matrices M, M,, and My for the nonuniform

(diffuser) region are expressed as

L+1/8 0 0 3oz
0 Lo o0
M. = 0 0oL o |
1/(86)3/8z 0 0 O
M 0 0 Da/or
M. = 0 M+1/8+1/(Rer"?) —wfr Adfor
rT 0 0 M+v/r*+1/(Rer?) 0 '
D/(86)3/8r  A[(B6)(d/dr)(r") 0 0
N 0 0 0
M= | O N 92/(Re r"2)d/a6 0 ,
=10 —2/(Rer?)3/80 N +1/8  (1/r)0/08 |°
0 0 1/(86+*)a/06 0

plEe) A0 . 1[AD(, .0
Mp= 5 r 6 ( ) — [ Ar




the components of Q(V,p) are given as

Dun) , o), AD (1060 B0, 0
Q.(u,v,w,p) = 52 +r'3r(rw)+r' 30 +a -i-D.'9
1 (8% 1 u  0u 0% d%u
- [3:::2 rar ( ) 2 562 + B'a— +D ar? 2D6r3m » (515)
_ 3 {uw) B(uv) . 18(wy)  w? dp
Qu (u,v,w,p) - £ +D or a (T‘ ‘U‘U) + r 80 re + Aar

1 [621) Ad (A _31)) 18% 20w v

“Relam t e Ao ) Y ae e T
+B%—) + D*-g—z—2 +2D 332;;] (5.16)
=S D A w122
+B%‘E+D2.‘?;_2+2D§Za ] (5.17)
v.ov=2t, plt Adry 10w (5.18)

Oz ar r Or 06"’
where the coefficients A, B, and D stand for A(z"), B(z*), and D(z"), respectively,

5.4 Temporal and Spatial Discretizations

The temporal discretization is the same as explained in Chapter 3; the spatial dis-
cretization is described in this chapter, and is along the same lines as that used
in Chapter 4, but with :1inor changes and more terms appearing in the equations.
Before discretizing the equations we must cast them in delta form used in different
sweeps. Thus, the matrix equations (3.26-3.28) in different sweeps are then expressed
as

In the r—sweep:

Au+ fAaT | = 9 (r v"Au) + D—a- (u“Au) + Da (8 )

A
ror or
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1 {5‘1_3_ (A,_.a(&i)) LBy 8(Bu) o (Bu) }]

“Re)ror ar or? ar drdz
= Ar (B, - i - QL) (5.19)
(1 + A7) Av + BAT [;% (ro#Av) + Dgr. (#57) + 42 (;1’) _ laurgg;;
(20 [ 2E)), PE) o) AE) 5
= Ar (B — o - pQY) (5.20)
Aw + AT [ri% (ro#Aw) + D% (a&w)
(a0, 2E)) | P (@) o) o)
“Re {—a— (A’ '—a") HD g B D
= At (E," — d* ~ pQ4) , (5.21)
— — a(A .
Ap+ ﬁ;g' (rdv) + D?T ——(3,.u) = -%V-V"; (5.22)

in the 8—sweep:

Au+ AT [%a (ﬁ;;ﬁ ) Re1r-2 2 g';:&)} = Au, (5.23)
Av + pAr i_a(ﬁ;?_v) ~ R;r_z ag??) =Av - %?’_(—;_Sg, (5.24)
(14 Ar)Aw + SAT [ri_a (wg{?_w) + %a (a?) + ﬁ";A,_w
Bp + 9{@ = Bp: (5.26)
and finally in the z—sweep:
(1+ A7) Au + fAT [a (a;f‘z) +2 (a?) - éazéf;")] =Au, (5.27)
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a(#Bv) 1 82(Ay)]  —
Av + BAT [—-ax—- - 'ﬁ 322 = Av, (5.28)
o(Bw) 1 (aw)] —
Aw +ﬁAT T_-R;T -Aw, (529)
AT d(Av) —
Ap+ 5 or - Ap. (5.30)

The solution to equations (5.19-5.30) will follow the same procedure used for
small-amplitude-oscillation method described in Chapter 4 for 2-D and 3-D analyses.
In general, in this 3-D analysis the terms Q4, Q% and Q% will be calculated, and then
the variables a#t!, g#t! ¥+l and p#+! are obtained by solving (5.19-5.30).

To perform the discretization of the equations so as to solve the full non-linear
N-S equations in the transformed domain, one needs to construct the staggered mesh
and to define the interpolates in the physical domain as was done in Chapter 4.
QOnce again, the grid points are stretched in the z and r directions, but not in the 8
direction, in order to cluster more points near the solid walls or in regions of steep
gradients in the flow domaiu, e.g. in the vicinity of the step or near the change in the
contour of the diffuser section (see Figures 4.26 and 5.2). The velocity components
v,w and the pressure p have identical r position, while u,w and p have identical r
position in the grid scheme. The momentum and continuity equations are differenced
about the points where @;,x, 7 & Wik and P, ;i are defined.

In the following discretized equations, the rearranged form of the transformation
equation (5.1) to define r* in the physical domain is

. [R—e(z")] + Riue(z")
=r R .

r

(5.31)

This equation is used to define the following equations at each computational

point r* = r* and r* in the staggered mesh:

_ 1 {R = ¢(z) + Ri,e(z)} _7 {R - e(z) + Riue(z)}

RU; = . . RV, ? . (5.32,5.33)
DU, = A(z)é(z) [RT?UJ'_—:(‘}] . DV, = A(z)é(z) [%—V"_—‘?g;—“], (5.34,5.35)
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2€'(I)DUJ
R — ¢(z)

o 2¢(z)DV;
BU; = R—¢(x)

J

, BV; = (5.36,5.37)

Then, the continuity equation (5.18) is discretized as

AT [{Uige = Uiz14k) + A(RVjvi e = RVj_ivij14)

“F V= - 5 Azr RUAr?

+

DV (Bigg = dig—1k) . (Wije — Wijk-1)
Ary, YT RuAs ) 6%

and the r-momentim equation (5.20) is descretized to implement the radial sweep for

’U,‘J.k as

— A ——ru —— T
(1 + A7) Bogju + ﬁ%%, [A (RUMU;"AU‘, - RU,-u;"Av;‘)]
2 )
——ry ——rd
ﬁATDV; (u"',“Av,, - u[,dAvu ) AﬂAT —
AT;-J + ATJ (AP;J+I kT Api,j,k)

RUj (K;Ji.ju,k - E_{fi.j.k) RU; (E‘-’i.j.k = E’s‘a‘—hk)
Ard, - Ard

+

A2BAT
ReRV,Ary

DV}ipAr
ReAr_;’

u u

(3-{){.)'+l.k - EJ:‘J,I:) (K;J:'J.k - E’ia‘—l-k)}

_bv;par
ReAz} |

_ BUjﬁAT
ReAry_,

(E{’i.j,k - K;’i.j-l,k) (E’i.j.k-l - K;’i,j—l.k—l)
Ary B Ar}

BATAY; ;4

(E’i.j.k - K;i.j—l.k) T Re Rng

= AT(E," — v* - BQY), (5.39)

1k

The terms 3-1‘):",37): , ™" and v? appearing in this equation, as well as other
similar terms in the following equations, are obtained from the appropriate relations
as explained in Chapter 4 and Appendix A. The term Kf),- jx is obtained from the
continuity equation (5.22) as

AT AAT

Bbge==%V Vi~ i ; (RViBuijk — RVj1Bvijoy x)
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_ DV,‘-:ﬁT

sATY, (Au.-‘,-,,, - E‘:’J-l.k) , (5.40)

with a similar expression for ApatJ=j+1

The component —gATQ, of the vector Q in equation (5.16) is discretized as

| BAT Y oy op ozboab_ L JUiklgk = Vigk _ Vigk — Vi-ljk
(—ﬁATQuJiJ“L- - = AI:’ uj v U, v, — -R—c AI:‘ AI?-I

_BATDV; (

ArY

urt gl — u'du"') _ par [A - RU;1yv™2 — A - RUuT®
1

v v v e R‘/jAr?

]

A2 RUJ'+1 RUJ AﬁAT )
_-I'i; { Ar;"+l (vivj"’l-k - U'Jnk) - AT; (U‘JJ" v‘J"lnk) AT;’ (p‘J+1|k p‘dvk)
_BAT (wifff - wy'v® w2) + BAT [ BU; (¥ j4 — Vij-1,2)
RV; Ag Y Re Ar}
Dv-ﬁ Vig+lk = Yigk  Uigk = Uij-1k
Ary Ariy Ar}
+DVj Vighk = Vig-1k _ Vielgk = Vimlj-1k
Az? Ar} Ary
1 (ks + Vgt — 2vige wd —wl

where w, is given in Appendix A. Now, the discretized r-momentum equation (5.24)

in the #-sweep, incorporating the result of (5.39), provides

BAT ¢ oytf
RV, A0 [wv Ay, —w

i —ﬁ.-,,-,k“ +_A_v.'.j,k-l - QEU-'.:‘J: = A -
= ( RI/JAB = Avlq,k ’ (5'42)

a0t
v

Eiq‘.k + A‘U”

and the discretization of r-momentum equation (5.28) in the z-sweep, using the
results of equation (5.42), yields

BAT
AzY

Avije +

{uﬁf AV — uB Ay

1 [Avii1k = AVije AUk — Avicjkl | _ 5o
i { v Ao = Boige. (5.43)
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The same procedure is applied to discretize the r-, §-, r-momentum and conti-

nuity equations (5.21, 5.25, 5.26, 5.29) and (5.19, 5.23, 5.27, 5.30), respectively. The

discretized equations are

BAT

AWisk+ RO A Ary

[A (Rv,-u;;*zSTu;“ - Rv,-_lv;d&a;‘)]

A2BAT [RV, (Aw.’.;+l.k - E;Uij.k) _ RV;_, (EU.'J.I: - E;D.'.j—l.k)]

" ReRU;ArY ArY Ary_,
+DU ( Rl — uri A rd) DU;BAT {Aw;j — Awij_1p _ Awi_y ik — AWy
Arj R&AI‘" AT;" Ar;"—l
BV;_18AT n
_fﬁlrﬁ"_' (Aw.a‘k - Am,‘J ;,,) AT(Ep — v = BQL) ik - (5.44)
Similarly, the —3A7Q, component is given by
BAT of _aabozb_ L [ Wiklgk — Wik  Wigk = Wi-ljk
(-BATQu)i = Az? wywy - g Re Az Az,
ﬂATDUJ d d ﬁAT d
—_—— - J I, Tu ru — 14 T —_ A V ru TI.I - A . V T
Art (uw wy' —u ) RU AT RV;v RV;_vtdwr
RV, RV;_,
( Wijalk = Wigk) = <o (Wigx — W5 ‘-l.k)}]
Re { J+ J rJ , J J
_ AT (vl 2wl 4 piiest — Pisk —
RU; Af to ik
BAT ( BV;_, DU? (Wijp1h — Wije  Wigk — Wij-1k
+ Re AT‘;’_I (wu.k w:g—l.k) AI" AT;" AT}"_I
+DUj Wijk = Wij-1k _ Wi-lgk = Wi—lj—1k
Az} ArY_, Ari_y
1 [wijper + Wige—1 — 2wise V3 =%

where v, is given in Appendix A. The discretized § momentum and continuity equa-

tions (5.25) and (5.26) in the #-sweep are obtained as

e ﬂAT gf—a; oy—ab Aw;J,;,+1 + Aw.-,,-,;,_; - 2Aw.-‘,-'k
(1+ A7) Adwije + RU,A6 [ww Aw, —w,Aw, ReRU,A8
AT [ Bpijen — BPijx]| _ ~
v o [l ]  Ry,, (5.46)
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—_— It AT -A_w-.-.,-_;, - Hid.k—l
Ap;jx = DPiji ; RU,AD . (5.47)

The discretized #-momentum equation (5.29) in the x-sweep is written as

%

zf =f _ ., zb xb
Azv uy Awll — uy Awj,

{.'&w.- Jk +

Aw|+ld'k Aw;d‘k Awid.k - Awi,j—l‘k — -—_ A
L [ L o =B s, (5.48)

which completes the discretization of the f-momentum equation in all sweeps. Now,

the discretized x-momentum equation (5.19) in the r-sweep is given by

Ny ﬁAT ru A TY rd o rd
Au,'d'k + RUJAT;' [A (R‘/jvu Auu - RV,;-wudAuu )]
DU; rup 1t rdord ﬂATDV
"E"J":' (uu Auu — Uy, Auu ) A !.l (Ap,a+1 [ Ap'Jlk)
A’BAT [RV; RV,_y j— —
" ReRU;Ar? [Ar" (Buigore — Buizi) - Ary, (Buize — Buijoe)
- DU}‘BAT E"’J-&-l.k - K-{li.;i,k _ E—{‘id.k - grl-li‘j.,l‘k
RBAT;-‘ Ar}' AT;-’_l
_DUjﬂAT E:!'I,'J.k - E:t,"j_l‘k _ ‘AT‘E—IJ,I: - E‘l‘—ld-l,k
ReA.‘L“'J Ar':'_l AT}'_I
BV -18AT .
R;Ar" (Buige = Buijorg) = A7 (By = v* = BQL); 5 (5.49)

witl} —~BATQ, given by

Ar|
(—ﬁATQu)i.j,k = _ix!‘ {"u'f"arJr “zb“zb + Pis1jk — Pigk

u u

1 [u.‘+1.j.k = Uik Uigk — ui-—lq‘.b] } _Du;par (uru2 _ ur.:?)

Re Aziyy Az? Ar?
BAar ru, T rd, rd
RU;ATS { (RV;ul ~ RV;- )
A’ [RV, RV;_
-_— Re [Aru ( ‘J"}'l k= ulﬂlk) A ” 1 (u‘\j\‘ ugd_l &)] }

_ﬁAT g!‘uzf_ zb ?lb D‘/jﬂAT( - 3
RU; A8 Ary Pigtie = Pijk)
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L par (BV_. (isp = 1) DU? (uijork = Bighk _ Bigk = Uig-1p
Re /_\r tid, W Ary Ar Ary

+

(Wighes1 + Uijo—1 — 2ui5x) , DU; (ui,j.k — Uig-1k _ Uizlgk = ui—-l.j—l,k)]

RUZAG® Az} Ar_, Aryy

(5.50)

The discretized z-momentum equation (5.23) in the 6-sweep is then written as
—— _BAT uEG R
Au;‘jlk + RU AD [w w, Auu

1 (Auijpes + Duije-1 — 28Uk o~
— — L L L = A ‘- . ) N
Re ( RU,A8 ik (5.51)

and the discretized z-momentum and continuity equations (5.27) and (5.30) in the

z-sweep are given by

(1 +AT)AU.'J"1¢ + par

[ :fAu:f IbAuib

Azt
V[ Auiyyje — Bt Dligr — Aij_ 1k o o=
Re ( AJ::-’+1 A:L‘:’ + Apl-i-lq.k Apl.j.k = Aum.kn
(5.52)
—_— AT 1
Apijk = Bpijx — 5 Azt 7 (Au,d. — Aty jk) - (5.53)

We recall that the terms containing V and A, as given in the previous equations
and also in Appendix A, indi.ate the central and backward difference operators ap-
plied to the grid-point coordinates and 34 interpolates, such as 7%, v, wi®, w.. etc.,

they are evaluated by the relations given in Appendix A.

5.5 Method of Solution (Based on ADI Scheme)

The equations (5.39), (5.42)-(5.44), (5.46), (5.48), (5.49), (5.51) and (5.52) are now
ready to be written in tridiagonal forms and the solution of these equations proceeds
by starting the calculation of the right-hand sides of equations (5.19)-(5.22) using
relations (5.38), (5.41), (5.45) and (5.50). In the r-sweep, Av is obtained from equa-
tion (5.39) after eliminating Ap with the aid of equation (5.40). The terms Av aud
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Av are obtained from equations (5.42) and (5.43) in the #- and z-sweeps respec-
tively. The same procedure is applied in determining Aw from equation (5.44), Aw
from equation (5.46) with the aid of equation (5.47) to eliminate Ap, and finally Aw
from equation (5.48). Also, Au is determined from equation (5.49), Au is obtained
from equation (5.51) and Au is calculated using equation (5.52) with the aid of equa-
tion (5.53) as a coupling equation. The pressure difference Ap is obtained, ultimately,
after Au is determined. In all these calculations, it is obvious that several times the

scalar tridiagonal systems of equations must be inverted as explained in Chapter 4.

The boundary conditions for velocity imposed at the inlet, z = —L,, is a
developed laminar-flow profile, which is given by equation (4.64), and the boundary
values for v and w at the inlet and outlet are set equal to zero. The applied pressures
at the inlet and outlet of the domain are the same as those used for uniform and
backstep geometries. The extrapolation of the velocities at the outlet to second-
order accuracy from inside the flow domain is done in the same way as is explained
in section 4.2, and the boundary values for the velocity and pressure on the solid
stationary and moving walls are the same as before. As initial conditions, to start
the time-marching solution, the steady-flow solution obtained without any oscillation
of the outer cylinder is given and then the harmonic motion of the cylinder is started.
Here too, the N-S equations are integrated for at least 3 harmonic cycles, until a
periodic solution is obtained. As far as the domain of integration in the different
sweeps is concerned, the details of the numerical solution are the same as before,
except that, similar to the case of the backstep geometry, in the r-sweep the domain
of integration is divided into two parts. The first part extends from r;, to r;, before
the diffuser section, and from 7y to r; after this section, where j = J — 1 is ihe
index for grid points in the r-direction and in the vicinity of the outer cylinder (see

Figure 5.1).

It is remarked that some parts of the terms arising from the cross-derivatives

92/9rdz are evaluated in the explicit right-hand sides of the equations (5.39), (5.44)
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and (5.49) to restore the implicit nature of the tridiagonal systems of equations, and
hence affecting the accuracy of the results and the convergence rate of the numerical

solution.

5.6 3-D Unsteady Flow Solutions for Diffuser Ge-
ometries

In this section, the numerical results are presented for o« = 6° and 20°. To have a
comparison with the numerical results obtained for the backstep geometry, although
they are not directly related, the numerical computations have been implemented on
two non-dimensional meshes: for the first one, the inner cylinder radius is r;y = 8,
the outer cylinder radius is r, = 10, and r;, = 9; in the second mesh, ryy = 3.785,
ro = 5.785 and r;, = 4.785. The span of the meshes in the z-direction is also variable,
to investigate the effects of shorter and longer lengths of vibrating outer cylinder, as
well as the effects of shorter and longer lengths of the upstream and downstream fixed
parts, on the results. Hence, Table 4.1 of Chapter 4 will also be used in this chapter.

The results, all for Re = 100 and w = 0.1, are shown in Figures 5.3-5.11 in
which all quantities are dimensionless. Figure 5.3 presents the unsteady pressure
amplitude and phase angle with respect to the displacement of the outer cylinder at
the circumferential angle = 7.5° for an amplitude of oscillation € = 0.1, using mesh
type A (defined in Table 4.1). The comparison between this figure and Figure 4,27
shows that replacing the backstep with a diffuser with & = 6° increases the amount’
of the unsteady pressure after the discontinuity, and that the phase angle is flatter
for this diffuser geometry. Figure 5.4 shows the circumferential velocity w and the
phase angle obtained using mesh type A, at axial location X = 20 and circumferentiai
position & = 45°. In this figure, as well as in all the figures drawn over the diffuser
surface, the lower parts of the curves terminate on the diffuser surface, which starts

at r = 8.625 for the mesh of type A.

Figure 5.5 presents the unsteady pressure and phase angle for three different
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oscillation amplitudes of the outer cylinder, and should be compared to the results of
Figure 4.29. The upstream portions of the unsteady pressure in Figures 4.29 and 5.5
are almost the same, but in the downstream portion of the annulus the pressure re-
covery is noticeable in the diffuser geometry vis-d-vis the backstep geometry. It is
remarked in Figure 5.5 that the phase angles are almost independent of the vibration
amplitudes. Figure 5.6 demonstrates the effect of extending the upstream and down-
stream fixed portions on the results, using a mesh of type B. This figure should be
compared with Figure 5.5 to highlight how important the extension of the upstream
fixed portion is in reducing the perturbation at the upstream end of the vibrating
outer cylinder. Once again, the pressure recovery is noticeable downstream of the
diffuser in comparison to Figure 4.30 for the backstep geometry. In Figure 5.6 the

phase angles are almost the same.

Figure 5.7 presents the effect of using a larger annular gap on the unsteady
pressure and phase angle, using mesh type C, It is clear that due to having a larger
annular gap, the pressure recovery is not as pronounced as in Figure 5.6, and the
unsteady pressure is proportional in value to that of Figure 4.31 for the backstep
geometry, but the phase angles are different and smaller (in the positive sense) the
amplitude of oscillation increases. Figure 5.8 shows the effect of the extension of
the upstream and downstream fixed portions on the resuits, using a larger annular
gap and using mesh type D, at different oscillation amplitudes. It is interesting to
note that the unsteady pressures after the diffuser section almost coincide for larger
amplitudes of oscillation. Also, at higher amplitude the pressure perturbation does
not tend to zero at the upstream portion of the moving cylinder, which might be
due to the pressure buildup at the diffuser section. The phase angle resuits have a
completely different behaviour vis-d-vis the phase angle shown in Figure 4.32 for the
backstep geometry. All these interesting results indicate how important are the effect
of the annular gap width and the length of the fixed portions on the solution of the

N-5S equations for different geometries.
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The unsteady pressure and the phase angle shown in Figure 5.9 have been
obtained for a diffuser angle @ = 20° and can be compared to those for o = 6°
of Figure 5.8. In spite of the minor discrepancies, this result is comparable with
the results of Figure 4.32, which indicates that the behaviour of the diffuser system
with a = 20° is similar to that of a system with a backstep geometry; the pressure
I covery is not as pronounced as in the case of diffuser with a = 6° (see Figure 5.8).
Incidentally, the phase angle shows the same trend as in Figure 4.32(b) vis-g-vis the
results shown in Figure 5.8(b).

A comparison between the unsteady pressure and phase angle for three different
geometries is made in Figures 5.10 and 5.11 for two amplitudes of oscillation. There
are several points to be noticed in these figures. First, the upstream fixed portion
influences the results much more in the case of a diffuser than in the case of the
backstep geometry. Second, the pressure recovery is much more pronounced for a
diffuser with a = 6° than for either a = 20° or the backstep geometry. In fact, the
unsteady pressure downstream of the diffuser (o = 20°) is reduced more than is the
case downstream of the backstep. As is seen, the pressure perturbations for all these
geometries approach zero at the exit from the annulus (X = 150). The results of the
phase angle for three geometries also present different trends. The phase angle for
the diffuser with o = 6° is almost flat, while the phase angle result for the diffuser
with a = 20° is much different, although at the upstream end of both the step and
the two diffuser sections the phase angles vary in almost the same range, contrary to

the downstream portions.
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Figure 5.1: Schematic diagram of diffuser shaped annular flow.
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Figure 5.2: Schematic diagram of (a) physical and {h) computational domains after
coordinate transformation.
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Figure 5.3: (a) The unsteady pressure and (b) phase angle for Re = 100, w = 0.1,
rid = 8,1, = 10, at r = 9.942, 8 = 7.5°, for a = 6° and e = 0.1.
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Figure 5.7: The effect of the annular gap width on (a) the unsteady pressure and (b)
the phase angle, for Re = 100, w = 0.1, riy = 3.785, r, = 5.785, a = 6° at r = 5.727

and 8 = 7.5% —,¢ = 0.05375; — — —,¢ = 0.1075; — - —,e = 0.16125.
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Figure 5.10: (a) Unsteady pressure and (b) phase angle for Re = 100, w = 0.1,
riq = 3.785, r, = 5.785, € = 0.05375 at r = 5.727, & = 7.5°, comparison between
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Chanter 6

Numerical Formulation Based on
Time-Dependent Coordinate
Transformation for Larger
Amplitude Oscillation

One of the most important parts of this Thesis is covered in this chapter. Thus, the
overall method of solution for a multidimensional problem, namely that of two nearly
concentric cylinders with a moving outer cylinder, Figure (6.1), will be examined
based on a time-dependent coordinate transformation, which is better suited for large-
amplitude oscillations. The method will be applied to uniform as well as nonuniform
{(backstep) geometries for the case of translational motion of the outer cylinder, and
the results ottained will be compared to similar results from Chapter 4, which were

obtained by a mean-position analysis.

6.1 Time-dependent Coordinate Transformation

A coordinate system may need to be ttme-dependent because the boundaries move,
cither forced or in response to influences of the physical problem, or because the
system is adjusted so as to concentrate lines in developing regions of large gradients.
The simplest procedure is to regenerate the coordinate system at each time step using

the new boundary locations from the physical solution at the previous time step; thus,
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the solution for the new coordinates at each time step is done separately from the
physical solution at that step. Alternatively, the equations for the coordinate system

can be added to the overall set of equat.cns, and the entire set solved simultaneocusly

at each time step.

In any case, with the partial time derivatives (at variable r* and 8°) in the
physical solution equations replaced by partial time derivatives at fixed values of the
curvilinear coordinates, the grid in the transformed plane is fixed even though the
coordinate system in the physical plane is in motion. This introduces time derivatives
of the Cartesian .oordinates into the iransformed physical solution equations, in the

role of additional convective terms (Thompson et al. 1982).

With the method of transformation applied to our problems in this Thesis,
it is possible to perform all the computation on the fixed rectangular grid in the
transformed computational region without any interpolation, no matter how the grid

points move in the physical domain as time progresses.

The computational coordinate system is generated as the solution of algebraic
equations (3.13) and (3.15) with the values of coordinates (r®,68°) specified on the
boundaries in the physical domain, one of these coordinates being specified to be
constant on the boundaries and the other being distributed as desired along the
boundaries in order to concentrate grid points in certain regions. The transformed
coordinates define a rectangular domain, the extent of which is determined by the
range of the values r and 8. Now, if the same boundary values of r* and 6* are
redistributed in the physical domain, perhaps because the boundaries in the physical
domain have actually moved or because it is desirable to change the concentration of
grid points around the boundaries, and a suitable algebraic system is solved for the
transformed coordinates with these new boundary conditions, new transformation
functions can be produced with still the same range of values in r and @ and hence
in the same rectangular field in the transformed domain. The grid points in the

rectangular transformed domain remain stationary, and the effect of moving of the
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coordinate system in the physical domain is then just to change the values of the
physical coordinates (r®,8") at the fixed grid points in the rectangular transformed
domain.

Mathematically what has transpired is that the original problem, consisting
say of N partial differential equations of any type with appropriate, possibly steady,
boundary conditions specified on moving general boundaries, has been transformed
into a system of N partial differential equations and M (M = 3 for 3-D problems)
algebraic equations for the natural coordinates with boundary conditions that are
now time-dependent but specified on steady rectangular boundaries. The physical
coordinate system has thus, in effect, been eliminated from the prohlem, at the
expense of adding M algebraic equations to the original system (Thompson et al.
1974), plus the complexity of the equations as a result of the transformation of the
governing partial differential equations. In our analysis, the transformation has its
own merits, such as that we are no longer restricted to small-amplitude oscillations,
in addition to obtaining more accurate results for small-amplitude oscillations by the
time-dependent coordinate transformation.

For steady and unsteady flows in nearly concentric annular configurations, any
fluid dynamic properties are variables dependent on the axial, radial and circumfer-
cntial coordinates, z, r and 6, shown in Figure 6.1(a), as well as on time when the
flow is unsteady. In this figure, R; and R, denote the inner and outer cylinder radii,
€{0,t) is the annular gap, and ¢(t) is the instantaneous displacement when the outer
cylinder is in translational motion.

In order to generalize the problem, it is necessary to transform the annular
space (r*,6") between the eccentric cylinders in tLe physical domain of Figure 6.1{a)
into the rectangular computational domain (r,8) as shown in Figure 6.1(b). For this

purpose it is convenient to define the non-dimensional transformation equations as

re—— T —J , (6.1)
[RZ — €2(t)sin®§*]}/2 — R; + €(6",t*)
0=6, z=1z", t=1t", (6.2)
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where
(0", t") = ¢(t") cos 8", (6.3)

in which the starred quantities indicate the physical domain.
All functions having continuous partial derivatives in the physical cylindrical
domain can be expressed in the form of functions in the computational domain by

the chain rule. Hence, one obtains the following relations

0o _0 2 _ua
9z dr ' Or* Oror’
o o8 06 o8 _o9rd 9o
06 88 9r 88 ° ot~ otor ot’
Using equation (6.1}, the derivatives in the radial direction of a function f in the
physical domain, in terms of the independent variables in the computational domain,

can be written as

af _ or 6f af

o = B~ 405 (6.4)

*f i YN f

3t = (ar) ) = A*(8, t) (6.9)
where

or 1
ABN) = 5 = 5an

and

&(6,t) = R(8,t) - R; + €(6,1) , R(8,t) = [R? - €*(t)sin?6)'/%.

Since in the problems under consideration the fluid dynamic property is f =

f(r,0), and the nondimensional coordinate is r = r(r*,8*) = r(r*, ), then

dr Or Oe _ (r* — R;)Fze(t)sind

3 " 306~ RE.H- R+ e@op - PO, (6.6)
d*r (r - {[(Fl + Fp)e(t) sin @ + Fe(t) cos 6]8(8,t)'/2 — 2F;Fye(t) sin 0}
367 = 3(8,t)°
=rD(8,t), (6.7)
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where
Fie(t)sind
d(0,t)

D(8,t) = A(6,t)? {[(F. + Fy)e(t)sin 8 + Fye(t) cos 8)@(8,t)!/% — 2F3 Fye(t) sin e} .

B(O,1) = = A(6,t)Fye(t)sin 6,

and
F, = —¢(t)[cosftan8 +siné(1/ cos®8))(1/R(8,t)),
F, = —é(t)sin®9(1/R(4,t)%),
F3 = —¢(t)sin@tan8(1/R(0,t)) +1

Fy

—e2(t)sinf cos#(1/R(#,t)) — €(t)sind .

The partial derivatives of the fluid-dynamic property in the circumferential
direction can, equivalently, be expressed in terms of the independent variables of the

computational domain as

géj: = rB(6, t)af gg , 6.8)
2 32 32
a_i = r [B%8,0) + D(8,8)) 2L af + 120,055 f - 39{ +2rB(0, )5 ge (6.9)

Since we now consider movmg-boundary problems, the partial derivative of the

fluid-dynamic property f with respect to time should be transformed as

of _ ?Lﬂ+_6_£ Fyé(t)cos0af of rC(, t)af af

B otor ot 6% or Bt o T o (6.10)

where we have used
dr  Or O " de(t)

o~ oear (=g
and

C(8,t) = —A(6, t)F3é(t) cos.

In this manner, the partial differential equations defined in the physical domain

for concentric cylinders, with the outer one in motion, can be discretized accurately in
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the computational domain with the finite-difference method. This transformation can
now be applied to non-steady problems for cylindrical configurations with unsteady
viscous flows in the axial direction or without axial flow, which will be studied later

in this chapter.

6.2 Transformed Form of the Navier-Stokes Equa-
tions in the Computational Domain

In this section, the differential forms of the N-S and continuity equations are expressed
in terms of transformed coordinates z, r and 8, using the relations (6.4-6.5) and (6.8-
6.10) and Figure 6.2. The equivalent forms of the relations (2.3) and (2.5) in the

transformed domain can be written as

ou or*v ow OJw
V:-V= a—+ [A-—a-r—'}'T‘B-a—r"i'—a-a =0, (6.11)
‘-3% + Ca_v_ +Q(V,p) =0, (6.12)

and the vector Q(V,p) = [Qu(u; Uywap)‘ Qu{u, v, w,p), Qw(ugv:w:p)]‘r includes the
convective derivatives, pressure and viscous terms as

a(uu) 1 3 (wu) du  vB3(wu)
Q) = T5 4 S rw + S0 ¢ R ro g+ 2O
__L .a_'z.ti A 3 Ar 'au L.a_?'... + _______(T‘D+ TBZ)@ + —2B2§2_ + ?E___azu
ela Trar \“T B ) T o 72 Or ' 12 812 ' 2 5rdg)

(6.13)

_O(w) A D 18(wv) w?  8p dv rBa
Qu (u,v,0,p) = oz | ror (rroo)+ 2 o8 r* *Aar”caﬁ r* 8 (wv)
_.1_ 3_2IJ+A3 ,3‘0 +_1_§_‘2_11_£.@.__v_
elazz Trar\" or) T 2682 " 2og 2
(rD+rB%)0v 12B*8% 2rBdw  2rB 8%
A= S i R mi v (6:14)
a(uw) A 0 19(ww) ww 1 ap Bw rB 3
Qw (u,'u,w,p) ax ( ) T" 69 + re + re ao Ca r* a ( )

rBdp 1 [6°w AQ Low 1 8w 20y w
+F§”§['a?*?b?( " a—r)“*ﬁﬁe—z*ﬁa—o‘:-‘z
+(1'D +r5%) duw . r2B? 2w + 2rBdv + 2rB 0%w
r=2 or % ?  r28 2 grof

(6.15)
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6.3 Real-Time and Pseudo-Time Discretizations

The discretization of the Navier-Stokes and continuity equations in real- and pseudo-
time follow the same procedure as that in Chapter 3, namely, three time levels are
used for real-time (similar to equation (3.2)) and a simple Euler scheme is used
for pseudo-time discretizations (similar to equations (3.7) and (3.8)). The central
difference is used for spatial discretization as explained in Section 3.4.

In the three-dimensional flow field, once again, we use equations (3.26-3.28) and'

write the matrices M., M., and My for the transformed domain as

L+1/8 0 0 8/oz
0 Lo 0
M, = 0 0L 0 !
1/(B6)3/éz 0 0 0
M 0 0 0
M.=| 8 M+ 1/8+1/(Rer?® 2rB/(Rer*2)8/0r — w/r" Adfor
"7 |1 0 -2rB/(Rer?)d/0r M+v/r* +1/(Rer?) rB/(r*)8/dr |’
0 1/(86)(1/r* + AD/ar) rB/(B6 = }8/ar) 0
N 0 0 0
M.< | © N 2/(Re r*2)3/086 0
=10 -2/(Rer®)0/38 N+1/8  (1/r")8/08 |*
0 -0 1/(pér)d /00 0
in which
_9(i'y) 13%
Lo =% "Reoa’
3 2\ 5
_ rD rB p Ad, .. rBad,.
My = (TC " Rer2 Rer'z) ar + mary Fe)+ 7:;9_1'(1””@

1 JAd O0p\  r2B%3%  2rB 8%
Re [rg; (Ar 79;) T e T T 5056

19, 1 8%
— " — ——
No= Cog(00) - pomai



where the coefficients A, B, C, and D stand for A(8,t), B(8,t), C(4,t), and D(8,t),

respectively.

Thus, the N-S and continuity equations in A form can be written in different

sweeps as
In the r-sweep

——

B0 () 4 )

Au+ fAT [f;i (ro*Au) + -

ror

_1 {ﬁ_a_ (A,.B(Eﬁ)) B0 (8) rparp2d(5) 2B (B) }]

Re | r=ar or 2 or? 2 ar r2  9ro
= A7 (B - - 5Q%) (6.16)
(1 + A7) Av + BAT [_;i_ﬁr (r3#Bv) + [r_l_?_% ) s (aziv) 42 ((;P)

r2B? 8 (K;f) rD +rB?8(Av) 2,8 (&3)
YT et YT e T T T eaw

= At (B, - - BQY) (6.17)
a (E‘TU) rB0 (KI'?) vAw
or + T or + r

1 [0, 0(Bw)\  rB2@(Bu) D+ r5?0(Au)
r T o r+2 or

B (Aw) 2,B2(Av) Au . :
+2'rr-2 aEa;u ) = (6rv) -7 }] =ar (B -0 -4QL) . (6.18)

~ AAT 3 [  tBATO(Bw) Ar_
Ap+'7_3—§ (T ATJ) +'—;TT = ——6——V-V ; (6.19)

in the 0—sweep

16(1&"5) 1 0 (K‘E)
r 88  Rer? 082

——

= Au, (6.20)

Eﬂ+ﬂA'r[
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AU+ BAT [rl—_a (’“E;;AU) - Relr_za gf)] = Av, (6.21)
(1+ A7) AG + BAT [_a (w;fw) + r—l_a (;;p)

__ﬁl_er_fi?i%zl)} =Aw, (6.22)
&+ 5 "’ff,f ) % (6.23)

and finally in the z—sweep |
(1+ A7) Au + fAT [a(g‘f") 42 g:p ) _ %32;3")] =7Au, (6.24)
Av + BAT [a “‘;f" I;e azaf;” ] (6.25)
Aw+ BAT [a plw) _ Tl ] (6.26)
Ap + A;T 9 (é‘c“) =Ap; (6.27)

in the general case, Q4 = Q. (4", 9%, @#,p"), Q4 = Q. (&",¢*,¥*,p*), and Q% =
Qulu*, f)“,u'f",ﬁf‘). The variables @#*! = 4¥ + Ay, **! = 3# + Av, B! = ¥ + Aw
and p*t! = p* + Ap are thus obtained by solving equations (6.16)-(6.27). The
solution in pseudo-time step {iteration) continues until convergence is reached, where
the terms V /37 and 8p/87 become zero, thereby the differences Au, Av, Aw, and

Ap are equal to zero.

6.4 Spatial Discretization on Staggered Grids

To perform the discretization of the equations in order to solve the full nonlinear
Navier-Stokes equations in the transformed domain one needs to construct a staggered
mesh and to define the interpolates. The staggered mesh is made in 3-D, by combining
two 2-D meshes, Figure 4.8 and 4.9, as shown in Chapter 4; this constitutes a grid
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scheme spanning the x, r and # directions. The grid points are stretched in the £ and
7 directions, but not in the € direction, as explained in previous chapters, in order to
concentrate points near solid walls or in regions of larger gradients in the flow domain
geometry, such as in the vicinity of a step or near changes in the contour of diffuser
sections, see Figures 4.26 and 5.2. The velocity components v, w and the pressure
p have identical z position, while u, w, and p have identical r position in the grid
scheme. The momentum and continuity equations are differenced about the points
where @;;k, Dijk, Wijk, and p;ji are defined.

The discretization of the equations (6.16)-(6.27) and the numerical solution,
which is similar to those described in Chapters 4 and 5, are given in Appendix B.
It was shown that the differential equations in the transformed domain are more
complicated than in the physical one due to the extra convective and diffusive terms
in addition to the cross-derivative terms, which reflect the son-orthogonal nature of
the coordinates, all of them arising from the transformation. During the solution
procedure, the cross derivative terms destroy the tridiagonal aspect of the system
of equations to be solved; hence these terms are evaluated explicitly. The amount
of computer memory and time due te these added terms as well as their effects on
the convergence of the solution have been considered to be tolerable with respect to
the solution using the mean-position (no time-dependent coordinate transformation)

analysis. This comparison will be made later in Chapter 7.

6.4.1 Importance of Grid Ykewness on the Results

Before solving the differential equations of fluid motion, the grid system must be inves-
tigated carefully for grid skewness. In determining the grid points, a few constraints
must be imposed. First, the mapping must be one-to-one; i.e., grid lines of the same
family cannot cross each other. Second, from the numerical point of view, a s1a00th
grid distribution with minimum skewness, with orthogonality or near-orthogonality,

and a concentration of grid points in regions where high gradients occur are all re-

quired.
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The grid system generated by the grid-generation methods may not be satis-
factory for some applications due to large skewness of the grid lines, especially when
they occur at the surface. The difficulty is encountered when normal gradients of
fiow properties are required. To overcome this deficiency, a forcing function is used
which will enforce orthogonality of grid lines at the surface. The resulting grid sys-
tein simplifies the computation of the normal gradients and increases their accuracy.
Although the overall orthogonality of the grid lines is important, it has been proved
that the non-orthogonal curvilinear coordinates do not affect the accuracy of the re-
sults; rather, only the convergence of the solution will be influenced by the 'sl'cewness
of the grid lines.

To investigate this statement, if the metric coefficient is evaluated numerically,
one obtains

fis1 — fix

=" 4T,
fz Ii+1-$i-1+1

where T} is the truncation error. A Taylor series expansion in z about the central

point then shows the leading terms of the truncation error T} to be (Thompson et al.

1982)

1 1
— -ﬁ—mgfzzz - EIECf::’ (6-28)
where z¢ and ¢ are the central difference representaions of these respective deriva-
tives,
1
T = -2—(:1:,-+1 - Ti-1), Tge = Tig] — 2T + i) - (6.29)

The representation of f; is truly second order, only if z¢ = .7:%. If the system is
not orthogonal (e.g., skewed), then the same type of 1-D analysis yields the following

additional term in the truncation error:

1
- E(cot 0)2I£Efw - (COt 9)2{5'&” ) (630)

where @ is the angle between the coordinate lines. Thus for second-order accuracy it

E
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If the intersection angle is less than 45°, then the requirement would already
be met if z¢e = 2% as required above. For this reason, departure from orthogonality

of up to 45° can be considered tolerable (Thompson et al. 1982).

Braaten and Shyy (1986), have shown that the effects of the local mesh skewness
on the convergence behaviour are not very strong, Based on their results, it seems
that, unless both the skewness measure of the individual mesh and the smoothness
of the neighbouring meshes are excessive, considerable skewness of the individual cell
does not noticeably affect the numerical accuracy. They showed that ¢he effects of
larger local mesh skewness on the overall calculated accuracy of the N-S equations
are tolerable, which supports the assessment of Thompson et al. (1982). Shyy (1985),
however, has shown that the use of excessively skewed meshes is not tolerable, since it
destabilizes the line-iterative procedure. With the findings of Braaten & Shyy (1986)
and Shyy (1985), it appears that the mesh skewness, especially in the boundary re-
gion, is likely to significantly affect the numerical stability and convergence behaviour
of the numerical scheme rather than the numerical accuracy. Indeed Shyy has put in
evidence that a desirable mesh distribution from the view-point of solution accuracy

is not necessarily non-skewed throughout the whole domain.

In this Thesis, the fluid equations are written in cylindrical coordinates ,which
are orthogonal, and are solved in a rectangular transformed domain in which the
coordinate lines are obviously orthogonal. Some non-orthogonality is seen in the
physical domain shown in Figure 6.3, where for the maximum amplitude of the outer
cylinder (maximum eccentricity of the outer cylinder with respect to the reference
inner cylinder) the departure from orthogonality for the angles between the coordinate
lines is less than 5°, which is much smaller than the 45° assessed as the limit by

Thompson et al; this is even smaller for smaller amplitudes of oscillation.

For this reason, the physical flow variables, i.e., physical u, v, w and p, not the
transformed ones such as covariant or contravariant velocity components, have been

used in the transformed partial differential equations, and hence there is no need
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to do the inverse transform of the numerical results to obtain the real physical flow

variables.

6.5 Method of Solution Based on ADI Scheme

In order to start the time-integration procedure, initial conditions must be provided
for V and p throughout the fluid domain which is given by equation (4.35). The
known displacement €2*! and velocity UZ*! of the w:-i:s at the advanced time level
t"*! are set as boundary conditions and kept unchanged until the steady state has
been reached in pseudo-time. As explained in Chapter 4, the wall displacement e®*!
is not important for the mean-position analysis and it mainly serves in the evaluation
of the velocity of the moving boundary Ups, but in the time-dependent transformation
analysis the displacement plays a major role and appears almost everywhere in the
transformed equations. Both ¢**! and UT*! serve as driving terms to advance the
solution to time level (n + 1)At, along with the term E®, which is calculated at the
beginning of pseudo-time relaxation and kept constant throughout.

The previous inflow and outflow boundary conditions for the velocity and pres-
sure are also applied to the time-dependent coordinate transformation analysis. The
evaluation of the viscous derivative terms near the solid walls using non-central differ-
encing, the extrapolation of the fluid velocities from within the domain of integration,
the symmetry boundary conditions with respect to the plane of oscillation for u, v, w
and p, follow the same line explained for the case of mean-position analysis, As far
as the movement of the solid walls is concerned, one notes that on the inner cylinder
the displacement 2, (%) is zero, while on the outer cylinder in the plane of symmetry

it is given by
2w(f) = —¢, cos it
with the velocity of the wall expressed by

€w(t) = €,Nsin O,
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where 7 is the dimensional amplitude of oscillation, 2 is the circular frequency of
oscillation and t is the dimensional time respectively. Hence, the nondimensional
components of the velocities of the fixed and moving walls in the radial and circum-
ferential directions are given by equations (2.13) and (2.14).

Now, the solution to the equations (6.16)-(6.27) can be obtained since they are
cast in discretized forms using the relations (3.19), (4.58), (4.59) and similar ones
expressed in Appendix A. Thus, the right-hand sides of equations (6.16)-(6.19) are
computed using the relations (B.3), (B.7), (B.14) and (B.21). The domain of inte-
gration in each sweep and at a given pseudo-time step, 7#, in which equations {6.16)-
(6.27) areset up spansfor2 € i £ [ -1,2< < J~-1l,and3 <k < K - 1.
These equations are solved for Au, Av, Aw, and Ap. In the r-sweep, Av is obtained
from (B.8) after eliminating Ap with the aid of (6.19). The terms Av and Av are
obtained from equations (B.10) and (B.12) in the 6- and z-sweep, respectively. The
same procedure is applied in determining Aw from (B.15), Aw from (B.17) with the
aid of equation (6.23) to eliminate Ap, and finally Aw from (B.19). Also, Au is de-
termined from (B.22), Au is obtained from (B.24) and Au is determined from (B.26)
with the aid of (6.27) as a coupling equation. The pressure difference Ap is obtained,
ultimately, after Au is determined. In all these calcula:ions it is obvious that several

times the scalar tridiagonal systems of equations must be inverted as explained in

Chapters 4 and 5.

6.6 Two-Dimensional Solutions for Larger-Amplitude
Oscillations

In the case of 2-D solutions for larger-amplitude oscillations, the same mesh as used in
Chapter 4 for 2-D analysis with small-amplitude oscillations is utilized. This is done
by choosing the appropriate inner and outer radii to be used in the transformation
equation (6.1), whick gives the grid points spanning the r- and 8-directions with

0<r<1land0 <8 < w. Tocompare the results obtained for larger amplitudes
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with those in Chapter 4, the nuwerical computation has been implemented on a
non-dimensional mesh with physical inner and outer radii R; = 4.5 and R, = 5.0,
corresponding to r; = 0 and r, = 1 in the computational domain, and for oscillatory

Reynolds number S = 300.

The results are shown in Figures 6.4-6.7 in which, as in Chapter 4, all quan-
titics are dimensionless. In this analysis, the number of time steps is 19 and equa-
tions (6.16)-(6.19) are solved for each real-time step using equations (6.11), (6.14),
and (6.15) for 2-D (i.e., all derivatives with respect to z are equal to zero in all the
aforementioned equations) to evaluate their right-hand sides. Questions of conver-
gence and accuracy are discussed in Chapter 7. It is found that 3 harmonic cycles
are sufficient for a stable solution after which a periodic state is reached with no
changes in the computed results. It should be remarked that, even in the case of
large-amplitude oscillation, after coordinate transformation the grid points are clus-
tered near the solid walls as well as in the centre of the annulus to ensure an accurate
solution in these regions in which the higher velocity gradients exist. As before,
the stretching function in the r-direction is a hyperbolic tangent and the mesh is

composed of 24 x 24 grid points.

Figure 6.4(a,b) contains the curves representing the solutions for each of 5
instants t" within the harmonic cycle. The five instants are obtained from " =
2nnfN. n=17,9,11,13, and 15 for circumferential velocity w, and n = 3,5,7,9, and
11 for the results involving the pressure p and N = 19. Figure 6.4(a) presents the
radial profiles of the pressure taken at # = 3.75°. In this figure, the results obtained
for sinall-amplitude oscillations are presented for comparison. The magnitude of the
pressure at each ¢ and for the mean position analysis is completely different from
those obtained using time-dependent transformation analysis. Using the Discrete
Fourier Transform (equation (4.70)) to calculate the amplitude of the pressure shows
that for this small amplitude oscillation (¢ = 0.1) the unsteady pressure results for

two solutions are not too different, as shown in Figures 6.5(a) and 6.6(a).
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Figure 6.4(b) presents the radial profiles of w at an azimuth of 8 = 45° for five in-
stants of time together with the results for small-amplitude analysis (Figure 4.10(b)).
The difference between the corresponding values of w for the two methods of solution
is noticeable. In fact, the solution obtained for w with time-dependent coordinate
transformation almost corresponds to Bélanger’s (1991) results which were obtained
using the linearized first harmonic solution. Figure 6.5 presents the real and imagi-
nary parts of the unsteady pressure at four different amplitudes of oscillation. The
results for the real parts do not present significant differences, but for the imaginary
parts the difference between the results obtained by the two methods of solution is
remarkable. The first thing to note is that for € = 0.01 both Figures 6.5(2) and 6.5(b)
show that the real values and the imaginary values as obtained from the twe methods
are the same. This highlights the fact that the mean position analysis is quite valid for
€ < 0.01. As the amplitude of oscillation increases, however, the differences between
the results become larger. As a matter of fact, for the small-amplitude oscillation, the
results vary linearly which is the characteristic of this method in which nonlinearity
in the solution does not show up due to the boundary being limited in its movement.
Contrary to this simple method, the larger amplitude solution demonstrates that the

imaginary values increase nonlinearly with t. amplitudes of oscillation as shown in

Figure 6.5(b).

Figure 6.6 presents the real and imaginary parts of the unsteady pressure ver-
sus the azimuth @ for different oscillation amplitudes. In this figure, the real and
imaginary parts obtained from the two methods of solution at € = 0.05 are almost
the same, which indicates that we are not very far from small amplitude motion,
in contrast to the corresponding values at larger amplitudes oscillation. Figure 6.7
presents the real and imaginary parts of the ciccumferential velocity w for different
oscillation amplitudes. As far as the effect of oscillation amplitudes are concerned,
the explanation given for Figure 6.6 applies here also, i.e., one can see the correspon-

dunce between the real values as well as the imaginary values for the two methods of
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solution at ¢ = 0.05.

6.7 Three-Dimensional Solutions for Larger Am-
plitude Oscillation

6.7.1 Uniform Annular Geometry

To solve the N-S and continuity equations in 3-D, the three-dimensional mesh shown
in Figure 4.7 is used. The numerical computations have been performed for two
sets of geometries to obtain results comparable with those obtained through mean
position analysis presented in Chapter 4. The first set is for small lengths of the
fixed upstream and downstream portions, while the second set is for larger lengths
of these portions, in order to investigate the effect of the length of these portions
in diminishing the perturbation pressure at the extremities. The effect of the gap
width is also investigated by using two different annular spaces: (a) r; = 9, r, =
10 and (b) r; = 4.785, r, = 5.785, corresponding to smaller and larger annular
spaces, respectively. The same meshes used for the 3-D analysis in Chapter 4 were
used here, with the same type of stretching functions in the r- and z-directions.
Equations (6.16)-(6.27) were solved in this 3-D domain until a periodic state was
reached, as was done in Chapter 4. -

As before, the computations were conducted for different Reynolds numbers,
including the vase of quiescent fluid, for which the definition of the Reynolds num-
ber has been given in Chapter 4. The basic parameters affecting the solution of the
problems and the criteria for convergence (such as the values of the real-time At,
compressibility factor 6, pseudo-time A7, Courant number Cr, etc.) follow the same
lines as in Chapter 4. In the time-dependent-transformation analysis, as a first step,
the amplitude and the velocity of the moving boundary are calculated using equa-
tions (4.36) and (4.37) and are kept constant throughout the pseudo-time relaxation.
The other initial and boundary conditions are given or calculated following the same

procedure described in the previous chapters.
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Figure 6.8(a,b) presents the unsteady pressure amplitude and phase angle ver-
sus the axial length of the cylinder for both mean-position and time-dependent-
transformation analyses. For the smaller fixed portions at the extremities of the
moving cylinder, this result shows about 14% and 40% increase in the pressure am-
plitude and phase respectively. As one notices, the perturbation pressure does not
vanish ai the upstream end. The reasons for having this problem, as well as the ap-
propriate procedure to avoid it are explained briefly at the end of this chapter and in
more details in Chapter 7. Figure 6.9(a,b) demonstrates the effect of larger-amplitude
oscillation on the circumferential velocity w and on its phase angle. It is seen that
the amplitude of w does not vary too much, but a substantial change in its phase
angle is noted. It must be mentioned that in Figure 6.9 the annular space h shown
is in the computational domain, 0 < h < 1, which is related to the computational
domain 9 < h < 10 in the mean-position analysis; this relation is simple and obvious
if one notes that the non-dimensional annular gap is always h = 1, and hence one

can present the results for both methods on the same diagram.

Figure 6.10 by comparison to Figure 6.8 shows the effect of extension of the fixed
portions on the unsteady pressure and its phase angle. It is interesting to note how the
inflow and outflow boundary conditions influence the results compared to those shown
in Figure 6.8. In this case, the amplitude of unsteady pressure obtained from time-
dependent transformation approach is not higher; rather it has turned out to become
even smaller than that obtained from the mean-position analysis. Also, the pressure
perturbation at the far upstream extremity approaches much lower values (although
it has not become zero) than the corresponding values in Figure 6.8. Similarities
exist between the values and behaviour of the phase angle results of Figure 6.10 with

those of Figure 6.8 for the moving part of the cylinder, 0 < X < 100,

Figure 6.11 presents the comparison between the results obtained using both
methods of solution but for higher frequency of oscillation (f = 20 Hz) and in qui-

escent fluid. In Figure 6.11(a}, although the fixed portions at the extremities of the
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moving cylinder have larger lengths, the time-dependent solution demcnstrates an
increase of 6% in the pressure amplitude which is due ic the larger value of the oscil-
lation frequency. Figure 6.11(b) presents, as usual, lower values for the phase angle,
as compared to the one obtained by the mean-position analysis.

Figure 6.12 presents the effect of annular gap width on the results when the
fiuid flows in the annulus with Re= 2900 and the frequency of oscillation is f = 20
Hz. Once again, the mean values for the unsteady pressure obtained from both
approaches are almost the same; also, the effect on the phase angle is similar to that
in previous figures.

Finally, to demonstrate that the time-dependent-coordinate solution is more
reliable at much higher amplitudes of oscillation than the mecan-position approach,
Figure 6.13 has been drawn for ¢ = 0.5 using the smaller annular gap (r; =9 and r, =
10). It is seen that not only does the frequency of oscillation make substantial changes
in the pressure results (see Figure 6.11), but the amplitude of oscillation produces
large differences in the pressure, as shown in Figure 6.13. Also the phase angles are
very much closer to each other, as compared for example with Figure 6.10(b), and

its value tends toward zero.

6.7.2 3-D Solution for Non-Uniform Annular (Backstep)
Geometry

The method of solution for larger-amplitude oscillation applied to non-uniform an-
nular geometry (case of backstep) is similar to that discussed in previous chapters;
the mesh used is shown in Figure 4.26, with its description given in Chapter 4. Also,
Table 4.1 was utilized to obtain the appropriate results for each specific mesh,
Figure 6.14 presents the unsteady pressure and phase angle for both approaches
using mesh type C with rjy = 8 and r, = 10. As expected, there are some differences
in the results, i.e., there is an overall increase in the value of pressure in comparison
to that obtained through the mean-position analysis. Also, the phase angle (after

the step geometry) tends more toward zero than the corresponding value obtained
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Ly the mean-position approach.

Figure 6.15 presents the circumferential velocity w and its phase angle obtained
at X = 50.816. @ = 45° and for ¢ = 0.2 using mesh type C. Figure 6.16 demonstrates
the effect of the length of vibrating cylinder (L = 40) on the pressure and on its phase
angle. This figure should be compared with Figure 6.14 with L = 100, even though
the amplitudes of oscillation differ. It is seen that reducing the length L will affect
the pressure results after the step. It is obvious that the results shown in Figure 6.14

arc more reliable, since the step is farther from tne extremities.

Figure 6.17 was drawn for three different amplitudes of oscillation and is simi-
lar to Figure 4.29, except that the phase-angle results have different shapes but still
coincide for different amplitudes. For this figure mesh type A was used. Figure 6.18
demonstrates the effect of extension of the fixed upstream and downstream portions
ou the results with € = 0.3 and using mesh type B. It is clear, that the pressure per-
turbations approach to their lower possible values but in the case of time-dependent
analysis the perturbation tends toward zero before building up at larger distances.
Figure 6.18(b) presents larger values for the phase angle {in positive sense) after the
step obtained by the time-dependent analysis than that obtained from mean position
analysis. Lastly, Figure 6.19 presents the unsteady pressure and phase angle for qui-
escent fluid at higher frequencies of oscillation (f = 1.5 Hz) for three amplitudes of
oscillation using mesh type C. The phase-angle curves for all three amplitudes remain

almost flat, similar to each other and the values of the phase angles approach zero.

Up to now, due to economical reasons (time and space on the computer), the
cffect of extension of the fixed portions on the unsteady pressure was studied for
the maximum length L, = L, = 60. As one notices, in the figures presented, the
perturbations at the upstream end do not vanish., There are numerical reasons for
this problem, which will be discussed in the next chapter. But, by selecting a larger
length for the fixed portions, this perturbation can be forced to approach its minimum

possible value in those sections, as will be shown in the next chapter. Also, using
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larger fixed portions will increase the pressure amplitude in the oscillating domain,
. i.e., we will have better agreement between the theoretical resuits obtained by the
two methods of solution and the experimental results (see Figure 7.4 and figures

presented in Chapter 8).
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Figure 6.1: Physical and transformed computational domains for two nearly concen-
tric cylinders with moving outer cylinder.
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Figure 6.2: Schematic representation of two cylinders during oscillation of the outer
cylinder for the evaluation of (6, ?).

Figure 6.3: Grid point distribution in physical domain.
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Figure 6.6: Azimuthal (8-) variation of the real and imaginary components of the
unsteady pressure, p, on the oscillating cylinder for three values of the amplitude
of oscillation, €; o, € = 0.05; A, ¢ = 0.1; *, ¢ = 0.15. o,mean-position analysis;
--o—,time-dependent-transformation analysis; the rest are similar.
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Figure 6.18: (a) The unsteady pressure and (b) phase angle in annulus with backstep
geometry for Re = 100, w = 0.1, r;g = 8, rp = 10, L = 40, L, = Ly = 60, at
r = 9.942, 8 = 7.5°, with ¢ = 0.3; —time-dependent-transformation analysis, - -
-mean-position analysis.
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Figure 6.19: (a) The unsteady pressure and (b) phase angle in annulus with backstep
geometry for Re = 100, w = 1 (f = 1.5 Hz), r;g = 3.785, r, = 5.785, L = 100,
L, = L4 =20,atr =5.727,0 = 7.5% —e = 0.05375, - - -¢ = 0.1, and ——¢ = 0.16125.
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Chapter 7

Convergence Tests and Accuracy
of the Numerical Model

To make sure that the numerical approach used works properly, the numerical re-
sults presented in the previous chapters must be compared with either analytical or

experimental results for the specific problems treated in this Thesis.

Unfortunately, due to the complexity of the Navier-Stokes equations which are
fully nonlinear, no complete analytical solution exists for these equations, even for
the simple laminar annular flows considered in this Thesis. The analytical solutions
available in the literature are either potential flow solutions or approximate viscous
flow solutions which lack the accuracy required as compared to the complete solution
for the N-S equations. This is why in this Thesis the experimental investigation was
selected as the main measure for validating the numerical results. It is shown in
Chapter 8 that the experimental results obtained confirm the numerical results. But,

still one needs to check by other means to what extent these results are reliable.

To ensure that the model used in this Thesis is accurate enough for different
important factors such as the spacing of the grid points in the different meshes used
and also in terms of various values of the time difference At, a number of convergence
tests have been conducted. In addition the validation of the method of solution was
checked by comparing the analytical solution for a bench-mark problem of oscillating

plate in a confined fluid with the numerical solution obtained for such a problem by
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using the method presented in this Thesis.

To this end, 2 uniform annular space was chosen as the “test case”, and the
solutions were obtained for 2- and 3-D annular flows. In what follows, for the 2-
D analysis, the number of grid points in the r- and/or @-direction is changed to
investigate the effect of the number of grid points in both directions on the numerical
results. Calculations here, as for all parts of this Thesis, were carried out on a 486
PC, 50 MHz for the 2-D analysis; on 286 PC computer equipped with an Alacron
board, to increase the speed of computation, for the 3-D analysis. In the 3-D analysis,
due to the limitations of computer space and also the CPU time for the finer meshes,
only one mesh, i.e., 65 x 12 x 15 in the z-, r- and #-directions was used while the
number of time-steps, N, were changed from N = 10 to N = 70 in order to check the
convergence and accuracy of the solutions vis-d-vis the number of At. To perform
the same convergence test in 2-D analysis, the mesh chosen was 12 X 15 in the r- and
@-directions with the same range of N as in the 3-D analysis. Also, the amplitude of
oscillation € = 0.1, the Reynolds number Re = 62.5, and the Stokes number S = 31.25
for 2-D tests; Re = 250 and $ = 25 for 3-D tests.

The effect of the number of grid points for 2-D analysis is shown in Table 7.1.
The results presented in this tabie are for Re = 62.5, S = 31.25 and ¢ = 0.1. The
first part of the table shows the effect of increasing the number of grid points in the
r-direction, .J, while keeping the number of grid points in the #-direction constant at
K =15: the. second part of the table shows the effect of increasing K while keeping
J = 20. Table 7.1 indicates that there is about a 0.2% difference between the results
of the unsteady pressure amplitude for the mesh that consists of 12 x 15 grid points
in r- and @-directions vis-d-vis the meshes having 30 x 15 or 20 x 30 grid points in
those directions. Thus, the mesh with 12 x 15 grid points was used throughout, since

it provides accurate results as well as faster computation.

In the course of this study, the major factors which could be used to investigate

the accuracy of the results, especially in the 2-D analysis, were the real and imaginary
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parts of the unsteady pressure obtained, which are compared with the results obtained
by Mateescu et al. 1994, using spectral collocation method. The results of their
approaches compared with the present results are shown in Table 7.2. The reliability
of the results of the present method has also been checked against the results obtained
for the unsteady forces by Chen et al. 1976, and by Mateescu et al. 1994, as shown
in Table 7.3. The results shown in Table 7.3 are the real and imaginary parts of the
unsteady force acting on the moving cylinder. These parameters which are related to
the added-mass and added damping of the fluid, have been obtained as a closed form
solution confirmed by experiment (Chen et al. 1976). As one can see, the agreement
between the present results based on the full nonlinear solution of the N-S equations

and the other, earlier results based on approximate solutions is good.

Another important factor affecting the stability and convergence of the numer-
ical solution is the number of iteration steps taken between each sequential real-time
step. A sample of such convergence criteria which consists of the rms values of the
residual of the momentum and continuity equations is shown in Table 7.4 for the 2-D
analysis and in Table 7.5 for the 3-D approach. For the 2-D analysis, the maximum
CPU time is 35 seconds for three harmonic cycles to obtain a steady-siate solution
and for the 3-D analysis the CPU time is 45 minutes for the same number of har-
monic cycles on the computers mentioned previously, when we consider the number
of time-steps N = 19. The number of iterations shown in Table 7.4 and 7.5 indi-
cate how fast the solution converges which obviously also depends on the selection
of the compressibility factor 6§ and the pseudo-time step A7. Based on these results,
the calculations presented in this Thesis were done for N = 19 for the 2-D and 3-D

analyses.

One of the major factors influencing the accuracy and the speed of convergence
of the solution is the real-time step At. This factor can be chosen in such a vay as
to (i) achieve convergence, and (ii) to obtain acceptable results, which compare well

with the results cited in the literature as well as experimental results; at the same
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time, keeping with constraints imposed by computer limitations, in terms of space
and CPU time of the fastest PC computers available to us. Thus, a comparison is
made between the amplitude of the unsteady pressure obtained for different values of
N (number of time steps), which is shown in Table 7.6 and Figure 7.1(a) for the 2-D
analysis. From Figure 7.1(a), it is clear that as the number of time steps increases,
the unsteady pressure amplitude approaches its minimum value and then increases
for larger N. However, the difference between the values obtained with N = 19 and

N =170 is less than 10%.

It must also be mentioned that the convergence tests as mentioned above were
also carried out for the time-dependent-coordinate-transformation analysis; the same
conclusions as discussed above were reached for the selection of the number of time
steps as well as the effect of the mesh size on the results. The major difference is
that, when At decreases the amount of time for the computation aud the space on the
computer increase significantly, which are not justified when the difference between
the results for N = 19 and N = 70 is less than 4% for this analysis, as shown in
Figure 7.1(b).

Once again, a comparison of the pressures for different numbers of time-steps in-
dicates a better realiability of the results obtained by the time-dependent-coordinate-

transformation approach vis-é-vis the mean-position analysis.

Also, by looking at Table 7.7 which shows the rms values of the residual of
the momentum and continuity equations for a larger number of time steps, N = 70,
one notices that the number of iterations for all sequences of the real-time steps are
reduced appreciably for N = 70, as compared to that for N = 19 of Table 7.4. This
shows that the numerical model converges faster for the mean-position analysis as
the time step At becomes smaller, which is obvious from the point of view of the

data transfer between two real times " and t"*+!,

For the two analyses, a smaller value for At has its own drawback, i.e., it ne-

cessitates a larger number of computations and hence implies larger round-off errors,
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in addition to the increases in time and memory on the computer. For the reasons
mentioned and by considering Table 7.2, the number of At, i.e., N, which gives accu-
rate results comparable with the theoretical and experimental results (see Chapter 8)

and yet remains economically feasible was chosen to be N =19,

Table 7.8 is similar to Table 7.5 but it is for the 3-D analysis with N = 70. Once
again, the rms values shown here indicate the faster computation, but by looking
at Table 7.9 and Figure 7.2(a) one notices that the minimum value occurs around
15 € N < 30. Once again, the difference between the pressure values for N = 19
and N = 70 is about 2%. In the case of a time-dependent-coordinate transformation
for the 3-D analysis, the results of the convergence test are shown in Table 7.10 and
Figure 7.2(b), with the discrepancy between py9 and pz, less than 3%. Thus, we have
chosen N = 19 for the 3-D analysis too.

Finally, to be able to compare the present theoretical results based on the full
nonlinear N-S equations with Bélanger's (1991) results, as shown in Figure 4.14, the

number of time steps must be N = 19.

In another attempt to check the accuracy of the numerical solution, the length
of the fixed upstreamn and downstream portions was increased for just one of the
several cases studied (i.c., for the uniform annular geometry) to see the effect of
more extended portions on the unsteady pressure obtained and on the values of the
pressure perturbation outside the domain of oscillation. It is recalled from Chapters 4
and 6 that for no flow, the perturbation goes to zero at both fixed ends (see for
example Figures 4.24, 4.33, 4.35, 4.38, 6.11 and 6.19). But in the case of flow, the
perturbations have not vanished, specially at the nipstream portions, in almost all

cases studied. The following describes this problem and the way it can be solved.

In a confined flow, such as the annular flow under consideration, we have used
a staggered grid to solve the N-S equations. As explained in Chapter 4, using a
staggered grid we must impose two boundary conditions at the inlet, such as the

velocities, and one at the outlet, such as the pressure. At the inlet the pressure is

175



calculated automatically by the numerical calculations, and there we have no control
over this variable once the outlet pressure has been specified (for instance, zero).
This is the drawback of using a staggered grid. The calculation of the dependent
variables starts from grid points I = 2 to N — 1, where N is the last grid point in
the z-direction. Once the unsteady pressure generated by the oscillating cylinder, in
the vicinity of the upstream section, propagates outside of the domain of oscillation
it does not change until it vanishes by viscous dissipation which would exist if we
have the unsteady velocities along the fixed portions. But if we look at Figure 7.3,
the velocity perturbations v and w, from which the shear stresses are calculated,
are zero along the fixed portions and u approaches its steady value imposed as an
initial condition for the unsteady solution; hence, no viscous dissipation exists and
the pressure waves which are shown in the figures presented in this Thesis remain
unchanged once they are calculated from the continuity and momentum equations in
the z-direction. These perturbations, which are partly numerical, can be reduced to
an acceptable level through the use of appropriate lengths for the fixed portions and
an appropriate mesh spacing in the z-direction. The results of this study are shown
in Figure 7.4 which were obtained for Re = 250, § = 25, ¢ = 0.1, L, = Lo = 20, 60,
100, 200 and 300.

Figure 7.4 demonstrates that the problem of pressure-wave propagation can
be solved by choosing as long a length for the fixed portions as possible. Thus,
increasing the length of the fixed portions affects the unsteady pressure reduction
over the fixed portions as well as the unsteady pressure in the oscillating domain. It
must be stressed that for all the results presented in the Thesis, the accuracy of the
results, the amount of time for computation and the space available on the computer
were all factors determining the solutions that could be obtained; they are conflicting

factors and were selected by compromise.

Finally and equally important, the accuracy of the model utilized in this analysis

was also checked by comparing the results obtained analytically for a 2-D unsteady
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problem (as a benchmark problem} with the numerical results obtained for the same
problem. The unsteady problem sclected is the unsteady flow between oscillating
plates. We consider two infinite plates, parallel with cach other and aligned with the
z-coordinate. They are separated by a distance H. The top plate is fixed while the

bottom one has a harmonic oscillatory motion of frequency
(G, 1)|,-0 = QH sin OF

i(y,ﬂh:n =0,
where barred quantities are dimensional. H and QH serve as characteristic length
and velocity to non-dimensionalize the equations, and Stokes number § = QH?/v,

The analytical solution for this problem is given by

u(y,t) = Im {F(y)e"} | Pl) = 20,
where Im denotes the imaginary part, i = /=1 and § = V/iS.

The comparison between the analytical and numerical results is shown in Fig-
ure 7.5, where the solid lines indicate the analytical solution and symbols indicate
the numerical solution. Figure 7.5 compares analytical and numerical results for
S = 1000, number of grid points in y-direction J = 26 and number of time step
N = 19. The results shown are for three instants of time t* = 27n /19w, n =1, 2, 10.
The discrepancies between the two sets of results close to the oscillating plate are due
to the different types of meshes used. For the numerical computation, the stretched
grid in the y-direction was used; while for the analytical solution, a uniform grid was

used. Overal] agreement between the analytical and numerical solutions is good.
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WNumber of grid points-r Real (p} | Imaginary (p) | Amplitude (p) ||
T 12x15 -2.22505 |  0.97697 2.43008
14 x 15 -2.22871 0.96784 2.42978
16 x 15 -2.22713 0.96783 2.42833
20 x 15 -2.22548 0.96844 2.42706
30 x 15 -2.22418 0.96782 2.42563
20 x 12 -2.23173 0.97148 2.43401
20 x 14 -2.23270 0.96915 2.43397
20 x 16 -2.23100 0.96916 2.43242
20 x 20 -2.22931 0.96917 2.43087
20 x 30 -2.22744 0.96957 2.42931

Table 7.1: Real, and Imaginary components of the pressure and the pressure ampli-
tude obtained for various meshes; 2-D analysis for € = 0.1, Re = 62.5, w = 1 and at
r = 4.965, 8 = 7.5°.

Oscillatory | Present analysis | Mateescu et al. 1994 |

Reynolds No. | Real | Imaginary | Real | Imaginary |

3125 [ 557 ] 242 552 2.17
3025  |619| 1936 [550| 1960

Table 7.2: Real and imaginary parts of the unsteady pressure for different Reynolds
numbers; 2-D analysis with RB,/R; = 1.25, w = 1 and at r = 4.965, § = 7.5°. The
oscillatory Reynolds number 3.125 is equivalent to 50 in the analyses of Mateescu
and Chen.

— Pgnt solution | Mateescu et al. 1994 | Chen et al. 1976
S

Ro/R;| S [Real{F} | -Tm{F} | Real(F} | -Im{F} | Real{F} [ -Im{F}
1.5 {31.25 3.00 0.662 3.112 0.668 3.10 0.68
1.25 | 312.5 4.82 0.59 5.016 0.546 490 0.54

Table 7.3: The real and imaginary parts of the unsteady fluid-dynamic force obtained
by the present solution, compared with those by Mateescu et al. 1994 and Chen et
al. 1976. The oscillatory Reynolds number 31.25 is equivalent to 500 in the analyses
of Mateescu and Chen.
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3 |34
4 139
5 |38
6 |37
7135
8 |33
9 |32
38
39
39
39
38
38
36
34
32
38
39
39

Table 7.4: Number, k, of pseudo-time steps required for convergence at time level
t", and rms values of residuals at convergence. The computations were performed at

0.9023E-04
0.5641E-04
0.8536E-04
0.8653E-04
0.8636E-04
0.5661E-04
0.7357E-04
0.9711E-04
0.7494E-04
0.7714E-04
0.7122E-04
0.9928E-04
0.7018E-04
0.9302E-04
0.6890E-04
0.7031E-04
0.8331E-04
0.7065E-04
0.7711E-04

e —

rms (v) l_crms (w) _r rms (p) -[l

0.2699E-04
0.1225E-04
0.1954E-04
0.1999E-04
0.1971E-04
0.1062E-04
0.2424E-04
0.2342E-04
0.1714E-04
0.1747E-04
0.1596E-04
0.2293E-04
0.1586E-04
0.2171E-04
0.1454E-04
0.1601E-04
0.2025E-04
0.1630E-04
0.1754E-04

0.4187E-05
0.9571E-06
0.3702E-06
0.1900E-06
0.8098E-07
0.1045E-05
0.3544E-05
0.1501E-06
0.3467E-06
0.4742E-06
0.5508E-06
0.3404E-06
0.3869E-06
0.8635E-07
0.3085E-06
0.2258E-05
0.2002E-06
0.2686E-06
0.4162E-06 |

Re =62.5, § = 31.25 and N = 19 for 2-D analysis.
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l

k| rmms(u) |

rms (v)

n
3 |78
4 153
5 | 50
6 | 46
7 |50
8 [50
9 |48
43
11 | 36
30
34
14 | 43
46
16 | 48
30
49
19 | 46
38
32

0.1915E-04
0.2846E-04
0.2577E-04
0.2633E-04
0.2383E-04
0.2188E-04
0.1988E-04
0.1831E-04
0.1727E-04
0.2408E-04
0.3315E-04
0.2972E-04
0.2641E-04
0.2548E-04
0.2329E-04
0.2191E-04
0.1983E-04
0.1826E-04
0.1862E-04

0.5826E-04

0.6101E-04
0.6077E-04
0.5904E-04
0.5610E-04
0.5556E-04
0.5523E-04
0.5656E-04
0.5972E-04
0.7343E-04
0.7031E-04
0.6066E-04
0.6016E-04
0.6111E-04
0.5751E-04
0.5591E-04
0.5540E-04
0.5993E-04
0.6912E-04

0.8163E-04
0.8274E-04
0.7985E-04
0.7723E-04
0.7750E-04
0.7746E-04
0.7888E-04
0.7874E-04
0.7754E-04
0.7846E-04
0.7715E-04
0.7961E-04
0.8239E-04
0.7924E-04
0.7806E-04
0.7752E-04
0.8138E-04
0.8069E-04

rms (w)_|_rms (p) |

0.8271E-04

0.9929E-04
0.9715E-04
0.9871E-04
0.9664E-04
0.9619E-04
0.9839E-04
0.9818E-0G4
0.9829E-04
0.9740E-04
0.9619E-04
0.9906E-04
0.9764E-04
0.9679E-04
0.9829E-04
0.9703E-04
0.9871E-04
0.9764E-04
0.9904E-04
0.9601E-04

Table 7.5: Number, k, of pseudo-time steps required for convergence at time level
t*, and rms values of residuals at convergence. The computations were performed at

Re = 250, S = 25 and N = 19 for 3-D analysis.

Number of time-step, N - Imaginary (p) | Amplitude (p ) |l

15 [-2.15938 [ 1.03546 2.39481
19 -2.22727 0.97147 2.42991
25 -2.30500 0.92527 2.48378
30 -2.35245 0.90596 2.52087
40 -2.41788 0.88718 2.57550
50 -2.46039 0.87861 2.61248
60 -2.48993 0.87430 2.63897
70 -2.51150 0.87148 2. 65840

Table 7.6: Real, Imaginary and pressure amplitude obtained for various values of
time-steps N; 2-D analysis for € = 0.1, Re = 62.5, w = 1 and at r = 4.965, § = 7.5%
mean-position analysis.
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3

4129
5 |37
6 |38
7138
8 |38
9 | 39
39
39
39
39
38
38
38
38
37
37
36
39
34
33
31
30
27
23
16
17
25
28
30
32
33
34
35
36
37
37
38

0.9951E-04
0.9827E-04
0.9628E-04
0.8941E-04
0.9421E-04
0.9793E-04
0.8862E-04
0.8974E-04
0.9052E-04
0.9043E-04
0.8954E-04
0.9977E-04
0.9703E-04
0.9322E-04
0.8882E-04
0.9505E-04
0.8873E-04
0.9219E-04
0.94775-04
0.9498E-04
0.9279E-04
0.9925E-04
0.8896E-04
0.9276E-04
0.9378E-04
0.8020E-04
0.8366E-04
0.9096E-04
0.8798E-04
0.9361E-04
0.9147E-04
0.9608E-04
0.9806E-04
0.9721E-04
0.9437E-04
0.9028E-04
0.9690E-04
0.9042E-04

0.4380E-04
0.4329E-04
0.4233E-04
0.3926E-04
0.4149E-04
0.4310E-04
0.3890E-04
0.3949E-04
0.3983E-04
0.3980E-04
0.3932E-04
0.4386E-04
0.4270E-04
0.4101E-04
0.3908E-04
0.4185E-04
0.3902E-04
0.4051E-04
0.4168E-04
0.4178E-04
0.4083E-04
0.4366E-04
0.3913E-04
0.4079E-04
0.4126E-04
0.3176E-04
0.3514E-04
0.3998E-04
0.3874E-04
0.4114E-04
0.4025E-04
0.4226E-04
0.4313E-04
0.4276E-04
0.4156E-04
0.3973E-04
0.4258E-04
0.3975E-04

0.5805E-05
0.5737E-05
0.5612E-05
0.5203E-05
0.5499E-05
0.5712E-05
0.5158E-05
0.5233E-05
0.5280E-05
0.5269E-05
0.5212E-05
0.5809E-05
0.5656E-05
0.5433E-05
0.5176E-05
0.5541E-05
0.5167E-05
0.5371E-05
0.5519E-05
0.5538E-05
0.5408E-05
0.5783E-05
0.5183E-05
0.5403E-05
0.5469E-05
0.4323E-05
0.4534E-05
0.5297E-05
0.5132E-05
0.5453E-05
0.5334E-05
0.5603E-05
0.5716E-05
0.5667E-05
0.5507E-05
0.5266E-05
0.5644E-05
0.5271E-05

(2 TF T ms(®) [ rms(w) | rms(p) |
36 |

Table 7.7: Number, k, of pseudo-time steps required for convergence at time level
t", and rms values of residuals at convergence. The computations were performed at
Re = 62.5, § = 31.25 and N = 70 for 2-D analysis (continued on next page).
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[ »

k| rms(v) | rms(w) | ms(p) |

45
46
47
48
49
50
51
52
53
54
99
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

41
42
43
44

38
38
39
39
39
39
39
39
39
38
38
38
37
37
36
35
34
33
31
30
27
23
16
17
25
28
30
32
33
34
35
36

0.9461E-04
0.9847E-04
0.8908E-04
0.9049E-04
0.9159E-04
0.9189E-04
0.9156E-04
0.9037E-04
0.8831E-04
0.9752E-04
0.9400E-04
0.8929E-04
0.9546E-04
0.8902E-04
0.9253E-04
0.9502E-04
0.9530E-04
0.9306E-04
0.9950E-04
0.8921E-04
0.9297E-04
0.9416E-04
0.8076E-04
0.8294E-04
0.9078E-04
0.8794E-04
0.9352E-04
0.9143E-04
0.9594E-04
0.9803E-04
0.9722E-04
0.9437E-04

0.4158E-04
0.4325E-04
0.3914E-04
0.3982E-04
0.4032E-04
0.4048E-04
0.4027E-04
0.3974E-04
0.3888E-04
0.4287E-04
0.4132E-04
0.3927E-04
0.4199E-04
0.3915E-04
0.4067E-04
0.4176E-04
0.4191E-04
0.4093E-04
0.4380E-04
0.3923E-04
0.4088E-04
0.4143E-04
0.3207E-04
0.3488E-04
0.3991E-04
0.3870E-04
0.4112E-04
0.4023E-04
0.4226E-04
0.4312E-04
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0.5511E-05

0.5731E-05
0.5185E-05
0.5276E-05
0.5344E-05
0.5360E-05
0.5333E-05
0.5263E-05
0.5151E-05
0.5680E-05
0.5473E-05
0.5199E-05
0.5563E-05
0.5185E-05
0.5388E-05
0.5534E-05
0.5552E-05
0.5421E-05
0.5797E-05
0.5196E-05
0.5417E-05
0.5491E-05
0.4364E-05
0.4498E-05
0.5288E-05
0.5128E-05
0.5450E-05
0.5332E-05
0.5602E-05
0.5715E-05

0.4275E-04 | 0.5666E-05
0.4155E-04 | 0.5507E-05 ”



3 | 62
4 )12
5 |48
6 | 34
7113
8 (13
9 |13
13
17
26
27
31
29
29
31
32
32
34
35
35
36
35
36
35
34
34
33
31
31
28
28
24
24
22
19
18
17
16

0.9039E-05
0.4976E-04
0.1970E-04
0.1075E-04
0.2303E-04
0.2948E-04
0.3083E-04
0.2959E-04
0.2226E-04
0.1818E-04
0.1715E-04
0.1417E-04
0.1186E-04
0.1118E-04
0.1158E-04
0.1251E-04
0.1328E-04
0.1305E-04
0.1222E-04
0.1155E-04
0.1106E-04
0.1108E-04
0.1103E-04
0.1105E-04
0.1116E-04
0.1109E-04
0.1094E-04
0.1106E-04
0.1094E-04
0.1119E-04
0.1115E-04
0.1187E-04
0.1214E-04
0.1259E-04
0.1441E-04
0.1608E-04
0.1768E-04
0.1957E-04

0.1355E-04
0.9173E-04
0.1613E-04
0.1515E-04
0.7633E-04
0.7965E-04
0.7808E-04
0.7382E-04
0.3662E-04
0.1851E-04
0.1618E-04
0.1443E-04
0.1406E-04
0.1404E-04
0.1390E-04
0.1393E-04
0.1408E-04
0.1391E-04
0.1369E-04
0.1354E-04
0.1344E-04
0.1358E-04
0.1359E-04
0.1372E-04
0.1395E-04
0.1407E-04
0.1420E-04
0.1467E-04
0.1474E-04
0.1561E-04
0.1585E-04
0.1813E-04
0.1890E-04
0.2153E-04
0.2950E-04
0.3370E-04
0.3817E-04

0.3050E-04
0.3483E-04
0.3523E-04
0.3164E-04
0.2963E-04
0.3076E-04
0.3374E-04
0.3529E-04
0.3454E-04
0.3492E-04
0.3458E-04
0.3451E-04
0.3469E-04
0.3448E-04
0.3417E-04
0.3445E-04
0.3458E-04
0.3439E-04
0.3434E-04
0.3414E-04
0.3429E-04
0.3412E-04
01.3400E-04
0.2422E-04
0.3428E-04
0.3417E-04
0.3439E-04
0.3420E-04
0.3441E-04
0.3411E-04
0.3458E-04
0.3461E-04
0.3425E-04
0.3445E-04
0.3470E-04
0.3459E-04

0.4321E-04

0.3431E-04

0.9985E-04
0.7272E-04
0.9891E-04
0.9971E-04
0.8793E-04
0.8096E-04
0.8375E-04
0.9257E-04
0.9901E-04
0.9856E-04
0.9994E-04
0.9911E-04
0.9914E-04
0.9989E-04
0.9948E-04
0.9875E-04
0.9958E-04
0.9997E-04
0.9944E-04
0.9935E-04
0.9887E-04
0.9937E-04
0.9902E-04
0.9879E-04
0.9947E-04
0.9969E-04
0.9940E-04
0.9997E-04
0.9938E-04
0.9981E-04
0.9884E-04
0.9988E-04
0.9972E-04
0.9853E-04
0.9894E-04
0.9946E-04
0.5907E-04
0.9825E-04

I: n |k rms(u) ] rms (v) | rms (w) | rms (p) ||

[0.3517E-04

Table 7.8: Number, k, of pseudo-time steps required for convergence at time level
t", and rms values of residuals at convergence. The computations were performed at
Re = 250, S =25 and N = 70 for 3-D analysis (continued on next page)
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|[ | | rms (u) | rms (v) | | rms (w) [ _rms (p) rms (w) | rms (p) |

42
43
44
45
46
|| 47
48
49
50
51
52
53
54
55
fl 56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
| 72

16
17
20
21
23
23
24
26
28
29
31
32
33
35
34
35
35
39
35
34
34
33
32
31
30
28
28
24
24
22
19

0.2219E-04
0.2151E-04
0.2040E-04
0.1788E-04
0.1673E-04
0.1544E-04
0.1478E-04
0.1434E-04
0.1395E-04
0.1365E-04
0.1360E-04
0.1331E-04
0.1295E-04
0.1262E-04
0.1209E-04
0.1199E-04
0.1192E-04
0.1186E-04
0.1173E-04
0.1152E-04
0.1145E-04
0.1130E-04
0.1121E-04
0.1121E-04
0.1125E-04
0.1123E-04
0.1142E-04
0.1126E-04
0.1189E-04
0.1218E-04
0.1264E-04

0.1448E-04

0.5036E-04
0.4405E-04
0.3852E-04
0.2745E-04
0.2336E-04
0.1934E-04
0.1849E-04
0.1728E-04
0.1595E-04
0.1500E-04
0.1436E-04
0.1415E-04
0.1384E-04
0.1375E-04
0.1351E-04
0.1357E-04
0.1363E-04
0.1373E-04
0.1386E-04
0.1389E-04
0.1407E-04
0.1417E-04
0.1429E-04
0.1456E-04
0.1488E-04
0.1518E-04
0.1582E-04
0.1589E-04
0.1797E-04
0.1872E-04
0.2115E-04

0.3465E-04
0.3479E-04
0.3496E-04
0.3452E-04
0.3469E-04
0.3468E-04
0.3477E-04
0.3492E-04
0.3487E-04
0.3451E-04
0.3431E-04
0.3412E-04
0.3414E-04
0.3439E-04
0.3416E-04
0.3433E-04
0.3457E-04
0.3482E-04
0.3500E-04
0.3499E-04
0.3516E-04
0.3518E-04
0.3518E-04
0.3520E-04
0.3518E-04
0.3498E-04
0.3496E-04
0.3430E-04
0.3447E-04
0.3435E-04
0.3401E-04

0.2886E-04 | 0.3432E-04
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0.9900E-04
0.9893E-04
0.9936E-04
0.9843E-04
0.9902E-04
0.9901E-04
0.9928E-04
0.9986E-04
0.9999E-04
0.9934E-04
0.9915E-04
0.9894E-04
0.9920E-04
0.9992E-04
0.9916E-04
0.9928E-04
0.9945E-04
0.9955E-04
0.9943E-04
0.9886E-04
0.9895E-04
0.9885E-04
0.9889E-04
0.9920E-04
0.9955E-04
0.9949E-04
0.9996E-04
0.9868E-04
0.9954E-04
0.9954E-04
0.9885E-04
0.9992E-04

|

(

O—




|| Number of time-step,J N | Amplitude (p) "

10 [ 0.53847
15 0.51170
19 0.50359
25 0.50572
35 0.50732
45 0.51024
55 0.51266
65 0.51485
(' | 051577

Table 7.9: Pressure amplitude obtained for various values of time-step N; 3-D analysis
at r = 9.926, 8 = 7.5° for ¢ = 0.1, Re =.250 and S = 25; mean-position analysis.

]] Number of time-step, N | Amplitude (p) ||

10 0.56264
15 0.52960
19 0.51956
30 0.50961
0 | 050423

Table 7.10: Pressure amplitude obtained for various values of time-step N; 3-D anal-

ysis at 7 = 9,926, 8§ = 7.5° for ¢ = 0.1, Re = 250 and S = 25; time-dependent-
coordinate-transformation analysis.
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Figure 7.1: Unsteady pressure amplitude versus time-step N; 2-D analysis for ¢ = 0.1,
Re = 62.5 and w = 1: (a) mean-position analysis; (b) time-dependent-coordinate-
transformation analysis.
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Figure 7.2: Unsteady pressure amplitude versus time-step N; 3-D analysis for ¢ = 0.1,
Re = 250 and S = 25: (a) mean-position analysis; (b) time-dependent-coordinate-
transformation analysis.
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Chapter 8

Experimental Investigation and
Comparison with Theory

There are basically two methods which can be used to solve a problem in fluid me-
chanics and fluid-structure interactions as well as in most of the engincering and
science problems: (i} experimental and (ii) theoretical, analytical or numerical. In
the analytical method, simplifying assumptions are made in order to make the prob-
lem tractable, If possible a closed-form solution is sought. The big advantage of
the analytical method is that “clean”, general information can be obtained, in many
cases from a simple formula, and reasonable answers can be obtained in a minimum
amount of time. In the numerical method, a limited number of assumptions are made
and a high-speed large-memory computer is required to solve the resulting governing,
for instance in our case, fluid dynamic equations. The partial derivatives appearing
in the governing equations are replaced, for example, by appropriate finite differences

at each grid point. The resulting equations are then integrated to obtain the final

results.

The greatest advantage of using the numerical method of attack, as compared
to the experimental one, is its low cost; this may be orders of magnitude lower than
the cost of a corresponding experimental investigation. The second advantage is the
speed of computational investigation, plus the ability of providing the values of all

the relevant variables (such as velocity, pressure, etc.} throughout the domain of
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interest. Unlike the situation in an experiment, there are few inaccessible locations
for a computation, and there is no covrierpart to the flow disturbances caused by the
probes, bolts, support rods, etc. Obviously, no experimental study can be expected to
measure the distribution of all variables over t!.e entire domain. For this reason, even
when an experiment is performed, there is great value in obtaining a companion com-
puter solution to supplement the experimental information. In a computation, there
exists the ability to simulate ideal conditions, for example, two-dimensionality, con-
stant density, or laminar flow. On the other hand, even a very careful experiment can
barely approximate such idealizations; .stead, it obviously provides measurements
corresponding to realistic conditions. In spite of all these advantages of computational

solutions, a blind enthusiasm for any cause is undesirable.

As mentioned earlier, a computer analysis works out the implication of a math-
ematical model. The experimental investigation, in contrast, observes reality itself.
The validity of the r.ethematical model, therefore, limits the usefulness of a compu-
tation. The user of a computer analysis receives an end product that depends on both
the mathematical model and the numerical method. A mathematically well described
problem (such as a laminar flow problem), if combined with a perfectly satisfactory
numerical technique, will yield reliable results. Even in this case, however, depending
on the complexity of the problem, an experimental study is sometimes superior to a
computer solution. An optimal prediction effort should thus be a judicious combina-
tion of computation and ezperiment. The proportions of the two ingredients would
depend on the nature of the problem, on the objectives of the prediction, and on the

financial and other constraints of the situation.

In parallel to the foregoing numerical solutions of which the ultimate objective
is to predict the unsteady flow fields in annular flow, the problem has also been
studied experimentally in both the laminar and turbulent regimes. The experimental
results obtained in the laminar regime are compared with the theoretical results of

the previous chapters. For this special (FIV) problem, the need for experiments will
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probably remain for some time, in applications involving turbulent flow where it is
presently both mathematically and economically not feasible to utilize computational
models which are free of empiricism. Thus, the experimental results in the turbulent

regime were obtained to be utilized in future extensions of this work.

The experimental measurements of the unsteady pressure in the annulus or un-
steady forces applied either on the inner or outer cylinder have been done in the past
for the purpose of design or validation of the proposed existing theoretical models (see
Spurr & Hobson (1984), Parkin et al (1987), Mateescu et al. (1988,1989), Hobson
(1991)). Using an earlier experimental apparatus designed for concentric configura-
tions, experimental investigations were made to study the flow field for later use in
flow-induced vibration problems (Mateescu et al. 1989). In that set of experiments,
the quantity measured was the unsteady pressure. In those tests, a rigid, cylindrical
centre-body was forced to oscillate in rocking motion about a hinge with fluid flowing
in the annulus, while the outer conduit was rigid and immobile. The experiments
for this apparatus were characterized by high axial velocities, which permitted the
validation of the approximate theory developed for turbulent flow in concentric an-
nuli. In contrast, no experiments were conducted with that apparatus for unsteady

laminar flows, which may be practically important especially in very narrow annuli.

In the present analysis, a new apparatus was constructed (Mekanik et al. 1994),
the general layout of which is shown in Figure 8.1, with which the rocking and
lateral (translational) motions would be equally feasible. In this design the following
features were introduced: {a) the possibility of conducting experiments in eccentric
arrangements, with the oscillation either in the plane of eccentricity or normal to it,
which were not performed in experiments described here; (b) the facility of having
very low velocity, so that the flow in the annulus could be either laminar or turbulent.
This new apparatus has the possibility of having axial variations in the annular
passage, either smooth such as a diffuser, or abrupt such as an annular passage with

an axisymmetric backstep.
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To accommodate all possibilities, it was found convenient to oscillate part of the
outer cylinder conduit, while the centre-body remains immobile. To reduce viscous-
flow related effects, such as flow separation and/or vortex shedding which are not
considered in the present theory, a smooth transition between cylindrical and annular
flow is assumed both upstream and downstream. This is ensured by connecting
smooth ogives to the fixed centre-body at both ends, as shown in Figure 8.1. The
constant cross-section, from the upstream ogive to the test section, where the pressure
was mecasured, is long enough to obtain developed laminar flow, in the case where
laminar flow experiments are undertaken. The tests have been conducted at low
amplitudes of oscillation, characterized by an amplitude/gap ratio smaller than 0.2.

For simplicity of design, the tests were performed in air rather than in water.

8.1 Experimental Apparatus

The test section consists of a rigid cylindrical centre-body with ogival ends in a cylin-
drical conduit (Figure 8.1). The ogives, together with an upstream meshed screen
and a honeycomb help to make the annular flow as uniform as possible. As mentioned
before, only the central portion of the outer cylinder is forced to oscillate, and hence,
there will always be discontinuities at the boundaries between the oscillating portion
of the outer cylinder and its immobile upstream and downstream extensions. Various
flange designs were tried to study and reduce this effect (Figure 8.2), a discussion of
which wil] be given later.

The unsteady pressure was measured using, in the latest experiments, eight PCB
103A11 and 103A12 pressure transducers (microphones) situated at z/L = 0.263,
0.342, 0.421, 0.500, 0.578, 0.657 and 0.763, in the vertical plane of oscillation, as
shown in Figure 8.3. At the mid-point, two transducers were used diametrically op-
posite each other in order to compare the corresponding measured unsteady pressure;
for instance, the phase difference between the two signals might be 180° for concen-

tric configurations, when the cylinder executes either translational or rocking motion.
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The sensitivity of these transducers was 72.51 mV /kPa. In earlier experiments, 10
less sensitive PCB 112A22 transducers were used. At each axial location, the new
transducers were flush-mounted on the flat surface prepared inside the centre-body,
facing small-diameter holes (0.8 mm, as compared with the manufacturer's recom-
mendation of 3.175 mm, and 12.5 mm deep), to minimize the effect of the holes on

the flow field used for measuring the pressure in the annulus.

The outer conduit was oscillated by means of a Briiel & Kjaer electrodynamic
shaker, In the case of translational motion, the oscillatory motion was transmitted
to the cylinder by a yoke made of two parallel plates, placed around the midpoint
X = z/L = 0.5. For rocking motion, the oscillation about a “hinge” (X = 0.237) was
transmitted via a flexible thin plate attached to the shaker at X = 0.815, Figure 8.4,

which accommodated unavoidable small harmonic motion in the axial direction.

The possible vibration frequencies and amplitudes were limited by (a) the max-
imum shaker force rating of 445 N and peak-to-peak amplitude limit of 12.7 mm
and (b) practical considerations associated with structural resonances, which gave
an effective frequency range of 15-100 Hz. In practice, the amplitude was limited
to half the maximum gap or 5.0 mm, The shaker was often used in its constant-
frequency mode, while the frequency was being swept; for that purpose, an accelerom-
eter mounted on the base plate of the shaker-head or on the outer pipe provided a
feedback signal to the shaker controller as shown in Figure 8.5. The displacement
of the oscillating cylinder as well as the phase angle between the unsteady pressure
signal and the acceleration signal (from which the phase angle between the pres-
sure and outer-cylinder displacement can be obtained) were measured by the same

accelerometer,

The signals from the pressure transducers (one at a time) and the accelerom-
eter, after suitable conditioning, were fed into a dual channel FFT digital spectrum
analyzer, which can accept inputs as small as 1uV. These signals could be postpro-

cessed, as desired, with a PC486 computer as shown in Figure 8.5. The rms amplitude

195



of the pressure and acceleration at the oscillation frequency were obtained from the
corresponding spectra. (typically with 16 averages). The phase difference of pressure
to acceleration was determined when the analyzer was used in the transfer-function
mode. It should be mentioned that, in most cases, the signals contained superhar-
monics (of smaller amplitude} of the basic frequency; in what is presented in this
chapter a linear analysis is undertaken, and only the components at the principal
frequency are considered.

The air flow was provided by either (i) a vacuum pump (used in suction),
providing a laminar or low-velocity turbulent flow, or (ii) a large centrifugal blower
for high, turbulent flow. When using the latter, an acoustic filter and a special noise
attenuation plenum chamber were used to reduce the incident fluctuating noise. The
flow velocity was measured by standard means.

Utilizing the present apparatus, we varied the following parameters were varied
in the experiments: (a) oscillation frequency; (b) oscillation amplitude; (c) axial-flow
velocity.

To describe the apparatus in detail, its different components are presented in the
sub-sections that follow: the external conduit, including the oscillating outer cylinder;
the fixed centre-body connected to the ogives; the “transmission” mechanism linking

the shaker to the outer cylinder; the blower and the associated flow system.

8.1.1 The External Conduit

The external pipe consists of three main sections: the oscillating central portion, and
the fixed parts upstream and downstream. The inner radius of the pipe is R; = 53.8
mm, as shown in Figure 8.3, and its wall thickness is 3.2 mm. The central section,
965 mm long, executes one-degree-of-freedom oscillatory motion, as excited by the
shaker.

The fixed cylindrical conduit of the same diameter as the moving portion contin-
ues on either side, and houses and supports the ogives as well as the fixed centre-body,

as shown in Figures 8.1 and 8.3. These portions and the oscillatory part are made
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from aluminum with specific gravity of 2.785 gr/em3. The inlet axial flow was reg-
ularized with the aid of the several meshes and the ogive, to cventually obtain the
developed laminar flow as mentioned before, or at high flow velocity, with the addi-
tional help of a honeycomb screen, an acoustic filter and a special noise attenuation
plenum chamber, to obtain a uniform turbulent flow. These parts were secured on
the vertical plates which were fixed on a long I-beam at a number of locations along
the axial direction as shown in Figure 8.6. The system was horizontal.

A great deal of time was spent on the question of the discontinuity between
the oscillating and stationary parts of the outer cylinder. The “obvious” solution of
using flexible thin rubber sleeves to connect the two was found unsatisfactory, from
the mechanical point of view: the sleeves had a bias either in shape or in locked-in
stresses which affected the uniformity of motion in the case of transverse oscillation
(by “pulling” at one extremity of the oscillating cylinder). With zero-mean-flow
experiments, either of the arrangements in Figure 8.2(b,c) performed satisfactorily.
With flow, however, especially at high velocities, the arrangement in Figure 8.2(a)
with sponge-felt gaskets was by far the best. Unless otherwise remarked, in the results

to be presented, the sponge felt was used.

8.1.2 The Fixed Centre-Body

The fixed centre-body comprised three parts: the central test section, facing the
oscillating outer cylinder, and the upstream and downstream sections as shown in
Figure 8.3. The centre-body was made from aluminum for uniform annular space and
from steel for nonuniform (backstep and diffuser shaped) annular space. The pressure
transducers were mounted in the central test section as shown in Figure 8.7(a-c) for
different annular spaces. The fixed upstream and downstream sections were composed
of two parts: an ogival part and a constant cross-section part. The constant cross-
section part was connected to the test section. The ogival part was shaped to have
a parabolic profile; it was designed to allow a smooth and uniform transition from

cylindrical to annular flow, and vice-versa. Thus, fully developed annular flow in the
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test section is presumed to exist through the constant cross-section part.

The central test section of the centre-body was made up of two sections (split
longitudinally to mount the pressure transducer inside the cylinder) and was con-
nected to the upstream and downstream sections at both ends in sliding contact
(male and female), to allow rotation of the central test section for measuring the
unsteady pressures at various azimuthal locations if desired. An O-ring between
the male and female parts prevented any air leakage into the hollow inner cylinder,
as shown in Figure 8.8, Undesired rotations were prevented with the aid of a set
of screws. The radius of the inner cylinder (apart from the ogives) was constant,
R; = 44.5 mm, in the case of a uniform annular space; R; = 44.5 mm and Ryy = 35.2
mm for nonuniform annular spaces. The dimensions of the whole system are shown
in Figure 8.6. Based on the dimensions shown in this figure, it is clear that the
constant cross-section parts of the annulus are long enough (500 mm) with respect

to the annular gap width (9.3 mm) to insure developed laminar flow.

8.1.3 Shaker and Transmission

The harmonic oscillation was generated by a Briiel & Kjaer electromagnetic shaker
(exciter body B&K 4801, with exciter head B&K 4812). The maximum peak-to-peak
amplitude limit was 12.7 mm and the maximum force rating was 445 N, the possible
frequency range was from 5 Hz to 10 kHz. In the present tests the frequency range
chosen was 15-100 Hz and the amplitude of oscillation was kept below 5.0 mm peak-
to-peak. The mass of the oscillating cylinder is 2.821 kg which indicates that the
weight of the cylinder is much less than the maximum force rating,.

The harmonic signals generated by the shaker controller (B&K exciter control
type 1047) were fed into a power amplifier (B&K 2707) that amplified them to the
levels appropriate to drive the shaker. The shaker controller controls the frequency
and the displacement amplitude of the moving outer cylinder. A control accelerometer
was mounted on the base plate of the shaker or on the oscillating outer cylinder, The

signal from this accelerometer was processed to an effective sensitivity of 10 mV/g

198



in the charge amplifier (B&K type 2624) and fed to the compressor circuit of the
exciter control (1047) as shown in Figure 8.5. In this way, the acceleration level of
the shaker system (and the oscillating outer cylinder) can be held constant throughout
the frequency sweep.

The oscillatory motion of the outer cylinder is provided by a pair of vertical rigid
plates parallel to each other, which were placed between the shaker and the cylinder
at the mid-point of the cylinder (X = 0.5) as a yoke, to ensurc purely transverse
translation. These plates are 7% by weight of the oscillating cylinder, hence in the
static situation (no motion of the cylinder) the central part of the outer cylinder
always remains at the same horizontal level as the fixed portions at its extremities.
For rocking motion about a hinge, the outer cylinder is kept fixed at X = 0.237 and is
connected to the shaker at X = 0.815 via a flexible slender plate. Due to the rocking
motion, there is a small axial displacement of the oscillating cylinder. The flexible
slender plate renders this small movement negligible, especially for small-amplitude
oscillations of the moving cylinder. Nevertheless, it generates secondary effects which

should be taken into account for larger-amplitude oscillations.

8.1.4 Blower and the Associated Flow System

In the present work, the flow through the annulus was provided by two external air
sources. A vacuum-cleaner type blower was used in the suction mode for generating
laminar or low-velocity turbulent flow, as shown in Figure 8.1; a large fan (blower)
was used for high velocities. The same fan can be used to provide low-velocity flow
by utilizing a regulating valve and by smoothing the flow with special devices such as
an acoustic filter and a noise-attenuation plenum chamber. The same devices were
used during the experiments for turbulent flows, because the noise level generated by
the blower was relatively large as compared to the expected pressure signal.

The flow rate was measured by means of scveral orifice plates (depending on the
flow rate) with different sizes and the accuracy of readings; they were checked against

one another using the appropriate equations, thus confirming that the orifice plates
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can be used with confidence. The orifice plate was mounted near the downstream
end of a straight pipe (3 m long and 40 mm in diameter) which was connected at its
other end to the downstream section of the outer pipe, as shown in Figure 8.1. This
length is required to obtain fully developed flow near the inlet of the orifice plate.

When a vacuum-cleaner type blower is used for laminar-flow experiments, the
flow rate was controlled by circumferential slot located at the downstream end near
the vacuum pump and for high-velocity experiments by the slip valve located at the
upstream end close to the outlet of the large blower.

Based on the usage of these devices and considering Figure 8.9, the Reynolds
number is calculated from the following equations. To begin, the flow rate is obtained

from (Miller 1989)
CqY d? hu
VI—7\ ps’

where Q is the volumetric flow rate of air in cubic feet per second, Y is the air

Q = 0.09970190 (8.1)

expansion factor for the orifice, taken to be Y = 1 for small differential pressure,

v =d/D and Cy is the coefficient of discharge for the orifice, given by

b
Cd - Coo + ﬁgg ’
with b = 91.719%%, n = 0.75, Rep = V| D/v, V] being the velocity of air upstream of
the orifice; C,, is given by

4
Coo = 0.5959 + 0.031292! — 0.1841° + 0.391—”’? ~ 0.0158¢%.

In equation (8.1), d and D are in inches, h,, is the differential air pressure in
inches of water reading across the taps shown in Figure 8.9, and p; = 0.076 lbm/ft3
for air at standard temperature and pressure. It should be remarked that a kind of
iteration procedure was used to calculate the true values of C;, which is Reynolds-
number dependent, for each orifice plate. The Reynolds number for the annulus is

obtained as
_2QH

Re = Ay’

(8.2)
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where the annular gap width A = 9.3 mm, the kinematic viscosity of air v = 1.62 x
10~% m?fs, and A, = 7(R2 — R?) = 2.87 x 1073 m? is the annular cross sectional

area.

8.2 Instrumentation for Measurement

As mentioned before, the pressure as well as the phase and displacement were ana-
lyzed by means of signal processing through an FFT (Fast Fourier Transform) digital
signal analyzer, from which the pressure amplitude and the phase angle with respect
to the displacement could be obtained, as shown in Figure 8.5. In the present ex-
periment the following instruments were used to obtain the required data: (i) eight
highly sensitive microphone type pressure transducers; (ii) three accelerometers; (iii)
one photonic sensor; {iv) one digital spectrum analyzer; (v) one inclined alcohol

manometer. These are described in greater detail in what follows.

8.2.1 Microphone Type Pressure Transducers

At the heart of the measurements are the pressure transducers. The specifications
of the transducers used will be outlined in the following paragraphs; their locations
on the centre-bodies for different configurations of the annular space are shown in
Figure 8.7(a-c). In these figures, most of the pressure transducers were installed at
the top portion of the centre-body assuming that the whole system is symmetric with
respect to the centre-line of the centre-body. However, to check this symmetry, at
the mid-point, two transducers were used diametrically opposite each other.

Sound pressure microphones (of the PCB 103A type) feature a built-in amplifier
and compensating accelerometer, and have ultra-high sensitivity (500 mV/psi). They
can be used to measure transient events, turbulence, and other acoustic phenomena
on a variety of test objects and models. This sophisticated sensor is available in
two standard ranges and two configurations (pigtail and micro connector); this tiny

instrument transfers dynamic and short-term static pressures into high-level, low-
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impedance analog voltage signals. It is structured with ceramic crystal elements,
a micioelectronic amplifier and an accelerometer, to virtually cancel out vibration
sensitivity. A thin, recessed Invar diaphragm and a bender-mode crystal element
adapt it for very low pressure measurements in adverse shock, vibration and thermal
environments. This modei can be installed in several ways. Due to the necessity
of relocating the transducers from one model of the annular configuration to the
next, the servo-clamp mode of installing the pressure transducers was used as shown
in Figure 8.10. Based on the inside configurations of the centre-body, the pressure
transducers used have two configurations: pigtail and micro-connector, which are
shown in Figure 8.11.

The main specifications of these pressure transducers (PCB 103A11 and PCB
103A12) are as follows:

Maximum pressure: 206.85 kPa (30 psi)
Resolution: 0.483 kPa (0.00007 psi)
Sensitivity(nominal): 0.07 mV/Pa (500 mV /psi)
Resonant Frequency: 13 kHz

Acceleration sensitivity:  3.45 Pa/g (0.0005 psi/g)
Vibration{max): 1000 g

Linearity: +2 (%FS)
Size(diaxheight): 9.53 X 5.59 (mm)

In this experiment, utilizing this pressure transducer, the steady (or static) com-
ponent was undetectable and the signals had acceptable levels of dynamic pressure

readings as will be discussed in the experimental results which follow.

8.2.2 Accelerometers

The displacement of the oscillating outer cylinder was measured by an accelerometer
(B&K type 4381) with voltage sensitivity of 82.9 mV /g and charge sensitivity of 99.4

pC/g, where g=9.81 m/s®. Tbs accelerometer was mounted either on the shaker
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head or on the oscillating outer cylinder. The accelerometer signal was first fed into
the charge amplifier (B&K type 2624). One of two-output signals from the charge
amplifier was used for the constant-displacement control through the feedback loop of
the shaker controller system, while the other was monitored by the spectrum analyzer,
which gave the outer cylinder displacement, as shown in Figure 8.5.

Another accelerometer type (B&K 4338) was mounted inside the centre-body
to make sure that during the experiment the centre-body did not vibrate sufficiently
to affect the pressure readings. The centre-body vibration was less than 1% of the
vibration of the outer cylinder for almost all of the experiments, especially for the
cases of nonuniform centre-bodies which were made of steel. The uniform centre-body
was made of aluminum.

To ensure that the outer cylinder always executes transverse oscillation in the
plane of symmetry and does not move side-ways, and also to check that the two
moving ends of the oscillating cylinder have the same acceleration as the middle part
which is attached to the shaker through the yoke in translational motion, another
accelerometer (B&K 4332) was attached to one and then the other end of the moving
cylinder, either in the plane of translaticnal motion or normal to it. It was found
that the outer cylinder is rigid enough to have the same acceleration everywhere in
the plane of oscillation and almost zero acceleration in the plane normal to it at both

ends of the moving cylinder.

8.2.3 Spectrum Analyzer

A powerful dual-channel FFT digital spectrum analyzer (Hewlett-Packard 3582A)
was used to monitor the signals from the pressure transducers and from the ac-
celerometers. The frequency range of the dual-channel digital analyzer is 0.02 to
25 kHz. The instrument can measure inputs from +30 dB (31.62 V) down to -120
dB (1uV) noise level, without resorting to external signal conditioning. Its dynamic
range is 70 dB. The use of this analyzer made it possible to obtain the transducer and

accelerometer readings accurately in the frequency range of 20-50 Hz, in which the
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present experimental tests were performed. The analyzer is capable of performing
the rms power spectrum averaging of the input signals. Normally, 16 averages were
taken in the FFT analyzer readings to be presented.

The amplitude of either signal at the frequency of oscillation could br obtained
from the power spectrum, while the phase difference between the pressure and the
acceleration could similarly be obtained from the cross-spectrum of those quantities
as well as coherence which is obtained directly. By measuring the coherence, one can
make sure that the pressure signals obtained are due to the oscillation of the outer
cylinder and are not due to the external sources such as acoustic noise or vibration
of the centre-body. The information was available for each individual spectral com-
ponent either by means of a cursor on the screen (CRT) of the FFT analyzer that
can be positioned accordingly, or through the connection of the analyzer to a PC486
computer to collect the information for later postprocessing of the results.

The main advantage of using the FFT analyzer was that the signal due to
secondary effects (e.g. the nonlinearity of the fluid motion, unexpected secondary
motions of the cylinder as explained previously, the random noise from turbulence,
and acoustic wave pressure components) can be adequately separated from the signal.
The other advantage of this instrument is that it can accept signals down to 1 uV
range without special signal conditioning, which was very useful. The signal levels
could not be obtained directly without using a signal amplifier (PCB 483A07), which
receives the signals from the pressure transducers and amplifies them 70 times before

they were fed into the analyzer, as shown in Figure 8.5.

8.2.4 Ancillary Equipment

To calculate the flow rate, the pressure drop across the orifice plate was measured by
an inclined differential alcohol manometer, with a range of 0-200 mm of alcohol. Its
two taps were connected upstream and downstream of the orifice plate. It must be
remarked here that at large flow rates, especially in the turbulent regime, the range of

the manometer was not large enough to read the pressure differences across the taps.
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Therefore, when the readings were out of range, the orifice plate was replaced by the
next larger size. All the orifice plates used were calibrated by using equation (8.1).

Equation (8.2) was used to calculate the Reynolds numbers.

During the oscillation of the outer cylinder, the reading of the pressure trans-
ducer located at the bottom portion of the centre-body (sce Figures 8.3 and 8.5) was
different from the others. Besides the geometrical configuration in the annular space
which contains some obstacles such as support rods, set screws, etc. which might
have affected the pressure readings, there was also the possibility of nonsymmetric
movement of the outer cylinder in its plane of oscillation which is due to the shaker
not starting to shake the outer cylinder around its centre-line, but rather moving
up when it is turned on and then shaking the cylinder. Two pieces of equipment
and instrumentation were used to confirm that this is the case or not. The first one
was a video-camera to see the motion visually and check any probable nonsymmetric
movement of the cylinder. Due to the fast motion and low-amplitude vibration of
the cylinder (determined by the undesirable induced vibration in the whole system
which affects the readings), the difference between the up and down movements of
the cylinder was difficult to recognize visually. Hence, the second instrument, which
was a photonic sensor, was used for this purpose. The measurement of the up and
down motions of the cylinder by this device indjcates certain differences between
these movements, as shown in Figure 8.12. This difference, along with the influence
of the geometrical factors, might be the causes of discrepancies between the readings

of the top and bottom pressure transducers in the mid-section of the centre-body.

It should be remarked that the spectrum analyzer can be remotely as well as
manually controlled. For remote control, it should be equipped with a special interface
card. Hence, another important step in this work, as compared to the earlier work of
Mateescu et al. (1988), is the computerization of the data acquisition with the aid of
a PC486 computer in which an HP-IB interface card was installed, In this manner,

the results obtained after being processed by the analyzer are fed into the computer
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for later postprocessing and demonstration. As will be discussed in later sections,
computerizing the data acquisition system helps reduce the time for collecting the
large amount of data involved in this work; also, the final output may be presented

in a very nice manner by the use of appropriate software.

8.3 Preliminary Experimental Work
8.3.1 Calibrations

To obtain signals with a desired accuracy, every aspect of the data acquisition process
must be studied for each parameter to be measured. The measuring instruments must
be appropriately calibrated before being used to assess the dynamical behaviour of the
instrumentation with an accuracy relevant to the order of magnitude of the signals,
and the factors affecting the readings such as the type of connection between the
moving and fixed parts of the outer cylinder must be considered.

Hence, the pressure transducers and the accelerometer as well as the orifice
plates must be calibrated. The pressure transducers were calibrated, one at a time,
against a PCB 106B pressure transducer of known seasitivity (43.51 mV /kPa, with a
resolution of 0.69 Pa) in a special chamber shown in Figure 8.13, excited by the shaker,
over the frequency range of the experiments. Figure 8.13 shows the experimental
apparatus for dynamic calibration, which consists of a plexiglas cylinder with one
end covered by a rubber membrane and the other end with a rigid plexiglas cap,
with two pressure transducer housing holes. The membrane is held tightly against
the edge of the cylinder by means of screws in order to prevent air leakage. Two
small circular plates on each side of the membrane and bolted together provide an
oscillatory displacement of the membrane by means of a rod which is clamped to the
base plate of the shaker (B&K 4801) in a horizontal configuration.

The reference pressure transducer was flush-mounted to the fixed end of the
cylinder and the pressure transducer to be calibrated was mounted in another hous-

ing hole which had the same configuration as in the actual measurements on the
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centre-body. The signals from both pressure transducers are fed into the analyzer
to be recorded and compared. Using the reference signal from PCB 106B, the sensi-
tivities of the actual pressure transducers were found to be in the range of 53.9-93.7
mV/kPa. The individual calibration factors were compared with the calibration of
the manufacturer; the agreement was fairly good. Nevertheless, the calibration fac-
tors as measured here were used in processing the results.

By considering the actual measurement configuration, the accelerometers were
calibrated with the aid of an accelerometer calibration exciter (B&K 4294), the ac-
celeration of which is fixed (10 m/s? at 159.2 Hz). To calibrate the accelerometers,
they are mounted (one at a time) on the calibrator and then connected to the charge
amplifier with the proper cable in the same arrangement as for actual measurements,
The sensitivities of the accelerometers were found to be 0.623 mV/m?, 1.686 mV /m?
and 1.02 mV/m? for B&K 4332, B&K 4338 and B&K 4381, respectively.

There were several orifice plates with different orifice diameters d = 1.0, 1.125,
1.25, 1.375 and 2.68 in. to be used in the experiments for different flow rates. These
orifices were calibrated against each other using equations (8.1) and (8.2). The cal-
ibration chart obtained was used to find the appropriate Reynolds number in the

annulus for each flow velocity by having the related pressure drop across the desig-

nated orifice plate.

8.3.2 Experimental Procedure

Before each actual experiment began, it was necessary to prepare the experimental
apparatus. For this purpose, the type of centre-body (uniform, backstep or diffuser
with specific angle) was selected and installed carefully. Depending on the type of
motion of the outer cylinder (translational or rocking motion), the outer cylinder was
installed and the shaker position was determined appropriately. Then, the equipment,
such as exciter control, power amplifier, charge amplifier, pressure signal amplifier
and dual-channel spectrum analyzer must be warmed up to prevent any drift in

the quantities they provide or measure such as the amplitude and the frequency
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of oscillation, etc. Also, depending on the type of experiment (with or without
flow, laminar or turbulent, low flow or high flow in each regime), the end gaps (see
Figure 8.2) were prepared appropriately, along with the preparation of the necessary

piping and sclection and installation of the appropriate orifice plate.

To check that the outer cylinder always oscillated in its plane of oscillation
and not normal to it, and also to verify the rigidity of the outer cylinder during the
experiments (e.g. the moving ends of the cylinder have the same acceleration as the
mid-section which is attached to the shaker in the case of translational motion) for
each actual experiment, a preliminary test was done in which the accelerations of the
accelerometers attached to the side and top of the outer cylinder (each end and one
side at a time) were checked and if they were found to be less than 1%, the actual

experiments could then be started.

The experiment was started by first setting the amplitude of oscillation, for
example 1 mm peak-to-peak, on the exciter control. Then, the frequency, for instance
20 Hz, was set. The shaker was turned on and the magnitude of the rms value
of the pressure on the FFT analyzer was read for two pressure transducers, since
the analyzer is dual-channel. To calculate the rms value, to avoid damage to the
equipment (not becoming too hot for a long experiment before the experimental
setting is changed for the next one) the number of averages chosen was 16. Then, the
next two transducers were selected by using a selector switch and the readings were
recorded by the computer. This procedure for all transducers was repeated antil all

transducer readings were recorded.

To measure the phase angle, one of the channels of the analyzer was connected to
the accelerometer, while the other was connected to the selected pressure trensducer
via the selector switch. The mode of the analyzer was changed from the amplitude
reading to phase reading. The phase angles for all the transducers were recorded in
the same way as explained for pressure measurement. The coherences of the pressure

signals with respect to the accelerometer signals were obtained by changing \b:: mode
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of the analyzer from phase measurement to coherence measurement. The recording

of the coherences was performed for all the transducers in the same manner.

Then, the next frequency of oscillation (30.4 Hz) was selected and the experi-
ment was repeated for all the quantities measured. After the frequency sweep was fin-
ished, the amplitude of the oscillation was varied on the exciter control and the proce-
dure of measurement was repeated for a new frequency sweep. It should be remarked
that, for experiments with flow, the appropriate orifice readings were also recorded.
Also, during each experiment, specially during the experiments with high-amplitude
and/for high-frequency oscillations, the reading of the accelerometer mounted inside
the centre-body was checked to ensure that the centre-body was not vibrating, which

would affect the final readings.

The above procedure was repeated for the following cases: (2) uniform annular
geometry, without and with flow (different flow rates in different regimes, laminar
or turbulent), translational or rocking motion of the outer cylinder at various ampli-
tudes and/or frequencies of oscillation; (b) nonuniform (backstep) geometry, with the
same range of experiments as were performed for a uniform annulus; (c) nonuniform
(diffusers with 6° and 20° half-angles, one at a time) again with the same range of

experiments as for the other geometries.

For any individual experiment, if there was any doubt in the results or in the
experimental environment, the experiment was repeated several times to obtain, as
much as possible, the most accurate results under the best experimental conditions.
Another important test to insure more accurate results was to interchange the pres-
sure transducers. This eliminated the doubt that the readings of some of the trans-
ducers were influenced by the local geometrical configuration and by the mounting,

set screws, support rods, pins, etc., which were used inside the annulus for rigidity.
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8.4 Experimental Results

In this section, the experimental results are presented. The presentation begins with
the results obtained for the uniform annular space, for the cases of translational and
rocking motions of the outer cylinder. These include Figures 8.14-8.57. These figures
represent sample data, chosen out of 6764 files of experimental data obtained for four
different annular geometries, namely (i) uniform, (ii) backstep, (iii} diffuser with 6°
half angle and (iv) diffuser with 20° half angle. Generally, the results shown in the
figures are classified into two groups for each figure, unless otherwise mentioned in
the captions: (a) the left panels are for no fluid flow, (b} the right panels are for fluid
flow with Re = 2900. Normally, there are six panels in each figure. As mentioned
in their appropriate captions, the panels from top to bottom of the figures are either
for different (increasing) frequencies or amplitudes.

The figures (see Figures 8.14-8.57) present the following data: (1) the amplitude
spectrum of the unsteady pressure for specific transducers; (2) the unsteady pressure
versus distance along the cylinder, obtained by all pressure transducers; (3) the phase
angle spectrum of the unsteady pressure with respect to the acceleration of the outer
cylinder versus the frequency of oscillation for a specific pressure transducer; (4) the
phase angle versus distance along the cylinder, obtained by all pressure transducers;
(5) the coherence spectrum of the unsteady pressure with respect to the acceleration
of the outer cylinder for specific pressure transducers; (6) a sample of the pressure
spectra produced at a high Reynolds number without motion of the outer cylinder; (7)
the unsteady pressure versus distance along the cylinder at high Reynolds numbers.
All the aforementioned cases are for translational motion of the outer cylinder. Cases
1-5 and 7 are repeated for rocking motion of the cylinder and a uniform annular

geometry. Similar figures are presented for nonuniform annular spaces.

Following these cases, the figures representing the comparison between the the-
oretical and experimental results are presented, which include the uniform annu-

lar space for translational or rocking motion of the outer cylinder, The next set
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of figures present the comparison between the theoretical results obtained both us-
ing time-dependent coordinate transformation and mean position analysis with the
experimental results. Finally, the last figure presents the comparison betwecen the

theoretical and experimental results at different frequencies.

Figures 8.14, 8.21, 8.27, 8.33 and 8.39 present the unsteady pressure amplitudes
(for uniform annular geometry when the outer cylinder is in translational motion,
rocking motion, in translational motion with a backward facing step, with a diffuser
section having half-angle & = 6° and with a diffuser section having a = 20°, respec-
tively), measured by individual pressure transducers through the spectrum analyzer,
recorded and processed by the computer. The indicated pressure readings were then
corrected by the calibration factors. Figures 8.15, 8.20, 8.22, 8.26, 8.28, 8.32, 8.34, 8.38, 8.40, 8.44-
8.46 present the unsteady pressure amplitude along the axial distance of the centre-
body for different annular geometries, in translational motion and for uniform annular

geometry in rocking motion.

The discrepancy between the pressure readings for the two pressure transducers
mounted at the midpoint of the centre-body diametrically opnosite to each other
is clearly seen in Figure 8.15; the reasons for these discrepancies were discussed
before. Figure 8.20 is similar to the previous figure but was drawn for higher velocities
(Re = 5000 and Re = 9000). In Figure 8.22, which is for uniform annular space and
the outer cylinder in a rocking motion, the agreement between the pressure readings
is much better than those of Figure 8.15. The hinge is located at X = z/H = 18.5.
The pressure readings at the midpoint are also much better than in the case of
translational motion of the outer cylinder. Figure 8.26 is similar to Figure 8.20
(turbulent regime), but for rocking motion of the outer cylinder. Figure 8.28 is similar
to 8.15 but for annular geometry with a backstep. The pressure drop, obviously,
indicates the wider space after the step and is due to the reductior: in the unsteady
flow velocity. Figure 8.32 is similar to Figure 8.20 (high Reynolds numbers) and was

drawn for an annulus with a backstep. The generation of the vortices was seen after
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the step at Re = 9000, by sharp variations of the pressure after the step.

Figure 8.34 is similar to 8.28 and presents the unsteady pressure for a diffuser
with 6° half-angle. The pressure readings are more uniform than those of backstep
geometry. Figure 8.38 presents results similar to those shown in Figure 8.32 (turbu-
lent regime). As expected, the pressure fluctuations were not seen downstream of the
diffuser, which indicates that there was less vortex generation and the fluid flow be-
haved like a well streamlined flow, even at such a high Reynolds number. Figure 8.40
presents results similar to those shown in Figure 8.34. Here, the unsteady pressure
behaved, more or less, the same way as in the backstep geometry (see Figure 8.28).
Figure 8.44 is similar to Figure 8.38 (high Reynolds number). The pressure down-
stream of this type of diffuser behaved, somehow, in-between that for a backstep and
a diffuser with a = 6°. Finally, Figure 8.45 presents the comparison between the
pressure readings obtained for all nonuniform annular geometries and shown in the

previous figures. A similar comparison is made for the turbulent range in Figure 8.46.

Figures 8.16, 8.23, 8.29, 8.35 and 8.41 present the phase angle of the unsteady
pressure with respect to the acceleration of the outer cylinder, for uniform and nonuni-
form annular geometries, with the outer cylinder either in translational or rocking
motion. In all the figures, the phase diagrams with flow were smoother than those
without flow, Figures 8.17, 8.24, 8.30, 8.36 and 8.42 present the phase angle along the
axis of the centre-body measured by all pressure transducers, for different geometries,
and different motions of the outer cylinder. The phase angles for all geometries when
the outer cylinder was in translational motion were nonzero but close to zero, which

was obvious because the fluid is air.

Figures 8.18, 8.25, 8.31, 8.37 and 8.43 present the coherence between the un-
steady pressure signals and the acceleration signals due to the motion of the outer
cylinder. These figures are for uniform and nonuniform annular geometries when
the outer cylinder is either in translational or rocking motion. The results presented

indicate that the unsteady pressure was generated mostly by the oscillation of the
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outer cylinder (i.e, the magnitude of the coherence gets close to one) hence, the other
extraneous factors have less effect on the magnitude of the measured pressure. Thus,
the coherence measurement gives a measure of the accuracy of the measured quan-
tities during experimentation. The coherence diagrams, also, show several peaks

corresponding to the higher harmonics that cannot be easily seen in the pressure

spectra.

Figures 8.47-8.50 present the comparison between the results obtained from the
mean-position analysis and the experimental results, both for unsteady pressure and
phase angle, during the translational motion of the outer cylinder, in uniform annular
geometry. For such a small-amplitude oscillation, the agreement between both results

is good.

Figures 8.51-8.54 present a similar comparison between the theoretical and ex-
perimental results, but for a rocking motion of the outer cylinder. It is scen that
the agreement between the two is excellent. In fact, the main reason for this close
agreement is that, in the rocking motion of the outer cylinder, the moving cylinder is
fixed at one end through the hinge, and at the other end it is supported by the shaker,
thus practically, the moving cylinder can not move side-ways nor is it free to move
in any other direction except in the plane of symmetry. Therefore, the experimental

results are more reliable than those obtained for translational motion of the outer

cylinder.

Figures 8.55 and 8.56 present the comparison between the results obtained by
theoretical models and the experimental results. The results show that, the time-
dependent coordinate transformation, vis d vis the mean-position approach, provides
closer agreement with experimental results and is more reliable. As shown in Fig-
ure 7.4, when much larger values of L, and L, are used, the results are within 3% of
those for L = 20, hence, the theoretical values approach more the experimental val-
ues. Finally, Figure 8,57 was drawn to compare the theoretical and the average values

of the experimental unsteady pressure at different frequencies. The agreement is good
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and the trend of the fitted curves indicates that the pressure is a quadratic function
of the frequency (through the acceleration generating the unsteady pressure).
Regarding the results presented in the previous figures, the general conclusion
is that the experimental results confirm the theoretical results for uniform annular
space in both the translational and rocking motion of outer cylinder. The agreement
is especially good for the rocking motions of the outer cylinder. It was found that
the experimental results are in better agreement with the theoretical results obtained
by time-dependent coordinate transformation analysis rather than those obtained by

the mean-position analysis.

8.5 Experimental Error Analysis

Errors will creep into all experiments, regardless of the care exerted. An experimental
error is an experimental error. If we knew what the error was, we would correct it
and it would no longer be an error. The real errors in experimental data are those
factors that are always vague to some extent and carry some amount of uncertainty.
Our task is to determine just how uncertain & particular observation may be and
to devise a consistent way of specifying the uncertainty in analytical form (in the
form of an equation). It is better to speak of experimental uncertainty instead of
experimental error because the magnitude of an error is always uncertain. But since
the term error rather than uncertainty is used extensively, in this section we mostly
use the former definition whenever we talk about uncertainty.

Some of the types of errors that may cause uncertainty in an experimental
measurement are: first, the errors coming from the construction of the apparatus
and instruments which may invalidate the results; second, there may be certain fixed
or systematic errors which will cause repeated readings to be in error by roughly
the same amount but for some unknown reason; third, there are random errors,
which may be associated with the experimenter, random electronic fluctuations in

the apparatus or instruments, various uncontrollable influences (e.g., friction), etc.
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These random errors usually follow a certain statistical distribution. We should
use the theoretical methods based on the characteristics of the instruments and the

conditions of experimentation to estimate the magnitude of a fixeu error (Holman
1989).

Bias or systematic error is a fixed value re-occurring consistently every time
the measurement is made. It is not susceptible to statistical analysis. Another type
of error includes disturbances introducing errors of sufficient magnitude to hide the
test information. Extreme vibration, mechanical shock of the equipment, or pickup
of extraneous noise may be of sufficient magnitude to make the testing meaningless.

In such cases the tests are stopped and the disturbing elements are eliminated.

There are precision errors in the measurand (particular physical parameter be-
ing observed and quantified) due to the observer not being consistent when estimat-
ing readings such as the amplitude or frequency on analog meters, or the process
involved may include certain uncontrolled, or poorly controlled, variables that results

in changing conditions (Beckwith & Marangoni 1990).

Most of the foregoing have occurred in this experimental investigation. Let us
review the measures taken to reduce, to the extent possible, the error in the exper-
iments. For each geometrical configuration (uniform or nonuniform annular spaces)
the whole system must be disassembled and reassembled, hence, each time the ad-
justments of various parts to their original positions must be done, a time-consuming
job, to prevent any misalignment in the system such as preventing eccentricity in a
supposedly concentric arrangement. The pressure transducers were secured in their
places as shown in Figure 8.10 with a rubber gasket to prevent any leakage of air
from the gap between the transducer surface and the inner cylinder surface, thereby

increasing the accuracy in pressure readings.

Although a sponge was used to fill the :nd gaps, it was squeezed enough to
prevent air leakage from these gaps, which ultimately reduces the uncertainty in the

pressure and velocity readings. During experimentation at high amplitudes and/or
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frequencies, there were vibrations induced in the whole system. These vibrations,
as mentioned, are random in nature which introduces random errors in our results.
To minimize this type of error, the mass of the whole system is increased by placing
several bags of sand on the surface on which the apparatus is mounted; also, the
frequency of experimentation is kept below 50 Hz (this explains the reason why most
of the experiments were done in the range of 20 < f < 40 Hz). Some measures were
taken to eliminate the extraneous noise entering into the annular space, e.g., by using
an acoustic filter, in addition to a special noise-attenuation plenum chamber, during
the experiments with flow as explained in the previous sections. Using these devices,
we probably increased the accuracy of the readings.

The data obtained in this experimental investigation are single-reading data
rather than multiple-reading data which are obtained in those instances where enough
experiments are performed so that the reliability of the results can be assured statisti-
cally. The limitation of having more measuring devices (such as pressure transducers),
the variety of experiments, and finally the time limitation prohibited the collection
of multiple-reading data.

Suppose a set of measurements is made and these measurements are then used
to calculate some desired results of the experiments. The result R can be given as a

function of the primary measurements z,, =3, z3, ..., £,. Thus,
R = R(z), 22,73, ..., Zp) - (8.3)

If eg is the uncertainty (error) in the results and ey, e3, ey, ..., €, is the uncer-

tainties (errors) in the primary measurements, then, ey is given by (Taylor 1982)

3R \* (oR \* oR \"
ER = I:(.é;':el) + (51:—2'62) R o (6:!:“ en) . (8.4)

The unsteady pressure produced by the oscillation of the outer cylinder is a

function of acceleration of the cylinder; hence, for small-amplitude oscillations (0.5

mm, 1.0 mm and 1.5 mm) in this study the pressure is a linear function of amplitude
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of oscillation and a quadratic function of the frequency of oscillation, t.e.,

p=uyle, f2) = ylef?), (8.5)

where €f? comes from the acceleration @ = ew?sinwt when we have a harmonic

sinusoidal oscillation of the outer cylinder. The error associated with equation (8.5)

is

2 2 1/2
e, = [(%%et) + (23—3}.3,) ] : (8.6)

Considering equation (8.1), the flow velocity in the annulus can be given by
Uo = z(cd1d1D1hw’pvam Rl) (87)

The error associated with equation (8.7} using equation (8.4) is written as

2 Y h (220 + (2 + (220 + (226, )
%= |\ 3c, 5 ad"¢ ap*°? Bhy M By "

0z 2 0z 72
+ (g-é:e&) + (5"}2—;6&.) } . (88)

The physical measurable parameters influencing the accuracy of the experi-

mental results obtained in this analysis with their appropriate uncertaintics, and the

uncertainties associated with the measuring equipment are as follows:

The manometer reading, h,, = 7.3 £ 2% cm of alcohol (for Re = 2900).
the density of air, py = 1.21 £ 1% kg/m?,

the outer cylinder radius, R, = 5.38 £ 0.2% cm;

the inner cylinder radius, R, = 4.45+0.2% cm;

the coefficient of discharge of the orifice plate, Cy = 0.68 £ 0.5% (from
calibration data);

the outer diameter of orifice plate, D = 4.0 £ 0.2% cm;

the orifice diameter, d = 2.54 £ 0.2% cm (one of the orifices);

the amplitude of oscillation, € = 10 £ 4% mm (obtained from the exciter

controller);
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The frequency of oscillation, f = 20 & 4% Hz {obtained from the exciter
. controller).
The instruments and equipment accuracies are as follows:

Fast Fourier Transform analyzer:
Amplitude accuracy (full scale, log) +0, -0.1 dB.
Frequency accuracy £0.003% of the display centre frequency.
Display accuracy 3% of total height or width.
Transfer function accuracy (used for phase measurement) £5°.
Coherence accuracy (marker resolution) 0.01.

Accelerometer calibrator accuracy 10 (rms)£3% m/s2

Accelerometer B&K 4381 accuracy 82.9 2% mV/g,

Exciter control accuracy 4% of meter reading.

There are certain other uncertainties, associated with some of the equipment,
which were not available, These are: power amplifier calibration data, charge ampli-
fier calibration data, calibration sheet for exciter head of the shaker.

Taking into account the most important uncertainties and using equations (8.4-
8.8) in conjunction with equation (8.1), the uncertainties (errors) associated with the
eight pressure transducers in Figure 8.7(a) for the case of fluid flow with Re = 2900
at € = 1 mm amplitude corresponding to e = 0.1075 and f = 20 Hz are obtained and
tabulated in Table 8.1.

The data presented in Table 8.1 is for the worst case of the results presented,
i.e., for Figure 8.48. The accuracy of £0.25 — 0.29 Pa, which is less than 10% of the
pressure readings, explains the absolute accuracy of each pressure transducer. For
Figure 8.48, this accuracy does not include the discrepancies between the readings by
different pressure transducers and, at most, is off by 5% of the reading of individual
pressure transducer, while for Figures 8.47, 8.49 and 8.50, the accuracy shown in

Table 8.1 also includes the latter.

The uncertainties of the phase angle are assumed to be the values given by the
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[ [ PTI[ PT2| PT3] PT4] PT5] PT6] PT7| PT8|
Pressure | 2.924 | 3.102 | 2.783 | 3.248 | 2.847 | 2.888 [ 3.024 | 2.458
reading (Pa)

Accuracy (Pa) | £0.27 | £0.28 | £0.25 | £0.29 | £0.26 | £0.26 | £0.27 :1:0.22|

Table 8.1: Uncertainties associated with measured unsteady pressures.

| [ PT1 | PT2 | PT3 | PT4 | PT5 | P16 | P17 | P18 |
Phase | 177 | 182 183 | -181] 178 175 175 Tﬂ

angle (deg)
Accuracy (deg) | £5| +5) &5| £5| £5]| #5]| +5| &5

Table 8.2: Uncertainties associated with measured phase angles.

accuracy of transfer function in the phase mode of the FFT analyzer, i.e., £5° for
all phase angle measurements. For instance, for the pressure transducers shown in
Figure 8.7(a), the phase anglesat € = 1 mm and f = 20 Hz are tabulated in Table 8.2.

Following the same analysis and using equations (8.1) and (8.8), the uncertainty
pertinent to the flow velocity measurement for a specific orifice plate and manometer

reading of h,, = 7.3 cm of alcohol with density p, = 0.7866 gr/cm? is
U=253+26%m/s.

Following the previous error analysis for most of the measurements, the exper-
imental data presented in this chapter can be relied upon. Certain modifications in
the apparatus and more precise measuring instruments would provide more accurate
results. One of the most important factors affecting the experimental results is to
have a firm foundation for the apparatus. The floor on which the whole system is
mounted is not rigid enough to prevent transmission of vibration from the surround-
ings to the system or from the frame of the shaker to the inner cylinder via the
supports of the apparatus. Also, developing other solutions for the problem of the

end gaps would certainly improve the accuracy of the results.
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Figure 8.1: Schematic of the experimental apparatus in which either transverse or
rocking motion of the central part of the outer cylinder can be imposed by the shaker.
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Figure 8.2: Sealing arrangements between the moving and fixed parts of the outer
cylinder: (a) sponge-felt gaskets between the flanges; (b) close-fitting flanges; (c)
flange with lubricated rubbing contact with the oscillating cylinder (for zero axial

velocity only).
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Figure 8.3: Schematic diagram of the central portion of the apparatus, showing
dimensious aud location of the pressure transducers.
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Figure 8.4: Schematic diagram of the centre-body, the outer cylinder, the shaker and
the pressure transducers for rocking motion of the outer cylinder.
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Figure 8.7: Schematic representation of the mounting of pressure transducers for
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Figure 8.9: Schematic diagram of the orifice piate used in the experiments.
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Figure 8.10: Schematic diagram of the arrangement for mounting the pressure trans-
ducer inside the centre-body.
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Figure 8.13: Schematic diagram of the chamber used for pressure-transducer calibra-
tion.
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40 Hz. Left figures, no flow; right figures, Re = 2900.
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Figure 8.16: samples of phase angle spectra of the unsteady pressure with respect to
the acceleration of the outer cylinder for pressure transducer No. 1 shown in Figure
8.7(a) at different frequencies for € = 0.05375; the outer cylinder is in translational
motion. Left figures, no flow; right figures, Re = 2900.
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Figure 8.22: Nondimensional unsteady pressure versus length for rocking motion of
the outer cylinder. The amplitudes of oscillation froin top to bottom are: ¢ = 0.05375,
¢ = 0.1075 and ¢ = 0.16125 and the frequencies are: o, f = 20 Hz; A, f = 30.4 Hz;
*, f = 40 Hz. Left figures, no flow; right figures, Re = 2900.
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Figure 8.24: samples of phase angles of the unsteady pressure with respect to the
displacement of the outer cylinder in rocking motion for € = 0.16125. From top to
bottom; f = 20 Hz, f = 30.4 Hz and f = 36 Hz. Left figures, no flow; right figures,
Re = 2900. X is difined as z/H.
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Figure 8.25: samples of coherence spectra of the unsteady pressure with respect to
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€ = 0.05375; left figures, no flow; right figures, Re = 2900.
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Figure 8.26: Nondimensional unsteady pressure versus axial distance for rocking
motion of the outer cylinder. The amplitudes of oscillation from top to bottom are:
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Figure 8.28: Nondimensional unsteady pressure versus axial distance for translational
motion of the outer cylinder (backstep geometry). The amplitudes of oscillation from
top to bottom are: € = 0.05375, € = 0.1075 and € = 0.16125 and the frequencies are
o, f = 20 Hz; A, f = 30.4 Hz; », f = 40 Hz. Left figures, oo flow; right figures,
Re = 2900.
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Figure 8.30: samples of phase angles of the unsteady pressure with respect to the
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figures, no flow; right figures, Re = 2900. X is defined as z/H.
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Figure 8.32: Nondimensional unsteady pressure versus axial distance for translational
motion of the outer cylinder (backstep geometry). The amplitudes of oscillation from
top to bottom are: ¢ = 0.05375, ¢ = 0.1075 and ¢ = 0.16125 and the frequencies are
o, f =20 Hz; A, f = 304 Hz; », f = 40 Hz. Left figures, Re = 5000; right figures,
Re = 9000.
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Figure 8.34: Nondimensional unsteady pressure versus axial distance for translational
motion of the outer cylinder (diffuser geometry with a = 6°). The amplitudes of
oscillation from top to bottom are: € = 0.05375, ¢ = 0.1075 and ¢ = 0.16125 and the
frequencies are: o, f = 20 Hz; A, f = 30.4 Hz; x, f = 40 Hz. Left figures, no flow;

right figures, Re = 2900.
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Figure 8.36;: samples of phase angles of the unsteady pressure with respect to the
displacemet of the outer cylinder in translational motion (diffuser geometry with
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Figure 8.38: Nondimensional unsteady pressure versus axial distance for translational
motion of the outer cylinder (diffuser geometry with @ = 6°). The amplitudes of
oscillation from top to bottom are: ¢ = 0.05375, € = 0.1075 and ¢ = 0.16125 and the
frequencies are: o, f = 20 Hz; A, f = 30.4 Hz; *, f = 40 Hz. Left figures, Re = 5000;

right figures, Re = 9000.
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Figure 8.39: samples of amplitude spectra of the unsteady pressure from pressure
transducers; —,No. 1; - - -)No. 2 shown in Figure 8.7(c) (diffuser geometry with
a = 20°) at different frequencies for € = 0.05375. The outer cylinder is in translational
motion. Left figures, no flow; right figures, Re = 2900.
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Figure 8.40: Nondimensional unsteady pressure versus axial distance for translational
motion of the outer cylinder (diffuser geometry with a = 20°). The amplitudes of
oscillation from top to bottom are: € = 0.05375, € = 0.1075 and € = 0.16125 and the
frequencies are: o, f = 20 Hz; &, f = 30.4 Hz; *, f = 40 Hz. Left figures, no flow;
right figures, Re = 2900.
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Figure 8.42: samples of phase angles of the unsteady pressure with respect to the
displacemet of the outer cylinder in translational motion (diffuser geometry with
a = 20°) for € = 0.16125. From top to bottom; f = 20 Hz, f = 30.4 Hz and f = 36
Hz. Left figures, no flow; right figures, Re = 2900.
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Figure 8.44: Nondimensional unsteady pressure versus axial distance for translational
motion of the outer cylinder (diffuser geometry with a = 20°). The amplitudes of
oscillation from top to bottom are: ¢ = 0.05375, ¢ = 0.1075 and ¢ = 0.16125 and the
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Chapter 9

Time-Domain Study of
Fluid-Structure Interaction and
Stability Analysis

In the previous chapters, numerical solutions were obtained for the forced vibrations
of the structure (outer cylinder) using mean-position and time-dependent coordinate-
transformation analyses for both uniform and nonuniform annular geometries. In
this chapter, the next important objective of this Thesis, namely, the stability of
the structure under the influence of the fluid forces is investigated. In the previous
chapters, the motion of the structural boundaries was assumed to be a function of

time as given by equation (4.36) which is prescribed for all times.

As was shown in previous chapters, the boundary conditions required to solve
the unsteady N-S equations were dependent on the method of solution. For the mean-
position analysis it was sufficient to specify the velocity of the moving boundary (outer
cylinder), whereas for the time-dependent coordinate transformation analysis both
displacement and velocity of the moving boundary were specified. In this chapter
both cases are considered. The unsteady time-dependent fluid force exerted on the
wall of the outer cylinder executing forced vibration consists of pressure and viscous
shearing forces. For the mean-position analysis, these forces are functions of only
the velocity of the wall of the structure through the solution of the fluid equations

which are dependent only on the structural wall velocity. On the other hand, in
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the time-dependent coordinate-transformation analysis, the unsteady fluid forces are
functions of both the time-dependent displacement and velocity of the structure, i.e.,
they depend on €"*! and Uy,"*! at time level t"*!. In this chapter, the fluid-structure
interaction problems are solved, whereby the motion of the structure is allowed to

evolve in accordance with the forces acting on it, i.e., the fluid forces.

The fluid-structure interaction involving the coupling of the fluid dynamic
equations and the equation of structural motion was studied by Bélanger (1991),
Paidoussis et al. (1992) and Bélanger et al. (1993) by using the linearized Navier-
Stokes equations for small-amplitude oscillations (mean-position analysis) of the outer
cylinder. A very simple explanation of the fluid-structure interaction phenomena is
the following one (Bélanger 1991). Given a structure and a fluid flow about it, one
displaces the structure by a small amount away from its equilibrium position, and
then releases it. There are mechanical restoring and damping forces, as shown in
Figure 9.1, which will act to return the structure to its equilibrium position. How-
ever, as it undergoes displacement toward equilibrium, fluid forces come into play and
may render the fluid-structure system uastable, or add more damping or stiffness to
it. The time-evolution of the displacement of the structure determines whether the
system under consideration is stable or unstable. This is assessed by integrating the
equation of motion of the structure under the combined mechanical and fluid forces,

using either a predictor-corrector scheme or a fourth-order Runge-Kutta scheme.

The fluid-structure interaction cases considered in this chapter are divided into
two groups. The first one involves the mean-position analysis of the fluid forces
obtained in Chapter 4. The second group involves the time-dependent coordinate-
transformation analysis of the fluid forces described ... Chapter 6. For the first type
of analysis, both uniform and nonuniform annular spaces are considered. For each
annular geometry, translational motions of the outer cylinder are investigated; on the
other hand, rocking motion of the outer cylinder is investigated only for the uniform

annular geometry. For larger-amplitude oscillation, only translational motion of the
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outer cylinder for uniform and backstep annular geometries is considered. In addition
to these 3-D fluid-structure interaction analyses, the cases of 2-D stability analysis
of these systems for both types of theoretical analysis of Chapters 4 and 6 are also

conducted.

9.1 Analytical Coupling of the Fluid Forces and
Structural Dynamics

The cylindrical structures considered are shown in Figure 9.1. It is seen that this
structurc has one degree of freedom, ¢(t), which is a generalized displacement. The
structure {(outer cylinder) has mass M, and is restrained by a mechanical spring K
and a dashpot C; for rocking motion, the pertinent mass-moment of inertia about
the hinge axis shown in Figure 8.4 is J; C, and K, are respectively the moment
cocfficients of the dashpot and rotational spring located at the hinge point (not
shown in Figure 8.4). The equations of motion of the structure for translational and
rocking motions are equations (2.19) and (2.20), respectively, which may be rewritten
here as

Mij+Cy+ Ky = F(t), (9.1)

J6 + C,0 + K,0 = M,(t). (9.2)

Considering the characteristic length, H, of the structure, and the characteristic

velocity, U, of the fluid, one can write equation (9.1) in dimensionless form as
&(t) + 26waé(t) + wie(t) = 0F (e, ¢), (9.3)
where
U KH H C pH?®
t = —t* n = ——--—-=Q—, = — = —_—, .
g “=Vur="u  Tomm a9
and F represents the nondimensional fluid dynamic forces exerted on the cylinder.

The cquation of motion of the structure in rocking motion can similarly be

written in nondimensional form as
B(t) + 26wnrb(t) + w28(t) = oM,(8,6), (9.5)
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where

KH'H _ H _ C.H _ pH®
J U v STaymg T (9.6)

@ is the angular displacement, and M, is the nondimensional moment of the fluid-
dynamic forces exerted on the cylinder.

In equations (9.3) and (9.5), t, wy, wyg and § are the dimensionless time, fre-
quency and damping ratio, respectively, while ¢ is a dimensionless factor weighting
the relative contribution of the fluid and mechanical forces; ¢t* is the dimensional
time, 2, or Qg is the dimensional radian natural frequency of the structure, and
o is the dimensional fluid density. The nondimensional fluid force F is a function
of ¢(t), é€t) and €(t) through the added stiffness, added damping and added mass
effects, respectively, but &(t) is not needed explicitly in the numerical evaluation of
the fluid forces [¢(t) is also not needed explicitly when we consider small amplitude

analysis of the fluid forces]. The nondimensional fluid moment M, is, equivalently,

a function of 8(¢), 8(t) and 4(t) .

9.2 Numerical Solution of the Coupled Equations

To integrate equation (9.3), we suppose at the beginning that the time level t" has
been reached, where all the quantities necessary to describe the structural motion
are known (Paidoussis et al. 1992): the displacement, ¢, the velocity, ¢, and the
acceleration, €, of the structure, and the fluid forces acting on it, F(e",é") = F™.
For the rocking motion, the proper quantities in equation (9.5) are assumed to be
known. As mentioned in the previous chapters, these quantities are known at all
previous time levels t*, k¥ < n, and the solution is advanced to t"*!. For structural

motion analysis, this is done using a second-order Runge-Kutta scheme, defined by

the sequence

Predictor step:

nt1/2 o & + %t_e , én+lf2 = ¢+ %‘éﬂ . (9.7,9.8)
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FrHU2 = 12 ent1/2) qrlz - _2£wﬂén+lf2_w'21€ﬂ+1/2+af'n+ll2 :(9.9,9.10)
Corrector step:
N Y e L Ll (9.11,9.12)

FrH = F(ent) ¢ty | et = 2wt Wkt o L (9.13,9.14)

In the predictor step, the intermediate values for displacement and velocity are
first determined at the intermediate time level t"+1/2 = " + At/2, i.e., e"*1/2 and
é"+t1/2 Once €**t1/2 and é"*1/2 are so obtained, they serve for imposing boundary
conditions to integrate the N-S equations up to ¢**+!/2 which allows the calculation
of the fiuid force F"+1/2 at t"*+1/2, The acceleration, €172, of the structure is then
calculated from equation (9.10), and the solution can proceed on to the corrector
step, which is solved in the same manner for the variables ¢"*!, ¢! Fn+l and e+l

The same solution can be obtained through a fourth-order Runge-Kutta scheme

(Bélanger 1991), summarized in the following table as

T =t" X, =e V) =¢" Ay = € X, W)
Th=t"+53 [X=c"+2V [ ="+ 584, | A =€, )
T =t"+%—t A3 =E“+%‘-Vz V3=€'"+%TAz Az = X3, V3)
Ti=t"+ At | Xy ="+ AtV | Vy ="+ AtAg | Ay = € Xy, Vs)

Table 9.1: Runge-Kutta scheme applied to the integration of the equation of the
structure,

The quantities 7T;, &;, V;, and A; are variables of time, displacement, velocity and ac-
celeration, respectively, After they have been calculated through the process outlined

in Table 9.1, the time level is advanced to t"*! as
n+l n At cntl in At
€ =¢ +?(VI+VQ+V3+V4) , N = ¢ +'—6-(.A1 + Ao+ Az+Ay) ,(9.15,9.16)

where 7"t! and €"t! are obtained by equations (9.13) and (9.14).
The sequence of calculations is similar to the predictor-corrector steps outlined
previously. In both cases, the main point is that the displacements e*+1/2, e"+1 and

the velocities é"+!/2, ¢+ obtained from equations (9.7) and (9.11) (9.8) and (9.12)
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may be used as boundary conditions to integrate the N-S equations z}nd calculate the
fluid forces Fn+1/2 and Frtl.

As shown in equations (9.7)-(9.10) and Table 9.1, the solution is sought at inter-
mediate time level "*+!/2, In such circumstances, the three-level real time discretiza-
tion given by equation (3.2) and used in the previous chapters cannot be applied.
Hence, the following semi-discretization is used for the N-§ equations:

SVn+1/2 —gyn 4 yn-l
3?3t T +Q'=0, (9.17)

which is also a three-time-level, second order accurate implicit scheme, written in
terms of velocity at time levels t"~1, t" and t"+!/2, Equations (3.3) and {3.4) can be

expressed as

VrHli2 gQntl/2 = ER V.Vt g (9.18,9.19)

where

8= %At . E" = -;—(QV" - vy
and Q"+!/2 is similar to Q"*! defined in Chapter 3 except that it is evaluated at time
t"*+1/2 instead of t"+1,

Equations (9.18) and (9.19) are solved in the same manner for the quantities
Vnrt1/2 and p"*+1/2) as was done for quantities V™! and p™*! in Chapter 3. Thus,
according to the notations of Chapter 3, in order to solve squations (9.18) and (9.19),
we need to impose as boundary condition the wall velocity U%*1/2, which is given in
Table 9.1 by V, and V4, in steps 2 and 3, respectively. Step 4 in Table 9.1, and the
final updating of the solution, equation (9.14), which both project the solution to
t" 4+ At, can use the time differencing equation (3.2). From now on, all the numerical
steps taken in Chapter 3 are followed, including the pseudo-time discretization of
the N-S and continuity equations in delta forms as given by equations (3.9) and
(3.10), application of the approximate factorization to the equations which results

in equation (3.24), and solution of the resulting equations based on the ADI scheme

using equations (3.26-3.28).
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As mentioned before, depending on the method of solution (mean-position or
time-dependent coordinate-transformation analysis), the solution obtained for the N-
S equations and applied for the stability analysis will be different in terms of the fluid
forces obtained, but the final output, i.e., the displacement and the velocity of the
moving boundary are always imposed as boundary conditions for obtaining the fluid
force F.

In order to start the numerical integration of the coupled equations, the dis-
placement of the outer cylinder at t! and #? is set equal to €(t!) = €(t2) = ¢,, away
from its equilibrium position. This displacement could be small or large, depending
on the method of solution. The other quantities, namely, velocity, acceleration and
fluid force, are all equal to zero. This means that the outer cylinder is stationary at
the first two time steps and there are no unsteady perturbations in the fluid flow.
Then the structure is released, and the time integration is started. By imposing this
two-time-level displacement, the solution would follow exactly the same three-time-
level scheme described in the previous chapters. For small displacements imposed as
boundary conditions to the cylinder, as well as for large displacements, it is assumed
that the mean flow which exists before releasing the cylinder will remain the same as

that which exists in the equilibrium position of the cylinder, for ¢ = 0.

9.3 Numerical Results for 2-D Annular Geome-
try

For the stability analysis of 2-D annular geometries, we assume that the two cylinders
are concentric, infinite in extent and of constant cross-section; the inner radius of the
annulus is r; and the outer one r,. The outer cylinder has one degree of freedom in
translational motion; i.e., its axis always remains parallel with the axis of the inner
cylinder which is fixed.

Equation (9.1) can now be used to investigate the motion of the outer cylinder

in 2-D annular flow; for convenience M is replaced by m, C by ¢, K by k and F by F,
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where the lower case letters and F stand for quantities defined per unit length of the
cylinder. The fluid force F can be obtained from equation (2.16). For the 2-D stability
analysis, the same procedure as in Chapter 4 is applied in determining the unsteady
pressure and the velocity gradients given by equations (2.17) and (2.18). Also, since
no fluid flow is considered, the characteristic flow velocity used to nondimensionalize
equation (9.1) will be 2, H, the dimensional natural frequency £, is defined by 2, =
\/E/; and, as in Chapter 4, the Reynolds number used for numerical integration of
the fluid equations is given by Re = § = Q,H?/v.

Given the characteristic length and velocity, equation (9.1) becomes

¢ = =26 —e+0F(e,¢), (9.20)

and equation (9.4) becomes

kK H _ _ ¢ _ pH?
w"“\[%QnH_l’ 5_2\/k_m' GF---"n—, (9.21)

To make the effect of fluid damping clearly and easily visible, the structural
damping ratio £ is taken equal to zero. As initial condition, ¢, = 0.1 was taken; the
calculations were conducted with At = 27/19, and only the narrow annular space
with r, = 10 was considered. The unit of time for all figures presented in this chapter
will be the natural period, T,,, of the system, which is given by T}, = 27 /w,.

One of the important factors influencing the stability analysis through the so-
lution of, for example, equation (9.20) and similar ones, is the determination of the
value of o. Linearized potential flow theory provides the per unit length nondimen-
sional added mass, o,,, for the geometry under consideration (Gibert 1986; Fritz
1972). This parameter is expressed as

_pH? 1 £2-1
Im = e ArEryl’ (9.22)

where m, is the dimensional fluid-added mass and £ = r,/r;. Using equation {9.22)
and the value for o from equation (9.21), one obtains

Om ™M

| (9.23)

b}
o my
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which indicates the ratio of strsctural mass to fluid-added mass.

To start the stability analysis, either this ratio must be known in advance, or
it must be chosen in such a way that a reasonable structural behaviour is obtained.
Practically, if the fluid is, for instance, water or another high density fluid, the fluid-
- added mass can become very important as compared to the mass of the cylinder.
When the fluid-added mass exceeds the structural mass, numerical difficulties may
arise. In this analysis, we consider only cases where the fluid-added mass does aot
exceed the mass of the structure; thus, the value of & in (9.20) is selected to be equal
to 0 = 0,,/2.0, corresponding to a structural mass m equal to twice the fluid-added

Inass m, determined by potential flow theory.

Figure 9.2(a) presents the time-domain history of the motion of the outer cylin-
der for different Reynolds numbers, and for potential flow as well, when the mean
position analysis is used. The structure is displaced by € = 0.1 and then released. For
the potential flow results, equation (9.20) was solved in which the fluid forces were
determined by linearized potential flow theory. In fact, the potential flow theory re-
sult was used to ensure the validity of the procedure adapted for solving the coupled
N-S and structural equations; by employing potential flow theory, one can obtain an
analytical solution, which in fact compares well with the present numerical solution,

for the motion of the structure immersed in fluid.

In Figure 9.2(a), we see that at a very low Reynolds number, Re = 4, viscosity
dominates the solution and the cylinder motion is so highly damped that no oscil-
lations are possible: the system is overdamped; the cylinder monotonically regains
its equilibrium position, € = 0. As the Reynolds number increases, Re = 200 and
Re = 20,000, damped oscillation develops. As the Reynolds number becomes larger,
the viscous solution gets closer to the potential flow solution (zero dissipation, and

hence zero fluid damping).

In Figure 9.2(b), comparison is made between the results obtained from mean

position analysis (MPA) and time-dependent coordinate-transformation analysis (TD-
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CTA). There are a number of points to be remarked upon in this comparison. First
of all, as mentioned before, the fluid force in MPA is velocity dependent vis-g-vis
the fluid force in TDCTA which is both displacement and velocity dependent. This
is reflected in the fact that the frequency of the coupled fluid-structure according
to TDCTA is increased vis-g-vis the frequency obtained from MPA; i.e., the added
fluid-stiffness is positive. This can be verified (using Figure 9.2(b)) by calculating the
ratio of the natural damping frequencies, (wn)rpora/(wn)spa = 1.3, as compared
with the ratio of damping ratios (§)}rpera/{€)mpa = 0.182. It is also noted that the
MPA results indicate more damping due to fluid action than the TDCTA results;
in the case of TDCTA, the structure has the opportunity to really move and the
fluid to accommodate structural motion, which may explain why the effect of viscous
damping is less pronounced vis-¢-vis the frequency increment. The results shown in
Figure 9.2(b) indicate the importance of taking into consideration the movement of
the boundaries when investigating the stability of the fluid-structure systems even

for small amplitude osciliations.

9.4 Numerical Results for 3-D Annular Geome-
tries

The geometries that we consider in 3-D consist of uniform and nonuniform annular
shapes shown in Figure 2.3. In translational motion, the configuration of Figure 2.4
(withot hinge) is used for stability analysis. The equation of motion of the system and
the associated numerical results are first presented for the uniform annular geometry,
when the outer cylinder is in translational motion in the planc of symmetry. Equa-
tions (2.16-2.18) and (9.3-9.4) are used to study the time-domain behaviour of the
structure. As in 2-D analysis, the reduced mechanical damping, £, is neglected. The
Reynolds number appearing in the equations of fluid motion is given by Re = 2UH/v.
Now, the value of o should be determined before solving the equation of motion of the

structure. In potential flow theory, the equation of motion of the oscillating cylinder
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can be written as (Mateescu & Paidoussis 1985)
(1 4+ 0g2)é + (2wn + 001 ) + (W +0g,)e =0, (9.24)

where ¢2, q) and g, are the nondimensional added mass, added damping and added

stiffness, respectively. These parameters are given by

M, C.H K
Q2 = ;Tf[—:" ql - MU L] qﬂ - MU2 ] (9-25)

where M,, C, and K, are dimensional added mass, added damping and added stiff-
ness. Then, for 3-D potential flow, one can find ¢ from equations (9.4) and (9.24)
as

pH? M, _ M,

M pH3 = ﬁ' . (926)

Once agein, the mass ratio is selected to be M/M, = 2.0, and to find o the

g2 =

added mass g, must be known. For this purpose, the coupled structural and potential
flow equations, similar to equation (9.24) but without the damping term, are solved
(Bélanger et al. 1993).

For rocking motion of the outer cylinder, considering small amplitude motion,
the fluid force acting on the outer cylinder is not given by equation (2.16); rather, it

is obtained from

2%
F(t) = /o (T,.,.l,= R, €088 — Tog|r=r, SINO + Trylr=p, é%z_)) Rodf , (9.27)

where 7., is given by equation (2.15) as

ou Ov
1-[13 ST = (-a-; + -a—x') y (9.28)

and de(t,z)/dt is obtained from equation (4.41). The moment of the fluid force is
denoted by M, in equation (9.2), or in nondimensional form by M, in equation (9.5);
it can be obtained by calculating the moment about the hinge point of the distributed
fluid force along the cylinder axis.

Equation (9.5) can be written in the same form as equation (9.24). Thus, for

rocking motion of the outer cylinder, the final equation to be solved reads (Mateescu
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& Paidoussis 1985,1987)

(1 + og2)f + (26w, + 6¢,)0 + (W2 4+0g,)0=0, (9.29)
where
Jc CaHs KaH4
q2 - ;FI_S 1 QI - JU 1 QO hand _W [ (9-30)

and as in equation (9.25), J,, C, and K, stand for the added moment of inertia,
added damping and added stiffness of the fluid force, respectively.

To solve equation (9.29), one needs to determine ¢. By the same method
used for translational motion of the cylinder, we can define oq2 = JofJ. Thus,
by preliminary calculation, ¢, is obtained using potential flow theory (Mateescu &
Paidoussis 1987).

The stability analysis for annular geometries other than uniform (such as backstep-
and diffuser-shaped) are implemented in the same manner, but for translational mo-
tion of the outer cylinder. For the annular geometry with a backstep, both the MPA
and TDCTA are used to calculate the fluid forces. For diffuser shaped annular ge-
ometries, only MPA is used. The results for all three-dimensional analyses are shown
in Figures (9.3-9.5).

Figure 9.3(a) shows the time-evolution solutions for the displacement of the
vibrating outer cylinder for uniform annular geometry via MPA and TDCTA, when
wn = 0.1 and Re = 200. The same behaviour of the structure is seen in Figure 9.3(a)
as was shown in Figure 9.2(b) for 2-D analysis, but there is more damping of the
motion due to fluid flow and shear stresses along the cylinder axis. Once again,
the natural frequency of the coupled fluid-structure system is increased in TDCTA
vis-g-vis MPA. Figure 9.3(b) presents the behaviour of the system when the back-
step geometry is used, for w = 0.1 and Re = 200. Comparison between the MPA
and TDCTA results in Figure 9.3(b) indicates that, as for uniform annular regions,
TDCTA predicts less damping and a fluid stiffenning effect in the system for the

same imposed frequency and Reynolds number. Comparison between Figures 9.3(a)
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and 9.3(b) indicates that the system with backstep is less damped than for the uni-
form annular space, no matter whether using MPA or TDCTA; this is because the
flow confinement in the former case is smaller over a portion of the system. Also,
when TDCTA is used, the natural frequency of the coupled system is increased more

in the uniform annular geometry than in the backstep one, for the same reason.

Figure 9.4(a) presents the behaviour of the system during rocking motion of
the outer cylinder, for w = 0.1 and Re = 250, for a uniform annular geometry. It is
scen that, the system initially appears to diverge, by falling from an angular displace-
ment 6 = 0.5729° to § = —5.0° but it recovers its motion and then oscillates with
almost constant frequency, showing tendency toward oscillating about the horizontal
axis. The behaviour of the system in Figure 9.4(a) shows that after the cylinder is
rcleased, initially undergoes a transient oscillation around an axis other than the hor-
izontal axis; however, it is seen that this is a short term behaviour and the cylinder

approaches a limite-cycle of oscillation.

In this respect, it should be noted that linearized (N-S) analysis can only pre-
dict linear stability; i.e., either damping or divergent motion (oscillatory or static);
since the nonlinear N-§ equations are solved here, we can have nonlinear behaviour

predicted: in this case, a limit cycle.

Figure 9.4(b) presents the behaviour of the system when diffuser shaped annular
geometries are used. It is seen that, the coupled system is more stable and its
natural frequency is reduced when e = 6° than the system with a = 20° This,
however, might not be so for other flow and geometrical conditions of the system
than those investigated here. Figure 9.5 presents a comparison between the stability
analysis results obtained for translational motion, for all types of annular geometries
mentioned when w = 0.1 and Re = 200. It is seen, that the most stable (most highly
damped) system is the uniform annular system and the least stable is that involving

a backward step.

The final points that should be remarked are that the results obtained are
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for a specific natural frequency of the structure, as well as for a specific Reynolds
number and annular gap width. Also, the effect of the fine or coarse mesh on the
solution of the N-S equations needs special attention. In the 3-D analysis, the results
presented were for cases where extension of the extremities of the fixed upstream
and downstream cylinders were not considered. It is obvious that the behaviour of
the systems would be different when each one or the combination of the parameters
mentioned is changed, e.g. through equations (9.4,9.6,9.21,9.25,9.30). This task needs
a comprehensive parameter study, which is beyond the scope of this Thesis; can be

considered as a possible extension of this work in the future.
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Figure 9.1: Schematic diagram showing the system considered for stability analysis.
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Figure 9.2: (a) Displacement, ¢, of the outer cylinder in translational motion versus
time, T, = 27 /w,, with w, = 1 for 2-D; ----- Re = 4; — Re = 200; - - - Re = 20, 000;
----- ,Potential flow. (b) Comparison between the displacements of the outer cylinder
for Re = 200: - - - MP analysis; —, TDCT analysis.
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Chapter 10

Conclusion

10.1 General Conclusions

This Thesis takes several major steps in the solution of annular flow-induced vibra-
tion problems. The main step in the theoretical investigation was the development
of the numerical method of solution of the full nonlinear Navier-Stokes equations for
laminar flows based on a time-dependent coordinate transformation, in different an-
nular geometries, The second step, was the numerical solution of the fluid equations
in axially variable annular geometries (diffuser type). The third step was the car-
rying out of a comprehensive set of experiments to validate the theories devecloped,
again for different annular geometries, with quiescent fluid or fluid flow in the lami-
nar regime. Experiments were also conducted in the turbulent regime, which will be
useful when the theory is extended to deal with turbulent flows. The last step was
the time-domain study of the fluid-structure interaction and stability analysis for all

annular geometries considered in this Thesis.

The most important contributions of this Thesis are presented in Chapter 6,
where the time-dependent coordinate transformation analysis was introduced in this
work. To solve the flow-induced vibration problems in annular regions, the mov-
ing domain was transformed to a fixed computational domain by using appropriate
transformation equations. Then, the time-integration of the incompressible lami-

nar N-S and the continuity equations was effected by using the method of artificial
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compressibility in conjunction with a three-point backward implicit real-time differ-
encing scheme on a fixed domain. After the semi-discretization, artificial pseudo-time
derivative terms were added to the equations, including artificial compressibility in
the continuity equation, and the solution was advanced from one real (physical) time
level to the next by integrating in pseudo-time until steady state was reached. The
equations were cast in delta-form after differencing the pseudo-time derivatives by
using an Euler scheme. The solution was effected by using the Approximate Fac-
torization and ADI technigues, and finite differences were used in which the spatial

differential operators were written on stretched staggered grids.

Introducing the idea of time-dependent coordinate transformation in FIV anal-
ysis of annular geometries having either uniform or nonuniform annular passages
enables handling of different modes of the motion of the outer (or inner) cylinder (in-
cluding shell motion, which of course was not the topic of this research). When the
limitation imposed on the motion of the structure is removed by a time-dependent
coordinate transformation, the flexibility of performing better and more extensive
studies on the subject of FIV is enhanced. The results obtained by using the time-
dependent coordinate transformation analysis for both uniform and nonuniform an-
nular geometries were more realistic, and hence in better agreement with experiment,
than those obtained fiom mean-position analysis. The unsteady pressures obtained
were appreciably higher than those predicted by mean-position analysis, and the
phase angles of the unsteady pressure with respect to the displacement of the outer
cylinder are clearly different in the time-dependent coordinate transformation analysis
than in the mean-position analysis, specially when the flow velocity is high (in the

laminar range).

Another basic objective of this research was fulfilled in Chapter 5 which was
dedicated to the study of axially-variable geometries, which can develop flow-induced
vibrations; it is recalled that several such problems have been encountered in different

industries. The annular geometries with diffuser sections of half-angle 6° and 20°,
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which are of interest to researchers, were studied. The unsteady pressures obtained
by the present numerical solution in the annular space after the diffuser section, which
predicts pressure recovery, were in good agreement with the findings of other investi-
gators. It was shown that, the pressure recovery is more pronounced for diffusers with
small half- angles than those with larger ones as well as for the backstep geometry.
This pressure recovery, as discussed previously, is a major factor in the stability of

the system.

The next important objective of this Thesis was the implementation of a com-
prehensive experimental study of the system, which were successfully performed and
the results obtained were presented in Chapter 8. The primary concern regarding
experimental investigations was the validation of the numerical results obtained from
two approaches (mean-position and moving-boundary). This chapter, also, presents
another important step taken toward the future extension of this work by presenting
the collected data in the turbulent regime. The set of data obtained (both laminar
and turbulent) were processed and analyzed. The comparison was made between the
experimental results for different nonuniform annular geometries, which clearly indi-
cated different trends of the unsteady pressure in various annular shapes and regions.
The final conclusion about this comparison is that the time-dependent coordinate
transformation analysis agrees better with the experimental results and is therefore
recommended for future FIV analyses in annular configurations. Also, the theoretical
rocking motion results are in excellent agreement with the experimental results both

in terms of unsteady pressure and phase angle.

In all cases considered, the solution of the full nonlinear N-S equations provides
the opportunity of obtaining more accurate unsteady pressure and phase angle than
could be obtained otherwise by linearized solution of these equations. The extension
of the range of Reynolds number from 250 to 2900 (laminar regime) was another out-
come of using the full N-S equations. For time-dependent coordinate transformation,

mean-position and annular flow with axially variable geometry analyses, the bound-
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ary conditions were modified in such a way as to reduce the pressure and velocity
perturbations {to the extent possible) emerging from the extremities of the system,

specially when there is no fluid flow.

The numerical procedure was applied, for the first tiine by the present method of
solution, to the rocking motion of the outer cylinder. The results obtained were grat-
ifying, specially since they were in excellent agreement with the experimental results
which was referred to in the associated paragraph. It is concluded that the mean-
position analysis can be used in rocking motion study of the annular flow, provided
that the amplitude of oscillation is appropriately small. Also, for the nonuniform
annular geometry (backstep), the rocking motion results predict favourably well the

behaviour of the unsteady pressure in the annular space.

Of course, as shown in Chapter 7, some of the results presented are not fully
convergent, because of practical difficulties. Nevertheless, the work in that chapter
shows that the discrepancy is not large enough (for instance, less than 3% as shown

in Figures 7.2 and 7.4) to invalidate any of the results presented.

Finally, the theoretical models presented were used to predict the behaviour
of the structure (outer cylinder) when it is set in motion from rest. The coupling
of the unsteady flow and structural equations was performed through a fourth-order
Runge-Kutta scheme to integrate the equation of the structure under the combined
action of mechanical forces and fluid forces. The fluid forces were obtained by solving
the N-S equations by two approaches: mean-position and time-dependent coordinate
transformation analyses. The stability of the system was analyzed for: (i) transla-
tional or rocking motion of the outer cylinder; (ii) in different annular geometries. It
was shown that, the behaviour of the outer cylinder using time-dependent coordinate
transformation analysis can be physically more deterministic (since the displacement
of the outer cylinder is considered during stability analysis) than that predicted by
mean position analysis. The same conclusion was reached when the annular geometry

involves a backward facing step.
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For the cases, where the annular space is uniform and the outer cylinder moves
in rocking motion, it was shown that for the specific conditions imposed on the sys-
tem, the structure initially has a transient motion around an axis different from the
horizontal axis. After several cycles of oscillation, this behaviour of the structure is
changed and the cylinder continues oscillating around the horizontal axis, indicating
flutter and the establishment of limite-cycle motion. In the study of the stability
of the system containing the diffuser shaped annuli, it was found that the structure
with small-angle diffuser is more stable than the one with large-angle diffuser. Lastly,
another important point was reached in the stability analysis when comparison was
made between different annular geometries. It was shown that for iranslational mo-
tion of the outer cylinder, among the geometries considered and under the imposed
initial and boundary conditions, the most stable system (relatively) is the one having

uniform annular geometry and the least stable one is the geometry having a backstep.
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10.2 Contribution to Knowledge

This work could be used to launch future investigations in the field of FIV with
annular (or even axial internal or external) flows. It was shown that the foundation
is irm and reliable; however, like any such work, it does not cover all aspects of the
problems defined in this field of interest. This Thesis has made the following major
contributions to knowledge:

(a) Development and implementation of the method of solution for fluid flow
cquations (full nonlinear Navier-Stokes equations) based on the time-dependent co-
ordinate transformation for laminar flow in annular geometries.

(b) Unsteady flow solutions have been obtained for axially-variable geometries
by integrating the Navier-Stokes equations using a mean-position analysis.

(c) Extensive experimental investigations of forced vibration of the structure in
order to obtain the unsteady pressure and its phase angle to be compared with the
theoretical results, and also the collection of the experimental data in the turbulent
regime, |

(d) Study of the dynamical behaviour of the structure, under the influence of
the fluid-structure interaction, based on the theoretical models developed, and a case
of limit-cycle motion was found.

Other contributions are:

(e) Modification of the mean-position analysis by considering the full nonlin-
ear Navier-Stokes equations in order to obtain more accurate solutions for small-
amplitude oscillations (translational or rocking motion) and/or larger Reynolds num-

bers.
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10.3 Future Extension of this Research and Some
Recommendations

As one notices in the previous section, the originality of the work done in this Thesis
provides the opportunity of extending the formulation and the results of the exper-
iments presented here to the other FIV problems. Clearly, more work is necessary
on any individual topic in order to make it applicable to the wide range of prob-
lems encountered in science, engineering and other fields (e.g., in medicine) involving
fluid-structure interactions. The following topics which could be the continuation of
this research were classified as follows.

Theoretical Work

(i) The numerical procedure presented here can be used with different boundary
conditions representing practical interest;

(ii) the numerical model (time-dependent coordinate transformation) can be
used to solve shell motion in FIV problems;

(iii) the numerical models can be modified to predict the unsteady pressure for
nonuniform annular geometries with fluid flows of higher Reynolds number (which
could not be implemented in this research); |

(iv) the numerical models can be used for parametric studies such as the effects
of the mesh size and the number of grid points as well as the number of real-time
steps (to investigate and improve convergence), Reynolds number, annular gap width,
the length of the oscillating cylinder, length of the fixed upstream and downstream
portions, higher amplitudes of oscillation, higher frequencies of oscillation, rocking
motion with different position of the hinge point, annular regions with different ge-
ometrics or combination of the geometries, eccentric cylinders instead of concentric
ones, combination of translational and rocking motion of the outer cylinder, etc., on
the solution of tl: 2 N-S equations in the annular region;

(v) modification of the numerical model to minimize the pressure perturbation

at the fixed portions as well as using large memory and faster computers to obtain
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more converged solutions;

(vi) theoretical stability analysis of the systems can be done for different an-
nular gap width, Reynolds number, amplitudes of oscillation of the outer cylinder,
frequencies of oscillation of the cylinder, different mesh sizes, different positions of
the hinge point (in rocking motion) and different geometries.

Experimental work

(i) Experiments with nonuniform annular geometries in rocking motion;

(ii) experiments with uniform or nonuniform annular geometries having eccen-
tric cylinders for both translational or rocking motion of the outer cylinder;

(iii) experiments for the combination of the nonuniform annular geometries;

(iv) experiments for circumferential measurements of the unsteady pressure at
different circumferential angle, @, for both concentric and eccentric cylinders, using
cither uniform or nonuniform annular spaces;

(v} experimental studies for all the cases mentioned with more pressure trans-
ducers to be mounted along the centre-body in order to obtain more experimental
data, and if possible implementation of the experiment with water by modification
of the present apparatus appropriate for that purpose;

(vi) more studies regarding the end gaps between the moving and fixed cylinders;

(vi) experimentation with better facilities for fluid flow measurements (in such
a narrow annular space), and on a much more solid foundation (free from mechanical
vibration) to have more accurate results free from extraneous factors;

(vii) finally, implementation of flow visualization by using appropriate equip-
ment to see the patterns of the fluid flow in such narrow annular spaces during motion

of the outer cylinder.

299



References

Anderson, D.A., Tannehill, J.C. and Pletcher, R.H., 1984, Computational Fluid
Mechanics and Heat Transfer, Hemisphere Publishing Corporation, New York.

Asaithambi, N.S., 1988, “On a Variable Time-Step Method for the One-Dimensional
Stefan Problem”, Computer Methods in Applied Mechanics and Engineering, Vol. 71,
pp. 1-13.

Ashurts, W.T. and Durst, F., 1980, “Studies of Flow Instabilities in Two-
Dimensional Test Sections with Sudden Expansions", Practical Ezperiences with
Flow-Induced Vibrations, Eds Naudascher, E., and Rockwell, D., pp. 801-808,

Beam, R.M. and Warming, R.F., 1978, “An Implicit Factored Scheme for the
Compressible Navier-Stokes Equations”, AJAA Journal, Vol. 16, No. 4, pp. 393-402.

Beckwith, T.G. and Marangoni, R.D., 1990, Mechanical Measurement, 4th Edi-
tion, Addison-Wesley.

Bendat, J.S. and Piersol, A.G., 1971, Random Data: Analysis and Measurement
Procedures, Wiley-Interscience, New York.

Benocei, C., Bellomi, P. and Michelassi, V., 1987, “Comparison of Cartesian
and Curvilinear Grids for Incompressible Flow Around Steps”, Numerical Methods
in Laminar and Turbulent Flows, Eds Taylor, C., Habashi, W.G. and Hafez, M.M.,
Vol. 5, Part 1, pp. 584-594.

Bélanger, F., 1991, “A Numerical Method for Confined Unsteady Flows Related
to Fluid-Structure Interaction”, Ph.D. Thesis, Department of Mechanical Engineer-
ing, McGill University.

Bélanger, F., De Langre, E., Axisa, F., Paidousis, M.P. and Mateescu, D.,
1993, “Dynamics of Coaxial Cylinders in Laminar Annular Flow by Simultaneous
Integration of the Navier-Stokes and Structural Equations, Journal of Fluids and
Structures, (in press).

Blevins, R.D., Flow-Induced Vibration, 1990, 2" Edition, Van Nostrand Rein-
hold, New York.

300



Braaten, M. and Shyy, W., 1986, “A Study of Ricirculating Flow Computation
Using Body-Fitted Coordinates: Consistency Aspects and Mesh Skewness”, Numer-
ical Heat Transfer, Vol. 9, pp. 558-574.

Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A., 1987, Spectral
Methods in Fluid Dynamics, Springer-Verlag, New York.

Chen, S.S., 1987, Flow-Induced Vibration of Circular Cylindrical Structures,
Hemisphere Publication Corporation, Washington.

Chorin, A.J., 1967, “A Numerical Method for Solving Incompressible Viscous
Flow Problems”, Journal of Computational Physics, Vol. 2, pp. 12-26.

Chorin, A.J., 1968, “Numerical Solution of the Navier-Stokes Equations” , Math-
ematics of Computation, Vol. 22, pp. 745-762.

Cooley, J.W., Lewis, P.A.W, and Welch, P.D., 1969, “The Finite Fourier Trans-
form”, IEEE Transaction on Audio and Electronics, Vol. AU-17, pp. 77-85.

Djomehri, M.J. and George, J.H., 1988, “Application of the Moving Finite Ele-
ment Method to Moving Boundary Stefan Problems”, Computer Methods in Applied
Mechanics and Engineering, Vol. 71, pp. 125-136.

Demirdzic, I. and Peric, M., 1990, “Finite Volume Method for Prediction of
Fluid Flow in Arbitrarily Shaped Domains with Moving Boundaries”, International
Journal for Numerical Methods in Fluids, Vol. 10, pp. 771-790.

Domaradzki, J.A. and Metcalfe, R.W., 1987, “Stabilization of Laminar Bound-
ary Layers by Compliant Membranes”, Physics of Fluids, Vol. 30, pp. 695-705.

Duda, J.L., Malone, M.F. and Notter, R.H., 1975, “Analysis of Two-Dimensional
Diffusion-Controlled Moving Boundary Problems”, International Journal of Heat and
Mass Transfer, Vol. 18, pp. 901-910.

Faghri, M., Sparrow, E.M. and Prata, A.T., 1984, “Finite-Difference Solutions
of Convection-Diffusion Problems in Irregular Domains, Using a Nonorthogonal Co-

ordinate Transformation”, Numerical Heat Transfer, Vol. 7, pp. 183-209.
Fritz, R.J., 1972, “The Effect of Liquids on the Dynamic Motions of Immeresed

301



Solids”, Journal of Engineering for Industry, pp. 167-173.
Gartling, D.K., 1990, “A Test Problem for Outfiow Boundary Conditions -

Flow Over a Backward-Facing Step”, International Journal for Numerical Methods
in Fluids, Vol. 11, pp. 953-967.
Gibert, R.J., 1988, Vibrations des Structures, Editions Eyrolles, Paris.

Gupta, R.S. and Kumar, A., 1984, “Variable Time-Step Method with Coor-
dinate Transformation”, Computer Methods in Applied Mechanics and Engineering,
Vol. 44, pp. 91-103

Harlow, F.H. and Welch, J.E., 1965, “Numerical Computation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface”, Physics of Fluids, Vol. 8,
pp. 2182-2189.

Hobson, D.E., 1982, “Fluid-elastic Instabilities Caused by Flow in an Annu-
lus”, in Proceedings of 3" International Conference on Vibration of Nuclear Plant,
Keswick, U.K., pp. 440-463.

Hobson, D.E., 1984, “Instabilities of the AGR Fuel Assembly During On-Load
Refuelling” , ASME Symposium on Flow-Induced Vibration, Vol. {: Vibration Induced
by Azial and Annular Flows (eds M. P. Paidoussis and M. K. Au-Yang), pp. 25-39.

Hobson, D.E., 1991, “Measurement of Damping Forces Caused by Flow Between
Two Concentric Cylinders”, Flow-Induced Vibration, Proceeding of the Institution of
Mechanical Engineers, 1991-6, 459-471.

Hobson, D.E. and Jedwab, M., 1990, “Investigation of the Effect of Eccentricity
on the Unsteady Fluid Forces on the Centrebody of an Annular Diffuser”, Journal of
Fluids and Structures, Vol. 4, pp. 155-169.

Hoffmann, K.A., 1989, Computational Fluid Dynamics for Engineers, A Publi-

cation of Engineering Education Systems, Austin, Texas.

Holman, J.P., 1989, Ezperimental Methods for Engineers, 5 Edition, McGraw-
Hill, New York.

Hsu, C.F., Sparrow, E.M. and Patankar, S.V., 1981, “Numerical Solution of

302



Moving Boundary Problems by Boundary Immobilization and A Control-Volume-
Based Finite-Difference Scheme”, International Journal of Heat and Mass Transfer,
Vol. 24, pp. 1335-1343.

Inada, F. and Hayama, S., 1990, “A Study on Leakage-Flow-Induced Vibrations.
Part I: Fluid-Dynamic Forces and Moments Acting on the Walls of a Narrow Tapered
Passage”, Journal of Fluids end Structures, Vol. 4, pp. 395-412.

Inada, F. and Hayama, S., 1990, “A Study on Leakage-Flow-Induced Vibra-
tions. Part II: Stability Analysis and Experiments for Two-Degree-of-Freedom Sys-
tems Combining Translational and Rotational Motions”, Journal of Fluids and Struc-
tures, Vol. 4, pp. 413-428.

Karki, K.C., 1986, “A Calculation Procedure for Viscous Flows at All Speeds
in Complex Geometries”, Ph.D, Thesis, University of Minnesota.

Kansza, E.J., 1988, “Shock Computations with Adaptive Mesh Refinement and
Moving Grids", Computers and Mathematics with Applications, Vol. 15, pp. 623-634.

Kreyszig, E., 1964, Differential Geometry, University of Toronto Press.

Mateescu, D., Mekanik, A. and Paidoussis, M.P,, 1994, “Computational So-
lutions for Unsteady Annular Flows with Oscillating Boundaries Based on Time-
lependent Coordinate Transformations”, pp. 51-58, Proceedings of Second Annual
Conference of the CFD Society of Canada (CFD 94), University of Toronto, Toronto,
Ont., Canada.

Mateescu, D. and Paidovssis, M.P., 1985, “The Unsteady Potential Flow in an
Axially Variable Annulus and its Effect on the Dynamics of the Oscillating Rigid
Centre-Body", Journal of Fluids Engineering, Vol. 107, pp. 421-427.

Mateescu, D. and Paidoussis, M.P., 1987, “Unsteady Viscous Effects on the
Annular-Flow-Induced Instabilities of a Rigid Cylindrical Body in a Narrow Duct”,
Journal of Fluids and Structures, Vol. 1, 197-215.

Mateescu, D., Paidoussis, M.P. and Bélanger, F., 1988, “Unsteady Pressure

Measurements on an Oscillating Cylinder in a Narrow Annular Flows”, Journal of

303



Fluids and Structures, Vol. 2, pp. 615-628.

Mateescu, D., Paidoussis, M.P. and Bélanger, F., 1989, “A Theoretical Model
Compared with Experiments for the Unsteady Pressure on a Cylinder Oscillating in
Turbulent Annular Flow”, Journal of Sound and Vibration, Vol. 135, pp. 487-498.

Mateescu, D., Paidoussis, M.P. and Bélanger, F., 1991, “Computational Solu-
tions Based on a Finite Difference Formulation for Unsteady Internal Flows”, AJAA
Paper No. 91-0724.

Mateescu, D., Paidoussis, M.P. and Bélanger, F., 1994, “Unsteady Annular
Viscous Flows Between Oscillating Cylinders, Part I: Computational Solutions Based
on a Time-i=teyration Method”, Journal of Fluids and Structures, Vol. 8, pp. 489-
507.

Mateescu, D., Paidoussis, M.P. and Mekanik, A., submitted 1994, “Analysis of
3-D unsteady Annular Flows Based on Time-dependent Coordinate Transformation”,
to be presented in PACAM IV in Buenos Aires, January 1995.

Mateescu, D., Paidoussis, M.P. and Sim, W.-G., 1994, “A Spectral Collocation
Method for Confined Unsteady Flows with Oscillating Boundaries”, Journal of Fluids
and Structures, Vol. 8, pp. 157-181.

Mekanik, A., Mateescu, D. and Paidoussis, M.P., 1993, “Computational Solu-
tion of Navier-Stokes Equations for Annular Flows with Moving Boundaries”", pp.
243-244, Proceedings of 14'"" Canadian Congress of Applied Mechanics, Queen's Uni-
versity, Kingston, Ont., Canada.

Mekanik, A., Paidoussis, M.P. and Mateescu, D., 1994, “Pressure Measurements
in Unsteady Flows Between Concentric Cylinders in Translation and Rotation”, pp.
345-353, Proceedings of the 12'* Symposium on Engineering Applications of Mechan-
ics, McGill University, Montreal, Qc., Canada.

Merkle, C.L. and Athavale, M., 1987, “Time-Accurate Unsteady Incompressible
Flow Algorithms Based on Artificial Compressibility”, AJAA Paper No. 87-1187. -

Miller, R.W., 1989, Flow Measurement Engineering Handbook, 2™ Edition,

304



McGraw-Hill, New York.

Mulcahy, T.M., 1983, “A Review of Leakage-Flow-Induced Vibration of Reactor
Components”, Argonne National Laboratory Report ANL-83-43.

Mulcahy, T.M., 1988, “One-Dimensional Leakage-Flow Vibration Instabilities”,
Journal of Fluids and Structures, Vol. 2, pp. 383-403.

QOgawa, S., and Ishiguro, T., 1987, “A Method for Computing Flow Fields
Around Moving Bodies”, Journal of Computational Physics, Vol. 69, pp. 49-68.

Paidoussis, M.P., 1980, “Flow-Induced Vibration in Nuclear Reactors and Heat
Exchangers: Practical Experiences and State of Knowledge”, Practical Ezperinces
with Flow-Induced Vibrations, (eds E. Naudascher and D. Rockwéll), Springer, Berlin,
pp. 1-81.

Paidoussis, M.P., 1983, “A Review of Flow-Induced Vibrations in Reactors and
Reactor Components”, Nuclear Engineering and Design, Vol. 74, pp. 31-60.

Paidoussis, M.P., 1987, “Flow-Induced Instabilities of Cylindrical Structures”,
Applied Mechanics Reviews, Vol. 40, No. 2, pp. 163-175.

Paidoussis, M.P., 1993, “1992 Calvin Rice Lecture: Some Curiosity-Driven Re-
search in Fluid Structure Interactions and Its Current Applications”, ASME Journal
of Pressure Vessel Technology, Vol. 115, pp. 2-14.

Paidoussis, M.P. and Au-Yang, M.K. (Eds), 1984, Symposium on Flow-Induced
Vibrations, Vol. 4: Vibration Induced by Axial and Annular Flows, ASME, New
York.

Paidoussis, M.P. and Au-Yang, M.K. (Eds), 1988, Symposium on Flow-Induced
Vibrations; Vol. 4: Vibration Induced by Axial and Annular Flows, ASME, New
York.

Paidoussis, M.P. and Au-Yang, M.K. (Eds), 1992, International Symposium
on Flow-Induced Vibration and Noise; Vol. 5: Azial and Annular Flow-Induced
Vibration and Instabilities, ASME, New York.

Paidoussis, M.P., Chan, S.P. and Misra, A.K., 1985, “Dynamics an. Stabil-

305



ity of Coaxial Cylindrical Shells Containing Flowing Fluid", Journal of Sound and
Vibration, Vol. 97, pp. 201-235.

Paidoussis, M.P., Mateescu, D. and Sim, W.-G., 1990, “Dynamics and Stability
of Flexible Cylinder in a Narrow Coaxial Cylindrical Duct Subjected to Annular
Flow”, Journal of Applied Mechanics, Vol. 57, pp. 232-240.

Paidoussis, M.P., Mateescu, D. and Bélanger, 1992, “A Computational Method
for the Dynamics of Cylindrical Structures Subjected to Anm:jar Flows by Simul-
taneous Integration of the Navier-Stokes and Structural Equations”, International
Symposium on Flow-Induced Vibration and Noise; Vol. 5: Azial and Annular Flow-

Induced Vibration and Instabilities, ASME, New York.

Paidoussis, M.P., Misra, A.K., and Chan, 5.P., 1985, “Dynamics and Stability of
Coaxial Cylindrical Shells Conveying Viscous Fluid”, Journal of Applied Mechanics,
Vol. 52, pp. 389-396.

Paidoussis, M.P. and Ostoja-Starzewski, M., 1981, “Dynamics of a Flexible
Cylinder in Subsonic Axial Flow”, AIAA Journal, Vol. 19, pp. 1467-1475.

Paidoussis, M.P. and Pettigrew, M.J., 1979, “Dynamics of Flexible Cylinders
in Axisymmetrically Confined Axial Flow", Journal of Applied Mechanics, Vol. 46,
pp. 37-44.

Parkin, M.W. and Watson, C.P., 1984, “Reduction of Vibration Caused by
Flow in an Annular Diffuser”, ASME Symposium on Flow-Induced Vibration, Vol.
4: Vibration Induced by Azial and Annular Flows (eds M. P. Paidoussis and M. K.
Au-Yang), pp. 1-14.

Patankar, S.V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere
Publishing Corporation, New York.

Peaceman, D.W. and Rachford, H.H., 1955, “The Numerical Solution of Parabolic
and Elliptic Differential Equations”, Journal of the Society of Industrial and Applied
Mathematics, Vol. 3, pp. 28-41.

Peyret, R. and Taylor, T.D., 1983, Computational Methods for Fluid Flows,

306



Springer-Verlag, New York.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., 1988, Nu-
merical Recipes: The Art of Scientific Computing, Cambridge University Press.

Rai, M.M. and Anderson, D.A., 1982, “Application of Adaptive grids to Fluid-
Flow Problems with Asymptotic Sclutions”, ATAA Journal, Vol. 20, No. 4, pp.
496-502.

Ralph, M.E. and Pedley, T.J., 1988, “Flow in a Channel with Moving Indenta-
tion", Journal of Fluid Mechanics, Vol. 190, pp. 87-112.

Rogers, S.E. and Kwak, D., 1990, “Upwind Differencing Scheme for the Time-
Accurate Incompressible Navier-Stokes Equations”, AJAA Journal, Vol. 28, pp. 253-
262.

Rosenfeld, M., Kwak, D. and Vinokur, M., 1991, “A Fractional Step Sclution
Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized
Coordinate Systems”, Journal of Computational Physics, Vol. 94, pp. 102-137.

Saitoh, T., 1978, “Numerical Method for Multi-Dimensional Freezing Problems
in Arbitrary Domains”, Journal of Heat Transfer, Vol. 100, pp. 294-299.

Shames, I.H., 1982, Mechanics of Fluids, 2" Edition, McGraw-Hill Book Com-
pany, New York.

Shyy, W., 1985, “A Numerical Study of Annular Dump Diffuser Flows” , Com-
puter Methods in Applied Mechanics and Engineering, Vol. 53, pp. 47-65.

Shyy, W., 1988, “Computation of Complex Fluid Flows Using an Adaptive Grid
Method”, International Journal for Numerical Methods in Fluids, Vol. 8, 475-489.

Soh, W.Y., 1987, “Time-marching Solution of Incompressible Navier-Stokes
Equations for Internal Flows”, Journal of Computational Physics, Vol. 70, pp. 232-
252,

Soh, W.Y. and Goodrich, J.W., 1988, “Unsteady Solution of Incompressible
Navier-Stokes Equations”, Journal of Computational Physics, Vol. 79, pp. 113-134.

Southworth, R.W. and Deleeuw, S.L., 1965, Digital Computation and Numerical

307



Methods, McGraw-Hill Book Company.

Spurr, A. and Hobson, D.E., 1984, “Forces on the Vibrating Centrebody of an
Annular Diffuser”, ASME Symposium on Flow-Induced Vibration, Vol. {: Vibration
Induced by Azial and Annular Flows (eds M. P. Paidoussis and M. K. Au-Yang), pp.
41-52.

Taylor, J.R., 1982, An Introduction to Error Analysis, University Science Books,
Mill Valley, California.

Thames, F.C., Thompson, J.F., Wayne Mastin, C. and Walker, R.L., 1977, “Nu-
merical Solutions for Viscous and Potential Flow about Arbitrary Two-Dimensional
Bodies Using Body-Fitted Coordinate Systems”, Journal of Computational Physics,
Vol. 24, pp. 245-273.

Thomas, P.D. and Lombard, C.K., 1979, “Geometric Conservation Law and Its
Application to Flow Computations on Moving Grids”, AIAA Journal, Vol. 17, No,
10, pp. 1030-1037.

Thomson, W.T., 1981, Theory of Vibration with Applications, 2™ Edition,
Prentice-Hall.

Thompson, J.F., Thames, F.C, and Wayne Mastin, C., 1974, “Automatic Nu-
merical Generation of Body-Fitted Curvilinear Coordinate System for Field Contain-

ing Any Number of Arbitrary Two-Dimensional Bodies”, Journal of Computational
Physics, Vol. 15, 289-319.

Thompson, J.F., Thames, F.C. and Wayne Mastin, C., 1977, “TOMCAT-A
Code for Numerical Generation of Boundary-Fitted Curviiinear Coordinate Systems
of Fields Containig Any Number of Arbitrary Two-Dimensional Bodies”, Journal of
Computational Physics, Vol. 24, 274-302.

Thompsou, J.F., Warsi, Z.U.A. and Wayne Mastin, C., 1982, “Boundary-Fitted
Coordinate Systems for Numerical Solution of Partial Differential Equations — A
Review”, Journal of Computational Physics, Vol. 47, pp. 1-108,

Thompson. J.F., Warsi, Z.U.A. and Wayne Mastin, C., 1985, Numerical Grid

308



Generation: Foundations and Applications, Elsevier Science, New York.
. Vinokur, M., 1983, “On One-Dimensional Stretching Functions for Finite-Difference
Calculations”, Journal of Computational Physics, Vol. 50, pp. 215-234.
Warsi, Z.U.A., 1981, “Conservation form of the Navier-Stokes Equations in
General Nonsteady Coordinates”, AIAA Journal, Vol. 19, No. 2, pp. 240-242.
Yeoh, G.H., Behnia, M., De Vahl Davis, G. and Leonardi, E., 1990, “A Nu-
merical Study of Three-Dimensional Natural Convection During Freezing of Water”,

International Journal for Numerical Methods in Engineering, Vol. 30, pp. 899-914.

® 309



Appendix A

Discretization of the
Navier-Stokes and Continuity
Equations in 2-D and 3-D on a
Staggered Mesh

With reference to Figures 4.8 and 4.9 and using equations (3.13) and (3.15), the
discretized form of the N-S and continuity equations can be written on a staggered
mesh. For 2-D problems, Figure 4.9 applies, whereas for 3-D problems both figures
are used. Note that if the 2-D solutions in the r- and z-directions are required, then
Figure 4.8 must be used instead of 4.9 for defining A and V. In this analysis, the
2-D equations are discretized in the r- and #-directions.

By looking at Figure 4.9 (or Figure 3.2), the central A and backward V differ-

ence operators are defined for the 2-D problem as

W U __ U Y o W i

Arj = rj-1i_,, Arj = -1y, (A1)
W= W _ v Vo U pW

Vrj = 1 —=1i, VrJ -1,

The discretized forms of (@,);x, (Quw);x and (V-V);, using these operators are given
by equations (3.21-3.23), where the linear interpolates of the velocity components on

the staggered mesh are defined by
ru _ VT3 Uik + VT Vi rd_ VI Yk + V1Y v

v, = =
v w ¥ v w 1
A, Ar}

(A.2)
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(A.3)

(A4)

(A.5)

,(A.6)

(A7)

(A.8)

The terms v,, and w, appearing in equations (3.22) and (3.23) are given by

1 ‘V’.u w
Vy = 5 _A e (U,-1k+UJ_1k+1) Ar ,,, k+1)]
1 'Vr" Vréa
W= 5| A Ao (Wit1k + Wisie- )+—A%(w,-,k+w,-,k_1)] :

The symmetry boundary conditions applied at § = 0 and § = 7 and mentioned

in Chapter 4 for 2-D analysis can easily be seen in Figure A.1.

Ou; 1 O‘Ujg

IOP:‘.l i:'wj.l IOP:'.: i:'wj.z
& 6 6

O‘U_f'g

Orjz Ow;a
I

=0 6y oF

Figure A.1: Diagram showing the symmetry boundary conditions applied at 8§ = 0.

Having obtained all these tools, now the discretized forms of the momentum

and continuity equations are written for different sweeps.

The r-, @-momentum and continuity equations in the r-sweep:

A-2



The r-momentum equation (4.25) can be written in differenced form as

A ﬁAT w ruA . Ty w, rd7—rd . o
(1+A7)Av;e + A {rj“v‘, Av, —r; v‘,"Av‘, + r}’ (APJ-.-M: - Ap,-‘k)
ieh
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Re Ar¥, Ary 2

= AT(E} - - BQ);u, (A.9)
with the following expressions for Av’s and Ap’s
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1

The equation obtained from equation (A.9) using equations (A.2), (A.10) and (A.11)
is equation (4.31). Proceeding as with the r-momentum equation in the r-sweep we

can write the §-momentum equation (4.26) in differenced form as

—_— BAT —ry —_—d _—

v, ru v rd w
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2 )
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with the following expressions for the Aw’s:
AwY = vr?+1ﬁj,k + VT;Mj+1‘k
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with the help of (A.4), after rearranging the terms one obtains equation (4.32).
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The r-, 8-Momentum and continuity equations in the 8-sweep:
The solution in the #-sweep will be done in similar manner as in the r-sweep.
The r-momentum equation (4.28) in the f-sweep can be written in differenced form

as

BAT
rYAf

J

Ay + wﬂ’ AvﬁJr - wﬁbAvg”
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with the following expressions for the Av’s;
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rearranging the terms to obtain the corresponding coefficients for Av's in the tridiag-
onal matrix solver, one obtains equation (4.33). Progressing as with the §-momentum
equation in the r-sweep explained in the previous section, the 8-momentum and con-

tinuity equations (4.28-4.30) are written in differenced form as

A
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J
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with the following equations for the Aw’s and Ap's:
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2

Rearranging the terms in equation (A.17) will provide equation (4.34). All these
equations are obtained with the help of equations (A.2-A.8).
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For 3-D solution of the problems, the central A and backward V difference

. operators, using Figures 4.8 and 4.9, are defined as
Azl =zl —z!, Az} =z} -z}, (A.21)
Art=rd—ri,, Aty =1l —1¥, (A.22)
Vzf=g}-al,  Vai=gzl-azi,, (A.23)
vrj = r;-‘ - r;-’_l , Vr]=r]~-r]. (A.24)

Equations (4.42-4.45) are thus discretized as follows where we have, first for Q,(u, v, w, p)

1 [ =f .. =f zb
b
(Qu)i.j.k = Uy Uy — U, U,
Az}
1 [ itk — Yigh  Wighk = Ui-14k
WJy 1., 1,3, 1= 14
+ i1k = Didk = = —_
Digl gk — Pij, Re AIC:'J_‘.[ A.‘L‘:’
+ 1 [ruvm Ut — v vrdu
u u J L u J- -1
ri Ar;

1
" e {'{i}; (Bigere = Uige) —

+ wef uff — P ud  wiae + e = 2uige

r#A0  Re(r')R(a0?2

v r'.’_l

Art, (wige — ui.j—l.k)}] (A.25)

j—

with the interpolates defined by

el = Vi gige + VIR, divge  uth = Vai tio1 5 + Vi uige . (A26)

Axlyy Az}
ur = Vi e+ Vri dijee L utd = Vrd iy p + Vi, “'a* (A.27)

Ar;-’ Ar
or _ 1 o _ 1
u;s = 9 (%ijksr + "ia'.k) y Uy = 2 (uia,k + Uy k- 1), (A.28)
Vzl, v+ Vv Vzl, v e+ V¥ vpg4-

re i+l Yigk i YVitl gk rd = i+1 Yij-1.k i ViRl g -1k A.29
Yu Az? ' Y Az » (A29)

of _ VI Wik + Vol Wik g _ VI Wirige-1 + VI Wik (A.30
wll - Azu 1 wu - * * )
1

Az}
® A-5




The term Q,(u, v, w,p) is given by

1 zb b
@hgs = 5o 18738 — it
1
_ L [tk = Vigk _ Vigk = Viclgk
Re JAY A4 Az¥
1 [ ruy2 rdy2
+ === r"'+l(vuu) —rl"(vu)
ry Ar} 7 /
1 .13":1_(.,,.. —v--)-—i(v-- — V1)
Re AT;-‘+1 i g+1.k iJk AT;‘ Tk tJ—1,k
L s 1 [w?f o8 — 4% %
+ p—-———-———"’“z .,p"’"‘-i--;[ bt — () (A.31)
Ts Tj

_ 1 Vigk+1 + Vigk-1 = 2Vijk 9 wy — wl _i s
Re (r})? (AB)? A8 k)

where the following interpolates were used

ol = Vil vige + VI viga e o7 = Vap vicrgk + VI, vige (A.32)
= = , v = ) .
Az Az,

VT;’+1 Vijk + VT}'_H Ui 41k od _ VT‘; Vij-1,k -+ VT;-‘ Uik

v = Ariyy %= ard ’ (A3
Vigk + Vi ik F Vi
4 = Bkt haas | Yt g (34

u . v, u , R Yoy, .
U:I = vrj.“ Uik + VTJ Uii+1.k ‘U.:b _ VTJ‘.H Ui-1 4k + VTJ' Uil 741,k
’ Ary T ArY '

(A.35)

W8 — VTin Wik + V7Y Wijak g VT Wigkot + VY Wigrrer
[ A v ) wo - A v 1
T T

(A.36)
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and Qu(u,v, w,p) is computed as

1 X : T I
(Qulije = A [ f il =y
1 fwige — Wik Wigk < Wielgk
Re AzY Azx?
1 v, ru,. ry v rd, rd
+ ;‘ A rj vy, Wy, — rJ' 1V Wy
- S
~ Re (wn.;+1 k— Wigk) — Ary. (wiJ.k — Wij-1k)
w®)? + pijk i g
+ = [( ) = (wl)? = Jktt ~ Pigik + Vo Wi jk (A.37)
_ 1 Wijk+) + Wigk-1 — 2 Wik +9 vy —vw w:
Re (r})2 (A6 A6 ke
with the help of the following interpolates
Vi, Wik + V! wiy Vaz! wioy g + Vi wiy
zf +1 Wik i+14.k b __ =14,k =t Wig.k
wil = =4 Az : , W= — AZY : (A.38)
e = Vi Wik A+ UVT}-’ Wighlk ed Vri wij-1k +., Vi Wik (A.39)
TJ- ATJ-_I
Wi ; + w; Wik + Wijik—
wg,f - J'k+12 Wk , wib - N 2 Jik—1 , (A-40)
Vigk + Vi " §f— Vi -
v:’u — _J'k 2 th“"l , vwd — vJ lnk +2 WJ l.k+l , (A‘41)
O = V! vigker + V7] viio k1 S = Vri vige + Vr;-’ Vij—1k (A42)
v Ard e Ard ' '
wif = Uik + Uikt , ut= Ui-1 gk + Uil j k4l : (A43)
2 2
finally, the continuity equation V - V in discretized form is obtained as
Uisp = Uiny I VUigk = T3y Vig-1k | Wijk — Wijk-1
V_v - 1Jy Jik J 4y 2 ) wr W]+ A4
(V- Vs Azy T r¥ Ar? ATV Y) (A44)
In equations (A.31) and (A.37) the terms v,, and w, are given by
1 Vr" Vr“
Vyy = 5 Ar" (U:J,k+vng,k+l) Ar u (U.J—1k+vm lk+l) )
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1Vr
§A”

(w:g-H K+ Wij+1, k-'l) +

u, = (wt.J,k +w1,1,k l)

A D

The solution of Navier-Stokes equations can be obtained by introducing dif-
ference expressions like those of (A.25), (A.31) and (A.37) in the left-hand sides
of equations (4.46-4.57) to obtain the discretized forms of r-,6- and z-momentum
and continuity equations in the r-, 8-, and z-sweeps. The discretized forms of the
equations are similar to those obtained for 2-D discretization, except that now we
have additional equations in the z-sweep which gives the final values for Au. The
method of solution using the discretized equations was described in Chapter 4 and
the discretized equations in the form of tridiagonal matrices are given here as

The x-momentum equation in r-sweep:

u v
B lk{ BAT (—r" L vry 1, )}
13—1, u u Jj—1%u v v,
r}AT; Arj_;, ReAr},

' IBAT v, rf vr;‘+l v rbvr;-l 1 ‘l";! r."l',"l
+Au"”k{r;-‘Ar;-‘ Ay Tl Ay T Re\ar T A,

o BAT (Y
+Au"’+l'k{r}'Ar}‘ ity Ar?  ReAr
= Ar (Ez -+ QL) . ; (A.45)
the r-momentum eguation in r-sweep:
Z{H.jwl,k EA: { r;'v,',dvr r¥ u} _ ﬂAq-zl.;g_lu]
AL Ard ReArJ- 6r;‘ArJ- Ar;}
BAT " W Vi vr¥
+AU|Jk[10+AT+ A J+1UUE_—— vadau
1 { ™ Ar? Arry? Arry?
+— j+1 4 3 b J J
Re (Ar;-'H Ar} + rf ) + briAry + ori . ArY, }]
—_— V u v
+Av; i1k ['ggg ( ;‘+1 v 7’ rJ'Hu ) par it ]
TJ'ATJ' AT R.eATJ-+1 61' +1A +1AT
ﬁA'r
= ( -~ ﬂQ") +5A; 7 (V- Viirk = V- Vige) (A.46)
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the 8-momentum equation in r-sweep:

+Aw; ik {10 + o + T‘-‘A :

J

s (T
Re \ Ar} Ar" R.er“2

— BAT Y_;_ r}
+A‘”‘~’“"‘{r;m 7% Ars T ReAr

= At (ED - i - w)w__k ; (A47)

BArv, BAT [r'-‘v V;+1 g Z

the continuity equation in r-sweep:
— AT AT — —
AP.'J-J: = —-6—'V . Vi,j,k - _—61‘;‘&1';‘ (T;A'U,'J"k - T;-’_IAU,-‘J'_]‘k) . (AAS)

The t-momentum equation in 0-sweep:
_— BAT o 1) 1
Btigh- {r;AB u (2 Rer? A0
+Bu e {14 BAT [0 (1) wl- (l) b2
WELTT rrAe 2) 7 " \2/ " Rer}Ad

- BAT [ o, (1) 1 ~
Ay 5)- = Atk .
+ Atigin {r;AB [‘"“ 2) ~ Reriad Uik (A.49)

the r-momentum equation in 8-sweep:

—_— BA1 o— (1) 1
A”‘“-"“{r;faa Y \2) T Reriad

— BAT ,,+(1) ,_(1) 2
+A”'=’~“{1+ryao [w" 3) "% \2) ¥ Reryare

. BAT [ o (1) 1 e 2 (AWijesr = Bwije) |
+ Avhj.k'i'l { r'Af w, 92 RCT;AO - Av"‘,'k Re T;Ag '
(A.50)

the 8-momentum equation in 8-sweep:

Aw;je-1 {T;-‘Ao [ w,y, (2) & r;-‘Ae RET;AQ]}
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_ 287 foge (1) —ut- (1) 2 T 2
“*'A‘”"-f-“{”m* Y. [“’ 2) =% \2) " Rervas T T 106

7
AT  BAT
Reru? + r T e

— BAT [ 4. (l) AT 1 1
+Aw"’"“"l{r}‘A0 [ww 9 5 r“AB Rer}Ad

ﬁAT _— — 2 (Avy; ikl — Avy; ',k) )
uAg (APIJ k+1 T Apl'd',k) + ﬁg( = :"AG 2 ’ (A51)
7

+

= QWi je —
the continuily equation in @-sweep:

A'rAw, £ — AW k-1
Aplg k= APIJ k= 6 =t T;"Aﬂ 2 . (A52)

The r-momentum equation in r-sweep:

BAT VI 1 AT
Au.-lg.k{A‘T? Uy Az? ReAz! 6Az?

: BAT V‘rﬂ-l :bv‘tl‘! 1 1 1
+ AU {1 + AT + An usf Az, uj Az + Re \ Az? + Az?,,

Ar(1 1
6 A.’I.':’ AJ:}’.,_I

o BAT | VIR 1 AT
FAU 1Lk { Azl Yu Az, ReAxY, 6Az?,
_— BAT 1 — ——
= Au;jk — —A';F (Apr-\‘-ld,k = AP.‘J,&) i (A.53)

the r-momentum eguation in r-sweep:

pAT o VI! 1
Avic ik { Az! Uy Az¥, ReAzt,

ﬁAT zf Vm:’+l zb v.'B?_l 1 1
+Avtd.k {1 4 A.’B:" uu A.'L"-' u” Ax}‘_l ReAl'? + RCAI?_]
ﬁAT :f VI 1 — ron .
+ Av|+la,k { A:B:’ [ AIB“ ReAJ;:‘ = AU!JJ‘ 1 (A.54)

the 8-momentum egquation in x-sweep:

. BAT o VI¥ 1
Ai-1k { Az} [ U Az, ReAzl,
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BAT Vaz¥ Vz¥ 1 1
Aw; ; 1 zf i+l _ . oh i-1
taw "'k{ + Azy Y Azy v Azt T ReAz? + ReAzy_,

BAT | V! 1 e
+ Aw..,.ld,k{ Ay uy, Azt ReAzt|| = AWk (A.53)

the continuity equation in x-sweep:

—_— Ar 1
Apijr = Dpijx — 5 Az (Aujje — By ji) - (A.56)
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Appendix B

Discretization of 3-D Equations in
Time-dependent Ceordinate
Transformation Solution

In the following discretized equations the rearranged form of the transformation equa-

tion (6.1) to define r° in the physical domain is
r" =rd(8,1) + R;.

This equation is used to define the following equations at each computational

point ™ = r" and r* in the staggered mesh as
RU; = ™®(8,t) + Ri , RV; = r'®(0,t) + R;, (B.1,B.2)

where ®(8,t) was defined in chapter 6. Note that in all the following derivations
of equations the superscript has been deleted from the terms for simplicity, and it
should be borne in mind that the equations are written in pseudo-time.

Then, the continuity equation (6.11) is discretized as

AT vy, = - AT |k = tenge) | ARV — RYviyo1)
5 ik 5 Azt RUA"
Bri_ (wijx — Wig-1k) | (Wige — Wigk—1)
1 1 Jh J 1 3 lJ‘k 1
Y T RGaaw, v moae | BY

and the r-momentum equation (6.17) is discretized to implement the radial sweep for
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Ui .k a5
(14 A7) Bv s + mome RV . ; [A (RU,Hv &v,’ - RUuiBw,)

ﬁArr“C
Ary

—_— ——rd
+r;-’B (w;“Av:u - w;"Avu ) (Av.‘, k= Avi.j-l.k)

ABAT [RU,'-:-! (A~”|'J+l,k - K;J.'J.k) _RY; (Z-{’:‘j.l: - E-{’i.j-l.k)]

" ReRV;Ary Arfn A7
(B2 + D)ﬁATT (AUIJ k= AUIJ 1 k)
ReRU; 2Ar
B pATry? (E;-’i\jﬂ,k - AU.‘J.&) (E{Ji.j,k - Efi.j-l,k)
ReRV,*ArY Aty Ary
BﬁA-rr (E-’i,j,k - Efi,j—l.k) (Z\-{!u,k-l - E’ig’—l.&-l)
" ReRVIAD A vy
2BﬂATT =1 ﬁATEJ b
—_— - L5 ]
T ReRVZATY., (Bwigi = dwigoie) + ReRV?
AﬁAT
t R (Bpigirs = Bpija) = AT (B, = v = BQy); 4 - (B.4)

—rd . .
The terms Av‘, , and Av: appearing in this equation are evaluated as

—ru VT'-J+1AU,'J‘;¢ + Vr} 1A‘U;‘J+1'k —rd VT"-’A‘U.‘J..[.& + VT'-‘A‘U,"J'J,.
A = i it , Av, =—1 J

v Art '

¢ Arin

while the terms Eﬁi & and Kfa,- j+1.4 are obtained from continuity equation (6.19) as

-~ AT AAT —

Ap;jx = ——6—V - Vijk — 6RU A (RV Avijp — RVj—IA‘U.'J'-l,k)

BA'rr"!- — —
— -1 4 . — .

6RV;_ 1415, (Aw""k Aw._,_u) ' (B.5)

AT AAr — —

Bpijarg = —5 vV Vigrx - SRU B, (RVi+1B0ij414 — RV; B 54)
i
BATr}
el I -

SRV;ArY 7 (Buwige Awig) ; (B.6)
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finally the component —FATQ, of the vector Q in equation (3.11), considering (3.12)
is discretized as

(=BATQu), s = o [uf»f vy/ -

L 1 Jviaigk = Vigk  Vigk = Vielgk
Az ' Re Az} Azt ,
CﬁATT" BAT 2 a2
_'_ArTL (Vijg — Vig1 k) — W [A - RU; v — A- RUv;
A? [ RU; 4y ‘ RU; L _ABAT B o
o { Arey (Vegar e — Vigp) — Brd (%igk = Vig-1,k) ArY (Pige1k — Pigk)
_Bparr; (wruvru _ wrdvrd) + BAT [(B? 4 D)r}f (vige — Vij-1k)
RV,ary V0 v Re RUZATY
B’r "2 Vij+lk — Vigk  Uigk —Vij-1k
RWAr" Ar¥, At
+ Bryj Uigk — Vig-1k  Vigk—1 — Vij—1k-1
RVJ?AG ATJ‘-' Ar;.‘
1 (Vighar + Vijeay — 2wige  uwi —w®
TRV ( A SR i

Br} AT w8 — w88
—2—1."— (wije — wl’q’-l,k))] _f ( — L2~ w,?)

v LAY >0
where
e = 3 [A utw=a+1k+w-a+l*-’) + _'Lﬂ

5 0 e

Now, using equation (B.5) and (B.6), equation (6.17) in discretized tridiagonal
form can be written as

x| _ABATRU; (B® + D)pArry  BBArry®  A2BAT'RV;,
W1k |~ RG RV;AryArt ReRUZATY

ReRVJ?Ar;-’ Aré SRU;ArPAry

1% s T T R Ar

x5 A*ﬁArRUm A*BATRU; (B’ + D)BATTY
+B; g [Rc RV;Ariars T ReRV.ATAT ~  ReRU7Ary T 1O+AT
B2BATry? B2BArry?
ReRVzAr"ArJH

ﬁAT V1 o aVTi)  BATHC
RVA ( -A-RUv Briw -

BAT  ABAT?RV;  AATRRY,
ReRV?Ar?ArY * ReRV}? " 6RU;ArtArY * §RUjAr¥, Ar?
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HAT ‘ Vrj J+1 v ruv J+t rdy__g_ E
+R‘V,-Ar}’ (A RU; 03" =y + Briuf Ars,, — A- RU;v; Are Brijw e
+CﬁA'rrj
Ary
TR ABATRU;y  B*BATr® ABATRVy
W T ReRV;ArYATY, ReRVfAr;-’Ar;-‘H §RU;s\ AT} ArY
BAT VT v mVrJ“
RVA A RUsv)” A B P Ardy, Ti41
A AT
= AT(EL‘ -y - ﬁQu),J et 6ﬂA u (V . Vi.j+l,k -V V;J.k)
A BpAT? r} i, —
+ SArT {RVA ,,Aw.a+1k+ RV;'—-IAT"J-IAwwul'k

_ 15 Tio1 ~i 2BBATIY., ;—~— ~
(.RVJ'A"}" * R‘G-xA"}’-u) Aw"’"‘] ReRVZAry (A“"-"‘ Bwig-14)

+ BpATry
ReRV7AGATY
The discretized r-momentum equation (6.21) in the 8-sweep, using the results

(Avijh — Avijorp — BV jpe1 + Avijoremt). (B.8)

of equation (B.8), provides

— BAT 1 op=—8f  gbr?
Avije + RV,A0 w,’ Av, — u Av
1 [Avik1 + Bija-1 — 2805k 7
_. y L u = Av,;; .
Re ( RV;A0 vakr  (BI)

where the terms Av’’ and Az are obtained from

& = Bligk +2A'”ia'.k+l A = Aviax +2Avi.m-1 '

Therefore, equation (B.9) in tridiagonal form is written as

- . BAT ab (1) _ 1
Avigk- {Rv A [ “v\2) ~ ReRV;Af
vl ﬁAT 0!(1) Gb(l) 2
+ A%k {1 * RV.A0 [ Y \3) ¥ ReRV, A0
Ao . L PAT | er (_1_) S S | G vl
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The discretization of r-momentum equation (6.25) in the z-sweep, using the

results of equation (B.10), yields

AT
Avige + %—Ig{uiju:f - w3 Av
'

1 [Avigage = Bvigk  DUije — Bbioijk
Re Azx? Azf,

] } = ml'..f.ki (Bll)

where the terms Avz/ and Avz® are obtained from

VI:-"+IAU;JJ, -+ VIE"AU.'+1J"&

Vi Avi1ik + Vi Avije
Az} ’ '

b
AvD =
) Azi,

Avil =

Hence, equation (B.11} in tridiagonal form is written as

A BAT 4= Vi 1
—lak AzxY "' Az, ReAz®,
. BAT [ Vi 5 VTi) 1 1
+Avk {1 + Az? [u‘, Az} o Azt , ' ReAx} + ReAz}
AT ., Vz¥ 1 —
+ A‘U.'+1J'.k {-A—I—F u‘,fo? - RGA:L‘:-‘ = Av.-‘,-,k . (B.l?)

The same procedure is applied to discretize the 8-, z-momentum, and continu-
ity equations (6.18, 6.22, 6.26) and (6.16, 6.20, 6.24), respectively. The discretized
equations arc given here without further explanation.

Discretized #-momentum equation in the r-sweep:

o ﬁAT —— - rd
Ang'k + m [A (RVJ'UL“A‘W‘” - RVJ-_deAww)
v ry T U rd T rd CﬂATT?_ — — ﬂATUwEUi ik
+BT‘J- (ww Aww - ww"Aww )] -+ ——A—;}:—l (Aw;‘j* _ A‘w."j-llk) + —-'E'EJ'—"Q'—'
(32 + D)ﬂATT}’_l —_— —_— 2BBATrY [~ —
- ey e . —_— ) sy — ..
ReRVZ Art_, (Bwigs = Buigor) ReRU?AT (Bvie = Bviso1s)
_ BzﬁATT;-'z &TU,-JH‘;‘ - BTD,‘J'_;,- _ E;U.‘J'k - E;D;J-l‘k
ReRUJ?Ar_;-‘ AT;-’ Ar}’—l
_ BBATr_, ‘A-;"i.j.k - [STD.-J..M, _ E;Ui.j.k—l - EH.’J_L;:_I
ReRUZA ArY AT
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" Re! RU; Ar Ar}

A2BA- [V (E;Ui.jq-l.k - ETU:‘J.I:) RV;_, (E;Uiq‘.k - ATUEJ-I.&)
; Arf_y

BATAW, i\ BBAT .
RERU;L- + RV;or? (AP..,+1 E— AP.J ,,) AT(ES - w— 8Qu) ;. i (B13)

AT Vi _HAw.Jk + Vr} A‘w.a-}-lk

5—-1'11 _ VIEAwiJ-—l.E -+ v’”"’--lAuJ'l\jl‘E

Ary ' Yo = Ary_, !
where
_BATH 2= =) _ yzbyzh _ 1 [ Wisige — Wigk  Wigk — Wicigk
( ﬁATQw)iJ,k = AI" uw w Yy Re A.‘B:" A:E:-"_l
Cﬂ AT‘.";-’_ ﬁ AT ru ru rd
~ (wijke — Wijorx) — RUAT [A- RVl - A RV;_o]tu;
A? [ RV, RVJ 1
“Re {Er_j’ (Wije1 e — Wige) — _T_,—l (Wigk = Wij-14)
BpATTY

BﬁA H ru r
RU,-AT:;J-‘ (w2? - wZ)

AT | w or2 _ w 24 Pijkdl — Pidk
RU, Af + Uutigk

mﬁ' (pl.J+l k— Dij, k)

par ((B®+ D) 32 Wigelk — Wigk Wik — Wij-1k
*Re RVZ ,Ar" " (Wi = wig-10) + 1 RU*Ar“ Ary B Ary_,
+ Bri_y (Wije— Wijork  Wigk—1 = Wig—1k-1
RU}AG AT'-’ Ar;.’_1
1 [wigker + Wije-1 — 2wigp | 08 —off ] Br¢
: ' LIy 3 — wije| + 255t (Vigk — Vig-14) }
RU? [ Ap* Ag k| T 2ppEary (Vak — Yotk
(B.14)
in which

1 Vr vr}
Uy = 2 Ar u (v..,'k+v.‘,.k+1)+ Ar n ('UI.J 1k+v|.1—1 k'H)

With the aid of equations (B.5) and (B.6) one obtains

Ao . [_CBATy,  (B'+D)BAm,
w;J—l,k ATJ—I ReR‘G‘z—]Ar}J-l

B23ATry? A2BATRY,_,

B2fAT Y,
ReRUZATIATY; ~ ReRU,AriATY;

j-i=1

dRV;Ar} RV, Ar}_
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BAT VT'-‘ d VT;‘
B T
RU Ar [ ~A- RV v

iy 75 Y Ary_y
— CPArri., (B*+ D)BArry_,
+Awiy - 7 Apv
! AT;_ ReR‘/j_lArj_!
BfATri? (1 1 BATv,  BAT
1
T ReRUZAr (Ar * &5 ) P TRt ReRD?
+ A2BAT (RV; RV, ,\ , BBAr*y (1 i
ReRU;ATY \Ar} ~ Arj_, §RV;ArY \RV;Ar} RV, Ar},
ﬂAT ruv "‘ _ VT' v ruv S litl . rdvr—
*RUATY ARV""A ARV’“”"’Av O K T B

— B*fArry? B*fATrY?
+Awi-j+l L A T 2 u v 2 v2
ReRU; Ar} Arj 6RV:,- Ar}

BAT V7S WV A2BATRY
T RUAT (‘4 RVivo' S5¢ + Brive' 57y ) ~ ReRU;arsan

) BBAT*rY
= AT (Fw — ¥ - ﬁQp)m, W (V V,‘H.l k= v V,-J-.k)

A BpAT? ]

+ 6RV;RU; 1 Ar) Ar,+l (RVjHAvUH'k - RVjAviM)
A BBAT Y — ~— 2BpATT] (&;;.j,k - 3—1-).'.,'-1,&)
~ SRV, RU;ArsATy (RVibviis = RVjBuigrs) + ReRU7ATS
BBATr] e — — —
+ ReRU?AGA:"’ I(Awid.k - A1 — AWi k-1 + Aw.—.,-_l,k-l) . (B.15)
i i-

Discretized §-momentum and continuity equations in the #-sweep:

— BAT ot _ o _ DWiskar + By — 28w
(1+An)Bwige + g |wi/ B, —wpBu, ReRU;A0

AT [ Bispn = Bhigs]
in [+ p‘J'H—lAa p""k] =Aw,~d~‘k, (B.lﬁ)

At = Diipn + Buie e B +2m-'d.k-1 ‘

2 w
and with the aid of equation (6.23)

AT Aw; i — Bwige-1
5 RULN

A—piq‘.k = EI;.'J,& -
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-— — ATM' kb —'A_w-- ik
Api.j.kﬂ = APi.j.kH = 3 = RU,-AG =

hense, one obtains

v EI_'_web(l)_ét 1 __ 1
Wiik-' \RU;A6 | ¥ \2) T 6 RU;A6 ~ ReRU,A6

+-&E.-J,k {1 + AT+ ﬁAT wﬂ,f (l) - wf,f' (l) + 2 + ar 2 ]}
L

RU;A8 2 2/ " ReRU;A8 * & RU;AB
— BAT of (1) Ar 1 _ 1
AWk {RU,-AB [“’w 3/~ 5 RU;A6  ReRU;AG
— BAT — —
= AWije — orr \DPijk+1 — BPijx) - (B.17)
U RU;A8 (Bpign i)

Discretized §-momentum equation in the z-sweep:

AU)‘J‘k'f'ﬁAT {u:;waf —u A — L [Awiﬂd.k —Awige  Dwijk = Awijk }
L3% w w w w 1

Az} Re Az Az},
(B.18)
Aw! = V:c}’HAw,-d-,k + V.I?Aw,'+1d‘k Aw’b _ V:r}’Aw.-_u,;, + V$?_lAw.’J"k
v Az ' ¥ Az '
Then,
BAT o VTV 1
Ati-15k { Az? | 7" Azh, ~ RedAzr,
BAT Vzv vzt 1 1
A : zf it ,.zb i-l
AWk {1 taer " By Azt ' Rebds' | Redal,
ﬁA'f zf V:L':‘ 1 —_ A

Discretized r-momentum equation in the r-sweep:

BAT

Aujx + ETJ,_AT;

[A (RV,-»;**EB{,“ - Rv,-_lu,';‘Z{{;;“)

(B? 4+ D)BATrY_) [~ —
- Ruiju — Buij
ReRVZ, ATy, (Bidn = Big-14)

BzﬂA‘l‘Tl;-“2 (Au,-dH'k —_ EL,‘J‘J‘ _ K‘Ilij,k - A'U-:',J'—-l.k)

v ry AT rd ——rd
+Brj ('wu“Auu - wl%Au, )]

" ReRUZArY Ary Arl
_BpATTy, Aty — At joyp _ At gt = Atijog e
ReRU?A9 Ar?_ Ary_,
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Alpar [RY; RVi_, ]
- Au; A ; I=% (A — Au,
RQRUJAT; [AT" ( u iJj+k = u J,k) ATJ-_I ( U; gk g- lk)
CBATTY_| ;— — .
+ —iru i-1 (Au.'.j,k - AU.'J—I,&) = AT(E} —u— 8Qu)ij » (B.20)
Ao VT Yo Buie + VriBuijg R v VrtBu ok + Vi Au; ‘
’ Arj Ary_y
worY = VT;+I (wﬂ)ij,k + VT;-’ (wu)i‘j+1‘k w rd _ VT (wu)w 1k + VrJ 1 (w")'d k
! AT;’ ! u AT"
where

1[/Vz! \'%%
(H)u)”k = 5 [( Az tlwlg.k + Az uwl+ld, ) ( t Wi k=1 + — Azt UWit1,5.k=1 )l 1
i

1|/Vz! z? Vaz!
(Wa)ijoyp = 3 I( A;;lw.., l.k+ Az uw.+1.1 1&) ( 'ﬁ Wij—1,k-1 + Am:_,wiﬂ,j—l.k—l)] ’

1 [{Vri, Vz}
(wu)i,j+l,k = :.2' A Wi j+1.k + Az uwl+lq+]k wm-%-l k-1 + Az "wl+lg+l k-1 ]} »

with
BAT ¢ . &
(_ﬁATQu).'J‘k = _A.‘L"" {u 'fu ! - - uj u +pl+lg.k — DPijk
1 [wiprge = vige  Wigk —di-igs|| _CBATH,
Re [ Az, Az ArY_, (igk = Uij-1%)
BAT
RU;Ary

A% [RV; RV;,
— Re Ar u (ulg+l k= ulq,k) AT‘-’ A (ui‘j'k - ‘H’..‘J_l‘k)
J—

{A(RVuu — RV, wtu?)

.._Bﬁ ATrj (w"ﬂuﬂ' wrdurd) BAr wﬁfuef - w%u%
RU;Ave s R, Y,
BAr [(32 + D)T}’-l(u_ = Uik + B*r} (u.'.,'+1,k —Uigk _ Uik = ui.j-l,k)
Re | RV2 ,ArY r 7 RU; 2Ar“ Ar? Ar!
i=1=45-1 i -1
4+ (igker + Wigkor = i) | Brioy (ige = Migoik _ Yigee1 = Bigorkor )]
RUZAG® RUZAG Art_, At ’
(B.21)

hence, one obtains

[ CBATL,  (B*+DpAr.,  B'SATr:
fg—1k A, ReRVZ,ArY, ~ ReRUPAr?Arl_,
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A’BATRY; ., pAT vre vre
- —A-RV:_u™ i gpvyrd j
ReRU;ArArY_, = RU;ArY A RVi-, Ary_, Brjw, Arj_,
- CBATr]_, (B + D)gATry_, BQﬁAﬂ“? 1 1
+Au; e Arv T T ReRVZ A" ReRUZAr® \ ArY + Ar?
T1-1 AR b efUyary \arn; Tj-1
+ A’BAr  (RV; RV,
ReRU,-Ar;-‘ Ar;-’ Ar;.’_ 1
BAT e VT VT R /- AR v/ )
+ RU;ATY A | RVjuy Ar? RVj.v, _'LAr;-’_l + B |rw, —J—Ar}‘ Wy _—L—Ar}‘_,

— B2BATrYs A BATRY;
A1k | T ReRUIATP AT ReRU,ATYAT
e J T‘J- Tj e J TJ‘ Tj
ﬁAT TU_V__T;_ v THE
+m A RVJUU AT}’ -+ Brjwu AT;-’

BEATrY_, |~ — — —
=AT(E] —u—[Qu);ipt+ J - (Augjp~Auyjor ko~ AU jp-1F AU jo1 k1) .
9k ReRUZAOATY., " v y v
(B.22)
Discretized z-momentum equation in the 8-sweep:
_— BAT 1 gpmbf  gpr—th
Qugjr + RU;A8 [wu Au, —w, Au,
1 (Buijees + Buijp—y — 2Bui 54 N
" Re ( A )] =Buge,  (B2)
2
Zz_zﬁf - KJ,-J-JCH; Au, ;i , m& = Ak +2M.'J,k—1 :

then
Koo | BAT_1_ ob(l)___l___
Atigi {RU,-AG[ “\2) ” ReRU;A0
vl BAT |, of (l)_ o (l) __2
+Au"’"‘{1+RUjl_\9 [‘”" 5) "« \2) * ReRU;A0

— BAT [ 4 (1) 1 ~
e 4 BAT e (N 2 oA B.24
Atk { RU;A8 [“’" 2) ~ ReRU;A9 Uik (B:24)

Discretized z-momentum and continuity equations in the z-sweep:

BAT
Azl

(14 A7) Augjp + [u:f Al — P Ay

B-10



1 (Au.H‘j.k - AUk _ A — Aﬂ;‘.j--l.k) + APigigk — AP:‘J,J:] - mij‘k ,

- ﬁ AI:-J*_l AI:’ }
- (B.25)
Al = Vb Augje + VT, Atlivt Aut = Vazidui_yjx + VP Aug ,
. Az, > B AT
and with the aid of equation (6.27)
At 1 -_—
Apijx + 5 Az (Auige — Aoy k) = APk s
At 1 =
Apit1gk + 5 Azl (Buigr gk — Attije) = Apigy g
hence, one obtains
ﬁAT :;,V-T::' 1 AT
Atk { Az Y Az? ReAzx! 6AzY
BAT[ Vil 4 Va!
+Au1,j,k {1 + AT + Aﬂ::‘ u, Ax::'+[ Uy Ax::
Py S R Py .
Re \ Az} ' Azxy,, & \Az} Az,
BAT | o Vziy 1 At
+Au|+ld.k { AI:' U, A.T:".l.] ReA:L‘}’H 6A$:,!+1
— BAT feer —_—
= Duijp — ALb (AP:'+1JJ= - Apid.k) : (B.26)

We recall that the terms containing A and V indicate the central and backward
difference operators applied to the grid point coordinates, and 34 interpolates such

as vf¥, v7d, w™ wld, ...etc are evaluated by the relations given in Appendix A.
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