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Abstract

The aim of thi,; Thesis is to obtain time-accuralt' solutions of the Navier-Stokes equa­

t ions for laminar incompressible unsteady flows generated by oscillating boun<!aries

iu an annulaI' region made from two concentric cylindcrs. For this, a timc-depcndcnt

coordinate transfonnation is first used to obtain a fixed computational domain. The

resulting governing equations in the fixed domain are discretized in l'cal time bascd

on a three-time-level implicit scheme. A pseudo-time integration wit.h artificinl com­

pressibility is then used to obtain the solution at a new rcal-t.ime level. A fadorcd

AD! scheme is used to reduce the resulting coupied discretized equations in delta

f01'111 to a set of decoupled scalar tridiagonal syst.ems.

The method of solution has been applied to various 3-D unsteady flows in an­

nular geometries, as well as to 2-D annular flows. The numerical results obtained are

compared with those based on a mean position analysis, without transformation, for

small-amplitude oscillations. This comparison shows that the time-dependent coor­

dinate transformation is necessary to obtain accurate solutions for larger-amplitude

oscillations.

The mean-position approach has also been applied to the analysis ofaxially

variable annular configurations. The results obtained show more pressure recovery

after a diffuser section with 6' half-angle than in the case of 20' haIf-angle.

A comprehensive experimental study was conducted to validate the theoretical

results in the range oflaminar flow. The results obtained were in good agreement with

the numerical results, specially with those obtained by the time-dependent coordinate

transformation. Experiments were also conducted for turbulent flow.

Based on the theoretical models developed, a computational method has been

used to study f1uid-structure interaction phenomena. It was applied to several cylin­

drical annular configurations in which one side of the annulus, the outer cylinder, is

assumed to be f1exibly supported, and thus to be susceptible to f1ow-induced instabil­

ities. The structural and N-S equations were solved simultaneously by employing the
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IIUIIICI'i::al IIIcthod devc10ped for the unsteady lIow and a fourth-order Runge-Kutta

"chCIIIC for thc structural motion. The numerieal results thus obtained have predicted

thc stability of the structure for dilferent annular geometries. The structure having

a IIl1iform allnular geometry was shown to be more damped, while the annular ge­

ometry with a backward facing step is less damped. The study of the structure for a.

uniform allnular geometry in tl.e case of rocking motion of the outer cylinder predicts

ail illstability in the fonll of lIutter of the outer cylinder.

ii
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Résumé

Pour obtenir les solutions précises en temps des équations de Navier-Stokes

pour des écoulements instationnaires générés par des parois vibrantes dans la région

comprise entre deu~ ~ylindres coneent~iques, on transforme d'abord les coordonnées

dépendant du temps afin de réduire le problème à un domaine de calcul fixé dans

le temps. Les équations ainsi obtenues dans le domaine fixé sont discrétisées en

temps réel en utilisant une procédure implicite basée sur trois niveaux de temps. Une

intégration en pseudo-temps avec une compressibilité artificielle, est utiliRée pour

réduire la solution à un nouveau niveau en temps réel. Un procédé de factorisation

ADI est utilisé pour réduire les équations discrétisées couplées obtenues dans une

forme delta en un system tridiagonal scalaire découplé.

Les solutions ont été appliquées aux espaces annulaires ainsi qu'à des eeoule­

ments annulaires 2-D. Les résultats numériques obtenues sont comparées avec ceux

basés sur l'analyse des positions moyennes, sans transformation, pour de petites am­

plitudes d'oscillation. Cette comparaison met en évidence que, la transformation des

coordonnées dépendant du temps conduit à des solutions plus exactes pour de larges

amplitude d'oscillations.

La méthode de position moyenne a été appliquée aux régions annulaires qui sont

axiallement variables (avec décrochement cânique). Les résultats obtenus indiquent

une plus importante récupération de pression après le décrochement cânique de demi­

angle 6" qu'après celui de demi-angle 20".

Une étude expérimentale détaillée a été développée pour valider les résultats

théoriques concernant les écoulements laminaires. Les résult.ats expérimentaux s'acco­

rdent avec les résultats numériques, spécialement avec ceux obtenus avec la transfor­

mation des coordonnées dépendant du temps. La procédure expérimentale a été

appliquée aux écoulements turbulents.

Basé sur les modèles théoriques utilisés, une méthode numérique a aussi été

utilisée pour étudier les phénomènes d'interaction fluide-structure. Elle a été ap-

iii



•

•

pliquée à plusieures configurations cylindriques annulaires. Pour ces configurations,

le cylindre externe est ma.intenu de manière flexible et pourrait devenir instable sous

l'éffet de l'écoulement. L'évolution du mouvement est suivie en temps pendant que

les équations de N-S et de la structure sont résolues simultanément en employant pour

l'équation de la structure la méthode de Runge-Kutta en quatre étapes. Les résultats

numériques obtenus pour les oscillations libres du cylindre extérieur, ont permis de

prévoir la stabilité de la structure pour différentes géometries annulaires. La configu­

ration géométrique la plus stable est celle avec le cylindre interne uniforme, tandis que

la moins stable est celle avec le cylindre à décrochement droit. L'étude de la structure

pour le cas du cylindre interne uniforme, lorsque le cylindre extérieur est animé d'un

mouvement de bascule a montré des instabilités de flottement caractérisées par un

mouvement oscillatoire du cylindre externe,

iv
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Chapter 1

Introduction

In nature, when structures submerged in quiescent or f10wing f1uids oscillate, the sur­

rounding f1uid must participate in the motion; i.e., we have a coupled f1uid-structure

motion and f1uid-st'.'Ucture interaction. The result of this motion is sometimes pleas­

ant, as in musical instruments, and sometimes annoying, disagreeable or destructive,

as in the case for acoustical noise or damage to the structures. There are different

mechanisms of f1uid-structure coupling and interaction; where oscillatory motion is

involved, this is sometimes called Flow-Induced Vibration or FlY.

Because of the possibly destructive nature of sorne of these phenomena, the

study of this subject is of great interest for design. Although f1ow·induced vibrations

are usually regarded as a secondary design consideration, at least until a failure

occurs, it has become increasingly important in recent years because designers are

using materials to their Iimit, causing structures to become progressively Iighter,

more flexible and more prone to vibration. Since 1939, an extensive research effort

has been expended to find out the mechanisms involvcd in different kinds of f1ow­

induced vibrations; the methods of predicting the onset of vibration and whether

the system remains stable or becomes unstable have bccn discussed by Païdoussis

(1980,1983,1987,1993), Chen (1987), Blevins (1990).

The f1uid and the structure are coupled through the forces they exert on each

other, as shown in Figure 1.1. In a very simple explanation, the f1uid forces cause

the structure to deform; as the structure deforms, the boundaries of the f10w change,
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and the ftuid forces therefore change. Furthermore, just as the ftuid exerts a force on

the structure, the structure exerts an equal but opposite force on the fluidj hence the

name of ftuid-structure interaction.

Depending on the geometry and direction of the flow relative to the structure,

e.g., ftow within or over the structure, the induced vibrations are categorized into

different types, such as cross flow-, axial (internal or external) flow-, and annular

flow-induced vibrations. Each of these types of vibrations arises from distinct iluid

dynamic phenomena that can be classified by the nature of the flow and the structure,

as shown in Figure 1.2. The most important ones, for example in the case of cross

ftoware: (i) separation of the fluid and vortex shedding, (ii) turbulence buffeting, and

(iii) ftuid-elastic instabilities. As a practical examples of fluid-structure interactions,

the vortex shedding mechanism is weil known and has been experienced by any fast

swimmer on his armSj or the internal tubular flow such as the large lateral force that

must be exerted by one holding a fire-hose at high discharge rates, and the thrashing,

snaking motions resulting when the fire-hose (or garden hose) is released.

As far as industrial applications are concerned, cylindrical structures subjected

to either internai or external flows are found in many engineering constructions,

particularly in the power-generating, chemical, and petrochemical industries; e.g., in

the form of piping of all kinds, marine risers, and chimneys; fuel pins, monitoring, and

control rods in nuclear reactors; heat exchanger tube arrays and bundles of electrical

conductors in transmission lines; and thin-walled shrouds and flow containment shells

in nuclear reactors, aircraft engines, and jet pumps; to name but a few of the most

familiar such systems.

The vibrations and instabilities associated with internal ftow in tubular and ex­

ternal axial ftow around cylindrical structures are of limited practical concern, despite

their very considerable fundamental appeal. Most, but not all, engineering structures

arc sufficiently stiff, so that unusually high llow velocities would be required for these

instabilities to occur. This, however, is not the case for instabilities associated with
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annular flows (Païdoussis 1987), where practical occurrences abound; a number of

such cases are presented in Païdoussis (1980).

The present Thesis is concerned with the vibration of cylindrical structures iu

annular configurations, in still fluid or in axial flow in the annular passages. Sorne

of the practical situations where annular-flow-induced instabilities have occurrcd in

practice are: (i) control rods in guide tubes, fuel strings Ï!l coolant channels, and

feedwater spargers, in various types of nuclear reactors; and (ii) certain types of

jet pumps, pistons and valves. Figure 1.3 illustrates a jet pump, as an example

of such applications. It should be mentioned that annular-f1ow-indueed instabilities

are sometimes referred to as leakage-f1ow-induced oscillations, or instabilities, which

reflects the fact that in most cases of practieal concern, the annular f10w passage is

quite narrow. Excellent reviews are given by Mulcahy (1983), Mateescu & Païdollssis

(1985,1987)and Hobson & Jedwab (1990).

1.1 Previous Work on this and Related Problems

Cylindrical systems subjeeted to annular f10w are notoriously prone to self-excited

vibration, and consequently to damage through wear and fatigue, or outright fracture.

Sorne work on stability of flexible cylinders in axisymmetrically confined flow was

undertaken by Paidoussis and co-workers (1979,1981). Since then, the research effort

on this topic, specifically applicable to narrow annuli was intensified and a number of

interesting papers on the subject may be found in the proceedings of various symposia

in this area, e.g., Païdoussis et al. (1984,1988,1992).

The first attempts to generate an analytical viscous model for the cylindrical

geometry are due to Hobson (1982) and Spurr & Hobson (1984). For the sake of sim·

plicity, Hobson considered a rigid cylindrical body, hinged at one point and coaxially

positioned in a f1ow-carrying duct, generally of nonuniforrn cross-sectional areaj he

showed that, at sufficiently high f10w velocities, oscillatory instability can occur, via

a negative damping mechanism. Moreover, the model was capable of dealing, in an
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approximate manner involving some degree of empiricism, with situations of sudden

constriction or enlargement in the flow passage. The analysis was extended to predict

the dynamical behaviour of an actual fuel assembly oscillating in a channel of arbi­

trary shape (Hobson 1984). Measurements of damping forces caused by flow between

two concentrie cylinders were made by Hobson (1991) in which he compared the

experimental results with theory by making simple quasi-steady assumptions about

the frictional forces acting on the cylinder. It was shown that damping of cylindrical

structures due to annular flow arises from inlet or outlet effects and from frictional

effects in the annulus, both elfects increasing with flow velocity. Also, he found that

the damping forces and pressure distribution along the annulus can be well predicted

if simple assumptions about the unsteady flow in the annulus are made.

Several approaches have been used by different authors to obtain theoretical

or experimental studies on fluid-structure interactions in very narrow annuli, or on

so-called leakage flows. Among them is the study of Ashurts & Durst (1980) on llow­

induced vibrations associated with shear-layer-induced llow oscillations in a symmet­

ric, two-dimensional, plane test section with a sudden expansion. Parkin & Watson

(1984) describe a physical model for explaining flow-induced vibration observed in

6° and 30° annular dilfusers, where the centre-body forming the diffuser can move

l'adially. Their model is based on experimental evidence and accounts for both fluid

behaviour and structural response. This type of behaviour has relevance to the on­

load refuelling of advanced gas cooled reactors. Spur & Hobson (1984) eonducted

sorne experiments in which they measured the unsteady forces caused by the llow

down an annulus formed between a fixed outer cylinder and a vibrating centre-body

and compared the results with those predicted using a linear small perturbation anal­

ysis. lt was found that the forces are particularly sensitive to the amount of pressure

recovery which takes place when the annulus is terminated in an annular diffuser, and

that high pressure recovery leads to forces on the centre-body which are in phase with

centre-body velocity and therefore likely to lead to coupied lluid-structure self-excited
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vibrations.

Mulcahy (1988) obtained closed-form solutions for the f10w damping (velocity­

dependent) and stiffness (displacement-dependent) forces acting on the vibrating

waHs of a one-dimensional leakage-llow channel. He also checked the effect on sta­

bility of pressure drop and of nonuniform geometries by using a constriction at the

entrance of the annulus or varying the annular geometry via smoothly converging or

diverging widths. The final conclusion was that the minimum conditions necessary

for dynamic and static (divergence) instability are (i) a pressure loss at the upstream

end of the annulus and (ii) a divergent channel with a finite-length throat region.

Hobson & Jedwab (1990) studied the effect of eccentricity on the unsteady forces

on the centre-body of an annular diffuser. They carried out experiments and measured

the forces on the fixed or forced vibrating centre-body at different frequencies and

amplitudes within an annular diffuser. They found that periodic instability can be

initiated by increasing the forced vibration amplitude above a frequency-dependent

threshold.

Inada & Hayama (1990) theoretically and experimentally analyzed the viscous

lIuid-dynamic forces and the moments acting on the walls of a one-dimensional, nar­

row, tapered passage when one wall is vibrating in single or coupied translational

and rotational modes. The lIuid dynamic mass, damping and stiffness matrices are

determined, with the help of which the mechanism of instability generated by the

f10w through the narrow passage is exanlined.

A more rigorous, purely analytical potential-f1ow model was formulated by Ma­

teescu & Païdoussis (1985), once again for a rigid-body (the "centre-body") hinged

at one point and coaxially positioned in a f1ow-carrying conduit; free motions of the

centre-body were constrained by a rotational spring and a rotational dashpot at the

hinge point. The cross-sectional areas of the body and the conduit were genera11,y

axially (and axisymmetrically) variable, but changes were smooth-precluding sud­

den constrictions or enlargements, but nevertheless allowing for a diffuser-type f10w
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passage or a convergent one. In this inviscid analysis it was found that there is a

critical location of the hinge: if the hinge is situated downstream of that location,

then the system may lose stability at sufficiently high lIow velocity when the negative

lIuid-dynamic damping, associated with motions of the centre-body, overcomes the

mechanical damping; the necessary lIow velocity becoming progressively smaller as

the hinge is moved farther downstream. The lIuid-dynamic forces become larger as

the annular passage becomes narrower, destabilizing the system. It was also found

that a divergent 1I0w passage (diffuser) destabilizes the system, whereas a convergent

one stabilizes it, as compared to the cylindrical geometry, which agrees with Hobson's

(1982) finding.

This rigid-body model was then extended to take into account, in an approx­

imate manner, viscous effects (Mateescu & Païdoussis 1987). One of the principal

findings of this work was that viscous effects stabilize the system, and that they be­

come more important as the annulus becomes narrower, which is reasonable on phys­

ical grounds. In this analysis an approximate solution of the Navier-Stokes equations

was obtained, in which viscosity related modification of the unsteady pressure is ob­

tained. Subsequently, the lIuid dynamic pressures acting on the centre-body having

a rocking motion were measured and compared with the theoretical ones (Mateescu

et al. 1988). Good agreement between the two was found. To include the effects of

turbulence, albeit approximately, the potential solution was combined with a turbu­

lent mode! based on a power law for the velocity profile that fits the logarithmic form

fairly weil (Mateescu et al. 1989).

In another investigation in which a lIexible, as opposed to a lIexibly mounted,

structure was used, the dynamical behaviour of the system of a cylinder beam with

lixed ends subjected to axial lIow in a narrow annulus was studied (Paidoussis et

al. 1990). It was found that, as the annular gap becomes narrower, the system

loses stability by divergence at smaller lIow velocities, provided the gap size is such

that inviscid fluid eifects are dominant. For very narrow annuli, where viscous forces
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dominate, however, this trend is reversed, and further narrowing of the gap has a

stabilizing effect on the system.

In an early investigation, the stability of coaxial shells with annular 1I0w was

conducted by Pâidoussis et al. (1984) and it was found that, for annular 1I0w, the

critical 1I0w velocity is lowered as the annulus is made narrower. If both shells

are lIexible, the instability threshold is lower than if the outer cylinder is rigid, the

system losing stability first in the antisymmetric modes. This model was subsequently

extended by Païdoussis et al. (1985) to take into account the steady viscous effects

due to the surface traction and pressurization (to overcome frictional pressure drop);

i t was found that pressurization in the 1I0w within the inner shell tends to stabilize

the system, as is physically reasonable. Similarly, pressurization in the annular 1I0w

is destabilizing, if the outer shell is rigid. On the other hand, pressurization in the

annular 1I0w when both shells are lIexible could either stabilize or destabilize the

system, depending on the system parameters; this becomes clear when it is realized

that in this case the effect on the inner shell is destabilizing, whereas it is stabilizing

on the outer shell, and that motions of the two are coupled.

Further development in this area has been achieved by the use of computational

models which involve simultaneous numerical integration of the Navier-Stokes equa­

tions for laminar 1I0w, and the equation of motion of the structure (Pâidoussis et al.

1992). To this end, a forced vibration of the outer (or inner) cylinder in an annular

configuration was considered in which the Navier-Stokes equations were linearized

and solved in the annulus for small amplitude oscillation of the cylinder, using prim­

itive variables Mateescu et al. (1991,1994), and a spectral collocation method (sec

Canuto et al. (1987)) for unsteady annular lIow in concentric and eccentric annuli,

again for small amplitude oscillation of the moving boundary (Mateescu et al. 1994).

Mateescu and his coworkers used a method in which the primitive variables

were considered. Further explanation of their work will be given in the subsequent

paragraphs and chapters. An intensive review regarding the methods using primitive
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variables to solve Navier-Stokes equations can be found in Rogers &: Kwak (1990).

Most such methods can be classified into three groups. The first of these, and his­

torically one of the most commonly used primitive variables schemes, is the pressure

Poisson method, as first introduced by Harlow &: Welch (1965). In this method, the

velocity field is advanced in time using the momenturu equations. Then a Poisson

equation in pressure, which is formed from the momentum equations, is solved for

the pressure at the current time level, such that the continuity equation be satis­

lied at the next time level. In this method, the velocity and pressure are indirectly

coupled. The second group of methods can be classified as fractional step methods.

This idea was first introduced by Chorin (1968), and is characterized by first solving

for an intermediate velocity from the momentum equations, and then solving for the

pressure field that will map the intermediate velocity into a divergence-free velocity.

Computing the pressure field is usually accomplished by solving a Poisson equation

in pressure, which can be very time-costly. The third method is that of artificial

compressibility, which was used with much success by Mateescu and co-workers, and

which will be used in the present analysis. This third method was also first introduced

by Chorin (1967) for use in obtaining the steady-state solutions to the incompress­

ible N-S equations. Several authors have recently used this method successfully in

computing time-accurate problems. Merkle &: Athavale (1987) presented solutions

using this approach in 2-D generalized coordinates. Soh &: Goodrich (1988) have also

used this method to present solutions for a Cartesian mesh in 2-D. In the artificial

compressibility formulation, a pseudo-time derivative of pressure is added to the con­

tinuity equation, which directly couples the pressure and velocity. The equations are

advanced in physical time by iterating until a divergence-free velocity is obtained at

the new physical time level.

Similarity exists between this formulation and the fractional step method of

Chol'in (1968), because his mapping of the intermediate velocity field to the divergence­

free velocity is based on the artificial compressibility approach. However, the artificial
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compressibility method is different in that it provides a direct coup\ing between the

pressure and velocity as they are advanced in time.

In the work done by Rogers & Kwak (1990), once again the artificial com­

pressibility approach is used to solve 2-D N-S equations using an upwind differencing

scheme based on flux-difference splitting, to compute the convective terms. In an·

other work, Rosenfeld et al. (1991) used a fractional step method for solving the

time-dependent 3-D incompressible N-S equations in generalized coordinate ~ystems.

They used the finite volume method, with a staggered mesh to discretize the govern­

ing equations, and solved the momentum equations by an approximate factorization

method.

The approach used by Mateescu et al. (1991,1994) which is based on three­

point-backward time discretization provides more accurate pressure results than the

Crank-Nicolson scheme used by Soh & Goodrich (1988). This is why in the present

work the former is adopted. In this approach, the solution to the momentum equa­

tions results in an unsteady pressure which is free of spurious oscillation; furthermore,

the equations are cast in delta form alter the introduction of the pseudo-time relax­

ation, allowing one to solve the implicit semi-discretized equations by the Alternating

Direction Implicit (ADI) method along the exact sarne \ines as in the method of ar­

tificial compressibility applied to the solution of steady-flow problems (Soh 1987) by

using any of the existing space discretization schemes.

The present work has generalized the ear\ier work by Mateescu and co-workers

(i) by taking more fully into account the nonlinearities in the N-S equations, (H)

by applying the boundary conditions on the moving boundary, rather than at its

mean position -both of special interest for larger-arnplitude oscillations- and (Hi)

by extending it to deal with nonuniform annular geometries (Mekanik et aL 1993,

Mateescu et al. 1994). To carry out all these aims, the governing N-S equations

should be transformed in time and space, i.e., the physical domain of integration

should be transformed into a computational domain, for both the uniform annular
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geometry and the nonuniform ones. There are different methods to treat moving­

boulldary problems.

The moving-boundary problems (MBPs) are a class of problems which can be

found in many engineering and scientific fields. Numerous papers can be found in

the literature which propose different methods for solving this class of problems.

In practice, MBPs have several applications, such as ice making, freezing of food,

diffusion of oxygen in body tissue, casting, melting (change of phase), crystal growth,

etc. For each application a specifie method of grid adaptation or generation is used,

the purpose of which, in general, is to obtain accurate values for the field variables.

Early methods for solving moving boundary problems used body- or boundary­

fitted curvilinear coordinate systems and adaptive grids in which at each time step

a new grid was obtained through sorne grid-generation technique (algebraic, partial

dilferential; elliptic, hyperbolic, or parabolic), vide Thompson et al. (1985). Thames

et al. (1977) developed body-fitted coordinate systems to implement numerical solu­

tions for viscous and potential f10ws about arbitrary two-dimensional bodies. Their

solution is based on a technique of automatic numerical generation of a curvilinear co­

ordinate system having a coordinate line coincident with the body contour, regardless

of its shape. Thompson et al. (1977) presented a code for the numerical generation

of boundary-fitted curvilinear coordinate systems. In this code, the coordinate lines

are coincident with all boundaries of general multiconnected, two-dimensional regions

containing any number of arbitrarily shaped bodies. No restrictions are placed on the

shape of the boundaries, which may even be time-dependent. This approach provides

a rectangular computational field with a square mesh; no interpolation is required,

regardless of the shape of the physical boundaries, regardless of the spacing of the

curvilinear coordinate lines in the physical field, and regardless of the movement of

the coordinate system in the physical plane. Rai & Anderson (1982) introduced a new

technique that provides a simple way of moving the mesh points in physical space in

order to reduce the error in the computed asymptotic solution relative ta that using
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a fixed mesh. Their adaptive grid technique has application in complex lluid llow

problems involving many depcndent variablcs, curved stationary and moving bound­

aries, and systems of partial differential equations. Kansa (1988) set forth an explicit

moving-grid technique in which a moving frame is found in which the cOhservation

equations appear stationary in a least-squares sense. In this moving frame, which was

used to solve shock-wave problems, it is possible to drastically reduce or eliminate

the temporal truncation errors. Finally, Shyy (1988) used an adaptive grid method

to solve complex lluid llow problcms such as uniform channeillow. An application of

a moving-finite-element, instead of moving-grid, method can be found in Djomehri

& George (1988). They used this method to solve the moving-boundary Stefan (hcat

transfer between water and ice) problems. Although these methods provide solutions

for these problems, they are not efficient in tenus of computation time and cost.

Several other methods were developed in which these deficiencies were somc­

how removed from the solution of the problems. Ogawa & Ishiguro (1987) proposed

a new method for computing llow fields with arbitrary moving boundaries, which is

in the same line as the previous class of grid-generation methods. According to their

formulation, the computational coordinates fitted to the body move in space, con­

trary to the usual computational procedures. Thomas & Lombard (1979) formulate

a differential "geometric conservation law" that governs the spatial volume clement

under an arbitrary mapping. Their method remedies the difficulties with mainte­

nance of global conservation and with computation of local volume clements under

time-dependent mapping that results from boundary motion. Warsi (1981) worked

out the solution of the N-S equations in conservative-law form in general nonsteady

eoordinate systems in a simple and direct fashion, by manipulating sorne standard

vectors and tensors. Demirdzié & Perie (1990) present a method that ean be used

for both the Lagrangian and Eulerian solution of the N-S equations in a domain of

arbitrary shape, bounded by boundaries which move in any prescribed time-varying

fashion. Yeoh et al. (1990) used a boundary-fitted coordinate system to predict the
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shape and the movement of the solid-liquid interface in the course of a numerical

study of 3-D natura! convection with phase change.

From ail of the forgoing, it is obvious that an efficient way of handling this type

of problem should be adopted. In this respect, immobilization of the domain of in­

tegration was found to be a reasonable choice in solving moving-boundary problems,

at least to an acceptable extent. To immobilize the grids, a time-dependent trans­

formation must be used by which the governing equations and boundary conditions

are transformed from the moving physical domain into a stationary computational

domain (Thompson et al. 1974). Based on this type of transformation several prob­

lems have been solved in the last two decades. To mention just a few cases, Duda et

al. (1 ~75) present a technique for the analysis of unsteady, two-dimensional diffusive

heat- or mass-transfer problems characterized by moving irregular boundaries. The

technique includes an immobilization transformation and a numerical scbeme for the

solution of the transformed equations. Saitoh (1978) developed a numerical method

for llluitidimensional freezing problems in an arbitrary è'lmain, using a boundary­

fixing method. Hsu et al. (1981) set forth a methodology for the numerical solution

of transient two-dimensional diffusion-type problems (c.y., heat conduction) in which

one of the boundaries of the solution domain moves with time. The moving bound­

ary is immobilized ~,y a coordinate transformation, but the transformed coordinates

are, in general, not orthogonal. Faghri et al. (1984) used a nonorthogonal, alge­

braie coordinate transformation to obtain a rectangular solution domain for solving

convection-diffusion problems. This transformation avoids the task of numerically

generating boundary-fitted coordinates. Finally, Ralph & Pedley (1988) worked out

a numerical solution for the N-S equations in a channel with a moving indentation,

which is close to the sit:lation we have in the present work, using a time-dependent

coordinate transformation to resolve the boundary-condition difficulties arising from

the presence of the moving wall. With boundary immobilization, while the problem

becomes more complicated, it is ensured that the computational domain remains a
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fixed rectangle.

It is important to note that time-dependent coordinate transformations of the

partial derivatives of the governing equations introduces cross-derivative terms, which

is a characteristic of nonorthogonality of the grids. This, however, does not introduce

errors in the accuracy of the final solution of the problem if the grid skewness is not

large, as explained in Thompson et al. (1982) and verified by Braaten & Shyy (1986),

who also proved that grid skewness only afft!cts the convergence of the numerical

solution. Therefore, in the present work the time- riependent transformation is uscd to

obtain a rectangular computational domain with an orthogonal grid, even though the

grid in the physical domain is nonorthogonal and skewed. Since boundary motions in

the problems considered in this work are such that the criteria set forth by Thompson

and co-workers for skewness of the grid aremailltained(seeChapter6).itis not

necessary to be concerned about grid skewness in the solutions obtained.

1.2 The Contents of this Thesis

The scope of the research program undertaken in the present work is four-fold. First,

to use the method of artificial compressibility to perform the tinle-accurate integra­

tion of the ullsteady incompressible Navier-Stokes equations in annular regions for

fluid flow in the laminar regime. taking into account t be large motion of the oscillating

boundary (Mekanik et al. 199:'): this method will be used for all unsteady problems

treated in this Thesis. Second, to apply this method to nonuniform annular geome­

tries, again for large amplitudê5 motion of the moving boundary. Third, to investigate

experimentally the forced vibration of the annular problems with different geometries

(uniform, with backstep, and with diffuser-shaped annuli) by measurement orthe un­

steady pressure resulting from boundary oscillation in quiescent or flowing fluid in

the annulus, and to compare the results with what was obtained from the theoretical

(numerical) study. Experimental results for turbulent fluid flows were also obtained

with an eye towards future extension of this work into the turbulent flow regime.
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Fourth, to theoretically couple the N-S equations and the equation of motion of the

rnoving body (in this study the outer cylinder), to determine the linear stability of

thc structurc for large-amplitude oscillation. It should be remar!œd that for ail cases

IIlcntioncd, thc small-amplitude (mean-position) analysis is also utilized, 50 as to

comparc thc thcoretical small- and large-amplitude results, and the numerical with

experimental results, to the extent possible, and to eventually be able to conclude

that beyond a certain amplitude the small-amplitude solution is not relial>le.

In Chapter 2, the physical problems with the special geometries that can be

found in practice and the related variahle physical parameters influencing the solu­

tions Ilnder consideration are defined. This is followed by introducing the unsteady

f10w cquations (i.e., the Navier-Stokes and continuity equations) in cylindrical coor­

dinates. Finally, the fluid forces resulting from the solution of the f10w equations are

derived and the dynamical equation of motion of the structure, which is coupied with

the fluid equations through the f1uid forces, is presented.

Chapter 3 covers the numerical formulation for unsteady annular f10ws with

slllall amplitudes of oscillation. This includes real time-discretization of the f10w

equations, The introducing of the method of artificial compressibility, and the pseudo­

time formulation of the resulting equations. The equations obtained are discretized

in space by using a staggered grid and solved in delta form, which is efficient in terms

of computer time, using the (ADI) scheme.

In Chapter 4 the validation of the method cf solution introduced in the previous

chaptcr for 2-D and 3-D steady annular f10w probl~ms is discussed. Then, the cases

of 2-D and 3-D unsteady annular f10ws are treated and the rtlated problems are

discussed both for uniform and nonuniform (backstep) annular geometries. For both

geometries, the uncoupled translational and rotational motions of the moving outer

cylinder are considered. The results obtained for sLMIl-amplitude oscillations are

discussed and the elfects of dilferent parameters such as flow velocity, amplitudes

and fl'cquencies of oscillation, the annular gap width, and the length of upstream and
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downstream fixed portions of the vibrating cylinder on the results are presented.

Chapter 5 is devoted to the solution of the fluid flow cquations for nODlllli­

fonn geomctries (diffuser shapes). This is due to the fact that, during the solution

procedure of this type of annular geometries, one will obtain nonorthogonal highly

skewed computational grids in the annular space in the axial direction which will

have a negative effect on the accuracy of the solution. To overcome this problcm,

a special space transformation is used to obtain physical as weil as compl\tational

orthogonal grids. The same procedure used for the time- and space-discretizations

of the N-S equations employed in Chapter 3 is also applied here to discretize these

equations in the transformed domain. It should be remarked that, for the special

case of a diffuser-shaped annulus, the small amplitude (mean-position) analysis is

used because of numerical difliculties, due to both the time-dependent and space

transformations. The numerical results obtained for this geometry are presented and

discussed in terms of different physical parameters affecting the solution. These fac­

tors include the amplitude (small amplitude only, the large-amplitude solution and

results will be presented in Chapter 6 for uniform and backstep geometries) and fre­

quency of oscillation, diffuser angle, annular gap width, fluid velocity, and the length

of the oscillating cylinder as weil as the lengths of upstream and downstream fixed

portions.

Chapter 6 is devoted to the solution of the Navier-Stokes equations using a time­

dependent coordinate transformation, and inc1udes the development of the transfor­

mation equations and derivation of the partial derivatives in the transformed <:ompu­

tational domain. Then, the transformed N-S equations are formed and the equations

are discretized in real- and pseudo-times. Spatial discretizations are implemented on

the same lines used in Chapter 4. The discretized equations are then solved using

the ADI scheme. There follows a discussion of grid skewness in the physical domain,

which is unavoidable due to the motion of the cylinder, although in the computa­

tioual domain the grids are not skewed. The numerica1 results are presented and the
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mcan-position analysis is compared with the time-dependent analysis.

Chapter 7 describes several ways of testing the convergence and accuracy of

the rcsults vis-à-vis the eifects of important parameters, such as the number of real

time-steps, the length of the system under consideration and the mesh, to name but

a few, on the numerical results and the accuracy of the numerical model used by

comparing the numerical and analytical results for a benchmark problem.

Chapter 8 is exclusively devoted to the experimental investigations. In this

chapter, thc main apparatus with its specifications and characteristics, the ancillary

equipmcnt, the instruments and the measuring devices are described. The prelimi­

nary experimental work, such as preparation of the apparatus and calibration of the

relatcd devices, is explained. A complete description of the experimental procedure

is given for the two cases of translational and rocking motion of the outer cylinder.

Although the main objective of the theoretical and experimental work in this Thesis

is to study the f1uid f10w and its interaction with the structure in the laminar-flow

regime, the available equipment and facilities permit experimentation in the turbulent

regime. A complete set of measurements for different Reynolds numbers, including

those in the turbulence range, were obtained and the results for various geometries

arc presented. The theoretical results obtained by both theoretical methods are

compared with the experimental results, and the validity of the results obtained by

time-dependent coordinate transformation is discussed. Finally, a discussion of the

related experimental errors conclude the work of this chapter.

In Chapter 9, f1uid·structure interaction is considered, in which the Navier­

Stokes equations for 2-D and 3-D, either for the small-amplitude (mean position)

solution or the large-amplitude (time-dependent transformation) solution, are coupled

with the dynamicallinear equation of motion of the system through either predictor­

corrector scheme or a fourth·order Runge-Kutta scheme. The coupled equations are

then solved numerically and the stability of the vibrating outer cylinder is discussed

in terms of its displacement versus time, regarding different factors influencing it,
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• such as the llow velocity, lluid viscosity, Reynolds number, annular shape (uniforrn

or nonuniform), and amplitude of oscillation. The stability analysis also includcs the

dilferent motions of the outer cylinder such as translational or rocking motion.

Chapter 10 completes the Thcsis with a summary of the important findings,

conclusions regarding the originality of the work done in this rcsearch and sorne

suggestions and recommendations for future work.
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Figure 1.1: Feedback between lluid and structure (reprinted from Blevins 1990).
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Figure 1.3: An example or a system subjected ta annular·ftow-induced vibration.
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Chapter 2

Problem Formulation

2.1 Introduction

The importance of the problem was discussed in the previous chapter. In this chapter

the key clements of the formulation of the problem are introduccd, which are at the

heart of the research presented in this Thesis. This is the set of basic equations of

lIuid motion in their unsteady form, which eventually lead to the estimation of the

lIuid-dynamic forces acting on a cylinder in an annular configuration.

The annular configurations considered consist of a centre-body concentrically

located in a cylindrical conduit, as shown in Figure 2.1. For an axially uniform

configuration, the radius of the inner cylinder is ri and the annular space between

the two cylinders is H; thus, the radius of the outer cylinder is r2 = rI + H. The

centre-body is immersed in either quiescent fluid or a steady laminar 1I0w. It is

generally the outer cylinder which is forced to execute oscillatory motion. These types

of annular geometry have applications in many engineering applications, such as the

one shown in Figure 2.2, illustrating the core of an advanced glUl ..'loled rractor during

the refuelling process. To model such a physical configuration nunlerkally, each one

of the geometries of Figure 2.1 is redrawn in a special form in Figure 2.3. In this

figure several new parameters are introduced which are part of the final mathematical

mode!. It should be remarked that, exclusively in this analysis, the inner cylinder is

fixed and the outer one is forced to oscillate.
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The totallength of the outer cylinder is divided into three parts. The upstream

and downstream parts of variable lengths LI and L2 are kept stationary. The central

portion of the cylinder, L, executes oscillatory motions, either translational or rocking

around a fixed hinge as shown in Figure 2.4.

The radii of the cylinders, TI and T2, as weil as the length of the oscillating

cylinder are variable. The annular widths downstream of the backstep or diffuser

sections are assumed to be appropriately larger than the corresponding upstream

section; moreover, the angle of the diffuser section is variable. Different values are

uscd for the f10w velocity U including U = 0, the amplitude e, and the frequency

of oscillation f of the central part of the outer cylinder. Although during oscilla­

tion there arise physical discontinuities between the fixed upstream and downstream

portions and the central portion as shown in Figure 2.3, the derivatives of the flow

variablcs are taken to be continuous and hence no singularities arise due to these

discontinuities. Also, since there always are certain gaps between these fixed and

moving parts, for the computation it is assumed that no f1uid leaks from these gaps.

Since the equations of f1uid motion, as will be described in the next section, are in

non-dimcllsional form, the solutions obtained for these equations are applicable to

incompressible-fluid f10w in the laminar regime.

The final goal in this Thesis is the stability analysis of the systems described

above. To this end, these systems are assumed to be affected by the fluid d,\'Oamic

forces that result from the f10w in the annulus and interact with the structure. These

oscillatillg structures have certain characteristics such as mass, damping and stiff­

ness. ln the stability analysis, one looks for the changes caused by the presence of

quicsccllt or f10wing f1uid. As will be seen, the stability of the structure depends most

importantly on the fluid dynamic damping, although the fluid changes the charac­

teristics of the structure in othcr ways, e.g. by increasing the effective mass of the

whole system or affecting the effective stiffness of the structure. In this Thesis, the

stability analysis is applied to the system shown in Figure 2.4.
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• The outer cylinder oscillates either in translational motion in the y direction or

in rocking motion about the fixed point, as shown in Figure 2.4. The cylinder is rigid

but is ftexibly supported, with support stifl'ness K and damping C. For the purpose

of evaluating the efl'ect of ftuid damping on the structure, the structural damping is

neglected. For the system shown in Figure 2.4 it is assumed that the outer cylinder

is displaced by a distance e and then released. Due to the oscillation of the cylinder,

ftuid forces are generated which interact with the structure; the final result of this

ftuid-structure interaction is the dynamical behaviour of the cylinder (i.e., whether

it remains stable or becomes unstable), which is exclusively the topic of Chapter 9.

However, before this goal is reached, the ftuid forces should be determined by solving

the unsteady N-S equations in the annular region. As a first step toward this aim, the

ftuid ftow equations for incompressible ftuids are introduced in the fol1owing section.

2.2 Basic Equations of Unsteady Flows

In unsteady fiows, the three velocity components and the pressure are functions

of space and time. These four unknowns can be determined from the governing

equations, i.e., the continuity equation (conservation of mass) and the Navier-Stokes

equations (conservation of momentum).

In this analysis the viscosity and density are assumed to remain constant. Thus,

the continuity and N-S equations, without body forces, are expressed in dimensional

form as

V'· V· = 0,

ôV' + V' . (V'V') =_.!..V·p· + VV·2V·
ôt· p' ,

(2.1)

(2.2)

•
respectively, where V· is the velocity vector, t' is the time, p' is the density, v is the

kinematic viscosity, and p' is the pressure.

In order to generalize the present problem, it is convenient to define the following

21



non-dimensional parameters:

• V·
V=­v·'a

p.
p=~,

P a
v = HV·, Re= HV;,

V

t·V·t= __o
H'

wherc V; is the reference velocity, and H is the annular gap width.

Using these parameters, one can write equations (2.1) and (2.2) as

V·V - 0, (2.3)

âV8t + V . (VV) =
1 2-Vp+ -V V

Re '
(2.4)

and in compact form equation (2.4) is written as

âVat +Q(V,p) = 0, (2.5)

(2.6)

whcrc in cylindrical coordinates Q(V,p) = [Qu(u, v, w,p), Qu(u, v, w,p), Qw(u, v, w,p)jT.

The continuity equation and the components of Q(V,p) are given by

V . V = âu + ~ â(rv) + ~âw
âx r âr r âO '

Qu(U, v, tv,pl

Qu(u, v, w,p)

Qw(u, v, w,p)

â(uu) 1 â(rvu) 1 â(wu) âp
= ~ + -;: âr + -;: â8 + âx

1 [â
2
u 1 â (âU) 1 â

2
u ]

- Re âx2 + -;: âr r âr + r2 â02
(2.7)

(2.8)

, (2.9)

•
in which u, v and w are the a.xial, radial and circumferential non-dimensional velocity

components (V = iu + êrv +ê9w) .
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Equations (2.3) and (2.4) arc subject to initiai and boundary conditions, which

on the fixed portions of the outer cylinder (2.11)

on the inner cylinder (2.10)

• may be stated as follows:

v = 0,

V - 0,

V = 0,

and

w=o, at t = 0, in the annu\us

on the moving boundary , (2.12)

•

where V b is the boundary ve\ocity.

Also, depending on the method of solution, the boundary conditions are illl­

posed either at the mean position of the outer cylinder (for smail-amplitude oscilla­

tions; see Chapter 4), or at its true time-dependent position (as shown in Figure 2.5)

for larger-amplitude oscillations (see Chapter 6).

Therefore, the boundary conditions associated with the geometry of Figure 2.5

are given on the fixed inner cylinder R = Ri as

vw(Ri , 8, t) : o} , (2.13)
Ww(Ri, 8, t) - 0

and on the moving outer cylinder Ra = Ri + ~(8, t) according to Figures 2.5(b)

and 6.2
vw (Ra ,8,t) = [dE(t)/dt]cos8 }
ww(Ra ,8,t) = - [dE(t)jdt]sin8 ' (2.14)

with no velocity in the axial direction (positive 8 is in the counterclockwise direction).

The known displacement of cylinder E, which is a function of time, provides the

necessary ve\ocities [vw,wwjT at different time steps.

2.3 Dynamics of the Structure as a Result of Fluid
Forces

The fluid-dynamic forces, which are expressed in terms of inertia\, damping and

stiffness components are evaiuated based on the viscous-flow anaiysis deve\oped in
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• the following chapters. The steady and unsteady f1uid-dynamic forces are obtained

by integrating the pressure and skin friction around the cylinder. These forces, which

will be obtained in later chapters, are necessary for the evaluation of stability if one

of the two e1ements of the annulus (the centre-body or the outer cylinder) is flexible

or f1exibly mounted.

The resultant forces acting on the structure pel' unit length, including the un­

steady components, can be calculated by using the following stress equation in tensor

form

(
aUi aUi)II·· = -p6ij+1L -a + -a '

'1 Xj Xi
(2.15)

where au;/axi represents the partial derivative of the velocity component in the i

direction with respect ta the j coordinate, IL is the dynamic viscosity, and 6ii denotes

the Kronecker delta.

The steady viscous forces, which are dependent on the gradients of the motion

with respect ta the axial direction, are derived from the longitudinal frictional force

and from the pressurization of the f10w ta overcome the pressure drop. In this analysis,

since these factors do not affect the problem, the steady forces will not be considered.

The unsteady viscous forces arise from normal and tangential friction forces

containing the effect of the viscous pressure distribution along the circumference

in a direction normal ta the wall. Thus, the unsteady forces acting on the outer

cylinder pel' unit length due to its oscillatory motion can be obtained by multiplying

equation (2.15) by the unit vcctor normal to the outer cylinder and integrating the

result:
[2.

F(t) = Jo (T,.,.lr=R. cosO - TrO Ir=R. sinO) RodO, (2.16)

where Trr = Illl' and TrO = Il12. The stress components in terms of the gradients of

the radial and circumferential components of the unsteady-f1ow velocity and pressure

are written as

•
Trr(r,O,t)

av
- -p+21L-- ar'
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Tre(r,O,t) = Il ;:80+8r--;:' (2.18)

The forces obtained from equation (2.16) are used in the equation of motion of

the structure to analyze the dynamics and stability of the system. Heuce, one cau

write

My + Cy + Ky = F(t) , (2.19)

when translational motion of the cylinder is considered, where M, C and K are,

respectively, the mass, darnping and stiffuess of the cylinder (sce Figure 2.4).

In the case of rocking motion, the equation of motion of the cylindcr about the

hiuge point shown in Figure 2.4 is written as

Jë + cil + KO = Mo(t) , (2.20)

•

where Mo(t) is the moment of the f1uid forccs about the fixed hiuge point, J is

the moment of inertia of the cylinder about the hinge axis and 0 is the angular

displacement of the cylinder.

These equations are solved by a special method (Chapter 9) and the results

obtained determine whether the structure, which has been set in motiQn and interacts

with the f1uid during its motion, remains stable or becomes unstable, as determined by

whether its displacement decreases or increases with time. In the case of negative f1uid

darnping, the system becomes unstable in an oscillatory manner (dynamic instability).

In addition to this, however, if the total (mechanical and f1uid-induced) stiffness of

the system becomes negative, then the system loses stability by divergence (static

iustability), irrespective of the darnping.
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Chapter 3

N umerical Formulation for
Unsteady Annular Flows with
Low-Amplitude Oscillation

3.1 Introduction

The equations governing the unsteady f1uid f10w were introduced in Chapter 2. These

equations are solved in steady or l1nsteady form depending on the requirement of the

"articular problem undu consideration. In both eases, when the numerical solution

is sought, these equations are discretized spatially and, for unsteady f1uid f1ow, in

time as weil.

To implement the numerical solution of the Navier-Stokes (N-S) equations, the

method employed for time and space discretizations of the equations to obtain a time­

accurate solution with the aid of artificial compressibility is explained in this chapter.

The auxiliary equations user: in pseudo-time to cCJuple the continuity and momentum

equations are derived, by which the solution proceeds to the next real-time step. To

solve the pseudo-time equations, the method of factorization is used leading to the

linear equations which can be solved by the AD! scheme (to be presented in what

follows) .

29



•

•

3.2 Time-discretization of the Navier-Stokes Equa­
tions

To di5c;~lize the ~:me derivative which appears in the momentum equation, the three­

point backward implicit !,ime-discretization scheme used by Mateescu et al. (1991) is

utilized. Thi3 scheme provides the accurate unsteady pressure, free of spurious numer­

ically induced oscinations, in contrast to the Crank-Nicolson discretization scheme

used for example by Soh and Goodrich (1988).

The method of artificial compressibility, which was introduced by Chorin (1967),

is also applied, in order to obtain the solution for the incompressible nonlinear N-S

equations for unsteady f10w problems. Let us examine the reasons for requiring the

lise of this method, For incompressible f10ws there are various possibilities for the for­

lIlulation of the problem. These include primitive-variable, stream-functionjvorticity,

and vorticity jvelocity methods. The primitive-variable approach offers the fewest

complications in extending two-dimensional calculations to three dimensions. The

primary difficulty with this approach is the specification of boundary conditions on

pressure which, nevertheless, can be eliminated by the specific numerical models uti­

lized. In our analysis the primitive-variable approach was recognized to be more

feasi ble and adaptable to our physical problems. On the other hand, we determined

to obtain time-accurate solutions of these equations by marching in time, which will

be used later in our special method for stability analysis. To carry out this task, the

continuity and momentum equations must somehow be coupled through the pressure

terms. The role of artificial compressibility is to perform this task, i.e., to introduce

the necessary coupling.

According to Chorin 's method of artificial compressibility , the magnitude of

the change in the pressure at a given point in the field is directly proportional to the

magnitude of the divergence of the velocity field and inversely proportional to the

artificial compressibility factor.

The artificial compressibility factor cornes from the artificial equation of state,
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• i.e., pÔ = p', where p is the pressure at a point, p' is the artificial density, and Ôis the

artificial compressibility factor. Using the artificial compressibility in the continuity

equation implies that the density is a function of "pseudo-time". The important thing

to note is that the artificial continuity equation is cast so that the density becomes

asymptotically constant with respect to time, at the end of the pseudo-time iterations

when the real continuity equation for an incompressible fluid is satisfied.

Before the artificial compressibilty is introduced into the equations of fluid mo­

tion, the N-S equations must be discretized in real-time. Hence, we first write equa-

tion (2.5) as
ay
7ft + Q(Y.p) = o. (3.1 )

(3.2)

Introducing the three-point backward implicit time dilferencing scheme results in

3yn+! _ 4yn + yn-I
-"----c:-:--"-- +Qn+1 = 0

2~t '

where Qn+! = Q(yn+!. pn+!). From this discretization the value of Y at time tn+l =

(n + 1)~t is obtained. given the solution for previous values at time levels tn and

t n
- I . Equation (3.2) together with the continuity equation which must be satisfied

at ail times can be written (Mateescu et al. 1991) as

where

yn+1 + ,OQn+1 _ En,

"il. yn+1 = 0 ,

(3.3)

(3.4)

•

,0 = ~~t En = ~(4yn _ yn-I)
3' 3 .

The time integration procedure requires the initial conditions for Y and p throughollt

the fluid domain and the boundary conditions at the entrance and exit of the domain,

as well as at the fluid-structure interface as discussed in the previous chapter and as

will be addressed in Chapters 4-6 where the details of integration for each problem

are explained. Equations (3.3) and (3.4). which are a non-homogeneolls system of

nonlinear equations, can be solved for yn+! and pn+!, n = 1, .... N - 1.
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• 3.3 Pseudo-time Integration Based on Artificial
Compressibility

Equations (3.3) and (3.4) can be solved numerically by an iterative relaxation tech­

nique if we introduce a continuous auxiliary system in pseudo-time (Soh and Goodrich

1988) as

ôY - -
ôr + V + {JQ = E",

6
ôjJ + V· Y = 0,
ôr

(3.5)

(3.6)

where r is the pseudo-time , and 6 is the artificial compressibility coefficient; here

the hat denotes a transient value in pseudo-time. The time r is called here pseudo­

time, to be distinguished from the physical time t. From equations (3.5) and (3.6)

we can see that Y and jJ become Y"+1 and jJ"+l, respectively, as the steady state is

reached asymptotically in pseudo-time. Consequently, the solution of the system (3.3)

and (3.4) is equivalent to the steady solution of the system (3.5) and (3.6). As we

see in (3.6), the divergence-free velocity field is not obtained until the steady state

is reached. Therefore, the system (3.5) and (3.6) has no physical meaning until

the numerica.1 solution converges in pseudo-time. Since the pseudo-time r is purely

artificial, the time increment t::.r can be taken as large as possible to expedite the

convergence to the steady state, within the limit of the numerical stability condition

based on the Courant number (see the discussions in Chapter 4 and Mateescu et al.

1994, Part 1) .

Fol' the pseudo-time semi-discretization, an implicit Euler scheme in delta form

is used, namely

t::.rE" , (3.7)

t::.p + ~rV . YI'+l = 0, (3.8)

•
wherc Il indicates the solution at the pseudo-time level rI' = Ilt:!.r. The terms t::.V and

t::.p are givcn by YI'+l - Y" and fi"+l - fi", respectively, and QI'+l =Q(VI'+l,fi"+l)
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• is calculated at each pseudo-time step, while the non-homogeneous term En, which

is also calculated at the beginning of the pseudo-time reia.xation, is k<,pt constant

thwl1ghout.

When the solution converges, at p. = m, the pseudo-timc derivatives ~V and

~p become zero, giving ym+l = ym and pm+! = pm, and equations (3.5) and (3.6)

reduce to (3.3) and (3.4), at which point ym+1 == yn+1 and pm+l == pn+I, where n+ 1

is the new rcal time step.

Introducing ~Q = Q~+1 - Q~ into the equations (3.7) and (3.8), to be

consistent with the Y and fi variables in delta form, and rearrenging the terms in

the equations, the final momentum and continuity equations in matrix delta form are

expressed as

(1 +M)~V + {3~T~Q

~T ­= -_·V·V~
6 '

(3.9)

(3.10)

which is an implicit system of equations, nonlinearly coupied by the term ~Q. Equa­

tions (3.9) and (3.10) can be written in global matrix form as

(3.11 )

in which the matrices M ZI M .. and Mu contain the spatial derivatives with respect

to X, T, and 6 of the variable ~'1' = [~tl, ~V, ~W, ~pf. The vector S is given by

(3.12)

•

3.4 Spatial Discretization on a Staggered Mesh

3.4.1 Grid Generation

The numerical solution of partial differential equations requires sorne discretization

of the field into a collection of points or elemental volumes (cells). The differential

equations are approximated by a set of algebraic equations on this collection of points

33



•

•

and volumes, and this system of algebraic equations is then solved to produce a set of

discrete values which approximates the solution of the partial differential system over

the field. The discretization of the field requires sorne organization for the solution

the.eoll to be efficient, i.e., it must be possible to readily identify the points or cells

neighbouring the computation site. Furthermore, the discretization must conform

to the boundaries of the region in such a way that the boundary conditions can

be accurately represented. This organization is provided by a coordinate system,

and the need for alignment with the boundary is rellected in the routine choice of

Cartesian coordinates for rectangular regions, polar(or cylindrical) coordinates for

circulaI' regions, etc.

The use of coordinate line intersections Lü define the grid points provides an

organizational structure which allows all computation to be done on a fixed square

grid when the partial differential equations of interest have been transformed so that

the curvilinear coordinates replace the Cartesian coordinates as the independent vari­

ables. The boundaries may also be in motion, either as specified extemally, which

is the case in this Thesis, or in response to the developing physical solution. In any

case, the numerically generated grid allows all computation to be done on a fixed

square grid in the computational field which is always rectangular by construction.

In this chapter, a fixed grid related to the mean position of the moving boundary is

used by contrast with the analysis based on a time·dependent coordinate transforma.

tian, which will be explained in Chaptt:r 6, in which the moving physical domain is

transformed into a fixed rectangular computational domain with an orthogonal mesh.

The finite difference method was used to discretize the spatial differential oper­

ators which are centrally differenced on a staggered grid. On cur.ilinear coordinate

systems the definition of order of a difference representation is integrally tied to a

point distribution function. The order is determined by the error behaviour as the

spacing varies with the points fixed in a certain distribution, either by increasing the

number of points or by changing a parameter in the distribution.
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• The hyperbolic tangent and hyperbolic sine (strctching) functions are use<! to

obtain the best possible spatial resolution and concentrate more points in regions of

higher velocity gradients, for example, near solid walls. The hyperbolic tangent was

used to concentrate grid point,; normal to solid walls, while the hyperbolic sine was

used in flow problems involving a preferred flow direction, to distribute the points in

that direction. These distribution functions provide best accuracy for the dilference

representation of dilferential operators (Vinokur 1983).

The hyperbolic tangent stretching function is constructed using the ?ollowing

equations:

(3.13)

where
1 { tanh(-y(!! - ~)) }

"(7J) = '2 1 + tanhŒ' (3.14)

and the points are then located by taking integer values of 7J, i.e., 7J = 0,1,2, .....,j.

In the x-direction, which corresponds to the mean flow direction, we use the

hyperbolic sine distribution function, which reads

where

x; = Xo + (Xl - xo)X(~) , (3.15)

•

(t) sinh(-y$)n )
X ~ = . h . l.>.le

sm 'Y

The points are again located by taking integer values of ~,~ = 0, 1,2, .... , 1.

Indeed, the fluid equations are now considered to be solved on a normalized domain

with coordinates ~/1, 0 ~ ~/1 ~ 1, and 7J/J, 0 ~ 7J/J ~ 1, instead of on the original

physical domain with coordinates x, Xo ~ x ~ Xl and T, TO ~ T ~ Tj and with

coordinate n, 0 ~ n~ 'Ir uniformly diE~~ibuted along circumferential direction.

3.4.2 Spatial Differentiai Operators Based on a Staggered
Grid

By taking into account ail the aforementioned considerations, and noting that the

problem of generating a curvilinear coordinate system can be forrnulated as a problem
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(3.17)

• of generating values of the Cartesian coordinates in the interior of the rectangular

transformed region from specified values on the boundaries, in the present analysis,

for central differences, the first and second derivatives are evaluated as (see Figure 3.1)

df 1 fi+1 - /;-1
dx _. X,'+I - X"_I%=%;

~~L%i - [d~ (:~)L=r;
1

[(1xti+l/ - (1xt_J (3.18)=
X;+1/2 - Xi_I/2

1 [fi+' - fi fi - fi_l'
= Xi+I/2 - Xi_I/2 Xi+! - Xi - Xi - Xi_Ij

In the present analysis it was decided to use a staggered grid (such as that used

by Harlow & Welch 1965) instead of using a collocated one, for which the accuracy

of the solution deteriorates (see Patankar 1980). A sample of the staggered grid

used in the 2-D analysis of the problems is shown in Figure 3.2. In addition to

the benefit obtained, the staggered grid provides the possibility of simplifying the

boundary conditions for pressure. Thus, in the present analysis, using the staggered

grid frees the solution from the pressure to be described at the solid walls and reduces

the number of boundary conditions for the problem.

This advantage has, however, its own price. A computer program based on

a staggered grid must carry all the indexing and geometric information about the

locations of the velocity components and the pressure (especially in 2-D and 3-D

problems) and must perform certain interpolations as have been done in this analysis

and are described in the next section and subsequent chapters and appendices. But

the benefits of the staggered grid are weil worth the additional trouble.

By considering Figure 3.2, the central f). and backward "il difference operators

are defined for 2-D problems as

f).r'!' = " " f).r~ lU _. r1f'r j - rj_1 , = Tj+11 1 1 '
(3.19)

"ilr'!' lU • "ilr~ ri - ri·- Tj - Tj_1 , =• 1 1
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•
It is apparent that in this staggered grid the velocity components v and W are defined

at different grid points, namely at (rJ,II~) and (rj,II~) for Vj,k and Wj,k, which are

also different from the grid point where the pressure pj,k is defined, i.e., (rj, lin The

r- and II-momentum equations and the continuity equation are differenced about the

points where Vj,ko Wj,k and pj,k are defined, respectively, Now the linear interpolation

of the velocity components using the difference operators (3.19) is implemented here

for certain velocity components

Vrd = 'VrJ Vj-l,k + 'Vrj Vj,k

• ~r'!'
)

91 _ Vj,k +Vj,k+l
v. - 2

9b Vj,k +Vj,k-l
v. = 2 '

(3.20)

in which ru and 7'd stand for "upper" and "lower" from a certain radial position,

while Ilf and lib stand for "forward" and "backward" of a certain circumferential

position; the derivation of the other components will be illustrated in Appendix

A. Meanwhile, the same difference operators will be used to evaluate ~v and ~w

appearing in factored forms of equations (2,6-2.9) when they are cast in delta forms

which will be given in the section 3.5.

In this analysis, the grid has uniform spacing ~II in the circumferential di­

rection Il and is stretched in the radial direction in order to c1uster more points

near the cylinder walls. Furthermore, the evaluation of the viscous derivative term

(lfr)(8f8r)(r8wf8r), as appears, for example, in equation (2.9), near the outer or

inner cylinder wall requires special treatment, as explained in Chapter 4 for 2-D

problems.

Now we are weil prepared to write the N-S equations in difference form, using

equations (3.19) and (3.20) and the equations presented in Appendix A. The dis·

cretization of equations (2.6), (2.8) and (2.9), for example for 2-D problems, is thus

given by the following relations:

•
('V. V)j,k =

• •r j Vj,k - r j _1 Vj-l,k + Wj,k - Wj,k-l

r'il ~r'!' r'il ~II
) } }
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(Qu)j,k
1 [l'If (vru)2 _ l'If (vrd)2-

r~ t:.r~ J+l tI J li• ' ,
1 { W W }]

1"+1 r·
- -'- (V'+I k - V· k) - -'- (V'k - V'-l k)
Rc t:.rw " " t:.r'!'), ",+1 ,

1 [ 01 01 Ob Ob
- (wuf]+

P,+I,k - pj,k + _ Wu Vu - Wu Vu (3.22)
t:.r~ r~ t:.(), ,
1 [Vj,k+l +Vj,k_1 - 2 Vj,k _ 2 w:

'
- w:b _ . ]

Re (rj)2 (t:.(})2 t:.() V"k,

(Qw)j,k
1 [ r~ vruwru _ l'- vrdwrd-

l''!' t:.r'!' 1 w tu )-1 W tu, ,
1 { l'~ r~ }]

- _J_ (W'+I k - w· k) - --2.=!- (w· k - W'_I k)Re /).1''! ) 1 J, .6.r1! J, ],, ,-1

+ .!- [(w::n
2

- (W::,")2 + pj,k+1 - Pj,k +') w. ] (3.23)
l''!' t:.(} W "k,

1 [Wj'k+l + Wi,k-I - 2 Wi,k 2 v,:! - v::," ]
Re (rj}2 (M)2 + M - Wj,k

Thc sllpcrscripts '''U, l'd, ()f and (}b spccify the upper and lower as weil as forward and

uackward componcnts of the interpolated velocities as in (3.20) and similarequations.

Thc terms V w and W_ need special interpolations and are given in Appendix A,

3.5 Method of Solution Based on the ADI Scheme

Now wc apply an approximate factorization (Hoffman 1989) to (3.11), thereby rewrit­

ing the implicit lcft-hand side of the equation as

[1 + ,6~.r(Mr + Mr + Mo)] t:.'1' = (1+,6t:.rMr)(I+,6t:.rMr)(I+,6t:.rMo)t:.'1' = MS.

(3.24)

•
Thc nonlinear term in cquation (3.9) appears as t:.Q. This term is linearized by

simply lagging the velocity component (Anderson et al. 1984) which, along with the
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t::.V components, in pseudo-time variation form are expressed as

• t::.V

with, for example, t::.Qu in cylindrical coordinates given by

8(ûl 't::.u) 18(riit::.u) 18(tôt::.u) 8(t::.p)
t::. Qu == 8x + -;: 8r + -;: 80 + 8x

(3.25)

which is first-order accurate, consistent with the order of accuracy of the Euler

pseudo-time semi-discretization discussed previously.

An alternating direction implicit (ADI) scheme (Peaceman & Rachford 1955)

is used in this analysis in order to separate the numerical integration of the linear

system of equations (3.24). This is donc by introducing the intermediate variables

t::. W= [t::.u, t::.v, t::.w, t::.p]T and t::. W= [t::.u, iîV, E;, t::.p]T, thereby leading to

(1+,BMMr)t::.w = MS,

(1 +,B t::.rMo) t::.w = sq"

(1 +,B MM.) t::.w = t::.w.

(3.26)

(3.27)

(3.28)

•

ln, for example equation (3.26), the variables ~,&;;, E;, and t::.p are decou­

pied as weil as the corresponding variables in equations (3.27) and (3.28). Then, for

each variable (t::.u,t::.v,t::.w) and for each direction (x,r,O) the solving reduces to a

tridiagonal systems of equations. Since central dilferences are used to discretize the

spatial dilferential operators, only the resulting tridiagonal systems of equations need

to be solved, which is computationally efficient. The procedure for solving the specifie

problems by using the matrix equations (3.26-3.28) in 3-D or the simplified form in
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•
2-D for dilferent annulaI' geometries will be explained in the related chapte!"s.

Xi_l Xi-I/2 Xi Xi+I/2

•

Figure 3.1: Portion of a one-dimensional stretched grid.
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Figure 3.2: Schematic representation of the 2-D staggered grid used to discretize the
non-linear unsteady annular f10w equations.
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Chapter 4

2-D and 3-D Unsteady Annular
Flow Solutions: Method
Validation

To solve the unsteady Navier-Stokes (N-S) equations one needs to have an initial

condition. Here wc use the steady state solution. This steady solution is obtained by

neglecting the first time-dependent term, i.e., avlût in equations (2.2) and (2.4).

In the present analysis the N-S equations without body force~ and the continuity

equation arc solved numerically.

It has been shown (Matecscu et al. 1991) that the three-point backward time­

discretization along with the pseudo-time iterative relaxation method using artificial

comprcssibility cao be used to solve certain problems in steady and unsteady 1I0ws.

Available analytical solutions arc limited to cases where the annulaI' passage is narrow

(Matecscu & Paidoussis 1985), which also limits the amplitude of oscillation to be

small, such that the ratio of the amplitude of oscillation to the annular gap width

remains small; or the annulaI' passage is narrow and uniform (Matccscu & Païdoussis

1987, 1989).

For both steady and unsteady equations the numerical solution procedure is

the sanie regarding the spatial discretization and pseudo-time relaxation. Usually

the numerical solution for each model is compared with either <\n existing analytical

one or experimelltal results, if available, so as to validate the accuracy of the solution
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•
or the applicability of the model to the specific problem at hand.

In the study of viscous incompressible flow, it is necessary to obtain the velocity

vector V and the pressure p as functions of space and time. However, the complete

general solution for the N-S equations is still not possible because of analytical diffi­

cul tics and the Jack of appropriate numerical modeJs.

There arc various approaches for working out the solution of the N-S and con­

tinuity equations in general, and in the present analysis in annular geometries. In

the first approach, assuming small-amplitude periodic motions of the structure, one

imposes a periodic motion on the confined fluid and decomposes the velocity into

steady and unsteady components,

V(x,r,O,t) = V.(x,r,O) + Vu(x,r,O,t);

the pressure is also expressed as the sum of steady and unsteady terms,

p(x, r, 0, t) = P.(x, r, 0) +Pu(x, r, 0, t).

The equations for steady viscous flow are

(4.1)

(4.2)

1 2
(V.' V)V. = --Vp. +vV V.,

P
V·V. = O. (4.3,4.4)

The system of equations in both steady and unsteady flows is solved subject to appro­

priate boundary and initial conditions, one of which is the impermeability. condition

at the surface oi the oscillating structure.

For the steady-flow solution, equations (2.3) and (2.5) read

Q(V,p) = 0, V·V = 0, (4.5,4.6)

where the tenn Q(V,p) is expressed as

(4.7)

•
The pseudo-time analogy of equations (4.5) lUld (4.6) for steady f10w then becomes

ô'Î- ôp-
ôr+Q(V,p)=O, 0ôr+V.V=O; (4.8,4.9)
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•
by applying the implicit Euler scheme for semi-discretization and finally recasting

the equations in the form of equations (3.7) and (3.8) results in

(4.10)

(4.11)

•

in which equation (4.10) is more simplified due to the fact that {3 = 1; the vector

equation (3.12) reduces to

[
-QP ]

S = -(1/0) '\1. VP .

Since the procedure for discretizing the equations and solving the problem,

especially in the pseudo-time integration of the equations, is identical for steady and

unsteady annular fiows, only the solution for the unsteady f10w is described. As a

matter of fact, the steady solution of the N-S equations is the ll11steady solution

for just one l'cal time step and several pseudo-time steps; il> this case the moving

boundary remains stationary.

In this analysis the major differences between the steady and unsteady solutions,

besides the boundary movement, is the method of selecting thu artificial compress­

ibility factors and pseudo-time steps. For steady solutions of the N-S equations, the

selection of the artificial compressibility factor 6 and pseudo-time step f:.r is done as

explained by Chorin (1967) and Soh (1987). To begin, we note that the reason for

intl'oducing artificial compressibility is to allow the fiow field to converge quickly to

an incompressible solution. Based on equation (3.6), we remark that the pressure

change at a point with respect to artificial time is large if 6 is smalli for steady fiows,°
is related to the speed of propagation of a pressure disturbance by a =1/01/ 2, whcre

a is the artificial sound velocity in the fiuid. The method of artificial compressibility

reo,llil'es that the speed of fiuid particles be lcss than the speedof sound or M. < l,

where M. is the artificial Mach number defined by M. = Um•• /a . The solution will

not converge if the artificial Mach number is near zero, because a disturbance prop­

agates through too large a portion of the fiow field if a is too large; but if the Mach
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•
lIumLer is close to unity, the pressure disturbance pr'lpagates only slightly faster than

the maximum velocity and the magnitude of the disturbance is smal!.

The selection of 6 depends on whether the f10w is steady or unsteady. In the

steady f10w problem, as explained in Soh (1987), the value of 6 depends on the

eharacteristics of ',,' square matrices of the fol1owing equation:

â [ U] [2U 0 1] â [U] [V U 0] a [U]- v + v U 0 - v + 0 2v 1 - v
at p 1/6 0 0 ax p 0 1/6 0 ay p

= 0, (4.12)

where,8 = 1 and the characteristicsofboth square matrices are..\1 = (u2+V2)1/2, "\2,3 =

(u2+v2)1/2 ± (u2+ v2 + 1/6)1/2, which indicates that two rigl:t-running waves at the

inlet and one left-running wave at the exit propagate into the computational domain.

This necessitates that a certain number of boundary conditions to be imposed at the

illiet and exit, lIamely U and v at the inlet and p at the outlet; p is given by the

fol1owing equation

(4.13)

see Soh (1987).

We choose 6 in such a way that the magnitudes of the eigenvalues are of the

same order as

(4.14)

According to this analysis, from equation (4.14) we conclude that these eigenvalues

have the same order if 6 is sdected to be

where q2 = u2+v2 is sorne representative f10w speed. Now, the pseudo-time incremeIlt,

1::1r, can be expressed as

•
I::1r = Crl::1x

..\ '
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•
where ~x is a typical mesh spacing and Cr is the Courant number, which is a cri­

terion for the convergence of the numerical solution. This number can be chosen

appropriately to accelerate convergence.

For il!lsteady-f1ow problems, similar to the case of steady ones, we first neccl to

determin(: the artificial compressibility factor 6 and the pseudo-time step ~T. To thnt

end, the matrix equation (4.12) will be used with certain modifications. First, due to

unsteadiness of the 1I0w field the real time t in terms of {3 = 2~t/3 will nppear in the

equations. Second, to have an idea ofthe appropriate value of 6, it is not necessary to

solve the two-dimensional inviscid matrix equation (4.12). A one-dimensional model

problem from (3.5) and (3.6) will provide (Soh and Goodrich 1988)

8 { û 1 r 213û {3] 8 { û }
8T ft J+ ll/6 0 8x ft == 0, (4.17)

where nonderivative alld nonhomogeneous terms are dropped for simplicity. The

eigenvalues of the square matrix in (4.17) are

(4.18)

•

They are real and distinct, so that the system (4.17) with artificial compressibility

is hyperbolic in pseudo-time, and subsoni" in the sense that the eigenvalues are of

opposite sign.

Since an eigenvalue of the system (4.17) is a wave propagation velocity, the

À's in (4.18) as explained before may be interpreted as waves travp.l1ing with and

against the lIuid 1I0w with a sound-like velocity, ({32û2+{3/6)1/2, relative to the local

f1uid f1ow. The locaillow velocity in (4.18) is {3û instead of û, because that system

was derived in pseudo-time by US;.lig a three-point backward time discretization. The

choice of a value for 6 is optimal if the magnitudes of the eigenvalues are close to

each other ((lf the same order), as stated for the steady-llow problems by

A good compromisecan be reached ifwe take 6 to be 1/(3{3û2), ":' that the ratio

of the largest. to the smallest eigenvalues becomes only 3 (Soh 1987). Again, since
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(4.19)

•

•

the 1I0w model defined by (4.17) is similar to a subsonic compressible llow, it can

h" characterized by an artificial Mach number M. = q..[lJO = qJ26t::.t/3 :::: Jl/3, in

whieh q represents a characteristic llow speed as defin~d previously and {3 = 2t::.t/3.

Thus, in the present analysis for unsteady llows, 6 is given by

1
6 = 2q2t::.t '

where t::.t is the real physical time-step.

The cQoice of q is highly heuristic, especially for a lluid llow with no preferred

direction. However, equation (4.19) provides a plausible guideline for the artificial

compressibility. The estimation of the pseudo-time step t::.r will follow the same

argument as in the case of steady-llow problems and it is based on relation (4.16)

with À =À+. For optimal values of 6 and t::.r, a physical understanding or qualitative

estimation of the 1I0w field under consideration as weI! as numerical experiments are

needed.

4.1 2-D Unsteady Annular Flow Solutions

The time-accurate method of solution of the unste:u1y incompressible N-S equations

equations was developed in Chapter 3. To obtain a numerical solution to these

equations in 2-D annulaI' llows, the governing equations (3.26-3.28) are reduced

substantially, i.e., ail derivatives with respect to x are equal to zero.

In addition, we llSsume that the inner cylinder remains fixed and the outer

cylinder undergoes transverse oscillations while its axis always remains parallel to

the axis of the inner cylinder; the dynamics of lluid llow induced by the movement of

the outer cylinder does not need to be necessarily dependent on axial llow. Therefore,

the equation of axial momentum is not solved and only the momentum equations in

the 1" and 8 directions and the continuity equation need to be considered. Further­

morc, the equations are solved on a two-dimensional mesh spanning the radial and

circumferential coordinate directions. As far as the boundary conditions are con­

cerned, due to the two-dimensionality of the solution, there is no need to impose
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boundary conditions at the inlet or outlet. Since the geometry of the confined lIuid

changes with time as the outer cylinder undergoes oscillation, the method of solution

should be suitable for problems with a variable computational domain. An excel­

lent survey for various methods used for variable computational domains is given

by Thompson et al. (1982). In this chapter, the boundary conditions are imposed

at the mean position of the oscillating boundaries, which, as wc shall sec latl'r, is

appropriate for the case of small-amplitude oscillations.

The geometry of the two-dimensional unsteady annular lIow system is shown

in Figure 4.1 in which the mean position of the outer cylinder is indicated by a solid

line.

During the oscillation of l,he outer cylinder we assume that the boundary will

move with velocity Uw(t), and the vertical displacement of the outer cylinder is

given by E(t). The boundary conditions associated with this geometry are given by

equations (2.13) and (2.14).

4.1.1 DifferentiaI Form of the Non-linear Navier-Stokes Equa­
tions

In the two-dimensional f10w field illustrated in Figure 4.1(a), we write the matrices

M r and Mo as

[

M + 1/fJ + 1/(Re r2)

M
r

= (1/fJér)~ô/ôr)(r)
-ÛlP /r

M + iJP /r +1/(Re r 2)
o

a/ôr]o ,
o

whel'e

(2/Re r2)ô/ ôB
N +1//3

(1/fJé r)ô/ôB
(1/r~ô/ôB ] ,

M,: = 8(I·iJP",) _ ..!..-~ (r Ô"')
rôr Rerôr ôr

•
N", -

ô(ÛlP",) 1 ô2",

r ôB - Rer2ôB2 '
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aud the compouents of Q(Y,p) in the radial and circumferential directions and the

coutinuity equation are given by• Qv(v,w,p) =
1a(rvv) 1 a(wv) w2 ap
r -'-=a-r-'- + ;:- -a-(J- - -r + -ar

1 [1 a (av) 1 a2v 2 aw v]
Re ;:ar rar + r2a(J2 - r 2 a(J - r 2 '

(4.20)

'il.Y = ~a(rv) +~aw.
r ar ra(J

(4.21)

(4.22)

The Illatrix equatilll1S (3.26) and (3.27) in different sweeps are then written as

(1 + f3 MMr ) ~IJI = ~TS ,

(1 + f3 MMo) ~IJI = AIJI ,

(4.23)

(4.24)

where, in this case, ~IJI = [~v, ~w, ~plT and ~IJI = [~v,~w, ~pjT.

Hence, for 2-D problems the momentum and continuity equations to be dis­

cretized are limited to two matrix equations in the ,- and (J- directions, i.e., the

cquations (4.23-4.24).

In the r-sweep, the equations become

(1 +~T) ~v + f3 ~T [a(rv~ KU) + a(KP) _ tû~'6üi
r ar ar r

- ~e {r~r (r a,:)) - ~:}]

= ~T(E~' - v~ - f3Q~) , (4.25)

•
~w + fJ A [a(rv~ ~w) v~~w 1 a (a(~w)) ~w]

uT +-- - --- r + --ra,' r Re r ar ar Rer~

(4.26)
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• and in the II-sweep

(4.2ï)

tlv +

(1 + tlT) tlw +

[
8(ÛJ~tlV) 1 82(tlV)] _ 2 8(tlw)

(3 tlr r 811 . - Re r28112 =tlv - Rer2 811 ,(4.28)

-- 2 8(tlv)
= tlw + Rer2 811

M8(tlw) -
tlp + 6 r 811 =tlp ,

(4.29)

(4.30)

•

where Q~ = Q.( û~, ÛJ~, ft"), Q~ = Qw(û~, ÛJ~, ft"). The variables Û
,·+ I = Û,· +

tlv,ui~+1 = 'ÛJ~ + tlw,ft"+l =ft" + tlp are thus obtained by solving equations (4.25­

4.30). The solution proceeds to the next pseudo-time iteration step uutil convergence,

which is reached when tlv, tlw, and tlp are equal to zero.

One can notice that equations (4.25) and (4.27) in :he r-sweep und cqlla­

tions (4.29) and (4.30) in the II-sweep are coupled. A decoupling procedure is Ilsed to

eliminate tlp and tlp from equations (4.25) and (4.29) with th·~ aid of the continnity

equation (4.27) and equation (4.30), respectively. This is done in conjunction with the

discretization of equations (4.25)-(4.30) in the r- and II-directions. This finally ieads to

a set of scalar tridiagonal equations, corresponding to equations (4.25), (4.26), (4.28)

and (4.29), which are solved for tlv, tlw, tlv and tlw. Then, tlp and tlp can easilly

be calculated from equations (4.27) and (4.30). Details of the discretizations are given

in Appendix A and the discretized tridiagonal forms of the equations arc described

in the following paragraphs.

The "-momentum equation (4.25) in the r-sweep, artel' being coupied with the

continuity equation and in discretized form, is given by
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•

•

- [ {3f)"r {UI ru 'Vrj+l UI rd 'Vr'j'
+f)"Vj,k 1.0 + f)"r + uA u rj+lvu AW - rj Vu A UI

rj U.rj U.rj+l U.r j

1 (rI!' rI!' f)"r~) f)"rr~2 f)"rr~2}]+_ -:.l±.L + ...:J..- + =.L + J + J
Re f)"r'j'+I f)"r'j' rj 6r'j' f)"r'j' 6r'j'+I f)"r'j'+l

- [{3f)"r (UI ru 'Vr'j'+l r'j'+I) (3f)"r
2
r'j+l]

+f)"Vj+l,k r'jf)"r'j rj+lv
u f)"r'j'+I - Ref)"r'j'+l - 6rH-lf)"r'j'+1f)"r'j

') {3f)"r
2

= f)"r(E" - il' - {3Q" +-- ('V. V'+I k - 'V. V j k) . (4.31)
li tI j.lc oÂr1! J 1 1

J

For a given 0 coordinate, Ok, setting up equation (4.31) for each j, 2 ~ j ~ J -2,

where j is the grid index in the r-direction, gives a tridiagonal system of equations

which must be solved for f)"Vj,k' Note that j = J - 1 corresponds, for example, to

a solid wall (Soh 1987). This computation is done for each Ok, 3 ~ k ~ K - l,

whcre k is the grid index in the O-direction. Hence, f)"Vj,k is calculated for ail j and

k, except at the boundaries wbere we have them as the boundary conditions. The

reason that at O2 the calculation is not implemented is the usage of a staggered grid

plus the symmetry of the problem with regard to the plane of oscillation, which will

is explained in Appendix A. The left-hand side of equation (4.31) contains the terms

that come from using central dilferences for the viscous derivatives. These derivatives

are evaluated using non-central dilferencing near the solid walls as explained in the

followillg paragraphs. We note that f)"Pj,k is obtained from the continuity equation

after f)"Vj,k is deten"ined.

The O-momentum equation in the r-sweep and in discretized form is written as

(4.32)
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(4.34)

•
Once again this is a tridiagonal system of equations to bl) solved for !:>.Wj,k' Therefore,

equation (4.32) is set up for each j and k in the domain of integration which includes

2 :5 j :5 J - 1 and 2 :5 8 :5 K - 2.

The r-momentum equation in the 8-sweep in discretized form reads

!:>.Vj,k-1 {~~~ [_W~b G) -Re :j!:>.8]}

+!:>.Vj,k {1 + ~~~ [W~f G) -w~b G) + Re ~j!:>.8]}
. {{J!:>.r [ Of (!) _ 1 ]} _ -. _ 2(!:>.Wj,k+l - !:>.Wj,k)

+ !:>.VJ,k+l rj!:>.8 Wu 2 Re rj!:>.8 - !:>.VJ.k Re r'J2!:>.8 • (4.33)

Equation (4.33) is set up for 2 :5 j :5 J - 2 and 3 :5 k :5 K - \. We recall that the

corresponding variables at j = J - 1 come from the wall boundary conditions.

The 8-momentum equation in the 8-sweep and in discretized fonn is derived as

{
{J!:>.r [ Ob (1) !:>.r 1 1]}

!:>.Wj,k-l r'J' t:>.8 -wu> 2' - 6" r'J' !:>.8 - Re r'J'!:>.8

{
{J!:>.r [ Of (1) Ob (1) 2 !:>.r 2 ]}

+!:>.Wj,k 1 +!:>.r + r'J'!:>.8 Wu> 2' - Wu> 2' + Re r'J'M +T r'J'6.8

{
{J!:>.r [ Of (1) !:>.r 1 1]}

+!:>.Wj,k+l r'1' M Wu> 2' - 6" r'1' !:>.8 - Re 1''1' t:>.8

- {J!:>.r (- -) 2(!:>.Vj,k+! - !:>.Vj,k)
= !:>.Wj,k - r'!' !:>.8 !:>.Pj,k+! - !:>.Pj,k + Re r~2!:>.8 •

J J

Equation (4.34), after being solved by the tridiagonal matrix solver, will be the last

equation used in both r- and 8-sweeps with the final result of circumferential velocity

difference, L., w. The pressure difference !:>.p is recovered from the continuity cquation.

To implement the solution, equation (4.34) is set up for 2 :5 j :5 J - 1 and 3 :5 k :5

K - 2. The magnitudes of the variables at the grid points other than those cited

above arc obtained by using the boundary values or symmetry conditions explained in

the following paragraphs. At this point we recall that after the increments !:>.v, !:>.w,

and Âp are obtained in each pseudo-time step, the perturbed f10w field parameters

v, w, and P are updated before the next real time step starts as

•
w,.+l = w,. + !:>.W ,
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•
and at the next real time step all these increments have already become zero indicating

that the continuity equation (2.3) is satisfied; thus

ym+l == yn+l and

as cxplaincd in Chaptcr 3.

In order to initiate the time-integration procedure, initial conditions must be

provided for yi, yO and pl, pO throughout the f1uid domain, which indicates that the

solution is known at previous time levels t l and tO. The initial conditions required to

start the pseudo-time integration are taken to be €"+1 on the moving boundary and

Y", and pn inside the f1uid field, i.e.,

fl'I = €"+1 , Yl'I = y" , jl'I = p" , (4.35)
1'=1 1'=1 1'=1

whcrc on the boundary of the f1uid domain the known displacement €~+l and velocity

U~+1 of the walls at the advanced time level t"+t are set as boundary conditions and

kept unchanged until the steady state has been reached in pseudo-time. The wall

displacemcnt €~+l and velocity U~+l serve as driving terms to advance the solution to

time level (n+ 1)~t, along with the nonhomogeneous term E", which is also calculated

at the bcginning of the pseudo-time relaxation and kept constant throughout. In the

case of 2-D problems ~v and ~w are zero on a soHd wall, even when the wall has

non-zero velocity. This is because the velocities v~+t and w~+1 of the wall at t"+1 are

imposed as boundary conditions and remain fixed during the pseudo-time relaxation.

The annular-f1ow geometries under consideration throughout this analysis are

composed of two bodies of revolution which are concentric and where the space be­

tween them is filled with f1uid. In addition, the vibration of either body is considered

to be constrained only in one plane, the plane of oscillation; therefore, the f10w vari­

ables v and p for 2-D problems are assumed to be even functions of (J, and w is an

odd function of!J; i.e., with respect to the plane of symmetry at () = 0 and !J = 'Ir

(see Figure A.l)
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•
Wj,k-2 = -Wj,k t

where k iô the index in the 8-direction.

Pj,k-I =pj,k ,

As far as the movement of the solid walls is concerned, on the inner cylinder

the displacement €(t) is zero, while on the outer cylinder in the plane of symmetry it

is given by (see Figure 4.1)

Ëw(t) = -Ëwcosnf,

with the velocity of the wall expressed by

Ew(t) = Ëwn sin nt,

(4.36)

(4.37)

where Ë is the amplitude and n is the circular Irequency of the oscillation.

The evaluation of the viscous derivative term (l/r)(ô/ôr)(rôÜJ/ôr) near the

boundaries of the outer or inner cylinder requires special treatment. Indeed, by

looking at Figure 4.2, which clarifies the evaluation of viscous derivative in the x·r

plane and will be used later in this chapter, in the staggered grid a wall parailei

with the x-coordinate passes through the points where for example Vô,1 are defined.

and similady a wall parallel with the r·coordinate passes through the points where

UIJ are defined. Hence, the numerical evaluation of the viscous derivativcs would

require points defined outside the physical boundaries. To handle this problem. we

use non-central differencing to compute the aforementioned derivatives and other

similar ones.

With reference to Figure 4.3 the viscous derivative (l/r)(ô/ôr)(rôÜJ/ôr) near

the inner cylinder wall is evaluated by

(8. 3 • 1')]3 Ww,A: - W2,A: + 3 W3,A:

~ rf - 3 r~ +kr!f 1

(4.38)

•
where 'Ww,k is the wall velocity boundary condition.

A similar procedure appHes for the evaluation of the same derivatives near the

outer cylinder wall or near a vertical wall in the plane of constant x such as in a
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•

region of discontinuity in the annulaI' space; for instance, at the vertical face of a

step.

Introducing equations (4.38) into our discretized cquations will result in slightly

modifiecl. equations (Beam and Warming 1978). We recall that ~v and ~tlJ are

zero vn a solid wall, even whcn the wall has non-zero velocities; this is because

the velocity Ww,k is imposed as a boundary condition and remains fixed dming the

pseudo-time relaxation. The initial conditions also set the pertllrbations e'lual ta zero,

before starting the vibration of the outer cylinder, and integration of the equation is

implemented unti! a periodic state in the solution is achieved, which takcs at least

three harmonie cycles.

For 2-D problems,-:ince there is no Iluid velocity U, the Reynolds number,

which is defined in terms of the mean-Ilow velocity U, has no meaning; hence wc

choose OH to be the characteristic velocity, and the Reynolds number in the N-S

cquations becomes the Stokes number, which is therefore related ta the frcquency of

the system, or Re == S =OH2 Iv, where 0 is the circulaI' frequency of oscillation.

4.2 3-D Unsteady Flow Solution for Uniform and
N onuniform Annular Configurations

In this section, the analysis of the 3-D annular configuration with axial flow is per­

formed by solving the full nonlinear Navier-Stokes and continuity equations for small

amplitude oscillation (mean-position analysis) in 3-D. Therefore, all derivatives with

respect ta x are kept, and the governing equations now p..::e equations (3.26)-(3.28),

The mesh used in this analysis will be a 3-D mesh spanning in the x, rand 0 direc­

tions. Since the Ilow is along the x-axis, the boundary conditions at the inlct and

outlet of the annulaI' space and the initial conditions are required,

The geometry of the 3-D unsteady annular flow is shown in Figure 4.4 in which

the mean position of the outer cylinder is indicated by a solid line and the direction

of Ilow is shown by the velocity vector U. Once again, the moving boundary of the
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•
fluid (onter cylinder) has velocity U..,(t) and the vertical displacement of the center of

the onter cylinder is given by (t) for translalional motion and by (t,x) for rocking

motioll. The velocities of the bounda.y V w and w" for the case of translational

IJlotion are given by equations (2.14). For rocking motion, the velocities Vw ar.d w..,

are linearly calculated with respect to the hinge position, as shown in Figure 4.5, and

they arc given by equations

Vw = i(t,x) cos 11 , w.., = -i( t, x) sin 11 , (4.39, 4.40)

where i(t,x) =d(t,x)/dt, and (t,x) is given by

(4.41)

(t) is given by equ:ltion (4.36), a.nd /1 and /2 are constant, as shown in Figure 4.5.

4.2.1 DifferentiaI Form of the Non-linear Navier-Stokes and
Continuity Equations

In three-dimensional lIow fields, equations (3.26-3.28) must be employed; they are

given here for n,:erclIee il.;

where S is given by (3.12) and .6.'1' is the velocity vector defined in Chapter 3. Then

the matrices M.. M., and Mo are

[

L+1/f3 ~ ~

(1/f30~8/8X ~ t

•
o

M + 1/f3 + l/(Re r2
)

o
(1/ {Jo r)(8/8r)(r)

55

o
-1ÎJ~/r

M +if/r + l/(Re r 2
)

o
8/8~ 1o '
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•
where

Mo = [~
o

o
N

-(2/Re r2 )8/80
o

o
(2/Re r2 )8/80

N +1/{3
(1/{36 r)8/80

_ 8(riJ~ep) _ 2..~ (r 8ep)
r 8r Rer 8r (Ir

The nonlinear Navier-Stokes and continuity equations in tenus of Qu, Qu, Qw.

and 'il . V which will be used in different sweeps. in delta-form equations, as the

known explicit terms in pseudo-time, are

8(uu) 18(rvu) 18(wu) 8p
Qu(u,v.w,p) = ----a;-+ r 8r +~ 80 + 8x

1 [8
2
u 1 8 ( 8U) 1 8

2
u ]

- Re 8x" + ~8r r 8r + r2 802 (4.42)

Qu(u, v, w. p)

Qw(U,v,w,p)

, (4.43)

• (4.44)

(4.45)

•
The implicit left-hand sides of the matrix equations (3.26-3.28) are thcn writtcn

as:
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•
in the r -sweep:

LîU + fi b.r [B(r iI"~) _ -.!...~ (r :J(LîU))]
r Br Rer Br ôr

= M (E~ - ü" - fi Q~) ,

fi [
8(rii"b.V) 8(b.p) JJ"b.w

(1 +b.r) b.v + b.r +-- - --r 8r 8r r

= b.r (E~" - il" - fi Q~) ,

(4.46)

(4.47)

& + fi M f8(r iJI' &;,) + ii"b.w _ -.!...~ (r 8(&)) + b.w]
L r8r r Rerôr 8r Rer2

thcn, in the O-sweep:

(4.48)

(4.49)

(4.50)

•

- 2 8(b.v)
- b.w + Re r280 '

- b.r8(b.w) -
b.p + T r 80 = b.p ;

and finally in the x -sweep:

(1+b.r) b.u + (3 1\ [8(ü"b.U) + ô(b.p) _ 1 8
2
(b.U)] = A""

t.J>r 8x 8x Re 8x2. t.J>U 1
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(4.53)

(4.54)



•
.6.v + jJ t::. r

t::.w +

(4.55)

(4.56)

A t::. r 8( t::.U) A""
'""p + 6 8x = ,""p . (4.57)

•

As we sel' in equation (3.9), there are undifferentiated tenus arising from .6.rt::.V

which we have inclllded in Mr , M r and Mo. These terms are not the only Ilncliffer­

entiated terms appearing in our matrices, rather the terms which arise in cylilldrical

coordinates; the terms -ÛJ.6.wjr and .6.vjr2Re in the r-momentum equation, vt::.wjr

and .6.wj ,.2Re in the Ii-momentum equation are also undifferentiatcd tenus. In ad­

dition to these terms, there are sorne off-diagonal terms -ÛJjr, (2jRer2)8j81i and

[-(2jRer2 )8j81i] in the M r and Mu matrices that will contribute coupling between

the velocity components .6.v and .6.w il! the r- and Ii-momentum eqllations. This cou­

pling indicates that the scalar tridiagonal systems of equations cannot be obtained

anymore when using the factored AD! scheme and eliminating the pressure with the

aid of the continuity equation. There is, however, a scalar tridiagonal solution for

this problem, based on equations (4.46-4.57), which affects (i) neither the overall

accuracy of the solution, oecause these terms are in .6.-form and ultimately become

zerOj at the end of the pseudo-time integration, (ii) nor do they affect significantly

the overall implidt coupling and convergence rate of the pseudo-time iteration pro­

cedure. Indeed, when convergence has been reached in pseudo-time, it necessitates

that .6.V be zero, thus ail the terms that have been dropped would then be zero in

any case, as are those that are kept. The accuracy in the results is ensured by the

terms Q~, Q~, and Q::, which are on the right-hand sides of equations (4.46-4.48),

and which are always calculated in their full form. In the present procedure, to re­

duce the problem to decoupled tridiagonal systems, the off-diagonal tenns arc lagged

and transferred to the right-hand side, as shown in the equations (4.51,4.52). In this

manner, the pseudo-relaxation procedure will refleet better the complete equations
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•
of lIuid motion.

Ali the quantities in equations (4.46-4.57) are evaluated al. t.he pseudo-time JJ

and the values of u, v, IV, and parc updated al. the end of each pseudo-time as

ii~+1 =ii" +b.u, iJ'+1 = if+6v, jJ'+1 = jJ' +b.p,

•

and t.he solution progresses in pseudo-time till convergence is reached where un +1 ==

iion + 1, vn+ 1 ='" lÎm+ 1, 10·+1 == lÎm+1, and pn+1 == pm+l, in which n + 1 is the next

real-time step and m is the iteration number. The detailed numerical procedure and

the initial and boundary conditions required for the integration will ~e explained in

subsequent sections and in Appendix A.

ln section 3.4.1 il. was stated that a satisfadory grid generation and grid point

distribution are the major requirements for the numerical solution 1.0 be accomplished

successfully in terms of accuracy and stability. Based on the reasons explained in

Chapter 3, the grid generation in this section would follow the same procedure used

for 2-D analysis, with the exception thal. the grid points are now distributed in the

axial direction as weil. The distribution functions used for grid point location are

given by equation (3.13) for the radial direction and (3.15) for the axial direction.

These distribution functions provide a good distribution of the grid points in the

domain of integration, as s~own by Vinokur (1983) and Thompson (1985), and as

discussed in Chapter 3.

A typical staggered grid-point distribution in 3-D is shown in Figure 4.6 and

in isometric view in Figure 4.7. These diagrams are the result of superposition of

two sets of grid point distribution: one shown in Figure 4.8 and the other shown in

Figure 4.9, which are in the x-r and r-fJ directions, respectively. Since u's and 1o's

have identical r-positions, then ri = rroo.etc. As we see in Figures 4.6 and 4.7, the

pressure p is always located al. the centre of a cell and is surrounded by either u and

v or by v and 10, implying that the grid is also staggered in the fJ-direction. The grid

is stretched in the x- and r-directions, but not in the fJ-direction.

Duc 1.0 the specifie location defined for 10, a two-dimensional mesh, c.y., Fig-
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ure 4.8, is sufficient for numerical calculations because the solution starts, for example

for v, in the T-sweep, then it is followed by the O-sweep and finally by the x-sv;eep.

The same trend for sweeps is used for ID and u. Figure 4.7 can he used to visualize

the elimination of the pressure ten:; from the momentum equation by using the con­

tinuity equation. For instance, PiJ,k is between UiJ,k and Ui-1J,k in the x-direction,

between Vi,j,k and ViJ-I,k in the T-direction, and between Wi,j,k and Wi,j,k_1 in the

O-direction. Therefore, the T-momentum equation (4.47) is coupled with the conti­

nuity equation (4.49) to determine v; the 6-momentum equation (4.52) is coupled

with (4.53) to determine w; and, ultimately, the x-momentum equation (4.54) is

coupled with (4.57) to determine u.

As explained in Chapter 3, the central!::>. and backward "il dilference operators

in the T-dirpction are given by equation (3.19) and in the x-direction they are written

as
= ~xr - Xi-l'

(4.58)
'\7xi - xi - xi, '\7xr = xi - Xi_l'

Again in a staggered grid, UiJ,k> ViJ,k, WiJ,k and Pi,j,k are defined, respectively,

at (xf, Tj,Ok), (xr,rj,lIk), (xr, Tj,O;:), and (Xr,Tj,O~) and the X-, T-, O-momentum

and continuity equations are dilferenced about thesc points, respectivcly. As was

the case in 2-D analysis, thc linear intcrpolations of the vclocit.y componcnts using

the dilference operators (3.19) and (4.58) are given hcrc for sorne of thc vclocity

components

W,' = "ilxr+1 Wi,j,k +"ilxr Wi+I,j,k
W AU'

uXi

,b _ "ilxf Ui-l,j,k +"ilxr Ui,j,k
uu- At! 1

uXi

,b = "ilxr Vi-I,j,k + "ilxr_l ViJ,k (4 59)
Vv AU' •

uXi_1

-b "ilxr Wi-IJ' k +"ilxf_l WiJ' kW'" = 1 1 •

W ~x~ 1
.-1

•
the cquations for the othcr components are givcn in Appcndix A. Thc samc dilfcrencc

operators will be used to cvaluate!::>.u, !:lv and !:lw appearing in cquations (4.46)­

(4.57). The evaluation of the viscous derivativc terms near the outer or inncr cylinder
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•

•

walls ha., to be donc as \Ja.s demonstrated for 2-D analysis. These viscous derivativ"

tenns are 82 iJj8x2 , 82wj8x2 , (ljr)(8j8r)(r8,jj8r) and (ljr)(8j81·)(r8wj8r). They

arc caleulated by the following equations:

8
2iJ 1 = _1_ [(iJ(3J I - iJ(2 J!) _(~ t'(wJ) - 3V(2J) + kV(3 JI )] (4.60)

8 2 Av AU 8u 3v+1v 'X _. uX2 uX2 3 Xl - x2 33'3x-x] .

8
2w1 = _1_ [(W(3J ) - W(2JI) _ (~ W(wJl - 3 W(2J) + kW(3 Jl)] ,(4.61)

8x2 _. /::"x~ /::"X~ ~3 xr - 3 X~ + -3
1 X~

%-r1

-.!!- (8Û) _ 1 [v (Û(j.31- Û(j.2l ) _ v (~Û(j'Wl - 3!Î(j.2l .:. kÛlj.31)]
8 r 8 - U A U r2 A v ri 8 v 3 U + 1 U ,

r r r r;;..;ri' T2 L.J.T2 uT2 3 Tl - T2 3 Ta
(4.62)

(
Wli.3l - W(j.2l ) _ rV (~ W(i.wl - 3 W(i.2) +kW<j.3l )]

t:,.r~ 1 ~ rf - 3 rï +krN
(4.63)

A similar procedure applies for the evaluation of the same derivatives near the

outer cylinder wall or near a vertical wall in a plane of constant X; for instance, in a

rcgion of discontinuity in the annular space, at the vertical face of a backstep.

We recall that /::"u, /::"v and /::"w are zero on a solid wall even when the wall has

non-zero velocities. This is because the ve10cities Ûi.w, vwJ' Wi.w and wWJ are imposed

Ils boundary conditions and remain fixed during the pseudo-time relaxation. Finally,

it should be emphasized that the boundary conditions imposed on ail equations to be

solved wcre such that all perturbations in the f10w quantities must be equal to zero at

both the inlet and outlet of the domain, inc\uding velocity components and pressure.

The initial conditions were to set the perturbations equal to zero before starting the

vibration of the outer cylinder, and integration of the equa-ion is implemented until

Il pcriodic solution is achieved, which takes at least 3 harmonie cycles.

TIll' solution to equations (4.46)-(4.57) will be obtained after they are dis­

crctized, using equadons (3.19), (4.58), (4.59) and similar ones described in Ap­

pendix A. Thus, equations (4.42-4.45) are discretized first in the forms given by

eqllations (A.25), (A.31), (A.37) and (A.44). Then, equations (4.46)-(4.57) are dis­

eretized, which provide equations (A.45-A.56). These equations arc used to solve the
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appropriate problem as described for 2-D analysis. The details of discretization are

given in Appendix A.

After the discretization is done, the solution procedure continues by t.he same

method as that used for 2-D problems: briefly, it starts by using the discretize<!

form of equations (4.42)-(4.45) in the discretized form of matrix equation (3.12) to

have the known explicit right-hand sides for the discretized form of (4.46)-(4.49).

These equations are then solved in dilferent T-, (J- and x-sweeps to obtain ~v, LlIV,

~u, respectiv~ly, and finally ~p, by solving several sets of tridiagonal systems of

equations.

As far as the dilferent sweeps are coneerned, at a given pseudo-time step r",

equations (4.46)-(4.49) are set up for i, 2 :::; i :::; I - l, for j, 2 :::; j :::; .J - l,

and finally for k, 3 :::; k :::; K - l, and they art! solved for ~v, ~, ~lt and ~p.

Equations (4.50\-(4.53) are solved to obtain ~v, ~w, ~lt and ~p. The last fonr

equations (4.54)-(4.:>;) are solved in the same range of grid points to find ~v, ~w,

~u and ~p. At the points on the boundaries the values of u, v, w and p in all sweeps

are either given as boundary conditions or by interpolating and / or extmpolating

from the points inside the domain of integratioo or by nsing the fictitions points

ontside the domain or by setting equal to zero, as the case reqnires, and in the same

way as for 2-D analysis. Use is made of the symmetry of the prohlem with respect

to the plane of oscillation ((J = 0 and (J = 11'), i.e., the values of u, v, IV, and p at the

grid points other than those mentioned previously are obtained from the following

equations:

UiJ,k-1 = uiJ,k ,

ViJ.2 = ViJ.3 ,

ViJ,k-1 = ViJ.k ,

WiJ,l = -WiJ.3 t piJ.2 = Pij,3 ,

•

In 3-D annular f10w problems, the initial direction of f10w is taken to be along

the x-axis. Therefore, the initial values for velocity and pressure should be defined

at the iolet and outlet of the domain, as well as on the fixed and moving bonndaries.

The values for u, v and pare imposed at the inlet and outlet according to what
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has already been described for 2-D analysis (for v and p) to start the pseudo-time

solution. To get the 3-D solution we must first have a steady solution for flow in the

annular space before getting into the time-accurate solution procedure. This velodty

profile in the steady llow is given by the following nondimensional equation:

V(r) = V'(r) = 2 [1 - (r/rtl2+ (n
2

- l)ln(r/rl,l!(ln n)] ,
Va n2 + 1 - (n2 - l)/(ln ni

(4.64)

wlJCre V·( r) and Va are the dimensional axial and mean axial velocities in the anuulus,

respectiv'!ly, n = r2/rl; we also set v = W = 0 for all grid points at the inlet. The

initial conditions inside the domain are given by VI' = vn and fil' = pn at the first

pseudo-tinw step and on the boundaries as the velocity of the walls, U::,+l, which

is kcpt constant. The vclocities at the outlel. of the annular space are obtained by

cxtrapolating the known values of the flow variables from inside the domain as given

by the following cquations (Anderson et loi. i984):

WIJ,k =

VIJ,k

(
t>.xy ) t>.xy

1 + A. UI-I,j,k - ~UI-2,j,k ,
~xl_l ~xl_1

(
t>.X~_l) t>.x~_1

= 1 + t>.xu VI-IJ,k - c;:u-VI-2J,k ,
1-2 XI_2

(
t>.X~_l) t>.x~_1

1 + .\ u WI-l,j,k - ~WJ-2J,k .
~xl_2 ~xJ-2

(4.65)

(4.66)

(4.67)

The pressure at the c·,.tlet is set equal to zero, nevertheless it can be calculated from

the integration of the normal momentum equation (Soh 1987) as

PIJ,k - PI,2,k = _ r; [8(UV) + ~ 8(rvv) + ~ 8(wv) _ w2
Jr; 8x r 8r r 80 r

(4.68)

•
4.2.2 Solution of 2-D and 3-D Annular Flow Problems and

Numerical Results

2-D Unsteady Flow Results
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To solve the Navier-Stokes and cODtinuity equations in 2-D annular configura·

tions with small-amplitude oscillations of the outer cylinder, we need to generate a

2-D mesh. This is donf! by choosing appropriate inuer and outer radii, the stretching

function, and the number of grid points in the T- and 6-directions. To reprodncc the

results obtained by Bélanger (1991), th" numerical computations have been performed

on a nondimensiOlial mesh with inner radius Ti :..: 9 and outer radius To = 10 for a

Stokes number S =300, which defines the vibwtional characteristics of the system.

The results are shown in Figures 4.1ù-4.13, lli which al! qnanthies are dimensionless.

Each cycle of the periodic motion was divided into 19 time ste!,•. Initial conditions

for velocity and pressure in the f!ltid domain -.vere zero and equations (4.31)-(4.34)

were solved until a periodic state WdS reached, which for a stable solution takes at

least 3 cycles. The mesh use.'! was a 2-D mesh as shown in Figure 3.?, ~panning the

circumferential direction between 6 = 0 and 6 = 1r, and uniform in that direction.

The stretching function used in the r-direction was a hyperbolic tangent function, as

shown in equation (3.14). This mesh is composed of24 x 24 grid points, where L:.rrnin

is equal to 0.020 when S = 300.

Figures 4.10-4.13 contain the curves representing the solutions for each of 5

instants tn within the harmonie cycle The five instants are obtained from tn =
21rn/N,n = 7,9,11,13 and 15 for thf! circumferential velocity component w, and

n = 3,5,7,9 and 11 for the results involving the pressure Pi N is the number of

time steps, taken to be 19. Figure 4.10(a) presents the radial profiles of pressure

taken at 6 =3.75° and Figure 4.10(b) presents the radial profiles of w at an azimuth

of 6 = 45°. Figure 4.11(a,b) presents circumferential profiles of the pressure P and

velocity component w, taken at r = 9.75. As pointed out previously, the results

obtained for small-amplitude oscillations are similar to those obtained hy Bélanger,

although in his decoupling procedure of the discretized equations he neglected the

off-diagonal terms. Thus, a comparison between the results of the present analysis

and Bélanger results for 3-D unsteady f10w will he made in the paragraph dealing
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with 3-D analysis. ln Chapter 6, a comparison will be made between the 2-D and 3-D

results of this chapter and those obtained for large-amplitude oscillations. Aspects

of converg,'nce and other numericaI features are diseussed in Chapter 7.

To obtain the amplitude and the phase angle with respect to the displacement

of the outer cylindrr, or the real and imaginary parts of the velocity components and

pressure, a Fourier Transform was used which is defined by the following equation

(Cooley et al. 1969)

G(/k) = .!.jT1
2 g(t)e- j2r/"dt, (4.69)

T -T12

where Ik = hIl> i.e. the k'h harmonie of 11 and g(t) is a periodic function with period

T. ln discrete form, equation (4.69) is written as

1 N-l "'''''G(k) = - L g(n)e-} , (4.70)
N n=O

which is used in this analysis, where g(n) represents p, U, v, or w. Hence, Fig­

ure 4.12(a,b) presents the pressure amplitude and phase angle at different Reynolds

and Stokes Ilumbers and for the potential flow solution. Figure 4.13(a,b) presents

the real and imaginary components of the pressure obtained for the sarne range of

Reynolds and Stokes numbers (where Re= 25 = 2wH2/V for the 2-D annular confiy,­

uration). For these results the inner and outer cylinder radii are ri = 4 and ra =: 5,

respectively. The nondimensional amplitude of oscillation is f =0.1. The mesh 'Jsed

has 12 x 15 grid points in (r, 11)-plane. The pressure results obtained are at r = ,~..965

and (J =7.5".

3-D Unsteady Flow Resuib

To solve the N-S and continuity equations in 3-D annular configurations, we

construct 3-D meshes as shown in Figure 4.7. The numerical computations have

been implemented for two sets of geometry. The first set is for smalliengths of fixed

upstream and downstrearn portions, as shown in Figure 2.3. The second set was

devoted to larger lengths of these parts, to investigate the cffect of fixed boundary

conditions on the perturbed fluid variables and on the propagation of the perturbed

pressure outside the domain of translational or rocking motion. The nondimensional
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annular gap width was also chang~d from T; =9 and T. =10 to T; =4.785 and T. =

5.785, to obtain results for both narrow and wide annular gaps; in thc cxpcrimcntal

apparatus used in this rcscarch to invcstigate the unsteady pressure produced by the

forced vibration of the outer cylinder, the radii are T; = 4.785 and T. = 5.785, as will

be discussed in Chapter 8.

Two dilferent meshes were used for the 3-0 analysis. The first one is 65 x 12 x 15,

spanning the axial, radial and circumferellLial directions. This mesh is uscd when we

set L = 100, LI = 20, and L2 = 20 (see Figure 2.3). A sccond mesh has 89 x 12 x 15

grid points in the computational domain, and it is used when L = 100, LI = ilO,

and L2 = 60. The stretching function used in the T-direction was the salllc as in

2-D analysis but in the axial direction the hyperbolic sine distribution function was

utilized instead of the hiperbolic tangent one; while in the O-direction a uniform

distribution of grid points was used. Equations (4.46-4.57) were solved in this 3-D

computational domain until a periodic state was reached, as in the 2-D solution.

Due to the staggered nature of the grid points, the pressure cannot be calcu­

lated at 0 = 0 and 0 = 7r. At these and other locations, which are alfected by the

staggered grids, the pressure and other variables which are neither calculated nor

defined explicitly can be compllted by interpolating between the adjacent node val­

ues. AIso, on the boundaries no values are required to be supplied for the pressure.

As before, the computation can be done for dilferent Reynolds and Stokes numbers,

always in the laminar regime. For quiescent fluid, in this analysis, in order to be able

to obtain a solution, one needs to supply the Reynolds number in the computational

program. This can be done by selecting the Stokes number (based on the frequeney

of oscillation, annular gap width and fluid viscosity), and using the relations

Re =2UH,
Il

nH2
5=--,

Il

•
from which the nondimensional frequency w can also be written as w = nHlu =

2SIRe.

In 3-0, as in 2-D, the time step 6.t = TIN with N - 19 was used. For ail
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of the probicms treated in this Thesis the compressibility factor 6 and pseudo-time

step ~T were chosen based on equations (4.15), (4.16) and (4.19). Initial guesses

were used for q and the Courant number, Cr, which is also based on the criteria

supplied by Chorin (1967), Soh (1987) and Soh and Goodrich (1988), and finally

implcmcnting numerical experiments by correcting the values of 6 and ~T using

appropriate correction factors. In ail computations, convergence was reached and

the iterations were stopped in pseudo-time when the rms values of the numerical

residuals of the momentum and continuity equations were aliless than 10-4, which

is low enough to ensure that the governing equations of f1uid motion are satisfied

for each real-time step. The residuals are the numerical evaluation of the right-hand

sicles of equations (3.9) and (3.10) at the grid points -actually, equation (3.9) must

he divided by ~T and equation (3.10) by ~T/6.

Figure 4.14(a,b) presents the unsteady pressure amplitude and phase angle ver­

sus the axiallength of the cylinder obtained for 3-D solution of a uniform annular

passage, at T = 9.965 and (J = 7.5°. In Figure 4.14, a comparison is made between

the present results and Bélanger's results. They are almost the same, nevertheless

the discrepanc:ies arc most likely due to carrying out the complete solution of the N-S

equations in the present analysis vis-à-vis the Bélanger approach in which the sim­

plified N-S equations were considered. Figure 4.15(a,b) presents the circumferential

velocity w and its phase angle obtained at X = 50 and (J = 45°. Figure 4.16 (a,b)

demonstrates the effect of amplitude of oscillation on the pressure; for small ampli­

tude oscillations it can be seen that the amplitude of the pressure increases almost

linearly with the amplitude of oscillation. In Figure 4.16(b) it is seen that the phase

angle increases (in the negative sense) for f = 0.2, but decreases as the amplitude

increases, which indicates that it appraoches the results of the potential-f1ow solution

at higher amplitudes, while for smail amplitudes the change in phase angle is less

pronounced.

Figure 4.17 gives a set of solutions obtained at different Reynolds numbers. It
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is shown that this model can easilly handle higher ftow rates, simply by keeping the

olI-diagonal terms and performing minor modifications in the numericai solutions; in

contrast, the solution obtained by Bélanger was for a maximum Reynolds number

of Re = 250. This figure demonstrates that, as the Reynolds number is increased,

the pressure amplitudes are decreased, and at Re = 1000 and Re = 1500 the pressure

amplitudes become aimost identicai. Figure 4.18 presents the phase lUlgle for pressure

at various Reynolds numbers. The same conclusion as before can be reached for this

figure regarding the elIect of increasing the ftow velocity on the phase angle.

Figure 4.19 presents the cÎrcumferential vc10city lU for dilferent Reynolds num­

bers. This figure shows that the fully developed laminar-shape velocity profile for lU

at lower Reynolds numbers tends to a shape similar to that of turbulent ftows with

increasing Re. This is interesting from the point of view of shear force c,ùculations

on the cylinder, i.e., larger shear forces arc created at higher Reynolds numbers. Fig­

ure 420 presents the phase angle for lU at various Reynolds numbers and it is seen

that the phase angle curves rctain the same shape as Reynolds number is increased,

tending to a parabolic shape at high Reynolds numbers.

Figure 4.21 shows the elIect of the extension of the fixed downstream and up­

stream portions of the computationai domain on the numericai results. At lower

amplitudes of oscillation, i.e. E = 0.1, it is clear that the perturbation pressure at

the upstream end approaches zero as it does at the downstream end (compare with

Figure 4.l4(a)). But at higher-amplitude oscillations, even the axial extensions of the

fixed boundaries do not help, in this mean-position approach (for low-amplitude os­

cillations), to reduce the unsteady pressure to zero outside the oscillating portion, as

seen in Figure 4.21 for E = 0.2 and E = 0.3. The curves for phase angle in Figure 4.21

indicate how the results depend on the extension of the boundaries as compared to

Figure 4.16(b).

Figure 4.14-4.21 are for an annulus with Ti =9 and Ta = 10. To investigate

the effect of annular gap width and also to be able to compare the theoretical results
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with thc cxpcrimcutal oues, the fol1owing figures were obtained for r; = 4.785 and

rg = 5.785. Figure 4.22 is similar to Figure 4.16 but for this different geometry;

here it is apparent that the pressure amplitude decreases due to the increase in

annular gap width. The results for phase angle in Figure 4.22(b) are more realistic

than those in Figure 4.16(b). Figure 4.23 is similar to 4.21, i.e., it is for extended

upstream and downstream portions, but is for this new geometry. The ripples shown

in prcssure amplitudes are due to the discontinuities at the moving and fixed parts

of the cyliuders. The same conclusion reached for Figure 4.21 applies to Figure 4.23.

Figure 4.24 presents pressure amplitudes at much higher frequencies and demon­

strates the effects on the pressure of (a) different amplitudes of oscilla,tion and (b)

various frequencies, still for a quiescent fluid subjected to oscillation of the outer

cyliuùcr. Final1y, Figure 4.25 presents the same results as those of Figure 4.24 but

for f1uiù f10w with Re =2900. It should be remembered that the results obtained were

subjccted to the constraint of smal1-amplitude oscillation and it is apparent from the

figurcs that for this model to produce acceptable results the amplitude of oscillation

must be e ::; 0.1 for narrow annular gaps -a conclusion which was also reached by

Bélanger (1991)- and e ::; 0.05375 for wide annular gaps.

For thc nonuniform annular geometries, such as a geometry with a backstep,

the N-S and continuity equations are solved on the 3-D mesh shown in Figure 4.26

in the (r,x)-plane ann similar meshes for different 9-planes. From this diagram, it is

seen that around the discontinuities at the upstream and downstream portions of the

moving cylinder and around the step, as well as close to the cylinder wall and centre­

line of the annulus, the grid points are clustered, by using the stretching functions

ùcscribed bcfore, 50 as to ensure the accuracy of the results. For this non-uniform

annular space, several meshes have been used which are classified in Table 4.1.

Figures 4.27 and 4.28 present the results obtained with the short axiallength

of the vibrating cylinder and narrow annu\ar gap (to reproduce the Bélanger results).

Mesh type A was used for these calculations. In these figures, the unsteady pressure
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A 71 14 15 8 10 0.2 0.105 40 20 20
B 97 14 15 8 10 0.2 0.105 40 60 60
C 103 14 15 3.785 5.785 0.2 0.105 100 20 20
D 99 14 15 3.785 5.785 0.1 0.105 100 60 60

o Axial 1 Radial 1 Circumferentiall Ti 1 To 1 ~Xmin 1~Tmin~ Il

•
Table 4.1: Different meshes used for numerical computations involving backstep.

p and circumferential velocity w with their respective phase angles were presented.

From Figure 4.27 it is clear that the unsteady pressure drops off after the backstep

due to the enlargement in the annular gap width, resulting in a reduction in the

magnitude of the perturbation velocities. Also, the pressure perturbaL:on approaches

zero far downstream but not at the upstream end. The pressure phase curve also

shows a different behaviour as compared to Figure 4.14(b).

Figure 4.29 presents the unsteady pressure magnitude and phase angle for three

different amplitudes of oscillation. It is seen that the phase angle remains almost the

same while the amplitude increases appropriately. This was not the case for the

uniform annular geometry (compare with Figure 4.16(b)). Figure 4.30 demonstrates

the effect of extending the fixed upstream and downstream portions on the results

(cf. Figure 4.29), as was done in uniform annniar cases. In this case it is seen that,

when using longer lengths for these portions which is shown in Table 4.1 for mesh

type B, the unsteady pressure approaches ta its lowest possible values. The results of

Figure 4.31 were obtained using mesh type C for a wider annular gap. There are sorne

differences between these results and those of Figure 4.30, due to changes made in

the size of the annular space and in the length of the vibrating cylinder. Figure 4.32

presents the effect of using longer lengths for the fixed portions. The results show

that for this geometry and with the dE:fined parameters, using longer cylinders would

not help too much in reducing the unsteady pressure to zero in the fixed·boundary

domains. For Figure 4.32 and subsequent ones, mesh type D was used.

•
Figures 4.33 and 4.34 are similar to Figures 4.24 and 4.25 and present the

effect of amplitude or frequency on the pressure for quiescent or aowing f1uids in

70



•

•

an annular space with backstep. Some wiggles are seen in the pressure results of

Figure 4.34 which are obviously due to fluctuations of the pressure at higher Reynolds

Ilumbcrs (producing vortices) after the step. This pressure loss and recovery which

is partly due to the oscillation of the outer cylinder is believed to be the main factor

causing vibration of the systems involving non-uniform annular passages; this will be

discussed in more detail in Chapter 9.

For uniform annular space with the outer cylinder in rocking motion, Fig­

ures 4.35-4.37 prcsent the unsteady pressure and phase angle for quiescent and f10wing

f1uids at high frcquency of oscilation of the outer cylinder. In this type of motion,

IL similar mesh as uscd for uniform annular space analysis was utilized, and the ex­

tcnded fixed portions were used, i.e, L = 100, LI = 60, and L2 = 60, while Ti =4.785

and T0 = 5.785. The hinge about which the rocking motion takes place is located

at X = 81.0. It should be emphasized that. due ta the smali-amplitude-motion as­

sumption, the elfects of the amplitude of oscillation on the moving boundary were

Ilcglected, evcn though at the upstream of the vibrating cylinder the amplitude of

oscillation is larger than that in the fictitious shaker position. AIso, the boundary

conditions for the velocity on the vibrating wall were obtained using equations (4.39)­

(4.41). Once again, Figure 4.37 demonstrates that the assumption of small-amplitude

oscillation, will be valid when E ~ 0.05375 in the mean-position analysis.

Figures 4.38 and 4.39 present the unsteady pressure and phase angle for non­

uniform geometry (backstep) when the outer cylinder is in rocking motion. Here, the

hingc is located at X = 82.0 and the results are for quiescent and f10wing f1uids. The

clfccts of having a step are clearly shown in Figure 4.39 when there is a f1uid f1ow.
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Figure 4.1: Schematic diagram of 2·D annulus (a) Oscillation of the outer cylinder
(b) The velocity components on the outer cylinder.
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Figure 4.2: Schematic representation of the grid points near the waHa, for evaluatioD
of viscoua derivatives, where the quantities Uj,., and v ..,j are defined.
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Figure 4.3: Schematic representation of the grid points, for the evaiuation of viscous
derivatives near the inner cylinder wall where the quantity w.... has been delined.
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Figure 4.4: Schematic representation of annular ftow geometry in three dimensions.
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Figure 4.5: Schematic representation of the gcometry of outer eylinder during rocking
motion for boundary velocity calculation.
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Figure 4.6: Schematic representation of the staggered grid used in the spatial dis-
cretization of the three-dimensional nonlinear equations.

x

•
Figure 4.7: Isometric view of the grid-point distribution in the 3·D analysis.
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Figure 4.8: Schematic representation of the staggered grid used in the spatial differ­
entiation in the T and x directions.
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Figure 4.9: Schematic representation of the staggered grid used in the spatial differ-
entiation in the T and 9 directions.
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Figure 4.10: Radial profiles of pressure p at 8 =3.75° and radial profiles of circum.
ferential velocity w at 8 =45° for S =300 at 5 instants tn within the harmonie
cycle.
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Figure 4.14: The unsteady pressure (a) and phase angle (h) for Re = 250, w = 0.2,
Ti =9, To =lU at T =9.965, (J =7.50 and E =0.1. Comparison hetween: -,present
analysisj 0, Bélanger (1991).
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Figure 4.1S: (a) The circumferentia1 velocity w and (b) phase angle with respect to
the displa.cement of the outer cylinder in annular gap for Re =2S0, w =0.2, ri =9,
r. = 10, and f = 0.1 at X = SO, 9 = 4S·.
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Figure 4.16: (a) The unsteady pressure amplitude and (b) phase angle with respect to
the displacement of the outer cylinder versus axiallength of the cylinder for Re = 250,
w = 0.2, ri = 9, ro = 10 at r = 9.965 and 8 = 7.5°: -,E = 0.1; - - -,E = 0.2;
-. -,E = 0.3.
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Figure 4.17: Unsteady pressure versus axial length of the cylinder at difFerent
Reynolds numbers for w =0.2, ri =9, r o =10 at r =9.965, E =0.1 and 8 =7.5°.
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Figure 4.22: The effect of annular gap width on (a) unsteady pressure amplitude and
on (b) phase angle for Re = 250, W = 0.2, Ti = 4.785, To = 5.785 at r = 5.727 and
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Figure 4.23: The efl'ect of extension of the fixed upstream and downstream portions
on (a) unsteady pressure amplitude and on (h) phase angle for Re = 250, w =0.2,
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Figure 4.25: The elfect of the oscillation amplitude on the unstea.dy pressure am·
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Figure 4.26: Mesh used in numerical computation for backstep geometry.
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Figure 4.27: (a) The unsteady pressure amplitude and (b) phase angle for baekstep
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9 =7.50 and E =0.1.

93



• 10.0 .......-...-...-...-...-.,.....,.....,.....,.....,.....,.......-...-...-........

9.5 (a)

... 9.0

8.5

0.02 0.04 0.06
Circumferential velocity w

0.08

10.0 ,...,.-r-..,......-,.-r-..,..........-r-.....,...............,....,...,....,.......,

9.5 (b)

... 9.0

8.5

8.0 -100 -90 -80 -70
Phase [Oeg]

-60

•

Figure 4.28: (a) The circumferentia! velocity amplitude w and (b) phase angle with
respect to the displacement of outer cylinder in annular gap with backstep for Re =
100, w = 0.1, ri =8, r o =10, and E =0.1 at X =20, IJ = 45°.
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Figure 4.29: (a) The unsteacly pressure amplitude and (b) phase angle with respect
to the displacement of outer cylinder versus axia1length of the cylinder with backstep
for Re = 100, W =0.1, Ti =8, To = 10, L =40, LI =~ = 20 at T =9.942 and
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Figure 4.33: The effect of amplitude of oscillation on pressure amplitude (a): ­
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Figure 4.34: The effect of amplitude of oscillation on pressure amplitude (a): ­
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Figure 4.35: (a) The unste8dy pressure amplitude and (b) phase angle in unifonn
annular space during rocking motion of outer cylinder for U =0, w =1.0 (f =20
Hz), ri = 4.785, r o = 5.785, L = 100, LI =~ =60 and E =0.1075 (at shaker
position; see text). Hinge location at X = 81.0.
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Figure 4.36: (a) The ullsteady pressure amplitude and (b) phase angle in uniform
annular space during rocking motion of outer cylinder for Re = 2900, w = 0.231
(f = 20 Hz), ri =4.785, r. =5.785, L = 100, LI =~ =60 and € =0.1075 (at
shaker position; see text). Hinge location at X = 81.0.
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Figure 4.37: (a) The unsteady pressure amplitude and (b) phase angle in uniform
annular space during rocking motion of outer cylinder for Re = 2900, w = 0.703
(f =30.4 Hz), ri =4.785, ro =5.785, L = 100, L, =~ =60: -,f =0.05735;
- - -,f = 0.1075; - . -,f = 0.16125 (at shaker poaitionj see text). Hinge location at
X = 81.0.
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Figure 4.38: (a) The unsteady pressure amplitude and (b) phase angle in anoular
geometry with backstep during rocking motion of outer cylinder for U =0, W =1.0
(f = 6 Hz), fi = 4.785, f o = 5.785, L = 100, LI = ~ = 20 and E = 0.1075 (at sbaker
position; see text). Hinge location at X = 82.0.
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Figure 4.39: (a) The unsteady pressure &I1lplitude and (b) phase angle in annu1ar
geometry with backstep during rocking motion of outer cylinder for Re =400, w =0.5
(f =3 Hz), ri =4.785, r. =5.785, L =100, Li =L2 =20 and € =0.1075 (at shaker
position; see text). Hinge location at X = 82.0.
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Chapter 5

Three-Dimensional Solution for
Axially Variable Annular
Configurations

One of the important geometries which have been considered for a long time by

investigators as a major instability-producing system is the annular geometry with

a diffuser section. Examples are the self-excited vibrations of jet pumps used in

boiling water reactors (similar to that shown in Figure 1.3) and in the AGR f10w

control device called gag bomb. Several investigations have been done on this type of

geometry to discover the underlying mechanism leading to instability of such systems.

There is a theoreticallink between pressure recovel'Y in the diffuser and reduced

stability which has also been established experimentally by Hobson (1984). He devcl­

oped a closed-form analytical expression for the negative aerodynamic damping for

this type of geometry. In his theoretical model, he included skin friction in the anal­

ysis and proved that a diffuser can promote instability. He confirmed this conclusion

by measuring experimentally the aerodynamic forces acting on a cylinder oscillating

in a diffuser.

Spurr & Hobson (1984) have conducted a series of tests with the annulus ter­

minated in a diffuser with half-angles of 0°,2°,4°, and 6°, and hence with a variable

amount of pressure recovery; such geometries can be found in sorne nuclear reactors

. It must be remarked in Figure 2.2 that the gas f10w between channel and asscmbly
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ean cause potential damaging vibration of the long, slender fuel assembly in a number

of ways, but it is recognized that the flow in the annular diffusing section immedi­

ately above the seal bore provides the main source of excitation. It is predicted that

the seal bore acrodynamics give rise to negative fluid damping whilst a reduction

in pressure recovery promotes stability. It has been shown that this mechanism is

typical of the diffuser with 6° half-angle.

Because of the importance of annular-flow-induced vibrations and instabilities

in systems with diffuser geometries, a special chapter is devoted to this topic. Hence,

in this chapter, the numerical solution of the N-S and continuity equations is obtained

for concentrie cylinders with two different diffuser half-angles, namely, 6° and 20°. In

the fol1owing sections the procedure is described for solving the flow equations on an

orthogonal grid rather than on skewed grid. The method of sQl~tion after coordinate

transformation is similar to the method described in Chapter 4.

5.1 Geometrical Configuration

The nonuniform annular space considered here consists of two concentric cylinders in

which the inner one has a diffuser shape as shown in Figure 5.1. In this figure, Hd is

the diffuser height which is equal to half of the annular gap, i.e., Hd =H =Ra - R;•.

As mentioned before. the diffuser angle was chosen to be either a =6° or a =20°.

The characteristic length H and characteristic velocity U at the upstream of the

diffuser are used to non-dimensionalize the fluid flow equations. in this analysis, as

in the analysis for uniform annuli, the outer cylinder is composed of three parts: the

central part has length Land oscillates harmonically with frequency n, or in non­

dimensional form w = nHlU; two fixed parts are situated upstream and downstream

of the central part with lengths L. and Ld. The equivalent non-dimensional forros of

Ro• Ri. and Rid are given by RoIH = T0' Ri.1H = Ti. and RidlH = Tid = T0- 1 - hd

respectively, where hd =Hdl H.
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5.2 Coordinate Transformation for Axially Vari­

able Annular Configurations

To solve flow equations for nonuniform geometries one can use the mesh shown in

Figure 4.26, which is a schematic representation of the mesh used fer backward-facing

step, spanning the r- and x-directions. The major step taken for the solution of the

flow equations in the diffuser-shaped annular spaces is the space transformation to

reduce the problem to the case of a backward facing step. This is required ta solve

the problem on an orthogonal grid, rather than on a non-orthogonal one which could

arise due to the presence of the diffuser shape. This annular space transformation,

while complicating the problem by adding more tenus to the equations, cspecially the

cross-derivative tcrms which are the characteristics of non-orthogonality, nevertheless

ensures that the derivatives arc calculated on an orthogonal mesh.

In order to generalize the problem, it is necessary ta transform the annular space

(r·, x·) in the physical domain of Figure 5.2(a) into the rectangular computational

domain (r,x) shown in Figure 5.2(b).

For this purpose, it is convenient to define the nondimensional transformation

equations as

Rr· - R'uf(X·)
r = -R=-_-f7(x'-.':-)..:.. , (5.1)

t =t·, x = x·, (J = (J. , (5.2)

where f(X·) =Hd(X;'-X·)/X, and the stared quantities indicate the physical domain.

This transformation is only for the region where the diffuser section is located, i.e.,

for xi ::; x· ::; x;' in Figure 5.2(a).

Ali functions having continuous partial derivatives in the physical cylindrical

domain can be expressed in the form of functions in the computational domain by

the chain mie. Thus, one can write

•
Ô ôr ô ô-=--+-ôx· ôx· ôr ôx '

Ô ôr ô-=--,
ôr· ôr· ôr
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•
Using equations (5.3-5.6), the radial-direction derivatives of a function 9 in the

physical domain, in tcrms of the indcpendent variables in the computational domain,

can bc wri ttcn as

whcrc thc Jacobian of thc transformation is given by

A(x") _ ~ _ R
- 8r" - R - E(X") .

Since y = y(x, ri, then

8r _ 8r .!!!__ A' "\ '( ") [r" - R;u ] _ D( ")
8 - 8 8 - ,,X JE X R () - X,x· E x· - EX·

8
2
r " {Rr" - R;uR} "

8x"2 = 2E'(x) IR _E(X")]3 = B(x ),

whcre B(x") may be re-written as

B(x") = 2A(x")E'2(X") { r" - R;u 2} ,
IR _. E(X")]

and l(x") = -HjX.

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

•

The axial-direction partial derivatives of 9 can, equivalently, be expressed in

tenns of the independent variables of the computational domain as

8g = 8r 8g + 8g =D(x,)8g + 8g (5.13)
8x' 8x' 8r 8x 8r 8x '

In this manncr, the partial dilferential equations in the physical domain for

concentric nonuniform annular dilfusers can bc discretized accurately in an orthogonal

cOlllputationai domain with the finite-dilference method.
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5.3 Transformed Form of the Navier-Stokes Equa­

tions in the Computational Domain

In this section the differential forms of the N-S and continuity equations are expressed

in terms of transformed coordinates x, r and 0, by usiog the relations (5.7-5.14).

10 three-dimensional fiow fields, the matrices M.,M r , and M 9 for the llonulliform

(diffuser) region are expressed as

[

L+1/{3

M. = 1/({36~8/8X
~ ~ 8/îX]
o L 0 '
o 0 0

o
M +1/(3 + l/(Re ro2

)

o
.A/({36 rO )(8/8r)(r·)

o
-w/r·

M + v/r· + l/(Re r·2
)

o

DD/8r]
AD/8r

o '
o

M9= [~
o

o
N

-2/(Re r02 )8/80
o

o
2/(Re r·2 )8/80

N + 1/{3
I/({36 r·)8/80

•

Ltp _ 8(ûPtp) _ ~ 82 tp
- 8x Re 8x2 '
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(5.17)
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the componeots of Q(V, p) are given as

ô(uu) ô(uu) A ô" 1 ô(wu) ôp ôp
Q.(u,v,w,p)= ôx +D-a;-+;:;ôr(rvu)+r" ô9 +ôx+Dôr

_ 2. [ô
2
u + A!.... (Ar"ôu) + _1 ô

2
u + B ÔU + D2Ô2u + 2D ô

2
u ], (5.15)

Re ôx2 r" ôr ôr r"2 ô92 ôr ôr2 ôrôx

ô(uv) ô(uv) A ô" 1 ô(wv) W2 ôp
Q.(u,v,w,p) = -ô- +D-

ô
- + --ô (r vv) + " ô9 - -" + A-ôx r r" r r r r

1 [ô
2
v A ô ( ôv) 1 ô

2
v 2 ÔW v

- Re ôx2 + r" ôr Ar" ôr + r"2 ô92 - r"2 ô9 - r"2

ÔV 2Ô2V ô2v]
+Bôr + D ôr2 + 2Dôrôx ' (5.16)

ô(uw) ô(uw) A ô" 1 ô(ww) vw 1 ôp
Qw(u,v,w,p)= ô +D ô +--ô (rvw)+" ô9 +-" +--;ô9x r r" r r r r

1 [ô
2
w A ô ( ôw) 1 ô

2
w 2 ôv w

- Re ôx2 + r" ôr Ar" ôr + r"2 ô92 + r"2 ô9 - r"2

ÔW ô2w ô2w]
+B ôr + D

2
ôr2 +2D ôrôx '

V.V = ÔU +DôU + Aô(r"v) +..!.. ôw,
ôx ôr r" ôr r" ô9

where the coefficients A, B, and D stand for A(x"), B(x"), and D(x"), respectively.

5"4 Temporal and Spatial Discretizations

The temporal discretization is the sarne as explained in Chapter 3i the spatial dis­

cretization is described in this chapter, and is along the sarne !ines as that used

in Chapter 4, but with l'linor changes and more terms appearing in the equations.

Before discretiziog the equations we must cast them in delta form used in different

sweeps. Thus, the matrix equations (3.26-3.28) in different sweeps are then expressed

as

In the r-sweep:

- (A ô ( -) ô (-) ô (~)
~u + {Jf).r r" ôr r"V' f).u + D ôr Û"f).u + D ôr
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1 {A a (oa(~u)) 2a2(~U) a(~) a2(~U)}]

--R --a Ar a + D a 2 +B a + 2D a ae r- r r r r r x

= M (Eu" - ûP -Ijli~) , (5.19)

- [A a ( -) a (-) a(~p) ÛJP~w
(l + ~r) ~v + {j~T 1'" al' rOif~v + Da~ ûP~v + A al' - l'

__1 {A~ (ArOa (~)) + D2a2 (~) + Ba (KV) + 2D a2 (~) _ ~v}]
Re 1'0 al' al' ar2 al' arax 1'02

= ~T (Ev" - if - .BQ~) , (5.20)

- [A a ( -) a ( -)~w+.B~T 1'0 al' rOiiP~w +Dal' ûP~w

1 {A a (oa(K;)) 2a2(K;) a(~w) a2(~w)}]
- -R - -a Ar a - + D a 2 + B a + 2D a ae 1'0 l' l' l' l' l' X

= M (Ew" - ÛJP - .BQ::') , (5.21)

- A~T a (-) D~Ta(~U) ~T·
~p+rl al' rO~v + -6- al' = -r;'il.W; (5.22)

in the O-sweep:

•

_ [1a(ÛJP~u) 1 a(~u)] _
~u + .B~T 1'0 ao - Rer02 ao2 = ~u,

_ [1 a(ÛJP~v) 1 a(~v)] - 2a{~w)
~v + .B~T 1'0 ao - Rer02 ao2 =~v - Re r2aO '

_ [1a(ÛJP~w) 1a(LSP) vP~w
(1 + ~T) ~w + .B~T ao + - ao +--r- r- r-

_~ { 1 a
2 (KW) _ ~w}] =~w 2. a{'KVï

Re 1'02 ao2 1'02 + Re r2aO '
_ ~Ta(~W) _
~p+ 6 roaO = ~Pi

and finally in the x- sweep:

[
a(ûp~u) a(~p) 1 a2{~u)] _

{1+~T)~U+.BM + -- =~u,ax ax Re ax2
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(5.26)
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• [
a(ûpKV) _ 1 a2 (/lV)] __

/lv + {3/lr ax Re ax2 - /lv,

[
a(ûp

/lw) 1 a2 (/lW)]
/lw + {3/lr ax - Re ax2 = /lw,

/l M a(/lu) _ "F:"
p+ {) ax - p.

(5.28)

(5.29)

(5.30)

The solution to equations (5.19-5.30) will follow the same procedure used for

small-amplitude-oscillation method described in Chapter 4 for 2-D and 3-D analyses.

ln gcneral, in this 3-D analysis the terms Q~, Q~ and Q::. will be calculated, and then

the variables ûp +1 , vp+ 1, Wp+l and jY'+l are obtained by solving (5.19-5.30).

To perform the discretization of the equations so as to solve the fu1l non-linear

N-S equations in the transformed domain, one needs to construct the staggered mesh

and to define the interpolates in the physical domain as was done in Chapter 4.

Once again, the grid points are stretched in the x and r directions, but not in the 8

direction, in order to c1uster more points near the solid walls or in regions of steep

gradients in the f10w domain, e.g. in the vicinity of the step or near the change in the

contour of the diffuser section (see Figures 4.26 and 5.2). The velocity components

v, III and the pressure p have identical x position, while Il, w and p have identical r

position in the grid scheme. The momentum and continuity equations are differenced

about the points where Ûi,J.ko ViJ.k, WiJ.k and fi.J.k are defined.

In the following discretized equations, the rearranged form of the transformation

equation (5.1) to define r" in the physical domain is

" [R - e(x")] +Riue(X")
r = r R . (5.31)

This equation is used to define the f01l0wing equations at each computational

point rU = r W and rU in the staggered mesh:

•
RU

j
=r,/ {R - e(x) +Riue(x)}

R

DUj =A(x)e'(x) [R%~~(:;u]

Rv'. _ rj{R - e(x) +Riue(x)}
, J - R '

, [RY; - R;u], DY; = A(x)e (x) R _ e(x) ,
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•
EU = U(x)DUj

] R - E(X)
EV. _ U(x)D~

, ]- R-E(X)' (5.36,5.3i)

Then, the continuity equation (5.18) is discretized as

D.T
--(V',V)·k=6 ',J.

(5.38)+ D~-1 (UiJ.k - UiJ-I.k) + (WiJ,k - WiJ.k-ll]
Mj_l RUjD.lI'

and the r-momentim equation (5.20) is descretized to implement the radial sweep for

ViJ,k as

- {JD.T [ ( -ru d-rd)](1 +D.T) D.ViJ,k + R~D.rj A RUi+lV~uD.vo - RUjV~ D.vo

(5.39)

•

The terms D.v:
u

,~:d, v~u and V~d appearing in this equation, as weil as otller

similar terms in the following equations, are obtained from the appropriate relat.ions

as explained in Chapter 4 and Appendix A. The term D.PiJ,k is obtaincd from the

continuity equation (5.22) as
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(5.40)

(5.41)

•
DV;-l!:>r (- - )- 6A. !:>UiJ,k - !:>UiJ-I,k ,

~ri_1

with a similar expression for !:>p at J = j + 1.

The component -[J!:>rQ. of the vector Q in equation (5.16) is discretized as

( -[J!:> Q' - _ [J!:>r ( z' z' _ zb zb __1_ {Vi+lJ'k - ViJ,k _ ViJ,k - Vi-IJ,k}]
r •JiJ,k - !:>x. u. v. u. v. Re !:>x~ !:>x~

1 1 .-1

DV2 (v. '+1 •. - V· .L V· .•. - V· '-1 L)+=.:-L 1,) ,II: I,J,IÇ _ IJ,II: 1,) III:

!:>r'J !:>rj+1 !:>rj

+DV; (ViJ'k - ViJ-I,k _ 'Vi-IJ,k - Vi-IJ-I,k)
!:>x~ !:>r~ !:>r~

1 J J

+ _1_ (ViJ'HI + ViJ,k-1 - 2ViJ,k _ 2w~' - w~b _ v.. )]
RV2 !:>,P !:>() ',J,k,

J

where w. is given in Appendix A. Now, the discretized r-momentum equation (5.24)

in the ()-sweep, incorporating the result of (5.39), provides

!:>V' . L +1.),,,"

(5.42)

and the discretization of r-momentum equation (5.28) in the x-sweep, using the

results of equation (5.42), yields

•
1 (!:>V'+I' L- !:>v· .L !:>v· .L- !:>V'_I . L]} __ 1 ,J.,,; IJ,II: _ IJ,II: 1 J,III; _ Il .,

Re !:>x~ !:>x~ - V',J,k .
• .-1

115

(5.43)



(5.45)

•
The same procedure is applied to discretize the r-, 0-, x-momentum and conti­

lluity equations (5.21, 5.25, 5.26, 5.29) and (5.19, 5.23, 5.27, 5.30), respectively. The

discretized equations are

/::;.WiJ,d R~:;r'J [A (Rll;v~u.&W:;, - R\J_IV~d.&W:d)]

_ A2{J/::;.r [R\J (.&WiJ+l.k - '&wiJ.k) _ R\J-I (.&WiJ•k - '&wiJ-1.k))

ReRUj/::;.r'J /::;.rj /::;.rj_l

+DUj (uru.&Wru _ urd/::;.wrd)_ DUj{J/::;.r (.&WiJ.k - '&wiJ- 1•k _ '&wi- 1J•k - '&wi-IJ-I.k)
/::;.r~ '" '" w '" Re/::;'xP /::;.r~ /::;.r~) ') )-1

- B~t.I~M (/::;'WiJ.k - '&wiJ- 1•k) = /::;.r(E: - ut' - {JQ::')iJ.k' (5.44)
)-1

Similarly, the -{J/::;.rQ", component is given by

( {J A Q ) {J/::;.r [z' z, zb zb 1 (Wi+lJ.k - WiJ,k WiJ.k - Wi-1J,k)]- ur ", .. = --- u W - U W - - -
'J.k /::;.xr '" '" '" '" Re /::;.xr /::;.xr_l

J3/::;.rDUj (. ru ru rd rd) {J/::;.r [A RV: ru ru ARV: rd rd
A u U", W'" - u", W'" - RU AU' jV", Ww - • j-1V", W'"
,-"rj jUrj

A
2

{R\J( ) RVj _ l ( )}]- Re /::;.rj WiJ+l.k - WiJ.k - /::;.rj_1 WiJ.k - WiJ-l.k

{J/::;.r [w~l- w~b2 +PiJ,k+1 - PiJ.k )
- RU. /::;.0 + v'"WiJ.k

)

{J/::;.r {B\J-I ( ) DU] (WiJ+l.k - WiJ.k WiJ.k - WiJ-l.k)
+-R A" WiJ.k - WiJ-I,k + A UA" - A"e Urj_1 UXj Urj urj_1

+DUj (WiJ.k - WiJ-l.k _ Wi-IJ.k - Wi-IJ-I.k)
/::;.xr /::;.rJ-1 /::;.rj_1

_1_ [WiJ.k+l +WiJ.k-1 - 2WiJ.k +2v~ - v~ _ "] }
RU~ /::;.02 /::;.0 W'J.k 1

)

where v", is given in Appendix A. The discretized Omomentum and continuity cqua-

tions (5.25) and (5.26) in the O-sweep are obtained as

(1 + Ar) AW"J'." + {J/::;.r [8'~' Ob~b XWiJ.k+l + XWiJ•k- 1 - 2XWiJ•k ]
u u. RU./::;.O w'" uW", - w'" uW", - ReRU./::;.O

) )

•
{J/::;.r [ /::;.Pij,k+1 - /::;'PiJ.k] _ - ..

+ RU. + /::;.0 - /::;.w'J,1c 1
)
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(5.47)

•
- _ t;; t.r KtiiiJ,k - KtiiiJ,k-1
t.PiJ.k - PiJ,k - 6 RU.t.O

}

The discretizcd O·momentum equation (5.29) in the x-sweep is written as

ô.w' '. +'J,'"

which completes the discretization of the O-momentum equation in all sweeps. Now,

the discretized x-momentum equation (5.19) in the r-sweep is given by

•

DUj (ru-ru rd-rd) {3t.rDV; (- -)
t.r~ Uu C!;.Uu - Uu t.U. + t.r~ t.PiJ+I.k - t.PiJ,k

} }

- A
2

(JC!;.r [RV; (~, '+1 k - ~, 'k) - RV;-I (~, 'k - t.U' '-1 k)]
ReRU,t.r~ C!;.r~ 'J, 'J, b.~~ 'J, 'J.

}} } •)-1

2 - - - -
DU.(Jt.r (t.u' '+1 L- t.U' '. t.U' '. - t.U'· 1L)_ J 1" ,It' ''',1\; _ 'J,1t' 1"- .'"
ReC!;.r~ t.r~ t.r~ 1} } }-

_ DUj(JM (~iJ.k - ~iJ-I,k _ ~i-IJ,k - ~i-IJ-I'k)
Ret.xf t.rj_1 t.rj_1

BV;_I(Jt.r (A A ) A (En l' {3QI')- RAU UUiJ,k - UUiJ-I,k =ur u - U - • iJk '
euTj _ 1 1

wit~ -{3t.rQu given by

( {3t. Q) - {3t.r{ zl zl zb zb- r. iJ,k - - t.xr U. Uu - U. Uu +PHIJ,k - PiJ,k

1 [Ui+lJ,k - UiJ,k UiJ,k - Ui-IJ,k]} DUj{3t.r (ru2 rd2)-- - - u-u
Re t.x~+1 t.x~ 6.r~ u u, , }

{3t.r {A (RH ru ru RH rd rd)- RUjt.r'J VjVu Uu - Vj-Iv. UU

A2 [RV; ( ) RV;-I ] }- Re t.r~ UiJ+I,k - UiJ,k - t.r~ (UiJ,i: - UiJ-I,k)
} }-I

{3t.r (W6/tll- w6bu6b ) Dv'{3t.ruu.u j ( )
- RUj t.O - t.rj PiJ+I,k - PiJ,k
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•
{3~T [(BV;-I ( ) DU] (UiJ+I.k - UiJ.k UiJ.k - UiJ-I.k)+-R A-V- UiJ.k - UiJ-I.k + A • A V - A V

e "",rj _ 1 "",rj "",rj "",rj_1

+ (UiJ.k+l + U;J.k-l - 2UiJ.k) + DUj (UiJ.k - UiJ-I.k _ Ui-IJ.k - Ui-IJ-l.k)] .

RU]~()2 ~xr ~rJ_I ~rJ-I
(5.50)

The discretized x-momentum equation (5.23) in the ()-sweep is then written as

~U, 'C +1..1.""

1 (~U" C+l + ~U, 'c 1-2~u' ,c)] -_ _ ''''.''' 1"'."'- 1..1."" _ li. ..
Re RU'~() - U•."k,

J

(5.51)

- ~T 1
~P"k =~p' 'C - _.- (~U'·C - ~U'-l 'k) •1." 1..1,'" é 6.x'! '",,"" • J,,

•

and the discretized x-momentum and continuity equations (5.27) and (5.30) in the

x-sweep are given by

__1_ (~Ui+IJ.k - ~U;J.k _ ~UiJ,k - ~UiJ-I'k) ~, ' _ ~ .. ] ~ ~ ..
R A V A V + P,+I."k P,.,.k - u•.,,k ,

e uXi+l uXi

(5.52)

(5.53)

We recall that the terms containing 'il and ~, as given in the previous equations

and also in Appendix A, indkate the centrai and backward difference operators ap­

plied to the grid-point coordinates and 34 interpolates, such as v~·, v~d, w~·, w~d...etc.,

they are evaluated by the relations given in Appendix A.

5.5 Method of Solution (Based on ADI Scheme)

The equations (5.39), (5.42)-(5.44), (5.46), (5.48), (5.49), (5.51) and (5.52) are now

ready to be written in tridiagonal forms and the solution of these equations proceeds

by starting the calculation of the right-hand sides of equations (5.19)-(5.22) using

relations (5.38), (5.41), (5.45) and (5.50). In the r-sweep, ~v is obtained from equa­

tion (5.39) after eliminating ~P with the aid of equation (5.40). The terms ~v alld
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~v are obtained from equations (5.42) and (5.43) in the (J- and x-sweeps respec­

tively. The same procedure is applied in determining ~w from equation (5.44), ~w

from equation (5.46) with the aid of equation (5.47) to eliminate ~p, and finally ~w

from equation (5.48). Also, ~ is determined from equation (5.49), ~u is obtained

from equation (5.51) and ~u is calculated using equation (5.52) with the aid of equa­

tion (5.53) as a coupling equation. The pressure difference ~p is obtained, ultimately,

after ~u is determined. In ail these calctl!ations, it is obvious that several times the

scalar tridiagonal systems of equations must be inverted as explained in Chapter 4.

The boundary conditions for velocity imposed at the inlet, x = -Lu, is a

developed laminar-f1ow profile, which is given by equation (4.64), and the boundary

values for v and w at the inlet and outlet are set equal to zero. The applied pressures

at the inlet and outlet of the domain are the sarne as those used for uniform and

backstep geometries. The extrapolation of the velocities at the outlet to second­

order accuracy from inside the f10w domain is done in the sarne way as is explained

in section 4.2, and the boundary values for the velocity and pressure on the solid

stationary and moving walls are the same as before. As initial conditions, to start

the time-marching solution, the steady-f1ow solution obtained without anyoscillation

of the outer cylinder is given and then the harmonic motion of the cylinder is started.

Here too, the N-S equations are integrated for at least 3 harmonic cycles, until a

periodic solution is obtained. As far as the domain of integration in the different

sweeps is concerned, the details of the numerical solution are the sarne as before,

except that, similar to the case of the backstep geometry, in the r-sweep the domain

of integration is divided into two parts. The first part extends from riu to rj, before

the diffuser section, and from rid to rj after this section, where j = J - 1 is ~he

index for grid points in the r-direction and in the vicinity of the outer cylinder (see

Figure 5.1).

It is remarked that sorne parts of the terrns arising from the cross-derivatives

82/8r8x B.l'e evaluated in the explicit right-hand sides of the equations (5.39), (5.44)
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and (5.49) to restore the implicit nature of the tridiagonal systems of equations, and

hence affecting the accuracy of the results and the convergence rate of the numericai

solution.

5.6 3-D Unsteady Flow Solutions for Diffuser Ge­
ometries

In this section, the numericai results are presented for Ct = 6° and 20°. To have a

comparison with the numericai results obtained for the backstep geometry, aithough

they are not directly related, the numericai computations have been implemented on

two non-dimensional meshes: for the first one, the inner cylinder radius is Tid = 8,

the outer cylinder radius is To = 10, and Tiu = 9; in the second mesh, Tid = 3.785,

T° = 5.785 and Tiu = 4.785. The span of the meshes in the x-direction is also variable,

to investigate the efI'ects of shorter and longer lengths of vibrating outer cylinder, as

weB as the effects of shorter and longer lengths of the upstream and downstream fixed

parts, on the results. Hence, Table 4.1 of Chapter 4 will aiso be used in this ehapter.

The results, all for Re = 100 and w = 0.1, are shown in Figures 5.3-5.11 in

which a11 quantities are dimensionless. Figure 5.3 presents the unsteady pressure

amplitude and phase angle with respect to the displacement of the outer cylinder at

the circumferential angle 8 = 7.5° for an amplitude of oscillation f = 0.1, using mesh

type A (defined in Table 4.1). The comparison between this figure and Figure 4.27

shows that replacing the backstep with a diffuser with Ct = 6° increases the amount"

of the unsteady pressure after the discontinuity, and that the phase angle is flatter

for this diffuser geometry. Figure 5.4 shows the circumferential velocity w and the

phase angle obtained using mesh type A, at axial location X = 20 and circumferential

position 8 = 45°. In this figure, as we11 as in a11 the figures drawn over the diffuser

surface, the lower parts of the curves terminate on the diffuser surface, which stans

at T == 8.625 for the mesh of type A.

Figure 5.5 presents the unsteady pressure and phase angle for three different
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oscillation amplitudes of the outer cylinder, and should be compared to the results of

Figure 4.29. The upstream portions of the unsteady pressure in Figures 4.29 and 5.5

are almost the same, but in the downstream portion of the annulus the pressure re­

covery is noticeable in the diffuser geometry vis-ci-vis the backstep geometry. It is

remarked in Figure 5.5 that the phase angles are almost independent of the vibration

amplitudes. Figure 5.6 demonstrates the effect of extending the upstream and down­

stream fixed portions on the results, using a mesh of type B. This figure should be

compared with Figure 5.5 to highlight how important the extension of the upstream

fixed portion is in reducing the perturbation at the upstream end of the vibrating

onter cylinder. Once again, the pressure recovery is noticeable downstream of the

diffuser in comparison to Figure 4.30 for the backstep geometry. In Figure 5.6 the

phase angles are almost the same.

Figure 5.7 presents the effect of using a larger annular gap on the unsteady

pressure and phase angle, using mesh type C. It is c1ear that due to having a larger

annular gap, the pressure recovery is not as pronounced as in Figure 5.6, and the

unsteady pressure is proportional in value to that of Figure 4.31 for the backstep

geometry, but the phase angles are different and smaller (in the positive sense) the

amplitude of oscillation increases. Figure 5.8 shows the effect of the extension of

the upstream and downstream fixed portions on the results, using a larger annular

gap and using mesh type D, at different oscillation amplitudes. It is interesting to

note that the unsteady pressures after the diffuser section almost coincide for larger

amplitudes of oscillation. Also, at higher amplitude the pressure perturbation does

not tend to zero at the upstream portion of the moving cylinder, which might be

due to the pressure buildup at the diffuser section. The phase angle results have a

completely different behaviour vis-à-vis the phase angle shown in Figure 4.32 for the

backstep geometry. Ali these interesting results indicate how important are the effect

of the annular gap width and the length of the fixed portions on the solution of the

N-S equations for different geometries.
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The unsteady pressure and the phase angle shown in Figure 5.9 have been

obtained for a diffuser angle a = 20° and can be compared to those for a = 6°

of Figure 5.8. In spite of the minor discrepancies, this result is comparable with

the results of Figure 4.32, which indicates that the behaviour of the diffuser system

with a = 20° is similar to that of a system with a backstep geometry; the pressure

r: covery is not as pronounced as in the case of diffuser with a =6° (see Figure 5.8).

Incidentally, the phase angle shows the same trend as in Figure 4.32(b) vis-à-vis the

results shown in Figure 5.8(b).

A comparison between the unsteady pressure and phase angle for three different

geometries is made in Figures 5.10 and 5.11 for two amplitudes of oscillation. There

are several points to be noticed in these figures. First, the upstream fixed portion

influences the results much more in the case of a diffuser than in the case of the

backstep geometry. Second, the pressure recovery is much more pronounced for a

diffuser with a = 6° than for either a = 20° or the backstep geometry. In fact, the

unsteady pressure downstream of the diffuser (a = 20°) is reduced more than is the

case downstream of the backstep. As is seen, the pressure perturbations for ail these

geometries approach zero at the exit from the annulus (X = 150). Thc rcsults of the

phase angle for three geometries also present different trends. The phase angle for

the diffuser with a =6° is almost flat, while the phase angle result for the diffuser

with a = 20° is much different, although at the upstream end of both the step and

the two diffuser sections the phase angles vary in almost the same range, contrary to

the downstream portions.
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Figure 5.3: The elfect of the extension of the fixed upstream and downstream portions
on (a) the unsteady pressure and (h) the phase angle, for Re = 100, w = 0.1,
Tid = 3.785, To = 5.785, Cl' = 6° at r = 5.727 and 8 = 7.5°: -,E = 0.05375;
- - -,E = 0.1075; - . -,E = 0.16125.
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Chapter 6

N umerical Formulation Based on
Time-Dependent Coordinate
Transformation for Larger
Amplitude Oscillation

One of the most important parts of this Thesis is covered in this chapter. Thus, the

overall method of solution for a multidimensional problem, namely that of two nearly

concentric cylinders with a moving outer cylinder, Figure (6.1), will be examined

based on a timc-dependent coordinate transformation, which is better suited for large­

amplitude oscillations. The method will be applied to uniform as weil as nonuniform

(backstep) geometries for the case of translational motion of the outer cylinder, and

the results oLtained will be compared to similar results from Chapter 4, which were

obtained by a mean-position analysis.

6.1 Time-dependent Coordinate Transformation

A coordinate system may need to be time-dependent because the boundaries move,

either forced or in response to influences of the physical problem, or because the

system is adjusted so as to concentrate Iines in developing regions of large gradients.

The simplest procedure is to regenerate the coordinate system at each time step using

the new boundary locations from the physical solution at the previous time stepi thus,
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the solution for the new coordinates at each time step is done separately from the

physical solution at that step. Alternatively, the eqlll\tions for the coordinate system

can be added to the overall set of equat,oll:3, and the entire set solved simultaneously

at eaeh time step.

In any case, with the partial time derivatives (at variable r· and O·) in the

physical solution equations replaeed by partial time derivatives at fixed values of the

curvilinear coordinates, the grid in the transformed plane is fixed even though the

coordinate system in the physical plane is in motion. This introduces time derivatives

of the Cartesian 'coordinates into the transformed physical solution equations, in the

role of additional convective terms (Thompson et al. 1982).

With the method of transformation applied to our problems in this Thesis,

it is possible to perform all the computation on the fixed rectangular grid in the

transformed computational region without any interpolation, no matter how the grid

points move in the physical domain as time progresses.

The computational coordinate system is generated as the solution of algebraic

equations (3.13) and (3.15) with the values of coordinates (r·,O·) specified on the

boundaries in the physical domain, one of these coordinates being specified to be

constant on the boundaries and the other being distributed as desired along the

boundaries in order to concentrate grid points in certain regions. The transformed

coordinates define a rectangular domain, the extent of which is determined by the

range of the values r and O. Now, if the same boundary values of r· and O· are

redistributed in the physical domain, perhaps because the boundaries in the physical

domain have aetually moved or because it is desirable to change the concentration of

grid points around the boundaries, and a suitable algebraic system is solved for the

transformed coordinates with these new boundary conditions, new transformation

functions can be produced with still the same range of values in r and 0 and hence

in the same rectangular field in the transformed domain. The grid points in the

rectangular transformed domain remain stationary, and the elfect of moving of the
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coordinate system in the physical domain is then just to change the values of the

physical coordinates (r", Il") at the lixed grid points in the rectangular transformed

domain.

Mathematically what has transpired is that the original problem, consisting

say of N partial dilferential equations of any type with appropriate, possibly steady,

boundary conditions specilied on moving general boundaries, has been transformed

into a system of N partial dilferential equations and M (M = 3 for 3-D problems)

algebraic equations for the natural coordinates with boundary conditions that are

now time-dependent but specilied on steady rectangular boundaries. The physical

coordinate system has thus, in elfect, been eliminated from the pro!>lem, at the

expense of adding M algebraic equations to the original system (Thompson et al.

1974), plus the complexity of the equations as a result of the transformation of the

goveruing partial differential equations. In our analysis, the transformation has its

own merits, such as that we are no longer restricted to smali-amplitude oscillations,

in addition to obtaining more accurate results for small-amplitude oscillations by the

time-dependent coordinate transformation.

For steady and unsteady f10ws in nearly concentric annular configurations, any

lIuid dynamic properties are variables dependent on the axial, radial and circumfer­

ential coordinates, x, r and Il, shown in Figure 6.1(a), as weil as on time when the

f10w is unsteady. In this figure, Ri and Ra denote the inner and outer cylinder radii,

E(II, t) is the annular gap, and E(t) is the instantaneous displacement when the outer

cylinder is in translational motion.

In order to generalize the problem, it is necessary to transform the annular

space (r" ,II") between the eccentric cylinders in the physical domain of Figure 6.1(a)

iuto the rectaugular computational domain (r,lI) as shown in Figure 6.1(b). For this

purpose it is conveuient to deline the non-dimensional transformation equations as

•
11=11", "x=x,
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where

E(O' , t') =E(t') cos O' , (6.3)

in which the starred quantities indicate the physical domain.

Ali functions having continuous partial derivatives in the physical cylindrical

domain can be expressed in the form of functions in the computational domain by

the chain rule. Hence, one obtains the fol1owing relations

8 8
8x' = 8x

Using equation (6.1), the derivatives in the radial direction of a function f in the

physical domain, in terms of the independent variables in the computational domain,

can be written as

8f !!.... 8f =A(O t) 8f=8r' 8r' 8r '8r '

82f (8rr82f 8
2
f

8r'2 = 8r' 8r2 =A
2
(0, t) 8r2 '

(6.4)

(6.5)

where
8r 1

A(O, t) = 8r' = <1>(0, t) ,

and

<1>(0, t) = R(O, t) - Ri +E(O, t) ,

(6.6)

•

Since in the problems under consideration the f1uid dynamic property is f =

f(r,O), and the nondimensional coordinate is r = r('r',O') = r(r',O), then

8r 8r 8E (r' - ~)FaE(t) sin°
80' = 8E 80' = [R(O, t) - Ri + E(O, t)]2 =rB(O, t),

82r (r' - Ri) {[(FI + F2)E(t)sinO +FaE(t) cos 0]<1>(0,t)I/2 - 2FaF4E(t)sinO}
80.2 = <1>(0, t)a

=rD(O, t), (6.7)
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whcrc

Faf(t)sinO .
B(O, t) = <I>(O,t) =A(O,t)Faf(t)smO,

D(0, t) = A(0, t)2 {[(FI + F2)f(t) sin 0 + Faf(t) cos 0]<1>(0, t)I/2 - 2FaF4f(t) sin O} ,

and

FI = -fl t)[cos 0 tan 0 + sin O( 1/ cos2 O)J(1 / H(0, t)) ,

F2 = -fa(t) sin3 0(1/R(O, t)3),

F3 = -f(t)sinOtanO(I/R(O,t)) + l,

F4 = -f2(t) sin 0cosO(I/R(O,t)) - f(t) sin 0 .

The partial derivatives of the f1uid-dynarnic property in the circumferential

direction can, equivalently, be expressed in terms of the independcnt variables of the

computational domain as

af af af
ao' = rB(O, t) ar + ao' (6.8)

a2f 2 af 2 2 a2f a2f a2f
aO'2 = r [B (0, t) +D(O, t)] ar +r B (0, t) ar2 + a02 +2rB(O, t) arao . (6.9)

Since we now consider moving-boundary problems, the partial derivative of the

UlIid-dynamic property f with respect to time should be transformed as

af ar af af-=--+-=at· et· ar et

whcrc wc have used

F3Ë(t)cosOaf af = C(O t)af af
<l>2(O,t) ar + et r , ar + et ' (6.10)

and

Ë(t) = df(t)
dt '

•
C(O, t) = -A(O, t)F3Ë(t)cosO.

In this manner, the partial differential equations defined in the physical domain

for concentric cylinders, with the outer one in motion, can be discretized accurately in
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(6.11)

(6.14)

(6.15)

•

•

the computational domain with the finite-difference method. This transformation can

now be applied to non-steady problems for cylindrical configurations with unsteady

viscous flows in the axial direction or without axial flow, which will be studied later

in this chapter.

6,2 Transformed Form of the Navier-Stokes Equa­
tions in the Computationa1 Domain

In this section, the differential forms of the N-S and continuity equations arc expressed

in terms of transformed coordinates x, r and Il, using the relations (6.4-6.5) and (6.8­

6.10) and Figure 6.2. The equivalent forms of the relations (2.3) and (2.5) in the

transformed domain can be written as

ÔU 1 [ôr'v ÔW ôw]V·V=-+- A-+rB-+- =0
ôx r' ôr ôr ôll '

ôV ôV&t +rCa;:- +Q(V,p) =0 , (6.12)

and the vector Q(V,p) = [Qu(u,v,w,p),Q.(u,v,w,p),Qw(u,v,w,p)]T includes the

convective derivatives, pressure and viscous terms as

Q ( )
_ ô(uu) A!-(, ) ~ ô(wu) ôp CÔU rBô(wu)

u u, v, w,p - ô + ô r vu + ôll + ô + r ô + ôx r- r r· x r r· r

_~ [ô
2
u + A!- (Ar'ôu) + _1_ô

2
u + (rD + rB

2
) ÔU + r

2
B

2
ô

2
u + 2rB ô

2
u]

Re ôx2 r' ôr ôr r,2 ôll2 r,2 ôr r,2 ôr2 r,2 ôrôll '
(6.13)

ô(uv) A ô, 1 ô(wv) W2 ôp ÔV rB ô
Q.(u,v,w,p) = ô +--ô (r vv)+ ôll --+A-

ô
+rC-

ô
+--ô (wv)x r· r r· T·· r r r· r

1 [ô
2
v A ô ( ,ôv) 1 ô2v 2 ôw v

- Re ôx2 + r' ôr Ar ôr + r,2 ôll2 - r,2 ôll - r,2

+ (rD + rB2) ÔV + r2B282v _ 2rB ÔW + 2rB ô2v]
r,2 ôr r,2 ôr2 r,2 ôr r,2 ôrôll '

ô (uw) A ô, 1 ô (ww) vw 1 ôp ÔW r B ô
Qw(u,v,w,p) = ô +--ô (r vw)+ ôB +-+-ôll+rC-ô+-a-(ww)x r· r r· r· r· r r· r

rBôp 1 [ô2w A ô (A ,ôw) 1 ô2w' 2 ÔV w
+-;:;- ôr - Re ôx2 +r' ôr r ôr + r,2 ôll2 + r,2 ail - r,2

(rD+rB2)ôw r2B2ô2w 2rBôv 2rBô2w]+ +--+--+---r,2 ôr r,2 ôr2 r,2 ôr r,2 ôrôll .
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603 Real-Time and Pseudo-Time Discretizations

The discretization of the Navier-Stokes and continuity equations in real- and pseudo­

time follow the same procedure as that in Chapter 3, namely, three time levels are

used for real-time (similar to equation (3.2)) and a simple Euler scheme is used

for pseudo-time discretizations (similar to equations (3.7) and (3.8)). The central

difference is used for spatial discretization as explained in Section 3.4.

ln the three-dimensional f10w field, once again, we use equations (3.26-3.28) and'

write the matrices M r • M .. and Mo for the transfarmed damain as

[

L+1/{l ~

M
r

= 1/({l6~8/8X ~
o 8/8X]o 0
L 0 '
o 0

o
M + 1/{l + l/(Re r02 )
-2rB/(Re r02 )8/8r

1/({l6) (l/ro + A8/8r)

o
2rB/(Re r02 )8/8r - w/ro

M +v/ro + l/(Re r02 )
rB/({l6 r O )(8/8r)

o ]A8/8r
rB/(r~)8/8r '

in which

M o= [~
o

o
N

-2/(Re r02 )8/80
o

0012/(Re r02 )8/80 0
N +1/{l (1/r O )8/80'

1/({l6 rO )8/80 0

•

Il

(
rD rB2 ) 8cp A 8 o. rB 8 •

M = rC------ -+-- ril' +-- w"cp Rer02 Rer02 8r rO8r ( cp) r O 8r ( cp)
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(6.18)

(6.19)

•
where the coefficients A, B, C, and D stand for A(O, t), B(O, t), C(O, t), and D(O, t),

respectively.

Thus, the N-S and continuity equations in t. form can be written in dilferent

sweeps as

In the r-sweep

- [A a ( -) r B a (_) a (~)
t.u +{3t.r r' ar r'iJI' t.u + -;:;- ar ÛJI' t.u + rC ar

_2.. {A ~ (Ar' a(~)) + r2B2a
2
(~) + rD + rB2 a (~) + 2rBa

2(t.u)})
Re r' ar ar r,2 ar2 r,2 ar r,2 arao

=M(Eun-ûl'_{3Q~), (6.16)

_ [Aa( -) rBa( _) a (t.v) a (t.p)
(l+t.r)t.v+{3t.r r'ar r'vl't.v +-;:;-ar ÛJI't.v +rC ar +A ar

1 {A a ( ,a(LiV)) r2B2a2(t.V) rD+rB2a(LiV) 2rBa2(t.v)
-- -- Ar + + +Re r' ar ôr r,2 ar2 r,2 ar r,2 arao

2rBa (E;;,) _ t.v}) = t.r (E n _ fil' _ {3QI') (6.17)
r-2 8r r-2 uv'

- [A a ( -) rB a (-) a (t.w) rBa(t.p) VE;;,t.w +{3t.r -- r'vl't.w +-- ÛJI'.6.w +rC +- +--
r' ar r' ar ar r' ar r'

_2.. {A ~ (Ar' a (E;;,)) + r2B2 a
2

(E;;,) + rD + rB2 a (E;;,)
Re r' f-Ir ar r,2 ar2 r,2 ar

+2rB a
2

(E;;,) + 2rB a (LiV) _ t.w}) =.6.r (E n _ ÛJI' _ {3QI')
r,2 arao r,2 ar r,2 w w >

- A.6.r a (-) rB.6.rÔ (E;;,) .6.r •
t.p + r'o ar r'.6.v + r'o ar = --{'il' VI' j

in the O-sweep

•
_ [1 a (ÛJI't.u) 1 a (.6.u)] -
t.u + {3.6.r r' ao - Rer.2 ao2 = t.u,
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•
_ [1 a (ÛJI'Âv) 1 a (ÂV)] -
Âv + flÂT rO ae - Rer02 ae2 = Âv,

_ [1 a (ÛJI'Âw) 1a (Âp)
(1 + ÂT) Âw + flÂT +-~-::-'-rO ae rO ae

1 1 a2 (ÂW)] _
-Rer02 ae2 =Âw,

_ Ma(ÂW) _
t.p + T roae = Âp.

and finally in the x-sweep

( A) A flA [a (ûl'ÂU) a(/~p) _ 1 a2 (ÂU)] =,.-
1 + uT uu+ uT a +!I R a 2 uU,

X (IX e X

" fl" [a(ûl'Âv) _ 1 a2 (ÂV)] =;r;
uV + ur ax Re ax2 ut ,

" fl" [a (ûl'ÂW) 1 a2 (ÂW)] _-"
uW + uT ax - Re ax2 - Âv ,

Â ÂTa(ÂU) -"K'"'
p+ {} ax - p,

(6.21)

(6.2~'

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

•

. h 1 QI' Q (-1' -1' -1' .;;}J) QI' Q (-1' -1' -l'.;;}J) d QI'ln t e gcnera case, u = u U ,V 1 W ,y 1 V = tI U 1 V 1 W ,y ,an w =

Qw(ûl', vI' ,ÛJI', fiI'). The variables ûl'+l = ûl' +Âu, vl'+l = vI' + Âv, ÛJI'+l = ÛJI' +Âw

and fiI'+1 = fil' + Âp are thus obtained by solving ("Iuations (6.16)-(6.27). The

solution in pseudo-time step (iteration) contiul4i:5 until convergence is reached, where

the terms av laT and aPiar become zero, thereby the differences Âu, Âv, Âw, and

Âp are equal to zero.

604 Spatial Discretization on Staggered Grids

To perform the discretization of the equations in order to solve the full nonlinear

Navier-Stokes equations in the tra.:Jsformed domain one needs to construct a staggered

mesh and to define the interpolates. The staggered mesh is made in 3-D, by combining

two 2-D meshes, Figure 4.8 and 4.9, as shown in Chapter 4; this constitutes a grid
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scheme spanning the x, r and f) directions. The grid points are stretched in the x and

r directions, but not in the f) direction, as explained in previous chapters, in order to

concentrate points near solid walls or in regions of larger gradienls in the llow domain

geometry, such as in the vicinity of a step or near changes in the contour of diffuser

sections, see Figures 4.26 and 5.2. The velocity components v, w and the pressure

p have identical x position, while u, w, and p have identical r position in the grid

scheme. The momentum and continuity equations are differenced about the points

where Ûij,k, Vij,k, Ûlij,k, and Pij,k are defined.

The discretization of the equations (6.16)-(6.27) and the numerical solution,

which is similar to those described in Chapters 4 and 5, arc given in Appelloix B.

It was shown that the differential equations in the transformed domain arc more

complicated than in the physical one due to the extra convective and diffusive terms

in addition to the cross-derivative terms, which rellect the nOL-orthogonal nature of

the coordinates, ail of them arising from the transformation. During the solul.Ïon

procedure, the cross derivative terms destroy the tridiagonal aspect of th.; system

of equations to be solved; hence these terms are evaluated explicitly. The amount

of computer memory and time due tt' these added terms as weil as their effects on

the convergence of the solution have been considered to be tolerable with respect to

the solution using the mean-position (no time-dependent coordinate transformation)

analysis. This comparison will be made later in Chapter 7.

6.4.1 Importance of Grid Skewness on the Results

Before solving the differential equations of lluid motion, the grid system must be inves­

tigated carefully for grid skewness. In detel'mining the grid points, a few constraints

must be imposed. First, the mapping must be one-to-one; i.e., grid lines of the same

family cannot cross elli:h othee. Second, from the numerical point (If view, a sl;lOoth

grid distribution with minimum skewness, with orthogonality or near-orthogonality,

and a concentration of grid points in regions where high gradients oc:cur are all re­

quired.
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The grid system generated by the grid-generation methods may not be satis­

fa.ctory for some applications due to large skewness of the grid lines, especially when

they occur at the surface. The difficulty is encountered when normal gradients of

lIow properties are required. To overcome this deficiency, a forcing function is used

which will enforce orthogonality of grid lines at the surface. The resulting grid sys­

tem simplifies the computation of the normal gradients and increases their a.ccuracy.

Although the overall orthogonality of the grid !ines is important, it has been proved

that the non-orthogonal curvilinear coordinates do not affect the accura.cy of the re­

sults; rather, only the convergence of the solution will be influenced by the 'skewness

of the grid lines.

Tû investigate this statement, if the metric coefficient is evaluated nU1'lerically,

one obtains

f - fi+!- fi-l +T
% - 1,

Xi+! - Xi-l

where 11 is the truncation error. A Taylor series expansion in X about the central

point then shows the leading terms of the truncation error Tl to be (Thompson et al

1982)
1 2 1 (- "6x{fn. - "2x{d•• , 6.28)

where x{ and x{{ are t!:e central difference representaions of these respective deriva­

tives,
1

x{ = "2(Xi+l - xi-Il, XE{ = Xi+! - 2Xi +Xi-l • (6.29)

The representation of f. is truly second order, only if x{{ ~ x~. If the system is

not orthogonal (e.g., skewed), then the same type of I·D analysis yields the following

additional term in the truncation error:

(6.30)

•

where (J is the angle between the coordinate !ines. Thus for second-order a.ccuracy it

is necessary that
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If the intersection angle is less than 45·, then the requirement would already

be met if x(( ~ x~ as required above. For this reason, departure from orthogonality

of up to 45· can be considered tolerable (Thompson et aL 1982).

Braaten and Shyy (1986), have shown that the eifects ofthe local mesh skewness

on the convergence behaviour are not very strong. Based on their results, it seems

that, unless both the skewness measure of the individual mesh and the smoothness

of the neighbouring meshes are excessive, considerable skewness of the individual cell

does not noticeably affect the numerical accuracy. They showed that file eifects of

larger local mesh skewness on the overall calcuhted acC:lracy of the N-S equations

are tolerable, which supports the assessment of Thompson et al. (1982). Shyy (1985),

however, has shown that the use of excessively skewed meshes is not tolerable, since it

destabilizes the line-iterative procedure. With the findings of Braaten & Shyy (1986)

and Shyy (1985), it appears that the mesh skewness, especially in the boundary re­

gion, ir, !ikely to significantly affect the numerical stability and convergence behaviour

of th,~ numerical scheme rather than the numerical accuracy. Indeed Shyy has put in

evidence that a desirable mesh distribution from the view-point of solution accuracy

is not necessarily non-skewed throughout the whole domain.

In this Thesis, the f1uid equations are written in cylindrical coordinates ,which

are orthogonal, and are solved in a rectangular transformed domain in which the

coordinate lines are obviously orthogonal. Some non-orthogonality is seen in the

physical domain shown in Figure 6.3, where for the maximum amplitude of the outer

cylinder (maximum eccentricity of the outer cylinder with respect to the reference

inner cylinder) the departure from orthogonality for the angles between the coordinate

!ines is less than 5°, which is much smaller than the 45· assessed as the limit by

Thompson et al.; this is even smaller for smaller amplitudes of o~cillation.

For this reason, the physical f10w variables, i.e., physical u, v, w and p, not the

transformed ones such as covariant or contravar.iant velocity components, have been

used in the transforme<! partial diiferential equations, and hence there is no nccd
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to do the inverse transform of the numerical results to obtain the real physicaillow

variables.

6.5 Method of Solution Based on ADI Scheme

In order to start the time-integration procedure, initial conditions must be provided

for V and p throughout the lluid domain which is given by equation (4.35). The

known displacement €::,+1 and velocity U::,+1 of the w;·i;S at the advanced time level

tn+l are set as boundary conditions and kept unchanged until the steady state has

been reached in pseudo-time. As explained in Chapter 4, the wall displacement €::,+1

is not important for the mean-position analysis and it mainly serves in: the evaluation

of the velocity of the moving boundary Umb, but in the time-dependent tmnsfonnation

analysis the displacement plays a major role and appears almost everywhere in the

transformed equations. Both €::,+l and U::,+l serve as driving terms to advance the

solution to time level (n +1)At, along with the term En, which is calculated at the

beginning of pseudo-time relaxation and kept constant throughout.

The previous inflow and outllow boundary conditions for the velocity and pres­

s\lre are also applied to the time-dependent coordinate tmnsfonnation analysis. The

evaluation of the viscous derivative terms near the solid walls using non-central differ­

encing, the extrapolation of the lluid velocities from within the domain of integration,

the symrr.etry boundary conditions with respect to the plane of oscillation for u, v, w

and p, follow the same line explained for the case of mean-position analysis. As far

as the movement of the solid walls is concerned, one notes that on the inner cylinder

the displacement Ëw(t) is zero, while on the outer cylinder in the plane of symmetry

it is given by

with the velocity of the wali expressed by
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where Ë is the dimensional amplitude of oscillation, n is the circular frequency of

oscillation and t is the dimensional time respectively. Hence, the nondimensional

components of the velocities of the fixed and moving walls in the radial and circum­

ferential directions are given by equations (2.13) and (2.14).

Now, the solution to the equations (6.16)-(6.27) can be obtained since they are

cast in discretized forms using the relations (3.19), (4.58), (4.59) and similar ones

expres.-ed in Appendix A. Thus, the right-hand sides of equations (6.16)-(6.19) are

computed using the relations (B.3), (B.7), (B.14) and (B.21). The domain of inte­

gration in each sweep and at a given pseudo-time step, r", in which equations (6.16)­

(6.27) are set up spans for 2 :::; i :::; l - l, 2 :::; i :::; J - 1, and 3 :::; k :::; K - l.

These equations are solved for~u, ~v, ~w, and ~p. In the r-sweep, Kii is obtained

from (B.8) after eliminating ~p with the aid of (6.19). The terms ~v and ~v are

obtained from equations (B.10) and (B.l2) in the 0- and x-sweep, respeetively. The

same procedure is applied in determining ~w from (B.15), ~w from (B.17) with the

aid of equation (6.23) to elim:nate ~p, and finally ~w from (B.19). Also, KU is de­

termined from (B.22), dü is obtained from (B.24) and ~u is determined from (B.26)

with the aid of (6.27) as a coupling equation. The pressure difference ~p is obtained,

ultimately, after ~u is determined. In all these calcula:ions it is obvious that several

times the scalar tridiagonal systems of equations must be inverted as explained in

Chapten: 4 and 5.

6.6 Two-Dimensional Solutions for Larger-Amplitude
Oscillations

In the case of 2-D solutions for larger-amplitude oscillations, the same mesh as used in

Chapter 4 for 2-D analysis with smali-amplitude oscillations is utilized. This is done

by choosing the appropriate inner and outer radii to be used in the transformation

equation (6.1). wh:;:h gives the grid points spanning the r- and O-directions with

o ~ r :::; 1 and 0 :::; 0 :::; 'Ir. Ta compare the result~ obtained for larger amplitudes
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with those in Chapter 4, the nUlllerical computatio~ has been implemented on a

1I0n-dimensional mesh with physical inner and outer radii R.; = 4.5 and Ro = 5.0,

corresponding to ri = 0 and ro = 1 in the computational domain, and for oscillatory

Reynolds number S = 300.

The results are shown in Figures 6.4-6.7 in which, as in Chapter 4, ail quan­

tities are dimensionless. In this analysis, the number of time steps is 19 and equa­

tions (6.16)-(6.19) are solved for each real-time step using equations (6.11), (6.14),

and (6.15) for 2-D (i.e., a11 derivatives with respect to x are equal to zero in ail the

aforementioned equations) to evaluate their right-hand sides. Questions of conver­

gence and accuracy are discussed in Chapter 7. It is found that 3 harmonic cycles

are suflicient for a stable solution after which a periodic state is reached with no

changes in the computed results. It should be remarked that, eVen in the case of

large-amplitude oscillation, after coordinate transformation the grid points are clus­

tered near the solid wa11s as we11 as in the centre of the annulus to ensure an accurate

solution in these regions in which the higher velocity gradients exist. As before,

the stretching function in the r-direction is a hyperbolic tangent and the mesh is

composetl of 24 x 24 grid points.

Figu::e 6.4( a,b) contains the curves representing the solutions for each of 5

instants tn within the harmonic cycle. The five instants are obtained from tn =

27fn/N. n = 7,9, 11,13, and 15 for circumferential velocity w, and n =3,5,7,9, and

11 for the results involving the pressure p and N = 19. Figure 6.4(a) presents the

radial profiles of the pressure taken at 8 = 3.75°. In this figure, the results obtained

for s·.nall-amplitude oscillations are presented for comparison. The magnitude of the

pressure at each t and for the mean position analysis is completely different from

those obtained using time-dependent transformation analysis. Using the Discrete

Fourier Transform (equation (4.70» to calculate the amplitude of the pressure shows

that for this small amplitude oscillation (e = 0.1) the unsteady pressure results for

two solutions are not too different, as shown in Figures 6.5(a) and 6.6(a).
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Figure 6.4(b) presents the radial profiles of w at an azimuth of 6 =45° for five in­

stants of time together with the results for smali-amplitude analysis (Figure 4.10(b)).

The dilference between the corresponding values of w for the two methods of solution

is noticeable. In fact, the solution obtained for w with time-dependent coordinate

transformation almost corresponds to Bélanger's (1991) rcsults which were obtained

using the linearized first harmonic solution. Figure 6.5 presents the real and imagi­

nary parts of the unsteady pressure at four dilferent amplitudes of oscillation. The

results for the real parts do not present significant dilferences, but for the imaginary

parts the dilference between the results obtained by the two methods of solution is

remarkable. The first thing to note is that for E =0.01 both Figures 6.5(a) and 6.5(b)

show that the real values and the imaginary values as obtained from the twC\ methods

are the same. This highlights the fact that the mean position analysis is quite valid for

€ :::; 0.01. As the amplitude of oscillation increases, however, the dilferences between

the results become larger. As a matter of fact, for the small-amplitude oscillation, the

results vary lineariy which is the characteristic of this method in which nonlinearity

in the solution does not show up due to the boundary being limited in its movement.

Contrary to this simple method, the larger amplitude solution demonstrates that the

imaginary values increase nonlinearly with t. amplitudes of oscillation as shown in

Figure 6.5(b).

Figure 6.6 presents the real and imaginary parts of the unsteady pressure ver­

sus the azimuth 6 for dilferent oscillation amplitudes. In this figure, the real and

imaginary parts obtained from the two methods of solution at E = 0.05 are almost

the Si\llle, which indicates that we are not very far from small amplitude motion,

in contrast to the corresponding values at larger amplitudes oscillation. Figure 6.7

presents the ,eal and imaginary parts of the circumferential velocity w for dilferent

oscillation amplitudes. As far as the elfect of oscillation amplitudes are concerned,

the explanation given for Figure 6.6 applies here also, i.e., one can see the corrcspon­

dence between the real values as weil as the imaginary values for the two methods of
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solution at E = 0.05.

6.7 Three-Dimensional Solutions for Larger Am­
plitude Oscillation

6.7.1 Uniform Annular Geometry

To solve the N-S and continuity equations in 3-0, the three-dimensional mesh shown

in Figure 4.7 is used. The numerical computations have been performed for two

sets of geometries to obtain results comparable with those obtaind through mean

position analysis presented in Chapter 4. The first set is for small lengths of the

fixed upstream and downstream portions, while the ;,econd set is for larger lengths

of these portions, in order to investigate the effect of the length of these portions

in diminishing the perturbation pressure at the extremities. The effeet of the gap

width is also investigated by using two different annular spaces: (a) Ti = 9, T. =

10 and (b) Ti = 4.785, T. = 5.785, corresponding to smaller and larger annular

spaœs, respectively. The same meshes used for the 3-D analysis in Chapter 4 were

used here, with the same type of stretching functions in the T- and x-directions.

Equations (6.16)-(6.27) were solved in this 3-D domain until a periodic state was

reached, as was done in Chapter 4. •

As before, the computations were conducted for different Reynolds numbers,

including the cllSe of quiescent f1uid, for which the definition of the Reynolds num­

ber has been given in Chapter 4. The basic parameters affecting the solution of the

problems and the criteria for convergence (such as the values of the real-time bot,

compressibility factor 6, pseudo-time /:;.T, Courant number Cr, etc.) follow the same

Hnes as in Chapter 4. In the time-dependent-transformation analysis, as a first step,

t.he amplitude and the velocity of the moving boundary are calculated using equa­

tions (4.36) and (4.37) and are kept constant throughout the pseudo-time relaxation.

The other initial and boundary conditions are given or calculated following the same

procedure described in the previous chapters.
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Figure 6.8(a,b) presents the unsteady pressure amplitude and phase angle ver­

sus the a:dal length of the cylinder for both mean-position and timc-dependent­

transformation analyses. For the smaller fixed portions at the extremities cf the

moving cylinder, this result shows about 14% and 40% increase in the pressure am­

plitude and phase respectively. As one notices, the perturbation pressure does not

vanish at the upstrearn end. The reasons for having this problem, as well as the ap­

propriate procedure to avoid it are explained briel1y at the end of this chapter and in

more details in Chapter 7. Figure 6.9(a,b) demonstrates the effect oflarger-amplitude

oscillation on the circumferential velocity w and on its phase angle. It is seen that

the amplitude of w does not vary too much, but a substantial change in its phase

angle is noted. It must be mentioned that in Figure 6.9 the annular space Il shown

is in the computational domain, 0 ::; Il ::; l, which is related to the computational

domain 9 ::; Il ::; 10 in the mean-position analysis; this relation is simple and obvious

if one notes that the non-dimensional annular gap is always Il = l, and hence one

can present the results for both methods on the sarne diagram.

Figure 6.10 by comparison to Figure 6.8 shows the effect of extension of the fixed

portions on the unsteady pressure and its phase angle. It is interesting to note how the

inl10w and outl1ow boundary conditions inl1uence the results compared to those shown

in Figure 6.8. In this case, the amplitude of unsteady pressure obtained from time­

dependent transformation approach is not higher; rather it has turned out to become

even smaller than that obtained from the mean-position analysis. AIso, the pressure

perturbation at the far upstream extremity approaches much lower values (although

it has not become zero) than the corresponding values in Figure 6.8. Similaritics

exist between the '/alues and behaviour of the phase angle results of Figure 6.10 with

those of Figure 6.8 for the moving part of the cylinder, 0 ::; X ::; 100.

Figure 6.11 presents the comparison between the results obtained using both

methods of solution but for higher frequency of oscillation (J = 20 Hz) and in qui­

escent l1uid. In Figure 6.11(a), although the fixed portions at the extremities of the
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moving cylinder have larger lengths, the tir.1e-dependent solution demcnstrates an

increase of 6% in the pressure amplitude which is duc cC the larger value of the oscil­

lation frequency. Figure 6.11( b) presents, as usual, lower values for the phase angle,

as compared 1.0 the ûlle obtained by the mean-position analysis.

Figure 6.12 presents the elfect of annulaI' gap width on the results wh"n thc

fluid flows in the annulus wit.h Re= 2900 and the frequency of oscillation is f = 20

Hz. Once again, th~ mean values for the unsteady pressure obtaincd from both

approaches are almost the same; also, the elfect on the phase angle is similar to that

in previous figures.

Finally, 1.0 demonstrate that the time-dependent-coordinate solntion is Illore

reliable at much higher amplitudes of oscillation than the mean-position approach,

Figure 6.13 has been drawn for f = 0.5 using the smaller annulaI' gap (ri =9 and r 0 =
10). Il. is seen that not on1y does the frequcncy of oscillation make substantial changes

in the pressure results (see Figure 6.11), but the amplitude of oscillation produccs

large dilferences in the pressure, as shown in Figure 6.13. Aiso the phase angles arc

very much c10ser 1.0 each other, as compared for example with Figure 6.10(b), and

its value tends toward zero.

6.7.2 3-D Solution for Non-Uniform Annular (Backstep)
Geometry

The method of solution for larger-amplitude oscillation applied 1.0 non-uniform an­

nulaI' geometry (case of backstep) is Eimilar 1.0 that discussed in previous chapters;

the mesh used is shown in Figure 4.26, with its description given in Chapter 4. AIBo,

Table 4.1 was utilized to obtain the appropriate results for each specific mcsh.

Figure 6.14 presents the unsteady pressure and phase angle for both approaches

using mesh type C with rid = 8 and r o = 10. As expected, therc arc sorne dilferences

in the results, i.e., there is an overall inerease in the value of pressure in comparisoll

1.0 that obtained through the mean-position analysis. Also, the phase angle (after

the step geometry) tends more toward zero than the corresponding value obtained
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by the mean-position approach.

Figure 6.15 presents the circumferential velocity w and its phase angle obtained

at X = 50./l16. B = 45" and for f = 0.2 using mesh type C. Figure 6.16 demonstrates

the effect of the length of vibrating cylinder (L = 40) on the pressure and on its phase

allgle. This ligure should be compared with Figure 6.14 with L = 100, even though

the amplitudes of oscillation differ. It is seen that reducing the length L will affect

the pressure results after the step. It is obvious that the results shown in Figure 6.14

arc more reliable, since the stcp is farther from toc extremities.

Figure 6.17 was drawn for three different amplitudes of oscillation and is simi­

lar to Figure 4.29, except that the phase-angle results have different shapes but still

coincide for different amplitudes. For this ligure mesh type A was used. Figure 6.18

demonstrates the effect of extension of the lixed upstream and downstream portions

011 t.he results with f = 0.3 and using mesh type B. Il is dear, that t,he pressure per­

turbations approach to their lower possible values but in the case of time-dependent

analysis the perturbation tends toward zero before building up at larger distances.

Figure 6.18(b) presents larger values for the phase angle (in positive sense) after the

step obtained by the time-dependent analysis than that obtained from mean position

analysis. Lastly, Figure 6.19 presents the unsteady pressure and phase angle for qui­

escent fluid at higher frequencies of oscillation (J = 1.5 Hz) for three amplitudes of

oscillation using mesh type C. The phase-angle curves for all three amplitudes remain

almost lIat, similar to each other and the values of the phase angles approach zero.

Up to now, duc to economica! reasons (time and space on the computer), the

effect of extension of the lixed portions on the unsteady pressure was studied for

the maximum length LI = L2 =60. As one notices, in the figures presented, the

perturbations at the upstream end do not vanish. There are numerical reasons for

this problem, whieh will be discussed in the next chapter. But, by selecting a larger

lellgth for the lixed portions, this perturbation can be forced to approach its minimum

possible value in those sections, as will be shown in the next chapter. Also, using
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larger fixed portions will increase the pressure amplitude in the oscillating domain,

i. C., we will have better agreement between the theoretical reslllts obtaincd by the

two Illethods of solution and the experimental results (see Figure ï.4 and fignres

presented in Chapter 8).
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Figure 6.4: (a) Radial profiles of pressure p at 9 = 3.75° and (b) radial profiles of
circumferential velocity w at 9 = 45° for S = 300, RoiR; = 1.25, l = 0.\ at 5
instants tn within the harmonie cycle; -o-,mean-position analysis; o,time-depcndent­
transformation analysisj the rest are similar (i.e., symbols with !ines for the mean­
position analysis, and symbols for the time-dependent-transformation analysis).
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time-dependent-coordinate transformation ana1ysis, -~-mean position ana1ysis.

156



•
2.....

0.--
U 0
Ql

0::
1

-2

-4

0 50 100 150
e [Ceg]

0.8

0.6 (b)

0.4 • •
6 6..... 0.20.-- 0 0

E 0.0
0
6

-0.2 • 6
6 6•

-0.4 • •
-0.6

0 50 100 150
e [Ceg]

•
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cumferential velocity, w, at mid gap, for three values of E; 0, E = 0.05; l::., E = 0.1; *,
E = 0.15. o,mean-position analysis; -e-,time-dependent-transformation analysis; the
rest are similar.
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Figure 6.8: Ca) Unsteady pressure and Cb) phase angle for Re= 250, w =0.2, ri =9,
r° = 10, Lu = Ld = 20, at r = 9.965, 8 = i .5°, with E = 0.2; -time-dcpendcnt­
transformation analysis, - - -mean-position analysis.
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Figure 6.9: (a) Magnitude of circumferential velocity w and (b) phase angle with
respect to the displacement of outer cylinder at mid gap, for Re= 250, w = 0.2,
ri = 9, ro = 10, Lu = Ld = 20, and E = 0.2 at X = 50, (J =45°; -time-dependent­
transformation analysis, - - -mean-position analysis.
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Figure 6.10: (a) Magnitude of unste&dy pressure and (b) phase angle for Re= 250,
w = 0.2, Ti = 9, T. = 10, Lu = Ld = 60, at T = 9.965, 8 = 7.5', with f = 0.2;
-time-dependent-transformation analysis, - - -mean-position analysis.
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Figure 6.11: (a) Magnitude of unsteady pressure and (b) phase angle for quiescent
lIuid with w = 1 (f = 20 Hz), Ti =4.785, To = 5.785, E =0.05375, Lu = L4 =60,
at T = 5.727, 8 =7.5°; -time-dependent-transformation analysis, - - -mean-position
analysis.
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Figure 6.12: (a) Magnitude of unsteady pressure and (b) phase angle for Re =2900,
w = 0.463 (f = 20 Hz), ri = 4.785, To = 5.785, € = 0.05375, Lu = Ld = 60, at
r = 5.727,8 = 7.50

; -time-dependent-transformation analysis, - - -mean-position
analysis.
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Figure 6.14: (a) The unsteady pressure and (b) phase angle in annulus with backstep
geometry for Re = 100, w = 0.1, ri. = 8, r. = 10, L = 100, Lu = L. = 20, at
r = 9.942, 8 = 7.5·, with ( = 0.2; -time-dependent-transformation analysis, • ­
-mean-position analysis.

165



2.0 ......-..............,....,,-,.............,....,~...,.."'T"".,.............,.-.-.•
1.5

... 1.0

0.5

(a)

•
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transformation ana!ysis, - - -mean-position ana!ysis.
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Figure 6.16: (a) The unsteady pressure and (b) phase angle in annulus with ba.ckstep
geometry for Re = 100, W = 0.1, rôd = 8, r. = 10, L = 40, Lu = Ld = 20, at
r = 9.942, (J = 7.5·, with E = 0.1; -time-dependent-transformation analysis, - ­
-mean-position analysis.
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Figure 6.17: (a) The unsteady pressure and (b) phase angle in annulus with backstep
geometry for Re = 100, W = 0.1, rid = 8, r o = 10, L = 40, Lu = Ld = 20, at
r =9.942, 6 =7.5°; -f =0.1, - • -f =0.2, and -·-f =0.3.
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Figure 6.18: (a) The unsteady pressure and (b) phase angle in annulus with backstep
geometry for Re = 100, W = 0.1, rid = 8, r. = 10, L = 40, Lu = Ld = 60, at
r = 9.942, (J = 7.5·, with E = 0.3; -time-dependent-transformation analysis, - ­
-mean-position analysis.
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Figure 6.19: (a) The unsteady pressure and (b) phase angle in annulus with backstep
geometry for Re = 100, w = 1 (f = 1.5 Hz), ru = 3.785, r o = 5.785, L = 100,
Lu = Ld = 20, at r = 5.727, (J = 7.5°; -f = 0.05375, - - -( = 0.1, and -'-f = 0.16125.
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Chapter 7

Convergence Tests and Accuracy
of the N umerical Model

To make sure that the numerical approach used works properly, the numerical re­

sults presented in the previous chapters must be compared with either analytical or

experimental results for the specific problems treated in this Thesis.

Unfortunately, due to the complexity of the Navier-Stokes eqllations which are

fully nonlinear, no complete analytical solution exists for these equatiolls, even for

the simple laminar annular f10ws considered in this Thesis. The analytical solutions

available in the literature are either potential f10w solutions or approximate viscous

f10w solutions which lack the accuracy required as compared to the complete solution

for the N-S equations. This is why in this Thesis the experimental investigation was

selected as the main measure for validating the numerical results. It is shown in

Chapter 8 that the experimental results obtained confirm the numerical rcsults. But,

still one needs to check by other means to what extent these resllits are reliable.

To ensure that the model used in this Thesis is accurate enough for dilferent

important factors such as the spacing of the grid points in the different meshes used

and also in terms of various values of the time dilference ~t, a number of convergence

tests have been conducted. In addition the validation of the method of solution was

checked by comparing the analyticalsolution for a bench-mark problem of oscillating

plate in a confined f1uid with the numerical solution obtained for such a problem by
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using the method presented in this Thesis.

To this end, a uniform annular space was chosen as the "test case", and the

solutions were obtained for 2- and 3-D annular f1ows. In what follows, for the 2­

D analysis, the number of grid points in the r- and/or 8-direction is changed to

investigate the elfect of the number of grid points in both directions on the numericai

results. Caiculations here, as for ail parts of this Thesis, were carried out on a 486

PC, 50 MHz for the 2-D anaiysisj on 286 PC computer equipped with an Alacron

board, to increase the speed of computation, for the 3-D anaiysis. In the 3-D anaiysis,

due to the limitations of computer space and aiso the CPU time for the liner meshes,

only one mesh, i.e., 65 x 12 x 15 in the X-, r- and 8-directions was used while the

number of time-steps, N, were changed from N = 10 to N = 70 in order to check the

convergence and accuracy of the solutions vis-à-vis the number of At. To perform

the same convergence test in 2-D anaiysis, the mesh chosen was 12 x 15 in the r- and

8-directions with the same range of N as in the 3-D anaiysis. AIso, the amplitude of

oscillation E = 0.1, the Reynolds number Re = 62.5, and the Stokes number S = 31.25

for 2-D testSj Re = 250 and S = 25 for 3-D tests.

The elfect of the number of grid points for 2·D anaiysis is shown in Table 7.1.

The results presented in this table are for Re = 62.5, S = 31.25 and E = 0.1. The

first part of the table shows the elfect of increasing the number of grid points in the

r-direction, .J, while keeping the number of grid points in the 8-direction constant at

K = 15: the second part of the table shows the elfect of increasing K while keeping

J = 20. Table 7.1 indicates that there is about a 0.2% dilference between the results

of the unsteady pressure amplitude for the mesh that consists of 12 x 15 grid points

in r- and 8-directions vis-à-vis the meshes having 30 X 15 or 20 x 30 grid points in

those directions. Thus, the mesh with 12 x 15 grid points was used throughout, since

it provides accurate results as weil as faster computation.

In the course of this study, the major factors which could be used to investigate

the accuracy of the results, especially in the 2-D analysis, were the real and imaginary
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parts of the unsteady pressure obtained, which are compared with the results obtained

by Mateescu et al. 1994, using spectral collocation method. The results of their

approaches compared with the present results are shown in Table 7.2. The reliability

of the results of the present method has also been checked against the results obtained

for the unsteady forces by Chen et al. 1976, and by Mateescu et al. 1994, as shown

in Table 7.3. The results shown in Table 7.3 are the real and imaginary parts of the

unsteady force acting on the moving cylinder. These parameters which are related to

the added-mass and added damping of the lluid, have been obtained as a closed form

solution confirmed by experiment (Chen et al. 1976). As one can see, the agreement

between the present results based on the full nonlinear solution of the N-S equations

and the other, earlier results based on approximate solutions is good.

Another important factor affecting the stability and convergence of the numer­

ical solution is the number of iteration steps taken between each sequential real-time

step. A sample of such convergence criteria which consists of the rms values of the

residual of the momentum and continuity equations is shown in Table 7.4 for the 2-D

analysis and in Table 7.5 for the 3-D approach. For the 2-D analysis, the maximum

CPU time is 35 seconds for three harmonic cycles to obtain a steady-state solution

and for the 3-D analysis the CPU time is 45 minutes for the same number of har­

monic cycles on the computers mentioned previously, when we consider the number

of time-steps N = 19. The number of iterations shown in Table 7.4 and 7.5 indi­

cate how fast the solution converges which obviously also depends on the selection

of the compressibility factor 6 and the pseudo-time step /::;.r. Based on these results,

the calculations presented in this Thesis were done for N = 19 for the 2-D and 3-D

analyses.

One of the major factors inlluencing the accuracy and the speed of convcrgence

of the solution is the real-time step /::;.t. This factor can be chosen in such a 'rayas

to (i) achieve convergence, and (ii) to obtain acceptable results, which compare weil

with the results cited in the literature as weIl as experimental results; at the same
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time, keeping with constraints imposed by computer limitations, in terms of space

and CPU time of the fastest PC computers available to us. Thus, a comparison is

made between the amplitude of the unsteady pressure obtained for different values of

N (number of time steps), which is shown in Table 7.6 and Figure 7.1(a) for the 2-D

analysis. From Figure 7.1(a), it is clear that as the number of time steps increases,

the unsteady pressure amplitude approaches its minimum value and then increases

for larger N. However, the difference between the values obtained with N =19 and

N = 70 is less than 10%.

It must also be mentioned that the convergence tests as mentioned above were

also carried out for the time-dependent-coordinate-transformation analysisj the same

conclusions as discussed above were reached for the selection of the number of time

steps as weil as the effect of the mesh size on the results. The major difference is

that, when llt decreases the amount of time for the computation 'Uld the space on the

computer increase significantly, which are not justified when the difference between

the results for N = 19 and N = 70 is less than 4% for this analysis, as shawn in

Figure 7.1(b).

Once again, a comparison of the pressures for different numbers of time-steps in­

dicates a better realiability of the results obtained by the time-dependent-coordinate­

transformation approach vis·à·vis the mean-position analysis.

AIso, by looking at Table 7.7 which shows the rms valut$ of the residual of

the momentum and continuity equations for a larger number of time steps, N =70,

one notices that the number of iterations for all sequences of the real-time steps are

reduced appreciably for N =70, as compared to that for N =19 of Table 7.4. This

shows that the numerical model converges faster for the mean-position analysis as

the time step llt becomes smaller, which is obvious from the point of view of the

data transfer between two real times tn and tn+l.

For the two analyses, a smaller value for llt has its own drawback, i.e., it ne­

cessitates a larger number of computations and hence implies larger round-off errors,
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in addition to the increases in time and memory on the computcr. For the relISons

mentioned and by consideringTable 7.2, the number of t..t, i.e., N, which gives accu­

rate results c.omparable with the theoretical and experimental results (see Chapter 8)

and yet remains economically feasible was chosen to be N = 19.

Table 7.8 is similar to Table 7.5 but it is for the 3-D analysis with N = 70. Once

again, the rms values shown here indicate the faster computation, but by looking

at Table 7.9 and Figure 7.2(11.) one notices tha.t the minimum value occurs around

15 ::; N ::; 30. Once again, the difference between the pressure values for N = 19

and N = 70 is about 2%. In the case of a time-dependent-coordinate transformation

for the 3-D analysis, the results of the convergence test are shown in Table 7.10 and

Figure 7.2(b), with the discrepancy between Pl9 and P70 less than 3%. Thus, we have

chosen N = 19 for the 3-D analysis too.

Finally, to be able to compare the present theoretical results based on the full

nonlinear N-S equations with Bélanger's (1991) results, as shown in Figure 4.14, the

number of time steps must be N =19.

In another attempt to check the accuracy of the numerical solution, the length

of the fixed upstream and downstream portions was increased for just one of the

several cases studied (i.e., for the uniform annular geometry) to see the effect of

more extended portions on the unsteady prpssure obtained and on the values of the

pressure perturbation outside the domain of oscillation. It is recalled from Charters 4

and 6 that for no f1ow, the perturbation goes to zero at both fixed ends (see for

example Figures 4.24, 4.33, 4.35, 4.38, 6.11 and 6.19). But in the case of f1ow, the

perturbations have not vanished, specially at the 'lpstream portions, in almost 11.11

cases studied. The following describes this problem and the way it can be solved.

In a confined f1ow, such as the annular f10w under consideration, we have used

a staggered grid to solve the N-S equations. As explained in Chapter 4, IIsing a

staggered grid we must impose two boundary conditions at the inlet, snch as the

velocities, and one at the outlet, such as t,he pressure. At the inlet the pressure is
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ca1culated automatically by the numerical ca1culations, and there we have no control

over this variable once the outlet pressure has becn specified (for instance, zero).

This is the drawback of using a staggered grid. The calculation of the dependent

variables starts from grid points 1 = 2 1.0 N - 1, where N is the last grid point in

the x-direction. Once the unsteady pressure generated by the oscillating cylinder, in

the vicinity of the upstream section, propagates outside of the domain of oscillation

il. does not change until il. vanishes by viscous dissipation which would exist if we

have the unsteady velocities along the fixed portions. But if we look al. Figure 7.3,

the velocity perturbations v and w, from which the shenr stresses are calculated,

are zero along the fixed portions and u approaches its steady value imposed as an

initial condition for the unsteady solution; hence, no viscous dissipation exists and

the pressure waves which are shown in the figures presented in this Thesis remain

unchanged once they are ca1culated from the continuity and momentum equations in

the x-direction. These perturbations, which are partly numerical, can be reduced to

ail acceptable level through the use of appropriate lengths for the fixed portions and

an appropriate mesh spacing in the x-direction. The results of this study are shown

in Figure 7.4 which were obtained for Re = 250, S = 25, E = 0.1, LI =Lz =20, 60,

100,200 and 300.

Figure 7.4 demonstrates that the problem of pressure-wave propagation can

be solved by choosing as long a length for the fixed portions as possible. Thus,

increasing the length of the fixed portions affects the unsteady pressure reduction

over the fixed portions as weil as the unsteady pressure in the oscil\ating domain. It

lIIust be stressed that for ail the results presented in the Thesis, the accuracy of the

l'eslllts, the amount of time for computation and the space available on the computer

\Vere ail factors determining the solutions that could be obtainedj they are confiicting

factors and were selected by compromise.

Fillal1y and equally important, the accuracy of the model utilized in this analysis

\Vas also checked by comparing the results obtained analytically for a 2-D unsteady
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problem (as a benchmark problem) with the numerical results obtained for the same

problem. The unsteady problem selected is the unsteady f10w between oscillaling

plates. We consider two infinite plates, parailei with eaeh other and aligned with the

x-eoordinate. They are separated by a distance H. The top plate is fixed while the

bottom one has a harmonie oscillatory motion of frequeney !1:

where barred quantities are dimensional. H and !1H serve as eharacteristic length

and veloeity to non-dimensionalize the equations, and Stokes number S = !1H2Iv.
The analytieal solution for this problem is given by

F( ) = sinht3(I- y) ,
y sinh t3

where lm denotes the imaginary part, i = .;=ï ane: t3 = .,fiS.

The comparison between the analytical and numerical results is shown in Fig­

ure 7.5, where the solid lines indicate the analytical solution and symbols indicate

the numerical solution. Figure 7.5 compares analytical and numerical results for

S = 1000, number of grid points in y-direction J = 26 and number of time step

N =19. The results shown are for three instants of time tn =2'1rTl/19w, Il =1,2,10.

The diserepancies between the two sets of results close to the oscillating plate are due

to the different types of meshes used. For the numerical computation, the stretehed

grid in the y-direction was used; while for the analytical solution, a uniform grid was

used. Overall agreement between the analytical and numerical solutions is good.
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12 x 15 -2.22505 0.97697 2.43008
14 x 15 -2.22871 0.96784 2.42978
16 x 15 -2.22713 0.96783 2.42833
20 x 15 -2.22548 0.96844 2.42706
30 x 15 -2.22418 0.96782 2.42563
20 x 12 -2.23173 0.97148 2.43401
20 x 14 -2.23270 0.96915 2.43397
20 x 16 -2.23100 0.96916 2.43242
20 x 20 -2.22931 0.96917 2.43087
20 x 30 -2.22744 0.96957 2.42931

-

~ Number of grid points 1 Real (p) 1 Imaginary (p) 1 Amplitude (p) Il•

Table 7.1: Real, and Imaginary components of the pressure and the pressure ampli­
tude obtained for various meshes; 2-D analysis for € =0.1, Re =62.5, w = 1 and at
,. = 4.965, 6 = 7.5°.

Oscillatory Present analysis Mateescu et al. 1994
Reynolds No. Real Imaginary Real Irnaginary

31.25 5.57 2.42 5.52 2.17

13.125 6.19 19.36 5.59 19.60

Table 7.2: Real and imaginary parts of the unsteady pressure for different Reynolds
numbers; 2-D analysis with RoiRi = 1.25, W = 1 and at r = 4.965, 6 = 7.5°. The
oscillatory Reynolds number 3.125 is equivalent to 50 in the analyses of Mateescu
and Chen.

Present solution Mateescu et al. 1994 Chen et al. 1976
RolRi S Real{F} -Im{F} Real{F} -Irn{Ff Real{F} -Im{F}

1.5 31.25 3.00 0.662 3.112 0.668 3.10 0.68

11.25 312.5 4.82 0.59 5.016 0.546 4.90 0.54

•
Table 7.3: The real and imaginary parts of the unsteady fluid-dynamic force obtained
by the present solution, compared with those by Mateescu et al. 1994 and Chen et
al. 1976. The oscillatory Reynolds number 31.25 is equivalent to 500 in the analyses
of Mateescu and Chen.
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~ nns (u) 1 rms (w) 1 rms (p) ~

3 34 0.9023E-04 0.2699E-04 0.4187E-05
4 39 0.5641E-04 0.1225E-04 0.9571E-06
5 38 0.8536E-04 0.1954E-04 0.3702E-06
6 37 0.8653E-04 0.1999E-04 0.1900E-06
7 35 0.8636E-04 0.1971E-04 0.8098E-07
8 33 0.5661E-04 0.1062E-04 0.1045E-05
9 32 0.7357E-04 0.2424E-04 0.3544E-05
10 38 0.9711E-04 0.2342E-04 0.1501E-06
11 39 0.7494E-04 0.l714E-04 0.;;"67E-06
12 39 0.7714E-04 0.1747E-04 0.4742E-06
13 39 0.7122E-04 0.1596E-04 0.5508E-06
14 38 0.9928E-04 0.2293E-04 0.3404E-06
15 38 0.7018E-04 0.1586E-04 0.3869E-06
16 36 0.9302E-04 0.2171E-04 0.8635E-07
17 34 0.6890E-04 0.1454E-04 0.3085E-06
18 32 0.7031E-04 0.1601E-04 0.2258E-05
19 38 0.8331E-04 0.2025E-04 0.2002E-06
20 39 0.7065E-04 0.1630E-04 0.2686E-06
21 39 0.7711E-04 0.1754E-04 0.4162E-06

Table 7.4: Number, k, of pseudo-time steps required for convergence at time level
tn

, and rms values of residuals at convergence. The computations were performed at
Re =62.5, S =31.25 and N =19 for 2-D analysis.
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3 78 0.1915E-04 0.5826E-04 0.8271E-04 0.9929E-04
4 53 0.2846E-04 0.6101E-04 0.8163E-04 0.9715E-04
5 50 0.2577E-04 0.6077E-04 0.8274E-04 0.9871E-04
6 46 0.2633E·04 0.5904E-04 0.7985E-04 0.9664E-04
ï 50 0.2383E-04 0.5610E-04 0.7723E-04 0.9619E-04
8 50 0.2188E-04 0.5556E-04 0.7750E-04 0.9839E-04
9 48 0.1988E-04 0.5523E-04 0.7746E-04 0.9818E-04
10 43 0.1831E-04 0.5656E-04 0.7888E-04 0.9829E-04
11 36 0.1727E-04 0.5972E-04 0.7874E-04 0.9740E-04
12 30 0.2408E-04 0.7343E-04 0.7754E-04 0.9619E-04
13 34 0.3315E-04 0.7031E-04 0.7846E-04 0.9906E-04
14 43 0.2972E-04 0.6066E-04 0.7715E-04 0.9764E-04
15 46 0.2641E-04 0.6016E-04 0.7961E-04 0.9679E-04
16 48 0.2548E-04 0.6111E-04 0.8239E-04 0.9829E-04
17 50 0.2329E-04 0.5751E-04 0.7924E-04 0.9703E-04
18 49 0.2191E-04 0.5591E-04 0.7806E-04 0.9871E-04
19 46 0.1983E-04 0.5540E-04 0.7752E-04 0.9764E-04
20 39 0.1826E-04 0.5993E-04 0.8138E-04 0.9904E-04
21 32 0.1862E-04 0.6912E-04 0.8069E-04 0.9601E-04

I~ rms (u) 1 rms (v) 1 rrns (w) 1 rms (p) ~

•

Table 7.5: Number, k, of pseudo-time steps required for convergence at time level
tU, and flUS valucs of residuals at convergence. The computations were performed at
Re = 250, S = 25 and N = 19 for 3-D analysis.

15 -2.15938 1.03546 2.39481
19 -2.22727 0.97147 2.42991
25 -2.30500 0.92527 2.48378
30 -2.35245 0.90596 2.52087
40 -2.41788 0.88718 2.57550
50 -2.46030 0.87861 2.61248
60 -2.48993 0.87430 2.63897
70 -2.51150 0.87148 2.65840

~ Number of time-step, N 1 Real (p) 1 Imaginary (p) 1Amplitude (p) Il

•
Table 7.6: Real, Imaginary and pressure amplitude obtained for various values of
timc-stcps N; 2-D analysis for E =0.1, Re =62.5, w =1 and at T =4.965, (} =7.5°;
mcan-position analysis.
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~ rms (v) 1 rms (w) 1 rms (p) ~
3 36 0.9951E-04 0.4380E-04 0.5805E-05
4 29 0.9827E-04 0.4329E-04 0.5737E-05
5 37 0.9628E-04 0.4233E-04 0.5612E-05
6 38 0.8941E-04 0.3926E-04 0.5203E-05
7 38 0.9421E-04 0.4149E-04 0.5499E-05
8 38 0.9793E-04 0.4310E-04 0.5712E-05
9 39 0.8862E-04 0.3890E-04 0.5158E-05
10 39 0.8974E-04 0.3949E-04 0.5233E-05
11 39 0.9052E-04 0.3983E-04 0.5280E-05
12 39 0.9043E-04 0.3980E-04 0.5269E-05
13 39 0.8954E-04 0.3932E-04 0.5212E-05
14 38 0.9977E-04 0.4386E-04 0.5809E-05
15 38 0.9703E-04 0.4270E-04 0.5656E-05
16 38 0.9322E-04 0.4101E-04 0.5433E-05
17 38 0.8882E-04 0.3908E-04 0.5176E-05
18 37 0.9505E-04 0.4185E-04 0.5541E-05
19 37 0.8873E-04 0.3902E-04 0.5167E-05
20 36 0.9219E-04 0.4051E-04 0.5371E-05
21 35 0.9477E-04 0.4168E-04 0.5519E-05
22 34 0.9498E-04 0A178E-04 0.5538E-05
23 33 0.9279E-04 0.4083E-04 0.5408E-05
24 31 0.9925E-04 OA366E-04 0.5783E-05
25 30 0.8896E-04 0.3913E-04 0.5183E-05
26 27 0.9276E-04 OA079E-04 0.5403E-05
27 23 0.9378E-04 0.4126E-04 0.5469E-05
28 16 0.8020E-04 0.3176E-04 0.4323E-05
29 17 0.8366E-04 0.3514E-04 0.4534E-05
30 25 0.9096E-04 O.3998E-04 0.5297E-05
31 28 0.8798E-04 0.3874E-04 0.5132E-05
32 30 0.9361E-04 0.4114E-04 0.5453E-05
33 32 0.9147E-04 OA025E-04 0.5334E-05
34 33 0.9608E-04 OA226E-04 0.5603E-05
35 34 0.9806E-04 0.4313E-04 0.5716E-05
36 35 0.9721E-04 0.4276E-04 0.5667E-05
37 36 0.9437E-04 0.4156E-04 0.5507E-05
38 37 0.9028E-04 0.3973E-04 0.5266E-05
39 37 0.9690E-04 0.4258E-04 0.5644E-05
40 38 0.9042E-04 0.3975E-04 0.5271E-05

•

•
Table 7.7: Number, k, of pseudo-time steps required for convergence at time level
t n

, and rms values of residuals at convergence. The computations were performed at
Re =62.5, S =31.25 and N =70 for 2-D analysis (continued on next page).
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41 38 0.9461E-04 0.4158E-04 0.5511E-05
42 38 0.9847E-04 0.4325E-04 0.5731E-05
43 39 0.8908E-04 0.3914E-04 0.5185E-05
44 39 0.9049E-04 0.3982E-04 0.5276E-05
45 39 0.9159E-04 0.4032E-04 0.5344E-05
46 39 0.9189E-04 0.4048E-04 0.5360E-05
47 39 0.9156E-04 0.4027E-04 0.5333E-05
48 39 0.9037E-04 0.3974E-04 0.5263E-05
49 39 0.8831E-04 0.3888E-04 0.5151E-05
50 38 0.9752E-04 0.4287E-04 0.5680E-05
51 38 0.9400E-04 0.4132E-04 0.5473E-05
52 38 0.8929E-04 0.3927E-04 0.5199E-05
53 37 0.9546E-04 0.4199E-04 0.5563E-05
54 37 0.8902E-04 0.3915E-04 0.5185E-05
55 36 0.9253E-04 0.4067E-04 0.5388E-05
56 35 0.9502E-04 0.4176E-04 0.5534E-05
57 34 0.9530E-04 0.4191E-04 0.5552E-05
58 33 0.9306E-04 0.4093E-04 0.5421E-05
59 31 0.9950E-04 0.4380E-04 0.5797E-05
60 30 0.8921E-04 0.3923E-04 0.5196E-05
61 27 0.9297E-04 0.4088E-04 0.5417E-05
62 23 0.9416E-04 0.4143E-04 0.5491E-05
63 16 0.8076E-04 0.3207E-04 0.4364E-05
64 17 0.8294E-04 0.3488E-04 0.4498E-05
65 25 0.9078E-04 0.3991E-04 0.5288E-05
66 28 0.8794E-04 0.3870E-04 0.5128E-05
67 30 0.9352E-04 0.4112E-04 0.5450E-05
68 32 0.9143E-04 0.4023E-04 0.5332E-05
69 33 0.9594E-04 0.4226E-04 0.5602E-05
70 34 0.9803E-04 0.4312E-04 0.5715E-05
71 35 0.9722E-04 0.4275E-04 0.5666E-05
72 36 0.9437E-04 0.4155E-04 0.5507E-05

~ nns (v) 1 rms (w) 1 nns (p) ~

• 182



3 62 0.9039E-05 0.1355E-04 0.3517E-04 0.9985E-04
4 12 0.4976E-04 0.9173E-04 0.3050E-04 0.7272E-04
5 48 0.1970E-04 0.1613E-04 0.3483E-04 0.9891E-04
6 34 0.1075E-04 0.1515E-04 0.3523E-04 0.9971E-04
7 13 0.2303E-04 0.7633E-04 0.3164E-04 0.8793E-04
8 13 0.2948E-04 0.7965E-04 0.2963E-04 0.8096E-04
9 13 0.3083E-04 0.7808E-04 0.3076E-04 0.8375E-04
10 13 0.2959E-04 0.7382E-04 0.3374E-04 0.9257E-04
11 17 0.2226E-04 0.3662E-04 0.3529E-04 0.9901E-04
12 26 0.1818E-04 0.1851E-04 0.3454E-04 0.9856E-04
13 27 0.1715E-04 0.1618E-04 0.3492E-04 0.9994E-04
14 31 0.1417E-04 0.1443E-04 0.3458E-04 0.9911E-04
15 29 0.1186E-04 0.1406E-04 0.3451E-04 0.9914E-04
16 29 0.1118E-04 0.1404E-04 0.3469E-04 0.9989E-04
17 31 0.1158E-04 0.1390E-04 0.3448E-04 0.9948E-04
18 32 0.1251E-04 0.1393E-04 0.3417E-04 0.9875E-04
19 32 0.1328E-04 0.1408E-04 0.3445E-04 0.9958E-04
20 34 0.1305E-04 0.1391E-04 0.3458E-04 0.9997E-04
21 35 0.1222E-04 0.1369E-04 0.3439E-04 0.9944E-04
22 35 0.1155E-04 0.1354E-04 0.3434E-04 0.9935E-04
23 36 0.1106E-04 O.J344E-04 0.3414E-04 0.9887E-04
24 35 0.1108E-04 0.1358E-04 0.3429E-04 0.9937E-04
25 36 0.1103E-04 0.1359E-04 0.3412E-04 0.9902E-04
26 35 0.1105E-04 0.1372E-04 O.3400E-04 0.9879E-04
27 34 0.1 116E-04 0.1395E-04 0.3422E-04 0.9947E-04
28 34 0.1109E-04 0.1407E-04 0.3428E-04 0.9969E-04
29 33 0.1094E-04 0.1420E-04 0.3417E-04 0.9940E-04
30 31 0.1l06E-04 0.1467E-04 0.3439E-04 0.9997E-04
31 31 0.1094E-04 0.1474E-04 0.3420E-04 0.9938E-04
32 28 0.1ll9E-04 0.1561E-04 0.3441E-04 0.9981E-04
33 28 0.1115E-04 0.1585E-04 0.3411E-04 0.9884E-04
34 24 0.1187E-04 0.1813E-04 0.3458E-04 0.9988E-04
35 24 0.1214E-04 0.1890E-04 0.3461E-04 0.9!.l72E-04
36 22 0.1259E-04 0.2153E-04 0.3425E-04 0.9853E-04
37 19 0.1441E-04 0.2950E-04 0.3445E-04 0.9894E-04
38 18 0.1608E-04 0.3370E-04 0.3470E-04 0.9946E-04
39 17 0.1768E-04 0.3817E-04 0.3459E-04 0.9907E-04
40 16 0.1957E-04 0.4321E-04 0.3431E-04 0.9825E-04

I~ rms (u) 1 rms (v) 1 rms (w) 1 rms (p) ~

•

•
Table 7.8: Number, k, of pseudo-time steps required for convergence at time level
tn

, and rms values of residuals at convergence. The computations were performed at
Re =250, S =25 and N =70 for 3-D analysis (continued on next page).
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41 15 0.2219E-04 0.5036E-04 0.3465E-04 0.9900E-04
42 16 0.2151E-04 0.4405E-04 0.3479E-04 0.9893E-04
43 17 0.2040E-04 0.3852E-04 0.3496E-04 0.9936E-04
44 20 0.1788E-04 0.2745E-04 0.3452E-04 0.9843E-04
45 21 0.1673E-04 0.2336E-04 0.3469E-04 0.9902E-04
46 23 0.1544E-04 0.1934E-04 0.3468E-04 0.9901E-04
47 23 0.1478E-04 0.1849E-04 0.3477E-04 0.9928E-04
48 24 0.1434E-04 0.1728E-04 0.3492E-04 0.9986E-04
49 26 0.1395E-04 0.1595E-04 0.3487E-04 0.9999E-04
50 28 0.1365E-04 0.1500E-04 0.3451E-04 0.9934E-04
51 29 0.1360E-04 0.1456E-04 0.3431E-04 0.9915E-04
52 31 0.1331E-04 0.1415E-04 0.3412E-04 0.9894E-04
53 32 0.1295E-04 0.1384E-04 0.3414E-04 0.9920E-04
54 33 0.1262E-04 0.1375E-04 0.3439E-04 0.9992E-04
55 35 0.1209E-04 0.1351E-04 0.3416E-04 0.9916E-04
56 34 0.1l99E-04 0.1357E-04 0.3433E-04 0.9928E-04
57 35 0.1l92E-04 0.1363E-04 0.3457E-04 0.9945E-04
58 35 0.1l86E-04 0.1373E-04 0.3482E-04 0.9955E-04
59 35 0.1l73E-04 O.l386E-04 0.3500E-04 0.9943E-04
60 35 0.1l52E-04 0.1389E-04 0.3499E-04 0.9886E-04
61 34 0.1l45E-04 0.1407E-04 0.3516E-04 0.9895E-04
62 34 0.1l30E-04 0.1417E-04 0.3518E-04 0.9885E-04
63 33 0.1l21E-04 0.1429E-04 0.3518E-04 0.9889E-04
64 32 0.1l21E-04 0.1456E-04 0.3520E-04 0.9920E-04
65 31 0.1l25E-04 0.1488E-04 0.3518E-04 0.9955E-04
66 30 0.1l23E-04 0.1518E-04 0.3498E-04 0.9949E-04
67 28 0.1l42E-04 O.l582E-04 0.3496E-04 0.9996E-04
68 28 0.1l26E-04 0.1589E-04 0.3430E-04 0.9868E-04
69 24 0.1l89E-04 0.1797E-04 0.3447E-04 0.9954E-04
70 24 0.1218E-04 O.l872E-04 0.3435E-04 0.9954E-04
71 22 0.1264E-04 0.2115E-04 0.3401E-04 0.9885E-04
72 19 0.1448E-04 0.2886E-04 0.3432E-04 0.9992E-04

I~ rms (u) 1 rms (v) Lrms (w) 1 rms (p) ~
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Il Number of time-step, N 1Amplitude (pl ~

10 0.53847
15 0.51170
19 0.50559
25 0.50572
35 0.50732
45 0.51024
55 0.51266
65 0.51485
70 0.51577

Table 7.9: Pressure amplitude obtained for various values of time-step N; 3-D analysis
at r =9.926, (J = 7.50 for f = 0.1, Re =.250 and S =25; mean-position analysis.

Il Number of time-step, N 1 Amplitude (pl ~

10 0.56264
15 0.52960
19 0.51956
30 0.50961
70 0.50423

Table 7.10: Pressure amplitude obtained for various values of time-step N; 3-D anal­
ysis at r = 9.926, (J = 7.50 for f = 0.1, Re = 250 and S = 25; time-dependent­
coordillate-transformation analysis.
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Figure 7.1: Unsteady pressure amplitude versus time-step N; 2·D analysis for f = 0.1,
Re = 62.5 and w =1: (a) mean-position analysis; (b) time-dependent-coordinate­
transformation analysis.

186



•
0.60 ......--,.....,......,......,--.--......,....,.....,.....,.....,.....,.....,.....,......

-80.55
:è
li
E
00.50
e
::1
III
IIIe
Q. 0.45

(0)

............_-, -------

0.40 0~"'-"'-"'""":2'!=0..................~4O~"'-"'-"'""":60~ ............~80

Number of time-steps, N

0.60 ~,.....,......,~--.......-...--r...,.....,.......""T""................,

-80.55
::1
~

li
E
00.50
e
::1
III
IIIeQ. 0.45

(b)

"--------

•

0.400~..........~21:-0................-:401:--..........~61:-0....._ ......~80

Number of time-steps, N

Figure 7.2: Unsteady pressure amplitude versus time-step N; 3-D analysis fOH = 0.1,
Re = 250 and S = 25: (a) mean-position analysis; (b) time-dependent-coordinate­
transformation analysis.
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Figure 1.5: Variation with y in the x-component of velocity, u. The computations
are for S =1000, J =26, N =19, and three instants within the harmonic cycle have
been represented. -,analytical solution; symbols, numerical solution.
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Chapter 8

Experimental Investigation and
Comparison with Theory

There are basically two methods which can be used to solve a problem in f1uid me­

chanics and f1uid-structure interactions as weil as in most of the engineering and

science problems: (i) experimental and (ii) theoretical, analytical or numerical. In

the analytical method, simplifying assumptions are made in order to make the prob­

lem tractable. If possible a c1osed-form solution is sought. The big advantage of

the analytical method is that "c1ean", general information can be obtained, in many

cases from a simple formula, and reasonable answers can be obtained in a minimum

amount of time. In the numerical method, a limited number of assumptions are made

and a high-speed large-memory computer is required to solve the resulting goveming,

for instance in our case, f1uid dynamie equations. The partial derivatives appearing

in the governing equations are replaced, for example, by appropriate finite differenccs

at each grid point. The resulting equations are then integrated to obtain the final

results.

The greatest advantage of using the numerical method of attack, as compared

to the experimental one, is its low cost; this may be orders of magnitude lower than

the cost of a corresponding experimental investigation. The second advantage is the

speed of computational investigation, plus the ability of providing the values of ail

the relevant variables (such as velocity, pressure, etc.) throughout the domain of
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interest. Unlike the situation in an experiment, there are few inaccessible locations

for a computation, and thcre is no cot'P\erpart to the flow disturbances caused by the

probes, bolts, support rods, etc. Obviously, no experimental study can be expected to

measure the distribution of all variables over the entire domain. For this reason, even

when an experiment is performed, there is great value in obtaining a companion com­

puter solution to supplement the experimental information. In a computation, there

exists the ability to simulate ideal conditions, for example, two-dimensionality, con­

stant dcnsity, or laminar f1ow. On the other hand, even a very carefu! experiment can

barely approximate such idealizations; .stead, it obviously provides measurements

corresponding to realistic conditions. In spitc of all these advantages of computational

solutions, a blind cnthusiasm for any cause is undesirable.

As mentioned carlier, a computcr analysis works out the implication of a math­

ematical mode!. The experimental investigation, in contrast, observes reality itself.

The validity of the Ir.cthematical model, therefore, limits the usefulness of a compu­

tation. The user of a computer analysis receives an end product that depends on both

the mathematical model and the numerical method. A mathematically weil described

problem (such as a laminar flow problem), if combined with a perfectly satisfactory

numerical technique, will yield reliable results. Even in this case, however, depending

on the complexity of the problem, an experimental study is sometimes superior to a

computer solution. An optimal prediction effort should thus be a judicious combina­

tion of computation and experiment. The proportions of the two ingredients would

depend on the nature of the problem, on the objectives of the predi::tion, and on the

financial and other constraints of the situation.

In parallel to the foregoing numerical solutions of which the ultimate objective

is to predict the unsteady flow fields in annular flow, the problem has also been

studied experimentally in both the laminar and turbulent regîmes. The experimental

rcsults obtained in the laminar regime are compared with the theoretical results of

the previous chapters. For this special (FIV) problem, the need for experiments will

192



•

•

probably remain for sorne time, in applications involving turbulcnt ftow where it is

presently both mathematically and economically not feasible to utilize computational

models which are free of empiricism. Thus, the experimental results in the turbulent

regime were obtained to be lItilized in future extensions of this work.

The experimental measurements of the unsteady pressure in the annulus or un­

steady forces applied either on the inner or outer cylinder have been donc in the past

fo:: the purpose of design or validation of the proposed existing theoretical models (sec

Splirr & Hobson (1984), Parkin et aL (1987), Mateescu et al. (1988,1989), Hobson

(1991)). Using an earlier experimental apparatus designed for concentric configura­

tions, experimental investigations were made to study the ftow field for later use in

ftow-induced vibration problems (Mateescu et al. 1989). In that set of experiments,

the quantity measured was the unsteady pressure. In those tests, a rigid, cylindrical

centre-body was forced to oscillate in rocking motion about a hinge with ftuid ftowing

in the annulus, while the outer conduit was rigid and immobile. The experiments

for this apparatus were characterized by high axial velocitics, which permitted the

validation of the approximate theory developed for turbulent ftow in concentric an­

nuli. In contrast, no experiments were conducted with that apparatus for unsteady

laminar f1ows, which may be practically important especially in very narrow annuli.

In the present analysis, a new apparatus was constructed (Mekanik et al. 1994),

the general layout of which is shown in Figure 8.1, with which the rocking and

lateral (translational) motions would be equally feasible. In this design the following

features were introduced: (a) the possibility of ~onducting experiments in eccentric

arrangements, with the oscillation either in the plane of eccentricity or normal to it,

which were not performed in experiments described herej (b) the facility of having

very low velocity, so that the f10w in the annulus could be either laminar or turbulent.

This new apparatus has the possibility of having axial variations in the annular

passage, either smooth such as a diffuser, or abrupt such as an annular passage with

an axisymmetric backstep.
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To accommodate ail possibilities, it was found convenient to oscillate part of the

outer cylinder conduit, while the centre-body remains immobile. To reduce viscous­

f10w related effects, such as f10w separation and/or vortex shedding which are not

cOllsidered in the present theory, a smooth transition between cylindrical and annular

f10w is assumed both upstream and downstream. This is ensured by connecting

smooth ogives to the fixed centre-body at both ends, as shown in Figure 8.1. The

constant cross-section, from the upstream ogive to the test section, where the pressure

was measured, is long enough to obtain developed laminar f1ow, in the case where

laminar f10w experiments are undertaken. The tests have been conducted at low

amplitudes of oscillation, characterized by an amplitude/gap ratio smaller than 0.2.

For simplicity of design, the tests were performed in air rather than in water.

8.1 Experimental Apparatus

The test section consists of a rigid cylindrical centre-body with ogival ends in a cylin­

drical conduit (Figure 8.1). The ogives, together with an upstream meshed screen

and a honeycomb help to make the annular f10w as uniform as possible. As mentioned

before, only the central portion of the outer cylinder is forced to oscillate, and hence,

there will always be discontinuities at the boundaries between the oscillating portion

of the outer cylinder and its immobile upstream and downstream extensions. Various

f1angc designs were tried to study and reduce this effect (Figure 8.2), a discussion of

which will be given later.

The unsteady pressure was measured using, in the latest experiments, eight PCB

103All and 103A12 pressure transducers (microphones) situated at x/L = 0.263,

0.342, 0.421, 0.500, 0.578, 0.657 and 0.763, in the vertical plane of oscillation, as

shown in Figure 8.3. At the mid-point, two transducers were used diametrically op­

posite each other in order to compare the corresponding measured unsteady pressure;

for instance, the phase dilference between the two signals might be 180' for concen­

tric configurations, when the cylinder executes either translational or rocking motion.
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The sensitivity of these transducers was 72.51 mV/kPa. In earlier experiments, 10

less sensitive PCB 112A22 transducers were used. At each axial location, the new

transducers were lIush-mounted on the lIat surface prepared inside the centre-body,

facing small-diameter holes (0.8 mm, as compared with the manufacturer's recom­

mendation of 3.175 mm, and 12.5 mm deep), to minimize the effect of the holes on

the flow field used for measuring the pressure in the annulus.

The outer conduit was oscillated by means of a Brüel & Kjaer electrodynamic

shaker. In the case of translational motion, the oscillatory motion was transmitted

to the cylinder by a yoke made of two parallel plates, placed around the midpoint

X = x / L = 0.5. For rocking motion, the oscillation about a "hinge" (X = 0.237) was

transmitted via a flexible thin plate attached to the shaker at X = 0.815, Figure 8.4,

which accommodated unavoidable small harmonic motion in the axial direction.

The possible vibration frequencies and amplitudes were limited by (a) the max­

imum shaker force rating of 445 N and peak-to-peak amplitude limit of 12.7 mm

and (b) practical considerations associated with structural resonances, which gave

an effective frequency range of 15-100 Hz. In practice, the amplitude was limited

to half the maximum gap or 5.0 mm. The shaker was often used in its constant­

frequency mode, while the frequency was being sweptj for that purpose, an accelerom­

eter mounted on the base plate of the shaker-head or on the outer pipe provided a

feedback signal to the shaker controUer as shown in Figure 8.5. The displacement

of the oscillating cylinder as weU as the phase angle between the unsteady pressure

signal and the acceleration signal (from which the phase angle between the pres­

sure and outer-cylinder displacement can be obtained) were measured by the same

accelerometer.

The signais from the pressure transducers (one at a time) and the aceelerom­

eter, after suitable conditioning, were fed into a dual channel FFT digital spectrum

analyzer, which can accept inputs as small as 11lV, These signais could be postpro­

cessed, as desired, with a PC486 computer as shown in Figure 8.5. The rms amplitude
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of the pressure and acceleration at the oscillation frequency werp. obtained from the

corresponding spectra (typically with 16 averages). The phase difference of pressure

to accelcration was determined when the analyzer was used in the transfer-function

mode. It should be mentioned that, in most cases, the signais contained superhar­

monies (of smaller amplitude) of the basic frequencYj in what is presented in this

chapter a linear analysis is undertaken, and only the components at the principal

frequency are considered.

The air 1I0w was provided by either (i) a vacuum pump (used in suction),

providing a laminar or low-velocity turbulent 1I0w, or (ii) a large centrifugai blower

for high, turbulent 1I0w. When using the latter, an acoustic !ilter and a special noise

attenuation plenum chamber were used to reduce the incident lIuctuating noise. The

1I0w velocity was measured by standard means.

Utilizing the present apparatus, we varied the following parameters were varied

in the experiments: (a) oscillation frequencYi (b) oscillation amplitude; (c) axiai-llow

velocity.

To describe the apparatus in detail, its different components are presented in the

sub-sections that follow: the external conduit, inc1uding the oscillating outer cylinderj

the fixed centre-body connected to the ogives; the "transmission" mechanism linking

the shaker to the outer cylinderj the blower and the associated 1I0w system.

8.1.1 The External Conduit

The external pipe consists of three main sections: the oscillating central portion, and

the fixcd parts upstream and downstream. The inner radius of the pipe is Ri =53.8

mm, as shown in Figure 8.3, and its wall thickness is 3.2 mm. The central section,

965 mm long, cxecutes one-dcgree-of-freedom oscillatory motion, as excited by the

shaker.

The fixed cylindrical conduit of the same diameter as the moving portion contin­

ues on either side, and houses and supports the ogives as weil as the fixed centre-body,

as shown in Figures 8.1 and 8.3. These portions and the oscillatory part are made
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from aluminum with specific gravity of 2.785 gr/cm3• The inlet axial fiow was reg­

ularized with the aid of the several meshes and the ogive, to eventually obtain the

developed larninar fiow as mentioned before, or at high flow velocity, with the addi­

tional help of a honeycomb screen, an acoustic Iilter and a special noise attenuation

plenum chamber, to obtain a uniform turbulent fiow. These parts were securcd on

the vertical plates which were fixed on a long I-beam at a number of locations along

the axial direction as shown in Figure 8.6. The system was horizontal.

A great deal of time was spent on the question of the discontinuity between

the oscillating and stationary parts of the outer cylinder. The "obvious" solution of

using flexible thin rubber sleeves to connect the two was found unsatisfactory, from

the mechanical point of view: the sleeves had a bias either in shape or in locked-in

stresses which affected the uniformity of motion in the case of transverse oscillation

(by "pulling" at one extremity of the oscillating cylinder). With zero-mean-fiow

experiments, either of the arrangements in Figure 8.2(b,c) performed satisfactorily.

With fiow, however, especially at high velocities, the arrangement in Figure 8.2(a)

with sponge-felt gaskets was by far the best. Unless otherwise remarked, in the results

to be presented, the sponge felt was used.

8.1.2 The Fixed Centre-Body

The fixed centre-body comprised three parts: the central test section, facing the

oscillating outer cylinder, and the upstream and downstream sections as shown in

Figure 8.3. The centre-body was made from aluminum for uniform annular space and

from steel for nonuniform (backstep and diffuser shaped) annular space. The pressure

transducers were mounted in the central test section as shown in Figure 8.7(a-c) for

different annular spaces. The fixed upstream and downstream sections were composed

of two parts: an ogival part and a constant cross-section part. The constant cross­

section part was connected to the test section. The ogival part was shaped to have

a parabolic profile; it was designed to allow a smooth and uniform transition from

cylindrical to annular flow, and vice-versa. Thus, fully developed annular flow in the
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test section is presumed to exist through the constant cross-section part.

The central test section of the centre-body was made up of two sections (split

longitudinally to mount the pressure transducer inside the cylinder) and was con­

nected to the upstream and downstream sections at both ends in sliding contact

(male and female), to aile\'! rotation of the central test section for measuring the

unsteady pressures at various azimuthal locations if desired. An O-ring between

the male and female parts prevented any air leakage into the hollow inner cylinder,

as shown in Figure 8.8. Undesired rotations were prevented with the aid of a set

of screws. The radius of the inner cylinder (apart from the ogives) was constant,

Ri = 44.5 mm, in the case of a uniform annular space; R; = 44.5 mm and R;d = 35.2

mm for nonuniform annular spaces. The dimensions of the whole system are shown

in Figure 8.6. Based on the dimensions shown in this figure, it is c1ear that the

constant cross-section parts of the annulus are long enough (500 mm) with respect

to the annular gap width (9.3 mm) to insure developed laminar flow.

8.1.3 Shaker and Transmission

The harmonie oscillation was generated by a Brüel & Kjaer electromagnetic shaker

(exciter body B&K 4801, with exciter head B&K 4812). The maximum peak-to-peak

amplitude Iimit was 12.7 mm and the maximum force rating was 445 N, the possible

frequency range was from 5 Hz to 10 kHz. In the present tests the frequency range

chosen was 15-100 Hz and the amplitude of oscillation was kept below 5.0 mm peak­

to-peak. The mass of the oscillating cylinder is 2.821 kg which indicates that the

weight of the cylinder is much less than the maximum force rating.

The harmonie signais generated by the shaker controller (B&K exciter control

type 1047) were fed into a power amplifier (B&K 2707) that amplified them to the

Icve1s appropriate to drive the shaker. The shaker controller controls the frequency

and the displacement amplitude of the moving outer cylinder. A control accelerometer

was mounted on the base plate of the shaker or on the oscillating outer cylinder. The

signal from this accelerometer was processed to an effective sensitivity of 10 mV/g
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in the charge amplifier (B&K type 2624) and fed to the compressor circuit of the

exciter control (1047) as shown in Figure 8.5. In this way, the acceleration level of

the shaker system (and the oscillatingouter cylinder) can be held constant throughout

the frequency sweep.

The oscillatory motion of the outer cylinder is provided by a pair of vertical rigid

plates parallel to each other, which were placed between the shaker and the cylinder

at the mid-point of the cylinder (X = 0.5) as a yoke, to ensurc purely transverse

translation. These plates are 7% by weight of the oscillating cylinder, hence in the

static situation (no motion of the cylinder) the central part of the outer cylinder

always remains at the same horizontal level as the fixed portions at its extremities.

For rocking motion about a hinge, the outer cylinder is kept fixed at X = 0.237 and is

connected to the shaker at X = 0.815 via a llexible slender plate. Due to the rockillg

motion, there is a small axial displacement of the oscillating cylinder. The llexible

slender plate renders this small movement negligible, especially for small-amplitude

oscillations of the moving cylinder. Nevertheless, it generates secondary elfects which

should be taken into account for larger-amplitude oscillations.

8.1.4 Blower and the Associated Flow System

In the present work, the llow through the annulus was provided by two external air

sources. A vacuum-cleaner type blower was used in the suction mode for generating

laminar or low-velocity turbulent f1ow, as shown in Figure 8.1; a large fan (blower)

was used for high velocities. The same fan can be used to provide low-velocity f10w

by utilizing a regulating valve and by smoothing the f10w with special devices such as

an acoustic fil ter and a noise-attenuation plenum chamber. The same devices were

used during the experiments for turbulent fiows, because the noise level generated by

the blower was relatively large as compared to the expected pressure signal.

The f10w rate was measured by means of several orifice plates (depending on the

f10w rate) with dilferent sizes and the accuracy of readings; they were checked against

one another using the appropriate equations, thus confirming that the orifice plates
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can be used with confidence. The orifice plate was rnounted near the downstrearn

end of a straight pipe (3 m long and 40 mm in diarneter) which was connected at its

other end to the downstrearn section of the outer pipe, as shown in Figure 8.1. This

length is required to obtain fully developed f10w near the inlet of the orifice plate.

When a vacuurn-cleaner type blower is used for larninar-f1ow experirnents, the

f10w rate was controlled by circumferential slot located at the downstrearn end near

the vacuum pump and for high-velocity experiments by the slip valve located at the

lIpstream end close to the outlet of the large blower.

Based on the usage of these devices and considering Figure 8.9, the Reynolds

1l1lJ1lber is calculated from the following equations. To begin, the f10w rate is obtained

from (Miller 1989)

Q =0.09970190 Cd
YrP ~ hw , (8.1)VI _")'4 PI

where Q is the volumetrie f10w rate of air in cubic feet per second, Y is the air

expansion factor for the orifice, taken to be Y = 1 for srnal1 differential pressure,

")' = d/ D and Cd is the coefficient of discharge for the orifice, given by

b
Cd = COQ + Rn'

eD

with b = 91.71")'2.5, n = 0.75, ReD = VID/v, VI being the velocity of air upstream of

the orifice; COQ is given by

4
COQ = 0.5959 + 0.0312")'2.1 - 0.184")'8 + 0.39 ")' 4 - 0.0158")'3.

1-")'

In equation (8.1), d and D are in inches, hw is the differentiai air pressure in

inches of water reading across the taps shown in Figure 8.9, and PI = 0.076 Ibrn/ft3

for air at standard ternperature and pressure. It should be rernarked that a kind of

itcration procedure was used to calculate the true values of Cd, which is Reynolds­

number dependent, for each orifice plate. The Reynolds nurnber for the annulus is

obtaillcd Ils

(8.2)
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where the annular gap width H = 9.3 mm, the kinematic viscosity of air v = 1.62 X

10-5 m2/s, and An = 7r(R~ - Rn = 2.87 x 10-3 m2 is the annular cross sectional

area.

8.2 Instrumentation for Measurement

As mentioned before, the pressure as weil as the phase and displacement were ana­

lyzed by means of signal processing through an FFT (Fast Fourier Transform) digital

signal analyzer, from which the pressure amplitude and the phase angle with respect

to the displacement could be obtained, as shown in Figure 8.5. In the present ex­

periment the following instruments were used to 0 btain the rcquired data: (i) eight

highly sensitive microphone type pressure transducers; (ii) three accelerometers; (iii)

one photonic sensor; (iv) one digital spectrum analyzer; (v) one inclined alcohol

manometer. These are described in greater detail in what follows.

8.2.1 Microphone Type Pressure Transducers

At the heart of the measurements are the pressure transducers. The specifications

of the transducers used will be outlined in the following paragraphs; their locations

on the centre-bodies for different configurations of the annular space are shown in

Figure 8.7(a-c). In these figures, most of the pressure transducers were installed at

the top portion of the centre-body assuming that the whole system is symmetric with

respect to the centre-line of the centre-body. However, to check this symmetry, at

the mid-point, two transdueers were used diarnetrically opposite each other.

Sound pressure microphones (of the peB 103A type) feature a built-in amplifier

and compensating accelerometer, and have ultra-high sensitivity (500 mVIpai). They

can be used to measure transient events, turbulence, and other acoustic phenomena

on a variety of test objects and models. This sophisticated sensor is available in

two standard ranges and two configurations (pigtail and micro connector); thiB tiny

instrument transfers dynarnic and short-term static pressures into high-level, low-
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impedance analog voltage signals. It is structured with ceramic crystal elements,

a micro~lectronic amplifier and an accelerometer, to virtually cancel out vibration

sensitivity. A thin, recessed Invar diaphragm and a bender-mode crystal element

adapt it for very low pressure measurements in adverse shock, vibration and thennal

cnvironments. This model can be installed in several ways. Due to the necessity

of relocating the transducers from one model of the annular configuration to the

next, the servo-clamp mode of installing the pressure transducers was used as shown

in Figure 8.10. Based on the inside configurations of the centre-body, the pressure

transducers used have two configurations: pigtail and micro-connector, which are

shown in Figure 8.1l.

The main specifications of these pressure transducers (PCB 103All and PCB

103A12) are as follows:

Maximum pressure:

Resolution:

Sensitivity(nominal):

Resonant Frequency:

Acceleration sensitivity:

Vibration(max):

Linearity:

Size(diax height):

206.85 kPa (30 psi)

0.483 kPa (0.00007 psi)

0.07 mV/Pa (500 mV/psi)

13 kHz

3.45 Pa/g (0.0005 psi/g)

1000 g

±2 (%FS)

9.53 x 5.59 (mm)

•

In this experiment, utilizing this pressure transducer, the steady (or static) com­

ponent was undetectable and the signals had acceptable levels of dynamic pressure

rcadings as will be discussed in the experimental results which follow.

8.2.2 Accelerometers

The displaccment of the oscillating outer cylinder was measured by an accelerometer

(B&K type 4381) with voltage sensitivity of 82.9 mV/g and charge sensitivity of 99.4

pC/g, where g=9.81 rn/52. Tb',s accelerometer was mounted either on the shaker
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head or on the oscillating outer cylinder. The accelerometer signal was first fed into

the charge amplifier (B&K type 2624). One of two-output signais from the charge

amplifier was used for the constant-displacement control through the feedback loop of

the shaker controller system, while the other was monitored by the spectrum analyzer,

which gave the outer cylinder displacement, as shown in Figure 8.5.

Another accelerometer type (B&K 4338) was mounted inside the centre-body

to make sure that during the experiment the centre-body did not vibrate sufficiently

to affect the pressure readings. The centre-body vibration was less than 1% of the

vibration of the outer cylinder for almost ail of the experiments, especially for the

cases of nonuniform centre-bodies which were made of steel. The uniform centre-body

was made of aluminum.

To ensure that the outer cylinder always executes transverse oscillation in the

plane of symmetry and does not move side-ways, and also to check that the two

moving ends of the oscillating cylinder have the same acceleration as the middle part

which is attached to the shaker through the yoke in translational motion, another

accelerometer (B&K 4332) was attached to one and then the other end of the moving

cylinder, either in the plane of translational motion or normal to it. It was found

that ,the outer cylinder is rigid enough to have the same acceleration everywhere in

the plane of oscillation and almost zero acceleration in the plane normal to it at both

ends of the moving cylinder.

8.2.3 Spectrum Analyzer

A powerful dual-channel FFT digital spectrum analyzer (Hewlett-Packard 3582A)

was used to monitor the signais from the pressure transducers and from the ac­

celerometers. The frequency range of the dual-channel digital analyzer is 0.02 to

25 kHz. The instrument can measure inputs from +30 dB (31.62 V) down to -120

dB (1JlV) noise level, without resorting to external signal conditioning. Its dynamic

range is 70 dB. The use of this analyzer made it possible to obtain the transducer and

accelerometer readings accurately in the frequency range of 20-50 Hz, in which the

203



•

•

present experimental tests were performed. The analyzer is capable of performing

the rms power spectrllm averaging of the input signals. Normally, 16 averages were

taken in the FFT analyzer readings to be presented.

The amplitude of either signal at the frequeney of oscillation could b" obtained

from the power spectrum, while the phase differenee between the pressure and the

acceleration couId similarly be obtained from the cross-spectrum of those quantities

as weil as coherence which is obtained directly. By measuring the coherence, one can

make sure that the pressure signals obtained are due to the oscillation of the outer

cylinder and are not due to the external sources such as acoustic noise or vibration

of the centre-body. The information was available for each individual spectral com­

pon/ml either by Illeans of a cursor on the screen (CRT) of the FFT analyzer that

can be positioned accordingly, or through the connection of the analyzer to a PC486

computer to collect the information for later postprocessing of the results.

The main advantage of using the FFT analyzer was that the signal due to

secondary effects (e.g. the nonlinearity of the fluid motion, unexpected secondary

motions of the cylinder as explained previously, the random noise from turbulence,

and acoustic wave pressure components) can be adequately separated from the signal.

The other advantage of this instrument is that it can accept signais down to 1 I.N

range without special signal conditioning, which was very useful. The signal levels

could not be obtained directly without using a signal amplifier (PCB 483A07), which

receives the signals from the pressure transducers and amplifies them 70 times before

they were fed into the analyzer, as shown in Figure 8.5.

8.2.4 Ancillary Equipment

To calculate the flow rate, the pressure drop across the orifice plate was measured by

an inc1ined differential alcohol manometer, with a range of 0-200 mm of alcohol. !ts

two taps were connected upstream and downstream of the orifice plate. It must be

rcmarked here that at large flow rates, especially in the turbulent regime, the range (lf

the manometer was not large enough to rearl the pressure differences across the taps.
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Therefore, when the readings were out of range, the orifice plate was replaced by the

next larger size. Ali the orifice plates used were calibrated by using equation (8.1).

Equation (8.2) was used to calculate the Reynolds numbers.

During the oscillation of the outer cylinder, the reading of the pressure trans­

ducer located at the bottom portion of the centre-body (see Figures 8.3 and 8.5) was

different from the others. Besides the geometrical configuration in the annular space

which contains sorne obstacles such as support rods, set screws, etc. which might

have alfected the pressure readings, there was also the possibility of nonsymmetric

movement of the outer cylinder in its plane of oscillation which is due to the shaker

not starting to shake the outer cylinder around its centre-line, but rather moving

up when it is turned on and then shaking the cylinder. Two pieces of equipment

and instrumentation were used to confirm that this is the case or not. The first one

was a video-camera to see the motion visually and check any probable nonsymmetric

movement of the cylinder. Due to the fast motion and low-amplitude vibration of

the cylinder (determined by the undesirable induced vibration in the whole system

which affects the readings), the difference between the up and down movements of

the cylinder was difficult to recognize visually. Hence, the second instrument, which

was a photonic sensor, was used for this purpose. The measurement of the up and

down motions of the cylinder by this device indicates certain dilferenccs betwccn

these movements, as shown in Figure 8.12. This difference, along with the influence

of the geometrical factors, might be the causes of discrepancies between the readings

of the top and bottom pressure transducers in the mi<l-seetion of the centre-body.

It should be remarked that the spectrum analyzer can be remotely as weil as

manually controlled. For remote control, it should be equipped with a special interface

cardo Hence, another important step in this work, as compared to the earlier work of

Mateescu et al. (1988), is the computerization of the data acquisition with the aid of

a PC486 computer in which an HP-IB interface card was installed. In this manner,

the rcsults obtained after being processed by the analyzer are fed into the computer
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for later postprocessing and demonstration. As will be discussed in later sections,

computerizing the data acquisition system helps reduce the time for collecting the

large amount of data involved in this work; also, the final output may be presented

in a very nice manner by the use of appropriate software.

8.3 Preliminary Experimental Work

8.3.1 Calibrations

To obtain signais with a desired accuracy, every aspect of the data acquisition process

must be studied for each parameter to be measured. The measuring instruments must

be appropriately calibrated before being \Ised to assess the dynamical behaviour of the

instrumentation with an accuracy relevant to the order of magnitude of the signals,

and the factors affecting the readings such as the type of connection between the

moving and fixed parts of the outer cylinder must. he considered.

Hence, the pressure transducers and the accelerometer as well as the orifice

plates must be calibrated. The pressure transducers were calibrated, one at a time,

against a peB 106B pressure transducer of known sensitivity (43.51 mV/kPa, with a

l'csolution of 0.69 Pa) in a special chamber shown in Figure 8.13, exdted by the shaker,

ovcr the frequency range of the experiments. Figure 8.13 shows the experimental

apparatus for dynamic calibration, which consist" of a plexiglas cylinder with one

end covered by a rubber membrane and the other end with a rigid plexiglas cap,

with twu pressure transducer hcusing holes. The membrane is held tightly against

t.he cdge of the cylinder by means of screws in order to prevent air leakage. Two

small circular plates on each side of the membrane and bolted together provide an

oscillatory displacement of the membrane by means of a rod which is clamped to the

base plate of the shaker (B&K 4801) in a horizontal configuration.

The reference pressure transducer was f1ush-mounted to the fixed end of the

eylindcr and the pressure transducer to be calibrated was mounted in another hous­

ing hole which had the same configuration as in the actual measurements on the
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centre-body. The signaIs from both pressure transducers are fed into the analyzer

to be recorded and compared. Using the reference signal from PCB 106B, the sensi­

tivities of the actual pressure transducers were found to be in the range of 53.9-93.7

my /kPa. The individual calibration factors were compared with the calibration of

the manufacturer; the agreement was fairly good. Neverthc1ess, the calibration fac­

tors as measured here were used in processing the results.

By considering the actual measurement configuration, the accelerometers were

calibrated with the aid of an accelerometer calibration exciter (B&K 4294), the ac­

celeration of which is fixed (10 m/s2 at 159.2 Hz). To calibrate the accelerometers,

they are mounted (one at a time) on the calibrator and then connected to the charge

amplifier with the proper cable in the same arrangement as for actual measurements.

The sensitivities of the accelerometers were found to be 0.623 mY/m2 , 1.686 mY/m2

and 1.02 mY/m2 for B&K 4332, B&K 4338 and B&K 4381, respectively.

There were several orifice plates with different orifice diameters d = 1.0, 1.125,

1.25, 1.375 and 2.68 in. to be used in the experiments for dilferent f10w rates. These

orifices were calibrated against each other using equations (8.1) and (8.2). The cal­

ibration chart obtained was used to find the appropriate Reynolds number in the

annulus for each f10w velocity by having the related pressure drop across the desig­

nated orifice plate.

8.3.2 Experimental Procedure

Before each actual experiment began, it was necessary to prepare the expl'rimental

apparatus. For this purpose, the type of centre-body (uniform, backstep or diffuser

with specifie angle) was selected and instal1ed careful1y. Depending on the type of

motion of the outer cylinder (traI1slational or rocking motion), the outer cylinder was

installed and the shaker position was determined appropriatel.'f. Then, the equipment,

such as exciter control, power amplifier, charge amplifier, pressure signal amplifier

and dual-channel spectrnm analyzer must be warmed up to prevent any drift in

the quantities they provide or measure such as the amplitude and the frequency

207



•

•

of oscillation, etc. Also, depending on the type of experiment (with or without

f1ow, laminar or turbulent, low f10w or high f10w in each regime), the end gaps (see

Figurc 8.2) were prepared appropriately, along with the preparation of the necessary

piping and sclection and installation of the appropriate oriiice plate.

To check that the outer cylinder always oscillated in its plane of oscillation

and not normal to it, and also to verify the rigidity of the outer cylinder during the

cxperimcnts (c.g. the moving ends of the cylinder have the same acceleration as the

mid-section which is attached to the shaker in the case of translational motion) for

each actual experiment, a preliminary test was done in which the accelerations of the

accc1erometers attached to the side and top of the outer cylinder (each end and one

side at a time) were checked and if they were found to be less th:ln 1%, the actual

experiments could then be started.

The experiment was started by first sctting the amplitude of oscillation, for

cxample 1 mm peak-to-peak, on the exciter control. Then, the frequency, for instance

20 Hz, was set. The shaker was turned on and the magnitude of the rms value

of the pressure on the FFT analyzer was rearl for two pressure transducers, since

the analyzer is dual-channel. To calculate the rms value, to avoid damage to the

equipment (not becoming too hot for a long experiment before the experimental

setting is changed for the next one) the number of averages chosen was 16. Then, the

next two transducers were selected by using a selector switch and the rearlings were

recorded by the computer. This procedure for all transducers was repeated Jntil all

transducer rearlings were recorded.

To measure the phase angle, one of the channels of the analyzer was connected to

the accelerometer, while the other was connected to the selected pressure tr~.nsducer

via the sc1ector switch. The mode of the analyzer was changed from the amplitude

rearling to phase rearling. The phase angles for all the transducers were recorded in

the same way as explained for pressure measurement. The coherences of the pressure

signals with respect to the accelerometer signals were obtained by changing \ b..., mode
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of the analyzer from phase measurement to coherence measurement. The recording

of the coherences was performed for all the transducers in the same manner.

Then, the next frequency of oscillation (30.4 Hz) was selected and the experi­

ment was repeated for all the quantities measured. After the frequency sweep was fin­

ished, the amplitude of the oscillation was varied on the exciter control and the proce­

dure of measurement was repeated for a new frequency sweep. It should be remarked

that, for experiments with fiow, the appropriate orifice readings were also recorded.

Also, during each experiment, special1y during the experiments with high-amplitude

and/or high-freqnency oscillations, the reading of the accelerometer mounted inside

the centre-body was checked to ensure that the centre-body was not vibrating, which

would affect the final readings.

The above procedure was repeated for the fol1owing cases: (a) uniform annular

geometry, without and with 110w (different 110w rates in different regimes, laminar

or turbulent), translational or rocking motion of the out.er cylinder at various ampli­

tudes and/or frequencies of oscillation; (b) nonuniform (backstep) geometry, with the

same range of experiments as were performed for a uniform annulus; (c) nonuniform

(diffusers with 6· and 20· half-angles, one at a time) again with the same range of

experiments as for the other geometries.

For any individual experiment, if there was any doubt in the results or in the

experimental environment, the experiment was repeated several times to obtain, as

much as possible, the most accurate results under the best experimental conditions.

Another important test to insure more accurate results was to interchange the pres­

sure transducers. This eliminated the doubt that the readings of sorne of the trans­

ducers were inl1uenced by the local geometrical configuration and by the mounting,

set screws, support rods, pins, etc., which were used inside the annulus for rigidity.
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8.4 Experimental Results

ln this section, the experimental results are presented. The presentation begins with

the results obtained for the uniform annular space, for the cases of translational and

rockillg motions of the outer cylinder. These include Figures 8.14-8.57. These figures

represent sampie data, chosen out of 6764 files of experimental data obtained for four

dilferclIt allllular geometries, namely (i) uniform, (ii) backstep, (iii) diffuser with 6°

half angle and (iv) diffuser with 20° half angle. Generally, the results shown in the

figures are classified into two groups for each figure, unless otherwise mentioned in

the captions: (a) the left panels are for no fluid flow, (b) the right panels are for fluid

flow with Re = 2900. Normally, there are six panels in each figure. As mentioned

in their appropriate captions, the panels from top to bottom of the figures are either

for different (increasing) frequencies or amplitudes.

The figures (sec Figures 8.14-8.57) present the followingdata: (1) the amplitude

spectrum of the unsteady pressure for specifie transducersj (2) the unsteady pressure

versus distance along the cylinder, obtained by ail pressure transducersj (3) the phase

angle spectrum of the unsteady pressure with respect to the acceleration of the outer

cylinder versus the frequency of oscillation for a specifie pressure transducerj (4) the

phase angle versus distance along the cylinder, obtained by ail pressure transducersj

(5) the coherence spectrum of the unsteady pressure with respect to the acceleration

of the outer cylinder for specifie pressure transducersj (6) a sample of the pressure

spectra produced at a high Reynolds number without motion of the outer cylinder; (7)

the unsteady pressure versus distance along the cylinder at high Reynolds numbers.

Ali the aforementioned cases are for translational motion of the outer cyliuder. Cases

1-5 and 7 are repeated for rocking motion of the cylinder and a uniform annular

geometry. Similar figures are presented for nonuniform annular spaces.

Following these cases, the figures representing the comparison betwcen the the­

oretical and experimcntal results are prescnted, which include the uniform annu­

lar space for translational or rocking motion of the outer cylinder. The next set
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of figures present the comparison between the theoretical results obtained both us­

ing time-dependent coordinate transformation and mean position analysis with the

experimental results. Finally, the last figure presents the comparison between the

theoretical and experimental results at differeht frequencies.

Figures 8.14,8.21,8.27,8.33 and 8.39 present the unsteady pressure amplitudes

(for uniform annular geometry when the outer cylinder is in translational motion,

rocking motion, in translational motion with a backward facing step, with a diffuser

section having half-angle cr =6° and with a diffuser section having cr =20°, respec­

tively), measured by individual pressure transducers through the spectrum analyzer,

recorded and processed by the computer. The indicated pressure readings were then

corrected by the calibration factors. Figures 8.15, 8.20, 8.22, 8.26, 8.28, 8.32, 8.34, 8.38, 8.40, 8.44­

8.46 present the unsteady pressure amplitude along the axial distance of the centre-

body for different annular geometries, in translational motion and for uniform annular

geometry in rocking motion.

The discrepancy between the pressure readings for the two pressure transducers

mounted at the midpoint of the centre-body diametrically Of'flOsite to each other

is c1early seen in Figure 8.15; the reasons for these discrepancies were discussed

before. Figure 8.20 is similar to the previous figure but was drawn for higher velocities

(Re = 5000 and Re = 9000). In Figure 8.22, which is for uniform annular space and

the outer cylinder in a rocking motion, the agreement between the pressure readings

is much better than those of Figure 8.15. The hinge is located at X = xlH = 18.5.

The pressure readings at the midpoint are aise much better than in the case of

translational motion of the outer cylinder. Figure 8.26 is similar to Figure 8.20

(turbulent regime), but for rocking motion of the outer cylinder. Figure 8.28 is similar

to 8.15 but for annular geometry with a backstep. The pressure drop, obviously,

indicates the wider space after the step and is due to the reductioI: in the unsteady

llow velocity. Figure 8.32 is similar to Figure 8.20 (high Reynolds numbers) and was

drawn for an annulus with a backstep. The generation of the vortices was seen after
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the step at Re = 9000, by sharp variations of the pressure after the step.

Figure 8.34 is similar to 8.28 and presents the unsteady pressure for a diffuser

with 6° half-angle. The pressure readings are more uniform than those of backstep

geometry. Figure 8.38 presents results similar to those shown in Figure 8.32 (turbu­

lent regime). As expected, the pressure lIuctuations were not seen downstream of the

diffuser, which indicates that there was less vortex generation and the lIuid 1I0w be­

haved like a weil streamlined 1I0w, even at such a high Reynolds number. Figure 8.40

presents results similar to those shown in Figure 8.34. Here, the unsteady pressure

behaved, more or less, the same way as in the backstep geometry (see Figure 8.28).

Figure 8.44 is similar to Figure 8.38 (high Reynolds number). The pressure down­

stream of this type of diffuser behaved, somehow, in-between that for a backstep and

a diffuser with Cl< = 6°. Finally, Figure 8.45 presents the comparison between the

pressure readings obtained for ail nonuniform annular geometries and shown in the

previous figures. A similar comparison is made for the turbulent range in Figure 8.46.

Figures 8.16, 8.23, 8.29, 8.35 and 8.41 present the phase angle of the unsteady

pressure with respect to the acceleration of the outer cylinder, for uniform and nonuni­

form annular geometries, with the outer cylinder either in translational or rocking

motion. In ail the figures, the phase diagrams with 1I0w were smoother than those

without 1I0w. Figures 8.17, 8.24, 8.30, 8.36 and 8.42 pres~nt the phase angle along the

axis of the centre-body measured by ail pressure transducers, for different geometries,

and different motions of the outer cylinder. The phase angles for ail geometries when

the outer cylinder was in translational motion were nonzero but close to zero, which

was obvious because the lIuid is air.

Figures 8.18, 8.25, 8.31, 8.37 and 8.43 present the coherence between the un­

steady pressure signais and the acceleration signais due to the motion of the outer

cylinder. These figures are for uniform and nonuniform annular geometries when

the outer cylinder is either in translational or rocking motion. The rcsults presented

indicate that the unsteady pressure was generated mostly by the oscillation of the
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outer cylinder (i.e, the magnitude of the coherence gets close to one) hence, the other

extraneous factors have less effect on the magnitude of the measured pressure. Thus,

the coherence measurement gives a measure of the accuracy of the measllred quan­

tities during experimentation. The coherence diagrams, also, show several peaks

corresponding to the higher harmonies that cannot be easily seen in the pressure

spectra.

Figures 8.47-8.50 present the comparison between the results obtained from the

mean-position analysis and the experimental results, both for unsteady pressure and

phase angle, during the translational motion of the outer cylinder, in uniform annlliar

geometry. For such a small-amplitude oscillation, the agreement between both rcsults

is good.

Figures 8.51-8.54 present a similar comparison between the theoretical and ex­

perimental results, but for a rocking motion of the outer cylinder. It is seen that

the agreement between the two is excellent. In fact, the main reason for this close

agreement is that, in the rocking motion of the outer cylinder, the moving cylinder is

fixed at one end through the hinge, and at the other end it is supported by the shaker,

thus practically, the moving cylinder can not move side-ways nor is it free to move

in any other direction except in the plane of symmetry. Therefore, the experimental

rcsults are more reliable than those obtained for translational motion of the outer

cylinder.

Figures 8.55 and 8.56 present the comparison between the rcsults obtained by

theoretical models and the experimental results. The results show that, the time·

depender.~ coordinate transformation, vis à vis the mean-position approach, providcs

closer agreement with experimental results and is more reliable. As shown in Fig­

ure 7.4, when much larger values of LI and L2 are used, the r('~ults are within 3% of

those for L = 20, hence, the theoretical values approach more the experimental val­

ues. Finally, Figure 8.57 was drawn to compare the theoretical and the average values

of the experimental unsteady pressure at different frequencies. The agreement is good
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and the trend of the fitted curves indicates that the pressure is a quadratic function

of the frequency (through the acceleration generating the unsteady pressure).

Regarding the results presented in the previous figures, the generai conclusion

is that the experimental results confirm the theoreticai results for uniform annular

space in both the translatioual and rocking motion of outer cylinder. The agreement

is especiaily good for the rocking motions of the outer cylinder. It was found that

the experimentai results are in better agreement with the theoretical results obtained

by time-dependent coordinate transformation analysis rather than those obtained by

the mcan-position analysis.

8.5 Experimental Error Analysis

Errors will creep into 8011 experiments, regardless of the care exerted. An experimentai

crror is an experimental error. If we knew what the error was, we would correct it

and it would no longer be an error. The reai errors in experimentai data are those

factors that are aiways vague to sorne extent and carry sorne a.mount of uncertainty.

Our task is to determine just how uncertain a particular observation may be and

to dcvise a consistent way of specifying the uncertainty in anaiyticai form (in the

form of an equation). It is better to speak of experimentai uncertainty instead of

cxpcrimcntal error because the magnitude of an error is aiways uncertain. But since

the term error rather than uncertainty is used extensively, in this section we mostly

use the former delinition whenever we taik about uncertainty.

Sorne of the types of errors that may cause uncertainty in an experimentai

mcasurement are: first, the errors coming from the construr.tion of the apparatus

and instruments which may invaiidate the results; second, there may be certain lixed

or systcmatic errors which will cause repeated readings to be in error by roughly

thc same a.mount but for sorne unknown reason; third, there are random errors,

which may be associated with the experimenter, random electronic fluctuations in

thc apparatus or instruments, various uncontrollable influences (e.g., friction), etc.
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These random errors usually follow a certain statistical distribution. We should

use the theoretical methods based on the characteristics of the instruments and the

conditions of experimentation to estimate the magnitude of a fixe/; error (Holman

1989).

Bias or systematic error is a fixed value re·occurring consistently every time

the measurement is made. It is not susceptible 1" statistical analysis. Another type

of error includes disturbances introducing errors of sufficient magnitude to hide the

test information. Extreme vibration, mechanical shock of the equipment, or pickup

of extraneous noise may be of sufficient magnitude to make the testing meaningless.

In such cases the tests are stopped and the disturbing elements are eliminated.

There are precision errors in the measurand (particular physical parameter be­

ing observed and quantified) due to the observer not being consistent when estimat·

ing readings such as the amplitude or frequency on analog meters, or the process

involved may include certain uncontrolled, or poorly controlled, variables that results

in changing conditions (Beckwith & Marangoni 1990).

Most of the foregoing have occurred in this experimental investigation. Let us

review the measures taken to reduce, to the extent possible, the error in the exper·

iments. For each geometrical configuration (uniform or nonuniform annular spaces)

the whole system must be disassembled and reassembled, hence, each time the ad­

justments of various parts to their original positions must be done, a time·consuming

job, to prevent any misalignment in the system such as preventing eccentricity in a

supposedly concentric arrangement. The pressure transducers were secured in their

places as shown in Figure 8.1û with a rubber gasket to prevent any leakage of air

from the gap between the transducer surface and the inner cylinder surface, thereby

increasing the accuracy in pressure readings.

Although a sponge was used to fill the :nd gaps, it was squeezed enough to

prevent air leakage from these gaps, which ultimately reduces the uncertainty in the

pressure and velocity readings. During experimentation at high amplitudes and/or
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frequencies, there were vibrations induced in the whole system. These vibrations,

as mentioned, are random in nature which introduces random errors in our results.

To minimize this type of error, the mass of the whole system is increased by placing

several bags of sand on the surface on which the apparatus is mounted; also, the

frequency of experimentation is kept below 50 Hz (this explains the reason why most

of the experiments were done in the range of 20 ~ f ~ 40 Hz). Sorne measures were

taken to eliminate the extraneous noise entering into the annular space, e.y., by using

an acoustic filter, in addition to a special noise-attenuation plenum chamber, during

the experiments with f10w as explained in the previous sections. Using these devices,

we probably increased the accuracy of the readings.

The data obtained in this experimental investigation are single-reading data

rather than multiple-reading data which are obtained in those instances where enough

experiments are performed so that the reliability of the results can be assured statisti­

cally. The limitation of having more measuring devices (such as pressure transducers),

the variety of experiments, and finally the time limitation prohibited the collection

of multiple-reading data.

Suppose a set of measurements is made and these measurements are then used

to calculate sorne desired results of the experiments. The result R can be given as a

function of the primary measurements XI, X2, X3, ... , Xn • Thus,

(8.3)

If eR is the uncertainty (error) in the results and elt e2, e3, ... , en is the uncer­

tainties (errors) in the primary measurements, then, eR is given by (Taylor 1982)

[( ôR )2 (ÔR )2 (ÔR )2] 1/2
eR = ÔXI el + ÔX2 e2 + ... + ÔX

n
en (8.4)

The unsteady pressure produced by the oscillation of the outer cylinder is a

function of acccleration of the cylinder; hence, for small-amplitude oscillations (0.5

mm, 1.0 mm and 1.5 mm) in this study the pressure is a linear function of amplitude
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of oscillation and a quadratic function of the frequency of oscillation, i. C.,

(8.5)

where ef2 cornes from the acceleration ii = ew2sin wt when we have a harmonic

sinusoidal oscillation of the outer cylinder. The error associated with equation (8.5)

is

cp = [(~~C()\ (2:~eJrr2 (8.6)

Considering equation (8.1), the f10w velocity in the annulus can be :~iven by

(8.7)

•

The error associated with equation (8.7) using equation (8.4) is written as

Cu = [(:~/C.r + (:~Cdr + (:~CDr+ (~Zw Chwr+ (:;/p,r

(
8z ) 2 ( 8z ) 2] 1/2

+ 8R. CR" + 8R; Cil; (8.8)

The physical measurable paramcters influencing the accuracy of the experi­

mental results obtained in this analysis with their appropriate uncertainties, and the

uncertainties associated with the measuring equipment arc as follows:

The manometer reading, hw = 7.3 ± 2% cm of alcohol (for Re = 2900).

the density of air, PI = 1.21 ± 1% kg/m3j

the outer cylinder radius, R. =5.38 ± 0.2% cmj

the inner cylinder radius, R. =4.45 ± 0.2% cmj

the coefficient of discharge of the orifice plate, Cd = 0.68 ± 0.5% (from

calibration data);

the outer diameter of orifice plate, D =4.0 ± 0.2% cmj

the orifice diameter, d = 2.54 ± 0.2% cm (one of the orifices)j

the amplitude of oscillation, ë =10 ± 4% mm (obtained from the exciter

controller)j
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The frequency of oscillation, f = 20 ± 4% Hz (obtained from the exciter

controller).

The instruments and equipment accuracies arc as follows:

Fast Fourier Transform analyzer:

Amplitude accuracy (full scale, log) +0, -0.1 dB.

Frequency accuracy ±0.003% of the display centre frequency.

Display accuracy 3% of total height or width.

Transfer function accuracy (used for phase measurement) ±5°.

Coherence accuracy (marker resolution) 0.01.

Accelerometer calibrator accuracy 10 (rms)±3% rn/52.

Accelerometer B&K 4381 accuracy 82.9 ± 2% mV/g.

Exciter control accuracy 4% of meter reading.

There arc certain other uncertainties, associated with some of the equipment,

which were not available. These are: power amplifier calibration data, charge ampli­

fier calibration data, calibration sheet for exciter head of the shaker.

Taking into account the most important uncertainties and using equations (8.4­

8.8) in conjunction with equation (8.1), the uncertainties (errors) associated with the

eight pressure transducers in Figure 8.7(a) for the case of f1uid f10w with Re =2900

at Ë = 1 mm amplitude corresponding to f = 0.1075 and f = 20 Hz are obtained and

tabulated in Table 8.1.

The data presented in Table 8.1 is for the worst case of the results presented,

i.e., for Figure 8.48. The accuracy of ±0.25 - 0.29 Pa, which is less than 10% of the

pressure readings, explains the absolute accuracy of each pressure transducer. For

Figure 8.48, this accuracy does not include the discrepancies between the readings by

different pressure transducers and, at most, is off by 5% of the reading of individual

pressure transducer, while for Figures 8.47, 8.49 and 8.50, the accuracy shown in

Table 8.1 also includes the latter.

The uncertainties of the phase angle arc assumed to be the values given by the
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Pressure 2.924 3.102 2.783 3.248 2.847 2.888 3.024 2.458
reading (Pa)

Accuracy (Pa) ±0.27 ±0.28 ±0.25 ±0.29 ±0.26 ±0.26 ±0.27 ±0.22•
L 1 PT1 1 PT21 PT3! PT41 PT51 PT61 PT71 PT81

Table 8.1: Uncertainties associated with measurcd unsteady pressures.

IPT11PT21PT31PT41PT51PT61PT71PT8j
Phase 177 183 183 -181 178 175 175 -12

angle (deg)
Accuracy (deg) ±5 ±5 ±5 ±5 ±5 ±5 ±5 ±5

Table 8.2: Uncertainties associated with measured phase angles.

accuracy of transfer function in the phase mode of the FFT analyzer, i.e., ±5° for

ail phase angle measurements. For instance, for the pressure transducers shown in

Figure 8.7(a), the phase angles at Ë = 1 mm and f = 20 Hz are tabulated in Table 8.2.

Following the same analysis and using equations (8.1) and (8.8), the uncertainty

pertinent to the 1I0w velocity measurement for a specifie orifice plate and manometer

l'eading of hw = 7.3 cm of alcohol with density Pal = 0.7866 gr/crn3 is

U = 2.53 ± 2.6% mis.

•

Following the previous error analysis for most of the rneasurements, the exper­

imental data presented in this chapter can be relied upon. Certain modifications in

the apparatus and more precise measuring instruments would provide more accurate

l'esults. One of the most important factors affecting the experirnental results is to

have a firrn foundation for the apparatus. The 11001' on which the whole system is

mounted is not rigid enough to prevent transmission of vibration from the surround­

ings to the system or from the frame of the shaker to the inner cylinder via the

supports of the apparatus. Also, developing other solutions for the problem of the

end gaps would certainly improve the accuracy of the rcsults.
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Figure 8.1: Schematic of the experimental apparatus in which either transverse or
rocking motion of the central part of the outer cylinder can be imposed by the shaker.
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Figure 8.2: Sealing arrangements between the moving and fixed parts of the outer
cylinder: (a) sponge-felt gaskets between the flanges; (b) close-fitting flanges; (c)
flange with lubricated rubbing contact with the oscillating cylinder (for zero axial
velocity only). '
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Figure 8.3: Schematic diagram of the central portion of the apparatus, showing
dimen"-loi.ls and location of the pressure transducers•
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Figure 8.4: Schematic diagram of the centre-body, the outer cylinder, the shaker and
the pressure transducers for rocking motion of the outer cylinder.
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Figure 8.7: Schematic representation of the mounting of pressure transducers for
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Figure S.7: continued
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Figure 8.8: Expanded view of the centre-body and its end ring.

D • 1I2D

v__..~__

Flow

Figure 8.9: Schematic diagram of the orifice plate used in the experiments.

~:;o,-- output wire

Inner cyllnder

Figure 8.10: Schematic diagram of the arrangement for mounting the pressure trans­
ducer inside the centre-body.
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Figure 8.12: Amplitude or the moving outer cylinder detected by the photonic sensor
ror t = 0.05375.
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Figure 8.38: Nondimensional unsteady pressure versus axial distance for translational
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Figure 8.49: Nondimensional unsteady pressure amplitude and phase angle with
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Figure 8.52: Nondimensional unsteady pressure amplitude and phase angle with
respect to the displacement of the outer cylinder in rocking motion. Comparison
between theoretical (mean-position analysis) and experimental results for E = 0.1075,
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Chapter 9

Time-Domain Study of
Fluid-Structure Interaction and
Stability Analysis

In the previous chapters, numerical solutions were obtained for the forced vibrations

of the structure (outer cylinder) using mean-position and time-dependent coordinate­

transformation analyses for both uniform and nonuniform annular geometries. In

this chapter, the next important objective of this Thesis, namely, the stability of

the structure under the influence of the fluid forces is investigated. In the previous

chapters, the motion of the structural boundaries was assumed to be a function of

time as given by equation (4.36) which is prescribed for ail times.

As was shown in previous chapters, the boundary conditions required to solve

the unsteady N-S equations were dependent on the method of solution. For the mean·

position analysis it was sufficient to specify the velocity of the moving boundary (outer

cylinder), whereas for the time-dependent coordinate transformation analysis both

displacement and velocity of the moving boundary were specified. In this chapter

both cases are considered. The unsteady time-dependent fluid force exerted on the

wall of the outer cylinder executing forced vibration consists of pressure and viscous

shearing forces. For the mean-position analysis, thcse forces are functions of only

the velocity of the wall of the structure through the solution of the fluid equations

which are dependent only on the structural wall velocity. On the other hand, in
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the time-dependent coordinate-transformation analysis, the unsteady Iluid forces are

functions of both the time-dependent displar.ement and velocity of the structure, i.e.,

they depend on E"+I and Uw "+1 at time level t"+I. In this chapter, the Iluid-structure

interaction problems are solved, whereby the motion of the structure is allowed to

evoh·~ in accordance with the forces acting on it, i.e., the Iluid forces.

The Iluid-structure interaction involving the coupling of the Iluid dynamic

equations and the equation of structural motion was studied by Bélanger (1991),

Païdoussis et al. (1992) and Bélanger et al. (1993) by using the linearized Navier­

Stokes equations for small-amplitude oscillations (mean-position analysis) of the outer

cylinder. A very simple explanation of the Iluid-structure interaction phenomena is

the following one (Bélanger 1991). Given a structure and a Iluid Ilow about it, one

displaces the structure by a small amount away from its equilibrium position, and

then releases it. There are mechanical restoring and damping forces, as shown in

Figure 9.1, which will act to return the structure to its equilibrium position. How­

ever, as it undergoes displacement toward equilibrium,lluid forces come into play and

may render the Iluid-structure system unstable, or add more damping or stiffness to

it. The time-evolution of the displacement of the structure determines whether the

system under consideration is stable or unstable. This is assessed hy integrating the

equation of motion of the structure under the eombined mechanical and Iluid forces,

using either a predictor-corrector scheme or a fourth-order Runge-Kutta scheme.

The fluid-structure interaction cases considered in this chapter are divided into

two groups. The first one involves the mean-position analysis of the Iluid forces

obtained in Chapter 4. The second group involves th.e time-dependent coordinate­

transformation analysis of the fluid forces described ,:.. Chapter 6. For the first type

of analysis, both uniform and nonuniform annular spaccs are considered. For each

annular geometry, translational motions of the outer cylinder are invcstigatedj on the

other hand, rocking motion of the outer cylinder is investigated only for the uniform

annular geometry. For larger-amplitude oscillatioll, only translational motion of the
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outer cylinder for uniform and backstep annular geometries is considered. In addition

to these 3-D f1uid-structure interaction analyses, the cases of 2-D stability analysis

of these systems for both types of theoretical analysis of Chapters 4 and 6 are also

conducted.

9.1 Analytical Coupling of the Fluid Forces and
Structural Dynamics

The cylindrical structures considered are shown in Figure 9.1. It is seen that this

structure has one degree of freedom, €(t), which is a generalized displacement. The

structure (outer cylinder) has mass M, and is restrained by a mechanical spring K

and a dashpot C; for rocking motion, the pertinent mass-moment of inertia about

the hinge axis shown in Figure 8.4 is J; Co and Ko are respectively the moment

coefficients of the dashpot and rotational spring located at the hinge point (not

shown in Figure 8.4). The equations of motion of the structure for translational and

rocking motions are equations (2.19) and (2.20), respectively, which may be rewritten

here as

Mij+Cy+Ky= F(t),

Jë +Ci} +Ko8 = Mo(t) .

(9.1)

(9.2)

Considering the characteristic length, H, of the structure, and the characteristic

velocity, V, of the f1uid, one can write equation (9.1) in dimensionless form as

Ë(t) +2{wnÈ(t) +W~€(t) =u:F(€, È), (9.3)

where

pH3
U = M' (9.4)

C
{=2VKM'

V •
t = -t ,

H

and :F represents the nondimensional f1uid dynamic forces exerted on the cylinder.

The equation of motion of the structure in rocking motion can similarly he

written in nondimensional form as

•
•• • 2 •
8(t) +2{wnR8(t) +wnR8(t) =uMo(8,8) ,
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where

GoH
ç = 2.,jK

o
J'

pH5
q=--'J • (9.6)

(J is the angular displacement. and Mo is the nondimensional moment of the f1uid­

dynamic forces exerted on the cylinder.

In equations (9.3) and (9.5), t, W n , WnR and ç are the dimensionless time, fre­

quency and damping ratio, respectively, while q is a dimensionless factor weighti!lg

the relative contribution of the f1uid and mechanical forces; t' is the dimensioniÙ

time. nn or nnR is the dimensional radian natural frequency of the structure, and

p is the dimensional f1uid density. The nondimensional f1uid force :F is a function

of E(t), E(t) and Ë(t) through the added stiffness, added damping and added mass

effects, respectively, but Ë(t) is not needed explicitly in the numerical evaluation of

the f1uid forces [E(t) is also not needed explicitly when we consider smail amplitude

analysis of the f1uid forces]. The nondimensional f1uid moment Mo is, equivalently,

a function of (J(t), Olt) and ii(t) .

9.2 Numerical Solution of the Coupled Equations

To integrate equation (9.3), we suppose at the beginning that the time level tn has

been reached, where ail the quantities necessary to describe the structural motion

are known (Païdoussis et al. 1992): the displacement, E, the velocity, E, and the

acceleration, Ë. of the structure, and the f1uid forces acting on it, :F(En, En) == :FR.

For the rocking motion, the proper quantities in equation (9.5) are assumed to be

known. As mentioned in the previous chapters, these quantities arc known at ail

previous time levels tk , k ::; n, and the solution is advanced to tn+l. For structural

motion analysis, this is done using a second-order Runge-Kutta scheme, defined by

the sequence

Predictor step:

•
'n+1/2 • + ~t.",E = E "2E,
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• Corrcctor stcp:

(9.11,9.12)

(9.13,9.14)

In the predictor step, the intermediate values for displacement and velocity are

first determined at the intermediate time level t"+I/2 = t" + t:>.t/2, i.e., e"+I/2 and

i"+1/2. Once f"+1/2 and i"+1/2 are 50 obtained, they serve for imposing boundary

conditions to integrate the N-S equations up to t"+l/2, which allows the ca1culation

of the f1uid force F"+1/2 at t"+l/2. The acceleration, Ë"n+1/2, of the structure is then

calculated from equation (9.10), and the solution can proceed on to the corrector

step, which is solved in the same manner for the variables f"+I, i"+I, p+1 and Ë"n+l.

The same solution can be obtained through a fourth-order Runge-Kutta scheme

(BéllUlgcr 1991), summarized in the following table as

'Ti - t" XI _ f" VI _ i" AI - Ë(XIl Vil
Ti - t" + T X2 - f" + TVI V2 - i" + -TAI A2 - Ë(X2, V2)
13 - t" + T X3 - f" + TV2 V3 - i" + TA2 A3 - Ë(X3,V3)
74 - t" + t:>.t X4 - e" + t:>.tV3 V4 - i" + t:>.tA3 A4 - Ë(X4,V4)

Table 9.1: Runge-Kutta scheme applied to the integration of the equation of the
structure.

The quantities 'Ii, Xi, Vi, and A; are variables of time, displacement, velocity and ac­

celeration, respectively. After they have been calculated through the process outlined

in Table 9.1, the time level is advanced to t"+I as

•

where F"+I and ;;,"+1 are obtained by equations (9.13) and (9.14).

The sequence of ca1culations is similar to the predictor-corrector steps outlined

previously. In both cases, the main point is that the displacements f"+I/2, f"+I, and

the velocities i"+l/2, i"+I, obtained from equations (9.7) and (9.11) (9.8) and (9.12)
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may be used as boundary conditions to integrate the N-S equations ~d calculate the

fiuid forces 1"01+1/2 and 1"01+1 .

As shawn in equations (9.7)-(9.10) and Table 9.1, the solution is sought at inter­

mediate time level t n +I/ 2• In such circumstances, the three-Ievel real time discretiza­

tion given by equation (3.2) and used in the previou& chapters cannot be applied.

Hence, the following semi-discretization is used for the N-S equations:

8vn+l/2 _ 9Vn + V n- 1
~--:-=:-----'-- + Qn+I/2 = 0 (9.17)

3~t '

which is also a three-time-Ievel, second order accurate implicit scheme, written in

terms of velocity at time levels tn-t, tOI and tn+1/ 2 • Equations (3.3) and (3.4) can be

expressed as

where

V n+1/ 2+,OQn+l/2 = En, v·vn+l/2 = 0, (9.18,9.19)

•

,0 = ~~t , En = ~(9vn _ vn-I) ,

and Qn+I/2 is similar to Qn+l defined in Chapter 3 except that it is evaluated at time

tn+1/ 2 instead oftn+1•

Equations (9.18) and (9.19) are solved in the same manncr for the quantities

vn+l/2 and pn+l/2, as was done for quantities V n+1 and pn+1 in Chapter 3. Thus,

according to the notations of Chapter 3, in order to solve equations (9.18) and (9.19),

we need to impose as boundary condition the wall velocity U~+1/2, which is given in

Table 9.1 by V2 and V3' in steps 2 and 3, respectively. Step 4 in Table 9.1, and the

final updating of the solution, equation (9.14), which both project the solution to

tOI + ~t, can use the time differencing equation (3.2). From now on, all the numerical

steps taken in Chapter 3 are followed, induding the pseudo-time discretizalion of

the N-S and continuity equations in delta forms as given by equations (3.9) and

(3.10), application of the approximate factorization to the equations which results

in equation (3.24), and solution of the resulting equatiolls based on the ADI scheme

using equations (3.26-3.28).
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As mentioned before, depending on the method of solution (mean-position or

time-dependent coordinate-transformation analysis), the solution obtained for the N­

S equations and applied for the stability analysis will be different in terms of the f1uid

forces obtained, but the final output, i.e., the displacement a:ld the velocity of the

moving boundary r.re always imposed as boundary conditions for obtaining the f1uid

force :F.

ln order to start the numerical integration of the coupied equations, the dis­

placement of the outer cylinder at t1 and t2 is set equal to E(t1) = E(t2) = Ea , away

from its equilibrium position. This displacement could be smaU or large, depending

on the method of solution. The other quantities, namely, velocity, acceleration and

f1uid force, are aU equal to zero. This means that the outer cylinder is stationary at

the first two time steps and there are no unsteady perturbations in the f1uid f1ow.

Then the structure is released, and the time integration is started. By imposing this

two-time-level displacement, the solution would foUow exactly the same three-time­

level scheme described in the previous chapters. For small displacements imposed as

boundary conditions to the cylinder, as well as for large displacements, it is assumed

that the mean f10w which exists before releasing the cylinder will remain the same as

that which exists in the equilibrium position of the cylinder, for E = O.

9.3 Numerical Results for 2-D Annular Geome­
try

For the stability analysis of 2-D annular geometries, we assume that the two cylinders

are concentric, infinite in extent and of constant cross-section; the inner radius of the

annulus is Ti and the outer one Ta. The outer cylinder has one degree of freedom in

translational motion; i.e., its axis always remains parallel with the axis of the inner

cylinder which is fixed.

Equation (9.1) can now be used to investigate the motion of the outer cylinder

in 2-D allnular f1ow; for convenience M is replaced by m, C by c, K by k and :F by f,
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where the lower case letters and j: stand for quantities defined per unit length of the

cylinder. The fluid force j: can be obtained from equation (2.16). For the 2-D stability

analysis, the same procedure as in Chapter 4 is applied in determining the unsteady

pressure and the velocity gradients given by equations (2.17) and (2.18). Also, since

no fluid flow is considered, the characteristic flow velocity used to nondimensionalize

equation (9.1) will be flnH, the dimensional natural frequency fln is delined by nn =

Jk/m and, as in Chapter 4, the Reynolds number used for numerical integration of

the fluid equations is given by Re = S = flnH2
/ v.

Given the characteristic length and velocity, equation (9.1) becomes

f = -2çÊ - e+ UF(E,Ê) , (9.20)

and equation (9.4) becomes

Wn = (k~=l,Y;;nnH
c

ç= 2Vkm'
pH2

U=--,
m

(9.21)

(9.22)

To make the effect of fluid damping clearly and easily visible, the structural

damping ratio ç is taken equal to zero. As initial condition, Eo =0.1 was taken; the

calculations were conducted with Cl.t = 211'/19, and only the narrow annular space

with ro =10 was considered. The unit of time ior aliligures presented in this chapter

will be the natural period, Tn , of the system, which is given by Tn = 21r /wn •

One of the important factors influencing the stability analysis through the so­

lution of, for example, equation (9.20) and similar ones, is the determination of the

value of u. Linearized potential flow theory provides the per unit length nondimen­

sional added mass, Um. for the geometry under consideration (Gibert 1986; Fritz

1972). This parameter is expressed as

pH2 1 E2 -1
Um =~ = 1rr2E2 +1 '

• 0

where m. is the dimensional fluid-added mass and E =ro/ri. Using equation (9.22)

and the value for u from equation (9.21). one obtains

•
um m
-=-
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which indicates the ratio of strJcturai mass to fluid-added mass.

To start the stability analysis, either this ratio must be known in advance, or

it must be chosen in such a way that a reasonable structural behaviour is obtained.

Practically, if the fluid is, for instance, water or another high density fluid, the fluid-

. added mass can become very important as compared to the mass of the cylinder.

When the fluid-added mass exceeds the structural mass, numerical difficulties may

arise. In this analysis, wc consider only cases where the fluid-added mass does not

exceed the mass of the structurej thus, the value of (J' in (9.20) is selected to be equal

to (J = om/2.O, corresponding to a structural mass m equal to twice the fluid-added

maliS m. determined by potential flow theory.

Figure 9.2(a) presents the time-domain history of the motion of the outer cylin­

der for different Reynolds numbers, and for potential flow as wel1, when the mean

position analysis is used. The structure is displaced by E = 0.1 and then released. For

the potential flow results, equation (9.20) was solved in which the fluid forces were

dctermined by linearized potential flow tb.eory. In fact, the potential flow theory re­

suit was used to ensure the validity of the procedure adapted for solving the coupled

N-S and structural equationsj by employing potential flow theory, one can obtain an

analytical solution, which in fact compares wel1 with the present numerical solution,

for the motion of the structure immersed in fluid.

In Figure 9.2(a), we sec that at a very low Reynolds number, Re =4, viscosity

dominates the solution and the cylinder motion is 50 highly damped that no oscil­

lations are possible: the system is overdampedj the cylinder monotonically regains

its equilibrium position, E = O. As the Reynolds number increases, Re = 200 and

Re = 20,000, damped oscillation develops. As the Reynolds number becomes larger,

the viscous solution gets doser to the potential flow solution (zero dissipation, and

hcnce zero fluid damping).

In Figure 9.2(b), comparison is made between the results obtained from mean

position analysis (MPA) and time-dependent coordinate-transformation analysis (TD-
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CTA). There are a number of points to be remarked upon in this comparison. First

of ail, as mentioned before, the f1uid force in MPA is velocity dependent vis-à-vis

the f1uid force in TDCTA which is both displacement and velocity dependent. This

is reflected in the fact that the frequency of the coupled f1uid-structure according

to TDCTA is increased vis-à-vis the frequency obtained from MPA; i.e., the added

f1uid-stiffness is positive. This can be verified (using Figure 9.2(b)) by calculating the

ratio of the natural damping frequencies, (Wn)rDCTA/(Wn)MPA = 1.3, as compared

with the ratio of damping ratios (OTDCTA/WMPA = 0.182. It is also noted that the

MPA results indicate more damping due to f1uid action than the TDCTA results;

in the case of TDCTA, the structure has the opportunity to really move and the

f1uid to accommodate structural motion, which may explain why the elfect of viscous

damping is less pronounced vis-à-vis the frequency increment. The results shown in

Figure 9.2(b) indicate the importance of taking into consideration the movement of

the boundaries when investigating the stability of the f1uid-structure systems even

for smail amplitude osciliations.

9.4 Numerical Results for 3-D Annular Geome­
tries

The geometries that we consider in 3-D consist of uniform and nonuniform annular

shapes shown in Figure 2.3. In translational motion, the configuration of Figure 2.4

(withot hinge) is used for stability analysis. The equation of motion of the system and

the associated numerical results are first presented for the uniform annular geometry,

when the outer cylinder is in translational motion in the plane of symmetry. Equa­

tions (2.16-2.18) and (9.3-9.4) arc used to study the time-domain behaviour of the

structure. As in 2-D analysis, the reduced mechanical damping, €, is neglected. The

Reynolds number appearing in the equations offluid motion is given by Re = 2UH/11.
Now, the value of (J should be determined before solving the equation of motion of the

structure. In potential f10w theory, the equation of motion of the oscillating cylinder
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can be written as (Mateescu & Paidoussis 1985)

(9.24)

where q2, ql and qo are the nondimensional added mass, added damping and added

stilfness, respectively. These parameters are given by

(9.25)

where M., C. and K. are dimensional added mass, added damping and added stiff­

ness. Then, for 3-D potential f1ow, one can find u from equations (9.4) and (9.24)

as
pH3 M. M. ( )

uq2 = M pH3 = M . 9.26

Once agdn, the mass ratio is selected to be M /M. = 2.0, and to lind u the

added mass q2 must be known. For this purpose, the coupled structural and potential

1I0w equations, similar to equation (9.24) but without the damping term, are solved

(Bélanger et al. 1993).

For rocking motion of the outer cylinder, considering small amplitude motion,

the lIuid force acting on the outer cylinder is not given by equation (2.16); rather, it

is obtaincd from

F( t) = [' (Trrlr=R. cos e - Trelr=R. sin e+ Trz Ir=R. dE~; x) ) R.de ,

whcre Trz is given by equation (2.15) as

(9.27)

•

Ill3 =Trz = II- (:~ +::) , (9.28)

and dE(t,x)/dt is obtained from equation (4.41). The moment of the f1uid force is

dcnoted by Mo in equation (9.2), or in nondimensional form by Mo in equation (9.5);

it cau bc obtaincd by ca1culating the moment about the hinge point of the distributed

lIuid forcc along the cylinder axis.

Equation (9.5) can be written in the same form as equation (9.24). Thus, for

rockiug motion of the outer cylinder, the final equation to be solved reads (Mateescu
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& Pàidoussis 1985,1987}

(9.29)

where
Jo CaH3 K aH4

q2 = pHS' ql = JU' q. = JU2 ' (9.30)

and as in equation (9.25), J., Ca and Ka stand for the added moment of inertia,

added damping and added stiffness of the lluid force, respectively.

To solve equation (9.29), one needs to determine u. By the same method

used for translational motion of the cylinder, we can define Uq2 = Jal J. Thus,

by preliminary calculation, q2 is obtained using potential llow theory (Mateescu &

Pàidoussis 1987).

The stability analysis for annular geometries other than uniform (such as backstep­

and diffuser-shaped) are implemented in the same manner, but for translational mo­

tion of the outer cylinder. For the annular geometry with a backstep, both the MPA

and TDCTA are used to calculate the lluid forces. For diffuser shaped annular ge­

ometries, only MPA is used. The results for ail three-dimensional analyses are shown

in Figures (9.3-9.5).

Figure 9.3(a) shows the time·evolution solutions for the displacement of the

vibrating outer cylinder for uniform annular geometry via MPA and TDCTA, when

Wn = 0.1 and Re = 200. The same behaviour of the structure is seen in Figure 9.3(a)

as was shown in Figure 9.2(b) for 2-D analysis, but there is more damping of the

motion due to lluid llow and shear stresses along the cylinder axis. Once again,

the natural frequency of the coupied lluid-structure system is increased in TDCTA

vis-à-vis MPA. Figure 9.3(b) presents the behaviour of the system when the bock·

step geometry is used, for w = 0.1 and Re = 200. Comparison between the MPA

and TDCTA results in Figure 9.3(b) indicates that, as for uniform annular regiolls,

TDCTA predicts less damping and a lluid stiffenning effect in the system for the

same imposed frequency and Reynolds number. Comparison between Figures 9.3(a)
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and 9.3(b) indicates that the system with backstep is less damped than for the uni­

form annular space, no matter whether using MPA or TDCTAi this is because the

lIow confinement in the former case is smaller over a portion of the system. Also,

when TDCTA is used, the natural frequency of the coupled system is increased more

in the uniform annular geometry than in the backstep one, for the same reason.

Figure 9.4(a) presents the behaviour of the system during rocking motion of

the outer cylinder, for w = 0.1 and Re = 250, for a uniform annular geometry. It is

seen that, the system initially appears to diverge, by falling from an angular displace­

ment () = 0.5729° to () = -5.0°, but it recovers its motion and then oscillates with

almost constant frequency, showing tendency toward oscillating about the horizontal

axis. The behaviour of the system in Figure 9.4(a) shows that after the cylinder is

released, initially undergoes a transient oscillation around an axis other than the hor­

izontal axis; however, it is seen that this is a short term behaviour and the cylinder

approaches a limite-cycle of oscillation.

In this respect, it should be noted that Iinearized (N-S) analysis can only pre­

dict linear stabilitYi i.e., either damping or divergent motion (oscillatory or static)i

since the nonlinear N-S equations are solved here, we can have nonlinear behaviour

predicted: in this case, a Iimit cycle.

Figure 9.4(b) presents the behaviour of the system when diffuser shaped annular

geometries are used. It is seen that, the coupied system is more stable and its

natural frequency is reduced when Ct = 6° than the system with Ct = 20°. This,

however, might not be so for other f10w and geometrical conditions of the system

than those investigated here. Figure 9.5 presents a comparison between the stability

analysis results obtained for translational motion, for ail types of annular geometries

mentioned when w = 0.1 and Re = 200. It is seen, that the most stable (most highly

darnped) system is the uniform annular system and the least stable is that involving

a backward step.

The final points that should be remarked are that the results obtained are

285



•

•

for a specific natural frequency of the structure, as weil as for a specific Reynolds

number and annular gap width. Also, the effect of the fine or coarse mesh on the

solution ofthe N-S equations needs special attention. In the 3-D analysis, the results

presented were for cases where extension of the extremities of the fixed upstream

and downstream cylinders were not considered. It is obvious that the behaviour of

the systems would be different when each one or the combination of the parameters

mentioned is changed, e.g. through equations (9.4,9.6,9.21,9.25,9.30). This task needs

a comprehensive parameter study, which is beyond the scope of this Thesis; can be

considered as a possible extension of this work in the future.
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Figure 9.1: Schematic diagram showing the system considered for stability analysis.
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Chapter 10

Conclusion

10.1 General Conclusions

•

This Thesis takes several major steps in the solution of anllular flow-induccd vibra­

tion problems. The main step in the theoretical investigation was the development

of the numerical method of solution of the full nonlinear Navier-Stokes equations for

laminar flows based on a time-dependent coordinate trans/onnation, in different an­

nular geometries. The second step, was the numerical solution of the fluid equations

in axially variable annular geometries (diffuser type). The third step was the car­

rying out of a comprehensive set of experiments to validate the theories devcloped,

again for different annular geometries, with quiescent fluid or fluid flow in the lami­

nar regime. Experiments were also conducted in the turbulent rcgime, which will be

useful when the theory is extended to deal with turbulent flows. The last step was

the time-domain study of the fluid-structure interaction and stability analysis for all

annular geometries considered in this Thesis.

The most important contributions of this Thesis are presentcd in Chaptcr 6,

where the time-dependent coordinate trans/onnation analysis was introduced in this

work. To solve the flow-induced vibration problems in annular regions, the mov­

ing domain was transformed to a fixed computational domain by using appropriate

transformation equation~. Then, the time-integration of the incompressible lami­

nar N-S and the continuity equations was effected by using the method of artificial
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comprcssibility in conjunction with a three-point backward implicit real-time dUrer­

encing scheme on a fixed domain. After the semi-discretization, artificial pseudo-time

derivative terms were added to the equations, including artificial compressibility in

the continuity equation, and the solution was advanced from one real (physical) time

level to the next by integrating in pseudo-time until steady state was reached. The

equations were cast in delta-form after dilferencing the pseudo-time derivatives by

using an Euler scheme. The solution was effected by using the Approximate Fac­

todzation and AD! techniques, anJ finite differences were used in which the spatial

differential operators were written on stretched staggered grids.

Introducing the idea of time-dependent coordinate tmnsformation in FIV anal­

ysis of annular geometries having either uniform or nonuniform annular passages

enables handling of different modes of the motion of the outer (or inner) cylinder (in­

cluding shell motion, which of course was not the topic of this research). When the

limitation imposed on the motion of the structure is removed by a time-dependent

coordinate tmnsformation, the flexibility of performing better and more extensive

studies on the subject of FIV is enhanced. The results obtained by using the Ume­

dcpendcnt coordinate tmnsformation analysis for both uniform and nonuniform an­

nular geometries were more realistic, and hence in better agreement with experiment,

than those obtained flom mean-position analysis. The unsteady pressures obtained

were appreciably higher than those predicted by mean-position analysis, and the

phase angles of the unsteady pressure with respect to the displacement of the outer

cylinder are clearly different in the time-dcpendent coordinate tmnsformation analysis

thall in the mean-position analysis, specially when the flow velocity is high (in the

Ia.minar range).

Another basic objective of this research was fulfilled in Chapter 5 which was

dedicated to the study ofaxially-variable geometries, which can develop flow-induced

vibrations; it is reealled that several sueh problems have been encountered in different

industries. The annular geometries with diffuser sections of half-angle 6· and 20·,
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which are of interest to researchers, were studied. The unsteady pressures obtained

by the present numerical solution in the annular space after the diffuser section, which

predicts pressure recovery, were in good agreement with the findings of other investi­

gators. It was shown that, the pressure recovery is more pronounced for diffusers with

small half- angles than those with larger ones as weil as for the backstep geometry.

This pressure recovery, as discussed previously, is a major factor in the stability of

the system.

The next important objective of this Thesis was the implementation of a com­

prehensive experimental study of the system, which were successfully performed and

the results obtained were presented in Chapter 8. The primary concern regarding

experimental investigations was the validation of the numerical results obtained from

two approaches (mean-position and moving-boundary). This chapter, also, presents

another important step taken toward the future extension of this work by presenting

the collected data in the turbulent regime. The set of data obtained (both laminar

and turbulent) were processed and analyzed. The comparison was made between the

experimental results for different nonuniform annular geometries, which clearly indi­

cated different trends of the unsteady pressure in various annular shapes and regions.

The final conclusion about this comparison is that the time-dependent coordinate

transformation analysis agrees better with the experimental results and is therefore

recommended for future FIV analyses in annular configurations. AIso, the theoretical

rocking motion results are in excellent agreement with the experimental results both

in terms of unsteady pressure and phase angle.

In ail cases considered, the solution of the full nonlinear N-S equations provides

the opportunity of obtaining more accurate unsteady pressure and phase angle than

could be obtained otherwise by linearized solution of these equations. The extension

of the range of Reynolds number from 250 to 2900 (Iaminar regime) was another out­

come of using the full N-S equations. For time-dependent coordinate transformation,

mean-position and annular flow with axially variable geometry analyses, the bound-
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ary conditions were modified in such a way as to reduce the pressure and velocity

perturbations (to the extent possible) emerging Crom the extremities oC the system,

specially when there is no fiuid fiow.

The numerical procedure was applied, Cor the first time by the present method oC

solution, to the rocking motion oC the outer cylinder. The results obtained were grat­

iCyillg, specially since they were in excellent agreement with the experimental results

which was reCerred to in the associated paragraph. It is concluded that the mean­

position analysis can be used in rocking motion study oC the annular fiow, provided

that the amplitude oC oscillation is appropriately small. AIso, Cor the nonuniCorm

annular geometry (backstep), the rocking motion results predict Cavourably well the

behaviour oC the unsteady pressure in the annular space.

OC course, as shown in Chapter 7, sorne oC the results presented are not Cully

convergent, berause oC practical difficulties. Nevertheless, the work in that chapter

shows that the discrepancy is not large enough (Cor instance, less than 3% as shown

in Figures 7.2 and 7.4) to invalidate any oC the results presented.

Finally, the theoretical models presented were used to predict the behaviour

oC the structure (outer cylinder) when it is set in motion Crom rest. The coupling

oC the unsteady fiow and structural equations was performed through a Courth-order

Runge-Kutta scheme to integrate the equation oC the structure under the combined

action oC mechanical Corces and fiuid Corces. The fiuid Corces were obtained by solving

the N-S equations by two approacnes: mean-position and time-dependent coordinate

trons/annatian analyses. The stability oC the system was analyzed Cor: (i) transla­

tional or rocking motion oC the outer cylinder; (ii) in different annular geometries. It

was shown that, the behaviour oC the outer cylinder using time-dependent coardinate

trons/annatian analysis can be physically more deterministic (since the displacement

oC the outer cylinder is considered during stability analysis) than that predicted by

lIlean position analysis. The Saffie conclusion was reached when the annular geometry

involves a backward Cacing step.
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For the cases, where the annular space is uniform and the oute~ cylinder moves

in rocking motion, it was shown that for the specifie conditions imposed on the sys­

tem, the structure initially has a transient motion around an axis different from the

horizontal axis. After several cycles of oscillation, this behaviour of the struct'ue is

changed and the cylinder continues oscillating around the horizontal axis, indicating

lIutter and the establishment of limite-cycle motion. In the study of the stability

of the system containing the diffuser shaped annuli, it was found that t~e strur.ture

with small-angle diffuser is more stable than the one with large-angle diffuser. Lastly,

another important point was reached in the stability analysis when comparison was

made between different annular geometries. It was shown that for translationlÙ mo­

tion of the outer cylinder, among the geometries considered and under the imposed

initial and boundary conditions, the most stable system (relatively) is the onp hll.ving

uniform annular geometry and the least stable one is the geometry having a backstep.
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This work couId be used to launch future investigations in the field of FIV with

annular (or even axial internai or external) f1ows. It was shown that the foundation

is lirm and reliable; however, like any such work, it does not cover ail aspects of the

problems delined in this field of interest. This Thesis has made the following major

contributions to knowledge:

(a) Development and implementation of the method of solution for fiuid f10w

equations (full nonlinear Navier-Stokes equations) based on the time-dependent co­

ordinate trons/onnation for laminar fiow in annular geometries.

(b) Unsteady f10w solutions have been obtained for axially-variable geometries

by integrating the Navier-Stokes equations using a mean-position analysis.

(c) Extensive experimcntal investigationsofforced vibration ofthe structure in

order to obtain the unsteady pressure and its phase angle to be compared with the

theorctical results, and also the collection of the experimental data in the turbulent

rcgime.

(d) Study of the dynamical behaviour of the structure, under the influence of

the f1uid-structure interaction, based on the theoretical models developed, and a case

of limit-cyc1e motion was found.

Other contributions are:

(e) Modification of the mean-position analysis by considering the full nonlin­

ear Navier-Stokes equations in order to obtain more accurate solutions for small­

amplitude oscillations (translational or rocking motion) and/or larger Reynolds num­

bers.

•
10.2 Contribution to Knowledge
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10.3 Future Extension ofthis Research and Sorne

Recornrnendations

•

As one notices in the previous section, the originality of the work done in this Thesis

provides the opportunity of extending the formulation and the results of the exper­

iments presented here to the other FIV problems. Clearly, more work is necessary

on any individual topic in order to make it applicable to the wide range of prob­

lems encountered in science, engineering and other fields (e.g., in medicine) involving

lIuid-structure interactions. The following topics which could be the continuation of

this research were classified as follows.

Theoretical Work

(i) The numerical procedure presented here can be uscd with dilfcrcnt boundary

conditions representing practical intercstj

(ii) the numerical model (time-dependent cooniinate trons/ormation) can be

used to solve shell motion in FIV prublems;

(iii) the numerical models can be modified to predict the: unstcady pressure for

nonuniform annular gcometries with lIuid 1I0ws of higher Reynolds number (which

couId not be implemented in this research)j

(iv) the numerical models can be used for parametric studies such as the elfects

of the mesh size and the number of grid points as weil as the number of real-time

steps (to investigate and improve convergence), Reynolds number, annular gap width,

the length of the oscillating cylinder, length of the fixed upstream and downstream

portions, higher amplitudes of oscillation, higher frequencics of oscillation, rocking

motion with different position of the hinge point, annular regions with different ge­

ometries or combination of the geometries, eccentric cylinders instead of concentric

ones, combination of translational and rocking motion of the outer cylinder, etc., on

the solution of th N-S equations in the annular regionj

(v) modification of the numerical model to minimize the pressure perturbation

at the fixed portions as weil as using large memory and faster computera to obtain
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more converged solutions;

(vi) theoretical stability analysis of the systems can be done for dilferent an­

nular gap width, Reynolds number, amplitudes of oscillation of the outer cylinder,

frequencies of oscillation of the cylinder, dilferent mesh sizes, dilferent positions of

the hinge point (in rocking motion) and dilferent geometries.

Experimental work

(i) Experiments with nonuniform annular geometries in rocking motion;

(ii) experiments with uniform or nonuniform annular geometries having eccen­

tric cylinders for both translational or rocking motion of the outer cylinder;

(iii) experiments for the combination of the nonuniform annular geometries;

(iv) experiments for circumferential measurements of the unsteady pressure at

different circumferential angle, (}, for both concentric and eccentric cylinders, using

either uniform or nonuniform annular spaces;

(v) experimental studies for all the cases mentioned with more pressure trans­

ducers to be mounted along the centre-body in order to obtain more experimental

data, and if possible implementation of the experiment with water by modification

of the present apparatus appropriate for that purpose;

(vi) more studies regarding the end gaps between the moving and fixed cylinders;

(vi) experimentation with better facilities for fluid flow measurements (in such

a narrow annular space), and on a much more solid foundation (free from mechanical

vibration) to have more accurate results free from extraneous factors;

(vii) finally, implementation of flow visualization by using appropriate equip­

ment to see the patterns of the fluid flow in such narrow annular spaces during motion

of the outer cylinder.
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Appendix A

Discretization of the
Navier-Stokes and Continuity
Equations in 2-D and 3-D on a
Staggered Mesh

With reference to Figures 4.8 and 4.9 and using equations (3.13) and (3.15), the

discretized form of the N-S and continuity equations can be written on a staggered

mesh. For 2-D problems, Figure 4.9 applies, whereas for 3-D problems both figures

are used. Note that if the 2-D solutions in the T- and x-directions are required, then

Figure 4.8 must be used instead of 4.9 for defining !:1 and 'il. In this analysis, the

2-D equations are discretized in the T- and 8-directions.

By looking at Figure 4.9 (or Figure 3.2), the central !:1 and ba.ckward 'il differ­

ence operators are defined for the 2-D problem as

!:1TI!' = v v !:1T~ = lU lU

J Tj - Tj_l , J Ti+! - Ti '
(A.l)

'ilTI!' = r1f' - Tt! 1 'ilT~ = v lU

J J J-' J Ti - Ti .

The discretized forms of (Qv)i,k, (QIU)i,k and (V·V)i,k using these operators are given

by equations (3.21-3.23), where the linear interpolates of the velocity components on

the staggered mesh are defined by

•
rd _ 'ilTi vi-I,k + 'ilTi Vi,k

Vu - !:1 lU
Ti

A-l

(A.2)
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6/ _ Vj,k + Vj.HI

V. - 2

ru Vi,A: + Vj,k+l
Vw = 2

6/ _ 'ii'rj Vj-I,HI + 'ii'rj Vj,k+l
Vw - b. wrj

6b _ Vj,k +Vj,k-l
, Vu - 2 '

V9b = 'ii'rj Vj_I,k + 'ii'rj Vj,k

w b.r"!'
}

(A.3)

(A.4)

(A.5)

6b = 'ii'rj+l Wj,k-l + 'ii'rt Wj+l.k-l (A 6)
w" l:1 v ' .rj

ru 'ii'r}'!'+l Wj,k + 'ii'rj Wj+l,k
W = -"'-"-''--',,-,-::-:::-,'--':'"';'''''':'''

w b.r~
}

6/ _ Wj.k+l + Wj,k
Ww - 2

rd 'ii'rj Wj-l,J: + 'ii'rt_l Wj.k

Ww = li. " 'uri-l

6b Wj,k + Wi,k-I
, Wu> = 2 .

(A.7)

(A.8)

The tenns Vw and W. appearing in equations (3.22) and (3.23) are given by

1 ['ii'r~ 'ii'r'!' ]
Vu> = 2 b.rr (Vi-l,k +Vi-I.k+l) + b.rr (vi,J: + Vi,k+l) ,

1 ['ii'r~ 'ii'r'!'+l ]
W. = 2 i;; (Wj+l,k + Wj+l,k-tl +~ (Wi,k + wi.k-tl

The symmetry boundary conditions applied at 8 = 0 and 8 = 1l' and mentioned

in Chapter 4 for 2-D analysis can easily be seen in Figure A.l.

OV'I OV'2 OV'3), }, }.

OPi,1 DWi.1 OPi,2 DW'2 Opj,3 DW'3}. }.

1 1 1 1 1 1
8· 8U> (J. 8; =0 8u 8U>

1 1 2 3 3

Figure A.l: Diagram showing the symmetry boundary conditions applied at 8 = O.

Having obtained ail these tools, now the discretized forms of the momentum

and continuity equations are written for different sweeps.

The r-, 8-momentum and continuity equations in the r-sweep:

A·2
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The r-momentum equation (4.25) can be written in dilferenced form as

with the fo\lowing expressions for ~v's and ~p's

V'rj'+I'Eiij,k + V'rj+!'Eiii+!,k

~rj+!

V'rj'Eiii-I,k +V'rj'Eiij,k
~r'!'

}

_ ~T ~T (- -)
~Pi,k - -TV" Vi,k - 6r'!'~r'!' r;~vi,k - r;_l~vi-I,k ,

} }

- ~T ~T (u - u- )
~Pi+I,k - --6V'. Vi+I,k - ~ .. ~.. ri+l~vi+l,k- ri~vi,k .

tri+! ri+!

(A.9)

(A.10)

(A.11)

(A.12)

The equation obtained from equation (A.9) using equations (A.2), (A.IO) and (A.11)

is equation (4.31). Proceeding as with the r-momentum equation in the r-sweep wc

can write the O-momentum equation (4.26) in dilferenced form as

~Wi,k +

(A.l3)

(A,14)

•

with the fo\lowing expressions for the ~w's:

~u V'rj+l~wi,k+ V'rj'~wi+I,k
~w.. = ~r~ ,

}

~d _ V'rj~wi_l,k + V'r;_I~wi,k .
6.w.. - ~ u • (A.l5)

ri-I

with the help of (A.4), after rearranging the terms one obtains cquation (4.32).

A-3
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The T-, O-Momentum and continuity equations in the O-sweep:

The solution in the O-sweep will be done in similar manner as in the T-sweep.

The T-rnomentum equation (4.28) in the O-sweep can be written in differenced form

as

_..!... (t.V;.k+l + t.V;,k-l - 2t.V;.k + 2Tj B(t.W;,k+l - W;,k))] = t.v' L

Re T~ t.O Re T~2 J.- , (A.16)
J J

with the foilowing expressions for the t.v's:

A 01 _ t.V;,k + t.V;,k+l
uVv _0 2 '

t.VOb = t.Vi,k + t.V;,k_l .
·2'

rearrallging the terms to obtain the corresponding coefficients for t.v's in the tridiag­

ollal matrix solver, one obtains equation (4.33). Progressing as with the O-momentum

equation in the T-sweep explained in the previous section, the O-momentum and con­

tilluity equations (4.29-4.30) are written in differenced form as

(Jt.r [°1 01 Ob Ob ( )(1 + t.r) t.W;,k + T'j't.O w'" t.w", - w'" t.w", + t.Pi,k+l - t.Pi,k

_ t.W;,k+l + t.W;,k_1 - 2t.wi.k _ 2Tf B(t.Vi,k+l - Vi'k)] _-.
Re '" A il R .2 - t.WJ.k ,

Ti ""'u e Ti

with the foilowing equations for the t.w's and t.p's:

(A.17)

•

t.WOI =
t.wi,k+1 + t.wi,k

(A.18)
'" 2

t.wOb =
t.Wi,k + t.W;,k_l

(A.19)'" 2
- t.r t.w· k - t.w· k 1

t.P·k - 6. J, JI - (A.20)J. Pi,k - T T'I' t.O
J

t.Pi,k+l - t. t.r t.Wi,k+l - t.Wi,k
Pi,k+1 - T r'"t.O;

Rearrallging the terms in equation (A.l7) will provide equation (4.34). Ail these

equations arc obtailled with the help of equations (A.2-A.8) .
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For 3-D solution of the problerns, the central ti. and backward V dilference

opcrators, using Figures 4.8 and 4.9, are delined as

A U _" uuTi - Tj - Tj_l ,

Vx~ = x~ - x~• 1 • ,

Vrj = r'J - rj_l 1

~xr = xr - Xj_l ,

ti.ri = ri+1 - ri '

Vri = ri - ri·

(A.21)

(A.22)

(A.23)

(A.24)

Equations (4.42-4.45) are thus discretized as follows wherc we have, lirst for Q.(u, v, w, p)

1 { rU r~ 1 }]
- _1- (u' '+1 k - U, 'k) - --l.:- (u' 'k - U' '-1 k)
R A V 'ù 1 ·101, A v .". 1'" 1e urj Urj_1

(A.25)

+
U, 'k+1 + u' 'k 1 - 2u' 'k1,1. 'J. - IJ.

Re (rj)2(ti.9)2

with the interpolates delined by

Uzf -. - Vxi+1 UiJ,k + Vxi+l Ui+1J,k

ti.x i+1

zb Vxi Ui-IJ,k +Vxi UiJ,k
Uu = A V 1

uXi
(A.26)

ur. = Vrj+1 UiJ,k + Vrj UiJ+1,k
• ti.r~1

rd _ Vri UiJ-l,k + Vrj_1 UiJ,k
,UU- AV 'Urj_1

(A.27)

• A-5

(A.28)

(A.29)

(A.30)



•
The term Qu{u, v, w,p) is given by

I {V"+I"k - v" "k V""k - V"-l ok}]_ 1 J, 101, _ IJ, • d.

Re ~xr ~x~1

=--;l....",~ [Vi j 'k+l +Vij,k-l - 2 Vij,k _ 2 w~1 - w~b _ "" ]
Re {rj)2 {~e)2 M V,,},k

where the fol1owing interpolates were used

(A.31)

.b Vxr Vi-lj,k +Vxf_1 Vij,k
Vu = ~x~ ,

,-1
(A.32)

ru Vrj+l Vij,k + Vrj+l Vij+l,k
Vu = Ar" '

'-" j+1

rd _ Vrj Vij-I,k + Vrj Vij,k
V" - li. 11 'rj

(A.33)

81 _ Vij,k +Vij,k+l 8b Vij,k +Vij,k-I
V. - 2 ,V. = 2 ' (A.34)

url = Vrj+l Uij,k + Vrj Uij+l,k
u ~r~

"'

u.b =Vrj+l Ui-Ij,k + Vrj Ui-lj+l,k
• ~r~

1

(A.35)

•
81 _ Vrj+l Wij,k +Vrj Wij+l,k 8b _ Vrj+1 Wij,k-I +Vrj Wij+l,k_1 .

W. - ~ • , W. - ~r~ ,
rj 1

A-6
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(QU/)iJ,k =

+

•
and Qw(u,v,w,p) is computed as

_1_ [u" w,
'

_ u.b w.b
~x~ tu tu tu tu

•
1 (W'+l' L- W, 'L W' 'L - W'_l 'L)]_ 1 Jo" '.,],1\: _ 1..1.... • ,J."

Re ~xr ~xr_1

1 [T~ vruwru _ rt! vrdwrd
rl:l ~rl:& 1 tu tu )-1 tu tu

) )

...!... {.!L (W' '+1 L- W' 'L) - rj_l (W" L- W' '_1 L)}]
R A" 1'" ,,," 1..1."" A li IJ.1Ii: 1'" ,Il;e W.ri W.ri_l

1 [(W~)2 - (w~)2 +PiJ,k+l - PiJ,k + ]+ r~ ~() VU/ WiJ,k
)

1 [WiJ'k+l +WiJ,k-l - 2 WiJ,k 2 v~ - v~ ]
Re (rj)2 (M)2 + M - WiJ,k

with the help of the fol1owing interpolates

(A.37)

Wru = Vrt+l WiJ,k +Vrt WiJ+l,k
tu li.r'!

)

.b _ Vxf Wi-lJ,k + VXf_l WiJ,k (A 38)
, W w - 6.x" .

•-1

rd _ Vrt WiJ-l,k +Vrj_1 Wi,j,k (A 39)
, Ww - Ilr"! .

)-1

BI _ Wi,j,k+l +Wi,j,k
WU/ - 2

VBI = Vrt Vi,j,k+l +Vrt Vi,j-l,k+l
U/ ~r~

)

.1 _ UiJ,k +UiJ,k+l
Uw - 2

Bb Wi,j,k +Wi,j,k-I
, W w = 2 '

rd Vi,j-l,k + Vi,j-l,k+l
, Vw = 2 '

Bb _ Vrt Vi,j,k +Vrj Vi,j-l,k
, Vw - Ilrl:l '

)

zb Ui_I,j,k + Ui-I,j,k+l
, U w = 2 ;

(A.40)

(A.41)

(A.42)

(A.43)

•

final1y, the continuity equation V . V in discretized form is obtained as

• •(V. V)i 'k = Ui,j,k - Ui_l,j,k + ri Vi,j,k - ri-l Vi,j-l,k + Wi,j,k - Wi,j,k-l
,J, ~x~ r~ f),.r~ r~ f),.()

1 J J J

In equations (A.31) and (A.37) the terms Vw and Wu are given by

VU/ = ~ [~~~ (Vi,j,k +Vi,j,k+tl + ~~~ (Vi,j-I,k + Vi,j-I,k+tl] 1

A-7
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• The solution of Navier-Stokes equations can be obtained by introducing dif­

ference expressions like those of (A.25), (A.31) and (A.37) in the left-hand sides

of equations (4.46-4.57) to obtain the discretized forms of r-,(J- and x-momentum

and continuity equations in the r-, 9-, and x-sweeps. The discretized forms of the

equations are similar to those obtained for 2-D discretization, except that now we

have additional equations in the x-sweep which gives the final values for ~u. The

lIlethod of solution using t.he discretized equations was described in Chapter 4 and

the discretizcd equations in the form of tridiagonal matrices are given here as

The x-momentum equation in r-sweep:

(AAS)

•

the r-momentum equation in r-sweep:

- [f3~T { d"r~ r~} f3~T2r~ 1 ]~Vi' 1 k -- -r~Vr.:....:...L _ l _ l-
v-, r~~r~ l u ~r? Re~r? ér?~r?~r~

l l l l J J J

(AA6)

A-S
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the II-momentum equation in r-sweep:

the continuity equation in r-sweep:

The x-momentum equation in II-sweep:

- {PM[ 0_(1) 1]}
l.uij,k_l r'JôlI -wu ,2 - Rer'JÔII

- { {Jôr [ 0+ (1) 0- (1) 2]}
+ÔU;';,k 1 + r'JM Wu 2 - Wu 2 + Rer'JôlI

- {(Jôr [0+(1) 1]}-+ ÔUij,k+l r'JôlI Wu 2 - Rer'JôlI = ÔUij,k;

the l'-momentum equation in II-sweep:

- {(JÔ7[ 0_(1) 1]}
ÔVij,k-l r'JôO -w. 2 - RerJôlI

(A.47)

(A.48)

(A.49)

•

- { {Jôr [ 0+ (1) 0- (1) 2]}+ÔVij,k 1 + rJM w. 2 - w. 2 + Rer)'M

- {pôr [ 0+ (1) 1]} - 2(ÔWij,k+l - ÔWij,k) .
+ ÔV;';,k+l r'JôlI w. 2 - Rer'JôlI = ÔVi';,k - Re r'JôlI 1

tA.50)

the II-momentum equation in II-sweep:

- {(Jôr[ 0_(1) Ôr 1 1]}
ÔWi';,k_l r'JôlI -Ww 2 - T r'JM - Rer'JM

A-9
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•

+ÔW;J.k {1 + ÔT + ~~~ [W:+ G) -W~- G) + ReT~Ô(J + ~T Tj~(J]
(3ÔT (3t>., }+--+--V",
ReTu~ T~

] )

+ÔW;J.k+1 {~~~ [W~+ G) -~T rj~(J - ReT~Ô(J]}
- (3ÔT (- -) 2 (ÂV;J.k+1 - ÂV;J.k) .

= ÔW;J.k - U A(J ÂPiJ.k+1 - Âp;J.k + Re T~Â(J ,
T] 1-> )

the cOlltilluity equation in (J-sweep:

- - ÂT 'lIWiJ.k - 'lIWiJ.k- 1
Âp;J,k = ÂPiJ,k - 6 r~Â(J

)

The x-momentum equation in x-sweep:

{
(3ÂT[ _bV'xr 1 ÂT]}

ÂU;-IJ.k Âxr -uu ÂXY - ReÂxr - 6ÂxY

the r-momentum equation in x-sweep:

Â { (3ÂT [ _, V'XY+l _b V'xr_l 1 1]}
+ ViJ,k 1 + -Â-X-Y UV Âxr - Uv ÂXr_l + ReÂxr + =R-e""'Â-x""'r_-1

+ ÂVHIJ,k {~; [u:' ~:~ - Re~xr]} = -Â-V;J,k i

the (J-momentum equation in x-sweep:

Â {(3ÂT [ _b V'xy 1]}
Wi-IJ,k '" ~ -u",A~ - Re'" ~

~x. uX._l uX._l

A-I0

(A.51)

(A.52)

(A.53)

(A.54)
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•

{
{36.r [ rI V'Xi+1 rb V'xr_l 1 1]}

+6.W;J,k 1 + A v U w~ - U w~ + R 6. • + R 6. •
uX, uX i uXi_l e Xi C Xi_l

{
{36.r [ rI V'xr 1]}_

+ 6.W;+IJ,k 6.xi U w 6.xr - rte6.xr = 6.W;J,k ;

the continuity equation in x-swcep:

- 6.r 1
6.P··k = 6.P··k - -- (6.U··k - 6.u· 1 'k)'J. 1,J, fJ ~x~ IJ, 1-"',·

•

A-ll

(A.55)

(A 56)
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Appendix B

Discretization of 3-D Equations
Time-dependent Coordinate
Transformation Solution

•ln

In the fo\lowing discretized equations the rearranged form of the transformation equa­

tion (6.1) to define r" in the physical domain is

r" = r~(O, t) + Ri.

This equation is used to define the fo\lowing equations at each eomputational

point rU = r W and rU in the staggered mesh as

RV; = rU~(O, tl + Ri, (B.1, B.2)

where clI(0, t) was defined in chapter 6. Note that in all the fo\lowing derivations

of equations the superscript has been deleted from the terms for simplicity, and it

should be borne in mind that the equations are written in pseudo-time.

Then, the coutinuity equation (6.11) is discretized as

t!.r
--('\7. V)'k =6 IJ.

t!.r [(Uij'k - Ui-lj,k) + A (RV;Vij,k - RV;-IVij-l,k)
6 t!.xr RUjt!.r'J

•
+ Brj_l (Wij,k - Wij-l,k) + (Wij,k - Wij'k-d] (B.3)

RV;_It!.rj_l RUjt!.O'

and the r-momentum equation (6.17) is discretized to implement the radial sweep for

B-1
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( -.. d-'d)] {3tlrr'JC (- - )+rjB w~· tlv. - w~ tlv. + tlr~ tlVi,j,k - tlVi,j_I.k

1

A2{3tlr
ReRVj!lrj [

RU."(~t'..+lk-tlV.. k) RU·(tlV··k-tlV·· Ik)]J •• \ IJ 1 IJ, _ J .". I,J- •

tlr'J+I tlr'J

(B2 + D){3tlrr'j (&;;,j,k - &;;,j-I.k)

Re RU/tlr'j

B 2{3tlrr'j2 [(&;;,j+l'k - &;;,j,k) _ (~;,j,k - &;;,j-I.k)]

ReRVj2tlrj tlr'j+l tlr'J

_ B{3tlrr'j ((&;;,j'k - &;;,j-I,k) _ (&;;,j,k-I - &;;,j-I,k-I)]
ReRV~tlO tlr~ tlr~
111

2B{3tlrrj_1 (- - ) {3tlr&;i,j,k
+ ReRV.2tlr~ 1 tlW;,j,k - ~W;,j-I.k + ReRV2

1 1- 1

A{3tlr (- - \
+ tlr~ tlPi,j+I,k - tlp;,j,k) = tlr (E. n - V - {3Q.)i,j.k .

J

The terms &;:". and &;:d appearing in this equation are evaluated as

(B.4)

while the terms tlPi,j,k and tlp;,j+l,k are obtained from continuity equation (6.19) as

• B-2

(B.5)

(B.6)



(B.7)

•
linally the component -{Jt.rQ. of the vcctor Q in equation (3.11), considering (3.12),

is discretized as

( (J A Q ) {Jt.r [ '/ '/ ,b ,b 1 {Vi+IJ,k - ViJ.k ViJ,k - Vi-IJ,k}]- ur .. = --- u v - u v - - -• 'J,k t.x~·· •• Re t.x~ t.x~
1 1 .-1

C{JMrj ) {Jt.r [A RU ru2 A RU rd2
- t.rU (ViJ.k - ViJ-I.k - RV.t.r~ . j+IV. - . jV.

) } }

A2 {RUj+1 RUj }] A{Jt.r--R t. u (ViJ+I.I, - ViJ.k) - A ~ (V;J.k - ViJ-I,k) - t. ~ (PiJ+I,k - PiJ,k)
e rj +1 ur} r}

_ B{Jt.rrj ( ru ru _ rd rd) + {Jt.r [(B
2+ D)rj (V;J.k - V;J-I,k)

RVt.r~ W. V. W. V. Re RU~t.r~
} } } 1

B2r~2 (v. '+1 L- V· .L V· .L- V·· 1 L)+ J 'ù ,1\; 'J,"" _ 'J,1t' .,,- t""

RVJt.r'j t.r}'+1 t.r}'

Br}' (ViJ.k - ViJ-I.k _ ViJ.k-1 - ViJ-I,k-l)
+RV/t.(J t.rj t.r'J

+_1_ (ViJ.HI + ViJ,k-1 - 2ViJ.k _ 2w~/ - w~b
RV~ t.(p t.(J - ViJ,k

)

Br~ ) ] {Jt.r (WB/vB/ _ wBbvBb )
-2 t.rJ=: (WiJ,k - WiJ-l,k) - RV; •• t.(J • • - w.

2
,

where

1 ['ilr~ . 'ilr\l ]
W,. = 2 i1 ~WiJ+I.k +WiJ+l.k-d +~ (WiJ,k + WiJ,k-d .

Now. using equation (B.5) and (8.6), equation (6.17) in discretized tridiagonal

form can he written as

- [A2{Jt.rRUj (B2+D)fJt.rrj
t.V;J-I,k - ReRV}.t.r~t.r~ + ReRWt.r~

1 1 1 1 ReRVJt.rj t.rj

A2{Jt.r2RV;_1
6RUj t.r}'t.r'j

• B·3
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t:!..V""k +'J,

1 (t:!..Vi';'k+l + t:!..Vi,;,k_i - 2t:!..Vi';'k)] -
_. Re RV,.t:!..9 = t:!..Vi,;,k ,

1

where the terms t:!..v91
and t:!..V

9b
are obtained from

(B.9)

•

ThereforE', equation (B.9) in tridiagonal form is written as

- { f3t:!..r ( 9b (1) 1]}
t:!..Vi,;,k-i RYjt:!..9 -w. 2 - ReRYjt:!..9

- { f3t:!..r (9/(1) 9b(1) 2]}+t:!..Vi,;,k 1+ RYjM w. 2 - w. 2 + ReRYjM

- .. {f3t:!..r (91(~)_ 1 ]}_-..+ t:!..V.J.k+i RYjt:!..9 w. 2 ReRYjt:!..9 - t:!..V'J.k •
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•
The discretization of r-momentum equation (6.25) in the x-sweep, using the

rcsults of equation (B.I0), yields

llv' 'k + Pllr{ur/ llvr/ _ urbllvrb
1.). 6x~ tI tI tI tI

1

(B.ll)

where the terms llv;;! and llv~b are obtained from

•

Hence, equation (B.ll) in tridiagonal form is written as

{
Pllr [ d VxF 1]}

llVi-IJ.k llxf -uu llXr_l - Rellxr_1

{
pllr [ r/ VXf+l rb VXr_l 1 1]}

+llViJ,k 1 + llxf Uu llxr - Uu llXr_l + Rellxr + Rellxr_l

+ llVi+1J,k {~~; [u~/ ~=~-Re~xr]} = llViJ,k' (B.12)

The same procedure is applied to discretize the 8-, x-momentum, and continu­

ity equations (6.18, 6.22, 6.26) and (6.16, 6.20, 6.24), respectively. The discretized

equatiolls arc given here without further explanation.

Discretized 8-momelltum equation in the r-sweep:

u( ru - ru rd - rd)] Cpllrr'j_l (- - ) pllrvw"SWiJ,k
+Brj Ww llww - Ww llww + llrj_1 llWi,j,k - llWiJ-l,k + RU;

(B2 +D)pllrrj_1 (- - ) 2Bpllrr'j (- _ )
- R RV2 II ~ llWiJ,k - llWiJ-l,k - ReRU~ll ~ llViJ,k -llVi,j-l,k

e J-I r.. _1 J rJ

2 2 - - - -B pllrr~ (llW' '+1 k -llw· 'k llw· .k -llw·· 1 k)_ J 'J. 'J. _ .",. 1..1- t

ReRUlllrj llr'j llrJ_l

_ Bpllrr'j_l ("SWiJ,k - "SWi,j-l,k _ "SWiJ,k-l - "SWiJ-1,k-l)
ReRUIM llr'j llrJ_l
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•
_. A2{3t::.-. l-R\Ij (LlWiJ+l.k - Eii"JiJ.k) _ Rltj_1 (Eii"JiJ•k - Eii"JiJ-I.k)]

RdW;t::.rj t::.r'j t::.r'j_1

{3t::.rt::.WiJ.k B[3t::.r (- -) _ n •
+ ReRU~ + RV;t::.r~ t::.PiJ+l.k - t::.PiJ.k - t::.r (E.. - W- [3Q")iJ.k 1 (B.13), ,

•

where

( -[3t::. Q ).. = _[3t::.r [ z/ z/ _ zb zb _ ..!..- (Wi+lJ.k - WiJ.k _ WiJ.k - Wi-IJ.k)]
r 01 'J.k t::.XV U w Ww U w Ww Re t::.X~ t::.X~

• '1-1

C[3t::.rr'j_1 ( ) [3M [A RV: ru ru A RV: rd rd
A u WiJ.k - WiJ-I.k - RU. A U 0 jV.. W.. - . j-IVw WwUrj_l ,urj

A
2

{RV; ) RV;-I )}]--R A V (WiJ+l.k - WiJ.k -~ (WiJ.k - WiJ-l.ke ur, ur,_1

B[3t::.rr'j B[3t::.rr'j ( ..2 rd2)
RV;t::.r; (PiJ+l.k - PiJ.k) - RUjt::.rj Ww - Ww

[3t::.r [w~/ -W~2 +PiJ.k+l - PiJ.k ]
- RU. t::.9 +VOlWiJ.k,

[3t::.r {(B
2+D)r'j_1 B2rj2 (WiJ+I.k - WiJ.k WiJ.k - WiJ-I.k)

+-R RV:~ t::. V (WiJ.k - WiJ-l.k) + RU~t::. ~ t::. ~ - t::. ve ,-1 r,_1 , r, r, r,_1

+ Brj_1 (WiJ.k - WiJ-I.k _ WiJ.k-1 - WiJ-I.k-l)
RU~t::.9 t::.r~ 1 t::.r~ 1, ,- ,-

1 [W"k+l+W"k 1-2w"k V8/_ v8b ] Br~ }.". 'J, - 'JI Ut Ut J
RU] t::.92 +2 t::.9 - WiJ.k +2RU]t::.r'J (ViJ.k - ViJ-I,k) 1

(B.l4)

in which

1[vrv Vr~ ]
VOl = 2 t::.rY (ViJ.k + ViJ.k+l) + t::.rY (ViJ-I.k +V.J-I.k+l)

With the aid of equations (BoS) and (Bo6) one obtains

- {C[3t::.rr'j_1 (B2 + D)[3t::.rrJ_I
t::.WiJ-I.k - A U + ReR"" A Uurj_l V{_IUrj_1

B2[3t::.rr~2 A2[3 ArR" B2[3t::.r2r~r~:::-="...,....-,,..':-::-- u.,-1 , ,-1
ReRU]t::.r'j t::.rj_1 ReRUjt::.r'j t::.rj_1 6RV;t::.rjRV;-It::.rj_1
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•

(1 + t.:r) Ilw,.;," + {Jllr [8/~1 8b~b KWij,k+l +KWij.k-l - 2KWij 'k]v· RU.1l8 WW Ww - Ww Ww - ReRU.1l8
J J

+ {Jllr [+ IlPij,k+l - IlPij,k] -
RU ~8 =6,W iJ,k ,

j
(8.16)

•
and with the aid of equation (6.23)

Il _ ~ Ilr KWiJ,k - KWiJ,k-l
Pij.k - Pij,k - 6 RU.1l8

J
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(8.17)

• heD<:'e, one obtains

- { fJf>.r [ Ob (1) f>.r Il]}
f>.WiJ,k-l RUjM -ww '2 - T RUjM - RcRUjf>.1J

- { fJf>.r [ 01 (1) Ob (1) 2 f>.r 2 ]}
+f>.WiJ.k 1 + f>.r + RUjf>.1J Ww '2 - Ww '2 + ReRUjf>.1J + 6 RUjf>.1J

- {fJf>.r [01 (1) f>.r 1 1]}
+f>.WiJ,k+l RUjf>.1J Ww '2 - T RUjf>.1J - ReRUjf>.1J

- fJf>.r (- -)=f>.wiJ.k - RU.f>.1J f>.PiJ.k+l - f>.PiJ,k
J

Discretized IJ-momentum equation in the x-swecp:

Then,

•

{
fJf>.r [ rb 'i7xy 1]}f>.W·_I·k -- -u -- - =--:--

• ,J, f>.xy w f>.XY_l Ref>.xY_l

f>. { fJf>.r[ rl 'i7xY+I rb'i7xY_I Il]}
+ WiJ.k 1 + A ~ Uw A l' - Uw~ + ReA l' + R A l'

uX. uX. uX._l t.1X. eux._l

+ f>.Wi+lJ.k {~~; [u~ ~;~ -Re~xY ]} = -f>.-WiJ,k .

Discretized x-momentum equation in the r-sweep:

v(ru-ru rd-rd)] (B2 + D)fJf>.rrj_l (- - )
+Brj Wu f>.uu - Wu f>.uu - ReRV.~ A ~ f>.UiJ.k - f>.UiJ-l.k

J-I ....rJ-l

2 2 - - - -B fJf>.rr1' (f>.U' '+1 k - f>.U· .k f>.U· .k - f>.U·· 1L)=-=",",,<-J_ 1"', IJ. 'Yi, IJ- ""

ReRUlf>.r'j f>.r'j - M'j_l

BfJf>.rrj_l (~iJ.k - ~iJ-l.k _ ~iJ.k-1 - ~iJ-l.k-l)
ReRUlM f>.r'j_l f>.r'j_l
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•

•

(8.20)

where

1 [(VXr+l Vxr ) (VXr+l Vxr )]
(Wu)i,j_l,k = 2 llxr Wi,j-I,k + llxr Wi+l,j-l,k + llxr Wi,j-I,k-I + llxr Wi+I,j-I,k-1 ,

( {l A Q) (Jllr{ rI rI rb rb
- ur u i,j,k =- llx~ Uu Uu - Uu Uu +Pi+lJ,k - Pi,j,k

1

_-.!... [Ui+l,j'k - Ui,j,k _ Ui,j,k - Ui-I,j,k]} _ C(Jllrr'j_1 (u.. _ u- . )
R A V A V A v l,],k l,]-I,k

e uXi+1 uXi ur;_1

{lllr {A (RV: ru ru RV: rd rd)- RU;llr'J ;Vu Uu - ;-IVu Uu

A2 [RV; ( ) RV;-I ( )]}--R A ~ Ui,j+l,k - Ui,j,k - ~ Ui,j,k - Ui,j-I,k
e urJ urJ_I

B{lllrr'j ( ru ru rd rd) {lllr (w:/u:1- w:bu:b)
-:R:-::U""--:ll-r"'-~ Wu Uu - Wu Uu - RU. llB

J J J

(J llr [(B2 + D)r~ 1 B2r~2 (u- -+1 k - U- . k U· . k - U- - 1 k)J- ( ) + J 1'" t 'J, '.JI .",- 1+-R "'R=-V:-=~----"-'--'~'--'- Ui,j,k - Ui,j-l,k RU~A ~ A ~ - A ~
e J-lurJ-l J urJ urJ urJ_I

+ (Ui,j,k+1 + Ui,j,k-l - 2Ui,j,k) + Br'j_1 (Ui,j'k - Ui,j-I,k _ Ui,j,k-I - Ui,j-I,k-I)] •

RUJllB2 RUJll8 llr'j_1 llr'j_1 '

(8.21)

hence, one obtains
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•

Discretized x-momentum equation in the 6-sweep:

Ô'U"k +'J,
(3ÔT [9r~---111 9b..,....--(Jb

RU.ô6 Wu Ô'Uu - Wu Ô'Uu
J

2- (Ô'UiJ'k+l +Ô'UiJ,k-l - 2Ô'UiJ,k)] _ - ..Re RU.ô6 - Ô'U'J,k ,
J

(8.23)

..,.......(JI Ô'U' . k+l +Ô'U' . kA _ • ..,. .".

L.1'Uu - 2 '

•

then

Ô'UiJ,k-l {:U~~6 [_W:bG) -ReR~jM]}

+ll'UiJ,k {1 + :~~6 [w:1 G) -w:b G) +ReR~jM]}

+Ô'UiJ,k+1 {:U~~6 [w:1 G) -ReR~jll6]} = ~iJ,k'
Discretized x-momentum and continuity equations in the x-sweep:
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= LlUiJ,k,

•
and with the aid of equation (6.27)

hence, one obtains

{
(Jt!.:r [ .bVxf 1 t::..T ]}

t::..Ui-Ij,k t::..xr -uv t::..xy - Ret::..xy - .5t::..xy

(B.26)

Wc recall that

{
(JM [ .,VXf+l .bVxi+t::..Ui .k 1+ t::..T +-- U -- - U --,), t!.x~ v t::..x~+ 1 v t::..x~• • •

+_1 (_1 + _1) + _t::..T (_1 + _1)]}
Re t::..xy t::..XY+l .5 t::..xy t::..XY+l

A {(Jt::..T [ ., VXf+l 1 -,-t::.._T_] }+L.>U·+1 .k -- U -- - - .,...
• ,), t::..xf v t::..XY+l Ret::..xY+l .5t::..xY+l

- (Jt::..T(- -)= t::..Uij,k - t::..x~ t::..Pi+lj,k - t::..Pij,k .
•

the terms containing t::.. and V indicate the central and backward

•

dilference operal.ors applied to the grid point coordinates, and 34 interpolates such

as v:v, v:d, w:u,w:d, ...etc are evaluated by the relations given in Appendix A.

,.
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