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Abstract

Let G be a semi-simple linear algebraic group defined over an algebraically closed

field and B a Borel subgroup. A Schubert variety is the closure of an orbit of the

group B in the 8ag variety G1B. The present thesis studies the algebraic curves

witb a torus action in general and in the case of Schubert varities. It also presents

two proofs of Peterson's Theorem and describes the singular locus of Schubert

varieties in terms of the Peterson map.

~~ •
Soient G un groupe algébrique linéaire semi-simple défini sur un corps algébrique-

ment fermé et B un sous-groupe de Borel de G. Nous appelons variété de Schubert

l'adhérence d'une orbite de B dans la variété de drapeaux GIB. Dans ce travail

nous étudions les courbes algébriques avec une action d'un tore, d'abord dans un

contexte général et ensuite dans le cas des variétés de Schubert. Nous présentons

deux preuves du Théorème de Peterson et décrivons les parties singulières des

variétés de Schubert selon l'application de Peterson.
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•
Introduction

The aim of this thesis is to give a review of the main results on Schubert varieties

and a detailed exposition of the new results about the singularities and their

nature, mainly due to Carrell, Kuttler and Peterson (see [CK99J). The approach

uses the so called Peterson translate, which is the degeneracy of the tangent space

to the Schubert variety along sorne curve. This leads to an algorithm for finding

ail the singularities of a given Schubert variety.

The results presented here are ail over an algebraically closed field of char- •

acteristic P :2:: 0, where in [CK99) they are over the cornplex field. Let G be a

semisimple connected algebraic group and B a Borel subgroup. The homoge-

neous space G/ B is a projective variety with a left action of the group G. It is

known that the orbits of the Borel subgroup B on G / B are parametrized by the

elernents of the Weyl group ~V = lVG (T)/T, where T is a ma.ximal toros in B.

We denote them by ..Y"w for w E ~V. Define the Schubert variety Sw to be the

Zariski closure of aB-orbit ..Y"w corresponding to w E l'V. Being the closure of a

B-orbit, the variety Sw is a disjoint union of B-orbits. The question is: for which

x E l"," does the corresponding B-orbit ..Xz lie in the singular locus of 8,.;?

Let x E H'· be such that ..\z ç Sw. Assume that for a11 y E ~Jl such that

"-\""z ç Sy ç Sw, the B-orbit ..Y"y lies in the smooth locus of Sw. Let .Y" be a closed

connected T -stable curve lying in G/ B snch that 4'\""z ne=/: 0 and C n .Y"y 1= 0

for sorne y E fV such that .\x ç Sy ç Sw. \Ve will show that en ..\z is a

•4
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single point. We define the Peterson translate along C to be the degeneracy of

the tangent space of Sw along C n .Y'y to the unique point of C lying in ,,~x.

Peterson 's Theorem says that the Peterson translate for aIl such curves are the

same if and only if the B-orbit ..XI lies in the smooth locus of Sw.

The thesis is divided as follows. Chapter [ contains sorne basic results from the

theory of algebraic groups and Lie aIgebras .. Chapter II concerns the well-known

concepts involving combinatorics in the "Veyl group such as the Brohat decom­

position, Bruhat-Chevalley order, reduced decomposition, the Bott-Samelson va­

riety, etc. A study of varieties and curves with an action of a toros is contained in

Chapter III. Finally we present the main results, sorne examples and applications

in Chapter IV.

There exists many other results in this field. Two very important papers of

Khazdan and Lusztig [KL79a, KL79b] study the srnoothness of Schubert varieties

in terms of the Hecke algebra. Kunlar in [Kum96] gives a smoothness condition

in terms of the nH Hecke algebras.



•
Chapter 1

Preliminaries

\Ve start by a general overview of the basic concepts from the theory of linear

algebraic groups and Lie algebras. For the first subject, we are basing ourself

on classical works in this field, namely the books of Borel [Bor91], Humphreys

[Hum8l] and less frequently Springer [Spr8l]. For the theory of Lie algebras •

and root systems we follow the other book of Humphreys [Hum97] and Bourbaki

[80u68}. The material and the notation are fairly standard, therefore the reader

with a basic knowledge of this subject can jump directly to the next chapter.

1 Semisimple and Unipotent Elements

Let G be a linear algebraic group defined over an algebraically closed field K. \Ve

can assume that G is a subgroup of sorne GL(V) (see [HumsI, s.6]~ [Bor9l, 5.6]).

\Ve say that 9 E G is semisimple (resp. unipotent) if 9 is diagonalizable in

GL (\ .) (resp. 9 has eigenvalues equal to 1). Similarly, if 9 is a Lie algebra, then

we say that l E 9 is semisimple (resp. nilpotent) if ad x is a diagonalizable

endomorphism of 9 (resp. ad x has eigenvalues equal to 0).

:\ group is called a torus if it is isomorphic to the diagonal subgroup D(n, K)

•6
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of GL(n, K) for sorne n, or equivalently, if it is a counected algebraic group

consisting of semisimple elements. Any representation of a toms splits in a direct

SUffi of one dimensional ones (see [Bor91 1 8.5], [Hum81, 16.2], [Spr81, 2.5 and

6.11]). :\ torus T in G of maximal dimension (or equivalently a torus not properly

included in aoy other) is called a maximal torus. ~Ia.ximal tori in a connected

algebraic group are conjugate.

:\ closed subgroup consisting of unipotent elements is called unipotent sub­

group (see [Bor91, 11.10], [HumB1, 22.2], [Spr81, 3.3]). \Vhen G is connected,

each semisimple element of G lies in sorne maximal torus, and each unipotent

element of G lies in sorne ma.ximal connected unipotent subgroup (see [Bor91,

11.10L [Hum81, 22.2]). Similarly in 9, an element x E 9 is semisimple if and only

if it lies in a Lie algebra of a maximal torus of G (or in toral subalgebra of

g. that is a subalgebra consisting of semisimple elements), while x is nilpotent if

and ouly if it lies in a Lie algebra of a closed unipotent subgroup of G ([Bor91,

14.26]).

An algebraic group G bas a unique maximal closed connected normal solv­

able subgroup 'RG called the radical, and a unique ma.ximal closed connected

normal unipotent subgroup 'RuG called the unipotent radical. We say that

G is semisimple (resp. reductive) if 'RG (resp. RuG) is trivial. Note that a

semisimple group is reductive.

2 Borel Subgroups

Perhaps the most important abjects in the study of the structure of algebraic

groups are Borel subgroups. They generalize the concept of the subgroup of

triangular matrices in GL(n, K). In this section we state sorne important results

about Borel subgroups (see [Bor91, Il], [Hum8!, Ch. vlIIL [Spr81, Ch. 7]).

Assume that G is a connected reductive algebraic group.



Definition A. A Borel subgroup B of G is a ma..ximal connected solvable sub­

group ofC.

(CH. l, §3) PA.R.A.BOLle SUBGROUPS 8

•
Let B be a Borel subgroup of G, and consider the homogeneous space G/ B.

It is isornorphic to a closed G-orbit in a Oag variety of sorne vector space, and

since the flag varieties are projective, G/ B must he projective. The 8ag variety

Bof G is the set of aH Borel suhgroups of G. The Borel subgroups are conjugate

in G and if B E B then the normalizer lVG (B) is exactly B. Using these facts we

can identify the flag variety B with the homogeneous space C / B.

~Ia.."imal tori of G and maximal tori of the Borel subgroups correspond. If

T is a maximal torus of a Borel suhgroup B, then B = T De: Bu where Bu is

the nilpotent subgroup of B consisting of aIl unipotent elements and Bu is equal

to the commutator group (B, B). The set of aIl Borel subgroups containing a

maximal torus T is denoted by sr. The group G is generated by aU B E sr
(see [Bor91. 13.7]). For a fLxed ma..ximal toms T in B, there exits a unique Borel •

subgroup B- such that B- n B = T called the Borel subgroup opposite B

(see [Hum8I. 26.2C]).

3 Parabolic Subgroups

A subgroup P of G is called a parabolic subgroup if the homogeneous space

GIP is complete (if and only if it is a projective variety). If P contains a Borel

subgroup B then G / B ~ G1P is a surjective morphism from a complete variety,

so CIP is complete. Conversely, by the FL"<ed Point Theorem ([HumSl, 21.2}.

[Bor91, 10.4]), a Borel subgroup B has a fixed point in the complete variety CIP,

so some conjugate of B lies in P. This shows that a subgroup of G is parabolic

if and only if it contains a Borel suhgroup.

•
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Let G be a linear algebraic group defined over an algebraically closed field K.

Denote by K- the multiplicative group in 1(. Let T be a maximal torus in G.

:\ homomorphism T ~ K- is calied a character of T. The set of aIl characters

of T, denoted by ..Y(T), is called the character group of T. The adjoint action

of T on the Lie algebra g, Ad : T ~ :\ut(g), is a morphism of algebraic groups.

Therefore Ad(T) is a torus in Aut(g) and we cao decompose g as a direct sum of

weight spaces of Ad(T).

g= El) go
oEX(T)

where go = {x E 9 1 Ad(t)(x) = a(t)x. Yt ET}.

Remark A. 1t is usual to denote the operation of ..Y(T) in an additive way. This

is due to an identification of the character group ..\ (T) with a lattice in the dual

space t- given by the differential. N[ore precisely, the algebra tacts on 9 by the

ad-action (the morphism ad : 9 ~ 9 is the differential of Ad : 9 ~ 9 and defines

an action of 9 on itself). ~Ioreover this ad-action is diagonalizable and we have

a weight decomposition of 9 similar to the weight decomposition with respect to

the Ad-action of T. Note that the differential of a character ct E X(T) is an

element of the dual space t-. It is clear that the weight space for the Ad-action

of T corresponding to the character Q E ..t'(T) is the same as the weight space

for the ad-action of t corresponding to do E t-. It fol1ows also that for ct E ..Y'(T),

h E t and x Ego, we have [h, xl = (do) (h)x.

The non-zero characters ct E .t'(T) for which 90 =F 0 are caUed roots and

the set of them, denoted by cfJ, is called the root system (since we are using

the additive notation for J"( (T), by non-zero characters we mean characters which

are not uniformly 1). \Ve calI the space 90 the root space correspondîng to

a E 4-. Note that the weight space 90 is the infinitesimal centralizer of T:



90 = cg(T) = {x E 91 Ad(t)(x) = x, 'Vt ET}. \Vhen G is a reductive group,

cg(T) turns out to be equal to t, the Lie algebra of T. ~Ioreover t becomes a

Cartan subalgebra of 9 (i.e. a nilpotent algebra equal to its nonnalizer in g) and

the decomposition

(CH. 1, §5) A.BSTRACT ROOT SYSTEfl.;[ 10

•

becomes a Cartan decompostion of 9 where the root spaces are one dimensional

(see [Hum97, 8.1]). Denote by [.,.l the lie bracket on g. For Ct, [3 E c{) we have

[gCH 98] ç 90+/J· If moreover Ct + ,8 E <I> then [go,9/J] = 90+8, Now if x Ego,

then for any y E g, and any integer n, adn(x)(y) E œ'lE~ 9na+"Y which is 0 for

n big enough. This shows that elements of the root spaces are aIl nilpotent (by

definition x E 9 is nilpotent if ad x is a nilpotent endomorphism of g, that is

there is an integer n such that adn x = 0).

[n faet the root system <I> is an abstract root system in .~ (T) ®z IR, in the •

sense of the next section (see [Hum81, 14.8], [Bor9l, 27]).

5 Abstract Root System

Let \" be a finite dimensional vector space over IR. Suppose ( , ) is a nondegenerate

symmetric bilinear form on V. Let ct E V and define the reftexion relative to

Q to be a linear map Ua : V ~ \1" given by:

( f.l) = (3 _ 2(,13,0:)
Ua fJ () o.

0,0

for d E \". Let write <{3, ct) for 2(CtI,Q». Let V be a finite dimensional vector space
0.0

over ILt and <I> a subset of V. We say that ~ is a (redueed) root system in V if

1. <I> is finite. don't contain 0 and generates V',

2. <I> is closed under all reflections U Q with 0 E <I>. •
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3. if 0 E <Il, then the only multiple of 0 in ~ are 0 and -0,

4. if 0, 13 E ~, then ~c:.:l E Z.

Il

•

The elements of <Il are called roots and the dimension of V' is called the rank of

the root system <1'. Let 0, /3 E ~. Theo there is a simple expression relating the

angle between 0 and f3 and the integers (o, ,3) and ca,o), namely:

4(13,0)2
(0, /3)(/3, cr) = (ct, 0)(,8, J)

=4cos2 1J

where IJ is the angle between Q and {J. Using the hypothesis that (0, {J) and (/3,0)

are integers and the fact that cos takes only values between -1 and 1, we deduce

the following properties:

1. 4cos2 1J E {D, 1,2,3,4},

3. (0, ,B) and (/3,0) have the same sign.

Let 0 and {3 be two roots such that ct #- ±/3 and (0,0) $ ({3, (3). Then the

only possibilities for the angles betweeo cr and ,B and for the values of (/3,0) and

(0, ,ô) are:

•

(0, j3) ({J,a) IJ «(1,,8)
(a,aï

0 0 tr/2 undetermined

1 1 tr/3 1

-1 -1 21r/3 1

1 2 tr/4 2

-1 -2 3tr/4 2

1 3 tr/6 3

-1 -3 5tr/6 3

(1.1)
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Proposition A. Let 0, {3 E 4>.

1. If (0, (3) > 0 then Ct - {3 is a root unless a = ,B.

2. If (0, (3) < 0 then Ct + {3 is a root unless 0 = -{3.

12

•
Proof. \Ve use the table LI. If (0, (3) > 0, then either (0, (3) = 1 or (/3.0) = 1.

In the first case, uô(o) = 0 - {3 E 4>. In the second case, C7Q (j3) = 3 - Q' E ~. But

4> = -~. and both of the cases implies that a - {3 E 4>. The second statement is

proved similarly. 0

For more details see [Hum9ï, Ch. III] or [Bou68, Ch. \Il].

6 Root Strings

As an application of Proposition 5 A, consider two nonproportional foots 0 and

,B E <1>. Look at the set of a11 roots of the form 0+ n/3 where n is an integer. Let

p and q be the bigest nonnegative integers snch that 0 + pa E ~ and 0 - q{3 E <I-.

If o+i/3 is not a root for sorne i E Z, -q < i < p, then there exist -q < s < t < p

snch that Ct + s/3 and a + t{3 are roots but cr + (s + 1){3 and a + (t - 1){3 are

not roots. Proposition 5 A implies that (0 + s{3, lB) ~ 0 and (0 + t{3, ,8) ~ 0,

and substracting the t\Vo we get «t - 8)/3, {3) < 0 which is a contradiction. This

shows that 0 + j /3 are foots for j E [-q, pl. The set of all roots of this form is

called the {3-string through o.

We cao obtain an upper limit for the length of a {3-string through Ct (which

is by definition its number of roots). It is easy to see that the reftection Uo

reverses the ,a-string, in particular O'{J(cr + p(3) = 0 - q{3. But the left side is

0- (0,13)13 - pi3~ which yields q - p = (0, {3}. H the ÏDteger p is greater than zero,

we cao replace Ct by 0: + p{3. Now p = 0 and q = (0, /3) $ 3. Hence the length of

any string is at rnost 4.

•

•
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Let T be a maximal torus of a connected reductive group G. Let i'V = lVG (T)/T

and call this group the Weyl group. The very first property of the \Veyl group

is its simply transitive action on the set of T-stable Borel subgroups sr. Let BI,

B2 E BT . By the conjugacy theorern of Borel subgroups (see Section 2), there

exists x E G such that xB2x- L = 8 L• Theo T and xTx-1 are both maximal tori of

BI, hence they are conjugate: there exists y E BI such that yxTx-Ly-L = T. This

implies that yx E iVa(T) and since LVG(B1) = Bt, yxB2x- Ly-l = yB1y-1 = BI

and the coset of yx in "V sends B2 to BI, which shows that the action is transitive.

Now suppose for sorne x E Nc (l') and B E sr we have xBx- 1 = B. Then

x E B since J.VG(B) = B. If we show that ~VG(T) n B = T we will have that

x E T and the coset of x in t--V is the identity. To show this, consider the canonical

map 1r : B --+- B / Bu where Bu is the subgroup of unipotent elements of B (see

Section 2), and restrict this projection to the ma.ximal torus T. This restriction

is injective since T consists of semisimple elements. Note also that B / Bu is a

toros and hence it is commutative. Therefore if x E iVG(T) n B and y E T, then

xyx- l E T and tr(xyx- l ) = 1r(x)1r(Y)1r(x- 1} = 1i(Y). The restriction of 1r to T

being injective, we have xyx- 1 = y that is x E Gc(T) = T, and No(T) n B = T.

The Weyl group also acts on the root system. If q E t--V and a E <t, then we

define q(a) as follows: for t ET,

o"(a)(t) = o(â-1tü)

where if E lVa(T) is a representative of the coset 0". It has to he verified that 0"(0)

is a root in ~. But first we note that the \Veyl group permutes the eigenspaces

of T in 9 as follows: Ad(ü)(OQ) = 90-(0)- This shows that the eigenspace 00'(0) is

non-zero and thus q(o) is a root. To summarize:

Proposition A. The Weyl group t--v = lVG (T)/T acts simply transitively on the



set of T -stable Borel subgroups sr. It acts on the root system and permutes

correspondingly the eigenspaces of T in 9.

(CH. I, §8) ROOT SUBGROUPS 14
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8 Root Subgroups

Let B he a Borel subgroup of G and U = Bu be the group of unipotent elements in

B. Let T be a ma.ximal torus in B and ~ be the root system determined by T. To

each root Ct corresponds a unique closed connected 1-dimensional subgroup Ua of

G normalized by T and having 90 as the Lie algebra (see [Bor91, 13.18], [Hum81,

26.3], [Spr81, 9.2.6]). The group Ua is called the root subgroup corresponding

to a. The following Proposition shows how to construct root subgroups.

Proposition A. Let Q E~. Define Zo to be the centralizer Zc(To ) where Ta =
ker(a)O ç T. Then Zo is a reductive group whose root system has rank 1, Ba =
B n Zo (resp. B-o = B- n Zo) is a Borel subgroup of Zo and (Bo)u (resp. •

(B-o)u) 7.S the root subgroup Uo (resp. U_Q ) ofG.

The following result allows us to decompose unipotent groups in a cartesian

product of root subgroups (see [Bor91, 14.2], [Hum81, 21.1)).

Proposition B. Let H be a closed T-stable subgroup of U = Bu. Then H is

connected and the product morphism UOl x ... X UOt --)0 H is an 'isomorphism of

varieties~ where Qi E ~ are aIl roots such that UOi ç H. taken in any order.

9 Base for a Root System

Let <fJ+ (resp. ~-) be the set of all roots Cl E ~ such that Ua C U = Bu (resp.

lIa ç lI- = B;, where B- is the Borel subgroup opposite B, Section 2). The

elements of ~+ (resp. ~-) are caJled positive roots (resp. negative roots) .

•



We write 0' > 0 (resp. a < 0) if 0' is a positive (resp. negative) root. We will

give now three equivalent definitions of a base for a root system.

•
(CH. Ir §9) BASE FOR A ROOT SYSTE1\t[ 15
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Definition A. A subset ~ of <)+ is caHed the base of cil corresponding to B

if one of the following equivalent conditions is satisfied:

1. The set ~ contains all the roots 0 E <{)+ such that Ua permutes the set

~+ \ {a}.

2. Each root {3 E cil can be written as a Hnear combination of elements in ~,

say ,B == EctE~ kQo, with integral coefficients ka which are aIl nonnegative

or aH nonpositive.

3. The set ~ contains all the roots 0 E ~+ such that the set B u B(jaB is a

group.

The elements of the base ~ are called simple roots. A simple refiection

is a reflection Ua E ~v corresponding to a simple root o. The simple relections

generate the Weyl group ~V.
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Chapter II

Combinatorics in Semisimple

Groups

In this chapter we present sorne results involving the combinatorics in the \Veyl

group which follows from the inclusion of Schubert varieties. .-\S the Bruhat •

decomposition is closely linked to this subject, we present it in this chapter even

though we don't give a proor. \Ve define the reduced decomposition and the length

of an element in the Weyl group and relate them to sorne geometric properties of

the Bruhat ceIls in Section 11. Section 12 concems the subproducts of a reduced

decomposition. \Ve define the Bott-Samelson variety in Section 13. The Bruhat-

Chevalley order is defined and related to the inclusion of Schubert varieties in

Section 14. Finally, we present sorne results relating the reduced decomposition

to sorne special subsets of the root system in the last section.

Let G be a connected reductive group defined over an algebraically closed

field K, B a Borel subgroup containing a maximal torus T, l'V be the \-Veyl group

lVa (T)jT. Let ~ = <I>(T) be the root system corresponding to T and ~ the base

associated with B. Let S be the set of ail simple reflections lro (0 E ~).

•16
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The Bruhat decomposition is a normal fonn for elements of the reductive group

G parametrized by a Borel subgroup B and the Weyl group l'V. In the GL(n! K)

case, this result is a familiar one: multiplying a matrix on the left and right

by upper triangular matrices (which correspond to elementary row and column

operations) we obtain a permutation matrbc.

Theorem A. Let G be a reductive group. Then

1. (Bruhat decomposition). G is the disjoint union of the double cosets BwB

with w E ",p. If w E l-V and W E ~VG(T) is any representative of w then the

morphism Unw(U-) x B 4> BwB given by (x, y) Ho xwy is an isomorphism

of varieties.

2. (Cellular decomposition of G/ B). G/ B is the disjoint union of the B -orbits

BwB/B with w E l-V. Ifu; E nt then the morphism Unw(U-) ~ BwB/B

given by 'U Ho 'uwB / B is an isomorphism of varieties.

We need another result c10sely related to this Theorem.

Proposition B. If CT E l-V is a simple reflection and w E l'V, then aEw ç

BwBu Bf7wB.

For further informations and proofs, we refer the reader to [Hum81, 28.3],

[Bor91, Ch IV, 14.11], [Spr81! 10.2.71, [Bou68, Ch IV, §2] and [CG98, 3.1].

Il Reduced Decomposition

Since simple reflections generate the \Veyl group (see Section 9), every clement w

of the "Veyl group l-V distinct from the unit element can be written as a product
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•0'1 •• • O', of simple reflections O'i ES, 1 ~ i ~ l. If the number of simple reflec­

tions involved in this product is minimal, we say that (Ul' ... ,O'l) is a reduced

decomposition of w, and the number of simple reflections l is called the length

of w and is denoted by l(w). By convention, l(w) = 0 if and only if w is the unit

element of JtV. The following is a well-known result, the proof follows [Hum81,

29.3]. For another treatment look in [Bou68. Ch. l\l, §2].

Lemma A. Let u E Sand w E ~V. Then

1. l(O'w) ;;::: l(w) implies O'Bw ç BO'wB.

2. l(O'w) ~ l(w) implies O'Bw n BwB # 0.

3. l(O'w) = l(w) ± 1.

Proof. \Ve prove the first statement by induction on l(w), the result being trivial

for l(w) = o. Suppose l(w) > 0, and write w = xp where p E Sand l(x) = l(w)-1.

Suppose on the contrary that O'Bw ~ BuwB. that is, in view of Proposition 10 B,

uBwnBwB::f:. 0. By multiplyingon the right by p, it follows that O'BxnBwBp::f:.

0. Since l(x) = l(w) - 1, the induction hypothesis implies that uBx ç BuxB

and it follows that BuxB n BwBp ::f:. 0. :\gain by Proposition 10 B, BwBp ç

BwB U BwpB = BwB U BxB and Theorem 10 A implies that BuxB is equal to

either BwB or BxB, that is ux is either w or x by Theorem 10 A. The second

case is cleady impossible as it would imply that 0' = e which is absurdo If ux = w,

then x = uw and the hypothesis l(uw) > l(w) > l(x) leads also to a contradiction.

It follows that uBw ç BuwB.

\Ve prove now the second statement. \Ve know from Proposition 10 B that

a Bu ç BuB u B. But (jBu ::f:. B as the "Veyl group acts simply transitively on

BT (see Section 7). Thus uBu n BuB =F 0. ~[ultiplying on the right by uw, we

get aBw n BaBuw -# 0. The first part then implies that BuBuw ç BwB, that

is aBw n BwB -# 0.

•

•
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In view of Proposition 10 B, the first and second statements are mutually

exclusive, thus I(O'w) 1= l(w). But I(O'w) can't differ from l(w) by more than 1,

which yields l(O'w) = l(w) ± 1. 0

A direct application of Lemma A yields the following result.

Proposition B. Let (0'1,." ,O'd he a reduced decomposition ofw E ~V. Then

(BO'IB) ... (BO'tB) = BwB.

12 Subproducts

Suppose (ab." ,ad is a sequence of simple reflections. Let 1 ~ il < ... <

i j ~ 1 he a subsequence of 1, ... ,1. Then 0'11 •• 'O'i) is called a subproduct of

(0'1, ... ,ad· \Ve will show in Section 1-1 that the set of subproducts of a reduced

decomposition of w depends only on w, and not on the reduced decomposition.

Let 0' E Sand define p~ = BaB U B. By Definition 9 A, Pu is a subgroup of G

(it is a parabolic subgroup as it contains B).

Lemma A. An element x of the Weyl group is a subproduct of (al,' .. ,0'1) if

and only if BxB ç PUI ••• Pal.

Proof. Let 1 < il < ... < i j ~ 1 he a subsequence of 1, ... ,1. Note that

Ba· ... 0'. B C (Ba oB)··· (BO'o B)11 l, _ &1 l)

ç (BaIB U B) ... (BatB U B)

which shows that BxB ç PUl ••• Pu,.

Conversely, note that

PtTl .•. PtT, = U (BaIL B) ... (Bai] B) .
l~il<···<i)~t



Therefore for each sequence 1 ~ il < , .. < i j ~ i, by applying successively

Proposition 10 B, (Bail B) ... (Bt7ij B) is contained in the union of the Bruhat

cells corresponding to subproducts of (aill'" ,ai))' This shows that PUI " • Pu,

is contained in the union of all BxB where x runs over the subproducts of the

sequence of simple reflections (al,' .. ,a,), 0
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13 Bott-Samelson Variety

Let .\ be a G-variety and let B be a (any) subgroup of G. Define an action of

B on G x .\ by: b· (g, x) = (gb- l , b· x). Then the quotient, G x B .\ of G x ..Y

by the action of B, is the set of B-orbits with the structure of variety induced by

the bijection (jJ: C XB"Y ~ CIB x .."< given by (g,x) t-+ (gB.g· x).

Recall from Section 9 that Pu = BaB U B is a parabolic subgroup for a ES.

Let ..4J Et-V have a reduced decomposition (ah'" 1 a,) (ai E S, 1 ~ i ~ l). For

simplicity. denote by r the reduced decomposition (al l '" • ad. Let "\1 = CIB

and define by induction ..\i = C X B "Xi+ l for 1 ~ i < l. Denote by CilB' the

space "YI' Note that there is a natura! projection C' ~ CilB' where Cl denotes

the cartesian product of 1copies of G. Let Zr be the image of PUt x PU2 X ••• X Pu,

in CilBI. An usual formula for Zr is PUI X B PU2 X B ••• X B Pu,1B. The space Zr

is projective since G'1B' '"'-J (G/B)' is projective. NIoreover Zr is of dimension

1 = l(w) as it is an iterated bundie over pl with one dimensional fibers.

The group product in G induces a morphism 1/1 : Zr ~ CIB.

Proposition A. The morphism 1/1 : Zr ~ BwBIB 'induced by the product mor­

phism in G is proper and surjective.

Proof. The variety Zr being projective, the morphism -f/; is proper. Hence its

image under 1,;' is a closed subvariety of G/B. Since BaLB x x BatB C

PUt x ... X PeTl • Zr contains the projection of the image of Bql B x x Ba,B in

•

•



G'/B', and therefore 1/J contains (BuLB)·· . (Bu,B)/B which is equal to BwB/B

by Proposition Il B. This shows that BwB/B is contained in the image of 'f/;.

Since BuLBx·· ·xBulB is dense in Pal x·· ,xP(T1' the image of BuLBx·· ·xBuiB

in C' / B' is dense in Zr which shows that the image of t/J is exactly BwB/B. 0

•
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\Ve will prove later (Section 15) that 'rj; is birational. This is due to 80tt

and Samelson [8S58]. Therefore the variety Zr is called the Bott-Samelson

variety corresponding to the reduced decomposition r and the map r/.J :

Zr ~ BwB/B is called the Bott-Samelson map of Zr. The Bott-Samelson

variety Zr is smooth and irreducible but is not a resolution of siogularities of

BwB/B as the fiber of lb above a smooth point of BwB/B is oot necessarily

a single point. A standard reference for this section is the paper of Demazure

[Dem74] .

14 Bruhat-Chevalleyarder

A Schubert variety is the Zariski closure of a Bruhat cell. If w E l-V! we will

denote by Sw the Schubert variety BwB / B. Since the Schubert variety Sw is the

closure of a B-orbit, it is a union of B-orbits in G/ B, that is of Bruhat cells. \Ve

will now answer the question: which are the Bruhat cells that lie in the Schubert

variety Sw?

Proposition A. Let W t x E U'O . Then BxB/ B ç Sr.J if and only if x 15 a

subproduct of sorne reduced decomposition of w.

Proo! By Lemma 12 A and Proposition 13 A, x is a subproduct of r if and only

if BxB ç P(Tt .. , P(TI if and only if BxB/B ç SW' 0

From this it is clear that the set of subproducts of a reduced decomposition of

w depends only on w. If x is a subproduct of sorne reduced decomposition of w .



we can say that x is a subproduct of w, and write x $ w. This defines a partial

order on the Weyl group, called the Bruhat..Chevalley order. Therefore, in

view of Proposition A, we can write Sw = UX'$wBxB/B. Note also that the arder

:5 on "fV corresponds to the inclusion of Schubert varieties: x $ w if and only if

Sx ç SW' A classic reference for this section is the paper of Chevalley (Che94].
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15 Special Sets of Roots

Fix w E "fV. In view of Section 14 we can ask the following two questions: which

are the reflections U{j such that (jf3W $ w. and which are the roots (3 E ~+ such

that W-l({3) < O? Proposition B answers the second question. The full answer

for the first question will he given only in Section 23 using algebraic geometry,

here we can only give a partial result.

Let w E "fV have a reduced decomposition (jOl ••• U O" where UQi is the simple •

reflection corresponding to the simple root QI E~. Define Wo = e (the unity

in ~V), Wi = (jQl (jQ2 ••• fJOi for 1 $ i < l, and di = Wi-l (Oi) for 1 ~ i < l.

The following Lemma gives a sufficient condition for fJl3W and for wUp to be

subproducts of w.

Lemma A. Let (3 E ~+. If w-1(,B) < 0 then fJ{JW < w. If w({3) < 0 then

Proof. Let (3 E ~+ he such tbat w-1(,B) < O. Let s he the smallest integer,

1 $ s < l, such that w;l(,8) < O. The choice of s implies that w;-!lCB) > O. Since

..,;;1(,8) = UO.W;~l(,B) we must have w;~d,8) = Os because the only positive root

•
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which is send to a negative root by aas is fis (see Section 9). It follows that
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which gives U(JW 5 w. To get the second statement, replace w by w- l in the first.

This yields u{jw- 1 :5 w- l , which is equivalent to WUB :5 W. 0

The next result relates the set of foots ,6 E ~+ such that w-l(,B) < °to a

reduced decomposition of w.

Proposition B. Let w E ~V and suppose W = O'al ••• uar is a reduced decomposi­

tion o/w. Define Wo = e (the unity in ~V), Wa =ual ua 1." ,UOi for 1 5 i 5l, and

Ji =Wi-l (fii) for 1 5 i 5 l. Then

Proof. The inclusion ~+ n w(<I>-) ç {,B E <1'+ 1 CTLJW 5 w} is just Lemma A. Let

1 5 j :5 l. The second statement of Lemma A implies that /3; = Wj-l(aj) > 0,

which yields,Bj E ~+. Note that w-l(,Bj) = CTOI " 'CToj(aj) where uOj(aj) = -aj'

Again by Lemma A, UOI •• ·O'Oj+l (a"]) > 0, thus W-l(pj) < 0 and ,Bj E w(~-).

Conversely, let '"'f E c)+ n w(cI--). Theo CTal •• 'U01 (,) < O. Suppose there

is no j, 1 < j < l, such that , = /3j. Then., =F fil = Pl which implies that

U01 (,) > O. But 0'01(7) 1= 02, which implies that CTa1.Uol(""') > 0 (since the simple

reflection U 01 permutes <1>+ \ {Ol}, see Section 9). Contiouing this way, we get

that w- 1(...,.) = 0'01·' 'U01 (,) > 0 which is absurdo This shows that, is an element

of {Sb'" ,Pl}, 0

\Ve can now show that the Bott-Samelson morphism is a birational map, Le,

an isomorphism over a dense open set.



Corollary C. Let r = (0'01"" ,O'etl) be a reduced decomposition of W E W.

The 80tt-Samelson morphism 1/J : Zr ~ Sw restricts to an isomorphism t/J :

'w-l(BwB/B) ~ BwB/B.
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•
Proof. Suppose ~Y is a G-variety. \Vrite 9 * .r for the image of (g, x) E G x X

in G Xe ~"(. If we express x E t/J-l(BwB/B) as Xl * X2 * ... * X, where Xi E

PUB,' then each Xi must be in BuetiB, otherwisew(x) wouldn't lie in BwB/B =
(Baetl B) ... (BuotB)/ B. Now it is clear that an element x of 'r/J-l(BwB/B)

is of the forro b10'Ol * ~O'02 * ... * b'&otB/B where bi E B, and &Oi E Na(T)

are representatives of UOi E l'V. Since B = TU = UT, and T is normalized

by the elements of the \Veyl group, the element x cao be written as Ul&Ol *

U2&Ql * ... * UI&OIB/B, where Ui E U. The group II is isomorphic as a variety

to the cartesian product of the one dimensional root subgroups Ua (0 E ~+)

in any order (see Section 8), and applying recursively the fact that the only

positive root sent ta a negative root by ua, is Oi (see Section 9), we get that

.r = UlaOl * U2c:101 * ... * 'UICfotB/B where 'Ui E Ua,. .-\pplying the first part

of Lemma A, we get that Wj-l(Uoj ) ç B, which shows that x is of the form

UCfet1 * aett * ... *CfatB/B where u E UOl UW1 (02) ••• U;Mt_l(O,)' But Proposition B

yields UOl Uwdo'1) ••• Uwt_1(ad = Unw(U-), and since Unw(U-) ~ BwB/B, given

by u ~uwB is a bijection (see Theorem 10 A), we get that 'l/J : 'r/J-l(BwB/ B) ~

BwB / B is a bijection, and bence an isomorphism. 0

It follows that the dimension of the Schubert variety BwB/B, whicb is equal ta

the dimension of the dense Bruhat cell BwB/B, is equal to the length l(w) of w

by Section 13.

•

•
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Chapter III

Aigebraic Torus Actions and

T-Stable Aigebraic Curves

The varieties with a torus action and more particulary the algebraic curves with

a torus action will be the central objects in the study of singularities of Schubert

varieties. In this chapter. we will first review sorne concepts from algebraic ge­

ometry. Then in Section 1ï, we will give well-known results about torus actions.

\Ve describe a very important class of algebraic actions with attractive points in

Section 18. In Section 19, we show that the number of T-stable curves in an

algebraic variety with a torus action is bounded below by its dimension. In Sec­

tion 20 and Section 21. we describe the basic properties of the T-stable curves.

Finally, the sections 22 and 23 concem the T-stable curves in projective spaces

pn aLd in flag variet ies.

16 Finite and étale morphisms

A morphism of affine varieties p : .~ ~ y is said to he finite if the ring K[.\}

is finitely generated p. K[}·J-module. A finite morphism is quasi-finite, that is

25
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•a morphism with 6nite fibers. We will need the following two facts about finite

morphisms (see [Spr81, 4.2]):

Proposition A. • A quasi-finite surjective morphism 01 irreducible affine

varieties is finite.

• Let p : X -+ Y be a dominant morphism of irreducible affine varieties. Let

x E .~ be such that p-1 (p(x)) is finite. There is an open affine neighbourhood

U ofp(x) in Y such that p-l(U) is an open affine neighbourhood ofx and the

restriction morphism p : p-l (U) ~ U is finite (or equivalently quasi-finite

and surjective).

By definition, a point x E ..\ is a smooth point if and only if the dimension of

the tangent space Tz .\ is equal to the dimension of the variety .~ if and only if the

tangent cone Cr"~ of J\ at x is equal to the tangent space TXJ\ (see [Dan94J). In

general, the tangent cone lies in the tangent space. Let 1 : J~ -+ Y be a morphism.

The morphism dxf : Tr"~ -+ T,Cr)}" of tangent spaces restricts to a morphism

of tangent cones drl : Cr"~ -+ Cf{r)}·' The morphism f is said to be étale at

x E X if d'If: Cr .-\ -+ C'(x)Y is an isomorphism of the tangent cones considered

as schemes and it is said to be unramified at x E .\ if d x! : T x .,\ -+ Tf(x) y is

injective. \Ve say that f is étale (resp. unrami6ed) if it is étale (resp. unramified)

at all points of }(.

A finite étale morphism is called an étale covering. Over the 6eld of complex

numbers, \Vith the classical topology, such morphisms are locally trh;al bundles

\Vith 6nite fibres. In particular the nurnber of points in the fibre of sucb a mor­

phism is the same above any point in the same connected component. This is

also true for an arbitrary algebraically closed field (see [Dan94, Ch. 2, §5.4J).

Theorem B (Conservation of N umber). Suppose ! : ..X -+ Y is an étale

covering, and Y is connected. Then the number of points in a fiber f-l(y) is

independent of 11 E Y.

•

•
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17 Torus Actions

We begin with a well-known result of Surnihiro ([Sum74]):

27

•

•

Theorem A (Sumihiro). Let T he a toms acting on a normal algebraic variety

..Y. Suppose x E .yT. Then there exists a T -stable open affine neighbourhood U

of x in .X'.

The proof of the following corollary was suggested by :\. Broer.

Corollary B. Let T be a toros acting on an algebraic variety X. Suppose x E

..,,<T is a smooth point of .."<. Then there exist aT-stable open affine neighbourhood

U of x in _X' 1 and a T -equivariant étale morphism {3 : U 40 T;r.Y sending x to O.

Moreover (j can he chosen such that dI,a : TzU ~ Tz ..Y is the identity.

Proo/. Since the smooth locus of .\ is open and T-stable, we mayas weil assume

that ."< is smooth. By Theorem A, there exists an open affine T-stable neigh­

bourhood U of x. Let mx ç K[U] be the maximal ideal corresponding to x E U.

Let rnx/m; ~ l1lx be any T-equivariaot split of the projection 11\z ~ tllz/m;.

The inclusion tllz ~ K[U] ioduces m.r/m; ~ K[U]. This map extends uniquely

to a T-equivariant map S(rnx/m;) ~ K[U], where S(rnx/m;) is the symmetric

algebra on mx/mi. This yields a T-equivariant map 11 : U ~ (11\:r/m;t = T;r."<,

which is étale at x by construction. Note that the set where this map is not étale

is closed and T -stable. Again by Theorem A, there exists aT-stable open affine

neighbourhood U' ç U of x such that the restriction ,8 : U' ~ T;r ..Y is étale. Theo

U' is the desired neighbourhood. Let .8' = (dxJ)-l o,Blu'. Then {j' is étale and

dx f3' is the identity. 0

The following is due to Bialynicki-Birula (Theorem 2.1 in [B873]) but the

proof presented here is much simpler and more intuitive as it follows directly

from Corollary B. ~Ioreover Bialynicki-Birula assumes that x is smooth on "y

which is not necessary.



Theorem C ([BB73]). Let T he a toms acting on an algehraic variety Atl. Let

..Y be an irreducible T -stable subvariety of Al. Suppose x E X T is a smooth point

of AI and let V be aT-stable subspace of the tangent space Txl\tI containing TxX.

Then there exists Y an irreducible T -stable subvariety of AI such that J'X" ç Y, x

is smooth on Y, and Tx}'~ = V.
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Proof. Let U ç Al be an affine T-stable neighbourhood of x and ,6 : U ~ Txi.\tI be

the étale morphism given by Corollary B. Take Y' = .B-L(V). Then Y' is smooth

since {3 is étale and V is smootb in Txl.\tI, moreover TxY' = dx.B(TxY') = V and

..\ ç y". Then the required Y is the closure of }'., in AI. 0

18 Attractive Points

The ideas contained in this section are well-known, unfortunately we couldn't find

any good reference. Recall that every finite dimensional representation of a torus

splits in a direct sum of one dimensional representations. Suppose a toms Tacts

linearly on v·. Then v· is a direct sum of one dimensional irreducible submodules.

\Vrite v~ for the direct sum of the one dimensional submodules of V of weight

o E ..\ (T). Theo V = VQI œ...œVor , where \I~l # 0 is the weight space of weight

ai E .\"(T). Denote by W(V) the set of all weights ai, 1 ~ i ~ [.

Suppose Gm acts on an algebraic variety ..Y. Embed Gm in pl such that

pl = Gm U {O, oo}. Let y E ~Y and suppose the morphism f/Jy : Gm ~ ...\"', st---+' s· y

extends to a morphism tiy : Gm U {O} ~ .'\" (resp. tiy = Gm U {oo} ~ ",\"'), then

denote by lim,,-.o s • y (resp. by lim,,-.oc s • y) the point ~y (0) (resp. tPy(00) ).

Definition A. A point x E X is called attractive if x E ..\",T and there exists a

one-parameter group ;\ E Y(T) snch that for ail Q E W(Tx.\"L (0, À) > o. Let

.x E ..\ be an attractive point and fi.x a À E Y(T) as before. Denote by .~% the

set of y E ~\"' such that lim,,-.o ;\(s) . y = x and cali it the .x-attracted set.

•

•
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Remark A. Let G be a semi-simple linear algebraic group defined over an alge­

braically closed field, T be a maximal torus in a Borel subgroup B of C, W be

the \Veyl group lVa (T)IT, ~ be the root system corresponding to T and 4-+ be

set of positive roots corresponding to B. For any w E l'V, the set W(T.,,;BGIB) is

just w(4-+). [t is well-known that there exists a one-parameter group A E l~(T)

such that (n. À) > 0 for ail Q E w(~+) (see [Hum97, 10.1], [HumBl, 25.4]). This

shows that the T-fixed points wB, w E l'V, are attractive in CIB.

Note that when F is a T-module and 0 E V is attractive, then for aIl y E \./

we have lim,,_o À(s) . y = 0, which implies tbat the O-attracted set \'-'0 is the whole

v.

Lemma B. Suppose \/ is aT-module and 0 E V is attractive. Then the only

T -stable open neighbourhood of 0 E 1/ is V and va = t-'~ .

Proof Let U be aT-stable neighbourhood of o. Let À E Y (T) be such that

(0, À) > 0 for aIl 0: E W(ToV). Let y E V, and let C be the curve {..\(s) . yI S E

Gm }. Since 0 E C, Un C is non-empty T-stable open in C, and hence it is the

whole C. This shows that yEU. 0

In the case that x E .~ is attractive, Corollary 17 B cao be precised as follows:

Theorem C ([BB73]). Let T he a toros acting on an algebraic -uariety ...\.

Suppose x E ~\T is a smooth attractive point of }(. Then there exist a T­

stable open affine neighbourhood U of x in ~~, and a T -equivariant isomorphism

13 : U --+ T~:<.

Proof. Let .d : (J -» Tz .\ be the T-equivariant étale morphism given by Corol­

lary 17 B. Since 0 is the unique T-fbced point of T%.Y, {3(CfI') = 0, and since J is

étale, Crr is finite. Applying again Corollary 17 B on X = U \ .yT U {x}, we find

U so that (.IT = {x} .



Since p is étale, B(U) is an open T-stable neighbourhood of j3(x) = o. But by

Lemma B, the ooly T-stable open neighbourhood of 0 in TzX is TzX itself. This

shows that i3 : U ~ Tx.Y is a quasi-finite surjective morphism of affine varieties,

hence fini te by Proposition 16 A. Thus (3 : U -+ T:rX is an étale covering, and

IP-l(y)1 doesn't depend on y E T:r)( by Theorem 16 B. But p-l(O) = x as the

only T-fi..'"<ed point in U is.c. Therefore p is a bijective étale covering, bence an

isomorphisrn. 0
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An easy application of the theorem and the preceding lemma gives:

Corollary o. If x E ~Y is an attractive smooth point of ..X, then "~:r is an open

affine T -stable neighbo'urhood of x in ..X, and any other open T -stable neighbour­

hood of x in .X contains "~z'

19 Existence of Enough T-Stable Curves •An algebraic curve is an irreducible algebraic variety of dimension 1. \Ve neecl

two properties of algebraic curves:

• A smooth algebraic curve C is an open subset of a unique complete smooth

curve ë.

• A morphism (j> : C --» .X from a smooth algebraic curve C to a complete

variety X extends uniquely to a morphism ~ : è ~ X.

Definition A. An algebraic curve \vith an action of a toros T is called a T­

stable curve.

Let T be a toros acting on a variety }(. Denote by }(T the set of the T-fixed

points of J"(. In this section we will show that the number of T-stable curves

through a T -fixed point of ~~ has ta be at least the dimension of }(. First we

show that T-stable divisors existe •



•
(CH. III, §19) E~X1STENCE OF ENOUGH T-STABLE CURVES 31

•

•

Lemma B. Suppose l\t/ is a T -variety with dim l'vI> O. Let X E k[T be a smooth

point 01 }Vf. Then there exists l\tl' aT-stable -irreducible subvariety of codimension

1 in Al, containing x such that x is smooth on i\;I'.

Proof. There exists aT-stable hyperplane "'" in TrA/. The result then follows

from Theorem 17 C. 0

Proposition C. Suppose ..X is aT-stable irreducible subvariety of a T -variety

l\tl with dim)( > o. Let x E )(T and suppose x is smooth on Al. Then there

exists Z aT-stable irreducible subvariety of codimension 1 in )( containing x.

Prool. By Lemma B, there exists Al' aT-stable irreducible subvariety of codi­

ulension 1 in J\tl containing x such that x is smooth on 1\t1'. Let Z be an irreducible

component of 1\;1' n )( containing x. Then

dim.~ > dim Z 2:: dim ..Y + dim Al' - dim J.\tl = dim.\"" - 1.

If dim.~ = dim Z replace 1.\1 by Al', .r by Z and choose again A,l' and Z. Since

dim Al' = dim Al - l, eventually we will get Z such that dim Z =dim X - 1. 0

Suppose Tacts on a variety ..\". Denote the set of ail closed T -stable curves in

~\"" by E(X) and let E(X, x) be the set of closed T-stable curves in X containing

the point x. Denote by TE (~Y, x) the subspace of TrX spanned by the TrG for ail

C E E(J\"", x). The next theorem is due to Carrell [Car94], but the proofpresented

here does not make use of a local equivariant embedding in a projective space.

Theorem D. Let AI, be a smooth T -variety and ",l[ an irreducible T -stable sub­

variety. Then for every x E .yT

1. 1E (X, x) 1 > dim J\'" ,

2. dimTE(X,x) > dim.X.
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Proo/. The result being trivial for dim ..X = 1 and dim.X = 0, we can assume

that dim X > 1, and we use induction on dim.-\". Choose y to be aT-stable irre­

ducible subvariety of codimension 1 in ,.,Y containing x. By induction hypothesis

IE(Y x)1 ~ dim Y = dim ..\" -1 ~ 1. Hence we can choose C E E(Y, x). Let L be

aT-stable line in the tangent space TzG and let ~ .. be a T-stable complement to

L in Tz l\-'/. By Theorem 17 C, there exists AI' aT-stable irreducible subvariety

of Al containing x such that x is smooth on AI' and Tr 1"1' = V. Let Z' be an

irreducible component of X n J"l' containing x. Then

dim,.,Y ~ dim Z' ~ dim)( + dim 1\;/' - dim 1\;[ = dim X - 1.

If dim.-\" == dim Z' apply Proposition C to Z' and 1\;1'. In any case we get Z a

T -stable irreducible subvariety of codimension 1 in .\'" containing x and contained

in j}l'. Note that L doesn't lie in TzZ C TrAI' = V, which implies that TzC

is not contained in TzZ and C is not contained in Z. By induction hypothesis

IE(Z,x)l > dimZ = dim.X - 1 (resp. dimTE(Z,x) ;::: dim ..Y - 1). But ..Y

contains ail the curves of Z and C (resp. T E(.Y, x) contains T E(Z, x) and TzC),

which shows that IE(..Y,x)l ~ dim ..Y (resp. dim TE(.\"",x) ~ dim ..Y). 0

20 A Smoothness Criterion for T -Stable Curves

Lemma A. Suppose any two distinct weights in W(\/) are linearly independent

characters of T. Then every closed T -stable curve in \tp is a line through D.

Proof. Let C E E(V). Let z E C \ {D}. Write z as Vl + ... + Vt where Vi E VOit

1 S; i < l. Then t . z = O!l(t)Vl + ... + Qt(t)Vl' By hypothesis any two ai

(1 S; i < l) are linearly independent characters, which implies that aIl Vi are 0

but one: otherwise dim T . C ~ 2 for dim T > 1 and if dim T = 1 we must have

l = l as any two weights of T are linearly dependent. This shows that C is the

line spanned by Vi. 0

•

•

•
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Let x E )(T and suppose that any two distinct weights in W(Tx.X) are linearly

independent characters, then x is isolated in XT: if x is not isolated in }(T, then

Tacts trivially on T.:r(.X·T ) # 0, and W(TxX) contains the trivial character which

is impossible.

Proposition B. Suppose x E }( is a smooth T -fixed point and any two distinct

weights in W(Tx_Y) are linearly independent. Then evenJ T -stable curue C E

E( ..Y. x) is smooth. If moreover there exist an open T -stable neighbourhood U of

x and a T -equivariant isomorphism {3 : U ~ Tx-l[, then any t-wo distinct T -stable

curves have distinct tangent spaces.

Proof. By Corollary 17 8, there exists U ç ..Y" aT-stable open neighbourhood of

x~ an étale morphism ,8 : U ~ Tx.X such that x is sent to 0 E Tx.Y. By Lemma A~

{3(C) is a lïne. Hence dim To,8(C) = 1. But since 13 is étale, d;r,f3 : TxC ~ TofJ(C)

is injective, which implies that dim TzC = l~ and the first statement follows. The

second statement follows directly from Lemma A. 0

21 Fixed Points of aT-Stable Curve

It is well-known that a toros acting linearly on a n-dimensional projective variety,

has at least n + 1 T-fixed points (see [Bor91, Ch. IV, 13.5]). In particular, any T­

stable complete curve has at least two fixed points. The follo\\;ng result precises

this statement in a particular situation.

Proposition A. Suppose)( is a complete T -variety. Suppose C E E( ..X") is such

that if x E CT then x is smooth in ..Y" and isolated in .:'(T. Then CT contains

exactly two T -fixed points.

Proof. Since ..Y is complete, C is complete which implies, by the Fixed Point

Theorem, that C has at least one fixed point x E cr. Let Li be an open affine



T-stable neighbourhood of x (see Theorem 17 A). Since x is isolated in .~T, T

acts non-trivially on C. A one parameter group À of T induces a Gm -action on

X by: Gm x ..~ --t ..Y", (s, x) ~ À(s)· x. Let À be a one parameter group of T such

that the induced Gm -action on C is non-trivial. Let z E C n U he a point which

is not fixed by the action of Gm and define 4>z : Gm~ C by s t-4 "\(s) . z. Since

C is a complete variety and 4>: is dominant, cP.: extends to a surjective morphism

i>z : pl --t C. Note that since cP:(Gm) is a Gm-orbit, the only T-fi..xed points of

C are i>.:(O) and eP:(oo). Thus either ~.:(O) = x or ~z(oo) = x. Suppose that

~:(O) = tb;:(oo), then iJ: is a morphism from a projective variety pl into an affine

variety U, and hence it is constant. This is impossible, and C has exactly two
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T -fixed points.
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22 T-Stable Curves in IP(V)

Suppose Tacts naturally on P(V), that is this action is induced by a linear action

on the vector space F. Let .Y" ç P(V) he aT-stable closed irreducible subvariety.

Let C E E(..Y"), and suppose that T doesn't act triviallyon C. Let zEe \ CT.

Express z in homogeneous coordinates z = (Vl + ... + Vl)/Gm such that each Ut,

1 < i < l, lies in the weight space VQi , and assume Vi # 0 for aIl i, 1 ~ i ~ l.

Note that 1 > 1 as Tacts non-trivially on C. If t E T, then

t . Z = (01 (t)Vl + ... + QI (t)v,)/Gm ,

where Oi is the weight of Ui' Let x E cr, and let Oz be its weight. Theo Or must

appear amoog (kl,'" ,O" since C lies in the projection of the space V~l $ .. ·EB\~,.

and x is a point of C. Suppose that 0l = Oz. \Ve can use affine coordinates in a

neighbourhood of x ta express z: z = ~ + ... + !!L
V

U
• If t E T then

Ut l

•

•
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Since the affine neighbourhood of x is isomorphic to the tangent space of P(v·)

at x, and since the curve C lies in .\"', the weights Q2 - al, ... ,a' - QI appear in

W(TzP(V)). Among 02 - Oh.' . ,Oi - al there can't he two weights which are

linearly independent, othenvise the T-orbit T· z would he at least 2-dimensional,

which is a contradiction.

The next Proposition allows to make a rough classification of T-stahle curves

in T-stable subvariety .\"' oflP(V), when for each T-fixed point x E )(T the weights

in W(Tz..'Y) are linearly independent.

Proposition A «(Car94]). Suppose Tacts naturally on P(V). Let ..Y ç lP(~r)

be aT-stable closed 'irreducible subvariety. Assume that for every x E }(T, any

two different weights in W(Tx ...Y') are linearly independent.

1. Let CEE(..\"') , CT = {x, y} . Then C is the unique closed T -stable curue

containing its T -fixed points CT = {x, y}. ln particular, it is the projection

on PCV) of the direct sum x EV y, and it is smooth.

2. There exists a character a of T such that TzG has weight Q and TyC has

weight -o. Moreover C is the unique T -stable curve in E(X, x) such that

TzG has weight o.

3. E(.Y) is finite.

4. If x E XT, then two distinct closed T -stable curues in E(X, x) have distinct

tangent spaces at x.

5. II x E J~ is a smooth point of .\, then x lies on exactly dim X distinct

complete T -stable curues.

Proof 1. By Theorem 17 C there exists aT-stable suhvariety At[ C lP(lt r

)

such that x is smooth in 1.\1••Y ç Al and TzM = Tx:K. By the property

of projective spaces, there is an affine T-stable neighbourhhod U of x in



P(V), and a T-equivariant isomorphism J3 : U 4- TxlP(V). Since any two

weights in W(TxX) are linearly independent , the curve C is smooth and

the tangent space TxD to any other curve D E E( ..\"', x) is different from

TrG (see Proposition 20 B). It is easy to see that for any two distinct lines

L L and L1. in TrlP( vr) the closure of 3- l(L 1) and the closure of /3-1 (L1.)

intersects only in x. Applying this to TEe and TrD we see that Gand D

intersects only in x. Therefore G is the unique T-stable curve containing
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cr = {x,y}.

2. Since any two different weights in W(Tx ..\) are linearly independent, the

o weight is not in W(Tr"~) and therefore the toros Tacts non-trivially on

any T -stable curve. If al is the weight of x and 01. is the weight of y , then

by the preceding discussion, TxG bas weight a = 01. - 01 and TyC bas

weight -Q = Ql - 02. If D E E( ....(, x) is such that TxD has weight 0, and

if z E cr \ {x} is the other T-fixed poinL then z has weight a + al = 02, •

which forces z = y and D = C.

3. Follows from the preceding part and the fact that ..\T is fini te.

4. This follows from the explicit computation of the weight of TxX ç TrlP(V)

in the preceding parts.

5. If x E ....~ is a smooth point of X, then dim Tx ..\ = dim.,Y' which implies

tbat Tx .,,,< decomposes in at most dim ..\ distinct weight spaces. But since

no two smooth T -stable curve in E (..\, x) have the same tangent space at

x, there is are most dim X T -stable curves in E (.\, x). The result follows

from Theorem 19 O.

o

Remark A. Suppose X is the 8ag variety CIP, where P is a parabolic subgroup

of Gand Tisa ma.'CÏmal toms in G. There exists a representation G 4- GL(lt-) •



and a line L ç V such that B = Staba(L) (see [Hum8I, 11.2]). Passing to the

projective space, the G-orbit G . L in PCV) is isomorphic ta G1P. Since G1P

is complete, G . L is closed, and we have identified CI P with a closed T-stable

subspace of P(\.-I'). Note that (CI p)T is finite, and the T-weights of TeGIPare

aU distinct elements of ~-, thus any two of them are linearly independent. For

any other point x E (GIP)T, Tz;GIP is the translate of TeGIP by x, thus its

weights are also distinct. We can then apply Proposition.-\. to G1P ç P(v·).

Suppose that a torus Tacts on a vector space V. Then it induces an action

on the Grassmannian Gd(V) for any positive integer d. But Gd(V) ::: SL(V)IP

for a ma..ximal parabolic subgroup P. Therefore the preceding discussion applies

ta T-actions on Grassmannians, assuming that Gd(\/')T is finite.

•
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\Ve would like to classify the T -stable curves in G1B. In view of Section 22, the

naturai question is: under which condition two T-fLxed points are joined by a

T -stable curve. \Ve know that the map lV --» (G1B)T, W Ho wB is a bijective

correspondence between the Weyl group and the T-fixed points of G1B (see

Section 7). In particular (G1B)T is finite. Consider G1B as a subset of sorne

rCl/) as in Remark 22 A. Let w, x E l'v. We know (see Proposition 22 .-\.) that

the projection of wB E9 xB defines aT-stable curve in PCV). In this section we

will show that this curve lies in GIB if and only if wx- 1 is a reflection. \Ve follow

the ideas of Springer [Spr98) and Carrell [Car94].

Let J E~. Let ZtJ be the centralizer ZG(Tp) where Ta = ker(p)o. \Ve know

that Z3 is a reductive group containing Ufj, U_fj and the maximal torus T and

whose root system has rank 1 (see Proposition 8 A.). Let w.J E H/ and define

Cw•P = Z:JwB/ B ç GIB. The stabilizer of wB in Z/j is the intersection of the

Borel subgroup ..,,;8w-1 with Z/j. By Proposition 8 A, this intersection is a Borel

•

•

23 T-Stable Curves in G/ B



subgroup of Z{j containing T: B{J or B_p, and since Zp = Z_p, we can assume

that it is BtJ. The map Za/Ba --). ZawB / B is an equivariant isomorphism of

varieties, which identifies Cw,{J with the flag variety of Zp. This shows that C w ,;3

is a smooth closed T -stable curve in G / B.
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Proposition A. Let w E Hl and 13 E <Jl+. Then the T -stable curve Cw,iJ is equal

to UowB/ B if w-1(d) ~ 0, othennise it is equal ta U_/3wB/ B. ln particular

W(TwCw,p) = ±/3.

Proof. The sets UiJB-J and U_fJB{J are open in Z{J (they are the big cells). If

w-1CB) < 0 then UaB_dwB/ B = U{JwB/ Bis dense in Cw,{J, otherwise w-1(.J) > 0

and U_{JB(JwB/B = U_JwB/B is dense in Cw,{J' Since the weight of TeU(J = 9B

(resp. TeU-8 = 9-d) is ,d (resp. -,B), the second statement follows. 0

This proposition allows the following definition:

Definition B. Let ....J, x E Hl and suppose that wB and xB are two distinct

T-fixed points of sorne Y-stable curve of the form C = C w,/3' We define ,3(w,.c)

to be the unique root such that C = U{J(w,z)wB/B (or equivalently let p(w, x) be

the weight of TwC). Note that 8(w, x) = ±{3.

Let Sw denotes the Schubert variety BwB/B. There is no confusion if we

write w for the T-fixed point wB E (G/B)T. The folloWÎng lemma classifies the

c10sed T-stable curves in Schubert varieties.

Lemma C. Let w E ~v and ,8 E <Jl.

1. The variety Cw,p is a smooth closed T -stable curve with fixed points;.iJ and

CTfJW.

2. The weight of the tangent space TwCw,p (resp. TtTfjwCw ,(3) is l3(w, CT{JW) (resp.

- ,B(w, CT{JW ) ) •

•

•
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3. Any closed T -stable curve in G/ B is of the form Cw,/3.
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4. A closed T -stable curve C lies in the Schubert variety Sw if and only 'if its

fixed points lie in Sw.

Proof. The curve Cw,l3 is a closed smooth T-stable curve by the preceding discus­

sion. Since Zo = Bo U BoaaBa the only two T-fLxed points of G/B contained in

Cw ,/3 = ZfjwB/B are w and a{3w. This shows the first statement.

Suppose {3 = ,B(w, a{jw). Then TwCw,tJ is isomorphic (as aT-module) to

Tw(UlJwB/B), which in turn is isomorphic to Lie(Up) = 9{3' But the weight

of gp is J3 which shows the second part.

Let ; be the weight of TwC. \Ve want to show that C = Cw ,..,. If we show

that TwCw: y = TwC, then the result follows from Proposition 22 A. The weight of

the tangent space TwCw:y = TwZ-,wB/B is B(w,a..,w) = ±-y (see Proposition :\.) .

Suppose it is -""{. Then CW;y = U..,wB/ Band U_,., doesn't fix w. Hence U.., fLxes w

and U,., ç StabG(wB) = wBw- l
• which implies that ; is not a weight of TwG/ B.

But this contradicts that TwC ç TwG/ B has weight ;. Therefore {3(w,C1'..,w) = r,
and this shows TwCw;y = TwC.

For the last statement, suppose that C E E(G/B) and cr = {x,y} ç Sw.

Note that by the second part, either .8(x, y) > 0 or {3(y: x) > 0, so we mayas weil

assume that {3(x: y) > O. Therefore Ud(x,y) ç B, and Up(x,y)xB/B ç Sw because

Sw is closed under the action of B. This implies that C = UIJ(x,y)xB/B ç Sw, as

Sw is closed. 0

Let x E Sw be a smooth point. The dimension of TxSw is equal to the di­

mension of Sw that is l(w) (see Section 15). [n view of this fact, of Theorem 19

o and of Lemma C, it is clear that the number of curves in E(Sw,x) is exactly

l(w). Lemma C shows also that E(Sw. or) is in bijective relation with the set
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{,8 E ~+ 1 (7pX ~ w}. It follows that

In particular for x = w, using Proposition 15 8,

40
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An important combinatorial result is the Deodhar inequality. It has been

conjectured by Deodhar, and proved by Lakshmibai-Seshadri([LS84]), Carrell­

Peterson([Car94]) and Polo([PoI94]) in the context of Schubert varieties and by

Dyer([Dye93]) in a more general ~etup of Coxeter groups. We follow the proof

of [Car94].

Proposition D (Deodhar). Let x ::; w he in W. Then the number of reflections

(7 E tV such that x < qX ::; w is at least l(w) - l(x), that is

ItB E 4-+ 1x < U(3X ::; w}1 ~ l(w) - l(x).

Proof. By Lemma C, the number of reftections (7 E ll" such that (7X E Sw is

equal to IE(Sw, x)1 which is at least dim Sw = l(w) (see Theorem 19 D and

Section 15). By the preceding discussion, the nurnber of reflections q E ~V such

that ax E Sr ç Sw is exactly l(x). Hence the number of reflections q such that

ax E Sw and ax fi Sr is at least l(w) - l(x). The result follows from the fact

that the Bruhat-Chevalley arder on Hl corresponds to the inclusion of Schubert

•

varieties.

\Ve \Vill use this result in proving Peterson's Theorem.

o

•
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Chapter IV

Smoothness Criterion for

Schubert Varieties

This is the main chapter of this thesis. \Ve develop here criteria for smoothness of

varieties with torus action and more particulary of Schubert \·arieties. The first

two sections concern the topology of the tangent and cotangent bundles. In Sec­

tion 26 we state Peterson's Theorem which gives an easily computable criterion

for smoothness of T-fixed points in a Schubert variety. In sections 27 and 29 we

develop a more general result for T-varieties and use it to proye Peterson's Theo­

rem. In Section 30, we give another criterion involving Cohen-Nlacaulay varieties,

and give another proof of Peterson's Theorem. We develop tools to compute the

Peterson translate in Section 31 and apply it to examples in Section 32. Sections

33 and 34 are j ust restatement of preceding results in a nicer form.

24 Closure of the Tangent Bundle

Let .X be a smooth variety, and denote by T)( (resp. T· _\'") the tangent (resp.

cotangent) bundle of ..\'". Let }.. be a smooth subvariety of _t". Denote by r;..\'" the

41



conormal bundle of Y in T·X, Le. the set of aIl covectors over }',. which annihilate

the subbundle TY of T.\'". First a general result.
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Proposition A. If}" is a closed smooth subvariety of ..\" 1 then the tangent bundle

TY' (resp. conormal hundle Ty«\'") is closed in the tangent bundle T.\ (resp. zn

the cotangent hundle Te X· ).

Proof. Since TY is a subvector bundle of T ..YÎy, it is closed in T ..\'ly. ~[oreover,

if1r: T}( -t.\ is the projection, T ..YÎY = 1r- 1(y) so T ...YÎy is closed in T ..\'". This

shows that Tl" is c10sed in T.X.

The conormal bundle Ty..\ satisfies the following exact sequence:

Therefore Ty«\ is closed in T·«\Iy. But T· ..Yly is closed in T- «\ because it is

equal to 1r--
l (Y) (where 1re

: T- ..\ -+ ..\ is the projection) and Y is closed in .\. •

This shows that T;..X is closed in T- ..Y. 0

Corollary B. Let.\ he a smooth algebraic variety and Y a locally closed smooth

subset. Then the closure of the tangent bundle (resp. conormal bundle) of l"

restricted to the smooth locus of the closure of Y is equal to the tangent bundle

(resp. conormal bundle) of the smooth locus of the closure of Y. In notation:

- ~eg

TYlyrcg = TY

Proof. Let .X" be the complement in .\ of the singular locus of y": .X" = .\'\} .S

(},.s denotes the singular locus of Y). Note that the closure of Tl''' (resp. T;..\)

restricted to yreg (the smooth locus of Y) is equal to the closure of Tl' (resp.

T;-«\) in T.X" (resp. Te .\;). But since veg is a smooth and closed subvariety of

.X', it is a closed submanifold of .Y. By Proposition A, TVeg
(resp. Ty..,,~.\") is •
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also closed in T ~y (resp. T* ..Y). Therefore

TYlyr<!!I ç Tyeg

T;_\:ÎV<!'1 ç TVeg..",«= T.p.reg)().
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The dimension of the fibers of TY (resp. Ty)() must be at least the dimension

of the fiber above }~. But since Tye
g

(resp. Tpreg )() has fibers of this dimension~

we must get the equality: T}~IY'"e9 = Tyeg
(resp. Ty~Y"IY"eg = Tyreg }(). 0

1t follows that if we consider the tangent (resp. conormal) bundle T ..Y":.J (resp.

T"~IJB) of a Bruhat cell .\·w = BwB / B, then its closure T X w (resp. T.~..,B) above

a smooth point of the Schubert variety Sw = .Y"w is just the tangent space (resp.

conormal space) at this point. In facto in next sections, this will Iead us to a

smoothness criterion for Schubert varieties.

25 Extensions of Vector Bundles

Let 1r : &~ JY" be a map. Denote by Ex the fiber 1r- 1(x) above a point x E .X, by

Ely the inverse image 1r -1 (}.~) for a subset Y ç X. If 1r : E ~ X is a vector bundle,

we define Qd(E) to be a fiber bundie over ,oY" with fibers being Grassmannians of

d-dimensional subspaces in the fibers of &.

Proposition A. If X is complete then gd(&) is complete.

Prao/. If.X is complete, then Qd(E) ~ .~ is a fiber bundie with complete fibers,

thus Qd(E) is complete. 0

Suppose 1re : &~ X is a vector bundle. Let Y be a (smooth) algebraic subset

of .Y". Let 1rv : V ~ y~ be a subbundle of Ely ~ Y of rank d (the dimension

of the fibers). The bundie V defines a section (V] : Y ~ gd(Ely) as follows:

[V](y) = Vy E gd(Ey ) for any y E }'~. Denote by (V] the image of tms section in



Qd(&). Note that the Zariski closure of V (resp. of [V]) in & (resp. in gd(E)) is

not necessarily a subbundle of E (resp. of gd(&))' The following lemma shows

that the closure of [V] in gd(E) and the closure of V in & behave in the same way.
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Lemma B. Let T be the tautological bundle ofQd(&), that is the following closed

subvariety T = {(v, V) E & x 9d(E) 1v E \;'} ç & x Qd(&) with the projection

T : T -t gd(t). Let p. be the projection T -t t.

2. If F is a subset of T, then p.(F) = p.(F).

3. Suppose that V -t Y is a vector subbundle of Elv -+ Y of rank d, then

Proof. The bundle morphism T : T -t Qd(E) is fiat and the first statement follows •

from this facto For the second statement~ note that JI. : T -t E is proper as its

fibers are ail complete. It follows that JL(F) = Jl.(F). For the third part, we have

V = Jl.(r-1([V]), and the two preceding results imply V = J1.(r- 1([V]).

o

:'J'ext we will show that sections of gel(!) -+ .~ give rise to vector subbundles of

E -+ ~~.

Lemma C. Let Y' be an algebraic subset of ..Y', and suppose s : Y -t 9d(Ely) is

a section of gd(Ely). Then V = {v E El v E s(x), x E l~} is a vector bundle over

}'.

Proof Note that JLlr-1(.s(Y» is an isomorphism T-
1(s(Y)) -)0 V. But r-l(s(Y»,

as a space over Y, is a vector bundle, hence 50 is V. 0

•



(CH. IV~ §26) PETERSON'S THEOREA-I

• 26 Peterson's Theorem

45

•

•

Let G be a semisimple algebraic group over an algebraicallly closed field K, B a

Borel subgroup, U ç Bits unipotent part, T ç B a ma..ximal torus, ~ the root

system given by T! ~ C ~ the basis determined by B, ~+ the set of postive roots,

a· = lVc (T)IT the "Veyl group. Denote by CT/3 E 1'V the reflection corresponding

to the root [j E ~.

For Ci' E ~ let Ta = (ker Ct)O, Za the centraliser of Ta, BQ = Za n Band

B_a = Za n B- the two Borel subgroups of Za containing T, Ua and U-a their

unipotent parts. Let n (resp. 90) be the Lie algebra of U (resp. of Ua)'

Denote by B the flag variety CIB. There is a natural action of the group G

on TB. the tangent bundle of the flag variety, given by (g, u) ~ dxlg(v} E Tg.zB,

where 19 : B ~ B is the left translation by g. This induces a G-action on

Çd(TB) for any positive integer d (see Section 25). Denote by tr : Çd(TB) ~ B

the projection. Let q E Çd(T~Y) be a T-fixed point, wB = tr(q) and suppose

C E E(B.wB). By Proposition 23 A and Lemma 23 C, there exists J3 E <I> such

that C = (J[JwBI B. \Ve define r(q, C) E Gd(TB) to be the fiber of Ua . q ~ C

above the T-fixed point (j/3w E cr, that is r(q, C) = tr-l(CTJW) n Ua . q. The

space r(q, C) is called the Peterson translate of q along C. Let 'P = {(q, C) E

gd(TB)T x E(B) 1 tr(q) E CT}, then r can be viewed as a map

and it is called the Peterson map.

Let JJ. x EH'. Recall that E(S""x) denotes the set of aH closed T-stable

curves in Sw containing.x (as before, if w E W we denote by w the point wB E B),

If C E E(S~. x), let Yc E ~t-'. be the T-fixed point of C distinct from x.

Tbeorem A (Peterson). Let x, w E 1'V such that x < lJJ. Suppose that S",

is smooth at everlJ point y E J.V such that x < y ~ w. If for any C. D E
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In the same way, we can define the "cotangent" version of the Peterson trans­

late. Denote by 7r- : T*B ~ B the projection of the cotangent bundle. The G

action on T- Bis naturally defined as follows: for a cotangent vector J.L E T; 8 and

9 E C, let g. J.L be the element of T;zB given by (g. J.L)(v) = J.l(g. v) for u E TzB.

If q E gd(T-B) and C E E( ..\'") such that 7r-(q) E cr, then write T(q, C) for the

fiber of Ua . q above U{jX. Theorem A can be restated in terms of this new map:

Theorem B. Let Ir;"; E l-V such that X < w. Suppose that Sw is smooth at every

point y E l-V such that x < y ~ w. If for any C, DE E(Sw,x) \ E(Sr,x) we have

T(Ty~Sw"C) = T(Ty~Sw, D), then Sw is smooth at x.

\Vhere T/ Y denotes the annihilator bundle of Ty Y in T; ..\'" , that is the space

that fits in the short exact sequence

where Ty.l.y ~ T;.\ is the inclusion and T;J\ -.. T;Y is the restriction to TyY.

This theorem \Vas first proved by Peterson (unpublished) and then, in a more

general context, by Carrell and Kuttler ([CK99J).

27 Peterson Translate

In this section we win proof a more general version of Peterson's Theorem. due

to Carrell and Kuttler ([CK99]). which gives a nice criterion for smoothness of

T-varieties. \Ve will first redefine the Peterson map in more generality.

Recall that if Al is a smooth T-variety, there is a natura! action of T on the

tangent bundle Tl\/. If d is any integer, there is also an action of Ton gd(Tl\/).

the fiber bundle of d-dimensional Grassmannians in T kl.

•

•
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Lemma A. Let 11;1 he a smooth T -variety. Suppose C E E(M) is a curve with a

non-trivial action of T. Suppose that q E gd(TflIl) IC\cT is such that Stabr(q) =
Stabr(tr(q». Then T· q 'is a section of gd(Tl\-/lc\cT).

Proof. Since Stabr(tr(q» bas codimension l in T, T . q ::: TI Stabr(q). Note

tbat TIStab-r(tr(q» f"V C \ CT. therefore the map t ·tr(q) ~ t· q is the required

section. 0

\Ve will now define the Peterson translate for two cases. Let C E E( J.\1) he a

curve with a non-trivial action of T.

1. Let x E cr and suppose that q E Qd(T.i\tI)lc\cT is such that Stabr(q) =

Stabr(7r(q». Then define T(q, x) to be the fiber of the Zariski closure T· 9 ç

Qd(TAI) above x.

2. Suppose that V --» C \ CT is aT-stable vector subbundle of T A-/lc\cT .

Let x E cr and define T(V, x) to he the fiher of the Zariski closure (V] ç

Qd(Tl\-/) above x (where d is the rank of V).

\Ve give sorne properties of the Peterson translate in the following three results.

Proposition B. Let 4~ he an iTTeducible T -stable subvariety of a smooth T­

variety A-I and suppose x E ..X is a T -fixed point of 4~. Let C E E(.6~, x) and

suppose C \ cr lies in the smooth locus of ..Y'. Moreover suppose there exists

p : X --» Y an T -equivariant morphism ofT -varieties such that drP restricted to

T(T~~lc\{z}J x) is injective. Then p is unramified at the points of C \ cr.

Proo! Let zEe \ cr and suppose p is ramified at z. Sînce z is a smooth point

of ..,Y, we have that L = ker d:p # o. Let d = dim L. As an element of gd(T1\-/),

L is an element of the fiber above z. Note that L is fi.xed under the action

of Stabr(z) on TzC, which implies that T(L, x), the Peterson translate of L in

gd(TAtlz ), is weil defined (see Lemma A). We daim that T(L, x) lies in kerdzp.



First note that kerdp is a closed in T"Y. Next the vector bundle p(T-l(T . L)

(we are using the notation from Lemma 25 B) defined by T· L ç Qd(TA'1 1C\cT )

is contained in kerdp. Since T(L, x) is an element of T· L, and per-leT . L» =
p,(T-l(T· L» by Lemma 25 B, T(L,x) lies in kerdzp, which shows the daim. On

the other hand T(L,x) lies in T(T..Ylc\{x},I) because L ç Tz~Y. The hypothesis

says that kerdzpn T(T..Ylc\{x},x) = a which implies that T(L,x) = 0 which is a

contradiction. Therefore p is unramified at z. 0
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Proposition C. Let}( ç 1\;/ be as before, x E .."(T and let C be a smooth T -stable

cUrve in E(~Y, x) such that C \ cr lies in the smooth locus of Jl(. Let Y ç "l(

be a smooth T -stable algebraic subset of _y with xE}" such that Y n C = {x}.

Suppose there exists Z aT-stable smooth algebraic subset of ...Y such that Y ç Z

and C n .o'yreg ç Zn x"eg. Then Tx }" ç T(T..tlcnx..org,x).

Proo! Since Z is smooth, Corollary 24 B implies that TZlznx"rglz = TZ (where

,xreg denotes the smooth locus of ..Y). In particular it follows that

TZlcnx,.f:g = TZlcnz.

Hence TrY ç TzZ = r(TZlcnx"eg,X) in view of Lemma 25 B.

From TZlcnx ..eg ç T ..Ylcnxp'rg, it follows that TZlcnxp'r, ç T~Ylcnx"r" which

yields r(TZlcnx"rg,X) C r(T~Ylcnx"f:', x) by using Lemma 25 B. The result

follows from this and the preceding paragraph. 0

CoroUary D. Let w and C E E(Sw,w). Let x E Hl be the other fixed point of

c. Then TxSr ç r(T(BwBIB)lcnBwBIB)'

Proo! To show this we use Proposition C on 4\ = SIAl, }'- = BxB1Band Z =

(Unx(U-»·U_pxBfB. It isdear that}- = BxBIB = Unx(U-)xBIB ç Z. By

Proposition 23 A, we see that C \ cr ç UaxBfB, thus en ....<reg = C \ cr ç Z.

~Ioreover Z is smooth as the product morphism Un I(U-) x U_p X {x} ~ G

followed by the projection G ~ G / B is a smooth morphism. 0

•

•
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Proposition A. Let AI be an i7Teducible variety with an action of the toTUS T.

Let .\ be aT-stable irreducible subvariety of AI and suppose xE ..\"" is an attractive

point of .\"" r smooth in ~vl. Let V be a vector space with a linear action of T such

that dim ~Y = dim F and let p ; ..\"'r -+ V be a T -equivariant mO'rphism such that

drP(TJ:C) f:. 0 for ail Ct E E(..Y·, x). Then p is finite.

Proof. Suppose C E E(p-l(O)). Since x is attractive, C contains x, that is

C E E( ..\r. x). The hypothesis drp(TrC) # 0 implies that p(C) 1: 0, which is a

contradiction. Therefore IE(P-l(O))1 = 0, and by Theorem 19 D, dimp-l(O) = O.

In particular this implies that p is dominant.

Let us show that .Y'z is affine. By Theorem 17 C, there exists }'~ an irreducible

T -stable subvariety of Al such that J\"' ç Y, x is smooth on }", and Tz r" = Tx .'( .

Note that x is an attractive smooth point in Y. Hence, by Corollary 18 D, there

exists }r~ an affine x-attracted neighbourhood of x in Y. Theo .X'z = .X n }~ is

an affine x-at tracted neighbourhood of x in )(.

By Proposition 16 A, there exists an open neighbourhood U of p(x) = 0 such

that p-l(U) is an open neighbourhood of x and p: p-l(U) -4> U is surjective and

quasi-finite (even finite). Note that U can be chosen to he T-stable. Therefore

by Lemma 18 B. U = l'P, and p : X% -+ V is a quasi-finite surjective morphism of

affine varieties. It follows that p is finite as any quasi-finite surjective morphism

of irreducible affine varieties is finite (see Proposition 16 A). 0

29 Peterson-Carrell-Kuttler Theorem

Recall (Section 16) that a morphism f ; 4~ ~ l'JO is said to be étale at l E .\

if the differential d:rj : Cr.\ -4> Cfer) y is an isomorphism of the tangent cones

considered as schemes, and is said to be unramified at x if the differential d:rf :



TzX ~ Tg yP is injective. The set of aIl points where f is not étale is called the

branch locus of f. We will need a theorem of Zariski-Nagata on the purity of

the branch locus of a finite map.
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Theorem A (Zariski-Nagata,[Dan94, ch.3, §1.3]). Suppose f : .X ~ }. is a

finite dominant morphism, where }P is smooth and ,J"( is normal. Then the branch

locus of f has pure codimension 1 in )(.

Corollary B. Let T be a toros. Let p : ~~ ~ y be a finite dominant equivariant

morphism ofT -varieties with Y smooth and i7Teducible. Suppose that there exists

an attractive point x E ~"(T such that X = ..,"(z. Then the branch locus of p has

codimension lin .\ or is empty.

Proof. Suppose that the branch locus of p has codimension greater than or equal

to 2. Let 1r : .~ ~ .Y be a normalization of ..Y', and let p = p 0 1r. Note that

the branch locus of p is in codimension 2 or more since the normalization 1i is an •

isomorphism in codimension 1. Therefore p is étale by Theorem A.

As p is finite and dominant it is surjective. By hypothesis .X = "'\.r1 hence

y = p(X) = p("'Yz) = Y~(z). It follows that p(x) is an attractive point of }. as }.

is smooth.

Let x E 1r- 1(x). Then since fi is étale, dzp : Tz"'Y ~ Tp(%} Y is an isomorphism

and :i is an attractive point of .~. Therefore we can assume that ..t = .txo
But then p is an étale covering with p-l(p(X» = x, hence an isomorphism by

Theorem 16 B. Thus p is birational. 1t follows that p is an isomorphism as any

finite birational morphism to a smooth (even normal) variety is an isomorphism.

o

\Ve will now state and prove the central result in this thesis.

Theorem C (Peterson-Carrell-Kuttler Theorem). Let 1"1 be an irreducible

variety with an action of the toros T. Let X be aT-stable irreducible subvariety •



•
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and suppose x E ..,"\T is an attractive smooth point 0/ Al. Suppose moreover that

there is a subset E ç E (.'"\, x) such that

1. every curve in E is not contained in the singular locus 0/ .~,

2. IE(.~, x) \ El ~ dim.\ - 2,

3. for aU C, D E E, T(T.\'Îcnx"~9'x) = l"(T.~IDnXpeg, x} where ..~reg denotes

the smooth locus of .~,

4. if T(E) denotes the com'mon value of l"(T..\'lcnxrcg, x) for CEE, then

TzC n T(E) i= 0 for ail curves C E E(..'"\, x).

Then x is a smooth pO'int of .\.

Proof. Since x is attractive in JI. JJz is a T-stable affine neighbourhood of x

T-equivariantly isomorphic to Tr~\1 by Theorem 18 C and Corollary 18 D. Let

i : Alz -)0 Tz A'1 be this T-equivariant isomorphism. By Corollary 17 B, we can

choose i 50 that dzi : Tr2\tI;r -)0 TrJI is the identity. In particular there is a closed

T-equivariant embedding i : .\'";r ~ Tr..\l of ..X"z = X' n AIz in Tz~\;l.

Let 1r : Tzkl ~ l"(E) be any T-equivariant projection, and let p = 1r ai. \oVe

have the following commutative diagram.

..\.1: • Tz~\;l

~~
T(E)

Suppose G E E(.X"z, x). By hypothesis TxG n T(E) i= 0, which implies that

dzp(TzC) i= 0 as dxp is a projection on T( E). Theo Proposition 28 A implies that

p is finite.

Let Z be the branch locus of p. We will show that dim Z ~ dim ..Y"x - 2~

which will imply, by Corollary 8, that Z is empty and therefore }(z and ..\' are



smooth at x. It is clear that Z is aT-stable closed subvariety of X r (see [Dan94,

II,2.5.4]). Suppose C E E(Z, x) n E. Since CEE is not contained in the singular

locus of .\"r' the T-orbit Co = C \ {x} lies in the smooth locus of .\"r. At smooth

points of "\"r, p : Xr ~ r(E) is étale if and only if it is unramified because r(E)

is smooth and dim r(E) = dim ...\"r. Hence p is rarnified at the points of C \ {x}.

Note that ker drP n r(E) = 0 because dzp is the projection on T(E) =
T(T..\:ic\{z}, x), and applying Proposition 2ï B, we get that p is unramified

at the points of C \ {x}. This is a contradiction with the last paragraph.

Hence E(Z, x) n E = 0 and by Theorem 19 D and the second hypothesis,

dim Z :5 IE(Z, x)1 ~ IE( ...\"z, x) \ El ~ dim .o\z - 2.
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\Ve give now the proof of Theorern 26 A

Prao! of Theorem 26 A. In the theorem let AI = CIBand ..\" = Sw. We know

from Remark 18 A, that the points wB and x B are attractive in Al and hence

in ..\. We set E to be E(Sw, x) \ E(SZI x). For CEE, the fixed point Yc is a

smooth point by hypothesis. Hence C is not contained in the singular locus of

S;J' which yields the first condition of the theorem. The third condition follows

directly from the hypothesis of Peterson's Theorem.

Corollary 27 0 implies that TrD ç r(E) for ail D E E(Sz, x). Now for

D E E = E(SWI x) \ E(Sz, x), we have T DI Dnx"eg ç T ..\"IDnxreg hence TzD =

T(TDI D\DT, x) ç r(E). This yields the fourth condition.

Since any two distinct weights in W(TzSw ) are linearly independent, the curves

CEE(Sr.; 1 x) are all smooth, and the tangent spaces at x of two distinct curves

are distinct (see Proposition 20 B). ~Ioreover, since the dimension of a weight

space of TxSw is 1, IE(S"",x)1 = dimTE(S;J'x). By the preceding paragraph

TE(Sw,x) ç r(E), thus IE(Sw,x)l $ dimT(E) = dimSw • Note that we can

assume that l(w) - l(x) > 2 (if l(w) -l(x) is 0 or 1 the result is trivial). Hence

•

•



by the Deodhars inequality in Proposition 23 D, we have that lEI ~ 2, thus

IE(Sw, x) \ El ~ dim Sw - 2 which gives the second condition of the theorem, and

the result follows. 0

•
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30 Another Smoothness Criterion

\Ve will now give another smoothness argument and we will use it to give another

proof of Peterson's Theorem. The argument is based on the Cohen-Nlacaulay

property of Schubert varieties. By definition :< has the Cohen-Macaulay prop­

erty if and only if every finite dominant morphism f : ..Y 4> Y, with F smooth,

is locally free (see [Dan94, Ch 2,§6.6)). We will use the following application of

the Principle of Conservation of Number (see [Dan94, Ch. 2.§5.7]):

Lemma A. Let p : .Y' ~ Y be a finite locally free morphism, and suppose .X

is connected. If there exists a point x E ..X such that p is u.nramified al x and

Ip-l(p(x})1 = 1. then p is unramified.

Proof. The degree of p at x is 1 and by the Principle of Conservation of ~umbers,

the degree of p is 1 because Ip-l(P(X)) 1 = 1. This shows that p is unramified. 0

Theorem B. Suppose X' is a Cohen-Macaulay irreducible closed T -stable sub­

variety of a smooth T -variety Al. Suppose x E X is an attractive point of X ..

Supposernoreover that there exists aT-stable curve C E E(.Y. x) which doesn't

lie -in the singular locus of."C and such that T(TXlcnxI'e!l,X) = TE (..\. x). Then

x is smooth in .\.

Proof. \Ve cao assume that .X' = .."Cx ' Let U be an open T-stable neighbour­

hood of x in AI isomorphic to Txi\;l. This gives us a closed enlbedding i :

.Yx ~ T L .\ ç Tx~'vf. Let 1r : Tx)( ~ T E(X, x) he any T-equivariant split of

the inclusion TE(."\~x) ç Tx ..\. Let p = 'Ir 0 i. Note that dinlTE( ..\",x) =



We can now give another proof of Peterson's Theorem.

Proo! of Theorem 26 A. Let Al = G / B and ..Y = Sw. We use again Remark 18

A. The hypothesis of Peterson's Theorem implies that for every curve C E

E(Sw, x) which doesn't lie in Sx we have TxC ç r(TXlcns=.cg ) = r(E). NIoreover

TxSx ç r(E) by Corollary 27 D. It follows that TE(SW1X) ç r(E). But by

Theorem 19 D, dimTE(Sw,x) ~ dimSWl hence TE(SW1X) = T(E). Peterson's

Theorem then follows from the fact that Schubert varieties are Cohen-Nlacaulay

(see [Ram85]). 0

dim r(TX'lcnx ..e9' x) = dim "~x and dxp(TxC) i= O. Hence by Proposition 28 A, p

is finite.

Now p : "~x ~ Tx.Y' is a finite morphism, ~Yx is Cohen-~Iacaulay and Tx-'< is

smooth, hence p is locally free (or 8at). Therefore if we show that p is unramified,

then p is an étale covering and the smoothness of x follows.

That p is unramified at the points of C\ {x} follows from Proposition 27 B. As

the restriction ilc : C ~ TIC is a closed embedding and 1rITz C : TxC ~ T E(.X. x)

is the identity, we have that pic: C ~ TxC is a bijection. NIoreover the only

T-stable curve in p-l(T:rC) is C, as aoy other would have tangent space at .r

different from TIC (see Proposition 20 B). This shows that each fiber of p above

a point in TIC contains only one element, moreover this fiber lies in C. .-\s p is

unramified at the points of C \ {x}, Lemma A shows that p is unramified. 0
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31 Root String Translation

Let S be a subset of~. \J'le can write S as disjoint union of ,B-strings contained

in S:

•



where S~ is the ,B-string through 1 in S and 1 is the set of "Y E S such that

'Y - r(3 ft S for a1l r > 0 (i.e. '"Y is the minimal element in the .a-string S~). For

each (3-string S~, we define t{j(S~) to be the ,a-string:

•
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tB(S~) = {, + (-rn - i)(31 0 ~ i < IS~I}

where m is the greatest integer such that , + m/l E ~. Therefore t(j(S~) is the

connected ,B-string with 1S~ 1 elements containing the ma..~mal element of the

.B-string trough 'Y in 4'. \Ve cao define t[J(S) as the union of t{j(S~) with "Y E 1:

t[J(S) = U tlJ(S~).
"rEl

Note that the operator ta preserves the cardinality. Suppose DOW that q is sorne

T-stable linear subspace of n. Theo q is the direct SUffi of its root spaces. If we

set S to be ail the roots "Y such that D'Y ç q, then we can define t(j(q) ta be the

linear subspace of n with root spaces corresponding to the roots of t{j(S):

td(q) = €a 9'Y·
"rEta(S)

Here we note that the operator ta preserves the dimension.

Proposition A. Let q be aT-stable linear subspace 0/ n (the Lie algebra 0/ U)

of dimension d. Let,B E 4'+ and suppose that Un doesn't fix q. Then the T -fixed

points of the T -stable curve Uj . q ç gd(n) are q and tp(q).

Proof Let S he the set of roots whose root groups lie in q. We decompose S as

a disjoint union of ,8-strings: S = U-YEIS~ (see Section 6). For each "Y E l, let

q-y = E9~ES~ g~. The space q is a direct SUffi of the q.., and the Ad-action of Ua

distributes over each summand:

Ad(u)(q) = €a .-\d(u)(q'Y) .
..,EI
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•Therefore we can assume that Sis a single ,a-string. The curve Ufjq has two fixed

points by Proposition 21 A. \Ve know that q is one of those and we denote by q'

the other fixed point of Ufj . q. There exists , E S such that 'Y - i/3 ~ S for aIl

i ~ 1. Since S is a /3-string, q ç 9-y œ9"1+d œ... œ9-y+mfj where m is the biggest

integer such that 9-y+mfj is a root space. It follows that

This yields that q' ç 9"Y €a 9-y+d œ... œ 9"1+md· The space q' being T-stable,

U[J-stable, and having dimension d, we must have

q' = 9-y+(m-d+l}tJ œ... œ9"1+mtJ·

This shows that q' = t,B(q). o

:\ nice property of the cotangent bundle of the flag variety is that it is naturally

isomorphic (as a G-variety) to the doubles variety {(n,gB) E N x G/B 1n E

Lie(gBg- 1
)}. If ..Y"w = BwB/B is a Bruhat cell in B = GIB then the conormal

bundle to .Xw , T.~wB, is identified with the set {(n,bwB) 1nE nn .4d(bw)(n),b E

B} (see [B885] or [CG98J). Therefore the fibers ofT.~wB alilie in n, in particular,

the fiber above wB is T;-sXw = n n .4d(w)(n) = nW
•

32 Examples •

Root System of Type C2

The Cartan diagram of the root system of type C2 is:

•



Let w = (70 (71J(10 ° The T-stable curves in Sw are represented in the following

diagram:

•
(CH. 1\/, §32) EXAAtfPLES 5i

•

•

\Vrite W(q) for the set of weights of the space q. The weights of the space TJSw

are ~+~ = {.i}. Lefs compute the weights of the Peterson translates of Twl..Sw •

3. Since t Q (3) = 20 + (3 = ta +.8(20 + (3), Sw is smooth at (1(3 and W(T~Sw)=
20 + ,8.

-1. Since ta(2Q + J) = 20 + 13 and t2a+IJ(l3) = {3 are Dot equal. Sw is singular
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Root System of Type G2

The Cartan diagram of the root system of type G 2 is:

58

•

Let w = UIJUo Uf3Uo UJ. The Bruhat-Chevalley order in Sw is described in the

following diagram:

•

•



•

•
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The fol1owing table gives the weights of the Peterson translates:

x Yc(for C E EU(Sw, x)) {3(yC'x} W(T(TlI~Sw,x))

w 0

UQUfJUQU(J ~ {3 0+{3

Uf3UQUf;JUQ w 30 + /3 a

uQufJuQ (jQU:JUa(jj 30 + 2/3 a+{3

GjGo C7;jUo ,8 a+{3

(j(JGQUiJ GQC7(JUQU/J a 30+ {3

G(jUoUiJGo 20 +/3 30+ {3

UQUIJ tJ.1 0:+13 30 + 2{3

GQG(JUo. 20 + {3 30 + 2{3

(j[JUo(jd 13 30 + 2{3

ufJuQ uJ 20 + {3 30 +,8

C7Q a{jaQ 0 30 + j3

C7:JC7o U(J 30 + 2j3 30 + {3

a Q aQu{3uQu;J 20 + {3 30 + 213
U(3(jQC7tJao 0+{3 3et + 213

(jQU{J 30 +{3 30 + 2/3
(jiJUQ 13 30 + 213

C7iJ uQ(jtJuQa:J 30+,8 0+/3

u{JGQ(j{juo 30 + 2/3 0

(jQa{j 0: 30 + 2/3

(j(JUQ 0:+{3 30+,8
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•
Ooly at x = UiJ the values of T(Ty~.Sw~.c) are different for distinct curves C E

EU(Sw, x), and Petersoo's Theorem implies that the singular locus of Sw is S(T(j.

Note that x = UfJ is a ';';rationally smooth" point of Sw as the number of curves

in EU(Sw, x) is equal to l(w) - l(x) = -l (see [Car94]) .
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•
Iftwo T-stable curves have a common T-fixed point, we cao take the union ofthem

to obtain aT-stable closed connected one dimensional subvariety of B = G1B.

In general we can take a union of an arbitrary finite collection of T-stable curves

with overlaping T -fi.xed points.

Definition A. Let (Xl,'" ,Xn ) be an order n-tuple of elements in ~V with n ;:::: 2.

,"Ve say that (XL, .•• ,xn ) is aT-stable path in G1B if for each 1 :5 i :5 n - l, Xi

and Xi+l are two distinct T-fixed points of the same T-stable curve in GIB. CaU

xiB E CIB, 1 < i :5 n, the vertices of (Xh·' . ,In). ,"Ve say that (Xh'" ,Xn )

lies in the Schubert variety BwBIB if each of its vertices lies in BwBIB.

Lemma B. (Xb'" ,In) is aT-stable path if and only if Xi+lX;l are reftections

for aU 1 :5 i :5 n - 1.

Proo! If (Xl, ••• ,Xn ) is aT-stable path, then by Lemma 23 C, Xi and Xi+l lie in

a unique T-stable curve which is of the form ex",J with sorne 13 E ~. Therefore

by the same lemma, Xi+lB must be the T-fixed point CTlJXiB,Le. Xi+lX;l = t7fJ.

Conversely, if Xi+lXil = CTfJ for sorne {3 E 4>, then Xl and Xi+l arc fixed points

of the T-stable curve CZi,P' 0

\Ve will say that the T-stable path (Xl, '.' ,In) is decreasing (resp. increas­

ing) if Xi ~ Xi+l (resp. Xi < xi+d for 1 :5 i :5 n - 1. Recall that ,B(Xi, Ii+d

denotes the unique root such that the unique T -stable curve containing Xi and

I,+l is UO(xi,z,+dxiB. A simple lemma:

•

Lemma C. AT-stable path (Xl,'" ,In) is decreasing (resp. increasing) if and

only if 3(xj, xi+d are positive (resp. negative) roots for ail 1 :5 i < n - 1.

Proof. This follows frOID Proposition 23 A. o

•



•
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In this section, we are going to study the closure of the tangent and conormal

bunclle to the Bruhat cell J1(w = BwB/B in respectively TB and T*B. \Ve are

going to describe the fibers of those two spaces above the Bruhat ceUs contained

in the smooth locus of the Schubert variety Sw = .Y"w and we will give a criterion

for smoothness of Schubert varieties. Let 1T' : TB ---i> Band 1r* : T* B ---i> B be the

projections. For each w E "V define 1T'w : T.Y"w ~ Sw and 1r: : T.~vJ B ~ Sw to

be their respective restrictions. For each p E }(w, Denote by T/' .Y"w the fiber of

T.~..,B at p. i.e.. the annihilator in T; B of Tp..Y"w the tangent space of .X"w at p.

First recall that the cotangent bundle of G/ B can be identified with the set

{(n.gB) EN x G/B 1 n E Lie(gBg- 1
)}. The conormal bundle to ''\w. T.~..,B, is

identified with the set {(n, bwB) 1 n E nnAd(bw)(n}, b E B}. Therefore the fibers

of T,~..,B aIl lie in n, in particular, the fiber above w is T;- .\w = nn .-ld(~)(n) = nW
•

Let P = (Wh"" Wn ) be a decreasing T-stable path in Sw from w. Let /3i =

.3(Wi, w'i+d, l ~ i ~ n - 1, be the unique root such that Cw.,J, = Ud.J.);,B/ B

(see Section 23). If q ç T,,* "'\w, then denote by Tp(q) the foUowing sequence of

Peterson translates of q:

TC 0,'·0 TC (q)
....n-1.13,.-1 ""l.P I

Tbeorem A. Let x < ~ be elements of ~V. Let P be a decreasing T -stable path

in the Schubert uariety .Y'w from w ta x. The fiber in T.,~...,8 over the point xB

contains the T -stable uector space Tp(T;gXw ):

The equality holds if the point x is smooth in Sw.

Praof· Denote by [~~.,;B] the subbundle of Çd(T·B) lx.., defined by T.~", B. [T.~..,8]

is closed under the action of B, so is its closure [T.."..,B] . Therefore T-stable



curve Ual . T~~Yw is contained in [T,,~..,8], and its closure too. This shows that

TC ,J (T.7- ,Xw ) is contained in 7r,-,-L(X). The same applies to the other iterations
'"'1·0'1 .... -

of the Peterson translates.

If Sw is smooth at .I, then the conormal space to Sw at .I has the same

dimension as the conormal space at w. The space Tp(Tw-1J.Xw) lies in 7r.:,-L(X)

which is equal to T;- Sw by Corollary 24 B. But the Peterson translate preserves

the dimension, which implies Tp(T;-BJYw ) = T;-Sw. 0
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Note that if..un B is a smooth point then the theorem gives a construction of

the conormal space to this point and hence of the tangent plane by taking the

orthogonal complement. Clearly it doesn't depend on the choice of the T-stable

path. The converse is also true, and we get a smoothness criterion for points in

Schubert varieties. The proof uses a generalization of the Peterson's Theorem.

Theorem B. Let x < w he clements o/~V, and suppose l(w) -l(x) ~ 2. Then l

is a smooth point in the Schubert variety "'(.J if and only il for any two decreas'ing

T -stable paths PL and P2 from w to x in ..-Yw we have TPl (T;- J'<w) = TP'l (T;- .\w)

and Sw is smooth at every y E nr such that x < y < w.

Praof. For the case when .r is a maximal singular point, that is every y E nr
•

x < y $ w, y is a smootb point in S•.H the result is clear from Theorem 26:\. 0

•

•
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