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Abstract

Let G be a semi-simple linear algebraic group defined over an algebraically closed
field and B a Borel subgroup. A Schubert variety is the closure of an orbit of the
group B in the flag variety G/B. The present thesis studies the algebraic curves
with a torus action in general and in the case of Schubert varities. It also presents
two proofs of Peterson’s Theorem and describes the singular locus of Schubert
varieties in terms of the Peterson map.

Résumé

Soient G un groupe algébrique linéaire semi-simple défini sur un corps algébrique-
ment fermé et B un sous-groupe de Borel de G. Nous appelons variété de Schubert
I’adhérence d’une orbite de B dans la variété de drapeaux G/B. Dans ce travail
nous étudions les courbes algébriques avec une action d’un tore, d'abord dans un
contexte général et ensuite dans le cas des variétés de Schubert. Nous présentons
deux preuves du Théoréme de Peterson et décrivons les parties singuliéres des

variétés de Schubert selon I’'application de Peterson.
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Introduction

The aim of this thesis is to give a review of the main results on Schubert varieties
and a detailed exposition of the new results about the singularities and their
nature, mainly due to Carrell, Kuttler and Peterson (see [CK99]). The approach
uses the so called Peterson translate, which is the degeneracy of the tangent space
to the Schubert variety along some curve. This leads to an algorithm for finding
all the singularities of a given Schubert variety.

The results presented here are all over an algebraically closed field of char-
acteristic p > 0, where in [CK99] they are over the complex field. Let G be a
semisimple connected algebraic group and B a Borel subgroup. The homoge-
neous space G/B is a projective variety with a left action of the group G. It is
known that the orbits of the Borel subgroup B on G/B are parametrized by the
elements of the Weyl group W = Ng(T')/T, where T is a maximal torus in B.
We denote them by X, for w € W. Define the Schubert variety S, to be the
Zariski closure of a B-orbit X, corresponding to w € W. Being the closure of a
B-orbit, the variety S, is a disjoint union of B-orbits. The question is: for which
T € W does the corresponding B-orbit X lie in the singular locus of S,?

Let £ € W be such that X; C S,. Assume that for all y € W such that
X: € S, C S., the B-orbit X, lies in the smooth locus of S,,. Let .X be a closed
connected T-stable curve lying in G/B such that X,NC #0and CN X, # 0
for some y € W such that X; C S, € S,. We will show that Cn X, is a



single point. We define the Peterson translate along C to be the degeneracy of
the tangent space of S, along C N X, to the unique point of C lying in X;.
Peterson’s Theorem says that the Peterson translate for all such curves are the
same if and only if the B-orbit X; lies in the smooth locus of S.

The thesis is divided as follows. Chapter I contains some basic results from the
theory of algebraic groups and Lie algebras. Chapter II concerns the well-known
concepts involving combinatorics in the Weyl group such as the Bruhat decom-
position, Bruhat-Chevalley order, reduced decomposition, the Bott-Samelson va-
riety, etc. A study of varieties and curves with an action of a torus is contained in
Chapter III. Finally we present the main results, some examples and applications
in Chapter IV.

There exists many other results in this field. Two very important papers of
Khazdan and Lusztig [KL79a, KL79b] study the smoothness of Schubert varieties
in terms of the Hecke algebra. Kumar in [Kum96| gives a smoothness condition

in terms of the nil Hecke algebras.



Chapter I

Preliminaries

We start by a general overview of the basic concepts from the theory of linear
algebraic groups and Lie algebras. For the first subject, we are basing ourself
on classical works in this field, namely the books of Borel [Bor91|, Humphreys
[Hum81| and less frequently Springer [Spr81]. For the theory of Lie algebras
and root systems we follow the other book of Humphreys [Hum97] and Bourbaki
[Bou68]. The material and the notation are fairly standard, therefore the reader

with a basic knowledge of this subject can jump directly to the next chapter.

1 Semisimple and Unipotent Elements

Let G be a linear algebraic group defined over an algebraically closed field K. We
can assume that G is a subgroup of some GL(V) (see [Hum81, 8.6]. [Bor91, 5.6]).
We say that g € G is semisimple (resp. unipotent) if g is diagonalizable in
GL(V') (resp. g has eigenvalues equal to 1). Similarly, if g is a Lie algebra, then
we say that r € g is semisimple (resp. nilpotent) if ad r is a diagonalizable
endomorphism of g (resp. ad z has eigenvalues equal to 0).

A group is called a torus if it is isomorphic to the diagonal subgroup D(r, K)
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of GL(n, K) for some n, or equivalently, if it is a connected algebraic group
consisting of semisimple elements. Any representation of a torus splits in a direct
sum of one dimensional ones (see [Bor91, 8.5|, [Hum8l1, 16.2], [Spr81, 2.5 and
6.11]). A torus T in G of maximal dimension (or equivalently a torus not properly
included in any other) is called a maximal torus. Maximal tori in a connected
algebraic group are conjugate.

A closed subgroup consisting of unipotent elements is called unipotent sub-
group (see [Bor91, 11.10], [Hum81, 22.2], [Spr81, 3.3]). When G is connected,
each semisimple element of G lies in some maximal torus, and each unipotent
element of G lies in some maximal connected unipotent subgroup (see [Bor91,
11.10]. [Hum81, 22.2]). Similarly in g, an element r € g is semisimple if and only
if it lies in a Lie algebra of a maximal torus of G (or in toral subalgebra of
g. that is a subalgebra consisting of semisimple elements), while r is nilpotent if
and only if it lies in a Lie algebra of a closed unipotent subgroup of G ([Bor91,
14.26]).

An aigebraic group G has a unique maximal closed connected normal solv-
able subgroup RG called the radical, and a unique maximal closed connected
normal unipotent subgroup R,G called the unipotent radical. We say that
G is semisimple (resp. reductive) if RG (resp. R.G) is trivial. Note that a

semisimple group is reductive.

2 Borel Subgroups

Perhaps the most important objects in the study of the structure of algebraic
groups are Borel subgroups. They generalize the concept of the subgroup of
triangular matrices in GL(n, K). In this section we state some important results
about Borel subgroups (see [Bor91, 11], [Hum81, Ch. VIII}. [Spr81, Ch. 7]).

Assume that G is a connected reductive algebraic group.
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Definition A. A Borel subgroup B of G is a maximal connected solvable sub-

group of G.

Let B be a Borel subgroup of GG, and consider the homogeneous space G/B.
It is isomorphic to a closed G-orbit in a flag variety of some vector space, and
since the flag varieties are projective, G/B must be projective. The flag variety
B of G is the set of all Borel subgroups of G. The Borel subgroups are conjugate
in G and if B € B then the normalizer N¢(B) is exactly B. Using these facts we
can identify the flag variety B with the homogeneous space G/B.

Maximal tori of G and maximal tori of the Borel subgroups correspond. If
T is a maximal torus of a Borel subgroup B, then B = T x B, where B, is
the nilpotent subgroup of B consisting of all unipotent elements and B, is equal
to the commutator group (B, B). The set of all Borel subgroups containing a
maximal torus T is denoted by BT. The group G is generated by all B € BT
(see [Bor91. 13.7]). For a fixed maximal torus T in B, there exits a unique Borel
subgroup B~ such that B~ N B = T called the Borel subgroup opposite B
(see [Hum81. 26.2C]).

3 Parabolic Subgroups

A subgroup P of G is called a parabolic subgroup if the homogeneous space
G/P is complete (if and only if it is a projective variety). If P contains a Borel
subgroup B then G/B — G/P is a surjective morphism from a complete variety,
so G/P is complete. Conversely, by the Fixed Point Theorem ([Hum81, 21.2].
[Bor91, 10.4]), a Borel subgroup B has a fixed point in the complete variety G/ P,
so some conjugate of B lies in P. This shows that a subgroup of G is parabolic

if and only if it contains a Borel subgroup.
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4 Root Space Decomposition

Let G be a linear algebraic group defined over an algebraically closed field K.
Denote by K* the multiplicative group in K. Let T be a maximal torus in G.
A homomorphism T — K* is called a character of T. The set of all characters
of T, denoted by X(T), is called the character group of 7. The adjoint action
of T on the Lie algebra g, Ad : T — Aut(g), is a morphism of algebraic groups.
Therefore Ad(T) is a torus in Aut(g) and we can decompose g as a direct sum of
weight spaces of Ad(T).

8= P 0

a€X(T)

where g, = {z € g| Ad(t)(z) = a(t)z. Vt € T}.
Remark A. It is usual to denote the operation of X(T') in an additive way. This
is due to an identification of the character group .X(T') with a lattice in the dual
space t* given by the differential. More precisely, the aigebra t acts on g by the
ad-action (the morphism ad : g — g is the differential of Ad : g — g and defines
an action of g on itself). Moreover this ad-action is diagonalizable and we have
a weight decomposition of g similar to the weight decomposition with respect to
the Ad-action of T. Note that the differential of a character « € X(T) is an
element of the dual space t*. It is clear that the weight space for the Ad-action
of T corresponding to the character a € X(T) is the same as the weight space
for the ad-action of t corresponding to da € t*. It follows also that for a € X(T),
h € t and = € g,, we have [h, z] = (da)(h)z.

The non-zero characters a € X(T) for which g, # 0 are called roots and
the set of them, denoted by @, is called the root system (since we are using
the additive notation for X (7'), by non-zero characters we mean characters which
are not uniformly 1). We call the space g, the root space corresponding to

a € . Note that the weight space go is the infinitesimal centralizer of T
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go = ¢(T) = {z € g| Ad(t)(z) = =, V¥t € T}. When G is a reductive group,
¢o(T) turns out to be equal to t, the Lie algebra of T. Moreover t becomes a
Cartan subalgebra of g (i.e. a nilpotent algebra equal to its normalizer in g) and

the decomposition

g=t@®ga

becomes a Cartan decompostion of g where the root spaces are one dimensional
(see [Hum97, 8.1]). Denote by [.,.] the lie bracket on g. For a, 8 € & we have
[8a:85] € @o+g- If moreover a + 8 € ® then [gq,85] = Ba+s- Now if T € ga,
then for any y € g, and any integer n, ad"(z)(y) € @.’e., Bna+~ Which is O for
n big enough. This shows that elements of the root spaces are all nilpotent (by
definition £ € g is nilpotent if ad z is a nilpotent endomorphism of g, that is
there is an integer n such that ad" z = 0).

In fact the root system ® is an abstract root system in X(7T) ®z R, in the

sense of the next section (see [Hum81, 14.8], [Bor91, 27}).

5 Abstract Root System

Let V" be a finite dimensional vector space over R. Suppose (, ) is a nondegenerate
symmetric bilinear form on V. Let a € V and define the reflexion relative to

« to be a linear map g, : V — V given by:

2(8, @)
- (a’a) «.

aa(B) =0

for 3 € V. Let write (3, a) for 3((:—‘:')1 Let V' be a finite dimensional vector space

over R, and ® a subset of V. We say that ® is a (reduced) root system in V" if
1. & is finite. don’t contain 0 and generates V',

2. & is closed under all reflections o, with a € o,
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3. if a € ¥, then the only multiple of a in ® are a and —a,
4. ifa, € ®, then 222 € 2.

The elements of ¢ are called roots and the dimension of V" is called the rank of
the root system ®. Let a, 8 € ®. Then there is a simple expression relating the
angle between a and 3 and the integers {a, 3) and (3, a), namely:

_ABa)®
(e, ) (8, 5)

= 4cos’ 8@

(a, B)(B, @) =

where 8 is the angle between « and 3. Using the hypothesis that {(«, 8) and (3, a)
are integers and the fact that cos takes only values between —1 and 1, we deduce

the following properties:

1. 4cos?8 € {0,1,2,3,4},

[V

. dcos’l =4 a==10,

()

. {a, 3) and (B, a) have the same sign.

Let a and 3 be two roots such that a # =8 and (a,a) < (3,8). Then the
only possibilities for the angles between a and 3 and for the values of (3, a) and

{a, 3) are:

(a, 8) | (B,0)| 6 (84)

0 0 7/2 | undetermined
1 1 /3 1

-1 | -1 |27/3 1 )
1 2 /4 2

-1 -2 13r/4 2
1 3 /6 3

-1 -3 |57/6 3
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Proposition A. Let o, 3 € P.
1. If (o, 3) > 0 then aa — B s a root unless a = (3.
2. If{a,3) <0 then a + B is a root unless a = — (.

Proof. We use the table [.1. If {(a, ) > 0, then either (a,8) =1 or (3.a) = 1.
In the first case, o3(a) = a— 3 € P. In the second case, 0,(3) = 3-a € ¢. But
® = —&. and both of the cases implies that a — 3 € ®. The second statement is

proved similarly. ]

For more details see [Hum97, Ch. III] or [Bou68, Ch. VI].

6 Root Strings

As an application of Proposition 5 A, consider two nonproportional roots a and
3 € ®. Look at the set of all roots of the form a + n3 where n is an integer. Let
p and ¢ be the bigest nonnegative integers such that a +p3 € ® and a - ¢3 € .
If a+i3 is not a root for some : € Z, —q < i < p, then thereexist —g < s <t <p
such that a + s8 and a + t3 are roots but a + (s + 1)3 and a + (¢t — 1)3 are
not roots. Proposition 53 A implies that {a + s3,8) > 0 and (a + t3,8) < 0,
and substracting the two we get {(t — s)3, 8) < 0 which is a contradiction. This
shows that a + j3 are roots for j € [—q,p]. The set of all roots of this form is
called the 3-string through a.

We can obtain an upper limit for the length of a 3-string through a (which
is by definition its number of roots). It is easy to see that the reflection oy
reverses the 3-string, in particular og(a + pB) = a — ¢qB8. But the left side is
a —{a, 3)8 —p3. which vields ¢ — p = (a, 8). If the integer p is greater than zero,
we can replace a by a + p3. Now p =0 and ¢ = {(a, 3) < 3. Hence the length of

any string is at most 4.
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7 The Weyl Group

Let T be a maximal torus of a connected reductive group G. Let W = Ng(T)/T
and call this group the Weyl group. The very first property of the Weyl group
is its simply transitive action on the set of T-stable Borel subgroups BT. Let B,
B, € BT. By the conjugacy theorem of Borel subgroups (see Section 2), there
exists z € G such that zB>z~! = B,. Then T and zTz~! are both maximal tori of
By, hence they are conjugate: there exists y € By such that yzTz~'y~! = T. This

l=yByy™! = B

implies that yr € Ng(T) and since Ng(B;) = B,, yzBz~ 'y~
and the coset of yz in W sends B, to B,, which shows that the action is transitive.

Now suppose for some r € Ng(7') and B € BT we have zBz~! = B. Then
r € B since Ng(B) = B. If we show that Ng(T) N B = T we will have that
z € T and the coset of z in W is the identity. To show this, consider the canonical
map 7 : B - B/B, where B, is the subgroup of unipotent elements of B (see
Section 2}, and restrict this projection to the maximal torus T. This restriction
is injective since T consists of semisimple elements. Note also that B/B, is a
torus and hence it is commutative. Therefore if z € Ng(T) N B and y € T, then
zyz~! € T and w(zyz™!) = n(z)r(y)m(z~') = n(y). The restriction of 7 to T
being injective, we have zyz~! =y thatisz € Co(T) =T, and Ng(T)NB=T.

The Wey! group also acts on the root system. If 0 € W and a € ®, then we

define o(a) as follows: fort € T,
o(a)(t) = a(6™'to)

where o0 € Ng(T') is a representative of the coset o. It has to be verified that o(a)
is a root in ¢. But first we note that the Weyl group permutes the eigenspaces
of T in g as follows: Ad(F)(8a) = @o(a)- This shows that the eigenspace g (q) is

non-zero and thus o(a) is a root. To summarize:

Proposition A. The Weyl group W = Ng(T)/T acts simply transitively on the
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set of T-stable Borel subgroups BT. [t acts on the root system and permutes

correspondingly the eigenspaces of T in g.

8 Root Subgroups

Let B be a Borel subgroup of G and U = B, be the group of unipotent elements in
B. Let T be a maximal torus in B and ® be the root system determined by T". To
each root a corresponds a unique closed connected 1-dimensional subgroup U, of
G normalized by T and having g, as the Lie algebra (see [Bor91, 13.18], [Hum81,
26.3|, [Spr8l, 9.2.6]). The group U, is called the root subgroup corresponding

to a. The following Proposition shows how to construct root subgroups.

Proposition A. Let a € ®. Define Z, to be the centralizer Zg(T,) where T, =
ker(a})° C T. Then Z, is a reductive group whose root system has rank 1, B, =
BN Z, (resp. B_, = B~ N Z,) is a Borel subgroup of Z, and (B,). (resp.
(B-a)u/ s the root subgroup U, (resp. U_,) of G.

The following result allows us to decompose unipotent groups in a cartesian

product of root subgroups (see [Bor91, 14.2|, [Hum81, 21.1]).

Proposition B. Let H be a closed T-stable subgroup of U = B,. Then H is
connected and the product morphism U,, x --- x U,, — H 1is an isomorphism of

varieties, where a; € ® are all roots such that U,, C H, teken in any order.

9 Base for a Root System

Let &+ (resp. ®~) be the set of all roots a € ® such that U, C U = B, (resp.
Us C U~ = Bg, where B~ is the Borel subgroup opposite B, Section 2). The

elements of &* (resp. ®~) are called positive roots (resp. negative roots).
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We write a > 0 (resp. a < 0) if a is a positive (resp. negative) root. We will

give now three equivalent definitions of a base for a root system.

Definition A. A subset A of ®* is called the base of ¢ corresponding to B

if one of the following equivalent conditions is satisfied:

1. The set A contains all the roots a € ®* such that o, permutes the set

&+ \ {a}.

2. Each root 8 € ® can be written as a linear combination of elements in A,
say 8 = ) ca ka, with integral coefficients k, which are all nonnegative

or all nonpositive.

3. The set A contains all the roots a € ®* such that the set BU Bo,B is a

group.

The elements of the base A are called simple roots. A simple reflection
is a reflection o, € W corresponding to a simple root c. The simple relections

generate the Weyl group W.



Chapter 11

Combinatorics in Semisimple

Groups

In this chapter we present some results involving the combinatorics in the Weyl
group which follows from the inclusion of Schubert varieties. As the Bruhat
decomposition is closely linked to this subject, we present it in this chapter even
though we don't give a proof. We define the reduced decomposition and the length
of an element in the Weyl group and relate them to some geometric properties of
the Bruhat cells in Section 11. Section 12 concerns the subproducts of a reduced
decomposition. We define the Bott-Samelson variety in Section 13. The Bruhat-
Chevalley order is defined and related to the inclusion of Schubert varieties in
Section 14. Finally, we present some results relating the reduced decomposition
to some special subsets of the root system in the last section.

Let G be a connected reductive group defined over an algebraically closed
field K, B a Borel subgroup containing a maximal torus 7', " be the Weyl group
Ng(T)/T. Let ® = ®(T) be the root system corresponding to T and A the base

associated with B. Let S be the set of all simple reflections o, (a € A).

16
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10 Bruhat Decomposition

The Bruhat decomposition is a normal form for elements of the reductive group
G parametrized by a Borel subgroup B and the Weyl group W. In the GL(n, K)
case, this result is a familiar one: multiplying a matrix on the left and right
by upper triangular matrices (which correspond to elementary row and column

operations) we obtain a permutation matrix.
Theorem A. Let G be a reductive group. Then

1. (Bruhat decomposition). G is the disjoint union of the double cosets BwB
withw € W. Ifw € W and w € Ng(T) is any representative of w then the
morphism UNw(U~) x B —+ BwB given by (z,y) — zwy is an isomorphism

of varieties.

2. (Cellular decomposition of G/B). G/B is the disjoint union of the B-orbits
BwB/B withw € W. [fw € W then the morphism UNw(U~) - BwB/B

given by u — uwB/B is an isomorphism of varieties.
We need another result closely related to this Theorem.

Proposition B. If 0 € W is a simple reflection and w € W, then cBw C
BwB U BowB.

For further informations and proofs, we refer the reader to [Hum81, 28.3],

[Bor91, Ch IV, 14.11], [Spr81, 10.2.7], [Bou68, Ch IV, §2] and [CG98, 3.1].

11 Reduced Decomposition

Since simple reflections generate the Weyl group (see Section 9), every element w

of the Weyl group W distinct from the unit element can be written as a product
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oy - -0y of simple reflections o; € S, 1 < i < [. If the number of simple reflec-
tions involved in this product is minimal, we say that (oy,...,0;) is a reduced
decomposition of w, and the number of simple reflections [ is called the length
of w and is denoted by I{(w). By convention, I(w) = 0 if and only if w is the unit
element of W. The following is a well-known result, the proof follows [Hum81,

29.3]. For another treatment look in [Bou68, Ch. IV, §2].
Lemma A. Letoc€ S endw e W. Then

1. l(ow) > |(w) implies cBw C BowB.

2. l(ow) < l(w) implies cBw N BwB # 0.

3. l(ow) = {w) £ 1.

Proof. We prove the first statement by induction on l{w), the result being trivial
for I(w) = 0. Suppose l(w) > 0, and write w = rp where p € S and I(z) = l(w) - 1.
Suppose on the contrary that cBw € BowB, that is, in view of Proposition 10 B,
ocBwNnBwB # . By multiplying on the right by p, it follows that c BzNBwBp #
0. Since I(z) = l(w) — 1, the induction hypothesis implies that cBz C BozB
and it follows that BozB N BwBp # @. Again by Proposition 10 B, BwBp C
BwBU BwpB = BwB U BzB and Theorem 10 A implies that Boz B is equal to
either BwB or Bz B, that is oz is either w or £ by Theorem 10 A. The second
case is clearly impossible as it would imply that o = e which is absurd. If oz = w,
then z = ow and the hypothesis I(cw) > l{w) > I(r) leads also to a contradiction.
It follows that o Bw C BowB.

We prove now the second statement. We know from Proposition 10 B that
ocBo C BoB U B. But oBo # B as the Weyl group acts simply transitively on
BT (see Section 7). Thus cBo N BaB # 0. Multiplying on the right by ow, we
get cBw N BoBow # 0. The first part then implies that BoBow C BwB, that
is cBwN BwB # 0.
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In view of Proposition 10 B, the first and second statements are mutually
exclusive, thus l(ocw) # l(w). But l(ow) can’t differ from l(w) by more than 1,

which yields l(ow) = l(w) £ 1. a
A direct application of Lemma A vields the following result.

Proposition B. Let (o,.... ,0() be a reduced decomposition of w € W. Then

(Bo\B)-- - (Ba,B) = BwB.

12 Subproducts

Suppose (oy,...,0;) is a sequence of simple reflections. Let 1 < 4) < --- <

i; < | be a subsequence of 1,... ,l. Then o, ---0; is called a subproduct of

(o1,...,01). We will show in Section 14 that the set of subproducts of a reduced
decomposition of w depends only on w, and not on the reduced decomposition.
Let o € S and define P, = BoB U B. By Definition 9 A, P, is a subgroup of G

(it is a parabolic subgroup as it contains B).

Lemma A. An element x of the Weyl group is a subproduct of (oy,...,01) if
and only if BtBC P, --- P,,.

Proof. Let 1 <, < ---<i; <! be a subsequence of 1,... ,l. Note that
Bg;, ---0yB C (Bo, B) ---(Bo;,B)
C (Boy,BUB):--(Ba,BU B)

=P, - P,,

which shows that BzB C P, --- F,,.

Conversely, note that

P,---P,= |J (Bo,B)---(BoyB).

1<ig<-<i, <l
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Therefore for each sequence 1 < i; < --- < i; < I, by applying successively
Proposition 10 B, (Bog;, B) - - - (Bo;; B) is contained in the union of the Bruhat
cells corresponding to subproducts of (o;,,...,0;,). This shows that F,, --- P,
is contained in the union of all BrB where r runs over the subproducts of the

sequence of simple reflections (oy,... ,0). O

13 Bott-Samelson Variety

Let X be a G-variety and let B be a (any) subgroup of G. Define an action of
BonG x X by: b-(g,z) = (gb”',b-z). Then the quotient, G xg X of G x X
by the action of B, is the set of B-orbits with the structure of variety induced by
the bijection ¢ : G xg X - G /B x X given by (g,r) — (¢B.g-x).

Recall from Section 9 that P, = BoB U B is a parabolic subgroup for o € S.
Let w € W have a reduced decomposition (oy,... ,0¢) (0; € S, 1 < i < !). For
simplicity, denote by I' the reduced decomposition (o,... .0¢). Let X; = G/B
and define by induction X; = G xg Xi;, for 1 < i < [. Denote by G'/B! the
space .X|. Note that there is a natural projection G' = G!/B! where G' denotes
the cartesian product of [ copies of G. Let Zr be the image of P, x Py, X -+ - x P,
in G!/B". An usual formula for Zr is P,, xg P,, Xg - -+ xg Ps,/B. The space Zr
is projective since G!'/B' = (G/B)' is projective. Moreover Zr is of dimension
{ = l(w) as it is an iterated bundle over P! with one dimensional fibers.

The group product in G induces a morphism v : Zr —» G/B.

Proposition A. The morphism ¢ : Zr — BwB/B induced by the product mor-

phism in G is proper and surjective.

Proof. The variety Zp being projective, the morphism v is proper. Hence its
image under ¢ is a closed subvariety of G/B. Since Bo\B x --- x BaB C

P,, x---x P,,. Zr contains the projection of the image of Bo\B x --- x BoB in
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G'/B!, and therefore v contains (Bo,B) - - - (BoB)/B which is equal to BuB/B
by Proposition 11 B. This shows that m is contained in the image of v.
Since BoyBx---xBo;B isdense in P, x---x P, theimage of Bo\Bx---x BB
in G'/B' is dense in Zr which shows that the image of ¥ is exactly m a

We will prove later (Section 15) that ¢ is birational. This is due to Bott
and Samelson [BS38]. Therefore the variety Zr is called the Bott-Samelson
variety corresponding to the reduced decomposition I' and the map v :
Zr — BwB/B is called the Bott-Samelson map of Zr. The Bott-Samelson
variety Zr is smooth and irreducible but is not a resolution of singularities of
BwB/B as the fiber of v above a smooth point of BwB/B is not necessarily
a single point. A standard reference for this section is the paper of Demazure

[Dem74].

14 Bruhat-Chevalley order

A Schubert variety is the Zariski closure of a Bruhat cell. If w € W, we will
denote by S, the Schubert variety BwB/B. Since the Schubert variety S, is the
closure of a B-orbit, it is a union of B-orbits in G/ B, that is of Bruhat cells. We
will now answer the question: which are the Bruhat cells that lie in the Schubert

variety S,?

Proposition A. Let w, z € W. Then BzB/B C S, if and only if r is a

subproduct of some reduced decomposition of w.

Proof. By Lemma 12 A and Proposition 13 A, z is a subproduct of I if and only
if BtBC P,, --- P, if and only if BzB/B C S,,. O

From this it is clear that the set of subproducts of a reduced decomposition of

w depends only on w. If z is a subproduct of some reduced decomposition of w.
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we can say that z is a subproduct of w, and write z < w. This defines a partial
order on the Weyl group, called the Bruhat-Chevalley order. Therefore, in
view of Proposition A, we can write S, = U;<,BzB/B. Note also that the order
< on W corresponds to the inclusion of Schubert varieties: r < w if and only if

S: € S.. A classic reference for this section is the paper of Chevalley {Che94|.

15 Special Sets of Roots

Fix w € W. In view of Section 14 we can ask the following two questions: which
are the reflections o such that osw < w. and which are the roots g € ®* such
that w~!(3) < 0? Proposition B answers the second question. The full answer
for the first question will be given only in Section 23 using algebraic geometry,
here we can only give a partial result.

Let w € W have a reduced decomposition g,, - - - 0,,, where g4, is the simple
reflection corresponding to the simple root o, € A. Define wy = e (the unity
in W), wj = 60,0a;---0a, for 1 < ¢ </ and 3, = wi1(a) for 1 < < L
The following Lemma gives a sufficient condition for osw and for wog to be

subproducts of w.

Lemma A. Let 3 € &*. Ifw™!(B) < 0 then ogw < w. If w(B) < 0 then

wog S w.

Proof. Let 3 € ®* be such that w='(3) < 0. Let s be the smallest integer,
1 < s < {, such that w;!(8) < 0. The choice of s implies that w;},(8) > 0. Since

w7 (B) = 0a,w;t(B) we must have w ', (8) = a, because the only positive root
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which is send to a negative root by o,, is o, (see Section 9). It follows that

Uﬁw = O’“,_'_‘(Q_,)UJ
—. it
= Wy 10q,Wy W

=0Oa, " **0a,_0a,. """ Oa

which gives ogw < w. To get the second statement, replace w by w™! in the first.

This yields osw™" < w™!, which is equivalent to wos < w. O

The next result relates the set of roots 3 € ®* such that w~!'(3) < 0to a

reduced decomposition of w.

Proposition B. Let w € W and suppose w = 04, - - - 04, is a reduced decomposi-
tion of w. Define wy = e (the unity in W), w, = 04,0a,...0a, for 1 <i <!, and

3i =wij—1(a;) for1 <i<!l. Then

*Nw(®)={3,--- ., H} C{B€ P |osw < w}

Proof. The inclusion ®* Nw(®~) C {3 € ®*|oyw < w} is just Lemma A. Let
1 < j £ l. The second statement of Lemma A implies that 3; = w;_;(a;) > 0,
which yields 8; € ®*. Note that w™!(8;) = 04, - - - 9a,(a;) where 0,,(a;) = —a;.
Again by Lemma A, o4, - --0a,,, (a;) > 0, thus w™!(3;) < 0 and §; € w(®7).
Conversely, let v € ®* N w(®~). Then 04, ---04,(7Y) < 0. Suppose there
isno j, 1 < j <, such that v = 3;. Then v # a, = 3 which implies that
Ta, (7) > 0. But 04,(7) # az, which implies that 0,,04,(Y) > O (since the simple
reflection o,, permutes ®* \ {a,}. see Section 9). Continuing this way, we get
that w=!(y) = g4, - * - Fa, (¥) > 0 which is absurd. This shows that v is an element
of {3,...,0}- a

We can now show that the Bott-Samelson morphism is a birational map, i.e.

an isomorphism over a dense open set.
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Corollary C. Let ' = (0q4,,-..,04,) be a reduced decomposition of w € W.
The Bott-Samelson morphism ¢ : Zr — S, restricts to an isomorphism 1) :

v~'(BwB/B) - BwB/B.

Proof. Suppose X is a G-variety. Write g * r for the image of (9,7) € G x X
in G xg X. If we express ¢ € ¥y '(BwB/B) as | * ry  --- * ; where z; €
Fs, ., then each r; must be in Bo,, B, otherwise ¥(xr) wouldn't lie in BuB/B =
(Bog,B)---(Boa,B)/B. Now it is clear that an element r of y~!(BwB/B)
is of the form b4, * b20q, * - - * bjo,, B/B where b; € B, and d,, € Ng(T)
are representatives of g,, € W. Since B = TU = UT, and T is normalized
by the elements of the Weyl group, the element r can be written as u,5,, *
UpOq, * - -+ * wFa, B/ B, where u; € U. The group U is isomorphic as a variety
to the cartesian product of the one dimensional root subgroups U, (a € &%)
in any order (see Section 8), and applying recursively the fact that the only
positive root sent to a negative root by o, is a; (see Section 9), we get that
L = U|0q, * U0q, * -+ * WO, B/B where u; € U,,. Applying the first part
of Lemma A, we get that w;_(U,,) € B, which shows that z is of the form
UGq, * Oq, * -+ * 0o, B/B where u € Uy, U, (a2) " - U.y_ (ar)- But Proposition B
vields Us, U, (ag) - * Uir_ (ar) = UNw(U ™), and since UNw(U~) = BwB/B, given
by u — uwB is a bijection (see Theorem 10 A), we get that ¢ : ¥~!'(BwB/B) —

BwB/B is a bijection, and hence an isomorphism. a

It follows that the dimension of the Schubert variety BwB/B, which is equal to
the dimension of the dense Bruhat cell BwB/B, is equal to the length l(w) of w
by Section 13.



Chapter III

Algebraic Torus Actions and

T-Stable Algebraic Curves

The varieties with a torus action and more particulary the algebraic curves with
a torus action will be the central objects in the study of singularities of Schubert
varieties. In this chapter. we will first review some concepts from algebraic ge-
ometry. Then in Section 17, we will give well-known results about torus actions.
We describe a very important class of algebraic actions with attractive points in
Section 18. In Section 19, we show that the number of T-stable curves in an
algebraic variety with a torus action is bounded below by its dimension. In Sec-
tion 20 and Section 21. we describe the basic properties of the T-stable curves.
Finally, the sections 22 and 23 concern the T-stable curves in projective spaces

P" and in flag varieties.

16 Finite and étale morphisms

A morphism of affine varieties p : X — Y is said to be finite if the ring K{X]

is finitely generated p“A[Y]-module. A finite morphism is quasi-finite, that is

25
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a morphism with finite fibers. We will need the following two facts about finite

morphisms (see [Spr81, 4.2]):

Proposition A. e A quasi-finite surjective morphism of irreducible affine

varieties is finite.

e Let p: X —» Y be a dominant morphism of irreducible affine varieties. Let
xz € X be such that p~'(p(z)) is finite. There is an open affine neighbourhood
U of p(z) in Y such that p~'(U) is an open affine neighbourhood of r and the
restriction morphism p : p~'(U) — U is finite (or equivalently quasi-finite

and surjective).

By definition, a point £ € X is a smooth point if and only if the dimension of
the tangent space T, .X is equal to the dimension of the variety .X if and only if the
tangent cone C. X of X at z is equal to the tangent space T..X (see [Dan94]). In
general, the tangent cone lies in the tangent space. Let f : X — Y be a morphism.
The morphism d.f : T;.X — Ty)Y of tangent spaces restricts to a morphism
of tangent cones d.f : C;,X — Cy;)Y". The morphism f is said to be étale at
z€ Xifd;f:C:X — Cyr)Y is an isomorphism of the tangent cones considered
as schemes and it is said to be unramified at z € X if d.f : T; X — Ty)Y is
injective. We say that f is étale (resp. unramified) if it is étale (resp. unramified)
at all points of X.

A finite étale morphism is called an étale covering. Over the field of complex
numbers, with the classical topology, such morphisms are locally trivial bundies
with finite fibres. In particular the number of points in the fibre of such a mor-
phism is the same above any point in the same connected component. This is

also true for an arbitrary algebraically closed field (see [Dan94, Ch. 2, §5.4}).

Theorem B (Conservation of Number). Suppose f : X — Y is an étale
covering, and Y is connected. Then the number of points in a fiber f~'(y) is

independent of y€ Y.



(CH. III, §17) TORUS ACTIONS 27

17 Torus Actions

We begin with a well-known result of Surnihiro ([Sum74]):

Theorem A (Sumihiro). Let T be a torus acting on a normal algebraic variety
X. Suppose £ € XT. Then there exists a T-stable open affine neighbourhood U
oft in X.

The proof of the following corollary was suggested by A. Broer.

Corollary B. Let T be a torus acting on an algebraic variety X. Suppose r €
XT is a smooth point of X. Then there erist a T-stable open affine neighbourhood
U of z in X, and a T-equiveriant étele morphism 3 : U — T, X sending z to 0.
Moreover 3 can be chosen such that d .3 : T,.U — T.X is the identity.

Proof. Since the smooth locus of .X is open and T-stable, we may as well assume
that .X' is smooth. By Theorem A, there exists an open affine T-stable neigh-
bourhood U of z. Let m, C K[U] be the maximal ideal corresponding to z € U.
Let m;/m2 — m; be any T-equivariant split of the projection m; — m;/m2.
The inclusion m; — K[U] induces m,/m2 — R’[U]. This map extends uniquely
to a T-equivariant map S(m;/m2) — K([U], where S(m,/m?) is the symmetric
algebra on m;/m2. This yields a T-equivariant map 3 : U — (m,/m2)* = T, X,
which is étale at z by construction. Note that the set where this map is not étale
is closed and T-stable. Again by Theorem A, there exists a T-stable open affine
neighbourhood U’ C U of z such that the restriction 3 : U’ — T, X is étale. Then
U’ is the desired neighbourhood. Let 3’ = (d;3)~! o B|yr. Ther 3’ is étale and
d.(3' is the identity. a

The following is due to Bialynicki-Birula (Theorem 2.1 in [BB73]) but the
proof presented here is much simpler and more intuitive as it follows directly
from Corollary B. Moreover Bialynicki-Birula assumes that z is smooth on X

which is not necessary.
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Theorem C ([BB73]). Let T be a torus acting on an algebraic variety M. Let
X be an irreducible T-stable subvariety of M. Suppose z € XT is a smooth point
of M and let V' be a T -stable subspace of the tangent space T, M containing T, X .
Then there exists Y an irreducible T -stable subvariety of M such that X C Y, x
is smoothonY, and T,Y = V.

Proof. Let U C M be an affine T-stable neighbourhood of z and 3 : U — T, M be
the étale morphism given by Corollary B. Take Y’ = 8~!'(V'). Then Y is smooth
since (3 is étale and V' is smooth in T M, moreover T,Y' = d.8(T.Y’') = V and
X CY'. Then the required Y is the closure of ¥’ in M. a

18 Attractive Points

The ideas contained in this section are well-known, unfortunately we couldn't find
any good reference. Recall that every finite dimensional representation of a torus
splits in a direct sum of one dimensional representations. Suppose a torus 7T acts
linearly on V'. Then V is a direct sum of one dimensional irreducible submodules.
Write V,, for the direct sum of the one dimensional submodules of V' of weight
a € X(T). Then V =V, ®---@V,,, where V,, # 0 is the weight space of weight
a; € X(T). Denote by W(V') the set of all weights a;, 1 < i <.

Suppose G,, acts on an algebraic variety X. Embed G,, in P! such that
P! = G, U{0,00}. Let y € X and suppose the morphism ¢, : G,, =» X, s— s-y
extends to a morphism @, : G, U {0} — X (resp. qb-y : Gm U {00} = X)), then

denote by lim,_,o5 - y (resp. by lim,_,o s - y) the point &,(0) (resp. ¢,(c0)).

Definition A. A point z € X is called attractive if z € X7 and there exists a
one-parameter group A € Y (T') such that for all « € W(T;X), {(a,A) > 0. Let
r € X be an attractive point and fix a A € Y (T') as before. Denote by X, the

set of y € X such that lim,_9 A(s) - y = z and call it the r-attracted set.
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Remark A. Let G be a semi-simple linear algebraic group defined over an alge-
braically closed field, T be a maximal torus in a Borel subgroup B of G, W be
the Weyl group N¢g(T)/T, ® be the root system corresponding to T and ®* be
set of positive roots corresponding to B. For any w € W, the set W(T_5G/B) is
just w(®*). It is well-known that there exists a one-parameter group \ € Y (7))
such that (. A) > 0 for all a € w(®*) (see [Hum97, 10.1], [Hum81, 25.4]). This
shows that the T-fixed points wB, w € W, are attractive in G/B.

Note that when V" is a T-module and 0 € V is attractive, then for all y € V'

we have lim,_,o A(s) -y = 0, which implies that the 0-attracted set Vj is the whole

V.

Lemma B. Suppose V' is a T-module and 0 € V 1s attractive. Then the only
T -stable open neighbourhood of 0 € V isV and Vo = V.

Proof. Let U be a T-stable neighbourhood of 0. Let A € Y(T) be such that
(a,A) > 0 for all a« € W(ToV'). Let y € V, and let C be the curve {\(s) -y|s €
Gm}. Since 0 € C, U N C is non-empty T-stable open in C, and hence it is the
whole C. This shows that y € U. O

In the case that z € X is attractive, Corollary 17 B can be precised as follows:

Theorem C ([BB73]). Let T be a torus acting on an algebraic variety X.
Suppose € X7 is a smooth attractive point of X. Then there exist a T-

stable open affine neighbourhood U of = in X, and a T -equivariant isomorphism

B:U->T.X.

Proof. Let 3 : U — T,..X be the T-equivariant étale morphism given by Corol-
lary 17 B. Since 0 is the unique T-fixed point of T; X, 3(UT) = 0, and since J is
étale, U7 is finite. Applying again Corollary 17 Bon X = U\ X7 U {z}, we find
U so that UT = {z}.
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Since 3 is étale, 3(U) is an open T-stable neighbourhood of 3(x) = 0. But by
Lemma B, the only T-stable open neighbourhood of 0 in T X is T, X itself. This
shows that 3 : U — T,..X is a quasi-finite surjective morphism of affine varieties,
hence finite by Proposition 16 A. Thus 8 : U — T, X is an étale covering, and
|3~ (y}| doesn’t depend on y € T..X by Theorem 16 B. But 37'(0) = z as the
only T-fixed point in U is r. Therefore 3 is a bijective étale covering, hence an

isomorphism. O
An easy application of the theorem and the preceding lemmma gives:

Corollary D. If z € X is an attractive smooth point of X, then X, is an open
affine T-stable neighbourhood of r in X, and any other open T-stable neighbour-

hood of £ in X contains X;.

19 Existence of Enough T-Stable Curves

An algebraic curve is an irreducible algebraic variety of dimension 1. We need

two properties of algebraic curves:

e A smooth algebraic curve C is an open subset of a unique complete smooth

curve C.

e A morphism ¢ : C — X from a smooth algebraic curve C to a complete

variety X extends uniquely to a morphism 6:C—X.

Definition A. An algebraic curve with an action of a torus T is called a T-

stable curve.

Let T be a torus acting on a variety X. Denote by X7 the set of the T-fixed
points of X. In this section we will show that the number of T-stable curves
through a T-fixed point of X has to be at least the dimension of X. First we

show that T-stable divisors exist.
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Lemma B. Suppose M is a T-variety withdim M > 0. Let x € MT be a smooth
point of M. Then there exists M' a T-stable irreducible subvariety of codimension

1 in M containing x such that T is smooth on M’.

Proof. There exists a T-stable hyperplane V' in T, M. The result then follows
from Theorem 17 C. a

Proposition C. Suppose X is a T-stable irreducible subvariety of a T-variety
M with dimX > 0. Let £ € X7 and suppose r is smooth on M. Then there

exists Z a T-stable irreducible subvariety of codimension 1 in X containing r.

Proof. By Lemma B, there exists M’ a T-stable irreducible subvariety of codi-
mension 1 in M containing £ such that x is smooth on M’. Let Z be an irreducible

component of M’ N X containing . Then
dimX >dimZ >dim X +dimM' —dimM =dim X — 1.

If dim X = dim Z replace M by M’, X by Z and choose again M' and Z. Since
dim M’ = dim M - 1, eventually we will get Z such that dimZ =dimX -1. O

Suppose T acts on a variety .\'. Denote the set of all closed T-stable curves in
X by E(X) and let E(X,z) be the set of closed T-stable curves in X containing
the point z. Denote by TE (X, z) the subspace of T. X spanned by the T C for all
C € E(X, z). The next theorem is due to Carrell {Car94], but the proof presented

here does not make use of a local equivariant embedding in a projective space.

Theorem D. Let M be a smooth T-variety and X an irreducible T-stable sub-
variety. Then for every r € X7

1. |E(X,z)| 2dim X,

2. dimTE(X,z) > dim X.
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Proof. The result being trivial for dim.X = 1 and dim X = 0, we can assume
that dim X > 1, and we use induction on dim X. Choose Y to be a T-stable irre-
ducible subvariety of codimension 1 in X containing z. By induction hypothesis
|E(Y,z)] 2 dimY =dimX —1 > 1. Hence we can choose C € E(Y,z). Let L be
a T-stable line in the tangent space T;C and let |" be a T-stable complement to
L in T, M. By Theorem 17 C, there exists M' a T-stable irreducible subvariety
of M containing z such that z is smooth on M’ and T M’ = V. Let Z' be an

irreducible component of X N M’ containing x. Then
dim X >dimZ’' >dim X +dimM' —dim M =dim X - 1.

If dim X = dim Z’ apply Proposition C to Z’ and M’'. In any case we get Z a
T-stable irreducible subvariety of codimension 1 in .X' containing z and contained
in M’. Note that L doesn't lie in 7. Z C T, M' = V, which implies that T.C
is not contained in 7;Z and C is not contained in Z. By induction hypothesis
|E(Z,z)}] 2 dimZ = dimX -1 (resp. dimTE(Z.z) > dim.X —1). But X
contains all the curves of Z and C (resp. TE(.X, z) contains TE(Z, z) and T,C),
which shows that |E(X,z)| > dim X (resp. dimTE(X, z) > dim X). O

20 A Smoothness Criterion for 7-Stable Curves

Lemma A. Suppose any two distinct weights in W(V') are linearly independent

characters of T. Then every closed T-stable curve in V" is a line through 0.

Proof. Let C € E(V). Let 2 € C\ {0}. Write z as v; + --- + v; where v; € V,_,
1 <i<1l Thent-z = at)yy +--- + au(t)v;. By hypothesis any two q;
(1 < i < !) are linearly independent characters, which implies that all v; are 0
but one: otherwise dim7T -C > 2 for dim7T > 1 and if dimT = 1 we must have
[ = 1 as any two weights of T are linearly dependent. This shows that C is the

line spanned by v;. a
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Let £ € X7 and suppose that any two distinct weights in W(T; X) are linearly
independent characters, then z is isolated in X7: if z is not isolated in X7, then
T acts trivially on T.(XT) # 0, and W(T,X) contains the trivial character which

is impossible.

Proposition B. Suppose x € X is a smooth T -fized point and any two distinct
weights in W(T.X') are linearly independent. Then every T -stable curve C €
E(X.zx) is smooth. If moreover there exist an open T -stable neighbourhood U of
z and a T -equivariant isomorphism 3 : U — T. X, then any two distinct T -stable

curves have distinct tangent spaces.

Proof. By Corollary 17 B, there exists U C X a T-stable open neighbourhood of
z, an étale morphism 3 : U — T, X such that zissent to 0 € T,.X. By Lemma A,
B(C) is a line. Hence dimT,3(C) = 1. But since g is étale, d.3 : T.C — T,3(C)
is injective, which implies that dim 7.C = 1, and the first statement follows. The

second statement follows directly from Lemma A. a

21 Fixed Points of a T-Stable Curve

It is well-known that a torus acting linearly on a n-dimensional projective variety,
has at least n + 1 T-fixed points (see [Bor91, Ch. IV, 13.5]). In particular, any T-
stable complete curve has at least two fixed points. The following result precises

this statement in a particular situation.

Proposition A. Suppose X is a complete T -variety. Suppose C € E(X) is such
that if r € C7 then r is smooth in X and isolated in XT. Then CT contains

ezactly two T -fized points.

Proof. Since X is complete, C is complete which implies, by the Fixed Point

Theorem, that C has at least one fixed point z € CT. Let I’ be an open affine
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T-stable neighbourhood of z (see Theorem 17 A). Since z is isolated in X7, T
acts non-trivially on C. A one parameter group A of T induces a G,,-action on
X by: G x X = X, (s,z) — A(s)-z. Let X be a one parameter group of T such
that the induced G,,-action on C is non-trivial. Let z € C N U be a point which
is not fixed by the action of G,, and define ¢, : G, =& C by s — A(s) - z. Since
C is a complete variety and ¢. is dominant, ¢, extends to a surjective morphism
é. : P! — C. Note that since ¢.(Gy,) is a Gy,-orbit, the only T-fixed points of
C are ¢.(0) and ¢.(cc). Thus either .(0) = z or ¢.(co) = z. Suppose that
#:(0) = ¢.(oc0), then &; is a morphism from a projective variety P! into an affine
variety U, and hence it is constant. This is impossible, and C has exactly two

T-fixed points. a

22 T-Stable Curves in P(V)

Suppose T acts naturally on P(V'), that is this action is induced by a linear action
on the vector space V. Let .X C P(V') be a T-stable closed irreducible subvariety.
Let C € E(X), and suppose that T doesn’t act trivially on C. Let z € C\ C”.
Express z in homogeneous coordinates z = (vy + - - - + v;) /G, such that each v,,
1 < i<, lies in the weight space V,,, and assume v; # 0 for all 7, 1 < i < L

Note that [ > 1 as T acts non-trivially on C. If t € T, then
t-z=(aq(t)v +--- + a(t)n) /G,

where a; is the weight of v;. Let £ € CT, and let a, be its weight. Then a, must
appear among a, - - - , &y, since C lies in the projection of the space V,, &---®l,,.
and z is a point of C. Suppose that a, = a,. We can use affine coordinates in a

neighbourhood of r to express z: z =2 +---+ (L. Ift € T then

L

t-z=(ag — al)(t)g—f- + -+ (g —al)(t)s—:.
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Since the affine neighbourhood of z is isomorphic to the tangent space of P(V")
at z, and since the curve C lies in X, the weights a; — a;,... ,a — a, appear in
W(T.P(V)). Among a; — a, ... ,aq — o there can’t be two weights which are
linearly independent, otherwise the T-orbit 7 - z would be at least 2-dimensional,
which is a contradiction.

The next Proposition allows to make a rough classification of T-stable curves
in T-stable subvariety .X of P(V'), when for each T-fixed point € X7 the weights

in W(T,X) are linearly independent.

Proposition A ([Car94]). Suppose T acts naturally on P(V). Let X C P(V)
be a T-stable closed irreducible subvariety. Assume that for every z € X7, any

two different weights in W(T,X) are linearly independent.

1. Let C € E(X), CT = {x,y}. Then C is the unique closed T-stable curve
containing its T-fized points CT = {x,y}. In particular, it is the projection
on P(V) of the direct sum r @y, and it is smooth.

2. There ezists a character a of T such that T:C has weight a and T,C has
weight —a. Moreover C is the unique T-stable curve in E(X,z) such that

T.C has weight .
3. E(X) is finite.

4. Ifz € X7, then two distinct closed T-stable curves in E(X, z) have distinct

tangent spaces at .

5. If £ € XT is a smooth point of X, then z lies on exactly dim X distinct

complete T -stable curves.

Proof. 1. By Theorem 17 C there exists a T-stable subvariety M C P(1")
such that z is smooth in M. X C M and T:M = T.X. By the property

of projective spaces, there is an affine T-stable neighbourhhod U of r in
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P(V), and a T-equivariant isomorphism 3 : U — T;P(V). Since any two
weights in W(T,X) are linearly independent, the curve C is smooth and
the tangent space T.D to any other curve D € E(X,z) is different from
T.C (see Proposition 20 B). It is easy to see that for any two distinct lines
L, and L, in T,P(V) the closure of 37!(L,) and the closure of 53~'(L,)
intersects only in z. Applying this to 7.C and T.D we see that C and D

intersects only in z. Therefore C is the unique T-stable curve containing

CT = {z,y}.

o

Since any two different weights in W(T,..X) are linearly independent, the
0 weight is not in W(T;:X) and therefore the torus T acts non-trivially on
any T-stable curve. If a, is the weight of r and a; is the weight of y, then
by the preceding discussion, T;C has weight @ = az ~ o and T,C has
weight —a = a;, — az. If D € F(X, ) is such that T; D has weight a, and
if z € CT \ {r} is the other T-fixed point. then z has weight o + a; = as,
which forces z =y and D =C.

3. Follows from the preceding part and the fact that X7 is finite.

4. This follows from the explicit computation of the weight of . X C T P(V)
in the preceding parts.

5. If € X7 is a smooth point of X, then dim7T,X = dim X which implies
that 7:.X decomposes in at most dim X distinct weight spaces. But since
no two smooth T-stable curve in E(X, z) have the same tangent space at
z, there is are most dim X T-stable curves in E(.\X,z). The result follows
from Theorem 19 D.

a

Remark A. Suppose X is the flag variety G/ P, where P is a parabolic subgroup

of G and T is a maximal torus in G. There exists a representation G — GL(V)
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and a line L C V such that B = Stabg(L) (see [Hum81, 11.2]). Passing to the
projective space, the G-orbit G - L in P(V') is isomorphic to G/P. Since G/P
is complete, G - L is closed, and we have identified G/P with a closed T-stable
subspace of P(V'). Note that (G/P)7 is finite, and the T-weights of T.G/P are
all distinct elements of ®~, thus any two of them are linearly independent. For
any other point z € (G/P)T, T,G/P is the translate of T.G/P by r, thus its
weights are also distinct. We can then apply Proposition A to G/P C P(V).
Suppose that a torus T acts on a vector space V. Then it induces an action
on the Grassmannian G4(V') for any positive integer d. But G4(V') = SL(V)/P
for a maximal parabolic subgroup P. Therefore the preceding discussion applies

to T-actions on Grassmannians, assuming that G4(V')7 is finite.

23 T-Stable Curves in G/B

We would like to classify the T-stable curves in G/B. In view of Section 22, the
natural question is: under which condition two T-fixed points are joined by a
T-stable curve. We know that the map W — (G/B)7, w — wB is a bijective
correspondence between the Weyl group and the T-fixed points of G/B (see
Section 7). In particular (G/B)T is finite. Consider G/B as a subset of some
P(V') as in Remark 22 A. Let w, z € W. We know (see Proposition 22 A) that
the projection of wB & zB defines a T-stable curve in P(V'). In this section we
will show that this curve lies in G/B if and only if wz™! is a reflection. We follow
the ideas of Springer [Spr98] and Carrell [Car94].

Let J € ®. Let Z; be the centralizer Zg(T3) where T3 = ker(;3)°. We know
that Z5 is a reductive group containing Uz, U_s and the maximal torus T and
whose root system has rank 1 (see Proposition 8 A). Let w € W and define
C.s3 = ZswB/B C G/B. The stabilizer of wB in Zj is the intersection of the

L

Borel subgroup wBw™" with Zz. By Proposition 8 A, this intersection is a Borel
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subgroup of Z; containing T: By or B_g, and since Z3 = Z_3, we can assume
that it is Bs. The map Z3/Bz — ZszwB/B is an equivariant isomorphism of
varieties, which identifies C, 3 with the flag variety of Zz. This shows that C, 5

is a smooth closed T-stable curve in G/B.

Proposition A. Let w € W and f € ®*. Then the T-stable curve C, 3 is equal
to UswB/B if w'(3) < 0, otherwise it is equal to U_gwB/B. In particular
W(T,C.3) = £8.

Proof. The sets UsB_; and U_gBj are open in Zg (they are the big cells). If
w~'(3) < 0 then U3B_ywB/B = UswB/B is dense in C,, 5, otherwise w™'(3) > 0
and U_gBswB/B = U_swB/B is dense in C, 3. Since the weight of T.Uz = g5

(resp. T.U_;5 = g_.3) is 3 (resp. —0), the second statement follows. a
This proposition allows the following definition:

Definition B. Let w, r € W and suppose that wB and zB are two distinct
T-fixed points of some T-stable curve of the form C = C, 3. We define 3(w, r)
to be the unique root such that C = W (or equivalently let 3(w, r) be
the weight of T,C). Note that 3(w,z) = £0.

Let S, denotes the Schubert variety BwB/B. There is no confusion if we
write w for the T-fixed point wB € (G/B)T. The following lemma classifies the

closed T-stable curves in Schubert varieties.
Lemma C. Let w € W and 3 € .

1. The variety C,, 3 is a smooth closed T-stable curve with fized points w and

ga3w.

2. The weight of the tangent space T,C,, 5 (resp. To,,C. ) is B(w, osw) (resp.

-,6(“31 O'aw)).
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3. Any closed T-stable curve in G/B is of the form C, .

4. A closed T-stable curve C lies in the Schubert variety S, if and only if its
fized points lie in S,,.

Proof. The curve C, 3 is a closed smooth T-stable curve by the preceding discus-
sion. Since Zgz = By U BgosBj the only two T-fixed points of G/B contained in
Cup = ZswB/B are w and ogw. This shows the first statement.

Suppose 3 = B(w,o0sw). Then T,C,; is isomorphic (as a T-module) to
T,(UswB/B), which in turn is isomorphic to Lie(Uz) = gs. But the weight
of g is # which shows the second part.

Let v be the weight of T,C. We want to show that C = C,,. If we show
that T,,C, 4 = T,,C, then the result follows from Proposition 22 A. The weight of
the tangent space T,,C, , = T,Z,wB/B is 3(w,0,w) = £y (see Proposition A).
Suppose it is —y. Then C,,, = U,wB/B and U_, doesn’t fix w. Hence U, fixes w
and U, C Stabg(wB) = wBw~'. which implies that v is not a weight of T,G/B.
But this contradicts that T,,C C T,,G/B has weight . Therefore 3(w,o,w) = 7,
and this shows T,C, , = T,C.

For the last statement, suppose that C € E(G/B) and CT = {r,y} C S..
Note that by the second part, either 3(z, y) > 0 or 8(y,z) > 0, so we may as well
assume that 3(z,y) > 0. Therefore Uy, ,) C B, and Ug(;,zB/B C S. because
S. is closed under the action of B. This implies that C = W C S, as
S, is closed. O

Let £ € S, be a smooth point. The dimension of T.S, is equal to the di-
mension of S, that is l(w) (see Section 15). In view of this fact, of Theorem 19
D and of Lemma C, it is clear that the number of curves in E(S,, z) is exactly

l(w). Lemma C shows also that E(S,.r) is in bijective relation with the set
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{8 € ®* | 0gz < w}. It follows that
[{8 € " |opz < w}| = lw).
In particular for z = w, using Proposition 15 B,
P Nw(®”) = {3 € ¢ |oyw < w}

An important combinatorial result is the Deodhar inequality. It has been
conjectured by Deodhar, and proved by Lakshmibai-Seshadri([LS84]), Carrell-
Peterson([Car94|) and Polo([Pol94]) in the context of Schubert varieties and by
Dyer([Dye93]) in a more general setup of Coxeter groups. We follow the proof
of [Car94].

Proposition D (Deodhar). Let £ < w be in W. Then the number of reflections

o € W such that £ < ox < w is at least |(w) — I(z), that is
({8 € d* |z <asz < w}| > l(w) - 1(x).

Proof. By Lemma C, the number of reflections ¢ € W such that oz € S, is
equal to |E(S,,z)| which is at least dimS, = l(w) (see Theorem 19 D and
Section 15). By the preceding discussion, the number of reflections ¢ € W such
that oz € S; C S, is exactly I(z}). Hence the number of reflections ¢ such that
or € S, and oz € S; is at least l(w) — I(x). The result follows from the fact
that the Bruhat-Chevalley order on W corresponds to the inclusion of Schubert

varieties. a

We will use this result in proving Peterson’s Theorem.



Chapter 1V

Smoothness Criterion for

Schubert Varieties

This is the main chapter of this thesis. We develop here criteria for smoothness of
varieties with torus action and more particulary of Schubert varieties. The first
two sections concern the topology of the tangent and cotangent bundles. In Sec-
tion 26 we state Peterson’s Theorem which gives an easily computable criterion
for smoothness of T-fixed points in a Schubert variety. In sections 27 and 29 we
develop a more general result for T-varieties and use it to prove Peterson’s Theo-
rem. In Section 30, we give another criterion involving Cohen-Macaulay varieties,
and give another proof of Peterson’s Theorem. We develop tools to compute the
Peterson translate in Section 31 and apply it to examples in Section 32. Sections

33 and 34 are just restatement of preceding results in a nicer form.

24 Closure of the Tangent Bundle

Let X be a smooth variety, and denote by TX (resp. T*X) the tangent (resp.

cotangent) bundle of X. Let Y be a smooth subvariety of X. Denote by 7y X the

41
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conormal bundle of Y in T° X, i.e. the set of all covectors over Y which annihilate

the subbundle TY of T .X. First a general result.

Proposition A. IfY is a closed smooth subvariety of X, then the tangent bundle
TY (resp. conormal bundle Ty X ) is closed in the tangent bundle T.X (resp. in
the cotangent bundle T* X ).

Proof. Since TY is a subvector bundle of T X|y, it is closed in T.X'|y. Moreover,
if 7 : TX — X is the projection, TX|y = 7~ (Y) so TX|y is closed in TX. This
shows that TY is closed in TX.

The conormal bundle Ty X satisfies the following exact sequence:
0->To X >T'X|ly—=>TY >0

Therefore Ty X is closed in T°.X|y. But T*X|y is closed in T*X because it is
equal to 7*~!(Y") (where 7* : T*X — X is the projection) and Y is closed in .\

This shows that Ty-.X is closed in T*X. a

Corollary B. Let X be a smooth algebraic variety and Y a locally closed smooth
subset. Then the closure of the tangent bundle (resp. conormal bundle) of Y
restricted to the smooth locus of the closure of Y is equal to the tangent bundle

(resp. conormal bundle) of the smooth locus of the closure of Y. In notation:

TV lgres = TV

Ty X|yres = Tgres X

Proof. Let X be the complement in X of the singular locus of Y: X = X\Y"
(Y’ denotes the singular locus of Y). Note that the closure of TY (resp. Ty X)
restricted to Y~ (the smooth locus of Y) is equal to the closure of TY (resp.
Ty X) in TX (resp. T°X). But since Y ° is a smooth and closed subvariety of

X, it is a closed submanifold of X. By Proposition A, TY (resp. T%-:,X’) is
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also closed in TX (resp. T*X). Therefore

N -T €9

TY|gres C TY
Ty Xlyres C Tres X (= Tpres X).

The dimension of the fibers of TY (resp. Ty X) must be at least the dimension
of the fiber above Y. But since TY ~ (resp. T3¢ X)) has fibers of this dimension.

we must get the equality: TY |[pres = TY ° (resp. Ty X|yres = Tgres X). O

It follows that if we consider the tangent (resp. conormal) bundle T.X,, (resp.
T5_B) of a Bruhat cell X,, = BwB/B, then its closure TX,, (resp. Ty_B) above
a smooth point of the Schubert variety S, = X_ is just the tangent space (resp.
conormal space) at this point. [n fact, in next sections, this will lead us to a

smoothness criterion for Schubert varieties.

25 Extensions of Vector Bundles

Let 7 : £ = X be a map. Denote by &, the fiber #~!(z) above a point = € X, by
Ely the inverse image 7~ (Y") forasubset Y C X. If r : £ — X is a vector bundie,
we define G4(€) to be a fiber bundle over X with fibers being Grassmannians of

d-dimensional subspaces in the fibers of £.
Proposition A. If X is complete then G4(€) is complete.

Proof. If X is complete, then G4(£) — X is a fiber bundle with complete fibers,
thus G4(€) is complete. a

Suppose 7 : £ — X is a vector bundle. Let Y be a (smooth) algebraic subset
of X. Let 7y : ¥V — Y be a subbundle of £|y — Y of rank d (the dimension
of the fibers). The bundle V defines a section [V] : Y — G4(€|y) as follows:
Vi(y) = V, € Gua(&,) for any y € Y. Denote by {V] the image of this section in
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G4(€). Note that the Zariski closure of V (resp. of [V]) in £ (resp. in G4(£)) is
not necessarily a subbundle of £ (resp. of G4(€)). The following lemma shows

that the closure of [V] in G4(£) and the closure of V in € behave in the same way.

Lemma B. Let T be the tautological bundle of G4(E), that is the follouring closed
subvariety T = {(v,V) € € x G4(E) |v € V'} C & x Gy(E) with the projection
7: T = G4(E). Let p be the projection T — £.

1. If D is a subset of G4(E), then =" (D) = r-1(D).
2. If F is a subset of T, then u(F) = p(F).
3. Suppose that V — Y is a vector subbundle of €|y — Y of rank d, then

Y = p(r (V).

Proof. The bundle morphism 7 : T — G4(&) is flat and the first statement follows
from this fact. For the second statement, note that u : T — £ is proper as its
fibers are all complete. It follows that u(F) = u(F). For the third part, we have
V = u(r-Y([V])), and the two preceding results imply V = u(r='([V])).

a

Next we will show that sections of G4(£) — X give rise to vector subbundles of
£ - X.

Lemma C. Let Y be an algebraic subset of X, and suppose s : Y — Gqa(Ely) is
a section of Gg(Ely). ThenV = {v € E}v € s(x).x € Y} is a vector bundle over
Y.

Proof. Note that p|,-1(4yy) is an isomorphism 7~'(s(})) = V. But 77!(s(Y)),

as a space over Y, is a vector bundle, hence so is V. a



(CH. IV, §26) PETERSON’S THEOREM 45

26 Peterson’s Theorem

Let G be a semisimple algebraic group over an algebraicallly closed field K, B a
Borel subgroup, U C B its unipotent part, ' C B a maximal torus, ® the root
syvstem given by 7', A C ® the basis determined by B, ®* the set of postive roots,
W = Ng(T')/T the Weyl group. Denote by o3 € W the reflection corresponding
to the root 3 € .

For « € ® let T, = (kera)°®, Z, the centraliser of T,, B, = Z, N B and
B_o = Z4 N B~ the two Borel subgroups of Z, containing T, U, and U_, their
unipotent parts. Let n (resp. g,) be the Lie algebra of U (resp. of U,).

Denote by B the flag variety G/B. There is a natural action of the group G
on TB. the tangent bundle of the flag variety, given by (g, v) — d.l,(v) € T,..B,
where [, : B — B is the left translation by g. This induces a G-action on
G4(TB) for any positive integer d (see Section 25). Denote by 7 : G4(TB) — B
the projection. Let q € G4(TX) be a T-fixed point, wB = 7(q) and suppose
C € E(B.wB). By Proposition 23 A and Lemma 23 C, there exists 3 € ® such
that C = UywB/B. We define 7(q,C) € G4(TB) to be the fiber of U3 -q — C
above the T-fixed point osw € CT, that is 7(q,C) = 7 Y osw) N Uz -q. The
space 7(q,C) is called the Peterson translate of q along C. Let P = {(q,C) €
G4(TB)T x E(B)|w(q) € CT}, then 7 can be viewed as a map

7:P — Gy(TB)T,

and it is called the Peterson map.
Let w. r € W. Recall that E(S,,z) denotes the set of all closed T-stable
curves in S, containing r (as before, if w € W we denote by w the point wB € B).

If C € E(S..z). let yc € W be the T-fixed point of C distinct from z.

Theorem A (Peterson). Let r, w € W such that t < w. Suppose that S,
15 smooth at every point y € W such that z < y < w. If forany C, D €
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E(S,,r)\ E(S;, z) we have 7(T,.S,,C) = 7(Ty,S., D), then S, is smooth at r.

In the same way, we can define the “cotangent” version of the Peterson trans-
late. Denote by 7* : T*B — B the projection of the cotangent bundle. The G
action on 7" B is naturally defined as follows: for a cotangent vector i € T B and
g € G, let g- p be the element of T;,B given by (g- u)(v) = u(g-v) for v € T.B.
If g € G4(T°B) and C € E(X) such that 7*(q) € CT, then write 7(q,C) for the

fiber of U; - q above o5x. Theorem A can be restated in terms of this new map:

Theorem B. Let r, w € W such that £ < w. Suppose that S,, is smooth at every
point y € W such that r < y < w. If for any C, D € E(S,,z)\ E(S;, ) we have
m(T,.8.,C) = (T S., D), then S, is smooth at z.

Where T,'Y denotes the annihilator bundle of T,Y in T, X, that is the space

that fits in the short exact sequence
0T, Y -T;X > T,Y -0,

where 7Y — T, X is the inclusion and T, X — T;Y is the restriction to 7,}".
This theorem was first proved by Peterson (unpublished) and then, in a more

general context, by Carrell and Kuttler ([CK99}).

27 Peterson Translate

In this section we will proof a more general version of Peterson’s Theorem. due
to Carrell and Kuttler ([CK99]), which gives a nice criterion for smoothness of
T-varieties. We will first redefine the Peterson map in more generality.

Recall that if M is a smooth T-variety, there is a natural action of T on the
tangent bundle T M. If d is any integer, there is also an action of T on G4(T M).

the fiber bundle of d-dimensional Grassmannians in TM.



(CH. IV, §27) PETERSON TRANSLATE 47

Lemma A. Let M be a smooth T-variety. Suppose C € E(M) is a curve with a
non-trivial action of T. Suppose that q € Go(T M)|c\cr is such that Stabr(q) =
Stabr(m(q)). Then T - q is a section of G4(T M|c\cT).

Proof. Since Stabr(7(q)) has codimension 1 in T, T - q = T/ Stabr(q). Note
that T/ Stabr(n(q)) = C \ CT. therefore the map ¢ - m(q) — ¢ - q is the required

section. O

We will now define the Peterson translate for two cases. Let C € E(M) be a

curve with a non-trivial action of T.

1. Let £ € CT and suppose that q € G4(TM)|c\cr is such that Stabr(q) =
Stabr(w(q)). Then define 7(q, z) to be the fiber of the Zariski closure T - g C
G4a(T M) above z.

2. Suppose that ¥V — C \ CT is a T-stable vector subbundle of TM lever-
Let £ € CT and define 7(V, ) to be the fiber of the Zariski closure [V] C
Ga(TM) above = (where d is the rank of V).

We give some properties of the Peterson translate in the following three results.

Proposition B. Let X be an irreducible T-stable subvariety of a smooth T-
variety M and suppose r € X is a T-fired point of X. Let C € E(X,z) and
suppose C \ CT lies in the smooth locus of X. Moreover suppose there ezists
p: X =Y an T-equivariant morphism of T -varieties such that d.p restricted to

T(TX|c\(z}, ) i8 injective. Then p is unramified at the points of C \ C7.

Proof. Let z € C \ CT and suppose p is ramified at z. Since z is a smooth point
of X, we have that L = kerd.p # 0. Let d = dim L. As an element of G4(T M),
L is an element of the fiber above z. Note that L is fixed under the action
of Stabr(z) on T.C, which implies that (L, z), the Peterson translate of L in
Ga(T M.}, is well defined (see Lemma A). We claim that (L, z) lies in kerd,p.
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First note that kerdp is a closed in T.X. Next the vector bundle u(r—}(T - L))
(we are using the notation from Lemma 25 B) defined by T - L C Gy(TM|c\c7)
is contained in kerdp. Since 7(L,z) is an element of T - L, and u(7~(T - L)) =
p(m~YT - L)) by Lemma 25 B, 7(L, z) lies in ker d.p, which shows the claim. On
the other hand (L, z) lies in 7(T X|¢\(z}, r) because L C T.X. The hypothesis

says that kerd;pN (T X|c\(z}, £) = 0 which implies that 7(L,z) = 0 which is a

contradiction. Therefore p is unramified at z. O

Proposition C. Let X C M be as before, £ € XT and let C be a smooth T-stable
curve in E(X,z) such that C \ CT lies in the smooth locus of X. Let Y C X
be a smooth T-stable algebraic subset of X with £ € Y such that Y NC = {}.
Suppose there ezists Z a T -stable smooth algebraic subset of X such that Y C Z
andCNX™ CZNX"™. Then T.Y C (T X|cnxres, T).

Proof. Since Z is smooth, Corollary 24 B implies that TZ|znxres|z = TZ (where

X9 denotes the smooth locus of X). In particular it follows that
TZlcn,\"w = TZ|CnZ-

Hence T;Y C T, Z = 7(TZ|cnxres, z) in view of Lemma 25 B.
From TZlCnxreg C T‘Y[Cnxrey, it follows that TZICnxreg - TX!Cnxrey, which

yields 7(TZ|cnxres, ) € 7(TX|cnxres,z) by using Lemma 25 B. The result

follows from this and the preceding paragraph. a

Corollary D. Let w and C € E(S,,w). Let £ € W be the other fized point of
C. Then T;S;: C 7(T(BwB/B)|cnpus/B)-

Proof. To show this we use Proposition Con X = S,, Y = BzB/B and Z =
(UNz(U™))-U-gzB/B. Itisclearthat Y = BtB/B =Unz(U")zB/B C Z. By
Proposition 23 A, we see that C\ C7T C UszB/B.thusCNX™ =C\CT C Z.
Moreover Z is smooth as the product morphism UNz(U~) xU_s3 x {z} - G

followed by the projection G — G/B is a smooth morphism. a
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28 A Finiteness Criterion

Proposition A. Let M be an irreducible variety with an action of the torus T.
Let X be a T-stable irreducible subvariety of M and suppose r € X is an attractive
point of X, smooth in M. Let V' be a vector space with a linear action of T such
that dim X = dimV and let p: X; = V be a T-equivariant morphism such that
d:p(T,C) # 0 for all C € E(X,z). Then p is finite.

Proof. Suppose C € E(p~'(0)). Since z is attractive, C contains r, that is
C € E(\X;, ). The hypothesis d;p(T.C) # 0 implies that p(C) # 0, which is a
contradiction. Therefore |E(p~'(0))| = 0, and by Theorem 19 D, dim p~!(0) = 0.
In particular this implies that p is dominant.

Let us show that X, is affine. By Theorem 17 C, there exists Y™ an irreducible
T-stable subvariety of M such that X C Y, z is smooth on Y, and T.Y =T, X.
Note that r is an attractive smooth point in Y. Hence, by Corollary 18 D, there
exists Y; an affine r-attracted neighbourhood of £ in Y. Then X; = X NY, is
an affine r-attracted neighbourhood of z in X.

By Proposition 16 A, there exists an open neighbourhood U of p(z) = 0 such
that p~'(U) is an open neighbourhood of z and p: p~}(U) — U is surjective and
quasi-finite (even finite). Note that U can be chosen to be T-stable. Therefore
by Lemma 18 B. U = V', and p : X; — V is a quasi-finite surjective morphism of
affine varieties. It follows that p is finite as any quasi-finite surjective morphism

of irreducible affine varieties is finite (see Proposition 16 A). a

29 Peterson-Carrell-Kuttler Theorem

Recall (Section 16) that a morphism f : X — Y is said to be étale at r € X
if the differential d-f : C: X — Cy()Y is an isomorphism of the tangent cones

considered as schemes, and is said to be unramified at z if the differential d_ f :



(CH. 1V, §29) PETERSON-CARRELL-KUTTLER THEOREM 50

T:X — T,Y is injective. The set of all points where f is not étale is called the
branch locus of f. We will need a theorem of Zariski-Nagata on the purity of

the branch locus of a finite map.

Theorem A (Zariski-Nagata,[Dan94, ch.3, §1.3]). Suppose f: X - Y isa
finite dominant morphism, where Y is smooth and X is normal. Then the branch

locus of f has pure codimension 1 in X.

Corollary B. Let T be a torus. Let p: X = Y be a finite dominant equivariant
morphism of T -varieties with Y smooth and irreducible. Suppose that there exists
an attractive point r € X7 such that X = X;. Then the branch locus of p has

codimension 1 in X or is empty.

Proof. Suppose that the branch locus of p has codimension greater than or equal
to 2. Let 7 : X = X be a normalization of X, and let p = po m. Note that
the branch locus of p is in codimension 2 or more since the normalization 7 is an
isomorphism in codimension 1. Therefore p is étale by Theorem A.

As p is finite and dominant it is surjective. By hypothesis X = X, hence
Y = p(X) = p(X;) = Ypz)- It follows that p(z) is an attractive point of ¥ as ¥
is smooth.

Let Z € 7='(z). Then since p is étale, d;p : T:.X — Tp(r)Y is an isomorphism
and Z is an attractive point of X. Therefore we can assume that X = X;.
But then p is an étale covering with p~!(p(z)) = Z, hence an isomorphism by
Theorem 16 B. Thus p is birational. It follows that p is an isomorphism as any
finite birational morphism to a smooth (even normal) variety is an isomorphism.

O
We will now state and prove the central result in this thesis.

Theorem C (Peterson-Carrell-Kuttler Theorem). Let M be an irreducible

variety with an ection of the torus T. Let X be a T-stable irreducible subvariety
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and suppose £ € X7 is an attractive smooth point of M. Suppose moreover that

there is a subset E C E(X,z) such that

1. every curve in E is not contained in the singular locus of X,
2. |[E(X,z)\ E| £dim.X -2,

3. forallC, D € E, 7(TX|cnxres.£) = T(TX|paxres, z) where X9 denotes

the smooth locus of X,

4. if T(E) denotes the cornmon value of T(TX|caxres,z) for C € E, then
T.CNT7(E) #0 for all curves C € E(X, z).

Then z is a smooth point of .

Proof. Since r is attractive in M. M, is a T-stable affine neighbourhood of =
T-equivariantly isomorphic to T, M by Theorem 18 C and Corollary 18 D. Let
i : My —» T:M be this T-equivariant isomorphism. By Corollary 17 B, we can
choose ¢ so that d,i : T, M. — T.M is the identity. In particular there is a closed
T-equivariant embedding i : X; - T, of X, =XNM, in T, M.

Let « : T,M — 7(E) be any T-equivariant projection, and let p = v o:. We
have the following commutative diagram.

:

X; M

r(E)
Suppose C € E(X;,z). By hypothesis T,C N 7(E) # 0, which implies that
d.p(T.C) # 0 as d.p is a projection on 7(E). Then Proposition 28 A implies that
p is finite.
Let Z be the branch locus of p. We will show that dim Z < dim X; — 2,

which will imply, by Corollary B, that Z is empty and therefore X, and X are



(CH. 1V, §29) PETERSON-CARRELL-KUTTLER THEOREM 52

smooth at z. It is clear that Z is a T-stable closed subvariety of X, (see [Dan94,
I1,2.5.4]). Suppose C € E(Z,z)NE. Since C € E is not contained in the singular
locus of X, the T-orbit C° = C\ {z} lies in the smooth locus of X;. At smooth
points of X;, p: X, — 7(FE) is étale if and only if it is unramified because 7(E)
is smooth and dim r(F) = dim .X;. Hence p is ramified at the points of C \ {z}.
Note that kerd;p N 7(E) = @ because d.p is the projection on 7(E) =
(T X|c\(z}» T), and applying Proposition 27 B, we get that p is unramified
at the points of C \ {z}. This is a contradiction with the last paragraph.
Hence E(Z,z) N E = 0 and by Theorem 19 D and the second hypothesis,

dimZ < |E(Z,z)| < |E(X:, z) \ E| £dim X, — 2.
O

We give now the proof of Theorem 26 A

Proof of Theorem 26 A. In the theorem let M = G/B and X = §S,,. We know
from Remark 18 A, that the points wB and B are attractive in M and hence
in X. Weset £ to be E(S,,z) \ E(S;,r). For C € FE, the fixed point yc is a
smooth point by hypothesis. Hence C is not contained in the singular locus of
S.,, which yields the first condition of the theorem. The third condition follows
directly from the hypothesis of Peterson’s Theorem.

Corollary 27 D implies that T,D C r(F) for all D € E(S;,z). Now for
D e E = E(S,,z)\ E(S;,z), we have TD|pnxres S TX|pnxres hence T;D =
7(TD|p\pr,z) C 7(E). This yields the fourth condition.

Since any two distinct weights in W(T,S,)) are linearly independent, the curves
C € E(S., 1) are all smooth, and the tangent spaces at r of two distinct curves
are distinct (see Proposition 20 B). Moreover, since the dimension of a weight
space of TS, is 1, |E(S,,z)| = dimTE(S,, z). By the preceding paragraph
TE(S,,z) C 1(F), thus |E(S,,z)| < dim7(E) = dimS,. Note that we can

assume that l(w) — I(z) > 2 (if I(w) — I{z) is 0 or 1 the result is trivial). Hence
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by the Deodhars inequality in Proposition 23 D, we have that |E| > 2, thus
|E(S,,z) \ E} <dim S, — 2 which gives the second condition of the theorem, and

the result follows. 0

30 Another Smoothness Criterion

We will now give another smoothness argument and we will use it to give another
proof of Peterson's Theorem. The argument is based on the Cohen-Macaulay
property of Schubert varieties. By definition X has the Cohen-Macaulay prop-
erty if and only if every finite dominant morphism f : X — Y, with Y smooth,
is locally free (see [Dan94, Ch 2,§6.6]). We will use the following application of
the Principle of Conservation of Number (see [Dan94, Ch. 2.§5.7]):

Lemma A. Let p : X — Y be a finite locally free morphism, and suppose X
is connected. [f there exists a point T € X such that p is unramified at r and

[p~(p(z})| = L. then p is unramified.

Proof. The degree of p at z is 1 and by the Principle of Conservation of Numbers,

the degree of p is 1 because [p~!(p(z))| = 1. This shows that p is unramified. O

Theorem B. Suppose X is a Cohen-Macaulay irreducible closed T -stable sub-
variety of a smooth T -variety M. Suppose £ € X i3 an attractive point of X.
Suppose moreover that there ezists a T-stable curve C € E(X.r) which doesn’t
lie in the singular locus of X and such that (T X|cnxres,z) = TE(X.x). Then

T is smooth in X.

Proof. We can assume that X = X,. Let U be an open T-stable neighbour-
hood of r in M isomorphic to T;M. This gives us a closed embedding : :
X; > T,.XCT, M. Letw:T1T.X —» TE(X,z) be any T-equivariant split of
the inclusion TE(X,r) C T.X. Let p = moi. Note that dimTE(\X,z) =
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dim 7(T X|cnxres, ) = dim X; and d;p(T;C) # 0. Hence by Proposition 28 A, p
is finite.

Now p: X; = T, X is a finite morphism, X; is Cohen-Macaulay and T, X is
smooth, hence p is locally free (or flat). Therefore if we show that p is unramified,
then p is an étale covering and the smoothness of z follows.

That p is unramified at the points of C\ {z} follows from Proposition 27 B. As
the restriction i|c : C — T.C is a closed embedding and 7|r.¢c : T:C — TE(X.r)
is the identity, we have that p|c : C — T:C is a bijection. Moreover the only
T-stable curve in p~!'(7T.C) is C, as any other would have tangent space at r
different from 7T,.C (see Proposition 20 B). This shows that each fiber of p above
a point in T;C contains only one element, moreover this fiber lies in C. As p is

unramified at the points of C \ {zr}, Lemma A shows that p is unramified. O
We can now give another proof of Peterson’s Theorem.

Proof of Theorem 26 A. Let M = G/B and X = S,,. We use again Remark 18
A. The hypothesis of Peterson’s Theorem implies that for every curve C €
E(S., z) which doesn’t lie in S; we have T;C C 7(TX|cns7es) = 7(E). Moreover
T.S: € 7(E) by Corollary 27 D. It follows that TE(S,,z) C 7(E). But by
Theorem 19 D, dimTE(S,,z) > dim S_, hence TE(S,,z) = 7(F). Peterson’s
Theorem then follows from the fact that Schubert varieties are Cohen-Macaulay

(see [Ram85}). a

31 Root String Translation

Let S be a subset of ®. We can write S as disjoint union of §-strings contained
in S:

S =User Sf,’
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where S{? is the (-string through v in S and [ is the set of v € S such that
y—rB ¢ S forallr >0 (i.e. v is the minimal element in the 3-string S9). For

each (-string S?, we define t3(S¥) to be the (-string:
ts(SH ={v+(m-9)B|0<i< {Sﬂl}

where m is the greatest integer such that v + mg8 € ®. Therefore t5(S?) is the
connected (-string with |SY| elements containing the maximal element of the
B-string trough 7 in ®. We can define t5(S) as the union of t3(S%) with v € I
ts(S) = | J ts(S5)-
1€l
Note that the operator t3 preserves the cardinality. Suppose now that q is some
T-stable linear subspace of n. Then q is the direct sum of its root spaces. If we

set S to be all the roots v such that g, C q, then we can define t3(g) to be the

linear subspace of n with root spaces corresponding to the roots of t5(S):
ts(q) = @ 8-
v€L3(S)

Here we note that the operator ¢; preserves the dimension.

Proposition A. Let q be a T-stable linear subspace of n (the Lie algebra of U)
of dimension d. Let 3 € ®* and suppose that Ug doesn’t fir q. Then the T -fized
points of the T -stable curve U - q C G4(n) are q and t5(q).

Proof. Let S be the set of roots whose root groups lie in q. We decompose S as
a disjoint union of B-strings: S = U,¢;S¥ (see Section 6). For each v € I, let
gy = ®Aes.‘f gr. The space q is a direct sum of the q, and the Ad-action of U

distributes over each surnmand:

Ad(u)(q) = @ Ad(u)(4-)-

vel
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Therefore we can assume that S is a single 3-string. The curve Uzq has two fixed
points by Proposition 21 A. We know that q is one of those and we denote by ¢’
the other fixed point of Us - q. There exists ¥ € S such that v — i3 ¢ S for all
i > 1. Since S is a (-string, q C g, D G1+5 D - - - ® g4+ms Where m is the biggest

integer such that g,,ns is a root space. It follows that

UsqC gy @ 81+5D - D By+ms-
This yields that q' C g, ® 8445 D - @ 9y+mg- The space q’' being T-stable,
Uj-stable, and having dimension d, we must have

q’ = Byt (m—d+1)8 D - - D Byams-

This shows that q' = ¢5(q)- a

32 Examples

A nice property of the cotangent bundle of the flag variety is that it is naturally
isomorphic (as a G-variety) to the doubles variety {(n,gB) € N x G/B|n €
Lie(9Bg~"')}. If X, = BwB/B is a Bruhat cell in B = G/B then the conormal
bundle to X, Tx_B, is identified with the set {(n,bwB)|n € nN Ad(bw)(n),b €
B} (see [BB85)] or [CG98]). Therefore the fibers of Ty._B all lie in n, in particular,
the fiber above wB is Tz X, = n N Ad(w)(n) = nv.

Root System of Type C;

The Cartan diagram of the root system of type C, is:
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Let w = 0,030,- The T-stable curves in S, are represented in the following

diagram:

Ca030a

A

Oa0p 0304

7

Write W(q) for the set of weights of the space q. The weights of the space T'1S,,

e

are &+~ = {.3}. Let's compute the weights of the Peterson translates of TS,

L. W(TL,.S.) = ta(8) = 2a + 6.

(3]

W(T;, 5,54) = tass(B) =

3. Since t,(8) = 20+ B = ta4s(2a + B), S, is smooth at o5 and W(T,,S,,)
2a + 3.

4. Since t3(2a + 3) = 2a + B and ty,4+4(8) = B are not equal, S, is singular

at o,.
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Root System of Type G,

The Cartan diagram of the root system of type G, is:

]

’

Let w = 040,030,0;. The Bruhat-Chevalley order in S, is described in the

following diagram:

W
Oa030,03 030030
r
030,03 0a030q

g3 Oa
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The following table gives the weights of the Peterson translates:

z | yelfor C € E*(S..2) | Bluc, z) | W(r(TLS.. 7))
w a
00080403 W Jo] a+ s
05000304 w 3a+ 3 a
0a030, Cali0aly 3a+ 28 a+f
03040304 38 a+ 8
03003 Calilals a 3a+ 48
03000304 2 + 3 3a+ S
Ca03 ", a+ 0 3a + 28
0a030a 20 + 3 3a + 20
03003 3 3a+28
030a w 2a + 3 3a+ 4
0a030a a 3a+ 3
03003 3a+ 28 Ja+ 0
o Oal030403 2 + 3 3a+ 28
050030 q a+p 3a + 26
0a03 Ja + 3 3a + 208
030q 8 3a + 20
o3 Gal30a03 da+ 3 a+ g
03040304 3a+ 28 «a
Oul3 a 3a+ 28
0404 a+ 3a+

Only at x = og the values of (T, S..r) are different for distinct curves C €
E*(S,,z), and Peterson’s Theorem implies that the singular locus of S, is S,,-
Note that £ = o5 is a “rationally smooth” point of S, as the number of curves

in E*(S,, ) is equal to l(w) — I(z) = 4 (see [Car94]).
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33 T-Stable Paths in Schubert Varieties

If two T-stable curves have a common T-fixed point, we can take the union of them
to obtain a T-stable closed connected one dimensional subvariety of B = G/B.
In general we can take a union of an arbitrary finite collection of T-stable curves

with overlaping T-fixed points.

Definition A. Let (z,,...,z,) be an order n-tuple of elements in W with n > 2.
We say that (z,,...,z,) is a T-stable path in G/B ifforeach 1 <i<n-1, z;
and r,,, are two distinct T-fixed points of the same T-stable curve in G/B. Call
;B € G/B, 1 <i < n, the vertices of (r,...,r,). We say that (z,... ,z,)

lies in the Schubert variety BwB/ B if each of its vertices lies in BwB/B.

Lemma B. (z,,...,z,) is a T-stable path if and only if z,,\z7' are reflections

foralll <i<n-1.

Proof. If (z,...,x,) is a T-stable path, then by Lemma 23 C, z; and z;4, lie in

a unique T-stable curve which is of the form C,, ; with some 3 € ®. Therefore

by the same lemma, z;,; B must be the T-fixed point osr;B,i.e. T} ] L= gg.
Conversely, if 2,12 I = g5 for some 3 € ®, then z, and z;, are fixed points

of the T-stable curve C;, 5. a

We will say that the T-stable path (z,, ..., z,) is decreasing (resp. increas-
ing) if z; > z;, (resp. z; < z;4,) for 1 < i < n — 1. Recall that 3(z;, z;4+)

denotes the unique root such that the unique T-stable curve containing z; and

Lo+t i Ug(z; z,,)TiB. A simple lemma:

Lemma C. A T-stable path (z,,...,z,) is decreasing (resp. increasing) if and

only if 3(x;,x;y,) are posilive (resp. negative) roots for all1 < i< n-1.

Proof. This follows from Proposition 23 A. O
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34 Fibres

In this section, we are going to study the closure of the tangent and conormal
bundle to the Bruhat cell X, = BwB/B in respectively TB and T*B. We are
going to describe the fibers of those two spaces above the Bruhat cells contained
in the smooth locus of the Schubert variety S, = X_ and we will give a criterion
for smoothness of Schubert varieties. Let 7 : TB — B and 7* : T°B — B be the
projections. For each w € W define 7, : TX, — S, and 7} : Ty B — S, to
be their respective restrictions. For each p € X, Denote by TPJ-X“, the fiber of
Ty B at p. i.e.. the annihilator in T;B of T, X,, the tangent space of X, at p.
First recall that the cotangent bundle of G/B can be identified with the set
{(n.gB) € N x G/B|n € Lie(9gBg~")}. The conormal bundle to X, Ty_B, is
identified with the set {(n, bwB) |n € nN Ad(bw)(n),b € B}. Therefore the fibers
of Ty_B all lie in n, in particular, the fiber above w is T} X, = nN Ad(w)(n) = n*.
Let P = (wy....,w,) be a decreasing T-stable path in S, from w. Let 3; =
3w, wiv1), 1 < ¢ < n—1, be the unique root such that C, ; = m,_BTB—
(see Section 23). If q C T‘jl X., then denote by 7p(q) the following sequence of

Peterson translates of q:

Tcun_l.ﬂn-l @---0 TCux,ﬂ‘ (q)

Theorem A. Let r < w be elements of W. Let P be a decreasing T -stable path
in the Schubert variety X, from w to z. The fiber in Ty B over the pownt zB

contains the T -stable vector space Tp(T 5 X,):
rp(T 2 X,) C 127 (zB).
The equality holds if the point x is smooth in S,,.

Proof. Denote by [Ty B] the subbundle of G4(T*B)|x, defined by Ty _B. [Ty Bj

is closed under the action of B, so is its closure [Ty B] . Therefore T-stable
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curve Us, - T+ X, is contained in m, and its closure too. This shows that
TCuy s, (T+X,) is contained in 7.~'(z). The same applies to the other iterations
of the Peterson translates.

If S, is smooth at r, then the conormal space to S, at r has the same
dimension as the conormal space at w. The space 7p(T5X,) lies in 7°~'(x)

which is equal to T;S,, by Corollary 24 B. But the Peterson translate preserves

the dimension, which implies 7p(T5 X,,) = TS, a

Note that if w,B is a smooth point then the theorem gives a construction of
the conormal space to this point and hence of the tangent plane by taking the
orthogonal complement. Clearly it doesn’t depend on the choice of the T-stable
path. The converse is also true, and we get a smoothness criterion for points in

Schubert varieties. The proof uses a generalization of the Peterson’s Theorem.

Theorem B. Let r < w be elements of W, and suppose l(w) — (z) > 2. Then r
is @ smooth point in the Schubert variety X, if and only if for any two decreasing
T -stable paths P, and P; from w to z in X, we have 7p (T+X,) = 7p,(T+X,)

and S, is smooth at every y € W such that r < y S w.

Proof. For the case when r is a maximal singular point, that is every y € W',

z <y < w, y is a smooth point in S, the result is clear from Theorem 26 A. O



Bibliography

[BBT73]

[BBS3)

[Bor91]

[Bou68|

[BS58]

[Car94]

[CG9s

[Che94]

A. Bialynicki-Birula. Some theorems on actions of algebraic groups.

Ann. of Math., 98, pages 480-497, 1973.

W. Borho and J.-L. Brylinski. Differential operators on homogeneous

spaces [II. Invent. Math.. 80, pages 1-68, 1985.

A. Borel. Linear Algebraic Groups. Grad. Texts Math., 126. Springer-
Verlag, New-York, 1991.

N. Bourbaki. Groupes et Algébres de Lie, chapitres IV, V et VI. Her-

mann, Paris, 1968.

R. Bott and H. Samelson. Application of the theory of Morse to sym-
metric spaces. Amer. J. Math., 80, pages 964-1029, 1958.

J. B. Carrell. The Bruhat graph of a Coxeter group, a conjecture of
Deodhar, and rational smoothness of Schubert varieties. In Proc. Symp.
Pure Math., 56 I. Amer. Math. Soc., Providence, RI, 1994.

N. Chriss and V. Ginzburg. Representation Theory and Complez Ge-
ometry. Birkhauser, Boston. 1998.

C. Chevalley. Sur les décompositions cellulaires des espaces G/B. In

Proc. Symp. Pure Math., 56 1. Amer. Math. Soc., Providence, RI, 1994.

63



[CK99]

[Dan94|

[Dem74]

[Dye93]

[Hum81|

[Hum97]

[KL79a]

[KL79b)

[Kum96]

[LS84]

(Pol94]

64

J. B. Carrell and J. Kuttler. On the smooth points of a T-stable sub-
variety of G/B and the Peterson Map. Preprint, UBC, 1999.

V.I. Danilov. Algebraic varieties and schemes. In I.R. Shafarevich, ed-
itor, Algebraic Geometry I, Enc. Math. Sci., 23. Springer-Verlag, New-
York, 1994.

M. Demazure. Désingularisation des variétés de Schubert généralisées.

Ann. Sci. Ecole Norm. Sup., 7, pages 53-88, 1974.

M.J. Dyer. The nil Hecke ring and Deodhar’s conjecture on Bruhat
intervals. Invent. Math., 111, pages 571-574, 1993.

J. E. Humphreys. Linear Algebraic Groups. Grad. Texts Math., 21.
Springer-Verlag, New-York, 1981.

J. E. Humphreys. Introduction to Lie Algebras and Representation The-
ory. Grad. Texts Math.. 9. Springer-Verlag, New-York, 1997.

D. Kazhdan and G. Lusztig. Representations of Coxeter groups and
Hecke algebras. [nvent. Math., 53, pages 165-184, 1979.

D. Kazhdan and G. Lusztig. Schubert varieties and Poincaré duality.
In Proc. Symp. Pure Math., 36. pages 185-203. Amer. Math. Soc.,
Providence, RI, 1979.

S. Kumar. The nil Hecke ring and singularity of Schubert varieties.

Invent. Math, 123, pages 471-506, 1996.

V. Lakshmibai and C. Seshadri. Singular locus of a Schubert variety.
Bull. Amer. Math. Soc., 11. pages 363-366, 1984.

P. Polo. On Zariski tangent spaces of Schubert varieties, and proof of a

conjecture of Deodhar. Indag. Mathem., N.S., 4, pages 483-493, 1994.



65

[Ram85] A. Ramanathan. Schubert varieties are arithmetically Cohen-Macaulay.

Invent. Math., 80, pages 217-224, 1985.

[Spr81] T. A. Springer. Linear Algebraic Groups. Prog. in Math., 9. Birkhauser,
Boston, 1981.

[Spr98] T. A. Springer. Schubert varieties and generalizations. In A. Broer,
editor, Representation theories and algebraic geometry, NATO ASI C
5314. Kluwer, Dordrecht, 1998.

[Sum74] H. Sumihiro. Equivariant completion. J. Math. Kyoto Univ., 14, pages
1-28, 1974.



