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Abstract 

Camera-projector systems are increasingly being used to· create large displays for 

data visualization, immersive environments and augmented reality. Front projection 

displays, however, suffer from occlusions, resulting in shadows and light being cast, 

respectively, onto the display and the user. Researchers have begun addressing the 

issue of occlusion detection to enable dynamic shadow removal and to facilitate au­

tomatic user sensing in interactive display applications. A camera-projector system 

for occlusion detection in front projection environments is presented. The approach 

is based on ofRine, camera-projector geometric and color calibration, which then en­

able online, dynamic camera view synthesis of arbitrary projected scenes. Occluded 

display regions are detected through pixel-wise differencing between predicted and 

captured camera images. The implemented system is demonstrated for dynamic 

shadow detection and removal using a dually overlapped projector dis play. 



Résumé 

Les systèmes de type projecteur-caméra sont de plus en plus utilisés pour la vi­

sualisation de données avec des affichages de grande envergure, les environnements 

immersifs et la réalité augmentée. Cependant, les affichages de projection frontale in­

troduisent un problème d'occlusions, ayant pour conséquences la projection d'ombres 

et de lumière sur l'écran et l'utilisateur. Les chercheurs ont commencé à aborder 

le problème de détection d'occlusions dans le but de permettre l'enlèvement dy­

namique d'ombres et de faciliter la détection automatique d'usagers dans les systèmes 

d'affichage interactifs. Un système projecteur-caméra de détection d'occlusions ap­

pliqué aux environnements de projection frontale est présenté. L'approche s'appuie 

sur le calibrage hors-ligne (géométrie et couleur) du système projecteur-caméra, ce qui 

permet par la suite la synthèse en ligne et dynamique de vues caméra qui correspon­

dent à de scènes arbitrairement projetées. Afin de détecter les régions de l'affichage 

qui sont occlues, l'image caméra prévue est comparée avec celle capturée à l'aide 

d'une méthode de différence pixel à pixel. Ce système est utilisé dans une application 

de détection et d'enlèvement dynamique d'ombres, où l'affichage est assuré par deux 

projecteurs superposés. 



Acknowledgments 

l would like to thank my supervisor, Dr Jeremy R. Cooperstock, for the invalu­

able research opportunities while working in the SRE Lab. l greatly appreciated his 

technical guidance, editorial advice, funding and patience as l completed this thesis. 

This research was supported by Fonds de recherche sur la nature et les technologies, 

Fondation J. Armand Bombardier and Valorisation-Recherche Québec; this support is 

gratefully acknowledged. l would like to thank Daniel Sud for implementing the dual­

projector display system used for shadow removal and for the technical discussions 

during the integration of our work. Thanks also to Jianfeng Yin, Stephen Spackman 

and Wei Sun, whose technical insights pointed me in the right direction, as well as to 

François Rioux for helping with the French version of the abstracto To Amit Sihota, 

many thanks for being a great friend and study buddy. To Patrick Di N ardo, l am 

truly grateful to have had his unconditional support and understanding. Last but 

certainly not least, special thanks to my parents, Gisela Villamor and Virgilio Hi­

lario, and to my sister, Cynthia "Ate" Hilario: this thesis is dedicated to my family, 

to whom l am grateful for their support, encouragement and patience throughout the 

entire course of my studies. 



TABLE OF CONTENTS 

Abstract . 

Résumé ..... . 

Acknowledgments. . 

LIST OF FIGURES 

LIST OF TABLES . . . . . . 

CHAPTER 1. Introduction ............. . 

1.1. Front Projection for Large Interactive Displays 

1.1.1. Projection-Based Displays ... 

1.1.2. Advantages of Front Projection 

1.2. Problem Description. 

1.3. Research Overview 

1.4. Thesis Outline ... 

CHAPTER 2. Literature Review 

2.1. Indirect Occlusion Detection Techniques and Applications. 

2.1.1. Shadow Detection and Removal 

2.1.2. Occluder Light Suppression .. 

2.1.3. Identifying the Occluded Projector in AVRP Displays 

1 

ii 

III 

vii 

ix 

1 

1 

1 

2 

2 

4 

6 

8 

8 

9 

11 

11 



TABLE OF CONTENTS 

2.1.4. Motivation for the Adopted Approach to AVRP ... 

2.2. Direct Occlusion Detection Techniques and Applications. 

CHAPTER 3. Camera-Projector Calibration Background 

3.1. Geometrie Calibration Background ..... 

3.1.1. Geometry of a Camera-Projector Pair. 

3.1.2. Geometrie Calibration Approaches 

3.2. Color Calibration Background . . . . . 

3.2.1. Projector-to-Camera Color Transfer . 

3.2.2. Color Calibration Approaches .... 

CHAPTER 4. Camera-Projector System Design 

4.1. System Framework 

4.1.1. System Setup . 

4.1.2. Algorithm Overview 

4.1.3. Software Architecture . 

4.2. Omine Geometrie Calibration 

4.2.1. Geometrie Calibration Model 

4.2.2. Procedure for Homography Computation 

4.3. Omine Color Calibration . . . 

4.3.1. Color Calibration Models . 

4.4. Online Occlusion Detection . 

4.4.1. Camera View Synthesis . 

4.4.2. Image Differencing ... 

4.5. Shadow Removal Application . 

CHAPTER 5. Results and Improvements . 

5.1. Occlusion Detection ........ . 

12 

13 

16 

16 

17 

18 

20 

21 

23 

26 

26 

26 

28 

29 

31 

31 

34 

35 

36 

44 

44 

45 

46 

48 

48 

v 



5.2. Shadow Detection and Removal ...... . 

5.3. Variable Thresholding for Image Differencing 

TABLE OF CONTENTS 

51 

54 

5.4. Morphological Image Smoothing for Noise Reduction. 

5.5. Performance Issues and Potential Improvements 

56 

57 

CHAPTER6. Conclusion ............... . 

Appendices . 

APPENDIX A. Projective Geometry Theory . 

A.l. Homogeneous Notation and the Projective Space 

A.2. Projective 'ITansformations . 

APPENDIX B. Color Theory ............ . 

B.l. Color Perception and the 'ITistimulus Theory . 

B.2. Color Measurement and Representation. 

REFERENCES . . . . . . . . . . . . . . . . . . . 

60 

62 

62 

62 

64 

66 

66 

68 

70 

VI 



LIST OF FIGURES 

3.1 The (camera or projector) pinhole model. (based on Figure 2.8 of reference 

[43]) ................. . 

3.2 Geometry of a camera-projector pair. 

17 

18 

3.3 Projector-to-camera color transfer for projector channel j, j E {r, g, b}. 22 

4.1 System framework for the single projector display case: example of the 

physical setup and snapshot images of an unoccluded display. 27 

4.2 System framework for the case of a dually overlapping projector display: 

example of the physical setup and snapshot images of an unoccluded display. 28 

4.3 Overview ofthe occlusion detection algorithm (to the left ofthe dashed line), 

extended to support shadow removal. . . . . . . . . . . . . . . . . . . . .. 29 

4.4 Sofware architecture for the camera-projector system for occlusion detection, 

extended to support shadow removal. . . . . . . . . . . .. . . . . . . . .. 30 

4.5 Camera-projector geometric calibration using planar homographies, for the 

single projector case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 

4.6 Camera-projector geometric calibration using planar homographies, for the 

dual-projector case ....................... . 

4.7 Projector-camera point correspondences for computing HpiC ' 

34 

35 



LIST OF FIGURES 

4.8 The per channel color lookup table. . . . . . . . . . . . . . . . . . . . . .. 37 

4.9 CLUT color calibration: sample camera images captured during separate 

calibration of the red, green and blue projector channels. . . 38 

4.HProjector-camera color correspondences for computing Mw 40 

4.1lAuto vs. manual camera exposure (experiments with light integration time, 

aperture size and gain on the Sony MiniDV DCR-TRV900). ........ 43 

5.1 Occlusion detection using the CLUT model for color calibration. 49 

5.2 Occlusion detection using the LLSColorMat model for color calibration. 50 

5.3 CLUT vs. LLSColorMat color calibration for occlusion detection. 51 

5.4 Shadow detection and removal pro cess for camera frame i 52 

5.5 Shadow removal process for a sequence of captured camera frames. 53 

5.6 Active shadow removal using two projectors with more similar overall intensities. 54 

5.7 Variable thresholding. ...................... 55 

5.8 Smoothing the binary occlusion map through erosion-dilation. 57 

A.IModel of the projective plane JP2. (based on Figure 1.1 of reference [12]) 63 

A.2Projective transformation via central projection. (based on Figure 1.3 of 

reference [12]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 64 

B.IColor perception. 67 

B.2Spectral power distribution (SPD) of a color stimulus. (reproduced from 

Figure 8 of reference [11]) . . . . . . . . . . . . . . . . . . . . . . . . . .. 68 

viii 



LIST OF TABLES 

4.1 Camera color prediction using the CLUT. ................ 38 

4.2 The linear least squares problem. (based on material from reference [27]) 41 

4.3 Pixel-wise image differencing technique. 45 



CHAPTER 1 

Introduction 

1.1. Front Projection for Large Interactive Displays 

1.1.1. Projection-Based Displays. Projection-based displays are increas-

ingly being used in data visualization, immersive environments and augmented reality 

applications. Projectors provide an affordable solution for large area, high resolution 

display, making them an appealing alternative to traditional display devices, such as 

CRTs, LCDs and plasma screens. In virtual environments [6][7][31][5][15], the use of 

projection provides a wide field of view and sense of presence, while freeing the user 

from cumbersome head-mounted displays. Furthermore, by exploiting computer vi­

sion techniques, significant research progress has been made in achieving scalable and 

flexible projected displays that are easy to configure. For instance, camera-projector 

calibration algorithms enable automatic geometric alignment [28][4][1][18][38] and 

color seamlessness [21][33][46] across multiple tiled, but casually overlapped projec­

tors, effectively creating a single logical wall-sized display. As weIl, ad-hoc clusters 

of vision- and network-enhanced projectors can be used to create self-configuring 

displays [30], facilitating system installation and maintenance. 



1.2 PROBLEM DESCRIPTION 

1.1.2. Advantages of Front Projection. Rear projection systems, such as 

the immersive CAVE [6] or the Princeton Scalable Display Wall [18], require spe­

cialized infrastructure (e.g. high-quality screens) and tend to pose inordinate space 

requirements, thereby motivating the use of front projection instead. With the lat-

ter technology, arbitrary surfaces, such as walls, workspaces and objects, can serve 

as display screens and geometric calibration used for automatic keystone1 correc-

tion [36][29]. A new radiometric calibration technique also enables the radiometric 

compensation of projected displays to mask the underlying color or texture of im­

perfect display surfaces [23]. Front projection therefore provides a flexible solution 

for projection-based display and has been used for data visualization [1], augmented 

workspaces [47][45][39], and immersive telepresence applications [31][5][15]. More 

recently, there has also been growing interest in the development of novel camera-

projector systems to create intelligent and interactive ubiquiious displays that make 

digital information readily available in everyday environments [24][42]. For instance, 

Pinhanez [24] introduced a steerable camera-projector system that follows the user in 

a room and transforms nearby surfaces into projected touchscreens. Raskar et al. [30] 

use hand-held environment-aware wireless projectors to augment the physical world 

with self-configuring displays. 

1.2. Problem Description 

An inherent problem with front projection environments is that of occlusion. 

When a user interacts with the display (e.g. via hand gestures) or otherwise inadver­

tently blocks the projector beam, distracting shadows are often cast onto the display 

surface, resulting in loss of information in the occluded region. Graphics projected 

1 Keystone distortion refers to the trapezoidal display of a rendered source image due to off-axis 
projection. 

2 



1.2 PROBLEM DESCRIPTION 

onto the user or other occluding object are also distracting and lead to distorted 

imagery. 

In a comparative study of projection technologies [37], it was observed that for 

front-projected interactive surfaces, most users develop shadow coping strategies, for 

example standing at the edge of the dis play to prevent occlusion. It was also noted 

that shadows did not significantly hinder user performance for simple tasks. The 

study was conducted with a single-user interactive display that recognized simple 

hand gestures for performing low-Ievel user operations (e.g. selection, dragging, etc.). 

For other applications, however, the effects of shadows can be more significant. For 

instance, they detract from the sense of presence conveyed by virtual environments 

and life-size videoconference displays. In telepresence applications, they may fur­

thermore interfere with human-human interaction by causing the local user to miss 

certain visual cues (e.g. sight of remote participants' gestures) that are important for 

successful communication, particularly when performing telecollaborative tasks. 

While the occurence of occlusion can be reduced by mounting the projector off­

axis from the display surface, recent research has addressed the problem using a more 

active approach, called Active Virtual Rear Projection (AVRPj2 [16][17][35][9]. Since 

rear projection does not suffer from shadows, AVRP simulates it using redundant 

overlapping front projectors, whose output is varied based on visual feedback from 

a camera. The camera is used to detect shadows as they occur, allowing for them 

to be filled in by an unoccluded projector. As well, by determining which projector 

is occluded, it is possible to avoid projecting distracting light on us ers [3]. Studies 

indicate that users prefer AVRP to simple front projection display [37]. 

2The term Active Virlual Rear Projection was introduced by Summet et al. [37] to encompass such 
techniques. 

3 



1.3 RESEARCH OVERVIEW 

Furthermore, in an interactive front projection environment, the source of oc­

clusion typically corresponds to the object of interest in the scene, e.g. a hand per­

forming a gesture or user moving in an immersive space. Knowledge of occlusions 

is therefore also relevant to computer vision tasks that are intended for support of 

human-computer interaction (Hel), such as hand detection for gesture recognition, 

or person detection and tracking. Additionally, rather than suppressing light, an 

occluding object itself could potentially be augmented by customizing the projected 

imagery in the corresponding display region. 

A computer vision technique for occlusion detection is therefore required to re­

duce automatically the undesirable effects of shadows, facilitate automatic sensing, 

and respond to user input. Addressing these issues will help make front projection 

technology more usable in interactive display applications. 

1.3. Research Overview 

We present a camera-projector system that performs occlusion detection in front 

projection environments. This research was motivated by the need to address the 

occlusion problem in the Shared Reality Environment (SRE), which is a networked 

multi-room research facility being developed to provide a spatially immersive virtual 

environment for distributed, computer-mediated human-human interaction [5]. Our 

primary goal was to develop an occlusion detection system and integrate it with the 

SRE's multiply overlapped front projection display for the purpose of dynamic shadow 

detection and removal. 

ldeally, however, the adopted algorithm would be one that could be applied not 

only for shadow detection, but also to facilitate general object detection in front 

projection environments, where unpredictable background and lighting changes are 

often induced by dynamic projected content. A generic technique could be adapted 

4 



1.3 RESEARCH OVERVIEW 

for various HCI tasks relevant to interactive display applications. These objectives 

implied the need for a flexible technique that would work for dynamic displays and 

different display configurations, i.e. single or multiply overlapping projectors. 

The adopted occlusion detection approach relies on the fact that information 

about the background scene, i.e. the projected imagery, is readily available. That is, 

projected content is known a priori for every display frame. Based on the current 

projector framebuffer image, it is therefore possible to predict at any instant the ap­

pearance of the display from the perspective of a monitoring camera. This applies 

even to dynamic displays where content often changes in unpredictable ways. In the 

case of multiply overlapping projectors, the camera view can be predicted by account­

ing for the contribution of each. Finally, occlusions can be detected by comparing 

captured camera images to predicted images of the display as it would appear when 

unoccluded. 

The implemented occlusion detection algorithm is based on offline camera-projector 

geometric and color calibration, which estimate the image warping transform and 

color transfer function, respectively, between each camera-projector pair. We express 

the required geometric mappings as planar homographies and describe two alternative 

representations for the color transfer function, namely the per channel color lookup 

table (CLUT) and the linear least squares color transfer matrix (LLSColorMat). Cal­

ibration is the enabling step for camera view synthesis of arbitrary projected scenes. 

Derived data is used online to generate a predicted image of the current projected 

background that accounts for the geometrically and color transformed appearance of 

the display when viewed by the camera. Occlusions can then be detected for each 

camera frame, by pixel-wise comparing the predicted and captured camera images to 

locate regions where significant color inconsistencies occur. This calibration-based de­

tection approach is similar to that proposed by Jaynes et al. [16]. Detected occlusion 

5 



1.4 THESIS OUTLINE 

regions may represent either shadow artifacts on the display or the occluding object 

itself; the nature of the occlusion depends on camera-projector placement. The final 

output of the occlusion detection system is a binary occlusion map, i.e. a camera-sized 

image in which occluded display pixels are identified. 

We demonstrate the performance of the implemented system when integrated 

with a prototype dual-projector AVRP display for shadow detection and removal. 

For this application, the duaIly overlapped projector display was configured in a way 

similar to that of Flagg et al. [9], such that each display pixel is illuminated by exactly 

one projector at any given time. Shadows identified during occlusion detection are 

then eliminated by instructing the unoccluded projector to illuminate the display in 

corresponding regions.3 

In addition, we describe two simple techniques that were used to improve the 

results of our occlusion detection system. The first is a variable thresholding scheme 

for facilitating detection in dark display regions, and the other is an image smoothing 

step based on morphological erosion-dilation for reducing noise in the occlusion map. 

Since our current implementation runs at low frame rate, we also highlight po­

tential performance improvements that may en able the detection process to reach 

real-time (2 25 Hz) or interactive (2 10 Hz) rates required for interactive display 

applications. Suggestions include performing region-based occlusion detection, com-

pressing occlusion data for efficient network transmission, as weIl as accelerating cer-

tain image processing operations using commodity graphics hardware. 

1.4. Thesis Outline 

The remainder of this thesis is organized as follows. We review previous occlusion 

detection techniques and applications in Chapter 2. We then provide background 

3Work on the AVRP system was done in collaboration with SRE lab member Daniel Sud, who 
implemented the dually overlapped projector display system used for shadow removal. 

6 



1.4 THESIS OUTLINE 

on the camera-projector geometric and color calibration problems in Chapter 3. In 

Chapter 4, we describe the framework of the implemented camera-projector system, 

the occlusion detection algorithm, as well as integration with a dual-projector display 

system for shadow removal. In Chapter 5, we present our occlusion detection and 

shadow removal results, then describe implemented and other potential improvements 

to the detection algorithm. Finally, we conclude in Chapter 6 with a summary of our 

research and comment on possible future directions of our work. 

7 



CHAPTER 2 

Literature Review 

The problem of occlusion detection in front projection environments has been ad­

dressed in the context of various applications, such as shadow detection and removal, 

occluder light suppression, as weIl as hand detection and tracking for gesture recogni­

tion. In this chapter, we review previous occlusion detection techniques and provide 

motivation for adopting a camera-projector calibration-based approach. 

Depending on the target application, the proposed detection methods segment 

the camera image in order to extract either the occluding object itself or its cor­

responding shadow artifact. We divide current techniques into two groups, namely 

direct and indirect occlusion detection, and discuss each approach separately. The 

former approach locates the occluding object directly in the scene, while the latter 

detects an occlusion indirectly by locating its more easily discernible shadow. Indirect 

methods are reviewed first. 

2.1. Indirect Occlusion Detection Techniques and Applications 

Locating occluding objects directly in front projection environments is a non­

trivial task, largely due to the varying scene background and illumination induced by 

dynamic projected content. In such conditions, traditional detection techniques used 



2.1 INDIRECT OCCLUSION DETECTION TECHNIQUES AND APPLICATIONS 

in computer vision tasks are often unsuitable. For instance, appearance-based detec-

tion methods have generally been avoided, one reason being that illumination from 

front projection influences the apparent color of the occluding object, thus complicat­

ing the pro cess of detection using color recognition [45] [39] [40] [25]. The boundaries 

of an object might also appear distorted or be difficult to distinguish as it moves 

through projected imagery and textures, thus precluding the use of shape recognition 

algorithms [25]. These challenges have motivated sorne researchers to adopt indirect 

occlusion detection methods instead, since shadows are often easier to detect than 

the occluding object itself. Given auxiliary knowledge of scene geometry (e.g. the 

relative positions of the camera, projector and display surface), it is possible to infer 

the location of the occluding object based on the detected shadow position. Indirect 

occlusion detection is also the obvious approach for applications where shadows, not 

the occluder, are the regions of interest in the scene. We describe related techniques 

and applications in the following subsections. 

2.1.1. Shadow Detection and Removal. As discussed in Section 1.2, front-

projected displays suffer from shadows, a problem that researchers are addressing 

with virtual rear projection, where multiple projectors redundantly illuminate the 

display. Indirect occlusion detection, i.e. shadow detection, is used for active virtual 

rear projection (AVRP) to track and remove shadows dynamically while the display is 

in use. 1 This approach is more straightforward and accurate than detecting shadows 

by tracking occluders in 3D world space and then determining their position relative 

to the projector and display surface [3]. 

1 Active Virtual Rear Projection (AVRP) constrasts with Passive Virtual Rear Projection (PVRP) 
in that AVRP involves the use of a monitoring camera and the adaptive control of projector output 
in detected shadow regions to attain the desired display intensity. In PVRP, no camera is used and 
overlapping projectors each illuminate the full display at all times; occluding only one projector 
results in "half-shadows" where output is still visible albeit at a lower contrast level. [37] 

9 



2.1 INDIRECT OCCLUSION DETECTION TECHNIQUES AND APPLICATIONS 

Proposed shadow detection techniques [16] [35] [3] [9] [17] rely on the concept that 

a priori knowledge of projected content enables the prediction of the display appear­

ance at any given instant, as seen by a monitoring camera. Assuming an unobstructed 

camera view of the projected display, shadows are detected by comparing predicted 

and captured images to locate display regions where significant radiometric inconsis­

tendes occur. An image warping homography transform, recovered during an offiine 

camera-projector geometric calibration pro cess , is then used to map shadow regions 

appearing in the camera image to corresponding pixels in the projector framebuffers. 

The system compensates for shadows by filling them in with a second redundant 

projector. Sukthankar et al. [35] and Jaynes et al. [16] detect occluded regions by 

performing a pixel-wise comparison between predicted and captured camera images. 

In later work, Jaynes et al. [17] propose a new approximate region-based shadow 

removal approach that allows for more efficient image processing computations and 

network transmission of occlusion information to projectors in a distributed display 

system. 

The shadow removal systems introduced by Sukthankar et al. and Jaynes et al. 

differ in that the former cannot support dynamic displays. Any image that is to be 

projected when the dis play is in use must be made available during system initial­

ization for pre-generation of predicted camera images. This involves projecting each 

source image and saving a reference camera image of the display as it appears when 

unoccluded. The shadow removal systems described in references [3] [9] are based 

on the same framework. This approach is of limited use in applications where the 

display content changes in unpredictable ways, as is the case for interactive displays 

or projected video in telepresence applications. Alternatively, Jaynes et al. perform 

an addition al step during offiine calibration, namely camera-projector color calibra­

tion to estimate the nonlinear color transfer function between the two devices. Each 

10 



2.1 INDIRECT OCCLUSION DETECTION TECHNIQUES AND APPLICATIONS 

color channel is calibrated independently by fitting the camera response to a sigmoid 

function model. Geometric and color calibration data are then used to warp and 

color-correct the current projector framebuffer image at run-time, in order to dynam­

ically synthesize a predicted camera image of the current projected background. This 

approach allows for shadows to be detected for arbitrary display images. 

2.1.2. Occluder Light Suppression. Indirect occlusion detection has also 

been employed for the task of occluder light suppression. Cham et al. [3J use shadow 

detection to infer the location of the user who is occluding the display. Predicted 

and captured camera images of the display are compared to identify shadow regions, 

which are then mapped to projector space. However, besides removing shadows by 

selectively intensifying the output of a redundant projector, corresponding pixels in 

the occluded projector are also turned off to simultaneously prevent the projection of 

distracting light onto the user. 

For applications in which only suppression of projected light on the user is re­

quired, Tan and Pausch [40J present an alternative technique using a camera fitted 

with an infrared (IR) filter. In their setup, both camera and projector are mounted 

orthogonal to the display surface and are assumed to share the same focal point. An 

off-axis IR LED array then reflects IR light off the display surface and onto the user, 

allowing for the occluder to be detected by locating the resulting shadow in IR camera 

images. This approach, however, cannot be used to eliminate visible shadows on the 

display. 

2.1.3. Identifying the Occluded Projector in AVRP Displays. A fur-

ther subproblem of occlusion detection pertains specifically to AVRP systems: when 

dealing with multiply overlapping projector displays, it is often necessary to identify 

11 



2.1 INDIRECT OCCLUSION DETECTION TECHNIQUES AND APPLICATIONS 

which projector is being occluded. Having such knowledge aUows for better adaptive 

control of projection for shadow removal and occluder light suppression. 

The dual-projector shadow removal system of Sukthankar et al. [35] do es not 

perform this task. To compensate for shadows caused by a user occluding the display, 

aU projectors are instructed to increase their output intensity simultaneously in the 

appropriate display regions. This invariably results in shadows being fiUed in by 

the unoccluded projector, but it also means that additional light will be projected 

unnecessarily onto the user by the occluded one [3]. Cham et al. [3] solve this problem 

by probing each projector in the event of occlusion. The authors seriaUy instruct each 

projector to vary its output intensity by a smaU amount; if no subsequent change is 

detected in the camera image, then the current projector is determined to be occluded. 

This permits the simultaneous removal of shadow and suppression of occluder light, 

as explained in Section 2.1.2. 

The disadvantage of cyclical probing is that additional rendering iterations are 

required to identify the occluded projector. One way to eliminate the need for probing 

is to configure a multiply overlapping display such that any display pixel is illuminated 

by exactly one projector at any given instant. Then, in the event of occlusion, it is 

immediately known which projector is occluded. This approach was proposed by 

Flagg et al. [9] and demonstrated in a dual-projector binary switching display system 

for fast shadow elimination and occluder light suppression. 

2.1.4. Motivation for the Adopted Approach to AVRP. For our re­

search on shadow detection and removal in the Shared Reality Environment, we 

adopted an occlusion detection approach based on camera-projector geometric and 

color calibration, similar to that of Jaynes et al. [16], as it inherently provides the 

required support for dynamic projected content. For the purpose of shadow detec­

tion and removal, we used an XOR display configuration similar to that proposed by 
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2.2 DIRECT OCCLUSION DETECTION TECHNIQUES AND APPLICATIONS 

Flagg et al. [9], where each display pixel is always assigned to exactly one projec-

tor, to remove the need for projector probing and enable a faster system response to 

occlusions. 

2.2. Direct Occlusion Detection Techniques and Applications 

Despite the difficult scene conditions that may be induced by front projection en-

vironments, direct occlusion detection is nevertheless an important task in interactive 

applications. Various techniques have been proposed for the task of hand detection 

and tracking to support gestural interfacing with front-projected displays. 

Sorne standard detection techniques used in computer vision, such as those rely­

ing on frame differencing2 or background subtraction3 , have shown a certain degree 

of success. For instance, Pinhanez et al. describe a projected touchscreen system that 

recognizes pointing gestures by using frame differencing to detect the hand moving 

through front projection [25J. Although fast and easy to implement, this approach 

to occlusion detection assumes a static background (i.e. projected image) and fur­

thermore fails if the occluding object is stationary. Alternatively, Von Hardenberg 

and Brard use running image averaging4 to maintain an updated reference model for 

background subtraction, allowing for the detection of both moving and resting hands 

[45J. However, the adopted background updating method only accounts for small 

changes in background, e.g. slow variations in scene illumination. The problem re-

mains that significant or sudden changes in projected content, such as those resulting 

from many interactive displays or from projected video, result in false detection of 

occlusion. 

2 Frame differenC'ing detects moving object(s) in a static background by detecting changes between 
successive frames in an image sequence. 
3 Background subtraction detects object(s) of interest by comparing the current image with a reference 
background image. 
4 Running image averaging involves regularly computing a weighted average of the most recent frames 
to maintain an updated model of the scene background. 
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A simple way to deal with dynamic projection is to force user interaction to occur 

only in designated control areas outside the projected dis play region. While this solu­

tion may be adequate for sorne applications (e.g. FreeHandPresent [45], Tele-Graffiti 

[39]), it is likely to be overly restrictive for most interactive front projection environ­

ments. Clearly, imposing constraints on user movement is undesirable, particularly 

in immersive environments. 

Sato et al. [32] also avoid the challenges posed by front projection through the 

use of a thermal infrared camera; hands are detected by sensing objects within body 

temperature range. Although robust to changes in background and illumination, this 

approach requires expensive specialized equipment. Alternatively, camera-projector 

synchronization can be used to detect occlusions by capturing images of the scene 

when projection is momentarily turned off. However, shuttering of projected light 

should be fast enough that it is imperceptible to the user, thus also mandating spe­

cialized and costly hardware. 

We note that an occlusion detection technique based on camera-projector geo­

metric and color calibration may be used not only for shadow detection, but also to 

facilitate direct occlusion detection. Unlike the previous direct methods, calibration 

enables the dynamic synthesis of predicted camera views through geometric and color 

correction of projector images, thus accounting for unpredictable changes in projected 

background and illumination. This allows for improved background segmentation 

without the need for specialized equipment such as IR cameras or camera-projector 

synchronization hardware. Indeed, while our implemented calibration-based detec­

tion system was intended for dynamic shadow detection and removal, early results 

suggested that it could weIl find application for other HOI tasks relevant to interac­

tion in immersive environments, for example, hand detection for gesture recognition 

or person detection and tracking [13]. Calibration was performed to estimate the 
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geometric image warping homography between each camera-projector pair, as well as 

the nonlinear color mapping expressed as a per channel color lookup table. Similar in­

dependent research conducted by Licsar and Sziranyi [19] adopts a calibration-based 

approach to dynamic background generation and subtraction for the task of hand 

detection in front-projected augmented reality. The authors recover a polynomial 

mapping function during geometric calibration and build an intensity lookup table 

during color calibration. 

15 



CHAPTER 3 

Camera-Projector Calibration 

Background 

Camera-projector calibration is fundamental to our adopted occlusion detection al­

gorithm, since geometric and color calibration are the enabling steps for dynamic 

camera view synthesis. We therefore provide background on the geometric and color 

calibration problems and briefly review available techniques. 

3.1. Geometrie Calibration Background 

Geometrie calibration involves registering the geometry of the camera-projector 

system by deriving the transforms between camera pixel coordinates, projector pixel 

coordinates and real world display coordinates. Calibration is required for various 

display rendering tasks, including projector image prewarping to accomplish au­

tomatic keystone correction [36][29], multi-projector display alignment on planar 

[28][4][1][18][38] or non-planar [41][44] surfaces, or shadow removal [16][35][3][9][17]. 

Calibrated camera-projector systems are also used for 3D scene reconstruction or 

depth extraction to recover image-based models of display surfaces [31]. For the re­

search presented in this thesis, geometric calibration is performed to derive image 
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warps that are required for display configuration, camera view synthesis and shadow 

removal, as will be explained in the next chapter. In the following subsections, we 

describe camera-projector system geometry, then review common geometric calibra-

tion approaches. Projective geometry theory, on which is based the geometric model 

of a camera-projector system, is also provided in Appendix A. 

3.1.1. Geometry of a Camera-Projector Pair. A camera is a perspective 

projection device, where points in the 3D physical world are projected through light 

rays onto the camera's 2D image plane. A projector is the dual of the camera [29], 

where 2D image points are projected in the opposite direction into the 3D physical 

world. Each device can be modeled with the common pinhole (or perspective) model 

[43], depicted in Figure 3.1. The model defines the center of projection 0 to be the 

origin of the device (camera or projector) reference frame. The focal length f is the 

distance that separates 0 from the image plane 7r. The optical axis (usually taken to 

coincide with the Z-axis) is the line through 0 that is orthogonal to 7r and intersects 

it at the principal point o. Thus, the 2D image point p of a given 3D world point P 

is located at the intersection of 7r with the ray through P and O. In a CCD camera 

and LCD projector, the CCD and LCD pixel array, respectively, are the physical 

instantiations of the image plane. 

optlcal axis 
'---Z 

J' 

y 

~ice refel"$nce frame 

"p 

;;r----x 

FIGURE 3.1. The (camera or projector) pinhole model. (based on Figure 
2.8 of reference [43]) 
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Figure 3.2 illustrates the geometry of a camera-projector pair, where the camera 

observes a display illuminated by the projector. Virtual 3D Euclidean coordinate 

frames are attached to the camera, projector and physical (world) display surface. 

Additionally, the camera and projector each have an associated 2D image coordinate 

frame (pixel units). This geometry is easily extended to include multiple projectors. 

display surface al Z=O 
(physical world) display 

( ________ ~==============~~x,~'----~ 
2" 

rc li> 

FIGURE 3.2. Geometry of a camera-projector pair. 

3.1.2. Geometrie Calibration Approaehes. Various geometric calibration 

approaches are now reviewed. The required geometric transforms between the cam­

era, projector and display frames of reference are each derived from an initial set of 

known point correspondences, which are obtained by detecting in a camera image 

feature points of a specially designed calibration pattern. For example, grid corners 

or the centroid of circular markers in a projected or physical calibration pattern can 

be detected to pro duce camera-projector or camera-world point correspondences, re-

spectively. These are usually plugged into appropriate systems of equations, which 

are solved to estimate the geometric mapping functions. 
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3.1.2.1. Explicit Calibration. Explicit calibration involves estimating the cam-

era or projector's external and internal parameters, which relate the device's image 

pixel coordinates to 3D world coordinates. The external parameters define the rota­

tion and translation equations aligning the 3D world and 3D device reference frames. 

The intrinsic parameters relate 3D points in the device reference frame to corre­

sponding image pixel coordinates. Intrinsic parameters include the device's focal 

length (which describes the perspective projection of the optics), the x- and y- scal­

ing factors (which define the effective size of a pixel), the pixel coordinates of the 

principle point (which relate the origins of the pixel and real-valued image reference 

frames) and the radial distortion coefficients (which is induced by the opticallens). 

Direct pixel correspondences between a calibrated camera and projector can then be 

obtained from epipolar geometry computations traditionally used in stereo computer 

vision. 

Explicit calibration has been used to pro duce an accurate 3D geometric model of 

the camera-projector system [29J. However, explicit knowledge of the extrinsic and 

intrinsic parameters of each device is not strictly required. We discuss alternative 

geometric registration approaches in the following subsections. 

3.1.2.2. Structured Light. Structured light techniques for geometric registra-

tion involve systematically projecting binary coded light patterns (e.g. coded vertical 

and horizontal bars of decreasing size) onto the display surface and locating corre­

sponding features in captured camera images; this allows per-pixel matches to be 

established between the camera and projector images. This approach avoids the need 

for explicit calibration and 3D display surface models when projecting onto arbitrary 

non-planar surfaces [41]. Maintenance of fewer correspondences is possible by inter­

polating between known points, or by dividing the display surface into a mesh and 

estimating a piece-wise mapping function. 
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3.1.2.3. Planar Homography Approximation. The problem of camera-projector 

geometric calibration is straightforward when the display surface is planar. In this 

case, the geometric transforms between the camera, projector and display reference 

frames each can be modeled as a planar projective transformation. After estimating 

relevant homography matrices, mapping points between two frames is achieved easily 

through matrix multiplication P2 = Hp!. Radial distortion must be accounted for 

prior to homography estimation, although it often can be neglected without signifi­

cantly affecting calibration accuracy. This is a simple and commonly-used approach 

to geometric calibration [16][35][4][1][30][28], which we also adopt to develop our 

prototype occlusion detection system. 

3.2. Color Calibration Background 

Color calibration involves measuring the camera color response to projected colors 

in order to derive the color mappings between a camera-projector pair or between two 

projectors. Most color calibration approaches have been proposed for color correction 

of projector output images, in order to minimize color variation across a large tiled 

multi-projector display [21][33][46]. Calibration has also been use to compensate for 

modulation by colored or textured display surfaces with spatially varying refiectance 

properties [23]. For the work on occlusion detection presented in this thesis, color 

calibration is performed to enable projector-to-camera color correction of synthesized 

camera view images, as will be explained in the next chapter. In the following sec­

tions, we describe the projector-to-camera color transfer process, then review current 

color calibration approaches. To provide an understanding of the concepts on which 

camera-projector color calibration is based, color theory is also explained in Appendix 

B. 
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3.2.1. Projector-to-Camera Color Transfer. LCD projectors and color 

cameras follow the tristimulus color theory. An LCD projector synthesizes colors by 

emitting weighted amounts of red, green and blue light from each position in the 

image pixel array. Color measurement in a camera parallels color perception in the 

human visual system, in that filters are used to split incoming light into three channels 

and record separately the intensity of red, green and blue light striking each pixel of 

the image sensor array. 

Camera sens ors are often designed to imitate not only the spectral sensitivity 

of cone cells, but also their nonlinearity by applying an artificial nonlinear gain to 

the linearly measured intensity of light. In addition, data projectors often apply a 

nonlinear relationship between input channel intensity values and resulting voltage 

signaIs to produce output light intensities that increase in a perceptually linear fash­

ion. This pro cess of introducing camera or projector nonlinearity is referred to as 

gamma correction. 

The mapping between a desired RGB color in the source projector image, Cp = 

(JPTl 1pg , 1pb ) to the measured RGB color in the captured camera image, Ce = (JeT' 1eg , 1eb ) , 

is now considered. Projector-to-camera color transfer is a complex nonlinear func­

tion that depends on several factors, including the spectral power distribution (SPD) 

of the projector light source, the filter and sensor characteristics of the camera and 

projector color channels, the hardware processing performed by the devices, as weIl 

as the radiometric properties of the display surface. The color transfer process, for a 

given projector channel and at a given point on the display surface, is illustrated in 

Figure 3.3 and explained below. 

For each projector channel j, j é {r, g, b}, the output primary color stimulus 

Epj(À) corresponding to the input intensity 1pj is the result of several transformations: 

1pj is first transformed by the often nonlinear response of the projector system, Œj(1pj), 
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projeètor image 
Ipj 

a j pj, 
~ 1 projector ~ 1 Epj(;.} ~ 
~ 
~ 

camera image ~ 
~ 

El'·) ~ 
I<;jk,kE{r,g,b} 

leamera ~ 
~ , , 

S (À) 
display surface 

FIGURE 3.3. Projector-to-camera color transfer for projector channel j, j € {r,g,b}. 

which accounts for the hardware processing (e.g. gamma, white balancing, etc.) and 

electronics of both the video card and projector device. The resulting applied voltage 

or applied intensity value is then transformed by the projector channel's spectral 

response Spj(À), which accounts for the spectral characteristics of the projector light 

source (light bulb) and the light filter for channel j. Thus, 

(3.1) 

Epj(À) is then modulated by the spectral reflectance R(À) of the display surface 

to pro duce the input camera color stimulus Ecj(À), which represents incoming light 

from channel j of the projector: 

(3.2) 

The incoming light Ecj(À) is sampled by filtering it through the red, green and 

blue camera channels. The corresponding camera intensities, Ickj , k € {r, g, b}, depend 

on the combined spectral characteristics of the camera filters and sensors, Sck(À) and 

the nonlinear response of the camera imaging system Pk. The latter function accounts 
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for the electronics and hardware processing of both the camera and digitizer: 

(3.3) 

Physically, light entering the camera is the superposition of light from the three 

projector channels: Ec(>") = L Ecj(À), j E {r, g, b}. However, in the color trans­

fer model, each primary projector stimulus is considered separately and their in­

dividual contributions are then added to obtain the final measured camera color 

C = (Jer, Icg , Icb). The black offset of the projector, which refers to leakage light 

that is emitted when projecting zero intensity from all channels, is also accounted for 

during summation. 

Other factors exist that influence projector-to-camera color transfer. For instance, 

ambient illumination (e.g. due to other light sources or surface interreflections) also 

contributes to the measured camera color response. The reflectance properties of a 

display surface may also vary with position and direction of light. It is common to 

assume the use of a Lambertian surface, which is one that reflects light such that it 

appears equally bright from any viewing angle. Furthermore, depending on camera 

and projector position, orientation, and lens shape, measured luminance may vary 

within a single projector's field of view [21] due to distance attenuation of light. Fi­

nally, camera and projector controls, such as projector brightness, gamma correction, 

camera exposure and gain, and white balance, influence color transfer. 

3.2.2. Color Calibration Approaches. Camera-projector color calibration 

is typically accomplished by projecting known color samples and measuring the re­

sulting camera color response. These color correspondences are then used to derive 

the projector-to-camera color mapping based on a given transfer model. 
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Majumder et al. [21] present an algorithm that uses a digital camera to perform 

color calibration of a multiprojector display, in order to achieve photometrie (lumi­

nance) uniformity all projectors. High dynamic range imaging [8], which involves 

taking several images of a scene at different exposures, allows the nonlinear lumi­

nance response of the camera and each projector to be recovered almost as accurately 

as if a spectroradiometer were used. 

Alternatively, Nayar et al. [23] introduce a new calibration technique intended 

for correct display on colored or textured surfaces. Camera-projector calibration is 

carried out by first accurately recovering the nonlinear response of the camera using 

calibration charts or high dynamic range imaging [22][8]. Per-pixel projector-to­

camera 3 x 3 color mixing matrices, as well as the nonlinear response of the projector, 

are then estimated from known color correspondences. The concatenation of the se 

transformations yields the color transfer function between the two devices, which is 

used to color-compensate projector images a priori and thus account for the spatially 

varying reflectance properties of the underlying display surface. 

To obtain perceptually acceptable results for the above applications, it is neces­

sary to accurately recover the color mappings between each camera-projector pair. 

For the task of occlusion detection, however, the intended goal of calibration is to 

perform projector-to-camera color correction during camera view prediction. While 

the previous calibration techniques are in theory applicable, even a rough estimate of 

the color transfer function may be sufficient for successful occlusion detection [16]. 

Through experiments, Jaynes et al. [16] [17] observed that the projector-to-camera 

color tranfer function can be modeled by assuming channel independence and approx­

imating it with a separate sigmoid equation for each channel (similarly in other work, 

Majumder found the transfer function to be roughly S-shaped [20]). The sigmoid 

models the black offset of the projector, the saturation point of the camera and the 
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intermediate portion of the camera response that increases in a roughly linear fash­

ion. Nonlinear least squares optimization is used to derive the function parameters 

from a set of color correspondences. Calibration results are then used to synthesize 

color-corrected predicted camera images for shadow detection. 

For the occlusion detection work presented in this thesis, we also assume that 

a rough estimate of the camera-projector color transfer function suffices for color 

calibration. Our experimental results, presented in Chapter 5, indicate that successful 

occlusion detection can be achieved despite this simplifying assumption. 
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CHAPTER 4 

Camera-Projector System Design 

In this chapter we present the system framework for the implemented camera-projector 

system and describe our adopted occlusion detection algorithm. We also describe the 

system's integration with a dually overlapped projector display to form a prototype 

AVRP system for shadow detection and removal. 

4.1. System Framework 

4.1.1. System Setup. The implemented camera-projector system for occlu­

sion detection is comprised of the f9llowing physical components: 

• Projector Display System: Graphies rendering system composed of a sin­

gle or multiple projectors with overlapping fields of view. Each projector 

renders the same source image onto the target display surface . 

• Effective Display: The illuminated dis play image on the display surface, re­

sulting from the superposed and aligned contribution of each projector. The 

effective display is a quadrilateral subregion of all projectors' intersection 

area. A planar display surface is assumed. This assumption suffices for our 

research on the SRE, where the immersive display is rendered by six over­

lapping projectors installed to illuminate three walls of the room; occlusion 
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detection can be performed with a piecewise planar surface by considering 

quadrilateral subregions of the display on each plane separately. 

• Camera: A single monitoring video camera whose field of view fully en-

closes the effective display region . 

• Processing System: Computer system that drives the projector display 

system and camera, and runs the occlusion detection program. Application 

processing of occlusion data, for example shadow removal, is also performed. 

Figure 4.1 illustrates the system setup for the case of a single projector display. 

In this example, the camera observes the display, which was rendered by texture map­

ping the source image onto a projector image-sized rectangle. Due to nonorthogonal 

placement of the camera and projector with respect to the dis play surface, the dis­

play and camera images may be affected by perspective foreshortening (Le. keystone 

distortion) . 

display sulface 

FIGURE 4.1. System framework for the single projector display case: exam­
pIe of the physicai setup and snapshot images of an unoccluded dispIay. 

The system setup for a multiply overlapping display is depicted in Figure 4.2, for 

the dual projector case. As shown, each projector must prewarp the source image to 

produce a seamless display in which the projected content is geometrically aligned on 
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the display surface. Prewarping can also be used to correct for keystone distortion 

such that the display appears rectangular from the viewer's perspective; this applies 

to both single and multi-projector displays. 

Il Projector1 field d view 
Il Projector2 field cr view 
iilI Prqjector intersection 

~:i Effectivedisplay region 

FIGURE 4.2. System framework for the case of a dually overlapping pro­
jector display: example of the physical setup and snapshot images of an 
unoccluded display. 

4.1.2. Algorithm Overview. 

4.1.2.1. Occlusion Detection Algorithm. The implemented occlusion detection 

algorithm, summarized in Figure 4.3 to the left of the dashed line, consists of omine 

camera-projector calibration, followed by online occlusion detection that occurs for 

each camera frame. Omine calibration is performed in two steps, namely geomet­

ric and color calibration, to compute the image warping homography transform and 

color transfer function, respectively, between each camera-projector pair. During on-

line occlusion detection, camera view synthesis is performed to predict the appearance 

of the projected display as it would appear, unoccluded, from the perpective of the 

monitoring camera. Pixel-wise comparison is then performed between correspond-

ing predicted and captured camera images to locate significant color inconsistencies, 
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which correspond to occluded display regions. Depending on camera-projector place­

ment, these regions may represent shadow artifacts on the display or the occluding 

object itself. 

Ollline 
Cam ..... -Prol ... "'r 

C.llbr~lon: 

Onlin. 
Occlusion 
Detection: 

Onlin. 
Occlusion 

Data Pro .... lng: 

FIGURE 4.3. Overview of the occlusion detection algorithm (to the left of 
the dashed line) , extended to support shadow removal. 

4.1.2.2. Shadow Detection and Removal Algorithm. As discussed earlier, oc-

clusion data can be used for various applications, including AVRP displays, as well 

as user detection and tracking to support Hel. As per our primary research goal in 

the SRE Lab, we focus on the former and demonstrate the implemented occlusion de­

tection system as part of a prototype dually overlapping projector system for shadow 

detection and removal. The algorithm described previously was extended to include 

an occlusion data processing step, which involves adaptive control of projector output 

intensity to compensate for detected shadows. This extension is shown in Figure 4.3. 

4.1.3. Software Architecture. Figure 4.4 illlustrates the software architec-

ture and data flow for the implemented camera-projector system. The projector graph­

ies engine rend ers the display, by texture mapping the source image, then prewarping 
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the imagery and adjusting the display intensity as required for each projector. Source 

images originate from the occlusion detection system during omine camera-projector 

calibration, or from the user application during regular online display operation. The 

occlusion detection system receives input frames from the projectors and camera for 

use during omine calibration and online detection. The final output of this system 

is a camera image-sized, binary occlusion map that identifies occluded display pixels. 

This occlusion data can then be processed by the shadow removal system. 

Occlusion Detection System ; ............................................................................. _-=ïl 
Ca_Ill-P"!iectorCaliblllticn Subsystem 1 i 

i 
Detec1iŒl Subsy'Stem 

" 

_________ L _______________________________________________________ _ 

L .~,'" ...... ---1ef -
FIGURE 4.4. Sofware architecture for the camera-projector system for oc­
clusion detection, extended to support shadow removal. 

Our camera-projector software is written in C, except for the geometric calibra­

tion process, which is implemented using Matlab. The OpenGL graphies library is 

used for real-time projector display rendering. The occlusion detection and shadow 

removal programs run on a Linux-based machine. 
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The remainder of this chapter details each step of the occlusion detection process, 

as weIl as the shadow removal method. Omine camera-projector geometric calibration 

is discussed in Section 4.2, and omine color calibration in Section 4.3. Sections 4.4.1 

and 4.4.2 respectively describe the camera view synthesis and pixel-wise image dif­

ferencing steps that comprise the online occlusion detection process. Finally, Section 

4.5 explains the implemented shadow removal method. 

4.2. Offiine Geometrie Calibration 

Omine geometric calibration is performed for two reasons. For display configu­

ration during initial system setup, corrective projector prewarps must be computed 

and applied to align multiple overlapping projectors and optionally also eliminate 

keystone distortion. During the occlusion detection process, camera-projector image 

warps are required for camera view synthesis and, in the case of shadow removal, 

for mapping occlusion regions detected in camera space to corresponding projector 

pixels. 

4.2.1. Geometrie Calibration Model. For our occlusion detection system, 

we adopt the planar homography approach to camera-projector geometric calibration. 

The required pixel mappings are computed as 3 x 3 homography matrices between 

camera, projector and display image planes. The following assumptions are made 

regarding system geometry: 

• Static display configuration: Geometric calibration is performed omine dur­

ing system initialization and must be repeated after any change in camera 

or projector placement (position and orientation with respect to the dis­

play surface). Adjusting the manual keystone control of the projector or 

the zoom factor of any device also requires re-initialization . 

• A planar display surface is used, as mentioned earlier. 
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• Radial lens distortion is negligible. 

Figure 4.5 illustrates the adopted geometric calibration model for the case of a 

single projector display. 

display surface al Zw=O (physical world) 

H 

,H,) H 

FIGURE 4.5. Camera-projector geometric calibration using planar homogra­
phies, for the single projector case. 

As shown, we distinguish between physical and conceptual display frames of ref-

erence. The display surface is assumed to be aligned with the Zw = 0 plane of the 

physical world; the directions of the world X- and Y- axes are user-defined. While 

the effective display region is a quadrilateral on the physical surface, we define the 

conceptual model of the display to be a unit square which, depending on the extent 

of keystone distortion, might be viewed in perspective. This distinction facilitates 

computations as this model may be used regardless of the physical shape of the pro-

jected display quadrilateral. For example, the amount of image processing can be 

reduced by considering only those camera pixels that faH within the effective display 

region, i.e. that map to points inside the display unit square. The metric dimensions 

and world coordinates of the display need not be known for occlusion detection; these 
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need only be recovered during initial system configuration if aligning the edges of the 

display with the world reference frame (e.g. for keystone correction). The latter is 

accomplished by prewarping the projected imagery in software. 

The following homographies are derived (i identifies a given projector in a multi­

projector system): 

• H p1c : projector-to-camera image warping homography, used during online 

occlusion detection to predict the camera view based on projector frame­

buffer contents. 

• H dc : warping homography between the display unit square and the camera 

image. As mentioned, H dc is used to reduce the amount of image processing 

by considering only camera pixels inside the effective display region. 

• Hpwarpl: projector prewarping homography, used only during display con­

figuration, typically to accomplish multiprojector alignment or keystone 

correction. Hpwarpi is used to prewarp the projected imagery such that it 

.occupies a quadrilateral subregion of the projector framebuffer. If no pre­

warping is to be performed, as in the single projector display example of 

Figure 4.5, Hpwarpi equals the Identity matrix. 

• HdPI: warping homography between the display unit square and each pro­

jector framebuffer image. The computation of H dPi is an intermediate step 

in the derivation of Hpwarpil as will be explained in Section 4.2.2. 

The geometric calibration model supports multiple overlapping projectors, as 

depicted in Figure 4.6 for the dual projector case. 

Projector prewarping is performed in real-time. For each projector, after texture 

mapping the source image onto a projector framebuffer-sized rectangle, prewarping 

occurs by applying Hpwarpi as the OpenGL projection matrix. 
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FIGURE 4.6. Camera-projector geometric calibration using planar homogra­
phies, for the dual-projector case. 

4.2.2. Procedure for Homography Computation. In this subsection, 

we describe the steps used to compute the required homographies. We note that 

alternative calibration procedures are possible. Although the implemented camera-

projector system for occlusion detection has integrated OpenGL graphies rendering 

functionality, it was configured, for the shadow removal application, to operate as 

a client interfacing with a dual-projector display server. In this case, the server 

performs, in addition to graphies rendering, geometrie calibration using an alternative 

procedure [34]. 

The H piC matrix for each projector i is computed first. Point correspondences 

between projector i and the camera are obtained by projecting a calibration grid of 

known size and detecting corresponding grid corners coordinat es in the camera image, 

as depicted in Figure 4.7. These point correspondences are used to estimate HpiC ' 

While our occlusion detection software is written mostly in C, geometric calibration 

is performed in Matlab and our implementation uses routines from Bouguet's Camera 
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Calibration Toolbox for Matlab [2] to perform corner detection with subpixel accuracy 

and homography estimation. 

FIGURE 4.7. Projector-camera point correspondences for computing HpiC ' 

The effective display region is then defined interactively by the user, by specifying 

in the camera image the desired corners of the display quadrilateral. The selected 

display region must be inside the fully overlapped projection area. The resulting 

camera coordinates are coupled with the corner coordinates in (conceptual) display 

space, namely (0,0), (1,0), (1,1) and (0,1), to generate four point correspondences 

used to compute Hdc. Alternatively, with the help of computer vision techniques, 

display region definition may be performed in software to automatically rectify and 

optimize the effective display area. This research is being conducted by SRE Lab 

member Daniel Sud [34]. 

For each projector i, H dPi is computed through matrix multiplication: H dpi = HPi~Hdc' 

The recovery of this homography is an intermediate step in the derivation of Hpwarpi' 

where H dpi is used to obtain the desired display corner coordinates in projector space. 

The resulting coordinat es are coupled with the projector framebuffer corner coordi­

nates, (0,0), (WPi' 0), (Wpil Hp;) and (0, HpJ, to produce four point correspondences 

that are used to determine Hpwarpi' 

4.3. Dmine Color Calibration 

Offline color calibration is performed to enable projector-to-camera color correc­

tion of the synthesized camera image when predicting the camera view of a projected 
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display. However, we only recover a rough estimate of the complex nonlinear color 

transfer function between each camera-projector pair. We assume that this simplifi­

cation suffices for our occlusion detection tasks. 

4.3.1. Color Calibration Models. We proposetwo alternative color trans­

fer models, namely the per channel color lookup table and the linear least squares 

color transfer matrix. We discuss these in the following subsections. 

The following assumptions are made: 

• A planar white Lambertian surface is used. 

• Intra-projector color variation is negligible. 

• Ambient illumination is not explicitly modeled, but accounted for in the 

measured black offset of the projectors. 

• The camera's exposure and white balance functions are set to manual mode. 

The need for manu al camera adjustment is discussed briefly in Section 

4.3.1.3. 

• Static dis play configuration: Color calibration is performed offiine during 

system initialization and must be repeated after adjusting camera expo­

sure or white balance settings, or projector color controls (e.g. brightness, 

contrast, gamma factor). Recalibration is also required after significant 

changes in camera-projector geometry or ambient illumination (e.g. room 

lights are switched on or off). 

4.3.1.1. Per Channel Color Lookup Table. As discussed in Section 3.2.1, LCD 

projectors synthesize colors by combining weighted amounts of red, green and blue 

light, and cameras split incoming light into three color channels to record separate red, 

green and blue intensities for each pixel. Given this, in our early work on occlusion 

detection, we expressed the nonlinear color transfer function between each camera­

projector pair as a per channel color lookup table (CLUT) that stores the measured 
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camera response to increasing intensities of projected primary colors. However, since 

projectors have a black offset and the spectral sensitivities of the camera sensors may 

overlap, projecting a primary color may generate a response from aH three channels of 

the camera. For instance, in a color calibration test run, the camera measured an RGB 

color of C = (16,181,11) in response to the projection of green light P = (0,204,0). 

Thus, each entry in the lookup table for a given projector channel has three values 

that specify the measured intensity for each camera channel. 

The CLUT for one camera-projector pair, given 8-bit color channels (or 256 

intensity levels per channel), is therefore comprised of three 256 x 3 lookup tables, as 

shown in Figure 4.8. It is noted that aH stored camera response values include the 

effect of the cumulative black offset of the projectors, CO = (C~, cg, cg). 
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FIGURE 4.8. The per channel color lookup table. 

The CLUT is built by iterating through the projection of primary colors of in-

creasing intensity, measuring the RGB camera response for each and storing this 

data. Since this involves projecting 3 x 256 color samples, we speed up the pro cess 

by projecting calibration color grids instead of separate images for each calibration 

color, as shown in Figure 4.9. The pre-computed homography H pc is used to map 
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a rectangular subregion of each color patch to camera space. The stored RGB cam-

era response is the average color measured over corresponding patch pixels and over 

multiple camera images. 

FIGURE 4.9. CLUT color calibration: sample camera images captured dur­
ing separate calibration of the red, green and blue projector channels. 

The camera RGB response, C = (Cr, Cg, Cb), to a projected RGB color P = 

(Pr , Pg , Pb) can be predicted by summing the camera responses to each of the pro­

jected primary components in isolation, and then accounting for the black offset. 

These computations are described in Table 4.3.1.1. 

For a camera-projector pair: 

Given: 

• the projected RGB color, P = (Pr, Pg , Pb), and 
• the cumulative black offset CO = (C~, cg, cg) 
• the per channel color lookup table (CLUT) 

The predicted RGB camera response to projector channel j E {r, g, b} only 
is obtained by using the intensity Pj as in index into the CLUT: 

The overall predicted camera RGB response is C = (Cr, Cg, Cb), where 
each channel intensity Ci, i E {r, g, b} equals: 

TABLE 4.1. Camera color prediction using the CLUT. 
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In the above computations, the black offset is subtracted twice because its value 

is multiply included, i.e. in cr, cg and Cb. An alternative scheme for the CLUT is 

to subtract the black offset from the measured camera values before storage. When 

predicting the response to a projected color, the black offset must be added once, 

instead of being subtracted, from 2: ct. 
While the CL UT models the nonlinearity of the projector-to-camera color transfer 

function, the iterative approach to building it and the associated storage requirements 

may render this approach impractical, especially in a multiprojector system. A po­

tential modification is to reduce the size of the CLUT by projecting fewer calibration 

colors and using interpolation to derive the camera response for intermediate projector 

intensities. 

4.3.1.2. Linear Least Squares Calar Transfer Matrix. In addition to the per 

channel color lookup table, we propose an alternative model for color calibration, 

namely the linear least squares color transfer matrix (LLSColorMat). The LLSCol­

orMat is a linear approximation, for each camera-projector pair, of the projector-to­

camera color transfer function. Linear estimation of color mapping functions have 

demonstrated sorne success for the application of color correction between multiple 

cameras [50]; the idea was proposed to investigate whether a similar approach could 

also be applied to camera-projector color calibration. As will be seen in Chapter 5, 

our experimental results indicate that the proposed LLSColorMat model pro duces 

acceptable occlusion detection results. 

The adopted linear model for the color transfer function, relating a projected 

RGB color, P = (Pn Pg, Pb), to a predicted RGB camera response, C = (Cr, Cg, Cb), 

is expressed with Equation 4.1. The coefficients mu, m21 and m31 represent the 

cumulative black offset of the projectors. 
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1 
Cr mu m12 m13 m14 

=Mpc 
Pr 

where M pc = (4.1) Cg m21 m22 m23 m24 

Pg 
Cb m31 m32 m33 m34 

Pb 

The matrix M pc is referred to as the LLSColorMat and is derived by linear least 

squares optimization from a set of known projector-camera color correspondences. 

These are obtained by iteratively projecting a number of calibration colors and mea­

suring the RGB camera response to each. As depicted in Figure 4.10, this process 

is performed using color calibration grids in a manner similar to that used for the 

CLUT, although the projected color samples need not be only primary colors. In our 

experiments, we project 216 RGB colors, which sample the RGB color cube at regular 

intervals. The set of projector-camera color correspondences is then used to formulate 

a linear least squares fitting problem. The generallinear least squares fitting problem 

is summarized in Table 4.3.1.2. 

FIGURE 4.10. Projector-camera color correspondences for computing Mpc. 

To solve for M pc , the projector-camera color correspondence values are plugged 

into a system of linear equations of the form Ax = y. The 12 x 1 solution vector 

x (Le. M = 12) represents the twelve unknown coefficients of M pc that are to be 

computed. The design matrix A is an N x 12 matrix, where N is the total number 

of intensity data points. For example, 216 projected calibration RGB colors results 
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Given a linear system of equations, represented in matrix form as Ax = y, 
solve for x in the least-squares sense, i.e., solve minlly - Axll, where: 

A = an N x M matrix, where: 

N = number of data points 

M = number of basis functions in the linear model equation 

e.g. In Equation 4.1, the model equation for each camera 
channel intensity Ci, i E {r, g, b} is a linear combination 
of four basis functions, namely 1, Pr , Pg and Pb. 

Matrix A, termed the design matrix, is a matrix of coefficients; 
it contains basis function values at each data point. 

x = an M x 1 vector 

Vector x contains the parameters (i.e. the coefficients of the 
basis functions) to be fit to the linear model. 

y = an N x 1 vector 

Vector y contains the right-hand side values, i.e. the value of 
the linear model equation at each data point. 

TABLE 4.2. The linear least squares problem. (based on material from ref­
erence [27]) 

in 216 measured camera RGB colors, which correspond to 3 x 216 = 648 measured 

channel intensities; hence, N = 648 and y is a vector containing these intensities. 

Each row in the design matrix A contains the values of the basis functions (i.e. 

the channel intensities for the projected calibration colors). This linear least squares 

problem is expressed with Equation 4.2: 
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The unknown coefficients of M pc are estimated by solving this system of equations 

using linear least squares fitting by singular value decomposition. Our implementation 

makes use of linear least squares fitting routines from Numerical Recipes in C [27]. 

In a multiply overlapping projector system, the black offset is accounted for only 

in the LLSColorMat of the first projector. That is, given n projectors, the matrix 

elements mu, m2l and m3l are set only for M plC of the first projector, and reset to 

zero for Mpxc ,2 < x < n. The reason for maintaining a cumulative black offset 

instead of per projector black offsets has to do with automation of the calibration 

pro cess. Each projector is calibrated separately and measuring per projector black 

offsets would require turning off the other projectors manually to avoid leakage light. 

An alternative scheme is to maintain the cumulative black offset as a separate tri­

vector CO = (C~, cg, Cg)T, and estimate M pkC ,2 < k < n as a 3 x 3 matrix, by 

subtracting the value of the black offset from the sample camera RGB responses 

prior to linear least squares estimation: 

(4.3) 
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4.3.1.3. Manual Camera Adjustment. Many cameras are equipped with in-

ternal light metering systems used for adjusting exposure automatically to pro duce 

optimal image brightness for a given scene. Exposure can be controlled by varying 

light integration time, aperture size and electrical gain. While producing more visu­

ally pleasing images, these automatic exposure features reduce the reliability of our 

camera-projector color calibration pro cess and hence make it difficult to predict the 

camera color response during camera view synthesis. 

Under automatic exposure mode, the overall brightness of the captured camera 

image varies depending on the color content of the projected scene, as shown in Figure 

4.11(a). Switching the camera to manual mode results in better stability in terms of 

brightness (see Figure 4.11(b)). 

(a) Automatic mode 

(b) Manual mode 

FIGURE 4.11. Auto vs. manual camera exposure (experiments with light 
integration time, aperture size and gain on the Sony MiniDV DCR-TRV900). 
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Thus, manual camera adjustment should be employed for more reliable camera­

projector color calibration and camera view prediction, although intensity fluctuations 

in each color channel cannot be completely eliminated due to sensor noise. As well, 

the supported set of manual exposure controls differs with camera model, and many 

devices perform internaI image processing operations that cannot be disactivated. In 

informaI experiments with manual mode on the Sony MiniDV DCR-TRV900, the 

measured channel intensity variance at a single pixel was between 10 and 20 levels 

(or 4-8%), given 8-bit color channels (i.e. max 256 levels for each channel). 

4.4. Online Occlusion Detection 

Camera-projector geometric and color calibration data are used during online 

occlusion detection. For each camera frame, occlusions are detected by synthesizing 

a predicted camera image of the projected scene and comparing it with the actual 

captured camera image. We discuss camera view synthesis and image differencing in 

the following sections. 

4.4.1. Camera View Synthesis. For a single projector display, the pre-

dicted camera image is synthesized by using the Hpc homography to warp the pro­

jector framebuffer image to camera space. However, as discussed in Section 3.2.1, 

due to the many factors influencing the camera-projector system, a camera viewing 

a projected display is unlikely to pro duce an image whose colors match exactly those 

from the projector image. Color correction using the projector-to-camera color trans­

fer function is therefore performed after image warping, to predict the camera view 

of the projected scene more accurately. Color correction of the synthesized camera 

image is performed by applying the color transfer function (either the CLUT or the 

LLSColorMat) on a per pixel basis. Additionally, to reduce the amount of image 

processing, the camera view is only predicted in image regions corresponding to the 

display. That is, the H dc homography is used to determine which camera pixels fall 
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within the effective display region; those that do not remain unprocessed in the final 

synthesized image. 

In the case of multiply overlapping projectors, a predicted camera image is gen­

erated for each projector in isolation; the final synthesized camera image is the color 

superposition of aIl projectors' contribution, obtained by summing the predicted cam­

era color response values at each dis play pixel and accounting for the cumulative black 

offset. 

4.4.2. Image Differencing. Following camera Vlew synthesis, pixel-wise 

color differencing is conducted between the predicted and captured camera images to 

detect occlusions. When comparing the two images for one camera frame, a given dis­

play pixel is considered to be occluded if the observed color, Cobs = (Oobsr , Oobsg , OObSb) 

differs from the predicted color, C pred = (Opredr , Opredg , Opredb) by more than a spec­

ified threshold T. The difference between the two colors is measured as the total 

Euclidean distance between predicted and observed RGB intensities. The threshold 

is expressed in intensity units and is specified by the user during system initialization. 

During online occlusion detection, the following fixed thresholding scheme is used to 

evaluate occlusion at each pixel: 

For a given display pixel in the camera image: 

if ( (Cpredr - C obsr )2 + (Cpredg - C obsg )2 + (Cpredb - C Obsb)2 > T) 
occluded = true; 

else 
occluded = false; 

TABLE 4.3. Pixel-wise image differencing technique. 

Once again, the H dc homography is used to limit image processing to be per­

formed only inside the effective display region. The final output of the occlusion 
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detection system is a camera image-sized binary occlusion map that identifies oc­

cluded display pixels in camera space. 

Depending on camera-projector geometry and the position of the occluding ob­

ject, color inconsistencies may represent a shadow on the display surface or the oc­

cluding object itself blocking the camera view. GeneraIly, additional processing has 

to be performed to determine the nature of the occlusion. A potential solution is 

to analyze the overall color of each occluded region; shadows may be identified by 

regions whose average color is gray. Alternatively, this task sometimes can be solved 

easily by imposing constraints on camera-projector system geometry. For instance, if 

the camera is placed at an extreme angle to the display surface, it may be assumed 

to have a clear light of sight of the display at aIl times; detected occlusions can then 

be identified automatically as being shadows on the display. Of course, the feasibility 

of such constraints would depend on the user application. 

4.5. Shadow Removal Application 

For the shadow removal application, a prototype AVRP display was constructed 

by integrating the implemented occlusion detection system with a dually overlapped 

projector dis play server developed by Daniel Sud [34]. In this configuration, graphics 

rendering, geometric calibration and shadow removal is performed by the server, as 

mentioned earlier. 

The overlapping dual-projector system was configured such that each display 

pixel is illuminated by exactly one projector at any given time, thus providing a 

straightforward solution to the occlusion detection subproblem of identifying which 

projector is being occluded. For this prototype application, the camera is assumed 

to maintain an unobstructed view of the display, as described in the previous sec­

tion. However, this constraint will no doubt have to be relaxed for practical use in 

interactive environments such as the SRE. 
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During display operation, shadows are identified by the occlusion detection sys­

tem. The output binary occlusion map is then provided to the projector display 

server, which uses it in an exclusive-OR (XOR) shadow removal process to transfer 

the responsibility of illuminating shadowed display pixels to the unoccluded projec­

tor [34]. In short, this technique involves warping the binary occlusion map to each 

projector's frame of reference and applying per-pixel XOR logic with the given pro­

jector's intensity mask. The projector intensity mask specifies whether each projector 

pixel is currently on or off. 
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CHAPTER 5 

Results and Improvements 

In this chapter, we present the results of occlusion detection and shadow removal 

experiments, then describe improvements made to the detection algorithm. These 

include a simple variable thresholding technique for improving shadow detection in 

darker display regions, and the addition of a final smoothing step after image differenc­

ing to reduce noise in the output binary occlusion map. We also discuss performance 

issues related to the current implementation and other systems, highlighting various 

potential improvements. 

5.1. Occlusion Detection 

We first present our early experimental results for occlusion detection using the 

CLUT color calibration model that was described in Section 4.3.1.1. Figure 5.1 

provides an example of occlusion detection for a simple front-projected scene, rendered 

by a single projector. The source image (Figure 5.1(a)) is first texture mapped to 

occupy the full area of the projector framebuffer. During online display operation, 

the pre-computed H pc homography is used to warp the projector framebuffer image 

for camera view synthesis. Color correction is then applied using the CLUT to obtain 

the final predicted camera image. This is compared to the captured camera image in 
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order to detect occlusions. We also note that the Hdc homography is used to limit 

processing to the effective display region. 

1 

_-.J 

(a) source image (b) color-corrected pre- (c) captured camera im- (d) binary occlusion map 
(texture) dicted camera image age 

FIGURE 5.1. Occlusion detection using the CLUT model for color calibration. 

This example shows that a calibration-based approach to detection may be used 

for direct or indirect occlusion detection in front projection display environments, 

i.e. to detect either the occluding object itself, or its shadow cast onto the display. 

Two common situations are illustrated in which occlusion data is useful. The first 

involves a shadow being cast onto the display surface because the user is blocking 

the projector. Occluded display regions are detected by the system, as shown in the 

output binary occlusion map of Figure 5.1(d), where occluded pixels are marked in 

black. However, display pixels identified as being occluded do not only represent 

shadows, but also regions in the camera image that correspond to the occluding 

object itself, Le. in this case, the user's body. Occlusion data can be used for shadow 

removal using redundant illumination by a second projector, as will be demonstrated 

later, or for general object detection to enable detection and processing for hum an-

computer interaction purposes. However, further processing must first be performed 

to distinguish between the two types of occlusion data. 

We also present, in Figure 5.2, similar occlusion detection results obtained using 

the LLSColorMat model for color calibration. We show that acceptable results are 

still obtained despite recovering only a linear estimate of the projector-to-camera 
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color transfer function. In this example, occluded dis play pixels are marked in green 

in Figure 5.2(d). 

(a) source image (b) predicted camera im- (c) captured camera im- (d) binary occlusion map 
(texture) age age 

FIGURE 5.2. Occlusion detection using the LLSColorMat model for color calibration. 

Figure 5.3 compares the CLUT and LLSColorMat color calibration approaches 

by illustrating occlusion detection results obtained for each, given the same source 

texture and captured camera input. As shown, both approaches allow for color correc-

tion of the predicted camera image such that its color content resembles more closely 

that of the captured image. However, since the CL UT models the nonlinearity of the 

projector-to-camera color transfer function which was observed to be roughly S-shaped 

[20][16], it may better approximate the camera response to projected intensities near 

the low or high end of the range. This can be seen in the predicted camera images of 

Figure 5.3, where the camera response to dark regions of the projected display (e.g. 

at the bottom-right or top-Ieft corners of the color grid) was estimated better using 

the CL UT than with the LLSColorMat. Nevertheless, both color calibration models 

yielded similar occlusion detection results (we address the issue of noise in the binary 

occlusion map in Section 5.4). We also recall that both the CLUT and LLSColorMat 

are only rough estimates of the complex projector-to-camera color transfer function. 

Recovering a highly accurate nonlinear model may be unfeasible in certain environ-

ments due to various factors such as unpredictable illumination changes. This is the 

case for our research on the SRE, where despite manually adjusting camera exposure 
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settings, we observed that the camera response to projected colors is still influenced 

by surface interreflections off the white walls of the room. 

Color Calibration Approach 

CLUT LLSColorMat 

source image (texture) 

captured camera image binary occlusion map 

FIGURE 5.3. CLUT vs. LLSColorMat color calibration for occlusion detection. 

5.2. Shadow Detection and Removal 

For our research on the Shared Reality Environment, we demonstrate the per­

formance of the implemented occlusion detection system when operating as part of 

the prototype dual-projector AVRP system described in Section 4.5. Experimental 

results are provided in Figure 5.4, which depicts the details of the XOR shadow re­

moval pro cess for one camera frame. As shown, the second projector compensates 

for the shadow that resulted from occluding the first one. We note that although the 

second projector is operating at full intensity in the corresponding region, its display 
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is dimmer than that of the first. During occlusion detection, these intensity differ­

ences are accounted for by per projector color calibration, allowing for the synthesis 

of a more accurate, color-corrected predicted camera image (see Figure 5.4(g)). 

(a) projector framebuffer images, (b) predicted cam- (c) captured cam- (d) binaryocclusion 
abutted era image era image map 

(e) adjusted projector 
tions 

contribu- (f) compensated (g) predicted 
shadow viewed by camera image 
the camera at the corresponding to 
next frame i + 1 frame i + 1 

FIGURE 5.4. Shadow detection and removal pro cess for camera frame i 

Shadow detection and removal results over a sequence of frames are also illus-

trated in Figure 5.5, where the entire dis play is illuminated initially only by the first 

projector. Subsequent occlusions are detected and the second projector is instructed 

to fill in shadows selectively as they occur (Frames i to i + 6). In Frames i + 6 and 

onward, it is the second projector that is being occluded and shadowed display pixels 

are re-assigned to the first projector. 

The above examples demonstrate that a calibration-based approach to occlusion 

detection provides support for dynamic projected content through camera view syn-

thesis, as well for single or as multiply overlapping projector displays by superposing 

the contribution of each projector in the system. However, we note that despite 

having demonstrated the relative success of the implemented AVRP system, visi­

ble shadow artifacts remain even after compensation, similar to the "half-shadows" 
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Frame i Hl H2 i+3 

H4 H5 H6 i+7 

H8 Hg H10 

FIGURE 5.5. Shadow removal pro cess for a sequence of captured camera frames. 

produced by PVRP systems (as discussed in Section 2.1.1); these are due to the sig­

nificant difference in overall intensity between the two test projectors. In the future, 

true color seamlessness between multiple projectors can be achieved by performing 

inter-projector color calibration and adjusting the intensity of each projector auto­

matically. In Figure 5.6, however, we provide the results of shadow removal using 

two projectors that were manually color-calibrated to have more similar overall in­

tensities. Ignoring noise, this example illustrates better the advantages of an active 

occlusion detection approach (Le. AVRP) over a passive one (Le. PVRP), in that the 

former allows for the possibility of fully eliminating shadows. 

Finally, we also note that while the presented camera-projector system framework 

allows for multiple overlapping projectors, the current implementation is assumed 

to run on a single machine with dual-head graphies and is therefore limited to a 

maximum of two projectors.1 

lThis single-machine limitation is being addressed by ongoing research in our lab and has already 
been solved by other researchers [16]. 
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Frame i i+l i+2 i+3 

i+4 i+5 i+6 i+7 

FIGURE 5.6. Active shadow removal using two projectors with more similar 
overall intensities. 

5.3. Variable Thresholding for Image Differencing 

We observed that detection of occlusion can fail in low-intensity display regions. 

With fixed thresholding, whether an occlusion will be detected depends in part on 

the color that is being projected in that location. During shadow detection, for 

example, a shadow cast over a projected white region on the display will result in 

greater radiometric inconsistencies than if it were cast over a projected dark gray 

region. Since shadow is detected only if the distance between the predicted and 

observed colors is greater than the fixed threshold, successful detection in the latter 

case requires a lower threshold value to increase system sensitivity to occlusion. We 

address this issue with a simple variable thresholding technique that accounts for the 

varying degree of measured color difference when occlusions occur. 

Instead of using a fixed threshold intensity, its value is dynamically computed 

for each pixel to equal a specified percentage of the predicted color intensity, thus 

increasing the sensitivity of the detection algorithm in darker display regions. The 

percentage value used for thresholding is specified by the user during system initial­

ization. Experimental results are provided in Figure 5.7, where shadows cast over 
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5.3 VARIABLE THRESHOLDING FOR IMAGE DIFFERENCING 

dark display regions are more easily detected with variable rather than fixed thresh­

olding. However, the system is also more sensitive to errors in the predicted camera 

image. 

(a) predicted camera image (b) captured camera image 

(c) occlusion map with fixed (d) occlusion map with variable 
thresholding thresholding 

FIGURE 5.7. Variable thresholding. 

For projected black or near black regions, however, two situations may occur. 

First, a low threshold increases sensitivity to errors in the predicted image, as weIl as 

to intensity fluctuations in the captured camera image due to sensor noise. More false 

positives then occur. For shadow detection, this may cause display illumination to 

repeatedly switch between two projectors, although this effect is not very noticeable 

in the case of projected black light. If the occlusion detection system is used for 

direct object (e.g. hand) detection, false positives can be handled by considering 

complementary data from parallei detection techniques, such as motion detection 

and tracking. 
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5.4 MORPHOLOGICAL IMAGE SMOOTHING FOR NOISE REDUCTION 

A second situation that may occur in projected black display regions is the failure 

to detect any occlusion at aIl. For instance, a projected black region on the display 

may be virtuaIly indistinguishable from a shadow, although for shadow removal pur­

poses, the amount of lost information is likely insignificant. 

5.4. Morphological Image Smoothing for Noise Reduction 

As shown in the previous examples, noise in the output binary occlusion map is an 

issue. False positives may occur because geometric and color calibration inaccuracies 

respectively result in image warping and color correction errors during camera view 

synthesis. In particular, the latter type of errors occur since we only recover a rough 

estimate of the projector-to-camera color transfer function. False positives may also 

be caused by sensor noise. 

This problem, however, can be addressed by performing image smoothing of 

the binary occlusion map. We reduce noise by applying a simple erosion-dilation 

operation. Erosion and dilation are morphological operations that apply a structuring 

element to each pixel to determine whether its value should be set or reset. Erosion 

shrinks objects and is commonly used to eliminate detail from a binary image, while 

dilation expands objects and is used to bridge gaps [10]. 

A 3 x 3 structuring element is used for erosion of the binary occlusion map, where 

a pixel's value is reset if any pixel in its surrounding 8-neighborhood is not tagged as 

being occluded. To help eliminate gaps caused by erosion, dilation is then performed 

using a 3 x 3 structuring element that marks a pixel as being occluded if any of 

its neighbors is also occluded. Figure 5.8 shows the improved results of occlusion 

detection after image smoothing by erosion-dilation. 
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(a) captured camera image (b) occlusion map without (c) occlusion map with smooth-
smoothing ing 

FIGURE 5.8. Smoothing the binary occlusion map through erosion-dilation. 

5.5. Performance Issues and Potential Improvements 

While the proposed calibration-based approach provides a flexible solution to 

occlusion detection, suboptimal performance of current implementations remains an 

issue. The main problem is that low frame rates render such techniques impractical 

for use in interactive display applications. For instance, the per-pixel shadow removal 

system introduced by Jaynes et al. runs at approximately 2 Hz [17]; the employed 

resolutions of the camera and projectors were unspecified. Similarly, our current per-

pixel occlusion detection system runs at low frame rate. Simple detection for a single 

projector, of which 768 x 576 screen pixels were used as the effective display region, 

viewed by a 640 x 480 resolution camera, runs at approximately 4-5 Hz . Combined 

with the shadow removal algorithm, the frame rate drops to 1 Hz; this assumes the 

same camera resolution and the use of a 2 x 1280 x 1024 dual projector system where 

the effective display is a quadrilateral subregion of the projector intersection area. 

It is also noted that the binary-switching projector system proposed by Flagg et al. 

performs both shadow removal and occluder light suppression at approximately 8 Hz 

[9], however it does not, as mentioned earlier, support dynamic projected content. 

Evidently, current detection techniques must be optimized to enable detection 

and processing operations to reach a nominal frame rate of 10 Hz as required for 
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5.5 PERFORMANCE ISSUES AND POTENTIAL IMPROVEMENTS 

interactive display applications. We observed from code profiling results that perfor­

mance hits in our implementation occur primarily during the camera view prediction 

process. Performance is first limited by the characteristically slow AGP bus read 

speed of the graphics card, as this is used to obtain the required projector framebuffer 

images from which the predicted camera image is synthesized. System response is 

also slowed because projector-to-camera image warping and color correction are cur­

rently performed in software. Our code profiling results account for the significant 

performance difference between our implementation, which supports dynamic pro­

jected content, and that of Flagg et al., in which aIl predicted camera images are 

generated omine, as discussed earlier in Section 2.1.1. 

One obvious improvement is to perform region-based rather than per-pixel oc­

clusion detection. For instance, Jaynes et al. achieved shadow removal at approxi­

mately 9 Hz by computing approximate shadow-bounding rectangular regions using 

low resolution images. This reduced overhead due to image processing and network 

communication in a distributed multi-projector display system [17J. Furthermore, 

since the effective display region may not occupy the full-resolution projector screen 

area, potential speed improvements during camera view prediction can be obtained 

by reading only the relevant sub-image of each projector framebuffer. 

It is also noted that per-pixel detection can still be performed while reducing 

network communication overhead with the results transmitted in compact form, by 

run-length encoding the occlusion image [16J or by simply denoting pairs of (stan, 

stop) columns on each scan line where an occlusion region is detected. 

Another interesting optimization is to employ graphies hardware to accelerate 

certain image processing tasks. We consider using the hardware-accelerated OpenGL 

rendering capabilities of commodity graphies cards for implementing parts of our 

occlusion detection algorithm. For example, camera view synthesis can be performed 

through projector-to-camera image warping and color correction using the OpenGL 
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projection matrix and color matrix, respectively. In the case of multiple overlapping 

projectors, the final predicted camera image can be synthesized by superposing each 

projector's contribution using the OpenGL accumulation buffer. This way, a single 

(typically smaller) camera-sized image is read from the graphics card rather than 

multiple projector framebuffer-sized images. 

Recently, other research areas have demonstrated growing interest in taking ad­

vantage of the programmability of commodity graphics hardware for real-time imple­

mentation of various image processing tasks, in particular, by using programmable 

vertex and pixel shaders. The latter can be used to apply per-pixel color correction 

in real-time. Moreover, such shaders can be used to perform image segmentation 

and morphological image operations, such as erosion and dilation in real-time [49]. 

Similarly, real-time image differencing and noise smoothing operations can be carried 

out in hardware to compare predicted and observed camera images during online oc­

clusion detection. These suggestions highlight the possibility of implementing online 

occlusion detection largely, if not completely, in hardware, using commodity graphies 

cards. Unfortunately, it was not feasible to implement these hardware optimizations 

in sufficient time. However, further performance improvements to the implemented 

system willlikely be addressed in future work within our research labo 
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CHAPTER 6 

Conclusion 

In this thesis, we have addressed the problem of occlusion detection in front pro­

jection display environments by using an approach based on camera-projector cal­

ibration. We have developed a camera-projector system that first performs offline 

geometric and color calibration. These are the enabling steps for dynamic camera 

view synthesis from a priori known projector images. Display occlusions are then 

detected by comparing predicted and captured camera images on a pixel-wise basis 

to locate regions where radiometric inconsistencies occur. This approach facilitates 

the occlusion detection pro cess in dynamic front-projected scenes. 

Our experimental results have indicated the success of the implemented camera­

projector system in performing direct or indirect occlusion detection. As weIl, we 

have demonstrated the use of our occlusion detection technique for the application of 

shadow removal, through redundant illumination with a dually overlapped projector 

display system. 

Given the suboptimal performance of current implementations, we have high­

lighted potential improvements, emphasizing the need to speed up the camera view 

synthesis step, as weIl as the the interesting possibility of accelerating image process­

ing tasks through hardware programmability of commodity graphics cards. We have 



CHAPTER 6. CONCLUSION 

also described our implementation of simple variable thresholding and morphological 

image smoothing techniques for improving the accuracy of the presented occlusion 

detection algorithm. Currently, we are implementing another technique for reduc­

ing edge noise during the shadow removal process; this involves performing intensity 

blending between overlapping projectors at detected shadow edges, after having com­

pensated for occluded display regions using the described per-pixel XOR shadow 

removal method. Addressing these issues would increase the feasibility of using front 

projection technology in various mixed reality and interactive display applications. 

Also of immediate importance is the need to scale the algorithm to support multiple 

cameras and projectors, in order to realize a true shadow-free front-projection display 

environment. Other future directions for research include improving the color calibra­

tion model to treat ilOnlinearities and to enable, in addition to occlusion detection, 

intra- and inter-projector color correction for a seamless tiled multiprojector display. 
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APPENDIX A 

Projective Geometry Theory 

We describe projective geometry notation and basic concepts in the 2D planar case. 

The 3D case is a straightforward extension of these ideas. Presented theory is based 

on material from references [12] and [43]. For in depth theory, Hartley and Zisser­

man's authoritative textbook, Multiple View Geometry in Computer Vision [12], is 

recommended. 

A.1. Homogeneous Notation and the Projective Space 

A homogeneous vector represents an equivalence class of vectors, where two 

nonzero vectors are considered equivalent if they differ only by an overaU scale factor. 

An example is the homogeneous 3-vector W(Xl' X2, X3)T, where W is an arbitrary real 

scalar. The 2D projective space JPl2, or the projective plane, is the set of aU equivalence 

classes of vectors in 3D Euclidean space ]R3, excluding the vector (0,0, O)T. JPl2 can 

be modeled as a plane (e.g. the plane z = 1) cutting a set of 3D lines through the 

origin but not itself passing through the origin. Points and lines in JPl2 respectively 

correspond to lines and planes through the origin in ]R3 (see Figure A.l). 

Aline through the origin in ]R3 can be interpreted as having been formed by 

the set of nonzero position vectors w(x, y, z)T, where w is a varying real scalar. Its 



A.l HOMOGENEOUS NOTATION AND THE PROJECTIVE SPACE 

)' 

FIGURE A.1. Model of the projective plane JP'2. (based on Figure 1.1 of 
reference [12]) 

corresponding point in JP'2 therefore can be represented by the homogeneous vector 

p = w(x, y, 1)T = (xw, yw, w)T = (x', y', wf. Alternatively, the homogeneous nota­

tion for points can be explained by considering one that lies on a line 1 in the plane 

expressed by the equation ax + by + c = O. A real point (x, y f in the plane lies 

on line 1 if and only if (x, y, 1f(a, b, c) = O. The position vector (x, y)T can thus be 

augmented to a 3-vector by adding a trailing coordinate of value 1, but it is clear that 

for any nonzero factor w, the homogeneous vector p = (xw, yw, w f represents the 

same point (x, y f. Furthermore, a line 1 in JP'2, which is characterized by the a, band 

c coefficients in the equation ax + by + c = 0, can also be expressed as a homogeneous 

vector 1 = (wa, wb, wc) T, since any nonzero w factor results in the same line. Finally, 

points and lines are duals in the projective plane, i.e. dual theorems may be obtained 

sim ply by interchanging the roles of points and lines in the statement. For example, 

in the symmetric incidence equation pTl = lT p = 0, one can consider p to denote a 

point on the line 1 or a line through the point 1. 

The described homogenous coordinate notation can be extended to general pro­

jective n-space JP'n: a point in Euclidean space IRn is represented in JP'n by an augmented 

homogeneous (n+ 1 )vector. In the 3D case, a point (x, y, z f in IR3 is denoted in p3 

by the homogeneous 4-vector (xw, yw, zw, w)T = (x', y', Z', W)T. The scale factor w 

can be any nonzero value but is typically chosen to equal w = 1 to avoid division 

when recovering coordinat es in real space. 
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A.2 PROJECTIVE TRANSFORMATIONS 

A.2. Projective Transformations 

A projective transformation is a "linear transformation between two projective 

spaces" [43]. A common point called the center of projection is defined and mappings 

between points in the two spaces are obtained by projecting connecting rays through 

this center. This pro cess is called central projection and is illustrated in Figure A.2 for 

the case of projective transformation between two planes. It is shown that projective 

transformations preserve straight lines but not necessarily parallelism. Parallel lines 

in one plane map to converging lines in the other plane. This explains the visu al 

effect of perspective forshortening, where distant objects (or lines) appear smaller (or 

shorter). 

FIGURE A.2. Projective transformation via central projection. (based on 
Figure 1.3 of reference [12]) 

Projective transformations exist between projective spaces of the same or differing 

dimensions. As explained in Section 3.1.1, mappings between JPl3 and JPl2 are used to 

model the geometry between the 3D world scene and 2D image during camera image 

formation and projector image display. 

Aiso of interest is a projective transformation of JPl2 into itself, cal~ed a planar 

homography or collineation. It is a linear invertible mapping between homogeneous 
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A.2 PROJECTIVE TRANSFORMATIONS 

3-vectors that can be represented by a non-singular 3 x 3 matrix: 

hn h12 h13 

h21 h22 h23 (A.l) 

In short, the above equation is written as P2 = H 12Pl. The 9 parameters of a ho-

mography can be estimated, up to an unknown scale factor, from a minimum of four 

known point correspondences of which no three points are collinear. A linear system 

of equations is formed that can be solved using various linear algebra methods [12]. 

If more than four correspondences are available, the best fit is computed using least 

squares optimization. 

Moreover, the composition of two homographies is also a homography, whose 

corresponding matrix is the multiplication of the former two matrices, e.g.: 

If: P2 = H 12Pl and P3 = H 23P2, 

then: where 
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APPENDIX B 

Color Theory 

Presented color theory is based primarily on material from the textbooks of references 

[10], [26] and [14]. 

B.l. Color Perception and the Tristimulus Theory 

Light is electromagnetic radiation composed of energy particles called photons, 

the contained amount of energy in each being proportional to the frequency (or in­

versely proportional to the wavelength) at which it travels. Color is a perceived sen­

sation in response to excitation of the human visual system by visible light, Le. light 

from the wavelength band of the electromagnetic spectrum between approximately 

390nm to 780nm (see Figure B.l(a)). The visible light spectrum is partitioned into 

six broad color regions, namely violet, blue, green, yellow, orange and red, with each 

region blending into the next. 

The human eye has two types of photo-receptors, namely rods and cones. Rods 

respond to the overall intensity (flux) of light striking them, while cones are sensitive 

to the wavelength of incident photons and are responsible for color vision. Three 

types of cone cells exist, each of which responds selectively to wavelengths around 

either the red, green or blue regions of the visible spectrum (see Figure B.l(b)). It 



B.1 COLOR PERCEPTION AND THE TRISTIMULUS THEORY 
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(a) The visible light spectrum. (based on Figure (b) Spectral sensitivity curves of cone cells. (re-
6.2 of reference [10] produced from Figure 6.3 of reference [10]) 

FIGURE B.l. Color perception. 

is also noted that cone cells have a nonlinear perceptual response to the intensity of 

light which can be modeled by a logarithmic curve. 

The multitude of colors that can be perceived, not only limited to those found 

in the visible spectrum, is due to varying spectral composition of light entering the 

eye. A color stimulus is the result of light from an optical source being reftected off 

or transmitted through a surface. However, different optical sources emit light with 

different wavelength mixtures, and different surfaces when illuminated absorb certain 

wavelengths while reftectihg or transmitting others. A light source is represented by 

its spectral power distribution (SPD), Es(>'), which describes how emitted light power 

is distributed across the wavelengths. The spectral refiectance or transmittance of a 

surface, R( >.), describes the percentage of incident light that is reftected or transmitted 

as a function of wavelength. The SPD of the resulting color stimulus, C(>') , is the 

product of the SPD of the light source and the reftectance (or transmittance) of the 

surface [48], as expressed by the following equation and illustrated in Figure B.2: 

Different color stimuli therefore excite the three types of cone cells to varying de­

grees based on their SPD. The excitation or intensity levels registered by the cones can 

be expressed as: Ir = J Sr (>.)C(>')d>', Ig = J Sg(>')C(>')d>' and h = J Sb(>')C(>')d>', 
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Wavelength (nm) 

SPD of optical source 
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SPD of color stimulus 

FIGURE B.2. Spectral power distribution (SPD) of a color stimulus. (repro­
duced from Figure 8 of reference [11]) 

where Sr(À), Sg(À) and Sb(À) are the spectral sensitivities of the cones. A partic-

ular combinat ion of red, green and blue intensities then translates into a perceived 

color. Two stimuli that have different SPDs but result in the same perceived color 

are called metamers. Considering this pro cess of color perception, Young's tristimulus 

color theory was proposed in 1801, suggesting that most colors can be reproduced by 

mixing appropriate proportions of three primary color stimuli, typically chosen to be 

red Cr(À), green Cg(À) and Cb(À) light. Thus, a color stimulus C(À) generally can be 

matched with the additive mixture: C(À) = wrCr(À) + WgCg(À) + WbCb(À). 

As well, iftwo color stimuli are combined, Cl (À) = Wr1 Cr(À)+Wgl Cg(À)+Wbl Cb(À) 

and C2(À) = wr2Cr(À) + Wg2Cg(À) + Wb2Cb(À), the resulting color stimulus will be 

C3 (À) = (Wrl + Wr2)Cr(À) + (Wgl + Wg2)Cg(À) + (Wbl + Wb2)Cb(À). 

B.2. Color Measurement and Representation 

Physically, a color stimulus is characterized by its SPD. Expensive precision-

instruments such as spectroradiometers or spectrophotometers are used to measure 

emitted, reflected or transmitted radiant light power as function of wavelength. Nu­

merically, a color C can be represented by its tristimulus values, Le. the relative 

amounts or intensities of the three primary color components required to match the 

desired color C. Thus, given red, green and blue primaries, a color C can be expressed 
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B.2 COLOR MEASUREMENT AND REPRESENTATION 

Color can also be represented in terms of perceptual attributes, namely luminance 

and chmminance. Luminance (Y) is the measured amount of perceived energy in 

incident light and is associated with color brightness. Chrominance is composed of 

hue (H) and saturation (S) of a color. Hue indicates the dominant wavelength (or 

the dominant perceived color, e.g. a red or orange hue) in the incident mixture of 

photons (or colors). Saturation is the amount of white light (light composed of an 

equal distribution of aU wavelengths) mixed in with the hue; it indicates color purity 

(e.g. pink is less saturated or pure than red). Luminance and chrominance of a color 

can be computed from its tristimulus values. 
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