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Abstract

In maritime surveillance, multisensor data differ to a great extent in their temporal reso-

lution. Additionally, due to multi-level security and information management processing,

many contact reports arrive hours after observations. This makes the contact report data

usually available for batch processing. The dissimilar multi-source information environ-

ment results in contact reports with heteroscedastic and correlated errors (i.e. measure-

ment errors characterized by normal probability distributions with non-constant and non-

diagonal covariance matrices), while the obtained measurement errors may be relatively

large. Hence, the appropriate choice of a trajectory estimation algorithm, which addresses

the aforementioned issues of the surveillance data, will significantly contribute to increased

awareness in the maritime domain.

This thesis presents two novel batch single ship trajectory estimation algorithms em-

ploying Bayesian approaches to estimation: (1) a stochastic linear filtering algorithm and

(2) a curve fitting algorithm which employs Bayesian statistical inference for nonparametric

regression. The stochastic linear filtering algorithm employs a combination of two stocha-

stic processes, namely the Integrated Ornstein-Uhlenbeck process (IOU) and the random

walk (RW), process to describe the ship’s motion. The assumptions on linear modeling

and bivariate Gaussian distribution of measurement errors allow for the use of Kalman

filtering and Rauch-Tung-Striebel optimal smoothing. In the curve fitting algorithm, the

trajectory is considered to be in the form of a cubic spline with an unknown number of

knots in two-dimensional Euclidean plane of longitude and latitude. The function estimate

is determined from the data which are assumed Gaussian distributed. A fully Bayesian

approach is adopted by defining the prior distributions on all unknown parameters: the

spline coefficients, the number and the locations of knots. The calculation of the poste-
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rior distributions is performed using Markov Chain Monte Carlo (MCMC) and reversible

jump Markov sampling due to the varying dimensions of subspaces where the searches are

performed. Both algorithms assume no knowledge about the ship motion model, however

assuming standard ship maneuvers.

The quality of the estimated trajectories obtained by both algorithms is assessed using

several simulated scenarios and evaluated statistically. The positional measurements, re-

ceived at irregular time intervals are assumed to have heteroscedastic and correlated errors

and available in batches. The performance evaluation includes the performance comparison

of both algorithms with another batch stochastic optimization algorithm for trajectory esti-

mation, i.e. the genetic algorithm (GA). The sensitivity analysis is carried out with respect

to perturbations in parameters of the algorithms. The results show similar performance

between the linear stochastic filtering algorithm and the Bayesian spline regression algo-

rithm, while both algorithms show superiority over the GA-based trajectory fitting with

respect to tracking accuracy, due to complete account for uncertainty. Batch data pro-

cessing approach is confirmed to be more suitable in maritime surveillance than standard

recursive approaches. The thesis demonstrates that for the accurate trajectory estimation it

is crucial to completely account for uncertainty of measurements, especially if the measure-

ments are characterized by heteroscedastic and correlated errors. The results of this thesis

are useful as they facilitate selecting the appropriate approach to data processing in mar-

itime surveillance applications, hence contribute to increased maritime domain awareness.

These can also serve for selecting appropriate methods for data processing in dissimilar

sensor and other environments in which data have large and heteroscedastic measurement

errors.
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Resumé

En surveillance maritime, les données multi-senseurs diffèrent, dans une large mesure,

en terme de leur résolution temporelle. De plus, en raison de la gestion du traitement

d’information de sécurité multi-niveau, plusieurs rapports de contact sont reçus des heures

après leur observation. Ceci rend les données des rapports de contact disponible pour

traitement en lot. L’information multi-source provenant d’environnements dissimilaires,

les rapports de contact ont des erreurs hétéroscédastiques et corrélées (i.e., des erreurs

de mesure caractérisées par une distribution de probabilité normale et une matrice de co-

variance non constante), ainsi qu’une erreur de mesure pouvant être relativement large.

En conséquence, le choix approprié d’un algorithme d’estimation de trajectoire adressant

les problèmes susmentionnés de données de surveillance contribuera significativement à

accrôıtre la perception de situation dans le domaine maritime.

Cette thèse présente deux nouveaux algorithmes pour l’estimation en lot de trajectoire

de navire simple et employant une approche d’estimation bayésienne: (1) un algorithme

de filtration linéaire stochastique, et (2) un algorithme de lissage de courbe réalisant une

régression non-paramétrique par inférence statistique bayésienne. L’algorithme de filtration

linéaire stochastique emploi la combinaison de deux processus stochastiques, c’est-à-dire le

processus d’Ornstein-Uhlenbeck intégré (IOU) et le processus de marche aléatoire (RW),

pour décrire le mouvement du navire. Les suppositions de modèle linéaire et de distribution

gaussienne bivariée des erreurs de mesure permettent l’utilisation du filtre de Kalman et

du lissage optimal de Rauch-Tung-Striebel. Dans l’algorithme de lissage de courbe, la

trajectoire est considérée représentée par un spline cubique avec un nombre de noeuds

inconnu dans le plan euclidien à deux dimensions, en longitude et latitude. L’estimation

de fonction est déterminée depuis les données assumées de distribution gaussienne. Une
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approche pleinement bayésienne est adoptée en définissant la distribution a-priori sur tous

les paramétres inconnus: les coefficients du spline, et le nombre et la location des noeuds.

Le calcul des distributions a-posteriori est réalisé en utilisant une châıne de Markov Monte

Carlo (MCMC) et un échantillonage de Markov à saut réversible en raison du nombre

variable de dimension des sous-espaces où les recherches sont réalisées. Les deux algorithmes

ne supposent aucune connaissance sur le modèle de mouvement du navire, mais assument

des manoeuvres navales standard.

La qualité des trajectoires estimées obtenues par les deux algorithmes est démontrée à

l’aide de plusieurs scénarios simulés et évaluée statistiquement. Les mesures de position

reçues à intervalle de temps irrégulier sont assumées être disponible en lot et avoir des er-

reurs hétéroscédastiques et corrélées. L’évaluation des performances inclue la comparaison

des performances des deux algorithmes avec un autre algorithme d’optimisation en lot pour

l’estimation de trajectoire, c’est-à-dire l’algorithme génétique (GA). L’analyse de sensibilité

est aussi réalisée par rapport aux perturbations dans les paramètres des algorithmes. Les

résultats montrent des performances similaires des deux algorithmes et leur supériorité par

rapport au lissage de trajectoire basé sur l’algorithme génétique. L’approche de traite-

ment en lot des données est confirmée être plus appropriée en surveillance maritime que

les approches récursives standards. La thèse démontre aussi que, pour l’estimation précise

de trajectoire, il est crucial de prendre en compte complètement l’incertitude des mesures,

et en particulier lorsque ces mesures sont caractérisées par des erreurs hétéroscédastiques

et corrélées. Les résultats de cette thèse sont utiles en ce qu’ils facilitent la sélection de

l’approche appropriée au traitement des données dans les applications de surveillance mar-

itime, et ainsi contribuent à accrôıtre la perception de situation dans le domaine maritime.
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Originality and Contributions

The work in this thesis has been carried out entirely by the doctoral student alone.

The original contributions of the thesis can be listed as follows:

• A novel batch single ship trajectory estimation algorithm is introduced. It assumes

no knowledge about the ship motion model, while assuming standard ship maneuvers.

As a batch processing algorithm, it addresses the availability of data for processing,

an issue specific to maritime surveillance applications. The algorithm developed here

is based on the algorithm found in Di Matteo et al. [1] which employs Bayesian in-

ference to spline fitting using nonparametric regression model. However, the work

of Di Matteo et al. [1] fails to accommodate explicitly for heteroscedastic and corre-

lated errors which are inherent to the problem of trajectory estimation in maritime

surveillance, as well as for decreasing values of predictor variables which occurs in

case of ships’ backward turning maneuvers. Additionally, Bayesian inference is per-

formed for nonparametric regression models with two different choices of response

and predictor variables. A complete account for the measurement uncertainty by this

algorithm guarantees improved performance over other batch stochastic optimization

algorithms for ship trajectory estimation based on error approximations such as the

one reported in [2].

• Assessment of the robustness of the proposed algorithm by a sensitivity analysis is

carried out. This includes verifying if the results of the Bayesian analysis remain

unchanged in the presence of perturbation in parameters of the algorithm.

• The first time development, implementation and assessment in the open literature

of the stochastic linear filtering algorithm which employs the Integrated Ornstein-
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Uhlenbeck processes in conjunction with Kalman filtering and Rauch-Tung-Striebel

optimal smoothing is provided. It is presented here that such motion modeling is

possible only when the IOU process is used in the specific combination with the ran-

dom walk process. The assessment of the IOU-based trajectory estimation algorithm

with special focus on the importance of the modeling of measurement uncertainty

was reported in Hadzagic and Michalska (2010) [3], [4].

• Sensitivity analysis of the linear stochastic filtering algorithm with respect to per-

turbations in model parameters is performed.

• Assessment of the efficiency of both algorithms for various ground truth scenarios

in terms of a chosen performance measure is carried out. A separate analysis is

performed for each nonparametric regression model.

• Comparative analysis of the Bayesian nonparametric regression spline based algo-

rithm (both models) with the batch linear stochastic algorithm for trajectory estima-

tion is carried out.

• Respective comparative analysis of the Bayesian nonparametric regression spline algo-

rithm (both models) and the IOU-model based algorithm with another batch stochas-

tic optimization algorithm, namely a genetic algorithm, used to form a trajectory from

heteroscedastic data [3] is provided.

• Analysis and discussion of the results of the comparisons, conclusions about the novel

algorithms are provided, and possible future research avenues are outlined.

• Development of an integrated software platform for maritime surveillance which in-

cludes the following submodules:
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– a stochastic ground truth scenario generator for randomized ship trajectories in

the dissimilar sensor environment,

– a Bayesian spline regression algorithm module, based on a modification of open

source software, found here [5]. The modification involves injection of the het-

eroscedastic and correlated measurement error information and the rotation of

coordinate system to accommodate maneuvers in x− y plane when the position

in x-direction is decreasing.

– the IOU-KF-RTSS algorithm module,

– a GA-based trajectory estimation algorithm module, conceptually based on the

one described in [2].

The above software is developed in C++ and consists of 6701 lines of code.
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Chapter 1

Introduction

This chapter discusses a motivating application together with the most important results

reported in the literature concerning multisensor data fusion for target location or traje-

ctory estimation (or tracking) in maritime surveillance. The literature is discussed with

a special focus on measurement uncertainty issues and multisensor data batch processing

methods. Approaches involving multivariate statistical analysis such as piecewise regression

algorithms and Bayesian data analysis are of special interest. With this as a background,

the thesis research goals are stated and the contributions of this thesis are explained.

1.1 Motivating Application

Maritime surveillance is a set of activities which include search and rescue operations, de-

tection of contraband and environmental hazards, maintaining national sovereignty in the

Exclusive Economic Zone (EEZ) (e.g. detection of illegal fishing and protection of ship

routes), and defence. Multiple information sources, including military, government and

commercial are used to compile a picture of these activities, the so-called Recognized Mar-
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itime Picture (RMP). The sensors employed for collection of data include High Frequency

Surface Wave Radars (HFSWRs), Automated Identification Systems (AISs), spaceborne

and airborne sensors usually mounted on aircrafts or unmanned aerial vehicles (UAVs),

electronic support measures (ESM), electronic intelligence (ELINT), etc. Figure 1.1 de-

picts a snapshot of a version of the RMP with contacts represented by dots which illustrate

multiple ships locations and their identifications (IDs) in the surveillance area. The stand-

Fig. 1.1 A snapshot of the RMP [6].

alone dots with no ID (the so-called ”ambiguities”) represent contact reports which are not

fused properly by a tracking algorithm.

Increasing sophistication of maritime surveillance systems has generated a great deal

of interest in development of multisensor data fusion (MSDF) systems in order to produce

more accurate, better integrated and automated RMP. Such improvements are necessary
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for reducing operator overload during periods of peak activity and for providing improved

and constant resolution of ambiguous sensor inputs [7]. An important component of such

MSDF systems are tracking (or trajectory estimation) algorithms. Within the most widely

adopted architecture model for multisensor data fusion, the Joint Director Laboratories

(JDL) as reported in Hall and Llinas [8], and its subsequent revisions [9], [10], the tracking

algorithms make part of the so-called Level 1 fusion. The general concept of Level 1 fusion

for the case of ship tracking with multiple sensors is shown in Fig. 1.2.

Fig. 1.2 Concept of Level 1 data fusion for a surveillance system.

The important stage prior to fusion of any data, especially in dissimilar multisensor case,

is the data alignment. The data alignment includes temporal, spatial and measurement

unit adjustments necessary for subsequent processing. Furthermore, the time when an

observation is received at a fusion system must be distinguished from the time when the
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observation was actually made.

The goal of a tracking (or trajectory estimation) algorithm is to produce the best

estimate of the location of the object of interest towards forming a trajectory of motion

and possibly also making inferences about the object attributes (e.g. operating frequency,

ID, etc.) from surveillance data.

Fig. 1.3 shows examples of estimated trajectories obtained by two different tracking

algorithms. The measurements (or contacts) are assumed to be obtained from five different

sensors at the time instants t1, . . . , t5, respectively, where the ellipses signify the regions of

uncertainty for any given measurement. Different sizes and orientations of the measurement

error ellipses indicate the dissimilar sensor environment.

Fig. 1.3 Possible estimated trajectories from dissimilar multisensor surveil-
lance data.

Several issues must be considered when designing a trajectory estimation algorithm for

a multisensor data fusion system for maritime surveillance. These can be identified as:

• Large difference in temporal resolution of data. For example, a HFSWR pro-

vides near real-time tracking with position updates every three minutes on average,
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while a surveillance aircraft flying along a predefined path may update a ship’s posi-

tion only once per day [2].

• Latency. Many contact reports arrive hours after the observation. The delay is

caused by multi-level security issues and information management issues [6].

The two issues mentioned above make the contact/sensor report data mostly available

in batches.

NOTE: This should not be confused with the availability of measurements in terms

of a sensor performance, i.e. the sensor models under which a sensor can produce

useful data and which involve signal and thermal noise powers.

• Possibly compromised information. Even a reliable and relatively certain sen-

sor information may be compromised. For example, the Global Positioning Systems

(GPS) and the AIS transponders required to be mounted on board of a ship can be

switched off or duped (e.g. illegal fishing on the borders of the Exclusive Economic

Zone (EEZ)). Sending out patrolling ships or a surveilling aircraft far as ∼ 200 nau-

tical miles (NM) offshore may be costly or fuel and time limiting. In such situations

one has to rely on the knowledge of the motion model and the HFSWR. However, this

knowledge can be limited or insufficient, especially if the motion models are consid-

ered as deterministic like in commonly used tracking algorithms. Also, the weather

conditions may impair the HFSWR observations and HSWFR tracks. An alternative

is to use passive sensors such as the ELINT or the ESM.

• Measurements with relatively large heteroscedastic and correlated errors.

Each sensor is characterized by the measure of location of accuracy as the size of

the minimum area having a specified probability of containing the measurement, i.e.
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the area of uncertainty (AOU). The AOUs can be of three types: circular or ellipse,

line of bearing, and bearing box. As indicated in Fig. 1.3, in maritime surveillance

the most common AOU is the ellipse. The measurement vector, the so-called ellipse

contact report, comprises of the ellipse centre coordinates (i.e. a measured location),

magnitudes (or ”lengths”) of the semi-axes, the ellipse orientation (or heading), the

associated time tag and the specified probability that the true location is within the

ellipse region. Given the specified probability, while assuming that the measurement

errors are normally distributed, Gaussian statistics can be used to describe the posi-

tional measurement error by transforming the error ellipses to their related location

covariance matrices. With reference to the practical problem of position estimation in

a dissimilar multi-sensor environment, the covariance matrices of measurement errors

must generally be considered as non-diagonal and non-constant, rendering the errors

heteroscedastic and correlated [11], see Fig.1.4.

(a) (b)

Fig. 1.4 (a) Heteroscedastic and (b) heteroscedastic and correlated mea-
surement errors.

NOTE: The term heteroscedastic is mostly used in statistical inference for regression

techniques for fitting data with errors in variables. It designates nonconstant error

covariance matrix across measurements.
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Fig. 1.4 (a) and Fig. 1.4 (b) illustrate line fitting of data with heteroscedastic, and

heteroscedastic and correlated errors, respectively, in planar coordinates.

Additionally, the measurement errors ellipse may be relatively large in size. For

example, the magnitude of the semi-major axis of the measurement error ellipse may

be measured up to 5 nautical miles [NM].

In order to contribute to increased awareness and improved decision making in the mar-

itime domain, the aforementioned issues should be addressed when designing a trajectory

estimation algorithm within a multisensor data fusion system for maritime surveillance.

Special attention must be paid to the availability of data for processing, effective char-

acterization of the uncertainty of surveillance data, its incorporation into the estimation

algorithm, and the choice of a suitable technique for target trajectory estimation. This

necessitates the study of both sequential and batch trajectory estimation algorithms.

The following Section presents general background information on trajectory estimation

within a multisensor data fusion surveillance system. The focus is on standard mathemat-

ical tools for trajectory estimation which employ the probability theory to quantify the

uncertainty and rely on the Bayesian inferencing. Within this context the problem of inter-

est is also identified. The literature survey will be presented separately in the subsequent

Section.

1.2 Trajectory Estimation Algorithms for Multisensor Data

Fusion-The Background

Tracking refers to processing of measurements obtained from an object of interest in order to

maintain an estimate of its current state, which typically consists of kinematic components



1 Introduction 8

(e.g. position and velocity) and possibly ship attributes (e.g. radar operating frequency,

ship ID) [12].

Measurements or contacts are noise corrupted observations related to the state of the

object of interest, such as position, velocity, range, etc.

Estimates of the kinematic characteristics are available in the form of an estimated track

(or trajectory).

A track is a state trajectory estimated from a set of measurements that have been

associated with the same target.

Trajectory estimation algorithms from multi-sensor measurements can be classified in

terms of the following characteristics:

• Single versus multiple target tracking. There exists a fundamental distinction

between single-target tracking and multiple-target tracking as the latter requires a

data association procedure in order to determine the origin of measurements. The

data association procedure is also necessary to take into account the presence of

clutter, countermeasures, or false alarms. The descriptions of various data association

procedures can be found in [13].

• Sensor level versus central level fusion or hybrid fusion. These fusion ap-

proaches are determined by the extent of the data processing, data product types

and fusion level. In sensor level fusion, each sensor detects and estimates target tra-

jectories. They are passed to the fusion processor which combines the information

from the sensors to improve the state estimate of the target. This is optimal if the

sensors use independent signature-generation phenomena to derive information about

the target, [14]. The information sent to the fusion processor includes detection or

classification decision, target location, and the information on how well the sensor has
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been able to detect the target, i.e. the area of uncertainty. In the central level fusion,

sensors provide data subject to filtering and baseline estimation at the sensor level.

The sensor tracks are then passed to the fusion processor. The data are processed

at higher rates than in sensor level fusion. An alternative to sensor level and central

level fusion is hybrid fusion which combines these two approaches [14].

• Continuous versus discrete. Measurements may be acquired continuously in time

or, else at discrete time instants. The length of the time interval between discrete

time instants can be either constant or varying.

• Batch versus sequential. The tracking implementation approach may either be

based on batch or else sequential processing. In the batch processing approach all

gathered observations over a given time horizon are analyzed and processed at once,

while in a sequential approach the measurements are processed as they are received.

• Random versus non-random model. There exist two models for estimating an

unknown trajectory parameter θ.

Let Y = {y1, y2, . . . , yk} be a set of k observations.

– Non-random. Non-random model assumes an unknown true value of the

θ = (θ1, θ2, . . . , θk), k ≥ 1 which is non-random. The probability density which

assigns the probability of observing Y, when the parameter value is θ, is re-

ferred to as a likelihood function for the measurement data conditioned on the

parameter θ. It is defined by, see [15]

Λ(θ) = p(Y|θ) (1.1)

The likelihood function represents a measure of the evidence from the data.
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In case of non-random parameter estimation the common criteria for the best

fit of the estimated parameter to data are:

1. The maximum likelihood (ML) method. The ML estimate of a nonrandom

parameter θ is assumed to maximize the likelihood function (1.1), i.e.

θ̂ML(Y) = argmaxθΛ(θ) = argmaxθp(Y|θ) (1.2)

While θ represents an unknown constant, the ML estimate θ̂ML(Y) repre-

sents a random variable since it is a function of the set of random observa-

tions Y .

2. The least square (LS) method. The LS estimate of a nonrandom parameter

represents the value of the parameter that minimizes the square error be-

tween the measurements and the observed function of the parameter. Given

the scalar linear or nonlinear measurement model

yj = hj,θ + vj j = 1, . . . , k (1.3)

where hj,θ is known linear or nonlinear function, vj is a random measurement

error, the LS estimator of θ is defined as

θ̂LSk = argminθ{
k
∑

j=1

(yj − hj,θ)
2} (1.4)

The non-random model approach does not incorporate any set of prior beliefs.

Nevertheless, the usual claims of ”objectivity” are illusory since the method

still requires numerous assumptions about the model, the measurement error,
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etc. [16]

– Random. The unknown parameter θ = (θ1, θ2, . . . , θk), k ≥ 1 is considered

to be a random variable with some a priori belief that can be expressed in

terms of the prior probability density function (p.d.f.) p(θ). For a fixed number

observations Y = {y1, y2, . . . , yn} the statements about θ are made considering

all possible samples of θ obtained from repeated sampling from the conditional

posterior density p(θ|Y) as derived from the Bayes’ Theorem, [15],

p(θ|Y) =
p(Y|θ)p(θ)

p(Y)
∝ p(Y|θ)p(θ) (1.5)

where p(Y|θ) is a known measurement likelihood function. The approach that

employs this model is therefore called Bayesian. If data plays a role in de-

termining the prior distribution, p(θ), the approach is referred to as empirical

Bayesian.

Estimation of a random parameter θ with a prior p.d.f. p(θ) can be carried out

using:

1. The maximum a posteriori (MAP) method. This method employs the max-

imization of the posterior p.d.f., i.e.,

θ̂MAP (Y) = argmaxθp(θ|Y) = argmaxθp(Y|θ)p(θ) (1.6)

The MAP estimate is hence also a random variable.

2. The Minimum Mean Square Estimator (MMSE). It is the counterpart of
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the LS estimator for the nonrandom parameter. It is defined by, [15],

θ̂MMSE(Y) = argminθE{(θ̂ − θ)2|Y)} (1.7)

The solution to (1.7) is the conditional mean of θ

θ̂MMSE(Y) = E{θ|Y} =

∫ +∞

−∞

θp(θ|Y)dθ (1.8)

The mathematical tools for trajectory estimation rely on techniques of system theory

which use (kinematic) state-space representation of linear/nonlinear deterministic/stochastic

dynamic systems and optimal linear and nonlinear filtering. In the case of nonlinear dy-

namics and non-Gaussian noise models filter approximations or suboptimal solutions are

applied. Besides system theory, the statistical analysis tools can be used to build a statis-

tical trajectory model which describes all known and unknown quantities of interest (e.g.

parameters of a polynomial that fits the data). In this case, either frequentist or Bayesian

approach may be used to draw inferences about the unknown parameters.

In this thesis the research is limited to a single ship trajectory estimation from dis-

crete random heteroscedastic measurements, where the ship’s position is considered to be

a random variable. Restriction to random models implies the need to employ Bayesian ap-

proaches to trajectory estimation such as Bayesian filtering, as well as Bayesian approach

to inferencing about probabilistic multivariate regression models for piecewise polynomial

fitting. Therefore, a background on these Bayesian approaches is provided next. It includes

a review of Bayesian approach to filtering for the purpose of trajectory estimation from

multisensor measurements, and the principles of Bayesian statistical modeling and analysis.
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1.2.1 Bayesian Approach to Linear/Nonlinear Filtering

In the Bayesian approach to dynamic state estimation one attempts to construct the pos-

terior probability density function (p.d.f.) of the state, based on all available information,

including the sequence of received measurements [17]. If either the system or a measure-

ment model is nonlinear, the posterior p.d.f. is non-Gaussian. In principal, an optimal

(with respect to a criterion) estimate of the state may be obtained from the posterior p.d.f.

For common tracking algorithms an estimate is required every time a measurement is re-

ceived. In this case, a recursive filter is a standard solution where the received data are

processed sequentially rather than in a batch. Such a filter consists of two steps: prediction

(where the system model is used to predict the state p.d.f. forward from one measurement

time to the next) and the information update (where the latest measurement is used to

modify the predicted p.d.f.). The update step is accomplished using Bayes’ theorem as a

mechanism for updating the knowledge about the state.

Let the ship state vector be denoted by xk ∈ R
n, where n is the dimension of the

state vector and R is a set of real numbers, k ∈ N is time index and N is the set of natural

numbers. The index k is assigned to a continuous time instant tk, and the sampling interval

tk−tk−1 may be time dependent. The target evolves according to the following discrete-time

stochastic model:

xk = fk−1(xk−1,wk−1) (1.9)

where fk is a known linear or nonlinear function of the state xk−1 and wk−1 is a process

noise sequence. The process noise models the error in the motion model and exogenous

disturbances. The objective of filtering is to recursively estimate xk from the measure-

ments yk ∈ R
m. The measurements are assumed to be related to the target state by the
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measurement equation

yk = hk(xk,vk) (1.10)

where hk is a known linear or nonlinear function and vk is a measurement noise sequence.

The noise sequences wk and vk are assumed white with known probability density functions

and mutually independent. The initial state is assumed to have a known p.d.f. p(x0), which

is independent of noise sequences.

The Bayesian filtering algorithm seeks filtered estimate of xk based on the sequence

of all available measurements Yk , {yi, i = 1, . . . , k} up to time k from the posterior

distribution p(xk|Yk), given the initial p.d.f. of the state vector, p(x0) , p(x0|Yk). The

value of p(xk|Yk) can be obtained in two steps, the prediction and the information update

as following.

Suppose that the required p.d.f. p(xk−1|Yk−1) at time k − 1 is available. Then, the

prediction stage uses the system model (1.9) to obtain the prediction (or prior) density of

the xk using Chapman-Kolmogorov equation, [17]:

p(xk|Yk) =

∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (1.11)

where p(xk|xk−1,Yk−1) = p(xk|xk−1) as (1.9) describes a Markov process of order one.

At time k, when the measurement yk is available, the information update step is per-
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formed as follows:

p(xk|Yk) = p(xk|yk,Yk−1)

=
p(yk|xk,Yk−1)p(xk|Yk−1)

p(yk|Yk−1)

=
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
(1.12)

where the normalizing constant

p(yk|Yk−1) =

∫

p(yk|xk)p(xk|Yk−1)dxk−1 (1.13)

depends on the likelihood function value p(yk|xk) defined by the measurement model (1.10)

and the known statistics of the measurement noise sequence vk. In the information up-

date step, the measurement yk is used to modify the prior (predicted) density to obtain

the posterior density. The relations (1.11) and (1.12) represent the basis for the optimal

Bayesian solution which solves the problem of exact and complete characterization of the

posterior density in a recursive manner. From (1.12), the optimal state estimate can be

obtained according to any of the criteria for a random model, MAP (1.6) or MMSE (1.7).

The solution given by (1.11) and (1.12) is only conceptual since its implementation

would require the storage of the entire (possibly non-Gaussian) p.d.f., which would in-

volve an infinite dimensional vector. Only in the linear Gaussian case the recursion (1.11)

and (1.12) becomes the well known Kalman filter [18]. In other situations, approximations

such as the Extended Kalman filter (EKF), a Gaussian sum filter [19], the use of numerical

methods [20], [21], or suboptimal Bayesian algorithms based on sequential Monte Carlo

approximations, are necessary.

Grid-based methods provide an optimal recursion of the filtered density, p(xk|Yk), if
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the state space is discrete and consists of a finite number of states [17]. Also, Benes and

Daum filters provide solutions for a class of nonlinear systems and a linear measurement

equation for which the posterior p.d.f. admits ”sufficient statistics” of a constant finite

dimension [22].

Particle filters are suboptimal filters which perform sequential Monte Carlo (SMC)

estimation based on point (or ”particle”) representation of probability densities. The basic

SMC idea was introduced in 1950’ in [23] and later extended in [24]. However, only recently,

due to increased computational power, and to the introduction of the re-sampling step [25],

the particle filters became a popular filtering approach. An extensive description of the use

of particle filters for tracking applications can be found in [17].

1.2.2 Bayesian Statistical Analysis for Trajectory Estimation

When the knowledge about the motion model does not exist or is insufficient, the standard

tools for dynamic state estimation, such as linear or nonlinear filtering for producing a

trajectory of motions cannot be used. Also, the advantage of commonly used sequential

procedures for real time tracking may not be fully exploited if the data are only available

in batches. In this case, techniques of (trajectory) model fitting to data, such as regression

modeling and stochastic optimization procedures for data fitting (e.g. genetic algorithms)

may be viable alternatives for trajectory estimation.

The Regression Problem

The regression problem involves determining the relationship between some response vari-

able Y and a set of p predictor variables X = (X1, . . . , Xp). The responses are assumed

to be related to predictors through some deterministic function f and an additive random



1 Introduction 17

error ε, i.e.

Y = f(X) + ε (1.14)

where ε ∼ N(0,Σ) is independent of X , and f(·) is a smooth function [26]. The function

f(·) is usually referred to as the regression function. The function is unknown and cannot be

determined exactly but needs to be estimated over predictor values x ∈ X . In this setting,

the ”regression analysis or modeling” refers to methods for statistical inference about the

regression function, f(·). The regression modeling attempts to find the approximation

using the observed data set Y at some known predictor locations so that Y = {yi, xi}ni=1.

The simplest choice for the approximation of f is a linear function. A more general

assumption can be made on the approximation of f such as a linear combination of basis

functions and corresponding coefficients, i.e.,

f(x) ∼
k
∑

i=1

βiBi(x), x ∈ X (1.15)

where β = (β1, . . . , βk)
′ is the set of coefficients corresponding to basis functions B =

(B1, . . . , Bk). The basis functions in (1.15) can be natural cubic splines, B-splines, truncated

polynomials, etc.

Possible assumptions on f(·) determine a suitable regression modeling methodology

for (1.14): parametric or nonparametric regression modeling. A parametric regression

model assumes that the form of f(·) is known except for the finite number of unknown

parameters. More specifically, it is assumed that there exists a vector of parameters

β = (β1, . . . , βp)
′ ∈ B, where B ⊂ R

p and a function f(·) such that f(·) = f(·; β). Hence,

in parametric regression model, the inference about f amounts to inference about β. Para-
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metric models can depend on parameters in linear or nonlinear fashion. For linear models,

the classical method of estimating the regression coefficients in model (1.14) is the LS esti-

mator. Hypothesis testing can be used for further inference about f and β. For nonlinear

models, the most common parameter estimation method is the Gauss-Newton method [27].

In the case of both linear and nonlinear model, the resulting estimate is a curve that is

selected from the family of curves allowed under the model and which conforms to the data

in some fashion.

Nonparametric regression methodologies rely rather on data than on possible informa-

tion about f . To construct a nonparametric regression model, an appropriate function

space is chosen for which f is believed to belong to. Then, the data is used to deter-

mine an element of this function space that represents the unknown regression curve. The

methods to perform nonparametric regression include deconvolution kernel functions meth-

ods, smoothing splines using wavelets, polynomials or other types of basis functions, and

Bayesian inference [26].

Bayesian Approach to Regression Modeling

The Bayesian approach to regression modeling makes use of the Bayes’ Theorem to update

beliefs about the aspects of the model given the set of observed data. Bayesian analysis

treats all parameters as random, assigns prior distributions to characterize knowledge about

parameters prior to collection of data, and uses the joint posterior distribution of parameters

to make inferencing about the unknown parameters given the data [28].

Suppose a likelihood p(Y|θ) for the observed data Y given the vector of unknown

parameters θ, is known. The vector of unknown parameters θ may contain the set of

coefficients corresponding to basis functions B = (B1, . . . , Bk). It may also include other

parameters such as number and locations of change-points (e.g. for a spline or a piecewise
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truncated polynomial basis). Also, let a prior for θ be given in terms of probability density

function π(θ|η), where η is an assumed known vector of hyperparameters, i.e. π(θ) = π(θ|η).

Inference about θ is based on its posterior distribution

p(θ|Y) =
p(Y, θ)

p(Y)
=

p(Y, θ)
∫

p(Y, θ)dθ
(1.16)

=
p(Y|θ)π(θ)

∫

p(Y|θ)π(θ)dθ (1.17)

where
∫

p(Y|θ)π(θ)dθ denotes the marginal distribution of Y .

If η is unknown, the fully Bayesian approach adopts a hyperprior distribution h(η) and

computes the posterior distribution as

p(θ|Y) =

∫

p(Y|θ)g(θ|η)h(η)dη
∫ ∫

p(Y|u)g(u|η)h(η)dudη =

∫

p(θ|Y, η)h(η|Y)dη (1.18)

The posterior distribution, p(θ|Y), often cannot be computed analytically, but can be

only approximated or simulated.

Bayesian Computation

Determination of posterior distributions involves evaluation of complex and often high-

dimensional integrals. Computation of moments of the posterior distribution also leads

to more integration. The use of conjugate priors may enable partial analytic evalua-

tion of these integrals. Asymptotic methods, such as normal approximation or Laplace’s

method [29] for possibly asymmetric posterior approximation, can also be used. When

approximate methods are intractable or are not sufficiently accurate, numerical integration

methods such as Monte Carlo must be used. Particularly powerful are the iterative (or

sequential) Monte Carlo methods (SMC), which produce a Markov chain, the output of
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which corresponds to a (correlated) sample from the joint posterior distribution [16], i.e.

the Markov Chain Monte Carlo methods.

The MCMC methods are used when it is not possible to sample θ directly from p(θ|Y).

Instead, the samples are drawn from an approximate distribution that evolves closer and

closer to the posterior distribution p(θ|Y) by correcting the draws. The samples are drawn

sequentially depending on the last value drawn, i.e. they are processed by employing a tran-

sition distribution Tt(θ
k|θk−1) of the Markov chain. The transition distribution Tt(θ

k|θk−1)

must be constructed so that the Markov chain converges to a unique stationary distribution,

i.e. the posterior distribution p(θ|Y).

Various methods are devised for constructing and sampling from transition distributions

for arbitrary posterior distributions defined on spaces of known and fixed dimensions among

which Metropolis [30] and Metropolis-Hastings [30], [31] and Gibbs sampler [32] are the

most commonly used sampling schemes. For sampling of probability distributions defined

on spaces of variable dimensions, the schemes such as reversible jump Markov Chain Monte

Carlo [33] must be used.

1.3 Problem and Research Goals

This thesis delivers and discusses algorithms for trajectory estimation when dynamic or

kinematic model of the target motion is unknown. The algorithms are restricted to a

single target case. Only sensors that provide positional measurements with associated

elliptical areas of uncertainty (e.g. ESM or ELINT) are considered. Therefore, the data are

assumed to have heteroscedastic and correlated measurement errors (i.e. the measurement

error ellipses of different sizes and orientations), obtained at irregular time intervals, and

available in batches.
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This allows the problem of estimating a trajectory to be formulated in two ways:

1. As a linear stochastic optimal filtering problem which will rely on a combination of

two stochastic processes to describe the ship’s motion model, namely the Integrated

Ornstein-Uhlenbeck process (IOU) and the random walk (RW) process. The model

will be constructed on the basis of common knowledge on ship navigation. The as-

sumptions on linear modeling and Gaussian distribution of measurement errors will

then allow for the use of Kalman filtering and Rauch-Tung-Striebel optimal smooth-

ing. In the open literature, the first complete description and functionality assessment

of this algorithm, with a special focus on the importance of the measurement error

modeling and appropriate incorporation into the tracking algorithm was provided by

Hadzagic and Michalska (2010) [3]. The Rauch-Tung-Striebel optimal smoothing was

added to improve the position estimates.

2. As a curve (i.e. trajectory) fitting problem to the measurements with heteroscedastic

and correlated errors in which the Bayesian approach to the nonparametric regression

modeling is used to make inference about the trajectory model and its characteristics.

Specifically, the trajectory will be considered to be identified in the form of a piecewise

spline function in the 2-D Euclidian plane with an unknown number of change points

(or knots) which correspond to the locations of a ship’s maneuvers.

In light of the above, the research goals were stated as:

• To develop trajectory estimation algorithms that successfully address practical issues

which transgress the usual assumptions found in the target tracking literature such

as high and regular data rates, relatively small and circular areas of measurement

uncertainty, known motion models and the availability of data for processing. Pre-

cisely, the new algorithms should not assume the knowledge of the motion model,
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and should assume data with heteroscedastic and correlated errors, as well as the

measurements arriving in batches.

• To perform sensitivity analysis of both algorithms with respect to perturbations in

the model parameters.

• To assess the efficiency of both algorithms for various ground truth scenarios. For

this purpose, a ground truth scenario that corresponds to real ship motion in 200 NM

x 200 NM surveillance area is to be developed.

• To compare both algorithms with another batch stochastic optimization algorithm,

namely a genetic algorithm (GA), used to form a trajectory from data with het-

eroscedastic and correlated errors [3].

• To analyse the results of the comparisons, provide conclusions about the novel algo-

rithms and outline possible future research avenues.

To put the contribution of this thesis in a broader context, previous results in trajectory

estimation from multisensor data, as well as piecewise function regression methods from

data with and without errors, are presented and their advantages or shortcomings with

respect to maritime surveillance issues are summarized below.

1.4 Literature Survey

Karl Friedrich Gauss (1777-1855) was the first to study the problem of trajectory estima-

tion from uncertain observations. His results in estimation of trajectories of celestial bodies

using the method of least squares [34] were published in 1809, later than those of Adrien-

Marie Legendre (1752-1833) who independently published his work on the least squares
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method in 1806 [35]. Subsequent historical developments of estimation techniques include

Fisher’s interpretation of the least square method [36] and definition of the maximum likeli-

hood method, Wiener [37] and Kolmogorov [38] development of the minimum mean square

error method, and Kalman’s formulation of a discrete time, recursive, minimum mean

square filtering, the Kalman filter [39]. The history of estimation techniques is summarized

in [19]. Extensive literature concerning recent target trajectory estimation algorithms, par-

ticularly the sequential ones, is presented in Blackman [13] and Bar-Shalom [40]. General

assumptions usually include the knowledge of a linear or nonlinear model and positional

radar measurements. The latter are usually assumed to be received at high and regular

data rates and to provide good localization information about the target [13]. In tracking

applications, linear or nonlinear recursive filtering, are common solutions to trajectory esti-

mation. For a linear motion model, the Kalman filter in conjunction with a Gaussian noise

model gives the optimal estimate. This case can be extended to a multiple model approach

using the Interacting Multiple Model (IMM) filter to address trajectory estimation for a

maneuvering target [15],[13]. However, this complexity and computational cost of this ap-

proach that employs banks of Kalman filters makes it inefficient for fast maneuvering ships

found in counter-drug operation scenarios [41]. The assessment of the IMM algorithm in

the context of tracking fast maneuvering aircrafts can be found in [42], [43] and [44]. For

nonlinear and non-Gaussian models in state space forms, there exist analytic approxima-

tions such as Extended Kalman Filtering (EKF) [15], and variants such as linearization

and Gaussian sum filter [40], [45]. Numerical approximations include grid based methods,

Gaussian mixtures [46] and unscented filter [47]. Monte Carlo approximations include se-

quential importance sampling (SIS) [24], Rao-Blackwellisation [48] and sequential Monte

Carlo (SMC) methods which estimate the complete probability distribution. The latter are

known as particle filters, Sequential Importance Resampling (SIR) filters, bootstrap filters,
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etc. These methods are more appropriate for tracking applications which consider non-

Gaussian measurement errors, high data rates, and nonlinear models such as bearing-only

tracking. Their descriptions and the use in tracking applications can be found in [49] [17].

The state space Bayesian filtering approach is proved to be superior for radar and infra-

red data in low signal-to-noise ratio environments over the contact-based Kalman filtering

using deterministic motion models because the likelihood functions allow to incorporate

the detailed physics of the sensor response to the target in a noisy environment as well

as other available prior information, such as restrictions of moves (e.g. land-avoidance

likelihood function) [21]. State space Bayesian filtering proved also to be more robust for

data with high uncertainty [50]. This applies to particle filters as well since they are based

on sequential Monte Carlo methods and therefore sequential by nature.

In [50], it is said that a state space Bayesian filtering algorithm which employs the

Integrated Ornstein-Uhlenbeck (IOU) process as the motion model is successfully used in

applications such as tracking submarines and surface ships. However, no detailed algorithm

description nor implementation was provided. In [51], the Rauch-Tung-Striebel (RTS)

fixed-interval optimal smoothing was said to be used with the IOU to improve the estimates

of position and velocity. The first complete description, implementation, application, and

the accuracy and functionality assessment of the IOU process used for ship trajectory

estimation is reported in [52], [3]. It is shown that the IOU process can be used for

ship motion modeling only in specific combination with the random walk (RW) process.

The IOU model is assumed unknown and is constructed using basic knowledge on ship

navigation and RW process parameters. Furthermore, in [3] the importance of adequately

modeling and completely accounting for measurement error uncertainty in ship trajectory

estimation was demonstrated by comparing the IOU-based trajectory estimation algorithm

with a genetic algorithm based trajectory estimation.
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Other alternative approaches such as track-before-detect [53], [54], evidence theory [55],

fuzzy set theory [56], possibility theory [57] can be also used for situations where standard

approaches fail (e.g. low data rate, low signal-to-noise ratio, ambiguous information about

the target, negative information).

Results in trajectory estimation pertaining specifically to maritime surveillance appli-

cations include those reported in [58], [59] where the data obtained from HFSWRs are used

to form a trajectory. However, a high-rate single type multi-sensor environment is only

considered. Since the HFSWR produces measurements with circular errors, capturing the

uncertainty was not an issue. A dissimilar multisensor environment is considered in [60]

where the Distributed Multi-Hypothesis Tracker (DMHT) is employed to process data ob-

tained from an AIS sensor network and a coastal radar. The focus is on track fusion and

the global maritime surveillance system design rather than on (single) trajectory estima-

tion. Another dissimilar multisensor environment pertaining to maritime surveillance is

addressed in [2]. The described algorithm for ship trajectory estimation is based jointly

on a ”hybrid” genetic algorithm, i.e. a combination of a genetic algorithm, a simulated

annealing and a chemotaxis algorithm, and the track templates mechanism that employs

non-sensor information. Although it addresses the availability of measurements for pro-

cessing by using a batch stochastic optimization procedure for data fitting, the algorithm

does not completely account for measurement uncertainty because it considers only the

approximation of the measurement error obtained by projection.

For measurements with heteroscedastic and correlated errors and available in a batch, a

robust line fitting solution using Hough Transform is presented in [11] and is used to detect

lines in pictures. However, the algorithm is limited to image processing applications since

it involves the intensity of image pixel in the calculations.

As batch procedures, the regression methods have also found their applications in tra-
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jectory estimation. The problem of trajectory estimation of a maneuvering target can be

translated to a change point analysis for regression in a multi-phase random linear model

with known/unknown number of change points, and continuous/discontinuous at change

points with an arbitrary error. The continuity or discontinuity of the regression function at

the change point influences the statistical inference about the parametric or nonparametric

model. Estimation procedures involve both frequentist and Bayesian inferencing.

The results in estimation of multivariate piecewise function regression can be classified

in terms of known number (e.g. one or multiple) or unknown number of change points (or

knots), and random or non-random approach to fitting.

Single change point. Results that consider both known and unknown single change

point include those in [61], [62], [63] [64]. Two-phase nonlinear regression with smooth

transition using two-stages LS fit is reported in [65], while in [66] a two phase step function

is considered. An ML estimator is used for both random and nonrandom regression in [67]

and [68], while for random parametric regression, in [68], a two-phase linear model was

addressed. Another procedure for a single change point determination for a nonlinear model

was presented in [69]. Asymptotics of M-estimators in two-phase linear regression model

was examined in [70]. Rukhin and Vajda(1997) [71] consider the change point estimation

problem as a nonlinear regression problem and prove that M-estimators can localize the

change point and establish the consistency of a class of approximate M-estimators. In all

the results above only a single change point is considered. However it is less likely that

a ship in the surveillance area performs only one maneuver, at either known or unknown

location.

Multiple change points. The problem of multi-phase linear and a non-linear model

with known number of change points was addressed in [72]. In [73], a multivariate non-

parametric regression spline was presented, also for a known number of change points.
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The problem of determination of multiple changes in a piecewise linear model for unknown

number of change points is addressed first in [74] and does not include the measurement

error. Later in [75] the consistency of estimators of the change points is proven, and tests

for multiple changes and constructed confidence intervals for the break points are provided.

Additionally, in the same paper efficient algorithms for computing the estimates are pro-

posed, including several methods (one of which is purely sequential) for determining the

number of breaks. A method for determining the number of change points in a type of

multi-phase piecewise linear regression model, the structural break model, by sequential

testing is presented in [76]. Estimation of the number of change points in a multi-phase

generalized linear model, with known model parameters was considered in [77]. A very sig-

nificant work related to variable number of locations of break-points (knots) is presented by

Green [33]. Denison et al. [78] generalized this approach to higher order free-knot splines.

However, by not specifying a prior distribution on spline parameters, and using LS estima-

tion at each stage instead, the fully Bayesian approach is omitted. Zhou & Shen [79] apply

spatially adaptive regression spline as frequentist, iterative method. Di Matteo et al. [1]

use Bayesian adaptive regression free-knot spline fitting to scalar measurements with the

nonparametric model error assumed as constant. None of the above mentioned procedures

for either single or multiple change point considers errors in data, and in particular the het-

eroscedastic and correlated errors. Also, none of the above-mentioned regression methods

addresses the case of decreasing value of predictor variable which in ship trajectory estima-

tion occurs in the case of a turning maneuver. Heteroscedastic errors (or errors-in-variables

problem) has been previously addressed by [80] using deconvolution method for nonpara-

metric regression and in [81] for nonlinear regression using Fourier transform. Approaches

in nonparametric regression modeling with correlated errors using kernel methods, spline

smoothing and wavelet regression can be found in [82].
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Regression in tracking. Results concerning regression in trajectory estimation ap-

plications are reported by El-Hawary and Jing (1995) [83]. The authors proposed a robust

regression-based EKF for tracking underwater targets using high uncertainty measure-

ments, while assuming a known motion model. Another work by Fruhwirth et al. [84]

provides results on reconstructing trajectories (the so called secondary vertices) from real

position data points which represent points of particle collision using M-estimation. How-

ever, the measurement uncertainty issue was not addressed. Splines have been previously

used in [85] for ML estimation of paths in tracking using bearings-only data with errors

that follow Von Mises distribution. In [86] deterministic annealing procedure is incorpo-

rated into a robust M-estimator and applied to determine the target motion parameters

based on non-Gaussian and non-stationary measurements derived from passively observed

transient signals radiated by a target. In [87], a batch estimation using regression tech-

niques proved as successful as conventional recursive approaches in applications such as

ballistic trajectory launch point estimation, adaptive flight control, and radio frequency

target triangulation. Toledo et al.(2007) [88] used locally weighted regression to estimate

vehicle trajectories from a set of positional data obtained at discrete time intervals with

possible missing observations. However, only regular and relatively small time intervals are

considered. Finally, Agrawal, Singh (2008) [89] apply nonlinear (second order polynomial)

regression for trajectory estimation of a moving object in space but the heteroscedascity of

measurement errors was not addressed.

1.5 Approach and Contributions

The issues pertaining to maritime surveillance such as low and irregular data rates, the

availability of surveillance data, the large measurement error in form of elliptical uncer-
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tainty, the absence of knowledge about the motion model, and the known maneuver be-

haviour of ships in the surveillance area, suggest a possibility of using batch processing and

piecewise regression techniques for data fitting for estimation of trajectories, rather than

commonly used recursive methods.

The first approach to trajectory estimation is based on fitting the measurements with

heteroscedastic and correlated errors to a piecewise cubic spline with the unknown number

of knots (as points of maneuvers), where the Bayesian inference will be used in nonparamet-

ric regression modeling. The approach is based on the work of [1], however assuming data

with known heteroscedastic and correlated errors as well as accommodating for decreasing

values of the predictor variable (i.e. accounting for backwards turning maneuvers). Fur-

ther, the regression will be performed on two nonparametric models, i.e. one which which

uses the error projections and the other one which completely accounts for measurement

uncertainty. Complete accounting for the measurement uncertainty anticipates better per-

formance than other batch stochastic optimization algorithms for trajectory fitting which

use error approximations such as the one reported in [2].

Another proposed approach is the stochastic linear filtering approach in which the mo-

tion model is constructed from the common knowledge about the ship motion. Specifically,

the Integrated Ornstein-Uhlenbeck (IOU) process and the random walk (RW) process will

be combined to describe the motion. The assumptions on linear modeling and Gaussian

errors will allow for the use of Kalman filtering and Rauch-Tung-Striebel (RTS) optimal

smoothing to produce the positional estimates.

This thesis presents the following results in trajectory estimation from data with het-

eroscedastic and correlated measurement errors:

• A novel batch single ship trajectory estimation algorithm is introduced. It assumes no
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knowledge about the ship motion model, while assuming standard ship maneuvers.

As a batch processing algorithm, it addresses the availability of data for process-

ing, an issue specific to maritime surveillance applications. The algorithm developed

here is based on the algorithm found in Di Matteo et al. [1] which employs Bayesian

inference to spline fitting using a nonparametric regression model. However, the

work of Di Matteo et al. [1] fails to accommodate explicitly for heteroscedastic and

correlated errors, as well as for decreasing values of predictor variable (in case of

turning maneuvers), which are inherent to the problem of trajectory estimation in

maritime surveillance. Additionally, Bayesian inference is performed for nonparamet-

ric regression models with two different choices of response and predictor variables.

A complete account for the measurement uncertainty by this algorithm guarantees

improved performance over other batch stochastic optimization algorithms for ship

trajectory estimation based on error approximations such as the one reported in [2].

• Assessment of the robustness of the proposed algorithm by sensitivity analysis is

carried out. This includes verifying if the results of the Bayesian analysis remain

unchanged in the presence of perturbation in prior parameters.

• The first time development, implementation and assessment in the open literature

of the stochastic linear filtering algorithm which employs the Integrated Ornstein-

Uhlenbeck processes in conjunction with Kalman filtering and Rauch-Tung-Striebel

optimal smoothing, is provided. It is presented here that such motion modeling is

possible only when the IOU process is used in the specific combination with the ran-

dom walk process. The assessment of the IOU-based trajectory estimation algorithm

with special focus on the importance of the modeling of measurement uncertainty

was reported by Hadzagic and Michalska (2010) [3], [4].
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• Sensitivity analysis of the linear stochastic filtering algorithm with respect to pertur-

bations in model parameters is performed.

• Assessment of the efficiency of both algorithms for various ground truth scenarios

in terms of the chosen performance measures is carried out. A separate analysis is

performed for each nonparametric regression model.

• Comparative analysis of the Bayesian nonparametric regression spline based algo-

rithm (both models) with the batch linear stochastic filtering algorithm for trajectory

estimation is carried out.

• Respective comparative analysis of the Bayesian nonparametric regression spline algo-

rithm (both models) and the IOU-model based algorithm with another batch stochas-

tic optimization algorithm, namely a genetic algorithm, used to form a trajectory from

heteroscedastic data [3] is provided.

• Analysis and discussion of the results of the comparisons, conclusions about the novel

algorithms are provided, and the possible future research avenues are outlined.

• A software platform for maritime surveillance which includes the ground truth sce-

nario integrated with three algorithms for trajectory estimation: the IOU-KF-RTSS

algorithm, Bayesian spline regression algorithm, and the GA-based trajectory esti-

mation algorithm, which are all conceptually different. It is developed in C++ and

includes 6701 lines of code. The Bayesian spline regression algorithm represents a

modified open source C implementation, which is available here [5]. The modification

involves injection of the measurement error information and the rotation of coordinate

system to accommodate maneuvers in x− y plane when the position in x-direction is

decreasing.
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The algorithms presented in this thesis apply to a broader class of problems than the

ones defined by the problem of batch stochastic ship trajectory estimation, since the curve

fitting algorithms, as well as the stochastic linear filtering algorithm employing the IOU

as a model process, are found in applications in the fields of finance (e.g. estimation

of integrated volatility in stochastic volatility models) and biostatistics (e.g. derivative

tracking of viral and other marker data). Other applications for batch trajectory estimation

algorithms include specifying behavioral patterns, relationships between locations observed

at adjacent times, or forming records of the history of past locations.



33

Chapter 2

Problem Statement

Two different Bayesian approaches to trajectory estimation from batch of data with het-

eroscedastic and correlated measurement errors are considered: (1) a stochastic optimal

filtering approach and (2) a nonparametric regression based curve fitting approach using

Bayesian inference. Hence, two formulations of the trajectory estimation problem are stated

here. Prior to that, it is useful to characterize the measurement data and the ship motion

features with respect to goals of ship trajectory estimation.

2.1 Characterization of the Measurement Data, Measurement

Errors and the Surveillance Region

The multisensor surveillance data are assumed to originate from a single ship which is mov-

ing in an environment with no clutter or countermeasures, therefore no data association

procedure is considered. In maritime surveillance, a single measurement indicating ship’s

position is referred to as the ellipse contact report. The ellipse contact report (measure-

ment) vector will be defined below. As illustrated in Fig. 2.1, the ellipse contact report
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is graphically perceived as an elliptical area of uncertainty (AOU) for the ship’s location,

i.e. the minimum area having a specified probability of containing the measurement, see

Appendix A. The positional observation is the centre of the ellipse. The positional errors

exist in both directions of the x − y Euclidean surveillance region. However, due to the

assumptions on dissimilar multisensor environment, the errors do not follow directions of

axes of the surveillance region causing the errors in x and y directions to be correlated.

Furthermore, the errors in x and y are assumed nonconstant across measurements in time,

rendering the measurement error heteroscedastic [61], [11]. It is assumed that the ellipse

specifies two-sigma or equivalently a 96% containment region, i.e. the probability that the

target is found inside the area of the specified ellipse is assumed to be 0.96, see Appendix A.

It is assumed that a batch of surveillance data Z = {zk}nk=1, obtained over the known

discrete time interval [t1, tn], is available, where zk is the k-th ellipse contact report vector,

obtained at a known irregular time instant tk, tk ∈ [t1, tn], and is defined as

zk =

[

yk Iksen

]

=

[

xk yk ak bk θk

]

. (2.1)

The total number of measurements indexed in time is n. The two-dimensional positional

subvector yk comprises of the components xk and yk and represents the centre of the ellipse,

i.e. the 2-D measured geographical position, (xk, yk), with xk and yk being longitude and

latitude measured in degrees, respectively. The subvector, Iksen, contains the information

which characterizes the sensor error. The components ak and bk represent the magnitudes

of the semi-major and semi-minor axis of the ellipse measured in nautical miles [nm],

respectively, while θk is the angle of the orientation of the ellipse, measured in degrees

clockwise from the true north, as shown in Fig. 2.1. It is assumed that ai 6= aj , bi 6= bj ,
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Fig. 2.1 The positional measurement with elliptical area of uncertainty.
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and θi 6= θj for i 6= j. Furthermore, given the ellipse AOU confinement probability P ,

with the assumption on the normal distribution of the measurement error, the vector Iksen

can be transformed into the covariance Rk of a bivariate Gaussian distribution N (0, Rk)

which characterizes the error of measurement k, see Appendix A. The mean is identified

as the ellipse centroid, while the covariance matrix can be obtained from the parameters

of the ellipse geometry. The covariance matrix, Rk, of the bivariate Gaussian distribution

corresponding to the position yk with the ellipse orientation θk, and the magnitudes of the

semi-major and semi-minor axes, ak and bk, respectively, is computed as

Rk =







cos θk − sin θk

sin θk cos θk













a2k/2 0

0 b2k/2













cos θk sin θk

− sin θk cos θk






(2.2)

The background on the measurement error ellipse, including the equations which relate

the characteristics of the ellipse geometry of the positional measurement yk and the cor-

responding covariance matrix Rk of the Gaussian bivariate error distribution are found in

Appendix A.

Since the error ellipses are small in size as compared with the size of the surveillance

region, a local flat-Earth approximation in the plane tangent to the measured position,

(xk, yk) (i.e. the ellipse centroid), is used for constructing the bivariate Gaussian error

distribution, N (0, Rk).

The surveillance region is assumed to be a two-dimensional Euclidean space where the

Cartesian coordinates are used to express distances in north-south and east-west directions,

respectively. The positional measurements are obtained in geographical coordinates, lati-
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tude and longitude, whose definitions assume Earth as a sphere. Nevertheless, the Earth

can be considered flat for short distances, and calculating the straight line distance between

two points can be done using flat-Earth approximation formulas. The details on flat-Earth

approximation are provided in Appendix A.

2.2 Characterization of Model Features and Estimation Goals

The ship motion model is assumed unknown. Only general assumptions on the surface ship

navigation are used to make assumptions on the possible shapes of trajectories.

It is assumed that a single surface ship motion occurs in the 2-D Euclidean plane of

geographical coordinates, longitude and latitude. A ship is assumed to follow standard

trajectories which include maneuvers such as zig-zag and turning circles, [90]. The zig-

zag maneuver corresponds to navigating through water between waypoints (i.e., points of

maneuver or change-points) with constant velocity. The number of change-points as well

as their locations along the trajectory are assumed unknown. The ship’s motion does not

assume acceleration. Since the motion occurs in horizontal plane of longitude and latitude,

a flat-Earth approximation is assumed for calculating the positions along the trajectory.

Relative to the knowledge on ship navigation and the rest of the assumptions on the

ship motion, the motion model in the stochastic linear filtering algorithm is constructed.

On the basis of the same knowledge, the trajectory is assumed as a spline for another

Bayesian approach.

2.3 The Linear Stochastic Bayesian Filtering Problem

Let the ship state vector be denoted by xk ∈ R
n, where n = 4 is the dimension of the state

vector and R is a set of real numbers, k ∈ N is time index, and N is the set of natural
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numbers. The index k is assigned to a continuous time instant tk, and the sampling interval

tk − tk−1 may be time dependent. It is assumed that the state evolves according to the

discrete-time stochastic model (1.9):

xk = fk−1(xk−1,wk−1)

where fk−1 is a ”known” linear function of the state xk−1, and wk−1 is a process noise se-

quence. The model is constructed from the common knowledge on surface ships’ behaviour

with respect to the assumptions in Section 2.2. The model development will be presented

in Section 3.

The measurements are assumed to be related linearly to the target state, i.e.,

yk = Mxk + εk; k = 1, 2, . . . n; tk+1 > tk > t0 (2.3)

where yk is the 2-dimensional position vector, M is a known 2× 4 matrix,

M =







1 0 0 0

0 1 0 0






, (2.4)

xk is the 4-dimensional state vector of the process defined as

[

xk yk uk vk

]T

(2.5)

where xk and yk, and uk and vk are 2D-position and 2D-velocity components, respec-

tively, and εk is a 2-dimensional vector of independent white Gaussian sequence, i.e.

εk ∼ N(0, Rk), Rk > 0 where Rk is known measurement covariance matrix obtained from
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sensor information characteristics and given by (2.2). The covariance matrices are assumed

nonconstant, i.e., for the positions obtained at the time instants j and k, Rj 6= Rk. The

positional measurement at time k is the position of the ship at time k plus a bivariate

Gaussian error with zero mean and the covariance Rk. The initial target state is assumed

to have a known probability density function, p(x0), which is assumed independent of noise

sequences.

Objective. The objective in this approach is to estimate the state xk ∼ N (xk;µk,Σk)

based on the sequence of all available positional measurements Yk , {yi, i = 1, . . . , k}

from the posterior distribution p(xk|Yk), given the initial probability distribution of the

state vector, p(x0) ∼ N (0,Σ0).

2.4 The Nonparametric Regression Spline Problem

Relative to the characterization of the measurement errors and the assumptions on the

ship motion (i.e. navigation with constant speed along straight lines between waypoints

and performing turning maneuvers at waypoints), the trajectory is assumed to be of the

form of piecewise cubic splines. Hence, the ship trajectory estimation can be stated as

a nonparametric curve (spline) regression problem from a batch of heteroscedastic and

correlated surveillance data.

Assume mutually independent and normally distributed pairs of positional data, D =

{(x1, y1), . . . , (xn, yn)}, obtained at known irregular time intervals tk, where k = 1, . . . , n,

for which the conditional densities satisfy

Yk|X1, . . . , Xn ∼ N (yk|f(xk), σ) (2.6)

where f is a real-valued function on [a, b], σ is a known conditional marginal covariance of
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jointly distributed variables Xk and Yk, and xk and yk represent the observed values of the

random variables Xk and Yk following the standard notation.

The data are considered to be generated by two possible nonparametric models:

• Model 1: A nonparametric regression model in which each response variable, the

position in each dimension, xk and yk, is related to the predictor variables T =

{t1, . . . , tn} by its own regression model (through some deterministic functions, fx

and fy, and some additive random errors εx and εy, respectively), i.e.,

yk = f(tk) + εk =







xk

yk






=







fx(tk)

fy(tk)






+







εxk

εyk






(2.7)

where εk ∼ N (0, Rk) for k = 1, . . . , n, n being the total number of measurement

pairs, and Rk is known nonconstant and nondiagonal matrix.

• Model 2: A nonparametric regression model which relates each response variable yk,

i.e. the position in y-direction to the predictor variable xk, i.e. the position in x-

direction, through a deterministic function f and the additive random error εk. The

predictor variable Xk is assumed to be observed through random variable Zk, the

so-called latent regressor, with error εyk, therefore the model can be written as

yk = f(zk) + εyk (2.8)

xk = zk + εxk (2.9)

The variable Zk is considered independent from the measurement error εxk, and εxk and εyk

are diagonal elements of the known measurement covariance matrix Rk.
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For both nonparametric regression models, it is assumed that f(x) defined on [a, b] can

be approximated between a and b by a cubic spline with an unknown number of l knots

at unknown locations ξ = (ξ1, . . . , ξl), where a < x(1) < ξ1 ≤ · · · ≤ ξk < x(n) < b where

x(1) and x(n) are the minimum and the maximum sampling points, respectively. A cubic

B-spline is a piecewise cubic polynomial over four intervals which is defined by a recursive

convolution formula in terms of fourth-order divided differences. A grid of l + 4 knots

generates l cubic B-splines. For an extensive background on B-splines, see [91].

Let bj(x), j = 1, . . . , k + 2, denote the j-th function in a cubic B-spline basis with

natural boundary constraints, i.e. linear outside the [a, b] interval.

Let Bl,ξ be the matrix such that the (i, j)-th component is bjl,ξ(xi) which depends on

the knot configuration, (l, ξ). For notational simplicity, denote bjl,ξ(xi) = bj(xi)

Under these assumptions, the function f can be approximated as

f(x) =
l+2
∑

j=1

bj(x)βj(x) (2.10)

where β = (β1, . . . , βk+1), i.e. Bl,ξβ = f(x) ≡ (f(x1), . . . , f(xn)) at observed data points.

Objective. The objective of this approach is to obtain the curve estimate f̂(x) using

Bayesian inference, where f̂(x) represents the pointwise posterior mean,

f̂(x) = E{f(x)|y} = E{E{f(x|y, ξ, k}} ≈ Bl,ξβ̂ (2.11)

The number of knots, l, and the set of knot locations, ξ = (ξ1, . . . , ξl) are to be deter-

mined during the estimation procedure. For nonparametric Model 1, the inference involves

estimation of fx and fy.
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Chapter 3

Trajectory Estimation Using Linear

Stochastic Filtering with Integrated

Ornstein Uhlenbeck Process

This Chapter presents, as recently reported in Hadzagic and Michalska (2010) [3], for the

first time in the open literature, the development and the description, of the stochastic

linear filtering algorithm which employs the Integrated Ornstein-Uhlenbeck processes in

conjunction with Kalman filtering [50]. The trajectory is obtained as a solution to a

linear stochastic optimal filtering problem. The algorithm employs a combination of two

stochastic processes, namely the Integrated Ornstein-Uhlenbeck process (IOU) and the

random walk (RW), process to describe the ship’s motion. The assumptions on linear

modeling and bivariate Gaussian distribution of measurement errors allow for the use of

Kalman filtering and Rauch-Tung-Striebel optimal smoothing.
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3.1 Development of the Ship Motion Model

In physical modeling the Wiener process is usually used to represent the position of the

Brownian particle. Although the sample paths of the Wiener process are continuous func-

tions, they are considered as nowhere differentiable, i.e the velocity of the Brownian parti-

cle cannot be defined. Ornstein and Uhlenbeck [92] compensated for this drawback of the

Wiener process by modeling directly the velocity of the Brownian particle. The resulting

process is known as the Ornstein-Uhlenbeck process.

Assume that the motion process {Xt, t ≥ 0} in the n dimensional state space S satisfies

the linear (Itô) stochastic differential equation (LSDE) [93],

dXt = [FtXt + at]dt+Gtdwt (3.1)

where Ft and Gt are n×n deterministic matrices, at is a deterministic n-dimensional vector,

and wt is an n-dimensional vector of independent Wiener processes with unit variance. This

is a natural class of models for target motion since if X0 is Gaussian, the solution to (3.1)

is a Gaussian-Markov process [93]. Models from this class of processes can be employed

in continuous-discrete Kalman filter recursion. The functions Ft, at and Gt have natural

interpretations. The functions Ft and at determine the drift of the motion process, and Gt

determines the diffusion. If the drift and the diffusion are constant, i.e. if Ft = F , at = a,

and Gt = G, for t ≥ 0, then (3.1) becomes

dXt = [FXt + a] dt+Gdwt (3.2)

Under the assumption that the initial condition X0 is normally distributed, i.e. X0 ∼

N (µ0,Σ0), and with X0 independent of {wt; t ≥ 0}, (3.2) can be solved explicitly using
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stochastic integration to obtain the motion process Xt as follows:

Xt = eFt
[

X0 +

∫ t

0

e−Ft(a dτ +Gdwτ)
]

(3.3)

The mean, the variance, and the covariance of the process Xt can be obtained as:

E{Xt} = eFtE{X0}+
∫ t

0

eF (t−τ)a dτ

= eFtµ0 +

∫ t

0

eF (t−τ)a dτ (3.4)

V ar{Xt} = V ar

{

eFt

[

X0 +

∫ t

0

e−FτGdwτ

]}

= eFtΣ0(e
Ft)T +

∫ t

0

eF (t−τ)GGT (eF (t−τ))T dτ (3.5)

Cov[{Xt0 , Xt1} = Cov[eFt0X0, e
Ft1X0]

+Cov[

∫ t0

0

eF (t0−τ)Gdwτ ,

∫ t1

0

eF (t1−τ)Gdwτ ] =

eFt0Σ0(e
Ft1)T +

∫ min(t1,t0)

0

eF (t0−τ)GGT (eF (t1−τ))T dτ (3.6)

It follows from (3.3) that the motion process Xt is a Gaussian process with the mean and

the covariances given by (3.4)-(3.6).

For Xt to model the velocity, (3.2) needs to be modified so that the drift is linear in t

and induce motion toward the origin. Thus, it is assumed that F = −βI, where I is the
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identity matrix, a = 0, G = σI, β and σ are scalar parameters. Then (3.2) becomes

dXt = −βXt dt + σ dwt (3.7)

The motion process Xt that satisfies (3.7) is called the Ornstein-Uhlenbeck (OU) process.

If the motion takes place in a two-dimensional Euclidean space, the OU process can be

thought of as Brownian motion with a drift that tends to move the Brownian particle

toward the origin. Also, it can be seen that the drift is proportional to the displacement

of the particle from the origin. The solution to (3.7) is

Xt = X0e
−βt + C

∫ t

0

e−β(t−τ)dwτ (3.8)

From (3.8), the mean, the variance and the covariance of the OU process can be easily

obtained. The mean is computed as

E{Xt} = 0 (3.9)

and the variance is given by

E{X2
t } =

σ2

2β
(1− e−2βt) (3.10)

Thus, as t → ∞ the OU process has an asymptotic stationary distribution which is normal

with zero mean and the variance σ2

2β
, i.e. the variance of the OU process is increasing over

time and reaches a limiting constant maximum value σ2

2β
. This value is sometimes called
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the stationary velocity variance. The covariance of the process decreases exponentially, i.e.

E{XtXs} =
σ2

2β
e−β|t−s| (3.11)

A generalization of the OU process is the Integrated Ornstein-Uhlenbeck (IOU) process

{Yt} which can be used to model the position of a Brownian particle when started at the

origin, Y0 = 0

Yt =

∫ t

0

Xs ds (3.12)

The integral over a Gaussian process is again a Gaussian process, therefore Yt is completely

characterized by its mean and variance

E{Yt} = E{
∫ t

0

Xs ds} =

∫ s

0

E{Xs} ds = 0 (3.13)

E{Y 2
t } =

σ

β3
(e−βt + βt− 1), (3.14)

and its covariance, see [94] for details:

E{YtYs} =
σ2

β2
t+

σ2

2β3
[e−βt − 1 + e−βs − e−β(s−t)] (3.15)

Here, the (integrated) Ornstein-Uhlenbeck process is used to represent the ship’s motion.

Specifically, if the state space is four-dimensional and the state is defined as

[

xt yt ut vt

]T

(3.16)

where xt and yt, and ut and vt are 2D-position and 2D-velocity components, respectively,
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and

F =







I 0

0 −βI






and G =







0 0

0 −σI







then (3.7) can be expressed in terms of a system of LSDEs:

dxt = utdt (3.17)

dyt = vtdt (3.18)

dut = −βut + σdWt (3.19)

dvt = −βvt + σdWt (3.20)

Equations (3.17)-(3.20) describe the (integrated) Ornstein-Uhlenbeck process as the ship

motion model. The initial condition for this process is assumed as X0 ∼ N(µ0,Σ0) so that

X ∼ N(µt,Σt), ∀t ≥ 0. According to (3.9) and (3.10), the mean velocity in the direction

of the x axis is given by

E{ut} = u0e
−βt (3.21)

while the covariance of the x-direction velocity process ut is given by

Cov{utus} =
σ2

2β
e−βI|t−s| for t ≤ s. (3.22)

For t = s, the variance of the process ut is

E{u2
t} =

σ2

2β
, ∀t ≥ 0 (3.23)
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i.e. the stationary limiting velocity variance. It is not difficult to see that the same

expressions hold for v(t). The parameter β controls the rate at which the ship velocity

changes occur. Hence, the velocity change rate can be controlled by the choice of the

parameter β.

The IOU process is driven by Gaussian white noise (as the derivative of the Wiener

process) and hence is ”physically non-realizable” [95]. On the other hand, the Random

Walk (RW) family of models is physically realizable and can represent the ship motion. As

described in the next Section and with the goal of producing a more realistic model, the

IOU process will be represented as a random walk by a specific choice of parameters.

3.1.1 Random Walk

To relate the IOU motion process to the RW process it is first helpful to understand how

a ship motion can be identified with a RW.

To this end, let the initial ship position be the origin of the (X = East, Y = North)

coordinate system, see Figure 3.1. The initial ship course (i.e. the ship heading at t = 0) is

then chosen randomly from the uniform distribution over the interval [0o, 360o], while the

ship speed is assumed to be a known constant V . All ship courses θi are samples drawn

independently from the probability density function

f(t;α) =

{

0 t < 0

αe−αt t ≥ 0

where α is the rate parameter. Hence, the ship course is understood to be an exponential

random variable with mean value 1/α (i.e. the average time between course changes is

1/α and the average rate at which the velocity changes occur is α). Since such a model is
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Fig. 3.1 Random Walk process with the initial course that is chosen ran-
domly from U [00, 3600] and θ ∼ exp(1/α), i.e. average time between the course
changes is 1/α.

non-Gaussian, Kalman filtering cannot be applied directly which justifies its approximation

in terms of an IOU model which is Gaussian.

For the purpose of one such approximation, define the processes Rt and Vt to represent

the range and speed:

R2
t = x2

t + y2t (3.24)

V 2
t = u2

t + v2t (3.25)

(3.26)

Also, let

h(βt) = e−βt − 1 + βt (3.27)
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From (3.13)-(3.15) it follows that, ∀t,

E{xt} = 0

V ar{xt} = E{x2
t} =

σ2

β3
h(βt)

E{yt} = 0,

V ar{yt} = E{y2t } =
σ2

β3
h(βt)

Cov{xt, yt} = 0

Furthermore,

E{R2
t} = E{x2

t + y2t } (3.28)

= E{x2
t}+ E{y2t } (3.29)

=
2σ2

β3
h(βt) (3.30)

E{V 2
t } = 2E{u2

t} =
σ2

β
(3.31)

3.1.2 Link between the IOU Model and the RW Model

As the number of parameters in both the RW and the IOU models is equal to two, one can

attempt to approximate the RW model by the IOU model by way of equating the first two

moments of both processes. To this end, it is helpful to evaluate the averages E{R2
t } for

both models, which yields

E{R2
t }IOU =

2σ2

β3
(e−βt − 1 + βt) (3.32)

E{R2
t }RW =

2V 2

α2
(e−βt + βt− 1) (3.33)
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The above expressions coincide if the parameters are related as follows:

β = α (3.34)

σ2

β
= V 2 or equivalently σ2 = αV 2 (3.35)

Equations (3.34) and (3.35) provide the main link between the IOU model and the real

world ship motion. Invoking (3.36)-(3.40), it is now easy to see that (3.35) entails equality

of the first two moments of the RW and the IOU processes, i.e.,

E{xt}RW = E{xt}IOU = 0 (3.36)

E{yt}RW = E{yt}IOU = 0 (3.37)

V ar{xt}RW = V ar{xt}IOU = E{x2
t}

=
V 2

α2
(e−αt − 1 + αt) (3.38)

V ar{yt}RW = V ar{yt}IOU = E{y2t }

=
V 2

α2
(e−αt − 1 + αt) (3.39)

Cov{xt, yt} = 0 (3.40)

From the equality of moments (3.36)-(3.40), and because the Gaussian processes are fully

characterized by their first and second moments, it follows that the resulting IOU process

gives the best possible second order approximation to the RW model among all Gaussian

models.

In terms of (3.17)-(3.20) and with given initial velocity conditions, the mean state and

the variance of the IOU process used to model ship motion, are obtained using (3.4) and
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(3.5):

E{Xt} = eFtµ0 (3.41)

V ar{Xt} = eFtΣ0(e
Ft)T + σ2







b11(t)I b12(t)I

b21(t)I b22(t)I






(3.42)

where

eFt = Φ(t) =







I 1
β
(1− e−βt)I

0 e−βtI






(3.43)

b11(t) =
1

β2
[t− 2

β
(1− e−βt) +

1

2β
(1− e−2βt)] (3.44)

b12(t) = b21(t) =
1

β2
[(1− e−βt)− 1

2
(1− e−2βt)] (3.45)

b22(t) =
1

2β
(1− e−2βt) (3.46)

3.2 Continuous-Discrete Kalman Filter Recursion for the IOU

Motion Process

In this Section, a continuous-discrete Kalman filtering algorithm is developed to produce

filtered estimates of ship position as it varies in time.

In continuous-discrete Kalman filtering, as applied to ship trajectory estimation it is

assumed that the actual motion takes place in continuous time, while observations are only

available at discrete instants of time tk. The measurement equation is usually given by:

yk = Mxk + εk; k = 1, 2, . . . ; tk+1 > tk > t0 (3.47)
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where yk is the 2-dimensional vector of observations in geographical coordinates, M is a

given 2× 4 matrix,

M =







1 0 0 0

0 1 0 0






, (3.48)

xk is the 4-dimensional state vector of the process as defined in (2.5), and εk is a 2-

dimensional vector of white Gaussian sequence, εk ∼ N(0, Rk), Rk > 0 with known Rk.

With reference to the practical problem of ship position estimation in a dissimilar multi-

sensor environment, see Section 2, the covariance matrix, Rk, must generally be considered

as non-diagonal and non-constant, due to different sizes and orientations of the elliptical

AOUs, rendering the error heteroscedastic and correlated. The covariance matrix Rk is

determined from the parameters which define the geometry of the area of uncertainty for

the measurement yk, i.e. from the values ak, bk and θk according to (2.2) as

Rk =







cos θk − sin θk

sin θk cos θk













a2k/2 0

0 b2k/2













cos θk sin θk

− sin θk cos θk







With the above representation of the covariance matrix in terms of the ellipse parameters,

the extended measurement mean vector dk for the contact yk (i.e. the centroid of the

ellipsoid) and the measurement information matrix αk, can be defined for convenience of
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the Kalman filter recursion as

dk =

[

yk 02

]T

, αk =







R−1
k 02×2

02×2 02×2






(3.49)

Since the components of the contact report data are measured in different units, the

conversion of all input surveillance data to the algorithm’s format must be done so that

the units agree.

3.2.1 The Algorithm

The continuous-discrete Kalman recursion as applied to the IOU process with state X ∼

N (µ,Σ) with the Gaussian p.d.f. p(x;µ,Σ) is summarized by the following sequence of

steps [93]:

Algorithm 1 IOU-KF-RTSS algorithm

1: Initialize with p(0, x) = N (x;µ0,Σ0), with

µ0 =









0
0
0
0









, Σ0 =

[

02×2 02×2

02×2
σ2

2β
I2×2

]

(3.50)

2: Do motion update, i.e. using (3.4)-(3.5), the predicted state mean, compute µk+1|k,
and the state covariance, Σk+1|k,

µk+1|k = Φ(tk+1, tk)µk|k

Σk+1|k = Φ(tk+1, tk)Σk|kΦ(tk+1, tk)
T + C(tk+1, tk)

where C(tk+1, tk) is the second term in (3.5) and Φ(tk+1, tk) is defined by (3.43).
3: Do information update, i.e. compute

Σk = Σk+1|k[I + αkΣk+1|k]
−1

µk+1|k+1 = µk|k + Σk+1|k+1αk+1(dk+1 − µk+1|k)
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The overview of the algorithm is given in Fig. 3.2.

Since the ship motion is assumed to occur in a horizontal plane and the measurement

data assume a spherical Earth, a flat-Earth approximation is used for calculating (updating)

the positions. This involves a projection down from the tangent plane of the estimated data

to sphere in order to obtain both the positional vector and the associated covariance matrix

on the sphere. From the point of tangency and the corresponding covariance matrix, the

point of tangency on the sphere (lon, lat) in radians and the displacements of longitude and

latitude are obtained. The flowchart in Fig. 3.3 shows the principal steps in calculating the

trajectory on the sphere. The single-point expansion is added functionality to the algorithm

which provides position, heading and speed estimated for a ship at a specified time. The

algorithm flowchart for the single-point expansion is given in Fig. 3.4.

3.3 Rauch-Tung-Striebel Fixed Optimal Smoothing

To improve on the quality of the estimated state the output of the continuous discrete

Kalman filter is further passed through a smoothing filter. A particularly convenient choice

seems to be discrete-time fixed interval Rauch-Tung-Striebel (RTS) optimal smoothing

algorithm as it is known to be insensitive to computational round-off errors present when

processing large batches of data [18].

With the same assumptions on the system as in Sections 3.1 and 3.2, and assuming that

the output of the Kalman filter (µk|k, Pk|k) is available, the RTS algorithm seeks a recursion

for µk|N , k < N , given the observations YN , where N is the time of the last measurement

received. The latter is derived in [18] and cited here in the form:

µk|N = µk|k + Sk[µk+1|N − µk+1|k], (3.51)
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where Sk = Pk|kΦk+1,kP
−1
k+1|k and µN |N is the filtered state estimate for k = N − 1, while

Φk+1,k is the state transition matrix of the IOU process defined by (3.43). The above

recursion is performed backwards in time with the initial condition µN |N . The recursion

for the smoothing error covariance matrix is given by

Pk|N = Pk|k + Sk[Pk+1|N − Pk+1|k]S
T
k (3.52)

It is also computed backwards in time, with PN |N as initial condition.
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Fig. 3.2 The overview of the algorithm.
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Fig. 3.3 Flowchart of function that calculates the trajectory.
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Fig. 3.4 Flowchart of function that calculates a single point expansion.
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Chapter 4

Bayesian Statistical Inference

Approach to Trajectory Estimation

This Chapter presents a novel batch stochastic optimization algorithm for trajectory esti-

mation which does not assume knowledge about the motion model, but only the standard

maneuvering ship behavior. The algorithm performs curve fitting to the measurements with

heteroscedastic and correlated measurement errors using Bayesian statistical inference for

nonparametric regression. Specifically, the trajectory is considered to be in the form of

a cubic spline with an unknown number of knots in two-dimensional Euclidean plane of

longitude and latitude. The function estimate is determined from the data which are as-

sumed Gaussian distributed. A fully Bayesian approach is adopted by defining the prior

distributions on all unknown parameters: the spline coefficients, the number and the lo-

cations of knots. The calculation of the posterior distributions is performed using Markov

Chain Monte Carlo (MCMC) and reversible jump Markov sampling due to the varying

dimensions of subspaces where the searches are performed. Previous work on Bayesian

inference to spline fitting using nonparametric regression model found in Di Matteo et
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al. [1]. However, the work of DiMatteo et al. fails to accommodate for heteroscedastic and

correlated errors which are inherent to the problem of trajectory estimation in dissimilar

multisensor environment such as maritime surveillance. Also, it fails to accommodate for

decreasing values of predictor variables which occurs in backwards turning maneuvers. In

addition here, Bayesian inference is performed for two nonparametric regression models

with different choices of response and predictor variables: time t versus position in x or

y direction, and position in x versus position in y. For the t, x and t, y combinations of

regression variables, the error projections in respective directions are used for calculating

the known errors’ εx and εy variances.

4.1 Method Development

Assume any of the nonparametric regression models from Section 2.4. Depending on the

choice on the response and predictor variables, the goal is to obtain the curve estimate f̂(x)

(or f̂x(t) and f̂y(t)) using Bayesian inference as

f̂(x) = E{f(x)|y} = E{E{f(x|y, ξ, l}} ≈ Bl,ξβ̂ (4.1)

where f̂(x) is the pointwise posterior mean, l is the unknown number of knots, ξ is the

set of unknown knot locations, and β̂ is the set of spline parameters to be estimated.

For each knot configuration pair, (l, ξ), there is a corresponding set of spline coefficients,

β = (β1, . . . , βk+2). Therefore, the inference about the unknown parameters has to be

done one at a time, i.e. the inference on β is made after inferencing on ξ and k. In the

setting of Bayesian analysis, this requires calculating the marginal posterior distribution of

each parameter of interest β, ξ and l from the joint posterior distribution p(β, ξ, l|y) which

models all the unknown parameters.
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4.1.1 Bayesian Model

The joint posterior probability distribution p(β, ξ, l|y) for the set of unknown parameters

ξ, l, β can be found as, [28],

p(β, ξ, l|y) ∝ p(y|β, ξ, l)p(β, ξ, l) (4.2)

As shown in [28], the joint posterior density (4.2) can be factored to yield the marginal

posterior distribution of the unknown spline parameters β, p(β|y), defined as

p(β|y) =
∫

p(β|ξ, l, y)p(ξ, l|y)dξdl (4.3)

The expression (4.3) shows that the posterior distribution p(β|y) is the mixture of the

conditional posterior distributions given (ξ, l) and y, where p(ξ, l|y) is a weighting function

for the different possible values of (ξ, l). The weights denote the posterior density of (ξ, l),

hence are combinations of evidence from data and the prior model.

In general, the integral in (4.3) is computed by both marginal and conditional simu-

lation, i.e. by first drawing (ξ, l) from its marginal posterior p(ξ, l|y) and then β from its

conditional posterior distribution p(β|ξ, l, y), given the drawn value (ξ, l). Following [1],

the prior distribution on β, π(β|ξ, l), is chosen as normal so that p(β|ξ, l, y) can be solved

analytically given (ξ, l), i.e. the prior distribution on β, π(β|ξ, l), is chosen as

π(β|ξ, l) = Nk+1(0, σ
2n(B′

ξ,lBξ,l)
−1)

In [1], the prior distribution π(β|ξ, l) is referred to as the conjugate Normal prior on β, while

in [96] as the unit-information prior because the amount of information in the prior, repre-
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sented in the covariance matrix, is equal to the amount of information in one observation,

as represented by Fisher information matrix.

For a full Bayesian formulation the prior distributions on the number of knots l and the

knot locations ξ are chosen as uniform as in [1] i.e.

ξ|l ∼ U [ξ1, ξl0] (4.4)

l ∼ U [1, l0] (4.5)

where l0 is the initial known number of knots, and {ξ1, . . . , ξl0} are the initial knot locations.

The uniform distribution on ξ is induced by the uniform prior over the standard k-simplex

by rescaling ξ to [a, b].

4.1.2 Bayesian Simulation: Reversible-Jump Metropolis-Hastings Markov

Chain MC

Drawing (ξ, l) from its marginal posterior p(ξ, l|y) ∝ p(y|ξ, l)p(ξ, l) is done by Markov chain

Monte Carlo simulations on the knot set (ξ, l). However, MCMC model search is required

over the collection of spaces of variable dimension, hence a trans-dimensional Markov chain

simulation for variable dimension model selection must be used. One such scheme is the

reversible jump Markov Chain MC [33] in which the Markov chain moves among candidates

of models.

Reversible-jump Metropolis-Hastings Markov Chain MC generates a Markov chain

(with the marginal posterior on (ξ, l) as the stationary distribution), that can ”jump” be-

tween models with parameter spaces of different dimensions, while retaining aperiodicity,

irreducibility, and detailed balance conditions necessary for MCMC convergence.

The moves are accepted with Metropolis-Hastings acceptance probability ρ, [31], [97],
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defined as

ρ = min{1, likelihood ratio× prior ratio× proposal ratio}

= min

{

1,
p(y|ξc, lc)
p(y|ξ, l) · πξ,l(ξ

c, lc)

πξ,l(ξ, l)
· q(ξ, l|ξ

c, lc)

q(ξc, lc|ξ, l)

}

(4.6)

where (ξ, l) and (ξc, lc) are the current state and the candidate state of the chain, respec-

tively, πξ,l(ξ, l) = πξ(ξ|l)πl(l), and q is the proposal density.

The proposal ratio involves calculations of probabilities of the possible addition, deletion

and relocation, respectively, according to [1] as:

bl = c ·min{1, p(l + 1)/p(l)} (4.7)

dl = c ·min{1, p(l − 1)/p(l)} (4.8)

ηl = 1− bl − dl (4.9)

where p(l) denotes the prior probability of having l number of knots.

The choice for the prior on β as a normal distribution, given the knot set (ξ, l), π(β|ξ, l),

allows for p(y|ξ, l) defined as

p(y|ξ, l) =
∫

p(y|β, ξ, l)π(β|ξ, l)dβξ. (4.10)

to be solved analytically. This further facilitates computation of the likelihood ratio

p(y|ξc, kc)/p(y|ξ, l) used in reversible-jump algorithm to determine whether or not to move,

e.g. in case of addition:

p(y|ξc, lc)
p(y|ξ, l) =

1√
n+ 1

(

yT{In − n(n+ 1)−1Bl,ξ(B
T
ξ,lBl,ξ)

−1BT
l,ξ}y

yT{In − n(n+ 1)−1Bl,ξc(B
T
l,ξcBl,ξc)−1BT

l,ξc}y
yT
)n/2

(4.11)
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Finally, the conditional posterior expectation of the unknown function f , E{f |ξ, l, y} = f̂ ,

can be evaluated for given values of xi, i = 1, . . . , n and given β̂. The conditional posterior

expectation for f(xi), for any xi, i = 1, . . . , n, can be obtained by averaging (4.1) over (ξ, k)

samples as

f̂ = E{f |ξ, l, y} =
n

n+ 1
Bl,ξ(B

T
l,ξBl,ξ)B

T
l,ξy ≈ Bl,ξβ̂ (4.12)

For the nonparametric regression model (2.7), in which the predictor variable is the

time t, the respective obtained functions are f̂x and f̂y. The function f̂ which describes the

trajectory in the x − y plane is reconstructed by combining f̂x and f̂y values obtained at

the identical time instants t.

4.1.3 The Bayesian Spline Regression Algorithm

Algorithm 2 Bayesian Regression Algorithm

1: Input data, initialize, set the number of MCMC iterations
2: Declare initial knot set ξ
3: for j = 1 : Nb, Nb = number of burn-in iterations: do
4: {Knot step which produces ξ(j)}
5: if addition-birth step then
6: do addition
7: else if deletion-death step then
8: do deletion
9: else if relocation step then
10: do relocation
11: else
12: Metropolis-Hastings step (4.6)
13: end if
14: Integrating the posterior marginal density p(y|ξ, l), where y = (y1, y2, . . . , yn).

15: Generate β
(j)
ξ

16: Obtain fitted values as f (j)(t) =
∑

bξ,l(t)β
(j)
ξ,h

17: Obtain fmax

18: end for



4 Bayesian Statistical Inference Approach to Trajectory Estimation 66

Steps 3-15 of the algorithm 2 produces ξ(j). In these steps, the Metropolis-Hastings

ratio (4.6) is evaluated as the proposal to add, delete or relocate the knots. The procedures

of addition, deletion and relocation are performed as follows.

Algorithm 3 addition-birth step. If in model Ml and proposing jump to model Ml+1.

1: Choose one knot, ξj∗ uniformly from the set of existing knots {ξ1, . . . , ξl}
2: Do sampling ξcand from a proposal distribution hB.
3: Generate the candidate new knot, ξcand, centered at ξj∗, with the known spread param-

eter τB and having density hB(ξcand|ξ, τB).
4: Calculate the probability of a jump from the model Mk to the model Mk+1 as

q(Ml+1|Ml) = bl
1

l

∑

i

hB(ξcand|ξi, τB)

where bl represents the probability of a new knot being added (prior birth probability).

bl = c ·min{1, p(l + 1)/p(l)}

and p(l) is the prior probability of having k number of knots, i.e the prior probability
on model l.

Algorithm 4 deletion-death step. If in model Ml and proposing a jump to model Ml−1.

1: Choose a knot to be removed uniformly from the set of existing knots {ξ1, . . . , ξl}.
2: Calculate the probability of a jump from the model Ml to the model Ml−1 as

q(Ml−1|Ml) = dl
1

l

where the death-probability, dl is defined as

dl = c ·min{1, p(l − 1)/p(l)}
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Algorithm 5 relocation step.

1: Choose one knot, ξj∗ uniformly from the set of existing knots {ξ1, . . . , ξl}. Now the
current sequence of knots is ξ = (ξ1, . . . , ξj∗−1, ξj∗, ξj∗+1, . . . , ξl).

2: Generate the candidate new knot location, ξcand, for the knot ξj∗, centered at ξj∗, with
the known spread parameter τR and having density hB(ξ

c|ξ, τR). The candidate new
sequence of knots is ξ = (ξ1, . . . , ξj∗−1, ξcand, ξj∗+1, . . . , ξl). The candidate new knot
location does not have to be the j∗-th element.

3: Choose a knot to be removed uniformly from the set of existing knots {ξ1, . . . , ξl}.
4: Calculate the probability of a jump from the model Ml to the model Ml−1 as

q(Ml−1|Ml) = dl
1

l

where the death-probability, dl is defined as

dl = c ·min{1, p(l − 1)/p(l)}

5: Compute the probability of jumping from the current model to the candidate model as

q(Mcand|Mcurr) = ηl
1

l
hR(ξcand|ξj∗) (4.13)

where the probability of relocation step, ηl, is defined as

ηl = 1− ll − dl
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4.1.4 Convergence of the Algorithm

The convergence of the algorithm depends on the balance equations for the reversible jump

Markov chain on the knot set (ξ, l). The balance is not influenced by heteroscedastic nature

of the measurement error because the error covariance σ is known, therefore the proof of

the validity of the balance equations is essentially the same as the one found in [1]. The

complete proof as it applies to our case is stated here for completeness.

The goal is to show that the following holds:

π(Ml)P (Ml−1|Ml) = π(Ml−1)P (Ml|Ml−1) (4.14)

where Ml denotes the model with l knots, Ml = {l, ξ1, . . . , ξl}, l = 1, 2, . . . , ξi ∈ (0, 1), and

π(Ml) represents the target distribution from which the samples are drawn. π(Ml) is also

the posterior distribution of Ml, and it is defined as

π(Ml) =
p(y|ξ1, . . . , ξl)p(ξ1, . . . , ξl, l)p(l)

p(y)
(4.15)

P (Ml−1|Ml) and P (Ml|Ml−1) are the probabilities of transition from the model Ml to model

Ml−1 and from Ml−1 to Ml, respectively, the so called Markov transition kernel.

Ml = {l, ξ1, . . . , ξj∗−1, ξj∗, ξj∗+1, . . . , ξl} (4.16)

Ml−1 = {l − 1, ξ1, . . . , ξj∗−1, ξj∗+1, . . . , ξl} (4.17)

Then the transition probabilities P (Ml|Ml−1) and P (Ml−1|Ml) can be now written as fol-
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lows:

P (Ml|Ml−1) = P (l|l − 1) · P (add ξj∗|l − 1) · {acceptance probability}

= bl−1
1

l − 1

∑

i

hB(ξj∗|ξi) min{1, B}

P (Ml−1|Ml) = P (l − 1|l) · P (delete ξj∗|l) · {acceptance probability}

= dl
1

l
min{1, D}

where

B =
π(Ml−1)

π(Ml)

bl−1
1

l−1

∑

i hB(ξj∗|ξi)
dl

1
l

D =
π(Ml)

π(Ml−1)

dl
1
l

bl−1
1

l−1

∑

i hB(ξj∗|ξi)
=

1

B

If B < 1 then αd = B and αb = 1. In this case the left-hand side of the Equation (4.14)

can be rewritten as

π(Ml)P (Ml−1|Ml) = π(Ml)dl
1

l
B

= π(Ml)dl
1

l
=

π(Ml−1)

π(Ml)

bl−1
1

l−1

∑

i hB(ξj∗|ξi)
dl

1
l

= π(Ml−1)bl−1
1

l − 1

∑

i

hB(ξj∗|ξi)

= π(Ml−1)P (Ml|Ml−1)

Also for the completeness, the standard Metropolis-Hastings step is presented below.
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4.1.5 Metropolis-Hastings

The Metropolis-Hastings algorithm associated with the target density f and the conditional

density q produces a Markov chain (X(t)) through the following transition:

Given x(t),

• Generate Yt ∼ q(y|x(t)).

• Take

X(t+1) =

{

Yt with probability ρ(x(t), Yt)

x(t) with probability 1− ρ(x(t), Yt)
(4.18)

where

ρ(x, y) = min

{

f(y)

f(x)

q(x|y)
q(y|x) , 1

}

The distribution q is called the proposal distribution and the probability ρ(x, y) theMetropolis-

Hastings acceptance probability.

4.2 Maneuvers in x− y Plane When x is Decreasing

Trajectory estimation during backward turning maneuvers of ships in the x − y plane

involves descending values in the x-coordinate such as illustrated in Fig. 4.1, and hence

cannot be directly accommodated for in standard regression procedures. Since the data

arrives in batches a direct and simplest remedy for this situation is to transform the data

received. One such transformation is a rotation of the entire data set with respect to

the origin in such a way as to insure strictly increasing ordering in the values of the x-
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components of the measurements received. Needless to say, such a deterministic rotation

of data does not affect any of the statistical characteristics of the data and is essentially

performed as a rotation of a ”rigid body composed of all measurement points together with

their associated areas of uncertainty”.

x

y

Fig. 4.1 Turning maneuver.

Since all the measurements with associated time tags are available in a batch, a temporal

alignment allows to discern when the position in x begins to decrease. Using any of the

measurements with a decreased value in x it is possible to determine an angle of rotation of

the coordinate system needed to secure a strictly increasing ordering of the x -components

of the measurement points. The angle of rotation can be obtained by vector algebra, see

Fig. 4.2, by first computing the vector ~v

~v = (~a+~b)/2− ~c
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α

x

y

w

a

b

v

c

Fig. 4.2 The rotation of data.

Assuming that ~v is normalized to ||~v|| = 1 and that ~w, with ||~w|| = 1 represents the

unit basis vector of the w axis, perpendicular to ~v, the desired angle of rotation is then

determined from the vector product < ~x, ~w >= cosα, where ||~x|| is the unit basis vector

of the axis x.
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Chapter 5

A Genetic Algorithm for Trajectory

Estimation

To facilitate the interpretation of the simulation results, the concept of a batch optimization

procedure, which employs a genetic algorithm (GA) and the least square (LS) criterion,

is presented in this Chapter. The GA based method is conceptually similar to the one

described in [2]. However, the method described here uses a basic GA in the optimization

procedure instead of a hybrid one. Also, it does not account for the non-sensor information,

i.e. it does not use track templates.

5.1 Genetic Algorithms

Genetic algorithms are stochastic algorithms for global optimization inspired by the mecha-

nisms of natural selection and genetics [98]. When searching the space of optimal candidate

solutions with a GA, only a small fraction of candidates (i.e. chromosomes) need to be

examined. The likely optimal candidates are obtained using the basic GA operators such as
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selection, crossover and mutation [98]. The chromosomes in a GA population typically take

the form of binary bit strings. Each chromosome can be thought of as a point in the search

space of candidate solutions. The GA processes populations of chromosomes, successfully

replacing one such population with another. A fitness function assigns a score (fitness) to

each chromosome in the current population. The fitness of a chromosome depends on how

well the chromosome solves the problem at hand.

5.2 Trajectory Estimation Using a GA

With the goal of developing a trajectory estimation algorithm using a GA, the trajectory

representation is considered the same as the one presented in [2]. A trajectory is represented

by a collection of parametrized line segments, as ships usually navigate between waypoints

along straight lines. Different states along a trajectory are represented by chromosomes

made up from contacts ordered in time. Each contact represents a gene in a track chromo-

some. A gene may have two possible values, 0 or 1. The value 1 indicates the beginning of

a track and the beginning of a line segment in the track. Each track is assumed to contain

at least one segment. Each segment is assumed to contain at least four contacts. Figure 5.1

shows a possible chromosome representation for a twenty-contact trajectory consisting of

three segments.

Fig. 5.1 Chromosome representation of a three-segment trajectory.

The initial population is randomly generated. To improve the search space, two addi-

tional track chromosomes are generated and added to the initial population. The first one
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contains only one segment while the other is obtained by calculating and comparing the

sequential χ2 best fit of contacts ordered in time. If the new χ2 fit (i.e. one that includes

the new contact in the sequence) differs in excess of 20% from the previous χ2 fit, then a

new segment is created.

The fitness function for each trajectory chromosome is calculated while assuming that

the probability distribution for the contact report data is Gaussian, which allows for a

least-square fit of the contacts [99]. Assuming that the ground-truth trajectory model is a

collection of parameterized line segments, with parameters αq and βq, the least-square fit

of the contact report data for each trajectory is obtained as

FITls =

ns
∑

s=1

(

χ2

ν

)

s

(5.1)

where s is the segment index, ns is the total number of segments, and

χ2

ν
=

1

2n− 4

{

∑

q=x,y

n
∑

i

(

qi − (αq + βqti)

σqi

)2}

(5.2)

where n is the number of contacts in a segment, q characterizes the 2-D measured, geo-

graphical position of the contact (x-axis for longitude, y-axis for latitude), ti is the time

tag for the ith contact, and αq and βq are the parameters that define the line segment in

the slope-intercept form. It is the αq and βq that are sought by way of global optimization.

The values σqi represent the maximum measurement error projections of the ellipse contact

report i in the x− y plane, see Fig. (2.1), i.e.,

σxi
= max{ai sin θi, bi cos θi} (5.3)

σyi = max{ai cos θi, bi sin θi} (5.4)
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where ai and bi are the lengths of the semi-major and semi-minor axes of the ellipse,

respectively, and θi is the ellipse orientation angle for the i-th report.

As in [2], the GA algorithm is exited when the state with the lowest cost remains the

same for ten generations in a row. Then, the parameters αq and βq can be obtained from

the ”fittest” chromosome, i.e. from the one with the minimal cost, as

αq =

∑n
i

t2
i

σ2

i

∑n
i

qi
σ2

i

−∑n
i

ti
σ2

i

∑n
i

qiti
σ2

i

∑n
i

t2
i

σ2

i

∑n
i

1
σ2

i

−
(

∑n
i

ti
σ2

i

)2 (5.5)

βq =

∑n
i

qi
σ2

i

− αq

∑n
i

1
σ2

i
∑n

i
ti
σ2

i

(5.6)

In (5.5) and (5.6), the term σqi is replaced by σi for simplicity. The maximum measurement

error projections, σqi, are the approximations of the real measurement error values used to

simplify the calculations and decouple the errors in (5.5) and (5.6).
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Chapter 6

Summary of Simulation Results for

Trajectory Estimation Algorithms

This Chapter provides the results of the performance evaluation of the presented trajectory

algorithms in the statistical sense. It includes the sensitivity analysis of the algorithms’

parameters with respect to perturbations in parameters, and the discussion of the obtained

results.

6.1 Scenario

For the purpose of evaluation of the performance of the ship trajectory estimation algo-

rithms the SimTrack application [100] is developed to simulate the ground truth and the

multi-sensor environment. The ground truth trajectories are generated so as to represent

actual ships’ routes. The scenario produces random ship trajectories of random lengths

(in terms of time) in a 200NM×200NM surveillance area, with the length of a trajectory

being uniformly distributed on the interval of [6, 12] hours. For the Monte Carlo (MC) sim-
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ulations, the default value for the maximum number of segments, i.e. ”legs”, is assumed

to be three. This value can be changed. The time-on-leg (TOL) is considered uniformly

distributed on the interval of [2, 6] hours. The default constant speed between waypoints

is assumed to be V = 12 knots. This value can be changed as well.

The application includes a ”generic” sensor that produces a positional ellipse contact

report at a random sampling rate; the rate is chosen randomly from the uniform distribution

on [5, 60] minutes interval. The measurement is the center of the error ellipse, with the

lengths of semi-major and the semi-minor axes being uniformly distributed on [1, 2] nm

and [3, 5] nm intervals, respectively. The measurement ellipse has a bearing θ, which is

measured in degrees clockwise from the true North of the semi-major axis, and is randomly

chosen from uniform distribution on the interval [0o, 360o]. This type of measurement and

the measurement error are chosen to adequately depict the multisensor environment.

Fig. 6.1 Scenario specifications.
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6.2 Choice of Performance Measure

Estimated trajectories using all presented algorithms are data dependent, hence their per-

formance is random and is evaluated in a statistical sense using Monte Carlo simulations.

The selection and proper interpretation of the metrics used for measuring the performance

and determining the characteristics of the each estimation algorithm is of great importance

for the evaluation.

In this thesis the usual measure of estimation error, the root mean squares error

(RMSE), is replaced by the average Euclidean error (AEE) as suggested in [101]. Hav-

ing clear physical interpretation and paying less attention to large errors than the RMSE,

it proves to be better suited for the positional estimation than the RMSE [101]. The AEE

is defined as

AEE(x̂) =
1

M

M
∑

i=1

‖x̃i‖

where estimatee (i.e. the ground truth position), estimate, and estimation error are denoted

by x, x̂, and x̃ = x− x̂, respectively. The term Euclidean error stems from the concept of

Euclidean distance or Euclidean norm. Subscript i stands for quantities pertaining to the

i-th run of a Monte Carlo simulation consisting of a total of M independent runs, and thus

x̃i and x̃j are independent for i 6= j.

In the next Section, the results pertaining to the IOU-KF-RTSS algorithm are presented.

6.3 IOU-KF-RTSS Algorithm Performance Evaluation

The default IOU model parameters were chosen so as to capture ships’ average dynamics,

i.e. the average speed, V = 12 knots and the average time on leg TOL = 4 hours. The
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parameters are consequently obtained from (3.34) and (3.35) as β = 1/TOL = 0.25 and

σ =
√
βV = 6.

To evaluate trajectory estimation performance of the IOU-KF-RTSS algorithm several

scenarios were considered and the corresponding simulation results were obtained. First,

for a single ground truth 3-segment trajectory, the average Euclidean errors (AEEs) and

the associated standard deviations (STDs) were obtained for the track models produced

by the tracker. MC simulations included 100 measurement noise realizations (i.e. different

ellipse locations, the same ground truth and the same sizes and orientations of ellipses).

The AEEs and the associated STDs are shown in Figures 6.2. It can be seen that the

tracker performs well with an average error value of 0.7 NM, a value that is smaller than

the minimum magnitude of semi-minor axis of the area of uncertainty, i.e. 1 NM. The first

peak in the error plot is due to the track initiation process.
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Fig. 6.2 IOU-KF-RTSS: The AEEs and the STDs of produced tracks for
a 3-segment trajectory.

The analysis was extended to 1000 different ground truth trajectories which were gen-
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erated by the SimTrack. For each ground truth track it was assumed that sensors report

different number of measurements at different random rates. To be able to evaluate si-

multaneously modeling of 1000 ground truth trajectories of different lengths with different

numbers of contacts per trajectory, the AEEs were averaged along each trajectory with

respect to the number of contacts per trajectory. The AEEs along each trajectory were

calculated again for 100 measurement noise realizations, at the times of contacts. The

histograms in Figure 6.3 present the number of trajectories with corresponding errors and

standard deviations for 1000 produced trajectories. The error spread is consistent across

tracks, i.e. 99% of errors have the values between 0.5− 1.0 NM.

Fig. 6.3 IOU-KF-RTSS: Averaged AEEs and STDs for estimated trajec-
tories of 1000 ground truth tracks of different lengths and different number of
contacts per track.

Furthermore, trajectory estimation performance was investigated in the vicinity of a

turning maneuver. For this purpose, 1000 two-segment ground truth trajectories were
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generated and the AEEs and the STDs of the estimated trajectories in the vicinity of the

”leg” change point were calculated. The calculations included at least one measurement

before and after the change point. The evaluation time interval was then chosen to be 15

minutes so as to capture the complete turning maneuver of a ship moving at the average

speed of 12 knots. The errors and the average standard deviations per track are presented

in Figure 6.4. The tracker models the transition from one leg to another rather accurately

Fig. 6.4 IOU: Averaged AEEs and STDs of 1000 ground truth tracks in
the vicinity of turning maneuver.

as most of the errors have approximately the value between 0.5−2.0 NM with the associated

average standard deviation of 0.02− 0.04 NM.
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6.4 Sensitivity Analysis in the IOU Parameters

The sensitivity analysis is performed by two different simulations which both included 50

ground truth trajectories and 100 measurement noise realizations. First, for a ship moving

through water with constant speed V = 12 knots, the σ parameter was varied between [6, 20]

while the parameter β was varied between [0.25, 1]. The obtained average Euclidean error

values are shown in Fig. 6.5. The varying intervals correspond to tailoring the algorithm

to a ship moving with speeds between [12, 20] knots as depicted in Fig. 6.6. The AAE
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Fig. 6.5 IOU: AEEs for varying IOU parameters σ and β.

values of approximately 0.6 NM indicate no deterioration of performance, see Fig.6.3.

The second approach to sensitivity analysis of the proposed algorithm was to investigate

the its performance for the default values of the IOU process parameters, (i.e. β = 0.25 and
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Fig. 6.6 IOU-KF-RTSS: AEEs for varying IOU parameters σ and βin
terms of TOL and V .

σ = 6 and corresponding to V = 12 knots), while tracking a ship which travels with speed

V = 20 knots, the average speed of a cruising ship. The AEE plots in Fig. 6.7 and Fig. 6.8,

respectively, indicate slightly deteriorated performance with respect to the situation when

tracking ships travelling at V = 12kn. Nevertheless, the AEEs have values of ∝ 1 NM

which is very small. The choice of β controls the rate of the speed change. Therefore, a

skilled choice of β is necessary if a better trajectory estimation accuracy is required.
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Fig. 6.7 IOU-KF-RTSS: AEEs for tracking ships traveling with speed,
V = 20knots, for β = 0.25 and σ = 6.
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Fig. 6.8 IOU-KF-RTSS: STDs for tracking ships traveling with speed,
V = 20knots, for β = 0.25 and σ = 6.
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6.5 IOU-KF-RTSS Algorithm Comparison with a Genetic

Algorithm (GA) for Trajectory Estimation

A comparison in trajectory estimation performance between IOU-KF-RTSS and GA-based

algorithms was performed for several scenarios for which the corresponding simulation re-

sults are obtained. The first set of results pertains to a single ground truth 3-segment

trajectory. The average Euclidean errors (AEEs) and the associated standard deviations

(STDs) are obtained for the estimated trajectories using both algorithms. The MC simula-

Fig. 6.9 IOU-KF-RTSS vs. GA: The difference of the AEEs and the
STDs of produced trajectories for a 3-segment ground truth trajectory.

tions again included 100 measurement noise realizations. The AEE and the associated STD

are shown in Figures 6.9, and suggests a slight superiority of the IOU based method over

the GA based one, which is manifested by positive difference between the AEEs of both

algorithms. The exception is at the beginning of the track may be attributed to the track
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initiation process in the IOU based method. The peaks in the error plot coincide with the

change points along the trajectory (i.e. the beginning of different legs of the trajectory).

Next, the analysis is extended to 1000 different ground truth trajectories generated by

SimTrack. Again, for each ground truth track it is assumed that sensors report different

number of measurements at different random rates. As in Section 6.3, to be able to si-

multaneously evaluate the estimation of 1000 trajectories of different lengths with different

numbers of contacts per track, the AEEs were averaged along each trajectory with respect

to the number of contacts received for this trajectory. The AEEs along each trajectory were

calculated again for 100 measurement noise realizations at the times of contacts. The his-
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Fig. 6.10 IOU-KF-RTSS vs. GA: Averaged AEEs for 1000 ground truth
tracks of different lengths and different number of contacts per track.

tograms in Fig. 6.10 and Fig. 6.11 present number of trajectories with corresponding error

and standard deviation values for each algorithm. The error spread for the IOU based

algorithm is more consistent across tracks. Also, the errors and the standard deviations
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Fig. 6.11 IOU-KF-RTSS vs. GA: Averaged STDs for 1000 ground truth
tracks of different lengths and different number of contacts per trajectory.

have smaller values for the IOU based algorithm, i.e. AEE ≈ 0.5 NM.

The same conditions as in Section 6.3 apply in the comparison of two algorithms’ perfor-

mance in the vicinity of a turning maneuver. The number of trajectories and corresponding

average errors and the average standard deviations per track are presented in Fig. 6.12 and

Fig. 6.13, respectively. The IOU-based method estimates the transition from one leg to

another rather accurately as most of the errors have approximately the value between

0.5 − 2.0 NM with the associated average standard deviation of 0.02 − 0.04 NM. These

results are better than the corresponding ones for the GA based algorithm.
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Fig. 6.12 IOU-KF-RTSS vs. GA: Averaged AEEs of a 1000 ground
truth tracks in the vicinity of turning maneuver.
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Fig. 6.13 IOU-KF-RTSS vs. GA: Averaged STDs for a 1000 ground
truth tracks in the vicinity of turning maneuver.
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6.6 Performance Evaluation of the Bayesian Regression Spline

Algorithm

Table 6.1 shows the default prior parameters values for the Bayesian regression spline

algorithm:

parameter value
number of burn-in iterations 100 or 0
number of MCMC iterations 300
initial number of knots 3
τR parameter for knot proposal distribution 50
reversible jump constant c 0.4
number of grid points 500

Table 6.1 Prior parameters for the Bayesian regression spline algorithm.

Similar to the IOU-KF-RTSS algorithm performance evaluation, each simulation for the

Bayesian regression spline algorithm included 100 measurement noise realizations. However,

when evaluating multiple trajectories of different number of segments and different number

contact per trajectory, the total number of trajectories for all simulations had to be reduced

from 1000 to 50 due to the computational requirements of the Bayesian spline regression

algorithm.

6.6.1 Regression on x− y

A single 3-segment ground-truth trajectory from which 14 contacts were obtained by the

sensors was considered in the first set of simulation experiments. The results obtained are

compared with those obtained in the same simulation for the IOU-KF-RTSS algorithm

and the GA-based trajectory estimation. The AEEs and the STDs for all three algorithms

are summarized in Figures 6.14 and 6.15. In the Bayesian regression spline algorithm, the

regression was performed in x−y plane, hence the complete information about measurement
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uncertainty was used. The total errors across tracks show better trajectory estimation

performance of both proposed algorithms, the BRS(x,y) and the IOU-KF-RTSS algorithm,

than of the GA-based one. Although the difference in total error appears rather small, a

better performance of the trajectory estimation algorithm can be cruicial in surveillance

activities such as search and rescue.
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Fig. 6.14 BRS, (x,y): AEE for a single 3-segment trajectory with 14 con-
tacts versus IOU-KF-RTSS and GA.

To investigate the overall performance of the Bayesian regression spline algorithm, a

simulation for 50 trajectories of different lengths, 3 − 7 segments and different number of

contacts per trajectory was performed next.

The histograms in Fig. 6.16 and 6.17 show the number of trajectories with corresponding

AEEs and STDs obtained by this method. Most of the AEE values are close to 1 NM, which

is similar to the performance of the IOU-KF-RTSS algorithm. This was expected since the

regression model in the algorithm completely accounted for the measurement uncertainty.
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Fig. 6.15 BRS, (x,y): STD for a single 3-segment trajectory with 14 con-
tacts versus IOU-KF-RTSS and GA.
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Fig. 6.16 BRS, (x,y): Averaged AEEs for a 50 ground truth tracks.
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Fig. 6.17 BRS, (x,y): Averaged STDs for a 50 ground truth tracks.

6.6.2 Regression on t− x and t− y

The regression in Bayesian regression spline algorithm was carried out with respect to

t as well. In this case, the regression model only partially accounted for measurement

uncertainty by using the measurement error projections. The values with the same time

tag of two resulting splines, f̂x and f̂y, were then combined to obtain the resulting spline

functionf̂ in the x − y plane. The results of the numerical simulations in Fig. 6.18 show

a performance similar to those of the GA-based trajectory estimation algorithm (AEEs

≈ 3 − 5 NM) since both algorithms use measurement error projection in calculating the

estimated trajectory. The obtained AEE values are also larger than those obtained when

the regression was performed on x− y.
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Fig. 6.18 BRS from (t, x) and (t, y): Averaged AEEs and STDs for 50
ground truth tracks obtained by regression with respect to t.

6.7 Sensitivity Analysis in Parameters of the Bayesian

Regression Spline Algorithm

The sensitivity to the number of contacts was examined for a 7-segment trajectory for

which 14, 26, 32, or 40 contacts were obtained. The results are shown in Fig. 6.19 and

Fig. 6.20 and they indicate that the Bayesian regression spline algorithm is sensitive to

the number of measurements available for fitting. The values of both AEE and STD

show that the performance becomes poorer as the number of contact decreases. The

influence of the total number of measurements n on the accuracy of produced trajectory

of the Bayesian regression spline algorithm was further investigated in comparison with

the IOU-KF-RTSS and the GA-based algorithm. A 7-segment ground truth trajectory

was generated from which first 14, and then 32 contacts, were obtained. The obtained



6 Summary of Simulation Results for Trajectory Estimation Algorithms 95

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

# contacts

AE
E 

[N
M

]

 

 

#14, E
t
=1.2NM

#32, E
t
=1NM

#40, E
t
=0.6NM

#26, E
t
=1.5NM

Fig. 6.19 BRS, (x,y): AEEs for 7-segment ground-truth trajectory with
different number of contacts per trajectory.
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Fig. 6.20 BRS, (x,y): STDs for 7-segment ground-truth trajectory with
different number of contacts per trajectory.
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values of the AEE shown in Fig. 6.21 suggest robustness of the IOU-KF-RTSS algorithm

with respect to the total number of measurements, while both the GA-based and Bayesian

regression spline algorithms exhibit larger errors. However, the total error across produced

trajectory for both proposed algorithms, the BRS(x,y) and the IOU-KF-RTSS, are smaller

than of the one obtained when using the GA-based. Also, it is confirmed that the accuracy

of produced trajectories by the BRS(x,y) increases with the increase of the total number

of measurements in a batch.
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Fig. 6.21 AEEs for the BRS(x,y) vs. IOU-KF-RTSS and GA-based for a
7-segment ground truth trajectory for n = 14 and n = 32.

Finally, a sensitivity analysis was performed with respect to change in the initial num-

ber of knots, l, as a prior parameter of the Bayesian regression spline algorithm. This was

investigated for ten 10-segments ground truth trajectory with 26 contact and 100 measure-

ment noise realizations. The initial number of knots l0 was set to be chosen randomly from

a uniform distribution l0 ∼ U [2, 10]. The results shown in Dig. 6.22 that the Bayesian
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regression spline algorithm’s performance remains unchanged.
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Fig. 6.22 AEEs for the BRS(x,y) algorithm for different initial number of
knots, iknot = 3 and iknot = 7, for ten 10-segment ground truth trajectories.

6.8 On the Computational Note

The implementation of the IOU-KF-RTSS (both batch and recursive implementation) is

much faster than the current implementation of the Bayesian regression spline algorithm.

This is also due to the MCMC computations in the Bayesian regression spline algorithm.

Using 1.3GHz Intel Core Duo processor with 3 GB of RAM, it takes 0.21 s for the IOU-

KF-RTSS to estimate a single trajectory of a random length, while the same task takes the

Bayesian regression spline 61.3 s.
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Chapter 7

Concluding Remarks

7.1 General Summary

Due to large differences in their temporal resolution, multi-level security and management

processing, the contact report data used in compiling the picture of activities in the mar-

itime domain are usually available for batch processing. The data obtained from dissimilar

sources have large measurement errors characterized by normal probability distributions

with non-constant and non-diagonal covariance matrices (i.e. the heteroscedastic and corre-

lated measurement errors). Therefore, the method used for processing this type of contact

report data will significantly influence the accuracy of the estimated trajectories. More

accurate representation of ship trajectories will support decision processes in the maritime

domain, and consequently increase the maritime domain awareness.

This thesis presented two batch single ship trajectory estimation algorithms using

Baysian approaches to estimation which assume no knowledge about the ship motion model,

while assuming standard ship maneuvers: (1) a stochastic linear filtering algorithm which

employs the Integrated Ornstein-Uhlenbeck processes in conjunction with Kalman filter-
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ing and Rauch-Tung-Striebel fixed optimal smoothing, and (2) a curve fitting algorithm

which employs Bayesian statistical inference to perform nonparametric regression. The

description of development, the implementation and the assessment of the first presented

algorithm, the linear stochastic filtering algorithm which employs the IOU process as the

motion model, is first presented. In the implementation of the second algorithm, the tra-

jectory is considered to be in the form of a cubic spline with an unknown number of knots

in two-dimensional Euclidean plane of geographical coordinates: the longitude and the lat-

itude. The function estimate is determined from the data which are assumed Gaussian

distributed. A fully Bayesian approach is adopted by defining the prior distributions on

all unknown parameters: the spline coefficients, the number and the locations of knots.

The calculation of the posterior distributions is performed using Markov Chain Monte

Carlo (MCMC) and reversible jump Markov sampling due to the varying dimensions of

subspaces where the searches are performed. The algorithm developed here is inspired by

the algorithm found in Di Matteo et al. [1]. However, the work of DiMatteo et al. fails to

accommodate explicitly for heteroscedastic and correlated errors as well as for decreasing

values of predictor variable which occurs in backwards turning maneuvers. Additionally,

Bayesian inference is performed for nonparametric regression models with two different

choices of response and predictor variables.

For the purpose of the evaluation of trajectory estimation algorithms an application

SimTrack [100] was developed to simulate the ground truth in a dissimilar multi-sensor

environment. The performance evaluation of the trajectory estimation procedures was

carried out for several scenarios. It also included the sensitivity analysis with respect to

perturbation in algorithm’s parameters. The comparison of the novel algorithms with a

GA-based algorithm for trajectory estimation was also performed.
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7.2 Conclusions

The following conclusions are drawn from this study:

• In the absence of any knowledge about the motion model, the proposed batch stochas-

tic optimization algorithm based on spline fitting proves to be an efficient method for

trajectory estimation in application to ship track estimation.

• The proposed algorithm is sensitive to the total number of contacts in a batch and

obviously performs better when this number is large. Bootstrap techniques could be

used to improve this situation.

• When employed in the x−y plane, the Bayesian regression spline algorithm performs

better than the GA based algorithm because it completely accounts for the specifics

of the uncertainty of measurements. It has similar performance to the GA-based

algorithm when using the regression model on (t, x) and (t, y), since they both use

measurement errors’ projections.

• The IOU based algorithm exhibits robustness with respect to number of measure-

ments and all types of ground truth trajectories. For improved accuracy, a skilled

choice of parameters is necessary.

• The IOU-KF-RTSS algorithm has smaller execution time than the Bayesian regression

algorithm in producing trajectories.

• Both proposed algorithms outperform the GA-based data fitting algorithm.

• Extensive simulation studies showed that both proposed algorithms represent com-

petitive methodologies for trajectory estimation in maritime surveillance, especially
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in the absence of knowledge of the motion models and having contacts with large

heteroscedastic and correlated errors.

• In light of the above, it can be concluded that modeling and incorporating the mea-

surement uncertainty plays an important role in the trajectory estimation algorithm

by affecting the accuracy of the estimated trajectory. Any approximation of the mea-

surement error degrades the accuracy of the produced trajectory especially in target

environments where the availability of radar measurements is reduced.

Although primarily developed for maritime surveillance applications, both presented algo-

rithms in this thesis apply to a broader class of parameter estimation algorithms such as

those used in finance (e.g. estimation of integrated volatility in stochastic volatility models

and biostatistics (e.g. derivative tracking such as tracking AIDS and other viral marker

data). Trajectory estimation by means of regression splines in R
1 may be of interest as

a way to specify behavioral patterns or relationships between locations observed at adja-

cent times, as a record of the history of past locations, or to improve modeling in other

applications than ship tracking.

7.3 Future Research Avenues

A direct extension of this research is the problem of combining ellipse contact reports which

contain the same time tag. Furthermore, for slow maneuvering vessels, the Interacting

Multiple IOU model would accommodate for more accurate trajectory estimation of ships

in that class. The Bayesian regression spline method can be extended by using the empirical

Bayesian inference in nonparametric regression modeling in which the prior parameters can

be learnt from the data. The problem of tracking in maritime surveillance naturally extends

to problem of multiple ship trajectory estimation, where the cross-entropy information
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could be used for various data association procedures and the ellipse combination. A

reliable frequency determination/classification and ship identification from the ESM or

ELINT measurements together with tracking is still an open problem especially in difficult

maritime scenarios, such as illegal fishing or contraband activities.
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Appendix A

The Relationship of the Error Ellipse

Measurement to a Gaussian Bivariate

Distribution

The information about the measurement i obtained at known time ti is in the form of

a vector zi =

[

xi yi ai bi θi

]

, where [xiyi]
′ represents 2-D measured geographical

position (x-axis for longitude, y-axis for latitude), and ai, bi and θi are the parameters

that characterize the geometry of the elliptical area of uncertainty associated with the

position. The area of uncertainty (AOU) is defined as the minimum area having a specified

probability of containing the measurement, see Fig. A.1.

Hence, each ellipse contact report is defined by the center position, the angle of orienta-

tion, magnitudes of the semi-axes, and the probability level. Assuming that the positional

measurements are normally distributed, Gaussian statistics can be used to characterize the

measurement error as well as assign the specified probability level to its area of uncertainty.

The computation of the covariance matrix from the parameters that characterize the ellipse



A The Relationship of the Error Ellipse Measurement to a Gaussian Bivariate
Distribution 104

Fig. A.1 The uncertainty ellipse with 96% of probability confinement region

geometry is performed as follows. The details can be found in [102] and [103].

Let y =

[

y1 y2

]′

be a Gaussian random vector. The joint probability distribution of

y is defined as

p(y) = k exp{−1

2
(y − µ)′B(y − µ)} (A.1)

where B ∈ R2×2, µ ∈ R2, and k is determined by the normalization procedure of the total

probability to one.

The vector µ =

[

µ1 µ2

]′

represents the mean of the distribution, i.e.,

µ = E{y} =

∫ +∞

−∞

∫ +∞

−∞

yp(y)dy1dy2 (A.2)
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The vector µ also represents the centre of symmetry of the distribution such that

∫ +∞

−∞

∫ +∞

−∞

(y− µ)p(y)dy1dy2 = 0 (A.3)

The covariance matrix of the joint distribution p(y) is defined as, [102]

R(y) = E{(y − µ)(y − µ)′} = E{(yi − µi)(yj − µj)} (A.4)

where the element rii(y) = E{(yi − µi)}2 of the matrix R(y) represents the variance of yi,

and the off-diagonal elements rij = E{(yi − µi)(yj − µj)}, for i 6= j, is the covariance of

the elements yi and yj. Since E{(yi−µi)(yj −µj)} = E{(yj −µj)(yi−µi)}, the covariance

matrix can be rewritten as

R = B−1 = E
{







(y1 − µ1)
2 (y1 − µ1)(y2 − µ2)

(y2 − µ2)(y1 − µ1) (y2 − µ2)
2







}

(A.5)

=







E{(y1 − µ1)
2} E{(y1 − µ1)(y2 − µ2)}

E{(y2 − µ2)(y1 − µ1)} E{(y2 − µ2)
2}







=







σ11 σ12

σ21 σ22






=







σ11 σ12

σ12 σ22







where the use has been made of the symmetry property of the matrix R (i.e. σ12 = σ21).

The matrix B then can be obtained by inversion of R matrix as

B = R−1 =
1

σ2
1σ

2
2 − σ2

12







σ2
2 −σ12

−σ12 σ2
1






(A.6)
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Let the reduced variables ui be

ui =
yi − µi

σi
, i = 1, 2 (A.7)

such that var{u1} = var{u2} = 1 so that the correlation coefficient, ρ, can be written as

ρ =
σ12

σ1σ2
= cov{u1, u2} (A.8)

The probability density for two joint variables u1 and u2 can now be rewritten as

p(u1, u2) = k exp(−1

2
u′Bu) (A.9)

where B is defined as

B =
1

1− ρ2







1 −ρ

−ρ 1






(A.10)

The lines of constant probability density of (A.9) are determined from the following re-

quirement

1

1− ρ2
(u2

1 + u2
2 − 2u1u2ρ) = c (A.11)

As shown in [104], for c = 1, (A.11) becomes,

(y1 − µ1)
2

σ2
1

− 2ρ
y1 − µ1

σ1

y2 − µ2

σ2

+
(y2 − µ2)

2

σ2
2

= 1− ρ2 (A.12)
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which is equivalent to

1

1− ρ2
(y1 − µ1)

2

σ2
1

− 2ρ
y1 − µ1

σ1

y2 − µ2

σ2
+

(y2 − µ2)
2

σ2
2

= (
z1
σz1

)2 + (
z2
σz2

)2 = χ2 (A.13)

where z1 and z2 are two independent random variables χ2 distributed with two degrees

of freedom. The equation (A.13) describes the ellipse centered at (µ1, µ2). The semi-axes

of the ellipse, a and b, have an angle θ with respect to y1, y2 axes. The orientation of

the ellipse, i.e. the angle θ and the magnitudes of the semi-axes, a and b can be derived

from (A.12) using the properties of conic sections:

tan 2θ =
2ρσ1σ2

σ2
1 − σ2

2

(A.14)

a2 =
σ2
1σ

2
2(1− ρ2)

σ2
2 cos

2 θ − 2ρσ1σ2 sin θ cos θ + σ2
1 sin

2 θ
(A.15)

b2 =
σ2
1σ

2
2(1− ρ2)

σ2
2 sin

2 θ − 2ρσ1σ2 sin θ cos θ + σ2
1 cos

2 θ
(A.16)

The ellipse with the magnitudes of semi-major axis, a, semi-minor axis, b, and the orien-

tation, θ, characterize the ellipse of covariance of the bivariate Gaussian distribution.

By solving for σ1, σ2, and ρ, the covariance matrix R is obtained as

R =







cos θ − sin θ

sin θ cos θ













a2/2 0

0 b2/2













cos θ sin θ

− sin θ cos θ






(A.17)
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The Equation (A.13) in matrix form can be rewritten as

(y − µ)′R−1(y − µ) = χ2 (A.18)

where y is a Gaussian random vector, µ is its mean and R is its covariance matrix. The

chi-squared value, χ2, with two degrees of freedom corresponds to the probability that the

observation falls within the ellipse described by (A.18).

Also, there is a relationship between the parameters of the ellipse geometry and the

eigenvalues and eigenvectors of the covariance matrix R, i.e.

|R− λI| = 0 (A.19)

where I is the identity matrix. From (A.5) and (A.19), and taking the determinant yields

λ2 − λ(σ2
1 + σ2

2) + σ2
1σ

2
2 − σ2

12 = 0 (A.20)

From (A.20), the eigen values are obtained as

λ1,2 =
σ1 + σ2 ±

√

(σ2
1 + σ2

2)
2 − 4(σ2

1σ
2
2 − σ2

12)

2
(A.21)

The magnitudes of the semi-axes are obtained as

a =
√

χ2λ1 (A.22)

b =
√

χ2λ2 (A.23)

where the two degrees of freedom χ2 value corresponds to the specified probability P . The
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corresponding χ2 value with respect to a specified P can be found in the Table A, [102].

In this thesis the probability level of the ellipse contact report is assumed to be P = 0.96.

This value corresponds to the probability area under the bivariate Gaussian distribution

defined as

P (|y− a| ≤ 2σ)

hence the name 2-sigma ellipse and the factor 1/2 in the calculations of the matrix R.

χ2 P
2.30 0.683
4.61 0.90
6.17 0.954
9.21 0.99
11.9 0.9923
18.4 0.9999

Table A.1 Table of χ2 distribution percentage points.

A.1 The Flat-Earth Approximation

Since the error ellipses are small in size as compared with the size of the surveillance region,

a local flat earth approximation in the plane tangent to the measured position, (xk, yk) (i.e.

the ellipse centroid), can be used for constructing the bivariate Gaussian distribution,

N(0, Rk) corresponding to each position (xk, yk).

The centre of the measurement error ellipse represents the position expressed in longi-

tude and latitude, (lon, lat). Longitude and latitude are spherical coordinates which assume

that the Earth is round. If assume a spherical Earth with radius R, the two position loca-

tions in geographical coordinates (longitude and latitude) are (lon1, lat1) and (lon2, lat2),
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and the straight line as the shortest distance d between two position locations in a plane,

then a Pythagorean flat-Earth approximation can be used. This approximation assumes

that lines of longitudes are parallel and that those of latitude are to a small extent different

from great circles, and that great circles are negligibly different from straight lines [105].

However, close to the poles, the parallels of latitude are both shorter and curved. In, this

case the polar coordinate flat-Earth approximation which calculates the distance d using

polar coordinates and the planar law of cosines can be used, i.e.,

a = π/2− lat1

b = π/2− lat2

c =
√

(a2 + b2 − 2ab cos(lon2 − lon1)

d = Rc

The latitudes lat1, lat2, and the intermediate result c must be expressed in radians, while

the distance d is in the same units as the Earth radius R. For higher latitudes and

greater distances, these formulas produce smaller errors than those obtained using just

the Pythagorean Theorem.

Alternatively, with the same assumptions on the spherical Earth, the Haversine flat-

Earth approximation [106] can be used, for more details, see [103].
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[7] É. Bossé, J. Roy, and A. Jouan, “Information fusion concepts for airborne maritime
surveillance and C2 operations, TM 2004-281,” tech. rep., Valcartier QUE (CAN),
2006.

[8] D. Hall, Mathematical Techniques in Multisensor Data Fusion. Artech House, 1992.

[9] A. N. Steinberg and C. L. Bowman, Revisions to JDL Data Fusion Model, ch. 2.
Handbook of Multisensor Data Fusion, (D. L. Hall and J. Llinas eds.), CRC Press,
Boca Raton, FL, 2001.

[10] J. Llinas and G. Rogova, “Revisiting the JDL data fusion model II,” Proc. of the
Seventh International Conference on Information Fusion, (Stockholm, Sweden), 2004.



References 112

[11] N. Kiryati and A. Bruckstein, “Heteroscedastic Hough transform (HtHT): an efficient
method for robust line fitting in the errors in the variables problems,” Computer
Vision and Image Understanding, vol. 78, no. 1, pp. 69–83, 2000.

[12] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association. Academic Press,
Boston, MA, 1987.

[13] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems. Artech
House, 1999.

[14] L. A. Klein, Sensor and data fusion: a tool for information assessment and decision
making. SPIE Publishing, 2004.

[15] Y. Bar-Shalom and X.-R. Li, Estimation and Tracking: Principles, Techniques, and
Software. Artech House, 1999.

[16] B. Carlin and T. Louis, Bayesian Methods for Data Analysis. Chapman & Hall, 2009.

[17] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter. Artech House,
2004.

[18] A. Gelb, Applied Optimal Estimation. MIT Press, Cambridge, MA, 1974.

[19] H. Sorenson, “Least square estimation: from Gauss to Kalman,” IEEE Spectrum,
pp. 63–68, 1970.

[20] K. Kastella, Finite difference methods for nonlinear filtering and automatic target
recognition, vol. III of Multitarget Multisensor Tracking, (Y. Bar-Shalom and W.D.
Blair eds.), ch. 5. Norwood MA: Artech House, 2000.

[21] L. Stone, A Bayesian approach to multiple target tracking, ch. 10. Handbook of
Multisensor Data Fusion, (D. L. Hall and J. Llinas, eds.), CRC Press, Boca Raton,
FL, 2001.

[22] F. Daum, “Exact finite dimensional nonlinear filters,” IEEE Trans. Automatic Con-
trol, vol. 31, no. 7, pp. 616–622, 1986.

[23] J. Hammersley and K. Morton, “Poor’s man Monte Carlo,” Journal of Royal Statis-
tical Society B, vol. 16, pp. 23–38, 1954.

[24] J. E. Handschin and D. Q. Mayne, “Monte Carlo techniques to estimate the condi-
tional expectation in multi-stage non-linear filtering,” International Journal of Con-
trol, vol. 9, pp. 547–559, 1969.

[25] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-gaussian
bayesian state estimation,” IEE Proc.-F, vol. 140, no. 2, pp. 107–113, 1993.



References 113

[26] R. Eubank, Spline Smoothing and Nonparametric Regression. Marcel Dekker Inc,
New York, NY, 1988.

[27] M. Bartholomew-Biggs, Nonlinear Optimization with Financial Applications.
Springer, USA, 2005.

[28] A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis. Chapman &
Hall, 2004.

[29] L. Tierney and J. Kadane, “Accurate approximations for posterior moments and
marginal densities,” Journal of American Statistical Association, vol. 29, pp. 82–86,
1986.

[30] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equations of
state calculations by fast computing machines,” Journal of Chemical Physics, vol. 21,
pp. 1087–1092, 1953.

[31] W. Hastings, “Monte Carlo sampling methods using Markov chains and their appli-
cations,” Biometrika, vol. 57, pp. 97–109, 1970.

[32] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions and Bayesian
restoration of images.,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 6, no. 6, pp. 721–741, 1970.

[33] P. Green, “Reversible jump Markov chain Monte Carlo computation in Bayesian
model determination,” Biometrika, vol. 82, pp. 711–732, 1995.

[34] J. K. F. Gauss, Theoria Motus Corporum Coelestium in sectionibus conicis solem am-
bientium (Theorie der Bewegung der Himmelskrper, die die Sonne in Kegelschnitten
umkreisen). Dover, New York, reprinted 1963 ed., 1809.
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[41] É. Bossé, J. Roy, and A. Jouan, “Investigating the performance of some tracking filter
schema for the Advanced Shipboard Command and Control Technology (ASCACT)
project DREV-TR-1999-208,” tech. rep., Valcartier QUE (CAN), October 2000.
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