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Abstract 

 

Background. Epilepsy is a prevalent condition affecting about 50 million people 

worldwide. A third of patients suffer from seizures unresponsive to medication. Drug 

response cannot be predicted and is typically ascertained after 20 years until multiple 

trials have failed. During these decades of delay, uncontrolled seizures damage the brain 

and lead to socioeconomic consequences, cognitive decline and mortality. The most 

common forms of focal epilepsy are neocortical epilepsy due to focal cortical dysplasia 

(FCD) and temporal lobe epilepsy (TLE) due to hippocampal sclerosis.  Currently, 

surgical resection of the lesion is the only potentially curative treatment. Detecting 

epileptogenic lesion on magnetic resonance imaging (MRI) strongly predicts favorable 

surgical outcome. However, challenges remain. Many FCD patients have subtle lesions 

that are undetected on routine MRI but found on histology. These patients, labeled as 

MRI-negative, represent an utmost clinical challenge. In TLE, the inability to predict drug 

response and surgical outcome often leads to decades of ineffective drug trials and 

unfavorable seizure outcome in up to 50% of operated patients. An overarching 

explanation for these limitations is the “one-size-fits-all” approach to clinical care. 

Although current clinical practice is driven by reliable group-level studies, it is 

constrained by incomplete understanding of disease heterogeneity. 

Objective. To investigate the heterogeneity of focal epilepsy syndromes by combining 

multi-modal MRI and machine learning to disentangle disease phenotypes in each 

syndrome based on structural pathology of the lesional tissues, cortical gray matter (GM) 

and superficial white matter (WM). 

Methods. We first combined multi-contrast MRI and unsupervised machine learning to 

model the structural variability of FCD lesions at a mesoscopic scale (Project 1). We then 
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performed cortex-wide mapping of the regional vulnerability to FCD across multiple 

spatial scales, including gene expression, cytoarchitecture and large-scale organization 

(Project 2). In parallel, we combined multi-modal MRI and machine learning to model 

the inter-individual phenotypic variability based on hippocampal and whole-brain 

structural alterations in TLE (Project 3). Subsequently, we simultaneously characterized 

the phenotypic and temporal variability of TLE based on hippocampal and whole-brain 

structural alterations in TLE (Project 4). In all projects, we applied resampling techniques 

to assess the within-sample stability of the results and tested the clinical utility of 

structural variability for predicting drug response, postsurgical seizure outcome, 

histopathology and cognitive outcomes. 

Results. Project 1. Unsupervised clustering applied to 46 patients with histologically 

verified FCD Type II identified four classes of lesional tissues with distinct structural 

profiles that aggregated to form a given FCD lesion. These classes were replicated in two 

independent datasets, supporting generalizability. Classes with GM anomalies impacted 

local function, while those with WM anomalies affected large-scale connectivity. The 

classes had distinct histopathological embeddings, with classes with GM anomalies 

linked to severe GM features and those with WM anomalies linked to severe WM features. 

A detection algorithm trained on class-informed data outperformed a class-naïve 

paradigm (77% vs 73% lesions detected), supporting added clinical utility. Project 2. The 

cortex-wide distribution of 337 FCDs collected from 13 sites worldwide showed 

preferential occurrence in prefrontal and fronto-limbic cortices typified by low neuron 

density, large soma and thick GM. Transcriptomic associations with FCD distribution 

uncovered a prenatal component related to neuroglial proliferation and differentiation, 

likely accounting for the dysplastic makeup, and a postnatal component related to 

synaptogenesis and circuit organization, possibly contributing to circuit-level 

hyperexcitability. FCD distribution showed a strong association with the anterior region 
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of the antero-posterior axis derived from heritability analysis of inter-regional structural 

covariance of cortical thickness, but not with structural and functional hierarchical axes. 

The reliability of all results was confirmed through resampling techniques. Project 3. We 

identified four latent disease factors representing hippocampal and whole-brain patterns 

of structural pathology in 82 TLE patients with histologically verified hippocampal 

pathology. Bootstrap analysis and parameter variations supported high stability and 

robustness of these factors. Moreover, they were not expressed in healthy controls and 

only negligibly in disease controls, supporting specificity. Supervised classifiers trained 

on latent disease factors could predict patient-specific drug response in 76% and 

postsurgical seizure outcome in 88%, outperforming classifiers that did not operate on 

latent factor information. Latent factor models predicted inter-patient variability in 

cognitive dysfunction (verbal IQ: r = 0.40; memory: r = 0.35; sequential motor tapping: r = 

0.36), again outperforming baseline learners. Project 4. We identified three disease 

trajectory subtypes. Patients showed high assignability to their subtypes and stages. 

These subtypes had distinct clinical parameters, including age of epilepsy onset, history 

of febrile convulsion, drug response, MRI visibility and postsurgical seizure outcome, as 

well as cognitive profiles, including verbal IQ, digit span and sequential motor tapping. 

Supervised classifiers trained on subtype and stage memberships could predict drug 

response in 73% of patients and Engel outcomes in 76%, outperforming subtype- and 

stage-only models. 

Significance. This thesis combined multi-modal MRI with machine learning to model the 

inter-individual variability based on the key aspects of structural pathology in lesional 

tissues, cortical GM and superficial WM in common focal epilepsy syndromes. The 

presented approach informed on the phenotypic and temporal variability beyond 

histological and electro-clinical categories. It also offered a novel basis to understand 

aberrant developmental and degenerative mechanisms that drive the lesional and whole-
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brain structural alterations across lifespan. The presented approach may offer biomarkers 

that may reduce ineffective drug trails and accelerate referrals for pre-surgical evaluation, 

improve the detection of subtle lesions for surgical removal and enable inference on the 

genotypes for individual patients. 
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Résumé 

 

Contexte. L'épilepsie est une maladie répandue qui touche environ 50 millions de 

personnes dans le monde. Un tiers des patients souffrent de crises qui ne répondent pas 

aux médicaments. La réponse aux médicaments ne peut être prédite et n'est généralement 

confirmée qu'après 20 ans d’essais et erreurs. Pendant cette période, les crises non 

contrôlées ont pour conséquences d’endommager le cerveau, et entraînent des problèmes 

socio-économiques et un déclin cognitif, voir la mort dans les cas plus graves. Les formes 

les plus courantes d'épilepsie focale sont l'épilepsie néocorticale due à une dysplasie 

corticale focale (DCF) et l'épilepsie du lobe temporal (ELT) due à une sclérose 

hippocampique.  Actuellement, la résection chirurgicale de la lésion est le seul traitement 

potentiellement curatif. La détection d'une lésion épileptogène à l'imagerie par résonance 

magnétique (IRM) permet de prédire avec beaucoup de certitudes un résultat chirurgical 

favorable. Cependant, des difficultés subsistent. De nombreux patients atteints de DCF 

présentent des lésions subtiles qui ne sont pas détectées lors d’une IRM de routine, mais 

qui sont découvertes à lors de l'analyse histologique. Ces patients, qualifiés de négatifs à 

l'IRM, représentent un défi clinique majeur. Dans le cas des ETL, l'incapacité à prédire la 

réponse aux médicaments et le résultat de la chirurgie conduit souvent à des décennies 

d'essais de médicaments inefficaces et à une récurrence des crises chez jusqu'à 50 % des 

patients opérés. Une explication générale de ces limitations est l'approche thérapeutique 

uniformisée des soins cliniques. Bien que la pratique clinique actuelle s'appuie sur des 

études fiables ayant observé des divergences au sein de groupes dits homogènes, elle est 

limitée par une compréhension incomplète de la maladie, qui est en fait plutôt hétérogène. 

Objectif. Étudier l'hétérogénéité des syndromes d'épilepsie focale en combinant l'IRM 

multimodale et l'apprentissage automatique pour distinguer les phénotypes de la 
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maladie dans chaque syndrome (DCF et ELT) sur la base de la pathologie structurelle des 

tissus lésionnels, de la matière grise corticale (MG) et de la matière blanche superficielle 

(MB). 

Méthodes. Nous avons d'abord combiné l'IRM multi-contraste et l'apprentissage 

automatique non supervisé pour modéliser la variabilité structurelle des lésions de la 

DCF à une échelle mésoscopique (projet 1). Nous avons ensuite cartographié à l'échelle 

du cortex la vulnérabilité régionale à la DCF sur plusieurs échelles spatiales, y compris 

l'expression génétique, la cytoarchitecture et l'organisation à grande échelle (projet 2). 

Parallèlement, nous avons combiné l'IRM multimodale et l'apprentissage automatique 

pour modéliser la variabilité phénotypique interindividuelle basée sur les altérations 

structurelles de l'hippocampe et du cerveau entier dans l'ELT (projet 3). Par la suite, nous 

avons caractérisé simultanément la variabilité phénotypique et temporelle de l’ELT en 

nous basant sur les altérations structurelles de l'hippocampe et du cerveau entier (projet 

4). Dans tous les projets, nous avons appliqué des techniques de rééchantillonnage pour 

évaluer la stabilité des résultats à l'intérieur de l'échantillon et nous avons testé l'utilité 

clinique de la variabilité structurelle pour prédire la réponse aux médicaments, la 

récurrence des crises post-chirurgicales, l'histopathologie et l’évolution des marqueurs 

cognitifs. 

Résultats. Projet 1. Le partitionnement des données non supervisé appliqué à 46 patients 

atteints de DCF de type II vérifiée histologiquement a permis d'identifier quatre classes 

de tissus lésionnels avec des profils structurels distincts qui se sont agrégés pour former 

une lésion DCF donnée. Ces classes ont été reproduites dans deux ensembles de données 

indépendants, ce qui prouve qu'elles peuvent être généralisées. Les classes présentant des 

anomalies au niveau de la matière grise ont eu un impact sur la fonction locale, tandis 

que celles présentant des anomalies au niveau de la matière blanche superficielle ont eu 

un impact sur la connectivité à grande échelle. Les classes avaient des ancrages 
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histopathologiques distincts, les classes liées à la matière grise présentant des anomalies 

importantes de cette matière, et les classes liées à la matière blanche présentant des 

anomalies importantes de ce tissu. Un algorithme de détection entraîné sur des données 

informées par classe a surpassé un paradigme naïf de classe (77% contre 73% de lésions 

détectées), ce qui soutient l'utilité clinique ajoutée. Projet 2. La distribution à l'échelle du 

cortex de 337 DCFs collectés sur 13 sites dans le monde a démontré une occurrence 

préférentielle dans les cortex préfrontal et fronto-limbique, caractérisés par une faible 

densité de neurones, un grand soma et une MG épaisse. Les associations 

transcriptomiques avec la distribution des DCF ont mis en évidence une composante 

prénatale liée à la prolifération et à la différenciation neurogliales, qui explique 

probablement la composition dysplasique, et une composante postnatale liée à la 

synaptogenèse et à l'organisation des circuits neuronaux, qui contribue peut-être à leurs 

hyperexcitabilités. La distribution de la DCF a démontré une forte association avec la 

région antérieure de l'axe antéro-postérieur dérivé de l'analyse de l'héritabilité de la 

covariance structurelle interrégionale de l'épaisseur corticale, mais pas avec les axes 

hiérarchiques structurels et fonctionnels. La fiabilité de tous les résultats a été confirmée 

par des techniques de rééchantillonnage. Projet 3. Nous avons identifié quatre facteurs 

latents de la maladie représentant des modèles de pathologie structurelle de 

l'hippocampe et du cerveau entier chez 82 patients atteints de ELT avec une pathologie 

hippocampique vérifiée histologiquement. Une analyse par technique de bootstrap et les 

variations de paramètres ont confirmé la grande stabilité et la robustesse de ces facteurs. 

En outre, les facteurs n'étaient pas exprimés chez les témoins sains et ne l'étaient que de 

façon négligeable chez les témoins malades, ce qui confirme leur spécificité. Les 

classifieurs supervisés entraînés sur les facteurs latents de la maladie pouvaient prédire 

la réponse médicamenteuse spécifique au patient dans 76 % des cas et prédire les crises 

post-chirurgicales dans 88 % des cas, surpassant les classifieurs qui n'utilisaient pas 

l'information sur les facteurs latents. Les modèles de facteurs latents ont prédit la 
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variabilité inter-patients dans le dysfonctionnement cognitif (QI verbal : r = 0,40 ; 

mémoire : r = 0,35 ; séquence motrice : r = 0,36), surpassant à nouveau les classifieurs de 

base. Projet 4. Nous avons identifié trois sous-types de trajectoire de la maladie. Les 

patients ont montré une grande relation d’appartenance à leurs sous-types et à leurs 

stades. Ces sous-types présentaient des paramètres cliniques distincts, notamment l'âge 

d'apparition de l'épilepsie, les antécédents de convulsions fébriles, la réponse aux 

médicaments, la visibilité de l'IRM et la récurrence des crises post-chirurgicales, ainsi que 

des profils cognitifs, notamment le QI verbal, le test de l’empan numérique, et le 

tapotement moteur séquentiel. Des classifieurs supervisés, entrainés à partir de 

l'appartenance à un sous-type et à un stade, ont pu prédire la réponse aux médicaments 

chez 73 % des patients et les classification d'Engel chez 76 % d'entre eux, surpassant les 

performances de classifieurs n’ayant que le sous-type ou le stade comme connaissance 

préalable.  

Importance. Cette thèse combine l'IRM multimodale avec l'apprentissage automatique 

pour modéliser la variabilité interindividuelle basée sur les aspects clés de la pathologie 

structurelle dans les tissus lésionnels, la MG corticale et la MB superficielle dans les 

syndromes d'épilepsie focale communs. L'approche présentée a permis de mieux 

comprendre la variabilité phénotypique et temporelle au-delà des catégories 

histologiques et électro-cliniques. Elle offre également une nouvelle base pour 

comprendre les mécanismes aberrants de développement et de dégénérescence qui 

entraînent des altérations structurelles au niveau des lésions et du cerveau entier tout au 

long de la vie. L'approche présentée peut offrir des biomarqueurs susceptibles de réduire 

les essais de médicaments inefficaces et d'accélérer l'orientation vers une évaluation pré-

chirurgicale, d'améliorer la détection des lésions subtiles en vue d'une ablation 

chirurgicale et de permettre l'inférence des génotypes pour chaque individu. 
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Original Contributions 

 

Project 1. Characterizing Structural Heterogeneity in Focal Cortical Dysplasia 

We combined multi-contrast MRI and unsupervised clustering on 46 histologically 

verified FCD Type II to capture structural variability at a mesoscopic scale. We identified 

four classes of lesional tissues with distinct structural profiles that aggregated to form a 

given FCD lesion. These classes were replicated in two independent datasets, supporting 

generalizability. Classes with GM anomalies impacted local function, while those with 

WM anomalies affected large-scale connectivity. The classes had distinct 

histopathological embeddings, with classes with GM anomalies linked to severe GM 

features and those with WM anomalies linked to severe WM features. A detection 

algorithm trained on class-informed data outperformed a class-naïve paradigm (77% vs 

73% lesions detected), supporting added clinical utility. FCD classes may offer a novel 

basis to improve automated lesion detection and genotype-phenotype associations. 

 

Project 2. Uncovering Neurodevelopmental Vulnerability for Focal Cortical Dysplasia  

We mapped the cortex-wide distribution of 337 FCDs collected from 13 sites worldwide 

across multiple scales of neurobiology. The FCD distribution showed preferential 

occurrence in prefrontal and fronto-limbic cortices typified by low neuron density, large 

soma and thick GM. Transcriptomic associations with FCD distribution uncovered a 

prenatal component related to neuroglial proliferation and differentiation, likely 

accounting for the dysplastic makeup, and a postnatal component related to 

synaptogenesis and circuit organization, possibly contributing to circuit-level 

hyperexcitability. FCD distribution showed a strong association with the anterior region 
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of the antero-posterior axis derived from heritability analysis of inter-regional structural 

covariance of cortical thickness, but not with structural and functional hierarchical axes. 

The reliability of all results was confirmed through resampling techniques. This project 

offers evidence that therapies targeting aberrant postnatal synaptogenesis, either 

combined with or in isolation with mTOR inhibitors, may potentially improve seizure 

control in FCD patients. 

 

Project 3. Modeling Heterogeneity of Whole-Brain Alterations in Temporal Lobe Epilepsy 

We identified four latent disease factors representing hippocampal and whole-brain 

patterns of structural pathology in 82 TLE patients. Bootstrap analysis and parameter 

variations supported high stability and robustness of these factors. Moreover, they were 

not expressed in healthy controls and only negligibly in disease controls, supporting 

specificity. Supervised classifiers trained on latent disease factors could predict patient-

specific drug response in 76% and postsurgical seizure outcome in 88%, outperforming 

classifiers that did not operate on latent factor information. Latent factor models 

predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40; memory: 

r = 0.35; sequential motor tapping: r = 0.36), again outperforming baseline learners. 

Modeling inter-individual variability provides a novel appraisal of the phenotypic 

continuum of TLE determined by multiple interacting pathological processes. 

Incorporating inter-individual variability is likely to improve clinical prognostics. 

 

Project 4. Staging and Subtyping the Evolution of Temporal Lobe Epilepsy 

We identified three disease trajectory subtypes. Patients showed high assignability to 

their subtypes and stages. These subtypes had distinct clinical parameters, including age 

of epilepsy onset, history of febrile convulsion, drug response, MRI visibility and 
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postsurgical seizure outcome, as well as cognitive profiles, including verbal IQ, digit span 

and sequential motor tapping. Supervised classifiers trained on subtype and stage 

memberships could predict drug response in 73% of patients and Engel outcomes in 76%, 

outperforming subtype- and stage-only models. Capturing the progression of subtype-

specific MRI biomarkers enables an objective, fine-grained patient stratification, which 

may identify individuals at risk and help monitor the effectiveness of potential 

preventative therapies. 
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1.  OVERVIEW 

 

Epilepsy is a prevalent chronic condition affecting about 50 million people worldwide. 

Seizures are defined as transient debilitating symptoms due to excessive neuronal 

activity, based on which they are classified as focal or generalized. A third of patients 

suffer from seizures unresponsive to medication [1]. Drug response cannot be predicted 

and is typically ascertained after 20 years until multiple trials have failed [2, 3]. During 

these decades of delay, uncontrolled seizures damage the brain [4] and lead to 

socioeconomic consequences, cognitive decline and mortality [5]. The most common 

forms of drug-resistant focal epilepsy are neocortical epilepsy due to focal cortical 

dysplasia (FCD), a structural brain developmental malformation, and temporal lobe 

epilepsy (TLE) due to mesiotemporal sclerosis (MTS), a histopathological lesion that 

combines various degrees of neuronal loss and gliosis in the hippocampus and adjacent 

cortices. Currently, the surgical resection of these structural lesions is the only potentially 

curative treatment. In this context, magnetic resonance imaging (MRI) has been 

instrumental in the pre-surgical evaluation, owing to its unmatched spatial resolution 

and whole-brain coverage. Importantly, detecting these structural lesions on MRI is the 

strongest predictor favorable surgical outcome [6-8]. 

Yet, clinical challenges remain. Many patients have subtle lesions that are undetected on 

routine MRI but found on histology. In these patients, labeled as “MRI-negative,” the 

surgical outcome is poorer compared to those in whom a structural lesion is identified 

[9]. In addition, the inability to predict drug response and surgical outcome often leads 

to decades of ineffective drug trials and unfavorable seizure outcome in up to 50% of 

operated patients. A likely explanation of these limitations may lie in the “one-size-fits-

all” approach to clinical care, which does not fully consider variability within and across 
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individuals. Alternatively, analytic techniques that model data heterogeneity may foster 

the discovery of effective diagnostic and prognostic biomarkers.   

The overall purpose of this thesis is to investigate inter-individual disease variability by 

combining MRI-derived features of pathology and machine learning in the two most 

prevalent drug-resistant syndromes, namely neocortical epilepsy related to FCD and 

temporal lobe epilepsy related to MTS.  

 

Specific aims: 

Aim 1. Assessing lesional variability in focal cortical dysplasia at mesoscopic scale 

Over the past decades, FCD characterization has been driven by discrete histological 

subtypes. However, emerging evidence has shown substantial cellular variability across 

lesions and co-occurrence of multiple subtypes within the same lesion. We tested the 

hypothesis that machine learning applied to MRI features of FCD captures lesional 

variability at a mesoscopic scale.  

Aim 2. Multimodal mapping of regional brain vulnerability to focal cortical dysplasia 

Although FCD may occur across the entire cortex, clinical observations favor the frontal 

lobe; yet, mechanisms underpinning such vulnerability remain unexplored. Here, we 

hypothesized that regionally varying programs of cortical development contribute to 

preferential vulnerability. To that end, we conducted multivariate statistical analyses in 

a large cohort of patients relating the cortex-wide distribution of FCD lesions on MRI 

with cortical cytoarchitecture, whole-brain and spatiotemporal gene expression and 

macroscale organization. 
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Aim 3. Decomposing MRI phenotypic heterogeneity in temporal lobe epilepsy  

In TLE, precise clinical predictions of drug response, surgical outcome and cognitive 

dysfunction at an individual level remain challenging. A possible explanation may lie in the 

dominant group-level analytical approaches that do not allow parsing inter-individual variations 

along the disease spectrum. Conversely, analyzing inter-patient heterogeneity is increasingly 

recognized as a step towards person-centered care. Here, we utilized unsupervised machine 

learning to estimate latent relations.  We used unsupervised machine learning to estimate 

latent relations (or disease factors) from 3T multimodal MRI features representing 

hippocampal and whole-brain patterns of structural pathology in TLE. 

Aim 4. Staging and subtyping the evolution of temporal lobe epilepsy   

Evidence suggests that TLE follows a progressive course impacting brain structure and 

cognitive function. However, previous studies have assumed that disease progression is 

steady and that all patients follow the same trajectory. Our purpose was to parse phenotypic 

and temporal diversities of TLE evolution. To this end, we applied Subtype and Stage Inference, 

a computational technique that extends event-based models for simultaneous staging and 

subtyping.  

This thesis is organized as follows. Chapter 2 is a review of relevant background literature. 

Chapters 3, 4, 5 and 6 are manuscripts on the specific aims. Chapter 7 summarizes the 

key findings and significances. 
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2. BACKGROUND 

 

Neocortical epilepsy due to focal cortical dysplasia (FCD) and temporal lobe epilepsy 

(TLE) due to mesiotemporal sclerosis (MTS) are the most common forms of drug-resistant 

epilepsies that are amenable to surgery. In this chapter, I will discuss the etiologies and 

pathological features of FCD and TLE and review the current MRI literature. 

 

2.1 Focal cortical dysplasia 

Any molecular disturbance during embryonic corticogenesis may result in a 

malformation of cortical development. The developmental timetable in which the 

perturbation occurs largely determines the morphological features in the matured cortex 

[10]. FCD is the most common form of MCDs accounting for up to 50% of cases [11]. This 

early malformation is associated with atypical neuroglial proliferation and growth [12], 

impairing mitotic cycles and cell growth [13, 14]. Abnormalities in neurogenesis that 

typically lead to FCD Type II are characterized by cortical dyslamination, cytomegaly 

and cortical thickening [15, 16]. Advancing our understanding of the neurogenic 

mechanisms that underpin FCD and characterizing its diverse phenotypic manifestation 

may facilitate fine-grained patient stratification and optimized therapeutic approaches.  
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Figure 1. An overview of malformations of cortical development. Developmental timeline including 

neuroglial proliferation and growth, neuronal migration and cortical organization are shown. Molecular 

insult in these processes is associated with distinct manifestations of malformations: focal cortical dysplasia, 

heterotopia and polymicrogyria, respectively. Adapted from [17] with permission. 

 

2.1.1 Normal cortical development 

To better understand the neurobiology of FCD, this section provides an overview of the 

normal cortical development. Cortical development involves intricately coordinated 

molecular events consisting of successive and partly overlapping steps. During pre-natal 

development, these steps include neuroglial proliferation, differentiation and migration 
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[17]. During the post-migratory pre- and post-natal stages, the cortex undergoes cortical 

organization driven by neural circuit development [18]. The genetic regulation of these 

processes is area-specific, giving rise to large-scale areal variations in cytoarchitecture 

and function [19]. 

 

Figure 2. An overview of normal cortical development. Key developmental processes are illustrated. A. 

Neurogenesis. The lineage of neurons involves symmetric and asymmetric divisions of neuroepithelial 

cells (yellow box), radial glial cells (blue) and neurons (red) without (top tree) or with (bottom tree) basal 

progenitors (BP; green). B. Neuronal migration. Two main models of neuronal migration are somal 

translocation during the early stages of corticogenesis and glia-guided migration during the later stages. C. 

Cortical layer formation. Cortical layers forms with an expanded diversity of radial glial cells. Neurons 

formed in the ventricular zone in early development migrate in inside-out direction towards the outer 

subventricular zone. D. Large-scale cortical arealization. Thalamocortical inputs during early stages 

establish anatomical basis for modality-specific cortical regions. Morphogen gradients contribute to 

shaping the thalamic areal specification. Serial homology and refinement model is an integrated model for 

arealization positing that area-specific gene expression establish an initial protomap, which is then refined 

by thalamic area-specific maturation and activity-dependent processes to yield the matured cortex. IPSc 

(intermediate progenitor cells); ISVZ (inner subventricular zone); L1-V1 (cortical layers I-VI); NE 

(neuroepithelial cells); oRG (outer radial glia); OSVZ (outer ventricular zone); RG (radial glia); SVZ 
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(subventricular zone); tRG (truncated radial glia; vRG (ventricular radial glia); VZ (ventricular zone); WM 

(white matter). Adapted from [19-21] with permissions. 

 

Neurogenesis 

Neurogenesis begins with formation of the neocortex at the rostral end of the neural tube 

between 4th and 5th gestational weeks (GW) (Figure 2A). This period of early development 

is characterized by symmetric division of neuroepithelial cells at the ventricular zone 

(VZ), exponentially increasing the number of progenitor cells [22]. At approximately 5th 

GW, these progenitor cells, which are called radial glial cells, start to undergo asymmetric 

divisions, resulting in a daughter radial glial cell that remains in the VZ and the other 

becoming an intermediate progenitor cell or a postmitotic neuron [23]. The intermediate 

glial cells eventually undergo terminal symmetric division into pairs of postmitotic 

neurons [24]. The radial glial cells and intermediate progenitor cells form two 

subpopulations at the apical and basal surfaces of the VZ [25, 26]. Apical radial glial cells 

and intermediate progenitor cells reside in the VZ, while basal counterparts create a new 

distinct compartment above the VZ, called the subventricular zone (SVZ) [27]. 

Asymmetric divisions in the SVZ create additional intermediate progenitor cells (which 

contribute to larger brain size and longer migration paths) [28] and radial glial cells 

(which underpin cortical growth and folding) [29]. Prior to the formation of SVZ, various 

cells in the basal surface of VZ form a preplate that tangentially migrate to become 

inhibitory interneurons in the cortex or subcortex [30]. 
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Neuronal migration and cortical layer formation 

Around 7th GW, the VZ and SVZ undergo active proliferations to create pyramidal 

neurons that radially migrate outward to form the cortical plate (Figure 2B) [31]. In brief, 

cortical plate is the primitive form of neocortical gray matter (GM) that begins to develop 

as newborn neurons initiate the migration of cells from VZ and SVZ to their target layers 

within the cortical plate, thereby forming the six-layered cortex around 18th GW [32]. 

Initially, the cortical plate consists of the marginal zone and subplate (Figure 2C). The 

marginal zone contains cells that had tangentially migrated and arrest the radial 

migration of pyramidal neurons to help shape the inside-out transient formation of the 

cortex [33]. Meanwhile, neurons accumulate in the marginal zone in an inside-out 

sequence such that earliest and latest neurons eventually reside in the innermost layer 6 

and outer layer 2. Two main models of neuronal migration are somal translocation during 

the early stages of corticogenesis and glia-guided migration during the later stages [21]. 

Approximately 80% of radially migrating neurons become excitatory glutamatergic 

neurons, whereas tangentially migrating neurons develop into GABAergic inhibitory 

interneurons [34]. Laminar organization commences during and after neuronal migration 

until later corticogenesis. Layer positioning of the neurons are thought to be driven by 

layer-specific genes, such as Cux1-2 or Foxp2, and an extracellular gradient of proteins, 

such as Reelin [35-37]. In addition to neuronal positioning, cell differentiation, 

development, selective apoptosis and extensive axonal and dendritic arborization 

underpin the development of cortical cytoarchitecture [17]. During 24th-34th GW, axons in 

the intermediate zone undergo extensive myelination, transforming the zone into white 

matter (WM) tissue [38]. 
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Large-scale cortical arealization 

The genetic regulation of corticogenesis is area-specific, giving rise to diverse regional 

variations in cytoarchitecture [19]. Indeed, different cortical areas are characterized by 

distinct neuronal types, density, size and connectivity, which underpin their functional 

specialization [39, 40]. Areal identity is defined by intrinsic and extrinsic mechanisms 

(Figure 2D). Intrinsic mechanisms involve the differential gene expression across cortical 

areas and the secretion of morphogen gradients along the cardinal axes of the cortex 

during embryonic development [41-44]. These molecular mechanisms establish large-

scale organizational gradients, namely along the rostral-caudal (or anterior-posterior), 

dorsal-ventral and medial-lateral axes [45, 46], the confluence of which recapitulate the 

inter-areal cytoarchitectural and functional variations [19]. For example, the anterior-

posterior axis reflects the timetable of neurogenesis and cell growth, where the anterior 

regions undergo earlier termination of neurogenesis and initiation of cell growth. This 

leads to lower density of neurons with larger soma size and denser dendritic arborization 

in the anterior regions relative to the posterior regions [47, 48]. In addition to intrinsic 

molecular mechanisms, areal identity is shaped by extrinsic activity-dependent 

mechanisms, including signaling molecules from the thalamocortical inputs that refine 

the gene regulatory networks to give rise to individual cell types and functional circuits 

[49-53]. These processes drive progressive refinement of boundaries between functional 

areas during late prenatal and early postnatal stages [54] and are thought to give rise to 

the sensory-association axis that reflect hierarchical neural function in the matured brain 

[55, 56]. 
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2.1.2 Abnormal development leading to focal cortical dysplasia 

Histopathology 

FCD is characterized by a broad range of histopathological features, including cortical 

dyslamination, cytomegaly and gliosis. According to the current consensus classification, 

which has been recently updated (Table 1) [15, 57] FCD can be divided in various 

subtypes. FCD Type I is characterized by an isolated malformation with abnormal 

cortical layering, either showing persistence of vertical developmental microcolumns 

(IA), loss of the horizontal hexalaminar structure (IB) or both (IC); Type II presents with 

completely disorganized cortical layering and specific cytopathology including 

dysmorphic neurons, either isolated (IIA) or together with balloon cells (IIB); Type III 

comprises architectural abnormalities associated with either hippocampal sclerosis (IIIA), 

tumors (IIIB), vascular malformations (IIIC) or other lesions acquired during early life 

(IIID). FCD IIA and IIB are the most common subtypes, for which the histological 

diagnosis is highly reproducible within and across observers, while there is little intra- 

and inter-observer agreements for Type I subtypes [58].    

 

 

 

 

 

 



41 
 

FCD Type I 
Dysplasia with abnormal 

radial lamination (IA) 

Dysplasia with abnormal 

tangential lamination (IB) 

Dysplasia with abnormal 

radial and tangential 

lamination (IC) 

FCD Type II 
Dysplasia with 

dysmorphic neurons (IIA) 

Dysplasia with 

dysmorphic neurons 

and balloon cells (IIB) 

FCD Type III 
Lamination 

abnormalities in 

temporal lobe 

with hippocampal 

sclerosis (IIIA) 

Lamination 

abnormalities 

adjacent to 

glial/glioneuronal 

tumor (IIIB) 

Lamination 

abnormalities 

adjacent to 

vascular 

malformation 

(IIIC) 

Lamination 

abnormalities 

adjacent to any 

other lesion (IIID) 

Table 1. International League Against Epilepsy three-tiered classification system for FCD. Adapted from 

[15]. 

 

Causal molecular mechanisms 

To date, a large number of molecular studies in resected FCD tissues have established a 

causal role of somatic mutations in genes implicated in the mechanistic target of the 

rapamycin (mTOR) pathway [59-65]. The mTOR cascade is a pivotal regulator of cell 

proliferation, growth and migration by monitoring growth factor cues and nutritional 

availability [66]. Constitutive activation of mTOR pathway via activating or dis-inhibiting 

mutations has shown to account for many of the histological features of FCD, namely 

cytomegaly [12] and dyslamination [67]. Given that mTOR hyperactivity is observed in 

only a subset of cell types, it is thought that somatic mutations occur in a small subset of 

neuroglial progenitor cells in the VZ during embryogenesis [68], which result in a focal 

lesion with putatively normal cortex beyond the lesion. Nevertheless, the knowledge on 
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FCD molecular mechanisms is incomplete, given the difficulty that the variant 

expressions are typically too low to be detected even with a large sample [69].  

 

Imaging characteristics of FCD Type II 

On MRI, Type II lesions appear as increased cortical thickness, best seen on T1-weighted 

MRI and increased GM and WM signal intensity and blurred GM-WM boundary (Figure 

3) [9] [11, 70], best visualized on T2-weighted fluid-attenuated inversion recovery (FLAIR) 

images. A large number of lesions, particularly FCD Type IIB present with the 

transmantle sign in the WM, a funnel-shaped hyperintensity extending from the ventricle 

to the lesion, which is thought to be a footprint of disrupted neuronal radial migration 

[70-72]. The visibility on MRI generally corresponds to the histopathological severity [11]. 

Nevertheless, this spectrum of GM and WM changes can challenge visual identification 

in routine radiological examination. Indeed, recent series indicate that up to 33% of FCD 

II present with “unremarkable” routine MRI, even though typical features are ultimately 

identified in the histopathology of the resected tissue [70, 72, 73]. These so-called “MRI-

negative” FCDs represent a major diagnostic challenge. To define the epileptogenic area, 

patients undergo long and costly hospitalizations for EEG monitoring with intracerebral 

electrodes, a procedure that carries risks similar to surgery itself [74, 75]. Moreover, 

patients without MRI evidence for FCD are less likely to undergo surgery and 

consistently show worse seizure control compared to those with visible lesions [6, 76, 77].  
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Figure 3. Visibility of FCD Type II. T1-weighted and T2-weighted FLAIR images of two representative 

cases are shown for Type IIB (top) and IIA (bottom). The cases on the left and right sides correspond to 

MRI-positive and MRI-negative cases. Yellow arrows indicate the lesion. 

 

Computer-aided methods for FCD detection 

This clinical difficulty of MRI-negative epilepsy has long been the motivation for the 

development of computer-aided methods aimed at assisting detection in vivo [78]. Such 

techniques provide distinct information through quantitative assessment without the 

cost of additional scanning time. Early methods opted for voxel-based methods to 

quantify group-level structural abnormalities related to MRI-visible FCD. For example, a 

previous work introduced an original approach to integrate key voxel-wise textures and 

morphological modeling (i.e., cortical thickening, blurring of the GM-WM junction and 



44 
 

intensity alterations) derived from T1-weighted images into a composite map [78, 79]. The 

clinical value of this computer-aided visual identification was supported by its 88% 

sensitivity and 95% specificity, vastly outperforming conventional MRI. In contrast to 

voxel-based methods, surface-based morphometry offers an anatomically plausible 

quantification of structural integrity that preserves cortical topology. Surface-based 

modeling of cortical thickness, folding complexity and sulcal depth, together with intra- 

and subcortical mapping of MRI intensities and textures, allow for a more sensitive 

description of FCD pathology. Over the last decade, several such algorithms have been 

developed, with detection rates up to 83% [80-86]. The addition of FLAIR has contributed 

to further increase in sensitivity, particularly for the detection of smaller lesions [81].  

 

In vivo lesional biotyping, a step beyond discrete classification 

Over the past decades, FCD characterization has been driven by histology, with the 

primary objective to establish subtype-specific imaging signatures [71]. Although 

histological grading is a well-defined framework, the current approach is based on 

descriptive criteria that do not consider the severity of each feature, thereby limiting 

neurobiological understanding. Indeed, a recently developed deep neural networks 

relying on clinically available T1- and T2-weighted FLAIR MRI have shown the highest 

sensitivity of 93% at detection with a specificity of 89% both in healthy and disease 

controls [87]. One advantage of these methods is that they learn abstract concepts from 

high-dimensional data alleviating the challenging task of hand-crafting features [88].   

The ability to perform in vivo patient stratification is gaining relevance due to the 

emergence of minimally invasive surgical procedures that do not provide specimens for 

histological examination [89]. From a neurobiological standpoint, whether FCD IIA and 

IIB subtypes represent etiologically distinct entities, or a spectrum is a matter of debate. 
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Recent studies have shown significant cellular variability, with anomalies that may vary 

across lesions within the same subtype [90]. Moreover, multiple subtypes may co-exist 

within the same FCD, with the most severe phenotype determining the final diagnosis 

[12]. As such, broad ranges of somatic mutations and histological abnormalities 

associated with FCD are not sufficiently captured by discrete FCD subtypes [65]. Hence, 

MRI-based approaches to characterize the structural variability of FCD at mesoscopic 

scale may offer a novel basis to advance genotype-phenotype associations and automated 

lesion detection. 

 

2.2 Temporal lobe epilepsy  

TLE is the most common focal epilepsy syndrome in adults and make up the majority of 

cases referred to epilepsy surgery [91, 92]. In terms of seizure semiology, many TLE 

patients an aura, which may include flashing or flickering lights, feeling of déjà vu or 

detachment, memory distortions and olfactory or gustatory hallucinations [93, 94]. These 

symptoms are linked to temporo-limbic epileptiform activity, while motor symptoms 

and automatisms are linked to the spread of epileptiform activity to frontal and 

suprasylvian areas [95-97]. In some patients, secondary generalized seizures may occur 

[98-100]. A third of patients suffer from seizures unresponsive to medication [1]. Drug 

response cannot be predicted and is typically ascertained after 20 years until multiple 

trials have failed [2, 3]. During these decades of delay, uncontrolled seizures damage the 

brain [4] and lead to socioeconomic consequences, cognitive decline and mortality [5]. 

 

2.2.1 Histopathology of drug-resistant temporal lobe epilepsy  

Hippocampal sclerosis (HS) is the histopathological hallmark of drug-resistant TLE [101-

104] and combines varying degrees of neuronal loss and gliosis in sectors of the Cornu 
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Ammonis (CA), dentate gyrus (DG), subiculum (SUB) and adjacent cortices. International 

League Against Epilepsy (ILAE) had proposed a classification system that allow 

recognition of three HS subtypes based on slide microscopy of resected en bloc surgical 

specimens (Table 2) [105, 106]. HS type 1 is the most common subtype found in 60-80% 

of all cases [103, 107, 108]; this subtype is characterized by severe (>80%) cell loss in all 

subfields. HS type 2 is found in approximately 5-10% of cases and presents with 

predominant (80%) pyramidal cell loss in CA1. HS type 3 is the most uncommon subtype 

found in 4-7% of cases characterized mainly by cell loss in CA4 (50%) and DG (35%). 

Isolated gliosis (G) without detectable neuronal loss is found in approximately 20% of 

patients [107].  

 HS 1 HS 2 HS 3 G 

CA1 Severe  
Moderate to 

severe 
None to moderate None 

CA2 None to severe None to moderate None to moderate None 

CA3 None to severe None to moderate None to moderate None 

CA4 Severe None to moderate 
Moderate to 

severe 
None 

DG None to severe None to moderate None to severe None to moderate 

Table 2. International League Against Epilepsy consensus classification of hippocampal sclerosis. The 

data indicate the severity of neuronal loss and gliosis found in en bloc resected samples. For each HS class, 

the defining features are indicated with gray shades. Adapted from [105]. 

 

Despite the logistical difficulty of obtaining whole brain samples from TLE patients, 

ample evidence has shown pathology beyond the hippocampus. A seminal 

histopathological study of 55 TLE patients reported atrophy across the cerebral cortex 

and cerebellum and suggested that they may influence the electrophysiological features 

of seizures [109]. A more recent quantitative histology study has corroborated this 
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finding by showing loss of neurons in the neocortical GM, particularly with large neurons 

[110]. Increased neuron density in temporal lobe WM secondary to cortical 

microdysgenesis [111] as well as demyelination and axonal degeneration are also among 

the key features coupled to clinical and cognitive outcomes [112]. Aside from cortical 

atrophy, gliosis has shown to be a feature in temporal and frontal poles and orbitofrontal 

cortex [113]. 

 

2.2.2 In vivo mapping of hippocampal sclerosis and whole-brain pathology  

On MRI, marked hippocampal sclerosis (HS) appears as atrophy and T2-weighted signal 

hyperintensity, generally more severe ipsilateral to the seizure focus. Accurate 

identification of hippocampal atrophy as a marker of HS is crucial for deciding the side 

of surgery. While volumetry has been one of the first computational analyses applied to 

TLE [114-119], the need for accurate localization of pathology has motivated a move from 

whole-structure volumetry to surface-based approaches allowing a precise mapping of 

anomalies along the hippocampal axis. In this context, 3D surface-based shape models 

permit localizing regional morphological differences that may not be readily identifiable 

[120]. Surface modeling based on spherical harmonics [121] has been particularly 

performant [122]. Following this method, hippocampal labels are processed using a series 

of spherical harmonics with increasing degree of complexity to parametrize their surface 

boundary. Anatomical inter-subject correspondence is guaranteed by aligning the 

surfaces of each individual to the centroid and the longitudinal axis of the first-order 

ellipsoid of the mean surface template derived from controls and patients. Computing 

the Jacobian determinants of the surface displacement vectors allows quantifying 

localized areas of atrophy [122, 123]. Overall, surface-based methods have proven 

superior to their volumetric counterparts not only in terms of segmentation performance 

[124] but also in predicting clinical outcomes as well as mapping disease progression [125, 
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126]. Extending this methodology by extracting features along the medial surface of 

hippocampal subfields has allowed to further probe the laminar integrity of this structure 

[127, 128] with increased lateralization performance  [129].  

The evidence for distributed whole-brain pathology has motivated the conceptualization 

of TLE as a system-level disorder[128]. Indeed, beside hippocampal pathology, a large 

number of in vivo MRI studies based on surface-based analysis has shown widespread, 

non-overlapping morphological [130, 131], intensity [132, 133], and microstructural [134] 

anomalies of the neocortex and the subcortical WM [112, 135-137] underscoring the 

complexity of this system disorder. Specifically, neocortical GM atrophy [130, 131], has 

been suggested to represent regions of neuronal loss [109] as well as synaptic 

reorganization [138]. Bilateral paralimbic neocortical gliosis indexed by FLAIR 

hyperintensity may hint at cytoarchitectural vulnerability of paralimbic cortices to gliotic 

processes [110, 132, 139], and may contribute to hyperexcitability and seizures [140, 141]. 

Widespread microstructural alterations of superficial WM likely reflect combined effects 

of decreased fiber density, altered myelin sheath and reactive astrogliosis [142-144]. 

Moreover, GM microstructural damage in the limbic cortices have been suggested to 

reflect myeloarchitectural alteration that disrupts fronto-limbic functional networks [134]. 

 

2.2.3. MRI evidence for disease progression  

TLE follows a progressive course impacting brain structure and function. A plethora of 

cross-sectional studies has shown positive correlation between duration of epilepsy with 

GM atrophy and WM microstructural alterations of the mesiotemporal structures and 

beyond [4, 125, 131, 135, 145]. Concordantly, there is progressive cognitive impairment 

across multiple domains with longer disease duration [146-149]. Although relatively 

scarce due to logistical constraints, longitudinal data that adequately control for effects 
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of normal aging have confirmed these findings [125, 130, 150-152]. Potential mechanisms 

underpinning progressive structural alterations include the century-old hypothesis, 

“seizures beget seizures” [153], in that the seizures from the hippocampus damage itself 

and other mesiotemporal structures, namely thalamus [126, 151], which serve as a hub to 

spread seizure-induced damages to the neocortical GM [154] and WM microstructure 

[135] via thalamocortical networks [155, 156]. Furthermore, emerging data suggest that 

neurodegenerative processes driven by amyloid [157] and tau [158] pathology underpin 

TLE evolution. In Alzheimer’s disease, neurodegenerative processes have shown to drive 

hippocampal and neocortical atrophy [159] as well as widespread axonal degeneration 

[160], which parallel the progressive structural pathology in TLE. 

One key limitation of previous imaging studies analyzing disease progression has been 

the use of linear models that identify regions undergoing steady alterations, which do 

not account for the possibly variable temporal course of the disease that would inform on 

the sequence in which these regions become abnormal. In addition, by fitting a single 

population average, they assume that all patients follow the same disease trajectory, 

thereby not addressing possible phenotypic variability. Indeed, the increasingly 

recognized inter-individual heterogeneity of structural pathology and cognitive deficits 

[137, 161, 162] is a strong incentive to adopt novel image-based models of disease 

evolution. In this context, event-based models [163] estimate distinct stages that capture 

dynamic patterns of disease evolution from cross-sectional data, circumventing logistical 

burdens of a longitudinal design. A recent ENIGMA-Epilepsy study identified 

progressive atrophy that begins in the hippocampus, subsequently extending to the 

neocortex [164]. However, in addition to limiting the analysis to GM only, the inherent 

assumption was that all patients follow the same disease trajectory. Inability to 

disentangle temporal heterogeneity from phenotypic diversity limits the biological 

insights into disease mechanisms and the utility for patient stratification. Conversely, a 
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comprehensive framework that reconciles both sources of heterogeneity may inform on 

how TLE evolves for different subtypes, ultimately facilitating personalized diagnostics. 

 

2.2.4. Phenotypic variability – Key to reliable prediction of clinical outcomes 

While science investigating the neurobiology of epilepsy has been growing rapidly, 

translating knowledge into clinical practice has been limited. Specifically, individualized 

predictions of drug resistance, surgical outcome and cognitive dysfunction have been 

attempted with limited success [165]. For example, early investigations that aimed to 

predict anti-seizure medication response used machine learning on genomic data 

(namely single nucleotide polymorphisms) showed limited generalizability with 

inconsistent performance across studies [166-168]. Similarly, other models trained on 

electro-clinical and demographic features of thousands of patients [169-172] achieved 

high sensitivity (>90%), but unacceptably low specificity (<25%). Importantly, no external 

validation was performed on independent cohorts.  

The prediction of seizure outcome after surgery has been extensively explored in TLE 

patients. Some of the early investigations relied on clinical [173] and neuropsychological 

features [174], achieving high performance, but in limited samples of less than 20 patients. 

Given the increasing conceptualization of TLE as a system-level disorder, numerous 

studies have tested the hypothesis that structural and functional alterations beyond the 

mesial temporal lobe may contribute to negative seizure outcome [175, 176]. For instance, 

WM microstructural features derived from diffusion tensor imaging have shown to 

achieve high sensitivity (70-86%), but modest specificity (65-70%) [177, 178].  Other 

studies have relied on connectivity features for prediction; these include nodal hubness 

of the thalamus and whole-brain distance-based measures of functional connectivity, 

which achieve an accuracy at about 75% but modest specificity (ranging from 35 to 62%) 
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[179, 180]. Conversely, while topological features of structural connectome have 

generally shown high predictive value for favorable post-surgical outcome, with an area 

under the receiver operating characteristics of 0.88, specificity for prediction of seizure 

relapse is low (29-54%) [181, 182]. Overall, the lack of large-scale external validation and 

relatively low specificity of these models need to be addressed to establish their 

generalizability and potential clinical use. 

To date, most neuroimaging studies of epilepsy have been based on “one-size-fits-all” 

group-level analytical approaches. While such study designs can isolate reliable and 

consistent average group-level differences, they merely decipher the common patterns 

without modelling the inter-individual variations along the disease spectrum [183]. 

Conversely, the conceptualization of epilepsy as a heterogeneous disorder and explicit 

modeling of inter-individual phenotypic variations may be exploited to predict 

individual-specific clinical outcomes [184].  

Initial histopathological report of phenotypic variability in the distribution and severity 

of MTS dates back to 1966 [109]. Moving beyond this diagrammatic representation, a 

quantitative approach based on neuronal counts on immunohistochemistry has shown 

several patient subgroups with distinct patterns and severity of hippocampal sclerosis 

[103]. Subsequently, a data-driven unsupervised clustering technique applied to 

immunohistochemistry-derived neuronal counts have established five HS subtypes with 

varying severity of atrophy across CA sectors and DG [107]. These histological evidence 

of variability motivated the emergence of international consensus system for HS 

classification by ILAE [105]. 

Inspired by these findings, recent studies have exploited inter-individual variability of 

imaging or cognitive phenotypes to optimize predictions of clinical outcomes. The first 

attempts were based on categorical models, which provided subtypes of patients with a 

given phenotype. Clustering applied to surface-based morphometry uncovered four TLE 
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subtypes having distinct subregional patterns of mesiotemporal atrophy [162]. These four 

subtypes differed with respect to histopathology and postsurgical seizure outcome. 

Classifiers operating on class membership accurately predicted surgical outcome in >90% 

of patients, outperforming learners trained on conventional MRI volumetry. In the 

context of cognition, unsupervised techniques have identified phenotypes, such as 

language and memory impairment associated with distinct patterns of WM 

microstructural damage [137] and connectome disorganization [161]. 
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3.  UNSUPERVISED MACHINE LEARNING REVEALS 

LESIONAL VARIABILITY IN FOCAL CORTICAL 

DYSPLASIA AT MESOSCOPIC SCALE 

 

PREFACE 

The critical role of detecting a structural lesion, particularly small FCD, for successful 

surgery has motivated automated techniques. To date, however, algorithms have 

assumed structural homogeneity, possibly limiting sensitivity and specificity. 

This study tested a hypothesis that FCD variability is measurable at a millimetric scale 

and may improve automated lesion detection. We applied consensus clustering on 

structural MRI features to identify lesional tissue classes that collectively formed a given 

lesion. We then evaluated the link between FCD classes and histopathology and 

reproduced the classes in two independent datasets. To assess clinical utility, we 

compared the performance of a detection algorithm trained on class-informed data to a 

class-naïve paradigm. 
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ABSTRACT 

Focal cortical dysplasia (FCD) is the most common epileptogenic developmental 

malformation and a prevalent cause of surgically amenable epilepsy. While cellular and 

molecular biology data suggest that FCD lesional characteristics lie along a spectrum, this 

notion has not been verified in vivo. We tested the hypothesis that machine learning 

applied to MRI captures FCD lesional variability at a mesoscopic scale. We studied 46 

patients with histologically verified FCD Type II and 35 age- and sex-matched healthy 

controls. We applied consensus clustering, an unsupervised learning technique that 

identifies stable clusters based on bootstrap-aggregation, to 3T multicontrast MRI (T1-

weighted MRI and FLAIR) features of FCD normalized with respect to distributions in 

controls. Lesions were parcellated into four classes with distinct structural profiles 

variably expressed within and across patients: Class-1 with isolated white matter (WM) 

damage; Class-2 combining grey matter (GM) and WM alterations; Class-3 with isolated 

GM damage; Class-4 with GM-WM interface anomalies. Class membership was 

replicated in two independent datasets. Classes with GM anomalies impacted local 

function (resting-state fMRI derived ALFF), while those with abnormal WM affected 

large-scale connectivity (assessed by degree centrality). Overall, MRI classes reflected 

typical histopathological FCD characteristics: Class-1 was associated with severe WM 

gliosis and interface blurring, Class-2 with severe GM dyslamination and moderate WM 

gliosis, Class-3 with moderate GM gliosis, Class-4 with mild interface blurring. A 

detection algorithm trained on class-informed data outperformed a class-naïve paradigm. 

Machine learning applied to widely available MRI contrasts uncovers FCD Type II 

variability at a mesoscopic scale characterized by tissue classes with distinct structural 

dimensions, functional and histopathological profiles. Integrating in vivo staging of FCD 

traits with automated lesion detection is likely to inform the development of novel 

personalized treatments.  
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3.1 Introduction 

Focal cortical dysplasia (FCD) Type II is the most common epileptogenic developmental 

malformation and a prevalent cause of surgically amenable epilepsy. Histopathologically, 

FCD is typified by intracortical dyslamination and dysmorphic neurons, either in 

isolation (Type IIA) or together with balloon cells (Type IIB) [15]. From a neurobiological 

standpoint, whether FCD II subtypes represent distinct entities or a spectrum is a matter 

of debate. Recent studies have shown significant cellular variability, with anomalies that 

may vary across lesions with the same subtype [90]. Moreover, multiple subtypes may 

co-exist within the same FCD, with the most severe features determining the final 

diagnosis [12]. On MRI, FCD may appear as increased cortical thickness, abnormal signal 

intensity and blurred appearance [9]. The critical role of a lesion for successful surgery [6, 

7] has motivated the development of automated methods aimed at detecting small FCD 

lesions often overlooked on routine radiological inspection [81, 82]. To date, algorithms 

have assumed structural homogeneity [185], possibly limiting sensitivity and specificity. 

In recent years, data-driven techniques applied to neuroimaging have offered novel 

perspectives on brain disorders. Specifically, categorical discovery of subtypes and 

dimensional modeling of disease traits variably expressed within individuals, have 

provided diagnostic and prognostic markers in several conditions, including in 

Alzheimer’s disease [186], depression [187] and autism [188].  

Assessing variability may offer a novel basis to advance our understanding of FCD 

neurobiology and improve lesion detection. Here, we tested the hypothesis that FCD 

variability is measurable at a millimetric scale within and between lesions. Specifically, 

we applied consensus clustering, a procedure in which clustering is repeated across 

10,000 bootstraps (i.e. random subsampling of intra-FCD tissues with replacement) to 

estimate the stability matrix that stores the likelihood of intra-lesional tissues to belong 

to the same cluster (or classes); a subsequent clustering on this matrix identifies “stable” 
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classes that had consistently emerged across bootstraps [189]. The resulting FCD classes, 

which aggregate to form a given FCD, quantifies the in vivo expression of multiple 

pathological traits rather than assigning a given FCD to a single category. Hence, this 

approach combines dimensional modelling of individual lesions with categorical 

description of intra-lesional tissue classes. In addition, we evaluated the relationship of 

FCD classes to histopathology, as well as local function and large-scale connectivity as 

determined by resting-state fMRI. Reproducibility was assessed in two independent 

datasets. Finally, clinical utility was tested by comparing the performance of a detection 

algorithm trained on class-informed data to a class-naïve paradigm.  

 

3.2 Materials and methods 

Participants 

From a database of patients with drug-resistant epilepsy admitted to the Montreal 

Neurological Institute and Hospital between 2009 and 2018, we selected 46 consecutive 

individuals with histologically-proven FCD (22 females, 47.8%; mean ± SD age = 27.1 ± 

8.6 years) who had research-dedicated structural and functional MRI scans, henceforth 

named discovery dataset. The pre-surgical workup included seizure history, neurologic 

examination, neuroimaging, and video-EEG monitoring. EEG inter-ictal activity and ictal 

onset were concordant with the location of FCD lesions in 42 (91%) and 32 (70%) patients, 

respectively. In 25, surgery was preceded by invasive monitoring using stereotactic depth 

electrodes; all displayed high inter-ictal activity and focal changes at seizure onset in 

electrodes targeting the lesion. At a mean ± SD postoperative follow-up [190] of 8.4 ± 2.2 

years, 30 patients became seizure-free (Engel-I), 11 had rare disabling seizures (Engel-II), 

and 5 had worthwhile improvement (Engel-III). 
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Serial 5µm paraffin-embedded histological sections of lesional tissue were stained with 

haematoxylin and eosin or Bielschowsky, and others immunostained using antibodies 

against GFAP, non-phosphorylated neurofilaments (SMI-32 monoclonal), microtubule-

associated protein-2 (MAP-2), and neuronal specific nuclear protein (NeuN). FCD Type-

II was defined as disrupted cortical lamination with dysmorphic neurons in isolation (IIA, 

n=21) or together with balloon cells (IIB, n=25). We evaluated severity of cortical 

dyslamination, blurring of cortical interface and gliosis using categorical scoring (1=mild, 

2=moderate, 3=severe). 

In 70% of patients, routine radiological assessment was unremarkable with equal 

proportions between Type IIA (16/21) and Type IIB (16/25) (p = 0.37); the FCD lesion was 

subsequently recognized through inspection of texture maps that combine intensity 

model of cortical thickness, gradient map of GM-WM boundary blurring and normalized 

intensity map [9]. There were no differences in age (27.7 ± 10.1 years vs. 26.6 ± 6.2 years, 

p = 0.64), sex (11 vs. 13 females, p = 0.98) and age at onset (13.6 ± 8.5 years vs. 11.2 ± 7.5 

years, p = 0.31) between patients with FCD Type IIA and Type IIB.  

The control group consisted of 35 age- and sex-matched healthy individuals (16 females, 

age = 28.8 ± 5.7 years). The Ethics Committee of the Montreal Neurological Institute and 

Hospital approved the study, and the written consent was obtained from all participants 

in accordance with the Declaration of Helsinki. 

 

MRI acquisition 

Images were acquired on a 3T Siemens TimTrio scanner using a 32-channel head coil. The 

protocol included the following sequences: 3D T1-weighted MPRAGE (T1w; TR = 2300 

ms, TE = 2.98 ms, flip angle = 9°, voxel size = 1×1×1 mm3), 3D fluid-attenuated inversion 

recovery (FLAIR; TR = 5000 ms, TE = 389 ms, flip angle = 120°, 0.9×0.9×0.9 mm3) and echo 
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planar resting state fMRI (rsfMRI; TR = 2020 ms, TE = 30 ms, flip angle = 90°, 34 slices, 

voxel size = 4×4×4 mm3, 150 volumes). For the latter, participants were instructed to lie 

still with their eyes closed while remaining awake. To reduce signal loss and distortions 

in orbitofrontal and mesiotemporal regions, slices were tilted in an oblique axial 

orientation. 

 

MRI preprocessing and surface construction  

T1w and FLAIR images underwent field non-uniformity correction, intensity 

normalization and linear registration to stereotaxic space based on the hemisphere-

symmetric ICBM MNI152 template using MINC toolkit (https://bic-mni.github.io/). T1w 

images were classified into white matter (WM), grey matter (GM) and cerebrospinal fluid 

(CSF) [191]. FLAIR images were linearly mapped to T1w images in MNI space. The rs-

fMRI was analyzed using DPARSF (rfmri.org/DPARSF); after discarding the first 5 time-

points, the data underwent slice-timing and motion correction, realignment and 

statistical correction for nuisance effects of WM and CSF signals. To further correct for 

residual motion, time-points with a frame-wise displacement of >0.5 mm were included 

as separate covariates [192] in a linear model alongside the estimates of head motion (i.e., 

3D rotations and translations, obtained from motion correction procedure) and used as 

final signals for the analyses. The time-points were then band-pass filtered at 0.01-0.08 

Hz. Images were co-registered to the native T1w space using a boundary-based approach 

that maximizes alignment between intensity gradients of structural and echo-planar data 

[193]. The accuracy of multimodal registration was verified through visual inspection and 

errors corrected manually; we have shown accuracy of our registration using quantitative 

metrics [194]. 

https://bic-mni.github.io/
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We applied Constrained Laplacian Anatomic Segmentation using Proximity (CLASP) 

algorithm to generate models of GM-WM and GM-CSF surfaces with 41k surface points 

(or vertices) per hemisphere [191]. In short, CLASP iteratively expands a surface mesh to 

fit the GM-WM surface and subsequently estimates the GM-CSF surface by expanding 

the GM-WM surface along the Laplacian gradient between the two surfaces. Surface-

based registration, which aligns individual participants based on cortical folding, was 

performed to enhance vertex-wise anatomical correspondence across participants [195]. 

Surface extraction accuracy was visually verified, and inaccuracies were manually 

corrected.  

 

Surface-based feature extraction 

Two experts (AB, NB) blinded to clinical information independently segmented the FCD 

lesions on co-registered T1w and FLAIR images; interrater Dice agreement index was 

0.91 ± 0.11. Their combined volume label (the union of the two segmentations) was 

intersected with cortical surfaces to generate surface based FCD label, which served as 

input to the clustering algorithm. We calculated at each vertex belonging to the label 

morphological, intensity and functional features. To minimize interpolation, we mapped 

the surfaces to the native space of each modality using the inverse transform of the initial 

co-registration. To enhance the signal-to-noise of the features while retaining high spatial 

specificity, we applied smoothing using a 2D quadratic diffusion kernel with 2 mm full-

width-half-maximum. We then computed z-scores for each feature with respect to the 

distribution of the analogous tissues in healthy controls. For controls, we computed z-

scores using a leave-one-out scheme. 

To examine intracortical GM, we positioned three surfaces between the inner GM-WM 

and outer GM-CSF surfaces at 25%, 50%, and 75% cortical thickness, systematically 



62 
 

sampling the axis perpendicular to the cortical ribbon [194]. To assess the superficial WM, 

we generated surfaces running 1, 2 and 3 mm below the GM-WM surface guided by a 

Laplacian gradient between the GM-WM surface and ventricles [135]. We then sampled 

the following vertex-wise features: 

a) Cortical thickness. To model GM thickening, we measured cortical thickness as the 

Euclidean distance between corresponding vertices of GM-WM and GM-CSF 

surfaces [196]. 

b) Normalized FLAIR intensity. Gliosis is associated with increased FLAIR signal 

intensity [71]. We divided FLAIR intensity by the average of GM-WM interface 

intensity. This value was normalized with respect to the mode of the FLAIR 

intensity histogram [82], corrected for CSF partial volume and mapped on each 

intracortical/subcortical surface. Intensities were sampled at 25, 50 and 75% 

intracortical and 1, 2 and 3 mm subcortical surfaces. 

c) Gradient. To model GM-WM interface blurring, vertical gradients were computed 

at the GM-WM interface as T1w and FLAIR intensity differences between 

corresponding vertices along the 75% intracortical and 1 mm subcortical surfaces 

divided by the Euclidean distance between them. 

d) T1w/FLAIR ratio. Despite histopathological evidence [197], FCD-associated 

microstructural anomalies have not been previously assessed in vivo. To this 

purpose, we sampled T1w/FLAIR ratio as a proxy for myelin content [198]; 

decreases are interpreted as hypomyelination [134]. After sampling T1w/FLAIR 

ratio at 25, 50 and 75% intracortical and 1, 2 and 3 mm subcortical surfaces, we 

used a local cylindrical kernel approach to correct for outliers due to bulk blood 

vessels and CSF partial volumes [198]. 



63 
 

e) Functional derivatives. To assess local function, we calculated amplitude of low 

frequency fluctuations (ALFF), a measure of bulk activation shown to relate to 

interictal spiking [199]. Moreover, we computed degree centrality (DC), a measure 

of connectivity to the rest of the brain [200]. These features were computed voxel-

wise in volume space and then mapped to the 50% intracortical surface.  

 

Data-driven clustering of lesional vertices 

We applied consensus clustering [189], a procedure in which clustering is repeated across 

10,000 bootstraps (i.e. random subsampling of intra-FCD tissues with replacement) to 

estimate the stability matrix that stores the likelihood of intra-lesional tissues to belong 

to the same cluster (or classes); a subsequent clustering on this matrix identifies “stable” 

classes that had consistently emerged across bootstraps (Figure 4). Specifically, we first 

generated a data matrix where columns represent FCD vertices and rows the structural 

features (for a total of 19,253 columns and 15 rows). We then defined six feature groups 

representing distinct aspects of FCD pathology [194]: 1) Intracortical FLAIR intensity 

(derived from 75, 50 and 25% intracortical surfaces); 2) Subcortical FLAIR intensity (1, 2 

and 3 mm subcortical surfaces); 3) Intracortical T1w/FLAIR ratio (75, 50 and 25% 

intracortical surfaces); 4) Subcortical T1w/FLAIR ratio (1, 2 and 3 mm subcortical 

surfaces); 5) GM-WM interface T1w and FLAIR vertical gradients; 6) Cortical thickness. 

Since groups had different number of features, a stratified duplication matched numbers 

across categories given by the lowest common denominator, namely six; this ensured that 

the feature groups’ contributions to the clustering solution was not driven by differences 

in the number of features. To ensure equal contribution of each patient regardless of FCD 

size, we performed 10,000 iterations of patient-stratified bootstrapping. For each 

bootstrap, we randomly sampled 70% of FCD vertices with replacement after setting their 
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sampling probability proportional to the inverse of the lesion size and computed pairwise 

similarity matrices using eta2, a metric accounting for differences in scaling and offsets 

between features [201]. Finally, we performed spectral clustering on this similarity matrix 

by combining clustering solutions from the 10,000 bootstraps into a consensus matrix that 

stores pairwise probabilities of FCD vertices to belong to the same cluster. Spectral 

clustering on this consensus matrix, henceforth consensus clustering, identified classes 

with distinct structural profiles that consistently emerged across bootstraps. 

 

Figure 4. Clustering framework. A. Feature engineering. Data matrix shows vertex-wise lesional features 

at various intra-/subcortical levels, z-scored with respect to the distribution in healthy controls. To obtain 

balanced contributions, stratified feature duplication matched the number of member features of the 

feature groups (1). B. Bootstrap clustering. Lesion-stratified bootstrapping generated 10,000 data subsets 

based on 70% random subsampling with replacement while ensuring equal contributions from all patients 

regardless of FCD size (2). Spectral clustering was applied to each bootstrap using an eta-squared similarity 

matrix (3). C. Consensus clustering. Solutions from 10,000 bootstraps were combined into a consensus 

matrix storing probabilities of all pairs of lesional vertices to belong to the same cluster (4). Spectral 

clustering on the consensus matrix identified distinct clusters that consistently emerged across bootstraps 

(5). B and C were repeated for K = 2 to 5. See methods for details. Abbreviations. FLAIR: fluid-attenuated 

inversion recovery; GM: gray matter; int: intensity; IC/SC: intra-/subcortical; WM: white matter. 
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Evaluation of clustering solutions 

For each pair of lesional vertices, we calculated the percentage of bootstrap solutions that 

had the same adjacency as the one in the consensus clustering solution. The percentage 

averaged across all pairs defined the percent agreement for the stability of fit for each K. 

The goodness of fit was computed using the inverse of Davies-Bouldin index, which 

measures the ratio between inter-cluster distance (how far clusters are separated from 

each other) and intra-cluster distance (how far members of a cluster are from its centroid); 

a higher index indicates a better fit. Bootstrap and consensus clustering were repeated for 

K = 2-5. We chose the K that yielded optimal percent agreement and goodness of fit. 

 

Statistical analysis  

Student t-tests assessed vertex-wise differences in structural profiles of FCD classes with 

respect to analogous vertices of healthy controls. Linear mixed-effect models evaluated 

associations between FCD classes and function; the hemisphere harboring each patient’s 

FCD was matched to that of a healthy control for sex and closest age (without re-using 

the same control hemisphere), for a total of 19,253 healthy vertices matched to 19,253 

lesional vertices. For patient-wise analysis, Student t-tests compared the relative 

proportion of each FCD class with histopathology. Logistic regression assessed 

associations between proportions of classes and clinical parameters, including age at 

onset, generalized seizures, interictal epileptic discharges distribution and frequency and 

multinomial logistic regression for variables with more than two categories. Age, sex and 
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lesion size were included as covariates. Results were corrected for multiple comparisons 

using the False discovery rate (FDR) at qFDR < 0.05 [202]. 

 

Data-driven FCD detection 

We evaluated the yield of FCD class-membership for automated lesion detection using 

extreme gradient boosting, a scalable tree boosting system [203]. Each vertex was indexed 

with structural features and FCD class label. Inputs consisted of the original 15 features 

used for clustering in addition to their means across neighboring vertices in distance 

intervals of 0-2 and 2-4 mm. We implemented a two-stage classification strategy. The first 

was designed to maximize sensitivity and consisted of four classifiers each tuned to one 

of the discovered FCD classes; predictions were fed into a meta-classifier to produce the 

final prediction. The second was aimed at improving specificity by removing false 

positives from the first stage; it also consisted of the same four classifiers followed by a 

meta-classifier. For training, we performed random upsampling with replacement of 

each FCD lesion to match the number of vertices to that of the largest lesion; the same 

procedure was applied to the sampling of healthy vertices, thus ensuring that each 

patient contributed equal number of lesional and healthy vertices. In addition, to ensure 

that the lesional and healthy vertices contribute equal weights, we scaled the weight of 

the lesional class by the ratio between the total number of healthy and lesional vertices. 

The classifier was then trained using a 5-fold cross validation with 100 repetitions; this 

procedure, by which 20% of patients are classified using data from the remaining 80%, 

allows unbiased estimation of performance for previously unseen FCD. Finally, we 

compared the classification performance of the class-informed algorithm to a class-naïve 

classifier using two-sided McNemar’s test. Student t-test assessed patient-wise sensitivity 

(percentage of detected FCD) and specificity (number of false-positive clusters). 



67 
 

 

 

 

Replication analysis 

We assessed generalizability in two separate cohorts of patients with histologically-

verified FCD examined at the Montreal Neurological Institute and Hospital (n = 14; 7 

females; mean age = 24.3 ± 4.6 years) and the Severance Hospital in South Korea (n = 12, 

4 females; mean age = 25.8 ± 8.0 years), with 3D T1w and FLAIR images acquired on a 3T 

Siemens Prisma and 3T Philips Achieva using 32-channel head coils, respectively. The 

MRI pre-processing and clustering procedures were identical to those applied to the 

discovery cohort. To mitigate effects of scanner/site difference, imaging features 

underwent subject-wise z-normalization prior to z-normalization with respect to healthy 

controls.  

 

3.3 Results 

FCD Type II lesions were parcellated into four classes with distinct structural profiles, 

functional impact and histopathological embedding. 

 

Data-driven FCD clustering (Figure 5) 

Clustering achieved optimal stability and goodness of fit parameters at K=4, 

dichotomizing lesional vertices across patients into four distinct classes; results were 

highly stable across 10,000 bootstrap instances, supporting robustness. Across classes, 
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GM and WM profiles were significantly different from healthy controls (Student t-tests, 

qFDR < 0.05): Class-1 with severe isolated WM anomalies, characterized by increased 

FLAIR intensity (indexing gliosis) and decreased T1w/FLAIR intensity (indexing 

hypomyelination), as well as subtle decrease in vertical gradients of T1w and FLAIR at 

the GM-WM interface (indexing blurring), but virtually no GM changes; Class-2 with 

severe GM thickening combined with moderate increase in WM FLAIR, decreased 

T1w/FLAIR and subtle interface blurring; Class-3 with only moderate increase in 

intracortical FLAIR and decreased T1w/FLAIR, but no WM abnormalities; Class-4 with 

moderate increase in intracortical T1w/FLAIR and decrease in FLAIR intensity, as well as 

moderate interface blurring. FCD lesions expressed at least two classes, regardless of 

lesion size.  

 

Figure 5. Class membership. A. Stability of fit (based on percent agreement of clustering solutions) and 

goodness of fit (based on inter-/intra-cluster scatter ratio) indicated K=4 as optimal. B. The data matrix 

shows the feature profiles of the four FCD classes color-coded with respect to class memberships. The rows 



69 
 

represent features, the columns represent the lesional vertices; features are z-scored with respect to the 

distribution in healthy controls. C. The line plots show the mean and standard deviations of feature profiles 

of the four FCD classes z-scored with respect to healthy controls. D. Relative proportions of FCD classes 

within individual patients. E. Representative examples of large (case 1), medium (2) and small (3) FCD 

lesions are shown. 

 

Similar to the discovery dataset, K=4 showed optimal stability and goodness of fit in the 

two independent cohorts with the structural profiles of FCD classes closely matching 

(Supplemental Figure 1).  

 

Supplemental Figure 1. Replication analysis. Consensus clustering was performed on two independent 

datasets, from the Montreal Neurological Institute, Canada (Dataset 1; 3T Siemens Prisma scanner) and the 

Severance Hospital, South Korea (Dataset 2; 3T Philips Achieva). The matrix shows feature profiles of the 

four classes, which closely resemble those observed in the discovery dataset.  

 

Relationship to function (Figure 6)  

Class-1 was mainly characterized by moderate decrease in large-scale connectivity (qFDR 

< 0.01, Cohen’s effect size d = -0.23), but negligible decrease in local function (qFDR < 0.001, 

d = -0.05); Class-2 by severe decrease in local function (qFDR < 0.001, d = -0.69) and 

moderate decrease in connectivity (qFDR < 0.01, d = -0.46); Class-3 and Class-4 by decrease 
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in local function, severe in the former (qFDR < 0.001, d = -0.77) and moderate in the latter 

(qFDR < 0.01, d = -0.40), but no change in connectivity. 

 

Figure 6. Relationship of FCD classes to function. Histograms show group results of amplitude of low 

frequency fluctuations indexing local function (A) and degree centrality, a measure of connectivity to the 

rest of the brain (B) for each FCD class (colored) compared to healthy controls (gray). Cohen’s d effect size 

is indicated above each histogram; n.s./*/**: not significant/trends (p < 0.05)/significant after FDR correction 

(qFDR < 0.05). 

 

Relationship to histopathology (Figure 7) 
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Overall, MRI classes reflected typical histopathological FCD characteristics. The 

proportion of Class-1 vertices was more prevalent in lesions with severe WM gliosis and 

GM-WM interface blurring (qFDR < 0.05), Class-2 in those with severe GM dyslamination 

and gliosis, as well as moderate interface blurring and WM gliosis (qFDR < 0.05), Class-3 

with moderate GM gliosis (qFDR < 0.05), Class-4 with mild interface blurring (qFDR < 0.05). 

While Class-2 was associated with Type IIB with balloon cells (log odds ratio: 5.02, p < 

0.01), the proportion of Type IIB and IIA did not differ among the other Classes. 

 

Figure 7. Histopathological embedding of FCD classes. The bar graphs indicate mean and standard 

deviation proportions of FCD classes in lesions with mild, moderate and severe histopathological features. 

Student’s t-test compared class proportions between subdivisions with trends at p < 0.1 (*), p < 0.05 (**) and 

significant differences at qFDR < 0.05 (***). 
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Relationship to clinical parameters 

The relative proportions per lesion of Class-2 and Class-4 were associated with early 

disease onset (< 10 years; log odds ratio: 4.20 and 3.78; p=0.02 and p=0.04, respectively). 

With regards to epileptic activity, Class-1 and showed marginal association with rare 

compared to very frequent IEDs (log odds ratio=-2.81; p=0.07), and Class-3 with focal 

compared to bilateral IEDs (log odds ratio = -8.84; p = 0.07). 

 

Data-driven FCD detection  

The number of FCD vertices that the class-informed paradigm correctly predicted but 

class-naïve incorrectly predicted (mean ± SD =  4,770 ± 826) was higher than those the 

class-naïve correctly predicted but class-informed incorrectly predicted (n = 2,698 ± 172); 

disparity in performance was significant across all 100 repetitions (two-sided McNemar’s 

test; p < 1e-5). At patient-level, the class-informed paradigm detected a higher number of 

lesions than the class-naïve (77 ± 3% vs. 73 ± 3%; p < 1e-5), while the number of false 

positive clusters did not differ (5 ± 0.3 vs. 5 ± 0.5).  

 

3.4 Discussion 

Whether FCD Type IIA and IIB represent distinct entities or a spectrum has been a matter 

of debate. Beside evidence for molecular variability [204], recent observations suggest co-

expression of multiple histological subtypes within the same FCD lesion [12, 90]; 

moreover, severity and arrangement of pathological features may vary between lesions 
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assigned to the same subtype [205], supporting the notion of a spectrum. Harnessing the 

power of bootstrap-aggregated consensus clustering, we quantified the in vivo expression 

of multiple pathological traits for a given FCD rather than assigning them to a single 

category, thus moving beyond previous studies assuming structural homogeneity. The 

high stability of clustering solutions from 10,000 bootstraps, obtained using a 

conservative approach based on 70% random subsampling with replacement, suggests 

that the FCD classes may generalize beyond the discovery dataset of this study. Indeed, 

this was consolidated by the replication in two independent datasets. Lesions were 

parcellated into four classes with distinct structural profiles variably expressed within 

and across patients. Classes had differential histopathological features and functional 

embeddings. Clinical utility is supported by gain in performance of a lesion detection 

algorithm trained on class-informed data compared to a class-naïve paradigm; a main 

contributor resides in the explicit modeling of structural variability in the class-informed 

paradigm allowing FCD classes to equally contribute to the training. 

The gradual structural compromise we observed across individual lesions is compatible 

with a spectrum and provides the basis for a dimensional conceptualization of FCD. 

Phenotypical variability is further supported by the fact that discovered classes did not 

show consistent associations with histological subtypes. While the absence of digitized 

tissue samples prevented a fully quantitative comparison between MRI and histology, 

our imaging markers reflecting categorical variations of main FCD features emphasize 

the ability of post-processing to capture histopathological variations at mesoscopic scale. 

Indeed, MRI-derived Classes with preferential WM damage (1 and 4) were more 

commonly associated with histopathological features of severe GM-WM interface 

blurring and WM gliosis, while those with GM damage (2 and 3) displayed intracortical 

dyslamination and gliosis. Notably, only Class-2 typified by severe cortical thickening 

was associated with Type IIB, possibly in relation to increased neuronal cell diameter and 
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balloon cells [206]. Notably, however, accurate histological characterization may be 

arduous for various reasons, including incomplete surgical sampling [73, 207], difficulty 

of perpendicular sectioning with respect to the pial surface [208] due to variability in size 

and quality of resections, as well as the logistic burden of immunohistochemistry [208, 

209].  

Besides optimized performance for automated detection, the clinical relevance of FCD 

classes is further supported by their relation to electro-clinical parameters and age of 

onset. From an electrophysiological perspective, Class-1 with preferential WM damage, 

was associated with rare IEDs, while Class-3 with selective cortical anomalies being 

associated with focal discharges. Classes driven by GM anomalies had an impact on local 

function, whereas those with WM changes affected large-scale connectivity. A likely 

explanation lies in the developmental origin of FCD with stage-dependent modulation of 

genetically-driven molecular perturbations [65]. Anomalous local function may relate to 

GM alterations secondary to aberrant cell proliferation during mitotic cycles, whereas 

WM alterations may be linked to defective later-stage neuronal migration [10]. This is 

consistent with our results showing early disease onset in patients with predominant GM 

pathology classes. Cortical development consists of three successive but partially 

overlapping stages of cell proliferation, neuronal migration and cortical organization [22]. 

Thus, co-expression of two or more classes within lesions suggests that molecular 

perturbations along overlapping stages of neurodevelopment may contribute to the 

overall pathological makeup of FCD. 

 

3.5 Conclusions 

The presented data-driven approach uncovered FCD Type II variability at a mesoscopic 

scale, revealing tissue classes with distinct structural dimensions, functional and 
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histopathological profiles. From a clinical standpoint, integrating in vivo staging of FCD 

pathology with automated algorithms relying on widely available MRI contrasts is likely 

to  pave the way for the detection of the most subtle form of cortical dysplasia 

characterized by isolated intra-cortical dyslamination, an elusive entity currently 

representing one of the main barriers to epilepsy surgery [7, 73]. Moreover, addressing 

the full spectrum of FCD traits may play a key role in establishing genotype-phenotype 

associations and their clinical translation, opening opportunities to inform the 

development of novel personalized treatments [210] so far mainly hindered by the lack 

of phenotypes linked to FCD somatic variants [211].  
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BRIDGING TEXT 

Project I characterized a wider diversity of FCD’s MRI signatures, motivated by the diversity 

of its histopathological features, and demonstrated an added utility in detecting subtle 

lesions for surgical resection. Conversely, understanding the molecular mechanisms that 

give rise to a broad spectrum of FCD pathology is a pivotal milestone that may lead to novel 

therapeutic targets. Yet, previous molecular studies have largely focused on the regulatory 

genes of the mTOR pathway as the causal mechanism. In the following project, we explore 

the neurogenic mechanisms associated with FCD-prone cortices across multiple spatial 

scales, including whole-brain transcriptomics and histology.  
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4.  MULTIMODAL MAPPING OF REGIONAL BRAIN 

VULNERABILITY TO FOCAL CORTICAL DYSPLASIA 

 

PREFACE 

Clinical observations suggest that FCD frequently occurs in the frontal lobe, but the 

mechanisms for such propensity remain unexplored. The normally developing cortex 

undergoes area-specific, genetically regulated neurogenesis, synaptogenesis and circuit 

development that give rise to variations in cytoarchitecture. Given the strong genetic 

influence on regional cytoarchitecture, the molecular and architectural features of the 

FCD-prone cortices may inform on the neurogenic mechanisms underpinning this 

malformation. 

Here, we hypothesized that cortex-wide spatial associations of FCD distribution with 

cortical cytoarchitecture, gene expression and organizational axes may offer 

complementary insights into processes that predispose given cortical regions to harbor 

FCD. 
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ABSTRACT 

Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental 

malformation and a common cause of surgically treated drug-resistant epilepsy. While 

clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such 

propensity remain unexplored. Here, we hypothesized that cortex-wide spatial 

associations of FCD distribution with cortical cytoarchitecture, gene expression and 

organizational axes may offer complementary insights into processes that predispose 

given cortical regions to harbor FCD. 

We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 

sites worldwide. We then determined its associations with 1) cytoarchitectural features 

using histological atlases by Von Economo and Koskinas and BigBrain, 2) whole-brain 

gene expression and spatiotemporal dynamics from prenatal to adulthood stages using 

the Allen Human Brain Atlas and PsychENCODE BrainSpan and 3) macroscale 

developmental axes of cortical organization. 

FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices 

typified by low neuron density, large soma and thick gray matter. Transcriptomic 

associations with FCD distribution uncovered a prenatal component related to neuroglial 

proliferation and differentiation, likely accounting for the dysplastic makeup, and a 

postnatal component related to synaptogenesis and circuit organization, possibly 

contributing to circuit-level hyperexcitability. FCD distribution showed a strong 

association with the anterior region of the antero-posterior axis derived from heritability 

analysis of inter-regional structural covariance of cortical thickness, but not with 

structural and functional hierarchical axes. Reliability of all results was confirmed 

through resampling techniques.  
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Multimodal associations with cytoarchitecture, gene expression and axes of cortical 

organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be 

key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a 

causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-

vulnerable cortices display properties indicative of earlier termination of neurogenesis 

and initiation of cell growth. They also suggest a potential contribution of aberrant 

postnatal synaptogenesis and circuit development to FCD epileptogenicity.  
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4.1 Introduction 

Focal cortical dysplasia (FCD) type II is the most prevalent epileptogenic developmental 

brain malformation and a common cause of surgically amenable epilepsy [212]. This 

lesion is characterized by cortical dyslamination, cytomegaly and cortical thickening [15], 

likely due to atypical neuroglial proliferation, growth and migration [12]. At a molecular 

scale, studies in resected FCD tissue have established a causal role of somatic mutations 

in genes implicated in the mechanistic target of the rapamycin (mTOR) pathway [59, 67, 

213, 214]; mTOR hyperactivity disrupts neuronal migration and cortical lamination [67]. 

A recent multiomic study of somatic mutations in hemimegalencephaly and FCD also 

implicated genes related to calcium dynamics and synaptic function as potential 

contributors to epileptogenesis.[215]  

Although FCD type II lesions may occur across the entire cortex, histopathological 

reports of surgically resected tissues in large cohorts [87, 212, 216] as well as a recent atlas 

of lesion location [217], suggest a propensity for frontal lobe involvement. However, 

mechanisms underpinning this regional vulnerability remain unexplored. Notably, the 

developing cortex undergoes area-specific, genetically regulated neurogenesis, 

synaptogenesis and circuit development that give rise to variations in cytoarchitecture 

[19]. Given the strong genetic influence on regional cytoarchitecture [218], it is 

conceivable that architectural features of the putative FCD-prone cortices may inform on 

the morphopathogenic characteristics of this malformation [219]. Likewise, given the 

substantial variability of gene expression profiles across the cortex [220], their relation to 

FCD topology may provide insights into the molecular pathways contributing to the 

pathogenesis of this brain malformation. Furthermore, cortical organization is thought to 

be governed by graded macroscale axes, emerging from gene expression [19, 221, 222], 

morphology and microstructure [223-226] as well as functional and structural 

connectivity [55, 227]. Specifically, the antero-posterior axis related to the prenatal 
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timetable of neuroglial proliferation and growth [47, 48, 228], results in a gradient of 

neuronal density, size and cortical thickness that persists throughout adulthood [218, 225, 

229]. Another increasingly recognized axis marks the transition from sensory to 

transmodal association cortices [55, 56, 222, 226, 230]. Recapitulating classic accounts 

formulated in non-human primates,[231] this axis has been thought to mature during late 

prenatal and early postnatal stages [54] and reflect the hierarchical organization of neural 

function. In sum, cortex-wide spatial associations of FCD distribution with cortical 

cytoarchitecture, gene expression and organizational axes may offer complementary 

insights into the neurogenic processes that predispose given cortical regions to harbor 

this developmental malformation [219, 230]. 

Whole-brain cross-modal associations are facilitated by the availability of human brain 

atlases based on histological features [232-234] and spatiotemporal gene expression 

profiles [235, 236]. The overall purpose of this work was to investigate the intrinsic 

regional vulnerability of cortices harboring FCD. To this end, we mapped the cortex-wide 

lesional distribution of a multicentric dataset collected from epilepsy centers worldwide, 

determined cellular and genetic factors based on postmortem histology and 

transcriptomics, and examined the embedding of FCD lesions within the axes of 

neurogenic patterning and structure-function hierarchy. Specifically, after creating a 

topographic map of FCD type II lesions on MRI-derived cortical surface models, we 

cross-referenced it against histological taxonomies [232, 233] and a 3D high-resolution 

human brain histological model [234]. In parallel, we performed spatial correlation with 

whole-brain gene expression data from the Allen Human Brain Atlas [235] and examined 

spatiotemporal gene expression dynamics from prenatal to adulthood stages using the 

PsychENCODE BrainSpan, an independent development-targeted genetic dataset [18, 

236]. Targeted gene enrichment analysis probed transcriptomic associations for 

previously known pathogenic FCD variants [12, 62, 65], as well as non-FCD epilepsies 
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[237] and other neurological disorders. Finally, we contextualized the FCD distribution 

within the antero-posterior axis previously associated with genetic cortical patterning 

and timetable of neurogenesis [47, 48, 218, 228], contrasting these findings with 

hierarchical cortical axes derived from myelin-sensitive MRI [56] and resting-state MRI 

functional connectivity [55]. 

 

4.2 Materials and methods  

Study design and participants 

We studied a consecutive retrospective cohort of 337 patients (153 females; mean±SD age 

= 22.2±12.7 years) with histologically verified FCD lesions collected from 13 tertiary 

epilepsy centers worldwide. All patients had been investigated for drug-resistant 

epilepsy with a standard presurgical workup including assessment of seizure history, 

routine MRI and video-EEG recordings. Histological examination of the surgical 

specimen [15] determined FCD type II as disrupted cortical lamination with dysmorphic 

neurons in isolation (IIA, n=134) or together with balloon cells (IIB, n=203). Site-specific 

demographics are summarized in Table 3. The Ethics Committees and Institutional 

Review Boards at all participating sites approved the study, and written informed 

consent was obtained from all patients. 
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Sample size 

(n) 

Age 

(years) 

Sex 

(female/male) 

Age at onset 

(years) 

All 337 22.2±12.7 153/184 7.6±6.7 

S1 114 24.8±10.5 56/58 9.1±7.1 

S2 8 10.5±6.4 2/6 5.5±4.2 

S3 10 25.3±14.2 5/5 7.2±7.4 

S4 43 24.3±14.4 20/23 7.3±7.6 

S5 18 6.8±5.6 8/10 5.6±4.1 

S6 22 17.4±13.5 8/14 5.0±4.8 

S7 11 30.8±14.0 7/4 4.1±3.1 

S8 14 29.1±11.8 5/9 7.5±5.6 

S9 8 31.9±15.3 3/5 8.9±4.7 

S10 14 25.3±7.5 6/8 9.9±5.6 

S11 11 20.8±6.8 7/4 6.8±8.2 

S12 42 17.0±10.7 17/25 6.6±5.8 

S13 22 20.9±15.5 9/13 7.1±8.6 

Table 3. Overall and site-specific demographics. Data for age and age at onset indicate mean±SD years. 

SD: standard deviation 

 

MRI acquisition and processing 

All patients had high-resolution 3D T1-weighted MRI (T1w) acquired as a part of the 

clinical presurgical investigation, consisting of images with isotropic 1x1x1 mm voxel 

resolution.[238] Data underwent intensity non-uniformity correction and normalization, 

and linear registration to the ICBM MNI152 symmetric template. To generate cortical 

surface models, we applied the Constrained Laplacian Anatomic Segmentation using 

Proximity algorithm, yielding GM-WM and GM-CSF surfaces with 41k surface points (or 

vertices) per hemisphere.[191] Surface-based registration, which aligns individual 
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participants based on cortical folding, was performed to optimize vertex-wise anatomical 

correspondence across participants [239].  

 

Cortex-wide MRI mapping of FCD lesions 

Two experts (AB, NB) independently segmented each FCD lesion on the 3D MRI 

registered onto the ICBM MNI152 template. The consensus labels (the union of the two 

segmentations; inter-rate Dice index: 0.94±0.13) was intersected with the cortical surfaces 

to generate surface-based FCD labels. To enhance regional sensitivity while retaining 

specificity, labels were minimally smoothed using a surface-based 4 mm full width at half 

maximum Gaussian kernel to maximize local specificity [194]. We then calculated for 

each vertex the FCD probability, defined as the percentage of patients whose lesion label 

coincided with that vertex. To assess within-sample reliability, we calculated bootstrap 

certainty at each vertex, defined by mean of lesion probability from the bootstrap 

subsamples divided by their standard deviation. Similarly, we assessed cross-site 

reliability as defined by the mean divided by the standard deviation from leave-one-site-

out subsamples. We assessed the lobar distribution by counting the number of FCD 

lesions located within each lobe; to account for lobar size, we divided the lesion counts 

by the relative surface areas of each lobe, defined based on automated anatomical 

labelling parcellation atlas [240]. 

 

Association analyses  

Histological atlases 

To assess associations of regional FCD probability with histological markers, we used the 

von Economo-Koskinas MRI atlas (http://dutchconnectomelab.nl) indexed with 

http://dutchconnectomelab/
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quantitative histological information (cell size, cell density and cortical thickness) of 43 

cortical regions per hemisphere [233]. For independent validation, we leveraged the 

BigBrain atlas, a 3D reconstruction of a stained post-mortem human brain [234]; this 

histological data, mapped to intracortical surface models in standard space and to the 

Schaefer 400 parcellations [241], were obtained from https://github.com/MICA-

MNI/micaopen/tree/master/bigbrain. 

 

Cortex-wide gene expression 

To investigate the molecular properties of cortical vulnerability, we related the FCD 

distribution with the anatomically comprehensive gene expression data from Allen 

Human Brain Atlas (AHBA; six postmortem adult brains; 1 female; age = 42.5±13.4 years; 

https://human.brain-map.org) [235], which was mapped onto the 308 parcels of the 

Desikan-Killiany atlas (DKA) [242]. The microarray data of these donors were acquired 

using ~500 samples per hemisphere, with each sample indexed with expression levels for 

~60,000 genes from at least two probes. Following an established procedure [243], the 

Maybrain package (https://github.com/87ittman/maybrain) matched the closest AHBA 

sample in each donor to the centroids of 308 parcels of equal area (500 mm2) averaged 

across donors. Notably, data were averaged across probes corresponding to the same 

gene, excluding those not matched to gene symbols in the AHBA data. To reduce inter-

donor variability, expression data for each probe were normalized through z-

transformations across the 308 DKA parcels within each donor. The final output was a 

matrix of z-scored expression values for each of 20,737 genes mapped onto the 308 DKA 

parcels. 

 

 

https://github.com/MICA-MNI/micaopen/tree/master/bigbrain
https://github.com/MICA-MNI/micaopen/tree/master/bigbrain
https://human.brain-map.org/
https://github/
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Spatiotemporal gene expression  

We determined how genes associated with the FCD distribution are spatially and 

temporally regulated throughout the pre- and postnatal development. To this purpose, 

we used PsychENCODE BrainSpan (http://development.psychencode.org) [236], a 

dataset including tissue-level mRNA-sequencing of 607 samples across 16 anatomical 

brain regions of 41 postmortem human brains ranging from 8 postconceptional weeks to 

40 postnatal years (18 females; postmortem interval = 12.9±10.4 hours; tissue pH = 6.5±0.3; 

RNA integrity number = 8.8±1). After bulk tissue mRNA-sequencing, this dataset has 

yielded expression levels for 60,154 genes. The final output consisted of a matrix of reads 

per kilobase million transcript expression level for each of 17,584 genes overlapping with 

the 20,737 genes from the AHBA atlas.  

 

Developmental axes of cortical network organization 

Gradient axes of cortical structural and functional network organization are shaped by 

gene expression and cytoarchitecture during the pre- and postnatal development. The 

antero-posterior axis relates to the prenatal timetable of neurogenesis and growth [47, 48, 

228]; we derived this axis from a heritability analysis of structural covariance networks 

[218] mapped on the Schaefer 400 parcellations [241]. Structural and functional 

hierarchical axes are thought to mature during late prenatal and early postnatal circuit 

development [54]; we derived these axes from MRI-based covariance of microstructural 

profiles [56] and resting-state functional connectivity [55], which we mapped to the 

Schaefer 400 parcellations using the BrainSpace toolbox (https://github.com/MICA-

MNI/BrainSpace) [244]. The FCD distribution and developmental axes were mapped to 

Schaefer 400 parcellations prior to correlation analysis to achieve anatomical 

correspondence between them. 

http://development.psychencode.org/
https://github.com/MICA-MNI/BrainStat
https://github.com/MICA-MNI/BrainStat
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Statistical analysis 

Multivariate analysis  

Cortex-wide linear models assessed associations of regional FCD probability with 

histological markers and neurodevelopmental axes. For the gene expression analysis, 

given the high dimensionality of AHBA data, we used partial least squares (PLS) 

regression, a multivariate linear model, to uncover weighted combinations of genes (or 

PLS components) that best explained the regional variance in FCD probability. The 

statistical significance of the variance explained by the PLS components was tested based 

on 10,000 spin permutations of the FCD distribution, accounting for spatial 

autocorrelations [245]. The regional expression profile of each PLS component was 

defined as the average of the spatial expression profile of 20,757 genes, adjusted by their 

PLS weight; weight stability was estimated by dividing the PLS weight by the bootstrap 

SD. 

 

Enrichment analysis  

A web-based gene set analysis toolkit (https://webgestalt.org) [246] was utilized to 

uncover biological processes enriched in the list of genes whose bootstrap weights 

(absolute value) were ranked within the top 10 percentile of 20,757 genes. In other words, 

this analysis quantified the significance and enrichment ratio, namely the number of PLS-

derived genes overlapping with each biological process divided by the number of genes 

expected to overlap by random permutations.  

 

 

 

https://webgestalt.org/
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Spatiotemporal gene expression profiles  

Using the PsychENCODE BrainSpan dataset, we calculated the spatiotemporal profile 

for each PLS component obtained in the gene expression analysis. This profile, defined 

as the regional average of each gene’s expression level weighted by its bootstrap weight, 

was obtained across 16 cortical regions and timepoints based on major 

neurodevelopmental milestones derived from whole-brain transcriptomic signatures 

[247]. Student’s t-tests compared the expression levels between time windows, and 

between different regions within time windows.  

 

Specificity analysis 

We assessed whether known genes of the pathways causing FCD via somatic mutations 

were enriched in the PLS components, including the PI3K-AKT-mTOR pathway [59, 65, 

214, 248, 249], PI3K-PTEN-AKT-TSC-RHEB pathway [61, 214, 248, 250, 251], TSC1-TSC2 

complex [60, 69, 252, 253], GATOR1 complex [61, 69, 214, 250, 254-257] and other reported 

variants (IRS1, RAB6B, ZNF337, RALA and HTR6) [253]. These genes are listed in 

Supplementary Table 1. We also assessed associations with risk genes of focal epilepsy 

with hippocampal sclerosis, generalized epilepsy and all epilepsies as determined by a 

recent genome-wide association study [237], neurodevelopmental conditions, namely 

autism [258] and bipolar spectrum [259]. Finally, our specificity analysis included 

frontotemporal dementia [260] due to the preferential involvement of the frontal lobe. 
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A AKT1, AKT1S1,  AKT2, AKT3, ASCL1, BRAF, CAB39, CAB39L, DDIT4, DEPDC5, Delta1, EIF4B, 

EIF4E, EIF4E1B, EIF4E2, EIF4EBP1, FOXG1, GSk3, HIF1A, ID1-4, IGF1, IKBKB, INS, IRS1, MAPK1, 

MAPK3, MIOS, MLST8, MTOR, NEUROD1, NEUROG1, NEUROG2, NPRL2, NPRL3, PDPK1, 

PIK3C2B, PIK3C3, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R2, PIK3R3, PIK3R5, 

PRKAA1, PRKAA2, PRKCA, PRKCB, PRKCG, PTEN, RAB6B, RALA, RHEB, RICTOR, RND1-3, 

RPS6, RPS6KA1, RPS6KA2, RPS6KA3, RPS6KA6, RPS6KB1, RPS6KB2, RPTOR, RRAGA, RRAGB, 

RRAGC, RRAGD, SEC13, SEH1L, STK11, STRADA, TBR2, TNF, TSC1, TSC2, ULK1, ULK2, ULK3, 

VEGFA, WDR24, WDR59, ZBTB18, ZNF337 

B C3orf33, GJA1, KCNAB1, SLC33A1 

C SCN1A, SCN2A, SCN3A, TTC21B 

D ATXN1, BCL11A, FANCL, GABRA2, GRIK1, KCNN2, PCDH7, PNPO, SCN1A, SCN2A, SCN3A, 

STAT4, STX1B, TTC21B, ZEB2 

E FANCL, BCL11A, SCN3A, SCN2A, TTC21B, SCN1A, HEATR3, BRD7 

F C8orf74, KIZ, KMT2E, LOC102723661, MACROD2, NKX2-2, NKX2-4, PINX1, PTBP2, SOX7, SRPK2, 

XRN2 

G ADCY2, ADD3, ANK3, CACNA1C, CD47, FADS2, FSTL5, GRIN2A, HDAC5, ITIH1, LMAN2L, 

MRPS33, NCAN, PACS1, PC, PLEKHO1, POU3F2, RIMS1, RPS6KA2, SCN2A, SHANK2, SRPK2, 

SSBP2, STARD9, STK4, THSD7A, TRANK1, ZCCHC2, ZNF592 

H AC074212.3, ABCA7, ABI3, ADAM10, ADAM10, ADAMTS4, ALPK2, APH1B, APOE, BIN1, 

BZRAP1-, S1, CASS4, CD2AP, CD33, CLNK, CLU, CNTNAP2, CR1, ECHDC3, EPHA1, HESX1, 

HLA-DRB1, HS3ST1, INPPD5, KAT8, MS4A6A, PICALM, PTK2B, SCIMP, SLC24A4, SORL1, 

SUZ12P1, TREM2, ZCWPW1 

I BTNL2, C9orf72, GRN, HLA-DRA, HLA-DRB5, MAPT 

Supplemental Table 1. The lists of candidate genes used for disease specificity analysis presented in Figure 

3 for focal cortical dysplasia (A), hippocampal sclerosis (B), focal epilepsy (C), generalized epilepsy (D), all 

epilepsy (E), autism spectrum disorder (F), bipolar disorder (G), Alzheimer’s disease (H) and 

frontotemporal dementia (I). 

 

For each PLS component, we quantified the enrichment ratio (defined as the difference 

between the mean bootstrap weight of the candidate genes and the mean bootstrap 
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weight of the same number of randomly permuted genes), which was then divided by 

the standard deviation weight of the permutated genes. Significance was determined by 

percentile of the bootstrap weight of the candidate genes relative to the bootstrap weights 

of randomly selected genes from 10,000 permutations. Positive/negative ER of a given 

condition indicates that the risk genes are expressed to a higher/lower degree relative to 

the baseline expression level. In addition, the function of the risk genes needs to be 

considered when interpreting ER. For example, the FCD candidate genes are inhibitory 

regulators of mTOR pathway; thus, negative ER for these genes indicates activation of 

mTOR pathway. 

 

Corrections for multiple comparisons 

For all spatial correlation analyses, findings were corrected using spin permutation tests 

at pspin=0.05.[245] Remaining results were corrected for multiple comparisons using false 

discovery rate (FDR) at 0.05 [202].  

 

Data availability  

The data supporting findings of this study are available from the corresponding author 

upon request. The datasets are not publicly available as they contain information that 

could compromise privacy of research participants.  
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4.3 Results  

Cortex-wide MRI distribution of FCD  

The vertex-wise MRI mapping of FCD lesions across the cortex (Figure 8) showed 

aggregation within the frontal lobe, particularly in prefrontal (dorsolateral, ventrolateral, 

dorsomedial and medial frontopolar; Brodmann areas 4, 9, 10, 44, 45, 46, 57) and cingulate 

(anterior-mid and pre-genual; Brodmann areas 24, 32, 33) cortices. The reliability of these 

areas was supported by higher within-sample and cross-site certainty as compared to the 

other regions. Lobar mapping also confirmed higher occurrence in the frontal lobe 

compared to other areas, even after normalizing for lobar surface area. 
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Figure 8. Cortex-wide FCD distribution. A. For each patient, the FCD lesion was manually segmented on 

MRI and mapped onto its cortical surface. B. Map of FCD distribution. C. Reliability analysis. Within-

sample and cross-site robustness of regional FCD probability is high where the FCD probability is high. D. 

Lobar distribution. The spider plot of the FCD distribution across lobes demonstrates remarkable 

preference towards the frontal lobe, which holds after normalizing for the surface area of each lobe (dotted 

line).  

 

 

 



95 
 

Association between FCD distribution and cytoarchitecture 

With respect to the von Economo and Koskinas data (Figure 9), mapping 43 regions per 

hemisphere, we found a positive correlation between FCD distribution and cortical 

thickness (R=0.35, pspin<0.05) and cell size (R=0.46, pspin<0.05) and a negative correlation 

with cell density (R=-0.52, pspin<0.001). We also found a negative correlation with cell 

density obtained from the BigBrain atlas (R=-0.34, pspin<0.01). In other words, frontal lobe 

areas with the highest probability of lesions were those displaying lower neuronal 

density, larger neurons, and higher cortical thickness.  

 

Figure 9. Associations between FCD distribution and histological measures. Plots show correlations 

between FCD probability and cortical thickness, cell size, and cell density derived from the Von Economo-

Koskinas atlas (A), as well as cell density (in arbitrary units, a.u.) indexed by optical density of silver-

stained cells in the BigBrain atlas (B). In the scatterplots, x- and y-axes represent FCD probability (in %) 

and histological quantities, respectively; dots indicate 308 parcels of the Desikan-Killiany atlas. Color-

coding is identical for brain maps and dots; pspin indicates p value after adjusting for spatial autocorrelation. 

 

Transcriptomic associations and relation to spatiotemporal gene expression 

Two PLS components explained 25% (PLS-1: pspin<0.001) and 27% (PLS-2: pspin=0.03) of the 

covariance between the FCD probability and AHBA gene expression (Figure 10). As 

shown by the gene enrichment analysis, PLS-1 reflected regulation at epigenetic, RNA 

and post-translational levels, as well as covalent chromatin modification and 
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chromosome organization (FDR<0.05), both critical for mitotic cell division and 

differentiation. Conversely, PLS-2 was mainly characterized by general synaptic 

organization and activity (FDR<0.05) and marginally by glutamate receptor signaling 

(FDR<0.1).  
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Figure 10. Cortex-wide association between FCD topography and gene expression. A. Partial least 

squares (PLS) regression identified weighted combinations of genes, or PLS components, and their spatial 

expression profiles that best explained the regional variance in FCD distribution, or percent variance 

explained; pspin indicates p value after adjusting for spatial autocorrelation). Inputs to PLS include the 

whole-brain gene expression data matrix (parcels by genes) and FCD distribution across parcels (in %). 

Outputs include gene weights (genes by components), gene spatial profiles (parcels by components) and 

percent variance explained by PLS components. B. Maps of gene expression. The color scale indicates the 

score for PLS-1 and 2, namely the weighted average expression level of 20,737. C. Gene enrichment analysis. 

Genes associated with PLS-1 were enriched for epigenetic, RNA and post-translational levels as well as 

covalent chromatin modification and chromosome organization; and PLS-2 for general synapse 

organization and activity. In the volcano plots, x-axis indicates log2 of enrichment ratio and y-axis indicates 

-log10 of FDR. Color codes indicate the number of genes related to the biological processes that overlap with 

the input list of top 10 percentile genes; upper/lower dotted lines indicate FDR=0.05/0.1. D. Developmental 

spatiotemporal trajectory. The expression of genes associated with PLS-1 sharply increased from early to 

late fetal stages, plateaued during infancy and childhood, and decreased thereafter. Conversely, PLS-2 

showed monotonic increase from early fetal stage to adulthood. In both instances, expressions were more 

marked in the frontal lobe. Dots represent cortical samples at a given timepoint color-coded by lobes; dotted 

lines connecting dots correspond to the same region of interest. Thick colored lines connect the average of 

samples within each time window, thereby showing the overall trajectory. Asterisks indicate FDR<0.05. E. 

Specificity analysis. PLS-1 was significantly enriched for FCD pathogenic genes; the histogram shows 

bootstrap weights of 10,000 permutations; the dotted line indicates the bootstrap weight of the candidate 

genes. In relation to GWAS-risk genes, PLS-2 (blue) was enriched for genes associated with all epilepsies, 

while PLS-1 (red) was marginally enriched for those associated with all and generalized epilepsies. Top 

dotted line indicates FDR = 0.05; bottom dotted line indicates FDR = 0.1. 

 

Evaluating the developmental spatiotemporal trajectories, the expression of genes 

associated with PLS-1 sharply increased from early to late fetal stages (FDR<0.05), 

plateaued during infancy and childhood and decreased thereafter (FDR<0.05). 

Conversely, the expression of genes associated with PLS-2 showed a monotonic increase 

from early fetal stage to adulthood (FDR<0.05). Expressions were more marked in the 
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frontal lobe, with a fronto-occipital gradient for PLS-1 and a fronto-temporal gradient for 

PLS-2. We did not find differential associations between early and late onset lesional 

distribution and the PLS components. 

Appendices – Supplemental Table 1 lists the risk genes used for each condition. 

Specificity analysis revealed that PLS-1 and PLS-2 were enriched for the risk genes of all 

epilepsies (PLS-1: FDR=0.08; enrichment ratio, ER=-2.60; PLS-2: FDR<0.001, ER=-3.01), 

with PLS-1 additionally enriched for genes causing FCD via somatic mutations (p<0.05, 

ER=-1.99) and risk genes of generalized epilepsy (FDR=0.08, ER=-2.6). Neither PLS 

showed associations to genes for focal epilepsy with hippocampal sclerosis, 

frontotemporal dementia, bipolar or autism spectrum disorders. Supplemental Table 2 

provides uncorrected p values for the enrichment of the GWAS risk genes. 

 Epilepsy Generalized 

epilepsy 

Hippocampal 

sclerosis 

Autism 

spectrum 

disorder 

Bipolar 

disorder 

Frontotemporal 

dementia 

PLS-1 -2.954 

(0.003) 

-1.629 

(0.105) 

-1.345 (0.185) 0.041 

(0.961) 

0.734 

(0.473) 

-1.197 

(0.234) 

PLS-2 -2.560 

(0.014) 

-2.348 

(0.026) 

-1.009 (0.303) 0.028 

(0.988) 

-0.786 

(0.434) 

-0.523 

(0.579) 

Supplemental Table 2. Enrichment ratio (uncorrected p value) of risk genes used for disease specificity 

analysis presented in Figure 3. 

 

Relation to developmental axes of cortical organization (Figure 11) 

The multisite-derived FCD distribution showed a strong positive association with the 

anterior region of the antero-posterior axis derived from heritability analysis of inter-

regional structural covariance of cortical thickness (R=0.51, pspin<0.001), but not with 

structural (R= 0.12, p=0.37) and functional (R=-0.07, p=0.92) hierarchical axes.  
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Figure 11. Relation to developmental axes of cortical organization. FCD distribution showed a strong 

association with the anterior region of the antero-posterior axis derived from heritability analysis of inter-

regional structural covariance of cortical thickness (A), but not with structural (B) and functional (C) 

hierarchical axes. X and y- axes represent the FCD probability (in %) and the rank along the gradient axes, 

also represented as maps. The color scale represents the percentage of patients in whom the FCD is located 

at a given vertex.  

 

4.4 Discussion 

We systematically investigated the cellular, genetic and organizational features of 

cortices harboring FCD. Mapping the cortex-wide MRI distribution of 337 histologically 

verified lesions collected from 13 sites worldwide, we found a propensity for the frontal 

lobe. Associations with histological markers derived from Von Economo and Koskinas 

and BigBrain atlases showed that in the healthy brain these areas display lower neuronal 

density, larger neurons and thicker cortices. Using whole-brain and spatiotemporal gene 

expression datasets, we identified two genetic factors related to FCD distribution: one 

defined by prenatal regulation of gene expression and chromosome organization and 

another related to postnatal synapse organization and activity driving neural circuits 

[261]. At macroscale, FCD distribution was associated with the antero-posterior 
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organizational axis reflective of the timetable of neurogenesis.  Concordant with a causal 

role of atypical neuroglial proliferation and growth, our results indicate that FCD-

vulnerable cortices display cytoarchitectural, molecular and organizational properties 

indicative of earlier termination of neurogenesis and initiation of cell growth. Our 

findings also suggest a potential contribution of postnatal synaptogenesis and circuit 

development to FCD epileptogenicity.  

While propensity for frontal lobe involvement is in keeping with previous observations 

[87, 212, 216, 217], our multisite dataset refined this knowledge by demonstrating 

locoregional vulnerability of prefrontal and fronto-limbic cortices, the consistency of 

which was supported by high within-sample and cross-site reliability. Notably, 

normalizing for lobar surface did not modify results, attesting that such susceptibility is 

not merely due to the frontal lobe’s larger size, but rather linked to intrinsic 

developmental, likely multifactorial vulnerability. With respect to cytoarchitectural 

markers, frontal cortices are typified by lower neuronal density, larger cell soma and 

thicker gray matter. Given that these are also key histopathological traits of FCD [15, 262], 

the association we found may hint at potential pathophysiological developmental 

processes linked to intrinsic anatomical characteristics of the prefrontal and fronto-limbic 

cortices. In this context, the timetables of neurogenesis and synaptogenesis of the 

prefrontal cortices are distinct from other cortices [263], as they undergo earlier initiation 

of proliferation, transition from symmetric (cloning) to asymmetric (differentiation) 

division, reduction of cell cycle rates and termination of neurogenesis, resulting in lower 

neuronal density. This is followed by early initiation of neuronal growth leading to larger 

soma and more complex dendritic arborization of frontal relative to occipital cortices [47, 

48, 228]. Hence, although subtle somatic mutations can occur randomly throughout the 

developing cortex [264], this tighter regulation of neurogenesis in the frontal cortex may 

explain its heightened susceptibility to harboring FCD. This longer period of cell growth 



102 
 

sets the basis for the frontal neurons to undergo a longer period of synaptogenesis [263, 

265-267], resulting in the overproduction of synapses and a protracted period of pruning 

[265, 266, 268, 269]. Similarly, limbic cortices, marked by agranular or dysgranular 

laminar patterns, develop earlier and undergo longer period of synaptic plasticity 

through adulthood relative to the isocortex [270, 271]. Fronto-limbic cortices have shown 

vulnerability for other developmental disorders, such as schizophrenia [272, 273] and 

autism [274-277], while temporo-limbic cortices preferentially harbor neurodegenerative 

disorders, namely Alzheimer’s and Parkinson’s diseases [278-281]. Interestingly, tau 

pathology has been suggested to mediate premature neurodegeneration and cell injury 

in FCD [282, 283]. The frontal and limbic regions have been shown to become central hubs 

in the mature cortical network architecture, which also render themselves vulnerable to 

structural pathology in numerous lesional and degenerative conditions [284, 285].  

Contextualizing lesional distribution within axes of developmental cortical organization 

revealed that FCD preferentially occurs in the rostral portion of the anterior-posterior axis 

defined by genetically determined inter-regional synchrony of cortical development [218, 

286, 287]. Given that this axis reflects the prenatal timetable of neurogenesis and cell 

growth, the rostral concentration of FCD supports the predisposing roles of aberrant 

neurogenesis and cell growth as contributors to the histopathological makeup of FCD. In 

contrast, FCD distribution was disassociated from the sensory-association axis 

established during late prenatal and postnatal neural circuit development [54], a finding 

consistent with the prenatal occurrence of this malformation [12]. A potential genetic 

underpinning of FCD distribution was also suggested assessing associations to whole-

brain gene expression. Indeed, transcriptomic associations based on data-driven PLS 

regression uncovered a component (PLS-1) reflecting regulation of gene expression at 

epigenetic, RNA and post-translational levels, as well as covalent chromatin modification 

and chromosome organization. Chromatin architecture is tightly coupled to mitotic cell 
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cycle and fate. As such, its modification regulated by epigenetic, transcriptional and post-

transcriptional mechanisms plays a key role in cell division [288] and differentiation [289]. 

Chromosome organization, which involves assembly, arrangement or disassembly of 

chromosomes, is the process that allows the parent cell to replicate its DNA such that 

each daughter cell receives a copy during mitosis [290]. Therefore, within the cortex, PLS-

1 likely represents molecular mechanisms underpinning neuroglial proliferation and 

differentiation. On the other hand, PLS-2 was related to general synaptic organization 

and activity, circuit organization [18], as well as glutamate receptor signaling. Evaluating 

the developmental spatiotemporal trajectories, PLS-1 expression sharply increased from 

the early fetal stage to late fetal stage, while PLS-2 expression showed steady increase 

from fetal stages to adulthood. The relevance of these PLS components was supported by 

the disease specificity analysis. Indeed, while PLS-1 and -2 were both associated with risk 

genes for all epilepsies, PLS-1 was additionally associated with genes causing FCD via 

somatic mutations and risk genes of generalized seizures, Therefore, on one hand, it is 

conceivable that PLS-1 may indicate early cortical vulnerability to aberrant neurogenesis 

and cell growth, ultimately resulting in a dysplastic lesion. On the other hand, PLS-2 may 

account for the susceptibility to aberrant synaptogenesis and neurotransmitter systems 

that for hyperexcitable circuits during a latent period following the precipitating lesion 

[291], thereby promoting epileptogenesis. Although synaptic and white matter 

maturation have been postulated to contribute to FCD occurrence [292], the presented 

work is the first to provide evidence for the role of postnatal synaptogenesis and circuit 

development for FCD epileptogenesis. 

Associations with cytoarchitecture, whole-brain and spatiotemporal gene expression, as 

well as macroscale organizational axes, collectively suggest a vulnerability continuum 

spanning from prenatal neurogenesis and cell growth to postnatal synaptogenesis. 

Although age at epilepsy onset has been postulated to account at least partly to variability 
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in FCD histological features [293], the link to molecular or cellular pathogenic processes 

remains still unclear. In our study, while we did not find differential associations between 

early and late disease onset lesional distribution with the PLS components, our findings 

clearly establish developmental underpinnings of FCD occurrence. To date, a plethora of 

molecular studies of resected FCD tissues have established a causal role of somatic 

variants that lead to hyperactivity of the mTOR pathway [59, 61-65, 69, 253, 294]. A recent 

large-scale multiomic study of somatic mutations suggested genes implicated in calcium 

dynamics and synaptic function as potential causes for epileptogenesis [215]. 

Nevertheless, given that the variant allelic frequency is typically below 5% in FCD, 

uncovering variants distinct from mTOR pathway may be difficult, even with a large 

sample of resected lesions [69]. Notably, the present study circumvents this logistical and 

statistical burdens by identifying the genetic fingerprints of the FCD-prone cortices based 

on noninvasive imaging and offers novel insights that may be difficult to obtain 

otherwise. It has been shown that somatic activating mutations in the mTOR pathway 

causes a continuum of malformations, spanning from hemimegaloencephaly to posterior 

quadrantic dysplasia. Although these malformations share some of the genetic 

determinants with FCD, the time of molecular insult, as well as additional genetic 

mutations, may lead to varying phenotypes, as suggested by the two-hit germline and 

somatic mechanisms in hemimegaloencephaly [61]. As for the posterior quadrantic 

dysplasia, prolonged neurogenesis in the posterior isocortex involving higher number 

and rate of proliferation cycles translates to a greater amplification of abnormal founder 

cells lesion [295]. Subtle structural, possibly neurodevelopmental anomalies have been 

reported in generalized genetic epilepsy (GGE) and have been described as 

microdysgenesis in neuropathological studies [57, 296] that share histological similarity 

with FCD Type IA [297]. However, such reports have been sparse, as GGE patients 

generally do not undergo surgery. Furthermore, the replicability of identifying 

microdysgenesis in GGE has been limited, thereby not establishing it as a common 
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feature of this condition [298]. In terms of genotype-phenotype associations, while the 

cellular mechanisms that drive the histopathological features of dysplasia are being 

elucidated [67], those underlying circuit-level alterations that drive recurrent seizures in 

this condition remain elusive. Conceivably, mitigating the circuit-level alterations 

precipitated by FCD may reduce seizures [291]. Hence, future work should elucidate the 

molecular and cellular mechanisms of aberrant postnatal synaptogenesis that drive 

circuit hyperexcitability and identify novel therapeutic targets, possibly combined with 

mTOR inhibitors, for improved seizure control. 

  



106 
 

BRIDGING TEXT 

Previous projects have investigated the individual variability and pathogenic mechanisms 

of FCD, the most common form epileptogenic brain malformation. Conversely, TLE is the 

most common form of drug-resistant epilepsy in adults. The following projects have 

characterized the inter-individual variability in the disease processes and progression.   
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5. DECOMPOSING MRI PHENOTYPIC HETEROGENEITY 

IN EPILEPSY: A STEP TOWARDS PERSONALIZED 

CLASSIFICATION 

 

PREFACE 

In TLE, reliable prediction of drug response, surgical outcome and cognitive dysfunction 

at an individual level remain challenging. This shortcoming is owing to the dominant 

“one-size-fits-all” group-level analytical approaches that do not allow parsing inter-

individual variations along the disease spectrum. In this context, explicit modeling of 

inter-patient variability is increasingly recognized as a step towards person-centered care. 

Here, we applied unsupervised machine learning to uncover latent disease factors from 

3T multimodal MRI features that represent whole-brain patterns of structural pathology 

in TLE. We assessed the specificity of the uncovered disease factors against age- and sex-

matched healthy individuals and a cohort of frontal lobe epilepsy patients with 

histologically verified focal cortical dysplasia. We then assessed the clinical utility of the 

disease factors by comparing the performance of predictions of drug response, surgical 

outcome and cognitive dysfunction between the classifier trained on disease factors and 

the one trained on conventional group-level features.  



108 
 

MANUSCRIPT III – Published in Brain. Editor’s Choice. 

 

Hyo Min Lee PhDc,1 Fatemeh Fadaie PhDc,1 Ravnoor Gill PhDc,1 Benoit Caldairou PhD,1 

Viviane Sziklas PhD,2 Joelle Crane PhD,2 Seok-Jun Hong PhD,1 Boris C. Bernhardt PhD,3 

Andrea Bernasconi MD,1 Neda Bernasconi MD PhD,1 

 

1) Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological 

Institute and Hospital, McGill University, Montreal, QC, Canada; 2) Department of Neurology and 

Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; 3) 

Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal 

Neurological Institute and Hospital, McGill University, Montreal, QC, Canada 

 

  



109 
 

ABSTRACT 

In drug-resistant temporal lobe epilepsy (TLE), precise predictions of drug response, 

surgical outcome, and cognitive dysfunction at an individual level remain challenging. A 

possible explanation may lie in the dominant “one-size-fits-all” group-level analytical 

approaches that do not allow parsing inter-individual variations along the disease 

spectrum. Conversely, analyzing inter-patient heterogeneity is increasingly recognized 

as a step towards person-centered care. Here, we utilized unsupervised machine learning 

to estimate latent relations (or disease factors) from 3T multimodal MRI features (cortical 

thickness, hippocampal volume, FLAIR, T1/FLAIR, diffusion parameters) representing 

whole-brain patterns of structural pathology in 82 TLE patients. We assessed the 

specificity of our approach against age- and sex-matched healthy individuals and a 

cohort of frontal lobe epilepsy patients with histologically verified focal cortical dysplasia. 

We identified four latent disease factors variably co-expressed within each patient and 

characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and 

atrophy (Factor-1), bilateral paralimbic and hippocampal gliosis (Factor-2), bilateral 

neocortical atrophy (Factor-3), bilateral white matter microstructural alterations (Factor-

4). Bootstrap analysis and parameter variations supported high stability and robustness 

of these factors. Moreover, they were not expressed in healthy controls and only 

negligibly in disease controls, supporting specificity. Supervised classifiers trained on 

latent disease factors could predict patient-specific drug-response in 76±3% and 

postsurgical seizure outcome in 88±2%, outperforming classifiers that did not operate on 

latent factor information. Latent factor models predicted inter-patient variability in 

cognitive dysfunction (verbal IQ: r=0.40±0.03; memory: r=0.35±0.03; sequential motor 

tapping: r=0.36±0.04), again outperforming baseline learners. Our findings underscore 

the potential of embracing inter-patient heterogeneity in TLE and show the utility of these 

approaches in predicting clinical outcomes. Data-driven analysis of disease factors 
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provides a novel description of the continuum of interindividual variability, which is 

likely determined by multiple interacting pathological processes.  
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5.1 Introduction 

In drug-resistant temporal lobe epilepsy (TLE), besides the common finding of 

mesiotemporal sclerosis [299], histopathological studies have revealed neuronal loss and 

gliosis [109, 110] demyelination [111] and axonal degradation [112] in several regions 

outside the temporal lobe. Concordantly, a large body of in vivo MRI literature has shown 

widespread, non-overlapping morphological [130, 131], intensity [132, 133] and 

microstructural [134] anomalies of the neocortex and the subcortical white matter [112, 

135-137] underscoring the complexity of this system disorder.  

Science investigating TLE has been growing rapidly; yet progress towards translating 

knowledge into clinical practice has been limited. Precise predictions of drug-resistance, 

surgical outcome, and cognitive dysfunction at an individual level remain challenging. A 

possible explanation may lie in the dominant “one-size-fits-all” group-level analytical 

approach. Indeed, although isolation of consistent and reliable average differences is 

useful, such design merely highlights common patterns and does not allow parsing inter-

individual variations along the disease spectrum [183]. Conversely, analyzing inter-

patient heterogeneity is increasingly recognized as a step towards person-centered care 

[186, 300]. Inspired by histopathological reports of variability in the distribution and 

severity of mesiotemporal sclerosis [103, 107, 109], a handful of in vivo MRI studies have 

previously utilized machine learning to address heterogeneity. Clustering techniques 

have identified subtypes of TLE patients with distinct patterns of mesiotemporal atrophy 

[162]; similarly, patients have been stratified into different subtypes based on cognitive 

profiles [137, 161]. Nevertheless, these subtype models remain categorical, disregarding 

continuous inter-individual variations. Alternatively, conceptualization of heterogeneity 

through dimensional methods, such as factor analysis, allows assessing co-expression of 

patterns of observable and latent (non-observable) anomalies within each patient that 

may reflect co-existing pathologies. These approaches allow each individual to express 
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multiple disease factors to various degrees rather than assigning them to a single subtype. 

Such uniqueness may be exploited to predict individual-specific clinical outcomes [184].  

Here, we Identified dimensions of heterogeneity in TLE based on multiple in vivo markers 

of structural pathology. Our approach utilized latent Dirichlet allocation [186, 300, 301], 

an unsupervised method. This technique estimates multivariate relations from MRI 

features representing whole-brain patterns of structural pathology or disease factors and 

quantifies their degrees of co-expression within each patient. We assessed the specificity 

of our approach against healthy individuals and a cohort of frontal lobe epilepsy patients 

with histologically verified focal cortical dysplasia. Moreover, we evaluated the potential 

of this novel data-driven subtyping for the individualized prediction of drug-resistance, 

post-surgical seizure freedom as well as degrees of cognitive dysfunction in TLE.  

 

5.2 Methods 

Study design and participants 

We studied 82 consecutive TLE patients (30 males, mean±SD age = 35±9 years, range=19-

61 years) referred to our hospital who had a research-dedicated 3T MRI that included 

structural imaging and diffusion-weighted MRI. Seventy patients were presented with 

drug-resistant seizures; twelve were responsive to anti-seizure medication.  

Demographic and clinical data were obtained through interviews with patients and their 

relatives. TLE diagnosis and lateralization of the seizure focus into left TLE (LTLE; n=41) 

and right TLE (RTLE; n=41) were determined by a comprehensive evaluation including 

detailed history, neurological examination, review of medical records, video-EEG 

recordings, neuropsychology, and clinical MRI evaluation. Notably, no patient had a 



113 
 

mass lesion (e.g., malformations of cortical development, tumor, vascular malformations) 

or a history of traumatic brain injury or encephalitis.  

Patients underwent a routine neuropsychological battery administered by clinical 

neuropsychologists (V.S. and J.C.); among tests, we chose those available for all. Verbal 

IQ was evaluated with the WAIS-III, and visuo-constructional skill was evaluated with 

Block design [302]. Rey Auditory Verbal Learning and Abstract word list learning [303] 

and their nonverbal analogs assessed memory [304]. Thurstone Word Fluency Test 

evaluated verbal fluency [305] and the Leonard tapping task measured sequential motor 

tapping [306], as a measure of motor coordination incorporating visuo-motor learning 

ability. 

The comprehensive investigation recommended surgery for all 70 DRE patients, 57 (81%) 

of whom underwent a selective amygdalo-hippocampectomy so far. Histological analysis 

of the resected specimens [105] revealed hippocampal sclerosis characterized by neuronal 

cell loss and gliosis (HS) in 37 patients and isolated hippocampal gliosis in 20. At a mean 

follow-up time of 72 ± 24 months (range: 14-120 months), 43 (75%) patients had Engel-I 

outcome, 7 (12%) Engel-II, and 7 (12%) Engel-III. Among the 13 non-operated patients, 8 

are currently awaiting surgery and 5 delayed it for personal reasons. Patients responsive 

to anti-seizure medication remained seizure-free. 

The patients had mean ± SD epilepsy duration of 17.4 ± 12 years and 8 ± 12 seizures per 

month. Moreover, 26 (32%) patients had a history of febrile convulsion, 42 (51%) had 

focal-to-bilateral tonic-clonic seizures (FBTCS), 61 (74%) had frequent or very frequent 

inter-ictal spikes, 42 (51%) were not diagnosed with HS on MRI (MRI-negative) and 17 

(21%) had SEEG. 

The control groups consisted of age- and sex-matched healthy individuals (n=41, 18 males, 

mean±SD age=32±8years, range=20-53 years) as well as patients with drug-resistant 
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frontal lobe epilepsy (FLE; n=29, 15 males, mean±SD age=32±6years, range=17-48 years) 

with histologically verified type-II 

focal cortical dysplasia. 

The Ethics Committee of the 

Montreal Neurological Institute 

and Hospital approved the study, 

and the written consent was 

obtained from all participants in 

accordance with the Declaration of 

Helsinki. 

 

MRI acquisition and pre-

processing 

Images were acquired on a 3T 

Siemens Magnetom TimTrio 

scanner using a 32-channel head 

coil (Figure 12). The protocol 

included the following sequences: 

3D T1-weighted (T1w) MPRAGE 

(TR = 2,300 ms, TE = 2.98 ms, flip 

angle = 9°, voxel size = 1×1×1 mm3), 

3D fluid-attenuated inversion 

recovery (FLAIR; TR = 5,000 ms, TE 

= 389 ms, flip angle = 120°, 

0.9×0.9×0.9 mm3), and twice-

Figure 12. Surface-based feature extraction. To model 

prevalent features of TLE pathology (atrophy, gliosis, 

demyelination and microstructural damage), we carried out 

surface-based sampling of morphological (MOR; cortical 

thickness, hippocampal volume) and intensity features 

(FLAIR, T1-weighted/FLAIR), as well as diffusion-derived 

fractional anisotropy (FA) and mean diffusivity (MD), across 

grey and white matter (GM, WM) and hippocampal surface 

points (or ‘vertices’). T1w = T1-weighted. 
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refocused diffusion-weighted images with axial slices (TR = 8,400 ms, TE = 90 ms, flip 

angle = 90°, voxel size = 2x2x2 mm3, 64 directions, b = 1,000 s/mm2). 

T1-weighted (T1w) and FLAIR images underwent field non-uniformity correction and 

intensity normalization using MINC toolkit (https://bic-mni.github.io/). T1w images 

were linearly registered to stereotaxic space based on the hemisphere-symmetric MNI 

ICBM152 template [307] and classified into white matter (WM), gray matter (GM) and 

cerebrospinal fluid (CSF) [196]. FLAIR images were linearly registered to T1w MRI, and 

subsequently to MNI ICBM152 based on the previously estimated registration. Using FSL 

5.0 (http://fmrib.ox.ac.uk/fsl) [308], diffusion-weighted images underwent distortion 

correction, based on the gradient echo field map acquired within the same imaging 

session, and correction for motion and eddy currents. Fractional anisotropy (FA) and 

mean diffusivity (MD) maps were derived using a tensor model and mapped to the native 

T1w space using a boundary-based registration technique that maximizes alignment 

between intensity gradients of structural and echo-planar data. [193, 196]. We applied 

Constrained Laplacian Anatomic Segmentation using Proximity algorithm (CLASP) to 

generate models of GM-WM and GM-CSF surfaces with 41k surface points (henceforth 

vertices) per hemisphere [191]. In short, CLASP iteratively expands a surface mesh to fit 

the GM-WM surface and subsequently estimates the GM-CSF surface by expanding the 

GM-WM surface along the Laplacian gradient between the two surfaces. Surface-based 

registration aligned individual participants based on cortical folding to enhance vertex-

wise anatomical correspondence [195]. Surface extraction accuracy was visually verified, 

and inaccuracies were manually corrected.  

 

Surface-based feature extraction 

https://bic-mni.github.io/
http://fmrib.ox.ac.uk/fsl
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We calculated at each vertex morphological, intensity, and diffusion features (Figure 12). 

To minimize interpolation during feature sampling, we mapped the surfaces to the native 

space of each modality using the inverse transform of the initial co-registration. To 

enhance the signal-to-noise of the cortical feature sampling, we applied smoothing using 

a 2D quadratic diffusion kernel with 20 mm full-width-half-maximum. To examine 

intracortical GM, we positioned three surfaces at 25%, 50%, and 75% cortical depths, 

systematically probing the axis perpendicular to the cortical ribbon [194]; for each vertex, 

we averaged features across these surfaces. To assess the WM immediately beneath the 

cortex, we generated a surface running 2 mm below the GM-WM surface guided by a 

Laplacian gradient between the GM-WM surface and ventricles [135]. Hippocampal 

subfields (CA1-4, dentate gyrus, subiculum) were segmented using a patched-based 

multi-template algorithm [309] trained on our open access dataset (Kulaga-Yoskovitz et 

al., 2015), followed by the automated generation of the medial surface sheet running 

along the central path of each subfield [310]. In brief, we extracted a 3D skeleton from a 

given subfield using Hamilton-Jacobi level-sets. To derive shape-inherent inter-subject 

correspondence, outer subfield surfaces were parametrized using spherical harmonics 

shape descriptors. The boundary was deformed along a Laplacian field gradient towards 

the skeleton, propagating the vertex correspondence onto the medial sheet. In prior work, 

we validated this approach to discriminate between histopathological grades of HS [128]. 

To model prevalent features of TLE pathology (atrophy, gliosis, demyelination and 

microstructural damage), we sampled at each vertex morphological (cortical thickness, 

volume) and intensity features (FLAIR, T1w/FLAIR), as well as diffusion parameters as 

follows. Cortical thickness was measured as the Euclidean distance between 

corresponding vertices on GM-WM and GM-CSF surfaces. We calculated hippocampal 

columnar volume by multiplying the distance between corresponding vertices on the 

outer and medial surfaces by the mean area of the triangles whose edges include both 



117 
 

vertices. To assess gliosis, we divided voxel-wise FLAIR intensity by the average GM-

WM boundary intensity; this value was normalized with respect to the mode of the 

FLAIR intensity histogram [194] and mapped onto intracortical and hippocampal 

surfaces. We estimated myelin content by mapping T1w/FLAIR ratio; a local cylindrical 

kernel corrected for outliers due to bulk blood vessels and CSF partial volumes [198]. 

Diffusion-derived FA and MD were used as surrogate markers of fiber architecture and 

microstructural integrity [142].  

 

Modelling latent disease factors 

Latent Dirichlet allocation (LDA) [301] is an unsupervised machine learning technique. 

LDA estimates latent relations from MRI data representing distinct patterns of alterations, 

or disease factors, expressed as posterior probability (P[Vertex|Factor] or disease load) and 

quantifies their co-expression within each patient (P[Factor|Patient]). LDA is a 

dimensional model allowing each individual to express multiple latent factors instead of 

assigning them to a single category. This method was originally developed for text 

mining and later applied to neuroimaging [186], with the assumption that patients are 

defined by the severity of pathological features counted on MRI vertices and expressed 

as posterior probabilities. 
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Figure 23. Analysis of latent disease factors. A. Schematic representation of the LDA. LDA uncovers 

latent relations from MRI data representing distinct patterns of alterations (or disease factors) and 

quantifies their coexpression within each patient. Factors are extracted across grey matter (GM) and white 

matter (WM) surface points (or vertices) and are expressed as posterior probability P(Vertex j Factor). Here, 

Factor 1 (blue), 2 (red) and 3 (green) are localized to the somatomotor, temporal lobe and perisylvian grey 

matter, respectively; Factor 4 (yellow) is localized in the white matter of the posterior quadrant. Factors 

may be partially overlapping (3 with 1 and 2) or non-overlapping (1 and 2). This schematic example 

illustrates only one pathological process. By allowing patients to express varying degrees of disease factors 

[P(Factor j Patient)], instead of assigning patients to a single disease subtype, LDA captures interindividual 

variability. B. Factor modelling. For each modality, features were z-normalized with respect to the 

analogous vertices of healthy controls ipsi- and contralateral to the seizure focus. Scores were transformed 

into counts, multiplied by 10/–10 and rounded to the nearest integer such that the larger counts indicated 

more severe pathology. We then applied Latent Dirichlet Allocation to uncover latent relations (namely, 

disease factors) from these features [expressed as posterior probability P(VertexjFactor), or disease load] 

and quantify their coexpression (namely factor composition) within each patient [P(FactorjPatient)]. 
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Steps involved in factor modeling are shown in Figure 13. Prior to applying LDA, for 

each feature, we computed vertex-wise z-scores with respect to the corresponding 

vertices in controls. FLAIR intensity and MD were indexed as positive z-scores; thickness, 

columnar volume, T1w/FLAIR and FA were indexed as negative z-scores. Scores were 

multiplied by 10/-10 and rounded to the nearest integer such that the larger counts 

indicated more severe pathology. We evaluated a range of latent factors K from 1 to 4. 

Because the estimation of factors may vary depending on random initialization [301], for 

each K, we ran the algorithm 100 times and selected the solution closest to the remaining 

99 runs [300] based on product-moment linear correlation (r) of the factors. Correlations 

between runs were stored into a 100x100 matrix. After averaging the rows, we selected 

the run with the highest correlation with the remaining 99 runs (r>0.8) and the final K 

that offered high stability across runs (r>0.8). To assess within-sample robustness, we 

estimated confidence intervals of each factor-specific pattern of structural alterations by 

applying a bootstrapping procedure that generated 100 samples from the patients’ data. 

This procedure involved computing z-scores by dividing the vertex-wise pattern of 

structural alterations (i.e., P[Vertex|Factor]) by the bootstrap standard deviation and 

converting them to p-values, corrected for multiple comparisons using a false-discovery 

rate (FDR) of 0.05 [202]. 

Linear regressions assessed the relationship between disease factors and continuous 

variables (disease duration, cognitive scores); logistic regression was used for binary 

variables (history of febrile convulsion, histopathology). In all analyses, age and sex were 

used as covariates. Findings were corrected at FDR of 0.05. To assess the specificity of 

findings, we quantified the expression of factors in healthy controls and FLE disease 

controls. Specifically, for each individual, we calculated the average z-score across the 

five modalities for each disease factor weighted by its posterior probability 

(P[Vetex|FactorK], K=1,2,…,Kmax).  
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Individual-based predictions of clinical outcomes and cognitive scores 

We assessed the performance of latent factors to predict the binary outcomes drug 

response (resistant vs. controlled) seizure outcome (Engel I vs. Engel II-IV). We also 

predicted continuous cognitive scores (verbal IQ, memory index, sequential motor 

tapping). In both cases, we used Gradient Boosting, an ensemble of decision trees that 

controls for overfitting [203]. To train the classifier, for each patient, we inputted patient-

factor composition (P[FactorK |Patient], K=1,2,…,Kmax) and the average z-scores of each of 

the five modalities from cortical GM, subcortical WM and hippocampal regions falling 

within the 90 percentile mask of the disease factors after weighted summation into a 

single map (Σ!"#
!$%&P[FactorK|Patient]∗P[Vertex|FactorK]). For performance evaluation of 

binary outcome measures, we calculated balanced accuracy defined as the arithmetic 

mean between sensitivity and specificity, thereby removing the bias that may arise from 

imbalanced datasets. To evaluate performance for continuous cognitive scores, we 

calculated product-moment linear correlations (r) between the predicted and true scores. 

The classifier was cross-validated using a 10-fold scheme repeated 100 times; this 

procedure, by which 10% of patients are predicted using the data of the other 90%, allows 

an unbiased assessment for previously unseen cases. We compared the performance of 

classifiers trained on latent factors to those trained on features derived from the 

conventional group-level data. For the latter, we extracted the average z-scores of regions 

presenting with significant group differences compared to healthy controls (PFWE<0.05), 

thus yielding two features (GM/WM and hippocampus) for each modality. 

 

The contributions of disease factors to individualized predictions 

Understanding how a predictive model uses factors to make predictions may facilitate 

adoption in clinical decision-making. To that end, we used Shapley additive explanation 



121 
 

(SHAP) analysis, which quantified the direction of each factor’s impact on individual 

predictions [311]; summing SHAP values across patients yielded the difference between 

the actual and average model output over the training data. For instance, for “drug 

response” a predicted probability of >0.5 classifies a given patient as drug-controlled, 

while that of <0.5 as drug-resistant. Hence, for each factor, positive/negative correlation 

between the factor expression degrees and SHAP values indicate that the factor drives 

the prediction towards drug-controlled/drug-resistant. For numeric cognitive scores, 

positive/negative correlation indicates that the factor drives the prediction towards 

normal/low performance. We thus multiplied the sign of correlation (indicating 

directionality) and the absolute SHAP values (indicating magnitude).  

 

5.3 Results 

Latent disease factors and relation to clinical parameters 

The algorithm identified four latent disease factors that differed with respect to 

hippocampal and neocortical signatures (Figure 14). Factor-1 was defined almost 

exclusively by severe ipsilateral hippocampal anomalies, yet with differential expression 

across subfields and MRI features. Microstructural alterations, indexed by increased MD, 

were the most severe finding present across all subfields and accounting for 31% of the 

disease load (i.e., the summation of posterior probability across vertices). Moderate 

hippocampal atrophy (9%) was also evenly distributed across all subfields. Intensity 

anomalies were observed in CA1-3 and CA4-DG, as indexed by decreased T1w/FLAIR 

(9%), a likely marker of abnormal myelin content, and increased FLAIR (3%) a marker of 

gliosis. Finally, only subtle fiber architectural alteration, as indexed by decreased FA (2%) 

were seen in the anterior temporal subcortical WM. Factor-2 was dominated by severe 

bilateral hippocampal and neocortical paralimbic FLAIR intensity increases, with marked 
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changes in CA4-DG, together with parahippocampal, cingulate, insula and prefrontal 

cortices, accounting for more than 80% of the disease load. Factor-2 also showed subtle 

T1w/FLAIR decreases, particularly in bilateral prefrontal and anterior temporal regions. 

Factor-3 was mainly characterized by bilateral neocortical thinning accounting for 20% of 

the disease load. Affecting regions included medial frontocentral, insular and cingulate 

regions. In addition, the hippocampus displayed mild architectural damage (decreased 

FA; 6%). Factor-4 was dominated by severe bilateral diffuse WM microstructural damage 

(increased MD), accounting for 44% of the disease load and moderate fiber architectural 

damage (decreased FA; 21% disease load), while hippocampal alterations were minimal 

to none.  
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Figure 14. Mapping whole-brain disease factors.  Each factor is modeled as a weighted combination of 

neocortical atrophy, hippocampal atrophy, FLAIR hyperintensity, T1w/FLAIR decrease, FA decrease and 
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MD increase across the gray and white matter (GM, WM), as well as hippocampus. Disease factors are 

expressed as posterior probabilities (P [Vertex | Factor]) across ipsi-/contra-lateral MRI vertices; higher 

probability (brighter color) signifies greater contribution of a given feature to the factor or disease load 

(pFDR<0.05). For each feature, inset bar graphs indicate mean and standard deviation of the disease load in 

ipsi-/contra-lateral cortical GM, WM and hippocampus.  

 

Patients co-expressed all factors to varying degrees, as indicated by the high density of 

individuals widely distributed across the central region of the tetrahedron, reflecting a 

continuum of individual variability (Figure 15A). Moreover, disease factors were not 

expressed in healthy controls and only negligibly in FLE, supporting specificity (Figure 

15B). 

 

Figure 15. Factor composition and specificity. A. Factor composition in TLE. In the tetrahedron, each 

patient is a dot and its barycentric coordinate the factor composition expressed as posterior probability (P 

[Factor | Patient]). Patients located close to the corners predominantly express a given factor (F), whereas 

those located towards the centroid express various combinations of all factors. The scale represents the 

kernel density, with yellow/blue indicating similar/dissimilar composition among patients. B. Specificity 
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of factors. The bar graphs compare the severity of factor expression (z-score weighted by factor maps P 

[Vertex | Factor]) in TLE, healthy controls (HC) and disease controls composed of patients with frontal lobe 

epilepsy (FLE). The error bars indicate standard deviation. The matrices show subject-wise severity of each 

factor.  

 

In relation to clinical parameters, a predominant Factor-1 expression was associated with 

history of febrile convulsion (pFDR≤0.05, Cohen’s d effect size=3.95), focal-to-bilateral 

tonic-clonic seizures (pFDR≤0.001, d=1.1), MRI-positive (pFDR≤0.001, d=13.9), no use of scalp 

EEG (pFDR≤0.001, d=-3.5),  HS histopathology (pFDR≤0.001, d=24.5), drug-resistance 

(pFDR≤0.001, d=9.7), Engel-I outcome (p≤0.05, d=4.5) and longer disease duration 

(pFDR≤0.001, d=4.24). Factor-2 was associated with seizure frequency (p≤0.05, d=12.6). 

Factor-3 was associated with MRI-negative (pFDR≤0.001, d=5.37), isolated gliosis 

(pFDR≤0.001, d=12.8) and non-Engel-I outcome (p≤0.05, d=3.1). Factor-4 was associated 

with seizure frequency (p≤0.05, d=11.3), MRI-negative (pFDR≤0.05, d=3.4) and Engel-I 

outcome (p≤0.05, d=3.7). 

 

Individual-based predictions of clinical outcomes and cognitive scores 

Predictions and their directionality are shown in Figure 16. Classifiers trained on latent 

disease factors out-performed those operating on group-level findings of individual MRI 

features. For drug response, factors yielded a balanced accuracy of 76±2.6% (vs. 60-68% 

across features, pFDR<0.001).  Factor-1 expression showed high predictability for drug-

resistance with 88±1.6%, while Factors 3 and 2 contributed moderately to a weaker 

prediction of drug-control (63±6.2%). For postsurgical outcome, disease factors yielded a 

balanced accuracy of 88±1.5% (vs. 57-80%, pFDR<0.001). Specifically, Factors 1 and 4 drove 

the model predictions towards Engel I outcome with 99±2.6% accuracy, while Factor-3 
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predicted Engel II-IV in 76±1.8% of cases. Correlations between predicted and true 

cognitive scores were also consistently higher for factor-based regressions (verbal IQ: 

r=0.40±0.03 vs. 0.08-0.32, memory: r=0.35±0.03 vs. 0.02-0.10, sequential motor tapping: 

r=0.36±0.04 vs. 0.02-0.28; pFDR<0.001). Factor-1 expression drove predictions for decline in 

verbal IQ, Factors 1 and 3 for decline in memory, and Factor-4 predicted decline in 

sequential motor tapping. 

 

Figure 16. Individualized predictions. Drug response (A), seizure outcome (B), verbal IQ (C), memory 

index (D) and motoIndex (E) are more accurately predicted when using latent disease factors than when 
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relying on conventional group-level features (pFDR<0.001). Data points indicate mean balanced accuracy for 

categorical data (drug-response, seizure outcome) and Pearson correlation coefficients for numerical data 

(cognitive scores) evaluated based on 100 repetitions of 10-fold cross-validation. Inset bar graphs represent 

the magnitude and direction of contribution from each selected feature. Note that the magnitude of bars 

adds to one and thus reflects relative feature importance. Upward bars indicate contribution toward drug-

control, Engel I outcome or normal cognition, whereas downward bars indicate contribution toward drug-

resistance, Engel II-IV and impaired cognition. 

 

5.4 Discussion 

To date, most studies in TLE have addressed overall between-group differences between 

patients and controls. However, there is a growing recognition that such case-control 

designs may not be adequately addressing biologically and clinically important 

variations between patients. In this context, data-driven discovery at an individual level 

offers novel avenues [312, 313]. This study addressed the continuum of interindividual 

variability in TLE in an attempt to predict patient specific clinical and cognitive outcomes. 

Specifically, we quantified multivariate latent relations from MRI features representing 

distinct patterns of gray and white matter structural pathology across the hippocampus 

and the whole brain and quantified their degrees of co-expression within each patient. 

By unveiling unique relationships between the main structural biomarkers of TLE, which 

were disease-specific, this integrative analysis extends our understanding of the complex 

landscape of this condition. Importantly, latent factors differentially contributed to 

predicting outcomes, with superior performance compared to conventional group-based 

analyses, further stressing the ability of dimensional modeling to mine salient but 

clinically relevant disease characteristics that would otherwise be missed.  

We identified four latent disease factors variably expressed across patients. Factor-1 was 

related to strictly unilateral hippocampal, with marked effects across multiple imaging 
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modalities. Factor-2 involved both the hippocampus and the neocortex, while Factor-3 

(bilateral neocortical thinning) and Factor-4 (bilateral WM microstructural damage) 

related only minimally to hippocampal damage, suggesting independence from the 

disease epicenter [180, 314]. Notably, the predominance of Factor-1 in patients with HS 

histopathology, history of febrile convulsion and long disease duration epitomizes core 

disease features [4, 110, 126, 131]. Factor-2, typified by bilateral hippocampal and 

neocortical paralimbic FLAIR hyperintensity, may represent an intermediate disease trait 

related to cytoarchitectural features of paralimbic cortices sensitive to gliotic processes 

[110, 132, 139]. Notably, this factor was more predominant in patients with a histology of 

isolated hippocampal gliosis. Commonly considered as a pathological marker of diseased 

tissue, gliosis is defined as a spectrum of molecular, cellular and functional changes that 

occur in response to injury [315]. In epilepsy, it has been shown to alter synaptic and 

neuronal activity, leading to hyperexcitability and spontaneous seizures [140]. 

Importantly, glial alterations may accompany neurogenic changes and even precede 

neuronal loss [316]. In addition, previous literature has shown seizure promoting effects 

of glia-mediated inflammation [141]. In concordance with reported patterns [130, 131]. 

Factor-3 was mainly marked by bilateral neocortical thinning, which may represent 

regions of neuronal loss [109] as well as synaptic reorganization [138], possibly due to 

seizure-related damage. This view is supported by its co-occurrence with isolated 

bilateral fiber architectural derangements of the hippocampus [125, 317]. Furthermore, 

cortical thinning has been shown to progress in drug resistant TLE, supported by cross-

sectional correlations with duration and initial longitudinal evidence [4, 125, 150, 152]. In 

contrast to Factors 1-3 affecting the GM, Factor-4 was mainly characterized by 

widespread alteration of the subcortical WM indexed by increased MD and decreased 

FA, likely reflecting combined effects of decreased fiber density, altered myelin sheath 

and reactive astrogliosis [142-144]. Notably, this factor mainly affected the paralimbic 

cortices, in accordance with previous observation [318] and may underpin atypical 
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reorganization of long-range functional connections [180]. Previous reports of WM 

abnormalities include deep fiber tracks [143, 319], which may be coupled to superficial 

WM alterations captured by Factor-4. Bootstrap procedure showed within-sample 

robustness of the disease factors, supporting their generalizability. Moreover, they were 

not expressed in healthy controls and only marginally in patients with FLE, supporting 

specificity. Altogether our analysis allowed decomposing the complex disease signature 

of TLE by revealing co-existing, yet not mutually exclusive axes of pathology. 

With respect to the predictive value of latent factors, our findings warrant several 

considerations. Compared to predictions based on conventional group-based analysis, 

capturing the heterogenous patterns of whole-brain alterations by latent factors led to a 

superior performance. Factor-1 expression drove the prediction towards drug-resistance, 

confirming the central role of multimodal MRI mapping of hippocampal pathology to 

streamline presurgical evaluation. On the other hand, we could not establish accurate 

predictors of drug-response, likely due to the small number of responders in our cohort. 

Regarding postsurgical outcome, previous studies have shown that mesiotemporal 

atrophy is a predictive biomarker for seizure freedom, achieving 80-90% accuracy, but 

modest predictor for seizure relapse, with <60% accuracy [162]. Using latent factors, we 

achieved 99% accuracy for Engel I patients and 76% accuracy for Engel II-IV patients. Our 

near-perfect prediction for favorable outcome reflects the combination of mesiotemporal 

lobe damage together with subcortical WM pathology, suggesting a role for 

neuroplasticity of possibly reversible WM anomalies [320]. On the other hand, Factor-3 

prediction for unfavorable seizure outcome supports a role for bilateral neocortical 

atrophy as a marker of disease severity and possibly a widespread epileptogenic process. 

Factor-3 was also more prevalent in patients with isolated hippocampal gliosis; notably, 

these patients have been shown to express higher and more diffuse epileptogenicity in 

the neocortex compared to those with classical HS [321].   



130 
 

Previous studies have identified neural correlates of cognitive deficits, including 

hippocampal and neocortical atrophy [322] as well as WM abnormalities [323]. Indeed, 

the multifaceted nature of TLE is thought to underlie impairments in multiple cognitive 

domains [324]. Disease factors yielded substantial gain in the prediction accuracy 

compared to the conventional group-based approach, adequately capturing the 

complexity of multi-system structural pathology underpinning the impairments in 

multiple cognitive domains. Notably, Factor-1 drove the prediction towards decline in 

memory, in keeping with the central role of the hippocampus in spatial and episodic 

memory in health [325] and impairment in TLE [326, 327]. Factor-3, associating 

hippocampal features and neocortical atrophy, including the cingulate cortex, was also a 

predictor of memory decline. Given the importance of system-level pathology in 

cognitive impairment, an altered cingulate cortex may prevent memory consolidation 

and retrieval due to impaired top-down projections [328]. In addition to memory 

impairment, Factor-1 also drove the prediction towards decline in verbal IQ. In support 

of this finding, previous studies have shown decreased hippocampal neuronal density 

associated with verbal IQ decline [329, 330] and the role of hippocampus in the default 

mode network [223, 331-333], which is also associated with verbal intelligence [334]. 

Finally, the link between Factor-4 and decline in sequential motor tapping is likely driven 

by the pervasive bilateral WM microstructural damage. Indeed, visuo-motor function, 

which requires cross-modal integration, has shown to be related to white matter 

microstructural integrity and connections [335, 336]. 

Mounting evidence supports the diagnostic and prognostic values of data-driven MRI-

based characterization of heterogeneity in several neurological conditions, including 

Alzheimer’s disease [300], psychosis [337] and autism spectrum disorder [188, 338]. In 

epilepsy, patient stratification is mainly driven by seizure semiology and epileptiform 

activity. While this approach offers a well-defined clinical diagnostic framework, it does 
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not inform on the pathological processes, thus likely masking phenotypic heterogeneity 

[161, 162, 323]. In this context, data-driven disease factors provide a novel description of 

the continuum of interindividual variability in TLE. Our results also offer proof of 

principle that embracing inter-patient heterogeneity has utility in predicting clinically 

relevant outcomes. 
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BRIDGING TEXT 

Previous project has established a continuum of inter-individual variability in TLE based on 

disease factors representing hippocampal and whole-brain MRI signatures. Yet, these factors 

do not explicitly capture the progression of disease expression, which has been suggested 

to be driven by seizure-induced damage and neurogenerative processes. The following 

project simultaneously characterized the patterns of temporal progressions and their inter-

individual variability in TLE.  
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6.  STAGING AND SUBTYPING THE EVOLUTION OF 

TEMPORAL LOBE EPILEPSY 

 

PREFACE 

To date, the pathological progression of brain structure and function in temporal lobe 

epilepsy (TLE) has been assumed to be steady across the entire temporal course of the 

disease and identical across patients. Meanwhile, increasing evidence suggests a 

multitude of mechanisms underlying TLE evolution, such as damage due to seizure 

spread and neurodegeneration due to amyloid-beta and tau accumulations, which likely 

manifest variably across time points and patients. 

Here, we applied a computational technique called Subtype and Stage Inference for 

simultaneous subtyping and staging of TLE patients using 3T multimodal MRI. We 

assessed the evolution of disease trajectory in the uncovered subtypes. We then examined 

the clinical and cognitive profiles of the disease trajectory subtypes. Clinical utility was 

tested by comparing the performance of predictions of drug response and surgical 

outcome between a classifier trained on joint subtype and stage information against those 

trained on subtype- and stage-only models.  



134 
 

MANUSCRIPT IV- in preparation 

 

Hyo Min Lee PhDc,1 Fatemeh Fadaie PhDc,1 Ravnoor Gill PhDc,1 Benoit Caldairou PhD,1 

Viviane Sziklas PhD,2 Joelle Crane PhD,2 Seok-Jun Hong PhD,1 Boris C. Bernhardt PhD,3 

Andrea Bernasconi MD,1 Neda Bernasconi MD PhD,1 

 

1) Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological 

Institute and Hospital, McGill University, Montreal, QC, Canada; 2) Department of Neurology and 

Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; 3) 

Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal 

Neurological Institute and Hospital, McGill University, Montreal, QC, Canada 

 

  



135 
 

ABSTRACT 

Evidence suggests that drug-resistant temporal lobe epilepsy (TLE) follows a progressive 

course impacting brain structure and cognitive function. However, previous studies have 

not considered phenotypic diversity across patients and stages. Event-based models 

capture patterns of evolution across disease stage from cross-sectional data, 

circumventing the logistical burden of longitudinal designs. Here, we applied Subtype 

and Stage Inference (SuStaIn), a technique that extends event-based models for 

simultaneous subtyping and staging. We studied 82 TLE patients and 41 healthy controls 

scanned at 3T multimodal MRI feature (cortical thickness, hippocampal volume, 

hippocampal MD and superficial white matter MD). SuStaIn estimated disease trajectory 

subtypes and stages by fitting a multi-component piece-wise linear z-score model of 

progression. Effects of normal aging in healthy controls were subtracted from patients. 

We identified three disease trajectory subtypes that suggested distinct regional 

vulnerabilities: S1 led by ipsilateral hippocampal atrophy and gliosis, S2 by bilateral 

neocortical atrophy and S3 by bilateral limbic white matter microstructural damage. 

Bootstrap analyses showed high within-sample stability of patients to their subtypes and 

stages. S1 had the highest proportions of patients with early disease onset, febrile 

convulsions, generalized tonic-clonic seizures, drug-resistance, a positive MRI, HS and 

Engel-I outcome, whereas S3 and S2 exhibited the lowest and intermediate proportions, 

respectively. Regarding cognition, S3 had higher verbal IQ and digit span and 

progressive decline with respect to stage in digit span and sequential motor tapping and 

at a faster rate than S2. S1 showed progressive decline in sequential motor tapping, 

declining faster than S2. Supervised classifiers trained on subtype and stage 

memberships could predict drug response in 73±1.0% of patients and Engel outcomes in 

76±1.6%, outperforming subtype- and stage-only models. Disease evolution in TLE 

follows variable trajectories, each associated with distinct patterns of cortico-subcortical 
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and hippocampal structural alterations. Capturing the progression of subtype-specific 

MRI biomarkers enables an objective, fine-grained patient stratification, which may 

identify individuals at risk and help monitor the effectiveness of potential preventive 

therapies. 
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6.1 Introduction 

In temporal lobe epilepsy (TLE), neuroimaging literature suggests a progressive course 

impacting brain structure and function. A large body of cross-sectional data has shown 

positive correlation between duration of epilepsy with gray matter (GM) atrophy and 

white matter (WM) microstructural alterations of the mesiotemporal structures and 

beyond [4, 125, 131, 135, 145]. Concordantly, there is progressive cognitive impairment 

across multiple domains with longer disease duration [146-149]. Although relatively 

scarce due to logistical constraints, longitudinal data that adequately control for effects 

of normal aging have confirmed these findings [125, 130, 150-152]. One key limitation of 

imaging studies analyzing disease progression has been the use of linear models that 

identify regions that undergo steady alterations, which do not account for the possibly 

variable temporal course of the disease that would inform on the sequence in which these 

regions become abnormal. In addition, by fitting a single population average, they did 

not account for possible phenotypic variability. Indeed, the increasingly recognized inter-

individual heterogeneity of structural pathology and cognitive deficits [137, 161, 162, 339] 

is a strong incentive to adopt novel image-based models of disease evolution.  

Event-based models [163] estimate distinct stages that capture dynamic patterns of 

disease evolution from cross-sectional data, circumventing logistical burdens of a 

longitudinal design. A recent ENIGMA-Epilepsy study identified progressive atrophy 

that begins in the hippocampus, subsequently extending to the neocortex [164]. However, 

in addition to limiting the analysis to GM only, the inherent assumption was that all 

patients follow the same disease trajectory. Inability to disentangle temporal 

heterogeneity from phenotypic diversity limits the biological insights into disease 

mechanisms and the utility for patient stratification. Conversely, a comprehensive 

framework that reconciles both sources of heterogeneity may inform on how TLE evolves 

for different subtypes, ultimately facilitating personalized diagnostics. 
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Our purpose was to parse phenotypic and temporal diversities of TLE evolution. To this 

end, we applied Subtype and Stage Inference (SuStaIn) [340], a computational technique 

that extends event-based models for simultaneous staging and subtyping. This approach 

offers several advantages. Firstly, the use of piecewise over frequently used conventional 

linear models allows inferring the sequence of biomarker progression [163]; in other 

words, while conventional models identify biomarkers that progress over time, they do 

not inform on their temporal sequence. Conversely, elucidating the temporal sequence 

sets a biologically plausible basis to stage patients [280]. Secondly, application to cross-

sectional data permits a stratification of patients based on single evaluation. Thirdly, the 

ability to simultaneously subtype and stage patients in a data-driven manner precludes 

the need for a priori stratification. Owing to these advantages, SuStaIn has helped 

characterizing the phenotypic variability and temporal evolution of Alzheimer’s disease 

[341, 342], frontotemporal dementia [340] and multiple sclerosis [343]. Applying SuStaIn 

to multimodal MRI markers of the GM and WM integrity, we identified disease 

trajectories to which individual patients were probabilistically assigned, the stability of 

which was assessed using Bootstrap analysis. We then examined associations with 

clinical and cognitive parameters and utility for individualized predictions. 

  

6.2 Methods 

Study design and participants 

We studied 82 consecutive TLE patients (30 males, mean±SD age = 35±9 years, range=19-

61 years) referred to our hospital who had a research-dedicated 3T MRI that included 

structural imaging and diffusion-weighted MRI. Seventy patients presented with drug-

resistant seizures, 12 were responsive to anti-seizure medication.  
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Demographic and clinical data were obtained through interviews with patients and their 

relatives. In 65 patients, the focus was determined by video EEG monitoring with scalp 

electrodes showing unequivocal temporal lobe seizures onset (and >70% of spikes); in 

cases with non-localized seizure onset (17/82=21%), lateralization was established using 

stereoencephalography (SEEG). Accordingly, patients were dichotomized into LTLE 

(n=41; 28 females; age=35.0±8.9 years; range=19-53 years) and RTLE (n=41; 24 females; 

age= 35.3±10.5 years; range=19-61 years). As per neuroradiological reading, 40 (49%) 

patients had ipsilateral hippocampal atrophy together with T2 hypersignal, while the 

MRI was reported as unremarkable in 42 (51%). Notably, no patient had a mass lesion 

(e.g., malformations of cortical development, tumor, vascular malformations) or a history 

of traumatic brain injury or encephalitis. In relation to clinical parameters, age at seizure 

onset was 17.8±11 years with a disease duration of 17.4±12 years, and 26 (32%) patients 

had a history of febrile convulsions. 

Patients underwent a routine neuropsychological battery administered by clinical 

neuropsychologists (V.S. and J.C.); among tests, we chose those available for all. Verbal 

IQ and digit span were evaluated with the WAIS-III. Leonard tapping task measured 

sequential motor tapping [306], as a measure of motor coordination incorporating visuo-

motor learning ability. 

The comprehensive investigation recommended surgery for all 70 patients with drug-

resistant epilepsy, 57 (81%) of whom underwent a selective amygdalo-hippocampectomy 

so far. Histological analysis of the resected specimens [105] revealed hippocampal 

sclerosis characterized by neuronal cell loss and gliosis (HS) in 37 patients and isolated 

hippocampal gliosis in 20. At a mean follow-up time of 72 ± 24 months (range: 14-120 

months), 43 (75%) patients had Engel-I outcome, 7 (12%) Engel-II, and 7 (12%) Engel-III. 

Among the 13 non-operated patients, 8 are currently awaiting surgery and 5 delayed it 

for personal reasons. Patients responsive to anti-seizure medication remained seizure-
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free. The control group consisted of age- and sex-matched healthy individuals (n=41, 18 

males, mean±SD age=32±8years, range=20-53 years). 

The Ethics Committee of the Montreal Neurological Institute and Hospital approved the 

study, and the written consent was obtained from all participants in accordance with the 

Declaration of Helsinki. 

 

MRI acquisition and pre-processing 

Images were acquired on a 3T Siemens Magnetom TimTrio scanner using a 32-channel 

head coil. In accordance with the HARNESS protocol [238], all patients and controls had 

3D T1-weighted (T1w) MPRAGE (TR=2,300 ms, TE=2.98 ms, flip angle=9°, voxel 

size=1×1×1 mm3) and 3D fluid-attenuated inversion recovery (FLAIR; TR=5000ms, 

TE=389ms, flip angle=120°, voxel size=0.9× 0.9 × 0.9 mm3). In addition, we acquired twice-

refocused diffusion-weighted images with axial slices (TR=8,400 ms, TE=90 ms, flip 

angle=90°, voxel size=2x2x2 mm3, 64 directions, b=1,000 s/mm2). T1-weighted and FLAIR 

images underwent field non-uniformity correction and intensity normalization, were 

linearly registered to stereotaxic space based on the hemisphere-symmetric MNI 

ICBM152 template [307] using MINC toolkit (https://bic-mni.github.io/). T1-weighted 

images were classified into white matter (WM), gray matter (GM) and cerebrospinal fluid 

(CSF) [196]. Using FSL 5.0 (http://fmrib.ox.ac.uk/fsl) [308], diffusion-weighted images 

underwent distortion correction, based on the gradient echo field map acquired within 

the same imaging session, and correction for motion and eddy currents. Mean diffusivity 

(MD) and fractional anisotropy (FA) maps were derived using a tensor model; these maps 

were registered to the native T1-weighted space using a boundary-based technique that 

maximizes alignment between intensity gradients of structural and echo-planar data [193, 

196].  

https://bic-mni.github.io/
http://fmrib.ox.ac.uk/fsl
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We applied Constrained Laplacian Anatomic Segmentation using Proximity algorithm 

(CLASP) to generate models of GM-WM and GM-CSF surfaces with 41,000 surface points 

(henceforth vertices) per hemisphere [191]. In short, CLASP iteratively expands a surface 

mesh to fit the GM-WM surface and subsequently estimates the GM-CSF surface by 

expanding the GM-WM surface along the Laplacian gradient between the two surfaces. 

Surface-based registration aligned individual participants based on cortical folding to 

enhance vertex-wise anatomical correspondence [195]. Surface extraction accuracy was 

visually verified, and inaccuracies were manually corrected.  

 

Surface-based feature extraction 

To model prevalent features of TLE pathology, namely atrophy, gliosis, demyelination 

and microstructural damage, we sampled at each vertex morphological (cortical 

thickness, hippocampal volume) and intensity features (FLAIR, T1w/FLAIR), as well as 

diffusion parameters (FA, MD). To minimize interpolation, we mapped the surfaces to 

the native space of each modality using the inverse transform of the initial co-registration. 

Cortical thickness was measured as the Euclidean distance between corresponding 

vertices on GM-WM and GM-CSF surfaces. To assess the WM immediately beneath the 

cortex, we generated a surface running 2 mm below the GM-WM surface guided by a 

Laplacian gradient between the GM-WM surface and ventricles [135]. Hippocampal 

subfields (CA1-4, dentate gyrus, subiculum) were segmented using a patched-based 

multi-template algorithm [309] trained on an open access dataset [344], followed by the 

automated generation of the medial surface sheet running along the central path of each 

subfield [310]. In brief, we extracted a 3D skeleton from a given subfield using Hamilton-

Jacobi level-sets. To derive shape-inherent inter-subject correspondence, outer subfield 

surfaces were parametrized using spherical harmonics shape descriptors. The boundary 
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was deformed along a Laplacian field gradient towards the skeleton, propagating the 

vertex correspondence onto the medial sheet. We calculated hippocampal columnar 

volume by multiplying the distance between corresponding vertices on the outer and 

medial surfaces by the mean area of the triangles whose edges include both vertices.  

 

Modeling phenotypic and temporal disease evolution  

Prior to applying the Subtype and Stage Inference (SuStaIn) algorithm, to reduce data 

dimensionality [340], all features were averaged using a regional parcellation scheme 

(frontal, temporal, occipital and parietal lobes, cingulate and insular cortices and 

hippocampus) based on the automated anatomic labeling (AAL) atlas [240]. The features 

were then z-normalized with respect to the analogous parcels in healthy controls. An 

inherent assumption of SuStaIn is that the input features are progressive. Hence, we 

verified that features were correlated (p<0.05) with disease duration. Notably, cortical 

FLAIR, T1/FLAIR, and WM FA did not show such a relationship and hence they were 

excluded from the analysis. For the remaining features (cortical thickness, hippocampal 

columnar volume and WM MD), prior to input, the effects of aging in healthy controls 

were regressed from patients, a strategy that circumvents collinearity of aging and 

disease duration [340].  

SuStaIn is based on event-based models [163] with two key modifications that allow 

continuous linear accumulation of a feature from one z-score to another and patient 

subgroups with distinct patterns of biomarker progression [340]. As it uses piecewise 

linear segments with z-score evolution as control points, and requires no information 

about the timescale of change, it can be conveniently applied to cross-sectional data. The 

model is based on a multicomponent z-score function, such that stage is established when 

a given biomarker progresses a decrement (for cortical thickness and hippocampal 



143 
 

columnar volume) or an increment (for MD) of 0.5 z-score; the piecewise linear trajectory 

allows for the biomarkers to progress (and plateau) at different stages, thereby capturing 

the sequence of progression.  

The model fitting uses expectation-maximization to estimate the joint posterior 

distributions of subtype and stage for each patient [345]; in other words,  it estimates a 

probability matrix (P[Subtype and Stage]) with rows indicating subtypes and columns 

indicating stages. First, subtype is determined by adding the probabilities across the 

columns (P[Subtype = S], S = S1, S2, …, Sn) and selecting the row that contains the 

maximum probability. Stage is then determined by choosing the column with the 

maximum probability (max(P[Stage = T | Subtype = Sselected]), T1, T2, …, Tm). SuStaIn 

assumes that all features begin at 0 z-score at stage 1 and progress one step at a time by 

delta z-score until the features reach their maximum z-score; delta was set at 0.5. For each 

feature, the maximum z-score was then selected based on the 95 percentiles in patients. 

Although stages ranged from 1 (corresponding to 0 z-score for all features) to 154 (when 

all features reached their maximum z-score), virtually all patients were staged on or 

before 80.  

We evaluated a range of subtypes S from 1 to 4. Because the estimation of factors may 

vary depending on random initialization [301], for each S, we ran the algorithm 100 times 

and selected the solution closest to the remaining 99 runs [300] based on product-moment 

linear correlation (r) of the trajectories. We then chose the final S that offered stability 

across runs (r > 0.8). To assess within-sample robustness, we estimated bootstrap mean 

and standard deviation of disease trajectories and the consistency of patients’ 

assignments to trajectory subtypes and stages based on 1,000 bootstrap samples. 
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Individual-based predictions of clinical outcomes 

Phenotypic heterogeneity has been shown to provide added value for individual-based 

predictions [162, 339]. Yet, no study has assessed the combined predictive utility of 

phenotypic and temporal heterogeneity. To address this shortcoming, we assessed the 

performance of SuStaIn subtypes and stages to predict drug response (resistant vs. 

controlled) and seizure outcome (Engel I vs. Engel II-IV). We trained Extreme Gradient 

Boosting, an ensemble of decision trees that controls for overfitting [346], using patients’ 

subtype membership and stages. To assess the added value of SuStaIn model, we applied 

the same classifier to the subtype memberships given by a subtype-only model and stage 

assigned by a stage-only model. For the subtype-only model, we combined spectral 

clustering [347] with 10,000 bootstraps to identify stable subgroups of patients [348]. For 

the stage-only model, we applied an event-based model to identify a continuous 

piecewise linear accumulation of z-scores, achieved using the SuStaIn model after setting 

S to 1. Classifiers were cross-validated using a 10-fold scheme repeated 100 times; this 

procedure, by which 10% of patients are predicted using the data of the other 90%, allows 

an unbiased assessment for previously unseen cases.  

In relation to drug response, patients controlled with medication are rarely hospitalized 

at our center. To address the between-group size difference, we used balanced learning, 

a procedure that scaled the weights of the responder and non-responder groups so that 

both outcome groups contributed equally to the construction of the classifier. Secondly, 

our evaluation was based on balanced accuracy, defined as the arithmetic mean between 

sensitivity and specificity [349]. For a classifier that would blindly predict every patient 

as responder, if overall accuracy was used, it would achieve 85% (70 out of 82), a gross 

overestimation of performance. Conversely, using balanced accuracy (that computes the 

mean of accuracies calculated within the outcome groups), the same classifier would 
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achieve 50% accuracy (average of 100% for responders and 0% for non-responders), 

namely an unbiased estimation. 

 

Statistical analysis 

Student t-test assessed the relationship between subtypes and continuous clinical 

variables (age, age onset); Chi-squared test was used for binary clinical variables (sex, 

MRI positivity, surgery, history of febrile convulsion, generalized seizures, drug-

resistance, postsurgical seizure outcome and histopathology). Linear regression assessed 

the relationship between cognitive scores in verbal IQ, digit span, learning, memory and 

motor domains with the subtypes, as well as the relationship between the stage and 

cognitive scores and its interactions with subtype membership. Age and sex were used 

as covariates. Findings were corrected at FDR of 0.05. 

 

6.3 Results 

Subtypes and stages  

SuStaIn identified three subtypes characterized by distinct patterns of damage of 

hippocampal and whole-brain structural MRI anomalies and their evolution (Figure 17). 

Subtype 1 (S1, n=35)) was led by early-stage, severe, rapidly evolving ipsilateral 

hippocampal atrophy and bilateral asymmetric gliosis (indexed by increased MD; ipsi > 

contra), followed by bilateral WM microstructural anomalies (indexed by increased MD) 

more marked in ipsilateral temporo-limbic areas. Very mild bilateral neocortical atrophy 

became apparent only at late stages. Subtype 2 (S2, n=27) was typified by early-stage, 

mild and slowly progressing bilateral neocortical atrophy, followed by bilateral 

asymmetric hippocampal gliosis and atrophy (most severe ipsilaterally). Mild bilateral 
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WM microstructural anomalies became apparent only at late stages.  Subtype 3 (S3, n=20) 

was characterized by mild, slowly progressing, bilateral limbic WM microstructural 

alterations, followed by mild hippocampal gliosis and neocortical atrophy.  

 

Figure 17. Staging and subtyping TLE evolution. Patterns of progression of MRI anomalies are shown. 

Each SuStaIn stage denotes a decrement (for cortical thickness and hippocampal columnar volume, 

indexing atrophy, in blue) or an increment (for MD, indexing hippocampal gliosis and white matter 

microstructural alterations, in red) by 0.5 z-score. SuStaIn stage ranges from 1 to 80, with all features 

starting at 0 z-score and reaching their maximum. MRI features are mapped on hippocampal and brain 
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surfaces. In the plots, lines and shades indicate bootstrap mean and SD of absolute z-scores depicting the 

within-sample stability of the sequence and severity of biomarkers’ progression. 

     

Patient distribution across stages and their probability of belonging to a given subtype 

are presented in Figure 18. Regardless of subtypes, most patients were assigned to stage 

50 or earlier and showed high assignability to their given subtypes with 80/82 having a 

probability >50%. Within-sample stability of subtype and stage distributions were high 

with percent agreement across 1,000 bootstraps above 90%.  

 

Figure 18. Patient stratification. A. Distribution of patients across SuStaIn stages. For all subtypes, most 

patients are stratified prior to stage 50. B. Distribution of patients with respect to the probability to their 

assigned subtypes. On histograms, error bars and color shades indicate bootstrap SD and percent 

agreement across bootstraps. Confusion matrix shows percent agreement of bootstrap-wise patient 

stratification with the final stratification. Overall, patients showed high assignability to their subtypes with 

high within-sample stability.  
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Relation to clinical parameters and cognitive scores  

The TLE subtype S1, led by ipsilateral hippocampus, had the highest proportion of 

patients with early disease onset, febrile convulsions, GTCS, drug resistance, positive 

MRI, Engel I outcome and HS histopathology (pFDR < 0.05 across all comparisons). 

Conversely, S3 led by bilateral limbic WM, and S2, led by bilateral neocortical atrophy, 

exhibited the lowest and intermediate proportions, respectively (Table 4). Bootstrap 

analysis confirmed robustness of findings.  

 

S1 - led by 

ipsilateral 

hippocampus 

S2 - led by 

bilateral GM 

S3 - led by 

bilateral limbic 

WM 

Age ± SD (years) 34.4 ± 9.6 36.7 ± 9.9 34.7 ± 9.7 

Sex (female/male) 21/14 16/11 15/5 

Onset ± SD (years) 13.7 ± 10.1 † 19.3 ± 8.7 22.6 ± 13.0 

Febrile convulsion 18 † 7 1 

GTCS 24 * 14 7 

Drug resistance 34 * 23 14 

MRI 

(positive/negative) 
28/7 † 12/15 1/19 

Surgery/Engel I 28/24 • 17/12 12/7 

Histopathology 

(HS/G) 
25/3 † 9/8 3/9 

Table 4. Relation to clinical parameters and outcomes. Student t-test compared the between subtypes 

comparisons for continuous variables (age, age onset), Chi-squared test was used for binary variables (sex, 
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MRI positivity, surgery, history of febrile convulsion, drug-resistance, postsurgical seizure outcome and 

histopathology). † indicates FDR<0.05 with respect to S2 and S3; * FDR<0.05 to S3; • p<0.05 to S3. 

 

Regarding cognition (Figure 19), The three subtypes showed lower verbal IQ, digit span 

and sequential motor tapping with respect to the average performance of healthy 

individuals. However, directly contrasting subtypes, verbal IQ and digit span were lower 

in S1 and S2, as compared to S3 (pFDR < 0.05). With respect to relations between stage and 

cognitive scores, S1 (R = -0.33, pFDR = 0.027) and S3 (R = -0.46, pFDR = 0.027) showed 

progressive decline in sequential motor tapping, faster than S2 (T = 2.03, pFDR = 0.035; T = 

2.14, pFDR = 0.035). S3 also showed progressive decline in digit span (R = -0.53, p = 0.021).  

 

Figure 19. Relation to cognitive dysfunction. The graph bars show the mean score and standard deviation 

for each subtype for verbal IQ (A), digit span (B) and sequential motor tapping (C); dotted lines represent 

the average score in healthy controls. Individual patients are color-coded by their membership. The 

regression plots show the relationship between cognitive scores and stages; a vertical line indicate 

significant interactions. * pFDR < 0.05. • p < 0.05. 
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Extreme Gradient Boosting classifiers trained on SuStaIn outperformed those trained on 

subtype- and stage-only models. Indeed, for drug response, SuStaIn yielded a balance 

accuracy of 73±1.0% (vs. 70±1.4% and 63±1.3%, pFDR < 0.05) and 76±1.6% for Engel outcome 

(vs. 71±0.8% and 72±1.1%, pFDR < 0.05).  

 

6.4 Discussion 

Using SuStaIn, a multicomponent piecewise linear accumulation model applied to cross-

sectional MRI data, this study disentangled TLE disease trajectories characterized by 

distinct hippocampal and whole-brain signatures. Clinical utility was supported by 

differential relation to cognitive parameters; moreover, outcome predictions were more 

accurate when using classifiers trained on SuStaIn stratification, as compared to models 

trained separately on subtypes and stages. 

Our analysis sheds light on the course of TLE progression, particularly in relation to the 

sequence in which these compartments become abnormal, as well as inter-individual 

phenotypical variability. The S1 subtype, led by early, rapidly evolving ipsilateral 

hippocampal atrophy and gliosis, exhibited the archetypal clinical features of TLE, 

including febrile convulsions, GTCS, drug resistance, MRI positivity and favorable post-

surgical seizure outcome. Subsequent bilateral WM microstructural alterations are likely 

driven by large-scale effects of hippocampal pathology on connected temporo-limbic 

regions [135]. Besides such connectivity-based vulnerability and the longstanding 

hypothesis that TLE progression may be a direct effect of seizures, recent findings of 

amyloid-beta and tau pathology support a potential role of neurodegeneration akin to 

Alzheimer’s disease  [157, 158, 350]. Indeed, TLE shares similar pathology with 

Alzheimer’s disease, namely myelin loss and axonal degeneration [112, 160], which are 
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widespread [318, 351] and preferentially located along subcortical WM tracts [352, 353], 

aberrant microvasculature [354-356] and astrogliosis [105, 113, 357]. Paralleling the 

observations that such anomalies are linked to amyloid-beta and tau accumulations in 

Alzheimer’s disease, emerging data supports the notion that disease progression in TLE 

may be, at least partly, driven by these disordered proteins [157, 158], which may impart 

temporo-limbic WM damage by spreading through anatomical connections from the 

hippocampus [150, 353, 358, 359]. Moreover, amyloid-beta and tau may account for the 

bilateral neocortical atrophy, which emerge during the later SuStaIn stages of S1, 

suggesting temporal consistency with GM atrophy in late-adulthood Alzheimer’s disease 

[360-362]. The S2 subtype was characterized early-stage, mild and slowly progressing 

bilateral GM atrophy, possibly embodying the damaging effects of seizure propagation 

[4, 125] along the highly interconnected cortical hubs [284, 363]. Contrary to S1, 

hippocampal pathology was apparent later in the course of the disease, which may 

explain the lesser degree of WM pathology in this subtype. The clinical parameters of S2 

were similar to S1, yet to a lesser extent, likely reflecting the later involvement of the 

hippocampus. Contrary to S1 and S2 that presented with early GM damage, S3 was 

characterized by mild, slowly progressing, bilateral limbic WM microstructural 

alterations, with a greater overall load of pathology in both the neocortex and WM as 

compared to the hippocampus. In terms of clinical parameters, S3 was most dissimilar to 

the archetypal TLE features, especially with the highest rate of seizure relapse after 

surgery. Given that hippocampal sclerosis is among the strongest predictors of 

postsurgical seizure freedom [3, 364], sparing of hippocampus in S3 likely explains this 

dissimilarity. Regarding the underlying mechanisms that contribute to progression, the 

spatial and temporal similarities of bilateral limbic WM alterations between S3 and 

Alzheimer’s disease [351, 352] suggest amyloid-beta and tau as potential contributors.  

With regards to pathophysiological link between TLE and AD progressions, there is 

evidence that amyloid and tau pathology may be induced by seizures [365]. Given the 
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observation that seizure freedom after resective surgery may prevent further progressive 

neocortical thinning [366], it is worthwhile to investigate whether successful surgery 

would prevent aberrant accumulation of these proteins and their downstream effects on 

WM microstructural compromise and late-adulthood neocortical atrophy as seen in AD. 

With respect to cognition, while all subtypes showed impairments compared to healthy 

controls, S3 particularly exhibited the most subtle decline in verbal IQ and digit span. It 

has been established that hippocampus underpins verbal memory [330, 367] and their 

compromised contribution to the default mode network [223, 331, 333] may reduce verbal 

intelligence and memory [334]. Hence, the apparent sparing of hippocampus in S3 may 

explain why verbal IQ and digit span are least affected. On the other hand, S1 and S3 

were associated with rapid decline in sequential motor tapping. Given that visuo-motor 

function requires cross-modal integration supported by WM integrity [335, 336], 

pervasive compromise of WM microstructure in these subtypes likely underpins this 

rapid progressive decline. 

In neurological conditions, such as multiple sclerosis and Alzheimer’s disease, 

simultaneous characterization of phenotypic variability and temporal progression has 

provided novel insights into pathophysiology and detailed patient stratification with 

added diagnostic and prognostic values [342, 343]. Conversely, in TLE, research has been 

directed mainly to the understanding of either phenotypic or temporal heterogeneity, 

thereby not informing on distinct trajectories. Our findings support the clinical relevance 

of both axes of variations by the improved performance of classifiers trained on SuStaIn 

subtype and stage information over learners relying separately on subtype- and stage-

only models. Moreover, bootstrap resampling showed that patient stratification is robust 

for the three subtypes and the entire span of stages; in other words, at the time of 

diagnosis, irrespective of disease duration, patients can be reliably stratified into SuStaIn 

subtypes and stages based on cross-sectional MRI. Importantly, although longitudinal 
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designs offer greater statistical power and account for normal aging effects [150], SuStaIn 

circumvents the logistical and financial burdens of such designs [340]. Furthermore, the 

ability to model disease trajectories may shed light on distinct molecular and 

electrophysiological mechanisms, which may identify individuals at risk and help 

monitor the effectiveness of potential preventive therapies. 
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7.  DISCUSSION OF KEY FINDINGS AND SIGNIFICANCE 

 

This thesis includes a series of studies on inter-individual disease variability by 

combining multi-modal MRI and machine learning with clinical, cognitive and 

postsurgical follow-up data in the two most prevalent drug-resistant epilepsy 

syndromes, namely neocortical epilepsy related to focal cortical dysplasia (FCD) and 

temporal lobe epilepsy (TLE) related to mesiotemporal sclerosis. Two projects were 

aimed at capturing mesoscale structural variability of FCD lesions using multi-contrast 

MRI and at uncovering developmental processes that predispose cortical regions to 

harbor FCD using multi-scale approach combining whole-brain transcriptomics, 

histopathology and MRI. In two other studies, we investigated the inter-patient 

variability of static and progressive hippocampal and whole-brain structural pathology 

using multi-modal MRI and unsupervised machine learning and established the added 

clinical value of harnessing variability for predicting clinical outcomes and cognitive 

dysfunction. Overall, this dissertation provides evidence that the structural pathology in 

epilepsy is variably expressed between individual patients and such variability can be 

utilized to facilitate person-centered diagnosis and prognosis, which could ultimately 

improve care. 

Project I (Chapter 3) combined multi-contrast MRI and unsupervised machine learning 

to identify “FCD classes” with distinct structural profiles that captured the mesoscopic 

structural variability within and across lesions, with the objective to address the 

pathological variability beyond current discrete histological subtypes. This work was 

motivated by the emerging evidence of substantial cellular variability across lesions and 

co-occurrence of multiple subtypes within the same lesion. Subsequent analyses showed 

that FCD classes are associated with differential impact on brain function and 
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histopathological embedding. Clinical utility was supported by the gain in the 

performance of class-informed lesion detection algorithm compared to class-naïve 

paradigms. The FCD classes offer a novel basis to establish genotype-phenotype 

associations and to improve automated lesion detection. 

Project II (Chapter 4) implemented a multi-scale approach spanning from molecular 

processes to large-scale brain organization on a multi-centric dataset of 337 histologically 

verified FCDs to uncover the developmental processes that predispose certain cortices to 

harbor this malformation. This work demonstrated that FCD lesions preferentially occur 

in the prefrontal and fronto-limbic cortices, histologically marked by low neuron density, 

large soma and thick gray matter. FCD distribution showed a strong association with the 

anterior region of the antero-posterior axis, which is suggested to reflect the graded 

timetable of neurogenesis. The gene expression profiles of these cortices uncovered two 

components: prenatal neuroglial proliferation and differentiation and postnatal 

synaptogenesis and circuit organization. Both components were enriched for the risk 

genes of all epilepsies, with the prenatal component additionally enriched for FCD 

somatic variants. Taken together, multimodal associations with cytoarchitecture, gene 

expression and axes of cortical organization indicates that prenatal neurogenesis and 

postnatal synaptogenesis may be key points of developmental vulnerability of the frontal 

lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and 

growth, the results indicate that FCD-vulnerable cortices display properties indicative of 

earlier termination of neurogenesis and initiation of cell growth. They also suggest a 

potential contribution of aberrant postnatal synaptogenesis and circuit development to 

FCD epileptogenicity. 

Project III (Chapter 5) applied an unsupervised dimensional approach to estimate latent 

relations (or disease factors) from 3T multi-modal MRI features of hippocampal and 

whole-brain structural pathology in histologically verified 82 TLE patients. We identified 
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four latent factors characterized by ipsilateral hippocampal microstructural alterations, 

loss of myelin and atrophy, bilateral paralimbic and hippocampal gliosis, bilateral 

neocortical atrophy and bilateral white matter microstructural alterations. Bootstrap 

analysis supported factors stability and robustness. While factors were variably co-

expressed within each TLE patient, they were not expressed in healthy controls and only 

negligibly in disease controls, supporting specificity. Classifiers trained on latent disease 

factors accurately predicted patient-specific drug-response and postsurgical seizure 

outcome as well as inter-patient variability in verbal IQ, memory and sequential motor 

tapping outperforming baseline learners. Data-driven analysis of disease factors provides 

a novel appraisal of the continuum of interindividual variability, which is likely 

determined by multiple interacting pathological processes. 

Project IV (Chapter 6) combined multimodal MRI with a computational technique that 

enables simultaneous staging and subtyping based on cross-sectional data, which 

circumvents logistical and financial burdens of longitudinal designs. This work identified 

three disease trajectory subtypes: Ipsilateral hippocampal atrophy and gliosis, followed 

by WM damage; Bilateral neocortical atrophy, followed by ipsilateral hippocampal 

atrophy and gliosis; bilateral limbic WM damage, followed by bilateral hippocampal 

gliosis. Patients showed high assignability to their subtypes and stages. The subtypes had 

differential proportions of patients with early disease onset, febrile convulsions, drug-

resistance, a positive MRI, HS and Engel-I outcome and associated with distinct 

trajectories of verbal IQ, memory index and sequential motor tapping. Clinical utility is 

demonstrated by the higher performance of classifier trained on uncovered stages and 

subtypes for predicting antiepileptic drug response and postsurgical seizure outcome 

compared to classifiers trained on stage- and subtype-only models. Disease evolution in 

TLE follows variable trajectories, each associated with distinct patterns of cortico-

subcortical and hippocampal structural alterations. Capturing the progression of 
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subtype-specific MRI biomarkers enables an objective, fine-grained patient stratification, 

which may identify individuals at risk and help monitoring the effectiveness of potential 

therapies preventive of further pathological progression. 

 

Responses to questions on Project I 

Question: How do FCD classes relate to seizure outcome after surgery? 

Response: We did not find significant associations between the FCD class composition of 

lesions and seizure outcome after surgery. The lack of associations is consistent with the 

previous literature showing that the strongest predictor of seizure freedom is the 

complete resection of the structural lesion. The added value of FCD classes is in 

characterizing a wider spectrum of MRI phenotypes, which improves lesion detection. 

 

Question: How do FCD classes translate to children? 

Response: As the developing brains undergo dynamic changes in myelination and 

cytoarchitecture, the MRI profiles of the healthy tissues and their presentation of FCDs 

alter [368, 369]. However, the MRI profiles of FCD classes, which are defined relative to 

age-matched analogous healthy tissues, may not differ between children and adults, since 

the underlying histopathological features have not been shown to differ between the two 

age groups. 

 

Question: How was T1w/T2w ratio normalized? Could you discuss cross-vendor 

replicability of this feature? 
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Response: T1w/FLAIR ratio was normalized relative to average T1w/FLAIR ratio across 

the cortical GM [370]. This normalization approach is robust across patients, as the 

alteration of T1w/FLAIR ratio is largely confined within the lesion, which generally make 

up a small areal proportion in the cortex. We also replicated the FCD classes across two 

independent datasets acquired using different MRI scanners and sequence parameters, 

which support wide applicability. 

 

Responses to questions on Project II 

Question: What topological and biological underpinnings are associated with drug 

controlled FCDs? 

Response: While Project II examined the topological and biological underpinnings of 

drug-resistant FCD lesions, those of drug-controlled FCD lesions remain unknown. Our 

findings suggest that antero-posterior and superior-inferior axes of topology may 

underlie the formation of this malformation and the epileptogenesis of the precipitating 

lesion, respectively. On these bases, we hypothesize that drug-controlled FCD lesions 

would follow the antero-posterior axis but not the superior-inferior axis. 

 

Question: Do FCDs with germline propensity towards seizures follow similar topological 

patterns? 

Response: Germline mutations that constitutively activate mTOR pathway have shown 

to lead to a variety of brain malformations, including focal cortical dysplasia, 

hemimegaloencephaly and macrocephaly, affecting large cortical areas [63]. Although 

the topological patterns of FCDs due to germline mutations remain unknown, their larger 

sizes of malformation suggest that the precipitating molecular insult had occurred during 
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earlier stage of neurogenesis. Moreover, the pivotal role of mTOR pathway in germline 

FCDs further suggest pathogenic role of neurogenesis. Hence, FCDs with germline 

propensity may follow similar topological patterns as those with somatic propensity. 

 

Question: How do the findings of this project relate to FCD type I? 

Response: Given that type I FCDs present with cortical dyslamination without cytological 

abnormalities, their etiology may be driven more heavily by neuronal migration than by 

neurogenesis. Since the macroscale topological profile of neuronal migration is unclear, 

it is difficult to ascertain how the presented findings would relate to type I FCDs. 

 

Responses to questions on Project III 

Question: Would additional MRI sequences potentially improve the performance? 

Response: Inclusion of advanced MRI sequences may potentially improve the discovery 

of the disease factors and their predictive power for individual clinical outcomes. 

Notably, multi-shelled, high-angular diffusion MRI techniques, such as neurite 

orientation distribution and density imaging [371] and diffusion kurtosis imaging [372], 

offer additional indices of tissue microstructure, which would likely offer richer insights 

into the disease processes. While such sequences are increasingly becoming a part of 

standard clinical protocols, other advanced sequences may add to the analysis with 

additional scan time. These include physiological MRI techniques that quantify the rate 

of metabolism [373-375], myelin water fraction [376, 377] and magnetic susceptibility 

[378] in tissues, which could further inform on the disease factors and enhance their 

predictive power.  
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Question: Does laterality of TLE factors relate to memory outcomes? 

Response: The decline in memory was associated with Factors 1 (ipsilateral hippocampal 

damage) and 3 (bilateral neocortical thinning). This is consistent with previous functional 

MRI studies reporting asymmetry of memory activation in TLE patients, in contrast to 

symmetric memory activation in healthy controls [379, 380]. 

 

Question: How do subcortical volumes (i.e., thalamus) relate to factors? 

Response: Thalamus has been suggested to drive seizure spread in TLE [156, 381, 382]. 

However, given that thalamic atrophy is tightly coupled with hippocampal atrophy [383], 

inclusion of thalamus is unlikely to alter the discovered factors. 

 

Responses to questions on Project IV 

Question: What are the added values of combining SuStaIn with factors? 

Response: The main difference between the SuStaIn outputs and factors is that the former 

is based on progressive imaging phenotypes, while the latter includes both progressive 

and static phenotypes. For instance, Factor 2 defined by paralimbic FLAIR hyperintensity 

does not progressive with disease duration, which was why SuStaIn could not inform on 

the progression of FLAIR intensity. Hence, combining SuStaIn outputs with factors is 

expected to offer complementary insights into the disease processes and thereby enhance 

the prediction of individual clinical outcomes. 

 

Question: Does early epilepsy surgery interrupt or modify disease trajectory? 
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Response: Our sample of 82 TLE patients, who were stratified into 3 subtypes and several 

stages, was insufficient to establish the modulatory effects of early epilepsy surgery. It 

will be worthwhile for future works with larger sample sizes to investigate how epilepsy 

surgery alters the disease trajectories in different SuStaIn subtypes. 

 

Question: What are the assumptions or limitations in age regression in this cross-sectional 

study? 

Response: To control for the effects of normal aging from the disease-related aging, we 

assumed that the effects of aging in health controls to be the effects of normal aging. The 

aging effects estimated in healthy controls were then regressed out from the patients to 

remove the assumed effects of normal aging from the patients [340]. It is worth noting 

that was an indirect approach to estimate the true effects of normal aging in patients. 

While longitudinal designs offer a direct approach, cross-sectional approach circumvents 

the logistical and financial burdens of repeated scanning, which are often prohibitive for 

patients. 

 

Question: Why were cortical FLAIR and T1w/FLAIR not included? 

Response: SuStaIn assumes that the inputs features are progressive [340]. We found that 

FLAIR and T1w/FLAIR ratio were not progressive and thereby not included them into 

the analysis. 

 

Question: Is piece-wise linear accumulation (monotonic) a reasonable assumption for 

TLE? 
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Response: Monotonic progression of MRI profiles is a reasonable assumption. It is worth 

noting that a subset of TLE patients has shown to express hippocampal and amygdalal 

hypertrophy [162]. These patients are associated with isolated gliosis and poor seizure 

outcome. Although SuStaIn did not explicitly account for hypertrophy, this subset of 

patients should fall within Subtype 3 led by bilateral limbic white matter pathology, 

which show no signs of hippocampal atrophy and express highly similar clinical features. 

 

Question: Three subtypes have different onset and severity. Do different groups have 

different stages? 

Response: The clinical parameters differ between SuStaIn subtypes, with S1 (led by 

hippocampal atrophy) associated with severe features and favorable surgical outcome 

and with S2 and S3 associated with moderate and mild features with less and least 

favorable outcome, respectively. Notably, S1 is linked to earlier epilepsy onset compared 

to S2 and S3. Nevertheless, this difference in age onset does not translate to difference in 

SuStaIn stages, which are defined by the severity (i.e., z-score) of the MRI features [340].  

 

Question: Does the pathology propagate in TLE? 

Response: The associations between MRI profiles and histopathology have been 

established in previous studies [105, 110, 112]. Hence, the progression of MRI signatures, 

as depicted in SuStaIn-derived trajectories, should accompany corresponding 

progression of histopathology. The propagation of the pathology may be possible in two 

potential avenues. Increasing evidence of amyloid and tau accumulations in the limbic 

regions [157, 384] suggest that neurodegenerative processes may propagate in a manner 

similar to that seen in Alzheimer’s disease [358]. In a similar vein, damage due to seizure 
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spread may facilitate a propagation of pathology via thalamocortical pathways [154] and 

with propensity towards topological hubs [363]. 

 

Question: Would the findings be replicable on ‘typical’ clinical scans? 

Response: SuStaIn was applied to widely available and standard clinical MRI sequences, 

namely T1w MPRAGE and FLAIR. These protocols embody the consensus 

recommendation for epilepsy neuroimaging [238]. The findings in this project, as well as 

all other projects in this thesis, should render themselves replicable and relevant in 

typical clinical scans. 

 

Significance 

Characterizing focal epilepsy syndromes across multiple scales is a key to understanding 

how molecular perturbations and cellular pathology impart meso- and macro-scale 

alterations in brain structure, function and organization [385]. In clinical practice, such 

multi-scale framework may improve and enrich the diagnosis and prognosis of 

individual patients. To date, however, the characterization of focal epilepsy syndromes 

has been driven by the semiology and electrophysiology of seizures. Although these offer 

frameworks for patient stratification, such domains of patient profiles are 

neurobiologically remote phenomena that do not inform on the underlying etiology and 

pathological substrates. Aside from limited biological insights, these phenomena also do 

not offer a reliable biomarker for predicting the antiepileptic drug response and 

postsurgical seizure outcome. In this context, this thesis demonstrated that structural 

MRI, owing to its unmatched spatial resolution, whole-brain coverage and proximity to 

micro-scale phenomena, has unprecedented opportunities to transform the disease 
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characterization and clinical care. This thesis demonstrated that combining structural 

multi-modal MRI and inter-individual variability reconciles insights into multiple scales 

of neuropathology and biomarkers that reliably predict the responses to medication and 

surgery in the individual patients. 

Although MRI offers a unique bridge between micro-scale neural phenomena and clinical 

and cognitive outcomes, incorporating genomic data acquired from the same individuals 

into the analysis may further inform on the etiology and clinical care. For example, 

measuring gene expression profiles from the plasma or CSF is logistically feasible and 

may identify germline variants that underpin the MRI phenotypes in the same 

individuals. However, gene expression profiles vary between peripheral sources and 

brain cells, which are hard to access from the patients. An alternative to circumventing 

this limitation is to use induced pluripotent stem cells (iPSC) derived from the patients 

[386, 387]. As patient-specific iPSCs can provide a large quantity of disease-relevant brain 

cells that are otherwise difficult to obtain, they can facilitate establishing direct links 

between brain-specific molecular mechanisms and MRI phenotypes within the same 

individuals [388]. Nevertheless, combining patient-specific iPSC-derived brain gene 

expression with MRI phenotypes may not address the region-specific somatic variants 

that occur in epileptogenic neocortical malformations. In these cases, whole-brain gene 

expression data of neurotypical individuals, such as those from Allen Human Brain Atlas 

and PsychENCODE, may serve as alternatives to investigate the molecular signatures 

associated with MRI phenotypes, as demonstrated in Project II. Taken together, a 

concerted efforts towards characterizing the multiscale neurobiology of focal epilepsy 

syndromes would be key step to establishing how developmental processes are altered 

to give rise to focal lesions and degenerative processes that underpin progressive 

alterations across the whole brain within individuals. 



166 
 

Although the presented models of inter-individual variability in FCD and TLE have been 

developed based on single-center datasets, the models are consistent with the known and 

widely established aspects of the pathology. Importantly, the novelty of these models is 

in the integration of multiple key disease features, as previous models of disease 

variability have been limited to one feature or features derived from unimodal MRI. 

Moreover, the presented models were validated using extensive resampling techniques 

to ensure that site-specific nuances in the data do not shape the final model, thereby 

supporting generalizability. Hence, the presented models should lend themselves useful 

for across centers.  

In summary, this thesis combined multi-modal MRI with machine learning to model the 

inter-individual variability based on the key aspects of structural pathology in lesional 

tissues, cortical GM and superficial WM in common focal epilepsy syndromes. The 

presented approach informed on the phenotypic and temporal variability beyond 

histological and electro-clinical categories. It also offered novel basis to understand 

aberrant developmental and degenerative mechanisms that drive the lesional and whole-

brain structural alterations across lifespan. The presented approach may offer biomarkers 

that may reduce ineffective drug trails and accelerate referrals for pre-surgical evaluation, 

improve the detection of subtle lesions for surgical removal and enable inference on the 

genotypes for individual patients. 
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