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Clever yes
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abstract

For more than a decade, music information science and musicology

have been at what Nicholas Cook has described as a ‘moment of op-

portunity’ for collaboration on database-driven musicology. The literature

contains relatively few examples of mathematical tools that are suitable for

analysing temporally structured data like music, however, and there are

surprisingly few large databases of music that contain information at the

semantic levels of interest to musicologists. This dissertation compiles a

bibliography of the most important concepts from probability and statistics

for analysing musical data, reviews how previous researchers have used stat-

istics to study temporal relationships in music, and presents a new corpus

of carefully curated chord labels from more than 1000 popular songs from

the latter half of the twentieth century, as ranked by Billboard magazine’s

Hot 100 chart. The corpus is based on a careful sampling methodology

that maintained cost efficiency while ensuring that the corpus is well suited

to drawing conclusions about how harmonic practises may have evolved

over time and to what extent they may have affected songs’ popularity.

This dissertation also introduces techniques new to the musicological com-

munity for analysing databases of this size and scope, most importantly

the Dirichlet-multinomial distribution and constraint-based structure learn-

ing for causal Bayesian networks. The analysis confirms some common

intuitions about harmonic practises in popular music and suggests several

intriguing directions for further research.
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résumé

Depuis plus d’une décennie, la science de l’information de la mu-

sique et la musicologie sont à ce que Nicholas Cook décrit comme

« un moment clé » en ce qui concerne une collaboration pouvant mener à

une réelle science de la musique fondé sur l’analyse de large quantité de don-

nées. Toutefois, la littérature comporte rélativement peu d’exemples d’outils

mathématiques qui conviendraient à l’analyse des données qui, comme les

données musicales, ont des dépendances temporelles, et il y a très peu de

bases de données qui contiennent des informations avec la richesse séman-

tique intéressant d’ordinaire les musicologues. Cette thèse assemble une

bibliographie des concepts les plus importants de la probabilité et de la

statistique pour analyser les données musicales, revisite la manière dont les

chercheurs précédents se servaient de la statistique pour étudier les rapports

temporels, et présente un nouveau corpus soigneusement préparé contenant

les transcriptions d’accords pour plus de 1000 chansons populaires de la

deuxième moitié du xxe siècle, figurant du « Hot 100 » de la revue Billboard.

Le corpus résulte d’une méthodologie d’échantillonnage qui optimise les

coûts et s’assure que le corpus conviendrait à tirer des conclusions montrant

comment les pratiques harmoniques ont pu évoluer au fils du temps et

dans quelle mesure elles peuvent avoir une incidence sur la popularité des

chansons. Cette thèse introduit aussi quelques techniques qui sont nouvelles

en musicologie pour analyser les bases de données d’une telle taille et d’une

telle portée ; les plus importantes parmi ces techniques sont la distribution

multinomiale de Dirichlet et l’apprentissage via contraintes de structure des

xv



RÉSUMÉ

réseaux causaux de Bayes. L’analyse confirme quelques intuitions courantes

concernant les pratiques harmoniques de la musique populaire et suggère

quelques voies intéressantes pour la recherche à venir.

xvi
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notational glossary

number theory

n! factorial,∏n
i=1 i

Γ(x) the gamma function, Γ(x) = ∫
∞

0 tx−1e−tdt

(
n
k) number of distinct combinations of k objects from a pool of n objects,

(
n
k) = n!

n!(n−k)!

logical relations

≜ definition

∧ logical conjunction

∨ logical disjunction

set theory & analysis

∅ the empty set

△n the n-simplex, i.e., {π ∈ Rn+1 : ∑ni=0 πi = 1 ∧ ∀i πi ≥ 0}

ℵ0 the cardinality of N
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1 database-driven musicology

In 2005, nicholas cook opened his invited talk to the Sixth Interna-

tional Conference on Music Information Retrieval ( ismir ) by noting

that ‘we stand at a moment of opportunity’ for historical musicologists and

music information scientists to work together to revitalise the sub-discipline

of machine-assisted empirical musicology (Cook 2005). Two great obstacles

have delayed realising this moment of opportunity. One has been the dif-

ficulty these two groups have communicating with each other: the needs

and jargon of musicologists are alien to most music information scientists,

who tend to originate from computer engineering, and engineers’ statistical

models are opaque to most musicologists, who do not normally acquire

sophisticated training in mathematics. The other is that it is nearly im-

possible to undertake large-scale empirical research in music at the moment

given the current paucity of organised, machine-interpretable data at the

levels of reduction of most interest to musicians: notes, harmonies, and

phrases. We need tools, preferably automated tools, to help us compile and

distribute such databases of music.

1.1 suggestive vs. psychological music theories

Cook is a strong proponent of empirical methods in musicology, having

argued that:

there is no useful distinction to be drawn between empirical

and nonempirical musicology, because there can be no such
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DATABASE-DRIVEN MUSICOLOGY

thing as a truly non-empirical musicology; what is at issue

is the extent to which musicological discourse is grounded

on empirical observation, and conversely the extent to which

observation is regulated by discourse.

(Cook & Clarke 2004)

In some sense, music theory is this discourse that may regulate observation

(Wiggins, Müllensiefen & Pearce 2010), but it has proved to be a frustrating

field to define precisely. Jean-Jacques Nattiez’s seminal Musicologie générale et

sémiologie posited six different families of music analysis (1987, pp.175–79),

but David Temperley has argued that in practise, most research in music

theory falls into just two of these families. One, which Temperley describes

as ‘psychological’, ‘attempts to describe listeners’ unconscious mental rep-

resentations of music’ (1999, p. 68) and corresponds to Nattiez’s family 3

(‘deductive esthesics’); the other, which Temperley describes as ‘suggestive’,

has a didactic aim to encourage listeners to hear music differently and

corresponds to Nattiez’s family 4, ‘inductive esthesics’.

Of these two approaches, the psychological one has been more tra-

ditionally associated with empiricism, fruitfully borrowing many of the

techniques developed for the social sciences. In particular, as any issue of

Music Perception will show, the psychological approach to music theory has

made great use of statistical methods and probability. There is no inherent

reason, however, that suggestive music theories cannot or should not use

statistics. Leonard Meyer, usually cited as one of the founding figures of

the psychological approach to music theory, was just as strong a supporter

using empirical methods and statistics for suggestive approaches:

2



1.1 · SUGGESTIVE VS. PSYCHOLOGICAL MUSIC THEORIES

Since all classification and all generalization about stylistic

traits are based on some estimate of relative frequency, statist-

ics are inescapable. This being so, it seems prudent to gather,

analyze, and interpret statistical data according to some co-

herent, even systematic, plan. That is, instead of employing

informal impressions of the relative frequencies of casually

defined traits (in the case of Wagner’s music, for instance,

what actually is the relative frequency of deceptive cadences?

in what ways is their occurrence correlated with that of bar

forms? how exactly is chromaticism defined? and so on), it

would appear desirable to define as rigorously as possible what

is to count as a given trait, to gather data about such traits

systematically, and to collate and analyze it consistently and

scrupulously – in short, to employ the highly refined methods

and theories developed in the discipline of mathematical stat-

istics and sampling theory. I should add that I have no doubt

about the value of employing computers in such studies, not

merely because they can save enormous amounts of time but,

equally important, because their use will force us to define

terms and traits, classes and relationships, with precision –

something that most of us seldom do. (Meyer 1989, p. 64)

In short, Meyer argued for what I shall call database-driven musicology: a

process of musicological inquiry that begins with the compilation of large

corpora of musical data and then uses these data as a means to quantify

baseline musicological principles. Perhaps more importantly, database-

3



DATABASE-DRIVEN MUSICOLOGY

driven methods can quantify precisely how the more notable examples from

musical history deviate from these baselines and thus help musicologists

hypothesise why.

The field was not quick to adopt this suggestion of Meyer’s. In 1999,

David Huron argued at the Ernest Bloch lectures of the University of Cali-

fornia, Berkeley, that musicology needed to make a transition, as psy-

chology had, from operating as a strictly ‘data-poor’ field to one that re-

cognised places where it had the potential to become data-rich (Huron

1999). As noted above, this moment of opportunity was still yet to be

realised in 2005. Only recently has the field begun to open in this direction

(Anagnostopoulou & Buteau 2010), but one of the fundamental obstacles

remains that there simply are not enough well-curated databases available

that are usable for studying questions of musicological interest.

1.2 an introductory example : brahms op. 51, no. 1

Two broad sets of tasks are associated with databases for empirical research

in music: one set for creating such databases and another for making op-

timal use of them. Creating a database is generally a process of classification,

i.e., reducing music data from the forms in which it is most readily avail-

able, such as recordings or scores, to forms that are more semantically

meaningful, such as chords or contrapuntal schemata. Once the database

exists, researchers normally want to use techniques of inference to draw

musicological conclusions from it. One could reasonably presume that

classification and inference would be independent, given that they seem

to be separated in time – figure 1.1 illustrates this apparent structure of

4



1.2 · AN INTRODUCTORY EXAMPLE: BRAHMS OP. 51, NO. 1

acquisition

raw digital

materials
classi�cation

semantic

entities
inference

empirical

musicological

principles

Figure 1.1 · Apparent dependencies in large-scale empirical music research. This representation

suggests that classi�cation and inference are completely separated in time, but in practise, they

can and should inform each other.

dependencies – but these sets of tasks are more intimately linked than they

might seem. Their interaction is one of the riper areas for collaboration

between engineers and musicologists.

It is possible and indeed traditional to undertake both classification

and inference by hand. Such approaches are well-suited to tightly-specified

questions such as close analyses of a particular works, e.g., Alan Forte’s

famous analysis (1983) of the first movement of Brahms’s String Quartet

in C Minor (op. 51, no. 1). This analysis begins by outlining a formal

methodology for a classification task to reduce a single movement to a

collection of pitch-based motives:

1. The motive is primarily an intervallic event, distinct

from any particular pitch manifestation.

2. The original pitch or pitch-class representation of a motive

5



DATABASE-DRIVEN MUSICOLOGY

is of singular importance, however, and we call this ref-

erential function of a particular form pitch-specific which

means that the motive designated consists of the same

pitches as the original form of the motive; and the term

pitch-class specific means that the motive is recurring, but

at some level of octave transposition with respect to the

original form.

3. The boundary interval of the motive is its most salient

feature. The internal structure is variable or may even

be absent in some representation of the motive. The

boundary interval may undergo octave inversion, or

– more appropriate to Brahms’s usage – expansion by

octave displacement, as major third and minor sixth.

4. A motive may be transformed without losing its basic

identity. The transformations which Brahms uses are

retrograde, inversion, and retrograde inversion. He also

uses a transformation which I will call minor to major or

major to minor, depending upon the circumstances.

(p. 474)

Forte continues by cataloguing all of the motives and transformations he can

find in the movement, or in other words, Forte classifies all of the motives

in the movement manually, yielding eleven distinct sets, each set containing

a motive in prime form and possibly one or more transformations. Finally,

Forte examines how the instances of each set of motives change throughout

the piece in order to draw conclusions about its structure, a manual form of
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1.2 · AN INTRODUCTORY EXAMPLE: BRAHMS OP. 51, NO. 1

inference. Among his more notable conclusions are the claims that each of

two sets of motives, the so-called α- and σ-motives, are defining structures

within the movement.

David Huron (2001) hypothesised that Forte’s α-motive was too general

to be able to distinguish the first movement of op. 51, no. 1, from Brahms’s

output in general. To test this hypothesis, he compared the prevalence of

the α-motive in this movement to its prevalence in the first movements of

Brahms’s other two string quartets (op. 51, no. 2, and op. 67). Undertaking

even this relatively modest comparison by hand, however, would have

crossed an unappealing threshold to tedium: calculating the empirical

prevalence of α-motives relative to all others in op. 51, no. 1, alone in-

volves classifying 7 045 pairs of melodic intervals, and across all three first

movements, there are 21 155 such pairs to consider (¶ 32). Huron used

a computer and his own Humdrum Toolkit (1995) to extract descriptive

statistics from machine-readable encodings of the movements in question

and concluded that Forte’s α-motive is no more prevalent in the first move-

ment of op. 51, no. 1, than it is in the first movements of Brahms’s other

quartets. Huron’s analysis further suggests that Forte’s decision to down-

play the importance of rhythmic features during classification (note that

rhythm appears nowhere in the passage quoted above, although Forte does

comment upon it to some extent in the text that follows it) limits the range

of inferences that are available afterward. Certain combinations of pitch

motives and rhythmic patterns prove to have more discriminatory power

than the α-motive alone, and moreover, Forte’s assumption of transforma-

tional equivalence (assumption 4) appears questionable, at least with with

respect to the α-motive.
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DATABASE-DRIVEN MUSICOLOGY

Huron employed computers to avoid a prohibitive number of tedious

calculations that would have been necessary to answer his musical question.

There are many other questions that could have been asked, however: what,

for example, of the other ten set of motives in Forte’s analysis? Are there

notable motivic patterns that are absent from the analysis? As compu-

tational power has improved, it has become feasible to allow computers

even to broaden the list of possible questions beyond the scope of what a

single human researcher or group of researchers could undertake alone.

As part of a special issue of the Journal of Mathematics and Music dedicated

specifically to computational approaches to analysing op. 51, no. 1, Darrell

Conklin (2010) has applied techniques from data mining to list all possible

motivic patterns according to Forte’s classification methodology and to rank

them by the extent to which they distinguish this movement from the first

movements of Brahms’s other quartets. Consistent with Huron’s findings,

Conklin’s analysis show that Forte’s α set collectively is a poor distinguishing

feature, but overall, the analysis validates Forte’s classification. At least one

element of each of Forte’s eleven sets of motives appear among the most

prominent distinguishing patterns, and the list is headed by an instance

of the σ-motive, to which Forte’s analysis ascribes particular importance.

The computer is also able to find three motivic patterns that are absent

from both Forte’s analysis and Huron’s, including one that appears to be of

significant structural importance (a descending minor second followed by

an ascending major third).

Forte’s own conclusion, however, suggests that he was looking less for

features that made the first movement of op. 51, no. 1, unique and more

for general conclusions about Brahms’s music:

8



1.2 · AN INTRODUCTORY EXAMPLE: BRAHMS OP. 51, NO. 1

In the work which is the subject of this analysis specific pitch

classes and dyads serve throughout to initiate motions, to ter-

minate them, and to refer to musical events already completed

or forthcoming. Although this feature is by no means restric-

ted to the music of Brahms, the elegance and subtlety with

which Brahms negotiates motivic relations leave him without

peer. (pp. 501–2)

In order to test the assertion that Brahms is ‘without peer’ in his treatment of

musical motives, one would need to apply the classification methodologies

of Forte, Huron, or Conklin to a much larger selection of examples from

Brahms’s output and an equally large selection of music from Brahms’s

potential peers. All of these selections would need to be machine-readable,

and that presents another limitation: encoding musical scores in machine-

readable formats is itself a manual and time-consuming process. In order to

arrive at a sufficiently large amount of data for inference, not only must the

process of classification be automated, classification must also start not from

machine-readable format that has been encoded by a human in semantic

terms but rather from a digital acquisition process that is capable of treating

large quantities of documents quickly and at relatively low cost (MacMillan,

Droettboom & Fujinaga 2002; Baird 2003; Bruder et al. 2003). Figure 1.1

includes this critical step in large-scale empirical research in music.

Large-scale acquisition processes like these are typically bound to a

physical reality rather than a semantic one. Musical scores, for example,

will in most cases be scanned to raw digital images that represent the amount

of light reflected from each of many small regions of the page. Musical
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DATABASE-DRIVEN MUSICOLOGY

sound is usually recorded or transferred to digital audio, which stores a

representation of a sound wave or waves to be retransmitted to a human ear.

For most questions of interest, the gap between these physical and semantic

realities is too great to describe with absolute precision, and so one must

accept that automatic classification processes will operate with some degree

of uncertainty. Depending on the details of the questions asked and the

processes used, that uncertainty may or may not propagate to the inference

step. Either way, two complementary goals emerge: one to understand

how much uncertainty is inherent in a particular classification or inference

procedure and the other to minimise or at least control that uncertainty to

the greatest extent possible.

One of the easiest ways to reduce the uncertainty (and thus improve

the accuracy) of an automated classification procedure is to improve its

quantitative model of the semantic space, e.g., the temporal relations among

harmonies. The best way to learn a quantitative model of the semantic

space is from inference, and the larger the database, the more precise that

inference can be. A virtuous cycle emerges whereby larger databases enable

more accurate automatic classifiers, which lessens the burden of generating

still larger databases, which then enable even more accurate automatic

classifiers, and so on. Given the dearth of good data at the present, most

projects in database-driven musicology need to find a way onto this cycle.

1.3 conclusion and chapter outline

The goal of this dissertation is to show how to drive a project onto that virtu-

ous cycle and, for one important musicological problem, lift the problem up

10
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to that virtuous cycle. In particular, it will investigate how hypotheses about

musical structure can be encoded directly into a flexible, high-performing

statistical framework known as the graphical model. Graphical models en-

able a nearly one-to-one correspondence between hypotheses about the data

(e.g., that dominant chords tend to lead to tonic chords) and the mathemat-

ical apparatus, a correspondence that should enable freer communication

between researchers with more musical training and those with more stat-

istical training. One of the most popular types of graphical model can

also encode and help to uncover causal relationships, which make these

models especially rich tools for collaborative inquiry. Moreover, one can

use existing databases to train graphical models, and their accuracy and

precision of graphical models improve with size of the training database.

As such, graphical models can be employed to start the virtuous cycle

necessary to build large databases cost-effectively.

Given that this thesis is written for evaluation in a music department,

I have done my best to assume minimal background in machine learn-

ing, which cannot be taken for granted even among music technologists.

There is a glossary listing the most important mathematical notations used

throughout the documents, and chapter 2 is a review of the most relevant

concepts from probability theory and statistics. Surprisingly, I found that

there was no one source or even small set of sources that brought together

the right combination of material on probability, causality, stochastic pro-

cesses, and classification for effective work in database-driven musicology,

and I believe that collecting these concepts in a single chapter is perhaps

one of the most important contributions of this thesis. Nonetheless, I must

acknowledge that readers with a weaker mathematical background will

11
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find this chapter to be a difficult read.

On the other hand, again given that this thesis is written for evaluation

in a music department, I have taken for granted a knowledge of basic

music-theoretical concepts up to the level of an intermediate course in

harmony. Some interested parties may not in fact have that background,

and I direct such readers to standard textbooks such as Edward Aldwell and

Carl Schachter’s (2003) or Robert Gauldin’s (1997). Chapter 3 brings the

thesis back to a more musicological domain, comprehensively reviewing

how the statistical principles presented in the preceding chapter have been

applied, implicitly or explicitly, to musicological problems. It begins with

examples of inference alone and then engages the larger set of literature

involved in classification problems that engage time-dependent structures

in music.

Chapter 4 presents an example of using these techniques to enable

serious database-driven musicology for an active area of musicological

research: harmony in popular music. Leading a team of researchers, I was

able to produce a corpus of popular harmony of unprecedented size, scope,

and detail. This chapter describes the process of generating that corpus

and presents the first results of using it for statistical inference.

The dissertation closes with a brief summary of the issues presented

and an outline of the many possible areas for future work.

12



2 stochastic processes

Probability, causality, and statistics underly most principled ap-

proaches to database-driven musicology, just as they do most data-

oriented research in the social sciences. Probability quantifies uncertainty,

and as discussed in the previous chapter, there is almost always uncertainty

in empirical research. Sometimes raw probabilities are meaningful on their

own, but often they are more interesting when interpreted relative to a

causal structure that allows one to consider questions of what probabilities

would be (or would have been) if one could take (or could have taken)

certain actions to intervene in the process. Statistical methods are the tools

to extract information about probabilities and causal relationships from

a limited set of observations, such as a database of musical selections and

their properties.

This chapter begins with an overview of some basic concepts in prob-

ability and their philosophical underpinnings (§ 2.1), which are necessary

for understanding most of the mathematics throughout the document. It

continues with a description of graphical models (§ 2.2), a common tool

for working with complicated probabilistic relationships and linking them

to notions of causality. Music unfolds over time, and so another section

(§ 2.3) describes how to apply graphical models in temporal contexts. The

chapter concludes with a survey of historical approaches to estimation and

classification that are relevant to those that have been applied to music in

the past as well as to the new approaches considered later in this thesis

(§ 2.4).

13
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2.1 basic probability theory

Probability theory is a dense subject, and there is neither the space nor the

need to treat it comprehensively here. Daphne Koller and Nir Friedman

have written a very concise introduction that is targeted specifically toward

the types of statistical models that appear in this thesis and in machine

learning more generally (2009, pp. 15–34). Larry Wasserman included a

somewhat longer and more general introduction at the beginning of his

high-level survey of the most common topics in statistical inference (2004,

pp. 3–46). Jeffrey Rosenthal has prepared a book-length overview with

more mathematical rigor (2000), which serves as a lighter introduction to

more comprehensive references in the field, e.g., Patrick Billingsley’s (1995)

or Sidney Resnick’s (1999). The outline here will overview the foundational

concepts, probability spaces and random variables, and provide some

examples of how they might apply to musical domains. It concludes with a

discussion of the mainstream interpretations of probability and where each

may be appropriate for database-driven musicology.

• Probability Spaces

Formal theories of probability begin with the concept of a sample space Ω,

which is a (possibly infinite) set of outcomes ω. Collectively, these outcomes

represent the universe of all conceivable combinations of phenomena

under study that are logically consistent. For musicological purposes, a

very simple sample space might be the set of all diatonic pitch classes,

Ω ≜ {C,D, E, F,G,A, B}. A more realistic sample space, musically speaking,

14
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might contain all conceivable fragments of music together with the details

of their conception and composition, all combined with all conceivable

representations of each of these musical elements in digital form together

with the details of how those representations came or could come to light.

The sample space Ω is never used directly: it is only necessary to know

that some theoretical sample space Ω exists. Instead, probability theory

concerns itself with a family F of events, which are sets of outcomes in Ω.

The family of events must be a σ-algebra or σ-field, which means that it must

contain both ∅ and Ω and must also be closed under complementation,

countable union, and countable intersection. The smallest σ-algebra for any

sample space Ω is the trivial (∅,Ω). When the cardinality of the sample

space is finite or countably infinite (∣Ω∣ ≤ ℵ0 ), the largest σ-algebra is the

power set P(Ω), the family of all possible subsets. When Ω is uncountably

infinite (∣Ω∣ > ℵ0 ) and endowed with some topology (a family T of so-

called open sets such that ∅ ∈ T, Ω ∈ T, and T is closed under infinite

union and finite intersection), a common choice is the Borel σ-algebra B(Ω),

which is the closure of T under complementation, countable union, and

countable intersection. For any sample spaceΩ endowed with a topology T,

B(Ω) is the smallest σ-algebra that contains T (see Rudin 1976, p. 309,

for one statement of this result, although it is a standard one). Despite its

relatively small size, B(Ω) is a popular choice because it tends to be easier

to reason about it than it is to reason about alternatives and because in most

cases it contains every set of practical interest (see Saxe 2002, pp. 57–58,

for one explanation for this preference). Under the natural topologies,

the Borel σ-algebra B(Ω) of a sample space is equivalent to P(Ω) when

Ω is finite or countably infinite; if Ω is R, then B(Ω) is the σ-algebra
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generated from the closure under complementation, countable union, and

countable intersection of all open intervals {(a, b) : a ∈ R ∧ b ∈ R ∧ a ≤ b}.

Bruno de Finetti has proved that the algebraic properties of the σ-algebra

alone are sufficient to derive all of the properties of Ω that are necessary

for formal probability theory (1972, p. 72), and so when conceiving of

a particular application of probability theory, it may make more sense to

start by thinking of the σ-algebra rather than the sample space.

Returning to the simple example where Ω ≜ {C,D, E, F,G,A, B}, dif-

ferent choices of F allow for different types of musical questions. With

a finite Ω like this one, the interpretation of an event A ∈ F is often the

logical disjunction of its component outcomes ω ∈ A (de Finetti 1972,

pp. 69–72), e.g., {C, E,G} would be interpreted as a diatonic pitch class

that could be one of C, E, or G. If the relevant question were whether

a diatonic pitch class belonged to a C-major chord, then, a good choice

of F might be {∅,{C, E,G},{D, F,A, B},Ω}. The Borel σ-algebra B(Ω),

by contrast, would allow questions about any combination of diatonic pitch

classes.

The final foundational concept in formal probability theory is the

probability measure itself, denoted here as P, which is a function P : F → R
from the σ-algebra to the real numbers. The probability measure P is

restricted such that 0 ≤ P(A) ≤ 1 for all A ∈ F, P(∅) = 0, P(Ω) = 1,

and P is countably additive:

P(
∞
⋃
i=1

Ai) =
∞
∑
i=1

P(Ai) (2.1)

where A1,A2, . . . are disjoint relative to Ω and all members of F. By way
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of illustration, a valid P for the C-major example above might be

P(A) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if A = ∅,

1/3 if A = {C, E,G},

2/3 if A = {D, F,A, B}, and

1 if A = Ω.

(2.2)

On the other hand,

P(A) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if A = ∅,

1/4 if A = {C, E,G},

1/2 if A = {D, F,A, B}, and

1 if A = Ω

(2.3)

would be invalid because {C, E,G} ∪ {D, F,A, B} = Ω but P({C, E,G}) +

P({D, F,A, B}) = 1/4 + 1/2 = 3/4 ≠ 1. Collectively, triples (Ω, F,P) are

known as probability triples or probability spaces.

This formulation of probability just given is commonly attributed to

Andrey Kolmogorov (1933) and is standard in mathematical texts. It is

not entirely without controversy, particularly with respect to the notion

of countable additivity. Countable additivity renders probability meas-

ures considerably easier to handle mathematically, but it entails certain

restrictions on probability measures that sometimes contravene common

sense. Perhaps most notoriously, it is impossible to define a probability

measure over the natural numbers that would assign equal probability to

each number: because the cardinality of N is infinite, the probability of
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any individual number would have to be zero, but then

P(N) = P(
∞
⋃
i=1

{i}) =
∞
∑
i=1

P({i}) =
∞
∑
i

0 = 0 , (2.4)

which contradicts the axiom that the probability of the complete space

equal unity. Analogous problems arise for uncountable spaces like R. This

contradiction poses particular problems in applications that require ‘non-

informative’ probability measures (e.g., Bishop 1995, pp. 396, 408). De

Finetti has argued at length that because of such problems, it is essential to

derive a mathematical notion of probability that corresponds better to its

‘basic spirit’ (1972, pp. 87–113) and has sketched mathematical foundations

for a theory he thought would do so (1972, pp. 129–40); nonetheless, such

are the mathematical complexities of these theories that they have failed

to thrive (Martellotti 2001).

• Random Variables

Just as the sample spaceΩ is often unwieldy and replaced by the σ-algebra F,

even F can be too fine-grained to answer most questions. Although we

were able to define simple and effective probability triples for the case of

diatonic pitch classes, imagine trying to define one in the more realistic

example where the sample space contains all conceivable fragments of

music paired with all conceivable representations of them! Random variables

are functions from probability spaces to other measurable spaces, and the

mapping is normally chosen in to reflect the intuition behind a specific

probabilistic question.

18



2.1 · BASIC PROBABILITY THEORY

More formally, given a probability space (Ω, F,P) and a measurable

space (Ψ,E), meaning simply that E is a σ-algebra over Ψ, a random vari-

able X is a function X : (Ω, F) → (Ψ,E). The function X is required to

be measurable, meaning that the ‘pre-image’ X−1(E) ≜ {ω : X(ω) ∈ E} of

any set E in E must be a member of F. One also sometimes speaks of σ(X),

which is defined to be the smallest σ-algebra that contains all possible values

of X−1, i.e., the smallest σ-algebra containing {X−1(E) : E ∈ E}. Much

as with probability spaces themselves, it is sufficient to specify only the

algebraic properties E, as a compatible Ψ may be derived from them; also

much as with probability spaces themselves, Borel σ-algebras are common

choices for E.

A random variable X : (Ω, F) → (Ψ,E) can be seen as pushing the

probability measure P to a new probability measure µX on (Ψ,E), where

for any E in E,

µX(E) ≜ P [X−1(E)] . (2.5)

Such a measure µ is sometimes known as the law for the random variable.

When Ψ = R and E = B(R) – the canonical choice – the distribution

function FX : R→ [0, 1] of a random variable X is defined as follows:

FX(x) ≜ µX [(−∞, x)] . (2.6)

A density function fX : R → R+ for such a random variable, commonly

known as a continuous random variable, is a real-valued function such that

∫

b

a
fX(x)dx = µX [(a, b)] (2.7)

for any a ≤ b; this definition implies that FX(x) = ∫
x

−∞ fX(x)dx. To be

strictly correct, the density function is a non-negative real-valued function
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such that µX(B) = ∫B fX(x) λ(dx), i.e., a real-valued function the integral of

which in Lebesgue’s sense over a Borel set B is equivalent to the measure of B

under the law µX ; fX need not be integrable in Riemann’s sense (Rosenthal

2000, p. 55). This thesis shall only consider distribution functions that are

integrable in Riemann’s sense, however, and for any Riemann-integrable

function f , ∫
b
a f (x)dx = ∫

b
a f (x) λ(dx) for any a ≤ b (Rudin 1976,

pp. 322–24). Furthermore, if the lower limit of a Riemann-integrable fX
is well-defined, i.e., FX exists, the definition of fX in Riemann’s sense is

sufficient to derive a unique extension to a definition in Lebesgue’s sense

(Resnick 1999, pp. 42–56).

When the cardinality of Ψ is finite or countably infinite (∣Ψ∣ ≤ ℵ0 ),

then X is commonly known as a discrete random variable, and a mass

function fX : Ψ→ [0, 1] is defined more simply as

fX(ψ) ≜ µX [{ψ}] (2.8)

for all ψ ∈ Ψ. Density and mass functions are conceptually quite similar,

hence the identical notation, but it is important to remember that while

the values of mass functions are directly interpretable as probabilities, only

integrals of density functions are subject to the same interpretation. It is

also possible to generalise the notion of density and mass function to other

types of random variables (see Rosenthal 2000, pp. 52–56, among others),

but such generalisations are unnecessary for the purposes of this thesis.

What does this mathematical machinery provide in the end? Return

for a moment to Forte’s assertion that ‘the elegance and subtlety with which

Brahms negotiates motivic relations leave him without peer’. One simple

domain that springs to mind from this statement is the idea of music by
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Brahms’s as distinguished from music by his potential peers, in other words,

Ψ ≜ {Brahms composed x, one of Brahms’s potential peers composed x}

with the natural choice of E being the power set P(Ψ) = {∅, Brahms

composed x, one of Brahms’s potential peers composed x, either Brahms

or one of his potential peers composed (i.e., Ψ )}. In order to make mean-

ingful statements about probability on this domain, there needs to be

an underlying probability domain (Ω, F) with a mapping (random vari-

able) X : (Ω, F)→ (Ψ,E) such that each of the elements of E corresponds

to an element of F; Ω in this case might, for example, be the set of all

appearances of all musical motives in the music of Brahms and his peers

with P(Ω) as the σ-algebra, and X would map each motive to Ψ according

to whether Brahms had composed it or not. If more than one random vari-

able were under consideration, then F would furthermore need to contain

elements that were sufficient to map to the σ-algebras of all considered

random variables. This underlying σ-algebra F needs be endowed with

a countably additive measure P, which defines the behaviour of a mass

function fX. That mass function renders the uncertainty in discussing

Brahms’s music as compared to that of his peers quantifiable, which in turn

enables a principled approach to database-driven musicology.

• Frequentist vs. Bayesian Interpretations

Even after one has imagined an underlying domain of inquiry Ω and a

collection of random variables that encapsulate the most relevant aspects of

it, the question remains of how exactly one should interpret this countably

additive measure P. The informal description is simple: P represents
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probability. But what is probability? Is it a property of the physical world,

a mathematical formalism, or both? When used in the context of database-

driven musicology, is our notion of probability the same as the p-values

reported in articles from the experimental sciences? Should it be?

There are many competing viewpoints on how probability ought to be

interpreted. Often, the debate is presented as two-sided, with frequentists

on one side and Bayesians or subjectivists on the other, although there are

other views. Alan Hájek’s article in the Stanford Encyclopedia of Philosophy

(2010) is a short, relatively accessible summary of the major streams of

thought. De Finetti wrote a biased – he was a dedicated subjectivist – but

rigorous account of the different interpretations and their ramifications

(1972, pp. 67–113, 147–227). After retiring from a thirty-year career in the

philosophy of mathematics, Patrick Maher recently released an incomplete

draft of a book summarising his own views on the merits and drawbacks

of the various interpretations (2010b). This book is more neutral and more

accessible than de Finetti’s, but unlike de Finetti, Maher does not seek to

engage the measure-theoretic formulations just presented. As any of these

sources show, the interpretation of probability is one of the great debates in

the philosophy of mathematics, well beyond the scope of a single section of

a doctoral thesis, but this section will seek to present at least one consistent

interpretation of the probabilities that arise in empirical musicology in

order to inform the theories and results throughout this thesis.

One of Maher’s foundational arguments, derived from Rudolf Carnap

(1950), is that there are two distinct concepts, or explicanda, that theories

of probability seek to formalise (explicate):
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Suppose you know that a coin is either two-headed or two-

tailed but you have no information about which it is. The

coin is about to be tossed. What is the probability that it will

land heads? There are two natural answers: (i) 1⁄2; (ii) either 0

or 1. Both answers are right in some sense, though they are

incompatible, so ‘probability’ in ordinary language must have

two different senses. I’ll call the sense of ‘probability’ in which

(i) is right inductive probability and I’ll call the sense in which

(ii) is right physical probability. (p. 1)

Maher describes inductive probability as ‘logical’ and physical probability

as ‘empirical’ (p. 10); he also explains that inductive probability is the

notion of probability that is relative to available evidence and has no

dependence on the facts of the world, whereas physical probability is an

immutable fact about the world that is independent of the evidence one

may or may not have about it (Maher 2006). Maher also explains that

although under completely determined conditions, physical probabilities

are always zero or unity, in the case of incompletely specified conditions,

physical probabilities can also take on intermediate values (2010b, pp. 9–

10). In Maher’s view, some of the debate over interpretations of probability

arises from misunderstanding about which of these two explicanda a given

interpretation is seeking to explicate.

For database-driven musicology, physical probability seems to be the

most appropriate explicandum. In the case of Forte’s question, for example,

one would ideally want to know how frequently ‘specific pitch classes and

dyads’ open, close, and recur among musical events in Brahms’s music and
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in the music of his contemporaries. In principle, this question is determined:

Brahms and his contemporaries are dead, the space of all music written

during his lifetime is large but finite, and hence, with access to all of that

music, one could compute exact proportions. Given a particular bar of a

particular piece, the probability of a given dyad would be zero or unity;

stretched over the entirety of Brahms’s œuvre, the probability would be its

relative proportion. Inductive probability, in contrast, makes little sense:

although it certainly could be logically consistent to state that the probability

of a given dyad appearing in Brahms’s œuvre is something other than their

actual relative frequency inasmuch as it would be possible to make such

a statement without openly contradicting the axioms of probability, it is

hard to see how such statements could hold much musicological relevance.

These raw relative frequencies are not, however, the only notions of

probability that arise in database-driven musicology. In practise, much of

the music written during Brahms’s lifetime has been lost, and a researcher

may not have access to a corpus that includes all of Brahms’s music that

has survived. Researchers must instead make educated guesses based on

subsets of the music in question, and using knowledge about how the subset

was chosen, one can then attempt to quantify how uncertain those guesses

may be. When quantifying this second level of uncertainty, which I shall

call observational uncertainty, either of the two explicanda for probability

are viable. These explicanda overlap with the major interpretations of

probability, or as Maher calls them, explicata.

The frequentist’s explicatum, most famously espoused by Richard von

Mises (1957; 1964) and similar to Karl Popper’s propensity theory, (1959),

considers probabilities to be the limiting relative frequencies of events after
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an infinite number of experiments. This interpretation of probability is the

usual one in scientific literature. The explicandum is still physical probability,

as it seeks to describe the counts of actual (or at least potential) experiments.

The ‘experiment’ in the case of database-driven musicology is sampling, i.e.,

how to choose a subset of music to examine. Under this interpretation, it

is especially important to choose a methodology for sampling that would

converge to the relative frequencies of the entire œuvre; the most cogent

criticisms of the frequentist interpretation question whether such a sampling

procedure exists (e.g., Hájek 2009).

De Finetti, in contrast lobbied strongly for the Bayesian interpretation

of probability, arguing forcefully (1970; 1972) that

PROBABILITY DOESN’T EXIST.

Such a statement is consistent with Maher’s argument that the Bayesian

explicandum is not physical probability but inductive, or logical, probability

given a set of evidence (2010a). From this viewpoint, probability is often

described as ‘rational degree of belief’, but such presentations are criticised

for being unable to provide more than a tautology to define ‘rational’. The

dominant view of probability in machine learning is Bayesian, although

there are prominent exceptions. In the context of database-driven musico-

logy, this interpretation of probability would focus on articulating what

would be logically consistent to believe about the relative frequencies of

an œuvre given an observed subset of the œuvre and a set of working

assumptions about it.

The interpretation of probability is simply not a solved problem: the

major interpretations all have potentially valid criticisms that are yet to be de-
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fended for the general case. For the underlying probability spaces (Ω, F,P)
of database-driven musicology, it does seem that the only useful inter-

pretation is the so-called ‘finite frequentism’ (Hájek 1997) of raw relative

frequencies; the primary contributions in this thesis are techniques for how

to uncover them. For observational uncertainty, however, there is no such

obviously compelling interpretation. For consistency’s sake, I prefer to use

the ‘infinite’ frequentists’ perspective, which shares the same explicandum as

finite frequentism, when handling observational uncertainty. That stated,

there is no formal reason not to take a Bayesian perspective to the obser-

vational uncertainty instead – many researchers in machine learning do –

and where that perspective would lead to a substantive change in method

or result, I shall note it.

2.2 graphical models and causality

Most interesting questions about probability spaces involve uncovering

relationships among multiple random variables. For example, one might

ask whether the presence of Forte’s α-motive (say a random variable X : Ω→
{true, false} where X(ω) is true if and only if ω contains the α-motive)

is a distinguishing feature of music by Brahms (say a random variable

Y : Ω→ {true, false} where Y(ω) is true if and only if ω is a complete piece

of music by Brahms). The notions of conditional probability and independence

facilitate working with multiple random variables. Graphical models are

tools for encoding conditional probabilities and independence relationships

among groups of random variables efficiently. This section outlines the

basics of conditional probability, independence, graphical models, and
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how all of these relate to causality. As with the previous section, readers

interested in more detail on the mathematics behind conditional probability

and independence should consult references such as Rosenthal (2000),

Billingsley (1995), or Resnick (1999). For more information on graphical

models, Koller and Friedman’s recent compendium (2009) is an excellent

resource. For more detail on causality, Judea Pearl’s landmark monograph

(2009) is the most comprehensive single-point reference, although the reader

will need to follow some of the other citations there and in this section in

order to learn about important competing theories.

• Conditional Probability

Conditional probability addresses questions of the form, ‘What is the prob-

ability of Y given X?’ In order to define this notion formally, it is necessary

to define two other concepts first: expected value (or expectation ) and the

indicator functions.

An indicator function IA : Ω→ {0, 1} maps any outcome ω that is an

element of A to unity and all others to zero. Indicator functions are useful

because of the special mathematical properties of zero and unity.

The expected value of a real-valued random variable X : (Ω, F) →
(R,B(R)) is, intuitively, an average value of the variable weighted by its

density or mass function. If X is discrete, the expected value is defined in

the obvious manner:

E(X) ≜
∞
∑
i=1
xi fX(xi) . (2.9)

For continuous variables that are integrable in Riemann’s sense, the defini-

27



STOCHASTIC PROCESSES

tion is analogous:

E(X) ≜ ∫

∞

−∞
x fX(x) dx (2.10)

In the general case, one begins by defining expectation for simple random

variables, viz., random variables that take only a finite number of values,

in the same way as equation (2.9). This definition extends to random

variables that take any number of non-negative values as the least upper

bound over all simple random variables that are less than or equal to X:

E(X) ≜ sup{E(Y) : Y is simple ∧ Y ≤ X}. For an arbitrary random

variable X on (R,B(R)), one then defines two related random variables

X+ ≜ max(X, 0) and X− ≜ max(−X, 0) and the expected value as E(X) ≜

E(X+) − E(X−), which is often written ∫Ω X(ω)P(dω).

For a set of random variables {X1 : (Ω, F)→ (Ψ1,E1),X2 : (Ω, F)→
(Ψ2,E2), . . . ,Xn : (Ω, F) → (Ψn,En)} (denoted with the shorthand X
and sometimes known as a random vector ), let G denote the smallest σ-

algebra that contains the pre-images of all of their measurable sets, i.e,

σ [⋃i⋃E∈Ei X
−1
i (Ei)]. Formally speaking, the conditional probability of an

event A ∈ F given X, written P(A ∣ X), is a random variable from (Ω,G,P)
to ([0, 1],B([0, 1])) such that for any B ∈ G,

E [P(A ∣ X) ⋅ IB] = P (A ∩ B) , (2.11)

which by taking B to be Ω, implies that

E [P(A ∣ X)] = P(A) . (2.12)

Intuitively speaking, the conditional probability of an event A defines

a functional relationship between the values of the random variables X
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and the probability of A – which is why one speaks of the probability

of A given a set of values of X – with the logical constraint that given

ranges of possible values for X, the expected value, i.e., weighted average,

of P(A ∣ X) restricted to those ranges, i.e., P(A ∣ X) ⋅IB, should be the same

as the general probability of A restricted to outcomes that are consistent

with the given ranges, i.e., P(A ∩ B).

One can also speak of the conditional expectation of a random variable Y

given a random vector X, written E(Y ∣ X), which is defined formally

in a similar fashion to conditional probability: a G-measurable random

variable such that for any B ∈ G,

E [E(Y ∣ X) ⋅ IB] = E (Y ⋅ IB) . (2.13)

The intuitive interpretation is likewise analogous: the conditional expected

value of a random variable Y defines a functional relationship between

values of the random variables X and the random variable Y with the

logical constraint that given ranges of possible values for X, the weighted

average of E(Y ∣ X) restricted to those ranges, i.e., E(Y ∣ X) ⋅ IB, should

be the same as the general expectation of Y restricted to values that are

consistent with the given ranges, i.e., E(Y ⋅ IB).

Using these notions, one can define the conditional density function

of a continuous random variable Y given any other continuous random

variable X to be a function fY∣X : R2 → R+ such that

∫

b

a
∫

d

c
fY∣X(y ∣ x) fX(x)dydx = P{X−1 [(a, b)] ∩ Y−1 [(c, d)]} ; (2.14)

the analogous replacements of integrals with direct probabilities yield

conditional mass functions for discrete random variables Y or each type of
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function when conditioning on a discrete X. As follows intuitively from

that definition, the joint density function fX,Y of two random variables X

and Y, is the product of a conditional density function with an ordinary

density function:

fX,Y(x, y) ≜ fY∣X(y ∣ x) fX(x) = fX∣Y(x ∣ y) fY(y) . (2.15)

This equation is a generalisation of what is commonly known as Bayes’

theorem. If both X and Y are Riemann-integrable, it also follows from the

definitions in this section that

∫

∞

−∞
fX,Y(x, y)dx = fY(y) and ∫

∞

−∞
fX,Y(x, y)dy = fX(x) , (2.16)

which is sometimes known as marginalisation over the domain of integration

(and is a generalisation of what is commonly known as the law of total

probability ).

• Independence and Conditional Independence

When working with many random variables, it may not make sense to

assume that every variable should be in a conditional relationship with the

set of all other variables. Independence formalises the notion that random

variables may not affect each other. As with conditional probability, one

begins by defining independence over events A ∈ F. Two events A and B,

each members of F, are independent if

P(A ∩ B) = P(A)P(B) ; (2.17)
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it follows that for any finite family of events {A1,A2, . . . ,An}, all in F, the

events are mutually independent if

P(
n

⋂
i=1

Ai) =
n

∏
i=1

P(Ai) . (2.18)

Extending this definition to random variables, a set of random variables

{X1,X2, . . . ,Xn} are mutually independent if for any choice of events Ai

such that Ai ⊂ σ(X−1
i ) for all i in {1, 2, . . . , n}, the events {A1,A2, . . . ,An}

are mutually independent. More intuitively, knowing the value of one

random variable in a set of independent random variables provides no

information about the values of any other random variables in that set.

Both notions of independence extend to the conditional case in the

natural way. Two events A and B, each members of F, are conditionally

independent given a set of random variables {X1,X2, . . . ,Xn}, denoted X,

if

P(A ∩ B ∣ X) = P(A ∣ X)P(B ∣ X) . (2.19)

A finite family of events {A1,A2, . . . ,An}, all in F, of events are mutually

independent given X if

P(
n

⋂
i=1

Ai ∣ X) =
n

∏
i=1

P(Ai ∣ X) . (2.20)

A set of random variables {Y1,Y2, . . . ,Ym} are mutually independent

given X if for any choice of events Ai such that Ai ⊂ σ(Y−1
i ) for all i

in {1, 2, . . . , m}, the events {A1,A2, . . . ,An} are conditionally independ-

ent given X.
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• Bayesian Networks

Bayesian networks, also known as directed graphical models, are one way

of representing the conditional dependencies among a group of random

variables. They are one of two major sub-families of so-called graphical

models. Graphical models get their name because they are based on graphs

in the mathematical sense, or more formally, triples (V,D,U), where V is a

finite set of elements known as the vertices; D is a finite set of ordered pairs

of vertices, each of which is known as a directed edge; and U is a finite set

of unordered pairs of vertices, each of which is known as an undirected edge.

If D is empty but U is not, then the graph is known as an undirected graph.

If U is empty but D is not, then the graph is known as a directed graph. If

both U and D are non-empty, then the graph is known as a partially-directed

graph.

If there is a directed edge v → w in D, one may say that v is a parent

of w and that w is a child of v. If there is an undirected edge v – w in U,

one may say that v is a neighbour of w (or vice-versa). Frequently, one needs

to reference the set of all parents of a vertex v; this set is denoted π(v). In

undirected graphs, one may also speak of cliques, which are sets of vertices

such that every vertex in the clique has an edge connecting it to each other

vertex in the clique.

Paths in mathematical graphs are sequences of edges (vi, wi) ∈ D ∪ U

for i ∈ {1, 2, . . . , n} such that the internal endpoints join, i.e., vi = wi−1 for

all i > 1. Paths are called directed if at least one of the component edges is

directed i.e., ∃ j : v j → w j ∈ D. A directed path is called a cycle if v1 = wn.

For any directed path, one may say that v1 is an ancestor of wn or that wn is a
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descendant of v1. The set of all descendants of a variable v is denoted ρ(v).

Bayesian networks are directed acyclic graphs where V is a set of random

variables. For any vertex X of a Bayesian network, the graph implies that

X is conditionally independent of its non-descendants {V−[{X} ∪ ρ(X)]}

given its parents π(X); note that π(X) may be ∅. By equation (2.15), given

a Bayesian network where V = {X1,X2, . . . ,Xn} = X, the joint distribution

function fX factorises as

fX =
n

∏
i=1
fXi∣π(Xi) . (2.21)

These factorisations are very important in practise, both for interpreting

the meaning of groups of random variables and for efficient computation

during statistical inference.

As an example, consider the network in figure 2.1. It considers five

random variables, each of which may be true or false: whether a piece

was composed in the nineteenth century, whether a piece was written for

a string quartet, whether a piece contains Forte’s α-motive, and whether a

piece contains Forte’s σ-motive. Given only these five factors to consider,

this network posits the following factorisation:

› the relative frequency of pieces containing Forte’s α-motive depends

only on whether a piece was composed by Brahms and whether it

was written for string quartet (which implies that Brahms did treat

the α-motive differently than other composers of the nineteenth

century);

› the relative frequency of pieces containing the σ-motive likewise

depends only on whether a piece was composed in the nineteenth
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19th

century

by

Brahms

string

quartet

alpha

motive

sigma

motive

Figure 2.1 · A simple Bayesian network working on the themes of the sample analysis of Alan Forte.

This network posits the presence and absence of speci�c relationships among the �ve variables.

century and whether a piece is a string quartet (in particular, knowing

whether the piece is by Brahms is irrelevant);

› the relative frequency of string quartets depends both on whether a

piece was composed in the nineteenth century and whether a piece

was composed by Brahms, i.e., Brahms wrote significantly more or

fewer string quartets proportional to his other works than the average

composer from the nineteenth century; and

› the relative frequency of pieces by Brahms depends only on whether

the piece was composed in the nineteenth century.
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One could certainly question whether this particular configuration of de-

pendencies is correct, and indeed, as later sections of this chapter will

discuss, the choice of an appropriate network can be as important or even

more important a question as the relative frequencies that such a network

can help to uncover.

• Causality

The arrows in Bayesian networks are often thought to represent causal

relationships, which can indeed be a very useful interpretation (Pearl 2009,

pp. 21–26) – but caveat emptor ! Dependence and conditional dependence

are often known as correlation, and most scholars who have any experience

with empirical research will have heard the maxim that ‘correlation is

not causation’. Bayesian networks are a good example: for most Bayesian

networks, there are other networks that represent the same conditional

dependencies but have arrows in different directions. In particular, any two

graphs (V1,D1,U1) and (V2,D2,U2) represent identical sets of conditional

dependencies if they share the same skeleton, i.e., the vertices and edges

would be identical were all directed edges considered to be undirected

edges, or

V1 = V2 and D1 ∪U1 = D2 ∪U2 , (2.22)

and they share the same v-structures, i.e.,

{(x, y, z) : x→ y ∈ D1 ∧ z→ y ∈ D1}

= {(x, y, z) : x→ y ∈ D2 ∧ z→ y ∈ D2} . (2.23)
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figure 2.2, for example, illustrates a network that represents the same

conditional dependencies as the network in figure 2.1, because although the

direction of the relationship between being composed during the nineteenth

century and being composed by Brahms has been reversed, neither of these

vertices were colliders in the original network. In fact, the situation is

graver still: for two graphs to represent the same conditional dependencies,

it is sufficient only for the immoralities of two graphs to be the same (Koller

& Friedman 2009, pp. 68–78), i.e.,

{(x, y, z) : x→ y ∈ D1 ∧ z→ y ∈ D1 ∧ x – y /∈ D1 ∪U1)}

= {(x, y, z) : x→ y ∈ D2 ∧ z→ y ∈ D2 ∧ x – y /∈ D2 ∪U2)} . (2.24)

More intuitively, an immorality is a set of three nodes x, y, and z such

that x and z are each parents of y but there is no edge connecting x and z.

Neither of the graphs in figures 2.1 and 2.2 contain any immoralities, and

so one could reverse the direction of any of the arrows without changing

the conditional dependencies represented; figure 2.3 illustrates yet another

Bayesian network that represents the same set of conditional dependencies.

Correlation is not causation indeed!

If causation is not correlation, however, what is it? Pearl’s landmark

work presents one of the prevailing views (Pearl 2009), which he has proved

to be mathematically equivalent to the other prevailing view, the Neyman-

Rubin theory of potential outcomes (Spława-Neyman 1923; Rubin 2005;

Wasserman 2004, pp. 251–61). Pearl’s theory understands causality to be

the effect of interventions, which are actions that change the underlying

measure P of the probability space, or more formally, are functions from

probability measures to other probability measures on the same space. More
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by

Brahms

19th

century

string

quartet

alpha

motive

sigma

motive

Figure 2.2 · A Bayesian network that represents an identical set of conditional dependencies

to that of the network �gure 2.1. The direction of the relationship between music by Brahms

and music composed during the nineteenth century is undetermined because neither vertex is a

collider.

specifically, interventions fix certain quantities and hold them constant, and

the theory proposes a mathematical model, the do-calculus, for how exactly

such interventions should alter probability distributions as represented with

Bayesian networks.

In many cases, reasoning about interventions also involves reasoning

about situations that are contrary to observed facts, e.g., the probability that

Forte’s α-motive would have appeared at a particular moment in a particular

string quartet of Brahms if one had been able to intervene to force some

other composer to write that moment instead of Brahms. Such questions
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19th

century

string
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by
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alpha

motive

sigma

motive

Figure 2.3 · Another Bayesian network the represents the same set of conditional dependencies

as that of the network in �gure 2.1. This network posits (implausibly) that the ensemble has

a causal effect on the composer of a piece. Because all three networks represent the same

conditional dependencies, one must choose among them based on common sense rather than

empirical methods.

are known as counterfactuals, and they are of particular concern when

dealing with retrospective data – including almost all of the data of concern

in database-driven musicology – because it is impossible to intervene in

the past. Even reasoning about prospective data, e.g., that of potential

experiments, can involve counterfactuals because it is sometimes impossible

or unethical to intervene in every way one might like. Contrary to what it

may seem, counterfactuals do not entail any particular choice of explicandum
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or explicatum of probability: Pearl himself is a subjectivist, but there is no

necessary contradiction in considering what physical probabilities might be

or what the result of frequentist experiments might be in the hypothetical

worlds resulting from counterfactual interventions. Pearl is quite careful, in

fact, to insist on a distinction between statistical concepts, which he defines

to be those that can be derived from or apply to observed data only – a

category that necessarily excludes counterfactuals – and causal concepts,

which he defines to be all other constraints on and properties of causal

models (2009, pp. 38–40).

In principle, there is no constraint on counterfactual probability spaces:

because the events in question did not happen, one could assign them

any consistent set of probabilities that one desired. The value in Pearl’s

do-calculus is that it proposes a carefully argued set of practical constraints

on counterfactual distributions that make it possible to derive certain causal

quantities from observed data alone. In Pearl’s reckoning, such quantities

are still considered causal, not statistical, because they cannot be computed

without making assumptions about unobserved interventions.

The most useful aspect of the do-calculus for this thesis is the back-door

criterion (Pearl 1993). Given a Bayesian network, consider some intervention

that maps a probability measure P on (Ω, F) to a new, possibly counterfac-

tual, probability measure P∗ on the same space such that the value of some

random variable X : (Ω, F)→ (Ψ,E) is fixed to be x∗ : i.e., P∗[X−1(x∗)] is

unity, or X(ω) = x∗ almost surely. Suppose that one were interested in

the density or mass function of some other random variable Y after this

intervention. Denote the probability density functions pre-intervention

as f and post-intervention as f ∗. The back-door criterion states that if
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one can find a set of random variables Z in the Bayesian network such that

(1) no variable in Z is a descendant of X and (2) every path between X

and Y in the skeleton of the network that containes an edge corresponding

to a directed edge leading into X either (a) goes through at least one variable

in Z that is not the ‘collider’ of a v-structure or (b) contains a v-structure

for which neither the collider nor any of its descendants are in Z, then it

follows that

f ∗Y (y) = ∫
Z
fY∣X,Z(y ∣ x∗, z) fZ(z)dz , (2.25)

where the integral ∫Z dz refers to the appropriate combination of multiple

integrals and discrete sums over the ranges of all variables in Z. A related

criterion, the so-called front-door criterion, allows the computation of the

effect of interventions from observed data in somewhat more complex

Bayesian networks, and the complete do-calculus provides a number of

more general simplification rules that can be used in arbitrary networks

(Pearl 1995).

Simpson’s paradox illustrates how essential causation can be for under-

standing correlation. Suppose, for example, that one were interested in

comparing the relative frequency of some hypothetical motive in the string

quartets and piano quintets of Brahms and his contemporary Camille Saint-

Saëns; in particular suppose one wanted to know which composer used

the motive more often. The outcome space Ω would be the set of all mu-

sical moments where the motive could theoretically have appeared in the

quartets and quintets of these two composers; the set of random variables

under consideration might be X : Ω→ {Brahms, Saint-Saëns} to represent

the composer of a moment, Y : Ω→ {true, false} to represent whether the
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Table 2.1 · A hypothetical example of Simpson’s paradox

composer quartets quintets overall

Brahms 1 008
14 933 ≈ 6.8 % 1

7 619 ≈ 0.01 % 4.5 %

Saint-Saëns 713
9 832 ≈ 7.3 % 38

7 323 ≈ 0.52 % 4.4 %

Both composers 6.9 % 0.26 % 4.4 %

Note: The numerators represent the total number of instances of a hypothetical motive in the

string quartets and piano quintets of Brahms and Saint-Saëns; the denominators represent the

total (hypothetical) number of places such a motive could have occurred. Looking at the quartets

and the quintets individually, it would seem that Saint-Saëns used the motive more frequently, but

overall, the opposite is true. The correct interpretation depends on which variables one believes

to be the causes and which one believes to be the effects.

motive appears at a moment, and Z : Ω→ {quartet, quintet} to represent

whether the moment arises in a quartet or a quintet. Table 2.1 presents

hypothetical counts of the number of moments where the motive appears

(Y = true) relative to the number of moments where it could possibly have

occurred (Y ∈ {true, false} ) for each composer, both separated by string

quartet or piano quintet ( fY∣X,Z ) and overall ( fY∣X ). Looking at either the

quartets or the quintets independently, it would seem that Saint-Saëns used

the motive more frequently by a substantial margin:

fY∣X,Z(true ∣ Saint-Saëns, quartet) > fY∣X,Z(true ∣ Brahms, quartet) (2.26)

and

fY∣X,Z(true ∣ Saint-Saëns, quintet) > fY∣X,Z(true ∣ Brahms, quintet) .

(2.27)

41



STOCHASTIC PROCESSES

Overall, however, it is Brahms who used it more frequently:

fY∣X(true ∣ Saint-Saëns) < fY∣X(true ∣ Brahms) . (2.28)

Simpson’s paradox is the apparent paradox in situations like these, whereby

the direction of an effect seems to be reversed after grouping according to

an additional variable.

It is difficult to find a complete treatment of Simpson’s paradox in the

literature, although partial (and partially erroneous) explanations abound.

Pearl has made perhaps the most thorough and accurate explanation with

respect to the prevailing understanding of causality (2009, pp. 174–82),

but his explication is entwined with his strictly Bayesian view of probability.

Wasserman’s explanation (2004, pp. 259–61), one of few of which Pearl

approves, uses the potential-outcome framework and is thus more agnostic

about the interpretation of probability, but it ends with a critical mistake

whereby he presents a result as general that in fact assumes a particular

causal relationship among variables. His mistake relates to the notion of

exchangeability, which is an older theory for explaining Simpson’s paradox

(see de Finetti 1972, pp. 229–46).

The apparent paradox in Simpson’s paradox (and Wasserman’s mistake)

arise from a crucial misinterpretation: equation (2.28) does not necessar-

ily imply that Brahms caused the motive to be used more often, and the

sub-counts by quartet and quintet are nearly irrelevant. Table 2.1 gives

information about an underlying probability distribution P, but a causal

interpretation requires information about a counterfactual distribution P∗

resulting from an intervention forcing the composer to be Brahms (or Saint-

Saëns). Consider what those probabilities would be under the causal models
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implied by the three networks presented so far, all of which can be calcu-

lated from observed data by way of the back-door criterion. In addition

to the three random variables mentioned earlier, add a fourth random

variable W : Ω → {19th-century,¬19th-century}. For the network of

figure 2.1, {W} is a back-door set: W is not a descendant of X, the variable

of intervention, and because W is the only vertex in the network with an

arrow pointing into X, W is necessarily on every path between X and Y

that has an arrow pointing into X. By the back-door criterion, then,

f Brahms
Y (y) = fY∣X,W(y ∣ Brahms, 19th-century) fW(19th-century)

+ fY∣X,W(y ∣ Brahms, ¬19th-century) fW(¬19th-century) . (2.29)

Because of the limitations on Ω, however, fW(19th-century) is unity and

fW(¬19th-century) is zero, and so equation (2.29) reduces to

f Brahms
Y (y) = fY∣X(y ∣ Brahms) , (2.30)

from which it follows directly that f Brahms
Y (α) ≈ 4.5 percent and analogously

that f Saint-Saëns
Y (α) ≈ 4.4 percent. For the network of figure 2.2, there are

no arrows pointing into X, and so the empty set is a back-door set; that

yields f Brahms
Y (y) = fY∣X(y ∣ Brahms) directly. For the network in figure 2.3,

however, the extra arrow into X requires a larger back-door set of {W,Z},

which means that, after reducing to account for the fact that all outcomes

in Ω were composed during the nineteenth century,

f Brahms
Y (y) = fY∣X,Z(y ∣ Brahms, quartet) fZ(quartet)

+ fY∣X,Z(y ∣ Brahms, quintet) fZ(quintet) . (2.31)
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The counts in table 2.1 give fZ(quartet) ≈ 62 percent and fZ(quintet) ≈

38 percent, and so equation (2.31) simplifies to f Brahms
Y (α) ≈ 4.2 percent

whereas the analogous computation for Saint-Saëns yields f Saint-Saëns
Y (α) ≈

4.7 percent. Thus, f Saint-Saëns
Y (α) < f Brahms

Y (α) under the causal assumptions

of the networks in figures 2.1 and 2.2, but f Saint-Saëns
Y (α) > f Brahms

Y (α)
under the assumptions of figure 2.3. There is no paradox here – it should

not be surprising that different causal assumptions would yield different

probabilities – but it is sobering that such assumptions can change the

direction of the effect. Wasserman’s mistake is assuming that only the

latter set of causal assumptions are possible (or equivalently, that different

composers are exchangeable given the ensemble), which leads him to claim

wrongly that for any two interventions x1 and x2 and variables Y and Z, if

f x1

Y∣Z(y ∣ z) > f x2

Y∣Z(y ∣ z) for some y and all z, then f x1
Y (y) > f x2

Y (y).

More sobering still is the fact that although some causal relationships

can be uncovered from observed data (see the following section), under the

prevailing understandings of causality, it is generally impossible to recover

all causal relationships from observed data. The choice of an appropriate

Bayesian network must to some extent be guided by common sense and

expert knowledge. For example, among the three networks considered

in this section, only that of figure 2.1 is plausible: composers cannot will

themselves into other centuries, as figure 2.2 implies; on the other hand,

composers do choose to write for particular ensembles, not vice-versa, as

figure 2.3 implies. In short, even in apparently quantitative, database-

driven research, there is no substitute for qualitative knowledge about

the problem domain, and conversely, researchers with strong qualitative

knowledge about a problem domain are much better positioned to produce
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trustworthy quantitative results.

• Markov Networks

Sometimes, causality is irrelevant to the research question, and it can be

simpler in such cases to work with models that explicitly ignore it. Markov

networks, also known as undirected graphical models are a variant type of

graphical model that can encode non-causal correlations among random

variables. As the alternate name implies, Markov networks are based on

undirected graphs. Any two vertices in Markov network may be connected

with an edge (undirected graphs are by definition acyclic). For any two

distinct vertices X and Y of a Markov network, and a set of other vertices Z
containing neither X nor Y, if every path in the network between X and Y

contains some node Z ∈ Z, then the network implies that X and Y are

conditionally independent given Z, and thus fX,Y∣Z = fX∣Z fY∣Z. Because of

the lack of directionality in a Markov network, there is no direct conversion

from these independencies to a complete factorisation of the joint distri-

bution function fX of a Markov network where V = {X1,X2, . . . ,Xn} = X
into independent conditional distributions, but Markov networks do corres-

pond to a more general family of probability distributions known as Gibbs

distributions. The joint density function of a set of random variables X that

follow a Gibbs distribution can be represented

fX =
∏
n
i=1 ϕi

∫X∏
n
i=1 ϕi(xi)dx

, (2.32)

where each of the functions ϕi, known as factors, maps the values of the

random variables in some clique of the network to a non-negative number.
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Markov networks and Bayesian networks cannot in general represent

the same sets of dependencies. The sole exception is for Bayesian networks

that contain no immoralities, for which the equivalent Markov network has

the same edges as the Bayesian network, only made undirected. Intuitively,

this equivalence makes sense knowing that the direction of any arrow

in a Bayesian network may be changed without affecting the underlying

probability distribution unless that arrow is part of an immorality. When

immoralities are present, the closest Markov-network approximation to

the dependencies represented in a Bayesian network is the moralised graph

of the Bayesian network, which adds an edge between any two nodes that

have a common child (Koller & Friedman 2009, pp. 134–39). Figure 2.4

represents a Markov network that correspondes to an equivalent family of

probability measures to those of the Bayesian networks in figures 2.1, 2.2,

and 2.3. Because none of the Bayesian networks contain any immoralities,

this Markov represents the same set of dependencies, but traditionally, it

would represented as a Gibbs distribution over the three cliques,

fV,W,X,Y,Z(v, w, z, y, z) =
ψ1(w, x, z)ψ2(x, y, z)ψ3(v, w, z)

∑V,W,X,Y,Z ψ1(w, x, z)ψ2(x, y, z)ψ3(v, w, z)
,

(2.33)

with the random variables taking the same labels as they would in the

example of Simpson’s paradox and an additional variable V added to

represent whether the motive at a particular moment is Forte’s σ-motive.

2.3 classification and stochastic processes

One of the defining features of music is that it unfolds over time, and so

often, the random variables of interest in musical applications correspond

46



2.3 · CLASSIFICATION AND STOCHASTIC PROCESSES

19th

century

by

Brahms

string

quartet

alpha

motive

sigma

motive

Figure 2.4 · A Markov network the is equivalent to the Bayesian networks of �gures 2.1, 2.2,

and 2.3. Because none these Bayesian networks contain any immoralities, the equivalence is

exact.

to sequential points in time. This situation is a specific case of a random

field, which is a random variable the domain of which is a probability

space (Ω, F,P) and the range of which is the space of all functions from

a reference set T, endowed with a topology T, to some other topological

space Ψ (Adler & Taylor 2007). When T represents time, a random field is

usually known as a stochastic process, and it can be interpreted as a set of ran-

dom variables X(t) : (Ω, F)→ (Ψ,E) for all t ∈ T. This section describes

stochastic processes as they can be used for database-driven musicology: it

starts with general definitions, connects those definitions to classification

problems as researchers tend to encounter them when constructing musico-
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logical databases, and explains the broad strategies for learning them from

data.

• Stochastic Processes

This thesis exclusively considers discrete-time stochastic processes, where the

reference set corresponds to N, but there are also continuous-time stochastic

processes, where the reference set would correspond to R+. In principle,

all of the X(t) could be independent, but stochastic processes become

interesting when they represent dependencies across different points in

time. These types of dependencies are particularly significant for music:

given that Forte’s α-motive has appeared once in a piece, for example, does

the probability that it will appear at some point later in the piece change,

and is that change unique to music composed by Brahms?

In most cases, one assumes that the dependencies between different

times follow some kind of fixed rule. In other words, we are interested

in stochastic processes that represent the solution to a dynamical system.

Dynamical systems are an enormous field of study in their own right –

Anatole Katok and Boris Hasselblatt have written a standard but weighty

reference (1995) – but the dynamical systems in this thesis are all quite

simple. This thesis will consider stochastic process where each time t

corresponds to a window of musical time, e.g., t = 0 corresponds to the

first beat, t = 1 to the second beat, t = 2 to the third beat, etc., or t = 0

corresponds to the first 50 ms, t = 1 to the next 50 ms, etc. The random

variables X(t) peek at that window of time for any outcome ω ∈ Ω – which

could be any piece or fragment of music together with some representation
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for it – and yield the quantities under consideration for that window of

time.

Like any other group of random variables, the question of independence

is fundamental to stochastic processes. Strictly for reasons of computational

tractability, all of the models in this thesis make some kind of Markov

assumption that assumes that the random variables at any time point t are

independent of all random variables from earlier times given the random

variables between times t − k and t − 1 for some small value of k. Us-

ing the notation Xm:n to represent the set {X(m),X(m+1), . . . ,X(n)}, these

assumptions imply that

fX(n)∣X1:(n−1) = fX(n)∣X(n−k):(n−1) . (2.34)

Discrete-time stochastic process with Markov assumptions are sometimes

known as Markov chains Although there has been some practical success

with Markov chains, Markov assumptions are in fact rather unmusical

because they make it difficult to model long-range dependencies. There are

tricks to work around this limitation (e.g., allowing the range of the X(t)

to include explicit information about X1:(t−1) ), but there is nonetheless

considerable musical interest in finding ways to avoid Markov assumptions.

• State-Space Models

In the context of database-driven musicology, the random variable at each

time point t is usually a compound random variable that encompasses a

range of more specific random variables. For example, research involving

harmony, researchers may want to be able to examine random variables
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corresponding to the key, root, chord quality, and inversion at any point in

time. As discussed in section 1.2, generating large-scale databases of music

usually entails deriving such high-level labels from lower-level, physical

information, such as statistics about an audio file at different points in

time, which themselves can be considered as random variables. Because

the lower-level random variables, often grouped together under the name

observations and represented as vector-valued random variables X(t), are

often difficult to understand, a common simplifying assumption is to ignore

their temporal dynamics and assume that they depend solely on the high-

level random variables from the same window of time, which are often

grouped together under the name states and represented as vector-valued

random variables Y(t). In other words,

fY(t)∣X1:∞,Y1:(t−1),Y(t+1):∞ = fY(t)∣X(t) . (2.35)

Such a model is known as a state-space model or state-observation model. Many

popular applications of state-space models involve states that are continuous

random variables (see Shumway & Stoffer 2011, chap. 6), most famously

the Kálmán filter (Kálmán 1960); musicological information, however, is

almost always discrete, and so this thesis will consider only discrete-state

state-space models.

Traditionally state-space models are used for three categories of tasks,

all given the observations up to some time point t∗ : filtering, which in-

volves queries about Y(t∗) ; forecasting or prediction, which involves queries

about Y(t) for some t > t∗ ; and smoothing, which involves queries about Y(t)

for some t < t∗. Prediction can be important for real-time applications,

but when constructing databases, filtering and smoothing are usually the
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only tasks of interest because one can always start from a complete set of

observations. Specifically, one wants to learn enough about the density

function fY1:∞∣X1:∞ that one can predict an optimal sequence of high-level

states given the low-level observations about any specific item of a large

collection.

• Classifiers and Consistency

In other words, for database-driven musicology, state-space models are

important to the extent that they can be used as classifiers. Formally, a

classifier is a measurable function g : (Φ,G)→ (Ψ,E) from the range of

a set of random variables X : (Ω, F) → (Φ,G) to the range of another

set of random variables Y : (Ω, F) → (Ψ,E) on a common probability

space (Ω, F,P). The intuition behind this function is that it is predict-

ing higher-level labels y given a number of lower-level observations x.

Classifiers are evaluated with respect to some other measurable loss func-

tion L : (Ψ ×Ψ,E × E)→ (R,B(R)), where the σ-algebra E × E denotes

the smallest σ-algebra over Ψ×Ψ that contains all measurable rectangles, i.e.,

{E1 × E2 : E1 ∈ E ∧ E2 ∈ E} where A × B is the Cartesian product of sets

A and B, or {(a, b) : a ∈ A ∧ b ∈ B}. The loss function should reflect the

degree of dissimilarity between the correct value and a prediction from a

classifier.

Given the uncertain nature of classification, one normally defines a

distinct random variable Rg : (Ω, F)→ (R,B(R)) such that

Rg(ω) ≜ L (Y(ω), g (X(ω))) . (2.36)
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This variable is sometimes known as risk, and in general, one wants a classi-

fier with the smallest possible expected value of risk, E(Rg). With perfect

knowledge of the conditional distribution function fY∣X, it is possible to

construct an optimal classifier g∗ such that for any other classifier g, the

expected risk E(Rg∗) ≤ E(Rg) (Devroye, Györfi & Lugosi 1996, p. 569).

The expected risk of this optimal classifier is often known as the Bayes risk.

Of course, one is normally interested in finding a classifier when it is im-

possible to have perfect knowledge of fY∣X, and so it is necessary to develop

some strategy for devising a classifier by other means. In a database-driven

context, the normal strategy is to learn the best classifier possible from the

data available, and with such a strategy, one normally wants a consistent

rule for building classifiers (Devroye, Györfi & Lugosi 1996, pp. 2–3).

Informally, consistency of a rule for building classifiers from a database

means that with a sufficiently large database, the expected risk of the

classifier can be made arbitrarily close to the Bayes risk. Formally, defining

consistency requires an understanding of sequence spaces and product measure

over such spaces. Start with any probability triple (Ω, F,P). Consider the

sequence Ω∞, which is a space that contains all outcomes of the form ω =

(ω1,ω2, . . .), each of the ωi, i ∈ N, being members of the original outcome

spaceΩ. Let the σ-algebra F∞ be the smallest σ-algebra overΩ∞ containing

all measurable rectangles, analogous to the definition of E × E above. One

can define a unique product measure P∞ : F∞ → [0, 1] over (Ω∞, F∞) such

that for all measurable rectangles A1 ×A2 ×⋯, the product measure P∞ =

∏
∞
i=1 P(Ai) (Billingsley 1995, pp. 231–41). This product measure is meant

to represent the idea of drawing an infinitely large sample of outcomes from

the original outcome space. For any outcome ω ∈ Ω∞, one can imagine the
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first n elements to be a random sample of finite size – e.g., the n elements

of a database. Let Rg(n) represent the risk of using a classifier built from

some rule on the first n elements of an outcome ω to make a prediction on

the next element ωn+1. Such a rule is said to be consistent if

lim
n→∞

E(Rg(n)) = E(Rg∗) . (2.37)

An alternative way of describing this relationship is to say that the sequence

of risk variables Rg(n) converge in probability to the Bayes risk Rg∗. The

limiting behaviour of consistent rules for classification means that with a

sufficiently large database, any consistent rule is mathematically guaranteed

to out-perform all non-consistent rules other than g∗ itself.

• Discriminative and Generative Training

The obvious strategy for building a classifier, then, would seem to be finding

a consistent rule for modelling fY1:∞∣X1:∞ directly. This approach is known

as discriminative training. At its best, it can yield excellent classifiers, but it

suffers several limitations. It expressly avoids learning any distribution over

the observations X1:∞ or a joint density function fX1:∞,Y1:∞, which means

that it is not possible to understand a discriminatively trained model in any

kind of causal context or to use it to predict anything other than the explicit

task for which it was trained; in particular, a discriminatively trained model

for predicting high-level musicological labels will provide no insight into

musicological queries about those high-level features. Because the resulting

models are useless for causal queries, discriminative training is usually

applied only to undirected models. It also tends to require a relatively
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large set of training examples, which may be unavailable or expensive to

produce.

Generative training is the alternative to discriminative training, and

although it remedies many of the shortcomings of discriminative training, it

has drawbacks of its own. Generative training starts from the principle that

wherever fX1:∞ > 0, it necessarily follows from the laws of total probability

that the conditional density function

fY1:∞∣X1:∞ =
fY1:∞,X1:∞

fX1:∞
. (2.38)

By marginalisation, one can recover fX1:∞ from fY1:∞,X1:∞, and so as an

alternative to learning the conditional density directly, it suffices to learn

the joint density fY1:∞,X1:∞. It is also possible to use the joint density function

to recover any other density function, conditional or not, over any desired

combination of the X1:∞ and Y1:∞, and for this reason, generative training

is a good choice for Bayesian networks that encode musicological and

causal assumptions. Furthermore, because generative training encodes more

constraints on the structure of the probability space than discriminatively

training does (namely, the distribution of the observations), generative

training requires fewer data than discriminative training. If these constraints

are incorrect, however, a generatively trained model will be biased away

from the true model in a way that a discriminatively trained model on a

sufficiently large database would never be.
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X(1) X(2) X(3)

Y(1) Y(2) Y(3) ⋯ Y(n)

X(n)

Figure 2.5 · A hidden Markov model (HMM)

2.4 common models for classification on stochastic processes

A wide variety of state-space models have been proposed in the literat-

ure. This section highlights some of the most important. Kevin Murphy’s

doctoral thesis remains the best resource for surveying state-space models

that can be represented as Bayesian networks (2002, pp. 18–49), and there

is a growing base of literature on ‘linear-chain’ Markov networks that are

useful for applying discriminative training.

• Hidden Markov Models

The mainstay of discrete-state state-space models has long been the hidden

Markov model (Baum & Petrie 1966; Baum et al. 1970), represented in

figure 2.5; hmms are most famous for their successes in speech recognition

(Rabiner 1989), although as the next chapter will show, they have been

applied broadly for musicological tasks as well. They make the standard

state-space assumption that at any time t, the observations X(t) depend

only on the state Y(t) at the same time point and that the state is the cause

of the observation. hmms also make the first-order Markov assumption that
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at any time t, the state Y(t) depends only the state at the immediately

previous time, Y(t−1). Being a Bayesian network, hmms are normally trained

generatively, and so one is seeking to learn a joint distribution

f̂X1:∞,Y1:∞ = f̂Y(1)
∞
∏
t=1
f̂Y(t+1)∣Y(t) f̂X(t)∣Y(t) (2.39)

that matches the true joint distribution fX1:∞,Y1:∞ as closely as possible. One

generally also assumes that the f̂Y(t+1)∣Y(t) are identical for all t and that

likewise the f̂X(t)∣Y(t) are identical for all t. Running the stochastic process

to infinity is a mathematical convenience to handle the natural variation in

the length of musical pieces; the density functions are assumed to be zero

at all time points after the end of a musical fragment corresponding to any

specific outcome ω.

It may be easier to interpret hmms in the context of an example. Con-

sider the classification task treated later in this thesis: audio chord recog-

nition. The outcome space Ω for this task might encompass all singles

played on mainstream North-American radio stations in the latter half of

the twentieth century; F would be P(Ω). The time index t of the stochastic

process would correspond to musical beats, the state variable Y(t) would

map any outcome ω ∈ Ω to the (unknown) chord label for its t-th beat of ω,

and the observation variables X(t) would map any outcome ω ∈ Ω to a

vector of quantities derived from the audio signal at the t-th beat. Using a

hidden Markov model for this process entails a belief that for any beat t,

the only relevant knowledge for predicting the collective observations X(t)

is the active chord at beat t, and that likewise, the only relevant knowledge

for predicting the chord at beat t is the chord on the immediately preceding

beat.
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X(1) X(2) X(3)

Y(1) Y(2) Y(3)

⋯

⋯ Y(n)

X(n)

Figure 2.6 · An auto-regressive hidden Markov model

Simple hmms like this example have been used in practise, but it is

clear that they are quite an over-simplification. One common technique for

making the model richer is to increase the order of the Markov assumption,

e.g., to claim that some natural number k of previous chords are needed to

predict the following chord. Another type of system, the switching linear

dynamical system, allows f̂X(t)∣Y(t) and f̂Y(t)∣Y(t−1) to change in some defined

way over time (Rosti & Gales 2003), which seems to be a better model in

theory but has proved disappointing in practise (Layton 2006, p. 14).

• Auto-regressive hmms

The auto-regressive hidden Markov model relaxes a different assumption of

the standard hmm and indeed of state-space models generally: namely,

that the observations depend only on states. Auto-regressive hmms add

a time dependency for each observation to the previous observation (see

figure 2.6); this extra dependency induces what would be called an auto-

regressive filter among researchers in signal processing, hence the name

(Murphy 2002, p. 23). This assumption makes good sense for audio signals,

which one expects to evolve more smoothly than the discrete jumps of a state

57



STOCHASTIC PROCESSES

X(1) X(2) X(3)

Y(1) Y(2) Y(3) ⋯ Y(n)

X(n)

Z(1) Z(2) Z(3) ⋯ Z(n)

Figure 2.7 · A hidden semi-Markov model

space. Buried Markov models are a more elaborate variant of auto-regressive

hmms that allow a wider range of dependencies among observations (Bilmes

2003).

• Hidden Semi-Markov Models

Another problem with simple hmms is that they are sharply limited in their

ability to model how many time steps any given state will last. In a standard

hmm, the duration of a state y is modelled only with the single conditional

probability f̂Y(t)∣Y(t−1)(y ∣ y). Hidden semi-Markov models add a third layer of

random variables Z1:∞ that act as counters until a possible state change (see

figure 2.7). The evolution of Z(t) is mostly deterministic: for any time t

such that Z(t−1) > 0, one has Z(t) = Z(t−1) − 1 and Y(t) = Y(t−1). When

Z(t−1) = 0, then Y(t) transitions as in a standard hmm and Z(t) takes on a

new duration based on the new state (Levinson 1986). This duration can

be modelled in as much detail as desired (e.g., one could try to incorporate

58



2.4 · COMMON MODELS FOR CLASSIFICATION ON STOCHASTIC PROCESSES

X(1) X(2) X(3)

Y(1) Y(2) Y(3) ⋯ Y(n)

X(n)

Figure 2.8 · A maximum-entropy Markov model (MEMM)

metric information when trying to predict the duration of a chord). Segment

hmms are an even more advanced way of modelling durations that allow

every state to be associated with a randomly varying number of observations

(Ostendorf, Digalakis & Kimball 1996).

• Maximum-Entropy Markov Models

All of the models discussed so far have been generative models. As

there became more interest in discriminative training for hmm-like mod-

els, one important step along the way was the Maximum-entropy Markov

model (McCallum, Freitag & Pereira 2000). As can be seen in figure 2.8,

maximum-entropy Markov models (memms) are very similar to hmms: only

the direction of the dependencies between states and observations are re-

versed; in other words, the observations are thought to be causing the states.

This assumption is in fact plausible for tasks like audio chord recognition

if one thinks of harmonic analysis as a strictly a posteriori activity, although

it has some curious implications. The joint distribution factorises as

f̂X1:∞,Y1:∞ = f̂Y(1)∣X(1)
∞
∏
t=1
f̂Y(t+1)∣X(t+1),Y(t) f̂X(t) , (2.40)

59



STOCHASTIC PROCESSES

X(1) X(2) X(3)

Y(1) Y(2) Y(3) ⋯ Y(n)

X(n)

Figure 2.9 · A Markov network similar to an MEMM

which in particular implies that the state Y(t) at some time t is independent

of all observations that come later. That property can cause memms to

become stuck in a mis-classified state early on in the sequence and remain

there despite evidence to the contrary later in the signal (Koller & Friedman

2009, pp. 952–53). The exciting property of memms was that although

like any Bayesian network, they trained generatively, the factorisation in

equation (2.40) combined with the rule in equation (2.38) yields

f̂Y1:∞∣X1:∞ = f̂Y(1)∣X(1)
∞
∏
t=1
f̂Y(t+1)∣X(t+1),Y(t) , (2.41)

which is a Gibbs distribution on a Markov network like figure 2.9. The

probability distributions represented by this Markov network are not exactly

the same as the Bayesian network of the memm, but it is the closest possible

approximation.

• Conditional Random Fields

Unlike memms, standard hmms have no immoralities, and so it is possible to

represent the same family of probability distributions as a Markov network
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X(1) X(2) X(3)

Y(1) Y(2) Y(3) ⋯ Y(n)

X(n)

Figure 2.10 · A linear-chain conditional random �eld (CRF). The distribution represented is the

same as that of a standard HMM, but the training strategy is discriminative rather than generative.

(see figure 2.10). This representation is known as a linear-chain conditional

random field, and it is trained discriminatively, with all of the advantages

(classification accuracy) and disadvantages (a need for large amounts of

training data) that come with the discriminative approach (Lafferty, Mc-

Callum & Pereira 2001). Conditional random fields (crfs) have been very

successful for natural-language tasks (Sutton, forthcoming), but they have

been little explored for musicological purposes. Given the relatively small

size of data sets that had been available for musicological research until

recently and the data hunger of discriminative training methods, this is

perhaps understandable, but as the amount of data available for empirical

research in music increases, discriminative approaches are well worth ex-

ploring. Not only have they demonstrated considerable improvements in

performance over generative models, they have also led to promising links

with classification approaches that historically had been unable to work for

sequential data; max-margin hmms (Taskar, Guestrin & Koller 2004), which

combine crfs with support vector machines (Hastie, Tibshirani & Fried-

man 2009, pp. 417–38), are among the most promising recent approaches
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and are yet to be tried for musical applications.

Almost needless to say, there are many, many possibilities for choosing

graphical models for the stochastic processes in database-driven musicology.

Nonetheless, relatively few researchers have ventured away from fairly

standard hmms, as will be discussed in the next chapter.
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3 musicological markov chains

Chapter 1 introduced database-driven musicology ; chapter 2

described some of the mathematical tools that are necessary to engage

it. This chapter will review how other researchers have applied these

tools and similar tools to musical problems. It begins by presenting some

seminal examples of corpus analysis on existing musical databases (§ 3.1),

oriented toward those techniques of corpus analysis that are most useful as

components of algorithms for labelling sequences. The next section (§ 3.2)

describes the Music Information Retrieval Evaluation eXchange (mirex ),

an annual competition that provides a good metric for what problems

are important to researchers in music informatics. Section 3.3 reviews

various approaches to solving these problems using state-space models,

like those used in the remainder of this thesis. Readers familiar with

David Temperley’s Music and Probability (2007) will notice that there is

an appreciable overlap between the references in this chapter and those

in that volume, especially in the opening section, although Temperley’s

organisation and emphasis are rather different than my own.

3.1 musicological corpus analysis

Database-driven approaches to musicology have existed for more than a

century. The earliest studies were certainly not described as such, and

simply made general statistical observations about sets of music, e.g., that

the frequency of melodic intervals is inversely related to their size (von

Hornbostel 1906; Myers 1907; Watt 1924). Later, researchers presented
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tables of statistics that had been computed by hand over relatively small

corpora by current standards and cited those tables as evidence for their

conclusions, which most commonly had to do with differences among

musical styles or cultures. In the 1950s, a surge of interest in Claude

Shannon and Warren Weaver’s mathematical theory of communication

(1949) prompted broader interest in these statistical approaches, and by the

end of the 1960s, musicologists were able to use computers to facilitate their

calculations (Babbitt 1965; Forte 1966a). In the 1980s, research in music

psychology and music cognition introduced a new a kind of musicological

corpus and a new approach to statistical analysis for musicology, and the

efforts in this quarter to build computational models for human musical

cognition laid an important foundation for the database-based classifiers

that came later. Surprisingly, as music informatics developed throughout

the 2000s, engineers made relatively little use of this body of research on

musicological corpora, but the two communities seem to be slowly growing

together.

Many of the database-driven analyses of musical corpora have been

‘static’ analyses: they do not attempt to reason about the temporal aspects of

music. Lewis Lockwood and Arthur Mendel’s groundbreaking work (1969)

is a classic example. Working with the Missa L’Homme armé super voces

musicales of Josquin des Prez, Lockwood and Mendel’s analysis tabulates the

proportion incomplete triads to complete triads as a means of distinguishing

among mass movements but ignores the ordering of these sonorities. Any of

the analyses of Brahms op. 51, no. 1 mentioned earlier (Forte 1983; Huron

2001; Conklin 2010) would be in a similar category, counting occurrences

of different types and forms of motives and using these counts to classify
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movements or composers. Other work, for example, Frauke Jürgensen’s

work with the Buxheim Organ Book (2005), draws conclusions about

musical elements that depend on time in some way, e.g., the accidentals on

notes where the melody changes direction, but does not link these elements

to any general model of how music unfolds over time. Even David Huron’s

iconic analysis of the melodic arch in Western folk songs (1996) or Allen

Forte’s snobol program for set-class analysis (1966b) would fall into this

category. Static analyses can be of great musicological interest, but they

fall out of the scope of this thesis: all of the classification approaches in

this thesis, as described in section 2.4, rely on a direct understanding of

temporal dependencies.

Of those musicological corpus analyses that do consider temporal dy-

namics, it is surprising how nearly universal is the notion of the Markov

chain, especially considering that in addition to their inherently unmusical

assumptions, Markov chains are also insufficient for learning hierarch-

ical structures, which appear frequently in music theory (Chomsky 1957;

Lerdahl & Jackendoff 1983; Dienes & Longuet-Higgins 2004; Rohrmeier

2011). Recall from equation (2.34) that a Markov chain is a discrete-time

stochastic process that assumes that the random variables at each time point

are independent of all others except a limited number of the immediately

preceding random variables. Most often, the dependencies are restricted

to the immediately preceding variables alone, usually known as first-order

Markov assumption (although literature in psychology sometimes uses the

term ‘first-order’ differently). For corpus analysis, using a Markov chain

implies that there is an underlying domain of musicological inquiry Ω
(e.g., the music of a particular composer or musical culture) along with an
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appropriate σ-algebra F and probability measure P, a meaningful series of

random variables Y(t) that map each ω ∈ Ω to musical notions in some

semantic domain Ψ at discrete points in time (e.g., the successive pitches of

a melody or harmonies of a piece of tonal music), and a corpus one can use

to derive plausible estimates of fY(n)∣Y(n−k):(n−1), where k is the order of the

Markov assumption. Sometimes k is assumed with no further comment (in

particular, any study of melodic intervals with no other context inherently

makes a first-order Markov assumption, k = 1 ), sometimes it is chosen to be

whatever order is sufficient for distinguishing musical styles, and sometimes

it is tested in its own right to see which value of k is most plausible given

the corpus.

Although these formal mathematical structures necessarily underlie any

study involving Markov chains, no musicologists have yet to my knowledge

presented their results with respect to them. Even Temperley, who has

rightly observed that probability can be a useful unifying viewpoint for

interpreting many musicological studies (2007), stops well short of present-

ing the distinction between probability spaces and random variables. This

omission is understandable given that no musicological research presents

the probability space (Ω, F,P) or the random variables Y(t) fully and ex-

plicitly, but it makes it difficult to understand whether the corpora and

techniques used to estimate fY(n)∣Y(n−k):(n−1) are appropriate and what conclu-

sions are reasonable to draw from such estimates. Fortunately, the great

majority of musicological studies with Markov chains fit one of a small

number of basic patterns for Ω and the Y(t). The outcome spaces Ω, as

mentioned above, typically comprise either the music of a single composer,

culture, or traditional style or the music of a collection of a distinct number
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of such composers, cultures, or styles; in the former case, researchers are

normally seeking to describe a style, and in the latter, to compare or classify

styles. The σ-algebra F is almost universally P(Ω), and the probability

measure P in most cases assigns equal probability to every set containing a

single outcome ω ∈ Ω. The random variables Y(t), as mentioned above, typ-

ically map each outcome ω to subsequent musical entities, most commonly

the t-th notes in a melody or the t-th harmonies in a tonal composition.

The techniques for estimating and working with fY(n)∣Y(n−k):(n−1), however,

are much more varied and will be discussed as they arise below.

The remainder of this section presents specific examples of musico-

logical corpus analysis from the literature. A history of studies invoking

information theory comes first, as it motivated so much statistical work

in music. Following this discussion, studies of melody and harmony each

have their own section, due to the very large number of studies in each

category. The section concludes by highlighting some of the most important

corpus-based studies of other dynamic musical phenomena.

• Information Theory

As noted above, some of the earliest musicological corpus analysis that

considered temporal dynamics arose from a wellspring of interest in Shan-

non and Weaver’s mathematical theory of communication, also known

as information theory (1949). Leonard Meyer was one of the first musi-

cologists to consider how information theory might be applied to music

(1957; 1962); in particular, Meyer observed that music might be profitably

modelled under a first-order Markov assumption, like most of the models
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presented in section 2.4. Most of these studies involve comparisons of en-

tropy, which for a probability mass function f over a domain Ψ is defined

as as

H( f ) ≜ −∑
ψ∈Ψ

f (ψ) log f (ψ) . (3.1)

Entropy analysis can itself be static (e.g., Hiller & Bean 1966), but much of

research on entropy and music has taken advantage of Meyer’s observation

that information theory and Markov models have a natural affinity.

A number of researchers have compared the entropy of pitch classes of

melodies given the immediately preceding pitch class, i.e., the entropies

of fY(t)∣Y(t−1) for each possible value of Y(t−1), where the Y(t) map melod-

ies ω ∈ Ω to their t-th pitch class (Pinkerton 1956; Youngblood 1958;

Coffman 1992). The conditional mass functions fY(t)∣Y(t−1) reflect a first-

order Markov assumption, of course, and in all of these corpus analyses,

the authors estimated their values to be equivalent to the corresponding

relative frequencies with which ordered pitch pairs appear in their corpora.

This relative-frequency approach is probably the most common one for

estimating mass functions in corpus analysis in general, and although it

is always worth thinking for a moment about whether it applies in new

situations, it most cases, such estimates are intuitively reasonable and have

useful mathematical properties (see Doob 1934). Other researchers have

used analogous approaches to study the entropy of melodic intervals (Hiller

& Fuller 1967; Lewin 1968; Winter 1979; Snyder 1990), which amounts

to the same Markov chain but with a more restrictive estimate of fY(t)∣Y(t−1)

because it assumes that the interval pattern will be the same regardless of

which pitch class is at time t − 1. Elizabeth Margulis and Andrew Beatty
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have performed one of the most thorough investigations of entropy as an

analytical tool for melody, considering the temporal dynamics of pitch,

interval, texture, contour, and duration in all voices of more than three

hundred pieces, again using a relative-frequency approach (2008).

The relative-frequency approach to estimating mass functions is easiest

to understand when the goals are ‘suggestive’ theories of music or style

analysis (see § 1.1); psychological theories of music usually are looking to

model expectation instead. Indeed, Mark Schmuckler has observed that

most conventional theories of music have relied on some notion of expect-

ation even in the absence of psychological theory or empirical data (1989).

While some researchers have argued that relative frequencies should be

good models for psychological expectation (see Simonton 1984), others

have tried to model expectation more directly as psychological entropy: in

the context of information theory, one interpretation of entropy is that it

measures uncertainty or unpredictability, i.e., the inverse of the strength of

expectation or information as defined in the mathematical theory of commu-

nication (Shannon & Weaver 1949). Following this interpretation, Leonard

Manzara, Ian Witten, and Mark James ran a casino-style experiment on

human subjects using betting behaviour to measure subjects’ uncertainty at

predicting the following note in a chorale melody and sought to explain

the results using a more sophisticated notion of temporal dynamics, tak-

ing into account cadences (1992). Pushing this idea substantially further,

Sarah Culpepper’s recent thesis (2010) uses entropy as a tool for describing

listeners’ experiences as pieces unfold, in particular for highlighting salient

discontinuities.
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• Melodic Markov Chains

Information theory is only one of many approaches that have been used

to study melody as a Markov chain. In most cases, the sample space Ω
of melodic studies represents melodies from multiple sources for those

researchers interested in suggestive music theories, and for those interested

in psychological theories, Ω represents melodies from a single culture.

The X(t) all map these melodies to their t-th pitches or pitch classes, with

only small variations in how to handle enharmonic equivalences. The

techniques and degree of rigour in estimating the conditional mass func-

tions fY(n)∣Y(n−k):(n−1) have varied substantially. For style analysis, which is

discussed first, the relative-frequency approach is the most common; as

with the entropy-based approaches, the most significant differences are usu-

ally whether researchers estimate values for all possible melodic transitions

or whether they restrict the space by assuming that interval patterns will

be the same regardless of starting note. For psychological music theories,

however, which are discussed next, there is more variation.

The earliest work on melody that modelled melody with Markov chains,

implicitly or explicitly, used small data sets of complete pieces and imme-

diately recognised that the conditional mass functions had sharp peaks and

thus great potential for describing and distinguishing musical styles (Watt

1924; Fucks 1962). This branch of research quickly moved on to larger data

sets, but because working with large data sets was very labour-intensive,

most of these studies used only the incipits of the pieces in each corpus.

William Paisley made one of the earliest studies of transition frequencies in

incipits, based on the first six notes of a large selection from a dictionary of
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musical themes, with the goal of determining authorship (1964). Benjamin

Suchoff did some early ethnomusicological work with melodic interval pat-

terns in the first seven notes of a selection of folk songs from Béla Bartók’s

collection (1970). Somewhat later, and with stronger statistical tools, Alison

Crerar conducted work on a series of incipits drawn from the work of five

eighteenth-century composers (1985). Dean Simonton ran a series of studies

using transition probabilities from the first six notes of melodies from a

classic dictionary of musical themes (Barlow & Morgenstern 1948, 1950) to

predict thematic fame and identify transhistorical trends (1980a; 1980b).

Investigating several hypotheses about nationalism from a classic survey on

Romantic chamber music, Fred Hofstetter made a more statistically soph-

isticated comparison of first- and second-order Markov chains of intervals

(1979); the spirit of this study is similar to Lynn Trowbridge’s study of

composers’ styles in fifteenth-century chansons (1985–86), although Trow-

bridge’s statistics are considerably simpler. In a very creative analysis, David

Huron linked the verbal ‘qualia’ that musicians use to describe different

scale degrees in Western tonal music to a first-order Markov chain of scale

degrees in Germanic folk melodies (2006, pp. 158–67). Jon Gillick, Kevin

Tang, and Robert Keller have developed a system that can be used to work

with such corpora in general, allowing for first-, second-, or third-order

Markov chains to model melodies or melodic fragments (2010).

Although working with the conditional mass functions directly is the

classical approach, some researchers have worked with cleverer derivatives.

When the only goal is distinguishing among styles, for example, fully

specified conditional mass functions involve considerably more parameters

than are necessary; Jan Beran has suggested a novel approach derived from
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the stationary distributions of melodic Markov chains (2004, pp. 175–84),

i.e., the distribution for a Markov chain such that

fY(t+1)∣Y(t) = fY(t)∣Y(t−1) (3.2)

(Billingsley 1995, pp. 124–31). Comparable to Margulis’s thorough study

of melody from the perspective of information theory, Darrell Conklin

and Mathieu Bergeron have developed a data-mining system for melodies

that uses a broad range of features, including directed and undirected

intervals and contours (Conklin 2006; Conklin & Bergeron 2008); although

their results are not presented as such, the system includes a wide variety

of Markov-chain representations as special cases and is believed to have

potential for achieving many of the benefits of full grammars with the

underlying simplicity of Markov chains (Conklin & Witten 1995; Pearce &

Wiggins 2004; Pearce 2005; Rohrmeier 2011). Panayotis Mavromatis has

developed a system for analysing liturgical chants from the Greek Orthodox

tradition that learns a considerably more elaborate Markov structure (in fact,

a type of hidden Markov model) that is able to take account of differing

melodic contexts (2006; 2009).

Another group of researchers have focused on the use of melody to study

music perception. Diana Deutsch’s early work focused on hierarchical mod-

els of melody (Deutsch 1980; Deutsch & Feroe 1981). Such models were

the zeitgeist of the time, leading in music-theoretical quarters to Lerdahl

and Jackendoff’s landmark Generative Theory of Tonal Music (1977; 1983),

which advocated strongly for a hierarchical, tree-based understanding of

music. Mari Riess Jones also discussed hierarchical theories of melodic

perception in her work, although with a more explicit connection to sim-
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pler, Markov-style representations (1976). James Carlsen ran a series of

experiments on the potential of melodic intervals to generate expectancy

for the subsequent tone (Carlsen 1981; Unyk & Carlsen 1987), a very

different approach to the counting approach that yields a second-order

Markov model: the values of fX(t)∣X(t−1),X(t−2) are derived from subjects’ rat-

ings of how much different continuation pitches would be expected given

a presented musical interval.

At this point, heated questions arose about whether and how humans

learn Markov-chain statistics in music and whether and how humans might

use such statistics when cognising music. One particularly lively debate

about melodic Markov chains sets ‘structural’ and ‘distributional’ theories

of key perception against each other. David Butler has been very critical of

the classic ‘key-profile’ theory made famous by Carol Krumhansl and Ed-

ward Kessler, arguing that the temporal dynamics of melodies, particularly

rare intervals, must play a critical role in identifying keys. (Krumhansl

& Kessler 1982; Butler 1989; Brown, Butler & Jones 1994); Krumhansl’s

counterargument was that although temporal order is important, the tem-

porally relevant factor in her experiments appeared to be relative tonal

stability rather than the interval itself (1990b). David Temperley used

results proving that humans are sensitive to transition probabilities to test

how melodic transition probabilities related to key and key detection and

found that the for key detection, such transitions are unnecessary (2008).

For other purposes, however, humans are clearly sensitive to transition

probabilities, as Krumhansl herself admits (1990a, pp. 111–37). Piet Vos

and Jim Troost used Markov representations of melodic intervals to generate

melodies that followed the normal statistical patterns of Western music
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and another set of melodies that reversed the direction of all intervals,

and subjects were able to identify the difference (1989). Jenny Saffran

and colleagues later showed that human infants and adults are sensitive

to changes of first-order Markov probabilities even in random melodic

sequences (Saffran et al. 1999). More specifically, their experiments tested

whether of implicit learning of such statistics is possible: subjects were

exposed to random sequences of pitches obeying a defined set of transition

probabilities and then tested to see whether they could identify which of

two new examples matched the ‘language’ to which they had been exposed.

Zoltán Dienes and Christopher Longuet-Higgins explored implicit learning

in atonal music and found that although n-gram probabilities are certainly an

important component of implicit learning, experienced listeners of atonal

music are also able to identify other characteristics (Dienes & Longuet-

Higgins 2004). Psyche Loui, David Wessel, and Carla Hudson Kam were

able to show that even when using the Bohlen-Pierce scale (an artificial,

non-Western scale), humans are able to learn first-order melodic grammars

implicitly (2010).

Like Beran, music psychologists have also seen value in reducing the

number of parameters necessary to describe melodic Markov chains. Eugene

Narmour’s implication-realisation theory of melodic expectation (1990;

1992) is a famous example of a simpler model that could underly a second-

order Markov chain of the same type as Carlsen’s experiments. As formal-

ised in the later literature, Narmour’s theory suggests that melodic Markov

chains are governed by five principles: registral direction, specifically that

small intervals imply continuation in the same direction and that large

intervals imply a change of direction; intervallic difference, specifically that
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small intervals imply more intervals of the same size whereas large inter-

vals imply smaller intervals; registral return to tone no more than a whole

tone away from the first note of a melodic interval; proximity, or a general

preference for smaller intervals; and closure, or the pattern of a large in-

terval followed by a smaller interval in a different direction (Schellenberg

1996). Three independent experiments confirmed that, combined with a

simple model of tonality advocated by Krumhansl and Kessler (1982), the

implication-realisation model was a good description of listener’s expecta-

tions, and these experiments were reconfirmed on Carlsen’s data (Carlsen

1981; Unyk & Carlsen 1987; Cuddy & Lunney 1995; Schellenberg 1996;

Thompson, Cuddy & Plaus 1997). Nonetheless, these experiments also

revealed potential for making the model even more parsimonious, ulti-

mately yielding a three-variable model based only on a revised notion

of proximity, a combination of pitch proximity and registral return, and

a tonality factor (Schellenberg 1997). Given these three parameters and

Schellenberg’s formula, it is possible to generate a full set of conditional

mass functions fX(t)∣X(t−1),X(t−2), although later studies, e.g., Pearce & Wiggins

(2006), have found that just three parameters may be an over-simplification.

Although the numbers of parameters vary, the same general ability to de-

rive Markov chains is also true of other perceptually motivated models of

melodic tension such as Fred Lerdahl’s (2001) or Steve Larson’s (2004).

• Harmonic Markov Chains

With a few exceptions (e.g., Youngblood 1970), the information-theory

movement had dealt little with harmony, but otherwise, harmony is second
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only to melody in the number of treatments it has received under the

formalism of Markov chains. Unlike melodic Markov chains, however,

harmonic Markov chains have been used somewhat less for style analysis,

and thus often the underlying sample spaceΩ is a unified repertory of tonal

pieces both for psychologically and descriptively motivated researchers.

Analogous to the case with melody, the random variables X(t) typically map

each ω ∈ Ω to their t-th harmony, although there is substantial variation

in whether this should be done with respect to key and how elaborate the

dictionary of allowable harmonies should be.

It is considerably more time-consuming to generate databases of har-

monies than it is to generate database of melodies because harmonies must

normally be derived by a human analyst and cannot be entered directly

from a musical score. Because of this expense, until recently, fewer of the

early Markov-chain treatments of harmony were strictly corpus analyses:

more appeared in the context of musical classification problems that are dis-

cussed later in section 3.3. This subsection first treats what corpus analyses

there have been, for classical music and then for popular music, followed by

a discussion of how researchers in music cognition have handled harmony.

Perhaps even more than melody, many modern theories of harmony

have been explicitly hierarchical, most famously Schenkerian analysis

(Salzer 1952) and the Lerdahl-Jackendoff generative theory (Lerdahl &

Jackendoff 1983; Lerdahl 2001). The first computerised system for har-

monic analysis, designed by Terry Winograd, likewise followed a complex,

hierarchical grammar inspired by models from linguistics (Winograd 1968),

and similar models maintained currency in the computer-music field (Ulrich

1977; Meehan 1980; Steedman 1984; Terrat 2004) and music psychology
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(Deutsch & Feroe 1981; Krumhansl 1990a). More traditional theories of

harmony, however, dating back to Jean-Philippe Rameau (1722) and co-

dified by Walter Piston for widespread use in North American pedagogy

(1941), have focused on the frequency of intervals between successive roots.

Composer James Gabura was one of the first researchers to use first-order

Markov statistics on harmony as a type of style analysis, in combination

with melodic intervals (1970). Using the prevailing key of the harmony at

the start of each bar of every symphony – all tabulated by hand! – Cecil

Marillier presented a statistical description of Haydn’s tonal plans and how

they evolved throughout his career (1983). Dmitri Tymoczko evaluated

three theories of harmony: a Ramellian one based on movements of a

fundamental bass (see Rameau 1722; Meeùs 2003), one based on Markov

chains, and one based on Riemannian functions (see Riemann 1893), and

concluded that the first-order Markov chain yielded the most accurate

representation of harmony in Bach’s chorales (Tymoczko 2003).

In popular music, Matthias Mauch and colleagues ranked all four-chord

progressions in a corpus of Beatles and Real Book songs, which although

it is not itself a Markov chain, could be converted into a first-, second-, or

third-order chain if desired (Mauch et al. 2007). Using Christopher Harte’s

larger corpus of Beatles songs (2005), Ricardo Scholz, Emmanuel Vincent,

and Frédéric Bimbot investigated which order of Markov assumption is

necessary to explain harmony well (2009). In general, they found that

at least a fourth-order model was necessary to model harmony well, but

using various adjustments to strict relative-frequency estimation (see also

Pickens 2003), they were able to find first-order Markov chains that worked

well. Previous research on similar corpora had mostly restricted itself to
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first-order models without smoothing and achieved more limited success

(Pachet 1999; Papadopoulos & Peeters 2007). Mitsunori Ogihara and

Tao Li explored different harmonic Markov chains for identifying jazz

composers, again concluding that fourth-order models work best (Ogihara

& Li 2008). Trevor de Clercq and David Temperley have undertaken the

most substantial corpus analysis of harmony to date, using a collection of

100 songs selected from Rolling Stone magazine’s ‘500 Greatest Songs of

All Time’ (de Clercq & Temperley 2011); this analysis provides relative

frequencies in the corpus for a first-order Markov chain of chord roots and

provided the basis for a more detailed investigation specifically of the use

of sub-dominant chords in rock (Temperley 2011).

Although a number of experiments have suggested that Western listen-

ers have internalised some kind of statistical understanding of harmony,

relatively few studies can be reduced to any kind of Markov chain – or

indeed, any kind of explicit statistical model. Mark Schmuckler was able

to verify that Piston’s model of harmonic progressions matches Western

listeners’ expectations fairly well, although his experiments also sugges-

ted that a first-order chain was insufficient to explain the experimental

results completely, especially with respect to relatively rarer harmonic pro-

gressions (1989). David Smith and Robert Melara found that even novice

listeners were sensitive to changes in harmony that seemed to violate the

normal sequential grammar (1990), but the study was based on variations

to a single archetypical harmonic progression. Erin Jonaitis and Jenny Saf-

fran tested human potential for learning harmonic idioms implicitly and

showed that even for completely artificial, unfamiliar harmonic idioms,

humans are able to sensitise themselves to their statistical properties quite

78



3.1 · MUSICOLOGICAL CORPUS ANALYSIS

Figure 3.1 · Jamshed Bharucha’s MUSACT model (Bharucha 1987, p. 16). This self-organising

network receives individual tones as input (the third row) and spreads activations from these

tones to chords (the second and fourth rows) and keys (the �rst row). Over time, these activations

decay, and one can use the pattern of activations in the network to re�ect degrees of expectation.

quickly (2009). Surprisingly, given the methodical checks in the literature

on melody that human expectation aligns with the relative frequencies

actually found in corpora, for harmony, the presumption seems to be that

because experiments have shown that Western listeners are sensitive to

harmony in general, their expectations must necessarily be identical to

whatever statistical regularities can be found in Western harmony.

Instead, much of the psychological literature on harmony has focused

on developing computational models for human perception. Jamshed

Bharucha has been the most active researcher in this area, promoting the

musact model (Bharucha 1987). musact is a type of hierarchical, self-
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organising map (som ) (see Kohonen 2001), illustrated in figure 3.1. The

mathematical details of soms are immaterial for this thesis, but the core

concept underlying them is that every input to the system (musical tones in

the case of musact, as illustrated in the third row of nodes in the figure)

spreads a fixed degree of ‘activation’ to all other nodes connected to it,

which in turn pass some activation along to the nodes connected to them,

and so on; over time, these activations decay. The gradually decaying

activations are meant to model long-term memory, and at any point in

time, the relative activations of different nodes can be used as a model

for expectation, e.g., after entering a sequence of harmonies into musact,

one could compare the activation levels of all of the chords (the second

and fourth rows of nodes in the figure) to model expectations for which

chord might come next. Bharucha himself has explored alternative models

using similar approaches (Bharucha & Todd 1989; Bharucha 1999) as has

Robert Gjerdingen in his ‘l’art pour l’art’ model (1989; 1990). Working

with Bharucha and Emmanuel Bigand and inspired by yet another self-

organising model of Niall Griffith (1994), Barbara Tillmann developed a

self-organising computational model of harmonic perception, compared

its performance to a large number of perceptual studies that had been

performed previously, and found that the self-organising map behaved

very similarly to subjects across the perceptual experiments (2000).

These results suggest that soms are appropriate statistical models for

studying harmony, and they do have an advantage over Markov chains

in that by decaying activations gradually, they are able to manage long-

range temporal dependencies. Nonetheless, the parameters of soms are

difficult if not impossible to interpret on their own, in stark contrast to the
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relatively clean interpretations of Markov chains; moreover, almost all of

the classification approaches discussed below rely on some kind of Markov-

chain model, although it could be a very productive study to investigate

whether any of these approaches could be adapted to use one of these

soms instead. It is possible, of course, to check the activations after these

networks after short or even single-chord sequences to derive estimates of

the conditional mass functions fY(n)∣Y(n−k):(n−1) for a Markov chain, and in fact,

Bharucha and Peter Todd have shown that self-organising neural networks

learn transition probabilities effectively (1989). Furthermore, inspired

by some early work in statistical ethnomusicology (Freeman & Merriam

1956), Krumhansl and colleagues tested behavioural experiments, statistical

style analyses, and an som and concluded that all three approaches were

comparable (2000).

• Other Musical Markov Chains

Although melody and harmony have received the bulk of database-driven

musicological treatments, a few other examples are worthy of note. Nigel

Nettheim has observed that Knud Jeppesen’s classic work on Palestrinian

counterpoint is essentially statistical, although Jeppesen only presented it

as such in a few tables, one analysing text setting and another analysing the

number of dissonances in certain movements (Jeppesen 1923; Nettheim

1997). Rather than focusing on a single composer, Lesley Mearns, Dan Tid-

har, and Simon Dixon have used first-order representations of contrapuntal

techniques as a means of style analysis among seven Baroque composers

(Mearns, Tidhar & Dixon 2010). In a similar vein, although not exactly
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counterpoint, Ian Bent and John Morehen designed a classic computer

program to solve text underlay problems in Renaissance music (1977–78).

David Huron has conducted a number of creative studies over the years,

many of which imply some kind of Markov chain. These studies have

included patterns of musical entries (Huron 1990b), patterns in crescendos

and decrescendos (Huron 1990a), and rhythmic syncopation (Huron &

Ommen 2006). Timbre, always the ugly duckling in musicological studies,

has been shown to be susceptible to implicit learning (Bigand, Perruchet

& Boyer 1998; Tillmann & McAdams 2004). Finally, because they are

generative models, Markov chains have also been of considerable interest

for algorithmic composition (Ames 1989; Cope 1991, 2005),

It is also worth mentioning functional data analysis, a particular tech-

nique used for modelling continuous stochastic processes rather than dis-

crete stochastic processes (Ramsay & Silverman 2005). Functional data

analysis is far too complex a field to summarise here, but Bradley Vines,

Regina Nuzzo, and Daniel Levitin have nicely described how to apply

functional data analysis to music as an alternative to Markov chains (2005).

3.2 the music information retrieval evaluation exchange

All of the applications in section 3.1 presuppose the existence of a corpus,

or database, for analysis. As explained in section 1.2, constructing large

musical databases is much more practical when automatic tools can be used

to label, or classify, digital representations of music in physical forms, most

typically digital audio or scanned scores. As discussed in section 2.3, a

classifier is usually seeking to model fY1:∞∣X1:∞ for random variables X(t) that
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correspond to semantic qualities and Y(t) that correspond to observable

but less interpretable qualities of elements in a sample space Ω; when

generating musical databases, Ω usually represents all pieces in a large

genre or meta-genre of music together with low-level digital representations

of those pieces, generally as audio, a symbolic format for notated music

like midi, or as digital images of scores.

Although there are many sources of research on music classification,

the foremost conference for this domain is the International Conference

on Music Information Retrieval, commonly known as ismir, which has

been held annually since the year 2000. After a few years, the ismir

community sought to formalise some of the most fundamental tasks that

would be treated at the conference and to develop a means of evaluating

the performance of competing approaches to these tasks. A first attempt

was made at the fifth ismir (2004) to address this issue, in the form of

the Music Information Retrieval Audio Description Contest; its contests

included genre classification, artist identification, melody extraction, tempo

induction, and rhythm classification. Starting the following year, a more

formal exchange, known as the Music Information Retrieval Evaluation

eXchange (mirex ) began and has been held concurrently with the annual

ismir ever since (Downie 2008).∗

Table 3.1 lists all tasks that have been run at mirex more than once.

Dots in each column indicate that the task was run in a given year. The tasks

fall into three broad categories. One category, including the two longest-

running tasks, comprises classic tasks of information retrieval, following a

∗http://www.music-ir.org/mirex/
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Table 3.1 · Selected MIREX tasks

task

20
05

20
06

20
07

20
08

20
09

20
10

20
11

information retrieval

Audio cover song identification • • • • • •
Query by singing/humming • • • • • •
Query by tapping • • • •
Symbolic melodic similarity • • • • •
Audio similarity • • • •

single-point classification

Audio artist identification • • • • •
Audio genre classification • • • • • •
Audio mood classification • • • • •
Audio tag classification • • • •
Key finding • • •
Audio tempo estimation • • • •
Audio composer identification • • •

sequence labelling

Multiple f0 estimation and tracking • • • • •
Audio melody extraction • • • • • •
Score following • • • • •
Audio chord estimation • • • •
Audio onset detection • • • • • •
Audio beat tracking • • • •
Audio structural segmentation • •
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model of a user presenting a large database with some query and expecting

a list of results that match that query or are in some way similar to it: audio

cover song identification, query by singing or humming, query by tapping,

symbolic melodic similarity, and audio similarity. A larger category involves

single-point classification, where a single label is applied to an entire piece

of music: audio artist identification, audio genre classification, audio mood

classification, audio tag classification, audio tempo extraction, audio and

symbolic key finding, and audio (classical) composer identification. The

final category, containing as many tasks as the second, is the category of most

interest to this thesis: classification tasks that involve classifying regions or

moments of a piece of music as it unfolds over time.

This final category is of particular interest because it tends to represent

the type of ‘reduced’ data that is of particular value for musicological re-

search. One of the holy grails of music classification is the longest-running

task in the category, multiple- f0 (fundamental-frequency) tracking, which

is a relatively small step away from transcribing full scores from audio files;

it seeks to (1) estimate the active pitches sounding at each moment of an

audio file, (2) track the overall contours of simultaneous melodic lines, and

(3) distinguish changes in timbre. Many of the other mirex tasks are sim-

plifications of f0 tracking: audio melody extraction simplifies multiple- f0
tracking by tracking the prevailing melody only; score following simplifies

multiple- f0 tracking by providing a full score and looking only for a time-

alignment with the audio; audio chord detection simplifies it by looking for

chord labels only instead of complete transcriptions; audio onset detection

by seeking only the beginning of each musical event, regardless of pitch.

All of these tasks can benefit from knowledge about how the music in
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question tends to unfold over time, or more formally, knowledge about the

distribution of the random variables that will be the classification results.

The same is also true of the two remaining tasks in this category, audio beat

tracking and audio structure analysis, although both of these tasks have

even higher-level goals than multiple- f0 tracking and its relatives.

mirex encompasses most of the historically significant tasks in music

classification tasks, but there are several others worthy of mention. In most

cases, they have been omitted from mirex due to the lack of a common

metric for evaluating their performance. A number of researchers have

sought to generate chorale harmonisations, typically in the style of Johann

Sebastian Bach, for a given melody. Another venerable problem is optical

music recognition (omr ), which seeks to recover an electronic version of a

musical score from digital images of that score.

The following sections will explore how different classification al-

gorithms have been applied to the problems in this third category.

3.3 musical state-space models for classification

As discussed in section 2.3, state-space models lend themselves particularly

well to problems in musicological questions like those in this third category

because they are designed to reduce observable, low-level features Y(t) to

semantically meaningful, high-level states X(t). There are classifiers based

on other types of models. Signal-processing techniques that rely on mod-

elling the temporal dynamics of the low-level Y(t) in audio have worked

particularly well for onset detection and beat tracking in particular (Bello

et al. 2005; McKinney et al. 2007). Other techniques, sometimes known as
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‘sliding window’ methods (Dietterich 2002), classify each individual X(t)

only from their corresponding Y(t) ; in other words, they ignore temporal

relationships, assuming that fX(t)∣X1:(t−1),X(t+1):∞ = fX(t) for all t ∈ T. These

types of classifiers, however, are less interesting musicologically because

they ignore the relationships among the X(t), which are the only aspects of

these models that are musically intelligible. This section reviews state-space

models in the many ways they have been applied to classification tasks in

music.

• Rule-Based Systems

Some state-space models for music classification eschew any notion of prob-

ability and work directly with a collection of heuristic rules. Rule-based

systems are usually confined to working with symbolic data rather than

audio or images due to the daunting complexity of audio and images. They

also suffer from being guaranteed not to be consistent in the mathematical

sense, and so as discussed in section 2.3, any system that learns from a data-

base will theoretically outperform any competing rule-based system given

a sufficiently large database (unless, of course, the heuristics happen to be

perfectly correct and also happen to describe the underlying phenomenon

completely). Nonetheless, due to their simplicity, rule-based systems have

been historically popular.

Rule-based classifiers are particularly prominent in automatic systems

for harmonic analysis in tonal music. Such systems generally start with

a symbolic representation of a music score, e.g., a midi file, and return

some kind of Roman-numeral analysis of the contents. The most famous
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such system is probably David Temperley and Daniel Sleator’s melisma

analyser (Temperley & Sleator 1999; Temperley 2009), but there have

been other notable examples over the past two decades (Maxwell 1992;

Prather 1996; Taube 1999; Rowe 2001; Choi 2011). As languages for

computer programming have evolved, it has even become possible to encode

rules for harmonic analysis directly into the programming language itself

(see Magalhães & de Haas 2011). Taking these tasks a degree further,

Thomas Rocher and colleagues have built a completely rule-based system

for harmonic analysis of audio, inspired by Fred Lerdahl’s notions of pitch

space (Lerdahl 2001; Rocher et al. 2010). David Cope’s speac system is

another notable example in the category of rule-based analysis, an elaborate

system of musical analysis oriented toward generating new compositions

mimicking the styles of famous composers (2005, pp. 221–50).

A second area where rule-based classifiers have been notably popular

is pitch spelling. Like rule-based classifiers for harmonic analysis, pitch

spellers begin with symbolic representation of a musical score, specifically

when those representations, like midi, neglect to distinguish enharmonically

equivalent pitches. Pitch spellers seek to identify the correct spelling of

ambiguous pitches. Temperley and Sleator included pitch spelling as part of

the melisma analyser (Temperley 2001, pp. 115–36). Other well-known

rule-based pitch spellers include that of Emilios Cambouropoulos, which is

based on interval patterns (2003); David Meredith’s ps13 algorithm (2006);

and Elaine Chew and Yun-Ching Chen’s algorithm based on the spiral array

(Chew & Chen 2005; Meredith 2007).

Perhaps surprisingly, there has been relatively little work on finding

consistent, database-based classifiers for either symbolic harmonic analysis
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or pitch spelling, in contrast to the one other major application of rule-

based state-space models in mir, querying databases for melodies, where

probabilistic methods now dominate. The early approaches to retrieving

melodies used various string-matching techniques, including prefix or suffix

trees (Blackburn & De Roure 1998; Chen et al. 2000) and approximate

string matching (Ghias et al. 1995; McNab et al. 1996). The probabilistic

replacements for these algorithms are discussed later in this section.

• Smoothed Sliding-Window Systems

So-called ‘smoothed’ sliding-window algorithms are a hybrid of between

completely rule-based systems and fully probabilistic systems. Recall from

the introduction to this section that a standard sliding-window approach

derives a probabilistic, database-based classification rule for mapping low-

level features to high-level labels but does so without regard to temporal

dependencies. Smoothed sliding-window algorithms add some kind of

rule-based ‘smoother’ to the results of sliding-window classification to add

some notion of temporal dependency post-classification. Such methods

will still not be consistent unless the outcomes in Ω do indeed behave

exactly according to the smoothing rule, but again, because of their relative

simplicity, smoothed sliding-window algorithms can be popular.

Audio melody extraction and audio chord recognition have been the

most common applications for smoothed sliding-window algorithms in

mir. Jana Eggink developed a system for audio melody extraction that

uses a series of preference rules rather than a Markov chain to link ob-

servations about the audio to temporal dynamics and found that adding
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temporal information improved the system’s performance substantially

over an unsmoothed, strict sliding-window approach (2004). The next year,

Rui Paiva, Teresa Mendes, and Amílcar Cardoso presented a similar system

using the classic observation that smaller intervals are more common in

Western melodies than larger intervals (2005). Ricardo Scholz and Geber

Ramalho added smoothing to a classic sliding-window algorithm for chord

recognition (Pardo & Birmingham 2002; Scholz & Ramalho 2008), again

finding that the smoother improved results. In the same year, Johannes Re-

inhard, Sebastian Stober, and Andreas Nürnberger presented an alternative

smoother and tested it with a number of local chord classifiers (2008).

• Blackboard Systems

Several researchers have used blackboard systems (Engelmore & Morgan 1988)

to attack polyphonic transcription. Blackboard systems can be strictly rule-

based, but in practise, they also fall into a grey area between rule-based

and probabilistic models. Like rule-based systems and smoothed state-space

models, they have an intuitive appeal but are not in most cases mathematic-

ally consistent (Carver 1997). The basic concept of the blackboard system

is that there is a virtual ‘blackboard’ where a variety of virtual ‘experts’

can propose partial, approximate solutions to sub-components of a larger

problem. Blackboard systems allow the virtual experts to add or improve

solutions to the blackboard repeatedly as well as ‘erase’ solutions that have

come to seem too sub-optimal relative to the other solutions on the black-

board. These systems were popular in the 1980s and then gradually fell

out of favour in preference to Bayesian and Markov networks, although
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Norman Carver has argued strongly that blackboard systems can offer more

flexibility than graphical models and are still well suited to large, complex

problems where defining an accurate graphical model is difficult (1997).

Automatic music transcription is such a large, complex problem where

defining an accurate graphical model can be difficult, and this area is where

blackboard systems have been most used in mir. Following up on several

technical reports from the mit Media Lab, Juan Bello, Giuliano Monti,

and Mark Sandler presented a blackboard system for automatic music

transcription at the first ismir (2000). The basic principle of the system

was to maintain several candidate transcriptions on a virtual ‘blackboard’

for each moment in time. Masataka Goto’s PreFest algorithm uses a similar

system to extract the predominant melody and bass lines in popular music

(2000; 2001), although he does not describe it as a blackboard system.

One notable application of blackboard systems outside of music tran-

scription is a unique system for symbolic harmonic analysis from Takuya

Yoshioka and colleagues (2004). Like Goto’s PreFest system, it does not de-

scribe itself as a blackboard system, but the underlying concept is the same:

based on a number of virtual experts, several candidate transcriptions are

maintained as the system tracks a piece of music, and at the end of the

piece, the most likely of the hypotheses is chosen as the best analysis.

• Markov Chains for Music Retrieval

In the musicological style analyses presented in section 3.1, one strategy

was to learn individual Markov models for groups of pieces for which

the categories are already known and to examine the differences between
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the model parameters. A slight variant on this technique can be used

for information retrieval, whereby one learns a Markov model for each

document in a database and, given a query, returns the documents whose

models are most consistent with the query. At the first ismir, Jeremy Pick-

ens described a simplified version of such a system for melodies, although

his system did not use all of the details of Markov models, rather rounding

all positive probabilities to one (2000); with a large group of collaborators,

Pickens later extended this technique for polyphonic music retrieval as

well (Pickens et al. 2002). Using a similar approach, Stephen Downie and

Michael Nelson performed a rigorous statistical analysis of various melodic

Markov structures to find which worked best for music retrieval (Downie

& Nelson 2000), extending work in this direction from Alexandra Uitden-

bogerd and Justin Zobel (1999). Holger Hoos and colleagues developed a

retrieval model using more proper first-order Markov chains (2001).

In a close variant, Jia-Lien Hsu, Chih-Chin Liu, and Arbee Chen used

a structure known as the correlative matrix for music retrieval (2001).

Although it is not presented as a Markov chain, these matrices keep track

of Markov statistics and provide a natural way of averaging over Markov

chains with different values of k. Ultimately, however, the more popular

variants of these techniques move up a step in complexity to full hidden

Markov models or related approaches, which are discussed below.

• Hidden Markov Models

Although not quite as dominant as Markov chains are in basic musicological

corpus analysis, there is no question that hidden Markov models (hmms)
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have a particularly important role in classifying musicological sequences.

Section 2.4 provided a formal description of hmms, and provided that this

formalism accurately reflects the joint density fX1:∞,Y1:∞ of the random vari-

ables under consideration, for the first time among the models considered

in this section, the standard techniques for learning the parameters of an

hmm from data (namely, maximum likelihood) yield a mathematically

consistent classification rule (Leroux 1992).

For a more intuitive illustration of when and how hmms are useful, Wen-

Huang Cheng’s work with colleagues on segmenting wedding videos (2008)

is an excellent example. Noting that traditional Western Christian weddings

for heterosexual couples tend to consist of a subset a fairly standard set

of components (see table 3.2), Cheng and colleagues sought an algorithm

that could extract low-level, time-ordered audiovisual features from videos

of wedding ceremonies and use them to segment and label the videos

according to these standard components. Because almost all of these events

tend to occur in a single location (the front of a church) with overlapping

groups of people speaking or making music, it is difficult to derive any kind

of audiovisual feature that would work on its own to distinguish all of the

wedding events reliably; in other words, any sliding-window technique is

likely to be disappointing. Much as with musical events, however, wedding

events exhibit a significant dependence on temporal context, a dependence

that Cheng and colleagues wanted to exploit to make segmenting the videos

easier. The bride, for example, always enters after the groom, although the

groom may or may not have entered with the main party; the choir may

sing at a variety of moments, but it is more than twice likely to do so after

the officiant has said something than immediately after the wedding kiss.
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Moreover, although audiovisual features on their own are insufficient to

distinguish all types of wedding events, any given event is suggestive of

certain audiovisual features: a single speaking voice, for example, while the

officiant is presiding, and multiple voices singing during events featuring the

choir. hmms excel at exactly this type of problem: when low-level features

on their own are expected to be insufficient for accurate classification

(possibly only because better features are impractically difficult to obtain)

but when information about time dependency may be sufficient to correct

for their weaknesses.

•

As noted above, simple Markov-chain techniques for retrieval eventu-

ally progressed to hmm techniques. Many of these techniques use a more

restricted form of hmm known as dynamic time warping, which are treated

below, but Riccardo Miotto and Nicola Orio have used standard hmms in a

multi-step audio retrieval processes. In a first version of the system, they

used a separate audio segmenter to generate ground truth for an hmm much

in the style of the wedding-video segmenter described above, and then the

parameters of these hmms were used for retrieval (2007). In a later refine-

ment, these hmms were the final selector after other features had narrowed

a field of candidates (2008). Wryly noting that in most cases, ‘Johnny can’t

sing’, Colin Meek and William Birmingham used hmms not for retrieval

directly but to correct errors in the input to query-by-humming systems

(2002). With Jonah Shifrin and Bryan Pardo, this team gradually refined

this system (Shifrin et al. 2002; Shifrin & Birmingham 2003). Nonetheless,
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they found that tools based on dynamic time warping proved somewhat

more robust (Pardo, Shifrin & Birmingham 2003).

Cyril Joder, Slim Essid, and Gaël Richard showed that even for an ap-

parently time-independent task, instrument recognition from audio, using

hmms to take into account time dependency can help (2009). Amaury

Hazan and colleagues extended this idea somewhat further in develop-

ing an hmm for timbre grammars based on Mel-frequency cepstral coef-

ficients (mfccs), a popular psychoacoustic feature (2009). Independently,

Emmanuel Vincent and Gautham Mysore have developed ‘non-negative

hidden Markov models’ that undertake still more complete hmm-based

model of temporal dynamics and spectral characteristics, typically oriented

toward separating different instruments that have been mixed into a single

stereo recording (Vincent 2006; Mysore 2010; Mysore, Smaragdis & Raj

2010). In a similar spirit, Michael Casey and Tim Crawford used hmms to

detect ornaments in Baroque lute music. The range of their X(t) was not

a direct transcription but an automatically learned series of 40 states that,

after training, would represent a reduction of the audio into a mid-level

representation more reflective of the musical texture; points with more

transitions between these mid-level states corresponded well to points of

ornamentation.

•

When hmms first appeared at ismir, they were proposed as a general

tool for audio segmentation (Batlle & Cano 2000) and achieved early suc-

cesses for relatively simple problems, e.g., distinguishing those regions
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of audio that contain the singing voice (Berenzweig & Ellis 2001). The

challenge with using hmms for segmentation, however, as noted earlier in

section 2.4, is that by default, their models for the amount of time that

a system remains in any given state is inflexible and not necessarily rep-

resentative of musical reality. Suppose, for example, for some underlying

outcome space Ω, the random variables X(t) and Y(t) are mapped such that

they correspond to the t-th measures of musical pieces represented by the

outcomes ω ∈ Ω. Suppose that for each Y(t), Y(t)1 maps each outcome to a

type of high-level structural label (e.g., verse or chorus), Y(t)2 maps each out-

come to the number of subsequent measures with the same structural label

defined by Y(t)1 , and Y(t)3 is a Boolean (true or false) flag marking whether

Y(t)1 is the same as Y(t−1)
1 , i.e., false for the first t after each change of Y1 and

true otherwise. For the sake of example, suppose that E(Y(t)2 ∣ Y(t)1 ,Y
(t)
3 ) = 8

when Y(t)3 is false and Y(t)1 is some particular label y1 ; in other words, sup-

pose that the particular structure labelled as y1 lasts eight bars on average.

Under these assumptions, the first row of table 3.3 illustrates the values of

the conditional mass function fY(t)2 ∣Y
(t)
1 ,Y

(t)
3

at different values of y2, i.e., the

probability that y1 will last y2 bars using the default structures of an hmm.

These structures imply a geometric distribution,

fY(t)2 ∣Y
(t)
1 ,Y

(t)
3
(y2 ∣ y1, false) = (1 − πy1)

y2−1πy1 , (3.3)

where πy1 is the reciprocal of the average duration of label y1 (1⁄8 in our

example). The geometric distribution does not seem to reflect traditional

understandings of how Western musical structures behave: on one hand,

the distribution is weighted perhaps too much toward shorter durations,

with a duration of a single measure being the most common, and the other
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Table 3.3 · Using duplicated states to improve duration modelling in HMMs

states per probability (% ) of lasting n time units

time unit 1 2 3 4 5 6 7 8 9 10 11 ≥ 12

1 12 11 10 8 7 6 6 5 4 4 3 23

2 4 8 9 10 10 9 8 7 6 5 4 20

4 1 3 7 10 12 12 11 10 8 7 5 14

8 0 0 3 7 12 15 16 14 11 8 5 8

16 0 0 0 3 10 18 22 19 14 8 4 3

Note: Rows may not sum to 100 due to rounding. The parameters of each distribution have been

adjusted such that for each row, the expected value is exactly 8 time units.

hand, there also seems to be too much weight on long durations, with

nearly a quarter of all phrases expected to be twelve measures or more.

For musical segments, one would expect very small probabilities of short

durations, a good peak near the expected duration, and a fall-off toward

longer durations that starts sharp and becomes more gradual.

Having worked with a variety of hmm-based approaches as well as

more general graphical models for music information retrieval, Raphael

has identified the duration of segments to be one of the most important

challenges for musical applications (Raphael 2006). Mark Levy and Mark

Sandler have shown empirically that hmms on their own model long seg-

ments quite poorly (Levy, Noland & Sandler 2007; Levy & Sandler 2008);

to compensate, Samer Abdallah and colleagues have developed an elab-

orate Bayesian architecture over low-level hmms in order to obtain more

realistic segment durations (Abdallah et al. 2005, 2006). The discussion in

section 2.4 presented hidden semi-Markov models as a more general solu-
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tion to this problem, which is also the flavour of Raphael’s own solution (see

below). Levy and Sandler’s approach uses a different strategy to improve

the representation of duration within the hmm structure: by subdividing

each of the possible labels in the range of the Y(t)1 into multiple steps (e.g.,

‘chorus1’, ‘chorus2’, and ‘chorus3’ rather than simply ‘chorus’), it is possible

to achieve a much more flexible space of distributions over duration that

in particular is freer to target different levels of musical hierarchy.

The lower lines of table 3.3 illustrate the probabilities fY(t)2 ∣Y
(t)
1 ,Y

(t)
3

at

different values of y2, still with the constraint that Y3 be false and that

E(Y(t)2 ∣ Y(t)1 ,Y
(t)
3 ) = 8 but with y2 now represented by a sequence of

multiple steps (and assuming for clarity of presentation that these steps

are allowed to unfold sufficiently quickly that the complete sequence is

achievable in the same amount of time as the original time step, although

this change was unnecessary for Levy and Sandler’s particular application).

As the number of states increases, the expected distribution of durations

tightens toward the expected value (8), with the probability of durations

near the expected value steadily increasing and the probability of very

short durations and the probability of very long distributions dropping

toward the negligible. These distributions are perhaps a better match for

how one expects long musical segments to unfold. As such, duplicating

states is a common solution to the problem of representing duration with

hmms, and by loosening restrictions on these duplicated states, very general

classes of distributions on duration are possible (Bilmes 2006) – indeed,

managing this flexibility is the principle behind the success of Mavromatis’s

system for modelling Greek chant, described above (2006; 2009).

When hmms are used for segmentation, they have the advantage of
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being able to identify not only the segment boundaries but also the most

appropriate label for each segment. Many other algorithms for segmentation

return the segment boundaries only, in which case hmms can also be useful

after the fact to choose appropriate labels for the segments (Paulus & Klapuri

2009; Paulus 2010).

•

Although segmentation was one of the first significant uses of hmms at

ismir, they are perhaps most dominant today in applications connected to

Western tonal harmony. The most basic of these tasks is identifying key. The

majority of key-finding algorithms do not use as detailed a notion of tem-

poral dynamics as hmms – e.g., the most famous key-finding algorithm, the

Krumhansl-Schmuckler algorithm (Krumhansl 1990a, pp. 77–110), which

uses only the relative duration of pitch classes – but several hmm-based

alternatives have been proposed. Wei Chai and Barry Vercoe presented

the first, using a hand-tuned hmm (2005). Katy Noland and Mark Sandler

presented a more general system the next year that used hmms to identify

key and key changes throughout popular music (2006), as did Geoffroy

Peeters (Peeters 2006).

Moving up a step in complexity of task, Christopher Raphael and Joshua

Stoddard have used hmms to analyse functional tonal harmony in midi files

(Raphael & Stoddard 2003, 2004). In principle, the outcome space Ω is the

space of all common-practise music (although due to the computational

complexity of their algorithm, it was not possible to test on a corpus that

would represent such a large space well), and the underlying Markov chain
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advances such that the X(t) and Y(t) map to the t-th bar or half-bar in each

piece ω ∈ Ω. The X(t)map outcomes to all pitches that appear in the t-th bar

or half-bar together with the beats on which they appear, and the Y(t) take

values in a space including all keys and standard harmonies (without respect

to inversion). Randal Leistikow used a similar model to include harmony

in a study of musical expectation in folk songs (2006), oriented toward

learning musicological parameters rather than classification performance.

Raphael and Stoddard did evaluate classification performance informally,

describing their results as ‘promising’, but some earlier work from Dan

Ponsford, Geraint Wiggins, and Chris Mellish on statistical models for

harmony suggests that the Markov assumption may ultimately prove to be

a serious limitation for any application of hmms to harmony (1999).

Despite the potential limitations of harmonic Markov chains, the diffi-

culty of combining harmonic analysis with audio modelling has made hmms

the standard technique for labelling chords in audio files. The earliest such

applications used a hierarchical variant of the hmm, discussed below. Work-

ing with Lawrence Saul, I was one of the first researchers to apply classical

hmms to audio chord-recognition problem (Burgoyne & Saul 2005), and in

the same year, Juan Bello and Jeremy Pickens presented a similar system

(2005); all of us recognised the benefit of using musicological knowledge to

hand-fix certain parameters, for the transition distributions fY(t)∣Y(t−1) in my

case and the emission distributions fX(t)∣Y(t) in the case of Bello and Pickens.

In the following years, these structures became standard in the field. Benoit

Catteau, Jean-Pierre Martens, and Marc Leman devised a system that incor-

porated musical knowledge for both transition and emission distributions

while leaving a few parameters free for training (2007). Matti Ryynänen
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and Anssi Klapuri used the larger Real World Computing (rwc ) dataset

(Goto et al. 2002, 2003) in an attempt to learn transition distributions with

less need for musical knowledge (Ryynänen & Klapuri 2008). Kyogu Lee

and Malcolm Slaney devised a technique for reducing the need for hand

tuning by generating large amounts of training data by starting with midi

files, using Temperley’s melisma analyser to label their harmonies, and

the generating audio from the same files to use for training; they tested

this approach with standard hmm structures under variety of contexts,

eventually accounting for key, genre, and specialised audio features (Lee

& Slaney 2006, 2007, 2008; Lee 2008b, a), although this technique does

suffer from learning the same kind of mistakes that the melisma analyser

makes: its reported accuracy is only 85 percent.

Hélène Papadopoulos and Geoffroy Peeters explored a variety of meth-

ods for learning the parameters of hmms for chord recognition, confirming

that a combination of hand-tuning with music-theoretical knowledge and

machine learning performs the best (2007); they later improved their sys-

tem by using a beat detector to allow the Markov chain to evolve by beat

rather than by a fixed duration of audio (2008), the first since Bello and

Pickens to do so. Beat alignment became the new standard quickly. Björn

Schuller and colleagues developed a simple, beat-aligned chord recogniser

and compared models trained with musicological knowledge only to those

learned from the data set (Schuller et al. 2009). Matthias Mauch and Simon

Dixon had used the duration-modelling trick mentioned earlier, replaced

each chord symbol with a three-state sequence (2008); like Papadopoulos,

they eventually adapted their system by combining it with a beat detector

and developing a detailed model for the conditional distributions fY(t)∣Y(t−1)
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that included bass notes, chord labels, keys, and metric position (Mauch

2010; Mauch & Dixon 2010b). Beat alignment, however, does not eliminate

the problem of duration modelling, and there is room to explore this area

further: one of the most recent studies on chord recognition found that

correct duration models are in fact more important for good classification

than correct statistics on chord changes (Pauwels & Martens 2010).

Finally, rather than recognising chords that are already written, some

systems seek to generate plausible chords to accompany a monophonic

melody. In the context of an hmm, this problem is almost identical to chord

recognition or harmonic analysis: although the underlying probability

space will include all plausible harmonisations and melodies rather than

just pieces that already exist, the X(t) and Y(t) are still indexed by beat

in most cases, and the X(t) still take values on a space of chords (and

sometimes keys). The Y(t), however, rather than containing complete

musical information, map simply to the individual notes of the melody.

Randall Spangler, Rodney Goodman, and Jim Hawkins developed ‘Bach

in a Box’, one of the first hmm-like systems for harmonisation in the style

of Johann Sebastian Bach (1998); Uraquitan Cunha and Geber Ramalho

developed a similar system at about the same time (1999). Moray Allan

and Christopher Williams developed a system years later that uses classical

hmms more strictly (2005). Ching-Hua Chuan and Elaine Chew developed

a hybrid system that combines elements of rule-based systems and elements

of hmms and can harmonise melodies in a wider variety of styles (2007).

Ian Simon, Dan Morris, and Sumit Basu took this idea a step further and

developed an hmm-based system that can generate an accompaniment for

vocal melodies sung into a microphone (Simon, Morris & Basu 2008).
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•

In contrast to harmony, most approaches to beat tracking and tempo

tracking have relied on lower-level, often deterministic, techniques from

signal processing rather than graphical models like hmms. There are, how-

ever, several notable exceptions. Taylan Cemgil and colleagues designed

a system for tracking tempo based on the Kálmán filter, a close relative

of the hmm used when the Y(t) are continuous rather than discrete – in

this case, tempo as expressed in beats per minute rather than with discrete

labels (Cemgil et al. 2000; Cemgil & Kappen 2003; Cemgil 2004; Kálmán

1960). Stephen Hainsworth and Malcolm Macleod presented a variation

on this system using a slightly different filter (2003), and the approach is

also similar to Dustin Lang and Nando de Freitas’s system for beat tracking

(Lang & de Freitas 2005). Christopher Raphael constructed another similar

system that not only tracks tempo but also transcribes rhythms, rightly

observing that these two tasks are linked (2001a). Nick Whiteley, Cemgil,

and Simon Godsill later presented an even more elaborate Bayesian-style

system for simultaneous tracking of tempo, rhythm, and meter that reduces

to an hmm with a complex definition of transition probabilities (2006); in

the same year, Anssi Klapuri, Antti Eronen, and Jaako Astola presented

a more classical signal-processing model for a similar group of tasks also

based on hmms (2006).

Conceptually, these hmm-based models for tracking tempo and beat are

a link to a different classical mir task to which hmms have been more often

applied: score following. Score following attempts to align audio with a

symbolic representation of the same music. Formally, the task operates
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over a probability space where Ω includes all possible performances of a

particular piece of music, quantised to some pre-specified degree of time

precision and F would be the usual P(Ω). Unlike many of the previous

examples, however, P will almost certainly not assign each possible per-

formance the same measure. Moreover, also unlike previous examples, a

frequentist, physical-probability interpretation seems to make little sense

for this task. The value of hmms for score following is less in identifying

the physical truth behind performances and more in making logically con-

sistent assumptions about which tempi and what types of tempo variation

are more likely than others – in other words, a Bayesian approach. The X(t)

map outcomes ω ∈ Ω to audio observations at individual moments in a

performance, and the Y(t) take values over the series of relevant musical

moments in the score. Because the score is known, the conditional distribu-

tions fY(t)∣Y(t−1) are mostly determined: they are only important as a means

of modelling duration, as has been discussed extensively above.

Pedro Cano, Alex Loscos, and Jordi Bonada were the first researchers

to apply hmms to score following (1999), followed by a more elaborate

hmm designed by Nicola Orio and François Déchelle (2001). Orio and

Déchelle’s system has been continually improved at the Institut de Recher-

che et Coordination Acoustique / Musique ( ircam ) ever since, although

the underlying basis has remained some variant of hmm (Cont, Schwarz &

Schnell 2005; Cont 2006; Montecchio & Orio 2009). To facilitate his ‘Music

Plus One’ project, which generates accompaniments for musical soloists that

respond to the soloists’ tempo variations in real time, Raphael developed

an independent hmm-based system to follow scores (1999; 2002b). Both

of these systems face the usual challenges with modelling duration, and
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later systems have attempted to sidestep the problem by defining a state

for each beat or subdivision of the beat in a score rather than individual

score elements (Pardo 2005; Jordanous & Smaill 2009). Score following

is also very similar to the more general problem of aligning a score-like

representation with an audio file; Paul Peeling, Taylan Cemgil, and Simon

Godsill have used hmms to solve this task (2007).

•

The final area where hmms have been used extensively in mir is music

transcription. There are two ways to consider the sample space for this

problem, one of which lends itself more to a frequentist perspective and

the other a Bayesian. In the more frequentist system, the sample space Ω
would encompass all pieces of music in a particular corpus along with all

realised recordings of them, the σ-algebra F would be the usual P(Ω), and

P would assign equal probability to all ω ∈ Ω. In the Bayesian perspective,

the sample space Ω would encompass all pieces of music in a particular

corpus with all conceivable recordings of performances them, the σ-algebra F

might well again be P(Ω), but because ∣Ω∣ ≥ ℵ0, there could be no well-

defined P that would assign equal probability to all ω ∈ Ω; some prior

assumption on the form of P would be necessary and any learning could

only be understood with respect to that assumption. Published research in

this area often neglects to state which interpretation is preferable, which

makes it difficult to assess how and where the results could be expected

to generalise. Under either interpretation, however, the X(t) and Y(t) are

similar to those from the score-following problem: the X(t) correspond to
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features computed from audio just as with score-following, and the Y(t)

correspond to events in a musical score, except that in this case, the score

is not known in advance.

Unlike many other traditional tasks in mir, the transcription problem

lends itself to non-Western musics. Olivier Gillet and Gaël Richard used

hmms to label the types of drum strokes in Indian tabla music (2003). A

couple of years later, Parag Chordia used a larger data set to compare a

number of approaches and found that while on one hand, using an hmm

harmed performance relative to sliding-window methods, on the other

hand, the recognition rates overall were lower than those that Gillet and

Richard had been able to achieve using hmms (Chordia 2005). Gillet

and Richard adapted their tabla-stroke detector for Western drumming

(2004), still based on a first-order Markov chain of individual drum strokes;

concurrently, Jouni Paulus and Anssi Klapuri developed a system based on

Markov chains of measures (‘words’) with the order of the chain varying

from 1 to 10 (2003).

As one might expect from the abundance of musicological studies

of melody based on Markov chains, hmms have been used extensively

to transcribe melodies from audio. Kunio Kashino and Hiroshi Murase

designed a system that functions as an hmm for audio melody extraction,

using signal-processing techniques to generate observations from an audio

signal and a first-order Markov chain based on melodic intervals and timbres

to smooth these observations (1998). Adriane Durey and Mark Clements

used an hmm trained for melodic transcription as a retrieval agent for

returning audio files matching a symbolic melodic query (2001). Taking

an explicitly Bayesian approach, Harvey Thornburg, Randal Leistikow,
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and Jonathan Berger developed and described in considerable detail an

hmm for melodic transcription with states that involve not only notes but

also properties of the audio frame (2007). Likewise following a Bayesian

approach, Emir Kapanci and Avi Pfeffer developed an hmm with an even

more elaborate state structure to generate accurate musical scores from

monophonic audio (2005); this model is notable for striving to transcribe

rhythms correctly, whereas other systems seek only to identify the melodic

notes along with their onset and offset times.

A few researchers have jumped directly to transcribing polyphony with

hmms. Raphael was the first to use hmms for such a task, automatic tran-

scription of piano music (2002a). Following a Bayesian approach, Taylan

Cemgil built a more general system for polyphonic transcription based

on the Kálmán filter (Cemgil 2004). Stanisław Raczyński and colleagues

developed the most recent system, which uses hmm states that incorporate

both harmony and sounding notes at each moment in time to yield a more

accurate transcription (2010).

• Mixtures of hmms

In almost all cases, hmms are used as the sole representation of the joint

distribution function involved in musicological research problems. Occa-

sionally, however, it is useful to consider mixtures of hidden Markov models.

The premise behind a mixture model is that the observations may have

been the result of one of a number of different stochastic processes, and

there is uncertainty as to which of these processes produced the observa-

tion. Thus, in addition to the parameters of the hmms themselves, mixture

108



3.3 · MUSICAL STATE-SPACE MODELS FOR CLASSIFICATION

models must also learn mixture parameters, the parameters of a probability

mass function for a random variable Z that maps each outcome ω ∈ Ω to

the actual hmm that generated it. Yuting Qi, John William Paisley, and

Lawrence Carin used a Bayesian approach to model individual pieces as

mixture of hidden Markov models and to use the parameters of those mod-

els to compare pieces (Qi, Paisley & Carin 2007). Similar approaches have

been used to segment vocal from non-vocal sections (Nwe & Wang 2004;

Kan et al. 2008).

• Hierarchical hmms

Mixture models allow for the possibility of different hmms to describe an

entire musical sequence. Another variant of the hmm, the hierarchical hmm

allows a musical sequence to be described by a series of different hmms,

one following another. Figure 3.2 represents such a structure graphically.

Due to limitations on space, time flows both vertically and horizontally.

A higher-level Markov chain, denoted in the figure by Z(1:k), runs from

top to bottom. The values of these random variables are usually the labels

of interest, and in the context of speech recognition, where hierarchical

hmms are common, the conditional mass function fZ(k)∣Z(k−1) is commonly

known as the language model. Each step of the Z Markov chain corresponds

to multiple time steps in the underlying outcome ω; in fact, each possible

value of the Z(k) – say each ψ ∈ Ψ – corresponds to an independent hmm

with conditional distribution functions f ψ
X(t)∣Y(t) and f ψ

Y(t)∣Y(t−1). With good

training data, there are special techniques to facilitate estimating fZ(k)∣Z(k−1)

and the f ψ
X(t)∣Y(t) and f ψ

Y(t)∣Y(t−1), but in fact hierarchical hmms are technically
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X(1) X(2)

Y(1) Y(2) ⋯ Y(`)

X(`)

Z(1)

X(`+1) X(`+2)

Y(`+1) Y(`+2) ⋯ Y(m)

X(m)

Z(2)

⋮

X(m+1) X(m+2)

Y(m+1) Y(m+2) ⋯ Y(n)

X(n)

Z(k)

Figure 3.2 · A hierarchical HMM. A higher-level Markov chain of unobserved random variables Z

controls a series of lower-level HMMs. It is possible to �atten this structure into a classical HMM,

but with good data, there are techniques to train this hierarchical structure directly.
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no different than ordinary hmms. If one ‘flattens’ the Z(k) and the Y(t)

into a combined series of random variables Y′(t) = (Z(k(t)),Y(t)), where

k(t) maps each time t to the corresponding value of k in the Z Markov

chain, then one obtains a classical hmm defined by

fX(t)∣Y′(t) = f Z(k(t))

X(t)∣Y(t) (3.4)

and

fY′(t)∣Y′(t−1) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f Z(k(t))

Y(t)∣Y(t−1) if Z(k(t)) = Z(k(t−1)) and

fZ(k(t))∣Z(k(t−1)) otherwise.
(3.5)

No information is lost in this conversion; the flattened model is mathematic-

ally equivalent to the hierarchical model (see Murphy 2002, pp. 28–41, for

a more detailed formulation of this equivalence). Because of this equival-

ence and the prevalence of hierarchical models in speech recognition, many

authors will refer to their models simply as hmms even when, strictly speak-

ing, they are hierarchical hmms; other authors will refer to hierarchical

hmms as model-discriminant hmms and classical hmms as path-discriminant

hmms.

The earliest hmms for chord recognition were hierarchical hmms, be-

ginning with the seminal research of Alexander Sheh and Dan Ellis on

a small corpus of Beatles songs (2003). As discussed above, many later

approaches to chord recognition used classical hmms directly, but inspired

by Sheh and Ellis, Namunu Maddage and colleagues have used hierarchical

hmms for chord detection as part of a larger system for semantic analysis

of music (2004). Maksim Khadkevich and Maurizio Omologo used more

sophisticated language modelling to improve performance under this tech-

nique (2009). Although further research is necessary, preliminary research
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I conducted with Laurent Pugin, Corey Kereliuk, and Ichiro Fujinaga sug-

gested that the techniques for training hierarchical hmms yield superior

classification results to those for classical hmms (Burgoyne et al. 2007).

Hierarchical hmms have also been applied to various transcription

tasks. Haruto Takeda, Takuya Nishimoto, and Shigeki Sagayama used them

for rhythm transcription (2004). Jouni Paulus and Anssi Klapuri improved

their original drum transcriber, which was based on classical hmms, by

integrating a hierarchical model that modelled each individual drum stroke

as its own hmm combined with a language model over stroke types (2007).

For transcribing melodies from audio, Matti Ryynänen and Anssi Klapuri

combined a first-order language model for melody with lower-level hmms

over the audio signal for each note (2006), a technique similar to that which

Willie Krige, Theo Herbst, and Thomas Niesler used a couple of years later

(2008). Ryynänen and Klapuri have also taken advantage of the particular

algorithm used for decoding the maximally likely sequence of values of

the Z(k) in hierarchical hmms, the token-passing algorithm (Young et al.

2006, pp. 183–84), to use hierarchical hmms for polyphonic transcription

(Ryynänen & Klapuri 2005); because the token-passing algorithm makes it

easy to ‘black out’ certain labels from being considered at particular points

in time, by blacking out all previously identified notes and running the

algorithm again, one can build a polyphonic transcription easily from an

otherwise monophonic model.

Optical music recognition (omr ) had only rarely been treated with

hidden Markov models of any variety before Laurent Pugin developed

the Aruspix system, which features hierarchical hmms, in 2006 (Kopec
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& Chou 1996; Pugin 2006a, b).† Aruspix specialises in omr for printed

music from the Renaissance, although our group is currently extending

the system to handle printed and handwritten plainchant notation as well.

Working with Ichiro Fujinaga and me, Pugin developed new evaluation

metrics for the system (Pugin, Burgoyne & Fujinaga 2007a) and used them

to test improvements that allow users to tune the hmms as they work in

order to maximise accuracy on unseen books (Pugin et al. 2007; Pugin,

Burgoyne & Fujinaga 2007b, c). This system was compared to Gamera, a

successful omr tool based on instance-based learning (Choudhury et al.

2000), and was found to be more accurate on Renaissance prints (Pugin

et al. 2008). Inspired by the success of this work, Ana Rebelo, Artur

Capela, and Jaime Cardoso recently compared an approach to omr on

common-practise music with hmms to several other popular approaches to

omr (2010); hierarchical hmms were less successful in these experiments,

but the authors state that further tuning would be necessary to optimise

the approach to common-practise rather than Renaissance music.

One final, rather creative, use of hierarchical hmms in musicological

research is Gabi Teodoru and Christopher Raphael’s solution for pitch

spelling, which models each melodic voice as an independent Markov

chain dependent on a common, higher-level Markov chain of keys (2007).

• Dynamic Time Warping

Dynamic time warping (dtw ) is a technique for time-aligning two sequences

using the well-known algorithmic paradigm of dynamic programming and
†http://aruspix.net
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a distance metric known as the Levenshtein distance or edit distance (Kruskal

1983). dtw is often contrasted with hmms as a different, computationally

simpler approach to sequence alignment, but in fact, many common uses

of dtw are equivalent to hmms with particular constraints on the form of

the conditional distributions fX(t)∣Y(t) and fY(t)∣Y(t−1) (Juang 1984).

dtw has a long history in audio-score alignment, beginning with Roger

Dannenberg’s seminal paper at the 1984 International Computer Music

Conference in Paris and continuing at the early ismir conferences (Mazzoni

& Dannenberg 2001) as well as the early Joint acm-ieee Conferences on

Digital Libraries (Hu & Dannenberg 2002). Ferréol Soulez, Xavier Rodet,

and Diemo Schwarz developed an independent dtw system for audio-score

alignment at ircam, using a customised measure of distance between notes

in a score and an audio signal to find the best alignment possible (2003).

As these techniques became established, Ning Hu and Roger Dannenberg

explored techniques for improving dtw alignments of audio and scores

(2003; 2005), and Bernhard Niedermayer developed a post-processing

technique based on non-negative matrix factorisation in order to improve

results (2009).

Score following is very similar to audio-score alignment, as mentioned

above, but in general, dtw requires knowledge of the complete audio

and the complete score, which poses challenges for score following, which

needs to take place in real itme. Nonetheless, Simon Dixon developed an

algorithm that can perform dtw in real time, allowing it to be used for live

score following (2005), which Robert Macrae, working with Dixon, was

able to improve a few years later (2010).

Meinard Müller, Frank Kurth, and Tido Röder developed a separate
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dtw algorithm for audio-to-score alignment designed to reduce the extens-

ive time and memory requirements (2004). Kurth, Müller, and colleagues

developed this technology into an application called SyncPlayer that could

present scores and audio to a user simultaneously (Kurth et al. 2005). In a

very clever variant, Kurth, Müller and colleagues later used dtw on omr

output and audio files to synchronise score images with audio playback

in SyncPlayer (Kurth et al. 2007; Fremerey et al. 2008; Fremerey, Müller

& Clausen 2010). This technology was finally adapted to allow users to

query databases based on selecting a few measures from a scanned score

(Fremerey et al. 2009).

Database queries in general have been another popular use of dtw

for mir. Shai Shalev-Shwartz and colleagues used dtw to enable users

to retrieve audio files from melodic queries (2002), and Norman Adams,

Daniela Marquez, and Gregory Wakefield used it to match melodic queries

to melodies in a database (2005). Bryan Pardo and Manan Sanghi explored

various modifications of these techniques to make them feasible for poly-

phonic queries (2005). Cover-song detection can also be considered a type

of polyphonic database query, and early attempts used dtw-aligned audio

features that are closely associated with harmony (Ellis & Poliner 2007) and

dtw on automatic chord transcriptions (Bello 2007).

Another final classical example of dtw is synchronising two perform-

ances of the same piece of music. Simon Dixon and Gerhard Widmer presen-

ted one of the earlier dtw algorithms for this purpose (2005). Meinard

Müller, Henning Mattes, and Frank Kurth developed a considerably faster

algorithm that achieves the same results as classical dtw (2005; 2006).

Bernhard Niedermayer has worked with Widmer since to develop a vari-
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ant of dtw that estimates note onsets more precisely (2010). There has

also been some work aligning drum patterns in world music using dtw

(Antonopoulos et al. 2007; Wright, Schloss & Tzanetakis 2008).

• Semi-Markov Models

As mentioned above, rather than using tricks like duplicating states to

improve the ability of hmms to model duration, one can also generalise the

hmm slightly to the hidden semi-Markov model, which includes an explicit

variable for the duration of each value of the Y(t) (see § 2.4). Only two mir

studies to my knowledge invoke semi-Markov models explicitly: XiaoBing

Liu, DeShun Yang, and XiaoOu Chen’s model for classifying Chinese folk

music (2008), and Arshia Cont’s audio-score alignment system (2010), which

uses hidden semi-Markov models as one component in a hybrid system.

Although he never describes it as such, Christopher Raphael’s system for

aligning audio to scores is effectively a hidden semi-Markov model, however,

with some specialised constraints on the conditional distributions fY(t)∣Y(t−1) ;

it uses a novel tree-pruning method for computing the alignment that

avoids the need to make many specific assumptions about the form of the

distribution functions on state durations (2004; 2006). Raphael has also

extended this technique in order to transcribe monophonic melodies into

full scores (2005), like Kapanci and Pfeffer (2005).

• Other Generative Graphical Models

Section 2.4 mentioned switching linear dynamical systems briefly as another

variant of the hmm. The key feature of switching linear dynamical systems
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is that they allow for fX(t)∣Y(t) and fY(t)∣Y(t−1) to vary over time. Switching

linear dynamical systems are computationally expensive and have proved

disappointing in other domains, but Taylan Cemgil, Bert Kappen, and David

Barber have used them successfully for tempo tracking and polyphonic

music transcription (Cemgil & Kappen 2002; Cemgil, Kappen & Barber

2003, 2006).

More general generative graphical models have also been applied to

music. One of the most detailed is Christopher Raphael’s Music Plus One

project, mentioned earlier. The full system incorporates six different groups

of random variables, comprising estimated onset times from the soloist

(estimated by the hmm described earlier), tempo and rubato at each note,

‘phantom’ variables for accompaniment notes that do not align with solo

notes, ‘anchor’ variables for those that do, ‘sandwich’ variables for rapid

accompaniment notes between anchors, and of course, onset times for the

accompaniment notes (2001b; 2001c). Another notable such multi-level

generative model is Jean-François Paiement, Doug Eck, and Samy Bengio’s

system for modelling chord progressions (2005).

• Neural Networks

Neural networks are one of the classical approaches to statistical learning.

Although there are parallels between their structure and that of a Bayesian

network – indeed, it is even possible to formulate hmms as neural net-

works (Niles & Silverman 1990) – they are normally used as deterministic

approximators to complicated functions. Neural networks come in many

forms and the readers is referred to a reference like Bishop (1995) for more
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X0 X1 X2 ⋯ Xm

Z0 Z1 Z2 Z3 ⋯ Zn

Y

Figure 3.3 · A two-layer neural network. The top layer (X) represents an observed vector of

features (in grey) with an extra, unobserved ‘bias’ term (X0) and the bottom layer (Y) represents

the desired output. The middle layer (Z) improves classi�cation accuracy but is generally dif�cult

to interpret in its own right.

detail. Their most typical form, however, illustrated in figure 3.3, does not

allow for temporal dependencies. A vector of inputs X and an extra bias

variable X0 jointly determine each member a hidden layer of unobserved

variables Z, which together with a second bias variable Z0 jointly determ-

ine the desired label Y. The values of the variables Z in the hidden layer

are generally uninterpretable, which is one of the drawbacks of neural

networks. This structure is also discriminative, not generative, and so given

a label y, neural networks offer no way to predict what the inputs x to the

network might have been.

With no means of modelling temporal dependency, one might think

that neural networks would be confined to use in sliding-window tech-
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niques. By using the outputs Y of the network for some number of previous

points in time as part of the input vector X at the current point in time, one

creates a simple kind of recurrent neural network that does represent temporal

dependencies. Hermann Hild, Johannes Feulner, and Wolfram Menzel’s

harmonet network for harmonising chorale melodies, for example, uses

the previous three predicted chords as inputs, as well as information about

the melody and some basic rhythmic information (Hild, Feulner & Menzel

1992). Another interesting experiment from this era showed that the val-

ues of the variables Z in the hidden layer of a recurrent neural network

trained on Western tonal melodies statistically correlated with the first

order Markov-chain transition probabilities (Stevens & Wiles 1994). Neural

networks have not been as much in favour for sequence-related tasks in

music in the past decade, with the one notable exception of Doug Eck and

Jürgen Schmidhuber’s system for improvising blues melodies, which used

a type of recurrent neural network known as the long short-term memory

recurrent network that seeks to maintain long-term structure (2002).

• Other Discriminative Graphical Models

Recall from section 2.3 that discriminative graphical models for classify-

ing sequences seek to estimate the conditional distribution fY(t)∣X(t) to the

exclusion of other distribution functions. Because of the amount of data re-

quired, discriminative approaches have been more popular for single-point

classification problems like genre classification than they have for sequence

classification. There are several intermediate cases, in fact, that are really

smoothed sliding-window methods that use simple discriminative classifiers
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like support vector machines (Cortes & Vapnik 1995) at each time point

and then smooth them with hmms. Graham Poliner and Dan Ellis have

used such approaches for transcribing both monophonic and polyphonic

music (Ellis & Poliner 2006; Poliner & Ellis 2007; Poliner 2008); similarly,

for audio chord recognition, Xinglin Zhang and David Gerhard used neural

networks to provide ranked lists of individual chords for each audio frame

and a first-order Markov chain to smooth the results (2008).

As computational power has improved, however, there have been

some attempts to perform full-fledged discriminative classification with

musical sequences. Conditional random fields (crfs), as mentioned above,

are conceptually the most straightforward discriminative partner to the

widely-employed, generative hmm. Victor Lavrenko and Jeremy Pickens

laid the groundwork for this type of exploration by showing how random

fields in general provide more flexible and musically sensible modelling

possibilities than strict Markov chains for polyphonic music (2003); Pickens

and Costas Iliopoulos applied this approach to polyphonic music retrieval

from databases, analogously to approaches that used hmms for the same

purpose (2005). Pickens and Iliopoulos insisted that random fields promised

to be useful for a number of other musical problems, a sentiment that

Moray Allan and Christopher Williams echoed as they discussed future

work based on their hmm for harmonising chorales (2005). Working

with Laurent Pugin, Ichiro Fujinaga, and Corey Kereliuk, I was the first

researcher to apply conditional random fields to audio chord recognition

(2007). Our results for crfs were disappointing relative to the best-tuned

hmms, but there were also limitations on our strategy for adapting the

chord-recognition problem to crfs that we intend to address in future
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work. One other significant application of crfs to music has appeared

recently: Cyril Joder, Slim Essid, and Gaël Richard’s system for aligning

scores to audio (2010).

Although crfs are the most popular discriminative models for classi-

fying sequences in other fields, they are not the only such models. Two

others of note have been applied to music. The HMPerceptron is an adapta-

tion of the perceptron, a classic algorithm for training the simplest neural

networks, to sequential data using a technique similar to that underlying

crfs (Collins 2002); Daniele Radicioni and Roberto Esposito have applied

HMPerceptrons effectively for automatic harmonic analysis (2010). Shai

Shalev-Shwartz, Joseph Keshet, Yoram Singer, and Dan Chazan used a

discriminative model similar to Taskar, Guestrin, and Koller’s max-margin

Markov networks in order to align scores with audio, with results that

significantly outperform methods based on hmms (Shalev-Shwartz, Keshet

& Singer 2004; Keshet et al. 2007; Taskar, Guestrin & Koller 2004).

3.4 summary

Despite their limitations, Markov chains have dominated almost all aspects

of database-driven musicology that involve describing music as it unfolds in

time. Traditional musicological corpus analysis that seeks to understand the

temporal dynamics of music has sought primarily to uncover structures in

melodic and harmonic sequences, often, although not always, just at the first

order. Tools from mir for building musicological databases with automated

assistance also use Markov chains, most often in the form of state-space

models, and strike at a broad array of problems. Many different state-space

121



MUSICOLOGICAL MARKOV CHAINS

models have been tried, but the hmm and its varieties has been strongly

dominant. There is no reason to believe that the popularity of hmms will

end soon, but as the databases available for training automatic tools grow

larger and computational power improves, discriminative models like crfs

and max-margin Markov networks show promise for the future.

122



4 the billboard data set

Having explored the mathematical foundations for database-

driven musicology, how those foundations relate to understandings

of the temporal dynamics of music that musicologists have reached through

corpus analysis and psychological studies, and the assumptions that music

information scientists have made about the temporal dynamics of music as

they develop automatic classifiers for building larger musicological corpora,

it is time to consider an example of how these techniques can be refined

and explored with a new corpus. Under the direction of Profs. Ichiro

Fujinaga and Jonathan Wild, I have led the development of a new corpus

of harmonic transcriptions of popular American music from the latter half

of the twentieth century, based on Billboard magazine’s ‘Hot 100’ chart. It

is a timely contribution to the musicological community, forming a good

basis for comparison to the recently published rs 5 × 20 corpus (de Clercq

& Temperley 2011) but representing a somewhat broader range of popular

genres. Because these transcriptions have also been time-aligned with

audio files, the corpus should also enable researchers in music information

retrieval (mir ) to advance the state of the art in audio chord recognition

substantially over the next few years. This chapter will motivate the need

for this new corpus (§ 4.1), describe the process of constructing it (§ 4.2),

present some descriptive statistics over its most salient features (§ 4.3), and

describe a novel application of structure-learning techniques to establish

which types of temporal relationships are most pertinent to the study of

harmony in this repertory (§ 4.4).
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4.1 why build another corpus of chords ?

As noted in the previous chapter, corpora of harmony are much more

expensive to generate than corpora of melody because at the present time,

trained music theorists must undertake all of the harmonic analysis them-

selves. There are remarkably few corpora that can be used for any kind of

computational analysis of harmony. For classical music, one of the main-

stays has been the Kostka-Payne corpus, which David Temperley and Bryan

Pardo released in 2001; based on the instructor’s manual to a harmony text-

book, the corpus contains 46 examples, all of between 8 and 20 bars, and

919 chords (Kostka & Payne 1995; Temperley 2001; Pardo & Birmingham

2002). Between 1994 and 2005, David Huron and Craig Sapp released a

set of harmonic analyses of 69 of Bach’s chorales in the Humdrum kern

format (Huron 1995), all available as part of the KernScores database.∗

These two corpora have been useful for validating the results of rule-based

algorithms and have borne some statistical analysis, but neither of them is

of a size sufficient to support strong conclusions. A more recent addition

to the field comes from Hitomi Kaneko, Daisuke Kawakami, and Shigeki

Sagayama, who have recently provided harmonic analyses for all of the

classical music in the rwc Music Database (Goto et al. 2002), although

again, its size is limited: it contains just 50 pieces.†

The corpora of harmony in popular music have been somewhat lar-

ger. The transformative moment came in 2005, when Christopher Harte

released transcriptions of the harmony of the complete recordings of the

∗http://kern.ccarh.org/
†http://hil.t.u-tokyo.ac.jp/software/KSN/
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Beatles (179 songs), complete with time markers corresponding to the audio

(Harte et al. 2005). As discussed in the previous chapter, several research

groups have used this corpus to draw some general conclusions about how

to structure Markov chains for harmony, although to my knowledge, no

thorough musicological analysis has yet been published. In 2009, the

omras2 project at Queen Mary, University of London, released another

collection of audio-aligned chord transcriptions for 20 songs by Queen,

18 by Zweieck, and 14 by Carole King.‡ Excepting the Carole King tran-

scriptions, which have been checked less thoroughly, these songs and the

Beatles transcriptions have formed the basis for training and evaluating

audio chord recognition systems since 2009, but at just over 200 songs, a

larger corpus is still necessary in order to draw musicological conclusions

about harmony and to teach computers to recognise harmony from audio,

especially for chords that appear more rarely. Moreover, these transcriptions

do not contain information about metric position, which somewhat restricts

their use for musicological purposes. Most importantly, this corpus suffers

from lack of diversity among the artists represented, which means that

musicological conclusions based on this corpus may be biased and that

automated systems trained on this corpus may perform poorly on broader

bases of music. Trevor de Clercq and David Temperley’s rs 5 × 20 corpus

(2011) adds another 100 songs and that, in contrast, have been carefully

selected to be well-distributed across different decades and artists and con-

tain complete information about metric position, but these transcriptions

have yet to be aligned with audio. There remains an important place for

‡http://isophonics.net/
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a large, well-distributed corpus of popular harmony, complete with met-

ric information and time markers aligning the corpus with commercially

available recordings.

4.2 collecting the data

We sought to achieve several goals in designing a new corpus. One of our

first goals was size: as noted above, even when combined, the existing

corpora are not necessarily large enough to answer musicological queries

with as much precision as one might like, although de Clercq and Temperley

have made a very good start with the rs 5 × 20 corpus. Our second goal was

diversity across artists and their relative dates of artistic activity, because

again, although the rs 5 × 20 corpus made an excellent start, historically,

corpora of harmony have been plagued by a lack of such diversity, especially

for popular music. Our third goal was detail: Harte’s transcriptions of

the Beatles, in particular, include a good amount of information about

advanced harmonic language, but of course restricted to the Beatles only;

the rs 5 × 20 has broader coverage, but the harmonic analysis is somewhat

higher-level. Akin to detail, in order to support engineering work as well

as musicological work, we wanted all of the labels to be time-aligned with

commercially available audio recordings. Finally, we wanted the corpus to

be useful to as many researchers as possible. We chose to focus on Western

popular music, which is a domain of growing interest among music theorists

and has historically been dominant in research in mir. We consulted with

a statistician to ensure that given our resources, we were drawing a sample

with the greatest possible capacity for both musicologists and engineers to
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devise theories and systems that will generalise well to music outside the

corpus. Finally, we wanted to draw music from a sufficiently wide time

period that it would be possible to draw conclusions about how popular

music has evolved over time.

This section describes the basis for our corpus, the Billboard Hot 100

chart, in more detail, explains our methodology for sampling from the

chart, and outlines the process we used to transcribe the harmony in each

song from our sample.

• The Billboard Hot 100

In order to meet our requirements for diversity in popular music over a

fairly wide span of time, we chose to base our corpus on Billboard magazine’s

Hot 100 chart.§ Billboard has published the Hot 100 weekly since 4 August

1958. It lists and ranks the top 100 singles available for sale in the United

States according to a formula that weighs the number of sales in American

record stores, the amount of play time the single has received on major

American radio stations, and more recently, the number of downloads of

digital versions of the single. It replaced earlier charts that had appeared in

Billboard previously, such as Best Sellers in Stores, Most Played by Jockeys,

and Most Played in Jukeboxes; it was and is intended to be an industry-

oriented, overall representation of the most popular music in the United

States over a given week, and it is generally regarded to be the best available

compilation for this purpose (Bradlow & Fader 2001). Several previous

studies, in fact, have used the Billboard Hot 100 as the basis for statistical
§http://www.billboard.com/charts/hot-100
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analyses of the popularity of individual singles and as a case study for

developing statistical techniques for analysing regularly published rankings

in general (Bradlow & Fader 2001; Giles 2007; Bhattacharjee et al. 2008).

What exactly does it mean, however, to sample from the space of

what is popular? In mathematical terms, what constitutes the probability

space (Ω, F, P)? We wanted each outcome ω ∈ Ω to represent an experience

whereby a particular person in the United States listened to a particular song

at a particular time in a particular week; the natural σ-algebra F is the power

set P(Ω) of all such experiences. That much is perhaps unobjectionable,

but imagining an appropriate measure P is harder. Imagine a random

variable X from Ω to the set of all days in our time period of study; we

wanted fX to be the same for every week, i.e., we wanted fX to follow a

discrete uniform distribution. Moreover, for all singleton sets of outcomes in

the pre-images X−1 of each day, we wanted P to assign equal probability,

i.e., we wanted all listening experiences in the United States in any given

week within our time period of study to have equal probability. Because the

outcomes ω are listening experiences rather than songs, the more popular

a song – i.e., the more times more people listened to it – the greater its

expected frequency in a random sample from this space.

It is not possible to synthesise this space of listening directly, however,

and using the Billboard Hot 100 as a proxy for it has its drawbacks. The

most obvious is that only the 100 most popular tracks appear each week,

and so no music other than the very most popular songs will ever appear

in a sample based on the Hot 100. A more subtle problem is that the

Hot 100 does not provide any information about the relative popularity

of individual songs other than their ranks; one knows that the single at
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number 1 is more popular than the single at number 100, but there is no

way to know how much more popular. Moreover, nobody could argue

that the Hot 100 is a perfect representation even of what it purports to

measure: the 100 most popular singles in the United States each week.

Although the formula for computing the Hot 100 has always included the

amount of playtime on radio stations and the volume of record sales, the

details of this formula are obscure and have changed repeatedly over time.

Furthermore, because of the importance of the Hot 100 to the industry,

record labels have sought to manipulate the chart to their advantage. Most

notoriously, due to the emphasis on playtime from radio stations, record

labels would bribe stations to play particular songs in preference to others,

an illegal practise known as payola; despite a serious federal crackdown

in the early 1960s, payola and related manipulations have never been

eliminated entirely (Coase 1979). As the corpus neared completion we

received a comment from a scholar close to the industry that the Billboard

200, which tracks albums rather than singles, was somewhat less corrupted

by payola and might have been a better basis for our sample; for future

researchers interested in extending or complementing our corpus, this may

well be good advice, as it would also complement the rs 5 × 20 corpus

well.

Important as it may be to acknowledge and understand the limitations

of any sample space and sampling methodology, we maintain that despite

these limitations, a corpus based on the Hot 100 meets the needs of the

research community. Using only 100 singles from each week does bias

the sample toward the most popular songs relative to an ideal sample that

could reach any song to which anybody in the United States listened, but
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this bias seems relatively harmless for the purposes of drawing conclusions

about popular music as a genre, which is by definition and name, popular.

We considered using some kind of weighting to discount singles toward the

bottom of the charts to compensate for the lack of information about relative

popularity, but because there was no straightforward means to devise such a

weighting and because the nature of the charts themselves already strongly

emphasises the most popular singles (see below), we decided simply to

weight each position on the chart equally. The recording industry’s attempts

to manipulate the chart are more problematic, but there can nonetheless be

no doubt that, regardless of how one may judge the causal factors responsible

for the amount time on the air devoted to the singles on the Billboard Hot

100, these songs were all played extensively and would have been very

familiar to American audiences during their tenure on the chart. Excepting

a few very similar charts like the Billboard 200, no other sources can claim

even to try to represent historical listening habits of people in the United

States.

• Sampling the Charts

Beyond the theoretical issues with using the Hot 100 as a proxy for our ideal

probability space for popular music, we also needed to address a number

of practical issues related to artefacts of the formula for computing the Hot

100, the limits on our resources, and ensuring that the sample would be

usable even in the worst of all possible random draws.

The first issue involved choosing the start and end dates for music in

the corpus. The start date was fairly easy to choose: 4 August 1958, or
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the date of the first ever Hot 100 chart. The end date was a more difficult

decision. We suspected that with the rise in the popularity of rap and hip-

hop in the 1990s and 2000s, there would be a higher proportion of songs

in a random sample for which harmonic analysis would be inappropriate.

Billboard also made a particularly substantial change to the methodology for

computing the Hot 100 in 1991. Prior to this change, information about

the sales volume of singles had come from manual surveys; starting in

December 1991, Billboard began using automatically collected data from

Nielsen SoundScan.∥ With the SoundScan data, singles began remaining

on the Hot 100 for so much longer than before that Billboard eventually

established limits on how long any one single could remain on the Hot

100 and added a new chart, the Billboard Recurrent Singles, for songs that

were struck from the Hot 100 because of the new rule. Unlike the other

changes in methodology over the years, Billboard considers this change to be

so significant that they themselves attempt to correct for it when generating

historical summaries like the 50th-anniversary charts (Billboard Magazine

2008). Because we had been considering setting an end date in the 1990s

for the other reasons mentioned, we decided to draw sample for our corpus

only through until the end of November 1991. To each of the 100 slots on

each of the weekly charts from August 1958 through November 1991, we

assigned equal probability for our sampling procedure.

Like any research team, we had to work within the limits of the materials

and people we had available for this project as well as the amount of money

we had to make new acquisitions. We knew that it would likely not be

∥http://nielsen.com/us/en/industries/media-entertainment.html
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possible to obtain every single in a completely random sample, especially

for older and relatively less popular music, and so before taking the sample,

we consulted with several statisticians to develop a strategy for mitigating

any further bias that these missing singles might cause. Our solution was

to make a further simplifying assumption: that singles at adjacent ranks

on a given chart are interchangeable for the purposes of our corpus: e.g.,

the difference in popularity between the singles ranked 27 and 28 on the

chart in a particular week is slight enough that it should be allowable to

use one single in place of the other. When unable to obtain the single at

some target slot on a chart, we tried to obtain either the single in the slot

directly above the target single on the same week’s chart or the single in

the slot directly below. If neither of those singles were available, then we

tried the slots two above and two below the target slot. Only when all five

singles were unavailable did we list the slot as unobtainable.

As stated above, one of the goals in generating the corpus was to be able

to study how harmonic patterns in popular music evolved throughout the

late twentieth century. With an unguarded random sample, however, there

would have been a risk that every chart slot in the sample would have come

from a short window of time rather than being distributed across the entire

range of weeks; such a sample is not probable, but it is possible. In order to

protect against this possibility, again in consultation with a statistician, we

divided our date range into three chunks, 1958 to 1970, 1970 to 1979, and

1980 to 1991, and sampled from each chunk separately. In fact, in order to

ensure that it would also be possible to test hypotheses about what might

make some songs more popular than others, we sub-divided the chart slots

in each of our existing three chunks into five further chunks, 1 to 20, 21
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to 40, 41 to 60, 61 to 80, and 81 to 100, to yield a total of fifteen chunks

overall, each sampled separately.

Figure 4.1 summarises the sampling algorithm from start to finish. After

using Billboard’s web service to download the Hot 100 charts for the time

period in question into a PostgreSQL database,¶ we wrote a short Python

script implementing the algorithm and creating a new table in the database

with the results of the sample. We took a larger sample than necessary to

allow for the possibility of future work, but for the purposes of our current

experiments and this thesis, we used a sample of 2 000 songs total after all

chunks had been recombined.

As illustrated in table 4.1, of the sample of 2 000 slots, we were able to

obtain one of the five singles allowed by the sampling algorithm in 1 400

cases (70 percent): 501 target singles, 575 singles that were one slot above

or below the target on the chart, and 324 singles that were two slots above

or below the target on the chart. The table also shows that it was somewhat

easier than average for us to acquire digital audio for songs from the 1970s

and somewhat more difficult than average for us to locate digital audio from

the 1950s and 1960s. More importantly, there is a clear trend in favour

of finding songs near the top of the charts and against finding songs near

the bottom of the charts, which means that our corpus is somewhat biased

toward more popular songs.

Figure 4.2 confirms this bias. Part (a) illustrates the distribution of peak

ranks (the highest rank a single ever achieves on the Hot 100) corresponding

to all published chart slots during the time period covered by our corpus.

¶http://developer.billboard.com/
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1. Divide the set of all chart slots into three eras:

a) 4 August 1958 to 31 December 1969,

b) 1 January 1970 to 31 December 1979, and

c) 1 January 1980 to 30 November 1991.

2. Subdivide the chart slots in each era into �ve subgroups corresponding to quintiles on the chart:

a) ranks 1 to 20,

b) ranks 21 to 40,

c) ranks 41 to 60,

d) ranks 61 to 80, and

e) ranks 81 to 100.

3. Select some �xed percentage of possible chart slots at random from each era-quintile pair.

4. For each selected chart slot:

a) attempt to acquire the single at the target slot;

b) if that fails, toss a virtual coin to choose between either the single directly above or

directly below the target slot on the chart from the same week;

c) if that fails, choose the single that was not selected by the coin toss in 4b;

d) if that fails, toss a virtual coin to choose between either the single two ranks above or

two ranks below the target single on the chart from the same week;

e) if that fails, choose the single that was not selected by the coin �ip in 4d; and

f) if that fails, consider the chart position to be a missing data point.

Figure 4.1 · Sampling algorithm for the Billboard Hot 100. The algorithm protects against sharply

skewed random draws and, in an attempt to conserve resources in the case of music that may be

expensive to obtain, assumes that the singles in adjacent chart slots are exchangeable.
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Table 4.1 · Retrieval rates for audio in the Billboard sample

rank ’50s/’60s ’70s ’80s/’90s all

1–20 101
129 ≈ 78 % 119

134 ≈ 89 % 104
121 ≈ 86 % 324

384 ≈ 84 %

21–40 101
132 ≈ 77 % 122

135 ≈ 90 % 103
135 ≈ 76 % 326

402 ≈ 81 %

41–60 88
133 ≈ 66 % 102

133 ≈ 77 % 88
130 ≈ 68 % 278

396 ≈ 70 %

61–80 67
147 ≈ 46 % 92

131 ≈ 70 % 85
140 ≈ 61 % 244

418 ≈ 58 %

81–100 64
127 ≈ 50 % 76

127 ≈ 60 % 88
146 ≈ 60 % 228

400 ≈ 57 %

all 421
668 ≈ 63 % 511

660 ≈ 83 % 468
672 ≈ 70 % 1400

2000 ≈ 70 %

The distribution is not flat because the more popular the song, the longer it

is likely to remain on the charts, rising and falling through different ranks.

(The average number of weeks on the chart is ten, but for a top hit, it can be

considerably longer.) Part (b) illustrates the analogous distribution of peak

ranks over only the elements of our corpus. If the sampling algorithm were

perfect, one would expect the shape to match the shape of part (a); in fact,

it is slightly skewed toward the left, i.e., songs that have been more popular,

due to the difficulty of locating audio for less popular singles. This bias

reinforces our belief that it was better to weight all slots equally for sampling

rather than adding extra assumptions penalising songs at the bottom of

the charts to reflect an estimate of their relative popularity; ultimately, our

inability to locate some of the less popular songs penalised them naturally.

Because of the nature of our sampling algorithm (and also our ideal

probability space), it is possible for the same single to appear more than

once in the sample. Of the 1 400 slots for which we were able to acquire a

recording, there were only 1 084 unique singles: 218 singles appear twice,
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(b) Our corpus

Figure 4.2 · Distribution of peak ranks in the Billboard Hot 100 over all published slots between

August 1958 and November 1991 inclusive and over the slots in the corpus. Consistent with the

pattern in songs for which we were able to acquire audio, the ranks in the corpus are somewhat

biased toward more popular songs.
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40 three times, and 6 four times; we weight these singles accordingly when

using the corpus so as to obtain the most accurate statistics. Among these

1 084 unique singles, 529 unique artists are represented.

• Transcribing the Sample

After we had acquired as many audio files for our sample as we could

find, we needed to transcribe the harmony for each song and time-align

these harmonies with the audio. This process was surprisingly involved,

stretching well over a year.

The first step was to develop a file format for transcriptions that would

be readable and writable for both humans and machines. This format

is detailed in appendix A. We also designed a web application using

the Django toolkit as a front end and the same PostgreSQL database as a

back end. The web application had three main components: a primary

interface for accessing assigned songs, an upload page for each song, and a

payroll system. The primary interface, illustrated in figure 4.3, provided

annotators with a list of all songs to which they had been assigned, provided

information about other annotators assigned to the same song in case of any

questions, and allowed annotators to listen to their assigned songs. Once a

transcription was completed, an annotator could upload the transcription

directly to our database, using a page like that illustrated in figure 4.4; on

this page, we also asked annotators to let us know how long they spent

transcribing the song. The payroll system used the database to compute the

appropriate weekly wage for all annotators and allowed them to print time

sheets for the university payroll system. We also developed a variety of
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Figure 4.3 · Screenshot of the primary web application for annotators. From this page, annotators

could see a list of all of the work they had remaining, see who their partner for each song was in

case of questions, and access the audio for �les to which they had been assigned.

utility pages to help manage the project.

In April 2010, as we were finishing development of these technological

tools, we contacted a group of seven graduate students in jazz performance

who had been recommended to us by the head of our jazz department; many

of these students perform popular music professionally in the Montréal

area and throughout Canada. Four of these students were able to attend a

training session during which they learned how to use the file format used

for the project and annotated several test songs: ‘You’ve Got a Friend’, by

Roberta Flack; ‘An Innocent Man’, by Billy Joel; ‘I Don’t Mind’, by James

Brown; ‘Uneasy Rider’, by the Charlie Daniels Band; and ‘Hot Stuff’, by the
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Figure 4.4 · Screenshot of the upload page for annotators. From this page, annotators could

upload their transcription �les to the main database and note the amount of time they had spent

transcribing.

Rolling Stones. This original group of students recommended two more

potential annotators, whom we asked to transcribe the same songs. After

examining the curricula vitæ we received for a related project, we invited

three other students to audition for the Billboard project as well, again with

the same songs used at the original training session.

Prof. Wild reviewed all of the transcriptions from the auditions. The

transcriptions of one of the annotators who had not been able to attend
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the original training were too far from the other annotators’ to continue,

and this annotator was dismissed from the project. The remaining eight

were all invited to a second training session in early May; seven were able

to attend and discussed as a group the best solutions for all of the audition

songs and how to handle various subtle musical cases in general. In June,

we auditioned a further two annotators and accepted one of them, bringing

our group to nine. Of these nine, however, one separated from the project

shortly after beginning work, one had to be asked to leave due to low-

quality annotations, and only two ever produced more than 40 annotations.

In August, we auditioned six new annotators and hired four. Even among

this group, however, one had to separate from the project shortly after

beginning and only one ever produced a significant number of annotations.

Between October and December, we sent ten more sets of audition materials,

yielding three new annotators.

Clearly it was difficult to keep annotators working on the project.

Surprisingly, money did not seem to be as large a motivator as we expected.

The task requires a lot of concentration, and anecdotally, some annotators

suggested that five or six songs a day was as many as they could handle,

regardless of difficulty or rate of pay. The annotators had spent between

10 and 45 minutes per song to produce transcriptions for the audition

materials. There was a lot of variation between songs, however, and the

audition songs had been selected deliberately to be more difficult than the

typical song from the charts. After some preliminary testing with another

music student, it seemed reasonable to assume that annotators would take

15 minutes to transcribe songs on average with the training over. We set

the original rate of pay at $4 per song, which would work out to $16 per
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hour at first, and expected that as annotators became more experienced, the

best annotators would reach 10 minutes per song and be earning $24 per

hour. In July, responding to indirect complaints, we increased the rate to $5

per song for any week where the annotators did 30 songs or more, hoping

that this would motivate annotators to work more. In September, however,

the rate of annotation had again slowed to a crawl. We increased the rate

again to $5 per song regardless of how many were done in a week. We

also became more generous with ‘bonus songs’ added to the time sheets to

ensure that everybody working earned at least $20 per hour, which seemed

to be acceptable to all involved through until the end of the project.

Overall, the majority of songs took between 8 and 18 minutes to tran-

scribe, with a median transcribing time of 12 minutes (and thus a median

wage of $25 per hour). The most difficult songs, however, could take more

than an hour. Fitting a series of log-linear models on the transcription data

(Poisson regression, see McCullagh & Nelder 1989) suggests that, as expec-

ted, the song, annotator, and level of experience are all significant variables

in predicting transcribing time. It also seems that there are significant dif-

ferences in the effect of experience on each annotator: many improved

their speed over time, but not all; on average, annotators improved their

speed by a bit less than 10 percent for every 100 songs they transcribed.

Figure 4.5 presents a box-and-whisker plot of the transcribing times for

each annotator with the width of each bar proportional to the square root

of the number of songs transcribed. There is variation with respect to the

number of songs transcribed – three annotators carried the bulk of the

load – and with respect to overall rate of work, but the overall pattern of

most songs requiring less then 20 minutes with some exceptionally difficult

141



THE BILLBOARD DATA SET

●

●

●●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●
●
●

●

●

●

●

●

0
20

40
60

80

M
in

ut
es

 to
 tr

an
sc

rib
e

Figure 4.5 · Transcribing times for the corpus, separated by annotator. The width of each bar is

proportional to the square root of the number of songs transcribed. Songs more than 11⁄2 times

the inter-quartile range away from the nearest quartile are marked as outliers. Although there is

some variation among annotators, the overall statistic that most songs took between 8 and 18

minutes is clear, with a few exceptionally dif�cult songs as outliers.

outliers taking longer is clear.

In order to ensure accuracy, we asked two annotators to transcribe

each song independently, although through the web application annotators

were aware of their partners for each song and were free to communicate

about their work if desired. A third meta-annotator with special training

reconciled the differences between the two files. Chord transcriptions

inevitably require questions of judgement and taste, and so in addition to

correcting any actual mistakes, the meta-annotators needed to synthesise

any difference in style between the two annotations, generally in favour of

142



4.3 · BASIC STATISTICS

the more detailed transcription. Finally, in partnership with the University

of Southampton in the United Kingdom, we had a fourth annotator mark

each transcription with key structural features (see Smith et al. 2011) and

align the beginning of each phrase with audio. Considering the salaries

and wages of all involved, it cost more than $20 each to arrive at this final,

time-aligned file, but given the richness of the data, we believe that they

have been worth the cost.

4.3 basic statistics

One disadvantage of such a large corpus is that it becomes somewhat

impractical to reflect on each detail of the corpus individually. It includes

over 500 000 beats, which strains the limits of human ability to find patterns

from inspection alone. Like De Clercq and Temperley’s introduction to the

rs 5 × 20 corpus (2011), this section presents summary statistics that help

to understand the corpus and some of the basic properties of harmony in

late-twentieth-century popular music.

Because it is the only other corpus that is comparable in scope, where

possible, this section will also compare the summary statistics from the

Billboard corpus with statistics from De Clercq and Temperley’s corpus.

They drew their corpus from Rolling Stone magazine’s ‘500 Greatest Songs

of All Time’. Unlike the Billboard Hot 100, which despite the attempted

manipulations, sought to present the music to which the public was actually

listening, the Rolling Stone’s compilation is a consensus of industry elites

based more on perceived historical importance or quality. Thus, our more

populist corpus and De Clercq and Temperley’s corpus reflect two different
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yet overlapping understandings of what constitutes popular music, and it is

worthwhile to investigate both where they differ and were they do not. The

only published results on De Clercq and Temperley’s corpus are from the

rs 5 × 20, which contained the 20 top-ranked songs from each of the 1950s,

1960s, 1970s, 1980s, and 1990s (de Clercq & Temperley 2011; Temperley

2011). Since the publication of these articles, they have released a larger

corpus of 200 transcriptions in total, supplementing the 99 rs 5 × 20

songs (De Clercq and Temperley excluded one song from the 1990s due

to insufficient harmonic content) with the 101 highest-ranked songs from

‘Greatest Songs of All Time’ that had not appeared in the original corpus.∗∗

This larger corpus is the basis for comparison throughout the section; I will

denote it the Rolling Stone corpus and ours the Billboard corpus. The two

corpora have 32 songs in common, which may form the basis for further

study (see table 4.2).

• Multinomial and Dirichlet-Multinomial Distributions

The first statistic that one might think to compute from a corpus of har-

mony is the distribution of the roots of all chords in terms of pitch classes.

This concept seems simple, but that simplicity is deceptive: what kind

of distribution is one seeking, exactly? For the populist Billboard corpus,

the most plausible goal seems to be the relative frequencies of chord roots

heard by an average listener over the period in question, i.e., the relative

frequencies of chord roots weighted by popularity; for the Rolling Stone

corpus, the most plausible goal would be the relative frequencies of chord
∗∗http://theory.esm.rochester.edu/rock_corpus/
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Table 4.2 · Songs common to both corpora

artist title year

abba Dancing Queen 1976

The b-52’s Rock Lobster 1980

The Beach Boys God Only Knows 1966

The Beatles A Hard Day’s Night 1964

The Beatles Help! 1965

The Beatles I Saw Her Standing There 1964

David Bowie Changes 1972

James Brown I Got You (I Feel Good) 1965

The Byrds Eight Miles High 1966

Johnny Cash Ring of Fire 1963

Tracy Chapman Fast Car 1988

Ray Charles Georgia on My Mind 1960

Eric Clapton Layla 1971

Patsy Cline Crazy 1961

Cream Sunshine of Your Love 1968

The Jacksons I Want You Back 1969

Elton John Your Song 1970

The Kingsmen Louie Louie 1963

John Lennon Imagine 1971

Otis Redding (Sittin’ on) the Dock of the Bay 1968

Otis Redding I’ve Been Loving You Too Long (to Stop Now) 1965

The Rolling Stones Honky Tonk Women 1969

The Ronettes Be My Baby 1963

The Shirelles Will You Love Me Tomorrow 1960

Simon & Garfunkel The Sounds of Silence 1965

Sly & the Family Stone Everyday People 1968

Bruce Springsteen Born to Run 1975

Steppenwolf Born to Be Wild 1968

Rod Stewart Maggie May 1971

Ike & Tina Turner River Deep, Mountain High 1966

u2 With or Without You 1987

Wilson Pickett In the Midnight Hour 1965
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roots weighted by perceived quality. Because the corpora selected complete

songs rather than random selections of individual chords, however, it is

impossible to estimate appropriate relative frequencies for either corpus

without making some assumptions about how selecting songs interacts with

the relative frequencies of chord roots.

The simplest assumption to make is that there is no interaction at all, i.e.,

that all songs have the same distribution of chord roots on average and that

there is no systematic deviation from this average, or more formally, if X is a

random variable mapping each outcome ω ∈ Ω to its root and Y is a random

variable mapping each outcome to its song, then fX∣Y = fX. Under this

assumption, there is a twelve-dimensional parameter vector π representing

the relative frequencies of each pitch class in the corpus, weighted for

popularity or quality as appropriate to the corpus, with the constraint that

∑
11
i=0 πi = 1 so that

fX(i;π) = πi (4.1)

is a valid probability mass function for i ∈ {0, 1, . . . , 11}; such a random

variable X is described as following a categorical distribution. Because of the

assumption that the song is completely independent of X, the probability

distribution function for random variables Z, where each of the Zi, for i ∈

{0, 1, . . . , 11}, map outcomes ω to the total number of beats with pitch

class i in the song Y(ω). Strictly speaking, because of the assumption that

the sample space Ω of all popular music is very large but finite,

fZ∣Y(z, y;ψ) =
∏

11
i=0 (

mi
zi
)ψzii

∑{z′:∑i z′i=length(y)}∏
11
i=0 (

mi
z′i
)ψz

′

i
i

(4.2)
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where mi is the total number of instances of chord root i in Ω for each i ∈

{0, 1, . . . , 11} andψ is a vector of weights corresponding to popularity in the

case of the Billboard corpus or quality in the case of the Rolling Stone corpus.

This distribution is known as Fisher’s non-central multivariate hypergeometric

distribution. Its mathematical properties make it rather difficult to use: even

when the parameters are known, the expected value of this distribution

is usually only approximated (McCullagh & Nelder 1989, pp. 261–62).

Fortunately, when the mi are much larger than the zi, which is certainly

the case for the corpora under study here, the much simpler multinomial

distribution is a close approximation:

fZ∣Y(z, y;π) =
length(y)!

∏
11
i=0(zi!)

11

∏
i=0

πzii . (4.3)

Using the relative frequencies of roots in the corpus to estimate π is equi-

valent to assuming this multinomial approximation on fZ∣Y (McCullagh &

Nelder 1989, pp. 164–74).

It is very easy to compute simple relative frequencies on a corpus, and

so like many others, De Clercq and Temperley implicitly assume both the

multinomial approximation and the independence of songs and root distri-

butions in their analyses of the rs 5 × 20 corpus. Musically, however, it is

rather implausible that songs and root distributions should be independent:

it is exactly such a dependence that allows one to describe individual songs

as having a particular harmonic feel. One might take this idea to its logical

extreme and assume that there are no identifiable commonalities among

songs whatsoever, namely that the distribution of chords in any one song

is completely unique to the song itself. Such an assumption has its own
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musical implausibilities, however, as it denies any notion of style. Ideally,

one needs a compromise that models fZ∣Y using more information about

the song than its length.

The Dirichlet-multinomial distribution, also known as a multivariate Pólya

distribution or compound multinomial distribution, is such a compromise

(Mosimann 1962). Like the case where songs and root distributions are as-

sumed to be independent, the Dirichlet-multinomial distribution presumes

that the counts of roots in any given song do follow a multinomial distribu-

tion, but it allows each song to have its own multinomial distribution, and

thus also its own parameter vector πy characterising that multinomial distri-

bution. The Dirichlet-multinomial distribution further assumes that the πy
cluster around an ‘average’ parameter vector π′, which one can think of as

characterising the multinomial distribution over the roots of a prototypical

song in the corpus. The degree to which the actual songs deviate from

this prototype is reflected by a dispersion parameter ϕ ∈ (0, 1). Low values

of ϕ imply that there is little variation, i.e., that all of the πy are very close

to π′ and that the simple multinomial approximation is less problematic;

high values of ϕ, particularly those greater than 0.5, imply that the πy
may intuitively seem somewhat far from π′. More specifically, the πy are

assumed to follow a Dirichlet distribution:

fΠ(π;π′,ϕ) =
Γ (

1−ϕ
ϕ )

∏
11
i=0 Γ (

1−ϕ
ϕ π
′
i)

11

∏
i=0

π
1−ϕ
ϕ π′i−1

i . (4.4)

The Dirichlet-multinomial distribution function is the expected value of

all possible multinomial distribution functions when the parameters πy of
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the multinomial distributions obey a Dirichlet distribution:

fZ∣Y(z, y;π′,ϕ) = EΠ [
length(y)!

∏
11
i=0(zi!)

11

∏
i=0

πzii ] (4.5)

= ∫△11

length(y)!

∏
11
i=0(zi!)

11

∏
i=0

πzii ⋅
Γ (

1−ϕ
ϕ )

∏
11
i=0 Γ (

1−ϕ
ϕ π
′
i)

11

∏
i=0

π
1−ϕ
ϕ π′i−1

i dπ

(4.6)

=
length(y)!

∏
11
i=0(zi!)

⋅
Γ (

1−ϕ
ϕ )

∏
11
i=0 Γ (

1−ϕ
ϕ π
′
i)
⋅ ∫△11

11

∏
i=0

π
zi+

1−ϕ
ϕ π′i−1

i dπ

(4.7)

=
length(y)!

∏
11
i=0(zi!)

⋅
Γ (

1−ϕ
ϕ )

∏
11
i=0 Γ (

1−ϕ
ϕ π
′
i)
⋅
∏

11
i=0 Γ [zi +

1−ϕ
ϕ π
′
i]

Γ [length(y) + 1−ϕ
ϕ ]

(4.8)

=
length(y)!

∏
11
i=0(zi!)

⋅
∏

11
i=0∏

zi
j=1 [π′i(1 − ϕ) + ϕ( j − 1)]

∏
length(y)
j=1 [1 − ϕ + ϕ( j − 1)]

. (4.9)

Here, the notation ∫△11 dπ is the multiple integral over all valid π, i.e.,

∫
1

0 dπ0 ∫
1−π0

0 dπ1⋯ ∫
1−∑9

i=0 πi
0 dπ10. Form (4.8) is the most common form

of the Dirichlet-multinomial distribution, usually with the substitution

αi ≜
1−ϕ
ϕ π
′
i (which implies that 1−ϕ

ϕ = ∑11
i=0 αi ). This form is also the form

used internally in most numerical optimisation packages. Bioinformaticians,

in contrast, make more direct mathematical use of the dispersion parameter

and thus sometimes prefer to use the equivalent form (4.9) instead (Curran

et al. 1999; Paul, Balasooriya & Banerjee 2005; Tvedebrink 2010).

The Dirichlet distribution has its flaws as a choice for averaging over

multinomial distributions, but it has proved remarkably difficult to find
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Figure 4.6 · Marginal distribution functions of the Dirichlet distribution for any parameter πi
(measured in %) at selected values of ϕ and with π′i = 30%.
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viable alternatives (for a good discussion of the these issues, see Aitchison

1982). The Dirichlet distribution also has some strong assets, however,

particularly the dispersion parameter ϕ, which can characterise a variety

of possible ‘shapes’ in the data. Figure 4.6 illustrates this effect. More

specifically, this figure shows the marginal distribution functions for an

arbitrary πi (i.e., an arbitrary component of one of the πy in the context of

a Dirichlet-multinomial distribution) at several selected values of ϕ when

π′i has been fixed to be 30 percent. As ϕ increases, the distribution starts

to skew in favour of smaller values of πi and eventually splits into what is

known as a bimodal distribution in which values of πi near the nominally

expected value of 30 percent are in fact much less likely than extreme

values near 0 or 100 percent. One important message from this figure is

that when ϕ is greater than about 0.5, one must be aware that although

π′ is technically a correct average, one should not expect any particular πy
to look anything like it.

Before using the multinomial and Dirichlet-multinomial models to in-

vestigate the Billboard and Rolling Stone corpora, one final note is necessary

about how to estimate parameters like π, π′, and ϕ. There are many ap-

proaches to estimating parameters (see Wasserman 2004, chap. 9–10, or any

other graduate text on statistics for an overview), but for this research, all

parameters are approximated using the maximum-likelihood approach. The

maximum-likelihood approach presumes that every instance in a corpus

was drawn independently of all others (which is not strictly true of the

Rolling Stone corpus given the rules for selecting songs, but it is impractical

to try to correct for its bias). The maximum-likelihood estimator (mle ), often
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denoted θ̂, is the value of θ that maximises the likelihood function

LX(θ; x) ≜∏
i
fX(xi;θ) , (4.10)

or equivalently maximises the log-likelihood function

lX(θ; x) ≜∑
i

log LX(θ; x) , (4.11)

for a random variable X with a distribution function parameterised by

a vector θ and a corpus x. In addition to θ̂, frequentist statisticians will

usually provide confidence intervals for the components of θ at some level

of confidence α. If the corpus x indeed was drawn from a sample space

such that the distribution function of X is fX for some parameter setting θ∗,
then if one could compute confidence intervals an infinite number of times,

the relative frequency of intervals that failed to include θ∗ would be α.

Finally, in the case of musical data, one must decide how to count the

number of musical elements in a song. Many authors, including De Clercq

and Temperley, simply count the number of unique appearances of a chord,

regardless of duration, but it is unclear to what sample space Ω such an

approach would correspond. There are a number of better-defined choices,

but for the purposes of this research, each musical beat is counted as a

distinct entity, e.g., a C major chord that lasted one bar in 4
4 time would

be counted as four instances of C. This choice corresponds as closely as

practical to weighting the sample space to reflect the actual relative amount

of time a listener would have heard one entity versus another.
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Table 4.3 · Expected frequencies of absolute roots

billboard rolling stone

dir-multi multi dir-multi multi

root π̂′ (%) c.i. π̂ (%) c.i. π̂′ (%) c.i. π̂ (%) c.i.

C♯ 2 2 – 2 2 2 – 2 4 2 – 6 4 3 – 4

F♯ 4 3 – 5 4 4 – 4 5 3 – 7 4 4 – 5

B 7 6 – 7 7 6 – 7 7 5 – 9 5 5 – 5

E 10 9 – 11 12 12 – 12 11 9 – 14 13 12 – 13

A 13 12 – 14 13 13 – 13 14 11 – 17 13 13 – 14

D 13 12 – 14 13 13 – 13 13 10 – 17 11 11 – 12

G 14 12 – 15 12 12 – 12 13 9 – 16 12 12 – 12

C 12 11 – 13 12 12 – 12 10 7 – 13 9 9 – 10

F 10 9 – 11 9 9 – 9 8 6 – 10 9 9 – 10

B♭ 7 6 – 8 7 7 – 7 6 4 – 8 8 7 – 8

E♭ 5 4 – 5 5 5 – 5 4 3 – 6 6 5 – 6

A♭ 4 3 – 5 5 5 – 5 5 3 – 6 6 5 – 6

ϕ̂ c.i. ϕ̂ c.i.

0.41 0.40 – 0.42 0.47 0.44 – 0.50

• Chord Roots

Table 4.3 presents π̂′ for the Dirichlet-multinomial model and π̂ for the

simple multinomial model as percentages over the roots of all chords, re-

duced to their twelve-tone pitch class, in both the Billboard and Rolling Stone

corpora. These correspond to the expected relative frequencies of each

pitch class under the model, and the maximum expected frequency under

153



THE BILLBOARD DATA SET

each model is marked as bold to aid reading. The table also presents ϕ̂ for

the Dirichlet-multinomial models. Although the Dirichlet-multinomial

distribution is more tractable than Fisher’s non-central hypergeometric dis-

tribution, it is complex enough that there are no published methods to my

knowledge for computing exact confidence intervals for its parameters, but

it is possible to estimate standard errors, which are approximately distributed

according to the well-known Gaussian distribution for sufficiently large

samples, and derive approximate confidence intervals using them. The

confidence intervals for the Dirichlet-multinomial parameters in table 4.3

and all other tables in this chapter use standard errors with a Bonferroni

correction (Wasserman 2004, p. 166) such that approximately 19 times out

of 20, all of the presented confidence intervals will contain the correct val-

ues of their corresponding parameters (without the Bonferroni correction,

the confidence intervals would be narrower but one could only claim that

each presented confidence interval would contain the correct parameter

19 times out of 20, which would imply that one would expect at least one

of them to be wrong in any given table). The multinomial distribution is

much simpler, but confidence intervals on multinomial distributions have

received surprisingly little attention in the literature. There are several

computationally intensive techniques for computing exact or near-exact

confidence intervals on the parameters of a multinomial distribution (Sison

& Glaz 1995; Hou, Chiang & Tai 2003) as well as more easily computed ap-

proximations (Goodman 1965; Bailey 1980). Table 4.3 and all other tables

in this chapter use one of J. B. R. Bailey’s methods to compute approximate

confidence intervals on multinomial distributions (1980, eqs. 6 and 8′ );

this method is designed such that approximately 19 times out of 20, every
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one of the confidence intervals will contain the correct value of its corres-

ponding parameter without needing an extra Bonferroni correction. Both

of these corpora are sufficiently large that the confidence intervals for the

simple multinomial models are extremely tight, but for the more complex

Dirichlet-multinomial model, the confidence intervals are wider.

The table shows that the roots are predictably skewed toward white

notes, with perhaps slightly more emphasis on the flatter side of the circle

of fifths for the Billboard corpus and slightly more emphasis on the sharper

side of the circle of fifths for the Rolling Stone corpus. The differences

between the Dirichlet-multinomial and multinomial estimates of the ex-

pected frequencies of roots are negligible; indeed, the confidence inter-

vals overlap in all cases. The extra dispersion parameter one has in the

Dirichlet-multinomial model tells a critical story, however, that the simple

multinomial model misses entirely. As illustrated earlier in figure 4.6, at

values of ϕ around 0.4, the roots in individual songs are not necessarily

distributed near the expected values reflected in π̂′. A model with less

dispersion is necessary to draw stronger conclusions about the harmonic

style – and the simple multinomial models that are so often used in the

literature are, in this case, misleading.

Standard music theory would suggest that key has a substantial effect on

the distribution of pitch classes, and so it is the logical place to start when

attempting to find a better-dispersed model. Table 4.4 fits the same models

as those of table 4.3 but to the pitch classes of the acting tonics at every

beat rather than the roots of the chords at every beat. Here, the simple

multinomial fits are superficially plausible but extremely misleading. The

great majority of popular songs visit only a single key and very few visit
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Table 4.4 · Expected frequencies of different tonics

billboard rolling stone

dir-multi multi dir-multi multi

root π̂′ (%) c.i. π̂ (%) c.i. π̂′ (%) c.i. π̂ (%) c.i.

F♯ 12 10 – 15 2 2 – 2 12 6 – 17 3 3 – 3

B 12 10 – 15 5 5 – 5 12 6 – 17 2 2 – 3

E 6 4 – 7 13 13 – 13 10 5 – 15 17 16 – 17

A 6 4 – 7 13 13 – 13 8 3 – 12 15 15 – 15

D 7 5 – 9 15 15 – 15 6 2 – 10 9 9 – 10

G 5 4 – 7 11 11 – 11 8 4 – 13 12 12 – 12

C 6 5 – 8 14 14 – 14 6 2 – 10 10 10 – 11

F 4 3 – 5 8 8 – 8 6 2 – 10 10 10 – 10

B♭ 4 2 – 5 6 6 – 6 4 1 – 8 7 6 – 7

E♭ 12 10 – 15 5 5 – 5 4 1 – 7 7 7 – 7

A♭ 12 10 – 15 6 6 – 6 12 6 – 17 4 3 – 4

D♭ 12 10 – 15 1 1 – 1 12 6 – 17 4 4 – 4

ϕ̂ c.i. ϕ̂ c.i.

0.93 0.92 – 0.93 0.92 0.90 – 0.94

more than two, but the simple multinomial model presumes that songs are

ready to modulate at any moment. Again, the extra dispersion parameter

in the Dirichlet-multinomial model saves the day. For both corpora, ϕ̂ is

very high, reflecting the fact that although there is much variation among

songs, the chords in any given song are concentrated on just a few keys.

With such an extreme dispersion parameter, however, one must interpret π′
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with caution: although it would seem that π̂′ implies a high frequency of

remote keys in each corpora, in fact, these vectors illustrate that songs in

keys near the centre of the circle of fifths are more likely to have passages

in other keys, whereas songs in remote keys are less likely to modulate.

This example is primarily illustrative and confirmatory, as one does

not really need to cite a ϕ-value to support that statement that most popular

songs remain in more or less a single key throughout. There are other

hidden dangers in table 4.4, however, stemming from the fact that keys

do not follow the assumptions of a simple multinomial model at all, and

yet it is exactly this model that one presumes when examining simple

counts of chords. When using a statistical software package to do a simple

multinomial analysis, one might well see confidence intervals like the ones

presented in the table. These intervals are mathematically correct, but

because the assumptions underlying the model are so incorrect, they are

musicologically meaningless. Because almost all songs only explore one or

two keys, when asking about the distribution of keys in the corpus, one is

more likely thinking of the question of how likely it is that any given key

will appear at some point in a song, not the probability that a chord chosen

at random from any moment in time will be in a particular key. Table 4.5

presents these frequencies with approximate confidence intervals according

to the method of Alan Agresti and Brent Coull (1998) such that any one of

them will contain the correct frequency 19 times out of 20. Because each

of them represents a single probability, the Bonferroni correction did not

seem appropriate. Even without the Bonferroni correction, however, which

usually widens confidence intervals considerably, the confidence intervals

are much wider, especially for the smaller Rolling Stone corpus. The reduced
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Table 4.5 · Expected proportion of songs visiting each tonic

billboard rolling stone

tonic f (%) c.i. f (%) c.i.

F♯ 2 1 – 3 5 3 – 9

B 5 4 – 7 4 2 – 8

E 13 12 – 15 20 15 – 27

A 12 11 – 14 16 11 – 21

D 15 14 – 17 12 8 – 17

G 12 11 – 14 16 12 – 22

C 14 13 – 16 12 8 – 17

F 9 8 – 11 12 9 – 18

B♭ 8 7 – 10 9 6 – 14

E♭ 6 5 – 7 8 5 – 13

A♭ 7 6 – 8 4 2 – 8

D♭ 1 0 – 2 5 3 – 9

precision is perhaps frustrating, but it is a more accurate reflection of the

strength of conclusions one can draw from these corpora. The apparent dip

for D-based keys in the Rolling Stone corpus, for example, is not statistically

significant, and likewise, even the apparently heavy emphasis on E-based

keys in the Rolling Stone corpus is only statistically distinguishable from the

particularly unusual keys of F♯, B, A♭, and D♭. Certainly it is not possible

to conclude whether there is any difference with respect to the distribution

of keys between the Billboard and Rolling Stone corpora.

Ultimately, the most sensible manner of analysing chord roots is relative

to key. Typically, this is done relative to the local key, and such was De
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Table 4.6 · Expected frequencies of roots relative to overall tonic

billboard rolling stone

dir-multi multi dir-multi multi

root π̂′ (%) c.i. π̂ (%) c.i. π̂′ (%) c.i. π̂ (%) c.i.

♯IV 1 1 – 1 1 1 – 1 0 0 – 1 0 0 – 0

VII 1 1 – 1 0 0 – 0 0 0 – 1 0 0 – 0

III 3 2 – 3 3 3 – 3 2 1 – 2 2 2 – 2

VI 5 4 – 5 6 6 – 6 3 2 – 4 5 5 – 6

II 5 5 – 6 6 5 – 6 3 2 – 4 4 4 – 4

V 16 15 – 17 15 15 – 15 16 13 – 18 14 14 – 15

I 41 40 – 43 40 40 – 40 48 44 – 53 46 45 – 46

IV 19 18 – 20 18 18 – 18 21 17 – 24 19 18 – 19

♭VII 4 3 – 4 5 5 – 5 3 2 – 4 5 4 – 5

♭III 2 2 – 2 2 2 – 2 2 1 – 2 2 2 – 2

♭VI 2 2 – 3 3 3 – 3 1 1 – 2 2 2 – 3

♭II 1 1 – 1 1 1 – 1 1 0 – 1 0 0 – 0

ϕ̂ c.i. ϕ̂ c.i.

0.20 0.19 – 0.20 0.21 0.19 – 0.23

Clercq and Temperley’s analysis of the rs 5 × 20 corpus. John Snyder

has shown that different strategies for simplifying with respect to key can

cause substantially different statistical conclusions, however, and found that

tracking scale degrees relative to the global key yields more accurate con-

clusions when faced with harmonic complexity (Snyder 1990). Table 4.6

shows the estimated parameters for the Dirichlet-multinomial and simple
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multinomial models for these ‘structural’ roots. The dispersion parameters

at 0.2 immediately show that this model is more reasonable. Predictably,

the tonic, subdominant, and dominant have the overwhelming majority of

the weight. Consistent with the relatively low dispersion parameter, the

differences between the Dirichlet-multinomial and simple multinomial

models are trivial in most cases, with only some minor differences for VI

and ♭VII chords, although it is still high enough to suggest that the Dirichlet-

multinomial model (and the wider confidence intervals that accompany

it) is the more appropriate model. The differences between the corpora

are minor, although it appears that Billboard corpus may have slightly more

emphasis on the sharper side of the circle of fifths and very remote chords,

perhaps indicative of a greater prevalence of modulations up a whole tone

or semitone in pop relative to rock.

As De Clercq and Temperley did with the rs 5 × 20, it is logical to

wonder whether these distributions change over decades or affect the chart

position. The decade does have a statistically significant effect for both

corpora, and table 4.7 presents the parameters of the Dirichlet-multinomial

models fit to each decade for the Billboard corpus. The musicological story

is consistent with what one would expect. Harmony in the 1950s was

considerably simpler than it became in later decades, and the lower ϕ̂ also

illustrates that there was less variation among songs. Harmonic complexity

and diversity seems to have peaked in the 1970s, as reflected by the high

value of ϕ̂. Another notable change in the 1970s is the increase in emphasis

on the flatter side of the circle of fifths, a change that persists through until

the end of the corpus. After a reduction in diversity in the 1980s, it appears

that diversity and complexity come back in the 1990s, a pattern that is
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clear even with the relatively small selection of songs from the 1990s in

the Billboard corpus because of the cut-off date in 1991. The pattern in the

Rolling Stone corpus is similar.

For the Billboard corpus, it is also possible to assess whether the dis-

tribution of roots has any effect on chart popularity. The preliminary

results were encouraging. After mapping each song to the highest quin-

tile it ever achieved on the Billboard chart (1–20, 21–40, etc.), an analysis

analogous to that for decades in table 4.7 also proved to be statistically

significant, i.e., if roots in popular music weighted by popularity followed

a Dirichlet-multinomial model that did not vary over decade, then the

relative frequency of random corpora where the models by decade would

fit as much better than the simple model from 4.6 as they do for the actual

Billboard corpus would be less than 5 percent. Musicologically, however,

the differences were trivial.

• Chord Classes

One of the most important contributions of the Billboard corpus is that,

unlike the Rolling Stone corpus, not only the roots but also the qualities

of all of the chords have been curated. Moreover, these qualities include

detailed information about upper extensions and inversions, comparable

in detail only to Christopher Harte’s annotations of the Beatles’ œuvre.

Excluding inversion, there are 104 distinct qualities represented in the

corpus. Table 4.8 lists those that appear more than one thousand times

along with their relative frequency over the entire corpus. Collectively,

major chords, minor chords, and dominant seventh chords dominate the
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Table 4.8 · Most frequent chord qualities in the Billboard corpus

quality frequency

maj 51.6

min 13.0

7 10.1

min7 8.4

maj7 2.6

5 2.1

[open bass] 2.0

add9 1.1

maj6 0.9

sus4 0.9

sus7 0.8

sus9 0.8

7(♯9) 0.7

min9 0.7

maj9 0.4

11 0.3

9 0.3

7(omit3) 0.3

13 0.2

min11 0.2

sus2 0.2

maj6(add9) 0.2

min6 0.2

dim 0.2
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corpus, accounting for more than two thirds of all chords. As the table

illustrates, however, with a corpus of this size, it is possible to extend

previous investigations to consider the most important extended chords:

certainly suspended chords and added ninths, and perhaps also added sixths

(or thirteenths). With only a few exceptions – e.g., Ian Simon, Dan Morris,

and Sumit Basu, who included suspended chords in an accompaniment-

generation system for vocal melodies (2008) – researchers have ignored these

extended chords, choosing instead to model augmented and diminished

triads and the seventh chords thence derived. The frequencies in this corpus

do not support this practise: of this entire category, only the diminished

triad appears more than a thousand times, and even altogether, these chords

comprise less than half a percent of the corpus.

Unfortunately, with so many possible chords, it is impractical to under-

take a Dirichlet-multinomial analysis. One can make a step in this direction,

however, by making use of Bayesian networks, as first seen in section 2.2.

The challenge is determining what the structure of this network should be,

ideally by gleaning much information from the corpus as possible. Learn-

ing the structure of Bayesian networks from data is a difficult task, and

several classes of approaches have been tried; Koller and Friedman have an

excellent discussion of the issues involved in their textbook on graphical

models (Koller & Friedman 2009, chap. 18).

Because it is more compatible with a frequentist interpretation of prob-

ability than some of the other approaches, I chose to use the constraint-based

family of approaches to structure learning (in contrast to the more subject-

ivist score-based family). Working on the principle that Bayesian networks

are intended to represent independence relationships, constraint-based
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methods rely on a battery of independence tests between all possible com-

binations of relevant random variables. Each of these tests is designed such

that after an infinite number of them, the relative frequency of failures

(variables deemed to have a relationship when in fact they are independent)

would be less than or equal to some fixed probability α, traditionally 5

percent. Based on these tests, one constructs an undirected skeleton of the

network, and then as many of these edges as can be unambiguously directed

are directed consistent with the data (recall from section 2.2 that multiple

networks can represent that same independence relationships). A very

large number of independence tests are necessary when using constraint-

based approaches (several thousand in the example in this chapter), and so

it is also good practise to use a Bonferroni correction on α, usually quite a

substantial correction, to ensure that the probability that the graph posits

any false relationships is a false one is less than desired. All of the learned

graphs in this chapter have been corrected such that at least 19 times out

of 20, they would contain no incorrect edges if the underlying data were

distributed according to a multinomial distribution.

The classical algorithm for constraint-based structure learning – and the

easiest to understand – is the IC algorithm of Thomas Verma and Judea Pearl

(Pearl 2009, pp. 49–54), highlighted in figure 4.7. The first step relies on a

very large number – O(2n) – of independence tests among variables, which

can make it impractical for all but very small numbers of variables. The

most commonly used variant, known as the PC algorithm, seeks to optimise

this first step so as to eliminate redundant independence tests (Spirtes,

Glymour & Scheines 2000, pp. 84–90). More recent work in constraint-

based structure learning has focused on learning the Markov blankets
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1. For each pair of variables a and b in V, search for a set Sab such that (a á b ∣ Sab)

holds in P̂ – in other words, a and b should be independent in P̂, conditioned

on Sab. Construct an undirected graph G such that vertices a and b are connected

with an edge if and only if no set Sab can be found.

2. For each pair of nonadjacent variables a and b with a common neighbor c, check

if c ∈ Sab. If it is, then continue. If it is not, then add arrowheads pointing at c (i.e.,

a→ c← b ).

3. In the partially directed graph that results, orient as many arrowheads as possible

subject to two conditions: (i) any alternative orientation would yield a new v-

structure; or (ii) any alternative orientation would yield a directed cycle.

(Pearl 2009, p. 50)

Figure 4.7 · The IC algorithm for learning the structure of Bayesian networks from data.

of individual nodes in the network first in order to reduce the number

of independence tests more substantially (Margaritis 2003; Tsamardinos,

Aliferis & Statnikov 2003; Yaramakala & Margaritis 2005). With only

a slight degradation of accuracy, the Markov-blanket methods are much

faster than the IC/PC algorithm, and as such, they were the basis for the

graphs presented in this chapter.

In addition to the general problem of how to learn the structure of

any Bayesian network, there is also the challenge of which variables one

wishes to include in the network and what may already be known about

causal relationships and potential causal relationships among them. For

chords, even with detailed chord annotations like those in the Billboard

corpus – indeed, perhaps especially with detailed annotations like those in
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the Billboard corpus – it is quite difficult to determine what the most salient

descriptors should be. In order to make as few assumptions as possible, and

thus to learn as much from the corpus as possible, I chose to use variables

fairly close to how extended chords are described.

third can take the values of major, minor, or absent. It reflects the quality

of the third of the chord.

�fth can take the values of perfect, diminished, augmented (rare), or absent.

It reflects the quality of the fifth of the chord.

seventh can take the values of major, minor, diminished, or absent. It

reflects the quality of the seventh of the chord.

ninth can take the values of major, minor, augmented, or absent. It reflects

the quality of the ninth or added second in a chord in most cases.

This variable also comes into play in sus2 chords, where third will be

absent and �fth will be perfect. The augmented ninth occurs almost

exclusively in the context of the funk 7(♯9) chord.

eleventh can take the values of perfect, augmented, or absent. In general,

the perfect eleventh is associated with an absent third in sus4 chords

whereas the augmented eleventh is usually an addition for colour.

thirteenth can take the values of major, minor, or absent. A major thirteenth

is the only addition in the very common maj6 and min6 chords, but

it can also appear with other extensions.
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relative.bass is the interval of the bass note of the chord relative to its root,

following the pattern of Christopher Harte et al. (2005).

All of these variables, of course, take their meaning from a tonal context,

which I encoded as three variables.

global.tonic is the pitch class of the tonic in the overall key of the piece.

local.tonic is the scale degree of the local tonic relative to global.tonic.

global.root is the scale degree of the root of the chord relative to global.tonic

rather than local.tonic, a choice motivated as before by John Snyder’s

guidelines for musicological corpus analysis (1990).

One of the most vexing difficulties in choosing variables is the un-

avoidable possibility that what appears to be a causal relationship in the

data is in fact the effect of some other confounding variable that one has

neglected to consider or measure. Because of Simpson’s paradox (see § 2.2),

ignoring confounding variables can cause researchers to draw entirely in-

correct conclusions in some cases. Worse still, there is no general statistical

test for confounding – Pearl has a thorough proof of this fact entititled

‘Why there is no statistical test for confounding, why many think there is,

and why they are almost right’ (2009, pp. 182–89) – although there are

algorithms that can flag those areas of a learned Bayesian network that could

possibly be affected by such variables, e.g., the IC∗/FCI algorithm (Pearl

2009, pp. 52–54). To keep the analysis simple, however, there will be no

complete analysis of possible confounding variables in this chapter; this is

an important area of future work. Nonetheless, many likely confounders
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are readily available in the Billboard corpus, and these have been included

in all analyses in this chapter.

decade is the decade that the song made the Billboard charts, which can

check for changes in style over time.

song is the actual song, in order to check for idiosyncracies that go beyond

traditional style. Including song also compensates for our inability to

use the full Dirichlet-multinomial model. The Dirichlet-multinomial

models assumes that given a particular song, the data are distributed

according to a multinomial distribution, and so by including song in

the network, the Dirichlet assumption is unnecessary.

quintile is the highest quintile of chart ranks that the song ever achieved,

which can check whether and how harmony may have affected pop-

ularity.

bar.of.phrase is the ordinal number of the bar within its phrase, up to a

maximum of eight bars. Very few phrases in the corpus exceed eight

bars, but for such phraes, all bars beyond the eighth are designated

as ‘>8’.

bar.length is the length of the bar in beats, which stands as a proxy for

the metre. This variable does not distinguish simple metres from

compound metres; e.g., a 6
8 bar will have bar.length 2.

beat.of.bar is the ordinal number of the beat within the bar. Temperley

has recently shown that this variable can be quite important (2009),
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song

decade

quintile global.tonic

bar.of.phrasebar.length

beat.of.bar

local.tonic

global.root

third

fifth

seventh

ninth

eleventh

thirteenth

relative.bass

Figure 4.8 · A Bayesian network for popular chords. This network represents a single moment in

time. The decade, song, global key, and peak quintile on the charts are independent of the rest of

the network.

consistent with earlier work in the psychological literature (Jones,

Boltz & Kidd 1982).

Figure 4.8 shows the resulting Bayesian network for popular harmony

using the incremental-association algorithm (Tsamardinos, Aliferis & Stat-

nikov 2003) on the Billboard corpus with a Bonferroni correction on the

independence tests to ensure that the probability that the network contains

an erroneous dependency is less than 0.05. This correction causes the

algorithm to be quite conservative in adding edges, and so note carefully

that there is no such guarantee that the network is not missing edges; rather,

the absence of edges simply means that the data alone are insufficient to

demonstrate a relationship between two variables. The most salient pat-
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tern is the separation of decade, song, quintile, and global.tonic from all

other variables. Again, although one must be wary of considering this

separation definitive, it suggests that there is a somewhat stable musical

style throughout the period, independent of particular decades, songs, or

absolute keys. It also suggests that harmonic usage was not responsible

for the popularity of songs in the period in question; either popularity is

random, or there are other (confounding) factors dependent on the song

that would be responsible. (Because we know exactly how the songs were

selected and because they were selected at random, we know that in this

case, confounding factors could not have a causal effect on the song itself.)

The next notable pattern is that the algorithm was unable to determine the

direction of the causal effect between local.tonic and global.root, and that

both of these nodes have the same children: third and seventh. This pattern

suggests that, contrary to Snyder, harmonic patterns in this style of music

are based on local key without regard to the global harmonic structure;

such a pattern is consistent with the well-known modulations up by tone or

semitone for the final verse or chorus of a popular song, which are obviously

not structural in the same way as a classical move to the dominant region

or the relative major. This pattern is also consistent with recent empirical

results on modelling chord sequences from Ricardo Scholz, Emmanuel

Vincent, and Frédéric Bimbot (2009). Finally, it is notable that third and

seventh together separate all of the other qualities of chords from the rest

of the network. The corpus supports the traditional understanding in jazz

theory that the third and the seventh are the defining components of a

chord.

It is very tempting now to look at the right side of the figure and try to
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develop an understanding of how all of the other components of chords

relate to one another, at least as evidenced by the Billboard corpus. Here,

however, one must remember that any Bayesian networks that share the same

set of immoralities represent identical sets of conditional dependencies, and

the only immorality among the set of chord components other than the root

is third→ seventh← ninth. Moreover, detailed output from the incremental

association algorithm shows that even the direction of the effect between

seventh and ninth is not entirely certain. In short, one could re-orient almost

any arrow among the harmonic components in figure 4.8 and have a model

that the corpus supports just as well. After classifying chord types by their

third and seventh (including the absence thereof), some combination of

music theory and a more careful selection of variables would be necessary to

unpack more information about the causal relationships, if any, among the

harmonic components. This ambiguity is in sharp contrast to the middle

of the figure, where there are also few immoralities, but the direction

of causality is obvious from the nature of the entities themselves, e.g.,

the seventh of a chord certainly could not be a causative factor for the

prevailing metre, and so one can confidently force the direction of the edge

bar.length→ seventh.

Finally, the edges from bar.length and beat.of.bar to third and seventh

confirm Temperley’s finding that metre has an important effect on har-

mony. Perhaps more interesting, however, is the edge from bar.of.phrase to

global.root. This edge confirms the traditional idea that many phrases fol-

low some kind of over-arching harmonic plan. It is particularly interesting

that bar.of.phrase is the only variable for which the corpus finds evidence

of a causal effect on global.root; there is only evidence for bar.length and
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Table 4.9 · Expected frequencies of relative roots at different bars of the phrase (in %)

bar within phrase

root 1 2 3 4 5 6 7 8 >8

♯IV 0 0 0 0 0 0 0 0 0

VII 0 0 0 0 1 0 0 0 0

III 2 3 2 2 2 3 1 3 2

VI 5 7 5 5 5 8 5 4 2

II 5 5 6 5 6 5 4 2 4

V 10 17 14 21 20 19 14 22 8

I 53 34 41 35 37 34 39 39 56
IV 15 21 19 18 15 17 23 19 20

♭VII 3 6 5 6 6 5 8 5 5

♭III 2 3 2 2 2 2 1 1 1

♭VI 2 2 3 3 3 3 4 5 3

♭II 0 0 0 0 0 0 0 0 0

beat.of.bar affecting third and seventh. Table 4.9 breaks down the distri-

bution of local roots on bar.of.phrase. The confidence intervals are all so

tight – the largest is three percentage points wide – that they have been

omitted so as to fit the table on a single page. The greatest values in each

row are set in boldface. A few familiar patterns emerge. Phrases tend to

begin with tonic chords, and very long phrases often end with extended

tonic chords. The bump in the distribution of tonic chords in bar 3 reflects

another well-known pattern of prolonging the tonic at the beginning of

phrases. Dominant chords often occur in bars 4 and 8, reflecting that for

phrases of typical length, it is common to end on a dominant – or more

likely, elide with the tonic beginning the next phrase. Subdominant chords
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are the most likely in bar 7, immediately preceding the bar where it is

most likely to find dominant chords. Chords further away from the tonic

on the circle of fifths tend to occur later and in longer phrases. In short,

although there are certain clear differences such as the prevalence of ♭VII,

common-practise norms also operate fairly clearly in the Billboard corpus.

No other corpus to my knowledge provides as much information about

phrases in popular music, and so uncovering further patterns is an exciting

direction for future work.

4.4 temporal structure

Western theories of harmony generally assume that chords operate under

some kind of temporally inter-dependent structure, often described as

functional harmony, and it is clear from the concepts that arise when trying

to interpret table 4.9 that exploring traditional concepts in music theory

would be easier with statistical models that accounted for time more directly

than including variables like bar.of.phrase and beat.of.bar. This section

explores several such models, starting like the previous section with some

properties of the chord roots only, following the tradition of more recent

corpus analyses of harmony like De Clercq and Temperley’s. It has long

been acknowledged that the notion of functional harmony assumes a causal

structure on musical form (Zierolf 1983, pp. 125–31), and so the section

will conclude with a discussion of two new Bayesian networks based on

the Billboard corpus.
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• Pre- and Post-Tonic Distributions

One of the more discussed conclusions from De Clercq and Temperley’s

analysis of the rs 5 × 20 is that in rock, subdominant chords are more

likely to precede tonic chords than dominant chords. Indeed, they find

that the distribution of roots pre- and post-tonic are nearly identical. This

behaviour is sharply contrary to traditional common-practise harmony. As

discussed before, the Billboard corpus is based on a different, somewhat

broader sample space Ω, and it does not support the same conclusion for

popular music in general.

Table 4.10 lists the estimated π̂′ for the relative roots of chords given

that the immediately following chord is a tonic chord (i.e., the roots of

pre-tonic chords). The interaction of decade and the behaviour proves to be

both statistically and musicologically significant, and so the table provides a

distinct set of parameters for each decade. The 1950s and 1960s show essen-

tially common-practise patterns. Dominant (V) chords appear significantly

more often than subdominant (IV) chords, especially in the 1950s, and there

is very little use of chords other than the dominant and the subdominant,

again particularly for the 1950s. Starting in the 1970s, there is increasing

use of the subdominant chords pre-tonic, but never more than dominant

chords; in fact, even with a corpus this large, as the wide and overlapping

confidence intervals show, the data are insufficient to support a conclusion

that the distribution of dominant and subdominant chords are different at

all in the 1970s, 1980s, or 1990s (although that lack of distinction is itself

a departure from common practise). Beginning in the 1970s, one also sees

chords further from the tonic on the circle of fifths being used more often.
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Table
4.10

·
Expected

frequencies
of

pre-tonic
roots

relative
to

the
overalltonic,

by
decade

(Billboard
corpus

only)

1958–59
1960–69

1970–79
1980–89

1990–91

root
π̂
′(%

)
c.i.

π̂
′(%

)
c.i.

π̂
′(%

)
c.i.

π̂
′(%

)
c.i.

π̂
′(%

)
c.i.

♯ IV
1

0
–

3
1

0
–

1
0

0
–

1
0

0
–

0

V
II

0
0

–
2

1
0

–
2

1
0

–
2

0
0

–
1

2
0

–
4

III
1

0
–

2
2

1
–

2
2

1
–

3
1

0
–

2

V
I

2
0

–
4

4
2

–
5

3
2

–
5

4
2

–
5

5
0

–
10

II
2

0
–

4
4

2
–

5
8

6
–

10
6

4
–

8
7

1
–

13

V
59

46
–

72
47

42
–

52
38

34
–

42
35

31
–

40
39

27
–

52

IV
34

21
–

46
35

31
–

40
35

31
–

39
32

27
–

36
29

18
–

40

♭ V
II

1
0

–
3

3
2

–
5

7
5

–
9

13
10

–
16

10
3

–
16

♭ III
1

0
–

2
2

1
–

3
3

1
–

4
3

0
–

7

♭ V
I

1
0

–
2

1
0

–
2

2
1

–
3

4
2

–
5

3
0

–
7

♭ II
1

0
–

3
1

0
–

1
1

0
–

2
1

0
–

2
2

0
–

4

ϕ̂
c.i.

ϕ̂
c.i.

ϕ̂
c.i.

ϕ̂
c.i.

ϕ̂
c.i.

0.33
0.20

–
0.47

0.45
0.41

–
0.50

0.46
0.42

–
0.49

0.54
0.51

–
0.58

0.62
0.53

–
0.71
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Beginning in the 1980s, these explorations become rather weighted toward

the flat side of the circle of fifths, with the ♭VII chord receiving particular

emphasis; this departure from common-practise harmony is perhaps more

striking than the emphasis on the subdominant chord. The other striking

trend is the increase in dispersion parameters ϕ̂ as the decades progress,

which is consistent with the overall trend of increasing harmonic diversity

first identified in table 4.7. Unlike the earlier table, however, there is

a sharp and statistically significant increase in the diversity of pre-tonic

chords in the 1980s, possibly linked to the changing use of ♭VII; this is

another trend worth of further inquiry. Moreover, all of the dispersion

parameters in tables 4.10 are significantly higher than their counterparts

in 4.7. There is more variation in harmonic practise preceding tonic chords

than there is in the style overall.

Post-tonic, the distribution of dominant and subdominant chords in the

Billboard corpus looks more like what one would expect from the common-

practise era. In all decades but the 1950s, there is a statistically significantly

lower expected frequency of dominant chords relative to subdominant

chords, and even in the 1950s, there are simply not enough data to draw

a conclusion. Throughout all decades, there is more of an emphasis on

II and VI, both traditional pre-dominant chords, than in the pre-tonic

distributions. Like the pre-tonic distributions (and also consistent with the

pattern of roots overall from table 4.7), beginning in the 1980s, there is

also emphasis on the flat side of the circle of fifths (largely at the expense of

dominant chords). The pattern in dispersion parameters is the same as that

of the pre-tonic distributions: all larger from their counterparts in table 4.7

and increasing at each decade with a substantial jump in the 1980s. The
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Table
4.11

·
Expected

frequencies
of

post-tonic
roots

relative
to

the
overalltonic,

by
decade

(Billboard
corpus

only)

1958–59
1960–69

1970–79
1980–89

1990–91

root
π̂
′(%

)
c.i.

π̂
′(%

)
c.i.

π̂
′(%

)
c.i.

π̂
′(%

)
c.i.

π̂
′(%

)
c.i.

♯ IV
0

0
–

2
0

0
–

1
1

0
–

1
0

0
–

0

V
II

1
0

–
2

1
0

–
1

1
0

–
1

1
0

–
1

0
0

–
2

III
1

0
–

3
4

3
–

6
4

2
–

5
4

2
–

5
2

0
–

4

V
I

8
2

–
13

8
6

–
11

7
5

–
9

8
6

–
10

8
3

–
14

II
5

0
–

9
8

5
–

10
9

7
–

11
6

4
–

8
9

3
–

14

V
35

24
–

46
22

18
–

25
17

14
–

20
16

13
–

19
17

9
–

24

IV
35

24
–

47
34

29
–

38
32

28
–

36
29

25
–

33
33

23
–

44

♭ V
II

0
0

–
2

5
3

–
6

7
5

–
8

9
6

–
11

6
2

–
11

♭ III
1

0
–

3
2

1
–

3
3

2
–

5
4

2
–

5
3

0
–

7

♭ V
I

1
1

–
2

3
2

–
5

6
4

–
8

4
1

–
8

♭ II
0

0
–

2
1

0
–

1
1

0
–

1
1

0
–

1

ϕ̂
c.i.

ϕ̂
c.i.

ϕ̂
c.i.

ϕ̂
c.i.

ϕ̂
c.i.

0.28
0.19

–
0.37

0.40
0.37

–
0.43

0.44
0.42

–
0.47

0.52
0.49

–
0.56

0.50
0.42

–
0.58
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post-tonic dispersion parameters do appear to be somewhat less than the

pre-tonic, but there are not enough data in the corpus to know whether

this difference is statistically significant.

• Chord Transitions

Again, the Billboard corpus includes more detail than any other corpus pub-

lished to date, and this extra detail enables a richer analysis than has been

possible before, particularly with respect to learning Bayesian networks.

While it would be possible and indeed traditional to compute a full table

of pre- and post- distributions for every chord, not just the tonic, such a

table is only useful if there are no confounding variables affecting these

distributions, and we have already seen that this is not the case. With a

corpus this rich, it makes more sense to add a time lag to all of the measur-

able variables and learn a new Bayesian network to compare to the ‘static’

network of figure 4.8.

Figure 4.9 is just such a network. The variables are named as before,

with the prefix prev. for the corresponding variables from the preceding beat.

The differences between this network and that of 4.8 are a good lesson in

how confounding variables can change the structure of a graph. Rather than

decade, song, global.key, and quintile being separated from the remainder of

the network, bar.of.phrase, bar.length, and beat.of.bar, are separated from

the rest of the network, taking relative.bass with them. The song variable is

seen to have an effect on eleventh, thirteenth, and relative.bass, suggesting

that these colourations have more to do with the sound of a particular

song than a global style. The global.tonic is seen to have an effect on the
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prev.bar.of.phrase

prev.bar.length
prev.beat.of.bar

prev.local.tonic

prev.global.root

prev.third
prev.fifth

prev.seventh
prev.ninth

prev.eleventh

prev.thirteenth
prev.relative.bass

song

decade

quintile

global.tonic

bar.of.phrase

bar.length

local.tonic

global.root

third
fifth

seventh

ninth

eleventh

thirteenth
relative.bass

beat.of.bar

Figure
4.9

·
A

Bayesian
netw

ork
for

popular
chords

w
ith

a
one-beat

tim
e

lag
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transition between qualities of third. Perplexingly, the quality of �fth is

seen to have a causal effect on popularity (quintile ). With the exception of

eleventh and relative.bass, all of the chord qualities are partly determined by

the corresponding qualities on the preceding beat. Like the earlier network,

local.tonic and global.root seem to be good candidates for being joined, but

here, global.tonic is also seen to have an important effect, especially on

the transition between prev.third and third with respect to prev.global.root,

perhaps because of differences in the distribution of major and minor keys.

Like the previous network, third and seventh are particularly seminal nodes,

but they do not separate the network as cleanly as they did in the previous

example.

Overall, the network in figure 4.9 seems difficult to use. Recall from

section 3.3, however, that using a simple Markov assumption can cause

problems, and by deriving dependencies based on the immediately preced-

ing beat, this network is making just such an assumption. An alternative is

to model duration separately and look for causal effects only where one

chord changes to another – effectively, a semi-Markov model. Figure 4.10

uses such a model, and its patterns are considerably more familiar. Again,

decade, song, and global.tonic are separated from the rest of the network,

in addition to prev.local.tonic and local.tonic. Both of these separations are

quite plausible, and as discussed before, suggest a common global harmonic

style in all keys. Transitions between roots (prev.global.root to global.root )

are an important aspect of this network, informed by prev.relative.bass and

beat.of.bar. The quality of prev.third and third separate all other harmonic

components from the remainder of the network. Of these harmonic com-

ponents, all are again affected by their immediate predecessors. There is
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song

decade

quintile

global.tonic

prev.local.tonic
prev.global.root

prev.third

prev.fifth

prev.seventh

prev.ninth

prev.eleventh

prev.thirteenth
prev.relative.bass

bar.of.phrase

bar.length

beat.of.bar

local.tonic

global.root

third
fifth

seventh

ninth

eleventh

thirteenth

relative.bass

Figure
4.10
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also a fascinating link between prev.third, third, prev.seventh, seventh, and

quintile, suggesting that there are indeed aspects of harmonic style, and the

operation of functional harmony in particular, that affected the popularity

of songs in the United States in the late twentieth century.

More specifically, the network in figure 4.10 shows that given know-

ledge of the current and previous values of third and �fth, the data can

support no other associations between quintile and any other variable. It is

worth exploring, then, how exactly thirds and sevenths affect popularity.

Table 4.12 lists the most common combinations. The first two columns list

a hypothetical chord qualities for the previous and current chords, presum-

ing the typical situations whereby the fifth is perfect and a missing third

has been suspended; they imply nothing about the possible additions of

ninths or thirteenths. The remaining columns list the expected percentage

of instances in songs that reached major thresholds on the chart. In order

to aid interpretation, the table also includes a baseline, which is average

over all chord pairs in the corpus. It seems that relatively richer harmonies

are good predictors of chart success: almost all combinations with major

seventh chords show a substantial and statistically significant increase in

the likelihood of reaching the top 20 relative to baseline, and most com-

binations with minor seventh chords also perform well. Surprisingly, most

combinations with the dominant seventh perform significantly worse than

baseline. With the structure of the networks relative to quintile varying

so much across the three networks, one must be wary that there are con-

founding variables to consider, but as a working hypothesis, it does seem

that relatively basic harmonic patterns had a meaningful effect on chart

performance.
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Table 4.12 · Relative frequency (%) of peak chart quintile given third and seventh

≤ 20 ≤ 40 ≤ 60 ≤ 80

chord 1 chord 2 π̂ c.i. π̂ c.i. π̂ c.i. π̂ c.i.

maj7 min7 77 73 – 80 87 84 – 89 94 92 – 95 99 98 – 100

maj maj7 77 74 – 79 84 82 – 86 97 96 – 98 100 99 – 100

7 min 73 70 – 76 85 82 – 87 93 91 – 95 99 98 – 100

min7 min7 72 70 – 74 87 86 – 89 96 95 – 97 100 99 – 100

maj min7 72 70 – 74 84 83 – 86 92 90 – 93 99 99 – 99

min7 maj 72 70 – 73 83 82 – 85 91 91 – 93 99 99 – 99

maj sus7 71 68 – 74 88 86 – 90 93 91 – 94 99 98 – 100

maj7 maj 71 68 – 74 80 78 – 83 85 94 – 97 98 97 – 99

min 7 69 65 – 72 84 81 – 86 92 90 – 94 99 98 – 99

sus7 maj 68 65 – 72 88 85 – 90 95 93 – 96 99 99 – 100

min maj 65 63 – 66 83 82 – 84 94 94 – 95 98 98 – 99

min7 maj7 64 61 – 67 81 78 – 83 90 88 – 92 99 98 – 99

sus maj 63 61 – 65 88 86 – 90 93 92 – 95 99 98 – 99

maj sus 63 61 – 65 86 84 – 88 92 91 – 94 97 96 – 98

maj min 63 62 – 65 83 82 – 84 94 93 – 95 99 99 – 99

baseline 63 62 – 63 81 81 – 81 92 92 – 92 98 98 – 98

maj maj 62 62 – 63 82 81 – 82 92 92 – 92 98 98 – 98

min min 60 58 – 62 78 76 – 80 92 91 – 93 99 98 – 99

min7 7 58 55 – 61 81 78 – 83 93 91 – 95 99 98 – 99

maj 7 57 55 – 59 76 74 – 77 88 87 – 89 97 96 – 98

7 maj 56 54 – 58 76 74 – 78 87 86 – 88 97 96 – 98

min7 min 55 52 – 58 85 82 – 87 94 92 – 95 99 98 – 100

7 min7 52 50 – 55 77 75 – 79 91 89 – 92 98 98 – 99

5 5 50 48 – 51 70 68 – 71 87 86 – 88 100 100 – 100

7 7 45 43 – 47 69 68 – 71 83 81 – 84 92 91 – 93
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The networks in figures 4.9 and 4.10 suffer from a weakness in the

general incremental-association algorithm that prevents the algorithm from

tying time states together – i.e., they do not guarantee that the relationships

among the variable at the previous time step are identical to their relation-

ships at the current time step. It would be possible to adapt the algorithm

to be able to force consistency among such relationships, and likewise to

use such an adaptation to explore dependencies at multiple time lags. Such

an adaptation would be another excellent area for future work.

4.5 summary

Research in corpus-based analysis of harmony and automatic chord recog-

nition have been hindered by a lack of detailed data on harmony. With a

careful sampling methodology and a large group of expert musicians, we

developed a corpus, the Billboard corpus, of unprecedented scope and detail.

A corpus of this size and scope allows for more sophisticated statistical ana-

lysis than has been possible before. Using Dirichlet-multinomial models, it

is possible to identify some of the basic properties of harmonic practise in

popular music and how harmonic usage changed over time. Moreover, with

a corpus of this size, structure-learning algorithms can identify some of

the causal relationships among harmonic components and related musical

features. Many of these results confirm traditional musical understandings,

but by quantifying them, they provide a stronger basis for understanding

exactly how and how much ‘outliers’ differ from the norm.
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5 summary and future work

After introducing database-driven musicology (chap. 1), this

thesis presented a thorough overview of the mathematical apparatus

necessary to conduct database-driven machinery well (chap. 2), reviewed

how this machinery has been used for both inference and classification on

musical sequences (chap. 3), and introduced a new corpus, the Billboard

corpus, as a tool for future musicological research (chap. 4). Furthermore,

this dissertation began exploring the types of information that one can

extract from the Billboard corpus. Many of the conclusions confirm tra-

ditional understandings about harmony in popular music, but with this

corpus, it has been possible to trace how some basic harmonic practises

have evolved over time. These exploration used techniques that are new to

the musicological and music information retrieval communities, and there

are a great number of avenues for future work both with these techniques

and with others.

5.1 summary of contributions

The most significant contribution from this thesis is undoubtedly the Bill-

board corpus itself. As described in chapter 4, a lack of suitable data has

seriously hindered database-driven work on harmony. This corpus is unpre-

cedented in size, scope, degree of detail, and even sampling methodology.

The corpus was designed so as to make it possible to draw conclusions about

how harmonic practises have evolved over time and also how harmonic

practises may have affected the popularity of songs in the latter half of the
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twentieth century. As the tight confidence intervals throughout the chapter

illustrate, its size allows researchers to draw meaningful conclusions even

when multiple variables are interacting, e.g., decade and relative root. It en-

compasses a wider range of artists than any existing corpus, and within the

research community, only the Beatles have previously enjoyed such careful

attention to upper extensions. Moreover, because all of the annotations

have been time-aligned with commercially available audio recordings, it is

possible to use these annotations to improve the accuracy of audio chord

recognition algorithms and test how well they can recover not only basic

chords and roots but also upper extensions.

The analysis of the Billboard corpus introduced two techniques for

corpus analysis to the musicological community. The first was the Dirichlet-

multinomial distribution. In tabulating simple counts, previous researchers

may not have realised that they were implicitly assuming a simple mul-

tinomial distribution over their data, an assumption that the analyses in

chapter 4 suggest is rarely appropriate. In statistical terminology, this un-

derstanding would correspond to the commonly acknowledged reality that

most proportions derived from data are ‘over-dispersed’ (see McCullagh

& Nelder 1989, p. 183). The Dirichlet-multinomial not only allows for

over-dispersion, it is able to quantify it, yielding a very useful extra point

of information. In the context of the Billboard corpus, the dispersion para-

meter generally models the degree of harmonic diversity, and several of

the analyses have been able to trace to what extent diversity increased over

time.

For both the Dirichlet-multinomial and simple multinomial models,

the analyses in chapter 4 are also rare in the field for presenting confidence
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intervals on parameters. Long recognised as essential in the social sciences,

confidence intervals are just as critical to the musicological community

as databases grow and the number of variables under consideration grow.

Without confidence intervals, it is impossible to know when the available

data are sufficient to support a conclusion and when further data collection

will be necessary. Fortunately, once on the virtuous cycle of database devel-

opment whereby better inference can lead to better automatic classification,

healthy collaborations between musicologists and engineers should make

collecting more data easier than it has been previously.

The second technique new to musicological analysis was structure

learning for Bayesian networks. These techniques are most valuable for

uncovering causal relationships within the data. Although further research

is necessary to identify descriptors for chords that may have clearer causal

effects than the traditional music-theoretical breakdown, the analyses in

chapter 4 were able to confirm and clarify hypotheses about the importance

of considering relative or ‘structural’ roots and how metre affects choices of

harmony. The most intriguing result suggested that certain harmonic colours

had an effect on the popularity of songs independent of the particular

decade.

Understanding the importance of statistical techniques like the Dirichlet-

multinomial distribution or the causal interpretation of Bayesian networks

requires a higher-level understanding of some of the mathematical and

philosophical underpinnings of probability and statistics. Unfortunately,

because this material is spread over so many disparate sources, it is difficult

for researchers interested in database-driven musicology to gather the back-

ground necessary to conduct this type of research properly. As such, the
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collection of material and citations in chapter 2 should also be a valuable

contribution to the field.

5.2 future work

The analysis of the Billboard corpus in chapter 4 only broke the surface of

questions that could be asked with the support of such rich data. The first

question that strikes me, based on tables 4.7, 4.10, and 4.11, is whether it is

possible to model changes in harmonic practise more finely than the level

of the decade. Even without such an analysis, a musicological narrative

for the changes in harmonic practise that arose in the 1970s would be a

welcome addition to these tables. Likewise, rather than investigating only

pre- and post-tonic chords, it would be well worth investigating changes in

the behaviour of pre- and post-dominant chords.

There is also more work to be done in modelling chord qualities. As

mentioned earlier, 104 distinct chord qualities appear in the corpus, a

number which is somewhat unwieldy on its own. Moreover, the series

of Bayesian networks presented in figures 4.8, 4.9, and 4.10 suggest that

the traditional tertian breakdown of chord qualities may not be the most

effective explanatory system for harmony in popular music. One direction

for future work in this area would be to work collaboratively with music

theorists to test alternative categorisations of the qualities in the corpus.

A complement to this approach would be to use statistical techniques for

clustering (see Hastie, Tibshirani & Friedman 2009) to group chord qualities

that behave similarly (e.g., one would expect that a dominant ninth chord is

no more or less likely to resolve to a tonic chord than a dominant seventh).
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Clearer models of chord qualities could also help to explain the rather

surprising results linking the popularity of songs with rather simple har-

monic choices. Indeed, it is a sufficiently surprising conclusion that it

would also be worth a more serious exploration of potential confounding

variables of all kinds. The corpus contains not only harmonic information,

but also a large amount of information about more general musical structure

(e.g., the distribution of verses and choruses) that could just as plausibly

be expected to have had a causal effect on popularity. These should be

considered and run through structure-learning algorithms to see whether

they alter the structure of the network significantly.

Finally, there is much more work to do in exploring how this data set

may improve the state of the art in audio chord recognition. At first, one

would try classical hmm-based models like Matthias Mauch’s (Mauch &

Dixon 2010b), but with the larger data set, it will also be important to

explore whether discriminative models such as conditional random fields

or max-margin networks could be more effective.
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a chord transcription format

In collaboration with Prof. Jonathan Wild, we developed a format for

chord annotations that would be usable both by humans and by machines.

Originally, we used a look-ahead left-to-right (lalr ) parser (Aho, Sethi &

Ullman 1986) generated with David Beazley’s ply package∗ to parse the

files according to the grammar described below, although due to some

challenges handling augmentation dots under this structure, we eventually

replaced this parser with parser combinators (Frost & Launchbury 1989)

built with the Daan Leijen and Paolo Martini’s Parsec library† and a custom

Haskell library of my own for managing music-theoretical concepts.

transcription → title-line

artist-line

metre-line

key-line

phrase-list

“##”

Each transcription begins with lines designating the title, artist, metre, and

prevailing key of piece and closes with a doubled hash mark. In between,

there is a list of phrases that constitute the transcription.

∗http://www.dabeaz.com/ply
†http://hackage.haskell.org/package/parsec
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CHORD TRANSCRIPTION FORMAT

title-line → “#” string

artist-line → “#” string

meter-line → “#” integer “/” integer

key-line → “#key:” pitch-class

∨ “#key:” pitch-class mode

The syntax for the special lines is fairly straightforward. All start with a

hash mark followed by the title, artist, meter, or key in a standard format.

phrase-list → phrase

∨ phrase phrase-list

∨ comment phrase-list

comment → key-line

∨ metre-line

∨ “#” string

The phrases themselves are meant to correspond to mid-level units of

musical structure. As an informal principle, we asked annotators to break

phrases at any point one might realistically consider restarting a song during

a rehearsal. Throughout the file, phrases may be interspersed with changes

of key and metre as well as free comments. We encouraged annotators to

use free comments in particular to denote major structural features such as

verses, bridges, and choruses.
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phrase → bar-list “|”

∨ phrase “->”

∨ phrase “x” integer

∨ phrase “&pause”

bar-list → bar

∨ bar-list bar

Each phrase is primarily a sequence of bars. There are three special desig-

nations, however, that may fall at the end of the line.

-> is used to mark phrases that are elided. Each phrase always starts

with its first complete bar. If this bar also functions as the close of

the preceding phrase, the preceding phrase will end with the ->

designation.

x integer is an abbreviation denoting bars that are repeated wholesale. For

example, a four-bar phrase consisting of solid G-major chords could

be represented as | G | x4; alternating G-major and C-major chords

could be represented as | G | C | x2. These abbreviations are not

used when entire phrases repeat: instead, the entire line is recopied

as many times as necessary.

&pause appears after phrases that are followed by a musical pause of

undetermined length.
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bar → bar-start chord

∨ bar-start chord chord

∨ bar-start chord chord-or-dot chord-or-dot

∨ bar-start chord chord-or-dot chord-or-dot chord-or-dot

bar-start → “|”

∨ “|” “(” integer “/” integer “)”

chord-or-dot → “.”

∨ chord

Each bar is flanked by pipes (‘|’ ) to represent bar lines. Chords are annotated

to the level of the beat, quarter notes in most simple metres and dotted

quarter notes in most compound metres. In the most expanded form, each

bar will contain either a chord symbol or a dot on each beat: a chord

symbol on the first beat where a chord appears in each bar and a dot on

each beat through which that chord continues. When the same chord lasts

for the entire bar, the dots are sometimes omitted. In quadruple metres,

the dots are also sometimes omitted in the very common pattern of a chord

change on the third beat only.

chord → “NC”

∨ “[” pitch-class “]”

∨ pitch-class chord-type

∨ chord “/” pitch-class
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CHORD TRANSCRIPTION FORMAT

Chords are represented by standard commercial chord symbols with the

usual ‘slash’ notation for inversions. Unaccompanied bass notes are enclosed

in square brackets.

Prof. Wild prepared a description of this format in more musical lan-

guage for training annotators. This training document follows, including a

number of his sample transcriptions.
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!e “li"ing changes from pop songs” project

Since we need to develop statistics for how widespread various progressions are, we can’t only 
pick great tunes to transcribe -- we have to get a random sampling from the charts. 
Consequently in this project you might !nd yourselves listening to a lot of mediocre music, 
though hopefully with a few isolated gems to make it worthwhile. We’ve tried to make these 
guidelines intuitive rather than rigorously spelled out, as spelling everything out rigorously for 
you will be too con!ning, and in any case there will always remain situations we haven’t 
foreseen.

We need the chord progressions to be in a format that we can easily manipulate in a database, so 
we can search and analyse recurring patterns to track how they evolved over the decades. You’ll 
produce a plain text !le with the chords for each measure, and some other data.  "e beginning 
of the !le will contain several lines of metadata (title, band, year etc.) -- these lines begin with a 
hash sign. One line of metadata is the time signature for the song, which we’ll assume is 4/4 by 
default -- you only need to actually type anything in it if it’s different from 4/4. Knowing the key 
of the song will be helpful too, so when the key is obvious, put that in too, in a line like 
#key:Dm .  Some songs are too difficult to classify as in a particular key -- enter a question 
mark if this is the case. (Another possibility is to signal a tentative key with a question mark, if it 
seems like the best answer but there are still reasons to doubt it is a true key.) If the key changes 
for different sections of the song, please enter a new #key: line at each change.

Once the project is underway the lines of metadata that identify the song will already be there 
for you in a template !le which you’ll receive with the recording.  "e transcription !le will 
always end with a double hash sign: ##.

Measures

Measures are separated by vertical lines (aka “pipes”, found above the backslash on most 
keyboards--it may look like a broken bar on some keyboards). You group measures on lines, and 
separate the lines according to the structure of the song -- usually when the song is simply 
organised into twos, fours, and eights the basic intuitive unit will be 4 bars, but there are many 
situations when 2 bars or 8 bars will be more appropriate. For the most part, individual lines of 
the !le should correspond to fairly self-contained units; this is why you’d use an 8-measure line, 
for example, when four bars don’t yet feel like a proper unit has been completed. "e examples 
should make it clear. Basically you should start a new line at any point you can imagine could 
ever be a sensible point to start playing the song in a rehearsal.  

"e transcription of “Heart of Glass” shows places where the last measure of one 4-bar unit is 
also the !rst measure of a new 4-bar unit (“elision”). We prefer that the beginning of the new 
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unit be placed on a new line, meaning that the previous unit will appear to only have 3 
measures. When you have to do this, use this two-character symbol a%er the last barline of the 
line: -> which means that the progression from that line actually ends on the beginning of the 
following line.

“Heart of Glass” also has some truncated bars, with 3 beats. Put the time signature inside the 
barline at the point it changes, in parentheses, like this:  |(3/4) E|. By default this means a 
change for only one measure. If a song has longer sections that remain in a different time 
signature, use a metadata line for each change of time signature.

Sometimes for short passages the local metre might temporarily sound different than the 
prevailing metre. Only change the metre if both (a) it is perceptually very clear it has to be 
changed and (b) the music does not “come out right in the end” if you don’t change metre. For 
example just before the piano interlude in “All By Myself ”:

|F| Am7 |Cm/Eb D7(4-3)|Gm . Bbm A7|A7 Fm/Ab G7 . |

 At the end it might sound like |(2/4) Gm |(3/4) Bbm A7 . |(3/4) Fm/Ab G7 . | , but 
since the whole thing !ts just !ne in 4/4, leave it in 4/4.

If there is a pause in the music (say, of a duration of at least one beat), use the following notation 
at the end of a line of the transcription: &pause. "is happens for example before the last 
chorus of “All by myself ”. Elsewhere in the song there are brief rallentandos; these don’t have to 
be signalled at all in the transcription.

To save you having to enter the same chord or chord progression many times, you can use the 
notation x2, x4 etc. "is applies to everything previous on the line, and shouldn’t be 
followed by anything else on the same line. So in “I’m Your Boogie Man”, 

|Gm7|Gm7 C|x4

represents the eight-bar phrase, which we decide belongs on one line of the !le:

|Gm7|Gm7 C|Gm7|Gm7 C|Gm7|Gm7 C|Gm7|Gm7 C|

Don’t do this to repeat a whole line of transcription though, when the repeats belong on other 
lines - instead, cut and paste the original line however many times you need it.
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Using this system for repetitions and elisions will sometimes end up looking awkward; that’s ok. 
See this passage in Jackie Blue, where the last bar of a 16-bar section is replaced by four bars on 
the expected chord instead of just one bar: 

|Ebm|Abm7|x7
|Ebm|->
|Abm7|x4

When there are two chords entered in a bar, the default interpretation will be to place them on 
beats 1 and 3. Syncopated anticipations (e.g. a new harmony on the last eighth) should be 
ignored; just put them on the next downbeat. When chords occur on other beats than 1 and 3, 
use dots to !ll out the measure on each beat that doesn’t have a chord change. For example: |
Dm7 G7 . . | would indicate a measure that had chords on beats 1 and 2, and nothing 
new until the next measure. For the Latin pattern . .  , just un-syncopate it, e.g. |Cmaj7 .  
Fm7 Bb7 |. We won’t ever have to consider any chords at the sub-quarter-note level.

If there’s ever any ambiguity as to what constitues the quarter-note, use the back-beat (almost 
universally on 2 and 4) to help you decide. 

Harmony

Each chord is separated from the chords before and a%er it either by a barline or a space. You 
don’t need to leave spaces around a chord when it is the only thing in a measure (but it doesn’t 
matter if you do put them in, or if you put more than one space in). Likewise for any other 
symbols, like a temporary key signature or a dot representing a beat with no change of harmony: 
they need to be separated from the other symbols by a space if there is no barline.

We want the transcribed changes to represent what is actually played on the recording, 
including what the main bass note is. As much as ordinary chord symbols can tell someone what 
to play to capture the recorded performance, that’s what we’d like - not simply what the changes 
would be for the purposes of soloing over them. So a V chord in F major, if it’s simply played as a 
triad, should be written as C, not C7, even though the implied background scale at this point 
would indicate a dominant seventh.

Many songs are entirely or almost entirely triadic, with barely a 7th, and will pose no problems 
whatsoever. But a few songs with more complex chords or progressions will require extra care. A 
difficult problem is how speci!c you should be with your chord labels. We’d like you to use the 
guideline that extensions to the basic triad should only be notated if they appear consistently in 
the instrumental parts. So for example don’t notate an E6 in “Heart of Glass” when the singer 
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has C# above the band’s E major triad -- she always resolves it down to B within that chord, and 
there is no C# in the instrumental background. If extensions to the triad in the instrumental 
part are only transient, or they are only present in a solo instrumental line or vocal line, don’t 
notate them. If you think the same music happens sometimes with and sometimes without the 
extensions or added notes, then consider them incidental, and leave them out. Only include 
them in the transcription if they are consistently present, and if they form part of the harmonic 
background, or if they are “iconic” in the context of that song.  I have found it useful to imagine 
having to play a harmonic pad in the background that would do no violence to the song -- 
notate what the harmonic pad would be.

Here are some symbols we used in our own transcriptions; we can accomodate variant systems 
quite easily if you have a preference for something else (but please only use ascii characters so the 
text !les remain as portable as possible).

C    
Cm  
Cdim 
Caug or C+5
C7
Cm7
Cm7b5
Cdim7
Cmaj7
CmMaj7
C6
Cm6
C/E
C7/E
C/Bb if the bass note is “passing” rather than an essential part of the harmony, in which case 
C7/Bb is acceptable.

Sometimes you’ll have to decide between chords that contain the same notes, like Cm6 and 
Am7b5. Sometimes the bass note helps; for example: C Cm6 G, versus Am7b5 D7 G.  But 
sometimes it’s hard to decide; e.g. in “All by Myself ” Bbm6/F could have been Gm7b5/F or 
even  Gdim/F. Ordinary 7th chords should be notated as 7th chords rather than triads plus a 
bass note, like in some pop fake books. "at is, Dm7 rather than F/D and Fmaj7 rather than 
Am/F.
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For chords without a 3rd, and chords with other extensions, we’ve used these:

Csus   or   Csus4  (“sus” by itself will always imply a 4th present instead of a 3rd)
C4-3   (a resolved suspension, not notated as two separate chords, like “Csus C”)
C7(4-3)  (here we need parentheses becase C74-3 would be difficult to read)
Csus2  (by which we mean the 3rd is replaced by a 2nd or 9th, so C,D,G  or C,G,D)
Cadd2  or  Cadd9 (by which we mean the 2nd or 9th is added (and is substantially present in 
the instrumental parts, as explained above), so C,D,E,G)
C7sus
C7sus2   or   Gm/C
C11   or   Bb/C   or   Gm7/C  or  C9sus   (=C,(G),Bb,D,F; the “C11” notation is a pop 
music convention and basically means Bb/C, sometimes with a G thrown in too, either in the 
top voice or elsewhere -- it doesn’t mean a complete eleventh chord built of stacked thirds i.e. C-
E-G-Bb-D-F)

And use higher extensions or other alterations as required -- when these occur, use jazz 
conventions (e.g. E7#9, not something like “E7(add m3)”).

Whatever notation you use, never include any spaces within a chord symbol. "is will help us to 
parse the !le a%erwards. You can use parentheses if you need to separate elements of the symbol, 
for example C7(4-3) instead of C74-3 which might look confusing.

When we analyse the progressions a%erwards, we’ll sometimes collapse these chords into larger 
categories - for example we might have a C7sus category that includes more speci!c variants 
like C7sus, Gm/C and C11. But because it might be useful at some later point to have the 
separate information, try to include the speci!c chord used when possible.

When there is no chord present, use the symbol NC. For a single bass note with no chord above 
it, put the bass note in square brackets: [C]. If there is an open !%h, with no third present, use 
either Cno3 , or for a power chord you could use C5. (If the third is present in the vocal part, 
but not in the instrumental part, you can indicate the quality of the triad as if it included the 
vocal note--see “All by myself ” when the voice comes in, providing the third of the otherwise 
open 5th.)

If the bassline is active, with various melodic embellishments, try not to overanalyse: the bass 
line as de!ned by the changes you write need not always contain everything the bass player 
plays, especially when the bass part plays a melodic role. You would include the half note moves 
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in something like |D D/F#|Gm Gm/F|C/E C7|F  , but arpeggiating between the root and 
the 5th isn’t the kind of thing you’d need to notate. Selectively leaving out bass notes and testing 
for plausibility will help you decide what the “real” bass line is. See “Will you still love me 
tomorrow”--in the bars notated G7/D, the bass arpeggiates up to the root of the chord later in 
the measure. In this case it’s pretty easy to say the D is more important as a bass note than the G, 
because:
• "e D is on the downbeat
• "e D is lowest in register
• "e D connects the roots of the C and E chords before and a%er it
"at’s why I wrote G7/D instead of G7. But sometimes it will be less obvious than this and 
you’ll have to weigh these and similar factors to judge what a hypothetical unembellished 
bassline should be.

For passages that are not well represented by chord symbols for whatever reason, include a 
descriptive comment, then simply enter the right number of barlines, with each measure 
containing a star to represent unspeci!ed chords. "is happens in “All by myself ”, for example: 

|F| Am |Cm/Eb D7(4-3)|Gm . Bbm A7|A7 Fm/Ab G7 . |
#NB: 4 measures piano interlude
|*|*|*|*|
|Fno3|x2

Here it is not that the harmonic progression is impossible to identify, or even difficult to 
identify--rather that it seems the actual contrapuntal realisation of the piano part is essential to 
the music, and chord symbols would not capture enough of the performance to be useful.

If the whole song is poorly represented by chord symbols, don’t even try. We won’t be vetting 
songs before serving them to you, so you have to let us know when making a transcription would 
be pointless. "is could be because the song is completely harmonically static-- “I’m Your 
Boogie Man” is borderline in this regard, for example. If you get a rap song with no chord 
progressions for most of the song, or a complex instrumental or vocal arrangement that you 
couldn’t adequately perform a cover of using ordinary chords on a piano or guitar, then don’t 
transcribe it.

To sum up, the transcriptions should be detailed when the details count musically, but you 
should leave off the details when they are not important musically. And you need to be vigilant 
for potential problem spots--we can always talk about those spots together to decide what to do, 
as long as you are always using your ears to notice potential problems in the !rst place, and you 
don’t just put down the !rst thing that crosses your mind. Being aware of potential issues that 
we haven’t thought of, so we can !gure out together how to deal with them, is just as important 
as matching the same “answer” we imagined for each transcription. 
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Comments

If there is a fade out in the music, put a  #fade out  line before the !rst section of the 
transcription that begins to fade out--see all the examples appended.

If you want to put markers in the !le to orient yourself while you’re typing in the transcription, 
for example #intro , #verse , #chorus , #solo , #bridge ; you can, and 
please leave them in a%erwards as they might be useful to us one day.

A line beginning with #NB: contains a comment. You can comment anywhere in the !le; if 
something should be footnoted, you can use curly brackets enclosing a numeral as reference at 
the end of a line of transcription. For example in “I’m Your Boogie Man”, some of the lines 
containing |Gm7|x8 are followed by {1}. At the bottom of the !le is the line: 
#NB {1}: alternatively, |Gm7 Bb C F|x8. 

Please don’t overuse the practice of alternative readings in a song; we prefer that you think hard 
about which is better, and just go with that. In this case it seems the harmonic background, 
which is what we’re really interested in, remains as Gm7, but the foreground chords in the horns 
could be important enough that you feel they need to be mentioned. Use a footnote in cases like 
this.

If anything in the songs seems interesting/perplexing/weird enough to draw our attention to, 
that would also be a good use of a comment in the !le. Of course it will also be possible, 
especially early on in the project as we all !gure out the best transcription practices to apply, to 
discuss with us, or with one another, about what seem to be the most useful solutions for novel 
or problematic situations.

Examples of transcriptions

#Heart of Glass
#Blondie
#4/4
#key: E
|NC|NC|NC|NC|
|E|E|E|E|
|E|C#m|C#m|E|
|E|C#|C#m|->
|E|E|E|E|
|E|C#m|C#m|E|
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|E|C#|C#m|->
|E|E|
|A|A|E|E|
|A|A|F#|B|
|E|E|E|E|
|E|C#m|C#m|E|
|E|C#|C#m|->
|E|E|
|A|A|E|E|
|A|A|E|E|
|A|(3/4) A|E|(3/4) E|
|A|(3/4) A|E|E|
|A|A|E|E|
|A|A|F#|B|
|E|E|E|E|
|E|E|E|E|
|A|A|E|E|
|A|A|F#|B|
#fade out
|A|A|E|E|
|A|A|F#|B|
##

#Ordinary World
#Duran Duran
#4/4
#key: E? B?
|B|F#m7|Dsus2 A/C#|E|
|B|F#m7|Dsus2 A/C#|Am6/C|
|C#m|E F#sus7|
|C#m|E F#sus7|
|C#m|E F#sus7|
|C#m|E F#sus7|
|C#m|G#m|D#7|E|
|B|F#m7|Dsus2 A/C#|E|
|B|F#m7|Dsus2 A/C#|Am6/C|
|C#m|E F#sus7|
|C#m|E F#sus7|
|C#m|E F#sus7|
|C#m|E F#sus7|
|C#m|E F#sus7|
|C#m|G#m|D#7|E|
|B|F#m7|Dsus2 A/C#|E|
|B|F#m7|Dsus2 A/C#|E|
|B|F#m7|Dsus2 A/C#|E|
|B|F#m7|Dsus2 A/C#|Am6/C|
|C#m|E F#sus7|
|C#m|E F#sus7|
|C#m|E F#sus7|
|C#m|E F#sus7|
|B|F#m7|Dsus2 A/C#|E|
|B|F#m7|Dsus2 A/C#|E|
|B|F#m7|Dsus2 A/C#|E|
|B|F#m7|Dsus2 A/C#|E|
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|B|F#m7|Dsus2 A/C#|E|
|B|F#m7|Dsus2 A/C#|E|
#fade out
|B|F#m7|Dsus2 A/C#|E|
##

#I'm your Boogie Man
#K.C. and the sunshine band
#4/4
#key: Gm
|Gm7|x8
|Gm7|x8
|Gm7|x8 #{1}
|Eb|F|
|Gm7|Gm7 C|x4
|Gm7|x8
|Gm7|x8 #{1}
|Eb|F|
|Gm7|Gm7 C|x4
|Gm7|x8
|Gm7|x8 #{1}
|Eb|F|
|Gm7|Gm7 C|x8
|Gm7|x12
|Gm7|x8 #{1}
#fade out
|Gm7|x8
##
#NB {1}: alternatively |Gm7 Bb C F| for each of the 8 bars in these lines.

#All by myself
#Eric Carmen
#4/4
#key: F
|Fno3|x2
|F|Bbm6/F F|Am7b5/Eb D7(4-3)|Gm Gm7b5/Bb|F/A . Gm7b5 C7/E|
|F|Bbm6/F F|Am7b5/Eb D7(4-3)|Gm Gm7b5/Bb|F/A F7/A D7 .|G7 Gm7b5/Db C7 .|
|F| Am7 |Cm/Eb D7(4-3)|Gm . Gm7b5/Db C7|
|F| Am7 |Cm/Eb D7(4-3)|Gm . Gm7b5/Db C7|
|F|Bbm6/F F|Am7b5/Eb D7(4-3)|Gm Gm7b5/Bb |F/A . Gm7b5 C7/E |
|F|Bbm6/F F|Am7b5/Eb D7(4-3)|Gm Gm7b5/Bb|F/A F7/A D7  .|G7 Gm7b5/Db C7 .|
|F| Am7 |Cm/Eb D7(4-3)|Gm . Gm7b5/Db C7|
|F| Am7 |Cm/Eb D7(4-3)|Gm . Bbm A7|A7 Fm/Ab G7 . |
#NB: 4 measures piano interlude
|*|*|*|*|
|Fno3|x2
|F|Bbm6/F F|Am7b5/Eb D7|Gm Gm7b5/Bb|F/A . Gm7b5 C7/E| &pause
|F| Am7 |Cm/Eb D7(4-3)|Gm . Gm7b5/Db C7|
|F| Am7 |Cm/Eb D7(4-3)|Gm . Gm7b5/Db C7|
|F| Am7 |Cm/Eb D7(4-3)|Gm . Gm7b5/Db C7|
#fade out
|F| Am7 |Cm/Eb D7(4-3)|Gm . Gm7b5/Db C7|
##
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#The Ozark Mountain Daredevils
#Jackie Blue
#4/4
|Ebm7|Abm7|x2
|Ebm7|Abm7|x4
|G C|x2
|Dm|Cmaj7|
|G C|x2
|Dm|Cmaj7|
|Ebm7|Abm7|x4
|G C|x2
|Dm|Cmaj7|
|G C|x2
|Dm|Cmaj7|
|Ebm7|Abm7|x4
|Ebm7|Abm7|x7
|Ebm7|->
|Abm7|x4
|Ebm7|Abm7|x8
#fade out
|Ebm7|Abm7|x8
##

#Will you love me tomorrow
#The Shirelles
#4/4
#key: C
|C|x4
|C|C|F|G|
|C|C|G7/D|G7/D|
|E|E|Am|Am|
|F|G|C|C|
|C|C|F|G|
|C|C|G7/D|G7/D|
|E|E|Am|Am|
|F|G|C|C|
|F|F|Em|Em|
|F|F|C|C|
|F|F|Em|Em|
|Am|D7|F|G|
|C|C|F|G|
|C|C|G7/D|G7/D|
|E|E|Am|Am|
|F|G|C|C|
|C|C|F|G|
|C|C|G7/D|G7/D|
|E|E|Am|Am|
|F|G|C|C|
|F|G|C|C|
#fade out
|F|G|C|C|
##
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b accessing the corpus

On 27 October 2011, at the ismir conference in Miami, Florida, we made

approximately half of the Billboard transcriptions available to the public at

http://www.billboard.music.mcgill.ca (Burgoyne, Wild & Fujinaga 2011). The

released set includes annotations and features for 649 slots and comprises

545 distinct songs. We will release the remaining data progressively over

the next two years in order to ensure that there are unseen data available

for the mir community to use for evaluating algorithms as part of mirex

or related events.

Each slot appears in the archive as a numbered folder containing three

files:

echonest.json, which contains the output of the EchoNest analyzer version

3.01a,∗ the same as the Million-Song Dataset (Bertin-Mahieux et al.

2011);

nnls_chroma.csv, which contains the output of the Vamp plugin for com-

puting non-negative-least-squares chroma (Mauch & Dixon 2010a),

with default settings except for a rolloff of one percent, as recom-

mended for pop; and

salami_chords.txt, which contains our annotations.

We provide echonest.json and nnls_chroma.csv as an aid to engineers

interested in working with audio; copyright law prevents us from sharing
∗http://developer.echonest.com/
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the audio files directly. The annotation files are standardised somewhat

relative to the raw format described in appendix A and contain considerable

extra information about larger musical structures (see Smith et al. 2011).

Each annotation begins with a header including the title of the song

(prefixed by # title: ), the name of the artist (prefixed by # artist: ),

the metre (prefixed by # metre: ), and the tonic pitch class of the opening

key (prefixed by # tonic: ). Similar metre and tonic comments may also

appear in the main body of the annotations, corresponding to changes of

key or metre. In some cases, there is no obviously prevailing key, in which

case the tonic pitch class is denoted ?.

The main body of each annotation consists of a single line for each

musical phrase or other sonic element at a comparable level of musical

structure, equivalent to the line breaks in the original annotations. Each

line begins with a floating-point number denoting the timestamp of the

beginning of the phrase (in seconds), followed by a tab character. There

are special lines for silence at the beginning and end of the audio file and

a special line for the end of the piece. The other lines continue with a

comma-separated list of elements among the following.

Capital letters, possibly followed by an arbitrary number of primes, des-

ignate high-level musical structures. They appear at the beginning of

each high-level musical segment and are presumed to continue until

the next appearance of a capital letter. When two letters match, the

two high-level segments are musically similar. Other than denoting

similarity, the letters themselves have no intrinsic meaning, but for

the letter Z. Z denotes non-musical passages in the audio such as
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noise or spoken words.

Plain text strings denote more traditional names for musical structures,

e.g., verse, chorus, and bridge. The vocabulary was semi-restricted,

but annotators had the freedom to use whatever terms they felt were

most appropriate for unusual contexts.

Chord annotations appear as series of bars flanked by pipes (| ). A phrase

may by followed by an x and an integer, which means that the phrase

is repeated that number of times. A phrase may also be followed

by an arrow (-> ), which is a musicological hint that the phrase is

musically elided into the following phrase.

Leading instruments are noted in songs where there is a notable devi-

ation from the norm of a leading vocal throughout the entire song.

They appear as text strings preceded by a left parenthesis in the

segment where the instrument comes to prominence and as text

strings succeeded by a right parenthesis in the segment where that

instrument fades from prominence. If an instrument is prominent

for a single segment only, its name appears with both left and right

parentheses.

The chord annotations are simplified to the beat level. All chord

symbols follow the standard presented at ismir 2005 and used in mirex

since (Harte et al. 2005), with a few additions to the shorthand to facilitate

the richness of these annotations: 5 for power chords, and sus2, maj11, 11,

min11, maj13, 13, and min13 for the corresponding chords in traditional

jazz notation. An additional pseudo-chord type of 1 denotes bass notes
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with no chord on top. To save space, repeated chords are denoted with a

dot instead of the full chord name. To further save space, bars containing

a single chord on all beats list the chord symbol only once; likewise, in

quadruple metres ( 4
4 or 12

8 ), bars with only two chords and the change on

the third beat list those two chords with no dots. For brief changes of metre,

the metre may appear in parentheses at the beginning of the bar rather

than as a full metre comment.

Two non-chord symbols may appear within bars. For passages that were

too musically elaborate to merit beat-level chord annotations, annotators

sometimes filled the bar with an asterisk. For brief pauses of arbitrary length

(often a single beat), annotators added a bar with the special annotation

&pause.

A sample of one of these annotations (number 0040 ) follows.

# title: The Power

# artist: Snap

# metre: 4/4

# tonic: B

0.0 silence

0.255419501 A, intro, | F#:1 | F#:1 |, (synthesizer)

4.690045351 B, transition, | B:min | B:min | B:min | B:min |, (voice

13.467097505 C, pre-chorus, | B:min | B:min | B:min | B:min |

22.253061224 | F#:min/11 | F#:min/11 | F#:min/11 | F#:min/11 |

31.040884353 D, pre-verse, | B:min | B:min | B:min | B:min |

39.837687074 E, verse, | B:min | B:min | B:min | B:min |

48.650770975 | B:min | B:min | B:min | B:min |, voice)

57.449614512 | B:min | B:min |, (saxophone)

61.801496598 C, chorus, | B:min | B:min | B:min | B:min |, (voice
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70.607346938 | F#:min/11 | F#:min/11 | F#:min/11 | F#:min/11 |

79.416938775 D, pre-verse, | B:min | B:min | B:min | B:min |, voice)

88.204285714 A, intro, | F#:1 | F#:1 |, (synthesizer)

92.587981859 F, chorus, | B:min | B:min | B:min | B:min |, (voice

101.429229024 | F#:min/11 | F#:min/11 | F#:min/11 | F#:min/11 |

110.207120181 | B:min | B:min | B:min | B:min |

119.009659863 | F#:min/11 | F#:min/11 | F#:min/11 | F#:min/11 |, voice)

127.770204081 G, interlude, | B:min | B:min | B:min | B:min |, (synthesizer)

136.602154195 D, pre-verse, | B:min | B:min | B:min | B:min |, (voice

145.363356009 D, pre-verse, | B:min | B:min | B:min | B:min |, voice)

154.178231292 G, interlude, | B:min | B:min |, (synthesizer)

158.551111111 E, verse, | B:min | B:min | B:min | B:min |, (voice

167.389705215 | B:min7 | B:min7 | B:min | B:min |, voice)

176.155147392 A, interlude, | F#:1 | F#:1 |, (synthesizer)

180.604058956 F, chorus, | B:min | B:min | B:min | B:min |, (voice

189.378888888 | F#:min/11 | F#:min/11 | F#:min/11 | F#:min/11 |

198.161428571 | B:min | B:min | B:min | B:min |

206.937981859 | F#:min/11 | F#:min/11 | F#:min/11 | F#:min/11 |

215.771088435 | B:min |, voice)

217.826394557 silence

220.891428571 end
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This thesis was designed and set in LATEX using Peter Wilson’s memoir package.

The fonts may seem large, which is an artefact of McGill’s regulations for

formatting theses. These regulations require a twelve-point font but define

that as printing ten to twelve characters per inch, which differs markedly

from what has come to be the understanding of twelve-point fonts in a

post-typewriter age.

The main body as well as the mathematical text are set in the Rimmer

Type Foundry’s Amethyst; I thank Robert Bringhurst’s classic The Elements of

Typographic Style for the recommendation. It was designed by Jim Rimmer,

a well-loved Canadian type designer. Amethyst lacks a full set of Greek

letters, and of the fonts I had available, the Greeks from Adobe’s Arno

were the best match. Arno also has a large set of text ornaments, which

serve as the decorations for B-level headings. The sans-serif text is set

in the International Typeface Corporations’s Officina Sans, which I was

happy to discover complements Amethyst so well. All of the black-letter

mathematics is set in Linotype Duc de Berry, which is of a style known as

bastarda that I think makes a reasonably readable compromise between a
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