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ABSTRACT

A theory is developed showing that crystal type is determined
by the excess of the ambient vapour density over that at equilibrium
with the ice crystal and is verified in an analogue experiment.
Changes in erystal habit occur when the vapour density excess is
sufficient to overcome the inhibitions to edge and corner growth
that must exist if they have higher surface vapour densities than
the flat faces of the crystal,

The vapour density field around a crystal growing in water cloud
has been solved. Calculations show that cloud can make significant
contribution to the rate of growth of ice crystals by diffusion,

Measurements of terminal velocities of snowflakes from motion
pictures indicate that velocity is approximately proportional to
(mass)°°103; the proportionality constant varies with crystal type,
degree of riming and of melting.

Analysed radar photographs of snow trails show that the terminal
velocity of snowflakes is invariant with height and that aggregation

generally occurs in the formation region.
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PART I

A THEORY OF SNOW CRYSTAL HABIT AND GROWTH
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1. INTRODUCTION

Nakaya (1951) and his co-workers, and others (aufm Kampe, Weickmann
and Kelly, 1951) have shown that type of snow crystal growth depends on the
temperature of formation. e have found Nakaya's laboratory investigations
most amenable to study and interpretation. In his experiment, ice crystals
were formed and grown on a rabbit hair stretched in a stream of cold air
which had been moistened just previously by passing it over warm water, At
high "supersaturations", dendrites were formed from -13.6 to -17.8C, plates
flanked the dendrite range with limits at -9.7 and -20.7C, columns were
found still further on the low temperature side and an assortment culminating
in needles was present on the other flank.

4in ice crystal growing by sublimation in an atmogphere maintained at
water equilibrium will assume a temperature wnich is slightly warmer than
that of the ambient air. It is necessary to take this temperature increment
into account to obtain the true vapour density excess of water equilibrium
over that of the ice crystal. A preliminary investigation of this problen,
making use of psychrometric tables, ylelded a graph of vapour density
excess as a functlion of temperature at normal atmospheric pressure which
was very enlightening. The curve reached its maximum at approximately the
temperature favourable for dendritic growth as found by Nakaya (see figure
1.1). The possibility presents itself that crystal type is a function of
vapour densilty excess over ice equilibrium, dendrites requiring maximum
values of density excess, plates somewhat legs, and so on. Exploration of
this possibility calls for a careful derivation of vapour density excess
as a function of temperature, and a simple analytical expression has been

arrived at,
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Vakaya'ls Y“supersaturation" R yas surely vapour at water equilibrium
(or at some slight supersaturation) plus a cloud of small water droplets;
he mentions such droplets. His relative humidities have been converted to
density excess over water equilibrium on this basis (figure 1.2). This is
a reproduction of the Wakaya diagram, figure 1.1, apart from the conversion
mentioned, and the boundary lines are his. The data at high density excess
suggest a symmetrical distribution of crystal types about the maximum of
the curve of vapour densilty excess against temperature. Changes in the
distribution of crystal type with temperature as the density of supersatura-
tion is reduced imply that this supersaturation density, in either its
cloud or vapour component, plays an important role in maintaining the vapour
density excess against the inroads of the growing ice crystal. We have
found that the small vapour component of the supersaturatlion density is
more significant than any reasonable cloud density can be. The suzgestion
that vapour density excess of ambient over ice equilibrium is then the
basic factor determining the mode of development of the ice crystal is
more tenable. The assumption that the equilibrium vapour density at the
surface of the crystal varies with its curvature provides a simple mechanism
to explain such behaviour. Justification for this has been obtained from
an analogue experiment by using a set of electrodes as the crystal model
and applying a distant field in the electrolytic solution in which it was

immersed.

% e have assumed that the "gsupersaturation" was relative to water equi-

librium, There is implicit justification for this in the sequence of
Japanese papers (1934-1940). In a recent personal discussion, however,
Dr. Nakaya recalled the calculations as being based on ice equilibrium,
The representation of crystal type as a function of temperature and
"supersaturation" was first presented in a paper in Japanese by Hanajima

(1944)
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FIG. 1.2 - This is a replot of figure 1.1 with "supersaturation" converted to density excess
over water equilibrium. The empirical Nakaya boundaries are also included.



The vapour density excess over ice equilibrium occurs in rate of
growth relationships, multiplied by the coefficient of diffusion of
water vapour into air. The possibility that rate of growth and so
diffusivity are involved in determining the crystal habit has also been
explored.

The importance of cloud and its effect on the rate of growth of
ice crystals have also been considered. The steady state diffusion
equation for an ice particle growing in the presence of cloud has been
solved in terms of a parameter involving the sum of the radii of the

cloud droplets per unit volume,



2. PSYCHROMEIRIC THEORY

2.1 The Psychrometric Eguations

Consider an ice crystal which is in an atmosphere supersaturated
relative to ice. The ice crystal grows by sublimation (solidification from
the vapour phase) and the rate of release of latent heat by this process
is proportional to the difference between the ambient vapour density and
that at the surface of the crystal (i.e. to the rate of mass transfer).
Also the rate of "ecooling" of the ice crystal (it actually assumes a tem-
perature above that of the ambient air) by conduction and convection is
proportional to the resulting temperature difference between the crystal
and its surroundings.

The physical processes outlined are gquite similar to those taking
place at the bulb of a thermometer which is in a space supersaturated with
respect to a thin ice coating on the thermometer tulb, This description
essentially fits a wet-bulb thermometer, or more precisely an iced-bulb,
at sub-zero temperatures in regions where the relative humidity is greater
than 100%. In the light of this similarity, a brief review of psychrometric
theory is presented.

The psychrometric tables for a well ventilated wel-and-dry bulb
thermometer have been calculated from a semi-empirical equation (Smithsonian
Meteorological Tables, 1951) in which the constants were determined experi-
mentally. A comparison will be made with two theoretical equations.

(a) Psychrometric tables. At any given temperature, the psychrometric
tables usually list the relative humidities or vapour pressures corres-

ponding to different depressions of the wet~bulb thermometer. No tables



have been found, however, to include data above saturation, and some
means had to be devised to treat the problem discussed.

A close examination of available tables for sub-zero temperatures
showed that the ratio of the difference between ice equilibrium and existing
vapour densities to the corresponding depression of the wet-bulb from the
dry-bulb temperature was practically independent of temperature and relative
humidity. On this basis, it seems justified to extrapolate these results
to cases where the ambient vapour densities are greater than those over
an ice surface and where the wet-bulb (iced-bulb) would consequently have
a "negative depression" (i.e. read higher than the dry-bulb). One can then

write an equation to express these findings:

Cal — €1(T + 4T) _
(T -1 const. £(B) (2.1)

where T is the ambient temperature,
T + AT the resulting ice crystal temperature,
P, the amblent vapour density,
Ci (T + AT) the vapour density at the surface of the lce crystal,
assumed to be at equilibrium with ice at temperature T + AT, and
£(B) a function of barometric pressure only.

(b) Diffusion theory. Consider an ice particle, spherical for
simplicity and of radius "a", at rest relative to its enviromment, the
ambient vapour density being in excess of that at the surface of the
particle.

The rate of mass transfer by diffusion (Maxwell, 1879) to the

particle is given by

%% = fiaD ( Qar = €1 (T + AT))> (2.2)



where m 1is the mass of the ice particle,

t 1is the time,
and D the diffusivity of water vapour in air.
A similar expression representing the rate of heat transfer by conduction
is

L %% = ek [ (T + 41) - 7] (2.3)

where L 1is the latent heat of sublimation,
and K the coefficient of thermal conductivity of air.

Combining equations (2.2) and (2.3), one obtains for the steady state

PaT ~ €i(T + AT) K.
T+oamy -1 | D¢ (Re4)

(c) Convection theory. Assuming that the convective mechanism is of
controlling importance (i.e. that the particle is very well ventilated),
there results a statement of the Ivory (1822) or August (1825) theory.

Consider a parcel of air of mass m and density d. Let be the

°p
specific heat at constant pressure of the air and assume thet it does not
change appreclably with moisture content. After coming into contact with
the ice particle, the parcel galns in sensible heat by an amount

@ = Cpn [(T + AT) - T] « The vapour concentration of the parcel decreases,
however, from m eaT/a tome;i (T + Am)/d. The latent heat required to
cause this excess to sublimate onto the ice particle is then

3 = Im( CaT ~ Pi(T + AT))/d' The equating of these two heat quantities
yields

Cal =~ €i(T +41) _ p 4
(T+41) -T L (2.5)




242 Comparison of the Psychrometric Equationsg

Assuming a constant barometric pressure, let us first compare the
equations as to their dependence on temperature. 4t sub-zero temperatures

both L and ¢

p are essentially constant. Thus the ratio of vapour

density excess to the resulting temperature difference for the convective
case (eguation 2.5) varies as the air density or inversely with the
temperature.

Now the ratio of eqguation (2.5) to equation (2.4) is

convection = ch D
diffusion-conduction K

Qlu

where a = cgd is the thermal diffusivity. Montgomery (1947) has listed
values of thermal and vapour diffusivities. Using his values, it was found
that D/a = 1.194 independent of temperature. Thus the diffusion case

has the same functional relationship with temperature as does the convection
case, The empirical psychrometric equation, however, shows no apparent
dependence on temperature. These results are summarized in table 1 for

an atmospheric pressure of 1000 mb. The values at any other pressure may

be obtained by multiplying those listed by the ratio of the existing

pressure to standard pressure.

Table 1
%gl- T(C) -2 ~10 =20 =30
(em m~3deg o)
Psychrometric 0.539 0.539 0.539 -
tables
Diffusion 0.379 0.393 0,408 04425

Convection 0.452 0.469 0,487 0.527
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Since the physical mechanisms, those of heat and vapour transfer,
are the same in the three cases discussed,some explanation is necessary
to account for the discrepancies displayed in table 1. The convection
equation results if it is assumed that the transfer rates for heat and
vapour are alike when expressed in the dimensions "per unit area per unit
time". The diffusion-conduction equation differs from the former by the
ratio a/D, the ratio of thermal to vapour diffusivities. In this case the
rates of material and heal transfers are different and so the diffusivities
are introduced. The fact that the empirical psychrometric equation does
not depend on temperature in the same way and is in further numerical dis-
agreement as well may be due to stem corrections for heat losses which
have been included automatically in the psychrometric tables (Ferrel, 1886).
In all subsequent use of these equations, ecuation (2.4) will be
emphasized., For the early stages of crystal development, it may be assumed
that the crystal is almost at rest relative to the surrounding air and

that therefore the diffusivities are the controlling gquantities.

2.3 Derivation of A€ vs T Curves

It has been shown how to obtain the ratic of the vapour density excess
(henceforth called AP ) to the temperature difference by means of the
psychrometric equations. One is, however, more interested in determining
A€ as a function of temperature and to a good degree of accuracy. Houghton
(1950) and Wexler and Boucher (1952) have computed values of D AP which
occurs in rate of growth relationships. Their caleculations employed the
laborious process of trial and error. %Ye have derived an analytical

expression, given below, for the vapour density excess which eliminates the



tedium of their calculations. Recently Mason (1953) has presented a graph
essentially the same as Houghton's. The theory on which his computations
are based lnvolves several approximations which appear quite reasonable.
However, his integration of the Clausius-Clapeyron ecuation for equilibrium
vapour pressures of ice, using the perfect zas law as equation of state,
does not seem entirely justified when the painstaking efforts of

Jashburn (1924) and Goff and Gratch (1946) are considered.

A quick graphical method to determine A€ may be used in conjunction
with the results of section 2.2. This methbd, resulting in a value of AP,
is illusgtrated in figure 2.1, where ambient has been taken as water equil-
ibrium. Thus, given the ambient temperature T and vapour density g, a
straight line of slope X/DL (using the diffusion-conduction equation) through
the point @4, T will intersect the ¢; against T curve at @4i(T + A7)
and T + AT,

Mternatively, for greater accuracy, one may calculate A€ analytically
and using tabulated values of equilibrium vapour pressures over water and
over ice. For this purpose the tables and formulae of Washburn, giving
equilibrium vapour pressures as a function of temperature, were used.

How {dp, the difference between the ambient vapour pressure and that at the
crystal surface, can be represented as

~

bp = Opqg + .‘% AT (2.6)

where op ]T is the pressure difference at constant temperature T,

1< the saturation vapour pressure over ice at temperature T,
and  9Pi its variation with temperature, at temperature T, as obtained

r—3|

by using finite differences.
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Since AP /AT = - K/DL according to equation (2.4), the minus sign having
entered if the temperature intervel is taken in the same sense as in
equation (2.6), the above becomes

L&p-’—‘-ﬂp]T—%El')_i_ ses k- (2.7)

Substituting for Ap by differentiating the gas equation, we have that

A _ Pi K _, _ dps K
R 1A 'T"M oL = &p 14 d_lgil.AG/m

M
where M 1is the molecular weight of water vapour,

and R the universal gas congtant.

Thus A
LP = P]T
BT +[§Ei - Pi ///ii_
i | dt 7|/ DL

If convection ig thought to be the influencing mechanism the only

(2.8)

change in equation (2.8) is the replacement of K/DL by cpd/L. A corres-
ponding change is needed if the empirical psychrometric equation igs used.
Calculations of Af were made at both 1000 and 500 mb. The results
are represented grephically in figure 2.2 where the ambient conditions were
assumed to be those at equilibrium with respect to water., It is worth
noting that although the A€ /AT values listed in table 1 differ by more than
25% at -15C, the corresponding values of A€ differ by only 55. Thus the
Ciscrepancies between the theories outlined in section 2.1, which appeared
very serious, have a much lesser effect on the AP curves than might be
expected, At 1000 b, the curves of fisure 2.2 peak at -14.8, -15.1, and
-15.4C on the beses of the three psychrometric equations, and the values of

(oe )na}‘ decrease slishtly as showm. At 500 mb the ceme sort of tempersture
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shift is experienced, all curves moving as well about one degree towards
lover temperatures. Furthermore, although it was seen that the A€ /AT
values were directly proportional to the barometric pressure, the A€ curves

are g much less sensitive function of this pressure. For instance, the
2

ratio (A€ )1000 mb/(‘/“\ ¢ )500 =p &b ~15C is only about 1.2.
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3. TYPE QOF GROUTH 48 A FUNCTIOW OF VAPOUR DENSITY EXCESS

341 Introduction

The laboratory experiments of Nakaya irdicate that the mode of
crystal development is dependent on temperature. UNow the temperature
range for a given type of growth, according to the adjusted Nakaya diagram
(figure 1.2), increases rapidly at first with (€ - @), where @ is the
total density in the form of vapour and cloud, and ¢, the equilibrium
vapour dengity over water. The boundaries first attain their maximum
vidth or temperature limits at about ( € - Qw) = 0.3 gm m_3.

His investigations were presumably cerried out at normal atmospheric
pressures and, extending these temperature limits to a curve of 4€ =( 0w Qi)

at 1000 mb, it is seen that they intersect almost equal values of AR

for the plate and dendrite regions (figure 1.1).

32 The Nakaya "Supersaturation"

Nakaya obtained what he called supersaturation by mixing cold saturated
alr with warm saturated alr. A supersaturated mixture resulted and a cloud
of fine droplets wes formed as is mentioned specificelly in his Compendium
article.

ow the total density € of the mixture exists wholly in the vapour
phase immediately after mixing so that at time t =0, €=¢@, and ¢, =0,
where ¢, and ¢, are the densities in the vapour phase and in the form
of cloud respectively. Also st all time 1, the total density is the sum
of the cloud density and the vapour density, i.e. ¢= fy T Fpe

Assume that a certain number n of cloud droplets is formed per unit

volume. The rate of increase of cloud cdensity with time at time t will be
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proportional to the instantaneous value of the vapour density excess
( Py - Py) multiplied by nrp where r, is the radius of the cloud

droplets, assumed to be of equal gize., In fact,

d
cht = 4w D nrc( PV_PW)O

But the cloud density

Pc='%7ra'nrj,

where oo 1s the density of water. So that

ap 1/3

_——-—Q - :i“‘. -—

—e=ip, (A=)
in which A = 47 Dn(B/Z,JTO"n)l/3 has the units gm_l/B e sec™t when the
volume under consideration is 1 m3. Now

PC = P -— FV and d P cC = - d’PV °
dt dt

Therefore

Py (PP (py- Pl

p” (e, -p,) ., (3.1)

Equation (3.1) cannot be solved exactly for ¢, as a function of time,

but an approximate solution may be obtsined by the following procedure.

Figure 3.la is a plot of (FV - Pw)/( P - P,) ageinst - Eaftl/u( P - PW)Z*/B.

By choosing fine intervals of the ordinate and multiplying by the abscissa,
the curve of figure 3.1b results, where (P, - 2 )/( P - Pw) is plotted
as before and at( £ - Pw)l/B is the abscigsa. Thig is a measure of the

decay of (P, - P.) or supersaturation with time. The corresponding

v

increase of cloud density £, is glven by the inverse of this curve.
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Figure 3.1lc is a graph of (py - Py) (it)? versus (¢ - P ) (At)3
and 1s obtained from figure 3.1b., It is seen that for a given (At)3,
(py - Pw) increases rapidly with ( ¢ - €,), reaches a maximun and
then decreases very slowly. (It is felt that this slight decrease is
perhaps not real, but rather due to the graphical solution necessarily
employed in going from a to b in figure 3.1.) This indicates that
the degree of supersaturation possible attains a maximum for some value
of (P - Fw) and that for greater values of total density, greater

supersaturations cannot be achieved.

3.3 Loci of Constant (fy - Pj3)

From figure 3.lc, it is seen that ( Py - A) (.--'l.’t:)3 has its maximum
value at (P - A ) (At)2 = 30. How the boundary lines for dendrites and
pletes on the Nakaya diagram (figure 1.2) appear to attain their widest
temperature limits at a value of (P - A2,) = 0.3 gn n2., This would
indicate that the appropriate (At)3 for his mechanism of convective mixing
and flow be set equal to 30/(0.3 gm m™2) = 100 gm™t . Accepting this
value of (At)3, it is posgible to convert ( P - Pw) to ( Py - Py)
and vice~versa by means of figure 3.lc.

Loci of constant (PV - f’i), where f4 1s the equilibrium vapour
density over the ice crystal surface, can be superimposed on the Nakaya
data using the equation

(PV' Pw)

H

(Py- P) = (P = P;)

H

constant - (P, - P;) along a
given locus.
A set of such locl is shown in figure 3.2, which includes also scales of

both (@ - P,) and (Py - P). The locus ( Py - Pi) = 0 is our previous
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curve (figure 2.2) of &p = (p_= p;) which has been inverted. Loci

of constant (pV - pi) have also been included to bound the regions
favourable for the formation of dendrites, plates, columns and needles.
These boundaries fit the Nakaya data as well as his empirical lines which
are shown in figure 1l.2. In fact, the locus (Qv-— pi) = 0,1811 gnm m'"3
appears to enclose the plate region even better than does Nakaya's
corresponding boundary.

The mechanism discussed calls for but a very slight supersaturation
since the maximum value of (p_ - pw) is about 0.03 gm me; The maximum
degree of supersaturation needed is given in table 2. The lack of crystals
in the upper right of the Nakaya diagram may be explained, since super-
saturations approaching 105% would be difficult to achieve experimentally
and would have to be maintained for the order of 6 hours.

It is interesting to point out that according to Howell (1949)

supersaturations of the order of 2% can arise in the atmosphere by the

natural uplift in frontal systems.

Table 2
T P Max. relative humidity
w (relative to water)

C gm m'"3 %

0 L8LT7 100.5

-5 3.407 100.8
-10 2.358 101.2
=20 1.074 102.7

=25 0.7047 104



_2/_

24 Upper Air Data
Gold and Power (1952, 1953) estimated the formation level of snow

in the atmosphere from an analysis of upper air data and correlated the
temperature and pressure at the formation level with the crystal type

(or types) reaching the surface. Their results are plotted in figure
3.3 as crystal type as a function of temperature and barometric pressure.

If vapour density excess over ice equilibrium is to be the con-
trolling méchanism for the mode of crystal formation, then it should
not be rossible for dendrites to form and grow at a pressure of say
500 mb because of the decrease of effective vapour density excess with
decreasing pressure (figure 3.4). This is quite contrary to experience.

On the other hand, if type of growth is intimately related to rate
of growth (DAf ), dendrites which are limited to a 4 deg C interval at
1000 mb should flourish over a temperature range of about 30 deg C at
500 mb (figure 3.5). The latter is most unlikely and the data of Gold
and Power show no such increase in spread with decreasing pressure for
dendrites (or for any other crystal type). Also the Hekaya temperature
limits do not straddle the DAFP curve at 1000 mb as symmetrically as
they do the AP curve.

In the case of the Fakaya laboratory experiment, the crystal habit
or mode of development has been shown to be a function of vapour density
excess. 1t 1s clear, however, thabt some additional factor must be intro-
duced to explain crystal formation in the natural atmosphere, for with
decreasing air pressure the psychrometric values change and the vapour

density excess decreases.
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FIG. 3.3 - Crystal type is plotted against pressure and temperature from the observations of
Gold and Power and shows a drift towards lower temperatures as the pressure decreases.
The scale at right gives the estimated height of formation of the snow.
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FIG. 3.4 - The decrease of the vapour density excess with decreasing pressure would make it
impossible to achieve dendritic growth at higher altitudes.
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3.5 Adjusting for Pressure Dependence

Let us assume that crystal type is a function of vapour density excess
multiplied by some power n of the ratio of normal to prevalent air
pressure By/B. By choosing n = 0.286% (it could possibly be somewhat
greater) and multiplying the AP curves of figure 3.4 by (B,/B)", the
results obtalned are as given in figure 3.6. The curves are now of the
gsame general shape and peak at equal values of the ordinate.

Dendrites, which require a certain value of vapour density excess
at 1000 mb, cen now grow at lower pressures as well, the temperature
range shifting slightly towards lower temperatures (and similarly for
other crystal types). This is in good agreement with the findings of
Gold and Power (figure 3.3) who observed a shift towards lower temper-

atures as the atmospheric pressure decreased,

b Although the power n = 0,286 was first chosen arbitrerily to bring the
peaks of the AP curves to the same value at all pressures, it may be

that there is some physical justification for this. The potential temper-
ature which defines an adiabatic process involves (BO/B)R/Cp = (BO/B)l_l/Y,
where Y is the ratio of specific heats of air (Handbook of Meteorology,
1945). On substituting the appropriate values for air, R./cD =1-1/y=
0.286. ]
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FIG. 3.5 - If crystal type is related to rate of growth, i.e. DAp, it should be possible for
dendrites to form over a very wide temperature range in the atmosphere, since Dip

increases with decreasing pressure as shown here.
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FIG. 3.6 - Adjusting the 4Ap curves as shown causes the curves to peak at equal values. The
shift towards lower temperatures with decreasing pressure fits the observations of

Gold and Power.



_25_

4. A POSSIBLE TRANSITION MECHANISM

L.l Surface Vapour Density

Thus far the assumption has been made that the vapour density
existing at the surface of the ice crystal was at equilibrium with
respect to a flat ice surface at the temperature of the crystal. This
is in fact not the case, for surface vapour density is a function of
curvature as has been well established for tiny water droplets. Taking
the hexagonal plate as an example, the surface vapour density over the
edges must be greater than over its flat surfaces and greater still at
the corners where the curvature is highest.

The idea has been roughly verified by Nakaya (1938) who placed snow
crystals in a stopséa bottle whose inside walls were coated with hoar
frost, the vapour density in the bottle being then more or less at equi-
librium to a flat ice surface. He observed that the crystal did not
sublime and disappear, but transformed itself into a shapeless pelle%
after some time. Since the walls of the bottle were covered with ice,
there could be but slight net transfer of mass from the crystal to the
walls. But because of the effect of curvature on surface vapour density,
a mass transfer occurred from the sharper edges of the crystal to those
less curved until it finally resembled an ice pellet.

As will be seen, the vapour density field, which is radially symmetric
for a sphere, increasing proportionally with reciprocal distance, becomes
distorted in the near vicinity of a disc-shaped ice particle or an hexa-
gonal plate. The vapour density gradient favours growth from the edges of

the plate over that from the faces, and growth from the corners where the
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gradient is strongest is even more favoured. On this basis, it would be
difficult to explain the variety of crystal types occurring in natural

snow. It is only when this distortion of the field is combined with the
effect of curvature on surface vapour density that a suitable mechanism

explaining growth habits can be introduced.

4.2 The Electrostatic Analogue

It will be shown in a subsequent section that for steady state
diffusion the vapour density in space is given by the solution of Laplace!s
equation Vsz = 0, where P satisfies the boundary conditions at the
surface of the particle and at infinity. Jeffreys (1918), in considering
the transpiration process in plant life, set up an electrostatic analogue
to calculate the overall rate of evaporation from leaves. This was first
applied to the problem of growing ice crystals by Houghton.,

Since the potential function V satisfies the Laplacian in electro-
statics, vapour density and potential are interchangeable. Also the charge
q on the body is equal to CVO, where C 1is the capacity and Vo the

surface potential. By Gauss! theorem,

J}ﬂds = Lknq = Lo OV,
A ¥n o)

where S is the surface area of the body
and n the direction of the normal to the element of area dS.

The rate of evaporation from the body is then

MD %“’ dS = LrCD P, (4.1)

where D 1s the diffusivity.
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Jeffreys assumed that the vapour density at the surface of the
evaporating body was at some constant wvalue Po and thus neglected
curvature effects on equilibrium vapour density. His concept is a
valuable one, however, permitting the calculation of total rate of
mass transfer to or from odd shaped bodies if their electrostatic
capacities are known. A further extension of the theory is necessary
to investigate the effect, due to curvature, of the non-uniform surface

vapour density on the rate of growth.

L.3 Blectrodynamic Analogy

There is also close resemblance between the electrostatic field
and the state of dynamic equilibrium represented by a steady flow of
electric charge through a conducting medium.

If a hypothetical closed surface in the medium which does not

enclose any sources is considered, then

1§75 .5as - - 22 (4e2)
s

where J is the current density vector (rate of flow of electric charge
per unit area),
n 1is the normal to the sﬁrface,
S 1is the area of the enclosing surface,
and -%t.q is the rate of increase of charge within the surface.
Using the theorem of flux, the surface integral in equation (4.2) may

be transformed to a volume integral. Thus

jSSdiv J dv = = Jjj ibq—z dv, (4.3)
v v
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where v 1s the volume enclosed by the surface, and

is defined b = dv.
qv is define Yy q SVSSQVV
Or
- dq
divJ = --——% - (boh)

For the steady state reached in conduction, qQ, is a constant, so
that

H'J'.H S =0 and divd = O. (4.5)
S

If the conducting medium is isotropic,

J =& (4.6)

where ¢ 1is the conductivity,
and E the electric field vector.
In addition, if the medium is homogeneous, ¢ is constant and equation
(4+5) reduces to

divE = 0 (4.7)
o, (4.8)

or V2 ')
so that the potential satisfies Laplace's equation.
Consider now the total current i flowing to a body at potential
Vo immersed in a conducting medium and surrounded by a spherical shell
at a large distance from it and at a potential V., , where V, 7> Vo'

From equation (4.2)

i = SYE.HdS
S
-1 (fE.5as
a s
= 1 oV
=t J—é_ﬁds' (4.9)



_29_

If the surface potential of the body is assumed constant, Jeffreys!

result is reproduced. That is

i=%2 {g.5as - HE (v, - V). (4.10)

S

This theory, leading up to the end result (4.10), bears a closer
similarity to diffusion theory than does the electrostatic case. For
i, which is the rate of flow of charge, becomes %%5 the rate of mass
transfer, and ¢ the conductivity is related to the diffusivity by
D =1/ . It appears that a valuable method of measuring rates of
growth or evaporation of irregular bodies (snow crystals) in the

laboratory could evolve from this.

Lol The Inhibiting Mechanism

From equation (4.9) it is seen that the rate of growth per unit
area is proportional to the vapour density gradient. Thus for an oblate
spheroid (a first approximation to an hexagonal plate) whose ratio of
major to minor axes is 10:1, the growth per unit area along the edges
is 10 times that along the flatter faces, since the gradients are in
the same proportion. A diagram of the equipotentials (or lines of
constant vapour density) around a disc is shown in figure 4.1, the last
eqpipotential line being half of the value at infinity. A graph of
vapour density (normalized) against reciprocal distance (figure 4.1)
shows that the gradient is very mich steeper at the perimeter of the
disc than at its flat faces. The straight line is that corresponding
to an equivalent sphere, since the radii of a disc and a sphere of

equal capacities are in the ratio of m/2.
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'FIG. 4.1 - The equipotentials around a conducting disc are shown in egjual steps of potential, the last being
half the value at infinity. The gradient is much greater at the verimeter than at the relatively
flat faces. At the right potential (or vapour density) is represented against reciprocal distance
and illustrates the same feature. The straight line is that corresponding to a sphere whose
capacity is equal to that of the disc.

The assumption has been made that the vapour density is constant at
the surface of the body. The vapour density field around an hexagonal
plate then favours continued growth as a thin plate. In fact, one would
be led always to expect dendritic growth, since the gradient would be
createst at the corners and consequently the relative growth most rapid
there.,

If, however, the equilibrium vapour density is higher at the edges
than over a flat surface, and that at the corners higher still, these
otheruise-favoured types of growth will be inhibited until the excess of
the ambient vapour density is of sufficient magnitude to overcome these
inhibitions,.

A somewhat similar situation is fouﬁa in radio tube theory when
operating at positive grid bias. When the grid bias becomes positive or
if the anode voltage drops sufficiently, it is possible to have a large
current flow from grid to cathode, Similarly, if the ambient vapour denslity
decreases by a suitable amount, a mass flow could be expecled from the

perimeter of the crystal to the faces and transitions in crystal type occur.
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Le5 Electrolytic Tank Experiment

A composite model of an hexagonal plate was made, a sketch of which
1s shown in figure 4.2 (left). It was composed of five sheets of aluminum
foil, two acting as the faces, two cut to simulate the edges, and the central
one the corners. osheets of waterproofed paper, acting as insulators, were
placed between the foil surfaces and the whole cemented together. The areas
of foil exposed corresponded to the faces, edges and corners of the crystal,
Electrodes were attached to the metal foils so that variable potentials
could be applied to each. A spherical shell of aluminum foil, large
compared to the dimensions of the crystal, surrounded the model and
both were immersed in a tank of ordinary tap water.

With the experimental arrangement used, it was vossible to apply
different potentials on the faces, edges, corners and on the large shell
which will be called infinity. Current measuring meters were included in
series with the faces, the edges and the corners, and both voltage and
current readings were taken simultaneously.

For easy interpretation of the results, a first set of observations

was taken with the same potential being applied to both edges and corners
(i.e. to the whole perimeter). The faces were always kept at sround
potential and, for a given voltage on the perimeter, the potential applied
to the distant electrode was varied and current readings were recorded.
The results are illustrated by two sets of curves in figure 4.2, the set
at 10 volts perimeter potential being typical of the data obtained when
that potential was 5 and 20 volts. When any given potential was applied
to the perimeter and the potential applied to the distant electrode

gradually increased from zero, it was observed that at first there was a
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FIG. 4.2 -~ A% left is shown a sketch of the crystal modsl used in the electrqlytic tank sxperiment.
To the right, current to the faces and perimeter of the model is plotbed as a function
of the voltage applied to the distant electrode for perimeter volteges of 0 amd 10 volts.

current flow from the perimeter to the faces of the crystal model. This
current flow from the perimeter decreased rapidly with increasing distant
field, the current to the faces, however, increasing steadily with applied
field. When the distant potential had risen to three times the perimeter
potential there was no net flow to or from the perimeter. For higher
values of potential applied to the distant electrode, the current to the
perimeter increased rapidly, soon exceeding per unit area the flow to the
faces. The effect on the total current of a voltage on the perimeter was
equivalent to applying a voltage 0.3 times as great to the whole crystal.
It is worth noting the anomaly shown by the curve of current to the

perimeter against distant voltage in the region 15 to 30 volts when the

perimeter potential was 10 volts (figure 4.2).
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. Referring these results to a curve of potential difference against
reciprocal distance (figure 4.3), the perimeter is located some distance out
from the radius of the equivalent sphere (capacity) towards the distant
electrode which is near infinity. Since the electrode referred to as the
perimeter had a finite width and since it was hexagonal in shape, the
letters a and b designate the locations of the farthest and nearest
points of the ocutside of the "perimeter", and ¢ and d correspond to the
inside of the Yperimeter". The actual potential on the perimeter is in-
dicated by the vertical extant of the arrowheads rising from these points.
The equivalent sphere, as follows from the experimenfal results, has also
been given a potential 0.3 times that of the perimeter. The slope of the
locus represents everywhere the current flow per unit solid angle to the

equivalent sphere. Pivoting the locus about the eguivalent sphere
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FIG. 4.3 - Potential, normalized against that of the distant electrode, is plotted against reciprocal
distance. Using the dimensions of the "erystal" and of the distant electrode, the equivalent
sphere is represented at the left, the arrowhead denoting its potential. The outside of the
Yperimeter” extends from a to b, the inner part from ¢ to d. The potential assigned to the
perimeter is one-third that of the distant electrode (being the critical case when the field value
in the neighbourhood of the perimeter is near the potential on the perimeter).
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corresponds to changing the potential of the distant electrode. It is
seen that this moving locus would enter the region a to d of the
perimeter arrowheads when the distant potential was 1.9 times that on
the perimeter and leave that region when the factor was exactly 3. (The
latter factor has already been shown to be the critical ratio of distant
to perimeter potential for which there is no flow to or from the perimeter.)
This would also explain the anomaly observed in the perimeter current,
since with increasing applied field, the transition in perimeter current
occurred between 15 and 30 volts when the perimeter voltage was 10 volts,
giving almost the same factors as found from figure Ah.3. It is then
apparent that the distortion to the field around an equipotential disc,
if a higher potential is applied to the mErimeter, is only local. The
distortion is in such a direction as to render the field more radial.
Further sets of experiments were performed to ascertain the corner
effect. For this purpose, the faces were again kept at zero potential,
the edges at 5 volts, and the corners at 10 volts. A somewhat similar
effect was observed with respect to the corners, the current to the
corners cutting off when the potential of the distant electrode was
somewhat more than three times that on the faces. Interpretation was
more difficult because of several complicating factors: a different water
bath was usea and electrolytic action and corrosion had attacked the

crystal model, in particular at the corners which had begun disintegrating.
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L6 tiode of Crystal Development

The results of the electrolytic tank experiment can be transposed
at least qualitatively to provide the mechanism necessary for transitions
from one type of crystal growth to another.

Because the basic crystalline structure of ice is thought to be hexa-
gonal, a reasonable form to assume for a snow crystal in its initial stages
of growth is thét of a tiny hexagonal plate. The future growth habit,
however, would appear to depend on the nature of the diffusion field, and
80 on the vapour density excess,

The behaviour is intelligible when referred to figure 4.3 where vapour
density excess is now the ordinate. An hexagonal crystal of uniform surface
vapour density around its perimeter, which is slightly in excess of that
over its faces, distorts the field locally, tending to make it more radial,
but does little to the distant field. The coincidence of the field around
the crystal and that of its equivalent sphere is presumably best when the
perimeter has the field associated with the equivalent sphere at that
point (almost as illustrated in figure 4.3). In any case, the vapour flow
to the perimeter is proportional to the difference between the field value
in the neighbourhood of the perimeter and the surface value on the perimeter.

In point of fact, considering an hexagonal snow crystal, the near edge
is located approximately 0.32 of the way to infinity from the equivalent
sphere, and the corners extend out to about 0.4, a little further into the
diffusion field (figure L4.4). The surface vapour density at the carners
is also slightly higher than that at the edges. If the ambient vapour

density excess is small, both edge and corner growth are inhibited, actually
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FIG. L.4 - The lines of constant vapour density and the flow lines favourable for columnar, plate-like and
dendritic growth are here illustrated. The transition from one type of growth to another is
shown by the three curves of vapour density excess plotted against reciprocal distance.

made negative, and the crystal grows outward from its faces as a column
(figure 4.4, bottom left). If the excess is sufficient to overcome the
inhibition to edge growth, but not that to comer growth (figure 4.4, top
left), the crystal grows as a plate while thickening only slowly. If the
excess is greater again and sufficient to overcome the inhibition to corner

growth, the crystal grows outward from its corners as a dendrite (figure 4.4,
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top right). Should the vapour density excess fall off momentarily at any
stage in the growth of a dendrite, then each of the six hranches broadens
to provide the roots for a symmetrical array of leaves. These continue to
grow when the crystal returns to comer growth, but more and more slowly
as they become shielded by the principsal arms. Similar leaves may, of
course, result from the adherence to the branches of cloud droplets, but
the leaves are not likely to be symmetrically disposed.

Qur loci of constant (pv -~ pi) on the Nakaya data (figure 3.2) illus-
trate this effect quite clearly. Decreasing this vapour density excess
continuously, one passes through the dendrite region to that where thin
plates are most prevalent, then on to thick plates and throﬁgh to colums.
Now the transition from columnar to plate-like growth (figure 3.2) occurs
when the vapour density excess is 0.18 gm m—3. Combining this with
results from the electrolytic tank experiment for the critical point
where flow to the perimeter has just ceased (the case shown in figure 4.3),
it appears that the surface vapour density at the perimeter exceeds that
on the faces by approximately 0.06 gm m-3,k and that no net growth can
take place unless the excess of ambient over the effective ice crystal

3 AR

vapour density is greater than about C.02 gm m ~. According to our

analysis of the Nakaya data, however, no growth was reported for vapour

x It has been necessary to assume that the excess of the perimeter vapour
density over that on the faces does not vary significantly with temperature.
It is possible that the surface vapour density over curved solids differ in
this respect from curved liquid surfaces.

If our concepts are valid, this fact should be taken into consideration
in calculating rates of growth of snow crystals, i.e. the rate of growth
should be proportional to difference between the ambient vapour density
and the surface vapour density of the sphere equivalent in capacity to the
crystal, adjustments being m&de as well for the temperature of the growing
crystal.
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density excesses less than 0.1 gm m73, corresponding to a temperature
limit of -4C. This discrepancy could be due to the diffi culty of
nucleation at temperatures warmer than -4C, or because the net growth
(if any did result in the Nakaya experiment for {p < 0.1 gm m‘3)did
not produce a crystal of distinguishable form.

In summary then, it is suggésted that the variety in the modes of
crystal development can be suitably explained by means of the vapour
density excess if a non-uniform surface vapour density at the crystal

is assumed.
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5. RATE OF GROWTH OF AN ICE CRYSTAL IN CLOUD

5.1 Introduction

The general diffusion equation of water vapour into air, assuming a

uniform air density, is given by

dp _ 5 po®y .2 _(plp 3 (plp

If the medium is such thet the diffusion coefficient is independent of

position, then

dp 2
=D v p.

If the ice particle is at rest relative to its environment and after the
diffusion field surrounding it has attained a steady state, -%% = 0, The
vapour density at any point in space is then given by the Laplacian equation
subject to suitable boundary conditions. These are usually, (a) at an
infinite distance from the particle the vapour density Py is at water
equilibrium at the ambient temperature, and (b) at the surface of the
particle the vaoour density Py is at equilibrium with ice at the temper-
ature of the ice.

The rate of mass transfer %% across any spherical surface of radius
r about the particle is proportional to the area of the surface, the

vapour density gradient there, and the diffusivity of water vapour in

air. In fact

dm _ _ 2 . dp

Assuming the crystal to be spherical in shape and of radius a, and

solving the spherically symaetric Laplacian
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2
2
dp+;§_p=o (5.2)
ar< r
for the density gradient, the rate of growth %% of the particle is
dM dm _
= 5t = bmad(p - p.). (5.3)

The result (5.3) may be generalized to apply to any odd shaped
bodies by using Jeffreys' analogy which was discussed in section L.2.
For a body of electrostatic capacity C, the rate of growth becomes

dM

S = Lmed(p, - p.)- (5.4)

Since it is mathematically simpler to treat spheres and spherically
symmetric fields, the rate of growth of a spherical particle will be
considered with the assumption that the result will also hold for any

body of equivalent electrostatic capacity.

5.2 Growth in Cloud

The simple treatment given thus far assumed that there were no
sources of vapour present other than at infinity.

Now suppose that the particle is in the presence of supercooled
water droplets. Let the cloud droplets be uniformly distributed
throughout the volume and let z r, be the sum of the radii of thedrops
per unit volume. We tacitly assume that the cloud drop size distribution

does not change with the sampling volume, no matter how small it is.
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The rate of evaporation for each cloud droplet is simply
hnrcD(pw_- p)&, where p is the vapour density in the vicinity of the
drop after a steady state has been reached. Now the rate of evaporation
from a shell of thickness r surrounding the ice crystal is proportional
to the volume of the shell, i.e. to the summation of cloud drop radii

in it. Thus the contribution from the shell is

dmy 2

6@ = mf i [ i T r D(p, - p)] :
So that

d_ (dm)

= 5T hﬂr2 [ I T D(pW - pi-

But the rate of mass transfer across any spherical surface about the

ice particle was given by equation (5.1).

d 2.d 2
ar (=bmr DEE-) = Lmr [AﬂZ‘rcD(pw-p)] .

2
d’p 2 dp _ _ =
— I = (p pw) (zmz;rc) 0. (5.5)

joR

The differential equation (5.5) corresponds to equation (5.2), the
extra term accounting for the added sources of wvapour. It is tobe noted

that whereas the rate of change of mass transfer with distance was equal

x The following argument may serve to justify the assumption that the water
drops (cloud) are all at the same temperature irrespective of their distance
from the ice crystal (i.e. that we are able to use the same pw). The ice
crystal is releasing heat (the latent heat of sublimation) and a plot of
temperature against distance from the crystal would be similar to the inverse
of figure 5.1. The cloud droplets, however, are evaporating and are thus
below the temperature of their immediate environment, the depressions
becoming larger for drops closer to the crystal where the air temperature

is higher. Thus the resulting drop temperatures are approximately equal

25 has been verified by rough calculations.,
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to zero for the first case discussed (i.e. the mass transfer was
continuous from source to sink), this is no longer the case.

Substituting 1/2
r)

ap , 249 -
+ x d.; - (p - pw) Oo (5'6)

A solution to this equation is

_ , cosh x sinh x
P-p, =4 X * B x

Now p = p, 3 X approaches oo , and since cosh x = sinh x for large x,

we have that 4 = -B, i.e.

I sinh x _ cosh X ]
P =Py [ X x *

But p = p, when x = x, (i.e. when r = a), so that

sinh x; _ cosh Xi]"l
X *

The solution for the vapour density at any point in space 1s then

A = <pi - pw) [

sinh x; cosh xi] -l[sinh x _ cosh

p=%-wwwgl - - " -
. —-X4 -] -X
e
= oy - by - o) | = ] e (5.7)

This may be further simplified by making the substitution x = in (or
r = Na). The resulting expression for equation (5.7) becomes

-1 -xt (N -
p=p, - (p, - p) N e -2 (5.8)

Equation (5.8) is perfectly general in nature so long as specific

values are not assigned to the cloud temperature or the barometric

pressure. These would define Py and Lp = P, = Py as discussed in

section 2. The rate of mass transfer, being proportional to the vapour
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diffusivity, is also a function of temperature and pressure. Thus

to retain generality in studying the effects of cloud, the equations

will be put in a form dependent only on the dimensions of the ice

particle and/or the dimensionless quantity x, = ka, where k = (b % rc)l/2

is some function of the cloud density.

To recapitulate and swmarize, the relevant formulae are listed

in table 3 for cloud-free air and in the presence of cloud.

Formula

P - P
pw"pi

dp
dr

Pw — Pi

dm
dt

kmD(p = p;)

d_ dn
dr dt

krD(p, = py)

and at the surface of the growing ice particle

au
at

I-I-'TTD(pw - Plj

Table 3

No Cloud

1
1-X

I
’—J
o

where N is defined by r = Na,

X; is defined by x4

and k is defined by k = (4m = rc)

= ka,

1/2

Cloud Present

e—xi(N-l)

1- N

k

S [

<N:i>2 ___NiN_}l 1+ 2]

2 e-xi(N—l)
(x)? £

a(l + ka)
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5.3 Discussion of Results

It is of interest to examine the vapour density field as a function
of radial distance from the ice particle. Curves representative of this
are shown in figure 5.1 for ice spheres of radius 0.005 and 0.1 cm.

The distance scale used has in each case been extended out to 15 times
the radius of the particle. It is seen that the presence of cloud
becomes much more significant as the particle size increases. For a
given particle size, the higher the factor k (a measure of the cloud
density) the sooner does the vapour density approach its water equi-
librium value.

Consider now the rate of mass transfer. In the absence of cloud,
there is a diffusion of vapour towards the ice sphere such that the
mass flowing inward across every concentric spherical surface is the
same. The presence of cloud modifies this picture, since any shell

of finite thickness adds a contributing region to the vapour density.

d dmy /dM s
If ar ( dt) ry (the ratio of the rate of change of mass transfer

across any spherical surface to the total mass transfer or rate of
growth) is plotted against r, the resulting graph will show the relative
contribution of the total mass transferred as a function of the distance
from the ice particle. Two such curves are given in figure 5.2 for an
ice sphere of radius a = O.1 cm, and for cloud such that k = 1 and

5.5 cm-l. The area under each curve is unity. For k = 5.5 cm_l, the
peak is at a much higher valne and nearer to the particle, and the
contribution from regions for which r> 1.5 cm. is negligible. When

k=1 cm-l

, the mass contribution is significant from regions as far
out as 6 em. This would indicate that, because of the larger reservoir
of water available with increasing k, the particle is able to draw more

vapour from closer in. Also for k = O the vapour is drawn from infinity.
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The rate of growth, as is to be expected, also increases with k.
Using %%VhﬂD(pw - pi) as ordinate in figure 5.3, so as to be indepen-
dent of atmospheric variables, rates of growth are plotted as loci
of cors tant k. The abscissa, using Jeffreys'! analogy, is the electro-
static capacity C of the ice crystal (C = a for asphere). The curve
in the absence of cloud is a straight line of ABO slope passing through
the origin. With increasing k, the curves all converge at the origin
but lie above the straight line and show more and more pronounced
curvature. Even a slight trace of cloud (k =1 cm-l) increases the
rate of growth appreciably (10% for C = 0.1 cm, 5% for C = 0.05 cm).
Figure 5.3 can be replotted using as ordinate %%yhﬂCD(pw - pi) or
the ratio of rate of growth in cloud to that without. The loci of
constant k are now the straight lines given in figure 5.4.

An attempt has been made to relate the quantity k = (4m % rc)l/2
to typical cloud densities. The cloud drop size distributi ons of
Weickmann and aufm Kampe (1952) of relatively young cloud show some
uniform properties. The median radil are about 7¢ and the root mean
cube radii about 8p. Assuming these two values, a relationship is
obtained between liquid water content M (gm m73) and k (cmfl). Very
approximately, M, = 0.25 K°. The cloud data of Diem (1948) however,
have distributions which are much less uniform. The very rough
relation found between Mc and k (Mc=u 0.14 k2) may be out by as much
as a factor 4.

It should be emphasized that all present methods of cloud sampling,

such as slide techniques, discriminate against droplets of less than
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S diameter. This is readily admitted by most investigators who
explain the abrupt cutoff at the lower limit by assuming that the
smaller droplets are carried around the exposed slide by the stream-
lines which diverge there. The discrimination against these small
cloud droplets, which are doubtless very numerous, makes no significant
change in the liquid water content of the cloud which is proportional
to the cube of the radii. The factor k (proportional to rcl/z) could
however be appreciably increased. A cloud of, say, 24 diameter drops,
having a liguid water content of 1 gm n> (which is not unreasonable)
would have a k factor such that k° = 300 cm_z, and could enhance the
rate of growth tremendously as the ice crystal increased in sige. Thus
better cloud drop spectra are needed before a fair evaluation of this
process can be made.

If the vapour density field around a sphere is plotted against
reciprocal distance from the sphere, a straight line results for the
case of no cloud as is evident from the first formula in table 3. This
has already been shown in figure 4.l and the reciprocal scale usage has
preved invaluable to the interpretation of the electrolytic tank experi-
ment reviewed in section 4. It has further been found possible to
approximate a cloud of given k value by a water shell whose radius T
depends on k alone (i.e. the infinity boundary condition has been moved
in to a distance r. from the ice particle). The relationship between

‘k and rwfl is shown in figure 5.5. For ice spheres of dimensions such
that a=+> 10 cm-l, the vapour density field using the above approximation
is essentially unchanged from the exact solution in the region for which

s 5 cm—l, where r is the distance from the ice particle. In the

o~
region O0< rics cm‘l, the approximate solution diverges from the exact
one which is tending to r—:L = 0 as p approaches py, the divergence increasing

with incressing k or a.
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FIG. 5.5 - This relates the radius r, of a water shell which would
effectively replace a cloud of value k so that the vapour
density field is essentially unchanged for r1> 5 cm™ and
ice spheres such that a-l > 10 cm-l.

The relative influence of cloud and supersaturation on crystal
habit can now be compared. Consider first an atmosphere at =15 C and
relative humidity of, say, 102%. The excess of the ambient vapour
density over that at the surface of a growing ice particle after the
latter has been corrected for temperature is about 1.23 times greater
for the 2% of supersaturation than for an atmosphere at water equili-
brium. The effective vapour density drop is thus increased by Ll.23,
this increase being independent of particle size. Approximating cloud
by a water shell corresponds to having the water equilibrium boundary

condition at some finite distance from the ice particle (figure 5.5).
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This in turn leads to an effective vapour denéity at infinity which
varies with the size of the particle. It is only when the particle
attains appreciable dimensions and the cloud is dense that the effective
vapour density excess is significantly greate£ than for an atmosphere

at water equilibrium. Thus when k = 10 cm-l the factor is 1,001 for a
104 diameter ice particle, 1.02 for a 100y particle and 1.23 for a

1000y particle. It was because of this variability with size that

the density in excess of water equilibrium in the form of vapour was
used in section 3 in the analysis of the Nakaya data. The loci of
constant (pw_— pi) in figure 3.2 are thus valid except at high cloud
densities. At high cloud densities the locus bounding a crystal type
domain would tend to spread so as to inclwde'the few dendrites and plates
which had been missed previously.

Ventilation or relative motion between the ice crystal and its
surroundings has been neglected in this study. The difficulties inherent
in a theoretical approach to this problem are formidable. Experimental
results by Frossling (1938), Gunn and Kinzer (1951), and Houghton and
Radford (1938) on ventilated evaporating water spheres are all in con-
flict. Presumably ventilation plays a role somewhat similar to cloud
in that it brings the defining boundary in from infinity closer to the

particle. The rate of growth of ice crystals is thus esnhanced by

ventilation.

5.4 Size Attained by Growing Ice Crystals in the Atmosphere

The co-existence in the atmosphere of water in all its three phases,
as in a mixed ice-water cloud, may lead to the growth of the ice crystals

by direct sublimation of water vapour. If growth by accretion is not
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considered, the water drops act only as sources of vapour providing
the vapour density gradient necessary for the growth of the ice crystals.

The final mass attained by a growing snow crystal will depend on
its initial dimensions (or mass) and on its rate of growth. The depth
of the cloud and the velocity of fall of the crystal relative to its
environment will dictate the time available for the particle to grow.

Houghton has calculated rate of growth as a function of particle
mass where the velocity factor has been included. As a most favourable
case, he chose a temperature of -15C and a water saturated atmosphere.
These are conditions suitable for dendritic growth and his results are
shown in figure 5.6. Taking the initial mass of the ice crystal as 0.033
pem and integrating his curve of rate of growth as a function of particle
mass, he obtained a curve of mass against elapsed time which is reproduced
in figure 5.7. It shows that an ice crystal growing by sublimation under
the conditions stated could attain a mass of about 500 pgm in about 60
min after falling approximately 1 kilometre, thus resulting at best in
a drizzle drop (if melted).

Making the same basic assumptions as Houghton regarding the air
temperature, type of crystal growth, initial mass, and relative velocity
we have gone through a similar procedure of calculating rate of growth as
a function of particle mass with the exception that the growth was con-
sidered in the presence of cloud. 4 factor k = 10 cm-l was chosen as
equivalent to a moderate cloud and the results plotted in figure 5.6.

The integrated curve yielding mass against elapsed time is compared to
Houghton's in figure 5.7. The divergence between the two increases

rapidly with time. After 10 min have elapsed, the crystal growing in
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cloud is 2\times the mass of that growing at water saturation; after
20 min the ratio is about 43 after 30 min, about 8. Also the mass
attained at water saturation in 60 min can be exceeded in less than
25 min in this cloud.

It would appear that cloud enhances the sublimation process. When
Houghton's curves of growth by sublimation are modified by thesé con-
siderations, they can explain the larger ice crystals that are observed
(i.e. about 1000 i gm on the basis of a time of growth in the cloud of
the order of half an hour or less). This does not imply that precip-
itation particles equivalent to fair sized rainmdrops normally result
from the sublimation process alone. One must still consider growth by
accretion and the bunching of many crystals into aggregates to account

for the large size rain drops observed.
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6. CONCLUSIONS

The distribution of snow crystal types as a function of temperature
observed by llekaya and Hanajima suggests symmetry about the maximum of a
curve of @, - ¢4 against temperature, where ¢, 1s the vapour density at
equilibrium with water at the air temperature and p; is the ice equilibrium
value at the temperature of the growing ice particle which is slightly
warmer than the air temperature. OStarting from this clue, attempts were
made to explain the whole of the Nakaya distribution as depending primarily
on the excess of the ambient vapour density over that at the surface of the
growing ice crystal. This attempt was successful when it was assumed that
the excess water above the licuid equilibrium value in Nekaya'ls experiment
consisted largely of water cloud but in small part of supersaturated vapour.
While the presence of fine water cloud affected the vapour density gradient
at the surface of the growing ice particle, the effect varied with particle
size, and except for very lerge particles, it appeared that the small amount
of true supersaturation was more significant than the presence of cloud in
influencing the type of growth 1n that experiment.

A simple analytical expression was derived for calculating AP as a
function of temperature. It was found that, although the psychrometric
values were directly proportional to the atmospheric pressure, the AP
values were a much less sensitive function of the pressure. In order to
explain crystal habit at high altitudes (i.e. low barometric pressures),
it seems necessary to modify the A curves by the ratio of standard to
exlsting pressures taken to a power of about 0.3. The exact figure 0,286,
which occurs in the definition of potential lemperature, caused the curves

to assume the same peak value. e have teen unable to find any physical

paslis for this coincidence., The shift towards lower temperatures with
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decreasing pressure as was observed by Gold and Power for any given crystal
type was then in good agreement with these modified curves,

In the course of analysing Nakaya's data, a plausible mechanism
explaining the dependeance of crystal habit on vapour density excess
suggested itself, 3ince eguilibrium vapour density over liquids is a
function of the curvature of the surfaces, this was also postulated for
snow crystal surfaces. in hexagonal snow crystal (plate) would then have
a surface vapour density at its edges which exceeded that over its flat
faces, and the corners being doubly rounded would have a still higher
value, Growth to the corners and edges would be inhibited until the
ambieﬁt vapour dengity was sufficient to overcome these inhibitions.

This was verified in an electrolytic tank experiment using a model of

an hexagonal snow crystal consisting of a set of electrodes at different
potentials representing the faces, edges and corners of the crystal and
applying a distant field. The results irndiceated that marked transitions
occurred in the current per unit area flowing to the different electrodes
as the distant field was increased. At first the flow was mdinly to the
faces, but, for a sufficiently high applied digtant potential, flow to

the edges was favoured and finally the flow per unit area to the corners
exceeded the others. Columns result from diffusion to the faces, plates
from edge growth and dendrites when the growth is from the corners. Crystal
habit was thus explained by means of the existing vapour deunsity excess in
its abllity to overcome the inhibitions mentioned.

The steady state diffusion egquation was solved for an ice particle
groving in the presence of cloud, the solution of the vapour density field
veing in terms of a parameter k which was proportional to the square root

of the sum of the radii of the cloud droplets per unit volume. It was



snown that with increasing '« the ice particle could draw more vapour from
closer in. A moderate cloud could thus enhance the rate of growth apprec-~
iably when the particle attained significant size. & growth curve in
cloud as a function of elapsed time was calculated and compared to a
similar curve of Houghton's where the growth was assumed to take place

in a water saturated atmosphere. The cloud enhanced the diffusion and
sublimation processes to such an extent that the time of growth from
0,033 ugm to 500 4 gm was reduced roughly by a factor of 3. Thus, though
supersaturation rather than cloud was shown to be the dominant factor

in the HNakaya experiment, clouds are nprobably important under natural
conditions, because of their effect on larger crystals, in achieving

in & reasonazble time the large crystsls observed at the ground.
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PART II

MEASUREMENT OF THE TERMINAL VELOCITY AND MASS OF SNOWFLAKES



-58-
1. INTRODUCTION

Snowflakes, as observed at the earth's surface are usually
found to fall in the form of aggregates of many individual crystals.
It has been thought that snow, originating as single crystals, could
fall considerable distances before aggregating, the clusters being
produced by the collision and adhesion of the crystals during their
course of fall when the temperalures were sufficiently high. HRadar
observations (Part III) suggest that on occasion, when the snow is
generated in compact cells, aggregation may occur within these
generating cells. Thus a relatively canplex picture may exist,
aggregation taking place at the generating level and again when the
temperatures approach the melting point, with secondary processes
possibly being in effect throughout the fall of the snowflakes.

There is a need for velocity information to interpret radar
studies. Schaefer (1947) and Wakaya and Terada (1935) have measured
the velocity of single crystals, but the behaviour of aggregates must
be studied if aggregate flakes occur over a much wider range of heights
than previously thought. A method was therefore developed whereby
the mass and velocity of descent of snowflakes could be determined
simultaneously.

Interpretation of radar information requires a knowledge of the
size distribution of snowflakes as well, and a sample in space can be
related to a sample collected at the ground by knowing velocity as a
function of size. Dr. K.L.5. Gunn has attempted to obtain snowflake
velocities as a function of size by sampling (a) through gravitational
settling and (b) by sweeping out a volume of space. The &elocities
obtained from a comparison of the two suggested that the space dis-
tribﬁtions found by this method were not reliable, and so a more direct

method has been used.
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2. METHCDS CF MEASUREMENT

2.1 Velocity of Fall

The velocity of fall of a particular snowflake was measured
directly from the time interval taken for it to fall through a given
vertical distance. The snowflakes were photographed in motion against
a dark background from a distance of about 10 feet using a 16 mm movie
camera. Each snowflake produced a short streak (due to its motion

during the short time interval for which the lens shutter was open)

r frame of the film (figure 2.1). A camera speed of 32 frames
Figure 2.1 - A single exposure
showing the vertical streaks made

by the falling snowflakes.

per second, giving a measure of the time of fall, was found most
suitable for successful registration of the streaks on the film. At
this speed, the streaks were not too long and the natural illumination
available was sufficient so that film of normal contrast could be used.
The camera speed was carefully checked before and after the winter's
operations by means of a stroboscopic flash unit and was found to be
reliably constant.

S3ince the observations were taken in the open air, the camera
recorded the snow falling between it and the dark background in the
conical volume bounded by the angle of the camera lens. Snowflakes
close to the camera, not being in the focal plane, produced very large
blurred images on the film and tended to obliterate flakes which were

more distant from the camera. It was thus found necessary to mount a



-60-

stereoscopic attachment in front of the camera lens. In essence,
this attachm.ent.i consisted of two systems of reflecting mirrors and
prisms which viewed the field from a distance of about 2.75 inches
apart. Two images were thus obtained from slightly different angles
side by side on the 16 mm film. With this system, the more distant
an object is from the camera, the more closely do its images occupy
the same relative position on the split movie frame., A snowflake
falling very close to one side of the stereo-attachment would still

permit the other to obtain an unobstructed view (figure 2,27,

Figure 2.2 - The large blurred
image at the left is caused by
a snowflake falling close to

the left aperture of the stereo-

attachment.

Measurements were only made on the snowflakes which landed on
the horizontal wool disc shown in figures 2.1 and 2.2. The films,
after processing, were projected through a special type of projecfor
wnidn could move the film, frame by frame, with perfect registration,
as slowly as desired. The streaks due to a falling snowflake could
then be followed on successive frames until it settled on the disc
(sequence figure 2.3). Thus a velocity could be associated with a
given flake on tg; disc. Minor corrections were applied to the
velocities depénding on the position of the flake on the disc (i.e.

on its distance from the camera) and also if the snowflake was not

falling in a plane parallel to the focal plane.

& Nord 3rd Dimension Converter, The Nord Co., Minneapolis, Minn.
¥ Dunning Animatic Projector, Dunningcolor Corp., Hollywood, Calif.
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Figure 2.3 - A sequence of 16 consecutive exposures showing a

snhowflake gradually settling onto the horizontal
wool disc. For ease of illustration, a very light

snowfall has been chosen.
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2.2 Melted Diameter and Crystal Types

The relevant snowflakes were those which settled onto the black
angora wool disc, 13 inches in diameter. This disc, which was sheltered
from further exposure to the snowfall when the camera was stopped, was
then taken indoors. A VWhatman #1 filter paper, previously dusted with
powdered dye, was placed on the disc and absorbed the water from the
melted snow particles. The calibration curve of Marshall, Langille
and Balmerk (1947) was then used to relate the size of a stTain on
the filter paper to the diameter of the water drop equivalent in mass
to the snowflake.

This diameter, which will be called melted diameter, is of sig-
nificance for two reasons. a) The mass of the snowflake is proportional
to the cube of this diameter whereas if the actual dimensions of a
flake were considered, the relation between mass and dimensions would
in general be more canplex depending on crystal type, density and so on.
b) It is also one of the significant quantities in radar theory where
the back-scattered intensity is proportional to the sum of the sixth
powers of the diameters per unit wlume of space.

A correspondence was thus obtained between velocity and mélted
diameter. Closely spaced observations were also made of the crystal
types forming the aggregates and on the state of aggregation, and

temperatures at the ground were recorded.

X This calibration curve was carefully checked at frequent intervals
within the melted diameter range of 0.08 to 0.5 cm. The method found
most convenient was to place a small water drop on a waxed glass slide,
The drop assumed the shape of a perfect hemisphere when the glass
slide was horizontal. Its diameter was measured with a travelling
microscope and related to the diameter of the stZain which it produced
on the filter paper.



_6‘3 -~

3, OBSERVATIONS AND RESULTS

Before proceeding to a presentation of the results some state-
ments will be made regarding the difficulties of obtaining usable
observations and the consequent interpretation of the results.
a) On many occasions it was found that the air temperature at the
ground during a snowfall rose to a value which could be a few degrees
above the freezing point. Thus slight melting must have occurred
and the aggregation would be more efficient under these conditions.
Velocity measurements on such occasions would not be representative
of snow velocities at temperatures below freezing.
b) On some of the days when temperatures were below the freezing point,
severe winds approaching blizzard conditions were present. Sudden
ground gusts in the vicinity could make the measurements unreliable.
¢) The photographic method depended on the light scattered by the
individual snow aggregates. Thus largef aggregates, having greater
scattering cross-sections, were more easily registered on the film,
The lower limit of detection was for melted diameters of about 0.04 cm.
d) Indirectly there was also discrimination between crystal types.
For instance, in a snowfall containing dendrites and plates, the den-
drites would be more efficiently photographed near the limit of
detection since, for a given mass, the dendrites being less dense
have a higher scattering cross-section than the plates.
e) Finally although the size distributions (see figure 3.1) are such
that the numbers are highest for very small diameters and relatively
few for large diameters, the efficiency of the velocity measurements
increased with the size of the aggregates, Thus the number of velocity

measurements within any diameter interval is not indicative of the
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total number in that interval. The efficiency (i.e. the ratio of the
number of aggregates successfully photographed within a given diameter
interval to the total number within that interval as collected on the
horizontal wool disc) is shown for a typical case by the dotted lines in
figure 3.1.

During the winter 1952-53, successful measurements were made on six
days. When the data were plotted as logarithm of the velocity against
logarithm of the melted diameter, it was found that for any given snowfall
all the points, neglecting-slight scatlter, appeared to lie along a straight
line and could thus be fitted within the reage of measurement by an
equation of the type

v = kD (3.1)
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where v is the velocity (em sec_l), D the diameter (cm), k a constant

for a given type of snowfall having the dimensions cm sec™l cm™ and

n an index also dependent on the tyﬁe of snow. The rgsults are shown

in figures 3.2a, b; 3.3a, b; and 3.42, b on logarithmic and linear plots
and each case will be discussed below. Any given point in these diagrams
repregents the mean velocitly within a diameter interval of 0,02 cm and
has been placed in the middle of the interval., The number of measurements
made is indicated beside the plotted points.

The velocity-diameter curves shown in figures 3.2a and b may be

considered as typical of snowflakes (i.e. aggregates). The series of
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points about the top curve of each diagram was obtained on 12 February
1953 from about 1100 to 1300 E.S.T. The temperature at the surface was

25F. The agpgregates were found to consist of combinations of plates and
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columns. The pointe could best be fitted by using equation (3.1)

04726 s

where k = 218,5 cn ec’l and n = 0,274 The bottom curves of

figures 3.2 were obtained in the same manner but k = 178 cmo°628 s -1

ec
and n = 0,372, These curves were determined from the data obtained on
19 and 20 January 1953. The snowfall on both days consisted solely of
plane and spatial dendrites, and the temperatures were 28 and 30F respect-
ively. On a mass or melted diameter basis, it is seen that aggregates of
columns and plates have a more rapid rate of descent than those made up
of dendrites (the rate of fall is about 1.5 times as great). These
results are quite reasonable since columns and plates are more dense
than dendritic crystals. The dendrites, being feathery in appearance,
have larger cross—sections than plates or columns of equal mass. The
resistance offered by the air to their fall is consequently greater for
dendrites than for plates and columns.

On 29 December 1952 the snowfall was made up of dendrites and of

irregular assemblages of plates, and the ground temperature was 26F. The

results of the measurements are given in figures 3.3a and b, the curves
‘ |
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*
of best fit having been calculated from equation (3.1) where k = 366
cmo'389 sec_l and n = 0,611, It is seen that this curve rises much
more steeply than those showm in fisure 3.2. (The latter are shown
dotted in figure 3.3b). At the lower limit of the photographic technique
used (about 0,04 cm), the velocity assumed is approximately 50 cm sec-l
which corresponds roughly to the velocity of dendrites of that melted
diameter. The velocities increase rapidly with size and are seen to
approach (and finally exceed slightly) the values of the upper dotted
curve of figure 3.3b, i.e. the velocities of plates and columns. The
shape of this curve may be due to one or both of the following factors.
a) The dependence of the photographic method on the scattering cross-
sections would heavily favour the registration of small dendritic clusters
as opposed to small agpregates of plates of the same mass. This could
explein why the measured velocities approach those for dendrites as the
di ameter decreases. b) If the main aggregation was taking place among
the plates, the same phenomenon as mentioned in (a) should have been in
effect. For larger diameters, however, the meesured velocities should
gradually approach the velocities of platese.

Finally, in figures J.4a and b, the results have been plotied for
the two remeining days. The ground temperature on 6 December 1952 was
33F so that some slight melting must have occurred. The snow was made
up of very large aggregates (up to 0.36 cm melted diameter) of dendrites.
The values of the parzmeters of equation (3.1) giving the best fit are

C}’ - ) s )\ s 3 1
k = 207 enP*07C gec 1 and n= 0,222, The resulting curve ic seen to lie

N

above the curve for dry dendrites which has been dotted in. Had the air

been a little warmer than 33F, it is likely that the velocities would
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then héve exceeded those for pletes and columns. (Preliminary measurements
&t the end of the winter 1951-1952 indicated that zt about 35F velocities

of order of 300 or 400 cm seo'l

are not uncommon, the precipitation still
ha§ing the appearance of snow but being quite wet.) The points about the
upper solid curve in figures 34a and b vere obtained on Bleanuary 1953

from measurements of rimed snowflakes (i.e. snowflakes having numerous

tiry frozen water droplets sttached to thiem which had been picked up by
coslescence in falling through a cloud layer). The agcregates consisted

of rimed dendrites and plates with extensions, and the tempefature was

well below the freezing point, reading 25F. The k and n values of eguation
(3.1) that gave the curve of best fit are k = 210 emPe 17 gee™l and n = 0.283.
It is noticed that this curve has been displaced from the dendrite curve

towards higher velocities due to the riming. The amount of displacement

would vary from occasion to occasion depending on the degree of riming.
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L. OUMMARY AnD CONCLUSIONS

The velocity of fall of snow in the form of aggregates has been
measured for snowflakes of equivalent melted diameter ranging from
about 0,04 cm to about 0,32 cm. Tiny aggregates and single crystals
were not susceptible to the technigue used, but the data of Schaefer
for the velocity of single crystals, though very sparse, tend to con-
firm our observations on aggregates.

The terminal velocity of fall of raindrops has been approximated
(Spilhaus, 1948) for the purpose of radar studies by the equation
v = le/2 relating velocity to diameter, where k = 140C cml/zsec_l.
An analysis of the measurements on snow aggregates shown in figures
3.2 to 3.4 indicated that the experimental findings could be represented
by v = kD" where the parameters k and n both vary with crystal tyve

and degree of riming. The results are summarized in the first two

columns of table 1.

Table 1
v = kD"
Crystal Type k n k (for n = 0.31)
o™ sec™t erC*09 see™t
Plates & Col. 218 0274 : 234
Rimed Dend. 210 0.283 221
Dend. (33F) 207 0.332 203
Dend. (< 32F) 178 0.372 160

Mixed Dend. & Plates (366) (0.611) .
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If it is desired to reduce the parameters from two to one (for
convenience in any future calculations), the data may be satisfactorily
fitted by means of the sameequation wheré, however, the index n is
constant and k is the only variable parameter. The k factors for
n = 0,31 are given in the third column of table 1, and curves using
these parameters have been superimposed on the experimental data in

figure 4.la. The curves of figure 4.la have been replotted on logarithmic
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Figure 4.la, b = Showing the goodness of fit to the experimental data
0.31
kD

of the eguations v =
scales in figure 4.1b and are compared to the Spilhaus curve for rain-
drops. The points plotted about the upper curve of 4.lb represent
measured raindrop velocities and have been inserted to indicate the
goodness of fit of Spilhaus'! relation. The series of points close to
curve 5 have been obtained from the curve of best fit for dendrites

from figure 3.2. The corresponding comparison using curves 2, 3 and 4
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shows a much better fit. The indication then is that the divergence
from measured values using our more general relationship, in which the
index n 1s constant for a given type of snowfall, is not too serious.

An added advantage in choosing a constant index is that the
parameter k then gives a measure of the velocity of fall. For instance
the ratio of k (plates and columns) to k (dendrites) is about 1.5, so
that the former fall 1.5 times as rapidly as do the dendrites., Of the.
k factors shown, the ones for dendrites and for plates and columns are
the most useful. The other k values listed are typical only of the
observed snowfalls since k varies with the degree of riming and also
with the amount of melting if the temperature is slightly in excess
of the freezing point.

The more general form of the equation (i.e. with constant n)
could be easily adapted to determining size distributions in space
from samples obtalned by gravitational settling., Its application to
radar studies of echoes from snow is also evident since the radar echo
is dependent on the sum of the sixth powers of the diameters of the
scatterers per unit volume of space. A more complete discussion of

these problems is deferred to the radar section, Part III.
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PART III

SNOW PATTERNS
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1. INTRODUCTION

A snow pattern freguently observed in vertical section by radar
is that of oblique streaking. Marshall (1953) has interpreted this to
mean that the snow 1s falling from persistent generating elements, the
resultant sloped pattern being produced by the existing wind shear.
Browne (1952) has also‘arrived at the same conclusion from observations
on an A-scope of a fixed vertically pointing radar.

Unusually well defined patterns of this type were observed by
radar at Montreal on 2 November 1951 (figure 1.1). The relation of
these patterns to the wind shear has been investigated using the
theory derived by Marshall and has led to a consideration of the rate
of descent of the precipitation particles. It is this analysis of the
data that was used in Marshall's paper.

Radar photographs, obtained during the winter 1951-1952, have
been analysed to provide further information on some of the aspects of
these precipitation trails and the motion of the patterns has been
studied and correlated with the wind at the generating level. The
rate of fall of the snow particles as a function of height has been
investigated, using radar records from the winter 1952-1953, in an

effort to determine regions favourable for aggregation.
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2. THE PATTERN OF 2 NOVEMBER 1951

According to Marshall, the equation of the trajectory formed by

a particle in falling through a wind shear is given by

X=X, = .éz %%%% dz (2.1)

where x measures horizontal distance from the initial point X,
z 18 the vertical distance measured downward,
w(z) is the wind component in the direction of x at depth z,
and v(z) is the velocity of fall of the particle.

If é generating cell, which emits particles all having the same
rate of fall, is considered tc move with the wind W at z = O, the
pattern formed by the precipitation trail coincides with the trajectory
of the particles when referred to axes moving with the generating

element. The slope of the pattern with reference to these same axes is

dz _ v(z)

from which the rate of fall of the particles can be determined in terms
of the wind profile. The pattern as a whole moves with horizontal vel-
ocity W, the wind at the‘generating level with respsct to the ground.
The height of the pattern directly over a fixed point on the earth's
surface then changes continuously as the patiern passes overhead. The

apparent rate of descent of the pattern, referred to a fixed point on

dz
dx

A special case of equation (2.1) results when the rate of fall of

the earth, is given by W and thus varies with the slope.
the particles and the wind shear are both constant withheight. The
pattern in space is then parabolic in shape with the vertex at the

generating level.
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2.1 Application of the Marshall Theory

A series of clearly defined snow trails was cbserved by radarﬁ on
2 November 1951. The generating cells were at an altitude of 15000 ft
and were spaced roughly 20 miles apart. The patterns moved towards the
radar approximately from the west at a speed of 90 mi hr-l which was
found to correspond to the westerly wind at 15000 ft. The pattern of
this particular day, and so the radar photographs, was far superior to
any others of the winter 1951-52. This pattern was then the most amenable
to measurement and interpretation.

Since the wind profile along a bearing of 260° (the radar bearing)
.was found to increase almost linearly with height, theoretical semi-
parabolic pétterns have been drawn in the lower part of fizure 2.1 and
the theoretical slopes, rate of descent of the pattern relative to a
fixed point on the earth, and rate of fall of the snow particles are
given in the upper part of the diagram.

The photographs of the range/height indicator (see figure 1.1)
were analysed and the results are shown in figure 2.1. Pattern data
pertaining to six trails, as obtained from radar photographs at bearing
260 or 80° and from the wind shear, have been superimposed on the
theoretical curves given.

The slope of the pattern was determined from the radar pictures,
not without some difficulty. The distortion in the radar display tended
to be as greal as the measured slopes and so a careful calibration of

the range/height indicator had to be made. (This is discussed in full

¥ Radar specifications: wave length 3.2 cm, peak power 65 kw,. pulse
length 1 psec, p.r.f. 1000 sec=l, beam 2° horizontal X 0.7°
vertical, polarization vertical.
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at the top, with an alternate scale of rate of_descent

of the pattern.



<78_

detail in the appeﬁdix.) The measured slopes are secen to fit the
theoretical curve quite well. The slopes decrease répidly with
increasing distance from the vertex of the parabola, soon becoming
very small. The alternate scale of rate of descent of the pattern in
the uppér portion of figure 2.1 has been obtained from a combination
of the slopes with the wind at the generating level. The rate of fall
of the snow particles (actually the rate of fall of maximum signal
intensity) as calculated from equation 2.2 was found to be 4 ft sec™t
independent of height as is shown in figure 2.1. Measured helghts as
a function of distance from the apex of the pattern are compared to
semi-parabolas in the bottom part of the diagram.

This analysis and the appendix represent the author's contributions

to the joint report of Marshall, Langleben and Rigby (1952).
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3, FURTHER ANALYSIS OF RADAR RECORDS

The clearly defined parabolic patterns observed on 2 November 1951,
which appeared almost periodic are not common occurrences. Most of the
photographs obtained during the winter 1951-1952 showed the same sort of
pattern, none of them, however, being as well defined. These records
have been analysed to provide further evidence of the validity of
Marshall's theory of precipitation trails formed by falling snow.

Since the RHI displey (figure 1.1) is particularly suited for following
the motion of a pattern, it was possible to investigate the horizontal
velocities of these patterns and relate them to upper air winds.

During the winter 1952-1953, a zenith pointing, 3 cm, radar was
used. The film record obtained, discussed in greater detail in section
3.2, was a continuous recording of the height of the echo in the vertical
ggainst the time of observation. This mode of presentation had the
advantage that the height scale was undistorted as compared to the trouble-
some distortion of the RHI display used in the earlier analysis. The
slopes of the precipitation trails were then easily measured and, when
combined with upper wind data, were used to investigate the velocity of

fall of the snow as a function of height.

3.1 Winter 1951-1952: AN/TP3~10A

In section 2, it was postulated (and verified for the case of 2
November 1951) that the generating cell moved with the wind speed at
its own height. This postulate is now given further verification by
comparing measured velocities of the generating elements with the wind
velocities. (The wind profiles were obtained from radio-sonde observa-

tions and upper air charts anslysed by Mr. B.A. Power. The closest
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available radic-sonde station was at Rome W.Y. When no data was avail-
able from Rome, extrapolations were made from ascents at Buffalo N.Y.
and Portland, Me.)

In the following analysis, use is made of the terms "echo height"
and "velocity height". The former 1s the height of the top of the echo
as measured on the radar records, being the height of the top of the
generating cells when visible or the maximum echo height when no cell
was detected by the radar. The velocity height is obtained by finding
the height at which the wind has the same velocity as that measured for
the generating element. 'hen no generating cell is visible, the velocity
of any part of the trail can be used to find the generating level since
the pattern as a whole moves with the same horizontal speed.

Since the radar bearing was generally not along the wind direction
at the generating level, several assumptions must be made about the
generating cells. It is assumed that a cell is of fair horizontal extent
and that its leading edge is perpendicular to the wind direction (figure
3.1). Under these conditions, the velocity Vps @s obtained from the

radar is related to the true velocity, vw.by

V., sec @

v W

R
where © is the angle between the radar bearing and the direction of
motion of the generating cell. On a polar diagram, the intersection
of a circle whose diameter is the vector vy with the wind profile

(figure 3.1, right) leads to a value of Vor and of ©. Occasionally,
the wind profile may closely follow the circle over a considerable
range of heights, in which case a height determination is possible

only if radar observations have been made along two different aximuths.
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Figure 3.1 - The Ciagram at the left relates the horizontal velocity
of the generating cell to ite velocity as measured along
the radar bearing. The method of obtaining the velocity
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o & J

a
vR intersects the wind profile on a polar plot.

ialso the upper air wind data are such that, at best, the uncertainty
in a velocity height is about 1000 ft.

Radar photographs of precipitation patterns were obtained on nineteen
separate occasions (Gunn, Langleben, Dennis and Power, 1953) during the
vinter of 1951-1952, Of these, csixteen contained sufficient radar inform-
ation to determine radar velocities. Generating cells were detected on
ten of these sixteen days and the velocity heights for theses cases were
in excellent agreement with the observed echo heights, the mean echo height
being some 600 £t above the mesn velocity height (figure 3.2): the correla-
tion coefficient between the two wes 0.96. Since the averzge cell depth
was of the order of several thousand feet, it is seen That the cell moves
with the air speed guite close to its top. Uo cells were visible on four

of the sixteen days. Tor these cases it was found that the pattern moved
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with a velocity egual to that of the wind about 1100 ft above the top of
the echo. On this basis, it seems Justified to assume that the generating
cell @id exist some lOOO.ft above the echo top, the rader sensitivity being
too low to detect the actual cells. The remaining twe days of pattern had
wind profiles which made velocity helght determinations urnrelisble, and

the velocity of the trail was equal to that of the wind about 6000 ft
below the echo top.

Congidering the possible errors inherent in the methods used for
obtaining the wind profiles and in.the measurement of heizht, it 1sg remark-
able that such close agreement should exist between echo height and velocity
heights This is surely a confirmetion of the thesis that the generating

elements do in fact usually move with the z2ir at their own levels.
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4 zenith pointing radar® was installed during the summer of 1952
and was in operation by the fall. The method of recording the radar
display was as follows. The received signal was used to intensity
modulate a stationary trace on an oscilloscope. 4 camera was constructed
(with the help of Dr. Guin and lr. G. Tweeddale) in which continuous
motion of a film was achieved by means of a driving mechanism whose speed
was variable. The direction of motion was perpendicular to the trace on
the scope and the resulting display on the film was of height against
time, This mgthod has the advantage that the display is a perfect rectangular
grid as opposed to the distortion of the AN/TPS-104. ILines of constant
height are parallel to the base line and equally spaced for egual height
intervals., Time intervals are known from the rate of motion of the film
and the time axis 1s at right angles to the helght exis.

Suppose that a precipitation trail, of the kind being discussed, is
carried by the wind through the bean of the radar. Initially, the leading
edge or generating cell is recorded on the film, At some later time, another
part of the trail is passing through the radar beam, but the film has moved
on through the same time interval and the echo overhead is recorded at this
later time. Thus the complete precipitation pattern in space ig reproduced
on the film,

Because of the simplicity of this display it was thouzht desirable to
amplify the findings of 2 lovember 1951 on the vertical velocity component
(or terminal velocity) of snow particles. For this an accurate knowledge of

the wind profile was also reguired, since the velocity of fall is given by

¥ Radar specifications: wave length 3.2 cm, peak power 40 kw, pulse length
0.75 lusec, peref. 500 sec™L, beam 2°,



-.81?(_

dz wiz
v(z) = at W » where the symbols have the same meaning as in section 2.
The remarkable agreement belween echo height and velocity height in section
1 indicated that Mr. Power's analysis was rather more reliable than he

[,\

had expected, and was sufficient justification for placing fair confidence

in any subsequent data obtained in similar fashion,
7s of good pattern were picked from the radar records obtained

Three da

@

for the winter 1952-53. A complete analysis of all the available film would

g+

have been very lengthy, and it was felt that the data obtained from a few
films would furnish the information required. A sample picture of the dis-
play is shown in figure 3.3. The results for the three days are given in

table 1, which also includes other relevant data such as crystal types

o

observed at the ground, the height and the temperature of the generation

level, and the wind direction at that level., Wind components at lower

1

been taken along this same aximuth.

levels have

Height (ftx103)

0 3 b Time (m,n)g 12

Figure 3.3 - A typical snow storm pattern recorded by the zenith pointing
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Table 1
Height Wind V(z)__1 Devin Remarks
ft knots ft sec from mean
11,200 48 R 13 Jan, 1953: 1015 hours
9200 Al 204 0.05 Wind components along 280°
7200 38 7 2.85 -0.04 Generating level at 11,200
£t, -10,5C.Crystal types:
5200 31.5 . 3.00 0.11 i.a.c.p. %, capped col.,
plates, very little
3200 <23 277 -0,12 ageregation
mean 2489 0.08
12,000 60 Tele 28 Jan. 1953: 1015 hours
10,000 50 337 -0.04 ind components along 220°
8,000 39.4 3.96 0.55 Generating level at 12,000
ft, -14C.Crystal types:
6,000 345 3.19 -0,22 needles, PeWeSees 08,
some aggregation
4,000 28,5 3,13 ~0,2¢
mean 3041 Oo 27
15,500 48.25 Eokie 2 Feb. 1953: 1700 hours
14,000 Ll 3.30 -0,16 Jind components along 260°
12,000 38 3456 0.10 Generating level at 15500
4, -21C, Crystal types:
10,000 33 3.38 -0,08 plane and spatial dendrites,
s DeWeSe€, Very larce
3,000 18 (4, 4,3) T2 aggregates
6,000 15 3458 0.12
mean 3.46 0.12

% gede — generating level

Exi.a.c.p. - irregular assemblage of columns and plates
DPsWeSees — plates with simple extensions

" This high value is thought to be due to an error in the winds. The
upper air cherts indicated the presence of a secondary front at 3000
1 vith a consequent sudden change in wind speed and direction through
thig frontal zone. 4n error of 500 ft in the estimation of the frontal
height would bring the meagured velocity of fall into line with the
others,
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Several conclusions can be drawn from the data of table 1. It is
at once apparent that the velocity of fall of the snow particles as
determined from the radar echo was reasonably constant with height on
any given day. Also, these velocities were of the order of 2 or 3 times
greater than the velocity of fall of individual snow crystals (average
about 1.5 ft sec'l) as measured by Schaefer and Nakaya and Terada
(Part II). The significance of these facts will be considered further in
the next section.

The velocity of fall of the snow particles as discussed here is not
to be confused with the rate of descent of the pattern overhead as observed
by the radar at the ground. Taking the first case of table 1 as an
example, the rate of descent of the pattern decreased from 20,2 ft sec~l
when the echo was at 9200 ft to 5.3 ft sec™l when the echo height was

3200 ft.
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4 SIZE DISTRIBUTION AND VELOCITY OF FALL

The theory of section 2 assumed that the generating element was
emitting particles having all the same velocity (i.e. that a monodisperse
distribution existed at the generating level), It has been thought that
snow fell for considerable distance as individual crystals before
aggregation commenced. Our radar studies indicate that when the snow is
formed in compact cells, its velocity of fall cquite close to the generating
level (i.e. before any significant change in size distribution has taken
place) may be several times the velocities associated with single crystals
and of the right order of magnitude for snow aggregates. There is then
reason to believe that on these occasions sufficient turbulence and
updraft may exist in the formation region to promote effective aggregation
of the snow crystals, and yield a wide distribution,

Starting with such a distribution at the generating level and assuming
that no break up or further aggregation takes place, there would be a
sorting of the snowflakes according to size with distance fallen since
each size, having its own velocity, would trace out a different trajectory,
the resulting pattern in space broadening out as the distance of fall
through the wind shear increased. On the other hand, if aggregates break
up and the new ones form throughout the fall, the average size distri-
bution will remain the same, and the pattern will not broaden. Virtually
nothing is known about aggregate size distributions in space and their
modification with distance and, in all likelihood, a combination of the

above effects is at work.
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4,1 Velocity of Fall from Radar Echo

The intensity of the signal back-scattered from many incoherent
scatterers, as for example from precipitation in any form, is proportional
to NDD6, where ND is the number of particles of diameter D and the
summation has been taken for a unit volume of space, The radar sensi-
tivity is such that only a limited region about the peak of the NDD6
versus D curve (figure 4.1) contributes to the observed echo. In a

wide distribution, the small scatterers, though very numerous, make
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Figure 4.1 - A typical snow distribution due to gravitational settling
has been combined with a velocity curve to yield the size
distribution in space and then converted to give a measure
of the contribution to the radar echo as a function of

particle size.
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insignificant contribution to the echo as compared to the larger
scatterers, The radar echo from the precipitation trails thus represents
the peak of the NyD® distributions at all heights.

Now we have shown that the rate_of fall of the snow (as determined
from the maximum intensity of  the radar echo) was invariant with height.
The most obvious, but not necessarily true conclusion, is that the size
distribution does not change with height. Another possibility is that
since the larger particles of the distribution, whose velocities vary in
the significant region by less than a factor of 2 (as opposed to 9 in
rain), are of importance radarwise, the size distribution is but slightly
modified with height, tending to give the same results. It is also
apparent that snow does not aggregate gradually during its course of fall
on occasions when it is formed in compact cells. For if it did, the
velocities measured from the radar pictures would gradually increase with

distance fallen.
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5. CONCLUSIONS

The theory of Marshall on snow precipitation trails has been
substantiated using radar records of two winters. The height of the
generating cells as measured on the radar display was compared to the
height at which the upper air winds had the same velocity as the cell,
and the correlation coefficient between the echo height and velocity
height was 0,96. It may thus be said that the generating elements move
horizontally with the wind speed at about their own level.

The radar analysis has also yielded the fact that snow does not
aggregate gradually during its course of fall, but that the aggregation
is perhaps occurring at the generating level, since the velocities
measured near that level are comparable to aggregate velocities (Part II).
It has also been shown from radar measurements of the rate of fall of the
snow that the peak of the distributions of NDD6 versus D does not change
significantly with height. For the purpose of future radar studies, and
until actual measurements of size distributions in space are made for snow
at all heights, it is suggested that the distribution be assumed constant
with height. (Transients at the beginning and end of the storms should be
excepted.) A measurement of the distribution due to gravitational
settling at the earth!s surface when combined with the velocity curves
of Part II would then ‘yield the distribution in space.

It is also worth remarking as seen in table 1 of section 3,2 that
the air temperature within a generating element will in general identify

the crystal type. Thus the water cloud in the formation region must be



quite dense with some degree of supersaturation with respect to water

existing. If that were not so, as for instance in the ice clouds formed
at high altitudes, a knowledge of the actual vapour density excess of the
ambient vapour density over that close to the ice crystal would still be

necessary for crystal type determinations as was implied in Part I.
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APPENDIX

Calibration of the Range Height Indicator
of the AN/TPS-10A Radar

A careful analysis of the photographic records of the AN/TPS-10A
RHI display taken on 2 November 1951 threw suspicion on the accuracy of
the range/height calibration and led to a more thorough investigation
of the calibrating process. As a result several problems arose which
will be discussed here,

On that day a series of generating elements followed by long snow
trails was visible on the RHI approaching from the west and then passing
eastward, It was noted that the apparent altitude of a particular cell
decreasgsed as the echo approached and then increased after the echo had
passed overhead and was receding. This seemed to be a very unusual
property for the cells to possess. Another curious feature was discovered
when attempts were made to measure the slopes of the precipitation trails
from the radar photographs. With the radar antenna pointing to the east,
the measured slopes at some given height appeared to be of much greater

magnitude than when the set was oriented to the west.

Al. Primary Calibration and Possible Errors

For reasons already mentioned, it was thought desirable to make a
careful check of the calibrating process. In normal operation, the
antenna oscillates in elevation from -2° to +23° once a second and may be

swung in azimuth through 360°. To calibrate, the antenna is stopped and
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clamped at various angles of elevation within the 25° interval corres-
ponding to numbered settings given on a clinometer. At each angular
setting a trace is registered on the radar scope with a series of dots
superimposed on it at 10 mile intervals out to a range of 60 miles.

These traces are registered on photographic film, An enlarged
. drawing of the display is shown in figure Al. The numbers to the right
of the figure, serving to identify the traces, are related to range/height
data given by the makers., Thus 1 represents the horizontal; 13 denotes
a height of 10,000 feet at a range of 10 miles, etc, A list of these

basic data is given in table Al, It is however necessary to obtain

Table Al

Trace no, 0 --=== base of display
l -=~--=- horizontal
2 -=-== 10,000 feet at 60 miles

L =mme= 10,000 50
5 ===== 10,000 40
6 ==--- 10,000 30
g ~---= 10,000 20
9 ===-= 35,000 60
10 -=--- 20,000 30
11 ==--= 25,000 30
13 ~~--= 10,000 10
1y =—--- 35,000 30
15 ——m-m 40,000 30

top of display

more such reference points before lines of constant altitude can be drawn.
This is done by recalling that a given trace represents the beam being
sent out at a certain angle. Thus trace 5, for example, which denotes

a height of 10,000 feet at 40 miles, will also represent 5,000 feet at



-9%-

FIG. Al - Tracing of the AN/TPS-10A display of the Range Height
Indicator when the antenna is clamped at the various angles
of elevation used for calibration.

/

50 60

FIG. A2 - Outline of RHI display showing the calibration as contours of
constant height.
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20 miles. In this manner loci of constant height may be drawn. The
resultant range/height calibration is as shown in figure A2.

For this calibration to apply at all azimuths, the antenna mount
must be properly levelled, the 25° elevation scan must be between the
proper limits of =20 to 4230, and the beam should be normal to the
reflector. Faults in any of these may cause serious error in determination
of heights., It is possible to distinguish between, and so correct for,
the errors which may arise from these sources, If the antenna mount has
not been correctly levelled, the apparent height of an object as seen
on the RHI depends on its bearing from the radar. The echo will appear
to be high where the tilt is downward; low at 180° to that direction;
and at its true altitude when viewed at right angles to the former bearings.
If, on the other hand, the antenna mount is level but either of the other
two possible faults are present, the resulting error in altitude is
independent of azimuth and depends only on the range of the echo from the

radar.,

A2, Methods of Checking the Calibration of the Display
a) Balancing Sections at Opposite Azimuths: The type and magnitude of

the error present was determined by analysing the photographic records of
2 November 1951. When measuring slopes of the precipitation patterns,

it was found that the slopes, when the patterns were to the east, were
much greater than when they are viewed at the opposite azimuth. By
averaging the slopes at different heights it was possible to obtain results
consistent with the theory of section 2. The slopes were in error by an

amount 0.024 corresponding to an angle of tilt of 1,25°.
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It has already been mentioned that the apparent height of the
generating cells appeared to vary with range, the altitude increasing
with range independent of azimuth., After applying the above correction
factor, the generating cells were found to move at constant altitude.
Thus it became apparent that the radar antenna was either not scanning
in elevation between the proper limits or that the radiating horn was

off the focal point of the reflector.

b) Bright Band: Errors in alignment of the antenna may be detected
from meagurements on the height of bright band. This was done on several
occasions during the winter 1951-52 when a good bright band was present.

A few of the analysed records are presented in table A2, It is seen that |
the resultant heights, based on a correction of 1.25%, were constant with

range at any given time,

Table A2

Range Apparent Height Correction to Height Real Height

miles feet feet feet
No.l 10 6,200 = 500 1,100 5,100
at 20 7,400 2,250 5,150
200° 25 8,000 2,800 5,200
No.2 10 6,500 ¥ 500 1,100 5,400
at 20 7,800 2,250 5,550
330° 30 9,000 3,370 5,630
No.3 15 11,800 ¥ 500 1,750 10,050
at 20 12,300 2,250 10,050

2300 25 12,900 2,800 10,100
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c) Aircraft: Accuracy of calibration may be checked by using
aircraft. An aircraft flying at constant altitude over the radar at any
bearing and then at 90° to that direction provides sufficient information
to correct any errors in calibration. A test of this kind could not be
arranged until April, 1952. The same error was still present, indicating
that the display had not changed appreciably during the course of several

months.,

A3. Method of Determination of Heights and Slopes of Precipitation Trails

True heights were obtained by superimposing the echo on the
range/height calibration grid, reading off the apparent height and
correcting for the 1.25° tilt. The correction was made by reducing the
apparent height by an amount which varied only with range. It was somewhat
more difficult to measure the slopes of the precipitation trails because
of the distortion of the grid. Also, as there was a strong wind shear
present, the patterns rapidly approached the horizontal and true slopes
of the order of 3 or 4 in a 100 were quite common (figure 2.1).

The method of obtaining the true slopes of a precipitation pattern
can best be explained by citing an illustration. The slope of the pattern,
at any height, was determined by measurement, and from it was subtracted
the slope of the constant height line (figure A2). This would normally
yield the correct slope but, because of error in alignment of the antenna,
a further slope equivalent to 1,25° had to be subtracted. The following
are values typical of those-found on 2 November 1951. When the radar

was bearing west, the apparent slope of the pattern at a true altitude
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of 8,500 feet and range 15 miles was -0,128; that of the constant height
line -0,092 at that point; that of the correction factor 0.024. The
correct slope was therefore -0.,128 + 0,092 - 0,024 = -0,060. After the
pattern had moved 30 miles eastward, the same point of the pattern was
still at 8,500 feet altitude, but 15 miles to the east. The true slope
was now equal but opposite in sign to the former case, being made up of

the corresponding slopes -0.008 + 0,092 - 0,024 = 0,060,
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REVIEW

The diversity of crystal forms observed in natural snow (and
their beauty) has been the object of much interest and conjecture
to keen observers for many centuries. Most of the studies, however,
have until recently been very qualitative. At present, snow crystal
growth and its consequent fall can be described in some detail,

The success of Nakaya's group in growing snow crystals in the
laboratory, as illustrated by their time lapse microphotographs, has
indicated that the type of snow crystal growth is dependent on the
meteorological conditions in the vicinity of the growing crystals.
Now the equilibrium vapour density over water is greater than that
over ice at the same temperature, so that, for example, in a water
saturated atmosphere, a gradient exists which transfers vapour to the
ice crystal where it sublimes., Our studies show that snow crystal
growth requires an ambient vapour density which considerably exceeds
that at equilibrium with the ice crystal., The interpretation of the
Nakaya experiment had led to a theory of snow crystal habit in which
the basic assumption is that the surface vapour density varies over
the crystal surface depending on the curvature. Crystal type is
determined principally by the difference between the ambient vapour
density and the equilibrium vapour density at the ice crystal temperature.
The mode of development of the crystal then depends on the ability of

this vapour density excess to overcome the inhibitions to edge and/or
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corner growth, since the edges and corners have higher curvature than
the flat faces of the crystal. The presence of water cloud will
further affect the type and rate of growth, but the effect increases
with crystal size and will thus not modify the crystal type in its
initial stage of growth.

Analyses of radar photographs taken during snow storms reveal
that, in general, crystal formation amd most of the subsequent growth
oceurs near the frontal surface. Presumably then, the situation
within the mixing zone associated with the frontal surface is very
favourable for rapid snow crystal growth., The vapour density must be
at equilibrium with water (in itself a good deal better than ice
equilibrium) and water cloud and/or true supersaturation relative to
water must exist,

Radar also reveals that the vertical velocity of the snow particles,
when the snow is being formed in compact generating elements near the
frontal surface, is constant throughout its fall., A study of the
terminal velocity of snowflakes, measured from motion pictures at ground
level, indicates that the "radar velocities" correspond to velocities
of snow aggregates, It must thus be presumed that aggregation occurs
within the generating elements at temperatures considerably below the
freezing point, and that no growth or major change in the size distri-
butions takes place on the way down. Since the generating zone seems
to promote aggregation, the suggestion is therefore that it is a region
of turbulence and updraft. This is confirmed by studies of time lapse
movies of radar pictures which show that the generating elements are in

a continuous state of internal motion.
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In summary then, by combining
(a2) a new analysis of Nakaya's laboratory experiments
(b) a theory of snow crystal formation
(c) terminal velocity of snowflakes as a function of size
(d) radar observations of the growth and descent of snow,

it has been possible to reach some understanding of the formation, the
growth and the subsequent fall of snow.

The present picture is, however, by no means complete. For example,
there are still several intriguing problems remaining to be solved in
snow crystal studies. Other evidence should be sought for the assumption
that the equilibrium vapour density over an ice surface 1s related to
its curvature. We have been able to explain crystal growth in the
laboratory ét normal atmospheric pressure. The extrapolation of these
results to lower pressures has led to a pressure index occurring in
the definition of potential temperature and has not been physically
justified. There is a need for experimentation at pressures below
1 atmosphere., Intensive investigation on the effects of ventilation on
the process of snow crystal formation is also required. There is also
the question, which follows from our results, as to why most snowfalls
originate near the frontal surface. Is it that the mixing of two air
masses of different temperatures produces a region (the mixing zone)
having high liquid water content and supersaturation? How does this
effect compare to frontal 1lifting? These are but a few of the problems

left for future study.






