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ABSTRACT 

A theor,y is developed showing that crystal type ia determined 

by the excess of the ambient vapour density over that at equilibrium 

vith the ice crystal and is verified in an analogue experiment. 

Changes in crystal habit occur when the vapour density excess is 

sufficient to overcome the inhibitions to edge and corner growth 

that must exist if they have higher surface vapour densities than 

the fIat faces of the crystal. 

The vapour density field around a crystal growing in water cloud 

has been solved. Caleulations show that cloud can make significant 

contribution to the rate of growth of iee crystals by diffusion. 

Measurements of terminal velocities of snowflakes from motion 

pictures indicate that velo city is approximately proportional to 

(mass)O.I03; the proportionality constant varies with crystal type, 

degree of riming and of melting. 

Analysed radar photographs of snow trails show that the terminal 

velocity of snowflakes ie invariant with height and that aggregation 

generally occurs in the formation region. 
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1. INTRODUCTION 

Nakaya (1951) and his cO-vlorkers, and others (aufm Kampe, 1.Jeickmann 

and Kelly, 1951) have shown that type of snow crystal grov~h depends on the 

temperature of formation. ·,Ie have found IJakaya' s laboratory investigations 

most amenable to study and interpretation. In his experiment, iee crystals 

were formed and grown on a rabbit hair stretched in a stream of cold air 

which had been moistened just previously by passing it over warm ,~ater. At 

high "supersaturations", dendrites \>lere formed from -13.6 to -17.8C, plates 

flanked the dendrite range \>lith limits at -9.7 and -20.7C, columns were 

found still further on the 10\.J' temperature side and an assortment culminating 

in needles \.J'as present on the other flank. 

An ice crystal growing by sublimation in an atmosphere maintained at 

water equilibrium vJill assume a temperature \-lhieh is slightly Harmer than 

that of the ambient air. It is necessary to take this temperature increment 

into account to obtain the true vapour density exeess of water equilibrium 

over that of the ice crystal. A preliminary investigation of this problem, 

making use of psychrometric tables, yielded a graph of vapour densi ty 

excess as a function of t.emperature at normal atmospheric pressure \~hich 

\ms very enlightening. The curve reaclled i ts ma:dmum at approximately the 

temper8.ture favourable for dendri ticgrowth as found by Nakaya (see figure 

1.1). The possibility presents itself that crystal type is a function of 

vapour densi ty excess over ice equili bri nm, dendrites requiring maximUJ.l1 

values of densi ty excess, plates some'.~hat less, and sa on. Exploratio;J. of 

this possibility calls for a careful derivatiol1 of vapour density excess 

as a function of temperature, and a simple 8.Ilal;ytical expression has been 

arrived at. 

• 
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Nakaya's "supersaturation" ~ \-J'as surely vapour at 'Ivater equilibrium 

(or at sorne slight supersaturation) plus a cloud of small water droplets; 

he mentions sucll droplets. His relative humidities have been converted to 

density excess over ivater eq'.Ülibrium on this basis (figure 1.2). This is 

a reproduction of the Nakaya diagram, figure 1.1, apart from the conversion 

mentioned, and the boundary Unes are his. The data at high densi ty excess 

sue;gest a syrll!:letrical distribution of crystal types about the maximum of 

the curve of vapm.lr densi ty excess against temperature. Changes in the 

distri bution of crystal type itJÎ th temperature as the densi ty of supersatura-

tion is reduced imply that this supersat1.lration density, in either its 

cloud or vapo·..u- component, plays an important role in maintaining the vapour 

densi ty excess against the inroads of the erowing ice crystal. -,~e have 

fOllnd that the small vapour component of the s~persaturation density is 

more significant than any reasonable cloud density can be. The sUGgestion 

that vapour density excess of ambient oyer ice equilibrium is then the 

basic factor determining the mode of development of the ice crystal is 

more tenable. The asswnption that the eqliilibrilli~ vapour density at the 

surface of the crystal varies itJÎth its curvature provides a simple mechanism 

to explain such behaviour. Justification for tlüs has been obtained from 

an analogue experiment by using a set of electrodes as the cJ:Jstal model 

and applying a distant field in the e1ectrolytic solution in which i t was 

immersed. 

* 1·/e have assmned that the "supersaturation" was relative to itIater equi­
librilli~. There is implicit justification for this in the sequence of 
Japanese papers (1934-1940). In a recent personal discussion, however, 
Dr. Nakaya recalled the calculations as being based on ice equili brium. 
The representation of crystal type as a function of temperature and 
"supersaturation" was first presented in a paper in Japanese by Hanajima 
(1944). 
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The vapour density excess over ice equilibrium occurs in rate of 

gro'Jth relationships, nultiplied by the coefficient of diffusion of 

water vapoilI' into air. The possi bili ty that rate of grO\.-th and so 

diffusi vi ty are invol ved in determining the crystal habit has also been 

explored. 

The importance of cloud and its effect on the rate of gro~~h of 

ice crystals have also been considered. The steady state diffusion 

equation for an ice partiele growing in the presence of cloud has been 

solved in terms of a parameter involving the sum of the radii of the 

cloud droplets per unit volume. 
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2. PSYCHROHETRIC THEORY 

2.1 The Psychrometric Equations 

Consider an ice crystal which is in an atmosphere supersaturated 

relati ve to ice. The ice crystal grows by sublimation (solidification from 

the vapour phase) a~d the rate of release of latent heat by this process 

is proportio~'1al to the difference beh·.reen the arnbient vapour densi ty and 

that at the surface of the crystal. (i.e. to the rate of mass transfer) • 

• Uso the rate of IIcooline; Il of the ice crystal (i t actually assu'lles a tem­

perature above that of the ambient air) by conduction and convection is 

proportional to the resultins temperature difference between the crystal 

and i ts surroundings. 

The physical processes outlined are quite sirûlar ta those taking 

place at the bulb of a thermometer which is in a space supersaturated Hi th 

respect to a thin ice coating on the thennometer bulb. This description 

essentially fits a wet-bulb thermometer, or more precisely an iced-bulb, 

at sub-zero temperatures in regions where the relative humidity is greater 

than 100%. In the light of thi s similari ty, a brief review of psychrometric 

theo~~ is presented. 

The psychrometric tables for a weIl ventilated \oret-and-dry bulb 

thermometer have been calculated from a semi-empirical equation (Smi thsonian 

~teorological Tables, 1951) in which the consta'1ts vIere determined experi­

mentally. A comparison will be made '.Iith two theoretical equations. 

(a) Psychrometric tables. At any ~iven temperature, the psychrometric 

tables usually list the relative humidities or vapour presstœes corres­

ponding to different depressions of the wet-bulb thenllofleter. No tables 
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have been found, hmvever, to inc1ude data above saturation, and sorne 

me~~s had to be devised to treat the problem discussed. 

A close examinatioD of availab1e tables for sub-zero temperatures 

showed that the ratio of the difference between ice equilibriwn ~~d existinc 

vapour densities to the corresponding depressio~ of the wet-bulb froID the 

dry-bulb temperature was practical1y independent of temperature and relative 

humi di ty. On this basis, it seems justified to extrapolate these results 

to cases where the ambient vapour densities are greater than those over 

an ice surface and where the ;,vet-bulb (iced-bulb) Vlould consequently have 

a "negative depression" (i.e. read higher than the dry-bulb). One can then 

.œite an equation to express these findings: 

_e~a,:,-"T_----:-~ ..... i :>-( T,,--,-+......;;2:;=T:.I..) 
(T + 6T) - T 

:= const. f(B) (2.1) 

'1here T i s the ambient temperature, 

T + 6T the resulting ice crystal temperature, 

~aT the ambient vapour density, 

fi(T + dT) the vapour density at the surface of the ice crystal, 

assumed to be at equilibri1.Lll .uth ice at temperature T + 6.T, and 

f(B) a function of barometric pressure only. 

(b) Diffusion theo~l. Consider an ice particle, spherical for 

simplicity and of radius "a", at rest relative to its environrnent, the 

ambient vapour density being in excess of that at the stITface of the 

particle. 

The rate of mass transfer by diffusion (Haxwell, 1879) to the 

particle is given by 

(2.2) 
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vlhere m is the mass of the ice particle, 

t is the time, 

and D the diffusivity of water vapour in air. 

A similar expression representing the rate of heat transfer by conduction 

is 

L ~ = 4/TaK [ (T + 6T) - T] (2.3) 

where L is the latent heat of sublimation, 

and K the coefficient of thermal conductivity of air. 

Combinin8 equations (2.2) and (2.3), one obtains for the steady state 

PaT - fi(T + DT) 

(T + 2lT) - T 
iL 

= DL· 

(c) Convection theory. Assurning that the convective nechanism is of 

controlling importance (i.e. that the particle is very weIl ventilated), 

there results a statement of the Ivory (1822) or August (1825) theory. 

Consider a parcel of air of mass m and density d. Let cp be the 

specific heat at constant pressure of the air a~d assume that it does not 

change appreciably with moisture content. After coming into contact with 

the ice particle, the parcel 8ains in sensible heat by an amount 

Q = cpffi [ (T + 6T) - T]. The vapour concentration of the parcel decreases, 

however, from m E' aT/d te m ~i (T + 6T)/d. The latent heat required to 

cause this excess to sublimate onto the ice particle is then 

:;J. = lIn( faT - Pi (T + .6T) )/d. The equating of these tl,.[o heat qua.~ti ties 

yields 

\' aT - fi (T + 6T) = 
(T + AT) - T 

C 
.::E d. 

L 
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2.2 Comparison of the Psychrometric Equations 

Assuming a constant barometric pressure, let us first compare the 

equations as to their dependence on temperature. At sub-zero temperatures 

both L and are essentially constant. Thus the ratio of vapour 

density excess to the resulting temperature difference for the convective 

case (equation 2.5) varies as the air densi ty or inversely wi th the 

temperature. 

Now the ratio of equation (2.5) to equation (2.4) is 

convection = dcp D = ~ 
diffusion-conduction K a 

where a = Kd i s the thermal diffusi vi ty. l·bntgœnery (1947) has li sted 
cp 

values of thermal and vapour diffusivities. Using bis values, it was found 

that Dia = 1.194 independent of temperature. Thus the diffusion case 

has the sarne functional relationsbip with temperature as does the convection 

case. The empirical psychrœnetric equation, hm.lever, sho\.,rs no apparent 

dependence on temperature. These results are s~üarized in table l for 

an atmospheric pressure of 1000 mb. The values at any other pressure may 

be obtained by multiplying those listed by the ratio of the existing 

pressure to standard pressure. 

~e 
6T 

(gm m-3deg C-l ) 

Psychrometric 
tables 

Diffusion 

Convection 

T (C) -2 

0.539 

0.379 

0.452 

Table l 

-10 

0.539 

0.393 

-20 

0.539 

0.408 

0.487 

-30 

0.425 

0.527 



- 10-

Since the physical mecharrl.sms, those of heat and vapour transfer, 

are the Sfu~e in the three cases discussed,some explanation is necessary 

to account for the discrepancies displayed in table 1. The convection 

equation results if it is assumed that the transfer rates for heat and 

vapour are alike vlhen expressed in the dimensions "per unit area per unit 

time ". The diffusion-conduction equation differs from the former by the 

ratio a/D, the ratio of thermal to vapour diffusivities. In this case the 

rates of material and heat transfers are different and so the diffusi vi ties 

are introduced. The fact that the empirical psycl~ometric equation does 

not depend on temperature in the same Hay and is in further numerical dis­

agreement as \-mll may be due to stem correctio:ls for heat losses \·Thich 

have been included automatically in the psychrometric tables (Ferrel, 1886). 

In all subsequent use of these equations, equation (2.4) will be 

emphasized. For the early stages of crystal development, it may be assumed 

that the crystal is almost at rest relative to the surrounding air and 

that therefore the diffusi vi ties are the controlling quanti ties. 

2.3 Derivation of ôe vs T Curves 

It has been ShOÏtHl hoÏtl to obtain the ratio of the vapour densi ty excess 

(henceforth called 6~ ) to the temperature difference by means of the 

psychrometric equations. One is, ho~ever, more interested in determining 

6~ as a function of temperature and to a Good degree of accuracy. Houghton 

(1950) and Wexler and Boucher (1952) have computed values of D 6f' "-lhich 

occurs in rate of grmrth rela.tionships. Their calculations employed the 

laborioûs process of trial and error. ~Je have deri veel an analytical 

expressio:l, !Si ven below, for the vapour densi ty excess \-rmch eliminates the 
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tediu..ll of their calculatioi1s. Recently Hason (1953) has presented a graph 

essentially the same as Houghton's. The theory on ivhich his computations 

are based involves several approximations which appear quite reasonable. 

However, his integration of the Clausius-Clapeyron equation for equilibrium 

vapour pressures of ice, using the perfect gas l aw as equation of state, 

does not seem entirely justified ':1hen the painstaJrJ.ng efforts of 

;Jashburn (1924) arld Goff and Gratch (1946) are considered. 

A quick graphical method to determine D.f may be used in conjunction 

Hith the results of section 2.2. This method, resulting in a value of DP , 

is illustrated in figure 2.1, ,·!here ambient has been taken as Hater equil-

i bri um. 1'hus, gi ven the ambient temperature T E ... nd vapour densi ty Pa, a 

straight line of slope K/DL (11sing the diffusion-conduction equation) through 

the point fa' T Hill intersect the (' i against T curve at Pi (T + LW) 

and T + LW. 

Alternatively, for greater accuracy, one may calculate 6f analytically 

and using tabulated values of equili brium vapour pressures over ivater and 

over ice. For this purpose the tables and formulae of '~iashburn, giving 

equili brimn vapour pressures as a function of -cemperature, Here used. 

HO't.J Dp, the difference behleen the ambient vapour pressure and that at the 

crystal surface, can be represented as 

6p = D.p ] + dPi [1.1' 
. T dT (2.6) 

."rhere Dp] T is the pressure c1ifference at constant temperature T, 

Pi the saturation vapour pressure over ice at temperature T, 

i ts variation ,.Ji th temperature, ut temperature T, as 0 btained 

by using fini te differences. 
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Since 6 P /6.T = - K/DL according to eguation (2.4), the minus sign having 

entered if the temperature interval is tru~en in the same sense as in 

equation (2.6), the above beco~es 

LlD = ~P 1 - dPi 6 e / ~ . 
L T dT .I.J.LI 

(2.7) 

Substi tuting for 6.p by differentiating the gas e quati on, l:le have that 

B: T~ f - Pi ~ ~ / JL = 6p] - dpi 6 <? / K 
M T DL T ~ m 

uhere 11 is the molecular weight of ,·rater vapour, 

and R the universal gas constant. 

Thus 
(2.8) 

If convection is thought to be the inf1uencinc mechanism the oliLy 

change in equation (2.8) is the rep1acenent of K/DL by cpd/L. f'.. corres­

ponding chance is needed if the empirica1 psychrometric equation is used. 

Calculations of Dt> ,·rere made ut both 1000 and 500 mb. The results 

are represented [';raphical1y in figure 2.2 1-There the ambient conditions were 

assumed to be those at equilibrium ,.rI th respect to water. 11, is worth 

notin[ that although the l':.f /!~T values listed in table l c1iffer by more than 

255; at -15C, the corresponding values of l~f differ by only 5;; . Thus the 

ë.iscrepancies beüJeen the theories outlir:ed in section 2.1, ,ihich appeared 

very serious, have a much 1esser effect on the i:.P curves than miE;ht be 

expected.. At 1000 r::b, the curves of fi ~ure 2.2 peale at -M .• 8, -15.1, and 

-15.4C on the bases of the three psychrometric equations, and the values of 

(~f )na:x clecrease slightly as shOl-m. At 500 Db the seme sort of temper8.ture 
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shift is experienced, all curves l'loving as vieIl [l,bout one degree tOv18xds 

Im·.ïer temperdures. Furthermore, although it ,\,[éLS seen that the Le /{:;T 

values Here directly proportional ta the barometric pressure, the [:,f curves 

are a much less sensitive function of this pressure. For instance, the 

ratio (~f )1000 m1l'(.6 (') 500 mb c.t -15C is only atout 1.2. 
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3. TYPE OF GRQ;I'TH !hl A FUNCTION OF V APOUR DENSITY EXCESS 

3.1 Introduction 

The laboratory experiments of Nakaya indicate that the mode of 

crystal development is dependent on temperature. Nov] the temperature 

range for a gi ven type of groiiTth, according to the adjusted l~akaya diagra'1l 

(figure 1.2), increases rapidly at first uith (f - t2\.j), where e is the 

total densi ty in the form of vapour and cloud, and ~ vi the equili bri um 

vapour densi ty over \-later. The boundaries first attain their maximUi'll 

Hidth or temperature lirri ts at about ( ~ - e ,) = 0.3 gm fi -
3 • 

His investigations ,\·18re presumably carried out at normal atmospheric 

pressures and, e~.'tending these temperature limits ta a curve of ~e =( ~w- (li) 

at 1000 mb, i t is seen that they intersect almost equal values of li ~ 

for the plate and dendrite regions (figure 1.1). 

3.2 The Nakaya "Supersaturation" 

Nakaya obtained l,'Jhat he c ,üled supersaturation by mi:xing cold saturated 

air wi th i.jarm saturated air. A 8'.lpersaturated mixture resulted and a cloud 

of fine droplets was formed as is mentioned specifically in bis Compendium 

article. 

NOvI the total densi ty ~ of the mixture exists vTholly in the vapour 

phase immediately a.fter mi:xing sa that at tirr..e t = 0, e = ev and Pc = 0, 

\.,rhere f v and Pc are the densi ties in the vapour phase and in the forro 

of cloud respectively. .iUsa at aIl time t, the total density is the sum 

of the cloud densi ty and the vapour densi ty, i. e. f = Pv + Pc' 

i\.ssume that a certain nwnber n of cloud ùroplets is formed per unit 

volume. The rate of increase of cloud densi ty Hi th time at time t \.J'ill be 
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proportional to the instantaneous value of the vapour density excess 

( p v - P 1) multiplied by nre T,.,rhere rc is the radius of the cloud 

droplets, assumed to be of equal size. In fact, 

But the cloud density 

\olhere rr is the densi ty of water. 30 that 

in which A = 4rr Dn(3/47fO""n)1/3 has the units gm-1/3 cm sec-1 when the 

volume under consideration is 1 m3• Now 

Pc = P - fv and ~ = _ dPv 
dt dt 

Therefore 

- ct :t v = A [ ( p - p ,) - (P v - f)J 1/3 (P v _ p..) ,. (3.1) 

E;uation (3.1) cannot be solved exact1y for Pv as a function of time, 

but an approximate solution may be obtained by the follovung procedure. 

Figure 3.1e. is a plot of (f v - f,)/( f - Pvr) ageinst - ~~V/A( P - pw)4/3. 

By choosing fine intervals of the ordinate and multiplying by the abscissa, 

the curve of figure 3.1b results, where (Pv - P w)/( p - P,) is plotted 

as before and At ( P - pw)1/3 is the abscissa. This is a measure of the 

decay of (Pv - f ) or supersaturation \.J'Î th tirn.e. The corresponding 
\-1 

increase of cloud density Pc is given by the inverse of this curve. 
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Figure 3.1e is a graph of ( Pv - PH) (At)3 versus ( P - PH) (At)3 

and is obtained from figure 3.1b. It is seen that for a given (At)3, 

( f v - p \.,,) inereases rapid1y Hi th ( P - P vI)' reaches a maximUll! and 

then deereases very slovIly. (It is felt that this slight decrease is 

perhaps not real, but rather due ta the graphica1 solution necessarily 

employed in going from a ta b in figure 3.1.) This indicates that 

the degree of supersaturation possible éJ.ttains a maximum for some value 

of (p - f w) and that for greater values of total densi ty, greater 

supersaturations cannat be aehieved. 

3.3 Loci of Constant (p v - Pi) 

From figure 3.1e, i t is seen that (Pv - f \{) (At)3 has i ts maximu...TJl 

value at (p - Pu) (At)3 = 30. How the boundary lines for dendrites and 

plates on the Hakaya diagram (figure 1.2) appear ta attain their \videst 

temperature li:nits at a value of (p - P,) = 0.3 gmm-J • This would 

indieate that the appropriate (At)3 for his meehanism of convective mixing 

and flovl be set equal ta 30/(0.3 VU m-3) = 100 Iim-l m3• Àccepting this 

value of (At)3, it is possible ta convert ( f - Pu) ta ( fv - f\,) 

and vice-versa by means of figure 3.1c. 

Loci of constant (f v - fi)' where fi i s the e qui li bri t1..1TI. vapour 

density over the ice crystal surface, Carl be superimposed on the Nakaya 

data using the equation 

( Pv - p.) - (p - f . ) 
l vI l 

= constant - (P w - fi) along a 

given locus. 

A set of such loci is shovm in figure 3.2, \..rhich includes also scales of 

bath ( P - fv!) and (f v - p\{). The locus (fv - Pi) = 0 is our previous 
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curve (figure 2.2) of Dp = (p - p.) which has been inverted. Loci w l. 

of constant (p - p.) have also been included to bound the regions v ~ 

favourable for the formation of dendrites, plates, columns and needles. 

These boundaries fit the Nakaya data as well as his empirical lines which 

are shown in figure 1.2. In fact, the locus (p- p.) = 0.1811 gm m-3 
.v l. 

appears to enclose the plate region even better than does Nakaya's 

corresponding boundary. 

The mechanism discussed calls for but a very slight supersaturation 

since the maximum value of (pv - pw) is about 0.03 gm m-3. The- maximum 

degree of supersaturation needed is given in table 2. The lack of crystals 

in the upper right of the Nakaya diagram may be explained, since super-

saturations approaching 105% would be difficult to achieve experimentally 

and would have to be rrurlntained for the order of 6 hours. 

It is interesting to point out that according to Howell (1949) 

supersaturations of the order of 2% can arise in the atmosphere by the 

natural uplift in frontal systems. 

Table 2 

T Pw Max. relative hùmidity 
(relative to water) 

C gm m-3 % 

0 4.847 100.5 

-5 3.407 100.8 

-10 2.358 101.2 

-15 1.605 101.8 

-20 1.074 102.7 

-25 0.7047 104 
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3.4 "Upper: Air Data 

Gold and Power (1952, 1953) estimated the formation level of sno,·; 

in the atmosphere from an analysis of upper air data and correlated the 

temperature and pressure at the formation level ,Ath the crystal type 

(or types) reaching the surface. Their results are plotted in figure 

3.3 as crystal type as a function of temperature and barometric pressure. 

If vapour density exeess over ice equilibriu~ is to be the con­

trolling mechanism for the mode of crystal formation, then it should 

not be possible for dendrites to form and grow at a pressure of say 

500 rob because of the deerease of effective vapour density excess with 

deereasing pressure (figure 3.4). This is quite contrary to experience. 

On the other hand, if type of grow~h is intiroately related to rate 

of growrth (DÙP ), dendrites "ihieh are liIPi ted to a 4· deg C interval at 

1000 rob should flourish over a temperature range of about 30 des C at 

500 mb (figure 3.5). The latter is roost unlikely and the data of Gold 

and Power shovr no sueh increase in spread wi th decreasing pressure for 

dendri tes (or for any other crystal type). ~Uso the Nakaya temperature 

limi ts do not straddle the D6. P curve at 1000 mb as symmetri cally as 

they do the f::,f curve. 

In the case of the l-;akaya laboratory experiment, the crystal habit 

or mode of development has been Sh01.ffi to be a function of vapour densi ty 

exeess. It is elear, h01;rever, that some addi tional factor must be intro­

duced ta explain crystal formation in the natural atmosphere, for 1;ri th 

decreasing air pressure the psyehrometrie values change and the vapour 

density excess decreases. 



~OO 

1:11 ,.. QI 
.Q 

e .... • lB 

-22-

.. DENDRITES 

o PLATES 
ID COLUMNS 
1 NEEDLES 

CIl 0 
m 0111*" 

1:11 

M .. .. 
If 

CIl 

If 

If 

* 0* It 
*0 0* 

00 
00 

0 1 1 
00 00 

1000L-____ ~ ____ _L ____ ~ ______ ~ ____ _L ____ ~ ____ ~ 

-~5 -ao -25 -20 -15 -10 -5 -0 

TEMPERATURE (C) 

30k :: 
• • :!:. 
t-
% 
!:l! 

20k iii 
% 

iii 

~ 
IOk 2 

X 
0 
a:: 
0. 
0. 
CC 

FIG. 3.3 - Crystal type is plotted against pressure and temperature from the observations of 
Gold and Power and shows a drift towards lower temperatures as the pressure decreases. 
The scale at right eives the estimated height of formation of the snow. 

O' 15 

0·12 

-'" 'E 

E 0·09 
CI -
~ 

0·06 

0·03~~~ ______ ~ ______ ~ ___ ~~ ___ ~~ ___ ~ __ ~~ 
o -5 -10 -15 -20 -25 -30 -35 

TEMPERATURE (C) 

FIG. 3.4 - The decrease of the vapour density excess with decreasing pressure would make it 
impossible to achieve dendritic growth at higher altitudes. 



3.5 :~iusting for Pressure Dependence 

Let us assume that crystal type is a function of vapour density excess 

multiplied by sorne power n of the ratio of nOTInal to prevalent air 

pressure Bo/B. By choosins n = 0.28611. (it could possibly be somewhat 

greater) and multiplying the Dr> curves of figure J.4 by (Bo/B)n, the 

results obtained are as given in figure J.6. The curves are now of the 

same General shape and peak at equal values of the ordinate. 

Dendrites, which require a certain value of vapour density excess 

at 1000 mb, can nov; gro1;1 at 10\-18r pressures as Vlell, the temperature 

range smfting slightl~T towards lower temperatures (and sicilarly for 

other crystal types). This is in bood agreement \vith the findinbs of 

Gold and Power (figure J • .3) "1ho observed a shift tO\,ards lower temper-

atures as the atmospheric pressure decreased. 

11 
Although the power n = 0.286 \vas first chosen arbi trarily to bring the 

peaks of the ù P curves to the same value at all pressures, i t may be 

that there is sorne physical justification for this. The potential temper­

ature which dafines an adiabatic process involves (Bo/B)R/cp = (Bo/B)l-l/y, 

\-!here y is the ratio of specific heats of air (Ha..rldbook of Heteorology, 

1945). 

0.286. 

On substitutine the appropriate values for air, R/c = l - l/Y = 
p 
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4. A POSSIBlE TRANSITION MECH.A..t~ISM 

4.1 Surface Vapour Density 

Thus far the assumption has been made that the vapour density 

existing at the surface of the ice crystal was at equilibrium with 

respect to a flat ice surface at the temperature of the crystal. This 

is in fact not the case, for surface vapour density is a function of 

curvature as has been weIl established for tiny water droplets. Taking 

the hexagonal plate as an example, the surface vapour density over the 

edges must be greater than over its flat surfaces and greater still at 

the corners where the curvature is highest. 

The idea has been roughly verified by Nakaya (1938) who placed snow 

crystals in a stoP~~d bottle whose inside walls were coated with hoar 

" frost, the vapour density in the bot tle being then more or less a t equi-

librium to a flat ice surface. He observed that the crystal did not 

sublime and disappear, but transformed itself into a shapeless pellet 

after some time. Since the walls of the bottle were covered with ice, 

there could be but slight net transfer of mass from the crystal to the 

walls. But because of the effect of curvature on surface vapour density, 

a mass transfer occurred from the sharper edges of the crystal to those 

less curved until it finally resembled an ice pellet. 

As will be seen, the vapour densi ty field, which is radially synnnetric 

for a sphere, increasing proportionally with reciprocal distance, becomes 

distorted in the near vicinity of a disc-shaped ice particle or an hexa-

gonal plate. The vapour density gradient faveurs growth from the edges of 

the plate over that from the faces, and growth fram the corners where the 



gradient is strongest is even more favoured. On this basis, it would be 

difficult to explain the variety of crystal types occurring in natural 

snow. It is only when this distortion of the field is combined with the 

effect of curvature on surface vapour density that a suitable mechanism 

explaining growth habits can be introduced. 

4.2 The Electrostatic Analogue 

It will be shown in a subsequent section that for steady state 

diffusion the va pour density in space i6 given by the solution of Laplacets 

equation V 2 f = 0, where P satisfies the boundary conditions at the 

surface of the particle and at infinity. Jeffreys (1918), in considering 

the transpiration process in plant life, set up an electrostatic analogue 

to cal cu lat e the overall ra te of evaporati on fram lea ves. This was first 

applied to the problem of growing ice crystals by Houghton. 

Since the potential function V satisfies the Laplacian in electro-

statics, vapour density and potential are interchangeable. Also the charge 

q on the body is equal te CV ,where C is the capacity and V the o 0 

surface potential. By Gauss t theorem, 

J )~~ dS 
5 

= 4~q = 4~ CV , 
o 

where S is the surface area of the body 

and n the direction of the normal to the element of area dS. 

The rate of evaporation from the body is then 

)jD a P dS = 4'!1 CD Po' an 
5 

where D is the diffu6ivity. 



Jeffreys assumed that the vapour density at the surface of the 

evaporating body 'WaS at sorne constant value P and thus neglected 
o 

curvature effects on equilibrium vapour density. His concept is a 

valuable one, however, permitting the calculation of total rate of 

mass transfer to or from odd shaped bodies if their electrostatic 

capacities are known. A further extension of the theory is necessary 

to investigate the effect, due to curvature, of the non-uniform surface 

vapour density on the rate of growth. 

4.3 Electrodynamic Analo&y 

There is also close resemblance between the electrostatic field 

and the state of dynamic equilibrium represented by a steady flow of 

electric charge through a conducting medium. 

If a hypothetical closed surface in the medium which does not 

enclose any sources is considered, then 

ÏÏ dS = 2...9. - ct 

where J is the current density vector (rate of flowof electric charge 

per unit area), 

n is the normal to the surface, 

S is the area of the enclosing surface, 

and ~f is the rate of increase of charge within the surface. 

Using the theorem of flux, the surface integral in equation (4.2) may 

be transformed to a volume integral. Thus 

j))diV J dv = JjJ dv, 
v v 
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where v is the volume enclosed by the surface, and 

~ is definedby q = SH ~dv. 
v 

Or 

div J 

For the steady state reached in conduction, ~ is a constant, 50 

that 

S J J . n dS = 0 and div J = O. 
s 

If the conduet:ing medium is isotropie, 

J = (1' E (4.6) 

where a- is the conducti vi ty , 

and Ethe electric field vector. 

In addition, if the medium is homogeneous, cr is constant and equation 

(4.5) reduces to 

or 

div E = 0 

,,2 V = 0 

so that the potential sati~fies Laplace's equation. 

(4.7) 

(4.8) 

Consider now the total eurrent i flowing to a body at potential 

V immersed in a condueting medium and surrounded by a spherical shell 
o 

at a large distance from it and at a potential VOQ , where VQJO"7 V • 
o 

From equation (4.2) 

i = jf 
s J n dS 

= l S~ Ë Ii dS 
0" S 

= 1 Jf d V dS. (4.9) cr ôn 
s 
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If the surface potential of the body is assumed constant, Jeffreys' 

result is reproduced. That is 

i = 
1 
(J 

)) Ë • n dS 
s 

= .4-nC (V 
Ij t:>O - V ). o (4.10) 

This theory, leading up ta the end result (4.10), bears a closer 

similarity to diffusion theory than does the electrostatic case. For 

dm i, which is the rate of flow of charge, becames dt' the rate of mass 

transfer, and cr the conductivity is related to the diffusivity by 

D = l/~. It appears that a valuable method of measuring rates of 

growth or evaporation or irregular bodies (snow crystals) in the 

laboratory could evolve from this. 

4.4 The Inhibiting Mechanism 

From equation (4.9) it is sean that the rate of growth per unit 

area is proportional to the vapour density gradient. Thus for an oblate 

spheroid (a first approximation to an hexagonal plate) whose ratio of 

major to minor axes is 10:1, the growth per unit area along the edges 

is 10 times that along the flatter faces, since the gradients are in 

the sarne proportion. A diagrarn of the equipotentials (or lines of 

constant vapour density) around a dise is shown in figure 4.1, the last 

equipotential line being half of the value at infinity. A graph of 

vapour density (normalized) against reciprocal distance (figure 4.1) 

shows that the gradient is very rnuch steeper at the perimeter of the 

disc than at its flat faces. The straight line is that corresponding 

to an equivalent sphere, since the radii of a dise and a sphere of 

equal capacities are in the ratio of ~/2. 
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The assU-Tnption has been made that the vapour densi ty is constant at 

the surface of the body. The vapour density field around an hexagonal 

plate then favours continued growth as a thin plate. In fact, one would 

be led a1ways to expect dendritic growth, since the gradient would be 

greatest at the corners and consequently the relative gr01-rth most rapid 

there. 

If, however, the equilibrium vapour density is higher at the edges 

than over a fIat surface, ~~d that at the corners higher still, these 

other~nse-favoured types of growth will be inhibited until the excess of 

the ~~bient vapour density is of sufficient magnitude to overcome these 

inhibitions. 

A sœnewhat similar situation is found in radio tube theory ",hen 

operating at positive grid bias. ',-ihen the grid bias becomes positive or 

if the ~~ode voltage drops sufficiently, it is possible to have a large 

current flow from grid to cathode. Sirnilarly, if the ambient vapour density 

decreases by a sui table amount, a mass flo1,ol could be expected from the 

perimeter of the crystal to the faces and transi tians in crystal tJ'Pe occur. 
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4.5 Electrolytic Tank Experiment 

A composite model of an hexagonal plate was made, a sketch of which 

is shown in figure 4.2 (left). It was co~posed of five sheets of alurninum 

foil, tyIO acting as the faces, two cut to simulate the edges, and the central 

one the corners. Sheets of yraterproofed paper, acting as insulators, were 

placed between the foil surfaces and the whole cemented together. The areas 

of foil exposed corresponded to the faces, edges and corners of the crystal. 

Electrodes were attached to the metal foils so that variable potentials 

could be applied to each. A spherical shell of alQminum foil, large 

compared to the dimensions of the crystal, surrounded the model ana 

both were immersed in a tank of ordinary tap water. 

Hi th the experimental arrangement used, i t 1IlaS possible to apply 

different potentials on the faces, edges, corners and on the laree shell 

which will be called infini ty. Current measuring meters were included in 

series with the faces, the edges and the corners, and both voltage and 

current readings were t~~en simultaneously. 

For easy interpretation ~f the results, a first set of observations 

Has taken ya th the same potential beinE: applied to bath edges and corners 

(i.e. to the whole perimeter). The faces were ahmys kept at ground 

potential and, for a gi ven voltage on the perimeter, the potential applied 

to the distant electrode was varied and current readings viere recorded. 

The results are illustrated by two sets of curves in figure 4.2, the set 

at 10 volts perimeter potential being typical of the data obtained Hhen 

that potential was 5 and 20 volts. ~men any given potential was applied 

to the perimeter and the potential applied to the distant electrode 

gradually increased from zero, it was observed that at flrst there was a 
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current flow from the perimeter to the faces of the crystal model. This 

current flow from the perimeter decreased rapidly with increasing distant 

field, the current to the faces, however, increasing steadily with applied 

field. When the distant potential had risen to three times the perimeter 

potential there was no net flow to or from the perimeter. For higher 

values of potential applied to t'te dis tant electrode, the current to the 

perimeter increased rapidly, soon exceeding per unit area the f10w to the 

faces. The effect on the total current of a voltage on the perimeter was 

equivalent to applying a voltage 0.3 times as great to the whole crystal. 

It is worth noting the anoma1y shown by the curve of current to the 

perirneter against distant voltage in the region 15 to 30 volts when the 

perimeter potential was 10 volts (figure 4.2). 
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. Referring these results ta a curve of potential difference against 

reciprocal distance (figure 4.3), the perimeter is located some distance out 

from the radius of the equivalent sphere (capacity) towards the distant 

electrode which is near infinity. Since the electrode referred ta as the 

perimeter had a finite width and sinee it was hexagonal in shape, the 

letters a and b de signa te the locations of the farthest and nearest 

points of the outside of the "perimeter", and c and d correspond to the 

inside of the Il peri me ter Il • The actual potential on the perimeter is in-

dicated by the vertical extent of the arrowheads rising fram these points. 

The equivalent sphere, as follows from the experimental results, has also 

been given a potential 0.3 times that of the perimeter. The slope of the 

locus represents everywhere the current flow per unit solid angle to the 

equivalent sphere. Pivoting the locus about the equivalent sphere 
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FIG. 4.3 - Potential, normalized against that of the distantelectrode, 19 plotted against reciprocal 
distance. Using the dimensions of the "crystal" and of the distant electrode, the equivalent 
sphere 1s represented at the left, the arrowhead denoting its potential. The outside of the 
"peri"",ter" extends from a to b, the inner part from c to d. The potential assigned to the 
perimeter is one-third that of the distant electrode (being the critical case when the field value 
in the ne1ghbourhood of the perimeter is near the potential on the perimeter). 
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corresponds to changing the potential of the distant electrode. It is 

seen that this rnoving locus would enter the region a to d of the 

perirneter arrowheads when the distant potential ~as 1.9 times that on 

the perirneter and leave that region when the factor was exactly 3. (The 

latter factor has already been shown to be the critical ratio of distant 

to perimeter potential for which there is no flow to or fram the perimeter.) 

This would also explain the anomaly observed in the perimeter current; 

since with increasing applied field, the transition in perirneter current 

occurred between 15 and 30 volts when the perirneter voltage was 10 volts, 

giving aL~ost the sarne factors as found from figure 4.3. It is then 

apparent that the distortion to the field around an equipotential disc, 

if a higher potential is applied to the ~rimeter, is only local. The 

distortion is in such a direction as to render the field more radial. 

Further sets of experiments were perforrned to ascertain the corner 

effect. For this purpose, the faces were again kept at zero potential, 

the edges at 5 volts, and the corners at 10 volts. A somewhat similar 

effect was observed with respect to the corners, the current to the 

corners cutting off when the potential of the distant electrode was 

somewhat more than three times that on the faces. Interpretation was 

more difficult because of several complicating factors: a different water 

bath was used and electrolytic action and corrosion had attacked the 

crystal model, in particular at the corners which had begun disintegrating. 



4.6 t'Iode of Crystal Developnent 

The results of the electrolytic tank experiment can be transposed 

at least qualitatively to provide the mechanism necessary' for transitions 

from one type of crystal growth ta another. 

Because the basic crystalline structure of ice is thought to be hexa­

gonal, a reasonable form to assume for a snow crystal in its initial stages 

of growth is that of a tiny hexagonal plate. The future growth habit, 

however, would appear to depend on the nature of the diffusion field, and 

50 on the vapour density excess. 

The behaviour is intelligible when referred te figure 4.3 where vapour 

density excess is now the ordinate. An hexagonal crystal ofuniform surface 

va pour density around it~ perimeter, which is slightly in excess of that 

over its faces, distorts the field locally, tending to make it more radial, 

but does little to the distant field. The coincidence of the field around 

the crystal and that of its equivalent sphere is presumably best when the 

perimeter has the field associated with the equivalent sphere at that 

point (almost as illustrated in figure 4.3). In any case, the vapour flow 

to the perimeter is proportional to the difference between the field value 

in the neighbourhaod af the perimeter and the surface value on the perimeter. 

In point of fact, considering an hexagonal snow crystal, the near edge 

is located approximately 0.32 of the way ta infinity fram the equivalent 

sphere, and the corners extend out to about 0.4, a little further into the 

diffusion field (figure 4.4). The surface vapour density a t the CClr' ners 

is also slightly higher than that at the edges. If the ambient vapour 

density excess is small, both edge and corner growth are inhibited, actually 
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FIG. 4.4 - The lines of constant vapour density and the tlow lines favourable for columnar,plate-like and 
dendritic growth are here illustrated. The transition from one type of growth to another i8 
shown by the three curve8 of vapour density excess plotted against reciprocal distance. 

made negative, and the crystal grows outv~rd from its faces as a column 

(fig,ure 4.4, bot tom left). If the excess is sufficient to overcome the 

inhibition to edge growth, but not that to corner growth (figure 4.4, top 

left), the crystal grows as a plate while thickening only slowly. If the 

excess is greater again and sufficient to overcome the inhibition to corner 

growth, the crystal grov,s outward from its corners as a dendrite (figure 4.4, 
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top right). Should the vapour density excess fall off momentarily at any 

stase in the growth of a dendrite, then each of the six branches broadens 

ta provide the roots for a syrrunetrical array of leaves. These continue ta 

grow when the crystal returns ta corner growth, but more and more slowly 

as they become shielded by the principal arms. Similar leaves may, of 

course, result from the adherence to the branches of cloud droplets, but 

the leaves are not likely to be syrœnetrically disposed. 

Our loci of constant (p - p.) on the Nakaya data (figure 3.2) illus­
v ~ 

trate this effect quite clearly. Decreasing this vapour density excess 

continuously, one passes through the dendrite region to that where thin 

plates are most prevalent, then on to thick plates and through to columns. 

Now the transition from columnar to plate-like growth (figure 3.2) occurs 

when the vapour density excess is 0.18 gm rn-3• Cornbining this with 

results from the electrolytic tank experiment for the critical point 

where flow ta the perimeter has just ceased (the case shown in figure 4.3), 

it appears that the surface vapour density at the perimeter exceeds that 

on the faces by approximately 0.06 gm m-3,k and thatno net growth can 

talœ place unless the excess of ambient over the effective ice crystal 

vapour density is greater than about 0.02 gm rn-3•rt According to our 

analysis of the Nakaya data, however, no growth was reported for vapour 

k It has been necessaFJ ta assume that the e xcess of the p3 rimeter vapour 
density over that on the faces does not vary significantly with temperature. 
It is possible that the surface vapour density over curved solids differ in 
this respect from curved liquid surfaces. 

Ü If our concepts are valid, this fact should be taken into consideration 
in calculating rates of growth of snow crystals, i.e. the rate of growth 
should be proportional to difference between the ambient vapour density 
and the surface vapour density of the sphere equivalent in c~pacity ta the 
crystal, adjustments being made as well for the temperature of the growing 
crystal. 



density excesses less than 0.1 gm m-3, corresponding to a tempe rature 

limit of -4C. This discrepancy could be due to the diffi cult Y of 

nucleation at temperatures warmer than -4C, or because the net growth 

(if any did result in the Nakaya experiment for Dp ...c. 0.1 gm m -3) did 

not produce a crystal of distinguishable forme 

In summary then, it is suggested that the variety in the modes of 

crystal development can be sui tably explained by means of the vapour 

density excess if a non-uniform surface vapour density at the crystal 

is assumed. 
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5. RATE OF GROI-ITH OF AN ICE CRWTAL IN CLOUD 

5.1 Introduction 

The genera1 diffusion equation of water vapour into air, assuming a 

uniform air density, is given by 

dp 
dt 

= CD ~ ~) + ~ y (D ~ ~) + -%z (D ~ ~). 

If the medium is such that the diffusion coefficient is independent of 

posi tion, then 

~ = D <;]2 f'I. dt t' 

If the ice partic1e is at rest relative to its environment and after the 

diffusion field surrounding it has attained a steady state, ~t = O. The 

va pour density at any point in space is then given by the Laplacian equation 

subject to suitable boundary conditions. These are usually, (a) at an 

infinite distance from the particle the vapour density p is at water 
w 

equilibrium at the ambient tempe rature , and (b) at the surface of the 

particle the vapour density Pi is at equilibrium with ice at the temper­

ature of the ice. 

The rate of mass transfer ~ across any spherical surface of radius 

r about the particle is proportional to the area of the surface, the 

vapour density gradient there, and the diffusivity of water vapour in 

air. In fact 

Assuming the crystal to be spherical in shape and of radius a, and 

solving the spherically symmetric Laplacian 



d
2 P 2 d + - p = o 

r dr 

dH for the density gradient, the rate of growth dt of the particle is 

dM dm = 
dt dt 4fTaD(p - p.). w ~ 

The result (5.3) may be generalized ta apply to any odd shaped 

bodies by using Jeffreys' analogy which was discussed in section 4.2. 

For a body of electrostatic capacity C, the rate of growth becomes 

dM 
dt = 411CD(p - p.). w L 

Since it is mathernatically simpler to treat spheres and spherically 

symmetric fields, the rate of growth of a spherical particle will be 

considered with the assumption that the result will also hold for any 

body of equivalent electrostatic capacity. 

5.2 Gro\,rth in Cloud 

The simple treatment given thus far assumed that there were no 

sources of vapour present other than at infinity. 

Now suppose that the particle is in the presence of supercooled 

water droplets. Let the cloud droplets be uniformly distributed 

throughout the volume and let [r be the sum of the radii of the drops 
1 c 

per unit volume. ~le tacitly assume that the cloud drop size distribution 

does not change with the sampling volume, no matter how small it is. 



The rate of evaporation for each cloud droplet is simply 

411rcD(pw - p):.t, where p is the vapour density in the vicinity of the 

drop after a steady state has been reached. Now the rate of evaporation 

from a she11 of thickness 6r surrounding the ice crystal is proportional 

ta the volume of the shell, Le. ta the summa.tion of cloud drop radii 

in it. Thus the contribution from the shell is 

= 411r2 Dr [4'[1 ~ r D(p - p)] 
1 C W 

Sa that 

= 411r
2 

[ 4'[1 ~ r D(p - p~. 
1 C w 1 

But the rate of mass transfer across any spherical surface about the 

ice particle was given by equation (5.1). 

.. d 
dr 

(_4nr2 D ~) = 
dr 

4'[1l f 4'[1 ~ r D(p - p)] L 1 C W 

i.e. 

+ g, dp 
r dr ( p - p ) (4'[1 ~ r c ) 

w 
= o. 

The differential equation (5.5) corresponds ta equation (5.2), the 

extra terrn accounting for the added sources of vapour. It is to be noted 

that whereas the rate of change of mass transfer with distance was equal 

:.t The following argument may serve to justify the assumption that the ~~ter 
drops (cloud) are all at the same temperature irrespective of their distance 
from the ice crystal (i.e. that we are able to uSe the same rw). The ice 
crystal is releasing heat (the latent heat of sublin~tion) and a plot of 
temperature against distance from the crystal would be similar ta the inverse 
of figure 5.1. The cloud droplets, however, are evaporating and are thus 
below the temperature of their immediate environment, the depressions 
becoming larger for drops closer ta the crystal where the air temperature 
is higher. Thus the resulting drop temperatures are approxiw~tely equal 
as has been verified by rough calculations. 
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ta zero for the first case discussed (i.e. the n~ss transfer was 

continuous from source ta sink), this is no longer the case. 

Substituting 
x = 

1/2 (4rt L r ) r = kr 
1 c 

into equation (5.5), a more symmetrical form results: 

d
2

p 2 dp 
- + - - (p - p) = O. 
dx2 x dx W 

A solution ta this equation is 

A 
cosh x 

P - P = + W x 
B sinh x • 

x 

(5.6) 

Now P = P as x approaches 00 , and since cash x = sinh x for large x, 
W 

we have that A = -B, i.e. 

p Pw = A [Si~ x CO:h x ] . 
But P = Pi when x = Xi (Le • ..men r :: a), sa that 

A = [ 
sinh Xi 

X]. 

eosh X· J -1 _ l 

Xi 

The solution for the vapour density at any point in space is then 

[
Sinh Xi _ cosh Xi] -l[Sinh x _ cosh Xl 

Xi Xî x x 

-x e 
x 

This may be further simplified by making the substitution x = Nx. (or 
l 

r = Na). The resulting expression for equation (5.7) becomes 

( ) N-l -Xi (N - 1) p = p - p - p. e • w W l 
( 5.8) 

Equation (5.8) is perfectly general in nature so long as specifie 

values are not assigned to the cloud temperature or the barometric 

pressure. These would define p and bp = p - p. as discussed in w w l 

section 2. The rate of mass transfer, being proportional to the va pour 
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diffusivity, is also a function of temperature and pressure. Thus 

to retain generali t y in stud;y"ing the effects of cloud, the equations 

will be put in a form dependent only on the dimensions of the ice 

particle and/or the dimensionless quantity x. = ka, where k = (4~ E r )1/2 
l 1 c 

is sorne function of the cloud density. 

To recapitulate and surnmarize, the relevant formulae are listed 

in table 3 for cloud-free air and in the presence of cloud. 

Formula 

P - Pi 

Pw - Pi 

dp 
dr 

Pw - Pi 

Table 3 

No Cloud 

1 1-­
N 

Cloud Present 

-Xi (N-l) [ 
k e N l + N~ ] 

dm 
dt 

4~D(p - p.) a l ] +-
Nx. 

l w l 

d dm 
dr dt 

4~D(p - p.) 
W l 

o 

and at the surface of the growing ice particle 

dH 
dt 

4~D(p - p.) w 1. 

where N is defined by r = 

~ is defined by Xi 

and k is defined by k = 

a 

Na, 

= ka, 

(4~ E r )1/2 
1 c 

2 
(Nx. ) 

l 

a(l + ka) 

N 



5.3 Discussion of Results 

It is of interest to examine the vapour density field as a function 

of radial distance from the ice particle. Curves representative of this 

are shawn in figure 5.1 for ice spheres of radius 0.005 and 0.1 cm. 

The distance scale used has in each case been extended out to 15 times 

the radius of the particle. It is seen that the presence of cloud 

becomes much more significant as the particle size increases. For a 

given particle size, the higher the factor k (a measure of the cloud 

density) the sooner does the vapour density approach its water equi-

li bri um value. 

Consider now the rate of mass transfer. In the absence of cloud, 

there is a diffusion of vapour towards the iee sphere sueh that the 

mass flowing inward across every concentric spherical surface is the 

same. The presence of cloud modifies this picture, since any shell 

of finite thickness adds a contributing region ta the vapour density. 

If ~ (dm)jdH (the ratio of the rate of change of mass transfer dr dt dt 

across any spherical surface ta the total mass transfer or rate of 

growth) is plotted against r, the resulting graph will show the relative 

contribution of the total mass transferred as a function of the distance 

from the ice particle. Two sueh curves are given in figure 5.2 for an 

iee sphere of radius a = 0.1 cm, and for cloud sueh that k = land 

-1 cm The area under each curve is unity. For k = 5.5 cm-l, the 

peak is at a much higher value and nearer to the particle, and the 

contribution from regions for which r:> 1.5 cm. is negligible. v'men 

k = l cm-l, the mass contribution is significant from regions as far 

out as 6 Cill. This would indicate that, because of the larger reservoir 

of water available with increasing k, the particle is able to draw more 

vapour from closer in. Also for k = 0 the vapour is drawn from infinity. 



The rate of growth, as is to be expected, also increases with k. 

Using ~~/4~D(pw - Pi) as ordinate in figure 5.3, sa as ta be indepen­

dent of atmospheric variables, rates of growth are plotted as loci 

of caro tant k. The abscissa, using Jeffreys' analogy, is the electro-

static capacity C of the. ice crystal (C = a for a~here). The curve 

o in the absence of cloud is a straight line of 45 slope passing through 

the origine With increasing k, the curves aIl converge at the origin 

but lie above the straight line and show more and more pronounced 

( -1) curvature. Even a slight trace of cloud k = 1 cm increases the 

rate of growth appreciably (10~ for C = 0.1 cm, 5% for C = 0.05 cm). 

Figure 5.3 can be replotted using as ordinate ~~/4~D(pw - Pi) or 

the ratio of rate of growth in cloud to that without. The loci of 

constant k are now the straight lines given 

An attempt has been made to relate the 

in figure 5.4. 

quantity k = (4~ E r )1/2 
1 c 

ta typical cloud densi ti es. The cloud drop si ze distributi. ons of 

\'leickmann and aufm Kampe (1952) of relatively young cloud show sorne 

uniform properties. The me di an radii are about 7f.L and the root mean 

cube radii about 8p,. Assuming these two va.lues, a relationship is 

obtained between liquid water content M (gm m-3) and k (cm-l ). VerJ c 

approximately, Mc = 0.25 k2• The cloud data of Diem (1948) however, 

have distributions which are much less uniforme The very rough 

relation found between H and k (M ~ 0.14 k2) may be out by as mueh c c 

as a factor 4. 

It should be emphasized that all present methods of cloud sampling, 

such as slide techniques, discriminate against droplets of less than 
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5~ diameter. This is readily admitted by most investigators who 

explain the abrupt cutoff at the lower limit b~r assuming that the 

smaller droplets are carried arOllild the exposed slide by the stream-

lines which diverge there. The discrimination against these small 

cloud droplets, which are doubtless very numerous, makes no significant 

change in the liquid water content of the cloud which is proportional 

to the cube of the radii. The factor k (proportional ta r 1/2) could 
c 

however be appreciably increased. A cloud of, say, 2~ diameter drops, 

having a liquid water content of l gm m-3 (which is not unreasonable) 

2 -2 would have a k factor such that k = 300 cm ,and could enhance the 

rate of gro~~h tremendous~ as the ice crystal increased in size. Thus 

better cloud drop spectra are needed before a fair evaluation of this 

process can be made. 

If the vapour density field around a sphere is plotted against 

reciprocal distance from the sphere, a straight line results for the 

case of no cloud as is evident from the first formula in table 3. This 

has already been shown in figure 4.1 and the reciprocal scale usage has 

preved invaluable ta the interpretation of the electrolytic tank experi-

ment reviewed in section 4. It has further been found possible to 

approximate a cloud of given k value by a water shell whose radius r w 

depends on k alone (i.e. the infinity boundary condition has been moved 

in to a distance r from the ice particle). The relationship between 
w 

k and r -1 is shown in figure 5.5. For ice spheres of dimensions such w 

that a-l :::> 10 cm -l, the vapour density field using the above approximation 

is essentially unchanged from the exact solution in the region for which 

r-l
;> 5 cm-l, where r is the distance from the ice particle. In the 

region 0 < r-l < 5 cm-l, the approximate solution di verges from t he exact 

one which is tending ta r-l 
= 0 as p approaches Pw' the divergence increasing 

with increasing k or a. 
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density field is essentially unchanged for r-1 > 5 cm- and 
ice spheres such that a-l > 10 cm-l. 

The relative influence of cloud am. supersaturation on crystal 

habit can now be compared. Consider first an atmosphere at -15 C and 

relative humidity of, say, 102%. The excess of the ambient vapour 

density over that at the surface of a growing iee partiele after the 

latter has been eorrected for tempe rature is about 1.23 times greater 

for the 2% of supersaturation than for an atmosphere at water equili-

brium. The effective vapour density drop is thus increased by 1.23, 

this increase being independent of partiele size. Approximating cloud 

by a water shell corresponds to having the water equilibrium boundary 

condition at sorne finite distance from the ice partiele (figure 5.5). 



This in turn leads to an effective vapour density a t infini ty which 

varies with the size of the partie le. It i8 only when the particle 

attains appreciable dimensions and the cloud is dense that the effective 

vapour density excess is significantly greater than for an atmosphere 

at water equilibrium. Thus when k = 10 cm-l the factor i8 1.001 for a 

10~ diameter ice particle, 1.02 for a 100~ particle and 1.23 for a 

1000~ purticle. It was because of this variability with size that 

the density in excess of vater equilibrium in the fOrIn of vapour was 

used in section 3 in the analysis of the Nakaya data. The loci 01' 

constant (p - p.) in figure 3.2 are thus valid except at high cloud 
\i J. 

densities. At high cloud densities the locus bounding a crystal type 

domain would tend to spread so as ta include the few dendrites and plates 

which had been missed previously. 

Ventilation or relative motion between the "ice crystal and its 

surroundings has been neglected in this study. The difficulties inherent 

in a theoretical approach to this proble!!l are formidable. Experimental 

results by Frossling (1938), Gunn and Kinzer (1951), and Houghton and 

Radford (1938) on ventilated evaporating .~ter spheres are aIl in con-

flict. Presumably ventilation plays a role somewhat similar to cloud 

in that it brings the defining boundary in from infinity closer ta the 

particle. The rate of growth of ice cr;y8tals i8 thus enhanced by 

ventilation. 

5.4 Size Attained by Growing Ice Crystals in the Atmosphere 

The co-existence in the atmosphere of vlater in aIl its three phases, 

as in a mixed ice-water cloud, may lead to the growth of the ice crystals 

by direct sublimation of water vapour. If growth by accretion is not 
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considered, the water drops act only as sources of vapour providing 

the vapour density gradient necessary for the growth of the ice crystals. 

The final mass attained by a growing snow crystal will depend on 

its initial dimensions (or mass) and on its rate of growth. The depth 

of the cloud and the velocity of fall of the crystal relative to its 

environment will dictate the time available for the particle to g row. 

Houghton has calculated rate of growth as a function of particle 

mass where the velocity factor has been included. As a most favaurable 

case, he chose a temperature of -15C and a water saturated atmosphere. 

These are conditions suitable for dendritic growth and his results are 

shown in figure 5.6. Taking the initial mass of the ice crystal aS 0.033 

~gm and integrating his curve of rate of growth as a function of particle 

mass, he obtained a curve of mass against elapsed time which is reproduced 

in figure 5.7. It shows that an ice crystal growing by sublimation under 

the conditions stated could attain a mass of about 500 ~gm in about 60 

min after falling approximately l kilometre, thus resulting at best in 

a drizzle drop (if melted). 

Haking the same basic assumptions as Houghton regarding the air 

temperature, type of c~~tal growth, initial mass, and relative velocity 

we have gone through a similar procedure of calculating rate of growth as 

a function of particle mass with the exception that the growth was con-

sidered in the presence of cloud. -1 A factor k = 10 cm was chosen as 

equivalent to a Illoderate cloud and the results plotted in figure 5.6. 

The integrated curve yielding mass against elapsed time is compared to 

Houghton's in figure 5.7. The divergence between the two increases 

rapidly with time. After 10 min have elapsed, the crystal g rowing in 
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cloud is 2 times the mass of thst growing at water saturation; after 

20 min the ratio is about 4; after 30 min, about 8. Also the maSS 

attained at water saturation in 60 min can be exceeded in le8s than 

25 min in this cloud. 

It would appear that cloud enhances the sublimation process. vfuen 

Houghton's curves of growth by sublimation are modified by these con­

siderations, they can explain the larger ice crystals that are observed 

(i.e. about 1000 ~ gm on the basis of a time of grol4th in the cloud of 

the order of half an hour or le8s). This does not imply that precip­

itation particles equivalent to fair sized raindrops normally result 

from the sublimation process alone. One must still con8ider growth by 

accretion and the bunching of many crystals into aggregates to account 

for the large size rain drops observed. 



6. COi-JeLUSIONS 

The distri bU.tion of snO~l crystal types as a function of temperature 

observed by Eakaya and Hanajima suggests symuletry about the maximUI'l of a 

curve of Pw - e i against temperature, \.Jhere l\r is the vapour densi ty at 

equilibrium with \-Tater at the air temperature and Pi is the ice equilibrium 

value at the temperature of the groHing ice parti cIe Hhlch i s slightly 

warmer than the air temperature. Starting from thls clue, attempts were 

made to explain the Hhole of the Hakaya distribution as depending primarily 

on the excess of the ambient vapour density over that at the surface of the ~ 

growing ice crystal. Thls attempt ~JaS successful when it was assumed that 

the excess water above the liquid equilibrium value in Nakayals experiment 

consisted largely of water cloud but in small part of supersaturated vapour. 

:dhlle the presence of fine i.Jater cloud affected the vapour densi ty gradient 

at the surface of the gro1tIÎng ice particle, the effect varied ~IÎ th particle 

size, and except for very l a.rge particles, i t appeared that the small amount 

of true supersaturation was more significant than the presence of cloud in 

influencing the type of gro1t~h in that experiment. 

A simple analytical expression was derived for calculating DP as a 

function of temperature. It \-TaS found that, although the psychrometric 

values Here directly proportional to the atmospheric pressure, the 6 1' 

values 1tT8re a :rr..uch less sensitive function of the pressure. In order to 

explain crystal habitat hlgh altitudes (i.e. 10101 barometric pressures), 

it seems necessary to modify the ~p curves by the ratio of star.dard to 

existing pressures taken to a power of about 0.3. The exact figure 0.286, 

whlch occurs in the defilùtion of potential temperature, caused the curves 

ta aSSUlue the same peak value. :1e have been unable to rind any physical 

basis for this coincidence. The shift tO\<Tards lower temperatures wi th 



decreasing pressure as ,.,ras observed by Golo and Po\·rer for any given crystal 

type '.Jas then in good agreement ' . ..ri th these modified curves. 

In the course of analysing Hnkaya 1 s clata, El plausible mechanism 

explairüng the dependeYlce of crystal habit on vapour densi ty excess 

suggested i tself. Since equili briwn vapour densi ty over liquids is a 

function of the curvature of the surfaces, this 'tias also postulated for 

snow crystal surfaces. An hexagonal sno'", crystal (plate) "Tould then have 

a surface vapour densi ty at i ts edges vlhich exceeded that over i ts fIat 

faces, and the corners beine; doubly rounded ï..,rould have a still higher 

value. Gr01"rth to the corners and edGes would be inhi bi ted until the 

ambient vapour densi ty Has sufficient ta overcome these inhi bi tians. 

Thi S ',.,ras verified in an electrolytic tank experiment using a model of 

an hexagonal sn01.,r crystal consisting of a set of electrodes at different 

potentials representing the faces, edges and corners of the crystal a..'1d 

applying a distant field. The results indicated that marked transitions 

occurred in the current per unit area flowine to the different electrodes 

as the dista..'1t field ,.,ras increased. At first the flo~J \·Tas màinly to the 

faces, but, for a sufficiently high applied distant potential, floÏtT ta 

the edges was favoured and finally the flow per unit area to the corners 

exceeded the others. Cohünns resul t from diffusion to the faces, plates 

from edge grQl..rth and dendrites when the growth i s from the corners. Crystal 

habi t l,ms thus explained by means of the existing vapour densi ty excess in 

its ability to overcome the inhibitions mentioned. 

The steady state diffusion equation .ras solved for a:.t'J. ice particle 

gro ... Jing in the presence of cloud, the solution of the vapour densi ty field 

being in terms of a parameter k which "laS proportional to the square root 

of the S~~ of the radii of the cloud droplets per unit volume. It was 
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shown that wi th inereasin[ . ~ the iee partiele could draw more vapour from 

closer in. A moderate cloud could thus enhanee the rate of growth appree­

iably when the partiele attained signifieant size. li e;rowth eurve in 

cloud as a function of elapsed time was caleulated aIld compared to a 

sirnilar curve of IIoughton 1 s where the growth l..Jas assumed to take place 

in a water saturated atmosphere. The cloud enhru1ced the diffusion aIld 

sublimation proeesses to sueh aIl extent that the time of growth from 

0.033 ~gm to 500 ~ gm was reduced roughly by a factor of 3. Thus, though 

supersaturation rather thaIl cloud 1-Jas shown to be the dominaIlt factor 

in the Nakaya experiment, clouds are probably important under natural 

conditions, because of their effect on larger erystals, in achieving 

in a reasonable time the large crystals observed at the ground. 
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PART II 

MEASUREMENT OF THE TERMINAL VELOCITY AND MASS OF SNOWFLAKES 



1. INTRODUCTION 

Snowflakes, as observed at the earth's surface are usually 

found to fall in the form of aggregates of many individual crystals. 

It has been thought that snow, originating as single crystals, could 

fall considerable distances before aggregating, the clusters being 

produced by the collision and adhesion of the crystals during their 

course of fa11 when the tempe ratures were sufficiently high. Radar 

observations (Part III) suggest that on occasion, when the snow is 

generated in compact cells, aggregation may occur within these 

generating cells. Thus a relatively canplex picture may exist, 

aggregation taking place at the generating level and again when the 

temperatures approach the melting point, with secondary processes 

possibly being in effect throughout the fa11 of the snowflakes. 

There is a need for ve10city information to interpret radar 

studies. Schaefer (1947) and l~akaya and Terada (1935) have measured 

the velocity of single c~Jstals, but the behaviour of aggregates must 

be studied if aggregate flakes occur over a much \dder range of heights 

than previously thought. A method was therefore developed whereby 

the mass and velocity of descent of snawflakes cauld be determined 

simultaneausly. 

Interpretation of radar information requires a knowledge of the 

size distribution of snowflakes as well, and a sample in space can be 

related to a sample co1lected at the ground by knmdng ve10city as a 

function of size. Dr. K.L.S. Gunn has attempted to obtain snowf1ake 

ve10cities as a function of size by sampling Ca) through gravitational 

settling and Cb) by sweeping out a volume of space. The velocities 

obtained from a camparison of the two suggested that the space dis­

tributions found by this method were not reliable, and so a more direct 

method has been used. 
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2. HETHOOS OF }!EAS UREl'!ENT 

2.1 Velocit y of Fall 

The velocitY ,of fall of a particular snowflake was measured 

directly from the time int erval taken for it to fall through a given 

vertical distance. The snowflakes were photographed in motion against 

a dark background from a distanc e of a bout 10 feet using a 16 rrun movie 

camera. Each sno .. ,flake produced a short streak (due to its motion 

during the short time interval for which the lens shutter was open) 

on every frame of the film (figure 2. 1). A camera speed of 32 frames 

Figure 2.1 - A single exposure 

showi. ng the vertical s treaks made 

by the falling snowflakes. 

per second, giving a measure of the time of fall, was found most 

suitable for successful registration of the streaks on the film. At 

this specd,the streaks were not' too long and the natural illumination 

available was sufficient so that film of normal contrast could be used. 

The camera speed was carefully checked before and after the winter's 

operations by means of a stroboscopie flash unit and was found to be 

reliably constant. 

Since the observations were taken in the open air, the camera 

recorded the snow falling between it and the dark background in the 

conical volume bounded by the angle of the camera lens. Snowflakes 

close to the camera, not being in the focal plane, produced very large 

blurred images on the film and tended to obliterate f lakes which were 

more distant from the camera. It was thus found necessary to mount a 
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stereoscopie attachment in front of the camera lens. In essence, 

this attachmentk consisted of two systems of reflecting mirrors and 

prisms which viewed the fieJd from a distance of about 2.75 inches 

apart. Two images were thus obtained from slightly different angles 

side by side on the 16 mm film. With this system, the more distant 

an object is from the camera, the more closelY do its images occupy 

the same relative position on the split movie frame. A snowflake 

falling very close to one side of the stereo-attachment would still 

permit the other to obtain an unobstructed view (figure 2.2). 

Figure 2.2 - The large blurred 

image at the left is caused by 

a snowflake falling close to 

the left aperture of the s tereo-

attachment. 

11easurements were only made on the snowflakes which landed on 

the horizontal wool disc shown in figures 2.1 and 2.2. The films, 

after processing, were projected througQ a special type of projectortk 

wrlléri could move the film, frame by frame, with perfect registration, 

as slowly as desired. The streaks due to a falling snmvflake could 

then be followed on successive frames until it settled on the disc 

(sequence figure 2.3). Thus a velocity could be associated with a 

given flake on the disco Hinor corrections were applied to the 

velocities def ending on the position of the flake on the disc (i.e . 

on its distance from the camera) and also if the snowflake was not 

falling in a plane parallel ta the focal plane. 

Ir. Nord 3rd Dimension Converter, The Nord Co . , Hinneapolis, Minn. 
âk Dunning Animatic Projector, Dunningcolor Corp., Ho llJwood, Calif. 



- G ( -

1 
Figure 2.3 - A sequence of 16 consecutive exposures showing a 

snowflake gradually settling onto the horizontal 

wool disco For ease of illustration, a very light 

snowfall has been chosen. 
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2.2 Melted Dian~ter and Crystal TyPes 

The relevant snowflakes were those which settled onto the black 

angora wool dise, 13 inehes in diameter. This dise, which was sheltered 

from further exposure to the snowfall when the camera was stopped, was 

then taken indoors. A VIhatman #1 filter paper, previously dusted wi th 

powdered dye, was plaeed on the disc and absorbed the vmter from the 

melted snow particles. The calibration curve of Harshall, Langille 

and falmerK (1947) was then used to relate the size of a st:ain on 

the filter paper ta the diarneter of the water drop equivalent in mass 

to the snowflake. 

This diameter, which will be called melted diameter, is of sig-

nificance for two reasons. a) The mass of the snowflake is proportional 

to the cube of this diameter ~ereas if the actual dimensions of a 

flake were considered, the relation between mass and dimensions would 

in general be more camplex depending on crystal type, density and sa on. 

b) It is aIso one of the signifieant quantities in radar theory where 

the back-scattered intensity is proportional ta the sum of the sixth 

powers of the diameters per unit volume of space. 

A correspondence was thus obtained between velocity and melted 

diameter. Closely spaced observations were also made of the crystal 

types forming the aggregates and on the state of aggregation, and 

temperatures at the ground were reeorded. 

k This calibration curve was carefully checked at frequent intervals 
within the melted diameter range of 0.08 to 0.5 cm. The method found 
!!lost convenient was to place a small water drop on a waxed glass slide. 
The drop assumed the shape of a perfect hemisphere when the glass 
slide was horizontal. Its diameter was measured \dth a travelling 
nücroscope and related to the diarneter of the st:ain which i t produced 
on the filter paper. 
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3. OBSZRVATIONS AND RESULTS 

Before proceeding to a presentation of the results some state­

ments will be made regarding the difficulties of obtaining usable 

observations and the consequent interpretation of the results. 

a) On many occasions it ,~s found that the air temperature at the 

ground during a snowfall rose to a value which could be a few degrees 

above the freezing point. Thus slight melting must have occurred 

and the aggregation would be more efficient under these conditions. 

Velocity measurements on such occasions would not be representative 

of snow velocities at tmnperatures below freezing. 

b) On some of the days when temperatures were below the freezing point, 

severe winds approaching blizzard conditions were present. Sudden 

ground gusts in the vicinity could make the measurements unreliable. 

c) The photographie method depended on the light scattered by the 

individual snow aggregates. Thus larger aggregates, having greater 

scattering cross-sections, \{ere more easily registered on the film. 

The lower limit of detection was for melted diameters of about 0.04 cm. 

d) Indirectly there was also discrimination between 'crystal types. 

For instance~ in a snowfall cont~nin8 dendrites and plates, the den­

drites would be more efficiently photographed near the limit of 

detection since, for a given mass, the dendrites being less dense 

have a higher scattering cross-section than the plates. 

e) Finally although the size distributions (see figure 3.1) are such 

that the numbers are highest for very small diameters and relatively 

few for large diarneters, the efficiency of the velocity measurenemts 

increased with the size of the aggregates. Thus the number of velocity 

measurements within any diameter in terval is not indic ative of the 
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Figure 3.1 - A histogram for a typical case in whieh the ordinate is 

representative of the number of partieles within the diameter 

intervals shown. The broken lines indieate the effieiency 

of the photographie technique as a funetion of partiele size 

in this partieular case. 

total number in that interval. The effieieney (Le. the ratio of the 

nQmber of aggregates suceessfully photographed within a given diameter 

interval to the total number ,dthtn that interval as eollected on the 

horizontal waal dise) is shawn far a typical case by the datted lines in 

figure 3.1. 

During the muter 1952-53, sueeessful measurements were made on six 

days. :-lhen the data were plotted as logari th.'1l of the veloei ty against 

logarith'D. of the melted diameter, it wasfound that for any given sno\-lfall 

aIl the points, neglecting slieht seatter, appeared to lie along a straight 

line and could thus be fi tted wi thin the range of measurement by an 

equation of the type 

v = kD
n 

(3.1) 
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where v is the velocity (cm sec-l ), D the diameter (cm), k a constant 

for a e;i ven type of sno'dfall having the dimensions cm sec -1 cm -n and 

n an index also dependent on the type of snow. The results are shown 

in figures 3.2a, bi J.3a, b; and 3.4a, b on logarithmic and linear plots 

and each case will be discussed below. Any given point in these diagrams 

represents the mean velocity ~dthin a diameter interval of 0.02 cm and 

has been placed in the middle of the interval. The number of measurements 

made is indicated beside the plotted points. 

The veloci ty-diameter curves shown in figures 3. 2a and b may be 

considered as typical of snowflakes (i.e. aggregates). The series of 
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points about the top curve of each diagrarn was obtained on 12 February 

1953 from about 1100 ta 1300 E.S.T. The temperature at the surface "Tas 

25F. The aggregates were found ta consist of cambinations of plates and 
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eolurnns. The points eo~ld best be fitted by using equation (3.1) 

where k 218.5 emO. 726 see-l and n = 0.274. The battom eurves of 

f o 3 2 ° dOl b 1 l7(J 0.628 -1 19ures • were obtalne ln t le SéL"'lle manner ut.( = 0 cm see 

and n = 0.372. These eurves were determined from the data obtained on 

19 and 20 ,Tanuary 1953. The sno"'Jfall 0:1 bath days consisted solely of 

pla.YJe and spatial dendrites, and the temperatures vrere 28 and 30F respect-

ively. On a mass or melted diameter h~sis, it is seen that aggreeates of 

columns and plates have a more rapid rate of deseent than those made up 

of dendrites (the rate of fall is about 1.5 times as great). These 

results are quite reasonable sinee columns and plates are more dense 

than dendritic crystals. The dendrites, being feathery in appearanee, 

have larzer cross-sections than plates or columns of equal masse The 

resistance offered by the air to their fall is consequently greater for 

dendrites than for plates and columns. 

On 29 December 1952 the snowfall \-JaS made up of dendrites and of 

irregular assemblazes of plates, and the ground temperature was 26F. The 

results of the measurements are given in figures 3.3a a.~d b, the curves 
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of best fit having been ca1culated from equation (3.1) '!,.J'here k = 366 

cmO. 389 sec-1 and n == 0.611. It is seen that this curve rises nlUch 

more steep1y than those ShOldTI in fieure 3.2. (The latter are shoWl1 

dotted in figure :3 .3b). At the louer lirni t of the photographic technique 

used (about 0.04 cm), the ve10city assumed is approximately 50 cm sec-l 

which corresponds roughly to the velocity of dendrites of that melted 

diameter. The velocities increase rapidly with size and are seen to 

approach (and fina1ly exceed slightly) the values of the l.lpper dotted 

curve of fi gure 3.3b, i.e. the velocities of plates and columns. The 

shape of this ClITVe may be due to one or both of the following factors. 

a) The dependence of the photographie method on the scattering cross-

sections would heavily favour the registration of sraal1 dendritic clusters 

as opposed to small aGgregates of plates of the Sfu~e masSe This could 

explain 1,Ihy the measured veloci ties approach those for dendrites as the 

diameter deQreases. b) If the main aggregation was taking place among 

the plates, the same phenomenon as mentioned in (a) should have been in 

effect. For h .r ger diameters, ho",-rever, the measured veloci ties should 

gradually approach the velocities of plates. 

Finally, in figures 3.4a and b, the results have been plotted for 

the two remainin[ days. The ground temperature on 6 December 1952 was 

33F so that sorne slight mel ting must have occurred. The snOH was made 

up of very large aggregates (up to 0.36 cm melted diruaeter) of dendrites. 

The values of the pé4!'é'Jneters of eCiuation (3.1) giving the best fit are 

k= ° t. 7<f l 207 cm . 0 0 sec- and n = 0.322. The resultinG curve is seen ta lie 

above the curve for dry dendrites vrhicn tas been dotted. in. He.d the air 

been G. li ttle 1,-larmer than 33F, i t is likely that the veloci ties would 
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then have exceeded those for pldes a..'1d co1umns. (Prelirrinary mea.surements 

at the end of the winter 1951-1952 indicated that B.t about 35F velocities 

of order of 300 or 400 cm sec-1 are not uncommon, the precipitation still 

having the appearance of snou but being qui te "let.) The points aoout the 

upper solid ccrve in fi gures ].4a a.nd b uere obtained on 31 J anuary 1953 

fro:u measurements of rimed. sno\·rfl akes (i. e. snouf18.kes havin:; numerous 

tir:y frozen i-rater droplets a.ttached to tllen \,rhi ch had been picked up by 

coalescence in falllng through a cloud l ayer). The aggregates con3Îsted 

of riI::ted dendrites and plates wi th extensions, and the temperature vlaS 

.... :ell beloH the freezing point, readin;3 25F . The Je and n values of equation 

(3.1) that gave the curve of best fit BIe k = 210 cmO. 7l7 sec-l and n = 0.283. 

It is noticed that this curve has been è.isplaced fror.1 the dendrite curve 

towards higher velo ci ties due to the riIT'ing. The a"!lount of displacement 

"lOuld vary frOID occasion to occasion depending on t he degree of riming. 
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4. JUliHARY AlIlD CONCLUSIONS 

The velocity of fall of snow in the form of aggregates has been 

measured for snovlflakes of e qui valent melted d.iameter ranging from 

about 0.04 cm to about 0.32 cm. Tiny aggresates and single crystals 

were not susceptible to the technique used, but the data of Schaefer 

for the velocity of single crystals, though very sparse, tend to con-

firm our observations on aggregates. 

The terminal velocit y of fall of raindrops has been approximated 

(Spilhaus, 1948) for the purpos e of radar studies by the equation 

1/2 1/2 -1 v = kD relating veloci t;,{ to diameter, where k = 1400 cm sec • 

An analysis of the measurements on snm'l aggregates shovm in figures 

3.2 to 3.4 indicated that the experimental findings could be represented 

by v = kDn where the parameters k and n both vary wi th crystal ty:pe 

and degree of riming . The results are summarized in the first two 

colwnns of table 1. 

Crystal Type 

Plates & Col. 

Rimed Dend. 

Dend. (33F) 

Dend. (<: 32F) 

}1ixed Dend. & rla tes 

Table 1 

v = k:D
n 

k 

l-n cm sec 

218 

210 

207 

178 

(366) 

n k (for n = 0.31) 

-1 0.69 -1 cm sec 

0.274 234 

0.283 221 

0.332 203 

0.372 160 

(0.611) 
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If it is desired to reduce the parameters from two to one (for 

convenience in any future calculations), the data may be satisfactorily 

fitted by means of the sameequation where, however, the index n is 

constant and k is the on~ variable parameter. The k factors for 

n = 0.31 are given in the third column of table l, and curves using 

these parameters have been superimposed on the experimental data in 

figure 4.1a. The curves of figure 4.1a have been replotted on logarithmic 
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scales in figure 4.lb and are compared to the Spilhaus curve for rain-

drops. The points plotted about the upper curve of 4.1b represent 

measured raindrop velocities and have been inserted to indicate the 

goodness of fit of Spilhaus' relation. The series of points close to 

curve 5 have been obtained from the curve of best fit for dendrites 

from figure 3.2. The corresponding comparison using curves 2, 3 and 4 
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shows a much better fit. The indication then is that the divergence 

from measured values using our more general relationship, in which the 

index n is constant for a given type of snowfall, is not too serious. 

An added advantage in choosing a constant index is that the 

parameter k then gives a measure of the velocity of fall. For instance 

the ratio of k (plates and columns) to k (dendrites) is about 1.5, so 

that the former fail 1.5 times as rapidly as do the dendrites. Of the 

k factors shawn, the ones for dendrites and for plates and columns are 

the most useful. The other k values listed are typical only of the 

observed snowfails since k varies with the degree of r~ning and also 

wi th the amount of melting if the temperature is slightIy in excess 

of the freezing point. 

The more general form of the equation (i.e. with constant n) 

could be easily adapted to determining size distributions in space 

from samples obtained by gravitational settling. Its application to 

radar studies of echoes from snow is also evident since the radar echo 

is dependent on the sum of the sixth powers of the diameters of the 

scatterers per unit volmne of space. A more complete discussion of 

these problems is deferred ta the radar section, Part III. 



-72 -

REFE HEN CES 

11a.rsha11, J.S., Langi11e, R.C. and ~IJ.MeK. Palmer, 1947: Heasurement 
of rainfa11 by radar. J. Meteor, 4, 186-192. 

Nakaya, U. and '1'. 'l'erada Jr., 1935: Simu1taneous observations of the 
mass, fa1ling ve10eity and form of individua1 snow erysta1s. 
J. Fac. Sei., Hokkaido Imp. Univ., Sere 2, l, 7, 191-200. 

Sehaefer, V.J., 1947: Properties of partie1es of snowand the e1ectrica1 
effeets they produee in storms., Trans •. ~er. Geophys. Union, 
28, 4, 587-614. 

Spilhaus, A.F., 1948: Drop size, intensity and radar eeho of raine 
J. Neteor, 5, 161-164. 



PART III 

SNCl'l PATTERNS 
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1. INTRODUCTION 

A snow pattern frequently observed in vertical section by radar 

is that of oblique streaking. 11arshall (1953) has interpreted this to 

mean that the snow is falling from persistent generating elements, the 

resultant sloped pattern being produced by the existing wind shear. 

Browne (1952) has also arrived at the same conclusion from observations 

on an A-scope of a fixed vertically pointing radar. 

Unusually well defined patterns of this type were observed by 

radar at hontreal on 2 November 1951 (figure 1.1). The relation of 

these patterns to the wind shear has been investigated using the 

theory deri ved by ~iarshall and has led to a consideration of the rate 

of descent of the precipitation partie les • It is this analysis of the 

da ta tha t was us ed in }iarshall' s paper. 

Radar photographs, obtained during the winter 1951-1952, have 

been analysed to provide further information on sorne of the aspects of 

these precipitation trails and the motion of the patterns has been 

studied and correlated with the wind at the generating level. The 

rate of fall of the snow particles as a funetion of height has been 

investigated, using radar records from the winter 1952-1953, in an 

effort to determine regions favourable for aggregation. 
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2. THE PATTER1~ OF 2 NOVE1!IDER 1951 

According to }~rshall, the equation of the trajectory formed by 

a particle in faUing through a viÎ.nd shear is gi ven by 

z 

j ~~:~ dz 
o 

where x measures horizontal distance fram the initial point x , 
o 

z is the vertical distance measured downward, 

(2.1) 

wez) is the ~"nd component in the direction of x at depth z, 

and vez) is the velo city of fall of the particle. 

If a generating ceU, which emits :tarticles aIl having the same 

rate of fall, is considered to move with the wind VI at z = 0, the 

pattern formed by the precipitation trail coincides with the trajectory 

of the particles when referred to axes moving with the generating 

element. The slope of the pattern with reference ta these same axes is 

(2.2) 

from which the rate of fa Il of the particles can be determined in terms 

of the wind profile. The pattern as a whole moves with horizontal vel-

ocity ':J, the wind at the generating level wi th respect to the ground. 

The height of the pattern directly over a fixed point on the earth's 

surface then changes continuously as the pattern passes overhead. The 

apparent rate of descent of the pattern, referred to a fixed point on 

dz the earth, is given by W dx and thus varies "with the slope. 

A special case of equation (2.1) results ,men the rate of fall of 

the particles and the wind shear are bath constant \dthheight. The 

pattern in space is then parabolic in shape with the vertex at the 

generating 1evel. 
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2.1 Application of the Narsb.all Theory 

li A series of clearly defined snow trails was observed by radar on 

2 November 1951. The generating cells were at an altitude of 15000 ft 

and were spaced roughly 20 miles apart. The patterns moved tOlfJards the 

radar approximately from the west at a speed of 90 mi hr-l which was 

found to correspond to the "\iesterly wind at 15000. ft. The pattern of 

this particular day, and so the radar photographs, was far superior to 

any others of the winter 1951-52. This pattern was then the most amenable 

to measurement and interpretation. 

Since the wind profile along a bearing of 2600 (the radar bearing) 

~~s found to increase âlmost linearly with height, theoretical semi-

parabolic patterns have been drawn in the lower part of figure 2.1 and 

the theoretical slopes, rate of descent of the pattern relative to a 

fixed point on the earth, and rate of fall of the snow particles are 

gi ven in the upper part of the diagram. 

The photographs of the range/height indicator (3ee figure 1.1) 

were analysed and the re3ults are shovl1. in figure 2.1. Pattern data 

pertaining to six trails, as obtained from radar photographs at bearing 

260 or 80° and from the wind shear, have been superimposed on the 

theoretical curves given. 

The slope of the pattern was deterIlined from the radar pictures, 

not ltuthout sorne difficulty. The distortion in the radar display tended 

to be as great as the measured slopes and so a careful calibration of 

the range/height indicator had to be made. (This is discussed in full 

% Radar specifications: wave length 3.2 cm, peak power 65 kwi ; pulae 
length l ~sec, p.r.f. 1000 sec-l, berun 20 horizontal X 0.70 

vertical, polarization vertical. 
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detail in the appendix.) The measured slopes are seen ta fit the 

theoretical curve quite weIl. The slopes decrease rapidly with 

increasing distance from the vertex of the parabola, soon becoming 

very small. The alternate scale of rate of descent of the pattern in 

the upper portion of figure 2.1 has been obtained from a combination 

of the slopes with the wind at the generating leve1. The rate of fail 

of the snow particles (actually the rate of fall of maximum signal 

intensity) as calculated from equation 2.2 was found to be 4 ft sec-l 

independent of height as is shawn in figure 2.1. Heasured heights as 

a function of distance from the apex of the pattern are compared to 

semi-parabolas in the bottom part of the diagr&~. 

This analysis and the appendix represent the author 1 s contributions 

ta the joint report of Harshall, Langleben and Rigby (1952). 
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3. FURTHER Al~ALYS 13 OF RADAR HECO RDS 

The c1ear1y defined parabolic patterns observed on 2 November 1951, 

11'lhich appeared almost periodic are not common occurrences. Host of the 

photographs obtained during the .'linter 1951-1952 showed the same sort of 

pattern, none of them, however, being aS weIl defined. These records 

have been anêJ.lysed to provide further evidence of the validity of 

Harshal1' s theory of precipitation trails formed by falling snow. 

Since the RHI display (figure 1.1) is particularly suited for fol1owing 

the motion of a pattern, it was possible to investigate the horizontal 

velocities of these patterns and relate them ta upper air winds. 

Durin8 the winter 1952-1953, a zenith painting, 3 cm, radar was 

used. The film record obtained, discussed in greater detail in section 

3.2, was a continuous recording of the height of the echo in the vertical 

against the time of observation. This mode of presentation had the 

advantage that the hei~ht scale was undistorted as compared to the trouble­

sorne distortion of the RHI displa:r used in the earlier analysis. The 

slopes of the precipitation trails were then easily measured and, when 

combined with upper wind data, were used to investigate the velocit;)r of 

fall of the snOVl as a function of height. 

3.1 ~'finter 1951-1952: ANjTP3-10A 

In section 2, it \~s postulated (and verified for the case of 2 

Novernber 1951) that the genernting cell moved with the wind speed at 

its own height. This postulate is now given further verification by 

comparing measured velocities of the generating elements with the wind 

velocities. (The wind profiles were obtained from radio-sonde observa­

tions and upper air charts analysed by Br. B.A. Power. The closest 
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available radio-sonde station was at Rome N.Y. \'lhen no data was avail­

able from Rome, extrapolations were made from ascents at Buffalo N.Y. 

and Portland, He.) 

In the follm..n.ng analysis, use is made of the terms "echo height" 

and "veloci ty heigh V' • The forme r is the height of the top of the eeho 

as measured on the radar records, be:ing the height of the top of the 

generating cells when visible or the maxinrum echo height when no cell 

waS detected by the radar. The velocity height is obtained by finding 

the height at which the wind has the same velocity as that measured for 

the generating element. ~'Jhen no generating ceU is visible, the veloci ty 

of any part of the trail can be used to find the generating level sinee 

the pattern as a who1e moves with the Same horizontal speed. 

Since the radar bearing was genera11y not along the wind direction 

at the gen erating level, several assumptions must be made about the 

generating cells. It is assu~ed that a cel1 is of fair horizontal extent 

and that its leading edge is perpendicular to the wind direction (figure 

3.1). Under these conditions, the velocity vR' as obtained from the 

radar is related t o the true velocity, Vw by 

vR v\i{ sec g 

where Q is the angle between the radar bearing and the direction of 

motion of the generating celle On a polar diagram, the intersection 

of a circle whose diameter is the vect or vR with the "and profile 

(figure 3.1, rig ht) leads to a value of v
Vf 

and of Q. Occasionally, 

the wind profile may closely follow the circle over a considerable 

range of heights, in which case a height determination is possible 

only if radar observations have been made along t"lO different aximuths. 
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Figure 3.1 - The êingram a t the left relates the horizontal velocity 

of the l;eneratin; cell ta its velocity as measured along 

the radar bearing. The method of 0;) btairùn~ the velo ci ty 

height is sno\.nl at the rieht, 'vJnere a circle of diameter 

vR intersects the l,.rind profile on a polar plot • 

• "ùso the upper élir \o;inn data are such that, at best, the u..."1certainty 

in a velocity heieht is about 1000 ft. 

Radar photographs of precipi tation patterns \.Jere 0 btained on nineteen 

separate occasions (Gurm, Langle ben, Denni s ana POHer, 1953) during the 

"Tinter of 1951-1952. Of these, sixteen contained sufficient radar inform-

ation to deter:r..ine radar ve10ci ties. Generating cells uere detected on 

ten of these sixteen days and the velocity heiGhts for theses cases Here 

in excellent agreement Hi th the 0 bserved echo heights, the mean echo height 

being sorne 600 ft above the I!le8.n veloci ty hei[;ht (figure 3.2): the correla-

tion coefficient betHeen the tHO HilS 0.96. Since the average cell depth 

\·las of the order of several thousand feet, i t is seen that the cel1 moves 

vri th the air speed qui te close ta i ts top. Ho cells v:ere visible on four 

of the sixteen days. For these cases it was found tnat the pattern ~oved 
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FiGure 3.2 - ~-1 scatter diacram 

shov.ring the correlation 

between echa height and 

velocity height for the 

ten cases in 1.,hich the 

generating elements ,..rere 

observed • 

. ~-*--~~--~~--~~--~~--~~ 
• 10 12 14 us 

VELOCITY HEIGHT (ft Il 10" 

vri th a veloci ty equal ta that of the \·rir.d about 1100 ft above the top of 

the echo. On this basis, it ~eeins justified ta assune that the ;;enerding 

cell did exist sorne 1000 ft above the echo top, the radar sensitivity being 

too 101.'1 to detect the actual cells. The reraairùng tvTO days of pattern had 

"rind profiles Hhich mad.e velo ci ty height determinations unreliable, and 

the veloci ty of the trail \-las equal to that of the lür.d about 6000 ft 

belm'T the echo top. 

Consiclering the possible errars inherent in the method.s used for 

o btaining the \-riné:. profiles ar.a in the measurement of hei ght, i t i s remark-

able that SUCf. close agreement should ex:ist between echo height and veloci ty 

height. This is surely a confirmation of the thesis that the gener8.ting 

elements do in fact usually move wi th the air at their mm levels. 
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3. 2~iinter 1952-1953: ZerJ. th Pointing Radar 

.J.i. zerJ. th pointine radaru \..ras installed during the Sll..rnmer of 1952 

and '.,laS in operation by the f all. The method of recording the radar 

display was as follo\·ls. The received signal was used to intensity 

modulate a stationary trace on 8..'1 oscilloscope. A CaLYJ.era l,-IaS constructed 

(,à th the help of Dr. Gunn and Hr. G. T\.Jeeddale) in which continuous 

motion of a film "IaS achieved by :neans of a dri vine mecha:nis!!! 1.>!hose speed 

'..ras variable. The direction of motion ,-TaS perpendicular to the trace on 

the scope and the resulting display on the fiLm \-laS of height against 

time. This method has the advantage that the display is a perfect rectang'llar 

grid as opposed to the distortion of the AN/TPS-IOA. Lines of constant 

height are parallel to the base line and equally spaced for equal height 

intervals. Time intervals are known from the rate of motion of the film 

ill1d the time axis is atright angles to the height 8~S. 

Suppose that a precipi taUon trail, bf the Jdnd being discussed, is 

carried by the wind throueh the bearn. of the radar. lui tiall~r, the leading 

edge or generating cell is recorded on the fiL~. At sorne later time, another 

part of the trail is passine through the radar beaTll, but the film has moved 

on through the same time interval and the echo overhead is recorded at this 

later time. Thus the complete precipitation pattern in space is reproduced 

on the fiLm.. 

Because of the simplici ty of this display i t was thought desirable to 

amplify the findines of 2 November 1951 on the vertical veloci ty corr..ponent 

(or terminal veloci ty) of sno\-! particles. For this an a.ccurate kI10\..rledge of 

the "..d.nd profile ':las also required, since the veloci ty of fall is gi ven by 

li Radar specifications: wave len3th 3.2 cm, peak power ~.o kw, pulse length 
0.75 ,u,sec, p.r.f. 500 sec-l, beam 20 • 



v(z) = dz ~ 
dt vI, i.Jhere the symbols have the srune meaning as in section 2. 

The remarkable aereement betHeen echo height and velo ci ty heieht in section 

3.1 indicated that l1r. POi-Ier 1 s analysis was rather more reliable than he 

had expected, and was sufficient justification for placing fair confidence 

in 8...l1y subsequent data 0 btained in similar fashion. 

Three days of good pattern i·Jere pi cked from the radar records obtained 

for the i·linter 1952-53 . A complete analysis of aI l the available film i-Jould 

have been very lengthy, and i t i.Jas fel t that the data 0 btained f r om a fe,.J 

films Hould furnish the i nformation required. A sample picture of the dis-

play is shoHn in figure 3.3. The results for the three days are given in 

table l , which also includes other relevant data such as crystal t~~es 

observed at the ground, the height and the temperature of the generation 

level, and the i-lind direction at that level . Viind components at 10Her 

levels 

o 3 " Ti me (wl/n) 9 (';1, 

Figure 3. 3 - A typical snow storm pattern recorded by the zenith pointing 

radar . 
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Table 1 

Hei[;ht ~'Jind vez) -1 Dev'n Remarks 
ft knots ft sec fro!!! mean 

Il,200 48 g.t. li 13 Jan. 1953: 1015 hours 

9200 41 2.94 0.05 land components along 2800 

7200 38 2.85 -0.04 Generatinc level at 1l,200 

5200 31.5 3.00 0.11 
ft, -lO.~.Crystal types: 
i.a.c.p. ,capped col., 
plates, very little 

3200 23 kIl -0.12 ar;[,.:regation 
me an 2.89 0.08 

12,000 60 ci· t . 28 Jan. 1953: 1015 hours 

10,000 50 3.37 -0.04 l1incJ components along 2200 

8,000 39.4 3.96 0.55 Generating level at 12,000 

6,000 .34.5 .3.19 -0.22 
ft, -14C.Crystal ~es: 
needles, p.H.s.e. , 
sorne aggreEation 

4,000 28.5 .1LU -0.26 
aean 3.41 0.27 

15,500 Ly8.25 C. t • 2 Feb. 1953: 1700 hours 

14,000 44 3.30 -0.16 ~ rind components along 2600 

12,000 38 3.56 0.10 Generating level at 15500 
ft, -21C, Crystal types: 

10,000 33 3.38 -0.08 plane and spatial dendrites, 

(1:-. 43) lhb:bi 
p.H.s.e, very large 

3,000 18 agGreGates 

6,000 15 ~ ~ 
mean 3.46 0.12 

X g.t. - generating level 

~.a.c.p. - irregular assemblage of coltunns and plates 
lbbi 

p. H. S • e. - plate s "ri th simple extensi ons 

mbn7. This high value is thought to be due to an error in the winds. The 
upper air charts indicated the presence of a secondary front at 8000 
ft Hi th a consequent sudden cha.l1ge in wind speed and direction through 
tlus frontal zone. .~ error of 500 ft in the estimation of the frontal 
height lt!ou~d bring the measured veloci ty of fall into line vri th the 
others. 

• 
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Several conclusions can be drawn from the data of table 1. It i8 

at once apparent that the velocity of fall of the snow particles as 

determined from the radar echo was reasonably constant vith height on 

any given day. Also, these velocities vere of the order of 2 or 3 times 

greater than the velocity of fall of individual snow crystals (average 

about 1.5 ft sec-l ) as measured by Schaefer and Nakaya and Terada 

(Part II). The significance of these facts will be considered further in 

the next section. 

The velooity of fall of the snow particles as disoussed here is not 

to be oontused vith the rate of descent of the pattern overhead as observed 

by the radar at the ground. Taking the first oase of table 1 as an 

example, the rate of desoent of the pattern decreased from 20.2 ft seo-l 

when the echo was at 9200 ft to 5.3 ft sec-l when the eoho height vas 

3200 ft. 
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4. SIZE DISTRIBUTION AND VELOCITY OF FALL 

The theor.y of section 2 assumed that the generating element was 

emitting particles having aIl the same velocity (i.e. that a monodisperse 

distribution existed at the generating level). It has been thought that 

snow fell for considerable distance as individual crystals before 

aggregation commenced. Our radar studies indicate that when the snow is 

formed in compact ce11s, its velocity of fall quite close to the generating 

level (i.e. before any significant change in size distribution has taken 

place) may be severaltimes the velocities associated with single cr,ystals 

and of the right order of magnitude for snow aggregates. There i8 then 

reason to believe that on these occasions sufficient turbulence and 

updraft may exist in the formation region to promote effective aggregation 

of the snow crystals, and yield a wide distribution. 

Starting with such a distribution at the generating level and assuming 

that no break up or further aggregation takes place, there would be a 

sorting of the snowflakes according to size with distance fallen since 

eacb size, having its oWn velocity, would trace out a different trajectory, 

the resulting pattern in spa ce broadening out as the distance of fall 

through the wind shear increased. On the other hand, if aggregates break 

up and the new ones form throughout the raIl, the average size distri­

bution will remain the same, and the pattern will not broaden. Virtually 

nothing is known about aggregate size distributions in space and their 

modification with distance and, in a11 likelihood, a combination of the 

above effects is at work. 
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4.1 Velocity or Fall from Radar Echo 

The intensity of the signal back-scattered from many incoherent 

scatterers, as for example from precipitation in any form, is proportional 

to No06, where ND is the number of parttcles of diameter 0 and the 

summation has been taken for a unit volume of space. The radar sensi­

tivity i8 such that only a limited region about the peak of the N006 

versus 0 curve (figure 4.1) contributes to the observed echo. In a 

wide distribution, the small scatterers, though very numerous, make 

ID 
Cl 

o 
Z 

2 / 

oLo-----.~O~4----~· O~8-----.~12~--~.176----~.2~O-----.~24~---·~28 

DIA,..ETER (cm) 

Figure 4.1 - A typical snow distribution due to gravitational settling 

has been combined with a velocity curve to yield the size 

distribution in space and then converted to give a measure 

of the contribution to the radar echo as a function of 

particle size. 
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insignificant contribution to the echo as compared to the 1arger 

scatterers. The radar echo from the precipitation trai1s thus represents 

the peak of the NoP6 distributions at a11 heights. 

Nov we have shown that the rate of fa11 of the snov (as determined 

from the maximum intensity of-the radar echo) was invariant with height. 

The most obvious, but not necessari1y true conclusion, is that the size 

distribution does not change with height. Another possibi1ity is that 

sinee the larger partic1es of the distribution, whose ve10cities vary in 

the significant region by 1ess than a factor of 2 (as opposed to 9 in 

rain), are of importance radarwise, the size distribution is but slight1y 

modified vith height, tending ta give the same resu1ts. It is a1so 

apparent that snov does not aggregate gradua11y during its course of fall 

on occasions when it i8 formed in compact ce1ls. For if it did, the 

velocities measured from the radar pictures would gradually increase vith 

distance fal1en. 
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5. CONCLUSIONS 

The theory of Marshall on snow precipitation trails has been 

substantiated using radar records of two winters. The height of the 

generating cells as measured on the radar display was compared to the 

height at which the upper air winds had the same velo city as the cell, 

and the correlation coefficient between the echo height and velo city 

height was 0.96. It may thus he said that the generating elements move 

horizontally with the wind speed at about their own level. 

The radar analysis has also yielded the fact that snow does not 

aggregate gradually during its course of fall, but that the aggregation 

is perhaps occurring at the generating level, since the velocities 

measured near that level are comparable to aggregate velocities (Part II). 

It has also been shown from radar measurements of the rate of fall of the 

snow that the peak of the distributions of NoP6 versus D does not change 

significantly wi th height. For the purpose of future radar studies, and 

until actual measurements of size distributions in spa ce are made for snow 

at aIl heights, it i5 suggested that the distribution be assumed constant 

ldth height. (Transients at the beginning and end of the storms should he 

excepted.) A measurement of the distribution due to gravitational 

settling at the earth's surface when combined with the velo city curves 

of Part II would then 'yield the distribution in space. 

It is also worth remarking as sean in table l of section 3.2 that 

the air temperature within a generating element will in general identify 

the crystal type. Thus the water cloud in the fonnation reglon must be 
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quite dense with some degree of supersaturation with respect to water 

existing. If that were not so, as for instance in the ice clouds formed 

at high altitudes, a knowledge of the actual vapour density excess of the 

ambient vapour density over that close to the ice crystal would still be 

necessary for crystal type determinations as was implied in Part I. 
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APPENDIX 

Calibration of the Range Height Indicator 

of the AN/TPS-IOA Radar 

A careful analysis of the photographie records of the AN/TPS-IOA 

RHI display taken on 2 November 1951 threw suspicion on the accuracy of 

the range/height calibration and led to a more thorough investigation 

of the calibrating process. As a result several problems arose which 

will be discussed here. 

On that day a series of generating elements followed by long snow 

trails was visible on the RH! approaching from the west and then passing 

eastward. It was noted that the apparent altitude of a particular cell 

decreased as the echo approached and then increased after the echo had 

passed overhead and was receding. This seemed to be a very unusual 

property for the cells to possesse Another curious feature was discovered 

when attempts were made to measure the slopes of the precipitation trails 

from the radar photographs. With the radar antenna pointing to the east, 

the measured slopes at some given height appeared to be of much greater 

magnitude than when the set was oriented to the west. 

Al. Primary Calibration and Possible Errors 

For reasons already mentioned, it was thought desirable to make a 

careful check of the calibrating process. In normal operation, the 

antenna oscillates in elevation from _20 to +230 once a second and May be 

swung in azimuth through 3600 • To calibrate, the antenna i8 stopped and 
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clamped at various angles of elevation within the 250 interval corres-

ponding to numbered settings given on a clinometer. At each angular 

setting a trace is registered on the radar scope with a series of dots 

superimposed on it at 10 mile interva1s out to a range of 60 miles. 

These traces are registered on photographie film. An enlarged 

drawing of the dis play ia shown in figure Al. The numbers to the right 

of the figure, serving to identify the traces, are re1ated to range/height 

data given by the makers. Thus 1 represents the horizontal; 13 denotea 

a height of 10,000 feet at a range of 10 miles, etc. A 1ist of these 

basic data is given in table Al. It is however necessary to obtain 

Table Al 

Trace no. ° ----- base of display 
1 ----- horizontal 
2 ----- 10,000 feet at 60 miles 
4 ----- 10,000 50 
5 ----- 10,000 40 
6 ----- 10,000 30 
8 ----- 10,000 20 
9 ----- 35,000 60 

10 ----- 20,000 30 
11 ----- 25,000 30 
13 ----- 10,000 10 
14 ----- 35,000 30 
15 ----- 40,000 30 

top of dis play 

more such reference points before 1ines of constant altitude can be drawn. 

This is done by recalling that a given trace represents the beam being 

sent out at a certain angle. Thus trace 5, for example, which denote8 

a height of 10,000 feet at 40 miles, will a180 represent 5,000 feet at 
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FIG. Al _ Tracing of the AN/TPS-10A dis play of the Range Height Indicator when the antenna is clamped at the various angles 
of elevation used for calibration. 

FIG. 12 _ Outline of RHI dis play showing the calibration as contours of 
constant height. 
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20 miles. In this manner loci of constant height may be drawn. The 

resu1tant range/height calibration is as shown in figure A2. 

For this calibration to app1y at a11 azimuths, the antenna mount 

must be proper1y 1evelled, the 250 e1evation scan MUst be between the 

proper 1imits of -20 to +230, and the beam shou1d be normal to the 

ref1ector. Fau1ts in any of these may cause sedous error in determ1nation 

of heights. It is possible to distinguish between, and so correct for, 

the errors which may arise from these sources. If the antenna Mount has 

not been correct1y leve11ed, the apparent height of an object as seen 

on the RHI depends on its bearing from the radar. The echo will appear 

to be high where the tilt is downward; 10w at 1800 to that direction; 

and at its true altitude when viewed at right angles to the former bearings. 

If, on the other band, the antenna mount is 1evel but either of the other 

two possible faults are present, the resulting error in altitude is 

independent of azimuth and depends only on the range of the echo from the 

radar. 

A2. Methods of Checking the Calibration of the Oisplay 

a) Ba1aneing Sections at Opposite Azimuths: The type and magnitude of 

the error present was determined by ana1ysing the photographie records of 

2 November 1951. When measuring slopes of the precipitation patterns, 

it was found that the slopes, when the patterns were to the east, were 

much greater than when they are viewed at the opposite azimuth. By 

averaging the slopes at different heights it was possible to obtain results 

consistent with the theor,y of section 2. The slopes were in error by an 

amount 0.024 corresponding to an angle of tilt of 1.250• 
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It has already been mentioned that the apparent height of the 

generating cells appeared to var" with range, the altitude increasing 

with range independent of azimuth. After applying the above correction 

factor, the generating cells were round to move at constant altitude. 

Thus it became apparent that the radar antenna was either not scanning 

in elevation between the proper limits or that the radiating horn w&s 

off the focal point of the reflector. 

b) Bright Band: Errors in alignment of the antenna may be detected 

from measurements on the height of bright band. This was done on severa1 

occasions during the winter 1951-52 when a good bright band was present. 

A few of the analysed records are presented in table A2. It ia seen that 

the resultant heights, based on a correction of 1.25°, were constant with 

range at any given time. 

Table A2 

Range Apparent Height Correction to Height Real Height 
miles feet feet feet 

No.1 10 6,200 ! 500 1,100 5,100 
at 20 7,400 2,250 5,150 
2000 25 S,OOO 2,SOO 5,200 

No.2 10 6,500 ! 500 1,100 5,400 
at 20 7,SOO 2,250 5,550 
:330° 30 9,000 3,370 5,630 

No.3 15 + 11,SOO - 500 1,750 10,050 
at 20 12,300 2,250 10,050 
2300 25 12,900 2,000 10,100 



- 97-

c) Aircraft: Accuracy of calibration may be checked by using 

aircraft. An aircraft flying at constant altitude over the radar at any 

bearing and then at 900 to that direction provides sufficient information 

to correct any errors in calibration. A test ot this kind could not be 

arranged until April, 1952. The same error was still present, indicating 

that the dispLay had not changed appreciably during the course of several 

months. 

A3. Method of Determination of Heights and Slopes ot Precipitation Trails 

True heights were obtained by superimposing the echo on the 

range/height calibration grid, reading off the apparent height and 

correcting for the 1.250 tilt. The correction was made by reducing the 

apparent height by an amount which varied only with range. It was somewhat 

more difficult to measure the slopes of the precipitation trails because 

of the distortion of the grid. Also, as there was a strong wind shear 

present, the patterns rapidly approached the horizontal and true slopes 

of the order of 3 or 4 in a 100 were quite common (figure 2.1). 

The method of obtaining the true slopes of a precipitation pattern 

can best be explained by citing an illustration. The slope of the pattern, 

at any height, was determined by measurement, and trom it was subtracted 

the slope of the constant height line (figure A2). This would normally 

yield the correct slope but, because of error in alignment of the antenna, 

a further slope equivalent to 1.250 had to be subtraeted. The following 

are values typical of those found on 2 November 1951. When the radar 

was bearing west, the apparent slope of the pattern at a true altitude 
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of 8,500 feet and range 15 miles was -0.128; that of the constant height 

1ine -0.092 at that point; that of the correction factor 0.024. The 

correct slope was therefore -0.128 + 0.092 - 0.024 • -0.060. After the 

pattern had moved 30 miles eastward, the same point of the pattern was 

still at 8,500 feet altitude, but 15 miles ta the east. The true slope 

was now equal but opposite in sign to the former case, being made up of 

the corresponding slopes -0.008 + 0.092 - 0.024 - 0.060. 
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REVIEW 

The diversity or crystal rorma observed in natural snow (and 

their beauty) has been the object or much interest and conjecture 

to keen observera ror many centuries. Most or the studies, however, 

have until recently been very qualitative. At present, snow crystal 

growth and its consequent rall can be described in some detail. 

The success or Nakayat s group in growing snow crystals in the 

laboratory, as illustrated by their time lapse microphotographs, has 

indicated that the type or snow crystal growth is dependent on the 

meteorological conditions in the vicinity or the growing cr.ystals. 

Now the equilibrium vapour density over water is greater than that 

over ice at the same temperature, so that, for example, in a water 

saturated atmosphere, a gradient exists which transfers vapour to the 

ice crystal where it sublimes. Our studies show that snow crystal 

growth requires an ambient vapour density which considerably exceeds 

that at equilibrium with the iee crystal. The interpretation of the 

Nakaya experiment bad led to a theory of snow crystal habit in which 

the basic assumption is that the surface vapour density varies over 

the crystal surface depending on the curvature. Crystal type is 

determined principally by the difference between the ambient vapour 

density and the equilibrium vapour densityat the ice crystal temperature. 

The mode of development of the crystal then depends on the ability of 

this vapour density excess to overcome the inhibitions to edge and/or 
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corner growth, sinee the edges and corners have higher curvature than 

the flat faces of the crystal. The presence of water cloud will 

further affect the type and rate of growth, but the effect increases 

vith crystal size and will thua not modify the crystal type in its 

initial stage of growth. 

Analyses of radar photographs taken during snow atorms reveal 

that, in general, crystal formation amd most of the subsequent growth 

occurs near the frontal surface. Presumably then, the situation 

within the mixing zone assoclated vith the frontal surface ia very 

favourable for rapid snow crystal growth. The vapour density must be 

at equilibrium vith water (in itself a good deal better than iee 

equilibrium) and water cloud and/or true supersaturation relative to 

water must exist. 

Radar also reveala that the vertical velocity of the snow particles, 

when the anow ia being formed in compact generating elements near the 

frontal surface, ia constant throughout ita fall. A study of the 

terminal velo city of snowflakes, measured from motion pictures at ground 

level, indicates that the "radar velocitiea" correspond to velocities 

of snow aggregates. It must thus be presumed that aggregation occurs 

within the generating elements at temperatures considerably below the 

freezing point, and that no growth or major change in the size distri­

butions takes place on the way down. Since the generating zone seems 

to promote aggregation, the suggestion is therefore that it is a ragion 

of turbulence and updraft. This is confirmed by studies of time lapse 

movies of radar pictures which show that the generating elements are in 

a continuous state of interna! motion. 
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In aummar,y then, by combining 

(a) a new analysis of Nakaya's labo rat ory experiments 

(b) a theory of snow crystal formation 

(c) terminal velocity of snowflakes as a function of size 

(d) radar observations of the growth and descent of snow, 

it has been possible to reach some understanding of the formation, the 

growth and the subsequent fall of snow. 

The present picture is, however, by no me ans complete. For example, 

there are still several intriguing problems remaining to be solved in 

snow crystal studies. Other evidence should be sought for the assumption 

that the equilibrium vapour density over an ice surface ia related to 

its curvature. We have been able to explain crystal growth in the 

laboratory at normal atmospheric pressure. The extrapolation of these 

reaults to lower pressures has led to a pressure index occurring in 

the definition of potential tempe rature and has not been physically 

justified. There ie a need for experimentation at pressures below 

1 atmosphere. Intensive investigation on the effects of ventilation on 

the process of snow crystal formation is also required. There is also 

the question, which follows fram our results, as to why most snowfalls 

originate near the frontal surface. Is it that the mixing of two air 

masses of different temperatures produces a region (the mixing zone) 

having high liquid water content and supersaturation? How does this 

effect compare to frontal lifting? These are but a few of the problems 

left for future study. 




