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ABSTRACT

Telephone repeaters are hi-directional amplifiers which are
inserted in a transmission line to compensate for losses. Because
of their bi~directional nature special care must be taken to match
these amplifiers to the line in order to assure stability and to
limit the echo signal. The two basic types of repeaters presently
in use are the hybrid and the negative impedance repeaters. In this
study a new arrangement, called the bridge compensated repeater, is
suggested and analyzed., After developing an analytical method by
which the performance of repeaters of various types can be compared,
the three systems are analyzed and it is proved that the bridge
compensated system possesses some desirable properties as compared
to existing systems. The basic problem in designing a bridge come
pensated system is the design of a two-port network which must satisfy
a specification related to its real and imaginaryv parts simvltaneously,
A computer method for designing such networks is developed and some
results are presented, A circuit for the bridge compensated repeater
is described and measurineg techniques are developed to compare the
accuracy of calculated and measured values. This technique is demon-

strated on a simple system in which case the agreement between

measured and calculated values is found to be very good.




1. INTRODUCTION

The basic function of the telephone system is to establish
a bi-lateral corrmunication channel between two subscribers. If the
subscribers to be interconnected are within reasonable distance of
each other, a two-wire transmission line can bhe used to estahlish
the desired connection, (Fig. 1-1), but as.the distance between the
two parties increases, the attenuation of the line becomes so high
that amplifiers must be inserted to maiﬁtain a certain level of
transmission.

The insertion of amplifiers in*o the two-wire system of
Fig. 1-1 poses a problem because of the bi-lateral nature of the
system, which becomes unstable if the arrangement of Fig. 1-2 is
- used. Solutions presently in use for solving this problem are out-
lined below. In this introductory section only qua;iitative des-
cription of these systems will be attempted, but more comprehensive
treatment, will be provided in later chapters.

A fully four wire system is shown on Fie. 1-3., In this

arransement, separate cahle: pairs are used to provide transmission in
opposite directions. In most cases, however, it is uneconomical to
use the arranrement of Fig. 1-3 because for a large percentage of
calls made by a subscriber (local calls), two-wire connection without
any amplifier will suffice and therefore the second pair of wires
would not be utilized to its full extent.

Fig. 1-4 illustrates an arrancement which we can call a

7 .
hvbrid systenlﬁ”g’lJ] because some of the connections, (the ones

where amplification is required), are maintained on a partly two-wire,




partly four wire basis. Local calls use a two-wire path, The four-
wire and two-wire sections are joined tosether by means of hybrid
transformers (Hl) and (Hy). (See Appendix I for the basic operating
principle of the hybrid transformer.) Signals originating from
subscriber (A) are amplified by amplifiers (Afl""°Afn) and reach
subscriber (B) via hybrid transformer (H2) which also prevents these
signals from entering the "Backward path" of amplifiers (Abl,....Abn).
Similar reasoning applies to signals originating at the (B) side.

In practice, however, the return losses of the hybrid
transformers are finite, which is mostly due to the fact that com-
pensating irmpedances an and Zn2 are not exactly equal to the
characteristic impedances of their associated transmission lines,

This deviation from the ideal operatinge condition has two irnortant
effects:

a) It limits the amplification obtainahle by this arrange-
ment, because the system becomes unstable at higher gair
values (singing).

b) Some part of the signal is returned to the subscriber
from which it originated, delayed by the "round trip
delay time" and produces an echo tyre effect. The
larger the delay time, the more disturbing is this echo
and tables are available specifying the maximum permis-
sible echo level as a function of the round trip delay

time [ 1)

In somo cases (especially when cable cost is high) it is

desirable to maintain the entire connection on a two-wire basis even
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if amplifiers must be used. Fig., 1-5 illustrates an arrangement

which can be called the two-wire hybrid svstem. The bi-lateral

amplifiers consisting of two hybrid transformers and two unilateral

ampli©iers are called hybrid repeaters. The operating principle

of this configuration is identical to the system illustrated on
Fig. 1-4, the only difference being that at the expense of some
hybrid transformers the second cable pair is saved.

Tt is shown in Appendix IV that a lattice network (such
as illustrated on Fig. 1-6a) can provide bi-lateral amplification
if Z, and Z, are negative impedances. Such an arrangement is

a
[ie,19]

called a negative impedance repeater and for economic reasons

it is usually realized in a form shown on Fig. 1-6b, A two-wire
system using negative impedance repeaters is illustrated on Fig. 1-6c.
As will be shown in later chapters, this system tends to be unstable
and produces echo effects if the imape impedance of the repeater does
not match the characteristic irvedance of the line.

The object of this study is a new bi-directional amplifier

which differs ver~ little in aprearance from the arrancsements using
hybrid transformers, but promises some advantaces as far as economy
is concerned if compared to the systems described above. This network

will be referred to as the bridre commensated repeater, The basic

operating principle of this arrangement is illustrated on Fig. 1-7a.
A signal originating from source (A) enters the repeater

at terminals 1 - 1' and is applied to terminal (a;) of differential

amplifier (Ay). The signal apolied to terminal (by) of the (4;)

amplifier is not affected by this input signal, because it is assumed

that the output impedance of amplifier (A2) is small compared to the
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value of Zj. Thus the signal entering terminals 1 - 1' is amplified

by (A1) and the output, signal of the (Ay) amplifier appears at

terminals 2 - 2' reduced by the ratio Z12 if it
Zip* 2o

is assumed that the output impedance of (Al) is small compared to the

value of Z2. If eg = 0O and the condition

G, = 212 (1-1)
ZL2+ ZZ

is satisfied, then equally large signals appear at both input terminals
of differential amplifier (Az) and therefore the output sienal of this
amplifier is not affected.

If eg # O then due to the assumption that the output
impedance of (Al) is small compared to the value of Zy, the signal
applied to input terminal (b,) of amplifier (A,) is not affected, but
the signal appearing at terminal (a,) of (A,) will contain a component
proportional to ep, which component will be amplified and will appear
at terminals 1 - 1', By similar reasoning as given before, it can be
proved that if

G, = 211 (1-2)

ZLl + Zl

then the output signal of (Al) is not affected by the signals origin-

ating from source (B). Therefore bi-directional amplification is

achieved, while the stability of the system is assured.
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It is worth-while to mention that the only difference
between the bridee compensated and hvbrid repeaters is that, in
the case of the bridge compensated repeater, the hybrid coil is
replaced by a bridee circuit as shown on Fig. 1-7b.

As it will be shown later, the basic advantages of the
bridge compensated system will arise from the fact that it requires
only that the transfer function of a two-port network be realized,

rather than driving point impedance, as is the case in all other

arrangements,




2. TRANSMISSION LINES USED IN TELEPHONE NETWORKS

In the previous chapter it was shown that all repeater
arrangements require some form of compensation for the characteristic
impedance of the transmission line to which they are connected. This
is achieved by the compensating network in the hybrid arrangement, by
the image impedance in the negative impedance repeaters, and by the
transfer function G in the bridge compensated system. Therefore, it
is necessary to summarize some properties of the transmission lines
considered in the following text.

The properties of uniform (or smooth) transmission lines
are described in great detail in the standard 1iterature.[l’6’8]

They can be characterized by their primary constants R, G, L, and

C which give the valuesof distributed resistance, conductance,
inductance and capacitance per unit length, (usually per mile).

While in cables used in practice, L and C are not frequency.dependent,
bwt the values of R and G depend on frequency as illustrated by the
table of Appendix II. Another set of parameters used to describe

uniform transmission lines are their secondary constants:

Propagation constant:

P = ’\[(R + joL)(G + juGC) (2-1)

and characteristic impedance:

7 = R + joL (2-2)

Both these quantities are complex numbers and the table of Appendix

IT gives the valuesof these at different frequencies for the cable

selected as an example.
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It can be shown that for distortionless transmission along

a uniform transmission line the condition

ic = 1 (2-3)

must be satisfied. This ratio for the cable represented by the

table of appendix II at 1000 cps is found to be :

RC _ 3 -
ic ~ 7.1 x 10 (2-4)

which shows that the primary constants of a practical cable are
intrinsically ill-proportioned.

To correct this situation inductors are sometimes inserted
at equal distances into such transmission lines to increase L and
thereby achieve a better %g ratio. These lines are called

loaded lines and the inductors are referred to as loading.[1’8’13’1&’15’161

Fig. 2-1 shows a loaded line terminated in a "¢ end section".

The differences hetween non-dissipative uniform and loaded
lines are outlined below. These differences become even more pro-
nounced if losses are considered.[tﬂ

a) The characteristic impedance of a uniform line is

resistive and is not dependent on frequency, while for

loaded structures the characteristic impedance devends on
the "end section" terminating the line. It is frequency

dependent and complex, (see Appendix III).

b) A uniform line has a transmitting band extending from

zero to infinite frequencies, while a loaded structure

possesses an infinite sequence of alternate transmitting

and stopping bands. The frequency which separates the
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lowest transmitting and stopping bands is called

the critical frequency of the loaded line. (For

the line taken as an example in Appendix III,

the value of this is 4850 cps.)




3. QUANTITATIVE EVALUATION OF REPEATER PERFORMANCE (DEFINITIONS)

In order to be able to evaluate the performance of a
repeater and also to compare different structures, one has to define
some quantitative indicators of merit by which a certain system can

be judged. These quantities will be referred to as merit indicators.

It was pointed out in previous sections that the intro-
duction of repeaters in a transmission system produces some undesirable
side effects such as the tendency to sing and echo. The quantities
to be defined as merit indicators will have to indicate how much
penalty must be paid in order to obtain a certain increase in trans-
mission level., These quantities have to be defined in a manner that
takes into account economic factors as well, because if such factors
are disregarded, any system can be designed to meet a certain
specification.

Before these merit indicators can be defined, some more

basic definitions are needed. Fig. 3-1 illustrates a transmission

line (either loaded or unloaded) represented as a cascade connection
of identical passive two-ports (Ni) which are not necessarily sym-

metrical, [8] Using the notation shown on this figure we can write

V. = V., + V., (3-1)

L, = L. - L (3-2)
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Subscripts "f" and "b" refer to waves travelling in forward (left

to right) and backward directions respectively. Z and 2

of ob
are the characteristic impedances of the structure in forward and
in backward directions respectively and are not dependent on the

value of "i",

If the line is infinite and a signal source is connected

to the input of network (No) then Vib 0 and also Iib = 0

and the power entering network Ni:

I
o
'—h
Y
]
N

* V.
Pig= ReV,plip =2 of

(3-4)

Fig. 3-2a illustrates the same structure as Fig. 3-1

but a repeater has been inserted between networks Ni- and Ni'

1

Fig. 3-2b gives the equivalent circuit of Fig. 3-2a. where Zi is
the input impedance measured between terminals (a-a') of the repeater.

For this arrangement

v Ve, + V.

i _ if ib

— = 5 =2 =z (3-5)
I 1. - 1.

i if ib

and from this and equations (3-3)

1
V. _

ib - Zob . Zi - Zop (3-6)
—_ .

Z

Vir 2ot %t Loy

The ratio of the power travelling in the backward direction

(reflected power) to the power associated with the forward travelling

wave (incident power) is defined as echo (Ef).
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Thus:
2 2
P! v! I Z _|° Rez
— ib ib of ob -
s P, =v'| iz ReZ o7
if if ob| "%%f
and
Ef = |4 - ZoflReZob (3-8)
Z; * Zoblaezof
The term: Re Zob is irrelevant as far as repeater performance
Re ZOf

. cr s . . e . *
is concerned because it is a function of the transmission line only.

Therefore, the reflection (R) is defined here as:

R
R, = 47 %f (3-9)
Zi + Zob

and will be regarded as being representative of the echo properties
of a repeater.
Because the transmission line following the repeater is

considered to be infinite

<

ia

-_— = Zof (3']-0)
Iia

and the power entering network (Ni) is:

2
1
P =

if ReZ (3-11)

(%) It can also be proved.hj]that in the case of non-dissipative loaded
lines 2__= Z% which gives ReZy, _ 1  This relation is
ReZof

approximately true in the case
as illustrated in Appendix III.

of dissipative structures,
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The insertion power gain is defined as:

oP. = Power entering network (Nj) with repeater
P

Power entering network (Ni) without repeater

(3-12)
hence:
[+ V 2
GPf aa| (3-13)
V.
i
The insertion voltage gain is defined in an analogous
manner:

A = Via (3-14)

V.
i

It is worth-while to note that in this case

2
pr = IAfl (3-15)

It will be found convenient to define the nominal termin-

ating impedances an and Zn2 such that if the repeater is

terminated by these impedances at terminals (a-a') and (b-b')
respectively, then it will remain stable at anv values of insertion
gain, and the values of reflection at both terminals are independent
of the value of insertion gain,

The matching factors Ml and M2 are defined as:

W= Zn1 - Zob (3-16)

Zn* %o




and

2 —_— (3-17)

The nominal insertion gain (An) is the value of the insertion
gain if the repeater is terminated by its nominal terminating impedances.

Thus:

Anf = Af if Ml = M2 = 0 (3-18)

All quantities which were defined on the preceding pages
in the forward direction can be defined in the same manner in the
reversed direction. Symbols E,, R,, GP,, Ay and A, will be used to
designate these quantities,

The merit indicator quantities will be defined as follows: *

1. Singing Limit (Ls) is the geometrical mean value of
Ml and M, at which the system becomes unstable for

given values of Anf and Anb

Ls = dMlMZ N g(Anf’Anb)

for IAfl =oco and |Ab| = ©o

(3-19)

2. Echo limit (Lef or Leb) gives the value of matching
factor Mz or Ml which corresponds to a certain reflection
Rf = Kl or Rb = K2 if the matching factor at the
opposite end is known to be Ml = my or M2 = my, for

different values of Anf and Anb' Thus:

(%) In the definitions to follow, Ky, K,, K3 are real constants while
my, mi, and mé are complex constants.




L = M, = H(A__.,A.,) for R = K
2 ’ 1
ef nf? 'nb f (3-20a)
and Ml = m1 .
Ly = My = H'(A p,An) for = K
eb 1 nfs*nb 2
"o (3-20b)
and Mz = m2

3. Distortion limit (L ) is the geometrical mean

ar* b
value of Ml and M2 for which Af or Ab will differ from

their respective nominal values by a given ratio (KS)'
It will be proved later that Lye = Lg,, therefore only

one distortion limit (Ld) is defined.

Ly =’VM]_M2 = j(A) for A = Ky, A (3-21)

4., Gain limit (Lgf’ or Lgb) is the maxirur nominal eain
value in forward or backward direction for a system with
known M; and M, which are permissible for specified

levels of echo. (Rf and Ry)

Lgf IAnf ImaX = k( |Rf s |Rb| ) (3-22a)
Lgb lAnb Ima_x = k! (IRfI ’ IRbl ) (3-22b)
both for ¥, = m

and M2

i)
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If the functions defined above are known for a given
system, all questions related to the performance of this system
can be answered, They can be used e.g. to determine the required
M; and M, values to assure that a certain echo level is not exceeded.
Quantities M; and M2 on the other hand are directly related to the
cost of the system, because the more accurate is the compensation
that is required, the more expensive the system will be.

In the next chapters, the various systems based on these
merit indicator quantities will be analyzed. In order to do this,

the following functions must be derived for the systems considered: -
Re = Ap (A oy AL, M, Mz) (3-23)

Re = Ry (Apps Apps My, M) (3-24)

and a similar set for Ab and Ry .
These calculations are given in Appendicies IV, V, and VI

for the negative impedance, bridge compensated and hybrid arrange-

ments respectively and the results are discussed in the next sections.
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4., MERIT INDICATOR FUNCTIONS FOR VARIOUS TYPES OF REPEATERS

As is evident from the treatment given in Appendicies
Iv, V, and VI, the reflection and insertion gain functions of each

arrangement can be written in a common form:

(4-1)

and R = Q (4-2)

(See equations AIV-14 and 23, AV-41 and 43, AV-52 and 53, where P,
Q, and K are complex quantities.)

For the negative impedance repeater:

2
K = (A0 (4-3)
while for the bridge compensated and hybrid* structures:
K o= Ap Ay MMofoqfeofs (4-1)

Values of P and Q for the various arrangements can be found, but these

will be immaterial for the considerations to follow,

(#) As shown in Appendix VI the hybrid repeater can be represented
by the same equivalent circuit as the bridge compensated arrangement
and therefore the same formulas apply.
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From (4-1) and (4-2) the absolute value of the insertion

gain and reflection functions can be written as:

|p|| —— (4-5)

A

(4-6)

|®

9]

In order to derive some general results for the variation

of |Al and IR] with the circuit parameters, the properties of functions:

and

T(K) = (4-7)
1 - K2 .
sK) = | —— (4-8)
B 1-K b

must be analyzed. Figures 4-1 and 4-2 show the plot of these functions

on the complex K plane. Figures 4-3 and L4-4 in turn give the plots

of T and S against |K| with (Arg K) as a parameter.

From these plots it can bhe seen that:

a) For small values of |k|] (|k]<0.2), T chanres very

b)

slowly while S rises linearly with IKI. The value of

S in this region is independent of (Arg K).

For intermediate values of |X| (0.2 <|K| {0.5), the
variation of T with IKI is more pronounced and very much
dependent on (Arg K); the optimum value being Arg K = w/L,
in which case T remains almost constant within the region.
The S function in this region hecomes dependent on (Are K)

most rapidly rising at Arg K = O and keeping its linear

trend for Arg K = m/j.




~]18-

c) In general it can be said that if Arg K = O, then
both T and S change most rapidly with IKI. The best
properties of S are obtained if Arg K = w/2, and
Arg X = 33° gives the best T variation in the region
where |K| <1.

In designing a repeater it would be desirable to take
advantage of all these properties. In practice however, it is almost
impossible to desien a compensating network and amplifier transfer
function to a specification which includes both |K| and Arg K. (It must
be kept in mind that K is a composite function of many variables.)

The best practical approach is to desiegn the network according
to a |K| specification and assure that Arg K = O which, according to
the previocus argument, provides for the worst possible condition.
Therefore in the following arguments, it will be assumed that K is real.

No such problems arise with respect to quantities P and Q.

It is obvious that |A| and IRI do not devend on the arguments of P
and Q and therefore they can be replaced by real quantities equal
to their respective absolute values.

It follows directly from the nrevious arguments that in
equations (AIV-14 and 23), (AV-41 and 43) and (AV-52 and 53), which
will form the basis of the calculations %o follow each complex quantity

can be replaced by its absolute value. The absolute value signs will

be omitted in the following discussions, but it is understood that the

symbols designate absolute values.

The singing limit as defined by eqn. (3-19) is given by

the condition:

1-K = 0 (4-9)
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For the negative impedance repeater

= 1 (1-10)

and for the bridge compensated and hybrid arrangements:

Ls = 1/ﬁzﬁé - (4-11)
v Aanhnv fclfc?.fs

which can be rewritten with the following definitions:
An = V Aanbn

@ = el

(4-12)

as:
1
(4-13)

S AnW

The echo limit for the negative impedance repeater can be

obtained from eqn., (AIV-14):
2

MA_
—a (4-18)

2
1- (MAn)
(™e negative sign has been omitted, because only absolute

values are considered.)

From eqn. 4-14:

1
M - - =0 (5-15)

) 1
M“ —
'R
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Taking into account the positive root only:

M = [[1- &R _ 1) (4-16)

Le = (4-17)

Using eqn. (4-12) and with the definitions:

My 2 '
w feafeafsfs
2

p =
(1-18)
eqn. (AV-52) yields:
D¥p
R, = —I—:—;E;§;—- (4-19)

for the bridge compensated and hybrid repeaters, which can be written as:

W o—u - —12— = 0 (4-20)
aty qh-

. Rey 2
Assuming that _) << 1

(4-21)
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and a similar expression can be found for the "backward®" echo limit

R,
Lep = 75 (4-22)
p A

where

¥,

2 1t
;— £ Toofsfs (4-23)
1

The distortion limit function can be obtained from eqn. (AIV-23)

for the negative impedance repeater. (See also definition eqn. 3-21.)

1

(4-24)

T

d Vl {\/A-A"'- (4-25)
. A-Al'l An

Introducing the nétation:

from which:

[
]

ga8 = — | (4-26)

eqn. 4-25 becomes:

1 %A A
L = — —_— (1-27)
1+ ZAA

To derive the distortion limit function for the bridge

compensated and hybrid structures eqn. (AV-41) is rewritten using

definitions (4-12 and 4-18):
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A q ’
I - (1-28)
Afn 1 - (AnM) ) q
and: —
1 %AAf + (1 -q)
Liyg =
qA 1+ %AAf
(4-29)
where
A, - A
AR, = £ fn (4-30)
Afn

An expression exacty like (4-29) can be derived for the

backward distortion limit L ab

in this equation, Due to the fact, however that these quantities

» if BAA; is replaced with %AAb

are independent variables of their respective functions, a common

expression for Ldf and Ldb is obtained:

1 ZAA + (1 - : '
L, - V ar -9 (4-31)
qA 1+ BAA

where $AA stands for %AAf if Ldf has to be calculated, and for
%AAb if Ldb is 'édesired.

The last merit indicator function is the gain limit, which
can be directly obtained from eqn. (4-16) or (4-17) for the negative

impedance repeater as:

L = — (4-32) |
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For the bridge compensated and hybrid repeaters, equations (4-21)

and (4-22) yield:

R
Le = \| — (4-33)
pM
and
By
Ly = —

p'M (4-34)

The results of the previous calculations are summarized
in the table of Fig. 4-5.

For p = p' = q = 1, the merit indicator functions are
exactly the same for all three arrangements. If q {1, then the
bridge compensated and hybrid structures result in more desirable
Ls and Ld functions, while for q )>1, the negative impedance repeater
exhibits better properties as far as the singing limit and distortion
limit are concerned. For p <:1, the echo limit and gain limit
functions of the bridge compensated and hybrid structures are more
advantageous, while for p )*l, the negative impedance repeater vro-
vides better properties.

In practice, the deviation of p, p', and q from unity is
relatively small.

The four merit indicator functions for the negativé impedance
repeater (and hence for the bridge compensated and hybrid structures

for p=p' = q = 1) are plotted on figures L-6 and 4-7.

(#) Actually as pointed out in Appendix V, the values of f 1 and f,
can be taken as 1 for all practical appllcatlons, while it can
be seen that if f} < 1, then £1'> 1, and vice versa, so these
advantages cannot be regarded aq very decisive.




5. COMPARISON OF DIFFERENT SYSTEMS

- | |
i
]
!
{

In the previous chapter the merit indicator functions for
the various arrangements were derived. It was shown that with
proper selection of p, p', and q values, the bridge compensated and
hybrid repeaters can exhibit more desirable properties than their
negative impedance counterpart.,.

It was also pointed out that this advantage cannot be utilized
in larese extent, because in practice these values are very near to
unity and furthermore some of the parameters determining these values
are dependent on the transmission system into which the repeater is

inserted and therefore cannot be chosen freely by the designer.

|
!
|
i
|
1
9
|
l
|
|
|
These factors can be taken into account when dealing with a given ’
system, but in general the comparison cannot be based on these argu- !
ments. l
In this.section it will be assumed that the merit indicator I
functions are the same for all arrangements and comparison made on |
this basis. This means that the required compensation "M", .to meet i
a certain insertion gain and reflection specification is the same for %
all types of repeaters. l
The three systems will be comparei on the basis of how E
economically a certain compensation can be obtained. ;

a) Negative impedance repeaters can operate only if

inserted into a symmetrical structure. Therefore if they b
are used in conjunction with asymmetrical transmission
media (e.g. loaded lines), so-called "building-out"

networks are required to make this system look symmetrical

if viewed from the rgpeater terminals. (9] (See Fig. 5-1.)
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Assuming such a symmetrical system, the com-
pensation is achieved by realizing two negative imped-

ances such that:

Ziine = Zazb (5-1)

Where Z1ine 1s the characteristic impedance of the
transmission media. Z, and Zy, are realized by means
of negative impedance converter networks as illustrated
on Fig, 5-2, ELC)’ZO] where ZA and ZB are passive
impedances. Therefore the stability and accuracy of
compensation depends on the stubility ani accuracy of

active circuit parameters /u and ) . Using the symbols

defined in Fig. 5-2, one can write ean. (5-1) as follows:

Zine = J}AQ ZyZp (5-2)

As shown in Appendix IV, the nominal insertion gain of
the negative impedance repeater depends on the value

of "N" which is given as:

v A2 A AR (5-3)
Zy, QZB

Therefore, to adjust the repeater for a given insertion

M

‘gain value, the ratiO'-s- has to be changed. This
ad justment however, must be made so that the value of
/49 is kept constant, in order to keep the value of the

image -impedance unchanged, (eqn. 5-2). Therefore, this

adjustment is critical.
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b) The hybrid repeater requires the realization of a driving

point irpedance function in order to provide proper
cormpensation. (See Appendix I). The stability of com-
pensation depends only on passive networks and its
accuracy is not affected by gain adjustments. It must

be noted however, that the compensation properties of this
system depend in a great extent on the values of ZS and
Z.s (see Fig. AI-1) if the ideal condition of 2 ine = %n
is not met. 'Therefore, when designing the system, three
driving point impedance functions rust be considered to

meet a certain specification,

¢) In the case of the bridege compensated structure, compen-

sation c#n be achieved in two ways:

1) Selecting 2ob =2y and Zgp = 22 (see Fig. AV-1)
and thereby having Gy = G, =.1/2. This means that
two driving point impedance fun~tions must be realized.
This case provides the same economy as tﬁe hybrid
arrangement, with the exception that no other factors
have to be taken into account as in the hybrid
repeater and therefore only one impedance function
per termination must be considered rather than three.

2) It is possible to design transfer functions Gl and
G2 to provide for the required compensation.

In practice is is desirable to use the combination of

these two methods i.e. to select relatively simple er

and 22 impedances that approximately satisfy the conditions
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stated in (1) and then design G; and G, to make the
compensation meet the actual specification.
The fact that one has the freedom to realize'b-
a transfer function instead of driving point irpedance
functions will improve the economy of the desien in most
cases, and this property can be found only in the bridge
compensated repeater. Neither the yegative impedance nor
the hybrid repeater provides this additional degree of
freedom.

It might be possible e.g. in some cases to
design a pure RC compensating network for line impedances
wﬁich have inductive components. This property is a
desirable one because RC networks are more easily repro-
duced in mass production, their size is usually smaller
and non-linearities are less nronounced than in the case
of networks containing inductances. The methods, limit-
ations, and other aspects concerning the desien of
compensating networks will be discussed in greater detail

in later sections.

Another advantage of the bridge compensated (and hybrid)
repeater as compared to negative impedance reveaters is that the
insertion gain can be adjusted to different values in forward and
backward directions. This property is imnortant when more repeaters
have to be cascaded in a particular transmission path. As shown on

Fig. 5-3, the bridge compensated arrangement can assure a more uniform

signal level distribution along the line then the nesative impedance




-28- oo

repeater, In some cases this can lead to acthai raving of one or
more repeaters, for example where, because of crosstalk consider-
ations, the signal level on the line must be kept below a spgcified‘
maximum at any point. Ii9]
All the arguments above indicate that th; new bridge

compensated arrangement does promise some advantages as compared

to presently used systems. The actual value of these advantéges

however, can be evaluated only if all design parameters are known.
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6. COMPENSATING NETWORK DESIGN (GENERAL CONSIDERATIONS)

It was mentioned in the preceeding section that it might
be possible ‘to use pure RC compensating networks even if the line
impedance function could not be reproduced without the use of inductors.
In this chapter, the conditions which must be satisfied in order to
be able to obtain such networks, will be investigated.

As shown in the introductory chapter, the transfer function

of the compensating network has to satisfy the following condition:

(eqn. 1-2)
G]_ = —ZL_l___ (6_1)
ZLl + Zl
Similar condition applies for G2. Both impedances Z1 and Z1ine are

known to be positive real functions and can be represented by the

ratio of two polynomials:

p(s)
- b
z (o) ( 2?
and n(s)
line a(s) (6-3)
Thus:
c - n(s)q(s) ) A(s)
n(s)a(s) + p(s)d(s) B(s)
(6-4)

In order that "G" be realizable, A(s)

mist have only

positive coefficients and must not be hisher in deegree than B(s).

This condition is evidently satisfied.

In addition B(s) must have




-30=

only negative real roots, which is not necessarily true for any
selection of positive real Zl and Zqine functions.[-3J

Furthermore, because Zl must also be RC-realizable, p(s)
and q(s) must satisfy the conditions imposed on RC-realizable driving
point impedance functions.

In order to prove that any positive real Zline can be
compensated for by a pure RC network, it must be shown that for any

such function there can be found a corresponding RC realizable function

such that:

D(s) = n(s)q(s) + p(s)d(s) (6-5)
has only negative real roots.
In general, it was not possible to find any way to prove
. or disprove this statement. This is due to the lack of theorems
related to the actual number of real roots of a polynomial of higher
order. There are numerous methods for finding the real roots of a
polynomial if the coefficients are specified, but in general the

[5,19]

However, it *is possible to show that for any Zline function

problem becomes verys.complicated even at the third degree.

for which either n(s) ?r d(s) has only negative real roots, there
corresponds- a pure RC realizable transfer function. This category
of. functions include all LR realizable driving point impedance
functions and also some RLC realizable ones. (RC realizable Z1ine

functions are of course included.)

To prove the preceding statement, consider the following:

l. If Zli;e is positive real and n(s) has only negative

real roots, then eqn. (6-5) can be written as:

D(s) = t(s) + u(s) (6-6)
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where
t(s) = n(s)q(s)
= k,(s+a,)(s+a,) .....(s+a )
1(s+a1) (s+ay a, (6
and u(s) = p(s)d(s) = k2 d(s)
if it is assumed that
q(s) = ky Z 0 and p(s) = k, _20
(6-8)

while aj {ag { eeeenen. (2

This selection of g(s) and p(s) assures that Z, can
be realized by a single resistor,
The condition that D(s) must have only negative

real roots means that equation
t(s) = -u(s) (6-9)

must have only negative real solutions.

Because of the conditions imposed by positive reality
on Zline if s = 0 then
-u(0) < O (6-10)
t(0) 20 (6-11)
and
t
ga—'('é) 2 0 (6-12)
s s=0
It is known that the degree of u(s) can only be

(n-1), n, or (n+l).tﬂ
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Because both t(s) and u(s) are finite for any finite
values of "s", it is always possible to select kl
and ko, such that for any interval ai (s ( a1

the condition:

Max value of |(-u)| { Max value of |t|
(6-13)
is satisfied, where the maximum values refer to the
maximum value of these functions within the interval
in question. It is also possible to assure that there

exists a negative "s" value (s7) such that:
|31| > a, (6-14)

and

(6-15)

I-u(sl)l <

t(sl)

If conditions as stated in (4) are satisfied, then the
two functiéns -u(s) and t(s) intersect "n" times between
s =0 and s = sy,

If the degree of d(s) is the same or smaller than the
degree of n(s) the "n" intersections provide the '"n"
required negative real solutions of eqn. (6-9).

If the degree of d(s) is (n + 1), then at infinity, the
absolute value of -u(s) is larger than that of t(s) which
results in an additional intersection of -u(s) and t(s)
between s =8y and s = 0o , furnishing the required

(n + 1)th solution,

Similar reasoning applies if it is assumed that d(s)

has only negative real roots,
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7. TRANSFER FUNCTION DESIGN. (COMPUTER PROGRAMME)

As shown in the preceding section, in general it could not
be proved whether it was possible to find a pure RC compensating
network for any line impedance functions, Even if it was possible to
prove that such a network can be found, the actual design of this
network would be very laborious, On the other hand, even if there
were caées when it was theoretically impossible to find an RC-realizable
network, the question might arise as to what is the best accuracy with
which the desired function can be approximated by an RC-realizable
transfer function,

In order to provide an answer for the above questions, a
computer programme was developed to find the best fitting RC-realizable
transfer function for a given condition. Exactly what is meant by
"pbest fitting" will be defined in more concrete terms later in this
section.

There are basically two different methods to find the optimum
approximating function for a given specification.[g]

1. Find an approximating function without considering whether
it actually corresponds to a realizable network and later
apply the necessary tests to determine whether this
function can be realized,.

2. Assume at the beginning a general form of the approximating
function which is known to be realizable, (RC realizable
in the present case) and during the optimization process

consider all necessary constraints which are imposed on

the parameters to assure realizability.
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The second method is straight forward, and the computer
programme is based on this approach.

The computer programme requires as data:

a) Description of the line impedance function specified by

the values of "r" and "x" at selected frequencies where:

b) Description of 2y (or 22) which can be specified in the
same manner as Z,, ., or by giving a resistor value (R)
and a capacitance value (C) connected in series or
parallel,

¢) The highest degree of transfer functions to be tried.

d) Some other data which will be mentioned later, (mostly

related to accuracy requirements),

From this data the real and imaginary parts of the desired
transfer function (Gy) are calculated at the frequencies where the

line impedance was specified.

Zline

Gg = g + jh (7-2)

Zline +
For the case where Zline is the characteristic impedance of
the full-section loaded line described in Appendix III, the solid
curves of Fig. 7-1 give the real and imaginary parts of this line
impedance. Z; was selected to be 9002 in series with a 2.16/1F

condenser and the dotted lines give its real and imaginary parts on

the same figure. Fig. 7-2 is the plot of the real and imaginary parts
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of the desired transfer function which results from the just described
selection of Zj;,, and Z;. If Z; is a pure resistive impedance of
900R, then the plot of Fig. 7-3 results for the desired transfer
function.

Next the most simple form of RC realizable transfer functions

is assumed:
G(s) = Ay (7-3)

and the best value for Al is found by the so-called "hill climbing"
technique. (See Appendix VII.) The "best value" of A, is meant to

be "the best value of Al with respect to some criterion'"., The
selection of this criterion will be dealt with later. If the accuracy
of the approximation obtained does not meet the specified requirement,
(as set by a data card), the transfer function of the next higher
complexity is tried.

It would be an obvious choice to select:

Ay

G(s) = (7-4)

(s + al)
as the next function to try. This is not the case however, for
reasons discussed below.
The actual sequence in which transfer functions of various
complexity are tried is specified by the table of Fig. 7-4. The

reason behind this particular sequence is found in the method by which

the initial values for parameters for each trial are selected.
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The programme is arranged so that the optimized values of
the parameters of a certain transfer function are used as the initial
values for some of the subsequent trials., The arrows on Fig. 7-4

- indicate the way these initial values are transferred. E.g, the
optimized values of GO,Z(S) are used for the initial values for
transfer functions G2,2(s) and Go,h(s). For definition of Gm,n(s)
see eqn. (7-5).

This pattern of initial value transfer is justified by the

following reasoning,

Consider a transfer function:

2
A (L + Ays + Rgs™ wiu s Am+1sm)

G, n(s) = (7-5)

(s +a;)(s +a,) «ouu (s+2)

where al<a2< cereees B

and m Sl n

Assume that the optirmum values of parameters of this function
are (Alo’AZO’ ceee A(m+l)o’ 8y eee ano)' Augmenting this function

by adding a new term.in the numerator gives:

m+l

' m
A(L+Ays oooeo A gs +A o8 )

G
( +l),n
" (s+3) eeveeeneennn (s 4a)

(7-6)

If the initial value of Am+2 is zero, then it is obvious that the

optimum initial values for the rest of the parameters are the same .

as their optimized values for G n(s). This type of initial value
b
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transfer is indicated on Fig. 7-4 by horizontal arrows,

Another way to increase the complexity of Gm’n(s) is to

add a term to the denominator obtaining:

g m
Al(l + AZS seses + Am+ls )

Gm,(n“l)
(s + al) N - I an) (s + an+1)

(7-7)

In this case there is no logical relation in the general

case between the optimized parameters of Gm n(s) and the new transfer
b 4

function., E.g. if a . = 0, then, after substituting s = jw:
. L . . :
Gm,(n+l)(']w) = jw |(Re Gm,n(Jw) + Jm Gm,n(Jw)

1 . 1 .
oy Im Gm’n(gw) - 05 Re Gm,n(Jw)

(7-8)

Consider the case however, when G (s) is selected as the next
m, (n+2)
function to try. In this case, if initially 3841 = 242 = 0, then
the following relation results:
-1
§ = —3 G j iIm G jw
Gm,(n+2)(']w), w Re m,n(J )+ m,n(‘] ))
(7-9)

. This relation shows that there is a very close relation between

the best initial values of Gm,(n+2) and the optimized values of Gm,n’

which can be exploited, namely, at w = 1,




-38-

Gy n{30) G, (mz)(i"") (7-10)

w=1 w=1

which means that the fitting at the middle of the band is not changed.
(Note that the calculations are performed by using normalized frequency
variable such that w = 1 at the middle of the frequency band con-
sidered.)

The only deviation from the above reasoning is the case

when after the optimum value of Al for

GO,O(S) = A (7-11)

is found, the initial value for ay in transfer function:

Gp 1(s) = e S (7-12)
g ' (s + al)

is selected to be unity, because from

. A, a A
G = 11 . 1 (7-13)
w + a; w * 8
at w= 1, it follows that
1 = -
L Re Go,o(jw)L=l - megg)| o w)

provided a; = 1. ©No such relation exists between imaginary parts due
to the fact that Im GO o(jUO) = 0, ‘This relation is utilized in
b

the programme and the corresponding initial value transfer is indicated

by an arrow between steps "1" and "A" on Fig. 7-3.
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As is explained in Appendix VII, the parameter-optimizing
programme requires a single merit number to be associated with any
particular selectiol. of parameter values. 'This merit number is
referred to as performance indicator (P). The programme decides
which particular selection of parameters is more desirable on the
basis of the value of "P" associated with a particular set of parameter
values. The method by which this performance indicator is calculated

if referred to as the performance criterion.

There are many ways of defining a performance criterion, but

[4]

only two will be discussed here. Probably the most commonly used

performance criterion is the mean square error, which in the present

case will provide the following expression for P:
. 1 X o 2 . 2
Puse = =) [ - Rea@))] + [n(wp) - m6(w)

d=l ‘ (7-15)

where g(w.-) is the real value 'of .the desired transfer function at
frequency W,
ReG((.);) is the real value of the approximating transfer function
at frequency ““’.’,‘.

h(w{) and InG(w\..) are the corresponding imaginary values,

The summation extends to all frequencies W), Wyere k)n %ere the zline

impedance function is specified,

One can also use the maximum error criterion which gives

for P:

2
Pyyg = Max. value of g(w;)-nec(w;)) + [n(w)-InG(w,) ?

(7-16)
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where the maximum refers to the fact that PMXE must be evaluated
at that frequency which results in the maximﬁm P value., It is
worth-while mentioning that any power of "P% ;an be defined as a
valid performance criterion, |

The computer programme developed can be set up by data
card to use either of the mean square error or the maximum error
criterion, It muet be pointed out however, that for the purpese
of this study, the maximum error criterion is more suitable because
singing ﬁroperties of the repeatér depend on the maximum deviation
rather than on average of the deviations at various frequencies.

Another factor to be considered is that the maximum error
criterion is bound to produce a predictable result, namely a so-
called equal ripple or Chebyshev approximatien. There might be
more than one optimum sets of parameters, but these are all equally
desirable. (This theprem is proVéd.in Chebyshev's original paper
and is referred to in Tuttle's'book.pa) The mean square error crit-
erion on the other hand, can preduce a number of local extrema which
are not equally desirable,

The parameter—optimizing programme (see Appendix VII) cannot,
in general, find the best optimum if local optimums exist, unless
the programme is made uneconomically lengthy, This consideration
also gives preference to the maximum-error performance criterion,

It is an easy matter to modify the present,programme so
that after finding the optimum values of parameters based on the
maximum-error criterion, a second search should start to optimize the

mean square error subject to a constraint that in the meantime the

maximum error should not exceed a specified value,
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The actual performance criterion used in the selected
approach differs slightly from those given by equations 7-15 and
7-16. This means that weighing factors (W; ... Hn) are specified
for each frequency point, by which the corresponding term mast be
degraded. Thus, the following modified mean square error and maximum

error criterions are obtained:

, 1 < : 2 2
.PMSE = n Z Wi (g(ﬂ){) - ReG(wQ) * (h(w;) - ImG(wy) ) }

sl

(7-17)
and g :
1 - . 2 1; 2
Puxe = Max. value of '\/Wi (g(w;) - BeG(w;)) + [h(w;) - Im(w:)
- (7-18)

The reason behind introducing these weighing factors is that errors
at different frequencies are not equally significant for tw§ reasons:
1) ‘e amplification of the amplifiérs uééd is not constant
within the frequency band considered. Therefore, for
both singing and echo considerations higher déviations
can be tolerated where the amplification has a lower
value.
2) The‘distribution of speech power over the frequency
range is'not uniform and therefore for echo properties,
(power returned to originating side), poorer compensation

at frequencies where the speech power density is lower

can be tolerated,




-42-

Another factor to be considered in developing the optimizing
method is the constraints imposed on the parameters in order to
assure that the function is RC realizable. The constraints considered
in the computer programme are as follows:

1. Values ay, a5, +... 2 must be positive and real,

n
2.ai;!ajifi;!j
3. All values of A,, A3 oo Am+1 must be positive and real,

L. Ay must be real, but no other restrictions apply.

The first three constraints do not need any further explan-

ationj thej follow from standard criterion for RC-realizable transfer

[3]

‘Constraint (4) however, is not usually acceptable in this

functions.

loose wording for passive RC realizable two-port networks, It is

usually required that Al be positive and real., Furthermore, the

B,12]

be smallef than a certain maximum which depénds on the values of the

Fialkow-Gerst condition requifés that the absolute value of A1
other parameters (A] ... Koyqs 37 ove a7).
In the preseht case, these additional constraints on A1
were dropped for two reasons:
| 1. If the optimum value of Ay is negative then -G(s) can
be realized instead of G(s). This means thét in the
scheme of Fig. 7-b, the input signals to the amplifiers
must be added, rather than subtracted,vwhich is not a
difficult task to perform.
2. If the absolute value of A, exceeds the limit imposed

by the Fialkow-Gerst céndition, it is always possible

g
et

to select a suitable value "k" such that G'(s) = kG(s)




is a realizable transfer function. By multiplying

both sides of eqn. (6-1) by "k", the condition

Zline

,'G'(s) = k __—1°
Ziine * &

(7-19)

is obtained, and can now be satisfied.




8., TRANSFER FUNCTION DESIGN. (EXAMPIE)

The results of an actual design based on the method describgd
in the previous section are plotted on Figures 8-1, 8-2, 8-3, and 8-4,
In all cases, Z1ine was assumed to be as specified on'Fig. 7-1.,
Figures 8-1 and 8-2 represent calculations where Z; was taken to be
a 9002 resistor in series with a 2.16/LF condenser, while in the case
of figures 8-3 and 8-4, Z, was selected to be a 9002 pure resistive
impedance. The transfer functions on these figures are based on a
nor@alized frequency fh = ff- where f = 1000 c.p.s.

As can be seen, the best approximation is obtained by the
transfer function plotted on Fig, 8-1. The function of Fig, 8-2
is comparable in the accuracy of approximation to‘the one of Fig. 8-1,
but the corresponding transfer function is of a higher degree and
thus not so desirable,

The importance of sei;cting a proper~Zl function is evident
if the results of figures 8-1 ahd 8-2 are compared to the results
illustrated on figures 8-3 and 8-4.

In all of these calculations the following weighing factors

were used:

cps

£ 100 200 300 500 1000 1300 2000 2500 3000

W o1 3 .6 .8 1.0 1.0 0.5 0.3 0.2

which accounts for the fact that the deviation at 3kc., is approximately

five times bigger than at lke,
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As was pointed out previously, the transfer function of
Fig. 8-1 provides the best result and therefore, this will be analyzed
in the following.

The realization of sucﬂ a function is no problem, The
network of Fig. 8-5 exactly reproduces the function_given in Fig. 8-1.
It will be of some interest to investigate the quality of this approxi-
mation in terms of the merit indicator functions defined in section (3).

First, the value éf "M" must be calculated for the fre-

quencies of concern, Using eqn. (AV-23),

. 7
(G - Gd) = ._.,.'..._hi._ - an (8-1)
.- ' zline*zl Z1+ 2%y

.1is obtained, which can be written as:

(6 -Gy = - 21(21 3164 %n1) (Zy1 - Z14ne)
(Zline+zl)(zi' * an) (an * Zline)

(8-2)

Assume that:

zl(z + an) 2 zl.z

line = nl (8-3)

' 5
(21420 5,6) (7421 (z) + 2)

which is justified because of the close approximation shown on

Fig. 8-1, It can be assumed that

A ~ Z (8-4)

line nl
when evaluating the above term.

Substituting (8—3)in (8-2), and with the definition of

eqn., 3-16, one gets:
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M =|6- Gyl 2IZ']J-|ZH1| (8-5)

zl * znli

The, G - Gdl term can be obtained from Fig, 8-1 for the
desired frequencies. {Actually, this must be calculated from the
original computer figures which are accurate to the fifth figure,
due to the fact that the difference of relatively large numbers are

involved.)

The term 2|Z phﬂ

can be evaluated in the same manner,
1an+zi| '

hence the value of M can be calculated. The values obtained are

listed in the table below:

£°P3 M
100 0.0816
200 0.01
300 0,024
500 0.030

1000 0.035
1300 0.059
2000 0.092
2500 0.158
3000 - ‘ 0.195

Using these values, one can refer to Fig. 4~6 and find that
for frequencies below 2000 cps nominal insertion gain values up to

"10" can be allowed without the risk of singing, while for 2500 cps

A, = 6.5 and for 3000 cps, A = 5.0 will make the repeater unstable,
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From the slope of the Ls curve at the points of interest, it is pos-
sible to estimate how critical these values are to variation in thg
values of |M|.

It is d4lso possible to see that at fb= 1000 cps, the
maximum insertion gain value is A, = 2.5 = 8db if the maximum allowed
reflection value is 0,2,

Using this nominal insertion gain value, the echo conditions
below 1000 cps will not be impared, while at hiéher frequencies either
the nominal insertion gain value must be smaller or the echo specific-
ation relaxed., It is logical to specify a higher echo level at higher
frequencies, because only a small fraction of speech power is carried
in this frequency domain, Eiﬂ :

By the method outlined above, the desired frequency char-
acteristic of the amplifiers can be determined. The property that
the frequency characteristic of the‘repeater can be easily selected
and adjusted to a required specification independent of matching and
compensating properties is a feature of.the bridge compehsated repeater

not exhibited by the negative impedance'structﬁré.

(Note that in the treatment above it was'assumed that the
same '"M" values are applicable for both'terminations of the repeater,
A further improvement of behaviour is obtained if the two compensating
networks are designed such that the maximum deviations do not coincide
thus making the Mle product more uniform along the frequency range,

By specifying proper weighing factors in the computer programme for

the design of these networks this effect can easily be exploited.)
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9. CIRCUIT REALIZATION AND MEASURING TECHNIQUES

Fig. 9-1 iliﬁstrates one poséible circuit arrangement to
realize the bridge compensated repeater.

As can be seen, signa}s originating from line (A) enter
the repeater at terminals (1-1') from where they are applied to the
base of transistor (Tif) via resistor (Rlb) and condenser (Cf).

The direct coupled two stage amplifier consisting of transistors
(Tif) énd (be) amplifies the signal applied toxthe base of (Tif)
and feeds it to output terminals (2-2') via the (z;) impedance.
.The gain of the amplifier can be adjusted by potentiometer (Pef)°
The bias conditions of the transistors are stabilized by the negative
feedback between the collector and the base of transistor (Ty,) and

23]
Co

The signals on the collector of transistor (be) are 180° out of phase,

 by the improved I stability of direct coupled transistor amplifiers.
therefore, the resulting signal at the-base of transistor (Tib)Lig
zero if:
VA
_ of
G, = @ —o°f
Zogr * %2

(9-1)

where Q is a real m;ltiplier which can be set by potentiometer (Pcf)
to compensate for the various settings of poﬁentiometer (Pef).
22 is the series combination of the output impedance of the amplifier
and Z;. Similar considerations apply to signals travelling in the
opposite direction,

In the previous chapters, desigp formuias were devéloped

¢

for thg bridge compensated repeater circuit relating the actual values

of insertion gains (Af and Ab)ténd reflections (Rf and Rb) to the
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nominal insertion gain‘values (Afn and Abn) and to the valueé of
matching factors (Ml and M2)° In an actual system, Af, Ab, Ry and
Ry, can be measured very conveniently by the method outlined below
if Zob and Zof are known impedances and the values of ey and e, are
also available. In order to prove that the relations which were
developed in the previous sections are true, some way of measuring
Afn’ Abn’ Ml and M2 must be found. If these values can be measured,
then it is possible to compare the measured values of Af, Ab’ Rf
and Rb to the calculated figures which result from substituting the
measured values of Afn’ Abn’ Ml and M2 into the relations obtained
in the previous sections.

Using the notation of Fig. 9-1, the insertion gain values

can be obtained as:

Z + Z Vin
b
Af - of (o] i2 ( 9_2)
Zot o1 |
en=
and
Z o+ 2 V.
Ab - of ob il (9-3)
Z e
b 2
© e, =0

1

The reflection values can be obtained from the relation:

1
+ 'é'elRf (9-4)
e2=0

1
i1 - 2%

which can be solved for R, and gives:

f

R, = _iL°%1| (9-5)




and similarly:

R, = 12 2 (9-6)

Unfortunately, the nominal insertion gain values cannot be measured
in such a straightforward manner, because this would require that
the repeater be terminated by its nominal impedances and therefore
the measurements could not be performed with the actual terminations
attached to the system. The values of My and M, are similarly hard
to obtain in an existing system if it is desirable to perform the
measurements without disturbing the circuitry. 1In the following,
a technique is developed by which these values can be obtained by
measuring voltases at various points in the system,

With the notation defined in Appendix V, section 1, page-71,

the relation

is obtained. It is obvious however, that in the arrangement of
Fig. 9-1

Vg = Kv, (9-8)

where k1 is a proportionality constant which can be determined as
follows: if vl=0, (short circuit the corresponding terminals), then

from (9-7) and (9-8):

Vil T Kage; (9-9)




but

thus

and for later use it is
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(9-16)

= Vio
Vi
= _ri (9-11)
V.
i2 v1=0

also possible to obtain the following relations:

2 \'f

a, = 2 = 12 (9-12)
vy=
e, - V.
F o= 2 12 (9-13)
2 e,
v1=0
and
z, = 2 Vi2 (9-14)
2 of v
e -
2 i2
vl=0
If e,=0, then from equations (9-7) and (9-8):
and
v
F, -G, = _—rlL (9-16)
2 2
k, AV
171%1 -0
ey=
but from Fig, AV-1 in'Appendix V, page 71 ,
E>
Alvl = £ (9-17)
2
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which in the case of the arrangement of Fig, 9-1 yields:

v
Avy = ;ig (9-18)
2
e2=0
and substituting this into (9-16):
F v
F. -G, = _2 rl (9-19)
1 i2

e2=0

is obtained. By similar reasoning the following relations can be

proved:
k, = 'r2 (9-20)
V.
il =0
v,=
V.
a = —1—1 (9-21)
1 e ~
v2=0 s
e, - V. S -
F,oo= 1 il (9-22)
eq v,s .
Y. ,
Z =%, il (9-23)
1 ob er = V.
1 il V=0 -
2
and
F V Sl «
F, -G = -1 2 (9-21)
1 -1 Kk v .
2 il elgo

It is also possible to calculate the nominal terminating impedances

from the relation




= __2c (9-25)

in which equation only an is not known because G2 can be obtained

from equations (9-16) and (9-13). Thus,

G
Z, = Z — (9-26)
a4 - G
2
and similarly:
: G
- 1 : g
2, = 4 (9-27)
- ’ [ ] Tt
With Z), 25, 2y, Z55 Zyp and Zo, known, £, foo, Ty fo5 £

and fSS can be calculated from their respective definitions given in

Appendix V.

*
The nominal insertion gain values can be obtained as:
U T I i W ™
fn —
Z .
an an * 1 el 92‘-'—'0 and 72=0
- (9-28)
and Ab - an * Zn2 Zof * ZZ Xﬂ
n
“n n2 * %2 ©2 =0 and v,=0
e;=0 and vy=
(9-29)

(#) For these relations to hold it is assumed that Ry = Ryp, and
that Ryp, = Ry, within the accuracy of this measurement. These
resistors however, must be accurately matched is proper com-

pensation is desired,
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These relations hold because, provided that 32=O,

a) If Zo¢ = Zyos then Vip = V, and v, = O,

2
b) If Zop = Z,1» then the nominal value of Vil(viln)

Z
is Viln = 1 ey, but the actual value as
Zn1*2 .
measured is: Vio = _1__ e, therefore a
il Y ’
ob*41

correction factor 20b*%l  appears in eqn. (9-28).

Z +Zl

nl

Similar proof can be given for eqn. (9-29),
From eqn. (8-2) the values of M; and M, can be obtained.
This equation can be written as:

zl(zob+znl)

-G =
(Zop*Zy )21 +21)

(9-30)

1

in which all quantities but Ml were measured before, Therefore,

Z 1.+Z +2Z
W= (py -y ot
Zl(zob+znl)
and for M2:
M, = (F, - Gyp) (og*72) (g 22) (9-32)
Z2(Zof+zn2)

Using the relations derived in this section, it is possible
to measure thg relevant quantities of an existing system by measuring
voitages only, without Qisasseﬁbling the circuit to take impedance
measurements, If it is desired to take into account both the absolute
value and phase angle of the measured quantities, both absolute value

and phase angle of all voltages must be measured., It was pointed out

however, in section 4, that it is legitimate to use real quantities
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instead of complex ones in all the calculations replacing all quantities
with their respective absolute values, Therefore, only the absolute
values of the voltages are of interest. This is due to the fact that
the design formulas in this case give the worst possible properties

of the repeater, If the accuracy of the design formulas have to be
proved, the above method cannot be used, since it does not give the
exact values, only the worst possible values. Therefore, there are

two possible ways to proceed:

a) Measure both phase angle and magnitude of all voltages
and use complex arithmetic to calculate the desired
values.

b) Build a system which contains only real impedances for
the sake of this experiment, in which case the absolute

value measurements will result in exact values,

In the case of this study, the second method was used. The
system on ﬁhich the measurements were performed is shown on Fig, 9-2.
_As can be seen, this system is the same as the one shown on Fig. 9-1,
with the exception that Gl and G, have been replaced by potentiometers
P3 and Ph’ and Zi and Zé have been replaced by rheostats RHl apd RH2
respectively. During the first set of measurements, the condition
Rop = Ror = Ry = Ry was maintained where R; is the sum of RH; and
the output impedance of emitter follower (Téb) and R, is the sum of

RH, and emitter follower (T,p). Various M values were obtained by

adjusting potentiometers P3 and Ph'
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At the start, the values of kq and k, were calculated from
measurements based on equations (9-11) and (9-20). Next potentio-
meters Pé and Ph were adjusted to provide complete compensation and
the values of Ay and Ay were obtained as defined by equations (9-28)

~and (9-29) w‘&ére in this case:

.an‘* Zn2 zob + Zl - 2 (9_33)
Zno g * 4
and
o= Vi, (9-34)
thus:
K. = 2 N2 (9-35)
fn e_ =35
1 32=0
and
Vi .
A, = 2 o (9-36)

After these initial measurements, various settings of potentiometers
l-"3 and Ph were tried, making two sets of measurements at each particular
setting, one with e;=0 and another with e,=0. In the case of the

arrangement considered, eqn. (9-31) can be written as:
My -= 2(Fy - Gy) (9-37)

and with eqn. (9-24), this gives:

1 Vr2
M = -1;- v (9-38)

el=0

Vi




and

M, = 7 T (9-39)

Some of the results of these measurements made at 1000 cps, are listed

in Table 9-1.

TABLE 9-1

ky = 9.1;  k, = 10.2; Ay = hu8h; A = 4.22

2

Measured Values Calculated Values
Y, Ae A R RN A A R R
0 0,02 L.84 4,22 0.4 -0 L.8L h.22. 0.413 O
0 0,05 L84 4,22 1,0 O L.8L 4,22 1,02 O

o 0.6 | 4.8 .22 3.0 o [a.es n.22 3.62 o
o ok | 484 422 9.0 0 fn.8h K22 895 o0
o 0.75 | 4.8 4.22 15.0 O |4.84  4.227 15.03 ©
0.092 0.046 | 5.3 4.6 1.0 2.2[5.3  4.62 1.03 2.2
0.098 0,112 H 6.3 5., 3.0 2.566.25 5.1 2.9 2.58
1

0.098 0,258 § 10, 9.0 1l.4 4.1 10,0} 8.75 11.2 L.16

The calculated values were based on equations (AV-41 and 43),
and (AV-52 and 53) given in Appendix V. In the case of these measure-
ments, the values of fci’ fo2s fg and f;' are all unity, because
Zop = Zor and 2pn) = Zpp and also Zy = Zy and Z, = Z ,. The measured

results and the calculated values show very good agreement as can be

seen from the table above.
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Another set of measurements was made without attempting
to satisfy any symmetry conditions. The condition Rob = 10002 and

R . = 15002 was selected while rheostats (RH1 and RH2) and potentio-

of

meters (P3 and Ph) were set to some arbitrary position. The following

readings were obtained:
a) e, =01V and e, =0V

V.. =013V; V._=0.35V; V_=012V; V_=0,61V

il i2 rl r2
b) e, =07V e, = 0.1V
Ve = 0.28 V; Voo = 0.47V; vrl = 0.5 Vs Vr2 =076V
c) el=OV e2=»0.1V vl=OV
Vi1 =0.2V; V5 =0.041V; V, =035V; V=0 V;
Vd = 0,15 V;
d) e; = 0.17; e, =0 V; v,=0 V;
Vil = 0,04 V; vi2 = 0,24 V; Vrl =0 V; vr?, = 041 V3
V, =0.257V; ‘

From this data, the following results can be calculated

using equations (9-2), (9-3), (9-5) and (9-6):

Ap = 5.855 Ay

L]
3
L]
=
e

Rf = 1,6; By = 8.4;

From equations (9-11), (9-12), (9-13), (9-14), and (9-16):

k) = 8.65 a, =0.1; F,=0.59; Z = 10409;
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and from equations (9-20), (9-21), (9-22), (9-23), and (9-24):

ky = 10.2; ay = O.4; Fy = 0.6; z, = 67023

Gl = O-h[l-;

The values of the nominal terminating impedances are obtained from

equations (9-26) and (9-27).

Z = 13602;

Equations (9-28) and (9-29) yield the values for the nominal insertion
gains:

Afn = 4.8; Abn = 5.8;

Matching factors M and M, are calculated next usine equations (9-31)

and (9-32).

Ml = 0,315; M_ = 0.0,9;

From equations (AV-33), (AV-34), (AV-35), (AV-47), and (AV-50) in

Appendix V:

fop = 1.0h; £ =0.99; £ =0.8;  fg = 1.25;

Tt

f, = 0.83;

The values calculated above can be substituted into equations (AV-41)

and (AV-43) to obtain the insertion gain values:

Af = 601 and A-b = 7.3

comparing these values with the measured results, (Ap = 5.85; A = 7.03)
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shows that the deviation is less than 10¥. This deviation can be
justified if the accuracy of the instruments used for this measure-

ment is taken into account.
For the reflection values, equations (AV-52) and (AV-53) give:
Rf = 2,2 and Rb = 9,1

The value of Ry is in good agreement with the measured result,

(Rf = 1.6; Ry = 2.4), but R, deviated considerably from its measured
value., This is due to the fact that equation (AV-41) does not take
into account the reflection which would be present even at ¥, = O

due to the fact that Zob # Z. If this factor is taken into account;

the accuracy improves,




CONCLUSION

On the preceding papes, the new bridge compensated repeater
was compared with the systems presently in use., It was found that
this arrangement provides more degree of freedom to achieve a certain
level of matching specified by matching factors Hl and M2 than any
other system, which property can be utilized to decreaég the cost of
the repeater, |

With the introduction of the merit indicator functions a
method was estahlished by whﬁch the desired values of the matching
factors can be determined to meet given insertioﬁngain and reflection
specifications, A procedure based on a computér programme was developed
for the design of the compensating network‘néquired to provide the
calculated values of M; and M, and a technique was described by which
a given system can be tested without disturbing the eircuitry of of
the system,

Finally, the measured results were combéred with the cal-

culated values for a simple system and the agreément-was found to be

very good.,




«bh2=
APPENDIX T

Operating principle of a hybrid transformer.

The four port network inside the dotted lines on fig AI~-1
illustrates the simplest form of a hybrid transfommer, r

It can be seen that if zZ, = ZI. then signals applied to
termminals (2-2!') will give rise to equally large currents I, and
I, and therefore no part of this signal will be transmitted to
terminals (3-3'), and the signal power will be divided equally

between impedances Zn and ZL °

If the condition Zn = ZL is not satisfied then some
portion of the signal applied to terminals (2-2') will be received
at terminals (3-3'). The quality of isolation between terminal
pairs (2-2') & (3-3') is given by the return loss (R) which is

defined as:

Power received at terminals 73-3'

R (db) - 10 log

Power applied to terminals 2-2!

assuming that e = 0.
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Reflection and insertion gain functions for negative impedance repeaters.

1. Definitions

The lattice structure of Fig.'AIV-l j1lustrates the
equivalent lattice network of a negative impedance repeéter. Due
to the fact that all existing negative impedance repeaters are
symmetrical structures, the lattice netﬁork representation is notvg

restricting universality,

Za

NO

(o 20

The image impedance of this network is known to be:

Zp = \[2Z,.2  (ATV-1)
The "ridge ratio®? (N) is defined as:

(ATV-2)

It wili be found convenient to use the "P=equivalent® of

the lattice network in our calculations, which is shown on Fig. ATV=-2,




Z_N - ZN
o— ] 1 }+—0

| - 2
.
2y 1)
X 2’
O O

FIG. AIV=2

2. Input impedance of the terminated lattice.

The input -impedance of the network illustrated on Fig. ATV-2
if terminated by an impedance "Z' at terminals (2-2') is:

Nz + 2) ¢ 2
I ?ﬁ_ (l‘N )

2 =NZ o+ : (ATV=3)
NE 4 Ze T (1)
N

and from this

2NZ% + (N2 + 1) 2
(ATV-L)

3]
'

it
Ly

O Dz e Nz

can be obtained,

3. Reflection

4s defined by equation (3-9) the reflection is:
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Assuming that the repeater is terminated by identical

impedances (Z) at each port;

Zp= Z, =3 | (AIV=6)

o

This is no restriction of generality, because this kind of repeater
has to be inserted in symmetrical structures.

Therefore

L - 2
R = —z_i.____ (ATIV-T7)
Zi + Z :
Substituting the value of 2Z; from equ. (AIV-k) into (AIV-7) gives:
2 - Z (z+ 2)%N
K ZN 2
Zp+ 2 (Z+ )N+ 2%(1 - N)

R-..-:

(ATV-8)

This can also be written as:

2 2
2y - Z (1 (1 -N) 2Zy (1 + N)

R - - P
Zy + Z (1L+N)° (2 + Z7) N + 2Z(1 - N)©
ATV=9)
Z.[ - Z
According to equation (3~-16) the tetm _=_
ZI + Z

is the matching factor (M). With this notation the following

relation holds:

2Zy

(z + 2)°

- 3-x)

(AIV-10)
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Substituting (M) into (AIV=9), and also making use of

(AIV-10) the following relation for the reflection is obtained:

(1 (1 -2 1 -
RﬂM - ———

1 + N)2 1+M° _(1=N)2
(1+N) + M _((TT}T)lz

(AIv-11)

As will be shown later (see equ. AIV~2l) the nominal
insertion gain of the network as defined by equation (3-18) is:
, @-m?

1+ N)2 | (ATV-12)

And the final form of the expression for the reflection

isg m'?
1 = W
R=M (1 - 5,2, —— ) (AIV-13)

This expression can be simplified if it is assumed that:
M (1 and & D1 but )<
and obtain an approximate formulas
2
- MA
z
1 - (MA,)

R =

(ATIV-1L)
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L. Insertion Gain.
, The insertion voltage gain is defined by equation (3-1y).

Using the notations shown on ‘Fig. ATV-3, the insertion gain is:

E,
Pt ATV-15
= ZN ZN (m-25)
] { +—" o
Zr
(= e
e N 2 Z
I (Iz
FIG. AIV-3
and it can be easily shown that
b
A = 22 _ _ (ATV=16)
2 2
a =b
where zf[
a = Z+ 2N+ — (1= N2) (AIV-1T7)
2N
and 2
b = ...E (1 - N2) (AIV-18)
2N

Substituting (AIV-17 & 18) into (AIV-16) and performing the

possible simplifications the following expression is obtained:

1-¥ 221 (1 + N)°

1+N (2 + ZI)ZN + 2Z7(1 - N.)2

(AIV-19)
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This last eaguation can be rewritten by the same reasoning
as applied in case of equation (AIV-9) and yields
1-N 1 - M2

l-N)2 (AIV=20)
1+N

A =

1+ N 1-(M

From this it can be seen that if M =0 then the nominal

gain is

K, = 1-X (ATV-21)

1+ XN

and with this, the insertion gain can be written as:

£ a 1 - M

= —_— (AIV=22)
1 - (Ma)2

An approximate formula can be used in most cases of

practical importance, (assuming that G <<_1)

An .
£ = — - (ATIV=23)

1- (Hﬁn)z

Tt can be seen from equation (AIV-21) that if the absolute
value of the nominal insertion gain is to be larger than unity then

Re N 0 mist be satisfied. (ATV-2h)

From equation (AIV-2) it follows that this condition is
satisfied if:

(argz,-arez,)| > 0 (AIV-25)

and hence at least one of the impedances %, or ZD must have negative

real part. These types of impedances are called negative impedances.
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APPENDIX V.

Reflection and insertion gain functions for
Bridge Compensated Repeaters.

1. Definitions

The equivalent circuit of the bridge compensatéd repeater
arrangement is shown on Fig. AV-l. In order to obtain this circuit
it is assumed that the output impedances of amplifiers Al & A2

(Figos 1 = 7) are small compared to the values of Zy & 2, respectively.

—0 o— ,
Zow i Z| #V' \(Z; - Zz 2 Zoé‘ '
- ;4] G, [© 0G;
e N '
. =
E| . / e
AN, A; | Y
A ' ®
FIG, AV-1.

In the following treatment it will be found convenient to

introduce the following notations:
&, "VAIAZ (mean value of amplification) (AV-l)

Z
F) = ____EE__ (input attenuation at (av=2)
: 3 ]!
Zop * %y terminals 1-1!)
F, = Zog (Input attenuation at (av=3)
Zop + 2 terminals 2-21t)
a = ___EhL__.(Output attenuation at ‘l (Av=ly)

Zop + 4 terminals 1-1')
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aé - .._._Z._z._ (Output attenuation at (AV=5)
Zog + B terminals 2-2%)
G
Cl = (Compensation ratio at (AV=6)
R terminals 1-1')
G,
Ch = — (Compensation ratio at (M9=T)
Fo terminals 2-2')
-2
£
r = A o ( Reflection at terminals (m=8)

1 7y + &, 1-1t, if all active
ob  olements in the repeater
are disabled,

k=B =0)
Zy = Zgp
r, s — ( Same as r; for terminals
Z,+ 2, 2.21) o (4V=9)

2, Input Impedance of the Repeater

In the following the eguation for the input impedance at

terminals 1=1' will be derived. Using the symbols of Fig, AV=1:

El - 121 4 m2v2 (AV=~10)
V=B - 467, (-11)
v, = A‘ivl(Fz - (}2) (av=12)

From these.the following expression for the input

impedance in forward direction (zif) is obtained:




E 2

1 (AV=13)

Z

e g

1 - &2 (Fp = G)(1 - 0y)

The expression for the input impedance in reverse direction can
be derived in the same manner:

1 A2GF G)
+ A6, (F) = Gy

1« &(F - 6)( 1 =Gy

2., =2 ( AV=1L)

ib 2

3. Insertion gain.

According to the definition of (3-1l) the insertion
voltage gain in forward direction (Af) is given as:

(see Fig, AV-l)
Z2.,.+12 E
E of ob 2
By = —F - (4-15)

Zot Zor

(o}
Z + 2 el
of ob

For the system considered the following relations hold:

B-e By = 47

& — . = 0 ' (av-16)
Zob Zl
E - A4V
2 ., 274N 0 (AV=17)
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From these one gets:

E, 5 1
— A1F1F2 v4
€y Zop 1= AR - G)(Fp - Gyp)

(v=20)
Substitute now (AV7-20) into (AV~l5) and also the value for F

from equation (AV=2) to obtain for the forward insertion gain:

Z o+ 2 1
= AF of 'ob R
fr R Zot 1 - K(F) = 6))(Fy - @

(AV=21)
and in similar manner it is possible to derive the formula for
the "backward insertion gain® (4):
zo:f' * zob : 1
Zob 1- ‘i(Fl = Gy)(Fz = Gy )

&, = BHFay

(a7-22)

In order to obtain a more meaningful form for these
formulas consider the followings

From the definition of the nominal terminating impedances
for a repeater (Z . & Zné), as given in section 3 the following

nl
defining equations can be obtained:

- m =23
Gy T ( )

and
Gy = %2 (av=2ly)
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It is obvious that in this case:
which will produce a finite gain for any finite wvalues of Ai and A2 s
as indicated by equations (AV=2l & 22), thus producing a stable
system, It is also evident from equations (AV-13 & 1)) that in

this cases

Zip=% ad  Zy = Z (M=26)

and therefore the reflection at the repeater terminals is independent
of the insertion gain of the arrangement., Thus an and zn2 are really
the nominal terminating impedances of the system.

In order to obtain the nominal insertion gain values

substitute

Zob = %y 4 Zppm By (&-27)
into equations (AV-21 & 22). With this substitution the nominal

forward insertion gain is:

A (%, * F2) (av=28)
m " h (2 + %) (B, + 2,)

o

and the corresponding expression for the nominal backward insertion

gain iss z )
ZZS%LI + n2

(Zpy + 21)(Z52 + 2Z5)

2
Using the above relations, the term A (Fy = Gy)(F5 = Gy)

in the denominator of equations (AV-21 & 22) can be rewritten as

follows:
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2 -
APy = G (Fy = Gy) = B by MMy Tpfeots
(Av=30)
where the matching factors Hl and M, are defined in equations

(3-16 & 17) in general and in the particular case considered are

given as:
Z . -2
wo- 22 P (4v-31)
an + zob
and 7
i} Zn2 - Zor (47-32)
M,
zn2 ¥ zof
Furthermore fcl and fc2 are factors indicating the degree of

deviation of the values of Zl and 2, from their corresponding th

and Zn As can be seen from the formulas given below, these

2 o
factors are rather insensitive to this deviation, because in any

practical case the correspondence between Z,, and %1 on one hand

and between zof and Zn2

these factors have a value of unity not dependent on the values of

on the other is fairly good, in which case

5 and 22., The expressions for fc

and £ _are as follows:
1 c

2

(zob + an)(zl * Zhl)
f_ = (A&V=33)

cl
(ZOb + Zl) 2Z =

and
(Zop + 200(Z, 42,))

fcz = ( AV°3h)

(Zof+Z2) 2Zn2
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The last factor in equation (AV=30) is fs which is an indicator
of symmetry. If Zof - Zob and thus znl is equal to an o this

factor has a value of unity. The expression for fg iss

Wy %z

£ - 5 (Av=35)
(3 + %)

By similar reasoning it is possible to write the miltiplying

Z . +Z
factor oKX = A181F2 __Of__()_L

Zor

in equation (AV=2l) as:

”~ } f f - . i‘
X Ai‘n fcl c2 s (1 MIMZ_ * ss)

(AV=36)
where
(2. -2 N2_. - 2)
fss - ob of nl n2 ( Av=37)
(Zgp + Xy)(Zop + Zpp)
which is zero if the system is symmetrical.
In order to obtain equation (AV-36) the following
relation was used: 27 7 o7 7
S
nl of 2 ob
1-MMp = e Te (A¥-38)

(Zy1 + 25p)(Zyp + Zop)

Substituting equations (AV-30) and (AV=36) into (AV-21)

the following expression results for the forward insertion gain:
l- M1M2 + fSS

1 = ApApMMa(faf0ofs)

A = Apy (fclfczfs)

_ (AV=39)
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A good approximation to this formula can be obtained

by assuming that

MM, K 1 and that £ . &1 (4v-L0)
to gets
A_(f £ £)
el el s
Af =~ (av=l1)

1 = ApphprMyMp(£rfcots)
a similar expression for the backward insertion gain is:

1l - MiMz + f
A, = Abn(fclfc_Zfs)

1- Aanbnn1¥2 clf 2fs)

(Av=42)
and the approximate formula is:
Ahn(fcl 02 s
b =~ (47-13)
1= A A M (E 0 feofs)
4o Reflection
According to the definition of equation (3=9) the
reflection at the (1l-1!') terminal pair (R ) is given as:
Z =2
Rf - if of (ﬂ"hh)
. zif * zob
Substitution of the expression for Z ¢ (AV=13) into this
relation gives:
Z =2 Z (2 Z _
U D 1 2ot o) (F, —G,)
sl 54 4
+ 2 (Z_+2)° 1-A 4 (F -G )(F G
5+ 2 AR LA (P 0 )(F ~G.)

(AV-15)
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By using equations (AV-28, 29, 30, 31, 32, 33, 3L, and 35) this can

te rewritten as:

, ' 1-u
R R W CR L) y T :
- Efn&bnul 2( cl c2 s)
(Av-h6)
where ry is defined by equation (AV~8) and
Z _+2
of ob
po- 22 (&v-L7)
2Zob
2
an approximate formula if My 1 is:
2 | ]
M(f=f £ f
—~ KﬁlAlm2(c1c2»ss)
Rf —~ rl = (av-1B8)

1- A.t‘nAthIHZ(fclchfs)

Expressions for the reflection at terminals (2-2') can be derived

in a similar manner and result in the following expressions:

2
1 1l =M
R o=r - A & M(f 2ee'y 2
2 Mmbnl clec2ss 1-z : 1
- m&mulnz( cl ¢c2 s)
(av-49)
where 7 . +Z .
o
f;' - ( &V=50)
zzof

If it is assumed that HZ << 1 the following simplified formula

results:

2 1
Am‘anI( fclfczf sfs )

RXr, - (AV=51)

1= By BMa(f 1 eals)
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Expressions (AV-L8) & (AV-51) can be further simplified if only
that portion of the reflection which is due to the active part of

the network, and is dependent on the insertion gaing; is considered,

In this cases

M f
Rf ~ Abn ( cl c2 s s (&V-52)

1-24 EmMM(*, )

cl ¢2' s

and

M (f f ")

T = ;.
- AanbﬁMIMZ. cl c?2 3 £)
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APPENDIX VI.

Relation of the parameters of a hybrid and a bridge compensated
repeater,

In this section it will be shown that a hybrid repeater
can be transformed into the eéuivalent circuit of the bridge
compensated repeater, and therefore the results of appendix V can
be used in evaluating the properties of this arrangement,

The aim of the following discussion is to establish the
relations regnired to transform the circuit parameters of a hybrid

repeater into the parameters of the equivalent circuit of the bridge

compensated structure,

Fig. AV1-l illustrates the schematic of a hybrid repeater

and gives the notation used in the following discussion.
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This arrangement can be readily converted into the

circuit of Fig. AV1=2,

Zor

Z‘ob 2l ‘ Zin
| I . | |

€z

Al erivy] (51" V"léﬁlz_[kzez*' tevy]

HG. AV1=20

Assuming, that the hybrid transformer is symmetrical,
ices n =mn , the following expressions can be-derived for J,, kg s
11 and Z-n s (These relations are given without proof, Calculations

follow conventional methods [2-] but are too lengthy to bs reproduced

here) 2
- na
ifs ZS = 5 ZS ) (me..‘.)
Do
thens t z
hzsl rl * znl(zrl * Zsl)
Kg = : — (aV1-2)
- Z.+2_ +2Z

i, = ' (WVI=3)




22 _ +2Z

kK = 32 sl nl
T (B e Wy ¢ B) ¢ 2% ¢ B) *+ 2y
(AVI=l)
n z - Z
11=Zr1?‘—: 2..(Z. + hz ofz)niZ(Z +2.)+2.2
s1*“ob rl nl ob'"rl1  nl rlnl
| (AVI-5)

Similar expressions can be obtained for Zio s j2, ko

L

and 12 °

The arrangement of Fig. AVI-2 can be converted into the

circuit shown on Fig. AVI-3 using the following equivalences:

z
am M - ak (4VI-6)
%o * %51
z
and 3,2 - g |= | (491-7)
A0 1" AL -
ob il

which can be solved for the values of my and Gl to obtains

Z_ 4 2Z

ob il

= 0 = (AVI-8)

m R =
41
and

| 1 L

& = —— Zob = ——p—
Zy* %4y hk i1

and similarly for n, and 62.




Zix

Q)e. J'V;GD : | 6) | -.ZoF

Mzl

FIG. AVI=-3

It is obvious that the circuit of Fig. AV I=3 can be
redrawn as shown on Fig. AVI-l which has the same structure as the

equivalent circuit of 'l".he bridge compensated repeater,

o 0
.l
Zog Zii 1\' lz Ziz
S i S Sy B SO e N .y S
! z

@ jmas® | @ Zor

FIG. AVI-l
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APPENDIX VII

Parameter Op'bimizatiqn by Hill=Climbing Technique.

In order to find the extrema of a function:

PuP (X, XpeoeX) (AVII=L)

the following ™" equations have to be simultaneously satisfied:

2P '
=~ = 0

d %,
. . (AVII-2)

AP °
% — 0
Whether this equation system can be solved analytically

depends on the form of function P (xl ..xn)
2

In the case where (P) is defined by equation 7=17 or
7-18, an analytical solution of finding the extrana does not exist
because (P) itself is not expressed in analytical form. (g(w) and
h(w) are defined at a set of frequency points and are not given in
analytical fomm),

One technique which can be used to obtain at least one

extremum of this function is the so called hill climbing technique, -

which can be conveniently programmed on a digital computer,

The first step is to assume a set of initial conditions:

x1= Xl 3 X2 = XQ 3 eecoo 3 % = Xn (AVII-B)
and evaluate Pl H
Pl P(xl,xzo..x ) : (AVII=L)

then change some of the variables such that:

xl-JLl; X, -AI;; eeee X = X (AVII-S)

n n
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and evaluate:
Py = P(X::_, x;) (AVII-6)

Comparing the values of Pl and P2 s the programme decides
which set of parameters is more desirable,

Subsequent changes to parameters are made on the basis of
the P values obtained in previous selections, This process of trying
new sets of parameter values is continued, until all changes result
in less desirable P.values than the best found up to this point.
In this case the set of (x,X, ceeX ) Values, which resulted in the
most favourable P Vaiue is considered the location of the desired
extremum,

It must be noted, that the extremum thus located is only
one of the many possible extrema, and‘is not necessarily the best,
In the case where it is suspected that more desirable extrema exists,
it is possible to start with a set of different initial vaiues and
repeat the process.

There is no guarantee however that the best possible
extremum is found unless a complete search of the whole domain of
parameters is made, which in most cases is economically unfeasible,

From what was mentioned before it is evident, that the
logic, according to which subsequent sets of parameter values are
tried, is a very decisive factor in obtaining a fast converging and
effective technique.

Many possible logical pattemns (strateges) can be devised,

but only two will be discussed here.




l, Gradient Strategies.

In this kind of technique, small incremental changes
(probing steps) to %) yXpeeeX are made to evaluate the approximate

values of

o/
s

P , DP eee and
x °x, 9

V)
u¥

~ at a particular point, then a larger change follows (adjusting step)
in the direction of the gradient thus identified.

Dependent on the various modifications of this technique
the size of the adjustment step can be made constant, or proportional
to some power of the absolute value of the gradient.

Mother option of this technique is that after the adjust-
ment step has been successful, one can recalculate the gradient at
the new point and proceed in this new direction, or can proceed in

the direction used before, as long as P keeps on improving,

2, Univariate Strategies.

These techniques are based on changing only one variable
at a time, They usually differ from gradient strategies by omitting
probing steps in the sense that there are no incremental steps pre-
ceeding one or more larger steps.

An approach is to try to change a certain variable and make
changes to it until better and better P vaJ.ues are obtained, than to
try to change the next variable etc.

The amount by which the variables are changed can be fixed,

or proportional to some power of the slope of P taken in the direction
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of the variable being changed. It can also be made to be a g
function of some other criterion,

These strategies were analyzed before deciding on the one
which is used in this project by using a two variable performance
criterion developed by Mr. J. Michaelski (McGill University) for the
purpose of the study of various strategies.

The function in question is known to have one extremum

only. It is defined by the equation:

‘2
. /
_ x24x3 —VI-77 oS0 + G255in’0
, 05 1= 0.07
Plxx) = sin° 20 e (AVII-T7)
.where
A - L X |
0 = tan X (ATTI-8)

The constant P contours are plotted on Fig. AVII-1l, this

plot was also provided by Mr. J. Michaelski (See page 119 )

It was found that strategies based on the gradient methods
are not as efficient in this particular case as univariate strategies,
because of the essential number of probing steps required to imple-
ment an adjusting step. The ratio by which they reduced the necessary
number of adjusting steps did not seem to warrant the additional
number of steps required for probing.

| Another factor which was considered in deciding against

using a gradient strategie was that the particular P function to be

optimized depends on the parameters in the form given in equation
(7"‘5)0
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In this case if during the search, or because of the
' selection of initial values, we get the condition:

3 = ay where i ¥ (AVII=9)

then from this point on, due to the symmetry of P with respect to

a, and a

1 3
QP = P (AVII-10)
day D3y

and the search will consider only equal values of a; and aJ which
first of all is not usually the optimum, second it will result in
an unrealizable transfer function. Therefore, special measures
should be provided in the case of gradient strategies to compensate
for this behaviour which was not worth while in the view that these
sﬁiategies did not promise mhcﬂ more efficient convergence, (actu-
ally from preliminary study_they were worse than their univariate
counterpart).

Univariate strategies on the other hand have the dis-
adva'ntage;, that they might proceed along a direction which has a
very low gradient, while there is another direction available which
would préduce faster convergence.:

To compensatz for 'this. fault, the strategy finally
developed, limits the maximum number of successful steps in a cer-
tain direction as specified by a data card.

Another problem which arises is that the value of P is

more sensitive to changes in one variable than in some others, there-

fore different values of adjustment steps have to be used in different

__directions.‘ It must be kept in mind, however, that due to the
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complexity of the P function, the optimum values for these adjust-
ment steps in various directions are not known. Therefore, some
provision must be made  to adjust these values on an adaptive
basis by the computer programme.

To illustrate how the selected strategy works, the trajec=-
tories of the optimizing processes performed on the performance
criterion specified in equation (AVII-7) are plotted on Fig!'s AVII=-2
and AVII-3 for the two univariate strategies tested in this study.#

The plot of Fig. AVII-2 corresponds to the early version
of the strategy, which did not have the adaptive property, while
Fige AVII=3 corresponds to the strategie which adapts the step size
to the requirements in various directions.

It is worth while noting that after the initial "learning
steps" the second strategy uses larger steps in the 5 direction
than in the 12 direction, while the first strategy keeps the size of
the steps in both directions always at the same value,

This feature, though it does not seem to be very important
in the case of the particular performance criterion selected for this
example, is very useful in the case when applied to the actual per=-
formance criterions of equations 7-17 & 7-18 because the sensitivities

in various directions differ by a much larger factor in this case,

(#) See Figures on pages 120 ang 121
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