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ABSTRACT

The healthcare sector has received constant appeals from different stakeholders

over the past decades to increase operational efficiency and enhance quality of care

for patients. Hospital managers and health authorities confront serious challenges

in identifying areas for improvement and designing plans to boost healthcare deliv-

ery processes, all while maintaining the operational costs aligned with their planned

budget. The difficulty of this task is amplified by budget cuts and insufficient re-

sources in the healthcare system. Operations Research models can be used to assist

healthcare managers in making informed and evidence-based decisions. This thesis

aims at developing patient admission and bed allocation policies in acute care wards,

where acquiring extra resources is extremely expensive for hospitals and a delay in

treatment is highly undesirable from a patient health perspective.

The problem of patient admission and inpatient bed allocation in acute care wards

recognizing multiple patient types with different medical characteristics is consid-

ered in this thesis. Recent studies have shown that in the event of an acute episode

patients are more effectively treated in specialized inpatient settings. The benefits

of such specialized care, however, might be offset by long wait times at the emer-

gency department due to bed unavailability in the ward. This research is inspired

by the managerial challenges at the neurology ward of the Montreal Neurological

Hospital, where the optimal care pathway for patients with neurological diseases is

particularly time-sensitive. Failure in matching the hospital’s service capacity and

patient demand for certain levels of care can be problematic. Moreover, day-to-day
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fluctuations in demand affect the efficient utilization of hospital capacity. The key

issue for matching the demand and service capacity and improving the performance

of the hospital is intelligently designed capacity-related policies; both at the strategic

and tactical levels.

At the tactical level, the admission process of patients to a neurology ward is mod-

eled using an average cost dynamic programming framework. By solving the dynamic

program model, we are essentially looking for the dynamic admission policy that pro-

vides the best care for all patients in light of limited bed availability. In terms of

solution methodology, an integrated approach that combines queuing models and

approximate dynamic programming is presented. Furthermore, the performance of

the proposed approach is compared with the performance of other heuristic policies

that can be suggested for such types of problems. It is shown that the dynamic

admission policy that can adjust allocations of the beds based on the state of the

ward performs better compared with other static policies. In particular, the dynamic

admission policy reduces the average ED boarding time that patients experience be-

fore they are transferred to the ward.

At the strategic level, the problem of multi-site resource allocation and system con-

figuration in response to the pending merger of two existing sites, i.e., the stroke

wards at Montreal Neurological Hospital and Montreal General Hospital, is studied.

Designing an appropriate admission policy for patients at the hospital level along

with an optimal bed allocation policy between the two sites are the major concerns

of hospital managers in this process. Two possible settings for admission of pa-

tients to the hospitals are examined to determine which setting would be preferred
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in terms of minimizing the patient admission refusal rate. Meanwhile, the multi-site

bed allocation problem is formulated so that resources are optimally distributed in

accordance with the patient flow at each site. It is found that the decision of system

configuration for a multi-hospital network requires careful consideration of patient

mix in the arrivals, relative length of stay of patients, and the distribution of patient

load between hospitals.
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RÉSUMÉ

Le secteur de la santé a reçu des appels constants des différentes parties prenantes

au cours des dernières décennies pour améliorer l’efficacité opérationnelle et la qualité

des soins pour les patients. Les gestionnaires d’hôpitaux et autorités de santé sont

confrontés à des problèmes graves et doivent identifier les domaines d’amélioration

et concevoir des plans d’amélioration des processus de prestation de soins de santé,

tout en maintenant les coûts opérationnels dans les limites de leur budget. La dif-

ficulté de cette tâche est amplifie par les compressions budgétaires et l’insuffisance

des ressources dans le système actuel de soins de santé. Modèles de la recherche

opérationnelle peuvent être utilisés pour aider les gestionnaires de soins de santé à

prendre des décisions éclairées et fondées sur des données probantes. Cette thèse vise

à développer des politiques d’admission et d’allocation de lits des patients dans les

services de soins de courte durée, où l’acquisition de ressources supplémentaires est

extrêmement coûteuse pour les hôpitaux, et où retard dans le traitement est haute-

ment indésirable du point de vue de la santé des patients.

Cette thése s’intèresse au problème de l’admission de patients et de l’attribution des

lits en milieu hospitalier dans les services de soins de courte durée, tenant compte de

la multiplicité des types de patients et de leurs caractéristiques médicales spécifiques.

Des études récentes ont montré que les patients présentant un épisode aigu sont

plus efficacement traités en milieu hospitalier spécialisé. Les avantages d’une telle

spécialisation des soins peuvent cependant être atténués par des longs délais d’attente
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à l’urgence en raison de l’indisponibilité de lits dans la salle. Cette recherche est in-

spire par les défis de gestion au service de neurologie de l’Hôpital neurologique de

Montréal, où le parcours de soins optimal pour les patients atteints de maladies

neurologiques est particulièrement. Une insuffisance de la capacité de service de

l’hôpital pour répondre à la demande de patients pour certains niveaux de soins

peut être problématique. En outre, les fluctuations journaliéres de la demande in-

fluent sur l’utilisation efficace de la capacité de l’hôpital. La solution à l’adaptation

de la capacité à la demande et à l’amélioration de la performance de l’hôpital réside

dans la mise au point de politiques intelligentes en matière de gestion de capacité,

tant au niveau stratégique que tactique.

Au niveau tactique, le processus d’admission des patients à un service de neurologie

est modélisé par un programme dynamique de minimisation du coût moyen. En

résolvant le modèle programme dynamique, nous cherchons essentiellement la poli-

tique d’admission dynamique qui offre les meilleurs soins pour tous les patients à la

lumière de la disponibilité limitée des lits. En termes de méthodologie de solution,

nous utilisons une approche intégrée qui combine des modèles de files d’attente et la

programmation dynamique approximative. En outre, la performance de l’approche

proposée est comparée à la performance d’autres politiques heuristiques suggérées

pour ce type de problèmes. Nous montrons que la politique d’admission dynamique

ajustant l’allocation des lits sur la base de l’état du système présente de meilleures

performances par rapport aux politiques statiques. En particulier, la politique

d’admission dynamique réduit le temps moyen d’attente des patients à l’urgence

avant qu’ils ne soient transférés en neurologie.
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Au niveau stratégique, nous examinons le problème de l’allocation des ressources sur

des sites multiples et la configuration du système en réponse à la fusion en cours

des deux sites existants, à savoir l’Hôpital neurologique de Montréal et l’Hôpital

général de Montréal. Les préoccupations principales des gestionnaires d’hôpitaux

dans ce processus sont la conception d’une politique d’admission approprie pour les

patients au niveau de l’hôpital et d’une politique optimale de l’attribution des lits

entre les deux sites. Deux configurations possibles pour l’admission des patients dans

les hôpitaux sont examines pour déterminer les meilleurs paramètres en termes de

minimisation du nombre de refus d’admission de patients. Par ailleurs, le problème

de l’attribution des lits multi-sites est formulé de telle sorte que les ressources soient

distribuées de façon optimale en fonction du flux des patients à chaque site. Nous

constatons que la décision de configuration du système pour un réseau multi-hôpital

nécessite un examen attentif de la composition des arrivées de patients, de la longueur

relative de séjour des patients, et de la répartition du nombre de patients entre les

hôpitaux.
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CHAPTER 1
Introduction

1.1. Inpatient Admission and Bed Allocation in Hospitals

Resources are the vital components of any production or service system. In

hospitals, the resources that managers use for making optimal capacity decisions

are inpatient beds, staff (including nurses and physicians), departments (including

Emergency Departments, Operating Rooms, and Laboratories), medical equipment

(like MRI and CT scan), etc. This thesis focuses on managing the inpatient beds,

which extensively impact the operation of a hospital. As an emphasizing fact, the

number of properly staffed inpatient beds is an important factor in determining

hospital capacity (Green, 2006).

The number of appropriately staffed beds determines the requirements of other

resources in hospitals as well. For example, using nurse-to-bed ratios defined for

providing care to a specific cohort of patients in a ward, the nurse staffing levels

are decided. Hospital managers can adjust the service capacity of their hospitals

and the associated resource requirements by opening or closing the inpatient beds.

Throughout this thesis, whenever the “inpatient bed” is mentioned it implicitly refers

to appropriately staffed inpatient beds.

Hospital managers face various challenges in making the right decisions related

to management of inpatient beds and admission of patients in healthcare systems.

There is continuous pressure from different stakeholders to optimize the healthcare
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delivery process and enhance the quality of care. Furthermore, constant budget cuts

in the healthcare sector force hospital managers to decrease the operational cost

and keep it aligned with planned financial resources. Therefore, it is imperative

that the decisions related to inpatient beds, as crucial resources in the hospital, and

admission of patients, as the primary consumers of resources, are accompanied with

comprehensive analysis of their consequences and impacts on the performance of the

hospitals.

Capacity management decisions regarding inpatient beds in healthcare systems

are classified into two broad categories: capacity acquisition and capacity allocations

decisions (Smith-Daniels et al., 1988). Capacity acquisition decisions are concerned

with determining the right number of beds needed to meet some predefined goals

while capacity allocation decisions look for efficient ways of using available resources.

Choosing the right number of beds in a hospital is not an easy task to accomplish since

providing sufficient and timely care to the patients and avoiding spending more than

necessary resources should be taken into consideration simultaneously. Even though

this sort of decisions is more likely to be made within a hospital, one should bear in

mind that it might be seen at the regional level, mostly in publicly-funded healthcare

systems. Capacity acquisition decisions are considered to be strategic decisions, since

it is hard to revise them frequently once they are made and implemented.

On the other hand, capacity allocation decisions usually answer the following

question: How should we distribute the available resources across different depart-

ments in a hospital or across different types of patients to achieve our targets? When

making allocation decisions, it is assumed that the available resources are fixed. For
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instance, let us assume there is a limited number of beds in a ward and multiple

types of patients are waiting to be admitted to the beds. Then the task of assigning

beds in a way to minimize the waiting times while maintaining equity among dif-

ferent types of patients is an example of allocation decisions. Taking into account

stochastic arrivals and different lengths of stay for each type of patients adds on the

complexity of the problem. The capacity allocation decisions are considered to be at

the tactical level and can be modified in short term.

One of the early surveys which reviews, classifies and analyzes the literature

on capacity management in healthcare is Smith-Daniels et al. (1988). This survey

deals with all types of resources in a hospital, but their classification provides an

appropriate overview on capacity decisions in hospitals and is therefore presented in

Table 1–1. The topic of this thesis relates to determining the size of inpatient units

and inpatient admissions (highlighted items in Table 1–1).

Table 1–1: Classification of capacity management themes by Smith-Daniels et al.
(1988)

Facility (Physical) Resources Workforce Resources
Acquisition Decisions Facility location and capacity size Hospital Staffing

Size of inpatient care units Ambulatory care staffing
Size of ambulatory care units

Allocation decisions Inpatient admissions scheduling Assign workers to shifts
Surgical facility scheduling Assign workers to units
Ambulatory care scheduling Assign workers to tasks

1.2. Strategic and Tactical Capacity Decision-Making

Failure in matching the hospital’s service capacity and the patients’ demand

for certain levels of care can be problematic. Moreover, day-to-day fluctuations

3



in demand affect the efficient utilization of hospital capacity. The key issue for

matching the demand and service capacity and improving the performance of the

hospital is intelligently-designed capacity-related policies; both at the strategic and

tactical levels.

At the tactical level, the patient admission and bed allocation problem in an

acute care ward recognizing multiple patient types with different medical character-

istics is studied in this thesis. The manager of the acute care ward decides on the

admission of patients from the Emergency Department (ED) to the ward on a daily

basis – or hourly basis, depending on the congestion of the system. This requires

designing policies according to which patients are prioritized or the available beds are

allocated to different patient types. These policies are either static, which means the

rules do not change over time, or dynamic, which implies the recommended decisions

depend on time or the state of the system.

At the strategic level, the multi-site bed allocation problem and multi-hospital

network configuration design are considered. Mergers of hospitals and developing

healthcare networks to collectively provide care to patients have become very popular

recently. In this process, the configuration of network and devising the patient

admission policies at the level of hospitals are the main questions to be answered.

Further, the optimal inpatient bed allocation to hospitals in accordance with the flow

of patients needs be addressed. The resource allocations are at the level of hospitals

and revising such decisions are quite costly in these situations.
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1.3. Bed Capacity Issues in Montreal Neurological Hospital

The application of strategic and tactical decision-making problems pertinent to

inpatient beds and patient admissions are studied with the collaboration of the Mon-

treal Neurological Hospital (MNH). The managerial issues at the neurology ward of

this hospital are addressed in this thesis. The MNH is an academic medical center

that provides care to patients suffering from neurological diseases. Neurological dis-

eases, including ALS, Alzheimer, Multiple Sclerosis, Parkinson’s, spinal cord injury

and stroke, represent leading causes of death and disability in the Canadian and US

populations (World Health Organization, 2006).

Many neurological conditions are chronic, worsen over time and produce a range

of functional limitations posing daily challenges to patients and their caregivers. For

example, Heart and Stroke Foundation (www.heartandstroke.com) identifies stroke

as the third leading cause of death in Canada with about 14,000 fatalities each year;

and reports that about 300,000 Canadians are living with the effects of stroke. The

Global Burden of Disease study conducted in 2002 by the World Health Organization

also determined that neurological conditions accounted for 38.3% of the disability-

adjusted life years (DALYs) worldwide (Lopez et al., 2006), while the percentages

observed in developed countries are much higher than the global average.

Recent studies have shown that such critically ill patients are more effectively

treated in specialized inpatient settings offering properly organized care (Chalfin

et al., 2007). The benefits of such specialized care, however, might be offset by long

wait times at the ED due to bed unavailability at the inpatient ward. This research

is inspired by the managerial challenges at the neurology ward at MNH, where the
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optimal care pathway for patients with neurological diseases is particularly time-

sensitive (Castillo, 1999).

Currently, a fixed number of beds in the neurology ward of MNH have been

dedicated to each type of patients and some extra beds are assigned to be used by

all types. We will look for a dynamic admission policy that provides the best care

for all patients in light of limited bed availability. The dynamic admission policy

that can adjust allocations of the beds based on the state of the ward is believed to

perform better compared with other static policies. Designing the patient admission

policies is identified as a tactical decision-making problem.

As a more strategic managerial challenge, two existing sites, i.e., the stroke

wards of MNH and Montreal General Hospital (MGH) are pending to be merged

and administered centrally. The proposed structural change requires each hospital

to provide one of the two levels of care (secondary and tertiary) needed by stroke

patients. This implies that each site will be dedicated to serve only a specific type

of patients. As an alternative structure, the two hospitals can provide all levels of

care and accommodate all types of patients.

Designing an appropriate configuration of system along with an optimal bed

allocation policy between the two sites are the major concerns of hospital managers

in this process. Two possible settings for patients’ admissions to the system are

examined to determine which setting would be preferred in terms of minimizing the

patient admission refusal rate. Meanwhile, the multi-site bed allocation problem is

formulated so that the resources are optimally distributed in accordance with the

patients flow in each site.
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1.4. Contributions of This Research

This study aims at exploring the possibility of using dynamic admission policies

in acute care wards and examining their impact on improving the operational perfor-

mance of wards and quality of treatment outcome from patient health perspective.

It illustrates how a dynamic admission policy is derived with the help of mathemat-

ical models taking into account the operational settings of every acute care ward

and medical characteristics of inpatients. Given the complexity associated with the

outputs of mathematical analysis, the process of converting the results to practical

and easy-to-implement recommendations is also provided.

Another contribution of this research in the context of healthcare operations

management is evaluating the benefits of narrowing down the scope of care in a multi-

hospital network compared with keeping the scope of care broad. The hospitals that

are specialized in providing a specific type of care benefit from the economies of focus.

However, such benefits might diminish by losing the economies of scale. This research

sheds additional light on the problem of system configuration in networks where

specialization and diversification of healthcare services are the possible scenarios. It

provides information on the characteristics of multi-hospital networks that are crucial

in deciding which scenario is the recommended alternative.

From a methodological perspective, an application of approximate dynamic pro-

gramming in healthcare is presented in this research. The approximating approach

provides an idea of combining queueing theory and an LP-based approximate dy-

namic program. It creates a framework for decomposing the original dynamic pro-

gram, which is not solvable in a reasonable amount of time for large-scale instances
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of the problem, into smaller sub-programs that are efficiently solved with standard

techniques such as the value iteration algorithm. For the multi-hospital network

design study, the multi-site bed allocation problem is formulated and a heuristic

algorithm is developed to find the best allocation of beds between the hospitals in

each configuration scenario.

1.5. Organization of the Thesis

The literature related to the problems considered in this thesis is reviewed in

Chapter 2. In Chapter 3 the problem of patient admission for acute care wards

with an application to a neurology ward is studied. Chapter 4 examines the idea

of specialization of healthcare services in the framework of a multi-hospital network

configuration problem. Chapter 5 concludes the thesis with the findings and con-

tributions of this research to the knowledge of managing inpatient beds and patient

admission policy design.
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CHAPTER 2
Literature Review

In this section, we review the operations research and management science lit-

erature related to the bed allocation and patient admission problem in hospitals.

These problems have received attention in the academic literature for more than

four decades. In order to present a structured review, we have identified four cate-

gories under which the related studies are summarized.

2.1. Regional Hospital Bed Planning

Ruth (1981) studies resource allocation problem between the hospitals that are

located in a region. The demand for hospital care is classified by geographical area

and level of care. Furthermore, the level of care at each hospital and its confor-

mance are determined based on the number of beds allocated to that hospital. To

find the new optimal configuration of resources in the region, a mixed-integer pro-

gram is developed so that the total cost of system modification is minimized while

some constraints are satisfied. These constraints are; accessibility constraints, which

guarantee that the population in each region is served; acceptability constraints,

which ensure that the increased level of care in a hospital will be used by people; and

conformance constraints that take care of feasibility of making a hospital conforming.

In a more recent study related to regional hospital bed planning, Santibáñez

et al. (2009) develops a multi-period mathematical model that helps health author-

ities allocate hospital resources in a region and reconfigure the hospital network to
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accommodate projected demand in the future. The model provides solutions for lo-

cating clinical services across the hospitals and assigning the required resources while

considering all clinical and operational restrictions such as minimum annual patient

visits per hospital, ratio of doctors-to-population in a region, standard size of clinical

units, etc. The main objective of the model is to maximize the access to care for

all populations in each region and minimize the efforts of relocating services over all

periods in the planning horizon. The model has been applied to a hospital network

in British Columbia including 12 hospitals to figure out the structure of healthcare

delivery for the next 15 years.

Güneş and Yaman (2010) studies the problem of merging two hospital networks

that requires reallocation of resources and redefining the service portfolios of hospi-

tals. By deciding which services should be provided in each hospital, the required

resources including beds, doctors, and nurses are also determined. The objective of

the problem is to minimize the cost of transferring resources between hospitals along

with the cost of patients’ transportation that is incurred as a result of restructuring.

Abdelaziz and Masmoudi (2011) develops a multi-objective stochastic program

to find the number of beds in a network of hospitals that are needed to provide

three levels of care to patients; primary, secondary and tertiary care. The demand

for primary care should be satisfied by the hospital where the patient is observed.

The demand for secondary and tertiary care can be satisfied at the regional and

national level, respectively. The level of care in each hospital is determined based on

the specialties the hospital offers. Identifying the specialties in each hospital is part

of the decision-making process in this study. Based on the number of beds at each

10



department and specialties in each hospital, the number of physicians and nurses

is determined. The first objective of the stochastic model is to minimize the cost

of creating new beds and minimizing the number of nurses and physicians are the

second and third objectives.

2.2. Bed Allocations within a Hospital

One of the early simulation studies of the bed allocation problem is Vassila-

copoulos (1985). The simulation model developed in this paper is used to determine

the number of beds in different inpatient departments with the objective of balanc-

ing some operational efficiency measures. Admission of emergency patients with no

delay, keeping the occupancy level above and the waiting lists below specified thresh-

olds are the important efficiency measurements in this study. Using the simulation

model, several bed allocation policies as well as changing the mix of schedule and

emergency patients has been evaluated.

Based on hourly census data, Lapierre et al. (1999) develops a time-series model

that assists with the allocation of beds between different medical units within a

hospital. Using this model, hospital administrators can decide how many beds should

be assigned to each unit to have the same number of bed shortage occurrences across

the units. Kusters and Groot (1996) also uses statistical methods to support the

decision-making process related to bed allocation. In a different study, Cochran

and Roche (2007) examines using different inpatient data sets in order to calculate

the bed demands across all levels of care in a hospital. This study concludes that

the financial and billing data sets are more appropriate for using in estimating the

hospital’s demands for beds. For allocating beds to multiple level of care, the authors
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use queueing models to calculate the utilization rate and then by adjusting the

number of beds, they try to meet the utilization targets of each unit.

Green (2002) discusses the issue of determining the hospital capacities based on

target levels of occupancy. As an alternative criterion, the author focuses on the

probability of having a bed available for a new patient. The issue of bed unavail-

ability and its medical consequences on patients as well as operational impact on

the other units of hospital, especially ED, is a great concern in hospital units where

timeliness of care is a priority. By using a very simple queueing model, the prob-

ability that a patient has to wait for an inpatient bed is calculated in this paper.

Moreover, the relationship of occupancy levels and probability of bed unavailability

with number of beds have been explored and the provided insight can be used to

decide the capacity needs. Another study that emphasizes on the importance of

using appropriate measures of delay in determining bed requirements is Green and

Nguyen (2001). Using queueing theory, the authors examine the effect of reducing

beds, increasing the demand, consolidating the clinical units, and reducing LOS.

One of the key findings of this study is that reducing the mean LOS has greater

potential to reduce the bed needs than its variability. Also, consolidation of clinical

units might increase the patients delay depending on the relative arrival rates and

LOS of different patient types.

Harper and Shahani (2002) develops a flexible simulation model that captures

the patients flow in a hospital from arrival to discharge. The patients are admitted to

the units based on their priority listings and if a bed is not available in the first choice

of the patients, another bed in other units in the list will be chosen. The admission of

12



elective patients can be deferred and those patients might be asked to come back in a

few days if all beds are full. The model incorporates the necessary details related to

variability in demand and LOS, which are very important for effective bed planning

in a hospital. The model is useful in estimating the bed occupancies and admission

refusal rates as a consequence of any changes that the managers plan to do in terms

of restructuring and reallocating the beds between different units.

Hospitals can periodically change allocation of beds between different units to

respond to anticipated demand. Kao and Tung (1981) proposes an approach to solve

such problem with the objective of minimizing the overflow of patients between

units. The demand is forecasted through an M/G/∞ queue and the minimum

number of beds needed to accommodate a prescribed amount of patients load over

a year is determined. The rest of the beds in the hospital are distributed over

different services to minimize the expected average overflows during the months of

the planning horizon. In a later study, Akcali et al. (2006) considers the same problem

over a finite horizon. The number of allocated beds can change over time, but there is

some cost associated with shifts in capacity. In addition to the constraint on budget

for changing capacity in each period, the waiting time of patients is also bounded by

a maximum allowed limit. The problem has been formulated as a non-linear mixed

integer program, which under some realistic assumptions is solved in a reasonable

amount of time.

In an integrated model of queueing theory and goal programming, Li et al. (2009)

formulates the bed allocation decisions across different departments of a hospital,

which takes into account the objectives of each department related to patient service
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level and profits. Bretthauer et al. (2011) develops a model to determine the optimal

number of beds in different units of a hospital to minimize the blocking probabilities

with respect to a budget constraint. The flow of a patient is blocked if there is no

bed available in the next unit of that patient’s care path. The authors present a

heuristic algorithm that estimates the blocking probability in a queueing network

and demonstrates its superiority over existing heuristics.

Garg et al. (2010) develops a Markov chain to model patients flow through

hospital and community care phases. The model can be used to forecast resource

requirements as an input for patient scheduling or resource allocation planning. Os-

orio and Bierlaire (2009) models the congestion in a network of hospital units that

results in blocking the patients from moving through phases of clinical care. The

presented analytical framework considers finite capacity for queues and takes into

account the between-queue correlations to describe the sources of congestion and its

impact on the network.

2.3. Inpatient Bed Management in a Hospital Ward

Queueing models are effective tools in measuring the performance of a single

hospital ward and evaluating the impacts of capacity decisions on the system. Two

papers of Gorunescu et al. (2002a) and Gorunescu et al. (2002b) use queueing models

to study resource allocations in a geriatric department. In Gorunescu et al. (2002a),

the authors consider anM/PH/c queue that assumes phase-type distributions for the

LOS of patients in the ward. They also assume that the patient will be lost if all the

beds are occupied. Using this queue, they calculate the fraction of patient arrivals

that are turned away because of bed unavailability. Therefore, with a maximum

14



acceptable delay probability, they can specify the minimum number of beds that are

needed to achieve that target. In order to balance the service level for patients and

utilization of resources, they consider the cost of having an empty bed to meet the

demand versus the cost of turning away patients. In a follow-up work, Gorunescu

et al. (2002b) introduce extra unstaffed beds to be used in the case of demand

surges. They use an M/PH/c/N queue to calculate the effect of changes in the

arrival rate, LOS and bed allocations on rejection probabilities, utilization and costs

of the system.

Utley et al. (2003) studies the problem of having an intermediate care unit

in a hospital for admitting the patients who do not need acute care. Based on a

mathematical model that captures the patients flow between acute and non-acute

units, the author estimate the percentage of days that shortage occurs, either in

acute or non-acute units. However, a major drawback of this model is that when the

demand for beds exceeds capacity, no assumptions are made regarding its effect on

the arrival or flow of patients.

Ayvaz and Huh (2010) considers two types of patients arriving at a hospital: The

patients that wait until they are served and the other type of patients who leave the

system if they are not immediately accommodated. It is assumed that patients use

only one unit of capacity and the occupied capacity will be released at the end of the

day regardless of the time the patient has been admitted. Therefore, at the beginning

of every day, all the capacity becomes available. To find the optimal number of

admissions per day, a discounted total cost dynamic program has been developed

and to solve the model, the authors proposed a heuristic policy that protects some
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portion of capacity for those patients that leave the system if they are not served

upon arrival.

Bekker and de Bruin (2010) examine the effect of timed-dependent patient ar-

rivals on the number of required beds and the fraction of patients that are rejected.

The impact of time varying arrival pattern of patients is influenced by the average

length of stay (ALOS). If the ALOS is rather large respect to the cycle of arrival

change, then the variation in the arrivals is averaged out. For example, in clinical

wards with ALOS of two or three days, the daily variation does not affect the aver-

age number of beds. However, this might have effect on the emergency department

functioning. The other key finding is that if the variability in LOS increases, it can

stabilize the variation in the patient rejection rate in a loss queueing network.

2.4. Patient Admission Scheduling

Among the first studies, Kolesar (1970) develops a Markovian model that incor-

porates the scheduling of outpatients as well as the admission of inpatients that need

immediate hospitalization. Queueing models are used to calculate the state proba-

bilities of the system associated with different admission policies. A linear program

based on these state probabilities is developed to determine the number of admissions

for the next day. The objective of this linear program could be either maximizing

the bed occupancy level while keeping the probability of refusing admission below

a threshold or minimizing the admission refusal rate while keeping the occupancy

level above a threshold. Esogbue and Singh (1976) considers the admission problem

for two types of patients with a similar objective: maximization of occupancy and

minimization of unsatisfied requests. Based on a cut-off priority policy, they develop
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a birth and death process and solve the model for the optimal value of the cut-off

priority.

Thompson et al. (2009) considers admission process of patients from the ED

to different floors in a hospital. For each patient category, there is an ideal floor

to be admitted to. However, there are some other floors that can be considered

as an alternate admission destination. Admitting the patient to the ideal floor has

lower cost (or larger reward) than admission to the alternate floor. The authors

also assume that patients can be moved from one floor to another during their stay

in the hospital, but there is some cost associated with that. They formulate the

problem as a finite-horizon discrete-time Markov decision process (MDP) to find

the best admission policies. Based on the optimization model, a decision support

system has been developed and implemented in a hospital that showed significant

increase in the revenue and drastic decrease in the average waiting time of the patients

before admission. Modeling the same problem but from a different perspective,

Mandelbaum et al. (2012a) models the problem of admitting patients from the ED

to internal wards – named as patient routing – to find a fair and balanced workload

for all units as well as improving the operational efficiencies. The applicability of

different routing algorithms in the hospital in the light of data availability has also

been discussed.

Demeester et al. (2010) develops a Tabu search to assign patients to different

departments of a hospital according to their medical needs and personal preferences.

Each department in a hospital is serving one major specialty, but can accept patients

from a few other specialties as well. The objective of the model is to minimize the
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number of patients that are admitted to departments other than the most suitable

department.

Helm et al. (2011) examines the idea of having an expedited care queue in

addition to emergency and scheduled patient queues in a hospital. The expedited

care queue is designed to serve those scheduled patients who can wait for a few

days to receive the care they need but choose the ED as gateway to get admitted

to hospital. To find the optimal admission policy that balances the opportunity

cost of unused resources with the cost of canceling scheduled patients and blocking

emergency patients, an MDP has been developed. The insights obtained from the

structural properties of the optimal policy in special cases provide intuitions for

designing admission policies that are proved to work well using a simulation study.
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CHAPTER 3
Managing Patients Admission in a Neurology Ward

3.1. Introduction

This chapter focuses on developing policies for admitting patients from ED to

a neurology ward. Admission policies define the rules for allocating inpatient beds

to multiple types of patients as well as transferring them to another hospital. In the

event of an acute episode, neurology patients are admitted to hospital through the

ED. Diagnosis of such conditions in the ED requires extensive physical examinations,

often aided by a specialty team (such as a stroke team), brain imaging (CT or MRI)

and other diagnostic tests. Neurology patients are more effectively treated in a

specialized inpatient setting, i.e. the neurology ward.

The features of the neurology ward include; the care given by a specialized

nursing team, the use of exclusively equipped beds, the availability of occupational,

speech and physical therapies (Stroke Unit Trialists’ Collaboration, 2007). As a result

some patients’ DALYs can be improved significantly through enhancing functional

abilities. Thus, the accessibility to such specialized care setting is particularly time-

sensitive for patients with acute conditions (Castillo, 1999). Indeed, Kucukyazici

et al. (2010) observed that the potential benefits of the specialized care might be

offset by long delays in the ED prior to admission to the neurology ward.

Recognizing the long-term negative effects of extended ED boarding on the

health outcomes, the neurology patients may be transferred to another hospital,
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which can offer such a specialized care for neurological diseases, following the diag-

nosis of the condition in the ED. This is a decision neurology ward managers strive

to avoid since the patient faces additional waiting time at the transfer destination.

Many neurology wards face the problem of insufficient capacity to meet demand

for inpatient beds, especially during demand surges. The problem is pronounced

since admitting these patients to other wards is not an option, i.e., off-unit servicing

is not feasible for these patients. Note that the capacity for patient care is deter-

mined not only by the number of beds in the neurology ward but also by the team

of specialized nurses, physicians, and allied health professionals. The patient-to-

specialized nurse and patient-to-neurologist ratios are key performance measures of

quality of care. Moreover, the beds in these wards are specially equipped neurology

beds and substitution of these beds by admitting those patients to other wards often

has a negative impact on health outcomes.

A static patient admission policy is used in many neurology wards by assigning a

fixed number of beds to each type of disease. Sometimes, a certain number of beds are

used as flexible beds and shared among different types of patients. For example, at

the MNH, there are sixteen beds in the neurology ward, where six beds are dedicated

to stroke patients, six beds are dedicated to non-stroke neurology patients, and four

of them are used as flexible beds to admit either stroke or non-stroke patients. It is

important that neurology wards do not provide off-unit service to other wards in the

hospital and hence, the neurology patients boarding at the ED do not compete with

non-neurological patients for inpatient beds.
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The neurology patients arriving at the ED possess different medical conditions

based on which they can be categorized into different groups. Each patient group

has different arrival rate and LOS. The patient’s clinical characteristics seem to

be a determinant of the extent of deterioration in health status while the patient is

waiting for an inpatient bed. For example, the ED boarding time has stronger impact

on health status of a severe stroke patient than that of a patient with moderate

stroke (Kucukyazici et al., 2010). Under such circumstances, it may be reasonable

to prioritize admission of severe stroke patients based on this observation.

These patients, however, are expected to stay longer in the ward, which may

result in having more patients transferred to another hospital in the future due to

the unavailability of neurology ward beds. In this context, admission policies, which

prescribe the rules according to which various patients with different access time

requirements are admitted to nursing wards (Hulshof et al., 2012), play an important

role for improving the health outcomes of patients. The over-arching objective is to

provide timely access for each emergency patient.

In designing the admission policies, the physicians face the trade-off between

(i) the higher risk of deteriorated functionality due to extended ED stays for more

severe patients and (ii) the increased risk of blocking due to longer length of stays

of these patients. An additional trade-off is between the benefits of reducing the

ED boarding time by transferring patients to another hospital and the inconvenience

associated with the transfer. To address these trade-offs, an infinite-horizon average

cost dynamic program (DP) is formulated and to solve large-scale problem instances

an efficient approximation scheme is proposed. The objective is to minimize the
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average opportunity cost of waiting and transferring by finding the most appropriate

patient admission policy from the ED.

The solution approach developed in this study is based on the LP-based approx-

imate dynamic programming (ADP). While this method typically involves solving a

large-scale linear program (LP) (e.g., de Farias and Van Roy, 2006), the approach

used in this study involves solving a collection of small DPs, which tends to be eas-

ier. The small DPs are derived from the LP formulation of the corresponding DP by

employing a nonlinear functional approximation. The latter is informed by a static

queuing approximation that results in a nonlinear programming problem capturing

the uncertainties pertaining to the underlying processes. In the context of realistic

problem instances based on data obtained from the MNH, the performance of the

proposed admission policy is compared with that of other static policies.

The related literature has been reviewed from contextual perspective in Chapter

2. From a methodological perspective, the papers that use ADP for patient schedul-

ing and admission problems are also relevant to this chapter. Green et al. (2006)

considers capacity allocation of a diagnostic medical facility between different types

of patients. The authors develop a finite-horizon DP which is approximated using

linear profit functions and a heuristic policy has been generated based on this linear

approximation. Patrick et al. (2008) formulates advance scheduling of patients with

multiple priorities for a diagnostic facility as a discounted infinite-horizon MDP. By

considering an affine linear approximation for value functions, the authors produce

an approximate linear program (ALP) which is solved by applying column generation
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technique on its dual problem. Using the solution of the ALP, they develop a book-

ing policy and present the optimality gaps. The same approach has been used by

Sauré et al. (2012) to schedule cancer patients for radiation therapy sessions. These

types of patients require more than one appointment over the planning horizon while

Patrick et al. (2008) assumes each patient requires only one appointment.

Before turning to the model statement, it is important to highlight the differ-

entiating characteristics of this work from other studies. To the best of the author’s

knowledge, this is the first study that makes an explicit effort to model the differenti-

ating features of neurology wards, and hence provides managerial insights specific to

this domain. The contributions of this study are three-fold. First, from a modeling

perspective, the significance of the presence of a specialized team of care providers

in neurology wards is recognized, which renders off-servicing policies infeasible for

neurology patients. In dealing with hard capacity constraints, the possibility of pa-

tient transfers to other hospitals is incorporated into the modeling, which is not well

studied in the prevailing literature.

Second, from the viewpoint of methodology, an LP-based approximate dynamic

programming (ADP) approach is developed that involves solving a number of small

DPs derived by employing a non-linear functional approximation. The subsequent

complexity is tackled by a novel decomposition that results in smaller DPs. An

ADP-based Priority Cut-off policy is also developed that not only performs well by

incorporating the state of the system in making the patient admission decisions, but

also is easy to implement.
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Lastly, on the managerial side, the weaknesses of the static patient admission

and the ad-hoc patient transfer policies that are currently popular will be highlighted.

In particular, it will be shown that by incorporating the current utilization of the

ward and the nature of the waiting line, it is possible to achieve lower costs and

better trade-offs between waiting times and patient transfers.

3.2. Problem Description

In this section, the problem of admitting patients with different clinical condi-

tions into a neurology ward is described more precisely. There are n types of patients

indexed by i ∈ {1, . . . , n} where type 1 is the least severe patient and type n is the

most severe patient. There are B beds available in the ward. Each bed can be used

for admitting the patient irrespective of her neurological condition. Patients usually

wait in the ED before a bed inside the ward is assigned to them.

It is generally undesirable to keep neurology patients in the ED due to the lack

of the special care needed by this group. The health status of a patient with severe

condition deteriorates much faster than one with a non-severe condition, in response

to delays in admission to the ward. Assuming that dis-utilities associated with such

delays can be expressed in monetary terms, let πi denote the waiting cost per unit

time for a patient of type i; π = (π1, π2, . . . , πn). Note that πi ≤ πj for i < j.

Type-i patients arrive at the system according to a Poisson process with the rate

of λi patients per unit time. Upon the arrival of a new patient, the ward manager

decides whether to accept or transfer the patient to another hospital. Transferring

a type-i patient to another hospital incurs a lump-sum cost, denoted by κi. Let

κ = (κ1, κ2, . . . , κn). If the patient is accepted, she might be admitted to the ward
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immediately unless she has to join the queue and wait until a bed becomes available

for her.

Whenever a type-i patient is admitted to a bed, she occupies the bed for a time

which is exponentially distributed with the mean µ−1
i (which is called average LOS).

Consequently, µi indicates the discharge rate for patients of type i. For patients

with the same disease, the average LOS in more severe patients tends to be longer.

The arrivals and discharges are assumed that occur independently from each other.

When a patient is discharged, a decision is made on whether to admit a patient from

the queue to the ward. The decision-making process should be based on the number

of waiting patients from each type and also the number of beds occupied by each

group of patients.

3.3. The Dynamic Program Formulation

To find the best admission policy, the problem is formulated as a continuous

time dynamic program. By developing a continuous time dynamic program, it is

sufficient to limit our attention only to those times when there is a change in the

state of the system, while the system is being tracked at all times (Puterman, 1994).

The change in the state of the system can be either an arrival of a patient or a

discharge of a patient from the ward. The time horizon is considered to be infinite

which is consistent with the idea of running a hospital ward. This problem can

be formulated either as a total discounted cost or an average cost model. While

the total discounted approach seems easier to apply, the dependency of the optimal

policy on the discount factor and the initial state is a major drawback. Thus, an
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average cost dynamic program will be used, where the objective is to minimize the

long-run average cost of the system.

3.3.1 State Variables

The state of the system includes information about the number of waiting pa-

tients and the number of occupied beds by each patient type. It is required to

distinguish between the beds occupied by different patient types because the dis-

charge rate is not the same for all types. Let x = (x1, x2, . . . , xn)T, where xi is the

number of waiting patients of type i, and b = (b1, b2, . . . , bn)T, where bi is the number

of beds occupied by patients of type i. The state of the system is given by (x,b).

Note that x and b are n-dimensional column vectors. The total number of patients

waiting in the system is constrained by K, which reflects the physical capacity of

the ED to board neurology patients. Hence, we have
∑n

i=1 xi ≤ K. At any time,

at most B patients are in the beds, i.e.,
∑n

i=1 bi ≤ B. So the state space is finite.

The state variables are defined as post-action variables so that the transition rate

depends only on the state of the system and not on the actions. The following figure

shows the time-line according to which the state transition occurs.

Figure 3–1: State transition in the patient admission problem
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3.3.2 Actions

In a continuous time DP, the moments that a decision is made are restricted

to those times that the state of the system changes (Puterman, 1994). The possible

actions are classified based on the cause of state changes.

In the case of an arrival, the possible actions are:

• letting the patient join the queue;

• admitting the patient to the ward; and

• transferring the patient to another hospital.

The first option is not feasible if the number of waiting patients has reached its

maximum capacity (K). The second option can only admit a patient if there is at

least one bed available in the ward. The last option is always available.

Given state (x,b), the set of admissible actions in the case a type-i arrival is

Ui(x,b) =

{
(ai, ti) ∈ {0, 1}2

∣∣∣∣ai ≤ I

{
n∑
j=1

bj < B

}
, I

{
n∑
j=1

xj = K

}
≤ ai + ti ≤ 1

}
(3.1)

where I {·} is the indicator function, i.e., it takes the value of 1 if the conditions in

the bracket is satisfied and is equal to 0 otherwise. The variable ai is a 0-1 variable

that represents the admission of a type-i arrival or equivalently, a type-i patient from

the queue. An admission can occur only when there is at least one empty bed. The

constraint ai ≤ I
{∑n

j=1 bj < B
}

takes care of this issue. The variable ti is also a

0-1 variable that indicates the decision related to transferring the new arrival. In the

situation that the waiting area is full, we must either admit or transfer a patient.

The constraint I
{∑n

j=1 xj = K
}
≤ ai + ti ≤ 1 takes into account this requirement
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when choosing an action. When (ai, ti) = (0, 0), the patient simply joins the queue

and waits until admission to the ward.

In the case of a discharge, the possible actions are:

• doing nothing;

• admitting one patient from the queue.

When a type-i patient is discharged, the set of feasible actions is

Di(x) =

{
(di1, . . . , din) ∈ {0, 1}n

∣∣∣∣dij ≤ xj,∀j;
n∑
j=1

dij ≤ 1

}
. (3.2)

The variable dij is a 0-1 variable where dij = 1 represents the admission of a type-j

patient when a type-i patient is discharged. Obviously, this can happen only when

there is at least one waiting patient of type j. The constraint dij ≤ xj forces dij to

the value 0 when there is no waiting patient of type j. The constraint
∑n

j=1 dij ≤ 1

states that we can admit at most one patient from all types. When all dij are zeros,

it refers to choosing not to admit any patient.

3.3.3 Transition Probabilities

Let T denote the random time between two decision points. To find the distri-

bution of T , the following Lemma is used (Porteus, 2002).

Lemma 3.3.1 Assume that the system is in the state (x,b). If the time between two

arrivals of type-i patients (denoted by T ai ) is distributed exponentially with parameter

λi and the time between two discharges of type-i patients (denoted by T di ) is distributed

exponentially with parameter biµi and all the arrivals and discharges are independent

of each other, and T is the time to next state transition, then
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1. T = min(mini T
a
i ,mini T

d
i ) and is exponentially distributed with parameter∑n

i=1(λi + biµi),

2. Pr(T = T ai ) = Pr(T = T ai |T = t) = λi∑n
i=1(λi+biµi)

, and

3. Pr(T = T di ) = Pr(T = T di |T = t) = biµi∑n
i=1(λi+biµi)

.

This Lemma establishes that the time to the next transition is exponentially

distributed when all the events follow Poisson processes. The rate of the distribution

is the sum of all rates; ν(x,b) =
∑n

i=1(λi+biµi). Also, when a transition has already

happened at time t, the probability that the transition is caused by a specific event is

the rate of that event divided by the sum of all rates. This probability is independent

of the time that has passed. Since the state of the system changes over time, the

transition rate in each period is not constant. To transform the system into a Markov

chain with uniform transition rate, the uniformization technique is applied.

To use the uniformization technique, note that an upper bound for the tran-

sition rate is νmax =
∑

i λi + bµmax where µmax = maxi µi. So the new transition

probabilities are given as follows (Bertsekas, 2005):

Transition Probability =


λi
νmax , if there is an arrival of type i,

biµi
νmax , if there is a discharge of type i,

1−
∑n

i=1(λi+biµi)

νmax , if there is no change in state.

The time is scaled such that the maximum transition rate (νmax) is normalized

to 1. To do so, the new arrival and service rates are defined as: λi
′

= λi
νmax and

µi
′
= µi

νmax , for all i. Then the new transition probabilities are:

29



(Normalized) Transition Probability =



λi
′
, if there is an arrival of type i,

biµi
′
, if there is a discharge of type i,

1−
∑n

i=1(λi
′
+ biµi

′
), if there is no

change in state.

Accordingly, the waiting cost of type-i patients per each normalized time in-

terval is πi
′

= πi
νmax . For notational simplicity, λi, µi, and π denote the normalized

parameters in the remainder of this chapter.

3.3.4 Bellman Optimality Equation

The Bellman equation of dynamic program is given by

(DP) h(x,b) = πTx− ρ∗ +
n∑
i=1

λi min
ai∈Ui(x,b)

{κiti + h(x + (1− ai − ti)ei,b + aiei)}

+
n∑
i=1

biµi min
di∈Di(x,b)

{h(x− di,b− ei + di)}

+

(
1−

n∑
i=1

λi −
n∑
i=1

biµi

)
h(x,b), ∀x,b,

where Ui(x,b) and Di(x) are given by (3.1) and (3.2), respectively, and ei is an

n-dimensional identity vector.

In the (DP), ρ∗ is the optimal average cost per normalized time period and

h(x,b) is the bias function which represents the total difference from optimal average

cost over all periods if we start from state (x,b). The term πTx−ρ∗ is the difference

between the cost of this period and the optimal average cost. The second (third)

term refers to the case when a type-i patient arrives (discharges). The last term is
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associated with the case of no change at the end of period and thus we are returning

to the same state. This term has been added due to the uniformization. In this

model, all the states can be reached from other states, i.e. the Weak Accessibility

holds (Bertsekas, 2005). Thus, the optimal average cost is independent of the initial

state of the system.

3.4. The Data

In order to demonstrate the applicability of the proposed DP formulation and

to garner managerial insights, a full data set representing the patient flows through

the 3-South neurology ward of the MNH has been developed. As mentioned before,

the MNH neurology ward has sixteen inpatient beds. In an effort to focus on the

care provided to stroke patients, the patients are categorized into four patient types:

Mild Non-Stroke, Mild Stroke, Severe Non-Stroke, and Severe Stroke. Note that

these patients arrive at the MNH through the ED and are kept boarding there until

a bed becomes available at the ward.

This data set includes all the patients treated in the neurology ward for three

full fiscal years. The sources of this data set are: the hospital’s ED information

system, the patient registry of McGill University Health Center, and the paper-

based patient charts of the stroke and non-stroke patients admitted to the 3-South

neurology ward of the MNH. In this section, the assumptions regarding the arrival

and LOS distributions are verified using the available data. Furthermore, the waiting

and transfer costs in the model are estimated in the form of health related quality

of life (HRQoL) (Xie et al., 2006).
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3.4.1 Patient Arrival and LOS Distributions

The patient inter-arrival times to the system, and the number of patient depar-

tures during a given time interval from the hospital, are random and dependent on

the patient category. The parameters of the arrival and departure distributions are

based on actual historical data. Based on the χ2 test results of Tables 3–1 and 3–2

the Poisson arrival and exponential LOS hypotheses cannot be rejected.

Arrival Process (daily)
Patient Type Mean Variance H∗0 =

(λ) (σ2) Arrival is Poisson
Mild Non-Stroke 0.236 0.246 Not Rejected

(0.05 < p < 0.10)
Mild Stroke 0.262 0.291 Not Rejected

(0.10 < p < 0.25)
Severe Non-Stroke 0.139 0.141 Not Rejected

(0.25 < p < 0.50)
Severe Stroke 0.113 0.117 Not Rejected

(0.25 < p < 0.50)
Table 3–1: Goodness-of-fit tests on arrival process of all patient types (∗ All tests
are one-tailed with α = 0.05)

The seasonal variation in the arrival pattern of stroke and non-stroke neurologi-

cal patients, i.e., the impact of seasonality in the number of arrivals for each patient

type, is also investigated. To this end, the cumulative number of arrivals for each

patient type by month over a time period of three years is calculated and the term of

seasonality refers to monthly variation over cumulative number of arrivals. For mod-

eling the seasonal variation, the cosine function is used, which is a simple curve of

cyclic periodicity. The estimated monthly number of arrivals with the best-fit cosine

curve function, the amplitude of the seasonality, and the Roger’s R values (Roger,
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LOS (day)
Patient Type Mean Variance H∗0 =

( 1
µ
) (σ2) LOS is exponential

Mild Non-Stroke 13.003 162.383 Not Rejected
(0.25 < p < 0.50)

Mild Stroke 11.491 114.204 Not Rejected
(0.05 < p < 0.10)

Severe Non-Stroke 19.011 305.904 Not Rejected
(0.10 < p < 0.25)

Severe Stroke 22.002 596.445 Not Rejected
(0.05 < p < 0.10)

Table 3–2: Goodness-of-fit tests on LOS distribution of all patient types (∗ All tests
are one-tailed with α = 0.05)

1977) are calculated in order to examine the significance of seasonal variation. The

results in Table 3–3 indicate that seasonality is not significant for all patient types.

Patient Type Monthly Mean Amplitude R2

Mild Non-Stroke 21.5 0.9∗ 0.12
Mild Stroke 24.0 0.5∗ 0.08
Severe Non-Stroke 12.5 1.1∗ 0.25
Severe Stroke 10.5 1.04∗ 0. 17

Table 3–3: Seasonal variation in arrival of all patient types (∗ p > 0.05)

The details of the cumulative number of monthly arrivals are provided in Figure

3–2, where the figure does not visually display any consistent seasonal patterns in

the arrival numbers.

3.4.2 Patients Waiting and Transfer Costs

Waiting Cost: As mentioned earlier, the patients boarding in the ED for a bed

in the neurology ward suffer from lack of specialized care and their health status de-

teriorates as a consequence of staying in the ED. This deterioration emerges as worse
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Figure 3–2: Cumulative number of monthly arrivals for each patient type over three
years

functionality of the patients, which is one of the most important health outcomes of

the neurological patients. For those patients, discharge destination can be used as a

proxy of patient’s functionality at the time of discharge. In this context, Kucukyazici

et al. (2010) have found that longer ED boarding time is strongly associated with

increased probability of not being able to discharge to home, i.e., being admitted to

rehabilitation center or long term care facility. To be more specific, they observed

that a 10% increase in the ED LOS is related to a 7.7% increase in the risk of being

discharged to either a rehabilitation center or a long term care facility, i.e., not being

able to go home. It is established that the discharge destination has a significant

impact on both short-term and long-term HRQoL (Xie et al., 2006). Thus, the pa-

tient’s waiting cost can be estimated as the expected HRQoL lost resulting from not

being able to go home due to the ED boarding.
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Let βi denote the increase in the probability of not being discharged home for

type-i patients, as a result of one time unit boarding in the ED. The patient type

specific βi are estimated utilizing a regression model controlled for all other clinical

and demographic factors.

Let sR
i and sL

i denote the conditional probabilities of being sent to a rehabilita-

tion center and a long term care facility, respectively; given that the type-i patient

is not discharged to home. Note that sR
i +sL

i = 1. Moreover, the HRQoL are defined

as the values associated with discharge destination as QH, QR, and QL for home,

rehabilitation center, and long term care facility, respectively.

There are several studies in the literature that report the HRQoL measures for

neurological patients including Hopman and Verner (2003), Jaracz and Kozubski

(2003), Jönsson et al. (2005), and Nichols-Larsen et al. (2005). In this model, the

short-term HRQoL measures estimated by Nichols-Larsen et al. (2005) are used and

the HRQoL of being discharged to home is normalized to 100.

The waiting cost per unit time for type-i patient, πi, is the expected loss in

quality of health outcomes as a consequence of one unit time increase in the ED

boarding time:

πi = βipi
(
QH − (sR

i QR + sL
i QL)

)
, (3.3)

where pi corresponds to the average probability of discharge to rehabilitation center

and long term care facility of patient type-i for the group of patients who do not

experience any delay in the ED. Using Equation (3.3), the waiting cost per day for

each patient type is estimated and presented in Table 3–4.
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Index (i) Patient Type Daily Waiting Cost (πi)
1 Mild Non-Stroke 70
2 Mild Stroke 90
3 Severe Non-Stroke 145
4 Severe Stroke 295

Table 3–4: Estimated waiting cost of neurology patients in the ED per day

Transfer Cost: The existing clinical guidelines used at the MNH recommend

to transfer the patients to another hospital if their waiting time in the ED exceeds 48

hours. This means that the ward manager is willing to keep the patients in the ED for

two days and if no bed becomes available in that period the patient is transferred to

another hospital, where the patient is presumably admitted to the ward without any

delay. Kucukyazici (2010) studies the process of patient transfer to other hospital by

means of a comprehensive simulation model of MNH ED, neuro-ICU, and neurology

ward. The results in that study clearly demonstrate that the current practice of

waiting for 48 hours of ED boarding until a transfer decision is made, is not the best

policy. Thus, the model proposed in this study assumes that the transfer decision

can be made at the time of patient arrival based on the overall congestion of the

system. Consequently, if we decide to transfer the patient, the maximum transfer

cost is considered to be equivalent to two days of waiting in the current hospital’s

ED. In general, if the threshold for transferring type-i patients in a hospital is di

time units and πi is the ED waiting cost per unit time, then the transfer cost for

type-i patient is estimated as:

κi = diπi. (3.4)
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3.5. Properties of the Optimal Policy

In this section, some properties of the optimal policy are illustrated by means

of a special case of the problem with two types of patients, mild stroke (referred to

as type 1) and severe stroke (referred to as type 2). The arrival rate and average

LOS for these two types can be found in Tables 3–1 and 3–2. For this special case

of problem, the number of available beds and the ED capacity are assumed to be

equal to eight (half of the current bed capacity at the MNH), i.e., B = K = 8.

Through solving a large number of problem instances, the structure of the optimal

admission policy has been explored. In the remainder of this section, only the most

revealing instances are reported that, in turn, are grouped into two subsections –

corresponding to the arrival and the discharge of a stroke patient, respectively.

As observed in the following examples, the form of the optimal policy does

not seem to be straightforward. The complexity of the problem requires that the

optimal policy be based on all the information about the system. In particular, it

is not sufficient to know how many beds are occupied (or equivalently, how many

beds are available). Instead, we need to know the number of occupied beds and the

number of people waiting by each patient type to make the best decision regarding

the admission of a new patient. It also seems that the optimal policy is robust with

respect to the magnitude of waiting costs and is affected only by their ratio.

3.5.1 Arrival of a Stroke Patient

Illustrative Example I: The starting cost parameters are: π = (90, 295) as

in Table 3–4, and κ = 2π. We first assume that there is a new arrival of a mild

stroke patient in the system while x2 = 0 and b2 = 0 (i.e., no severe stroke patient
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is either in the queue or in the ward). The optimal decision in such a situation

is to admit the new arrival to the ward if there is an available bed, and transfer

the patient otherwise. This implies that there is no tendency to reserve a bed for

a severe patient that might arrive in the future. If we increase the waiting cost of

severe stroke patients, however, a different behavior is observed. For example, when

π2 = 5π1, x1 ≤ 5, and if there is only one available bed, the optimal policy is to keep

that bed for the possible arrivals of severe patients.

Illustrative Example II: The condition x1 ≤ 5 in the above example implies

a threshold policy. Denote the threshold on the number of mild patients waiting

for a bed by τ . Note that τ = 5 in that case. To see the impact of the number of

different patient types in the ward on τ , a parametric analysis is conducted on b1

while fixing b1 +b2 = B−1 (i.e., there is always one available bed). Let π2 = 5π1 and

x2 = 0. The optimal policy in the case of an arrival of mild stroke patient is shown in

Figure 3–3. When b1 ≤ 2, we reserve the available bed for a severe patient if x1 ≤ 3

(τ = 3) and allocate that bed to the mild stroke patients, otherwise. This threshold

increases by one, i.e., τ = 4, when 3 ≤ b1 ≤ 4, and increases by two, i.e., τ = 5,

when 5 ≤ b1 ≤ 7. Observe that the reservation threshold on the number of waiting

patients (up to which we earmark a bed for a severe stroke patient) increases when the

number of beds occupied by the mild stroke patients increases. This sounds counter-

intuitive as we expect this threshold to decrease. When more beds are occupied by

mild patients, it is more likely to have an empty bed in the near future. Therefore,

we might be better off letting the mild patients use the only available bed sooner.

Nevertheless, the optimal policy suggests an opposite behavior.
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Figure 3–3: Optimal decision if a mild stroke patient arrives while x2 = 0 and
b1 + b2 = B − 1
× = Transfer (Reservation) � = Admit mild stroke patient to bed

Illustrative Example III: In Figure 3–3, it is interesting to note that when

there are less than four mild stroke patients waiting, the new arrival of this type will

be transferred regardless of the value of b1. Therefore, it is unlikely for the system to

reach the state where x1 > 4 and x2 = 0. In order to study the more likely system

states, let us consider system states in which x1 = x2 = 0. Let e be the number of

empty beds. For all values of e, the optimal policy in the event of a mild patient

arrival is shown in Figure 3–4. Note that in this Figure the waiting cost of severe

patients has been decreased to 325 from 450 in the previous example. The optimal

policy is to admit the mild patient to the bed as long as more than two beds are

available. If no bed is available, the patient is transferred. However, if only one bed

is free, we look at the patient mix in the ward. As opposed to the previous example,
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more beds being occupied by mild patients supports admitting the mild patient to

the bed.

Figure 3–4: Optimal decision if a mild stroke patient arrives while x1 = x2 = 0,
b1 + b2 = B − e
× = Transfer (Reservation) � = Admit mild stroke patient to bed

Illustrative Example IV: Now let us consider the arrival of a severe stroke

patient to the system. When π = (90, 295), the optimal policy recommends that the

severe patient is admitted to the bed in most cases. If the cost parameters are set

to π = (90, 135), i.e., π2 = 1.5π1, we see some transfers of severe patients . If there

is one bed available, all other beds are occupied by severe patients, and x1 ≥ 7, then

we are better off transferring the newly arrived severe patient to another hospital

and using the available bed for mild stroke patients.

40



3.5.2 Discharge of a Stroke Patient

Illustrative Example V: Assume that all beds are occupied and a patient

is discharged, i.e., one bed becomes available. The cost parameters are first set at

π = (200, 250), and κ = 2π. Moreover, an arbitrary combination of occupied beds is

chosen; for example, b1 = b2 = B/2. The optimal decision when a mild stroke patient

is discharged for all combinations of x1 and x2 is shown in Figure 3–5. In this figure,

it is interesting to observe that when 1 ≤ x1 ≤ 3 and one bed becomes available, we

begin by assigning that bed to a severe stroke patient. But if the number of severe

stroke patients increases, it would be better to give that bed to a mild stroke patient,

which seems to be counter-intuitive. Why should we switch from prioritizing severe

stroke patients to letting a mild stroke patient occupy the bed when we have more

severe patients in the queue? The reason is the slower discharge rate of severe stroke

patients. As the system gets more congested, a tendency is formed toward serving

the mild stroke patients who have higher discharge rate and hence a higher chance

of emptying that bed in the near future. This phenomenon can happen when the

waiting costs for the two types are close to each other. If we increase the waiting

cost for the severe patients, this phenomenon disappears.

Illustrative Example VI: We might also be interested in seeking cases in

which we reserve a newly freed bed for a future arrival of severe stroke patients. To

examine this, the cost parameters are changed to π = (100, 1500), and κ = 2π.

Let us assume x2 = 0, otherwise bed reservation for severe stroke patients cannot

be optimal. In addition, all beds are occupied (i.e., b1 + b2 = B) when a mild

stroke patient is discharged. To demonstrate how the reservation pattern changes
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Figure 3–5: Optimal decision if a mild stroke patient is discharged while b1 = b2 = 4.
◦ = No action � = Admit mild stroke patient to bed N = Admit severe stroke
patient to bed

depending on the patient population in the ward b1 is varied from 1 to B. Figure

3–6 depicts the optimal decision in this parametric analysis. Evidently, it is optimal

to reserve a bed for severe stroke patients when their waiting cost is much higher

than that of the mild stroke patients. Note that the threshold on x1 above which we

stop reserving increases as the number of occupied beds by mild stroke patients (b1)

increases. This is similar to the counter-intuitive observation in Figure 3–3.

Remarks: The illustrative examples demonstrate the complexity in the struc-

ture of the optimal policy. Even though these examples suggest some special forms

of admission policy (threshold policy), the precise form of the optimal policy is quite

intricate and varies with the model parameters.
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Figure 3–6: Optimal decision if a mild stroke patient is discharged while x2 = 0 and
b1 + b2 = 8.
◦ = No action (Reservation) � = Admit mild stroke patient to bed

3.6. The Solution Methodology

The Bellman equation for an average cost DP can be solved with the relative

value iteration algorithm in a reasonable amount of time when the size of the problem

is relatively small. As the number of patient types, the number of beds, or the

waiting room capacity increases, the curse of dimensionality hinders us from a brute-

force solution of the DP. Thus, an approximation scheme is proposed to find a good

admission policy in large-scale instances of the problem.

The proposed approach involves two steps. The first step is to build a static

model in which we assume the beds are allocated to different patient types and the

allocation does not change over time. By solving this static model, we find the

number of beds that should be allocated to each type so that the average cost per
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period is minimized. Further, the proportion of patients from each type that are

transferred to another hospital is also determined. The average cost of such a model

accounts for waiting costs of patients as well as transfer costs. This model is called

static because the policy is fixed over time irrespective of the system state.

The second step is to develop an approximate dynamic program (ADP) that

can be solved in a reasonable time frame. To do so, some information including the

opportunity cost of occupying a bed, the number of beds allocated to each type, the

average waiting time, and the average queue length of each type is exploited from

the static model solution. Then, using this information, the bias function h(x,b) is

approximated. To be more precise, it is assumed that the bias function is the sum

of contributions from all patient types. The contribution of all patient types except

one type is estimated using a non-linear function and for this specific type we leave

its contribution unknown. This approximate bias function is plugged back into the

Bellman equation that ultimately leads to a simpler DP to solve. In the resulting

DP, we will deal with only one type of patient (that specific type for which the

contribution is left unknown). We iterate this procedure for all types of patients. In

the end, we sum all the contributions up to approximate the bias function; h(x,b).

Based on the approximated bias function, we can create an admission policy. Figure

3–7 shows all these steps and their interactions.
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Figure 3–7: Schematic view of the solution methodology

3.6.1 The Static Model

This section presents a static model that is based on queueing approximation

of the problem. This static model allocates a certain number of beds exclusively for

each type of patients. As opposed to the dynamic optimal policy obtained from the

Bellman equation, this model determines a static policy which does not change over

time and is not influenced by the state of the system.

Suppose the number of beds dedicated to type-i patients is b̃i. The system with

b̃i beds serving incoming type-i patients can be viewed as a queue with b̃i servers.

Due to the constraint on the total number of waiting patients, the type of queue we

are dealing with for type-i patients is an M/M/b̃i/b̃i+ki queue. Here ki is the upper

bound on the length of queue for type-i patients, above which the new arrivals will

be turned away. The service rate is µi but the arrival rate should not necessarily

be equal to λi, because we can transfer some patients upon their arrival to another
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hospital. So the rate of patients entering the system can be less than the original

arrival rate. Therefore, the decision variable λ̃i is defined as the adjusted arrival rate.

The total average cost of this queue is the sum of the average waiting cost of

the patients and the average cost of transferring the new arrivals. Let us denote the

average number of waiting patients of type i in the queue by Li. So the average

waiting cost is given by Li times the waiting cost per unit time. Also, on average,

(λi − λ̃i) of type-i patients are transferred to another hospital per unit time. Note

that a portion of new arrivals will be blocked due to lack of space in the waiting

area, which is λ̃ipki (pki is the probability that there are ki patients waiting in the

queue). So in total, λi − λ̃i(1 − pki) of the arrivals are transferred. The associated

transfer cost would be κi

(
λi − λ̃i(1− pki)

)
per unit time.

In a general M/M/c/c + k queue, with arrival rate of λ and service rate of µ,

the average length of queue is given by (Gross et al., 2008)

L =


prcρ

c!(1−ρ)2
[1− ρk+1 − (1− ρ)(k + 1)ρk], (ρ 6= 1) ,

prc

c!
k(k+1)

2
, (ρ = 1) ,

(3.5)

where r = λ/µ and ρ = r/c. The blocking probability is calculated using

pk =
rc+k

c!ck
p, (3.6)

where

p =


[
rc

c!
(1−ρk+1

1−ρ ) +
∑c−1

n=0
rn

n!

]−1

, (ρ 6= 1) ,[
rc

c!
(k + 1) +

∑c−1
n=0

rn

n!

]−1
, (ρ = 1) .

(3.7)
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Note that the average waiting time is obtained by W = L
λ(1−pk)

.

The goal of the static model is to allocate all available beds (B) and waiting

room capacity (K) among different types of patients such that the average cost of the

system is minimized. This can be done using the following mixed-integer program:

(SM) F ∗ = Minimize
n∑
i=1

πiLi +
n∑
i=1

κi

(
λi − λ̃i(1− pki)

)
Subject to

n∑
i=1

b̃i ≤ B,

n∑
i=1

ki ≤ K,

λ̃i ≤ λi, ∀i,

λ̃i, b̃i ≥ 0,

b̃i, ki integer, ∀i.

Proposition 3.6.1 The optimal solution of the (SM) gives an upper bound on the

optimal average cost in the (DP); i.e., F ∗ ≥ ρ∗.

Proof The proof of Proposition 3.6.1 is straightforward since the optimal solution

of the static model is always a feasible policy for (DP).

In order to solve the static model as a continuous non-linear program, the integrality

constraints on the number of allocated beds (b̃i) and waiting room capacity (ki) are

relaxed. To find the length of queue when the number of beds is not integer, the

following algorithm can be used. It also provides the values for blocking probabilities.

1. If λ̃i = 0, then Li = 0 and pki = 0.

2. If λ̃i 6= 0 and b̃i = 0, then Li =∞ and pki = 1.
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3. If λ̃i 6= 0, b̃i 6= 0 and b̃i is integer, then Li and pki are calculated through

Equations (3.5) and (3.6).

4. If λ̃i 6= 0 and b̃i 6= 0 and b̃i is non-integer, then b̃i is rounded to nearest integer

(called bnew) and service rate is adjusted to µnew = b̃iµi
bnew

. The Li and pki are

calculated using bnew and µnew.

For non-integer values of ki, we take the following interpolation approach:

1. Li(ki) = (ki − bkic)Li(dkie) + (dkie − ki)Li(bkic).

2. pki = (ki − bkic)pdkie + (dkie − ki)pbkic.

where bkic and dkie refer to the biggest integer number less than or equal to ki and

smallest integer number greater than or equal to ki, respectively.

Denote the solution of (SM) by (λ̃∗i , b̃
∗
i , k
∗
i ) for all i. Based on this solution, the

maximum number of beds occupied by type-i patients is b̃∗i . The number of waiting

patients of type i is limited to k∗i . Also, we reject a fraction of new arrivals so that

the actual rate of patients who enter the system is λ̃∗i . The other piece of information

that is extracted from the solution of static model is the value of dual variable of the

first constraint (the constraint on the number of allocated beds). The value of this

variable (which we denote by α) gives how much the average cost of the system can

be reduced if we have one more bed available. Therefore, it can be interpreted as the

opportunity cost of occupying a bed for one unit time (or simply, value of a bed).

This information will be used in deriving the approximate dynamic program and

developing two static policies to use as benchmarks in computational experiments.
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3.6.2 The Approximate Dynamic Programming

The (DP) formulation can be written as a linear program as follows:

(LP) ρ∗ = max ρ

h(x,b) + ρ ≤ πTx +
n∑
i=1

λi min
ai∈Ui(x,b)

{
κiti + h(x + (1− ai − ti)ei,b + aiei)

}

+
n∑
i=1

biµi min
di∈Di(x)

{
h(x− di,b− ei + di)

}

+

(
1−

n∑
i=1

λi −
n∑
i=1

biµi

)
h(x,b), ∀x,b.

In the above, the decision variables are ρ and h(·). Note that the terms on the right

hand side of the constraint can be linearized by expanding the constraint. We prefer

the current, non-linear, form for development later in this section.

Recall from the solution of the (SM) that for type-i patients, the number of

allocated beds is b̃∗i , the adjusted arrival rate is λ̃∗i , and the maximum length of

queue is k∗i . Furthermore, we can calculate the average number of type-i patients

in the queue (denoted by Li
∗), and their average waiting time (denoted by Wi

∗).

Another piece of information that is used from the static model solution is the dual

variable associated with the first constraint in the (SM). The value of this dual

variable, as mentioned earlier, is denoted by α and is interpreted as the opportunity

cost of occupying one bed per unit time.

The bias function h(x,b) in the (LP) can be approximated by

h(x,b) ≈ hi(xi, bi) +
∑
j 6=i

(
πjwj(xj − Lj∗)+ +

α(bj − b̃∗j)+

µj

)
, ∀i, (3.8)
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where (y)+ = max(0, y). For each type j 6= i, the contribution to the bias function is

estimated by πjWj
∗(xj−L∗j)++

α(bj−b̃∗j )+

µj
and for type i, the contribution is represented

by a general function hi(xi, bi). For type-j patients, if we control the system according

to the solution of the (SM), we expect to see, on average, L∗j patients waiting in the

system. So if the number of waiting patients is less than or equal to L∗j , there is no

extra cost than the average cost and the contribution is zero. But if xj ≥ L∗j , then

bias from the average cost can be estimated by the waiting cost of excess patients

(xj − L∗j)+. We know that from the (SM), a typical patient of type j is expected

to wait Wj
∗ units of time and the waiting cost per unit time is πi. So the estimated

contribution of the extra patients of type j is πjWj
∗(xj − L∗j)+.

Similarly, the cost of occupying the bed by type-j patients is estimated. For

each bed occupied in addition to the allocated beds in solution of the (SM), b̃∗i , the

opportunity cost per unit time is α(bj − b̃∗j)+. We know that on average, a typical

patient of type j stays in bed for µ−1
j units of time. Therefore, the total opportunity

cost can be expressed by αµ−1
j (bj − b̃∗j)+.

Plugging (3.8) into the (LP) and simplifying, we obtain a new linear program:

(LP1) max ρ

s.t. hi(xi, bi) + ρ ≤ πTx + λi min
ai∈Ui(x,b)

{
κiti + hi(xi + 1− ai − ti, bi + ai)

}

+
∑
k 6=i

λk min
ak∈Uk(x,b)

{
κktk + πkWk

∗I {ak + tk = 0, xk ≥ L∗k}+
α

µk
I
{
ak = 1, bk ≥ b̃∗k

}}

+ biµi min
di∈Di(x)

{
hi(xi − dii, bi + dii − 1) +

∑
j 6=i

(
α

µj
I
{
dij = 1, bj ≥ b̃∗j

}
−
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πjWj
∗I
{
dij = 1, xj ≥ L∗j + 1

}
)

}
+
∑
k 6=i

bkµk min
dk∈Dk(x)

{
hi(xi − dki, bi + dki)−

hi(xi, bi)− πkWk
∗I {dki = 1, xk ≥ L∗k + 1} − α

µk
I
{
dkk = 0, bk ≥ b̃∗k + 1

}
+

∑
j 6=i,k

(
α

µj
I
{
dkj = 1, bj ≥ b̃∗j

}
− πjWj

∗I
{
dkj = 1, xj ≥ L∗j + 1

})}

+ (1− λi − biµi)hi(xi, bi), ∀x,b.

The constraint in the (LP1) is rather complex. In order to further simplify the

constraint, the following steps are taken. First, the set Ui(x,b) is replaced with

U ′i (xi, bi) =

{
ai = (ai, ti) ∈ {0, 1}2

∣∣∣∣ai ≤ I {bi < B} , I {xi = K} ≤ ai + ti ≤ 1

}
.

Second, by relaxing the constraint dj ≤ xj for all j 6= i, the set Di(x) can be replaced

with

D′i(xi) =

{
di = (di1, . . . , din) ∈ {0, 1}n

∣∣∣∣dii ≤ xi,
n∑
j=1

dij ≤ 1

}
.

Observe that Ui(x,b) ⊆ U ′i (xi, bi) and Di(x,b) ⊆ D′i(xi). Similarly, the sets Uk(x,b)

and Dk(x) for k 6= i are, respectively, replaced with

U ′k(xi, bi) =

{
ak = (ak, tk) ∈ {0, 1}2

∣∣∣∣ak ≤ I {bi < B} , I {xi = K} ≤ ak + tk ≤ 1

}
,

and

D′k(xi) =

{
dk = (dk1, . . . , dkn) ∈ {0, 1}n

∣∣∣∣dki ≤ xi,

n∑
j=1

dkj ≤ 1

}
.

Note that Uk(x,b) ⊆ U ′k(xi, bi) and Dk(x,b) ⊆ D′k(xi). Hence, by taking this step,

we effectively reduce the right hand side of the constraint in the (LP1). In the next

step, the right hand side of the constraint is made dependent only on (xi, bi).
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Let us define x−i = {x1, . . . , xi−1, xi+1, . . . , xn} and b−i = {b1, . . . , bi−1, bi+1, . . . , bn}.

Now, in order to make the right hand side of the constraint independent of x−i and

b−i, we take the minimum over x−i and b−i for each given (xi, bi). Consequently,

by using the new action space and simplifying, the constraint of the (LP1) will be a

function of only xi and bi, and is written as:

hi(xi, bi) + ρ ≤ πixi + λi min
ai∈U

′
i (xi,bi)

{
κiti + hi(xi + 1− ai − ti, bi + ai)

}
+

(1− λi − biµi)hi(xi, bi) + min
(x−i,b−i)∈B(xi,bi)

{∑
k 6=i

πkxk+

∑
k 6=i

λk min
ak∈U

′
k(xi,bi)

{
κktk + πkwkI {ak + tk = 0, xk ≥ L∗k}+

α

µk
I
{
ak = 1, bk ≥ b̃∗k

}}

+ biµi min
di∈D

′
i(xi)

{
(1− dii)hi(xi, bi − 1) + diihi(xi − 1, bi)+

∑
j 6=i

dij

(
α

µj
I
{
bj ≥ b̃∗j

}
− πjwjI

{
xj ≥ L∗j + 1

})}

+
∑
k 6=i

bkµk min
dk∈D

′
k(xi)

{
(1− dkk)

(
− α

µk
I
{
bk ≥ b̃∗k + 1

})
+

dik

(
hi(xi − 1, bi + 1)− hi(xi, bi)

)
− dkk

(
πkwkI {xk ≥ L∗k + 1}

)
+

∑
j 6=i,k

dkj

(
α

µj
I
{
bj ≥ b̃∗j

}
− πjwjI

{
xj ≥ L∗j + 1

})}}
,

∀xi ≤ K, bi ≤ B,

where B(xi, bi) =

{
(x−i,b−i)

∣∣∣∣∑k 6=i xk ≤ K − xi,
∑

k 6=i bk ≤ B − bi
}

.

The minimization over x−i and b−i can be taken out from above and be written

as a separate mixed-integer program (MIP). We need to introduce binary variables
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to replace the indicator variables as well as other binary and integer variables to

remove the non-linear terms from the objective function. By taking all these steps,

we will have an MIP with linear constraints and linear objective function, which is

stated in the next section. The resulting MIP can be easily solved by CPLEX even

with a huge number of variables and constraints. We denote this MIP program

by MIP(xi, bi, hi(xi, bi)) to emphasize its dependency on xi, bi and hi(xi, bi). By

plugging back the MIP into the (LP1), we have:

(LP2) max ρ

s.t hi(xi, bi) + ρ ≤ πixi + λi min
ai∈Ui(xi,bi)

{
κiti + hi(xi + 1− ai − ti, bi + ai)

}

+ (1− λi − biµi)hi(xi, bi) + MIP(xi, bi, hi(xi, bi)), ∀xi ≤ K, bi ≤ B.

Now we need to solve the (LP2) with ρ and hi(·) as unknown variables. The

structure of the (LP2) is equivalent to an average cost DP with state variables (xi, bi),

and therefore is solvable by the relative value iteration algorithm. By implementing

this decomposition scheme, we are approximating the (DP) which has 2n state

variables by n separate smaller DP with only 2 state variables.

The optimal average cost obtained from value iteration algorithm is denoted by

ρ∗i . After implementing this algorithm, we also get hi(xi, bi) for all i, xi and bi. In

the process of deriving the (LP2), some of the constraints in action space that exist

in the original (LP) are relaxed. So the optimal average cost from the (LP2) should

be a lower bound for the optimal average cost. This result is summarized in the

following proposition.
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Proposition 3.6.2 The optimal objective function of the (LP2) gives a lower bound

on the optimal average cost in the (DP); i.e., ρ∗i ≤ ρ∗ for each i. Consequently,

maxi ρ
∗
i ≤ ρ∗.

3.6.3 The Mixed-Integer Program

To write the minimization over x−i and b−i as a separate MIP, we need to define

binary variables to replace the indicator variables in the minimization. The first set

of variables is:

zk = I {xk ≥ L∗k} and z′k = I {xk ≥ L∗k + 1} , ∀k 6= i

rk = I
{
bk ≥ b̃∗k

}
and r′k = I

{
bk ≥ b̃∗k + 1

}
, ∀k 6= i,

along with the following constraints:

xk ≥ zkL
∗
k, xk ≤ (1− zk)(L∗k − 1) + zkM, ∀k 6= i,

xk ≥ z′k(L
∗
k + 1), xk ≤ (1− z′k)L∗k + z′kM, ∀k 6= i,

bk ≥ rkb̃
∗
k, bk ≤ (1− rk)(b̃∗k − 1) + rkM, ∀k 6= i,

bk ≥ r′k(b̃
∗
k + 1), bk ≤ (1− r′k)b̃∗k + r′kM, ∀k 6= i.

Note that M is a positive large number. These constraints assure that the variable

takes the right value as the associated indicator variable does. The second set of

binary variables is defined to remove the non-linear terms in the constraints:

fk = zk(1− ak − tk), ∀k 6= i,

f ′k = rkak, ∀k 6= i,
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along with below constraints:

2fk ≤ zk + (1− ak − tk) ≤ fk + 1, ∀k 6= i,

2f ′k ≤ rk + ak ≤ f ′k + 1, ∀k 6= i.

Therefore, for given i, xi, bi and hi(xi, bi), the minimization over x−i and b−i

can be summarized as follows:

min
∑
k 6=i

πkxk +
∑
k 6=i

λk

[
κktk + πkwkfk +

α

µk
f ′k

]

+ biµi

[
(1− dii)hi(xi, bi − 1) + diihi(xi − 1, bi) +

∑
j 6=i

dij

(
α

µj
rj − πjwjz′j

)]

+
∑
k 6=i

bkµk

[
(1− dkk)

(
− α

µk
r′k

)
+ dki

(
hi(xi − 1, bi + 1)− hi(xi, bi)

)

+ dkk (πkwkz
′
k) +

∑
j 6=i,k

dkj

(
α

µj
rj − πjwjz′j

)]

s.t.:∑
k 6=i

xk ≤ K − xi,
∑
k 6=i

bk ≤ B − bi,

ak ≤ B − bi, xi −K + 1 ≤ ak + tk ≤ 1, ∀k 6= i,

n∑
j=1

dkj ≤ 1, dki ≤ xi, ∀k,

2fk ≤ zk + (1− ak − tk) ≤ fk + 1, ∀k 6= i,

2f ′k ≤ rk + ak ≤ f ′k + 1, ∀k 6= i,

xk ≥ zkL
∗
k, xk ≤ (1− zk)(L∗k − 1) + zkM, ∀k 6= i,

xk ≥ z′k(L
∗
k + 1), xk ≤ (1− z′k)L∗k + z′kM, ∀k 6= i,
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bk ≥ rkb̃
∗
k, bk ≤ (1− rk)(b̃∗k − 1) + rkM, ∀k 6= i,

bk ≥ r′k(b̃
∗
k + 1), bk ≤ (1− r′k)b̃∗k + r′kM, ∀k 6= i,

xk and bk are integer, ∀k 6= i,

ak, tk, zk, z
′
k, rk, r

′
k, fk, f

′
k are binary, ∀k 6= i,

dkj is binary, ∀k, j.

We still have some non-linear terms in the objective function of the MIP. Hence,

the following binary variables are defined to transform it to a linear function:

sij = dijrj, 2sij ≤ dij + rj ≤ sij + 1, ∀j 6= i,

s′ij = dijz
′
j, 2s′ij ≤ dij + z′j ≤ s′ij + 1, ∀j 6= i,

ek = dkkr
′
k, 2ek ≤ dkk + r′k ≤ ek + 1, ∀k 6= i,

vk = dkkz
′
k, 2vk ≤ dkk + z′k ≤ vk + 1, ∀k 6= i,

ukj = dkjrj, 2ukj ≤ dkj + rj ≤ ukj + 1, ∀k 6= i, j 6= i, k,

ykj = dkjz
′
j, 2ykj ≤ dkj + z′j ≤ ykj + 1, ∀k 6= i, j 6= i, k.

The last set of variables includes:

mk = bkr
′
k, mk ≤ r′k(B − bi),mk ≤ bk, (r

′
k − 1)M + bk ≤ mk, ∀k 6= i,

m′k = bkek, m′k ≤ ek(B − bi),m′k ≤ bk, (ek − 1)M + bk ≤ m′k, ∀k 6= i,

nki = bkdki, nki ≤ dki(B − bi), nki ≤ bk, (dki − 1)M + bk ≤ nki, ∀k 6= i,

ok = bkvk ok,≤ vk(B − bi), ok ≤ bk, (vk − 1)M + bk ≤ ok, ∀k 6= i,

pkj = bkukj, pkj ≤ ukj(B − bi), pkj ≤ bk, (ukj − 1)M + bk ≤ pkj, ∀k 6= i, j 6= i, k,
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qkj = bkykj, qkj ≤ ykj(B − bi), qkj ≤ bk, (qkj − 1)M + bk ≤ qkj, ∀k 6= i, j 6= i, k.

By taking all these steps, we will have a mixed-integer program with linear

constraints and linear objective function as follows:

min
∑
k 6=i

πkxk +
∑
k 6=i

λk

[
κktk + πkwkfk +

α

µk
f ′k

]

+ biµi

[
(1− dii)hi(xi, bi − 1) + diihi(xi − 1, bi)+

∑
j 6=i

(
α

µj
sij − πjwjs′ij

)]

+
∑
k 6=i

[
α(m′k −mk) + µknki

(
hi(xi − 1, bi + 1)− hi(xi, bi)

)
−

µkokπkwk +
∑
j 6=i,k

µk

(
α

µj
pkj − πjwjqkj

)]

s.t.:∑
k 6=i

xk ≤ K − xi,
∑
k 6=i

bk ≤ B − bi,

ak ≤ B − bi, xi −K + 1 ≤ ak + tk ≤ 1, ∀k 6= i,

ak ≤ B − bi, xi −K + 1 ≤ ak + tk ≤ 1, ∀k 6= i,

n∑
j=1

dkj ≤ 1, dki ≤ xi, ∀k,

2fk ≤ zk + (1− ak − tk) ≤ fk + 1, ∀k 6= i,

2f ′k ≤ rk + ak ≤ f ′k + 1, ∀k 6= i,

xk ≥ zkL
∗
k, xk ≤ (1− zk)(L∗k − 1) + zkM, ∀k 6= i,
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xk ≥ z′k(L
∗
k + 1), xk ≤ (1− z′k)L∗k + z′kM, ∀k 6= i,

bk ≥ rkb̃
∗
k, bk ≤ (1− rk)(b̃∗k − 1) + rkM, ∀k 6= i,

bk ≥ r′k(b̃
∗
k + 1), bk ≤ (1− r′k)b̃∗k + r′kM, ∀k 6= i,

2sij ≤ dij + rj ≤ sij + 1, ∀j 6= i,

2s′ij ≤ dij + z′j ≤ s′ij + 1, ∀j 6= i,

2ek ≤ dkk + r′k ≤ ek + 1, ∀k 6= i,

2vk ≤ dkk + z′k ≤ vk + 1, ∀k 6= i,

2ukj ≤ dkj + rj ≤ ukj + 1, ∀k 6= i, ∀j 6= i, k,

2ykj ≤ dkj + z′j ≤ ykj + 1, ∀k 6= i, ∀j 6= i, k,

mk ≤ r′k(B − bi),mk ≤ bk, (r
′
k − 1)M + bk ≤ mk, ∀k 6= i,

m′k ≤ ek(B − bi),m′k ≤ bk, (ek − 1)M + bk ≤ m′k, ∀k 6= i,

nki ≤ dki(B − bi), nki ≤ bk, (dki − 1)M + bk ≤ nki, ∀k 6= i,

ok ≤ vk(B − bi), ok ≤ bk, (vk − 1)M + bk ≤ ok, ∀k 6= i,

pkj ≤ ukj(B − bi), pkj ≤ bk, (ukj − 1)M + bk ≤ pkj, ∀k 6= i,∀j 6= i, k,

qkj ≤ ykj(B − bi), qkj ≤ bk, , (qkj − 1)M + bk ≤ qkj, ∀k 6= i, ∀j 6= i, k,

xk, bk,mk,m
′
k, ek, vk, ok, , ykj, pkj and qkj are integer, ∀k 6= i, ∀j 6= i, k,

ak, tk, zk, z
′
k, rk, r

′
k, fk, f

′
k, nki are binary, ∀k 6= i,

dkj is binary, ∀k, j,

sij, s
′
ij are binary, ∀j 6= i.
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3.6.4 Deriving Admission Policy from ADP

After obtaining hi(xi, bi) for each i, we can approximate the overall h(·) function

according to:

h(x,b) ≈
n∑
i=1

hi(xi, bi) ≡ h̃(x,b).

Once we know h̃(x,b), we can use the original (DP) to determine an action in each

state (x,b). The rules that constitute the ADP policy are explained as follows:

The ADP Policy:

1. In the case of arrival of a type-i patient, compare the costs associated with admis-
sion of the patient to the queue (if there is space in the waiting room), admission
to the ward (if there is an empty bed), and transferring to another hospital, which
are h̃(x+ei,b), h̃(x,b+ei), and κi+h̃(x,b), respectively and choose the decision
with the minimum cost.

2. In the case of discharge of a type-i patient, compare the costs associated with
admission of the type-j patient from the queue (any type of which there is at
least one patient waiting in the queue) and admitting no patient, which are h̃(x−
ej ,b− ei + ej); ∀j : xj 6= 0 and h̃(x,b− ei), respectively and choose the decision
with the minimum cost.

3.7. Computational Experiments with Realistic Problem Instances

In this section, problem instances with four patient types are considered. Note

that with four types of patients and a large number of beds, the optimal policy

cannot be computed exactly due to the curse of dimensionality. In Section 3.7.1,

two static admission policies, namely the Bed Allocation policy and the Bid Price

policy which are based on the solution of the static model (SM) are described. Six

instances of the problem are introduced in Section 3.7.2, while a comparative analysis
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between the two static policies, i.e., the Bed Allocation and the Bid Price policies,

the first-come-first-serve (FCFS) policy (as a benchmark), and the ADP policy over

these six problem instances is reported in Section 3.7.3. Recognizing the difficulties

associated with the implementation of the ADP policy in practice, Section 3.7.4

presents a priority cut-off policy that is inspired by the ADP policy (described in

Section 3.6.4). In Section 3.7.5, we report on a second set of comparative analysis

between the ADP policy, the ADP-based Priority Cut-off policy, and the current

policy being used at the MNH. In Section 3.7.6, the robustness of the ADP policy

performance respect to linear structure assumption for the waiting cost function is

examined.

3.7.1 Two Static Admission Policies

Using the solution of the (SM), two heuristic admission policies are developed.

The first heuristic policy uses (λ̃∗i , b̃
∗
i ) for all i. At any given time, the maximum

number of beds occupied by type-i patients is b̃∗i . Also, some of the new arrivals of

type-i patients are transferred based on the adjusted arrival rate (λ̃∗i ). This static

policy is called the Bed Allocation (BA) policy and is summarized below.

The Bed Allocation (BA) Policy:

1. Admit an arriving type-i patient if the number of occupied beds by type-i patients
is less than b̃∗i .

2. When all b̃∗i beds are occupied, and there is room available in the ED (i.e.,∑n
i=1 xi < K), admit the new arrival to the queue with probability of pi =

λ̃∗i
λi

and transfer with probability of 1− pi. If
∑n

i=1 xi = K, we have no option except
transferring the new arrival.
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An alternative policy is motivated by the revenue management literature, which

is called the Bid Price (BP) policy. This involves using the dual variable of the first

constraint in the (SM) (denoted by α). Recall that α represents the opportunity

cost of occupying a bed per unit time. The average LOS for a patient of type i is

µ−1
i and hence, the average opportunity cost of admitting one type-i patient to a bed

is αµ−1
i . If the cost of transfer to another hospital is less than αµ−1

i , the heuristic

policy involves transferring all arrivals of type-i patients. This makes sense when

there is no patient in the system (x = 0) or when there is at least one available bed

(note that these two are equivalent because there is no reservation in this type of

policy). In the event that there are some patients present in the queue, however, a

more precise policy would be to incorporate the patient’s waiting cost. The average

waiting cost of patients is approximated using average waiting time obtained from

the (SM). From the solution of (SM), we know that, on average, type-i patients

wait for Wi
∗ = Li

∗

λ̃∗i (1−pk∗
i

)
units of time. Hence, the waiting cost is estimated as πiWi

∗.

Using this average waiting cost, in the case that x ≥ 0, we let a patient from type i

to enter system if αµ−1
i + πiWi

∗ ≤ κi and transfer the new arrival, otherwise.

To complete the BP policy, a decision rule needs to be defined for admitting

waiting patients in the queue when a bed becomes available. There are two possi-

ble options: using FCFS rule or prioritizing patients with higher waiting cost per

period. To find the best policy, different combinations of FCFS and prioritization

with and without incorporation of waiting costs have been tested. The priority rule

incorporating waiting costs performed better than others in most of the numerical

examples. Thus, our BP policy is summarized as follows.
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The Bid Price (BP) Policy:

1. If there is at least one bed available (
∑n

i=1 bi < B), admit an arriving type-i
patient to the ward if αµ−1

i ≤ κi and transfer otherwise.

2. If there is no bed available (
∑n

i=1 bi = B), admit a new arriving patient of type i
to the queue if αµ−1

i + πiWi
∗ ≤ κi and transfer otherwise.

3. If one bed becomes available, priority is given to the patients with highest waiting
cost (as a tie-breaking rule, the patient with smaller index is admitted).

3.7.2 Six Problem Instances

In light of the data summarized in Section 3.4, first we consider a base case,

in which π = (70, 90, 145, 295), κ = 2π, and B = 16. Two more cases are devel-

oped through altering the service capacity by 25% in both directions, while the cost

parameters remain the same. By doing so, we vary the level of congestion in the

system to see its impact on the performance of the policy alternatives. The base

case corresponds to case 2, whereas the problem instances with B = 12 and B = 20

correspond to case 1 and case 3, respectively. In cases 4-6, the waiting costs are

increased for severe patients (π = (70, 90, 500, 600)) as well as the patient transfer

costs (κ = 3π) in order to observe how the admission policies respond to higher

levels of patient sensitivity to ED boarding. For all six problem instances, the ED is

assumed to accommodate a maximum of six boarding patients, i.e., K = 6.

The optimal policy for none of the six cases in our comparative studies can be

found. Nevertheless, it is possible to compare the ADP policy to the other heuristic

policies. To the purpose of comparison, a simulation model has been developed

to find the average cost associated with a specific policy. The length of simulation
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horizon is considered to be 10,000 days with 1,000 days of warm-up period. Using the

simulation model, the average waiting time of all patients and the average transfer

rates for each policy alternative are also reported. The simple averages do not reflect

the true performance of each policy since transferring or ED boarding a mild patient

is not as undesirable as transferring one severe patient. Therefore, the unit time

waiting costs (πi) are used as weights to compute the weighted averages.

3.7.3 Comparative Analysis I

Let us now turn to a performance comparison among the First-come-first-serve

(FCFS), Bed Allocation (BA), Bid Price (BP), and ADP policies. The average total

costs of the four admission policies for the six cases are depicted in Figure 3–8. In

this figure, each plot corresponds to a case, and is located according to its congestion

level (across the horizontal axis) and patient sensitivity to waiting (across the vertical

axis). Evidently, the ADP policy produces the lowest average total cost in all cases.

The other policy options fail to maintain low average total costs under all six patient

sensitivity and congestion scenarios, e.g., the BP policy under case 3.

The average waiting times and the average rates of patient transfer associated

with the admission policy options are depicted in Figure 3–9. The trade-off among

these two performance measures is quite evident from this figure. The more a policy

recommends transferring the patients to another hospital, the less the average waiting

time experienced by the remaining patients. Note that the ADP policy seems to

result in a more acceptable overall performance by balancing these two metrics.

Even though the ADP policy does not produce the lowest average waiting time in

all cases, its transfer rate is consistently reasonable.
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Figure 3–8: Average daily lost QoL – ADP policy versus static admission policies

In order to better display the comparison of the FCFS, BA, BP, and ADP

policies, the plots in each of these two figures (and the two following figures) are

not of the same vertical scale. Consequently, these figures do not highlight the true

impact of increased congestion and patient sensitivity levels on the three performance

measures.

By analyzing these figures, the following observations are made:

1. When the transfer cost increases (i.e., moving up in Figure 3–9), all policies

– except BP – decrease the rate of transfers, which results in longer waiting

times.

2. When the system is more congested (i.e., moving right in Figure 3–9), the

transfer rates increase in all policies in order to avoid much longer ED boarding

times.
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Figure 3–9: Average waiting time and rate of transfers – ADP policy versus static
admission policies

3. The BP policy in cases 1-3 is reduced to a simple priority queue with no

transfers. This happens due to the small value of α and average waiting times

obtained from the (SM). In all these cases, the BP policy also dominates the

FCFS policy.

4. The BA policy does not seem to be very promising. The total average cost of

this policy is almost the highest in all cases, except in case 3 where its transfer

rate is not acceptable.

The overall managerial insight from Figures 3–8 and 3–9 is that, as the con-

gestion and patient sensitivity levels increase, the ADP policy performs increasingly

better than the other policies in terms of achieving both lower costs and acceptable

trade-offs between waiting times and patient transfers.
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3.7.4 An ADP-based Priority Cut-off Policy

The ADP policy can be challenging to implement as it provides an action for

every state of the system. Through a detailed analysis of the results of the ADP

policy, however, we observe that often only a few of the system states are critical

in nature. For instance, when there is only one bed available in the ward and a

new patient arrives, the type of action we must take in response to the new arrival

is crucial. Should we admit this new patient to the bed or save the last bed for

arrival of a more severe patient in the future? As a more general question, how

many beds should we reserve for severe patients by not admitting the mild patients?

Or, is reservation necessary at all? In contrast, making the best decision when half

of the service capacity is available seems to be trivial. A dynamic heuristic policy

is developed in this section by following the ADP policy in the critical states and

applying a simple policy such as FCFS rule in other states, which would be much

easier to implement.

In order to ease exploring the structure of the ADP policy, the patients are first

organized into two groups regardless of their disease; mild and severe patients. The

patients in the mild group have lower waiting cost and shorter average LOS; while

in the severe group patients are highly sensitive to waiting and they occupy the bed

for longer time periods. It is crucial that we are able to cluster the patients into two

distinct groups to develop this heuristic policy.

It is evident from the results of the ADP policy in six cases that the severe

patients should be prioritized over mild patients. The ADP policy always admits

a severe patient if there is an available bed. However, this is not true for the mild
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patients. The ADP policy tends to reserve some beds for severe patients (by not

admitting the mild patients to those bed) unless there is a high chance of a patient

discharge in the near future. The chance of a discharge in the future depends on

the patient mix in the ward, particularly the number of beds occupied by the severe

patients.

Denote the aggregate number of the severe patients staying in the ward by bs.

The chance of a discharge is deemed high if bs ≤ θ1B, medium if θ1B < bs ≤ θ2B,

and low otherwise; 0 ≤ θ1 < θ2 ≤ 1. In transferring the severe patients, there is

a threshold on the cost associated with it that affects the transfer decision. The

transfer cost in this heuristic policy is defined to be small if κ ≤ ωπ and to be large,

otherwise. The values for these thresholds can be derived based on the ADP policy

recommendations at the critical states of the system.

Note that some simplifications are required to obtain the thresholds from the

ADP policy. For example, in developing this heuristic policy the number of patients

in the queue is not incorporated in our admission decisions. This is justified by the

results we obtained from the ADP policy in all six cases and it is mostly due to the

low arrival rates of patients to the system in our examples. It is presumed that the

queues are empty when a new patients arrives and consequently the decision is based

only on the state of the ward. Therefore, the rules in this heuristic policy comply

with the results of our illustrative example in Figure 3–4 of Section 3.5.

This heuristic policy is called the ADP-based Priority Cut-off (PC) policy be-

cause (i) it gives priority to certain types of patients, (ii) it changes behavior when
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the state of the system surpasses the cut-off points. Priority cut-off policies are com-

monly used in the context of patient scheduling and healthcare capacity allocation

(see for example; Esogbue and Singh (1976), Green et al. (2006), Ayvaz and Huh

(2010), Mandelbaum et al. (2012b)). However, finding the best value of cut-off points

(or thresholds) for this type of policy can be challenging. For the patient admission

problem considered in this Chapter, the ADP policy could be used to find the struc-

ture of the PC policy as well as the appropriate threshold values. A general form of

such ADP-based PC policy is stated below. Note that in the following, S denotes

the number of beds reserved for severe patients.

The ADP-based Priority Cut-off (PC) Policy:

1. When a severe patient arrives:

(a) If at least one bed is available, admit the patient to the ward.
(b) If all beds are occupied:

i. if the transfer cost is small, then transfer the patient.
ii. otherwise, admit the patient to the queue if the chance of a discharge

is high and transfer the patient otherwise.

2. When a mild patient arrives:

(a) If more than S beds are available, admit the patient to the ward (i.e., FCFS
policy).

(b) If between one and S beds are available:
i. admit the patient to the ward if the chance of a discharge is high,

ii. admit the patient to the queue if the chance of a discharge is medium,
iii. transfer the patient if the chance of a discharge is low.

(c) If all beds are occupied, admit the patient to the queue if the chance of a
discharge is high and transfer the patient otherwise.

3. If a discharge occurs, the priority of admitting a patient to the ward is always
given to the severe patients. If no severe patient is waiting in the queue, admission
of a mild patient follows item 2.a.
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3.7.5 Comparative Analysis II

The second part of our analysis in this section involves comparing the ADP-

Based Priority Cut-off (PC) policy and the current policy being used at the MNH

with the ADP policy. The MNH policy has been briefly discussed in Section 3.1.

It allocates a fixed number of beds to each patient type regardless of their level

of severity and leaves some beds flexible to be used by all patient types. Let us

denote the number of beds dedicated to stroke patient beds by bstroke, number of

beds dedicated to non-stroke patient beds by bnon-stroke, and the number of flexible

beds by bflexible. The patients are admitted to the beds until all the dedicated beds

to their type and flexible beds are full. Then, they wait in the queue for a bed in the

ward until the waiting time exceeds a threshold (denoted by T ) in which case they

have to be transferred. The hospital uses the same time threshold for all patient

transfers. This policy, which is a static bed allocation policy, is summarized below.

The Current (MNH) Policy:

1. When a patient arrives, admit the patient to the bed if any of the dedicated beds
to that patient type is empty. If all the dedicated beds are full, the next option
will be the flexible beds. If all the dedicated and flexible beds are occupied, then
the patient waits in the queue.

2. If the wait time for a patient in the queue exceeds T , the patient is transferred to
another hospital.

In the experiments, the current policy uses the following parameters:

• In cases 1 and 4, we have (bstroke, bnon-stroke, bflexible) = (8, 8, 4).

• In cases 2 and 5, we have (bstroke, bnon-stroke, bflexible) = (6, 6, 4).

• In cases 3 and 6, we have (bstroke, bnon-stroke, bflexible) = (5, 5, 2).
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• In cases 1-3, we have T = 48 hr, and in cases 4-6, we have T = 72 hr.

Also, note that the thresholds of the ADP-based PC policy explained in Section

3.7.4 vary with the cost parameters. By examining the results of the ADP policy for

the six cases, the following parameters are observed:

• In all cases, the threshold associated with the transfer cost is ω = 2.

• In cases 1-3, we have S = 1, θ1 = 1/4, and θ2 = 1/2.

• In cases 4-6, we have S = 4, θ1 = 1/2, and θ2 = 3/4.

Since the waiting costs of the severe patients are much higher in cases 4-6, the

number of beds reserved for them is larger. Also, the larger transfer costs in cases

4-6 lead to higher thresholds for evaluating the likelihood of having an available bed

in the future.

The average total costs of the ADP, PC and MNH policies are depicted in Figure

3–10. The ADP policy has the lowest average cost in all cases, whereas the costs

associated with the PC policy are consistently within an acceptable range of the

ADP policy. The difference between the ADP policy (or PC policy) and the MNH

policy is more pronounced when the patients are more sensitive to waiting and service

capacity is limited (i.e., cases 2-3 and 5-6).

The average waiting time and average rates of patient transfer for the three

policies are shown in Figure 3–11. The PC policy is more conservative than the

ADP policy in terms of patient transfers. In all cases, it transfers fewer patients and

consequently it has higher average waiting times. Compared to the current policy,

the ADP policy decreases the waiting time significantly while its transfer rates are

slightly higher in some cases. The PC policy, however, reduces the wait times in most
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Figure 3–10: Average daily lost QoL – ADP policy versus practical admission policies

cases by transferring the same or less number of patients. Hence, it could be utilized

as an efficient and practical policy by the hospital to improve the performance of

the ward in terms patients’ health outcomes. It is also important to note that the

PC policy generates the second lowest average costs over six cases compared to the

static policy alternatives (i.e., BA, BP, and FCFS policies) in Section 3.7.3.

3.7.6 Non-linear Cost Functions

Since the patient’s health status may deteriorate faster in some cases as the

waiting time increases, non-linear waiting cost functions are considered in this sec-

tion. To this end, a piecewise-linear increasing convex function for the waiting costs

of patients is assumed. The time is divided into three-hour intervals and in each

interval the waiting cost is a linear function of time with a slope that is increasing

from one interval to the next one. However, we need to linearize this cost function so

as to implement the admission policies. Hence, a Regression through Origin (RTO)
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Figure 3–11: Average waiting time and rate of transfers – ADP policy versus practical
admission policies

model is developed to find the best linear function that fits to the data points ob-

tained from each non-linear cost function. In order to compare the performance of

the admission policies under linear and non-linear waiting costs, the parameters of

non-linear function are chosen such that the slope of fitted linear function is equal

to the waiting cost per unit time (πi) in those cases that were considered in Section

3.7.3. The simulation model is then used to calculate the average total cost in both

scenarios.

The results are shown in Table 3–5. In this table, the percent increase in the

total cost associated with each policy, when the waiting costs are incurred according

to a non-linear function is reported. The last two columns of this table show the

percent improvement achieved by the ADP policy in each scenario over the best

of the other policy options. A negative percentage implies that the ADP policy is

dominated by another heuristic policy. From the table, it can be concluded that
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the performance of the ADP policy remains robust to the change in the structure of

waiting costs in almost all cases. Except in case 4, in which there is enough service

capacity, the percent improvement of the ADP policy over other policies has in fact

increased.

Case
Cost Increase (%) ADP Improvement (%)

FCFS BA BP PC ADP Linear Non-linear

1 63 73 63 41 29 27 42

2 98 53 94 56 33 57 70

3 134 77 126 78 35 61 71

4 64 102 76 96 91 12 -3

5 99 102 92 114 73 24 31

6 137 131 98 151 87 22 26

Table 3–5: Robustness of the ADP policy respect to non-linearity of waiting cost

3.8. Conclusion

In this Chapter, an admission control and bed allocation problem that incor-

porates the differentiating features of neurology wards has been considered. From

a modeling perspective, an average cost DP that assumes none of the beds in the

ward are earmarked to certain patient types was presented. It was shown that the

optimal policy for admitting patients from the ED is dynamic and it depends on the

state of the system. To overcome the curse of dimensionality, an ADP was proposed

that uses some information from a static model, which is developed utilizing queuing

theory principles. To the best of the author’s knowledge, the ADP for the average
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cost problem has not been fully explored theoretically. Some examples include Rou-

bos and Bhulai (2010) and Roubos and Bhulai (2012) that use ADP in controlling

queues with application to call centers.

The numerical results on realistic-size problem instances, based on Montreal

Neurological Hospital, revealed that the admission policy suggested by the ADP

works very well compared with the other heuristic policies. Recognizing the manage-

rial challenges in implementing the fully state dependent ADP policy, an ADP-based

priority cut-off policy was developed that performs quite well. It must be emphasized

that the structure of this heuristic policy is highly dependent on the results of the

experiments for the six problem instances that were considered in the comparative

analysis.

The current admission policy at the hospital involves dedicating six beds to

stroke patients and six beds to non-stroke patients, while leaving four beds flexible

for both patient types. Furthermore, a patient transfer request is triggered after 48

hours of ED boarding. In contrast, the proposed ADP policy does not use earmarked

beds and decides to transfer the patient at the time of arrival, considering the state

of the system. By comparing these two policies, it is shown that the current policy

can be 70-110% worse than the ADP policy in terms of average HRQoL lost per day.

Also, the ADP policy can decrease the average boarding time in the ED (especially

when there are limited number of beds available such as in case 3 and case 6 of

our comparative analysis) significantly without affecting the average rate of patient

transfers. Thus, the following insights are provided for neurology ward managers:

(i) it is better to decide whether or not to transfer a patient to another hospital
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immediately upon arrival and by taking into account the state of the system, (ii)

dedicating neurology ward beds to patient types can worsen average ED boarding

times, (iii) if the managers prefer to use an earmarking strategy, it is recommended

to do so based on the level of severity of the patients condition rather than their

disease (i.e., along the lines of the PC policy).

One of the limitations of the modeling framework of this study and the solution

approach is the stationary arrival process assumption. The stationary case was cho-

sen to simplify the analysis and the exposition of the material, as customary in the

healthcare operations literature (Patrick et al., 2008). However, this study can be

adapted to deal with non-stationary arrival processes. A well-studied technique to

deal with non-stationary arrival in queueing control is point-wise stationary approxi-

mation (PSA). The PSA approach uses solutions from stationary systems as building

blocks for non-stationary systems (Green and Kolesar (1991) and Yoon and Lewis

(2004)). A PSA solution can be easily constructed based on the static queueing

approximation and the DP decomposition introduced in our paper.

The modeling framework proposed in this chapter is based on two more simpli-

fications. First, a small percentage of the patients with neurological conditions can

be admitted directly to the ward for elective surgeries, while this study was confined

to the patients who are admitted through the ED. Second, some patients, e.g., severe

stroke patients, require intensive care for stabilization prior to being admitted to the

ward, which is missed in the model. Their LOS in the neuro-ICU, however, is most

often 48 hours with fairly low variability. Extensions to the model to relax these two

assumptions constitute fruitful avenues for future research.
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In closing, the problem that was studied shares similarities with general multi-

class queuing problems, and hence this research can have potential implications in a

more general domain than the healthcare context that constitutes the focus of this

chapter.
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CHAPTER 4
The Specialization of Healthcare Services

4.1. Introduction

Networks of multiple hospitals are becoming very popular structure in the

healthcare sector (Yonek et al., 2010). Hospitals seek to improve efficiencies, remain

competitive and increase the chance of survival through mergers and consolidation.

More organizational changes are expected to take place as a consequence of rising

hospitals costs and healthcare budget cuts (www.ft.com). In general, there is a com-

mon belief that mergers can enhance operational efficiency and produce economic

benefits, but the outcome is not always guaranteed. Two examples of successful

mergers in Canada are The Ottawa Hospital and Trillium Health Partners. Sig-

nificant operational improvements have been reported in these hospitals after the

mergers. The Trillium Health Partners has experienced a seven percent reduction in

waiting times in EDs over all its four sites (www.hospitalnews.com).

However, there have always been different opinions among both practitioners and

researchers about the success of mergers and the difficulty of implementing changes

at the merger sites. As merging and centralization of services are often observed in

the healthcare sector, it does not always appear to be the best solution. The hospitals

that provide specific types of care to patients are expected to benefit from economies

of focus and improve the quality of the care provided by them. This is achieved

by organizing the care around patients groups, such as the breast cancer clinics or
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the clinical pathways for diabetes patients (Vanberkel et al., 2012). But as it has

been realized from many studies this might not be ideal in every situation. Thus, a

main challenge faced by policy makers in the process of designing the structure of

multi-hospital networks is finding the best system configuration that improves the

quality of care and efficiency of hospitals.

A network of hospitals is no different than a queuing network. Patients enter

the network, request for medical services from – possibly multiple – servers, renege

or wait for a server if that server is busy, and leave the system after completion of

their treatment. Examining the queueing theory literature, we observe a significant

number of studies that have focused on designing the queueing systems in terms of

customer routing and server flexibility level. Many studies compare possible scenar-

ios from dedicated (or specialized, or decentralized) to fully flexible (or pooled, or

centralized, or diversified) configurations. The dedicated system refers to an inde-

pendent single queue while the pooled system operates as a multi-server queueing

system with a single queue. It has been shown that when service and demand

distributions are homogenous, the pooled system always dominates the dedicated

system (Smith and Whitt (1981), Benjaafar (1995), Joustra et al. (2010), Ata and

Van Mieghem (2009)). However, if the system is not homogenous, the pooled system

is not always preferred (Buzacott (1996), Smith and Whitt (1981), Mandelbaum and

Reiman (1998), Dijk and Sluis (2008), and Van Dijk and van der Sluis (2009)).

In a healthcare application to health care setting, Vanberkel et al. (2012) ex-

amines the impact of pooling on the efficiency of hospitals. The trade-off between

economies of scale resulting from centralization versus economies of focus resulting
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from decentralization is studied in this paper. The centralization of healthcare ser-

vice in this study implies developing healthcare centers that serve all types of patient

and decentralization refers to centers that offer a limited range of services. They have

found that the decision of dividing a centralized center requires careful consideration

of center load, patient mix, and variability of service times.

Tiwari and Heese (2009) studies a network of two hospitals with the presence of

one competitor and answers the question of when specialization of service is preferred

and when the network of hospitals is better off by remaining diversified from a

profit maximizing perspective. Mahar et al. (2011) studies the problem of locating

a specialized healthcare delivery systems, while taking into account both financial

and patient service level aspects. For further literature on this topic, the reader is

referred to Section 2.1.

Reviewing the related literature reveals that one right answer to the question of

pooling versus unpooling, specialization versus diversification, or dedication versus

flexibility does not exist. This study aims at shedding additional lights to the answer

of this question in the context of healthcare services. It provides extra information

pertinent to the situations when specialization of service could be beneficial.

Before elaborating on the motivation of this study, its differentiating features

are highlighted. First, the possible network designs of this study are different from

the ones considered in prior studies. While the specialization scenario of this study

is the same, the alternate scenario (i.e., diversification) is quite different. In our

diversification scenario the hospitals work completely independent of each other and

unlike the pooled scenario every hospital has its own resources and patient inflows.
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Due to this specific feature the comparison of each scenario requires finding the best

allocation of resources between the hospitals. This implies that in the inner layer

of each comparison, there is an optimization problem for which an efficient solution

methodology is developed.

Second, this study considers a wide range of characteristics belonging to a multi-

hospital network and introduces a new set of parameters for describing the properties

of a network. Third, it considers the impact of blocking in the process of providing

service to patients, which is very relevant and is sometimes missing in healthcare

research. In this study, the refusal rate of patients to the network is considered as

the performance measurement of scenarios while other studies use average waiting

time of patients or throughput rate of patients in the system.

Fourth, this study examines the simultaneous improvement of all hospitals in-

volved in a restructuring process that, to the knowledge of the author, has not been

considered in earlier papers. Besides searching for the situations where specializa-

tion could improve the network-level performance, this study identifies the conditions

where specialization helps all the hospitals of the network increase their operational

efficiency.

4.2. Motivation

As a pending restructuring of two existing sites of McGill University Health

Center (MUHC), the Montreal Neurological Hospital (MNH) and the Montreal Gen-

eral Hospital (MGH) plan to collaboratively provide care to stroke patients. In the

proposed configuration, each of these two hospitals will offer certain level of stroke

care; secondary stroke care (at MGH) and tertiary stroke care (at MNH). A patient
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that is diagnosed as a stroke case will be taken to the ED of one of these hospitals.

Upon arrival at the ED, the patient is triaged by a special team of healthcare profes-

sionals to determine the level of care needed by the patient. The level of care decides

to which hospital’s ward the patient will ultimately be admitted. But in the current

configuration, both hospitals are capable of providing both levels of care and stroke

patients are admitted to the ward of the hospital they arrive at.

4.2.1 Stroke Patients Flow

In general, stroke patients are categorized into two groups: (1) hemorrhagic

stroke patients; and (2) ischemic stroke patients. Hemorrhagic stroke patients nor-

mally need neuro-surgery or other types of neuro-intervention, which is considered as

tertiary care, and thus, according to the proposed configuration, the patient should

be treated at MNH. In the case of an ischemic stroke, if the time passed from the

stroke is less than a certain amount of time (three hours in the current medical

protocol), the patient is eligible for receiving tPA, which will be provided only at

MNH. A small percentage of ischemic patients are tPA eligible. There is also a very

small percentage of ischemic patients that are not tPA eligible, but may need an

intervention, and as mentioned earlier, is considered as tertiary care provided only

at MNH. All other ischemic patients require secondary care, which be provided at

MGH when the proposed reconfiguration is implemented.

All the stroke patients, after receiving neuro-intervention or tPA, are transferred

to the ICU and will be monitored carefully for a certain amount of time (i.e. 24 hours)

to assure that the patient’s health status is stabilized. After the stabilization, the

patient is admitted to the stroke ward to continue receiving the acute care. Once the
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patients finish their stay at the stroke ward, they are transferred to the Alternate

Level of Care Unit (ALCU), where they wait until they are discharged to home or

until a bed in rehabilitation center or long-term care facility becomes available for

them. The care the patients receive in the ALCU is less intensive compared with

the care they receive in the stroke ward and the ratio of healthcare professionals to

patient in this unit is significantly lower.

The proposed configuration is an example of specialization of healthcare services.

Each hospital will focus on providing a specific level of care in this scenario. The

MNH will serve only severe stroke patients who need tertiary level of care. The MGH

will admit only mild stroke patients who require secondary level of care. The flow of

patients in this specialized setting is shown in Figure 4–1.

Figure 4–1: Patient flow in the specialized network scenario
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In the current scenario, which is called diversified scenario, both hospitals receive

both types of patients. The flow of the patients inside the hospitals is the same.

However, no hospital is dedicated to serve a specific type of stroke patients. In

Section 4.2.2, the two configuration scenarios are evaluated using a simulation model.

4.2.2 Simulation Study of Network Configuration Scenarios

Based on the stroke patients flow in the two hospitals, which has been described

in Section 4.2.1, a discrete-event simulation model has been developed. The data

of the mild and severe stroke patients is used for the arrival rate and the LOS of

secondary and tertiary patients receptively, which can be found in Tables 3–1 and

3–2. Since the related data for the MGH is not available, for the sake of analysis,

we use the same arrival rate and length of stay of the patients that arrive at MNH.

Table 4–1 shows the number of beds that are currently available at different units of

each hospital.

Table 4–1: Current number of beds at the MNH and MGH
Unit Number of beds
MNH Neuro-ICU 3
MGH Monitored ED 3
MNH Stroke Ward 12
MGH Stroke Ward 8
MNH ALCU 6
MGH ALCU 6

One of the key performance measurements of the system is the average wait-

ing time that patients experience before they are admitted to the stroke ward. As

emphasized before, the treatment of stroke patients is very time-sensitive and it is

highly desirable to keep the waiting time at any phase of their treatment as minimum
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as possible. Therefore, using the simulation model, the average time a patient has

to wait, on average, for a bed in the stroke ward are reported in Table 4–2.

Table 4–2: Average waiting time for a stroke ward bed (simulation results) – current
bed allocation

Scenario
Average Waiting Time (hr)
MGH MNH

Diversified 11.01 0.00
Specialized 15.17 0.01

The total number of stroke beds in two stroke wards is currently 20. The perfor-

mance of the system can be improved by changing the allocation of beds between the

two sites. The best bed allocation under each scenario can be obtained by exploring

all the possible alternatives – the number of all allocation solutions is constrained

by the total number of beds, i.e., 20. In searching for the optimal bed allocation,

we minimize the maximum average waiting times of the two sites. By doing so,

we decrease the waiting time for both secondary and tertiary stroke patients simul-

taneously. The performance of the system under two scenarios when the beds are

optimally allocated is reported in Table 4–3.

Table 4–3: Average waiting time for a stroke ward bed (simulation results) – optimal
bed allocation

Scenario
Average Waiting Time (hr)
MGH MNH

Diversified 0.37 0.56
Specialized 1.06 0.32

In the optimal solution, the average waiting time for the mild stroke patients

at MGH decreases significantly. However, this happens at the expense of slight
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increase in the waiting time of severe stroke patients at MNH. Comparing the results

in Tables 4–2 and 4–3 shows that the diversified configuration of the hospitals is

preferred even if the current bed allocation remains intact. By specialization of the

two hospitals the maximum waiting times of patients at two sites would increase.

Specially, the MGH site is worse off in both current and optimal bed allocation,

while the MNH would benefit from it if the optimal bed allocation is deployed. In

the current bed allocation, the MNH is indifferent between the specialization and

diversification scenarios.

This conclusion might seem counter-intuitive. It is presumed that by reducing

the variability in service times of a queue, the average waiting time decreases. By

specialization of the two sites we practically assign each site to deal with only one

type of patient. So the variance in the LOS as well as the average waiting time for all

patients should be reduced. However, this contradicts the results from the simulation

model. It sounds that there are some other parameters than service time distribu-

tion that are playing role in the determining the performance of a multi-hospital

network. In the next sections, the problem of multi-hospital network design is an-

alyzed through a comprehensive experimental study. But before that, the resource

allocation problem in a multi-site network is formulated so that the performances of

configuration scenarios are compared at their optimal levels.

4.3. Multi-Site Healthcare System

Consider a network of hospitals that provides medical care to certain types of

patients. Each type of patients requires a specific type of care. The patients are

categorized into distinct groups based on the type of care they need. Let us denote
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the patient group (or the patient type) by index i. Each hospital in the network is

capable of providing all types of care. The hospitals are indexed by j.

We focus on the process of providing service only to inpatients. Inpatients stay

in hospital for longer periods of time compared with outpatients and coordination of

their care process requires additional efforts by hospital staff. Inpatients normally

visit more than one unit during their stay in hospital and they flow inside the hospital

according to their clinical pathways. Once their service is complete at one unit, they

move to the next unit in their clinical pathways unless there is no service capacity

available at the destination unit. In this case, the patients are prevented from moving

forward (i.e. blockage occurs) and they continue using the resources of the current

stage.

Inpatients enter hospitals through the ED. When their service at the ED is

finished a request is generated for their admission to other units of hospital. A simple

inpatient’s path in a hospital can be the following: transferring to the Intensive Care

Unit (ICU), being admitted to the Acute Care Unit (ACU), transferring to the

Alternative Level of Care Unit (ALCU) – which might also be called the Post-Acute

Care Unit (PACU) – and discharging from the hospital.

We assume a tandem queueing network in this study with no buffers between

the stages. This means that the order according to which patients visit the hospital

units is the same for all patient types. However, patients might visit any stage

of their clinical pathway more than one time due to medical complications. Such

considerations are excluded from the scope of this study for the sake of simplicity.

Figure 4–2 provides an overview of a patient’s clinical pathway in a hospital of the
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network. Let us denote the stages in a patient’s clinical pathway by k. The average

time that a type-i patient stays at stage k is 1
µik

. Note that the LOS of patients is

independent of location of hospitalization.

Figure 4–2: Clinical path for a patient in the hospital

4.4. Multi-Site Bed Allocation Problem

The patients are assumed to arrive at the network according to a Poisson process

with the rate of λ per unit time. The arrival of patients to each hospital is inde-

pendent of other hospitals and is a function of network configuration. We consider

two configurations for the flow of patients in the network. In the first configuration,

which is called Diversification, all types of patient might arrive at any hospital of

the network. The type-i patients arrive at hospital j with the rate λij per unit time.

Denote the matrix of arrival rates by Λ; Λi,j = λij. The rate of total arrivals at

hospital j is λ·j(=
∑

i λij).

In an alternative scenario, which is called Specialization, all the patients of the

same type will be served in one hospital. This implies that each hospital in the

network is dedicated to serve a specific type of patients (or more than one type if

the number of patient types is more than the number of hospitals). All the patients

from one type that arrive at different hospitals in Diversification scenario, are now

redirected to the hospital that is assigned to them. The hospital managing all type-i

patients will receive patients with the rate of λi·(=
∑

j λij) and will be specialized in

offering service to a specific type of patients.
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There is a limited number of beds available at each stage of the clinical path

to be distributed among the hospitals of the network. The beds available at each

stage are exclusively used for that stage and cannot be relocated to other stages.

Denote the total number of available beds at stage k by Bk and the beds dedicated

to the stage k at hospital j by bjk after the allocation decisions are made. Note that∑
j bjk = Bk. The objective of Multi-Site Bed Allocation (MSBA) problem is to

find the right number of beds assigned to each stage for all hospitals such that the

performance of the whole network is maximized.

The performance of the network is measured by the maximum blocking prob-

ability of all sites. The acute care received by the inpatients is a very specialized

treatment and unavailability of resources to provide the required care is very costly

from a patient health perspective. The blocking probability demonstrates the pro-

portion of patients whose access to the system is denied because there is no resource

available at the first stage. By minimizing the maximum blocking probability of all

sites we try to find the bed allocation decisions that minimizes the refusal rates at

all hospitals simultaneously. As an alternative measurement, the (weighted) average

of blocking probabilities could be considered as well. However, the major drawback

of this criterion is that the difference between blocking probability of hospitals could

be inappropriately large. To avoid any inequity issues between the hospitals or the

patients, the maximum of blocking probabilities is chosen as the objective function

of the MSBA problem.

Every solution of the MSBA problem can be shown by matrix B; Bj,k = bjk.

The blocking probability of hospital j depends on the bed allocation solution (jth
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row of matrix B denoted by bj) and the scenario according to which the structure

of the network is configured. Let us denote the blocking probability of hospital j for

a given bj by p
(·)
j (bj), where the superscript (·) refers to the network design, i.e., D

for Diversification scenario or S for Specialization scenario. The MSBA problem for

scenario (·) is defined as follows:

(MSBA) Minimize max
j
{p(·)

j (bj)}

Subject to
∑
j

bjk = Bk,∀k,

bjk integer,∀j, k.

The solution of the MSBA problem is denoted by π(·), i.e., π(·) = minB maxj p
(·)
j (bj)

with respect to the bed allocation constraints.

4.5. Blocking Probability Estimation in a Queueing Network

The exact blocking probabilities of a tandem queue without buffer space between

stages are obtained through solving the system of steady-state equations. Finding

the exact solution of this system of equations becomes very complex and the com-

putation time increases exponentially as the state of the system expands. Therefore,

approximation techniques are used to estimate the blocking probability for these

queueing networks.

By examining the literature, several papers are found that develop approxima-

tion schemes and heuristic algorithms for estimating the blocking probabilities in

different types of queues. Most of these papers take advantage of limiting assump-

tions. Examples of papers that study single server queues include: Hunt (1956),

89



Hillier and Boling (1967), Takahashi et al. (1980), Suri and Diehl (1984), Perros

and Altiok (1986), Altiok and Perros (1987), Gershwin (1987), Brandwajn and Jow

(1988), Lee and Pollock (1990), Dallery and Frein (1993), Perros (1994), Lee et al.

(1998), Abadi et al. (2000), and Balsamo et al. (2001). Multi-server queues are stud-

ied by Hershey et al. (1981), Weiss et al. (1982), Weiss and McClain (1987), El-Darzi

et al. (1998), Koizumi et al. (2005), and Bretthauer et al. (2011).

Among the cited studies, the recent paper by Bretthauer et al. (2011) shares

the most similarities with the settings of the problem considered in our study. They

study applications of tandem queue networks with blocking in a healthcare environ-

ment and develop a new heuristic to estimate the blocking probabilities in all stages

of the network. An extension of the algorithm that can be applied to queueing net-

works with general routing is also developed. They compare the solution of their

proposed heuristic with the exact solution and that of other heuristics that exist in

the literature. Through extensive computational efforts, they show that the aver-

age percent error in the estimated blocking probability of first stage in a tandem

queueing network is very small when compared with other heuristics. As a matter

of fact, the average percentage errors for two- and three-stage systems (where the

exact solution can be determined) is less than 5%.

Due to the good performance of the proposed heuristic approach in Bretthauer

et al. (2011), their algorithm is used in finding the blocking probabilities in our

problem. Note that this thesis does not intend to contribute to the literature of

this area and thus their algorithm is only adjusted according to the settings of the

problem under study. A summary of their heuristic algorithm follows.
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4.5.1 Heuristic By Bretthauer et al. (2011)

The heuristic algorithms used to find the blocking probabilities in queuing net-

works often attempt to assess the effect of blocking in different stages of a network

on the blocking probability of the first stage. Bretthauer et al. (2011) use two ideas:

(i) adjusting the number of servers; and (ii) adjusting the service rates at each stage;

to incorporate the fact that some servers are occupied by the patients whose service

is complete but are unable to move forward because there is no free bed at the next

stage.

To explain their proposed algorithm in more details, the same notations intro-

duced by the authors will be used in this section. Consider a tandem queue with n

stages. The number of servers at stage k is sk and the service rate per server is µk.

If we isolate stage k from other stages, the type of queue is M/G/sk/sk. Given the

arrival rate λ, the probability of the system being full in such a queue is given by

(Gross et al., 2008):

π(λ, µk, sk) =
(λ/µk)

sk/sk!∑sk
j=0(λ/µk)j/j!

(4.1)

The flow rates between stages in the steady state are all equal to each other. In

other words, the inflow and outflow rates at each stage are equal when the network

is in the steady state. Note that the outflow rate of stage k is the inflow rate of

stage k + 1. If the blocking probability of the first stage is π1, then the flow rate of

patients throughout the network is given by:

F = λ(1− π1) (4.2)
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The number of servers and service rate at each stage are adjusted to incorporate

the effect of blocking. First, we find the average number of servers at each stage that

are blocked by the patients whose services are finished but are not able to move to

the next stage. To this end, it is assumed that a virtual waiting line exists before

the next stage so that the blocked patients will wait there for a server to become

available. The virtual waiting line is assumed to have infinite capacity. The average

number of patients waiting in this virtual queue, which is an M/G/s queue, is then

determined. For an M/G/s queue with the arrival rate λ and the service rate µ the

average length of queue is approximated by (Lee and Longton, 1959):

L(M/G/s) ≈ 1 + C2
s

2
L(M/M/s), (4.3)

where Cs is the coefficient of variation of service time distribution. The M/M/s

queue on the RHS of (4.3) has the same service rate as the M/G/s on the LHS. This

approximation is deemed to be an “excellent” approximation for M/G/s queues

(Whitt, 1993). Note that (4.3) is exact for M/M/s queues since the coefficient of

variation of the Exponential distribution is equal to one. The average length of an

M/M/s queue is obtained by (Gross et al., 2008):

L(λ, µ, s) =
ssρs+1

s!(1− ρ)2

[
s−1∑
n=0

rn

n!
+

rs

s!(1− ρ)

]−1

, (4.4)

where r = λ/µ and ρ = r/s.

In the Specialization scenario, all the stages of the hospitals are M/M/s queues.

Therefore, Equation (4.4) is used to determine the average number of patients blocked

at each stage. However, in the Diversification scenario, we deal with M/H2/s queues
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as two types of patients are present in the queues. Hence, the coefficient of variation

of the Hyper-exponential distribution is used in (4.3).

Given the arrival rate and the service rate of type-1 patients being λ1 and µ1,

receptively, and the arrival rate and the service rate of type-2 patients being λ2 and

µ2, receptively, the mean and the variance of the Hyper-exponential distribution are:

Exp(Service Time) =
λ1(1/µ1) + λ2(1/µ2)

λ1 + λ2

, (4.5)

and

Var(Service Time) = [Exp(Service Time)]2 + 2
λ1λ2

λ1 + λ2

(
1

µ1

− 1

µ2

)2

. (4.6)

The coefficient of variation is Cs = Var(Service Time)1/2/Exp(Service Time).

In reality, this virtual waiting line forms inside the beds of the current stage. So

the average number of blocked servers in a stage is the minimum of the average num-

ber of waiting patients for the next stage and the total number of servers at this stage.

For example, for stage k, the average number of blocked servers is min{sk, Lk+1}.

The number of effective servers is defined as the total number of servers minus those

that are blocked if this value is positive and zero otherwise, which is

s∗k = [sk − Lk+1]+ . (4.7)

We now approximate the actual time that patients spend at each stage. The

patient’s real length of stay at stage k is the original service time, which is on average

1
µk

, plus the time they wait until one server becomes available at stage k + 1, which

is on average 1
sk+1µk+1

, weighted by the number of effective servers and the number
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of blocked servers, respectively. Therefore, the effective service rate at stage k is

defined as:

µ∗k =

[
s∗k
sk

1

µk
+
sk − s∗k
sk

1

sk+1µk+1

]−1

. (4.8)

Using (4.1)-(4.8), the blocking probability at the first stage can be estimated

through the following algorithm:

Heuristic Proposed by Bretthauer et al. (2011)

1. Set m = 0, π0
1 = 0, µ0

k = µk, s
0
k = sk for k = 1, · · · , n.

2. Increase m by one.
3. Use (4.2) to find the flow rate Fm = λ(1− πm−1).
4. For stages k = 1, · · · , n, use Equations 4.4-4.8 to update the number of

effective servers; smk =
[
sk − L(Fm, µm−1

k+1 , s
m−1
k+1 )

]+
and the effective service

rates; µmk =
[
smk
sk

1
µk

+
sk−smk
sk

1
sk+1µk+1

]−1

.

5. Use (4.1) to update the blocking probability; πm1 = π(Fm, µm1 , s
m
1 ).

6. If
∣∣πm1 − πm−1

1

∣∣ > δ, repeat steps 2-5.

4.6. Characterization of a Multi-Hospital Network

Each network of hospitals is described by a set of main parameters (Λ, M, and

Bk) as explained in section 4.4. The objective of this section is to substitute this set

of parameters with another set of parameters that will be more helpful in interpreting

the results of this study. There will be a one-to-one relationship between the two sets

of parameters such that for any given values of parameters in one set the values of

parameters in the other set can be uniquely determined. The new set of parameters

will be used in developing a heuristic algorithm for the MSBA problem in Section

4.7 as well as in designing a comprehensive experimental study in Section 4.8.
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Without loss of generality, only two types of patients (type-1 and type-2 pa-

tients) and two hospitals (Hospital 1 and Hospital 2) are considered to be present in

the network. The parameters will be explained in three levels: (1) patient level; (2)

hospital level; and (3) network level.

4.6.1 Patient Level Parameters

The parameters that are introduced in this section are associated with the LOS

of patients. Let us define θk as the ratio of type-1 patient’s service rate to type-2

patient’s service rate at stage k: θk = µ1k
µ2k

. This parameter indicates the relative

average LOS of patients at each stage (Figure 4–3).

Figure 4–3: Ratio of service rates of patients at each stage

For each patient type, we are also interested in the ratio of service rate at the

first stage to stage k’s service rate: κ1k
i = µi1

µik
; k 6= 1. This parameter describes the

relative LOS at each unit of hospital for a given patient type.

For a problem with two patient types and two hospitals, there will be seven

parameters and six service rates. If the service rate of type-1 patient in stage 1 is

normalized to one, then two parameters need to be chosen as dependent parameters

to have a system of 5 unknowns (service rates) and 5 equations (one equation for

each independent variable). The θ1, θ2, θ3, κ12
2 , and κ13

2 are selected as independent
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variables. Setting values of independent parameters at some pre-determined levels,

the service rate matrix is calculated as:

M =

 1 θ2
θ1κ122

θ3
θ1κ132

1
θ1

1
θ1κ122

1
θ1κ132

 . (4.9)

The values of dependent parameters are calculated accordingly; κ12
1 = θ1

θ2
κ12

2 , and

κ13
1 = θ1

θ3
κ13

2 .

The average total LOS (tLOS) of type-i patients in the hospital is
∑

k
1
µik

;µi =

(
∑

k
1
µik

)−1 . Let us define the ratio of tLOS for the two patient types as

θ =
tLOS2

tLOS1

=
µ1

µ2

. (4.10)

The value of θ depends on the service rates obtained by (4.9) and is only used in

deriving some other parameters at the level of hospitals.

4.6.2 Hospital Level Parameters

The arrival rate of patients to the network is given by matrix Λ; Λi,j = λij.

The total arrival rate to the system is λ =
∑

i

∑
j λij =

∑
i λi· =

∑
j λ·j. In the

Diversification scenario, the fraction of patient who arrive at the Hospital 1 is denoted

by β (β = λ·1
λ

). Consequently, the fraction of patients who go to the Hospital 2 is

1 − β. In the Specialization scenario, all type-1 patients will go to the Hospital 1.

Denote the fraction of type-1 patients in the network by α (α = λ1·
λ

).

In the Diversification, scenario the fraction of arrivals to each hospital (β and

1−β) does not completely describe the arrival intensity. It is also important to know
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the average tLOS of all patients in each hospital. Therefore, we define

ω =
λ11
λ·1
µ1 + λ21

λ·1
µ2

λ12
λ·2
µ1 + λ22

λ·2
µ2

=
λ·2
λ·1

λ11θ + λ21

λ12θ + λ22

. (4.11)

Note that in the Specialization scenario, the parameter ω is reduced to θ. For given

α, β, ω, and the total arrival rate λ, we can find the arrival rate matrix:

Λ =

 λ(α + β − 1)− λ22 (1− β)λ− λ22

(1− α)λ− λ22 λ22

 , (4.12)

where λ22 = λ(1−β)(βθ(1−ω)+(1−θ)(1−α))
(1−θ)(1−β(1−ω))

.

4.6.3 Network Level Parameters

The service capacity of the network at each stage is affected not only by the

service rate of patient mix but also by the total number of beds available at that

stage (bk). The parameter ρ1k is defined as the ratio of the service capacity of the

first stage respect to the service capacity of stage k, k 6= 1:

ρ1k =
b1[αµ11 + (1− α)µ21]

bk[αµ1k + (1− α)µ2k]
=
b1[αθ1 + (1− α)κ1k

2 ]

bk[αθk + (1− α)]
(4.13)

Note that ρ1k is independent of the network design and is defined at the network

level. For given values of ρ1k, we can find the number of beds at each stage that

offers the desired relative service capacities. By choosing an arbitrary value for the

number of beds at one stage, say b1, we have for k 6= 1:

bk =
b1[αθ1 + (1− α)κ1k

2 ]

ρ1k[αθk + (1− α)]
. (4.14)
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4.7. Heuristic for the MSBA Problem

The MSBA problem is optimally solved by examining all the possible bed

allocations at all the stages. For a two-hospital problem the number of all allocation

scenarios at stage k is limited by Bk − 1 (at least one bed should be allocated to

each hospital, i.e., bjk ≥ 1,
∑

j bjk = Bk, and bjk is integer), and the total number

of feasible solutions is
∏

k(Bk − 1). As the number of beds available at each stage

(Bk) and/or the number of stages in the clinical pathway of patients increases, the

time needed to explore all feasible combinations surges drastically. Therefore, it is

important to develop a heuristic algorithm that finds a near-optimal solution for the

MSBA problem in a reasonable amount of time.

The heuristic proposed in this section is a greedy local search that starts from

a very good initial solution. The initial solution is generated using the parameters

of the network defined in Section 4.6. In some cases, the generated initial solution

matches the optimal solution or is very close to it. However, one should bear in mind

that the MSBA problem is an integer program with a non-linear objective function.

Even though the number of allocated beds in the heuristic solution is sometimes very

close to the optimal, the optimality gap could be significant. In the next subsection,

this heuristic algorithm is presented.

4.7.1 A Greedy Local Search Heuristic

A local search heuristic is developed to solve the MSBA problem in this section.

The parameters defined in Section 4.6 are used to calculate some weights associated

with the patient loads each hospital handles at each stage. These weights are then

used to allocate the beds to the hospitals. The approach explained here is presented
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for a problem with two patient types and two hospitals. Nevertheless, it can be easily

generalized to a network of more than two hospitals with more than two types of

patient.

In the Diversification scenario, the fraction of total patients served by Hospital

1 and Hospital 2 is β and 1 − β, respectively. However, this does not represent the

relative work load of the hospitals as the LOS of patients has not been considered. To

account for the LOS of patients in each hospital, a parameter similar to ω (Equation

4.11) is defined for each stage of the network. The weighted average service rates at

stage k for the two hospitals are calculated using the arrival rates as weights. Then,

the parameter ωk is defined as the relative LOS of patients between the two hospitals

at that stage:

ωk =
λ11
λ·1
µ1k + λ21

λ·1
µ2k

λ12
λ·2
µ1k + λ22

λ·2
µ2k

=
1− β
β

λ11θk + λ21

λ12θk + λ22

(4.15)

The proportion of patients arriving to each hospital is adjusted by ωk to find

the relative patient loads and the beds are allocated according to the patient loads.

The allocation weights at stage k for Hospital 1 and Hospital 2 are β and (1− β)ωk,

respectively. Using these weights, β
β+(1−β)ωk

Bk beds are allocated to the stage k

of Hospital 1 and the remaining beds, (1−β)ωk

β+(1−β)ωk
Bk, are allocated to the stage k of

Hospital 2. The number of allocated beds are rounded to the nearest integer values

such that their sum is always equal to Bk.

The same approach is applied to find the weights in the Specialization scenario.

Note that in this scenario ωk = θk as each hospital deals with only one patient type.

The fraction of total arrivals that enter Hospital 1 and Hospital 2 is α and 1 − α,
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respectively. Hence, the adjusted allocation weights at stage k are α and (1− α)θk,

respectively. The available beds at each stage are distributed according to these

weights and the non-integer numbers are rounded to the nearest integer values such

that their sum is always equal to Bk. This gives a starting point for the local search

algorithm.

Given that the initial solution is our current solution, the beds are shifted from

one hospital to the other to improve the quality of current solution. We move only

one bed at a time to explore the immediate neighbor of the current solution in the

feasible solution space. If this action improves the objective function, we will continue

reallocating beds until no further improvement is possible. This is considered as a

neighborhood search algorithm.

There are two directions along which we can shift the beds. One direction is

adding a bed to the hospital that has fewer beds and subtracting one bed from the

other hospital. The other direction is the opposite way; adding a bed to the hospital

that has more beds and subtracting one bed from the other hospital. The direction

that leads to a larger improvement in the objective function within the first step will

be chosen. Thus, we first check in which way the objective function would decrease

the most. This implies that the local search has a greedy logic in choosing the

direction of search. If none of the two directions improves the objective function, we

keep the same allocations of bed and skip to the next stage.

While we are searching for a better solution, each stage is considered separately

from others. When no further improvement is possible at a stage, we move to the

next stage. The order we choose the stages is determined as follows. The service
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capacity of each stage at the network level is defined using a parameter similar to

Equation 4.13. The service capacity of stage k is computed as

ρk = bk[αµ1k + (1− α)µ2k]. (4.16)

The congestion of stage k is then 1/ρk. We start from the stage that has the highest

congestion level and move towards the stage with the lowest congestion level in the

network. The Greedy Neighborhood Search (GNS) algorithm is summarized in the

Table 4–4.

4.8. Design of Experiment

To answer the main research question of this study, we are interested in finding

the network settings in which narrowing down the scope of care, i.e., Specialization,

is a superior strategy over broadening the scope of care, i.e., Diversification. This re-

quires examining all possible settings of the network and evaluating the performance

of both scenarios in each setting. In this section, an experiment including numerous

problem instances is designed through considering meaningful values for the network

parameters that were defined in section 4.6.

4.8.1 Problem Instances

In choosing the values of network parameters for designing the experiment, all

the potential settings for a network of hospitals are envisaged. The values of interest

for each parameter that are considered are reported in Table 4–5.

We now elaborate on the rationale of choosing these values in our experiment.

No value less than one is chosen for θk. This means that the average LOS of type-1

patients in never greater than that of type-2 patients in any stage. By doing so, we
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Table 4–4: The heuristic algorithm for the MSBA problem

The GNS Heuristic Bed Allocation Algorithm

Initialization Phase:
Step 1: For given matrices of Λ and M, calculate α, β, θk, and ωk.
Step 2: Compute the allocation weights at each stage based on the network
parameters:

(i) Diversification scenario: the weights at stage k for Hospital 1 and
Hospital 2 are respectively β and (1− β)ωk.

(ii) Specialization scenario: the weights at stage k for Hospital 1 and
Hospital 2 are respectively are α and (1− α)θk.

Step 3: Allocate the available beds at stage k (Bk) to each hospital:
(i) Diversification scenario: the allocated beds at stage k to Hospital 1 and

Hospital 2 are respectively β
β+(1−β)ωk

Bk and (1−β)ωk

β+(1−β)ωk
Bk (round the

non-integer number of beds).
(ii) Specialization scenario: the allocated beds at stage k to Hospital 1 and

Hospital 2 are respectively α
α+(1−α)θk

Bk and (1−α)θk
α+(1−α)θk

Bk (round the

non-integer number of beds).
Step 4: Find the maximum blocking probability of two hospitals using the solu-
tion of Step 3.

Improvement Phase:
Step 5: Compute the congestion level at each stage at the network level (Con-
gestion Level: 1/ρk).
Step 6: Iterate over all stages (from the highest congested to the lowest congested
stage)

Step 6.1: Find the direction along which moving one bed from one hospital
to the other decreases the objective function the most. If no direction is
found, skip to the next stage.
Step 6.2: Reallocate the beds in the direction found in the step 6.1 one at
a time until no improvement is possible.
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Table 4–5: Parameters values in the experimental study
Parameter Values of Interest
α 0.25 0.50 0.75
β 0.25 0.50
ω 0.8 1.0 1.2
θk, k = 1, 2, 3 1 2 5
κ1k

2 , k = 2, 3 0.5 1 2
ρ1k, k = 2, 3 0.5 1 2
λ 1 2

recognize the type-1 patients as fast patients and type-2 patients as slow patients.

Therefore, the parameter α will represent the fraction of fast patients in the system.

The parameter β does not have any value greater than half since the two hospitals

are identical. The parameters κ1k
2 and ρ1k are assigned values less than, equal to,

and greater than one to capture all the possible situations. The parameter ω also

has different values to simulate different average tLOS in each hospital.

The number of all combinations produced from setting the parameters at the

values of Table 4–5 is 78,732 problem instances. Note that some combinations are

not feasible. Thus, this will be the maximum number of problem instances that are

considered in the experiment. The heuristic algorithm developed in section 4.7 makes

this comprehensive study with this large number of problem instances doable. This

heuristic algorithm finds a good solution for the MSBA problem in a reasonable

amount of time while the optimal solution is very time-consuming to obtain through

complete enumeration.
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4.8.2 Outputs of the Experiment

The aim of this study is to delineate the settings in which the Specialization sce-

nario is a better configuration for a healthcare network. The performance measure-

ment considered in this study is the maximum blocking probability of two hospitals,

which has been defined in the objective function of the MSBA problem. However,

a large number of problem instances is considered in the experimental study and we

are interested in identifying those cases where narrowing down the scope of services is

beneficial. Therefore, the following outputs are reported in the experimental study:

Output 1: Possibility of Improvement. This output is calculated based on

the percentage of problem instances in which the Specialization decreases the maxi-

mum blocking probability of the network. It reflects the possibility of improvement

at the level of network through Specialization of services.

Output 2: Impact. Average reduction in the maximum blocking probability in

those problem instances where Specialization is preferred will be reported by Output

2. This shows the real impact of Specialization on the performance of the network.

Output 3: Acceptability. This output shows the percentage of problem

instances in which both hospitals benefit from the Specialization among those cases

identified in Output 1 . It describes the acceptability of the Specialization by all

the hospitals involved in the restructuring process and captures the possibility of

improvement at the level of individual hospital.

Cross-sectional analysis of the results is conducted to examine the three outputs

defined above from different angles and facilitate the interpretation of results. In

Output 1, we look into the fraction of original settings of the problem where the
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whole network is better off by the Specialization of services. Note that we compare

the solution of best bed allocation in each scenario to that of another scenario. This

might enforce shifting some resources from one hospital to another to achieve the

best performance of the network. Therefore, we also search for cases in which both

hospitals are better off by the Specialization, which is captured in Output 3. We also

report on the average performance improvement of the network by the Specialization

in Output 2.

4.8.3 Performance Evaluation of the GNS Heuristic

Before turning to presenting the results, the performance of the proposed heuris-

tic algorithm for the MSBA problem is evaluated through comparing its solution

with the optimal solution, which is found through complete enumeration. Only

small-size problem instances are considered for this comparison where the optimal

solution can be found in a reasonable amount of time. The problem instances are

generated using the same parameters of Table 4–5. But the comparison is restricted

to those problem instances with the total number of beds in all stages being less than

30. The gap between the objective function values associated with the solution of the

heuristic algorithm and complete enumeration as well as the average computation

time of each approach are reported in Table 4–6.

Table 4–6: Performance evaluation of the heuristic for the MSBA problem
Optimality Gap Computation Time (sec)

(%) Optimal Heuristic
All Problems 3.00 674.74 3.41
Diversification 4.20 709.07 3.80
Specialization 0.35 598.22 2.52
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The error associated with the heuristic algorithm is very small (3%) in all the

cases that have been considered. In the Specialization cases, the heuristic algorithm

seems to perform even better and generate solutions very close to the optimal ones.

In terms of computation time, the heuristic algorithm saves a considerable amount

of time when being used instead of the complete enumeration approach.

4.9. Specialization vs. Diversification

In this section, the results obtained from the experimental study of Section 4.8

are analyzed to provide insights to the problem of Diversification versus Specializa-

tion of healthcare services. As explained earlier, a wide range of parameters of a

multi-hospital network has been considered to generate a large number of problem

instances (approximately 60,000 instances). Through comparing the performance of

two different scenarios in terms of blocking probability of patients the situations in

which Specialization is a superior scenario over Diversification is characterized.

The parameters introduced in Section 4.6 include all dimensions of a healthcare

network. However, the analysis is focused on a few important characteristics of

the network to establish some rules to lay out the situations where each scenario

dominates the other one. The first characteristic is the fraction of arrivals associated

with the patients whose LOS in the hospital is less than the other type (so-called

fast patients). In the designed experiment it was assumed that the LOS of type-1

patients at each stage is always less than that of type-2 patients. The fraction of

type-1 patients to the all patients entering to the network is denoted by α.

Although it is important to know about the mix in the arrival of slow and fast

patients to a network, the magnitude of difference between their tLOS is also a
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significant factor. This relative difference is indicated by θ (Equation 4.10). As θ

increases, the role of α becomes more substantial as well. The other factor of interest

is the relative tLOS of patients being served in the two hospital, which is expressed

by ω (Equation 4.11). Note that θ and ω reflect the ratio of tLOS between the two

hospitals in the Specialization and Diversification scenarios, respectively.

In terms of patient load that two hospitals receive in each scenario, we must

incorporate the arrival rate of each type. To this end, the proportion of patients

arriving at each hospital is adjusted by their tLOS similar to the approach used in

developing the heuristic algorithm for the MSBA problem in section 4.7. In the

Diversification scenario, the patient load for Hospital 1 is β and for Hospital 2 is

(1− β)ω. The relative patient loads are defined as d = β
(1−β)ω

. In the Specialization

scenario, the relative patient load is defined as s = α
(1−α)θ

.

The results are presented through Figure 4–4 to Figure 4–9 in this section. Each

figure shows the outputs of the experiments from a perspective of one parameter of

interest. The observations associated with these figures are summarized in the form

of some insights to the problem of multi-hospital network configuration.

4.9.1 Possibility of Improvement by Specialization

In the experiments, the Output 1 shows the percentage of problem instances in

which the Specialization is recommended. The following observations are made:

1. Overall, in 32.27% of all cases, narrowing down the scope of care is the

superior option.

2. As the percentage of fast patients (α) increases in the network, it is less likely

that the Specialization improves the performance of the system. (Figure 4–4-Output
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Figure 4–4: Results of experimental study - all outputs in terms of α

Figure 4–5: Results of experimental study - all outputs in terms of ω

1). This implies that when the majority of patients have short LOS in the hospital

we are better off by dispersing them over the network rather than allocating all of

them to only one hospital.

3. We see that the possibility of improvement by the Specialization is larger

when the tLOS of patients in two hospitals before Specialization is not equal, i.e.,

ω =0.8 or 1.2 (Figure 4–5-Output 1). When omega=1, then output 1 values is

significantly smaller.
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Figure 4–6: Results of experimental study - all outputs in terms of θ

4. In general, as the tLOS ratio of slow to fast patients in two hospitals after

Specialization (θ) increases, the chance of improvement seems to increase as well

(Figure 4–6-Output 1). This means that if the flow of patients of one type is much

slower than the other, it would be better to keep them separated from each other.

5. We observe a greater chance of improving through the Specialization in cases

with unequal patient loads (d 6= 1) (Figure 4–7). It seems that when the patient load

is balanced between the two hospitals, we will gain no benefits by the Specialization

in most cases.

4.9.2 Impact of Specialization

We express the average performance improvement the Specialization can make

over the Diversification scenario with the Output 2. The observations regarding this

output are:
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Figure 4–7: Results of experimental study - Output 1 in terms of patient load

1. Overall, the average performance improvement in those cases where the

Specialization dominates the Diversification is 22.21% decrease in the maximum

blocking probability of two sites.

2. The average improvement seems to be robust respect to the value of α

(Figure 4–4-Output 2). Interestingly, this holds true for other parameters; ω, θ, d,

and s (Figure 4–5-Output 2, Figure 4–6-Output 2, and Figure 4–8). In all cases,

regardless of the network parameters, the percent decrease in blocking probability

obtained through the Specialization of services is around 20%.

3. However, there is a slight increase in the Output 2 when the majority of

patients in the network are fast patients (α = 0.75), or when the service rate of

patients in two hospitals are around the same range before and after the Specialization

(θ is small and ω = 1), or when the patient loads are unbalanced in the Diversification

scenario.
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Figure 4–8: Results of experimental study - Output 2 in terms of patient load

4.9.3 Acceptability of Specialization

The acceptability of change in the network configuration by the two sites is

indicated by the Output 3. We can claim that:

1. Overall, in 54.78% of cases in which Specialization outperforms Diversification

the blocking probability in two hospitals decreases simultaneously.

2. It seems that when there is some skewness in the arrival patient mix (α=0.25

or α=0.75), it is more likely that both hospital will benefit from Specialization. The

chance of bilateral improvement is the highest when α=0.25. This contradicts the

expectation that when one hospital is supposed to take care of small number of

patients who are all fast patients, the other hospital will refuse such change. But,

counter-intuitively, performance of both hospitals will be enhanced by this effort

(Figure 4–4-Output 3).

3. Also, as the gap between the tLOS of patients becomes larger, both hospitals

will be satisfied in more cases (Figure 4–6-Output 3).
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4. When the patient load is evenly distributed between the two sites (d = 1)

there will be a higher chance that the two hospitals embrace Specialization (Figure

4–9). This is true even when the outcome is unevenly distribution of patient loads

(s 6= 1). When the hospitals are currently handling unequal loads of patients (d 6= 1)

it will be more challenging to convince both sides to switch from Diversification to

Specialization.

Figure 4–9: Results of experimental Study - Output 3 in terms of patient load

4.10. Conclusion

This chapter examines the admission process of patients in a multi-hospital net-

work and considers two system configuration scenarios. Specifically, it compares the

performances of Specialization and Diversification options and lays out the situations

in which each scenario outperforms the other. Moreover, the bed allocation problem

for a network of hospitals has been formulated and an efficient heuristic algorithm

has been presented. A comprehensive experimental study was designed and used
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to evaluate the scenarios in terms of refusal rate of patients at the hospitals of the

network.

The observations derived from the experimental study are summarized in Fig-

ure 4–10 and Table 4–7. The main insights are: (i) the possibility of improvement

through Specialization decreases as the percentage of patients with short LOS enter-

ing the network increases or the difference between LOS of different types of patients

decreases or the patient load between the hospitals is balanced; (ii) the impact of

Specialization is quite robust respect to the network parameters; and (iii) the mutual

improvement of Specialization happens when there is asymmetry in the patients’ ar-

rivals or LOSs handled by each hospital or symmetry in the patient loads of hospitals

before Specialization.

Figure 4–10: Summary of insights from the experimental study
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Table 4–7: Effects of network parameters on the exercise of specialization

Parameter Percentage of Fast Patients Difference in LOS Patient Load
Possibility decreases as α increases as θ decreases as the load

increases increases is more balanced
Impact slightly increases as slightly decreases as decreases as the load

α increases θ increases is more balanced
Acceptability disproportionately decreases increases as θ increases as the load

as α increases increases is more balanced

The results obtained in the simulation study of restructuring the MNH and

the MGH stroke wards in Section 4.2.2 is consistent with the insights provided by

the experimental study. The data used for the simulation study gives the following

parameters: α = 0.7, θ = 1.91, ω = 1, g = 1, and s = 1.22. These values suggest that

the Specialization is not an appropriate recommendation for organizing the stroke

wards at the MNH and the MGH, which is confirmed by the results of simulation

study.

As more structural changes in the healthcare networks are triggered by the sig-

nificant budget cuts or by the desire to better streamline the healthcare processes, it

is important to review benefits of any proposed change before putting it into action.

Therefore, the health authorities who have significant impact on such decisions (e.g.,

L’Agence in Montreal and Ministère de la Santé et des Services Sociaux in Quebec)

are recommended to take advantage of analytical frameworks, such as the one pre-

sented in this chapter, rather than the top-down and intuition-based approaches they

often adopt for policy design.

In the modeling framework of this chapter, tandem queues were used to describe

the flow of stroke patients in hospital. While this holds true for the majority of
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patients, a small fraction of patients might revisit the ICU or other units more than

once during their stay in the hospital. A more general model that incorporates

flexible patients routing would be a more realistic and valuable modification of this

study.

In this study, a simple network of two hospitals with two types of patients was

considered. A useful extension of this analysis includes validation of the results

for a problem with more than two hospitals and two types of patient. While most

components of this study can be easily revised to accommodate such an extension,

the validation of the results seems unavoidable. Further, the problem of designing

the network and finding the optimal level of flexibility at each site (that determines

which services should be offered in each hospital) is an interesting direction for future

research.
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CHAPTER 5
Concluding Remarks and Future Research

This thesis studies capacity-related policies regarding inpatient beds in acute

care wards recognizing multiple types of patients with different medical character-

istics. The financial pressures in the healthcare sector, coupled with the drive for

improving quality and efficiency, have exposed hospital managers to various chal-

lenges in developing alteration plans for their hospitals. A key factor in improving

operations of healthcare systems is better use of available resources, such as inpa-

tient beds. The Operation Research models, which are developed around the resource

management issues, could be used by decision makers in healthcare to assist them

with making the best capacity decision concerning resources. Two applications of

such models to managerial problems in a neurological hospital were illustrated in

this thesis. In particular, the patient admission policy design for a neurology ward

(tactical decisions) and network configuration and bed allocation for stroke wards of

two hospitals (strategic decisions) have been addressed.

5.1. Summary of Research Findings

In Chapter 2 of this thesis, a literature review of the patient admission and bed

allocation problem was presented that is based on a thorough survey of the state of

the art in this domain. The previous studies have been categorized as bed allocation

problems at the level of hospitals located in one region, at the level of wards (units) of

a hospital, and at the level of patient types within a ward of a hospital. The research

116



related to patient admission problem was introduced in a separate category. This

Chapter is believed to have the potential to be a segment of a more comprehensive

review paper in this domain.

In Chapter 3, an admission control and bed allocation problem in a neurology

ward was studied. Many neurology wards face the problem of insufficient capacity

to meet demand for inpatient beds, especially during demand surges. The problem

is pronounced since admitting these patients to other wards is not an option, i.e.,

off-unit servicing is not feasible for neurology patients. Recent studies have shown

that neurology patients are more effectively treated in specialized neurology wards

that offer properly organized care. To the best of the author’s knowledge, this is

the first study that makes an explicit effort to model the differentiating features of

neurology wards, and hence provides managerial insights specific to this domain.

The process of admitting neurology patients from ED to the ward and trans-

ferring them to another hospital was modeled using an infinite-horizon average cost

dynamic program. None of the beds in the ward were dedicated to certain patient

types in this model. It was shown that the optimal policy for admitting patients from

the ED is dynamic and depends on the state of the system. To solve the average cost

DP and overcome the curse of dimensionality, an LP-based approximate dynamic

programming (ADP) approach was developed that uses some information from a

static model. While this method typically involves a large-scale LP, our approach

involves solving a number of small DPs that are derived by employing a non-linear

functional approximation. To the best of the author’s knowledge, the ADP for the

average cost problem has not been fully explored theoretically.

117



In many neurology wards (including the hospital considered in this study) a

static patient admission policy is used by assigning a fixed number of beds to each

type of disease. Also, transferring patients is triggered after a certain amount of ED

boarding time. In contrast, the proposed ADP policy does not use earmarked beds

and decides to transfer the patient at the time of arrival, considering the state of the

system. The comparative analysis showed that the ADP policy decreases the average

boarding time in the ED (especially when there are is a limited number of beds

available or patient’s sensitivity to waiting is high) significantly without affecting

the average rate of patient transfers. This translates to smaller deterioration in

health status of patients resulting from waiting in ED and delays in receiving the

specialized care provided in the neurology ward. Acknowledging the challenges in

implementing the fully state dependent ADP policy, a Priority Cut-off policy based

on the ADP was developed that performs quite well. This policy follows the ADP

policy in the critical states of the system and in other states applies FCFS policy.

The main insight for neurology managers is that it would be better to decide

on the admission or transferring a patient based on the state of the system. Also,

an active decision making approach on transfers that acts upon arrival of patients

outperforms other passive procedures that wait for a period of time and then request

for transferring the patient. It is recommended to keep the beds flexible to serve all

types of patients instead of dedicating them to patient types. If the managers prefer

to use an earmarking strategy, it is suggested to do so based on the level of severity

of the patients’ condition rather than their disease (i.e., along the lines of the PC

policy). The level of severity largely determines the patients’ LOS of patients or
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the impact of unavailability of resources on patient’s health status. Therefore, the

allocation policies according to the categorization that is based on level of severity

are expected to perform better.

In Chapter 4 of this thesis, the problem of network configuration and multi-site

resource allocation was considered. This research has been inspired by a structural

change in the administration of two stroke wards in Montreal. The possible scenarios

for managing a network of multiple acute care wards that provide multiple levels

of care are specialization and diversification. In the specialization scenario, each

ward is dedicated to providing care to specific type(s) of patients. In contrast, the

diversification scenario requires every ward to accommodate all types of patients.

While a significant number of papers (in healthcare and other areas) are found in

the literature that study such a problem, there are some important features specific

to this research. In most previous works, specialization of service refers to multiple

queues that have separate waiting lines and the alternative option is a pooled system

with one single queue that feeds all servers. Even though in this thesis the special-

ization scenario is similar, the diversification of services represents centers that are

managed independently. Each center has its own patient mix, resources, and demand.

Furthermore, the performances of hospitals in each scenario are evaluated using a

tandem queueing network that incorporates blocking effects in patients’ clinical path.

From a modeling perspective, a multi-site bed allocation problem was presented so

that the resources are optimally distributed in accordance with the patients flow in

each hospital.
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To characterize the situations in which one scenario dominates the other, a wide

range of network parameters has been considered. These parameters were also used

to construct a heuristic algorithm to solve the multi-site bed allocation problem.

By considering a comprehensive set of problem instances, the performances of both

scenarios have been thoroughly examined. The results show that only in one third of

cases specialization improves the performance of systems and the blocking probability

of network is reduced by one fifth in those cases.

Another important factor of this research is the consideration of mutual improve-

ment for all the hospitals of a network. It is very common in healthcare systems,

especially in publicly funded ones where financial incentives are absent, that hospital

managers resist structural changes if no benefit is associated with them. The study

looked into this issue and observed that in around half of the cases that specialization

advances the performance of the overall network all the sites will be better off by

this change.

The other observations of this study are helpful in evaluating outcomes of nar-

rowing down the scope of healthcare services in a multi-hospital network that cur-

rently has a general configuration. Based on the properties of the network, the

possibility, impact, and acceptability of specialization can be determined. As pres-

ence of fast patients respect to patients with longer LOS in the network increases

it is more possible that the specialization is beneficial. Meanwhile, when the differ-

ence between the LOSs of patients is multiplied the possibility of improvement also

increases. But if the patient load is unequally distributed between the hospitals the

chance of improvement declines.
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The impact of improvement by specialization is somewhat robust to the network

properties. However, slight increase and decrease are observed when the majority of

patients have shorter LOS and difference in the LOSs expands, respectively. The ac-

ceptability of change by hospitals also depends on the characteristics of the network.

The interesting insight is that the acceptability is more often achieved when there is

asymmetry in the patient mix arrivals or their LOSs. But if we look at the patient

load, which reflects both the arrival and LOS distributions, the symmetry of patient

loads between the hospitals in the diversified scenario implies more cooperation from

all sites, which is very intuitive.

5.2. Future Research Directions

A future research direction of this thesis is studying admission policies and

designing transfer protocols after a merger of two hospitals takes place. This idea is

blossomed from the two pieces that have been studied in this thesis. Recently, more

changes in managing the acute care wards are happening and hospitals are moving

toward partnerships with other hospitals to collectively provide care to patients.

Therefore, designing patient admission and transfer policies for more than one acute

care ward appears to be a valuable research endeavor.

The complexity of decision making process in such situations originates from the

fact that the state of other acute care wards must be taken into account. This issue

is missing in the patient admission policy design considered in this thesis, in which it

was assumed that transfer of patients is possible at all times. This essentially implies

that we consider a fixed pre-known waiting time (and consequently a fixed transfer

cost) in the destination ward. However, this cost is dynamic and changes over time
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according to the congestion level of the other ward. A modeling framework that

incorporates this important feature will provide more realistic insights.

The stationary assumption regarding the arrival process is a substantial limita-

tion of this study. Some modeling components included in this thesis can be revised

to adopt time-varying arrival rates. However, another future research is to incorpo-

rate the non-stationary arrivals into the models and observe the sensitivity of results

to this change. The problem of dynamic allocation of inpatient beds needs to be

formulated to address the variations of resource requirements over time.

5.3. Concluding Remarks

The setting of neurology wards constituted the basic platform for modeling the

problems studied in this thesis. The calibration of models and cases studies were

also conducted using the data collected from neurology inpatients. However, the

theoretical frameworks and the results can be generalized to other acute care wards

where multiple types of patients are competing for common resources and where

providing timely access to care is the first priority. Moreover, it is emphasized that

the implications of this research is not confined to the healthcare domain. The

contributions and insights can be cautiously extended to other admission control

problems in multi-class queueing systems.

In closing, this thesis provides insights for the problem of capacity allocation

policies for inpatient beds in acute care wards. Hospital managers and healthcare

authorities can use the results of this research to plan and implement fundamental

changes in their systems and enhance the operational efficiency and quality in their

122



healthcare institutions. This research is expected to build trust in healthcare pol-

icy makers to deploy more analytical frameworks and optimization models in their

improvement efforts.
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