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Abstract

Capillary-driven deformations of flexible fibres remarkably affect the properties of a fibrous

material in a wet or dry state. For example, capillary forces can eliminate wood-fibre

lumens and collapse them into a ribbon-like conformation during the drying of a wet paper

sheet. Furthermore, liquid bridges at the intersections of wet fibres can bring them into a

close proximity and conform their surfaces to each other to produce a strong permanent

bond. These deformations significantly change various paper properties, such as strength,

hygroscopicity, and resistance to curling and edge crush.

Although elasto-capillarity in wood fibres is technologically important, it has not yet

been quantitatively analyzed. In this thesis, I model the fibres with smooth circular tubes

that have constant cross sections and contact angles, and analyze the deformations that

are driven by the capillary forces. I begin by deriving an analytical approximation for

the shape of a liquid droplet or a gas bubble on a curved surface, and apply this solution

to a droplet residing either inside or outside of a circular tube. Then, I use the Surface

Evolver software to numerically calculate the shape, Laplace pressure, and surface energy

of an interface bridging either the interior walls of a buckled tube or the intersection of two

different circular filaments. This numerical solution is coupled with analytical solutions of

elastic deformations to compute the equilibrium configurations at various liquid volumes.

Based on the analysis of the droplet shape on curved surfaces, I conclude that the most

energetically favoured location for the droplet is the point where the substrate has the most

inward curvature. I can also estimate the capillary pressure that such bubbles impose on

the wood fibres during drying. By analyzing the capillary-driven lumen collapse of the tube,

I show the effects of wetting angle, tube-wall flexibility, and pit-hole size on the collapsing

behaviour of wood fibres. I quantitatively prove that capillarity can flatten wood fibres

during drying. Finally, by investigating the deformations of two crossing flexible filaments

with a liquid bridge at their intersection, I predict that the capillary force goes through a
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maximum as the liquid volume decreases. This is in contrast with parallel flexible filaments

and in agreement with experimental observations. This investigation predicts the maximum

possible capillary force between crossing fibres as well as the liquid volume where this peak

force occurs.

These analyses are beneficial in many other applications including contact-angle mea-

surements on curved surfaces, micro-electromechanical systems, and welding of flexible

components.



Résumé

Les déformations des fibres souples entrâınées par des capillaires affectent remarquablement

les propriétés d’un matériau fibreux dans un état humide ou sec. Par exemple, des forces

capillaires peuvent éliminer les lumens des fibres de bois et les effondre dans une confor-

mation en forme de ruban pendant le séchage d’une feuille de papier humide. En plus, des

ponts liquides aux intersections des fibres humides peuvent les amener dans une proximité

proche et conformer leurs surfaces les unes aux autres pour produire une liaison permanente

forte. Ces déformations changent significativement les différentes propriétés du papier telles

que la résistance, la hygroscopicité, et la résistance à se courber et à l’écrasement du bord.

Bien que la capillarité élastique dans les fibres de bois soit technologiquement im-

portante, celle-ci n’a pas encore été analysée quantitativement. Dans cette thèse, nous

modélisons les fibres avec des tubes circulaires doux qui ont des sections transversales et

des angles de contact constants, et analysons les déformations qui sont entrâınées par les

forces capillaires. Nous commençons par dériver une approximation analytique pour la

forme d’une goutte de liquide ou une bulle de gaz sur une surface courbée, et appliquons

cette solution à une gouttelette résidant soit à l’intérieur ou à l’extérieur d’un tube cir-

culaire. Ensuite, nous utilisons le logiciel Surface Evolver pour calculer numériquement

la forme, la pression de Laplace et l’énergie de surface d’une interface faisant le pontage

entre les murs intérieurs d’un tube déformé ou à l’intersection de deux filaments circu-

laires différentes. Cette solution numérique est jumelée avec les solutions analytiques de

déformations élastiques pour calculer les configurations d’équilibre à différents volumes de

liquide.

En considérant l’analyse de la forme de gouttelettes sur des surfaces courbées, nous

concluons qu’énergiquement l’endroit le plus favorisé pour la gouttelette est le point où la

courbure du substrat est la plus prononcée vers l’intérieur. On peut aussi estimer la pression

capillaire que ces bulles imposent sur les fibres de bois durant le séchage. En analysant
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l’effondrement de lumen du tube entrâıné par la capillaire, nous montrons les effets de

l’angle de mouillage, de la flexibilité du mur de tube, et de la taille de trou de la fosse

sur le comportement effondrant des fibres de bois. Nous prouvons quantitativement que la

capillarité peut aplatir des fibres de bois pendant le séchage. Finalement, en recherchant les

déformations de deux filaments flexibles croisés avec un pont de liquide à leur intersection,

nous prévoyons que la force capillaire passe par un maximum lorsque le volume de liquide

diminue. Ceci est en contraste avec des filaments souples parallèles et en accord avec les

observations expérimentales. Cette recherche prévoit la force capillaire maximale possible

entre des fibres croisées ainsi que le volume de liquide où cette force maximale se produit.

Ces analyses sont bénéfiques dans de nombreuses autres applications, y compris les

mesures d’angle de contact sur des surfaces courbées, des systèmes micro-électromécaniques

et le soudage de composants flexibles.
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Chapter 1

Introduction

When a meniscus is formed at the interface of two fluids, the interfacial tension produces

a ‘capillary force’ that accounts for many natural and industrial observations; for example,

the clumping of wet hair into bundles (Bico et al., 2004), coalescence of paintbrush fibres

(Kim & Mahadevan, 2006), standing of aquatic insects on water (Hu & Bush, 2005), and

lung airway closure (Heil et al., 2008). Capillarity produces a surface force that depends

on the first power of a characteristic length a (Lambert, 2007). With a small a, this force

dominates body forces that depend on a3. By dominating gravity for example, it makes

water and nutrients rise in long trees and produces capillary adhesion among sand particles

to facilitate sculpting with wet sand.

The capillary force in a small length scale can deform the elastic solids that are surround-

ing the meniscus. This deformation is termed ‘elasto-capillarity’, indicating the coupling of

the elastic and capillary forces. Elasto-capillarity depends on the solid modulus of elastic-

ity, surface tension, and contact angle (Mastrangelo & Hsu, 1993). The equilibrium point

is the minimum of the total energy, which consists of the elastic and interfacial energies.

Because of the recent advances in micro- and nanotechnology, elasto-capillary deforma-

tions have been extensively investigated in the last two decades (Roman & Bico, 2010; Liu

et al., 2012). One of the most important applications is the surface-tension-driven collapse

of elastic materials in a micro- or nanometer length scale. Capillary collapse is observed in

the rearranging of carbon nanotube arrays (Chakrapani et al., 2004), bundling of carbon

nanotubes during evaporation (Lau et al., 2003), and resist pattern damage (Tanaka et al.,

1993).

1
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1.1 Elasto-capillarity in wood fibres

For more than 2000 years, cellulosic fibres have been used in paper sheets to produce

a powerful means for communicating and sharing knowledge and art all over the world

(Hubbe & Bowden, 2009). These fibres are typically 1− 3 mm in length and 20− 30 µm in

diameter, and composed of sugar-based polymers (cellulose and hemicellulose), lignin, and

water, with lesser amounts of extractives, protein, starch and inorganics. The distribution

of these chemical components varies from plant to plant, and within different parts of the

same plant (Bledzki et al., 2002). Wood fibres have an anisotropic tubular structure with

a lumen that is filled with water in wood or pulp, and a wall that is divided into several

layers.

When manufacturing a papersheet from wood, several chemical and mechanical pro-

cesses are required to impose significant changes on wood fibres. The first step to ‘activate’

the fibres for these changes is ‘pulping’, which separates the wood into its individual fibres

(Hubbe et al., 2007). Different pulping processes are mechanical pulping, semichemical

pulping, and chemical pulping (Walker, 2006). In the next step, the fibres are subjected

to shearing and compression loads in ‘refining’ and their conformability and capability of

bonding together are adjusted for a specific paper grade. After adding chemical additives,

the fibres are pressed and dried at a high pressure and temperature, respectively. The dried

papersheets are then pressed again in ‘calendaring’ to furnish a smooth surface.

During drying, a meniscus can be formed either inside or outside of a single fibre or

between different fibres. The resulted capillary force can deform the fibres and affect the

network properties. In this project, I investigate whether this capillary force can eliminate

the fibre lumen, and can deform the fibres in a network. The elasto-capillarity can also

affect other aspects of the fibres such as internal or external fibrillation (Hubbe, 2007), but

they are not investigated in this thesis.

1.2 Short-range forces

In addition to the capillary forces, there are several other forces that may affect wood-fibre

dimensional changes during drying. For example, van der Waals, electrostatic, and hy-

drophobic forces can dominate capillarity when the fibre walls become very close to each

other. Van der Waals forces between molecules are developed through three different mech-

anisms: Keesom Interaction between two permanent dipoles, Debye Interaction between a
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permanent dipole and a corresponding induced dipole, and London Dispersion Interaction

between two instantly induced dipoles. Although these interactions are effective in molecu-

lar scales, their pair-wise summation can lead to van de Waals forces between macroscopic

solids (Butt & Kappl, 2009), producing for example a significant attractive force for some

animals to stick to walls and ceilings (Santos et al., 2007).

A solid surface in water is usually charged, and therefore, attracts counter ions. The

surface charges and counter ions together produce an electric double layer (Butt & Kappl,

2009). An overlap between the electric double layers of two charged surfaces produces an

electrostatic double-layer force, which is basically different from the Coulomb force.

There are also other forces in water that are not well understood, such as hydration and

hydrophobic forces. The hydration force is caused by the energy required to remove the

water of hydration from a hydrophilic surface, and tends to repel two hydrophilic surfaces

when their separation is less than a few nanometers (Butt & Kappl, 2009). However,

hydrophobic surfaces, which have contact angles higher than 90◦ with water, tend to attract

each other by hydrophobic forces. These forces originate from the tendency of the system

to reduce the solid-water interfacial area by connecting the hydrophobic surfaces to each

other.

Nevertheless, the van de Waals forces between macroscopic solids, electrostatic double-

layer forces, and hydrophobic forces only become important when the distance between

the two surfaces is less than 100 nm. At distances as large as 10 µm, only capillary forces

are significant. Consequently, considering the wood-fibre dimensions, the capillary forces

dominate at the initial stages of wood-fibre deformation during drying.

1.3 Surface Evolver

Brakke (1992) first developed Surface Evolver as a computer program that iteratively min-

imizes the energy of a surface. This program was then used widely to numerically calculate

the shape of an interface, when subjected to several constraints, such as the surrounding

geometry and fluid volume. The energy consists of the surface energy, gravity, and other

forms. The available energy minimization methods are the ‘gradient descent’, ‘conjugate

gradient’, and ‘hessian’ methods. The first and second methods minimize the energy, while

the third method finds the zero-gradient point, which can be a maximum, minimum, or

saddle point. Therefore, the hessian method can reach unstable equilibrium configura-
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tions too. A saddle point can be reached by all of these methods, but can be avoided

by continuing the iterations while using the conjugate gradient method. The constraints

are implemented using Lagrange multipliers. Surface Evolver comes with a comprehensive

useful manual that includes the technical details of the code, several examples explaining

how to use Surface Evolver, and theory and formulation (Brakke, 2008).

Surface Evolver discretizes a surface into a number of points termed ‘vertices’. These

points are connected to each other by directed lines termed ‘edges’ that have a head and a

tail vertex. The edges are assembled according to the right-hand rule for the normal vector

to produce triangular surface elements termed ‘facets’. The facets can develop a body

element that has a particular volume. Using divergence and Green’s theorems, the volume

and surface energies can be given as an energy integrand to the surrounding surfaces and

edges, respectively.

Once the geometry and constraints are defined precisely, Surface Evolver can begin it-

erations toward the minimum energy. In this thesis, I couple Surface Evolver with Matlab

to intelligently run Surface Evolver for many times without needing any manual interfer-

ence. After defining an initial geometry, I explore a procedure that can evolve the surface

to a converged state with a desired mesh size, when changing a specific parameter. This

procedure is used by Matlab to automatically call Surface Evolver and calculate the inter-

face shape for the various values of the parameter. The final solution is always checked

manually to show the first-order convergence rate with respect to the number of facets.

This technique enables us to couple the elastic deformations of the surrounding solids to

the interface-shape changes. Details of the Matlab codes, as well as the initial geometry

and solution procedures of the Surface Evolver software are available in appendices.

1.4 Objectives

This research was performed in the context of a larger project: ‘control of lumen collapse in

hydrophobically modified fibres’ and in collaboration with the ‘Green Fibre Network’. The

main objective of the project is to explain the mechanisms of the wood-fibre dimensional

changes during drying including fibre lumen collapse and shrinkage, thus improving the

paper-products barrier and mechanical properties by controlling these changes.

The wood-fibre deformation during drying is important in many paper products. Tradi-

tional applications of paper are in packaging, printing and writing, and absorbents. Open-
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lumen fibres for example, can be used to increase the thickness and stiffness of the pack-

aging papers without increasing the weight and cost, and furnish large air-filled spaces in

the absorbent papers to increase the amount of water that can be absorbed. Furthermore,

collapsed-lumen fibres can enhance inter-fibre bonding and paper strength in all kinds of

paper products (Hubbe, 2007). Recently, open-lumen fibres are used as structural fillers for

bulk composite materials to reduce the consumption of more expensive binder materials and

improve their properties, particularly in the automotive industries, building applications,

furniture and panels, and aerospace applications. (Bledzki et al., 2002).

In this thesis, I focus on the capillary role on the wood-fibre dimensional changes during

drying by modelling the fibres with elastic circular tubes, and analysing the capillary-

driven deformations of the tubes. Therefore, my first objective is to compute the liquid-gas

interface shape inside or outside of the tubes. Particularly, I want to calculate the shape

of a gas bubble or a liquid drop on a curved surface to investigate the substrate-curvature

impact on the shape, capillary pressure, and surface energy of the bubble or drop. This

investigation furnishes the stable positions of the bubble or drop on the curved substrate.

The second objective is to quantify the lumen collapse of the circular tube, which is

driven by a capillary pressure. Because a significant Laplace pressure on a fibre is produced

by the interfaces pinned to the pit holes on the fibre wall, I consider that the pressure is

imposed on the tube by a bubble that is pinned to a small hole on the tube wall. I want to

calculate the necessary conditions that enable the capillary forces to bring the fibre walls

into molecular proximity, thus allowing the van der Waals interactions and hydrogen bonds

to make a permanent collapsed fibre.

The third objective is to investigate the wood-fibre deformations driven by liquid bridges

between fibres. Capillary forces in a wet paper can readily deform wood fibres because of

the increased fibre flexibility in a wet state. I want to calculate the equilibrium capillary

force between flexible fibres and investigate the effects of the fibre flexibility, contact angle,

liquid volume, and separation. This force furnishes the wet-paper strength when the solid

content is less than 40% (van de Ven, 2008), and the molecular contact between the fibres

during drying (Persson et al., 2013), affecting various properties of the final product such

as strength and porosity.
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1.5 Thesis outline

This is a manuscript-based thesis with the following Chapters:

Chapter 2 is a literature review on bubbles and drops on curved surfaces, capillary

driven collapse of circular tubes and wood fibres, and capillary forces between fibres.

Chapter 3 presents an analytical approximation of the shape of a liquid drop or a

gas bubble on a curved surface. The solution is then used to compute the shape of a

drop on a circular tube and a harmonic surface, comparing the results with numerical

solutions. The substrate-curvature impact on the capillary pressure and surface energy are

investigated, and the most energetically favoured (stable) positions for drops are calculated.

This Chapter was published in Langmuir (Majid Soleimani, Reghan J. Hill, and Theo GM

van de Ven, Bubbles and drops on curved surfaces. Langmuir 29.46 (2013): 14168-14177).

Chapter 4 investigates the capillary driven collapse of a circular tube as a model for a

wood fibre. The elastic deformation of the circular tube is calculated from an analytical

solution, the interface shape is calculated numerically from the Surface Evolver software

(Brakke, 1992), and the elasto-capillarity is analyzed by coupling these solutions using

Matlab. A phase diagram is obtained which separates collapsing and non-collapsing regimes

based on elasto-capillary number and contact angle, and is tested with experimental results.

This Chapter was published in Journal of Materials Science (Majid Soleimani, Reghan J.

Hill, and Theo GM van de Ven, Elasto-capillary collapse of circular tubes as a model for

cellulosic wood fibres. J. of Mater. Sci. 50.15 (2015): 5337-5347.).

Chapter 5 reports the effects of the flexibility, contact angle, liquid volume, crossing

angle, and filament separation on the capillary force between two parallel or crossing flexible

filaments. The results help to understand the capillary role in the fibre-product structure,

wet-paper strength, and inter-fibre bonding. This Chapter was accepted in Langmuir.

Chapter 6 reviews the general conclusions, and explains how these conclusions can

benefit the papermaking industry.



Chapter 2

Literature review

2.1 Capillarity and surface tension

Capillarity was first documented by Hauksbee (1710a,b) when he proposed that an attrac-

tion between glass and water causes the water rising in a capillary tube, independent of the

glass thickness. Several experimental and theoretical investigations were performed on this

phenomenon until Segner (1751) introduced the concept of liquid ‘surface tension’, which

was later used by Young (1805) to establish his theory on capillary phenomena. Young also

introduced the concept of ‘contact angle’, and used these two principles to solve several

capillary problems. In his theory, he assumed an attractive force between particles, which

is constant in small separations, and a repulsive force, which increases rapidly when the

particles get close. He concluded that a particle is urged toward the centre of curvature of

the surface by a force that is proportional to the mean curvature of the interface. Laplace

(1806) also used the same principles to solve identical problems, but in a completely math-

ematical way. These two principles were later termed Young-Laplace and Dupré-Young

conditions. The former states that the pressure drop in an interface is equal to its surface

tension times the sum of the principle curvatures, and the latter relates the surface tensions

between the three phases at a triple contact line to the angle that the three interfaces make

with each other.

2.1.1 Sessile drop on a flat surface

The most popular method to measure the contact angle, which is also capable of measuring

the surface tension (Kabza et al., 2000), is to take a side picture of a sessile drop on a smooth

7



8 Chapter 2: Literature review

flat surface, and try to measure the angle between the interfaces at the three-phase contact

point. Bigelow et al. (1946) invented a ‘telescope-goniometer’ to measure the contact angle

by depositing a liquid drop with an accurate volume on a completely horizontal stage and

reading the contact angle with a protractor through a telescope eyepiece. This instrument

was modified through years by using a camera to take photographs of the drop profile (Leja

& Poling, 1960) with a high magnification (Smithwich, 1988), and using a motor-driven

syringe (Kwok et al., 1996) to measure dynamic contact angles.

Because the accurate measurement of the contact angle and surface tension is techno-

logically important, the contact-angle calculation of a sessile drop on a flat surface has been

excessively investigated. Bateni et al. (2003) fitted a polynomial to the drop contour close

to the contact point, and take the derivative of the polynomial to calculate the contact

angle. A similar method was used by fitting a spline (Stalder et al., 2006), a sphere (Yang

& Lin, 2003), or an axisymmetric solution of the Young-Laplace equation (Bashforth &

Adams, 1883; Smith & Van de Ven, 1984; Hoorfar & Neumann, 2004), i.e., axisymmetric

drop shape analysis (ADSA). Another method is to calculate an analytical approximation

of the drop profile using perturbation methods, and fit the approximate solution to the

drop contour (Ehrlich, 1968; Shanahan, 1984; Stalder et al., 2010).

2.1.2 Sessile drop on a curved surface

The contact-angle-measurement method described in Section 2.1.1 is restricted to flat,

ideal, horizontal surfaces. Nevertheless, non-axisymmetric drop morphology was recently

studied to analyze the wettability of heterogeneous curved surfaces. Iliev & Pesheva (2006)

proposed a numerical method to measure the local contact angles of a drop when the

liquid volume, capillary length, and three-phase contact line are known. The method was

an iterative minimization procedure that is capable of calculating non-axisymmetric drop

shapes, and must be combined with experimental data, similar to ADSA methods. In

another study, Guilizzoni (2011) developed a procedure to measure the contact angle on

curved surfaces by only taking a side view of a drop contour, while the values of the liquid

volume and surface tension are not identified. He could visualize the three dimensional

shape of the drop using image processing, spline fitting, and numerical integration.

The effect of substrate curvature on wettability was studied by Extrand & Moon (2008)

when they deposited small drops at the apex of polymer spheres to experimentally measure

the apparent advancing contact angle while increasing the liquid volume. They corrected
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the measured contact angles for the substrate curvature, and concluded that the contact

angles are the same as on flat, horizontal surfaces.

2.1.3 Drop motion driven by substrate curvature

Hauksbee (1710b) observed the self-propulsion of liquid drops between two non-parallel

plates for the first time. Since then, several investigations were undertaken to explain and

quantify how gradients of substrate properties can induce a drop motion. Lorenceau &

Quéré (2004) studied the drop self-propulsion on a conical fibre towards regions of large

radius, driven by a gradient of Laplace pressure, which is induced by the gradient of radius of

curvature of the fibre. The drop equilibrium conformation and location on a vertical conical

fibre was studied numerically by Liang et al. (2015). Although continuous motion without

equilibrium was observed in the absence of gravity, the drops stopped at an equilibrium

location when gravity was present. This mechanism is used by some shorebirds to transfer

their prey from the beak tip toward the mouth (Prakash et al., 2008; Bush et al., 2010),

and by cactuses for efficient fog collection (Guo & Tang, 2015).

Rapid propulsion of a liquid droplet is also achievable using a substrate-curvature gra-

dient. Yao & Bowick (2012) proved theoretically that a gradient of roughness can propel

liquid droplets toward maximal-roughness regions for hydrophilic surfaces, and minimal-

roughness regions for hydrophobic surfaces. In an experimental investigation, Lv et al.

(2014) reported a rapid motion of micro- and nanodroplets driven by a substrate-curvature

gradient on both hydrophilic and hydrophobic surfaces, and showed that this mechanism

drives small droplets faster than large droplets. Rapid drop propulsion is useful in lab-on-

chip, and to refresh the heat transfer area in heat exchangers.

2.2 Elasto-capillarity

The surface-tension-driven deformation of elastic solids was first investigated because of

its importance in microstructures (Mastrangelo & Hsu, 1993) and in lung airway clo-

sure (Halpern & Grotberg, 1992; Grotberg, 1994). Rapid advances in micro- and nan-

otechnology motivated elasto-capillary analysis in other applications, such as the bundling

of the paint-brush hairs when it is removed from the liquid (Kim & Mahadevan, 2006),

the production of three-dimensional structures by the wrapping of a liquid droplet with a

planar sheet (Py et al., 2007), and the capillary rise through flexible structures (Duprat
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et al., 2011). These studies are well reviewed in Roman & Bico (2010) and Liu et al. (2012).

2.3 Wood-fibre lumen collapse

Wood consists of highly ordered cell systems in both axial and radial directions. In the axial

direction, cells are extended along the trunk, and have different sizes and shapes depending

on their role in the tree. While thick-walled cells are responsible for mechanical support

and strength, thin-walled cells provide liquid transfer and nutrient storage (Monica et al.,

2009; Bledzki et al., 2002).

The most important component in wood, which has crucial effects on its structure and

properties, is water. Water in wood can exist both in the cell lumens and intercellular

spaces, termed absorbed water or free water; and within the cell walls, termed adsorbed

water or bound water. Because water first evaporates from the lumens and intercellular

spaces during drying, there exists a situation called the Fibre Saturation Point (FSP), at

which all of the absorbed water has been removed but the cell walls are still fully saturated.

FSP is the point at which a different scenario occurs for the water evaporation, and the

mechanical properties of fibres change (Walker, 2006).

There are several factors affecting the wood-fibres performance in a specific application,

including its chemical composition, physical properties, and mechanical properties. Some

of the most significant physical properties of wood fibres are the fibre dimensions, defects,

strength, and structure. Knowing the fibre length and width is essential for comparing

different kinds of wood fibres. For example, the aspect ratio, which is defined as the ratio

of the fibre length to width, gives an indication of fibre strength (Bledzki et al., 2002).

The fibre lumen can be eliminated when the fibre is subjected to an external load.

Because of the crucial effect on wood-fibre products, lumen collapse has been widely studied

for several decades. Wilkes & Wilkins (1987) supposed that the cell collapse is the reason

for shrinkage during drying and occurs above FSP, considering capillarity as the most

widely accepted explanation for this phenomenon. They claimed that the fibre tendency to

collapse does not always depend on the ratio of wall thickness to lumen diameter, and some

other factors, such as proximity to other cell types, may be involved. Hayashi & Terazaws

(1992) conducted systematic experiments using water saturated Balsa wood, and identified

necessary conditions leading to the cell collapse and the required stress level. They observed

that after the cell collapse reached a maximum limit, part of the cell deformation recovered
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upon removing liquid tension.

Innes (1995a) developed a stress model of a fibre to predict the onset of collapse. The

fibre cell was modelled as a thick walled cylinder, with a ratio of outside diameter to wall

thickness of the order of 5. Neglecting longitudinal effects, he assumed that plane trans-

verse sections remain plane (Navier hypothesis) and solved a one-dimensional problem.

The model predicted the stress and strain distributions within the fibre wall as a function

of temperature, moisture content, and strength properties and size of the fibre wall in the

early stages of drying. Innes (1995b) reported a temperature called the collapse threshold

temperature, as the highest temperature at which wood can be dried to FSP without result-

ing in collapse. In another study (Innes, 1996b), he measured large amounts of shrinkage in

latewood slices, and lesser amounts in earlywood slices, while there was no shrinkage in the

earlywood when the slices were dried at temperatures below the collapse threshold. Innes

(1996a) showed that the safest way of avoiding collapse is to dry at temperatures below the

collapse threshold temperatures of both the earlywood and the latewood. Innes & Redman

(2003) employed a standard drying process, which was optimized by a drying model, to

compare the response of the six different wood species. In contrast to their previous works,

they conclude that collapse cannot be avoided by drying at lower temperatures.

Brodribb & Holbrook (2005) investigated the collapse of lignified cells peripheral to a

leaf vein, modeling them with an array of cylindrical fibres aligned perpendicular to the

leaf vein. They observed that during leaf dehydration the majority of these fibres collapsed

from circular to flat. A simple mechanical model of fibre collapse, which is derived from

the theoretical buckling pressure for pipes, accurately predicted the collapse dynamics.

2.3.1 Collapse index

Open lumen Partially-collapsed lumen Completely-collapsed lumen

minD

max
D

Width

T
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ss

Figure 2.1: Left: Fibre cross sections with open, partially-closed, and completely-closed
lumina. Right: Definition of fibre dimensions.
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To quantify the level of lumen collapse in wood fibres, several geometrical parameters

have been defined. Figure 2.1 shows examples of open-lumen, partially-collapsed, and

completely collapsed fibres. Sepke (1991) proposed that an aspect ratio AR = Dmin/Dmax

can characterize the degree of fibre collapse. As shown in Figure 2.1, Dmin and Dmax are

defined as the shortest and longest external diameters of the fibre, respectively. Figure 2.1

also shows the fibre thickness and width. The aspect ratio parameter was used in several

studies, such as Jang et al. (1995) and Yan & Li (2008). A decrease in AR indicates a more

collapsed fibre.

Jang et al. (1995) defined another parameter as the ratio of the change in the lumen area

to the initial lumen area LA0. This parameter is termed collapse index CI = 1−LA/LA0,

where LA is the final lumen areas. This index is more representative of the collapse

behaviour as it only depends on the changes in the lumen area, whereas AR depends on

the shape of the collapsed fibres (see Figure 2.1). For a completely-collapsed fibre, CI = 1,

and for an uncollapsed fibre, CI = 0. Because CI completely neglects the shape of the

fibre wall area, He et al. (2003) introduced a shape factor fm, as the ratio of fibre wall area

to the area of the smallest rectangle that completely engulfs the fibre cross section. This

shape factor is maximum for completely-collapsed fibres, and minimum for open fibres.

2.3.2 Wood fibre flexibility

Fibre flexibility is defined as F = 1/(EI) where E is Young’s modulus and I is the area

moment of inertia in the plane of bending. The fibre elastic modulus is affected by several

factors, such as microfibril angle, pulping process, and moisture content. There are several

methods to measure the fibre Young’s modulus. Page et al. (1971) used a tensile test and

showed that wood fibres twist when stretched, because of the helical microfibrils in their

wall. Dulemba et al. (1999) measured the flexibility of a single fibre in three successive

wetting and drying cycles by deflecting the fibres as a simply supported beam, and relating

the deflection to the flexibility. They observed that chemical fibres become stiffer when

recycled.

Another method to determine the elastic modulus of wood fibres is to press the fibres

on a glass slide, and analyse their deformations at the crossing. Lowe et al. (2005) wet

pressed two wood fibres and investigated the effect of mechanical and chemical treatments

on the fibre properties, but the deformation of the top fibre was affected by the bottom

fibre. To remove the effect of the bottom-fibre deformation, Yan & Li (2008) pressed a
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wood fibre on a glass fibre. However, the deformation is not completely controlled by the

fibre longitudinal flexibility in this method.

Nilsson et al. (2000) tried to measure the conformability of the fibre surface using micro-

indentation measurements with a standard atomic-force-microscopy tip and cantilever, but

found a wide variability in the results even at different locations of the same fibre. Fur-

thermore, the measured modulus in this method was one order of magnitude smaller than

the other measurements.

Gindl & Schöberl (2004) modeled wood-fibre wall as a fibre-reinforced composite to

analyse the effect of the microfibril angle on the elastic modulus. They showed that the

transverse elastic modulus is one order of magnitude smaller than the longitudinal elastic

modulus when the microfibril angle is small.

The effect of pulping process and the various mechanical and chemical treatments during

papermaking on the elastic modulus has been extensively studied. For example, the elastic

modulus of chemical-pulp fibres are smaller than mechanical-pulp fibres (Hubbe et al.,

2007). Dulemba et al. (1999) showed that recycling increases E in chemical pulps, while

decreases it in mechanical pulps. Furthermore, Yan & Li (2008) showed that refining and

bleaching significantly increase the flexibility of wet fibres.

The area moment of inertia in the fibre flexibility depends on the fibre wall thickness and

diameter. Jang et al. (1996) observed that the fibre wall thickness is decreased by a ‘peeling

off’ mechanism during pulping, while the fibre perimeter remains constant. Therefore,

assuming a circular cross section, the fibre diameter can be considered constant during

papermaking.

2.4 Capillary-induced collapse of circular tubes

Collapse of circular tubes driven by an external pressure has been studied for several decades

(Moreno et al., 1970; Kresch, 1977, 1979; Bertram, 1987), because of its importance in vein

and lung-airway closure. However, capillary-induced collapse of a flexible circular tube

was first studied by Halpern & Grotberg (1992), where a liquid film coated the inner

surface of the tube, and the instability of the film forms a liquid bridge and buckles the

tube. They calculated a critical liquid-film thickness above which a bridge is formed,

showing that the tube flexibility reduces the required liquid volume to establish a liquid

bridge by 30%. Heil (1999a,b) numerically studied the existence and stability of occluding
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liquid bridges in buckled elastic circular tubes, and proved that the capillary forces are

strong enough to maintain the tubes in a buckled configuration. They claimed that the

minimum fluid volume required for the bridge formation is much smaller than the values

previously reported. Hazel & Heil (2005) showed that the initial tube buckling can lead

to a rapid collapse that further reduces the required fluid volume. In all of these papers,

the lung-airway closure is explained by either a purely fluid-mechanical film collapse or a

coupled, fluid-elastic compliant collapse. Heil et al. (2008) proved that both mechanisms

can be responsible for the lung-airway closure, and, therefore, surface tension is the main

parameter that controls the phenomenon.

Jaron & Collicott (2008) studied a liquid-gas interface shape in a buckled initially-

circular tube, and calculated the minimum energy states in a volume-contact angle param-

eter space. They analysed the morphologies of liquid drops or bridges at different locations

of a buckled tube while neglecting the concave part of the buckled tube, and found the

most energetically favoured configurations. In a dynamic approach, Heap & Juel (2009)

experimentally investigated the bubble propagating in a strongly collapsed tube, and char-

acterized the mechanisms controlling the transitions between different types of bubbles that

migrate in a collapsed tube. The capillary-induced collapse of circular tubes has been re-

cently analysed by using molecular dynamics simulations to analyze the buckling of carbon

nanotubes (Yang et al., 2010; Wu et al., 2013).

2.5 Capillary forces between fibres

When a liquid droplet is deposited on a cylindrical filament, it forms either a barrel shape

surrounding the filament or a clamshell shape holding to one side of the filament. Minor

et al. (1959) reported that a droplet with a zero contact angle forms the barrel shape, while

contact angles larger than 60◦ lead to the clamshell shape, and with an intermediate contact

angle, both shapes are possible. They tried to measure the contact angle of the liquid

droplets on the filament by a direct observation. Carroll (1976) calculated an analytical

solution for the barrel shape when gravity effect is negligible. He calculated the drop shape,

Laplace pressure, and interfacial areas, and proposed an accurate method for measuring

contact angles. Wu & Dzenis (2006) further investigated this problem theoretically, and

derived the governing equations and boundary conditions based on the free energy variation

of the droplet-fibre system. In their approach, it is possible to include effects of other forces
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on the drop shape, and also to use the free energy functional directly in developing a finite

element method.

McHale et al. (2001) and McHale & Newton (2002) used Carroll (1976) solution and

a finite element solution for the clamshell shape to compare the interfacial energies of the

two shapes, and calculate the transition boundaries when changing the liquid volume and

contact angle. However, Chou et al. (2011) showed that in a specific range of parameters,

both shapes coexist. They also showed that gravity brings the clamshell shape downward,

and can make the drop to fall.

2.5.1 Parallel filaments

Minor et al. (1959) observed that a liquid droplet on a fibre array can form a barrel shape,

which spreads and forms a liquid column at a critical separation. Princen (1969a,b, 1970)

obtained an analytical solution for the liquid column between two or more equidistant

parallel filaments when the column length is much greater than the filament radius. For

the case of two horizontal filaments in the absence of gravity, they experimentally showed

the coexistence of the barrel-shape droplet in a specific range of separation with a zero

contact angle. Bedarkar et al. (2010) studied the dependency of the wetting length of

both configurations on the contact angle, separation, and droplet volume. They observed

that the sensitivity of this length to the parameters depends on the droplet morphology. In

another study (Wu et al., 2010), they also investigated the transition of the droplet between

the barrel shape and liquid bridge morphologies, producing characteristic curves in a liquid

volume-contact angle space that are separating the regions of the two configurations. In

an experimental study, Protiere et al. (2013) showed that these transitions are hysteretic,

and can be used to transfer liquid at a small scale. They identified the coexistence regions

too.

Capillary forces caused by the liquid droplet in either morphology can deform flexible

filaments and lead to new configurations of the droplet-filaments system. Duprat et al.

(2012) experimentally studied the equilibrium and dynamic behaviour of a liquid droplet

between flexible initially-parallel filaments, and determined the necessary conditions for

the drop to remain compact or spread and make the filaments to coalesce. They produced

a phase diagram separating the total spreading, partial spreading with a droplet at one

end, and no spreading regimes. These regimes can be observed in many industrial and

natural phenomena. In another study (Duprat et al., 2013), they tried to use the various
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drop morphologies between either rigid or flexible filaments to control evaporation. They

investigated the evaporation rate and the complex transitions that occur during the drying

of a liquid droplet between two parallel filaments. However, the dynamic behaviour of

the spreading regimes was studied mainly on flexible sheets rather than flexible filaments

(Aristoff et al., 2011; Duprat et al., 2011; Gat & Gharib, 2013).

2.5.2 Crossing filaments

Claussen (2011) analytically calculated the liquid-column shape at the node of two crossing

filaments by modifying the Princen (1970) solution, when the filaments have a small inclina-

tion angle, and the column length is much larger than the filament radius. He compared the

scaling behaviour of this solution with a numerical solution, and characterized the capillary

torque between the filaments as a power law that agrees well with the numerical results

for a wide range of crossing angles. The analytical solution was later used by Sauret et al.

(2014) to justify their experimental observations on the various liquid-drop morphologies

at the node of two crossing filaments: a liquid column, a mixed morphology consists of a

drop at the end of a column, and a liquid drop at the node. With the modified Princen

model, they could successfully calculate the critical column length where the symmetry

breaks to form a mixed configuration. In their analysis, they could also capture the second

transition to the single drop morphology by comparing the total interfacial energies. These

transitions were later used by Boulogne et al. (2015) to enhance the evaporation rate in a

fibrous media by shearing the network of fibres to reduce the crossing angles.

However, there is no analytical solution for a drop shape at the node of two crossing

filaments with a large inclination angle. Therefore, numerical solutions have been used to

investigate the drop morphology, Laplace pressure, and capillary force and torque on the

filaments. Claussen (2011) qualitatively described the two possible droplet configurations

at the node: a liquid bridge and a barrel-shape droplet. Nevertheless, the transition be-

tween these configurations has never been quantitatively analysed. Virozub et al. (2009)

numerically calculated the interface shape of a liquid bridge between the filaments with

various separation, contact angle, inclination angle, and liquid volume, and calculated the

capillary force and torque on the filaments with a finite differences method. They observed

that with a large separation, the capillary force is attractive and the bridge is symmet-

ric and stable. However, with a large contact angle, a reduction in the separation may

lead to a repulsive force, and a new stable asymmetric equilibrium with a near-zero force.
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Furthermore, the previous symmetric solution may become unstable when decreasing the

separation. In another study, Bedarkar & Wu (2009) calculated the capillary torques with a

similar method, but without considering the asymmetric solutions. They observed that the

capillary torque increases as the crossing angle increases, and after showing a maximum,

vanishes at 90◦ crossing angles. The torque decreases when increasing contact angle and

separation.

2.5.3 Capillary forces between wood fibres

The capillary forces caused by the liquid bridges between wood fibres in a wet paper sheet

were considered as the main explanation of wet-paper strength for decades (Campbell,

1933). However, van de Ven (2008) showed that fibre entanglements is likely to significantly

affect the wet strength. He suggested that above 40% solid content, almost all of the water

in a wet paper is either in the fibre wall or in the liquid bridges at the fibre crossings.

He then calculated the maximum capillary force between two wet sheets which was in fair

agreement with experimental results, but the same model failed to predict the wet web

strength indicating the importance of the fibre entanglements. Tejado & van de Ven (2010)

proved that the main explanation for wet-paper strength is the fibre entanglements, rather

than the capillary forces.

Another impact of the capillary forces between wood fibres is to pull the fibres into

molecular proximity during drying. Wet fibres are much more flexible than dry fibres, and

can be readily deformed by the capillary forces without storing much elastic energy. Persson

et al. (2013) studied the surface topography of paper fibres using atomic force microscopy to

measure the effective elastic modulus and the penetration hardness as a function of relative

humidity. They concluded that for a good contact in a dry state, fibres break and reform

their hydrogen bonds to conform their surfaces to each other, which further strengthens

the capillary interaction and hydrogen bonding. This conformation is driven in part by the

capillary forces between the fibres.



Chapter 3

Bubbles and drops on curved surfaces

3.1 Preface

The following Chapter is focused on the first objective of this thesis, which is the shape of a

liquid droplet or a gas bubble located either inside or outside of a circular tube that mimics

wood fibres. I present an analytical approximation for the shape, Laplace pressure, and

surface energy of a droplet on a curved surface, and then, apply this general solution to a

droplet on a circular tube. The substrate-curvature impact on the droplet shape, pressure,

and energy is discussed, and a droplet migration induced by a substrate-curvature gradient

is predicted.

3.2 Abstract

Surface curvature affects the shape, stability, and apparent contact angle of sessile and

pendant drops. Here, I develop an approximate analytical solution for non-axisymmetric

perturbations to small spherical drops on a flat substrate, assuming a fixed contact angle

and fixed drop volume. The analytical model is validated using numerical solutions of the

Laplace equation from the Surface Evolver software. I investigate the surface-curvature

effects on drop shape, pressure, and surface energy, ascertaining the energy-gradient force

that drives lateral drop migration. By balancing this force with the viscous resistance/drag

force, in the lubrication approximation, velocities of the order 0.1 mm s−1 are predicted for

1 mm diameter drops of water with a 30◦ contact angle on a substrate with a curvature

gradient 0.01 mm−2, achieved, for example, on an harmonic surface with wavelength 4 cm

18
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and amplitude 4 mm.

3.3 Introduction

Bubbles and drops on curved surfaces are ubiquitous in technological applications and in

Nature. Their shapes are controlled by wettability, which depends on the chemical and

physical properties of the substrate and its morphology. Because of its numerous applica-

tions (de Gennes et al., 2004), wettability analysis by means of drop morphology has been

the subject of many studies (Piao et al., 2010). For example, numerical and experimen-

tal methods have been described for contact-angle measurement of heterogeneous curved

surfaces by extending the axisymmetric approximation for drop shape, since traditional

contact-angle measurements are restricted to flat, ideal, horizontal surfaces.

Iliev & Pesheva (2006) proposed a numerical method to specify the local contact angle

of a drop when the contact line is known for a given drop volume and capillary length.

Guilizzoni (2011) experimentally explored the shapes and contact angles of drops on curved

surfaces using image processing, spline fitting, and numerical integration, extracting the

drop contour in a number of cross-sections. This procedure requires only a side view, and

can be used for fluids with unknown surface tension, without need to measure the drop

volume. However, recent investigations by Extrand & Moon (2008) showed that substrate

curvature does not affect the intrinsic contact angle. They deposited small liquid drops at

the apex of polymer spheres to analyze the wetting of structured surfaces with spherical

or cylindrical features, concluding that the intrinsic contact angles are the same as on flat,

horizontal surfaces.

Another influence of substrate curvature is to impart a topological change in the inter-

face configuration. Eral et al. (2011a) experimentally and analytically studied the equi-

librium morphology of a drop on a sphere as a function of the contact angle and drop

volume. They used electrowetting to precisely control the wetting parameters, which al-

lowed all equilibrium morphologies to be accessed. This showed that the partially engulfing

morphology is energetically more favourable than the spherically symmetric, completely en-

gulfing morphology, as proved earlier by Smith & van de Ven (1981). Other examples of

bubbles and drops on curved surfaces occur in elastocapillarity (Duprat et al., 2012; Yang

et al., 2010; Py et al., 2009, 2007), fog harvesting (Park et al., 2013), electrowetting (Garćıa-

Sánchez et al., 2010; Mugele, 2009), and electrodeposition (Tsai et al., 2002) processes.
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For a liquid-gas interface to be at equilibrium, there are two hydrostatic conditions that

must be satisfied simultaneously (Myshkis et al., 1987). The first is the Laplace condition,

which requires that the pressure jump across a liquid-gas interface is equal to the product

of the interfacial tension γ and the mean curvature 2H:

p0 − p = 2Hγ = γ

(
1

R1

+
1

R2

)
, (3.1)

where R1 and R2 are the principal radii of curvature, and p and p0 are the liquid and gas

pressures. The second is the Dupré-Young condition at the contact line:

γ cosα = γsg − γsl, (3.2)

where γsl and γsg are the solid-liquid and solid-gas interfacial tensions, and α is the equi-

librium contact angle. Equation (3.2) gives (Myshkis et al., 1987)

~ni · ~ns = cosα, (3.3)

where ~ni and ~ns are the unit normal vectors on the interface and substrate, respectively.

The equilibrium shape is obtained by solving Eqn. (3.1) with Eqn. (3.3) and a prescribed

volume and substrate shape.

Perturbation methods are useful in many capillary problems (Prabhala et al., 2010;

Carroll, 1986; O’Brien, 1991; Srinivasan et al., 2011; Chesters, 1977). A notable analysis

closely related to the present study was undertaken by Myshkis et al. (1987) They derived

perturbation equations for a general interface by perturbing all the relevant parameters.

However, because the final set of differential equations is very complicated, they demon-

strated existence conditions and a general solution form, not an exact solution.

Although many studies have addressed drop- or bubble-shape analysis on curved sur-

faces, no analytical solution has been derived for non-axisymmetric curved surfaces that

furnishes their profiles, internal pressure, and interfacial energy. Here, I propose a gen-

eral solution for the equilibrium drop shape on a curved surface in the absence of gravity.

One motivation is to understand the elastocapillary driven wood-fibre deformation during

drying. As wood fibres dry, bubbles or drops form in the lumen or between entangled

fibres (Walker, 2006). The capillary pressure may play a key role in the fibre deformation,

and it substantially affects fibre strength and conformation (van de Ven, 2008; Hu & Hsieh,



3.4. THEORY 21

2001). Here, I assess the effect of surface curvature on the drop shape, internal pressure,

and surface energy. The results might be used to identify conditions that change an open

lumen to a flattened structure upon drying.

I consider a spherical drop on a flat surface, which I perturb to compute the resulting

drop shape. The new interface and contact line are obtained by solving Eqn. (3.1) while

satisfying Eqn. (3.3) at constant volume. The solution has a singularity that I remove by

restructuring the solution and matching the new form to the original one at the boundary

of the problematic neighbourhood. This solution is then applied to a drop inside or outside

a circular tube, and verified numerically using the Surface Evolver software (Brakke, 1992).

The resulting interface shape, drop pressure, and energy match the numerical computations

well for all contact angles, even for large values of the perturbation parameter. Since the

energy changes with the substrate curvature, drops are expected to migrate to positions of

lowest energy. This possibility is studied theoretically, and verified with Surface Evolver

for a drop on an harmonic surface. I estimate the lateral velocity by balancing the lateral

energy-gradient force with the viscous resistance force, in the lubrication approximation.

3.4 Theory

Consider a spherical fluid-fluid interface on a planar supporting substrate with a 3-phase

contact angle α, as shown in Figure 3.1. The origin O is at the sphere centre, and the

distances are scaled with the sphere radius R0.

In cylindrical coordinates (r, θ, z), the interface is

z(r) = ±
√

1− r2, (3.4)

and the substrate is

z0 = − cosα. (3.5)

For a flat surface, the contact line is a circle,

r = sinα, z = − cosα (3.6)

and the volume enclosed by the interface and the support is obtained by integrating
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Figure 3.1: Perturbation (dashed curves) of an initially spherical drop on an initially flat
substrate (solid curves).

Eqns. (3.4) and (3.5), giving

V =
2π

3

(
1− cos3 α− 3

2
sin2 α cosα

)
. (3.7)

Now I perturb the substrate by adding a disturbance to Eqn. (3.5), giving

z0 = − cosα + εh(r, θ), (3.8)

where ε is the perturbation parameter, θ is the azimuthal coordinate, and

h(r, θ) = A0(r) +
∞∑

n=1

[An(r) cos(nθ) +Bn(r) sin(nθ)]. (3.9)

Note that h(r, θ) is continuous at r = 0, and An,r(r), Bn,r(r), nAn(r), and nBn(r) are

O(1) with the subscripts r and θ denoting partial derivatives. Because of the substrate

perturbation, the contact line deviates from a circle. I approximate the perturbed contact

line by adding a perturbation to Eqn. (3.6),

r = sinα + εf(θ), z = − cosα + εh(r, θ) (3.10)

where f(θ) has the same form as Eqn. (3.9). Similarly, the interface deviates from a sphere.
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If α ≤ π/2, then

z(r, θ) = −
√

1− r2 + εg(r, θ), (3.11)

where

g(r, θ) = ξ0(r) +
∞∑

n=1

[ξn(r) cos(nθ) + ηn(r) sin(nθ)]. (3.12)

Here, I must specify the functions ξn(r) and ηn(r) using the known functions An(r) and

Bn(r), and by solving Eqn. (3.1) with appropriate boundary conditions. From Eqn. (3.1),

the mean curvature in cylindrical coordinates when z = z(r, θ) is (Langbein, 2002)

1
r
∂
∂r

(rzr)
[
1 + ( zθ

r
)2
]

+ zr
r

[
zr

2 − 2 zθ
r
zrθ + ( zθ

r
)2
]

+ zθθ
r2

(1 + zr
2)

[
1 + zr2 + ( zθ

r
)2
] 3

2

= 2H. (3.13)

Since the drop pressure is a constant that depends only on the mean interfacial curvature,

the perturbed curvature is

H = 1 + ε
k

2
. (3.14)

Substituting Eqns. (3.11) and (3.14) into Eqn. (3.13), and retaining only the terms up to

order ε gives

(r4 − r2)grr + (4r3 − r)gr − gθθ =
kr2√
1− r2

. (3.15)

Now, since {sin(nθ), cos(nθ)} is a complete orthogonal system, from Eqns. (3.12) and (3.15),

(r4 − r2)ξ0,rr + (4r3 − r)ξ0,r = kr2√
1−r2 ,

(r4 − r2)ξn,rr + (4r3 − r)ξn,r + n2ξn = 0,

(r4 − r2)ηn,rr + (4r3 − r)ηn,r + n2ηn = 0,

(3.16)

which must be solved with a constant volume, specified substrate shape, and the Dupré-

Young condition. To satisfy Eqn. (3.3), I calculate the perturbed substrate and interface

normal vectors,

~ns =

[
εhr(r, θ), ε

hθ(r, θ)

r
,−1

]
+O(ε2),

~ni =

[
r + εgr(r, θ) (1− r2)

3
2 , ε

√
1− r2
r

gθ(r, θ),−
√

1− r2 + εrgr(r, θ)(1− r2)
]

+O(ε2),

(3.17)
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where hr(r, θ) and hθ(r, θ) are assumed to be O(1), furnish additional conditions on An(r)

and Bn(r). Satisfying Eqn. (3.3) at the perturbed contact line, which is given in Eqn. (3.10),

and using Eqn. (3.17) gives

f(θ) = cosα hr(sinα, θ)− cos3 α gr(sinα, θ). (3.18)

Another boundary condition comes from the specified substrate shape. At the contact line,

the interface and the substrate intersect, requiring

z [sinα + εf(θ), θ] = z0 [sinα + εf(θ), θ] . (3.19)

Substituting Eqns. (3.8) and (3.11) into Eqn. (3.19), and using Eqn. (3.18) gives

− sinα cos2 αgr(sinα, θ) + g(sinα, θ) = h(sinα, θ)− sinαhr(sinα, θ). (3.20)

Then, substituting Eqns. (3.9) and (3.12) into Eqn. (3.20) furnishes the boundary conditions

for Eqn. (3.16):

− sinα cos2 αξn,r(sinα) + ξn(sinα) = An(sinα)− sinαAn,r(sinα),

− sinα cos2 αηn,r(sinα) + ηn(sinα) = Bn(sinα)− sinαBn,r(sinα).
(3.21)

Using Eqn. (3.21) and demanding finite g(0, θ), the solution of Eqn. (3.16) is available in

appendix A, giving

g(r, θ) = C0+
k

2
√

1− r2
+
∞∑

n=2

{(
n+
√

1− r2
) [

2(1−
√

1− r2)− r2
]n

2

rn
√

1− r2
[Cn cos(nθ) +Dn sin(nθ)]

}
,

(3.22)

where

C0 =A0(sinα)− sinαA0,r(sinα)− k

2
cosα,

Cn =
[An(sinα)− sinαAn,r(sinα)] sinn α

(1− n2)
[
2(1− cosα)− sin2 α

]n
2

,

Dn =
[Bn(sinα)− sinαBn,r(sinα)] sinn α

(1− n2)
[
2(1− cosα)− sin2 α

]n
2

.

(3.23)

In Eqn. (3.22), the first harmonic is not included because the equilibrium condition pre-
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cludes satisfying the Laplace and Dupré-Young conditions simultaneously. The first mode

has previously been excluded in the contact-line perturbation (Prabhala et al., 2010) and

contact-angle perturbations (Popova, 1983).

The only remaining unknown is the perturbation to the mean curvature (or pressure),

which requires specifying k. With constant volume

V =

∫ 2π

0

∫ sinα+εf(θ)

0

[
−
√

1− r2 + εg(r, θ)
]
rdrdθ

−
∫ 2π

0

∫ sinα+εf(θ)

0

[− cos(α) + εh(r, θ)] rdrdθ,

(3.24)

Eqns. (3.7) and (3.24) give

k =
−2
∫ sinα

0
A0(r)rdr + sin2 α [A0(sinα)− sinαA0,r(sinα)]

cosα− 1 + 1
2
sin2 α cosα

. (3.25)

The solution is now complete for α ≤ π/2, but as r → 1, Eqn. (3.22) becomes singular.

Therefore, to remove this singularity, I bring the singular part under the square root, giving

z = −
√

1− r2 + εγ1(r, θ) + ε2γ2(r, θ) + εγ3(r, θ), (3.26)

where γ1 to γ3 are found by matching Eqns. (3.22) and (3.26). This new form is then

used in the interval [1− ε, rmax], which is illustrated as region 2 in Figure 3.2. Almost the

same technique was used by Chesters (1977), but they did not keep the second-order term

under the square root. This may not be correct, because at the maximum value of r the

imaginary part of z is O(ε), and cannot be neglected. After matching Eqns. (3.22) and

(3.26) at r = 1− |ε| (see appendix B), I find

F (r, θ) = k
2

+
∞∑
n=2

{nr−n [Cn cos(nθ) +Dn sin(nθ)]},

γ1(r, θ) = −2F + F 2

2
sgn(ε), γ2(r, θ) = F 2

4
,

γ3(r, θ) = C0 +
∞∑
n=2

{
r−n(2− r2)

n
2
−1

(2− r2 − n2) [Cn cos(nθ) +Dn sin(nθ)]
}
.

(3.27)

If sinα > 1−|ε|, then the contact line is in the interval [1−|ε| , rmax]. Setting α = π/2−|ε| β
gives

sinα = 1− 1

2
ε2β2 and cosα = εβ, (3.28)
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so from Eqn. (3.3) I find the contact line equation in this interval

r = 1 + ε
γ1(1, θ)

2
− 1

2
ε2

{
[β sgn(ε)− hr(1, θ)]2 − γ2(1, θ) +

γ1(1, θ)
2

4

}
. (3.29)

For contact angles α > π/2, there is little change in the equations when passing the

z = 0 plane, since the mean curvature and the right-hand side of Eqn. (3.4) change sign

there. Accordingly, there are two solutions that must match at rmax. I apply the same

procedure above for α > π/2, furnishing drop shapes for all contact angles. Depending

on the contact angle, I divide the problem into four separate cases (Figure 3.2), since the

drop-shape equation varies near r = 1, and the contact-line equation should be adapted

correspondingly. When α > π/2, for regions 1 and 4,

g(r, θ) =C0 ±
k

2
√

1− r2

±
∞∑

n=2

{(
n±
√

1− r2
) (

2(1∓
√

1− r2)− r2
)n

2

rn
√

1− r2
[Cn cos(nθ) +Dn sin(nθ)]

}
,

(3.30)

where the top sign (in the pair ± or ∓) identifies region 1 and the bottom sign identifies

region 4 [k, C0, Cn, Dn are defined in Eqns. (3.23) and (3.25)]. For regions 2 and 3,

z = ∓
√

1− r2 + εγ1(r, θ) + ε2γ2(r, θ) + εγ3(r, θ), (3.31)

where the top sign identifies region 2 and the bottom sign identifies region 3 with the same

γ1, γ2, and γ3 as in Eqn. (3.27). The maximum value of r for cases 3 and 4 is

rmax = 1 + ε
γ1(1, θ)

2
+ ε2

[
γ2(1, θ)

2
− γ1(1, θ)

2

8

]
. (3.32)

3.4.1 Energy

In the absence of gravity, the total energy is the surface energy

E = γAlg + γsgAsg + γslAsl

= γAlg − γAsl cosα + const.
(3.33)
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Case 1: α < π/2, sinα < 1− |ε|
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Case 4: α > π/2, sinα < 1− |ε|
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Figure 3.2: Configurations for various contact angles; small circles identify singularities at
r = 1.
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where subscripts sg, sl, and lg denote solid-gas, solid-liquid, and liquid-gas interfaces,

respectively. With

S(r, θ, z) = z ±
√

1− r2 − εg(r, θ) = 0, (3.34)

φ(r, θ, z) = z + cosα− εh(r, θ) = 0, (3.35)

I have

Alg =

∫ 2π

0

∫ sin(α)+εf(θ)

0

|∇S|
|∇S · ez|

rdrdθ, (3.36)

Asl =

∫ 2π

0

∫ sin(α)+εf(θ)

0

|∇φ|
|∇φ · ez|

rdrdθ, (3.37)

which become

Alg = 2π (1− cosα) + 2πε [−k (1− cosα) + sinαA0,r(sinα)] +O(ε2), (3.38)

Asl = πsin2α + 2πε

[
−k

2
sinα + cosαA0,r(sinα)

]
+O(ε2), (3.39)

so the total energy (to within an arbitrary constant) from Eqn. (3.33) is

E

γR2
0

= 2π

(
1− cosα− 1

2
cosαsin2α

)
+ 2πε

[
−2

∫ sinα

0

A0(r)rdr + sin2 αA0(sinα)

]
.

(3.40)

3.4.2 Application to circular tubes

As an example, I consider the perturbation of spherical drop on a plane that is deformed

into a cylinder, as shown in Figure 3.1. In Cartesian coordinates, the cylinder surface is

described by

(z ±R +R0 cosα)2 + x2 = R2, (3.41)

where R is the cylinder radius. Scaling with the drop radius R0,

(
z − 1

ε
+ cosα

)2

+ x2 =

(
1

ε

)2

, (3.42)
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where, in this example, ε = R0/R with |ε| � 1. Note that ε < 0 (> 0) implies that the

drop is inside (outside) the tube. Now I write Eqn. (3.42) explicitly in z, linearize it in ε,

and transform to cylindrical coordinates, giving

z0 = − cosα + ε

{
1

4
r2 [1 + cos(2θ)]

}
. (3.43)

Comparing Eqns. (3.8) and (3.43) furnishes A0(r) and A2(r), and from Eqns. (3.22), (3.26),

(3.30), and (3.31) I find (see Figure 3.2)

� region 1:

z(r, θ) = −
√

1− r2 + ε

{
C0 +

k

2
√

1− r2
+ C2

[
2

r2
√

1− r2
− 2

r2
− 1

]
cos(2θ)

}
,

(3.44)

� region 2:

z = −
√

1− r2 + εγ1(r, θ) + ε2γ2(r, θ) + εγ3(r, θ), (3.45)

� region 3:

z =
√

1− r2 + εγ1(r, θ) + ε2γ2(r, θ) + εγ3(r, θ), (3.46)

� region 4

z(r, θ) =
√

1− r2 + ε

{
C0 −

k

2
√

1− r2
− C2

[
2

r2
√

1− r2
+

2

r2
+ 1

]
cos(2θ)

}
, (3.47)

where

C0 =− 1

4
sin2 α− k

2
cosα,

C2 =
sin4 α

24(1− cosα)− 12 sin2 α
,

k =
−3sin4 α

4
(
2 cosα− 2 + sin2 α cosα

) ,

(3.48)
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and

γ1(r, θ) =− k − 4C2

r2
cos(2θ) +

1

2

[
1

2
+

2C2

r2
cos(2θ)

]2
sgn(ε),

γ2(r, θ) =
1

4

[
k

2
+

2C2

r2
cos(2θ)

]2
,

γ3(r, θ) =C0 −
(

2

r2
+ 1

)
C2 cos(2θ).

(3.49)

3.4.3 Numerical solution

I verified the foregoing analytical approximation using the public domain Surface Evolver

software, which is for studying equilibrium surfaces shaped by surface tension. From a

user-defined initial guess of the shape, the program advances the surface to lower energy

states by displacing mesh vertices. The user can progressively refine the mesh to achieve a

desired accuracy. Details of the algorithm and the program implementation are available

in the user manual (Brakke, 2008).

For a drop inside or outside a circular tube, Surface Evolver computes the equilibrium

interface with a fixed volume [Eqn. (3.7)] and zero density. For example, from a pyramid as

the initial shape, with one of the faces restricted to the tube wall, computations converged

to 9 significant digits in the total energy using 20480 facets. An analysis demonstrating

first-order convergence of the energy with respect to the number of facets is available in

appendix C. Moreover, I demonstrate, using the pressure perturbation, that the analytical

approximation has errors that are O(ε2). Drop shapes for two representative examples are

shown in Figure 3.3. Quantitative comparisons with the analytical theory are examined

below.

3.5 Results

Drop profiles in the tube cross section are shown in Figure 3.4 (top) for ε = −0.1 and −0.3

with α = 60◦. When ε = −0.3, there is a non-smooth transition between the regions 1 and

2 in Figure 3.2, and the perturbation solution deviates from the numerics. Because of the

larger errors in the contact-line calculation, the drop profile and the substrate do not match

well at the contact line. Note that |ε| = 0.3 is a large absolute value for the perturbation

parameter, and I do not expect to obtain the same correspondence when increasing ε. For
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Figure 3.3: Drop shapes from Surface Evolver with α = 90◦, and ε = −0.5 (left) and 0.5
(right).

ε = −0.1, the transition is smooth, and inward bending of the surface stretches the drop

normal to the tube axis, also compressing it along the tube axis. Drop profiles in the

tube cross section with constant surface curvature and several contact angles are shown

in Figure 3.4 (middle). Similarly to the top panel, where ε = −0.1 for both hydrophobic

and hydrophilic surfaces, the transitions between regions are smooth. Displacement profile

scaled with ε, i.e., g(r, θ) from Eqn. (3.11) are shown in Figure 3.4 (bottom). For small ε,

the numerical solution corresponds well with the perturbation solution, deviating gradually

when increasing |ε|. However, even with ε = −0.5, the difference is small compared to

g(r, θ).

Next, I compare the numerical and perturbation approximations of the pressure and

energy. As explained in the theory Section, the pressure difference across the interface

changes with the substrate curvature, and this change is equal to k(α)ε with k(α) given

by Eqn. (3.25). Note that k only depends on the axisymmetric part of the perturbation

A0(r), since the other terms are periodic in θ, and vanish when integrated with respect to

θ from 0 to 2π when calculating the drop volume. Thus, the non-axisymmetric part of the

perturbation does not change the internal pressure. Figure 3.5 (right panel) compares k(α)ε

to Surface Evolver computations with three contact angles. Note that the internal pressure

increases with substrate curvature when the drop is outside the tube, and decreases when

it is inside the tube. Accordingly, because the interface curvature and the internal pressure



32 Chapter 3: Bubbles and drops on curved surfaces

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−0.25

0

0.25

0.5

0.75

1

r/R0

z/
R

0

−1 −0.5 0 0.5 1

0

0.5

1

1.5

r/R0

z
/R

0

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

r/R0

g(
r,
0)

Figure 3.4: (top) Drop profiles with α = 60◦, and ε = −0.1 (blue) and −0.3 (red). (middle)
Drop profiles with α = 50◦ (blue), 90◦ (red) , 120◦ (green), and ε = −0.1. (bottom)
Scaled surface-displacement perturbation profile with α = 50◦, and ε = −0.1 (blue), −0.3
(red), −0.5 (green). (symbols are from Surface Evolver, and lines are the perturbation
approximation)
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are related by Eqn. (3.1), the drop curvature increases when the drop is outside the tube,

and decreases when it is inside the tube. When ε = 0, the drop is spherical, and the three

lines in Figure 3.5 intersect.
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Figure 3.5: (left) Scaled pressure perturbation (k from Eqn 3.48) versus contact angle.
Symbols are from Surface Evolver with ε = −0.1 (blue) and 0.5 (red), and the line is
the perturbation approximation. (right) Scaled internal drop pressure versus aspect ratio
(symbols are from Surface Evolver, and lines are the perturbation approximation) with
α = 30◦ (red), 90◦ (blue), 150◦ (green).

While the slopes of the lines in the right panel of Figure 3.5 equal k, and are indepen-

dent of ε, they vary with contact angle. Figure 3.5 (left panel) compares the perturbation

approximation of k with Surface Evolver computations with curvatures ε = −0.1 and 0.5.

Here, the theory agrees well with the numerics for all contact angles when ε < 0.3, but

deviates when increasing ε, with a maximum deviation occurring when α ≈ 90◦. Here,

Surface Evolver computations exhibited the slowest convergence, possibly because of the

coincidence of the contact line with the singularity in the drop profile at the extremum

(r = 1); interestingly, the pressure perturbation becomes non-linear in ε at α ≈ 90◦ when

ε > 0.2. Note that k decreases with increasing α, indicating that the the perturbed pres-

sure decreases with increasing contact angle. For very hydrophobic surfaces (α > 140◦),

curvature does not significantly influence the pressure. For hydrophilic surfaces, which are

characteristic of the wood fibres, however, the pressure perturbation can be a significant

fraction of the unperturbed pressure. Thus, for example, when wood fibres dry, the air

bubbles that grow inside the fibre lumen from micrometer dimensioned holes in the cell

wall (pit holes), may produce a capillary pressure and an accompanying force that impacts

fibre collapse.
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approximation. Scaled energy versus aspect ratio (symbols are from Surface Evolver, and
lines are the perturbation approximation) with α = 30◦ (red), 90◦ (blue), and 150◦ (green).

In the theory Section, I showed that the surface energy changes with the substrate

curvature when the volume and the contact angle are fixed. This change is expressed as

a function of contact angle in Eqn. (3.40), retaining only the first order terms in ε. The

energy change only depends on the axisymmetric part of the perturbation. Figure 3.6 (left

panel) shows how the energy changes with α with constant substrate curvatures ε = −0.1

and 0.5. Similarly to the left panel of Figure 3.5, the largest difference between the Surface

Evolver and perturbation results occurs when α = 90◦. The energy change increases with

contact angle for hydrophilic surfaces, and decreases for hydrophobic surfaces, with the

maximum at α ≈ 90◦. Figure 3.6 (right panel) shows surface energy versus ε with three

different contact angles. Here, the energy changes that accompany the changing substrate

curvature are small compared to the initial energy. The total surface energy increases with

curvature when the drop is outside the tube, and decreases when inside the tube.

3.6 Autonomous droplet motion

The foregoing energy change manifests as an energy-gradient force that drives lateral drop

migration. To quantify this force, I consider a drop on an harmonic surface

z(r, θ) = A cos(κx), (3.50)
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where A, κ = 2π/λ, and λ are the amplitude, wave number, and wave length, respectively.

Figure 3.7 shows a drop on such surface where a local coordinate system O′x′z′ is positioned

at the drop centre, and the osculating circle identifies the surface curvature. Approximating

the surface locally by a circle, this problem is analogous to the drop on circular tube

considered above. Thus, with a parabolic approximation of the circle,

z′(r, θ) =
1

2
εx′

2
(3.51)

and Eqn. (3.40) furnishes the drop energy. Because the curvature is independent of the

coordinate system, I can express ε as a function of x, i.e.,

ε = − 1

R
=

Aκ2 cos(κx)
{

1 + [Aκ sin(κx)]2
}3/2 , (3.52)

which furnishes a lateral force

Fx = −dE

dx
= −π

4
sin4 α

dε

dx
. (3.53)

This result is validated by Surface Evolver in Figure 3.8, where a drop is seen to migrate

(from right to left) to a position where the substrate has the largest negative (inward)

curvature. This curvature-driven drop motion seems to explain the experiments of Renvoisé

et al. (2009) where a liquid bridge in a tapered tube was observed to self-propel itself to

the end with highest surface curvature, thus minimizing its surface energy.

The force is plotted as a function of x in Figure 3.9 (left panel). While the force

vanishes at x = 0, this is not a position of stable equilibrium. The surface valleys are the

energetically favoured (stable) positions for drops and bubbles. Note that, because there

is no viscosity and a no-slip boundary condition in the Surface Evolver computation, there

is no time scale. Nevertheless, since the force perturbs the equilibrium three-phase contact

line, the apparent contact angle is the dynamic contact angle, and the drop moves.

If I neglect energy dissipation in the precursor film of the moving contact line and in

the external fluid, then the tangential component of this force Ft is balanced by a viscous

resistance −ζηR0U , where ζ is a dimensionless friction coefficient and η is the fluid viscosity.
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Figure 3.7: A sinusoidal surface showing the osculating circle (dashed line) and its parabolic
approximation (dash-dotted line).

Figure 3.8: Drop motion induced by surface curvature on a sinusoidal surface calculated
according to Surface Evolver (time advancing from left to right). The drop migrates from
right to left, toward the position with the lowest surface energy.
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Figure 3.9: Scaled force (Fx = −dE/dx) and energy (E) (left panel), and scaled migration
velocity (U) (right panel) versus scaled position for a 1 µL drop on a surface with A/R0 = 5,
λ/R0 = 40, and α = 30◦.

The resulting drop velocity is

U =
γR0Ft
ζηR0

= −π
4

sin4 α
γ

ζη

dε

dx

1
{

1 + [Aκ sin(κx)]2
}1/2 . (3.54)

Note that three sources of dissipation are present with a moving contact line (de Gennes,

1985): bulk hydrodynamic dissipation, viscous dissipation in the precursor film, and dissi-

pation at the real contact line at the end of the precursor film. Although de Gennes (1985)

proved that only the dissipation at the real contact line can be neglected for very small

contact angles, it has been popular to neglect the precursor film dissipation (Brochard,

1989; Ford & Nadim, 1994; Daniel et al., 2001; Subramanian et al., 2005). The spheri-

cal drop-shape assumption during drop motion implies that the advancing and receding

contact angles are equal to the thermodynamic contact angle, deviating from de Gennes

(1985) theory. Thus, contact-angle hysteresis is not considered.

Here, I estimate ζ using a lubrication approximation, which restricts the solution to

small contact angles where the drop height is small with respect to its radius. Daniel et al.

(2001) showed that this approximation is valid when α < 45◦. The shear stress at the

substrate-drop interface is

τ = η
3U

h(r, θ)
, (3.55)

where h(r, θ) is the local drop height. Neglecting the effects of gravity and motion on drop
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shape, the drop surface is assumed spherical. To avoid the contribution of a non-integrable

singularity in τ at the drop periphery, the integration domain must be truncated near the

contact line. Following de Gennes (1985), the cut-off distance is furnished by consideration

of van der Waals interactions, giving

δ =

√
AH

6πγα4
, (3.56)

where AH is the Hamaker constant, and δ is the cut-off distance. With AH ≈ 10−20 J and

γ ≈ 0.05 J m−2, I find

δ ≈ 10−10

α2
m rad−2. (3.57)

Next, integrating the shear stress over the truncated contact area of a spherical drop gives

ζ = 6π

{
− cosα ln

[
δ tanα

R0(1− cosα)

]
+ (1− cosα)

}
, (3.58)

which is the same as derived by Subramanian et al. (2005) when I replace the sphere radius

R0 in Eqn. (3.54) with contact radius R0 sinα.

As shown in Figure 3.10 (left panel), plotting ζ at fixed contact radius (R0 sinα =

constant) demonstrates the effect of contact angle at constant contact area. Note that

ζ decreases with drop size and contact angle, and diverges with vanishing contact angle.

From ζ, I can estimate the drop velocity. For example, as shown in Figure 3.9 (right panel)

for a 1 µL drop with η = 0.001 Pa s and γ = 0.07 N m−1 on a wrinkled surface with

α = 30◦, A/R0 = 5, and λ/R0 = 40, the velocity is ≈ 0.2 mm s−1.

Dimensional analysis shows that the dimensionless drop velocity Uη/γ depends on three

independent dimensionless parameters: α, κR0 sinα, and A/(R0 sinα). Note that Uη/γ

is the capillary number, which is the ratio of the characteristic viscous shear stresses to

the capillary stresses. As shown in Figure 3.10 (right panel), this scaled velocity is small,

indicating (as I required for the lubrication analysis) that the drop migrates with negligible

deformation. Changes in κR0 sinα and A/(R0 sinα) represent changes in the substrate-

curvature gradient; thus, I set Γ = κ2AR0 sinα as a convenient alternate dimensionless

parameter. Accordingly, an increase (decrease) in Γ indicates an increase (decrease) in

substrate-curvature gradient dε/dx or the drop radius R0. Therefore, from Figure 3.10, the

drop velocity increases monotonically with contact angle, drop size, and substrate-curvature

gradient.
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Figure 3.10: (left) Dimensionless friction coefficient (lubrication approximation) versus
contact angle with contact radius R0 sinα = 10−3 (blue), 10−4 (red), 10−5 (green), and
10−4 (yellow). (right) Maximum scaled velocity on a wrinkled surface versus contact angle
with Γ = κ2AR0 sinα = 0.001 (blue), 0.01 (red), and 0.1 (green).

3.7 Summary

A non-axisymmetric perturbation analysis was performed for a drop or a bubble supported

on a flat substrate in the absence of gravity. For a spherical cap on a planar substrate, a

standard perturbation method was modified by adding a non-axisymmetric perturbation

to the substrate, and calculating the perturbation to the drop profile. The solution has

a singularity at the extremum (r = 1) when the contact angle exceeds 90◦, but this can

be removed by reconstructing the solution and using the new form in a small neighbour-

hood near the extremum. Calculating the internal pressure and the surface energy of the

perturbed drop, I showed that, at constant volume, the pressure and the energy change

with the axisymmetric part of the perturbation. The solution was then used to compute

the shape of a drop inside or outside a circular tube, and these analytical results were

compared to numerical solutions from the Surface Evolver software. The drop profiles and

their perturbations correspond well with the numerical computations for all contact angles,

although they depart gradually when increasing the perturbation parameter. I compared

the calculated pressure and energy with the numerical results, showing that the internal

pressure and surface energy increase with the substrate curvature when the drop is out-

side the tube, and decrease when inside the tube. Comparing the pressure and the energy

at constant substrate curvature, but different contact angles, revealed that the pressure
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change decreases with the contact angle, while the surface energy change attains a max-

imum when the contact angle is 90◦. Extending the example to a drop on an harmonic

surface, I showed that the most energetically favoured (stable) positions for drops are the

surface valleys. Indeed, drops are expected to migrate to these positions, driven by a force

that is proportional to the surface-curvature gradient. I estimated the drop velocity by

balancing the energy-gradient force with the viscous resistance obtained from a lubrica-

tion approximation, and found that this velocity increases with surface-curvature gradient,

contact angle, and drop radius.



Chapter 4

Elasto-capillary collapse of circular

tubes as a model for wood fibres

4.1 Preface

One of the most important capillary-driven deformations of wood fibres is lumen collapse,

which is the second objective of this thesis. The following Chapter is focused on the

modeling of wood-fibre lumen collapse driven by capillary forces from interfaces that are

inside the lumen. Modelling fibres with circular tubes, the equilibrium configurations at

each liquid volume are obtained, and their stability is investigated. The effects of the

contact angle and elasto-capillary number on the collapsing behaviour of the tubes are

discussed, and the results are applied to real wood fibres.

4.2 Abstract

Wood-fibre conformation affects paper properties in various paper-product categories, such

as packaging, printing, and absorbents. Qualitative investigations suggest that capillary

forces play a crucial role in determining the fibre conformation upon drying. To quantify

this process, I theoretically and experimentally investigate deformation of a circular tube

under capillary pressure. Fibre pit holes, which impose a significant capillary pressure

while drying, are modelled as circular holes in a tube. The calculations are undertaken by

coupling the analytical solution for buckling a circular tube to numerical solutions of the

Young-Laplace equation. This elasto-capillary model elucidates the influences of wetting

41
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angle, tube-wall flexibility, and hole size on the tube deformation. In experiments, flexible

silicon-rubber tubes with a hole in the wall are filled with liquid, and the internal pressure

is measured while withdrawing this fluid, thus mimicking evaporation during the drying

of wood fibres. The results prove that capillarity can collapse the fibre lumen partially or

completely, depending principally on the fibre-wall flexibility.

4.3 Introduction

Cellulose is a renewable polymer that has been manipulated in papermaking for more than

2000 years, affecting many aspects of science, technology, and culture (Hubbe & Bowden,

2009). Paper is a quasi-randomly deposited network of pulp fibres that are bonded following

pressing and drying. Wood fibres are typically 1−3 mm in length and 20−30 µm in diameter

with a complex anisotropic tubular structure in which cellulose micro-fibrils wind around

the wall. The lumen is filled with water when in a pulp, but can be removed by subjecting

the fibres to an external force. After drying, almost all of the delignified fibres in a paper

sheet collapse into ribbon-like structures (Tejado & van de Ven, 2010), which decreases

their resistance to bending, and enhances entanglement and the bonded area. Terms such

as fibre flexibility (Emerton, 1957), conformability (Mohlin, 1975), compactability (Clark,

1985), and collapsibility (Lowe et al., 2005) are all linked to the ability of fibres to collapse,

producing stronger, denser, and less porous networks.

Closing and re-opening of the fibre lumen occurs in various paper manufacturing and

recycling processes. While external loading in refining, wet pressing, and calendaring pro-

cesses can squeeze fibres into collapsed states, capillary forces can also bring fibre walls

into close proximity. Although Tejado & van de Ven (2010) have shown that the capillary

force in fibre crossings is unlikely to be responsible for the strength of wet paper, and

vanishes when water evaporates, they proposed that capillary forces inside the lumen are

still considered a possible explanation for lumen collapse during drying. He et al. (2003)

studied fibre behavior in wet pressing to quantify changes in fibre orientation and trans-

verse dimensions when increasing the pressing pressure. The handsheets were pressed for

2 min at various pressures and dried under restraint before the fibre orientation and cross

section were measured using confocal microscopy. They observed that, even at very high

pressing pressures, 13% of the fibres were uncollapsed with 33% partially collapsed. The

capillary pressure during drying is much lower than the pressing pressure; however, it acts
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over longer periods of time, and can overcome the effect of inter-fibre surface roughness,

bringing the walls into molecular proximity, so that hydrogen bonds and van der Waals

forces can maintain the fibres in a permanent ribbon-like conformation (Hubbe, 2007).

Although capillary forces are negligible at macroscopic scales, they dominate when

the meniscus length scale is smaller than the capillary length lc = (γ/ρg)
1
2 , where γ is the

surface tension, and ρg is the specific weight. Flexible solids in contact with small interfaces

can therefore deform or break if the capillary force exceeds the elastic resistance. These

‘elasto-capillary’ deformations exist in many practical applications (Roman & Bico, 2010),

including micropatterns in a photoresist (Tanaka et al., 1993), lung airway closure (Heil &

White, 2002), drop motion on flexible fibre arrays (Duprat et al., 2012), and self-folding of

flexible sheets (Péraud & Lauga, 2014).

In this work, I develop a model for the capillary-induced collapse of cylindrical tubes

upon drying. The purpose is to understand the physical processes that contribute to the

flattening of wood fibres, and to control fibre deformation, since both open- and closed-

lumen fibres have technological applications (Hubbe, 2007). However, the results may be

important in other applications, such as food drying (Joardder et al., 2013), lung airway

closure (Baudoin et al., 2013; Almeida et al., 2013), and microelectromechanical systems

(MEMS) (Kwon et al., 2014).

In the wood-fibre literature, fibre flexibility is generally defined as F = 1/(EI) where E

is Young’s modulus and I is the area moment of inertia in the plane of bending. Determining

the fibre elastic modulus is difficult when fibres are wet. Most methods are based on the fibre

deformation under tensile stretching (Page et al., 1971; Tchepel et al., 2006) or deflection

under bending with one or two supports (Lowe et al., 2005; Yan & Li, 2008). The fibre

elastic modulus depends on several factors, such as microfibril angle, pulping process, and

moisture content.

The fibre wall comprises a thin primary wall and a secondary wall that is divided into

the outer, middle, and inner layers, termed S1, S2, and S3, respectively. The thickest layer

(S2) contains 90% of the fibre mass, and has cellulose micro-fibrils wound into a spiral with

a helix angle in the range 0–15◦. This is the most influential layer for determining fibre-wall

mechanical properties. Gindl & Schöberl (2004) modeled S2 as a fibre reinforced composite

with cellulosic microfibrils as the fibres and the mixture of hemicelluloses and lignin as

the continuous phase. Using available data for the elastic and shear moduli of cellulose,

hemicelluloses, and lignin, the longitudinal and transverse elastic moduli were calculated

as a function of the microfibril angle. For small microfibril angles, the transverse elastic
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modulus was found to be one order of magnitude smaller that the longitudinal elastic

modulus.

The pulping process and mechanical and chemical treatments during papermaking sig-

nificantly change fibre mechanical properties. For example, chemical pulp fibres are more

flexible and more readily collapsible than mechanical pulp fibres (Hubbe et al., 2007), and

recycling decreases flexibility in chemical pulps while increasing flexibility in mechanical

pulps (Dulemba et al., 1999). For chemical pulps, the elastic modulus increases when in-

creasing yield – the mass percentage of the recovered pulp compared to the original wood

– for virgin fibres, while it slightly decreases at very low yields for recycled fibres (Scallan

& Tigerström, 1991). Yan & Li (2008) proposed a new method to measure wet-fibre flex-

ibility using confocal laser scanning microscopy, and showed that refining and bleaching

significantly reduce the elastic modulus of wet fibres.

When the fibre wall is completely saturated, water prevents intermolecular bonds form-

ing between cellulose micro-fibrils, leading to a soft fibre wall (Yan & Li, 2013). There are

three main types of water in wood cells: free water, which exists inside the fibre lumen

and between fibres; freezing bound water; and non-freezing bound water, which interacts

directly with cellulose. During drying, free water and freezing bound water first evapo-

rate in tandem (Weise et al., 1996), and then non-freezing bound water evaporates until a

very high solid content is reached. The fibre saturation point occurs when all free water

is removed, leaving only bound water. As water is removed from the cell walls, hydrogen

bonds form between cellulose fibrils, resulting in a stiffer and less porous cell wall (Yan &

Li, 2013). However, capillary-induced collapse occurs before the fibre saturation point. At

this time, an interface may form inside the lumen while the cell wall is still saturated.

Fibre flexibility is significantly affected by fibre dimension, especially fibre wall thickness

and diameter (Yan & Li, 2008). Various papermaking and recycling processes may change

fibre wall thickness, but they cause negligible changes in the fibre perimeter (Jang et al.,

1996). Therefore, the fibre diameter can be considered constant if a circular initial cross

section is assumed. Jang et al. (1996) observed that increasing the specific energy in pulping

and refining intensity decreases the fibre wall thickness via a ‘peeling off’ mechanism that

involves delamination and detachment of fibre-wall material.

Considering the diversity of wood species, pulping processes, and mechanical and chem-

ical treatments used in technological fibre applications, I propose a range for the fibre

dimensions and elastic moduli for wet fibres during drying. An extensive review of the

literature suggests that longitudinal elastic moduli are in the range 0.2− 20 GPa, and that
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fibres have 0.8− 5 µm wall thickness and lumen radii 3− 18 µm, with thickness-to-radius

ratios in the range 0.05 − 1 (Fischer et al., 2014; Adusumalli et al., 2010; Dulemba et al.,

1999; Gindl & Schöberl, 2004; Nilsson et al., 2000; Page et al., 1977; Saketi et al., 2010;

Scallan & Tigerström, 1991, 1992; Tchepel et al., 2006; Yan & Li, 2008, 2013; Jang et al.,

1995, 1996; Jang & Seth, 1998).

4.4 Theory

4.4.1 Elastic analysis

To model the cell wall elastic deformation, I consider an initially circular tube with radius

R, and constant wall thickness t. When the tube is subjected to a uniform radial traction

due a pressure

P = Po − Pi, (4.1)

where Po and Pi are the external and internal pressures, it deforms elastically while main-

taining a circular cross section. However, above a critical positive value of P , the tube

buckles into an ellipse, eventually adopting a fully collapsed cross section. To analyse the

deformation during buckling, I consider a section of unit length. From symmetry, it is

sufficient to analyse the deformation of a quarter section. I assume that the strain is small

enough to justify a linear stress-strain relationship. Following Moreno et al. (1970), I con-

sider the tube wall to be a curved beam, and use the theory of Love (1893) to calculate the

buckled-tube profile according to

y′′

(1 + y′2)
3/2

= − P

2EI

[(
x2 + y2

)
− r20

]
− 1

R0

, (4.2)

where the origin is at the tube center, E is Young’s modulus, and EI is the flexural rigidity

with area moment of inertia1

I =
t3

12
. (4.3)

As shown in Figure 4.1(a), r0 is the distance from the center, and R0 is the tube wall radius

of curvature at y = 0. Equation (4.2) requires four boundary conditions to ascertain r0

and R0:

y(r0) = 0, y′(r0) =∞, y′(0) = 0 (4.4)

1This is the area moment of inertia per unit length of the tube, having the unit m3 instead of m4.
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with constant circumference S. I numerically integrate eqn (4.2) and use a shooting itera-

tion to calculate r0 and R0 when

P > Pb =
3EI

R3
, (4.5)

which holds for circular beams. Tube profiles and values of r0 and R0 are shown in Fig-

ure 4.1. Here, the corresponding strain energy is (Timoshenko, 1930)

δUe =
M2

2EI
Rdθ =

EI

2

{
P

2EI

[(
x2 + y2

)
− r20

]
+

(
1

R0

− 1

R

)}2

Rdθ, (4.6)

where M is the bending moment and Rdθ is a differential segment of the tube wall.
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Figure 4.1: (a) Fibre cross section and its geometrical parameters before and after buckling.
(b) Buckled-tube profiles when increasing the external pressure. (c) The tube-wall distance
from its center at y = 0 (r0), and the tube-wall radius of curvature at y = 0 (R0) versus
the scaled pressure.

4.4.2 Capillary analysis

Small 1 − 7 µm openings in fibre walls —termed “pits”— assist intercellular transport.

The primary walls in these holes produce a separating porous membrane that is destroyed

during pulping (Ilvessalo-Pfäffli, 1995). When a single fibre is dried, air penetrates through

pit holes if the fibre lumen has closed ends. This produces small interfaces that are pinned

to the pit holes, providing capillary pressures that are greater than those produced by

interfaces covering the lumen periphery. Therefore, to investigate the most significant

capillary role in fibre collapse during drying, I suppose that fibres have closed ends, and
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that the only openings for gas penetration are the pits. Here, since the capillary-pressure

and surface-tension forces are scaled with γR2/Rh and γRh, respectively, where Rh is the

hole radius, I may neglect surface-tension forces when (Rh/R)2 � 1.

I have previously calculated the bubble shape and pressure on curved surfaces (Soleimani

et al., 2013), showing that the maximum capillary pressure occurs when the bubble radius

of curvature equals Rh, and can be approximated by

Pmax ≈
2γ

Rh

. (4.7)

If this capillary pressure exceeds the critical pressure from eqn (4.5), then the tube buckles,

and if Pmax > 5.398EI/R3 (see Figure 4.1), then the tube walls touch. As shown in

Figure 4.2(a), the bubble may exist between the merged walls or in an arbitrary location on

the lobe-shaped section of the buckled tube. If the capillary pressure reaches Pmax and the

bubble does not contact the opposite wall — either because Pmax < 5.398EI/R3 or because

it resides in the lobe — the tube opens and returns to its initial circular conformation. In

this analysis, the projected area of the hole is preserved during deformation. According to

the elastic analysis, this assumption introduces negligible relative error to the hole size, i.e.,

less than 0.0005%, 0.1%, 0.6%, and 4% when Rh/R = 0.01, 0.1, 0.2, and 0.5, respectively.

(a) (b)

Hydrophilic surface Hydrophobic surface

(c)

Bordered pit hole

Hole with sharp edge

α

α

Figure 4.2: (a) Bubble position on a buckled tube. When the bubble is between the closed
walls, it can bridge the gap easier than when at other positions. (b) Topological change
when a bubble contacts the opposite wall. (c) Configurations where the contact angle at
the hole may exceed the wetting angle.

When a bubble reaches the opposite tube wall [Figure 4.2(b)], it bridges the gap be-

tween the buckled walls. Here, the evolution of a stable bridge depends on the tube-wall

wetting angle α, i.e., the equilibrium contact angle, in addition to tube flexibility and perfo-
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ration size. The interface shape before and after bridging is governed by the Young-Laplace

equation, which I solve using the Surface Evolver software (Brakke, 1992) to numerically

calculate equilibrium fluid interfaces. With a polygon prism as the initial condition, iter-

ations begin using the gradient descent method. I progressively refine the mesh, remove

small edges, and equiangulate to achieve uniform triangular facets. The contact line is

allowed to leave the hole edge when the contact angle reaches the wetting angle. After 100

iterations and mesh refinement to about 2000 facets, I switch the minimization algorithm

to the conjugate gradient method, to speed convergence. First-order convergence of the

energy with respect to the number of facets is achieved to eight significant digits in the total

energy with ≈ 25, 000 facets. With 1000 iterations, the energy changed less than 0.004%,

eliminating the possibility of the local minimum being a saddle point (Brakke, 2008).

Theoretically, the interface becomes unstable and detaches from the perforation edge

when the contact angle at the edge exceeds α (Slobozhanin & Tyuptsov, 1974, 1975).

However, the interface inside the buckled tube has various apparent contact angles around

the non-axisymmetrically deflected edge of the perforation. Consequently, while the contact

angle reaches α at some points, it is still smaller than α at other positions, so the interface

leaves the edge non-axisymmetically. Figure 4.3 shows how the interface detaches from the

hole when varying the wetting angle. For large wetting angles, the interface extends in the

longitudinal direction of the buckled tube, whereas for small wetting angles it expands in

the traverse direction, and for a specific wetting angle, it detaches symmetrically from the

edge of the hole. This critical wetting angle depends on the perforation size and the shape

of the deflected tube. For example, at Rh/R = 0.2 and (PeR
3)/EI = 5.37, symmetric

detachment occurs when α ≈ 87.4◦.

The perforations in my experiments have sharp corners (from drilling), which affects

the contact angle at the hole [shown in Figure 4.2(c)]. Therefore, in addition to the wetting

angle limit, the interface is pinned to the hole until its surface becomes tangent to the tube

wall. This can occur in wood fibres, since the interface is pinned to the asperities of the

fibrillated surface around the pit holes (Tejado & van de Ven, 2010) or the sharp edge of

bordered pit holes [Figure 4.2(c)], achieving contact angles that exceed the wetting angle.

Results of analyses with these two criteria are compared in Section 4.6.
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(a) (b) (c)

Figure 4.3: The top projections (top) and the 3-dimensional visualizations (bottom) of the
bridged interfaces detaching from the hole edge after the contact angle exceeds the wetting
angle. From left to right: symmetrical detachment at α = 87.4◦, longitudinal detachment
at α = 100◦, and transverse detachment at α = 80◦, all with Rh/R = 0.2, PeR

3/EI = 5.37.
In the top views, the black lines are the hole edges, and the red lines are the detached
contact lines. In the 3-dimensional views, a tube top section is removed to view the fluid
interfaces.



50 Chapter 4: Elasto-capillary collapse of circular tubes

4.4.3 Elasto-capillary analysis

Interactions of the interface and elastic tube are assessed by combining the calculated

elastic deformation and capillary-interface solutions. At a specific liquid volume VL, the

equilibrium state is achieved when the interface provides the required capillary pressure to

reduce the tube lumen-volume VT to VT = VL + VG, where VG is the gas volume. If this

equilibrium corresponds to a minimum in the total energy, which is the sum of the elastic

and interfacial energies, then the solution is considered stable.

The elasto-capillary analysis is undertaken by coupling the elastic solution calculated

within Matlab to the capillary solution from Surface Evolver. The tube cross-section shape

is calculated by solving eqn (4.2) in Matlab, and Surface Evolver is called by Matlab to

compute the interface shape, energy, and capillary pressure. To transfer the tube profile

from Matlab to Surface Evolver, I fit a curve of the form

y =
n∑

i=1

ai

[(r0
R

)2
− x2

] i
2

, (4.8)

to the calculated profile with n = 4 and more than 18000 data points, achieving a root

mean square (RMS) error less than 10−4.

4.5 Experiment

Super soft latex tubes (McMaster Carr) with 3/4′′ outside diameter and 1/16′′ wall thickness

were selected to verify the tube-buckling theory. Tubes were filled with silicon oil (Sigma

Aldrich) with 5 cSt viscosity and 913 kg m−3 density (reported at 25◦C), and immersed in a

water-methanol bath at room temperature to remove the influence of gravity. To maintain

equilibrium, the inside liquid was pumped slowly (1 mL min−1) at each step, and left for

five minutes to relax.

To verify the elasto-capillary analysis, silicon elastomer tubes [Van Waters and Rogers

(VWR) Company] were selected with 0.076′′ outside diameter and 0.009′′ thickness, and

typical length to radius ratio in the range 20−30 to ensure that the tube diameter was small

compared to its length. Very small holes were drilled at the tube mid-point using 0.15 mm,

0.1 mm, and 0.05 mm drill bits following immersion of the tube in liquid nitrogen to cool

below the glass transition temperature. The final perforation diameters were measured

with a microscope, furnishing 0.044± 0.005 mm, 0.022± 0.003 mm, and 0.010± 0.002 mm
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for the 0.15 mm, 0.1 mm, and 0.05 mm drill bits, respectively. The wall thickness and

tube diameters were measured before and after freezing, furnishing 0.19 ± 0.01 mm and

1.94 ± 0.03 mm, respectively. The elastic moduli of the tubes were measured using a

standard tension test, furnishing E = 3.1± 0.2 MPa under small longitudinal strain. The

static wetting angles for water and oil on the tube wall were 104± 4◦, 22± 2◦, respectively.

A tensiometer was used to measure the wetting angle by depositing 2− 4 µL drops on the

tube surface, after cutting, opening and flattening. The oil surface tension in contact with

air was 27.49 ± 0.05 mN m−1, measured at 25◦C using a Wilhelmy plate. The oil density

was reported by the suppliers to be 880 kg m−3. The foregoing uncertainties are standard

deviations from three to ten measurements.

The silicon tubes were filled with water or oil, and then the inside liquid was slowly

pumped from one end while recording the internal pressure with a pressure transducer. To

isolate the contribution of viscous pressure losses, several pumping rates were used in the

range 0.003− 0.01 µL min−1. If the perforation was small enough, the pressure decreased

until the tube flattened completely. Otherwise, at a specific negative pressure, the bubble

at the hole entered the tube, resulting in a discontinuous change in the internal pressure.

For example, for the silicon tube with 0.022 mm perforation diameter, the pressure jump

occurred at −12.5 ± 1 kPa and −6.7 ± 0.1 kPa (independent of the rate)2 when using

water and oil, respectively; with a 0.01 mm hole, no jump was observed until a completely

collapsed state was achieved.

4.6 Results and discussion

4.6.1 Theoretical predictions

To identify the equilibrium state of the buckled tube, various tube-interface configurations

at constant volume were computed by projecting an external pressure to the tube, indepen-

dent of the interfacial capillary pressure. As shown in Figure 4.4 (left panel), the external

pressure is scaled with the flexural rigidity (EI), while the capillary pressure is scaled with

surface tension. Because the external and capillary pressures are equal at equilibrium, the

equlilibria are identified when
PcR

γ
= Ω

PeR
3

EI
, (4.9)

2The viscous pressure is less than 2 mPa at these rates.
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where the elasto-capillary number

Ω =
EI

γR2
(4.10)

is the ratio of the elastic energy to the interfacial energy.
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Figure 4.4: Computational results for α = 40◦ and Rh/R = 0.1. (Left) Capillary pressure
calculated from interface solution versus external pressure that controls elastic deformation
at constant liquid volume. Lines identify Ω = 3.800 (blue), 3.900 (green), and 3.945 (red).
The intersections of the lines and curves are equilibrium points. (Right) Energy of constant-
volume configurations for the same elasto-capillary numbers as the left panel, showing stable
(filled symbols) and unstable (open symbols) equilibria.

In Figure 4.4 (left panel), points on the curves AC and DF correspond to situations

where the interface forms a bubble and a bridge, respectively, at constant liquid-volume. At

point C, the bubble contacts the opposite buckled-wall, and the interface bridges the gap

between the walls, identified by point D [see Figure 4.2(b)]. When the contact angle equals

the wetting angle, the interface leaves the hole to reduce the interfacial energy, furnishing

a maximum in the capillary pressure at point E. On the curve EF , the interface has either

partially or completely left the hole. Lines of constant elasto-capillary number are also

shown with Ω = 3.800, 3.900, and 3.945. Based on eqn (4.9), equilibrium states are the

intersections of constant Ω lines and constant-volume curves. Therefore, with Ω = 3.800,

there are three equilibrium states S1, S2, and S3; with Ω = 3.900, four equilibrium states

exist, S4, S5, S6, and S7. Here, S1, S4, and S5 are bubbles, whereas S2, S3, S6 and S7 are

bridges.

Figure 4.4 (right panel) shows the total energy (the sum of interfacial and elastic en-

ergies) for various tube-interface configurations at constant liquid-volume and the same
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values of Ω. With Ω = 3.800, S1 and S2 are the energy minima, and, therefore, are stable

equilibrium states, so the system reaches one of these states according to the initial condi-

tion. When drying a wood fibre, because the liquid volume decreases, the initial interface

is a bubble, so the system transits to S1. With Ω = 3.900, S4 and S6 are energy minima,

but S5 and S7 are energy maxima, so S3, S5 and S7 are unstable equilibrium states. For the

same reason, all of the points on curves BC and EF in Figure 4.4 (left panel) are unstable.

At these unstable equilibrium points, for example, a small constant-volume perturbation

to a more-collapsed state (larger external pressure) increases the capillary pressure, which

increases deformation. In contrast to S3, a small perturbation to a more collapsed state

at S2 produces a smaller capillary pressure, retrieving the stable equilibrium state. With

Ω = 3.945, a saddle point in energy is produced when the constant-Ω line becomes tangent

to the constant volume curve (S8). At these points, a bubble becomes unstable before

contacting the opposite wall, jumping from S8 to S9, which is an energy minimum.

When the liquid volume decreases, the curves in Figure 4.4 (left panel) shift to higher

pressures. As shown in Figure 4.5, by decreasing the liquid volume, the capillary pressure

of the bubble at the point of contact between the bubble and the tube wall [point C

in Figure 4.4 (left panel)] decreases, while the maximum capillary pressure at point E

increases. Bubble configurations [curve AC in Figure 4.4 (left panel)] are independent

of wetting angle, since the interface is separated from the opposite wall and the contact

angle at the hole is smaller than the wetting angle. However, bridge configurations [curve

DF in Figure 4.4 (left panel)] are highly regulated by the wetting angle. Whereas for

α = 40◦ [Figure 4.5 (left panel)] point D has a positive capillary pressure, for α = 90◦

[Figure 4.5 (right panel)] it moves to negative capillary pressures. Furthermore, the increase

in the capillary pressure of point E slows when increasing the wetting angle. Note that at

α = 90◦ [Figure 4.5 (right panel)], the beginning of the interface detachment from the hole

is different from the maximum capillary pressure, so the system remains stable after the

interface leaves the hole.

Stable equilibrium states are calculated using the method explained in Figure 4.4, and

are plotted in Figure 4.6 (left panel) at various liquid volumes for α = 70◦ and Rh/R = 0.1.

For small Ω, two stable equilibrium states exist in this range of liquid volumes, similarly

to Ω = 3.800 in Figure 4.4. As Ω increases, the end point of the bubble solution shifts to

higher volumes, and the beginning of the bridge solution moves to lower volumes. At a

critical elasto-capillary number Ωc, these two points coincide, and for Ω > Ωc, when the

bubble contacts the opposite wall, no stable bridge solution exists to maintain a collapsed
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Figure 4.5: Computations of capillary pressure versus external pressure. (Left) α = 40◦,
Rh/R = 0.1, V/R3 = 1.03 (blue), 0.99 (green), and 0.95 (red). (Right) α = 90◦, Rh/R =
0.2, V/R3 = 0.99 (blue), 0.96 (green), and 0.93 (red). Dashed lines show the critical points
at which the bubble contacts the opposite wall to form a liquid bridge [points C and D in
Figure 4.4 (left panel)] and when the bridge leaves the hole.

tube. Therefore, the tube opens if Ω > Ωc. After the bridge forms when Ω < Ωc, a decreas-

ing liquid volume furnishes a higher capillary pressure, which increases the deformation.

Calculations are continued until the gap between the walls is 0.07% of the tube radius and

the interface remains stable. This means that, if the interface can form a stable bridge when

it reaches the opposite wall, the tube will collapse completely by decreasing the volume of

the remaining liquid until the tube walls make contact.

The critical elasto-capillary numbers computed for various wetting angles and hole radii

are plotted in Figure 4.6 (right panel). A circular tube with a prescribed hole diameter

and wetting angle collapses completely if the elasto-capillary number is below these curves.

The normalized critical elasto-capillary number ΩcRh/R decreases with increasing wetting

angle, so tubes collapse completely when α is small. When decreasing Rh/R, even though

ΩcRh/R decreases, Ωc increases, indicating easier collapse. The maximum critical elasto-

capillary numbers correspond to the interface becoming unstable by switching from an

energy minimum to a maximum. This occurs because the bubble reaches its maximum

capillary pressure and becomes unstable at a greater liquid volume, before it contacts

the opposite wall, similarly to Ω = 3.945 in Figure 4.4. Therefore, Ωc corresponds to a

configuration with maximum bubble pressure, is independent of wetting angle, and is equal

to the maximum Ωc for smaller wetting angles than the critical α, as shown by the solid
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Ω beyond Ωc. No equilibrium solution exists when the bubble becomes unstable if Ω > Ωc.
Red symbols are bridge solutions, and blue symbols are bubble solutions. (Right) Critical
elasto-capillary number (solid lines) versus wetting angle for Rh/R = 0.01 (blue), 0.1
(green), 0.2 (red), and 0.5 (black). Open symbols displaced from solid lines identify unstable
configurations.

lines in Figure 4.6 (right panel). The unstable branches are shown as symbols without

lines. The critical wetting angles where the instability occurs are weakly affected by the

hole size.

Considering situations where the contact angle at the sharp edge may exceed the wetting

angle, I performed calculations with the interface pinned to the hole edge until it becomes

tangent to the tube wall. As shown in Figure 4.7 (left panel), while the bubble interfaces

are unaffected by this change, the bridge interfaces destabilize at higher capillary pressures

before becoming tangent to the tube wall. The critical elasto-capillary numbers of the two

situations are compared in Figure 4.7 (right panel). This demonstrates that it is possible

to form a stable bridge and completely collapse the tube, even with a large wetting angle.

4.6.2 Experimental results

The results of tube-buckling tests with several tube samples are compared with theory

in Figure 4.8 (left panel). Here, V0 is the initial unstrained tube volume, and P0 is the

hydrostatic pressure of the water-methanol bath at the level of the tube center. In contrast

to theory, a smooth transition between circular and buckled configurations is observed. By

increasing the external pressure beyond the critical pressure, the internal volume decreases
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Figure 4.7: Computations of (left) capillary pressure versus external pressure for various
configurations with constant liquid volume when the contact angle can be larger than the
wetting angle at the hole edge. The dashed line is for the interface when it leaves the
hole at the wetting angle. (Right) Critical elasto-capillary number versus wetting angle for
Rh/R = 0.01 (blue), 0.1 (green), 0.2 (red), and 0.5 (black) when the contact angle can be
larger than the wetting angle at the hole edge (solid lines), and when the interface leaves
the hole at the wetting angle (dash lines). Open symbols displaced from solid lines identify
unstable configurations.
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rapidly until the opposite walls make contact, slowing the decrease in volume.

As explained in Section 4.5, when an interface pinned to the holes of the silicon elas-

tomer tubes becomes unstable, the internal pressure jumps to a higher value, as seen in

Figure 4.8 (right panel). By decreasing the hole diameter, the pressure jump occurs at

a lower pressure. The tests were terminated at −23 kPa, as air bubbles appeared in the

tube, either from the joints or by evaporation. The silicon tubes did not follow the same

path when repeating the tests, because of hysteresis in the tube buckling; but the pressure

jump where the bubble becomes unstable was highly reproducible using several tubes and

various pumping rates.
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Figure 4.8: (Left) Experiments (symbols) compared with theory (lines) for several tubes.
The blue line corresponds to circular cross-sectional configurations, and the red line is when
a tube becomes non-circular. (Right) The discontinuity in pressure when a bubble at the
hole becomes unstable. The blue line is for complete collapse with no hole on the tube,
the green line is for Rh = 0.022 mm, and the red line is for Rh = 0.044 mm. The fluid
withdrawal rate is 0.005 µL min−1.

Results with silicone tubes, various perforation diameters, and internal liquids are shown

in Figure 4.9. With a 0.01 mm hole, very small air bubbles entered the tube from the hole

when using water, but complete collapse was observed when using oil without air entering

the tube. Therefore, the only experimental observation of complete tube collapse occurred

with the 0.01 mm hole and oil as the internal liquid, as identified in Figure 4.9. Here,

the error bars are from propagating the standard deviations of the measurements of E, t,

R, Rh, and γ. Consequently, considering the uncertainty in the normalized values of Ωc,

experiments seem to confirm theoretical predictions of the critical elasto-capillary number.
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Figure 4.9: Phase diagram of the critical elasto-capillary number Ωc versus wetting angle α
comparing experiments (symbols) with theory (lines). The solid lines show ΩcRh/R when
the contact angle at the hole cannot exceed the wetting angle, whereas the dashed lines are
for when the contact angle can be larger than the wetting angle: Rh/R = 0.01 (blue), 0.1
(green), 0.2 (red), and 0.5 (black). The only experiment in which complete collapse was
observed is identified with a filled symbol, confirming the critical elasto-capillary numbers
from theory when the contact angle at the hole cannot exceed the wetting angle. For other
experiments (open symbols), the tube either did not buckle or partially buckled, similar to
Figure 4.8 (right panel).



4.6. RESULTS AND DISCUSSION 59

4.6.3 Effect of capillarity in lumen collapse of wood fibres

In this analysis, we approximate fibres as having an initially circular cross-section. It

should be noted that the cross section of real wood fibres varies along the fibre axis, being

almost circular in earlywood or springwood, and rectangular in latewood or summerwood.

Thus, my approximation amounts to a worst-case scenario, because any deviation from a

circular cross-section would promote collapse. We also approximate fibres to be uniform

along their longitudinal axis, which is justified, in part, by the longitudinal elastic modulus

of real fibres being an order of magnitude larger than the transverse value.

As stated in section 4.4.2, the largest capillary pressure acting on open-lumen fibres

is from the interface that is pinned to the pit holes. However, when fibre walls are very

close or in contact, the pressure from liquid bridges can be sufficient to induce mutual

conformation Persson et al. (2013). Therefore, my calculations were terminated when

the capillary pressure at the pit hole brought the fibre walls into contact. It is possible

for liquid bridges that occlude the fibre lumen to initiate collapse Heil (1999b), but the

foregoing capillary-bridge mechanism is stronger, and perhaps more realistic, particularly

when fibres have closed ends. Here, we consider situations when the contact line leaves

the pit-hole border, either once the contact angle reaches the wetting angle or once the

interface becomes tangent to the fibre wall. Nevertheless, fibre-wall roughness, porosity,

and geometrical irregularities may lead to more complex behaviour of the contact line in

real fibres.

Recall from Section 4.3, wood fibres have 3 − 18 µm lumen radii and 0.8 − 5 µm wall

thickness, giving a thickness to radius ratio in the range 0.05 − 1. In my model, since

the tube cross section is approximated by a curved beam, the transverse elastic modulus

is the appropriate modulus; this is one order of magnitude smaller than the longitudinal

elastic modulus, in the range 0.02− 2 GPa. With these properties, ΩRh/R is in the range

10−3 − 104. The wetting angle is in the range 30◦ − 100◦, depending on the fibre and its

chemical or mechanical treatment. Consequently, the capillary pressure may drive complete

collapse in sufficiently flexible wood fibres. For example, bleached spruce Kraft pulp has

a transverse elastic modulus ≈ 0.15 GPa (Yan & Li, 2008), so with t/R ≈ 0.15, I have

0.2 < ΩRh/R < 1.4 for various pit-hole sizes. This means that if a uniform distribution of

fibre dimensions and an elastic modulus are presumed, then the non-uniform distribution

of pit-hole diameters results in complete collapse of some fibres, while others remain open,

as often observed. However, in rigid wood fibres, such as mechanical fibres or latewood
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fibres, capillary pressure is not predicted to affect the final configuration.

4.7 Conclusions

Buckling of a circular tube driven by the capillary pressure at an interface pinned to a small

hole in a tube wall was analysed, and necessary conditions for a stable bridge, leading

to complete tube collapse upon drying, were deduced. After comparing the theoretical

results with experiments, I applied the phase diagram in Figure 4.9 to wood fibres. This

showed that capillary forces may flatten wood fibres completely or partially during drying,

according to their physical, chemical, and geometrical properties. Future analyses may

include the orthotropic behaviour of the fibre elastic modulus, with a rectangular cross

section, and include the effects of surface-tension force on fibre deformation.



Chapter 5

Capillary force between flexible

filaments

5.1 Preface

Capillary forces are very important in bonding crossing wood fibres to each other in a paper

sheet. They can deform the fibres to attach, and then, conform their surfaces to each other

for a strong bonding. Analysis of the capillary forces between flexible fibres is the third

objective of this thesis, which is the subject of the following Chapter. Two crossing or

parallel flexible filaments are attracted to or repelled from each other when subjected to

the capillary forces from a liquid bridge at their crossing. The equilibrium conformation

is calculated iteratively, and the effects of elasto-capillary number, contact angle, crossing

angle, separation, and liquid volume are investigated.

5.2 Abstract

Liquid droplets bridging two filaments are ubiquitous in nature and technology. Although

the interface shape and the capillary force and torque have been studied extensively, the

effect of filament flexibility is poorly understood. Here, I show that elastic deformation can

significantly affect the interface shape and capillary force. I calculate the equilibrium state

of parallel filaments, using analytical approximations and numerical solutions for the fluid

interface. The results compare favourably, and the numerical solution is then applied for

crossing filaments. In the investigated range of parameters, the capillary force increases

61
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rapidly when the filaments touch. The force decreases continuously when decreasing the

liquid volume with parallel hydrophilic filaments, but produces a maximum for crossing

filaments. The liquid volume at the maximum force is reported when changing the filament

flexibility, crossing angle, and contact angle. These results may be beneficial in applications

when the strength and structure of wet fibrous materials are important, such as paper

formation and welding of flexible components.

5.3 Introduction

Droplet-on-filament systems have been investigated extensively because of their many ap-

plications (Carroll, 1976; Soleimani et al., 2013; Fang et al., 2015). For example, a network

of fibres is used in the fog collection apparatus of the cactus stem (Ju et al., 2012), spider

silk (Zheng et al., 2010), and manufactured woven meshes (Park et al., 2013), whereas it

is also beneficial in controlling evaporation (Duprat et al., 2013; Boulogne et al., 2015).

Furthermore, a droplet on a filamentous network can be responsible for the hierarchical

helical structures observed in nature (Pokroy et al., 2009), the bundles of wet hair (Bico

et al., 2004), and the water repellency of feathers (Rijke & Jesser, 2010).

Advances in micro- and nanoscale technology bring increasing attention to surface-

tension-driven deformations of elastic solids, i.e., ‘elasto-capillarity’, because the deforma-

tions are dominated by surface forces rather than body forces (Roman & Bico, 2010; Liu

et al., 2012). The liquid-droplet shape between two parallel solid fibres has been studied

for decades (Princen, 1970; Wu et al., 2010), and recently was used to control evaporation

(Duprat et al., 2013) and liquid delivery (Duprat et al., 2013; Keis et al., 2004). In an

array of parallel flexible fibres, elasto-capillarity furnishes several spreading regimes for the

liquid, observable on wet feathers (Duprat et al., 2012).

However, fibres in a random network are rarely parallel or clamped at one end. There-

fore, studying the droplet shape between crossing fibres is essential for understanding the

capillary impact on fibrous materials when exposed to moisture. Surface tension can at-

tach or detach crossing fibres, which is important in many applications, such as the textile

wetting and drying (Patnaik et al., 2006), paper drying (Persson et al., 2013), filtration

and separation of two immiscible liquids (Contal et al., 2004; Eral et al., 2011b), electrical

resistance and rheology of fibrous materials (Wu et al., 2012; Skelton, 1975), and nanoparti-

cle assembly (Min et al., 2008). Such fibre deformations can cause surface-adhesion-driven
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collapse (Wu & Dzenis, 2007) and affect the bulk properties of fibrous materials (Wu &

Dzenis, 2005).

Virozub et al. (2009) numerically investigated the liquid bridges between two identical

cylinders at a fixed separation and inclination. With a large distance between the cylinders,

the liquid bridge was symmetric, and the filaments were attracted by capillary forces.

However, separation reduction at large contact angles furnished stable and apparently

unstable solutions with near-zero attractive and repulsive forces, respectively. Bedarkar

& Wu (2009) studied the capillary torque on the same geometry, with a similar method,

which explains the role of capillarity on the alignment of wet rod-like particles and on

the distortion of fibre networks in sensor grids and textiles. Claussen (2011) proposed

an analytical description for a liquid column between two identical filaments with a small

finite crossing angle, and compared the results with numerical solutions, characterizing the

capillary torque as a power law, which is valid for a very wide range of crossing angles.

Sauret et al. (2014) investigated the different morphologies of a perfectly wetting fluid

lying at the intersection of two fibres with a small crossing angle. These morphologies are a

liquid column, a droplet, and a mixed morphology where a drop lies at the end of a column.

Nevertheless, the effect of the surface-tension-driven deformation of the filaments was not

considered.

In this work, I study the capillary force and torque produced by a liquid bridge be-

tween two elastically-deformed filaments, calculating the equilibrium value using an iter-

ative method. I compute an analytical solution for parallel filaments using an analytical

approximation for the liquid bridge between two parallel curved cylinders. The analytical

solution is then compared with a numerical solution, which is readily extended for crossing

filaments. My main motivation is to calculate capillary forces between wood fibres in a wet

paper, which has been shown to account for its strength when containing less than 40%

solids (van de Ven, 2008). Such forces have been shown to bring the fibres into molecular

contact during drying (Persson et al., 2013).

5.4 Theory

5.4.1 Parallel filaments

Consider a liquid drop bridging two parallel filaments (see Figure 5.1), where their diameters

are 2r and their surface-to-surface distance is 2d. At equilibrium, the liquid bridge must
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Figure 5.1: Left: Schematic of the cross-section of the liquid column between two parallel
filaments showing the various geometrical parameters. Right: The three-dimensional vi-
sualization of a liquid bridge (left) and a liquid droplet (right) at the intersection of two
crossing filaments.

satisfy the Laplace condition on its surface,

p0 − p = γ

(
1

R1

+
1

R2

)
, (5.1)

and the Dupre-Young condition on its contact line,

γ cosα = γsg − γsl, (5.2)

where R1 and R2 are the principal radii of curvature, p and p0 are the liquid and gas

pressures, γsl, γsg, and γ are the solid-liquid, solid-gas, and liquid-gas interfacial tensions,

and α is the equilibrium contact angle. These conditions can be derived from the principle

of stationary potential energy under constant-volume variations (Myshkis et al., 1987).

The Laplace equation is a nonlinear partial differential equation, and is usually solved

analytically in two-dimensional geometries, such as axisymmetric or constant cross-sectional

interfaces. Princen (1970) assumed a constant cross-section for a long liquid column that

bridges two parallel horizontal filaments to derive an analytical solution by balancing the

increase in the free energy with the work of the capillary pressure, when the liquid volume

is increased infinitesimally. As shown in Figure 5.1, the filament separation

d = R cos(α + φ) + r cosφ− r, (5.3)
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where R is the interface radius of curvature, and φ is the half-opening angle of the solid-

liquid interface. The Princen model has been modified for fibres with a small finite incli-

nation angle δ, where d varies slowly along the fibres. This modified model agrees with

experimental (Sauret et al., 2014) and numerical (Claussen, 2011) results; I extend it for

slightly curved parallel fibres with separation

d(x) = R(x) cos[α + φ(x)] + r cosφ(x)− r, (5.4)

where x denotes distance along the filament axis (see Figure 5.4). Using the Princen

formulation close to the terminal meniscus of the liquid column, I find

(
Re

r

)2 [
π

2
− β +

1

2
sin(2β)

]
+

2Re

r
(sinφe cos β − φe cosα) +

1

2
sin(2φe)− φe = 0, (5.5)

where β = α + φe, and Re and φe are the interface radius of curvature and opening angle

close to the terminal meniscus, respectively. Equations (5.4) and (5.5) give Re and φe,

which together determine the interface terminal cross-sectional profile. The other principal

curvature along the filament axis can be neglected, so R is constant along the liquid column,

and φ(x) is calculated using Eqn (5.4). A prescribed volume then determines the length

of the column, and the maximum possible length is when αe reaches its maximum and the

liquid column becomes unstable (Princen, 1970).

5.4.2 Crossing filaments

For a crossing angle δ < 10◦, Sauret et al. (2014) used the modified Princen model to cal-

culate the length and cross-sectional profile of the long liquid columns. However, this failed

to predict the interface shape with small Li/r, where Li is the length of the interface, as

shown in Figure 5.4, because the interface curvature along the column axis is not constant.

This occurs when either the liquid volume decreases or δ > 10◦ (Sauret et al., 2014).

For a small liquid bridge between parallel or crossing filaments, I use the Surface

Evolver (Brakke, 1992) software to calculate the interface shape, surface energy, and capil-

lary torque and force. This minimizes the total energy of a surface with several constraints.

The surface is discretized into points and edges that form triangles termed facets, and the

constraints are implemented using Lagrange multipliers. The initial geometry is a distorted

rectangular prism that is continuously refined after converging at each step to form a uni-
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form dense mesh, giving first-order convergence of the energy with respect to the number

of facets. The convergence criterion is when the energy change at each iteration is less than

7 significant digits with more than 60 000 facets.

Results from Surface Evolver with solid parallel cylinders are compared with the Princen

model in Figure 5.2. Note that the numerical results deviate from the theory when Li/d < 6.

Furthermore, the Princen model predicts that a liquid column becomes unstable when

d/r >
√

2 and α = 0, while Surface Evolver provides stable solutions with d/r >
√

2 when

the length of the liquid column is small, but does not converge for long columns. In this

paper, I use the Princen model when Li/d > 6.
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Figure 5.2: Comparison of the analytical Princen model (solid lines) and numerical Sur-
face Evolver (symbols) calculations of a liquid column between two parallel solid filaments
showing the length Li, capillary pressure P , and surface energy Ui versus the filament
separation d when α = 0, V/r3 = 10 (blue), and 100 (red).

Another configuration of a liquid droplet on an array of parallel filaments is a barrel-

shaped droplet. Princen (1970) experimentally showed the existence of these metastable

configurations when 0.57 < d/r <
√

2, and Wu et al. (2010) numerically showed a transition

from a bridge to a droplet when increasing the liquid volume, with a critical volume that

depends on the contact angle and filament separation. However, there is no analysis for this

transition for crossing filaments, as shown in Figure 5.1, except a qualitative description by

Claussen (2011). Therefore, based on the results of Wu et al. (2010) for parallel filaments, I

limit this analysis to small liquid volumes, small filament separations, and α ≤ 90◦, focusing

on liquid bridges.

The capillary force Fi and torque Mi are the surface-energy gradients with respect to

separation and rotation, respectively, which I calculate using central finite-differences. The

forces and torques were validated using the results of Bedarkar & Wu (2009) and Virozub

et al. (2009).
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5.4.3 Elastic filaments

When a bending moment M is applied to a linearly elastic filament, it satisfies

1

ρ
=
M

EI
, (5.6)

where ρ is the radius of curvature of the deflected filament, and EI is the flexural rigidity.

For small deflections, 1/ρ ≈ d2v/dx2, where v is the deflection and x is defined in Figure 5.4,

so

M = EI
d2v

dx2
. (5.7)

To calculate M , the distribution of the capillary force on the filament should be com-

puted first. For example, using the modified Princen model for a long liquid column between

curved parallel cylinders, the force on a differential element of the filament is

dFi
γr

= 2
{ r
R

sinφ(x) + sin[α + φ(x)]
} dx

r
, (5.8)

where R is constant, and φ changes along the interface. The first and the second terms on

the right-hand side represent the contributions of the capillary pressure and the surface-

tension force, respectively. Equation 5.8 is not valid for small liquid bridges. When the

filaments are rotated and deflected, it becomes extremely difficult to compute the force

distribution and filament deformation. Figure 5.3 shows the shape of the solid-liquid inter-

face when rotating crossed filaments. Note that the width of the contact region is almost

constant along the filament axis when δ = 0◦ and 90◦, except when close to the terminal

meniscus. However, the contact region does not have uniform width when δ = 30◦ and 60◦,

since the solid-liquid interface deforms around the filament, producing an azimuthal force

and an accompanying capillary torque.

To simplify the model, I use a linear force distribution in the xy- and xz-planes for the

capillary torque and force, respectively, as shown in Figure 5.4. Therefore, the force on a

differential element is

dFiz
γr

= fidx,

dFiy
γr

=
2mixdx

Li
,

(5.9)
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Figure 5.3: Top and accompanying side views when increasing the crossing angle δ = 0◦,
30◦, 60◦, and 90◦ (left to right) with α = 0◦, V/r3 = 4, d0/r = 0.5, Ω = 5000.

where Fiz and Fiy are the capillary forces in z- and y-directions, respectively, giving

fi =
Fi
γLi

, mi =
6Mi

γL2
i

. (5.10)

Although the uniform force distribution significantly reduces the computational cost,

the errors are expected to decrease with increasing slenderness of the solid-liquid interface,

and when Li is small compared to the filament length.
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Figure 5.4: Left: Schematic of the filament deformation under capillary force in xz-plane
and capillary torque in xy-plane, having simple supports at both ends. Right: The top view
with the liquid bridge at the node, showing the inclination angle δ and the liquid-bridge
length Li.

The filament is on two simple supports that mimic the connections among fibres in a
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fibre network, and L is a free length, where a fibre has no contact with other fibres. In

this paper, I fix L/r = 15 to remove one degree of freedom, simplifying the model. With

this load distribution and boundary conditions, the filament deflection is calculated using

Eqn (5.7). The deflected-filament centerline along the liquid bridge is1

z(x) = b4x
4 + b2x

2 + b0,

y(x) = c5x
5 + c3x

3 + c1x,
(5.11)

where x, y, and z are normalized with r, and

b4 =
fir

3

24ΩL3
,

b2 =
fiLir

16ΩL3
(Li − 2L),

b0 =
fiLi

384ΩL3r
(L3

i − 4L2
iL+ 8L3),

c5 =
mir

4

60ΩLiL3
,

c3 =
miLir

2

72ΩL4
(2Li − 3L),

c1 =
miL

2
i

2880ΩL4
(40L2 − 45LiL+ 12L2

i ),

(5.12)

where

Ω =
EI

γL3
(5.13)

is the elasto-capillary number. The strain energy of the deflected filament is

Ue
γr2

=
f 2
i L

2
i

490ΩL3r2
(5L3 − 5LL2

i + 2L3
i ) +

m2
iL

4
i

30240ΩL4r2
(35L2 − 54LLi + 21L2

i ). (5.14)

An iterative method is used to find the filament-interface equilibrium. First, I calculate

Fi/γr and Mi/γr
2 for unstrained filaments, which cause deflection. Then the deflected

filaments are used in the next iteration to calculate the force and torque until their absolute

change in successive iterations is less than 0.01.

1A different solution for the filament deflection outside of the liquid bridge is calculated, and the two
solutions are matched at the contact line.
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5.5 Results and discussion

The results of the modified Princen model for the elastic parallel filaments are compared

with Surface Evolver results in Figure 5.5. With d/r = 0.1, analytical and numerical results

are in good agreement, but deviate when d/r = 0.5, either because the increased variation

of d along the filaments contradicts the assumptions, or because the terminal meniscus

becomes important. However, the modified Princen model is still a good approximation

for d/r = 0.5, achieving less than 15% relative error in Fi/(γr), Li/r, and Ut/(γr
2). Note

that, with flexible filaments, d/r is the initial separation of the unstrained filaments.
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Figure 5.5: The analytical Princen-model results (solid lines) of the capillary force, length
of the liquid column, and total energy versus the liquid volume for the parallel flexible
filaments compared with the numerical results from Surface Evolver (symbols). Top: d/r =
0.1, Ω = 1.481, α = 0◦ (blue), 30◦ (green), and 60◦ (red). Bottom: d/r = 0.6, Ω = 1.481,
α = 0◦ (blue), 30◦ (green), and 45◦ (red).

Analytical results for parallel elastic filaments are shown in Figure 5.6. With the stated

elasto-capillary numbers and contact angles, the filaments contact each other at equilibrium

when d/r = 0.1, while there is no contact when d/r = 0.5. The volume is increased until

the length of the liquid column becomes close to the length of the filaments (L/r = 15).

The capillary force continuously increases with volume, only reaching a maximum when

d/r = 0.1 and α = 60◦. Therefore, the capillary force among hydrophilic parallel filaments
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is unlikely to show a maximum when the liquid volume varies. The length of the liquid

column increases with volume, as expected, but the total energy can increase or decrease

depending on α and Ω. Furthermore, the capillary force and the length of the liquid

column decrease when increasing Ω. This decrease is negligible with the attached filaments

d/r = 0.1, but is significant with detached filaments d/r = 0.5.
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Figure 5.6: Analytical calculation of the capillary force, length of the liquid column, and
total energy versus the liquid volume for parallel flexible filaments. Ω = 1.481 (solid lines),
2.963 (dashed lines), and 5.926 dash-dotted lines. Top: d/r = 0.1, α = 0◦ (blue), 30◦

(green), and 60◦ (red). Bottom: d/r = 0.6, α = 0◦ (blue), 30◦ (green), and 45◦ (red). In
the first two plots of the top panel, the solid, dashed, and dash-dotted lines are very close
to each other, and so only one is shown.

The equilibrium capillary force of the crossing filaments when changing the elasto-

capillary number is shown in Figure 5.7. The black line shows the force required for the

filaments to contact each other; thus, filaments touch when the points are above this line.

Note that, with d/r = 1.5, the black line is not shown, because the forces are very small,

and there is no contact. It is obvious from Figure 5.7 that the capillary force decreases

when increasing the contact angle and inclination angle. With α = 30◦ and d/r = 0.5,

there is a rapid decrease in the force with increasing Ω when the filaments detach. This

decrease is also observed for α = 60◦, and with a smaller slope when d/r = 0.1. However,

the capillary force reaches a plateau when Ω is large. With α = 90◦, the force does not
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vary significantly when changing inclination angle. Furthermore, it decreases and becomes

repulsive when the filaments become very close (see d/r = 0.1).
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Figure 5.7: Numerical calculation of the capillary force versus the elasto-capillary number
for crossed flexible filaments. From left to right: d/r = 0.1, d/r = 0.5, and d/r = 1.5. Solid
lines: δ = 30◦, dashed lines: δ = 60◦, dash-dotted lines: δ = 90◦. Blue: α = 0◦, green: 45◦,
and red: 90◦. The black solid lines show the critical force required for filament attachment.
In the right panel, this line is very close to the vertical axis, and it is not shown.

The numerical results for the equilibrium capillary force of the crossing filaments versus

the liquid volume are shown in Figure 5.8. Note that, except for d/r = 1.5, the force

increases when decreasing volume, and, therefore, in contrast to parallel filaments, reaches a

maximum, because the capillary force vanishes at V = 0. This agrees with the experiments

of de Oliveira et al. (2008) for two wet paper sheets held together by capillary forces between

(mostly) crossed wood fibres. This force goes through a maximum, and then vanishes as

the water volume decreases. The maximum is obvious in Figure 5.8 when α = 90◦ and

δ = 45◦, 90◦. In these figures, the filaments touch when d/r = 0.1, and there is no contact

when d/r = 1.5. When d/r = 0.5, the filaments are in contact above the black line, and

there is no contact below it; consequently, the maximum may exist in both conditions.

The liquid volume of the maximum capillary force between the crossing filaments Vm

is calculated with various d/r, Ω, α, and φ, and is plotted versus Ω in Figure 5.9. With

small Ω, when the filaments are deformed and attached, Vm slightly increases with Ω, but

significantly increases when the filaments detach. Furthermore, increasing the filament

separation slightly changes Vm if the filaments remain attached, but significantly increases

Vm if they are detached. Filament rotation seems to have a weak influence on Vm, while

increasing contact angle decreases Vm.

Persson et al. (2013) showed that the capillary forces between wood fibres in a wet

paper sheet pull the fibres into closer contact, and conform their surface profiles to each
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Figure 5.8: Numerical calculation of the capillary force versus the liquid volume for the
crossed flexible filaments with Ω = 0.207. From left to right: d/r = 0.1, 0.5, and 1.5.
δ = 30◦ (solid lines), 60◦ (dashed lines), 90◦ (dash-dotted lines). α = 0◦ (blue), 45◦ (green),
and 80◦ (red). The black solid line in the middle panel is showing the critical force required
for filament attachment. Because of numerical instability, no solution can be calculated
when d/r = 0.1 and δ = 90◦, and with large volumes when d/r = 1.5 and δ = 60◦.

other by breaking and reforming the hydrogen bonds. My calculations may provide a better

estimate of the capillary forces between the wood fibres at a specific solid content, which is

beneficial in analysing contact between wet fibres. The calculations are also important for

finding the optimum weld-metal volume for a desired contact between flexible components.

5.6 Conclusions

The equilibrium shape of a liquid bridge between two crossing or parallel filaments was cal-

culated iteratively when the filaments are deformed by the capillary force and torque. The

capillary torque and force are the energy gradients with respect to rotation and separation,

respectively. For parallel filaments, I used an analytical approximation for the interface

shape and computed the equilibrium analytically, while the Surface Evolver software was

also used to numerically calculate the interface shape. Numerical and analytical results

agreed well. Surface Evolver was also used for the liquid bridge between crossed filaments,

as no analytical solution is available. In the investigated range of parameters, the cap-

illary force decreases when decreasing the liquid volume for parallel filaments, but has a

maximum for crossed filaments. The volume at which the peak force occurs slightly varies

when the filaments are attached, but significantly changes with the filament flexibility and

separation when they are detached. This volume is a weak function of rotation. A signifi-

cant decrease in the capillary force is predicted when the filaments detach from each other
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Figure 5.9: Numerical calculation of the liquid volume of the maximum force versus the
elasto-capillary number. The filled symbols correspond to attached filaments and empty
symbols are for detached filaments. Left: d/r = 0.1 and right: d/r = 0.6. Blue: δ = 45◦,
α = 0◦ , purple: δ = 90◦, α = 0◦, green: δ = 45◦, α = 45◦, red: δ = 90◦, α = 45◦.

as the filament flexibility decreases. These results are consistent with the experimental

observations of the maximum capillary force between wet paper sheets, and are useful for

analysing the contact between flexible components, in welding and in wet paper.
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Conclusions

The capillary-driven deformations of wood fibres during drying were investigated quantita-

tively, using analytical, numerical, and experimental approaches. Fibres were modeled with

smooth circular tubes with a constant cross section and contact angle. First, the shape

of a liquid drop or a gas bubble inside or outside of these tubes was calculated. Then,

elastic deformation of the tubes was coupled with numerical solutions of the drop shape

to calculate the equilibrium, when the drop is either inside the tube or between different

tubes. The results enhance our understanding of the role of capillarity in wood-fibre di-

mensional changes during drying, particularly, lumen collapse and fibre entanglements in

a network. My analyses are beneficial in many other applications, including contact-angle

measurement, lung airway closure, and nano-particle assembly.

In Chapter 3, an analytical approximation was calculated for the shape of a liquid

droplet or a gas bubble on a curved substrate in the absence of gravity. Considering a

spherical cap on a flat substrate, a non-axisymmetric perturbation was added to the sub-

strate, which leads to a modification to the drop profile. The perturbed profile showed a

singularity at its maximum radius when the contact angle exceeds 90◦, which was remov-

able by reformatting the solution close to the maximum radius. The perturbation solution

also gave expressions for the Laplace pressure and surface energy, showing that they change

only with the axisymmetric part of the perturbation. As an example, the solution was used

to calculate the shape of a drop either inside or outside of a circular tube, and the results

were compared with the numerical calculations from Surface Evolver software. The per-

turbed drop profile, Laplace pressure, and surface energy showed good correspondence with

numerical calculations, although they deviated gradually when the perturbation parameter

75
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was increased. It was observed that the Laplace pressure and surface energy increase with

the substrate curvature when the drop is outside the tube, and decrease when inside the

tube. The change in the Laplace pressure deceased with increasing contact angle, but the

change in the surface energy showed a peak at 90◦ contact angle. Because the surface-

energy change was a function of substrate curvature, a gradient of substrate curvature

could induce an energy gradient that produces a force on the drop and can lead to drop

migration. For example, I calculated a drop profile on a harmonic surface, and predicted

that the most energetically favoured (stable) positions for drops are the surface valleys.

Surface Evolver results also showed that the drop migrates to the surface valleys, when

it is arbitrarily deposited on the harmonic surface. Furthermore, I calculated the viscous

resistance against the drop migration using a lubrication approximation, and balanced it

with the energy-gradient force to compute the drop velocity. This velocity increased with

the surface-curvature gradient, contact angle, and drop radius.

This perturbation solution is also beneficial to papermaking applications. For example,

it is possible to fit this solution to the drop profile on a wood fibre to measure the contact

angle. Furthermore, the perturbed capillary pressure gives a more realistic estimate of the

Laplace pressure on wood fibres during drying. The surface energy of the perturbed drop

determines the most stable locations for a liquid droplet or a gas bubble inside or outside

of the wood fibres during drying.

In Chapter 4, cross-sectional deformations of an initially circular tube were analysed

when it is subjected to a capillary pressure induced by a meniscus pinned to a small

hole in the tube wall. An analytical solution of the tube buckling was coupled to the

numerical calculations of the interface shape from the Surface Evolver software to compute

the equilibrium configurations as the liquid volume was decreasing. The theoretical results

predicted that if a stable bridge is formed when the interface touches the opposite tube

wall, then further reductions of the liquid volume lead to complete tube collapse. I obtain

characteristic curves for various hole diameters in the contact angle-elasto-capillary number

space, separating the collapsing and non-collapsing regimes. After testing this diagram

with experimental results, I tried to use my theory for real wood fibres. I used a range

for the fibre dimensions and Young’s modulus from the wood-fibre literature to calculate

a range for the elasto-capillary number of wood fibres, and concluded that capillary forces

may flatten wood fibres completely or partially during drying, depending on the physical,

chemical, and geometrical properties of the fibres.

This analysis enhances our understanding of how capillarity affects the wood-fibre lumen
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collapse, beside other external loads such as pressing. The results are beneficial in finding

strategies to control the lumen collapse, because both open- and closed-lumen fibres are

technologically important. For example, it was quantitatively shown that increasing contact

angle and Young’s modulus increases the fibre resistance to capillary-driven collapse. This

suggests the use of mechanical fibres to produce open-lumen fibres, because the more lignin

in the walls of the mechanical fibres leads to a more hydrophobic and less flexible fibre. Some

other strategies to prevent capillary-driven collapse are to increase the pit-hole diameter,

to coat the fibres to increase the contact angle, and to use latewood fibres with thicker

walls.

In Chapter 5, the capillary force imposed by a liquid bridge between two flexible fibres

was investigated. The elastic deformations of the fibres were calculated analytically, and

the liquid-bridge shape, surface energy, and Laplace pressure were calculated using the

Surface Evolver software. After coupling the two solutions, the equilibrium was calculated

iteratively. The force and torque that are imposed to the fibres by the bridge were the

surface-energy gradients with respect to the separation and rotation, respectively. The

interface shape between curved parallel fibres was computed analytically by extending the

analytical approximation of a liquid column between rigid parallel fibres. Consequently, the

equilibrium configuration of parallel flexible fibres was computed analytically, and showed

a good correspondence to the numerical calculations. The numerical method was also

used for crossing fibres where no analytical solution is available. In the investigated range

of parameters, the capillary force decreased with decreasing the liquid volume when the

fibres were parallel, but went through a maximum when they are non-parallel. When the

capillary force attached the fibres to each other, the capillary force and the liquid volume of

the peak force slightly changed with the fibre rotation, separation and flexibility. However,

significant changes in the force and liquid volume were observed when the fibres detached.

These calculations are in agreement with the experimental observation of a maximum

attractive capillary force between two wet paper sheets, and estimate the force applied on

wood fibres by the liquid bridges at the intersections. This force has been shown to pull

the fibres into a molecular contact and to conform their surfaces to each other, which leads

to a stronger bonding.
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6.1 Applications and future work

Chapter 3 can be used to measure contact angle on curved surfaces. Therefore, the current

investigation can be extended to include the effect of gravity, roughness, and variable

contact angle by adding further perturbations to the equations. My analysis on drop

propulsion driven by substrate curvature can be extended to design a drop motion in lab-

on-chip or heat exchangers, for example, to refresh and clean an area in a microscopic

scale. By adding the effect of friction, it is possible to calculate the critical volume where

the droplet or bubble begins migration. Chapter 4 beneficial in pulp and paper industry

to choose a suitable kind of wood fibre for a particular application. It can be used to

design a procedure to control wood-fibre collapse by improving the fibre properties. The

effects of other parameters, such as pressing or the existence of other fibres, on wood-fibre

collapse can also be investigated as a continuation of this work. Chapter 5 can be extended

to analyse the effect of moisture on the reology and strength of fibrous materials such as

a wet papersheet. My investigation is for a limited range of parameters. Therefore, new

investigations are required for a wider range of parameters. It is also possible to include

the effect of moisture on the elastic properties of the filaments, which occurs, for example,

in a papersheet.
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J. & Bémer, D. 2004 Clogging of fibre filters by submicron droplets. phenomena and

influence of operating conditions. J. Aerosol Sci. 35 (2), 263–278.

Daniel, S., Chaudhury, M. K. & Chen, J. C. 2001 Fast drop movements resulting

from the phase change on a gradient surface. Science 291, 633–636.

Dulemba, M., Qi, D. & Aravamutha, R. 1999 The effect of repeated drying and

wetting on single fiber flexibility. J. Prog. Pap. Recycl. 9 (1), 38–45.

Duprat, C., Aristoff, J. M. & Stone, H. A. 2011 Dynamics of elastocapillary rise.

J. Fluid Mech. 679, 641–654.

Duprat, C., Bick, A. D., Warren, P. B. & Stone, H. A. 2013 Evaporation of drops

on two parallel fibers: Influence of the liquid morphology and fiber elasticity. Langmuir

29 (25), 7857–7863.

Duprat, C., Protiere, S., Beebe, A. Y. & Stone, H. A. 2012 Wetting of flexible

fibre arrays. Nature 482 (7386), 510–513.

Ehrlich, R. 1968 An alternative method for computing contact angle from the dimensions

of a small sessile drop. J. Colloid Interface Sci. 28 (1), 5–9.

Emerton, H. W. 1957 Fundamentals of the beating process;: The theory of the develop-

ment in pulps of papermaking characteristics by mechanical treatment . British Paper and

Board Industry Research Association.



82 REFERENCES

Eral, H. B., Manukyan, G. & Oh, J. M. 2011a Wetting of a drop on a sphere.

Langmuir 27 (9), 5340–5346.

Eral, H. B., de Ruiter, J., de Ruiter, R., Oh, J. M., Semprebon, C.,

Brinkmann, M. & Mugele, F. 2011b Drops on functional fibers: from barrels to

clamshells and back. Soft Matter 7 (11), 5138–5143.

Extrand, C. W. & Moon, S. I. 2008 Contact angles on spherical surfaces. Langmuir

24 (17), 9470–9473.

Fang, J., Davoudi, M. & Chase, G. G. 2015 Drop movement along a fiber axis due

to pressure driven air flow in a thin slit. Sep Purif Technol 140, 77–83.

Fischer, W. J., Lorbach, C., Jajcinovic, M., Hirn, U. & Bauer, W. 2014 Mea-

sured and calculated bending stiffness of individual fibers. In Progress in Paper Physics .

Raleigh, North Carolina, USA.
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Renvoisé, P., Bush, J. W. M., Prakash, M. & Quéré, D. 2009 Drop propulsion in
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Appendix A

Solution of the differential equation

in chapter 3

Here, I only consider ξn, but exactly the same equations hold for ηn. Thus, to solve

Eqn. (3.16), I apply the change of variable

t =
√

1− r2, yn =
√

1− r2ξn, (A.1)

so Eqn. (3.16) becomes

(1− t2)yn,tt − 2tyn,t + (2− n2

1− t2 )yn = 0, (A.2)

which is the first degree, nth order associated Legendre equation. The Maple software gives

yn = C1
n (n− t)

(
1 + t

1− t

)n
2

+ C2
n (n+ t)

(
1− t
1 + t

)n
2

(A.3)

for n > 1. Transforming back to the main variables, I have

ξn = C1
n

(
n−
√

1− r2
) [

2(1 +
√

1− r2)− r2
]n

2

rn
√

1− r2
+C2

n

(
n+
√

1− r2
) [

2(1−
√

1− r2)− r2
]n

2

rn
√

1− r2
.

(A.4)
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Since the first independent solution has a singularity at r = 0, C1
n = 0, and C2

n is specified

from Eqn. (3.21) as the boundary condition. For n = 1, the solution is

ξ1 = C1
r√

1− r2
+ C2



r ln

(
1+
√
1−r2

1−
√
1−r2

)

√
1− r2

+
2

r


 . (A.5)

For the same reason as Eqn. (A.4), C2 = 0, but there is no value of C1 that satisfies

Eqn. (3.21). For n = 0

ξ0 = C1 +
k

2
√

1− r2
+ C2

[
1

2
ln

(
1 +
√

1− r2
1−
√

1− r2
)
− 1√

1− r2
]
, (A.6)

where, again, C2 = 0, and C1 is specified by Eqn. (3.21) as the boundary condition.



Appendix B

Solution in the neighbourhood of

r = 1 in Chapter 3

First, I rewrite Eqns. (3.11) and (3.22) as

z = −
√

1− r2 + ε F (r,θ)√
1−r2 +

ε

[
C0 +

∞∑
n=2

{
(n+
√
1−r2)(2(1−

√
1−r2)−r2)

n
2 −n

rn
√
1−r2 [Cn cos(nθ) +Dn sin(nθ)]

}]
,

(B.1)

where F (r, θ) is defined in Eqn. (3.27). Obviously, the singularity at r = 1 appears only in

the second term on the right-hand side. If 1− r2 = O(1), then

−
√

1− r2 + ε
F (r, θ)√

1− r2
= −

√
1− r2 − 2εF (r, θ). (B.2)

When 1− r2 � 1, higher order terms are required to equate each side of Eqn. (B.2), so

−
√

1− r2 + ε
F (r, θ)√

1− r2
= −

√
1− r2 + εγ1(r, θ) + ε2γ2(r, θ). (B.3)

Here, the right-hand side is a new form for the solution, and is used in the interval [1 −
|ε| , rmax]. Equating the two sides of Eqn. (B.3) at r = 1− |ε| gives

γ1(r, θ) = −2F +
F 2

2
sgn(ε), γ2(r, θ) =

F 2

4
. (B.4)
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The remaining terms in Eqn. (B.1) also change in neighbourhood of r = 1. When r = 1−|ε|,
a new |ε| 12 order arises, so an |ε| 12 order term is added to the solution in this neighbourhood,

|ε| 12γ3 + εγ4 = ε

{
C0 +

∞∑
n=2

[
[n+
√
1−r2](2(1−

√
1−r2)−r2)

1
2−n

rn
√
1−r2 [Cn cos(nθ) +Dn sin(nθ)]

]}

= ε

{
C0 +

∞∑
n=2

[
(n+
√
1−r2)(2−r2)

n
2
(
1− n

2−r2
√
1−r2

)
−n

rn
√
1−r2 [Cn cos(nθ) +Dn sin(nθ)]

]}
,

(B.5)

where higher orders of
√

1− r2 are neglected. Finally,

|ε| 12γ3 + εγ4 = ε

{
C0 +

∞∑
n=2

[
(2−r2)

n
2 −1

(2−r2−n2)
rn

[Cn cos(nθ) +Dn sin(nθ)]

]}
, (B.6)

and, consequently,

γ3 = 0, γ4 = C0 +
∞∑

n=2

{
(2− r2)

n
2
−1

(2− r2 − n2)

rn
[Cn cos(nθ) +Dn sin(nθ)]

}
. (B.7)



Appendix C

Analysis of numerical and

perturbation errors

Figure C.1 below shows the perturbed energy from Surface Evolver plotted as a function

of the number of facets (left panel). I fitted these data to power-law relations of the form

∆E/(γR2
0) = const. + eE, where the error eE = αNβ. As shown in the right panel, the

error decays with a power-law exponent α ≈ −1.
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Figure C.1: Grid convergence test: (left) energy change versus number of facets for ε = −0.2
and 60◦ (blue), 90◦ (red), and 120◦ (green) contact angles. (right) Energy error when
increasing number of facets for the same contact angles showing convergence order.

To establish the order of the error for the perturbation theory, I calculated difference

between the perturbed pressure from the analytical approximation from values obtained

from Surface Evolver, after extrapolating the computations (which converge as N−1) to
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N =∞, as undertaken in Figure C.1 for the energy. This difference is plotted as a function

of the perturbation parameter ε in Figure C.2, where it is demonstrated that it grows as

ε2.
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Figure C.2: (left) Pressure error versus ε for α = 50◦ (blue), 90◦ (red), 120◦ (green). (right)
Pressure error order for the same contact angles.



Appendix D

Details of the experiments

As explained in Section 4.5, super soft latex tubes from McMaster Carr with 3/4′′ outside

diameter and 1/16′′ wall thickness were filled with silicon oil and immersed in a water-

methanol bath to verify the tube-buckling theory. The schemtaic of the setup is shown

in Figure D.1. For the silicon-rubber tubes, I didn’t use the water-methanol bath as the

gravity impact was negligible.

Syringe pump

Flexible tube

External fluid bath

Pressure
Guage

Figure D.1: Schematic of the experimental setup

D.1 Young’s modulus measurement

To measure the elastic modulus of the silicon-rubber tube, I used a standard tension test

with 0.5 mm min−1 elongation rate. A sample raw data of stress σ versus strain e, and

the corresponding filtered data are shown in Figure D.2. I used a moving average filter of

order 300, which takes the average of 300 surrounding data points. I calculated the slope

of this curve when the strain 0.01 < e < 0.03 to measure the Young’s modulus. Here, σ

is the force per unit tube-wall area, and e is the tube elongation with respect to its initial
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length (engineering strain).
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Figure D.2: Left: A sample raw data of stress versus strain. Right: Same data when filtered
with a moving average filter

D.2 Contact angle measurement

I used a standard tensiometer to measure the contact angle. Sample pictures taken from a

water or oil droplet on a flattened tube is shown in Figure D.3 and D.4.

Figure D.3: Three different measurements of contact angle of water on silicon-rubber tube.

D.3 Surface tension measurement

I used a Wilhelmy plate test to measure the oil surface tension. Table D.1 shows the results

of several measurements.
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Figure D.4: Three different measurements of contact angle of oil on silicon-rubber tube.

Table D.1: Several measurements of oil surface tension with the Wilhelmy plate at 25◦.
Test number 1 2 3 4
Measured surface tension (mN/m) 27.39 27.582 27.487 27.47

D.4 Hole size measurement

The hole diameter was measured using a microscope. Sample pictures from the holes are

shown in Figure D.5
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50 mm50 mm

Silicone tube 2 mm diameter

 and 0.2 mm thickness.

Latex tube 19.5 mm diameter

 and 1.6 mm thickness.

Figure D.5: Two different holes drilled under liquid nitrogen using different drill bits.



Appendix E

Matlab code for Chapter 4

1 % This code c a l c u l a t e s the c r i t i c a l e l a s t o−c a p i l l a r y number at

which the

2 % c i c u l a r tube w i l l c o l l a p s e under c a p i l l a r y pres sure , when

changing

3 % contact ang le .

4

5 c l c

6 c l e a r

7

8 % Def in ing parameters

9 Rh=0.1; % Hole s i z e

10 angle1 =0; % Contact ang le

11 Vbf=10ˆ−3; % Maximum bubble volume

12 Vbs=Vbf /1000 ; % Minimum bubble volume

13 a =0.85; % Maximum l i q u i d volume

14 b=1. ;% Minimum l i q u i d volume

15

16 [ omega ,A,B, I , Vtot , Pe bu f , Pc bu f , Pc br s , V bu f ,Pem,Pcm,Vbm]=

f ind omega c ( angle1 ,Rh, a , b , Vbf , Vbs ) ;

17 i i =1;

18

19 save Rh01 re su l t s
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20

21 I2=b−a ;

22 whi le ang le1 ( i i )<180

23 angle1 ( i i +1)=angle1 ( i i ) +5;

24 i f i i <3

25 a=Vtot ( i i )−I2 ;

26 b=Vtot ( i i )+I2 ;

27 e l s e

28 a=Vtot ( i i )−2*abs ( Vtot ( i i )−Vtot ( i i −2) ) ;

29 b=Vtot ( i i )+2*abs ( Vtot ( i i )−Vtot ( i i −2) ) ;

30 end

31

32 Vbf=V bu f ( i i ) ;

33 Vbs=Vbf /1000 ;

34 [ omega ( i i +1) ,A( i i +1) ,B( i i +1) , I ( i i +1) , Vtot ( i i +1) , Pe bu f ( i i +1)

, Pc bu f ( i i +1) , Pc br s ( i i +1) , V bu f ( i i +1) ,Pem( i i +1) ,Pcm( i i

+1) ,Vbm( i i +1)]= f ind omega c ( angle1 ( i i +1) ,Rh, a , b , Vbf , Vbs ) ;

35 i i= i i +1

36 save Rh01 re su l t s

37 end

38

39 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

40 f unc t i on [ omega ,A,B, I , Vtot , Pe bu f , Pc bu f , Pc br s , V bu f ,Pem,Pcm

,Vbm]= f ind omega c ( angle1 ,Rh, a , b , Vbf , Vbs )

41 % This func t i on c a l c u l a t e s the c r i t i c a l e l a s t o−c a p i l l a r y number

42

43 t o l=min ( [ Rhˆ5 ,10ˆ−7]) ;

44

45 I=b−a ;

46

47 Vtot=b ; % Fix ing l i q u i d volume

48
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49 % Calcu l a t ing c o n f i g u r a t i o n with minimum bubble volume

50 Pe bu s=f ind Vs ( Vtot , Vbs ,Rh) ;

51

52 % Calcu l a t ing c o n f i g u r a t i o n when bubble touches the oppos i t e wa l l

.

53 [ Pe bu f , Pc bu f , Pc br s , V bu f ]=find Vbm ( Vtot , Vbs , Vbf ,Rh, angle1 ,

t o l ) ;

54 s tep=Pe bu s−Pe bu f ;

55

56 % Calcu l a t ing c o n f i g u r a t i o n when br idge becomes unstab le by

exceed ing wett ing ang le .

57 [ Pe u , Pc u , Vb u]= f i n d u n s t a b l e 2 ( Pe bu f−s tep /10 , Pe bu f−3*step ,

Vtot ,Rh, angle1 , s tep /2) ;

58 s tep2=Vb u−V bu f ;

59

60 % Calcu l a t ing c o n f i g u r a t i o n with the maximum c a p i l l a r y p r e s su r e .

61 [Pem,Pcm,Vbm]=find Pcmax2 ( V bu f+step2 /10 ,Vb u , Vtot ,Rh, angle1 ,

s tep2 /10) ;

62 B=Pcm−Pc bu f−(Pem−Pe bu f ) *Pc bu f / Pe bu f ;

63

64 % Finding the root .

65

66 whi le B>0

67 a=b ;

68 A=B;

69 b=b+I /2 ;

70 Vtot=b ;

71 Pe bu s=f ind Vs ( Vtot , Vbs ,Rh) ;

72 [ Pe bu f , Pc bu f , Pc br s , V bu f ]=find Vbm ( Vtot , Vbs , Vbf ,Rh,

angle1 , t o l ) ;

73 s tep=Pe bu s−Pe bu f ;

74 [ Pe u , Pc u , Vb u]= f i n d u n s t a b l e 2 ( Pe bu f−s tep /10 , Pe bu f−3*

step , Vtot ,Rh, angle1 , s tep /2) ;

75 s tep2=Vb u−V bu f ;
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76 [Pem,Pcm,Vbm]=find Pcmax2 ( V bu f+step2 /10 ,Vb u , Vtot ,Rh, angle1

, s tep2 /10) ;

77 B=Pcm−Pc bu f−(Pem−Pe bu f ) *Pc bu f / Pe bu f ;

78 I=b−a ;

79 end

80

81 save midle1 b B V bu f Vb u Vbm

82

83 Vbf=V bu f ;

84

85 Vtot=a ;

86 Pe bu s=f ind Vs ( Vtot , Vbs ,Rh) ;

87 [ Pe bu f , Pc bu f , Pc br s , V bu f ]=find Vbm ( Vtot , Vbs , Vbf ,Rh, angle1 ,

t o l ) ;

88 s tep=Pe bu s−Pe bu f ;

89 [ Pe u , Pc u , Vb u]= f i n d u n s t a b l e 2 ( Pe bu f−s tep /10 , Pe bu f−3*step ,

Vtot ,Rh, angle1 , s tep /2) ;

90 s tep2=Vb u−V bu f ;

91 [Pem,Pcm,Vbm]=find Pcmax2 ( V bu f+step2 /10 ,Vb u , Vtot ,Rh, angle1 ,

s tep2 /10) ;

92 A=Pcm−Pc bu f−(Pem−Pe bu f ) *Pc bu f / Pe bu f ;

93

94 whi le A<0

95 b=a ;

96 B=A;

97 a=a−(a−0.8416) /4 ;

98 Vtot=a ;

99 Pe bu s=f ind Vs ( Vtot , Vbs ,Rh) ;

100 [ Pe bu f , Pc bu f , Pc br s , V bu f ]=find Vbm ( Vtot , Vbs , Vbf ,Rh,

angle1 , t o l ) ;

101 s tep=Pe bu s−Pe bu f ;

102 [ Pe u , Pc u , Vb u]= f i n d u n s t a b l e 2 ( Pe bu f−s tep /10 , Pe bu f−3*

step , Vtot ,Rh, angle1 , s tep /2) ;

103 s tep2=Vb u−V bu f ;
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104 [Pem,Pcm,Vbm]=find Pcmax2 ( V bu f+step2 /10 ,Vb u , Vtot ,Rh, angle1

, s tep2 /10) ;

105 A=Pcm−Pc bu f−(Pem−Pe bu f ) *Pc bu f / Pe bu f ;

106 end

107

108 save midle1 a A b B V bu f Vb u Vbm

109

110

111 I=b−a ;

112 whi le I>Rh*0 .003

113 c=a+I /2 ;

114 Vtot=c ;

115 Pe bu s=f ind Vs ( Vtot , Vbs ,Rh) ;

116 [ Pe bu f , Pc bu f , Pc br s , V bu f ]=find Vbm ( Vtot , Vbs , Vbf ,Rh,

angle1 , t o l ) ;

117 s tep=Pe bu s−Pe bu f ;

118 [ Pe u , Pc u , Vb u]= f i n d u n s t a b l e 2 ( Pe bu f−s tep /10 , Pe bu f−3*

step , Vtot ,Rh, angle1 , s tep /2) ;

119 s tep2=Vb u−V bu f ;

120 [Pem,Pcm,Vbm]=find Pcmax2 ( V bu f+step2 /10 ,Vb u , Vtot ,Rh, angle1

, s tep2 /10) ;

121 C=Pcm−Pc bu f−(Pem−Pe bu f ) *Pc bu f / Pe bu f ;

122 i f A*C<0

123 b=c ;

124 B=C;

125 e l s e

126 a=c ;

127 A=C;

128 end

129 I=b−a ;

130

131 save midle1 c C a A b B V bu f Vb u Vbm

132 end

133
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134 omega=Pc bu f / Pe bu f ;

135 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

136

137

138 f unc t i on [ Pe]= f ind Vs ( Vtot ,Vb,Rh)

139 % This func t i on f i n d s c o n f i g u r a t i o n with minimum bubble volume

140

141 At=(Vtot+Vb) ;

142

143 a =3.5 ;

144 b=5.398;

145 [ LL , y end , y end2 , ac , area , Energy ]= t u b e p r o f i l e ( a ,Rh) ;

146 A=area−At ;

147 [ LL , y end , y end2 , ac , area , Energy ]= t u b e p r o f i l e (b ,Rh) ;

148 B=area−At ;

149 I=b−a ;

150 whi le I>10ˆ−12

151 c=a+I /2 ;

152 [ LL , y end , y end2 , ac , area , Energy ]= t u b e p r o f i l e ( c ,Rh) ;

153 C=area−At ;

154 i f A*C<0

155 b=c ;

156 B=C;

157 e l s e

158 a=c ;

159 A=C;

160 end

161 I=b−a ;

162 end

163 Pe=c ;

164
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165 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

166

167 f unc t i on [ Pe , Pc1 , Pc2 ,Vb]=find Vbm ( Vtot , Vbs , Vbf ,Rh, angle1 , t o l )

168 % This func t i on f i n d s c o n f i g u r a t i o n when bubble touches the

oppos i t e wa l l .

169

170 b=Vbf ;

171 Pe=f ind Vs ( Vtot , b ,Rh) ;

172 [ z0 , alpha0 ]= wr i t e bubb l e ( angle1 , Pe ,Rh, b) ;

173 w r i t e s o l v e b u b b l e (Rh, z0 ) ;

174 [ Pc2 , energy , area ,B]= so lve bubb l e ( z0 ) ;

175 whi le B<0

176 b=b * 1 . 5 ;

177 Pe=f ind Vs ( Vtot , b ,Rh) ;

178 [ z0 , alpha0 ]= wr i t e bubb l e ( angle1 , Pe ,Rh, b) ;

179 w r i t e s o l v e b u b b l e (Rh, z0 ) ;

180 [ Pc2 , energy , area ,B]= so lve bubb l e ( z0 ) ;

181 end

182

183 a=Vbs ;

184 Pe=f ind Vs ( Vtot , b ,Rh) ;

185 [ z0 , alpha0 ]= wr i t e bubb l e ( angle1 , Pe ,Rh, a ) ;

186 w r i t e s o l v e b u b b l e (Rh, z0 ) ;

187 [ Pc1 , energy , area ,A]= so lve bubb l e ( z0 ) ;

188 whi le A>0

189 a=a /2 ;

190 Pe=f ind Vs ( Vtot , b ,Rh) ;

191 [ z0 , alpha0 ]= wr i t e bubb l e ( angle1 , Pe ,Rh, a ) ;

192 w r i t e s o l v e b u b b l e (Rh, z0 ) ;

193 [ Pc1 , energy , area ,A]= so lve bubb l e ( z0 ) ;

194 end

195
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196

197

198 i f A*B>0

199 ’ e r r o r ’

200 r e turn

201 end

202

203

204 I=b−a ;

205 whi le I>t o l

206 c=a+I /2 ;

207 Pe=f ind Vs ( Vtot , c ,Rh) ;

208 [ z0 , alpha0 ]= wr i t e bubb l e ( angle1 , Pe ,Rh, c ) ;

209 w r i t e s o l v e b u b b l e (Rh, z0 ) ;

210 [ Pc , energy , area ,C]= so lve bubb l e ( z0 ) ;

211 i f A*C<0

212 b=c ;

213 B=C;

214 Pc2=Pc ;

215 e l s e

216 a=c ;

217 A=C;

218 Pc1=Pc ;

219 end

220 I=b−a ;

221 end

222 Pe1=f ind Vs ( Vtot , c+c /20 ,Rh) ;

223 [ z0 , alpha0 ]= w r i t e b r i d g e ( angle1 , Pe1 ,Rh, c+c /20) ;

224 w r i t e s o l v e b r i d g e (Rh, z0 ) ;

225 [ Pc2 , energy , area , s t a b i l i t y ]= s o l v e b r i d g e ( alpha0 , angle1 ,Rh) ;

226

227 Pc1=Pc ;

228

229 Vb=c ;
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230

231 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

232

233 f unc t i on [ Pe , Pc ,Vb]= find Pcmax2 (V1 , V2 , Vtot ,Rh, angle1 , t o l )

234 % This f i n c t i o n f i n d s c o n f i g u r a t i o n with the maximum c a p i l l a r y

p r e s su r e when a l i q u i d br idge i s formed .

235

236 a=V1 ;

237 b=V2 ;

238

239 Pe2=f ind Vs ( Vtot , b ,Rh) ;

240 [ z0 , alpha0 ]= w r i t e b r i d g e ( angle1 , Pe2 ,Rh, b) ;

241 w r i t e s o l v e b r i d g e (Rh, z0 ) ;

242 [B, energy , area , stb ]= s o l v e b r i d g e 2 ( alpha0 , angle1 ,Rh) ;

243

244 Pe1=f ind Vs ( Vtot , a ,Rh) ;

245 [ z0 , alpha0 ]= w r i t e b r i d g e ( angle1 , Pe1 ,Rh, a ) ;

246 w r i t e s o l v e b r i d g e (Rh, z0 ) ;

247 [A, energy , area , stb ]= s o l v e b r i d g e 2 ( alpha0 , angle1 ,Rh) ;

248

249

250 I=b−a ;

251 whi le I>t o l

252 m1=a+I /3 ;

253 m2=b−I /3 ;

254

255 Pem1=f ind Vs ( Vtot ,m1,Rh) ;

256 [ z0 , alpha0 ]= w r i t e b r i d g e ( angle1 , Pem1 ,Rh,m1) ;

257 w r i t e s o l v e b r i d g e (Rh, z0 ) ;

258 [M1, energy , area , stb ]= s o l v e b r i d g e 2 ( alpha0 , angle1 ,Rh) ;

259

260 Pem2=f ind Vs ( Vtot ,m2,Rh) ;
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261 [ z0 , alpha0 ]= w r i t e b r i d g e ( angle1 , Pem2 ,Rh,m2) ;

262 w r i t e s o l v e b r i d g e (Rh, z0 ) ;

263 [M2, energy , area , stb ]= s o l v e b r i d g e 2 ( alpha0 , angle1 ,Rh) ;

264

265 Pcm=[A M1 M2 B ] ;

266 Vm=[a m1 m2 b ] ;

267 Pem=[Pe1 Pem1 Pem2 Pe2 ] ;

268 [ max1 , imax]=max(Pcm) ;

269 i f imax==1

270 b=Vm( imax+2) ;

271 B=Pcm( imax+2) ;

272 Pe2=Pem( imax+2) ;

273 e l s e i f imax==4

274 a=Vm( imax−2) ;

275 A=Pcm( imax−2) ;

276 Pe1=Pem( imax−2) ;

277 e l s e

278 b=Vm( imax+1) ;

279 B=Pcm( imax+1) ;

280 a=Vm( imax−1) ;

281 A=Pcm( imax−1) ;

282 Pe1=Pem( imax−1) ;

283 Pe2=Pem( imax+1) ;

284 end

285

286 I=b−a ;

287 end

288 Vb=Vm( imax ) ;

289 Pc=max1 ;

290 Pe=Pem( imax ) ;

291 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

292
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293 f unc t i on [Pem,Pcm,Vbm]= f i n d u n s t a b l e 2 ( Pe1 , Pe2 , Vtot ,Rh, L , angle1 ,

t o l )

294 % This func t i on f i n d s c o n f i g u r a t i o n when br idge becomes unstab le

by exceed ing wett ing angle1 .

295

296 a=Pe2 ;

297 [ LL , y end , y end2 , a1 , Area , Energy , alpha0 ]= t u b e p r o f i l e ( a ,Rh) ;

298 Vb=Area*L−Vtot ;

299 [ z0 , alpha0 ]= w r i t e b r i d g e ( angle1 , a ,Rh,Vb) ;

300 w r i t e s o l v e b r i d g e (Rh, z0 ) ;

301 [ Pc , energy , area ,A]= s o l v e b r i d g e 2 ( alpha0 , angle1 ,Rh) ;

302

303

304 b=Pe1 ;

305 [ LL y end y end2 a1 Area Energy , alpha0 ]= t u b e p r o f i l e (b ,Rh) ;

306 Vb=Area*L−Vtot ;

307 [ z0 , alpha0 ]= w r i t e b r i d g e ( angle1 , b ,Rh,Vb) ;

308 w r i t e s o l v e b r i d g e (Rh, z0 ) ;

309 [ Pc , energy , area ,B]= s o l v e b r i d g e 2 ( alpha0 , angle1 ,Rh) ;

310

311

312 I=(b−a ) ;

313 whi le I>t o l

314 c=a+I /2 ;

315 [ LL y end y end2 a1 Area Energy , alpha0 ]= t u b e p r o f i l e ( c ,Rh) ;

316 Vb=Area*L−Vtot ;

317 [ z0 , alpha0 ]= w r i t e b r i d g e ( angle1 , c ,Rh,Vb) ;

318 w r i t e s o l v e b r i d g e (Rh, z0 ) ;

319 [ Pc , energy , area ,C]= s o l v e b r i d g e 2 ( alpha0 , angle1 ,Rh) ;

320 i f A*C<0

321 b=c ;

322 B=C;

323 e l s e

324 a=c ;
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325 A=C;

326 end

327 I=b−a ;

328 end

329 Pem=c ;

330 Pcm=Pc ;

331 Vbm=Vb;

332 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

333

334

335 f unc t i on [ z0 , alpha0 ]= w r i t e b r i d g e ( angle1 , Pe ,Rh,V)

336 % This func t i on w r i t e s i n i t i a l c o n d i t i o o f a br idge f o r Sur face

Evolver

337

338 [ r0 , z0 , z02 , a , a rea t , ene , alpha0 ]= t u b e p r o f i l e (Pe ,Rh) ;

339 nn=[1 2 3 4 ] ;

340 an=[nn ; a ] ;

341

342

343 T=−cos ( ang le1 * pi /180) ;

344 r r=Rh;

345

346 theta =0: p i /8 : p i ;

347 xx=Rh* cos ( theta ) ;

348 zzz =((a (1 ) *( r0ˆ2−xx . ˆ 2 ) .ˆ2+a (2) *( r0ˆ2−xx . ˆ 2 ) .ˆ1.5+ a (3) *( r0ˆ2−xx

. ˆ 2 )+a (4) *( r0ˆ2−xx . ˆ 2 ) . ˆ 0 . 5 ) ) ;

349

350 f i d = fopen ( ’ br idge . f e ’ , ’w ’ ) ;

351 f p r i n t f ( f i d , ’ // Evolver data f o r a bubble o f p r e s c r i b e d volume

between the oppos i t e wa l l s o f a\n ’ ) ;

352 f p r i n t f ( f i d , ’ // c o l l a p s e d tube without g rav i ty .\n ’ ) ;

353
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354 f p r i n t f ( f i d , ’SPRING CONSTANT 1 // f o r most accurate gap areas

f o r c o n s t r a i n t 1\n ’ ) ;

355 f p r i n t f ( f i d , ’SYMMETRIC CONTENT // f o r volume c a l c u l a t i o n s \n ’

) ;

356

357 f p r i n t f ( f i d , ’PARAMETER angle := %6.2 f // i n t e r i o r ang le between

plane and sur face , degree s \n ’ , ang le1 ) ;

358 f p r i n t f ( f i d , ’PARAMETER r0 := %8.7 f /* d i s t ance from cente r at y

=0 */\n ’ , r0 ) ;

359 f p r i n t f ( f i d , ’PARAMETER Rh := %7.6 f // Hole rad iu s \n ’ , Rh) ;

360 f p r i n t f ( f i d , ’PARAMETER z0 := %8.7 f // end he ight \n ’ , z0 ) ;

361 f p r i n t f ( f i d , ’PARAMETER Vol = %8.7 f //volume\n ’ ,V) ;

362 f p r i n t f ( f i d , ’PARAMETER ten = %8.7 f // t en s i on \n ’ ,T) ;

363 f p r i n t f ( f i d , ’PARAMETER a%d = %8.7 f \n ’ , an ) ;

364 f p r i n t f ( f i d , ’PARAMETER r r = %8.7 f \n ’ , r r ) ;

365

366

367 f p r i n t f ( f i d , ’ c o n s t r a i n t 1 CONVEX // ho le \n ’ ) ;

368 f p r i n t f ( f i d , ’ f unc t i on : xˆ2 + yˆ2 = Rhˆ2\n ’ ) ;

369

370 f p r i n t f ( f i d , ’ c o n s t r a i n t 2 CONVEX // ho le \n ’ ) ;

371 f p r i n t f ( f i d , ’ f unc t i on z=−((a1 *( r0ˆ2−xˆ2)ˆ2+a2 *( r0ˆ2−xˆ2) ˆ1.5+ a3

*( r0ˆ2−xˆ2)+a4 *( r0ˆ2−xˆ2) ˆ0 . 5 ) )\n ’ ) ;

372

373 f p r i n t f ( f i d , ’ c o n s t r a i n t 3 CONVEX // wal l \n ’ ) ;

374 f p r i n t f ( f i d , ’ f unc t i on z=((a1 *( r0ˆ2−xˆ2)ˆ2+a2 *( r0ˆ2−xˆ2) ˆ1.5+ a3 *(

r0ˆ2−xˆ2)+a4 *( r0ˆ2−xˆ2) ˆ0 . 5 ) )\n ’ ) ;

375

376

377 f p r i n t f ( f i d , ’ v e r t i c e s \n ’ ) ;

378 f p r i n t f ( f i d , ’ 1 r r * cos ( p i ) r r * s i n ( p i ) %8.7 f c o n s t r a i n t 3\n ’ , zzz

(9 ) ) ;

379 f p r i n t f ( f i d , ’ 2 r r * cos (7* pi /8) r r * s i n (7* pi /8) %8.7 f c o n s t r a i n t

3\n ’ , zzz (8 ) ) ;
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380 f p r i n t f ( f i d , ’ 3 r r * cos (6* pi /8) r r * s i n (6* pi /8) %8.7 f c o n s t r a i n t

3\n ’ , zzz (7 ) ) ;

381 f p r i n t f ( f i d , ’ 4 r r * cos (5* pi /8) r r * s i n (5* pi /8) %8.7 f c o n s t r a i n t

3\n ’ , zzz (6 ) ) ;

382 f p r i n t f ( f i d , ’ 5 r r * cos (4* pi /8) r r * s i n (4* pi /8) %8.7 f c o n s t r a i n t

3\n ’ , zzz (5 ) ) ;

383 f p r i n t f ( f i d , ’ 6 r r * cos (3* pi /8) r r * s i n (3* pi /8) %8.7 f c o n s t r a i n t

3\n ’ , zzz (4 ) ) ;

384 f p r i n t f ( f i d , ’ 7 r r * cos (2* pi /8) r r * s i n (2* pi /8) %8.7 f c o n s t r a i n t

3\n ’ , zzz (3 ) ) ;

385 f p r i n t f ( f i d , ’ 8 r r * cos ( p i /8) r r * s i n ( p i /8) %8.7 f c o n s t r a i n t 3\n ’ ,

zzz (2 ) ) ;

386 f p r i n t f ( f i d , ’ 9 r r * cos (0 ) r r * s i n (0 ) %8.7 f c o n s t r a i n t 3\n ’ , zzz (1 )

) ;

387 f p r i n t f ( f i d , ’ 10 r r * cos(−pi /8) r r * s i n (−pi /8) %8.7 f c o n s t r a i n t 3\
n ’ , zzz (2 ) ) ;

388 f p r i n t f ( f i d , ’ 11 r r * cos (−2*pi /8) r r * s i n (−2*pi /8) %8.7 f

c o n s t r a i n t 3\n ’ , zzz (3 ) ) ;

389 f p r i n t f ( f i d , ’ 12 r r * cos (−3*pi /8) r r * s i n (−3*pi /8) %8.7 f

c o n s t r a i n t 3\n ’ , zzz (4 ) ) ;

390 f p r i n t f ( f i d , ’ 13 r r * cos (−4*pi /8) r r * s i n (−4*pi /8) %8.7 f

c o n s t r a i n t 3\n ’ , zzz (5 ) ) ;

391 f p r i n t f ( f i d , ’ 14 r r * cos (−5*pi /8) r r * s i n (−5*pi /8) %8.7 f

c o n s t r a i n t 3\n ’ , zzz (6 ) ) ;

392 f p r i n t f ( f i d , ’ 15 r r * cos (−6*pi /8) r r * s i n (−6*pi /8) %8.7 f

c o n s t r a i n t 3\n ’ , zzz (7 ) ) ;

393 f p r i n t f ( f i d , ’ 16 r r * cos (−7*pi /8) r r * s i n (−7*pi /8) %8.7 f

c o n s t r a i n t 3\n ’ , zzz (8 ) ) ;

394 f p r i n t f ( f i d , ’ 17 r r * cos ( p i ) r r * s i n ( p i ) −%8.7 f c o n s t r a i n t 1 ,2\n ’ ,

zzz (9 ) ) ;

395 f p r i n t f ( f i d , ’ 18 r r * cos (7* pi /8) r r * s i n (7* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (8 ) ) ;

396 f p r i n t f ( f i d , ’ 19 r r * cos (6* pi /8) r r * s i n (6* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (7 ) ) ;
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397 f p r i n t f ( f i d , ’ 20 r r * cos (5* pi /8) r r * s i n (5* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (6 ) ) ;

398 f p r i n t f ( f i d , ’ 21 r r * cos (4* pi /8) r r * s i n (4* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (5 ) ) ;

399 f p r i n t f ( f i d , ’ 22 r r * cos (3* pi /8) r r * s i n (3* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (4 ) ) ;

400 f p r i n t f ( f i d , ’ 23 r r * cos (2* pi /8) r r * s i n (2* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (3 ) ) ;

401 f p r i n t f ( f i d , ’ 24 r r * cos ( p i /8) r r * s i n ( p i /8) −%8.7 f c o n s t r a i n t 1 ,2\
n ’ , zzz (2 ) ) ;

402 f p r i n t f ( f i d , ’ 25 r r * cos (0 ) r r * s i n (0 ) −%8.7 f c o n s t r a i n t 1 ,2\n ’ , zzz

(1 ) ) ;

403 f p r i n t f ( f i d , ’ 26 r r * cos(−pi /8) r r * s i n (−pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (2 ) ) ;

404 f p r i n t f ( f i d , ’ 27 r r * cos (−2*pi /8) r r * s i n (−2*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (3 ) ) ;

405 f p r i n t f ( f i d , ’ 28 r r * cos (−3*pi /8) r r * s i n (−3*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (4 ) ) ;

406 f p r i n t f ( f i d , ’ 29 r r * cos (−4*pi /8) r r * s i n (−4*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (5 ) ) ;

407 f p r i n t f ( f i d , ’ 30 r r * cos (−5*pi /8) r r * s i n (−5*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (6 ) ) ;

408 f p r i n t f ( f i d , ’ 31 r r * cos (−6*pi /8) r r * s i n (−6*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (7 ) ) ;

409 f p r i n t f ( f i d , ’ 32 r r * cos (−7*pi /8) r r * s i n (−7*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (8 ) ) ;

410

411 f p r i n t f ( f i d , ’ edges /* given by endpoints and a t t r i b u t e */\n ’ ) ;

412 f p r i n t f ( f i d , ’ 1 1 2 c o n s t r a i n t 3\n ’ ) ;

413 f p r i n t f ( f i d , ’ 2 2 3 c o n s t r a i n t 3\n ’ ) ;

414 f p r i n t f ( f i d , ’ 3 3 4 c o n s t r a i n t 3\n ’ ) ;

415 f p r i n t f ( f i d , ’ 4 4 5 c o n s t r a i n t 3\n ’ ) ;

416 f p r i n t f ( f i d , ’ 5 5 6 c o n s t r a i n t 3\n ’ ) ;

417 f p r i n t f ( f i d , ’ 6 6 7 c o n s t r a i n t 3\n ’ ) ;
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418 f p r i n t f ( f i d , ’ 7 7 8 c o n s t r a i n t 3\n ’ ) ;

419 f p r i n t f ( f i d , ’ 8 8 9 c o n s t r a i n t 3\n ’ ) ;

420 f p r i n t f ( f i d , ’ 9 9 10 c o n s t r a i n t 3\n ’ ) ;

421 f p r i n t f ( f i d , ’ 10 10 11 c o n s t r a i n t 3\n ’ ) ;

422 f p r i n t f ( f i d , ’ 11 11 12 c o n s t r a i n t 3\n ’ ) ;

423 f p r i n t f ( f i d , ’ 12 12 13 c o n s t r a i n t 3\n ’ ) ;

424 f p r i n t f ( f i d , ’ 13 13 14 c o n s t r a i n t 3\n ’ ) ;

425 f p r i n t f ( f i d , ’ 14 14 15 c o n s t r a i n t 3\n ’ ) ;

426 f p r i n t f ( f i d , ’ 15 15 16 c o n s t r a i n t 3\n ’ ) ;

427 f p r i n t f ( f i d , ’ 16 16 1 c o n s t r a i n t 3\n ’ ) ;

428 f p r i n t f ( f i d , ’ 17 17 18 c o n s t r a i n t 1 ,2\n ’ ) ;

429 f p r i n t f ( f i d , ’ 18 18 19 c o n s t r a i n t 1 ,2\n ’ ) ;

430 f p r i n t f ( f i d , ’ 19 19 20 c o n s t r a i n t 1 ,2\n ’ ) ;

431 f p r i n t f ( f i d , ’ 20 20 21 c o n s t r a i n t 1 ,2\n ’ ) ;

432 f p r i n t f ( f i d , ’ 21 21 22 c o n s t r a i n t 1 ,2\n ’ ) ;

433 f p r i n t f ( f i d , ’ 22 22 23 c o n s t r a i n t 1 ,2\n ’ ) ;

434 f p r i n t f ( f i d , ’ 23 23 24 c o n s t r a i n t 1 ,2\n ’ ) ;

435 f p r i n t f ( f i d , ’ 24 24 25 c o n s t r a i n t 1 ,2\n ’ ) ;

436 f p r i n t f ( f i d , ’ 25 25 26 c o n s t r a i n t 1 ,2\n ’ ) ;

437 f p r i n t f ( f i d , ’ 26 26 27 c o n s t r a i n t 1 ,2\n ’ ) ;

438 f p r i n t f ( f i d , ’ 27 27 28 c o n s t r a i n t 1 ,2\n ’ ) ;

439 f p r i n t f ( f i d , ’ 28 28 29 c o n s t r a i n t 1 ,2\n ’ ) ;

440 f p r i n t f ( f i d , ’ 29 29 30 c o n s t r a i n t 1 ,2\n ’ ) ;

441 f p r i n t f ( f i d , ’ 30 30 31 c o n s t r a i n t 1 ,2\n ’ ) ;

442 f p r i n t f ( f i d , ’ 31 31 32 c o n s t r a i n t 1 ,2\n ’ ) ;

443 f p r i n t f ( f i d , ’ 32 32 17 c o n s t r a i n t 1 ,2\n ’ ) ;

444 f p r i n t f ( f i d , ’ 33 1 17\n ’ ) ;

445 f p r i n t f ( f i d , ’ 34 2 18\n ’ ) ;

446 f p r i n t f ( f i d , ’ 35 3 19\n ’ ) ;

447 f p r i n t f ( f i d , ’ 36 4 20\n ’ ) ;

448 f p r i n t f ( f i d , ’ 37 5 21\n ’ ) ;

449 f p r i n t f ( f i d , ’ 38 6 22\n ’ ) ;

450 f p r i n t f ( f i d , ’ 39 7 23\n ’ ) ;

451 f p r i n t f ( f i d , ’ 40 8 24\n ’ ) ;
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452 f p r i n t f ( f i d , ’ 41 9 25\n ’ ) ;

453 f p r i n t f ( f i d , ’ 42 10 26\n ’ ) ;

454 f p r i n t f ( f i d , ’ 43 11 27\n ’ ) ;

455 f p r i n t f ( f i d , ’ 44 12 28\n ’ ) ;

456 f p r i n t f ( f i d , ’ 45 13 29\n ’ ) ;

457 f p r i n t f ( f i d , ’ 46 14 30\n ’ ) ;

458 f p r i n t f ( f i d , ’ 47 15 31\n ’ ) ;

459 f p r i n t f ( f i d , ’ 48 16 32\n ’ ) ;

460

461 f p r i n t f ( f i d , ’ f a c e s /* given by o r i en t ed edge loop */\n ’ ) ;

462 f p r i n t f ( f i d , ’ 1 −1 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4

−3 −2 t en s i on ten c o n s t r a i n t 3\n ’ ) ;

463 f p r i n t f ( f i d , ’ 2 1 34 −17 −33\n ’ ) ;

464 f p r i n t f ( f i d , ’ 3 2 35 −18 −34 \n ’ ) ;

465 f p r i n t f ( f i d , ’ 4 3 36 −19 −35\n ’ ) ;

466 f p r i n t f ( f i d , ’ 5 4 37 −20 −36\n ’ ) ;

467 f p r i n t f ( f i d , ’ 6 5 38 −21 −37\n ’ ) ;

468 f p r i n t f ( f i d , ’ 7 6 39 −22 −38\n ’ ) ;

469 f p r i n t f ( f i d , ’ 8 7 40 −23 −39\n ’ ) ;

470 f p r i n t f ( f i d , ’ 9 8 41 −24 −40\n ’ ) ;

471 f p r i n t f ( f i d , ’ 10 9 42 −25 −41\n ’ ) ;

472 f p r i n t f ( f i d , ’ 11 10 43 −26 −42\n ’ ) ;

473 f p r i n t f ( f i d , ’ 12 11 44 −27 −43\n ’ ) ;

474 f p r i n t f ( f i d , ’ 13 12 45 −28 −44\n ’ ) ;

475 f p r i n t f ( f i d , ’ 14 13 46 −29 −45\n ’ ) ;

476 f p r i n t f ( f i d , ’ 15 14 47 −30 −46\n ’ ) ;

477 f p r i n t f ( f i d , ’ 16 15 48 −31 −47\n ’ ) ;

478 f p r i n t f ( f i d , ’ 17 16 33 −32 −48\n ’ ) ;

479 f p r i n t f ( f i d , ’ 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

t en s i on 0 c o n s t r a i n t 2 // f i x e d \n ’ ) ;

480

481 f p r i n t f ( f i d , ’ bod ie s /* one body , de f ined by i t s o r i en t ed f a c e s

*/\n ’ ) ;
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482 f p r i n t f ( f i d , ’ 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

volume Vol dens i ty 0\n ’ ) ;

483

484 f c l o s e ( f i d ) ;

485

486 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

487

488 f unc t i on [ z0 , alpha0 ]= wr i t e bubb l e ( angle1 , Pe ,Rh,V)

489 % This func t i on w r i t e s i n i t i a l c o n d i t i o o f a bubble f o r Sur face

Evolver

490

491 [ r0 , z0 , z02 , a , a rea t , alpha0 ]= t u b e p r o f i l e (Pe ,Rh) ;

492 nn=[1 2 3 4 ] ;

493 an=[nn ; a ] ;

494

495

496 T=−cos ( ang le1 * pi /180) ;

497 r r=Rh/2 ;

498

499 theta =0: p i /8 : p i ;

500 xx=Rh* cos ( theta ) ;

501 zzz =((a (1 ) *( r0ˆ2−xx . ˆ 2 ) .ˆ2+a (2) *( r0ˆ2−xx . ˆ 2 ) .ˆ1.5+ a (3) *( r0ˆ2−xx

. ˆ 2 )+a (4) *( r0ˆ2−xx . ˆ 2 ) . ˆ 0 . 5 ) ) ;

502

503 i f V<Rhˆ3/10

504 zt=−zzz (9 ) /2 ;

505 e l s e i f V<Rhˆ3

506 zt =0;

507 e l s e

508 zt=zzz (9 ) /2 ;

509 end

510
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511

512 f i d = fopen ( ’ bubble . f e ’ , ’w ’ ) ;

513 f p r i n t f ( f i d , ’ // Evolver data f o r a bubble o f p r e s c r i b e d volume

between the oppos i t e wa l l s o f a\n ’ ) ;

514 f p r i n t f ( f i d , ’ // c o l l a p s e d tube without g rav i ty .\n ’ ) ;

515

516 f p r i n t f ( f i d , ’SPRING CONSTANT 1 // f o r most accurate gap areas

f o r c o n s t r a i n t 1\n ’ ) ;

517 f p r i n t f ( f i d , ’SYMMETRIC CONTENT // f o r volume c a l c u l a t i o n s \n ’

) ;

518

519 f p r i n t f ( f i d , ’PARAMETER angle := %6.2 f // i n t e r i o r ang le between

plane and sur face , degree s \n ’ , ang le1 ) ;

520 f p r i n t f ( f i d , ’PARAMETER r0 := %8.7 f /* d i s t ance from cente r at y

=0 */\n ’ , r0 ) ;

521 f p r i n t f ( f i d , ’PARAMETER Rh := %7.6 f // Hole rad iu s \n ’ , Rh) ;

522 f p r i n t f ( f i d , ’PARAMETER z0 := %8.7 f // end he ight \n ’ , z0 ) ;

523 f p r i n t f ( f i d , ’PARAMETER Vol = %8.7 f //volume\n ’ ,V) ;

524 f p r i n t f ( f i d , ’PARAMETER a%d = %8.7 f \n ’ , an ) ;

525 f p r i n t f ( f i d , ’PARAMETER r r = %8.7 f \n ’ , r r ) ;

526

527

528 f p r i n t f ( f i d , ’ c o n s t r a i n t 1 CONVEX // ho le \n ’ ) ;

529 f p r i n t f ( f i d , ’ f unc t i on : xˆ2 + yˆ2 = Rhˆ2\n ’ ) ;

530

531 f p r i n t f ( f i d , ’ c o n s t r a i n t 2 CONVEX // ho le \n ’ ) ;

532 f p r i n t f ( f i d , ’ f unc t i on z=−((a1 *( r0ˆ2−xˆ2)ˆ2+a2 *( r0ˆ2−xˆ2) ˆ1.5+ a3

*( r0ˆ2−xˆ2)+a4 *( r0ˆ2−xˆ2) ˆ0 . 5 ) )\n ’ ) ;

533

534

535 f p r i n t f ( f i d , ’ v e r t i c e s \n ’ ) ;

536 f p r i n t f ( f i d , ’ 1 r r * cos ( p i ) r r * s i n ( p i ) %8.7 f \n ’ , z t ) ;

537 f p r i n t f ( f i d , ’ 2 r r * cos (7* pi /8) r r * s i n (7* pi /8) %8.7 f \n ’ , z t ) ;

538 f p r i n t f ( f i d , ’ 3 r r * cos (6* pi /8) r r * s i n (6* pi /8) %8.7 f \n ’ , z t ) ;
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539 f p r i n t f ( f i d , ’ 4 r r * cos (5* pi /8) r r * s i n (5* pi /8) %8.7 f \n ’ , z t ) ;

540 f p r i n t f ( f i d , ’ 5 r r * cos (4* pi /8) r r * s i n (4* pi /8) %8.7 f \n ’ , z t ) ;

541 f p r i n t f ( f i d , ’ 6 r r * cos (3* pi /8) r r * s i n (3* pi /8) %8.7 f \n ’ , z t ) ;

542 f p r i n t f ( f i d , ’ 7 r r * cos (2* pi /8) r r * s i n (2* pi /8) %8.7 f \n ’ , z t ) ;

543 f p r i n t f ( f i d , ’ 8 r r * cos ( p i /8) r r * s i n ( p i /8) %8.7 f \n ’ , z t ) ;

544 f p r i n t f ( f i d , ’ 9 r r * cos (0 ) r r * s i n (0 ) %8.7 f \n ’ , z t ) ;

545 f p r i n t f ( f i d , ’ 10 r r * cos(−pi /8) r r * s i n (−pi /8) %8.7 f \n ’ , z t ) ;

546 f p r i n t f ( f i d , ’ 11 r r * cos (−2*pi /8) r r * s i n (−2*pi /8) %8.7 f \n ’ , z t ) ;

547 f p r i n t f ( f i d , ’ 12 r r * cos (−3*pi /8) r r * s i n (−3*pi /8) %8.7 f \n ’ , z t ) ;

548 f p r i n t f ( f i d , ’ 13 r r * cos (−4*pi /8) r r * s i n (−4*pi /8) %8.7 f \n ’ , z t ) ;

549 f p r i n t f ( f i d , ’ 14 r r * cos (−5*pi /8) r r * s i n (−5*pi /8) %8.7 f \n ’ , z t ) ;

550 f p r i n t f ( f i d , ’ 15 r r * cos (−6*pi /8) r r * s i n (−6*pi /8) %8.7 f \n ’ , z t ) ;

551 f p r i n t f ( f i d , ’ 16 r r * cos (−7*pi /8) r r * s i n (−7*pi /8) %8.7 f \n ’ , z t ) ;

552 f p r i n t f ( f i d , ’ 17 Rh* cos ( p i ) Rh* s i n ( p i ) −%8.7 f c o n s t r a i n t 1 ,2\n ’ ,

zzz (9 ) ) ;

553 f p r i n t f ( f i d , ’ 18 Rh* cos (7* pi /8) Rh* s i n (7* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (8 ) ) ;

554 f p r i n t f ( f i d , ’ 19 Rh* cos (6* pi /8) Rh* s i n (6* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (7 ) ) ;

555 f p r i n t f ( f i d , ’ 20 Rh* cos (5* pi /8) Rh* s i n (5* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (6 ) ) ;

556 f p r i n t f ( f i d , ’ 21 Rh* cos (4* pi /8) Rh* s i n (4* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (5 ) ) ;

557 f p r i n t f ( f i d , ’ 22 Rh* cos (3* pi /8) Rh* s i n (3* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (4 ) ) ;

558 f p r i n t f ( f i d , ’ 23 Rh* cos (2* pi /8) Rh* s i n (2* pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (3 ) ) ;

559 f p r i n t f ( f i d , ’ 24 Rh* cos ( p i /8) Rh* s i n ( p i /8) −%8.7 f c o n s t r a i n t 1 ,2\
n ’ , zzz (2 ) ) ;

560 f p r i n t f ( f i d , ’ 25 Rh* cos (0 ) Rh* s i n (0 ) −%8.7 f c o n s t r a i n t 1 ,2\n ’ , zzz

(1 ) ) ;

561 f p r i n t f ( f i d , ’ 26 Rh* cos(−pi /8) Rh* s i n (−pi /8) −%8.7 f c o n s t r a i n t

1 ,2\n ’ , zzz (2 ) ) ;
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562 f p r i n t f ( f i d , ’ 27 Rh* cos (−2*pi /8) Rh* s i n (−2*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (3 ) ) ;

563 f p r i n t f ( f i d , ’ 28 Rh* cos (−3*pi /8) Rh* s i n (−3*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (4 ) ) ;

564 f p r i n t f ( f i d , ’ 29 Rh* cos (−4*pi /8) Rh* s i n (−4*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (5 ) ) ;

565 f p r i n t f ( f i d , ’ 30 Rh* cos (−5*pi /8) Rh* s i n (−5*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (6 ) ) ;

566 f p r i n t f ( f i d , ’ 31 Rh* cos (−6*pi /8) Rh* s i n (−6*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (7 ) ) ;

567 f p r i n t f ( f i d , ’ 32 Rh* cos (−7*pi /8) Rh* s i n (−7*pi /8) −%8.7 f

c o n s t r a i n t 1 ,2\n ’ , zzz (8 ) ) ;

568

569 f p r i n t f ( f i d , ’ edges /* given by endpoints and a t t r i b u t e */\n ’ ) ;

570 f p r i n t f ( f i d , ’ 1 1 2 \n ’ ) ;

571 f p r i n t f ( f i d , ’ 2 2 3 \n ’ ) ;

572 f p r i n t f ( f i d , ’ 3 3 4 \n ’ ) ;

573 f p r i n t f ( f i d , ’ 4 4 5 \n ’ ) ;

574 f p r i n t f ( f i d , ’ 5 5 6 \n ’ ) ;

575 f p r i n t f ( f i d , ’ 6 6 7 \n ’ ) ;

576 f p r i n t f ( f i d , ’ 7 7 8 \n ’ ) ;

577 f p r i n t f ( f i d , ’ 8 8 9 \n ’ ) ;

578 f p r i n t f ( f i d , ’ 9 9 10 \n ’ ) ;

579 f p r i n t f ( f i d , ’ 10 10 11 \n ’ ) ;

580 f p r i n t f ( f i d , ’ 11 11 12 \n ’ ) ;

581 f p r i n t f ( f i d , ’ 12 12 13 \n ’ ) ;

582 f p r i n t f ( f i d , ’ 13 13 14 \n ’ ) ;

583 f p r i n t f ( f i d , ’ 14 14 15 \n ’ ) ;

584 f p r i n t f ( f i d , ’ 15 15 16 \n ’ ) ;

585 f p r i n t f ( f i d , ’ 16 16 1 \n ’ ) ;

586 f p r i n t f ( f i d , ’ 17 17 18 c o n s t r a i n t 1 ,2\n ’ ) ;

587 f p r i n t f ( f i d , ’ 18 18 19 c o n s t r a i n t 1 ,2\n ’ ) ;

588 f p r i n t f ( f i d , ’ 19 19 20 c o n s t r a i n t 1 ,2\n ’ ) ;

589 f p r i n t f ( f i d , ’ 20 20 21 c o n s t r a i n t 1 ,2\n ’ ) ;



124 Chapter E: Matlab code for Chapter 4

590 f p r i n t f ( f i d , ’ 21 21 22 c o n s t r a i n t 1 ,2\n ’ ) ;

591 f p r i n t f ( f i d , ’ 22 22 23 c o n s t r a i n t 1 ,2\n ’ ) ;

592 f p r i n t f ( f i d , ’ 23 23 24 c o n s t r a i n t 1 ,2\n ’ ) ;

593 f p r i n t f ( f i d , ’ 24 24 25 c o n s t r a i n t 1 ,2\n ’ ) ;

594 f p r i n t f ( f i d , ’ 25 25 26 c o n s t r a i n t 1 ,2\n ’ ) ;

595 f p r i n t f ( f i d , ’ 26 26 27 c o n s t r a i n t 1 ,2\n ’ ) ;

596 f p r i n t f ( f i d , ’ 27 27 28 c o n s t r a i n t 1 ,2\n ’ ) ;

597 f p r i n t f ( f i d , ’ 28 28 29 c o n s t r a i n t 1 ,2\n ’ ) ;

598 f p r i n t f ( f i d , ’ 29 29 30 c o n s t r a i n t 1 ,2\n ’ ) ;

599 f p r i n t f ( f i d , ’ 30 30 31 c o n s t r a i n t 1 ,2\n ’ ) ;

600 f p r i n t f ( f i d , ’ 31 31 32 c o n s t r a i n t 1 ,2\n ’ ) ;

601 f p r i n t f ( f i d , ’ 32 32 17 c o n s t r a i n t 1 ,2\n ’ ) ;

602 f p r i n t f ( f i d , ’ 33 1 17\n ’ ) ;

603 f p r i n t f ( f i d , ’ 34 2 18\n ’ ) ;

604 f p r i n t f ( f i d , ’ 35 3 19\n ’ ) ;

605 f p r i n t f ( f i d , ’ 36 4 20\n ’ ) ;

606 f p r i n t f ( f i d , ’ 37 5 21\n ’ ) ;

607 f p r i n t f ( f i d , ’ 38 6 22\n ’ ) ;

608 f p r i n t f ( f i d , ’ 39 7 23\n ’ ) ;

609 f p r i n t f ( f i d , ’ 40 8 24\n ’ ) ;

610 f p r i n t f ( f i d , ’ 41 9 25\n ’ ) ;

611 f p r i n t f ( f i d , ’ 42 10 26\n ’ ) ;

612 f p r i n t f ( f i d , ’ 43 11 27\n ’ ) ;

613 f p r i n t f ( f i d , ’ 44 12 28\n ’ ) ;

614 f p r i n t f ( f i d , ’ 45 13 29\n ’ ) ;

615 f p r i n t f ( f i d , ’ 46 14 30\n ’ ) ;

616 f p r i n t f ( f i d , ’ 47 15 31\n ’ ) ;

617 f p r i n t f ( f i d , ’ 48 16 32\n ’ ) ;

618

619 f p r i n t f ( f i d , ’ f a c e s /* given by o r i en t ed edge loop */\n ’ ) ;

620 f p r i n t f ( f i d , ’ 1 −1 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4

−3 −2\n ’ ) ;

621 f p r i n t f ( f i d , ’ 2 1 34 −17 −33\n ’ ) ;

622 f p r i n t f ( f i d , ’ 3 2 35 −18 −34 \n ’ ) ;
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623 f p r i n t f ( f i d , ’ 4 3 36 −19 −35\n ’ ) ;

624 f p r i n t f ( f i d , ’ 5 4 37 −20 −36\n ’ ) ;

625 f p r i n t f ( f i d , ’ 6 5 38 −21 −37\n ’ ) ;

626 f p r i n t f ( f i d , ’ 7 6 39 −22 −38\n ’ ) ;

627 f p r i n t f ( f i d , ’ 8 7 40 −23 −39\n ’ ) ;

628 f p r i n t f ( f i d , ’ 9 8 41 −24 −40\n ’ ) ;

629 f p r i n t f ( f i d , ’ 10 9 42 −25 −41\n ’ ) ;

630 f p r i n t f ( f i d , ’ 11 10 43 −26 −42\n ’ ) ;

631 f p r i n t f ( f i d , ’ 12 11 44 −27 −43\n ’ ) ;

632 f p r i n t f ( f i d , ’ 13 12 45 −28 −44\n ’ ) ;

633 f p r i n t f ( f i d , ’ 14 13 46 −29 −45\n ’ ) ;

634 f p r i n t f ( f i d , ’ 15 14 47 −30 −46\n ’ ) ;

635 f p r i n t f ( f i d , ’ 16 15 48 −31 −47\n ’ ) ;

636 f p r i n t f ( f i d , ’ 17 16 33 −32 −48\n ’ ) ;

637 f p r i n t f ( f i d , ’ 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

t en s i on 0 c o n s t r a i n t 2 // f i x e d \n ’ ) ;

638

639 f p r i n t f ( f i d , ’ bod ie s /* one body , de f ined by i t s o r i en t ed f a c e s

*/\n ’ ) ;

640 f p r i n t f ( f i d , ’ 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

volume Vol dens i ty 0\n ’ ) ;

641

642 f c l o s e ( f i d ) ;

643 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

644 f unc t i on [ ]= w r i t e s o l v e b r i d g e (Rh, zz )

645 % This f i n c t i o n w r i t e s the s o l u t i o n procedure f o r Sur face Evolver

when the

646 % i n t e r f a c e i s a br idge .

647

648 f i d = fopen ( ’ s o l v e p r o c . txt ’ , ’w ’ ) ;

649 f p r i n t f ( f i d , ’ b r idge . f e \n ’ ) ;

650 f p r i n t f ( f i d , ’ r\n ’ ) ;
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651 f p r i n t f ( f i d , ’ g10\n ’ ) ;

652 f p r i n t f ( f i d , ’u\n ’ ) ;

653 f p r i n t f ( f i d , ’ g10\n ’ ) ;

654 f p r i n t f ( f i d , ’u\n ’ ) ;

655 f p r i n t f ( f i d , ’ t\n ’ ) ;

656 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

657 f p r i n t f ( f i d , ’ g10\n ’ ) ;

658 f p r i n t f ( f i d , ’u\n ’ ) ;

659

660 f p r i n t f ( f i d , ’ r\n ’ ) ;

661 f p r i n t f ( f i d , ’ t\n ’ ) ;

662 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

663 f p r i n t f ( f i d , ’u\n ’ ) ;

664 f p r i n t f ( f i d , ’ g10\n ’ ) ;

665 f p r i n t f ( f i d , ’ t\n ’ ) ;

666 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

667 f p r i n t f ( f i d , ’u\n ’ ) ;

668 f p r i n t f ( f i d , ’ g10\n ’ ) ;

669 f p r i n t f ( f i d , ’u\n ’ ) ;

670

671 f p r i n t f ( f i d , ’ r\n ’ ) ;

672 f p r i n t f ( f i d , ’ g20\n ’ ) ;

673 f p r i n t f ( f i d , ’ t\n ’ ) ;

674 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

675 f p r i n t f ( f i d , ’u\n ’ ) ;

676 f p r i n t f ( f i d , ’ g20\n ’ ) ;

677 f p r i n t f ( f i d , ’ t\n ’ ) ;

678 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

679 f p r i n t f ( f i d , ’u\n ’ ) ;

680

681 f p r i n t f ( f i d , ’U\n ’ ) ;

682 f p r i n t f ( f i d , ’ g20\n ’ ) ;

683 f p r i n t f ( f i d , ’ t\n ’ ) ;

684 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;
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685 f p r i n t f ( f i d , ’u\n ’ ) ;

686 f p r i n t f ( f i d , ’ g20\n ’ ) ;

687 f p r i n t f ( f i d , ’ t\n ’ ) ;

688 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

689 f p r i n t f ( f i d , ’u\n ’ ) ;

690

691 t o l=min ( abs ( zz ) , abs (Rh/30) ) ;

692

693 f p r i n t f ( f i d , ’ r\n ’ ) ;

694 f p r i n t f ( f i d , ’ g20\n ’ ) ;

695 f p r i n t f ( f i d , ’ t\n ’ ) ;

696 f p r i n t f ( f i d , ’ %8.7 f \n ’ , t o l ) ;

697 f p r i n t f ( f i d , ’u\n ’ ) ;

698 f p r i n t f ( f i d , ’ g20\n ’ ) ;

699 f p r i n t f ( f i d , ’ t\n ’ ) ;

700 f p r i n t f ( f i d , ’ %8.7 f \n ’ , t o l ) ;

701 f p r i n t f ( f i d , ’u\n ’ ) ;

702

703 f p r i n t f ( f i d , ’ r\n ’ ) ;

704 f p r i n t f ( f i d , ’ g20\n ’ ) ;

705 f p r i n t f ( f i d , ’ t\n ’ ) ;

706 f p r i n t f ( f i d , ’ %8.7 f \n ’ , t o l ) ;

707 f p r i n t f ( f i d , ’u\n ’ ) ;

708 f p r i n t f ( f i d , ’ g20\n ’ ) ;

709 f p r i n t f ( f i d , ’ t\n ’ ) ;

710 f p r i n t f ( f i d , ’ %8.7 f \n ’ , t o l ) ;

711 f p r i n t f ( f i d , ’u\n ’ ) ;

712

713 f p r i n t f ( f i d , ’d\n ’ ) ;

714 f p r i n t f ( f i d , ’ f 1 . f e \n ’ ) ;

715

716 f c l o s e ( f i d ) ;

717 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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718 f unc t i on [ ]= w r i t e s o l v e b u b b l e (Rh, zz )

719 % This f i n c t i o n w r i t e s the s o l u t i o n procedure f o r Sur face Evolver

when the

720 % i n t e r f a c e i s a bubble .

721

722 f i d = fopen ( ’ s o l v e p r o c . txt ’ , ’w ’ ) ;

723 f p r i n t f ( f i d , ’ bubble . f e \n ’ ) ;

724 f p r i n t f ( f i d , ’ r\n ’ ) ;

725 f p r i n t f ( f i d , ’ g10\n ’ ) ;

726 f p r i n t f ( f i d , ’u\n ’ ) ;

727 f p r i n t f ( f i d , ’ g10\n ’ ) ;

728 f p r i n t f ( f i d , ’u\n ’ ) ;

729 f p r i n t f ( f i d , ’ t\n ’ ) ;

730 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/8) ;

731 f p r i n t f ( f i d , ’ g10\n ’ ) ;

732 f p r i n t f ( f i d , ’u\n ’ ) ;

733 f p r i n t f ( f i d , ’ t\n ’ ) ;

734 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/8) ;

735 f p r i n t f ( f i d , ’ g10\n ’ ) ;

736 f p r i n t f ( f i d , ’u\n ’ ) ;

737

738 f p r i n t f ( f i d , ’ r\n ’ ) ;

739 f p r i n t f ( f i d , ’ t\n ’ ) ;

740 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

741 f p r i n t f ( f i d , ’u\n ’ ) ;

742 f p r i n t f ( f i d , ’ g10\n ’ ) ;

743 f p r i n t f ( f i d , ’ t\n ’ ) ;

744 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

745 f p r i n t f ( f i d , ’u\n ’ ) ;

746 f p r i n t f ( f i d , ’ g10\n ’ ) ;

747 f p r i n t f ( f i d , ’u\n ’ ) ;

748

749 f p r i n t f ( f i d , ’ r\n ’ ) ;
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750 f p r i n t f ( f i d , ’ g20\n ’ ) ;

751 f p r i n t f ( f i d , ’ t\n ’ ) ;

752 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

753 f p r i n t f ( f i d , ’u\n ’ ) ;

754 f p r i n t f ( f i d , ’ g20\n ’ ) ;

755 f p r i n t f ( f i d , ’ t\n ’ ) ;

756 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

757 f p r i n t f ( f i d , ’u\n ’ ) ;

758

759 f p r i n t f ( f i d , ’U\n ’ ) ;

760 f p r i n t f ( f i d , ’ g20\n ’ ) ;

761 f p r i n t f ( f i d , ’ t\n ’ ) ;

762 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

763 f p r i n t f ( f i d , ’u\n ’ ) ;

764 f p r i n t f ( f i d , ’ g20\n ’ ) ;

765 f p r i n t f ( f i d , ’ t\n ’ ) ;

766 f p r i n t f ( f i d , ’ %8.7 f \n ’ ,Rh/10) ;

767 f p r i n t f ( f i d , ’u\n ’ ) ;

768

769 t o l=min ( abs ( zz ) , abs (Rh/30) ) ;

770

771 f p r i n t f ( f i d , ’ r\n ’ ) ;

772 f p r i n t f ( f i d , ’ g20\n ’ ) ;

773 f p r i n t f ( f i d , ’ t\n ’ ) ;

774 f p r i n t f ( f i d , ’ %8.7 f \n ’ , t o l ) ;

775 f p r i n t f ( f i d , ’u\n ’ ) ;

776 f p r i n t f ( f i d , ’ g20\n ’ ) ;

777 f p r i n t f ( f i d , ’ t\n ’ ) ;

778 f p r i n t f ( f i d , ’ %8.7 f \n ’ , t o l ) ;

779 f p r i n t f ( f i d , ’u\n ’ ) ;

780

781 f p r i n t f ( f i d , ’ r\n ’ ) ;

782 f p r i n t f ( f i d , ’ g20\n ’ ) ;

783 f p r i n t f ( f i d , ’ t\n ’ ) ;
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784 f p r i n t f ( f i d , ’ %8.7 f \n ’ , t o l ) ;

785 f p r i n t f ( f i d , ’u\n ’ ) ;

786 f p r i n t f ( f i d , ’ g20\n ’ ) ;

787 f p r i n t f ( f i d , ’ t\n ’ ) ;

788 f p r i n t f ( f i d , ’ %8.7 f \n ’ , t o l ) ;

789 f p r i n t f ( f i d , ’u\n ’ ) ;

790

791 f p r i n t f ( f i d , ’d\n ’ ) ;

792 f p r i n t f ( f i d , ’ / Users / msoleimani /Documents/MATLAB2/R01/ f1 . f e \n ’ ) ;

793

794 f c l o s e ( f i d ) ;

795 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

796 f unc t i on [ Pc , energy , area , s t a b i l i t y ]= s o l v e b r i d g e 2 ( alpha0 , angle1 ,

Rh)

797 % This func t i on s o l v e f i n d s the l i q u i d br idge shape , energy , and

pres sure ,

798 % and check i t s s t a b i l i t y

799

800 [ s tatus , r e s u l t ]=system ( ’ / usr / l o c a l / bin / evo lv e r < s o l v e p r o c . txt ’ )

;

801

802 l c=length ( r e s u l t ) ;

803 f o r i i=l c :−1:1

804 i f r e s u l t ( i i −5: i i )==’ energy ’

805 l c 2=i i +3;

806 f o r j j=l c 2 : l c 2 +50

807 i f r e s u l t ( j j : j j +4)==’ s c a l e ’

808 l c 3=j j ;

809 break

810 end

811 end

812 energy=str2num ( r e s u l t ( l c 2 : l c3 −3) ) ;
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813 break

814 end

815 end

816

817 f o r i i=l c :−1:1

818 i f r e s u l t ( i i −3: i i )==’ area ’

819 l c 2=i i +3;

820 f o r j j=l c 2 : l c 2 +50

821 i f r e s u l t ( j j : j j +5)==’ energy ’

822 l c 3=j j ;

823 break

824 end

825 end

826 area=str2num ( r e s u l t ( l c 2 : l c3 −3) ) ;

827 break

828 end

829 end

830

831

832 s t a b i l i t y =1;

833

834 C = text read ( ’ f 1 . f e ’ , ’%s ’ , ’ d e l i m i t e r ’ , ’\n ’ ) ;

835 L=s i z e (C) ;

836 f o r i i =1:L

837 Lc=length (C{ i i }) ;

838 i f Lc>19

839 f o r j j =1:Lc−18

840 i f C{ i i }( j j : j j +18)==’ l a g r a n g e m u l t i p l i e r ’

841 Pc=str2num (C{ i i }( j j +20: j j +30) ) ;

842 end

843 end

844 end

845 end

846
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847 f o r i i =10:L

848 i f l ength (C{ i i })>8

849 i f C{ i i } ( 1 : 8 )==’ v e r t i c e s ’

850 s t a r t v e r t i c e s=i i +1;

851 end

852 end

853 i f l ength (C{ i i })>5

854 i f C{ i i } ( 1 : 5 )==’ edges ’

855 e n d v e r t i c e s=i i −2;

856 break

857 end

858 end

859

860 end

861 i i 2 =1;

862 i i 3 =1;

863 f o r i i =1:( e n d v e r t i c e s−s t a r t v e r t i c e s )

864 Li=length (C{ s t a r t v e r t i c e s+i i −1}) ;

865 f o r j j =1: Li

866 i f C{ s t a r t v e r t i c e s+i i −1}( j j : j j +7)== ’ c o n s t r a i ’

867 v e r t i c e=str2num (C{ s t a r t v e r t i c e s+i i −1}(1: j j −1) ) ;

868 nn( i i )=v e r t i c e (1 ) ;

869 x ( i i )=v e r t i c e (2 ) ;

870 y ( i i )=v e r t i c e (3 ) ;

871 z ( i i )=v e r t i c e (4 ) ;

872 x1 ( i i 3 )=v e r t i c e (2 ) ;

873 y1 ( i i 3 )=v e r t i c e (3 ) ;

874 z1 ( i i 3 )=v e r t i c e (4 ) ;

875 i i 3=i i 3 +1;

876 break

877 e l s e i f C{ s t a r t v e r t i c e s+i i −1}( j j : j j +7)== ’ o r i g i n a l ’

878 v e r t i c e=str2num (C{ s t a r t v e r t i c e s+i i −1}(1: j j −1) ) ;

879 nn( i i )=v e r t i c e (1 ) ;

880 x ( i i )=v e r t i c e (2 ) ;
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881 y ( i i )=v e r t i c e (3 ) ;

882 z ( i i )=v e r t i c e (4 ) ;

883 x2 ( i i 2 )=v e r t i c e (2 ) ;

884 y2 ( i i 2 )=v e r t i c e (3 ) ;

885 z2 ( i i 2 )=v e r t i c e (4 ) ;

886 i i 2=i i 2 +1;

887 break

888 e l s e i f j j>Li−8

889 v e r t i c e=str2num (C{ s t a r t v e r t i c e s+i i −1}) ;

890 nn( i i )=v e r t i c e (1 ) ;

891 x ( i i )=v e r t i c e (2 ) ;

892 y ( i i )=v e r t i c e (3 ) ;

893 z ( i i )=v e r t i c e (4 ) ;

894 x2 ( i i 2 )=v e r t i c e (2 ) ;

895 y2 ( i i 2 )=v e r t i c e (3 ) ;

896 z2 ( i i 2 )=v e r t i c e (4 ) ;

897 i i 2=i i 2 +1;

898 break

899 end

900 end

901 end

902

903 Lv=length ( x ) ;

904 Lv1=length ( x1 ) ;

905 Lv2=length ( x2 ) ;

906

907 j j 1 =1;

908 % f i n d i n g x max & y max

909 f o r i i =1:Lv1 %c o n s t r a i n t

910 i f ( z1 ( i i ) )<0

911 x ho l e ( j j 1 )=x1 ( i i ) ;

912 z h o l e ( j j 1 )=z1 ( i i ) ;

913 y ho l e ( j j 1 )=y1 ( i i ) ;

914 j j 1=j j 1 +1;
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915 end

916 end

917 [ x max , i xmax ]=max( x ho l e ) ;

918 z xmax=z h o l e ( i xmax ) ;

919 y xmax=y ho l e ( i xmax ) ;

920

921 [ y max , i ymax ]=max( y ho l e ) ;

922 z ymax=z h o l e ( i ymax ) ;

923 x ymax=x ho l e ( i ymax ) ;

924

925 %f i n d i n g c l o s e s t po in t s

926 d xmax=((x2−x max ) .ˆ2+(y2−y xmax ) .ˆ2+( z2−z xmax ) . ˆ 2 ) . ˆ 0 . 5 ;

927 d ymax=((x2−x ymax ) .ˆ2+(y2−y max ) .ˆ2+( z2−z ymax ) . ˆ 2 ) . ˆ 0 . 5 ;

928

929 [ xmax close , i xmc ]=min ( d xmax ) ;

930 [ ymax close , i ymc ]=min ( d ymax ) ;

931 x xmc=x2 ( i xmc ) ;

932 y xmc=y2 ( i xmc ) ;

933 z xmc=z2 ( i xmc ) ;

934

935 x ymc=x2 ( i ymc ) ;

936 y ymc=y2 ( i ymc ) ;

937 z ymc=z2 ( i ymc ) ;

938

939 s l o p e c x =(z xmax−z xmc ) /(x max−x xmc ) ;

940 s l o p e c y =(z ymax−z ymc ) /(y max−y ymc ) ;

941

942 i f min ( z )<z xmax−Rh/1000

943 s t a b i l i t y =−1;

944 end

945

946 i f s l o p e c x >0 && z xmc<z xmax && Pc<0

947 s t a b i l i t y =1;

948 end
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949

950 i f s l o p e c y >0 && z ymc<z ymax && Pc<0

951 s t a b i l i t y =1;

952 end

953

954 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

955 f unc t i on [ Pc , energy , area , s i t u a t i o n ]= so lve bubb l e ( zz )

956 % This func t i on s o l v e f i n d s the bubble shape , energy , and

pres sure ,

957 % and check i t s s t a b i l i t y

958

959 [ s tatus , r e s u l t ]=system ( ’ / usr / l o c a l / bin / evo lv e r < s o l v e p r o c . txt ’ )

;

960

961 l c=length ( r e s u l t ) ;

962 f o r i i=l c :−1:1

963 i f r e s u l t ( i i −5: i i )==’ energy ’

964 l c 2=i i +3;

965 f o r j j=l c 2 : l c 2 +50

966 i f r e s u l t ( j j : j j +4)==’ s c a l e ’

967 l c 3=j j ;

968 break

969 end

970 end

971 energy=str2num ( r e s u l t ( l c 2 : l c3 −2) ) ;

972 break

973 end

974 end

975

976 f o r i i=l c :−1:1

977 i f r e s u l t ( i i −3: i i )==’ area ’

978 l c 2=i i +3;
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979 f o r j j=l c 2 : l c 2 +50

980 i f r e s u l t ( j j : j j +5)==’ energy ’

981 l c 3=j j ;

982 break

983 end

984 end

985 area=str2num ( r e s u l t ( l c 2 : l c3 −1) ) ;

986 break

987 end

988 end

989

990

991 C = text read ( ’ f 1 . f e ’ , ’%s ’ , ’ d e l i m i t e r ’ , ’\n ’ ) ;

992 L=s i z e (C) ;

993 f o r i i =1:L

994 Lc=length (C{ i i }) ;

995 i f Lc>19

996 f o r j j =1:Lc−18

997 i f C{ i i }( j j : j j +18)==’ l a g r a n g e m u l t i p l i e r ’

998 Pc=str2num (C{ i i }( j j +20: j j +30) ) ;

999 end

1000 end

1001 end

1002 end

1003

1004 s i t u a t i o n =1;

1005

1006 %f i n d i n g v e r t i c e s ’ c oo rd ina t e s

1007 f o r i i =10:L

1008 i f l ength (C{ i i })>8

1009 i f C{ i i } ( 1 : 8 )==’ v e r t i c e s ’

1010 s t a r t v e r t i c e s=i i +1;

1011 end

1012 end
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1013 i f l ength (C{ i i })>5

1014 i f C{ i i } ( 1 : 5 )==’ edges ’

1015 e n d v e r t i c e s=i i −2;

1016 break

1017 end

1018 end

1019

1020 end

1021 f o r i i =1:( e n d v e r t i c e s−s t a r t v e r t i c e s )

1022 Li=length (C{ s t a r t v e r t i c e s+i i −1}) ;

1023 f o r j j =1: Li

1024 i f C{ s t a r t v e r t i c e s+i i −1}( j j : j j +7)== ’ c o n s t r a i ’

1025 v e r t i c e=str2num (C{ s t a r t v e r t i c e s+i i −1}(1: j j −1) ) ;

1026 nn( i i )=v e r t i c e (1 ) ;

1027 x ( i i )=v e r t i c e (2 ) ;

1028 y ( i i )=v e r t i c e (3 ) ;

1029 z ( i i )=v e r t i c e (4 ) ;

1030 break

1031 e l s e i f C{ s t a r t v e r t i c e s+i i −1}( j j : j j +7)== ’ o r i g i n a l ’

1032 v e r t i c e=str2num (C{ s t a r t v e r t i c e s+i i −1}(1: j j −1) ) ;

1033 nn( i i )=v e r t i c e (1 ) ;

1034 x ( i i )=v e r t i c e (2 ) ;

1035 y ( i i )=v e r t i c e (3 ) ;

1036 z ( i i )=v e r t i c e (4 ) ;

1037 break

1038 e l s e i f j j>Li−8

1039 v e r t i c e=str2num (C{ s t a r t v e r t i c e s+i i −1}) ;

1040 nn( i i )=v e r t i c e (1 ) ;

1041 x ( i i )=v e r t i c e (2 ) ;

1042 y ( i i )=v e r t i c e (3 ) ;

1043 z ( i i )=v e r t i c e (4 ) ;

1044 break

1045 end

1046 end
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1047 end

1048

1049 i f max( z )<zz−10ˆ−4

1050 s i t u a t i o n =−1;

1051 end



Appendix F

Matlab code for Chapter 5

1 % This code c a l c u l a t e s the c a p i l l a r y f o r c e and torque o f a l i q u i d

drop at

2 % the i n t e r s e c t i o n o f two c r o s s i n g f i l a m e n t s with p r e s c r i b e d

l i q u i d volume ,

3 % contact angle , c r o s s i n g angle , f i b r e length , separat ion , and

4 % ela s to−c a p i l l a r y number .

5

6 c l e a r

7 c l c

8

9 % Def in ing the parameters

10 theta =0; % Contact ang le

11 d0 =0.5 ; % Separat ion

12 Len=15; % Fibre l ength

13 EI=700; % Elasto−c a p i l l a r y number

14

15 dV=0.5;

16 f o r d e l t a =[30 60 90 ] % Cross ing ang le

17 % Writing the r e s u l t s f o r t h i s c r o s s i n g ang le

18 f i d = fopen ( ’ s saavvee .m’ , ’w ’ ) ;

19 f p r i n t f ( f i d , ’ save de l t a%d\n ’ , d e l t a ) ;

20 f c l o s e ( f i d ) ;
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21

22 % Clear ing prev ious c ro s s ing−ang le r e s u l t s

23 c l e a r P m Pr m M m energy m energy t m Li m

24 i i =1;

25

26 V( i i ) =4.1 ; % I n i t i a l volume

27 % This loop dec r ea s e s the l i q u i d volume and c a l c u l a t e s the

fo r ce ,

28 % torque and energy .

29 f o r i i i =1:9

30 i f i i ==1

31 [P, Pr ,M, energy , energy t , Li ,Pmax( i i ) ]= f i n d e q u f u n (

theta , de l ta , d0 , Len , EI ,V( i i ) , 0 , 1 ) ;

32 e l s e

33 [P, Pr ,M, energy , energy t , Li ,Pmax( i i ) ]= f i n d e q u f u n (

theta , de l ta , d0 , Len , EI ,V( i i ) ,P(1 ) , Li (1 ) ) ;

34 end

35 LL=length (P) ;

36 f o r j j =1:LL

37 P m( i i , j j )=P( j j ) ;

38 Pr m( i i , j j )=Pr ( j j ) ;

39 M m( i i , j j )=M( j j ) ;

40 energy m ( i i , j j )=energy ( j j ) ;

41 energy t m ( i i , j j )=ene rgy t ( j j ) ;

42 Li m ( i i , j j )=Li ( j j ) ;

43 end

44 Pr f ( i i )=Pr ( end ) ; % Fina l c a p i l l a r y f o r c e

45 M f ( i i )=M( end ) ; % Fina l c a p i l l a r y torque

46 e n e r g y f ( i i )=energy ( end ) ; % Fina l i n t e r f a c i a l energy

47 e n e r g y t f ( i i )=ene rgy t ( end ) ; % Fina l t o t a l energy

48 L i f ( i i )=Li ( end ) ; % Fina l l i q u i d−column length

49

50 s saavvee

51 V( i i )=V( i i −1)−dV;
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52 i f V( i i )<0

53 break

54 end

55 end

56 end

57

58 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59 f unc t i on [P, Pr ,M, energy , energy t , Li m ,Pmax]= f i n d e q u f u n ( theta ,

de l ta , d0 , Lt , EI ,V, P0 , Li0 )

60 % This func t i on f i n d s the equ i l i b r i um i t e r a t i v e l y .

61

62 i i =1;

63

64 % I n i t i a l c ond i t i on o f the system with an i n i t i a l f o r c e , torque ,

and l i q u i d−column length .

65 [M(1) ,P(1 ) , energy (1 ) , Li m]= f i n d f o r c e ( theta , de l ta ,V, d0 , 0 , P0 , Lt ,

Li0 , EI , 0 , i i ) ;

66 Li=Li m ;

67 % The f o r c e r equ i r ed f o r contact between the f i l a m e n t s .

68 Pmax=EI*d0 /((1/384) *Li ˆ4−(1/96)*Li ˆ3*Lt +(1/48)*Li*Lt ˆ3) *Li ;

69 Pr=P; % Real f o r c e .

70 pp=P/ Li ; % Di s t r ibu t ed load .

71 mm=6*M/ Li ˆ2 ; % Di s t r ibu t ed torque .

72 % Total energy

73 ene rgy t ( i i )=energy ( i i ) +((1/96)*ppˆ2*Ltˆ3*Li ˆ2−(1/96)*ppˆ2*Lt*Li

ˆ4+(1/240)*ppˆ2*Li ˆ5) /EI +((1/30240)*mmˆ2*Li ˆ4*(35*Ltˆ2−54*Lt*

Li+21*Li ˆ2) /Lt ) /EI ;

74

75 % I f the r e a l f o r c e i s l a r g e r than the maximum force , take the

maximum f o r c e to

76 % c a l c u l a t e the f i l ament d e f l e c t i o n .

77 i f P( i i )>Pmax
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78 P(1) =0.999*Pmax ;

79 end

80

81 % Errors o f f o r c e and torque

82 I1 =1; I2 =1;

83

84 i i= i i +1;

85

86 % Continue u n t i l the e r r o r s are sma l l e r than 0 . 0 1 .

87 whi le I1 >0.01 | | I2 >0.01

88 [M( i i ) ,P( i i ) , energy ( i i ) , Li m ( i i ) ]= f i n d f o r c e ( theta , de l ta ,V, d0

,M( i i −1) ,P( i i −1) , Lt , Li m ( i i −1) , EI , 0 , i i ) ;

89 Li=Li m ( i i ) ;

90 Pr ( i i )=P( i i ) ;

91 pp=P( i i ) / Li ;

92 mm=6*M( i i ) / Li ˆ2 ;

93 ene rgy t ( i i )=energy ( i i ) +((1/96)*ppˆ2*Ltˆ3*Li ˆ2−(1/96)*ppˆ2*Lt

*Li ˆ4+(1/240)*ppˆ2*Li ˆ5) /EI +((1/30240)*mmˆ2*Li ˆ4*(35*Lt

ˆ2−54*Lt*Li+21*Li ˆ2) /Lt ) /EI ;

94 I1=abs (P( i i )−P( i i −1) ) ;

95 I2=abs (M( i i )−M( i i −1) ) ;

96 Pmax=EI*d0 /((1/384) *Li ˆ4−(1/96)*Li ˆ3*Lt +(1/48)*Li*Lt ˆ3) *Li ;

97 i f P( i i )>Pmax

98 P( i i ) =0.999*Pmax ;

99 I1=abs (P( i i )−P( i i −1) ) ;

100 end

101 i i= i i +1;

102 end

103

104

105 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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106 f unc t i on [M,P, energy , L i f ]= f i n d f o r c e ( theta , de l ta ,V, d0 ,M0, P0 , Lt ,

Li , EI , i i 1 , kk1 )

107 % This func t i on c a l c u l a t e s the c a p i l l a r y f o r c e P and torque M

us ing f i n i t e

108 % d i f f e r e n c e s .

109

110 [ b0]= w r i t e b r i d g e ( theta , d e l t a /2 ,V, d0 +0.01 ,M0, P0 , Lt , Li , EI ) ;

111 w r i t e s o l v e b r i d g e ( i i 1 , kk1 , b0 , d0 ) ;

112 [ energy1 , area1 , Li1 ]= s o l v e b r i d g e e n e r g y ( i i 1 , kk1 ) ;

113

114 Pmax=EI*d0 /((1/384) *Li ˆ4−(1/96)*Li ˆ3*Lt +(1/48)*Li*Lt ˆ3) *Li ;

115

116 % I f the f i l a m e n t s have contact , we can not dec r ea s e d0 .

117 i f abs (P0−0.999*Pmax) <0.001

118 [ b0]= w r i t e b r i d g e ( theta , d e l t a /2 ,V, d0 ,M0, P0 , Lt , Li , EI ) ;

119 w r i t e s o l v e b r i d g e ( i i 1 , kk1 , b0 , d0 ) ;

120 [ energy2 , area2 , Li2 ]= s o l v e b r i d g e e n e r g y ( i i 1 , kk1 ) ;

121 P=(energy1−energy2 ) / 0 . 0 2 ;

122 e l s e

123 [ b0]= w r i t e b r i d g e ( theta , d e l t a /2 ,V, d0−0.01 ,M0, P0 , Lt , Li , EI ) ;

124 w r i t e s o l v e b r i d g e ( i i 1 , kk1 , b0 , d0 ) ;

125 [ energy2 , area2 , Li2 ]= s o l v e b r i d g e e n e r g y ( i i 1 , kk1 ) ;

126 P=(energy1−energy2 ) / 0 . 0 4 ;

127 end

128

129 % Because o f symmetry , M=0 at de l t a =0, 90 .

130 i f d e l t a==0 | | de l t a==90

131 M=0;

132 energy=energy2 ;

133 L i f=Li2 ;

134 e l s e

135 [ b0]= w r i t e b r i d g e ( theta , d e l t a /2+1 ,V, d0 ,M0, P0 , Lt , Li , EI ) ;

136 w r i t e s o l v e b r i d g e ( i i 1 , kk1 , b0 , d0 ) ;

137 [ energy3 , area3 , Li3 ]= s o l v e b r i d g e e n e r g y ( i i 1 , kk1 ) ;
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138

139 [ b0]= w r i t e b r i d g e ( theta , d e l t a /2−1,V, d0 ,M0, P0 , Lt , Li , EI ) ;

140 w r i t e s o l v e b r i d g e ( i i 1 , kk1 , b0 , d0 ) ;

141 [ energy4 , area4 , Li4 ]= s o l v e b r i d g e e n e r g y ( i i 1 , kk1 ) ;

142

143 M=(energy3−energy4 ) /(4* pi /180) ;

144

145 energy=energy2 ;

146 L i f=Li2 ;

147 end

148

149 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

150

151 f unc t i on [ b0]= w r i t e b r i d g e ( angle1 , phi ,V, d0 ,M,P, Lt , Li , EI )

152 % This func t i on w r i t e s the i n i t i a l c ond i t i on f o r Sur face Evolver .

153

154 % Calcu l a t e ing the c o e f f i c i e n t s o f the shape o f the d e f l e c t e d

f i l ament .

155 pp=P/ Li ;

156 mm=6*M/ Li ˆ2 ;

157

158 c5 =48/2880*mm/ Li /EI ;

159 c3 =80/2880*mm*Li ˆ2/Lt/EI−120/2880*mm*Li /EI ;

160 c1=mm*(40*Lt*Liˆ2−45*Li ˆ3+12*Li ˆ4/Lt ) /EI /2880 ;

161

162 b4=(1/24)*pp/EI ;

163 b2=(1/16)*pp*Li ˆ2/EI−(1/8)*pp*Lt*Li /EI ;

164 b0 =((1/384)*pp*Li ˆ4−(1/96)*pp*Li ˆ3*Lt +(1/48)*pp*Li*Lt ˆ3) /EI ;

165

166 % Parameters o f the i n i t i a l c ond i t i on .

167 T=−cos ( ang le1 * pi /180) ;

168 r1 =0.7 ;
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169 LL=2;

170

171

172 f i d = fopen ( ’ br idge . f e ’ , ’w ’ ) ;

173 f p r i n t f ( f i d , ’SPRING CONSTANT 1 // f o r most accurate gap areas

f o r c o n s t r a i n t 1 \n ’ ) ;

174 f p r i n t f ( f i d , ’SYMMETRIC CONTENT\n ’ ) ;

175

176 f p r i n t f ( f i d , ’PARAMETER angle = %8.7 f // i n t e r i o r ang le between

plane and sur face , degree s \n ’ , ang le1 ) ;

177 f p r i n t f ( f i d , ’#d e f i n e T (−cos ( ang le * pi /180) ) // v i r t u a l t en s i on

o f f a c e t on plane \n ’ ) ;

178 f p r i n t f ( f i d , ’#d e f i n e TR 1 /* c y l i n d r e rad iu s */\n ’ ) ;

179 f p r i n t f ( f i d , ’PARAMETER phi = %8.7 f \n ’ , phi ) ;

180

181 f p r i n t f ( f i d , ’#d e f i n e c1 %7.6 f \n ’ , c1 ) ;

182 f p r i n t f ( f i d , ’#d e f i n e c3 %7.6 f \n ’ , c3 ) ;

183 f p r i n t f ( f i d , ’#d e f i n e c5 %7.6 f \n ’ , c5 ) ;

184

185 f p r i n t f ( f i d , ’#d e f i n e b0 %7.6 f \n ’ , b0 ) ;

186 f p r i n t f ( f i d , ’#d e f i n e b2 %7.6 f \n ’ , b2 ) ;

187 f p r i n t f ( f i d , ’#d e f i n e b4 %7.6 f \n ’ , b4 ) ;

188

189 f p r i n t f ( f i d , ’#d e f i n e V %7.6 f \n ’ ,V) ;

190 f p r i n t f ( f i d , ’#d e f i n e d0 %7.6 f \n ’ , d0 ) ;

191 f p r i n t f ( f i d , ’#d e f i n e r1 %7.6 f \n ’ , r1 ) ;

192 f p r i n t f ( f i d , ’#d e f i n e LL %7.6 f \n ’ ,LL) ;

193

194

195 f p r i n t f ( f i d , ’ c o n s t r a i n t 1 CONVEX // c y l i n d r i c a l wa l l \n ’ ) ;

196 f p r i n t f ( f i d , ’ f unc t i on : ( ( x* cos ( phi * pi /180)+y* s i n ( phi * pi /180) )−(

c5 *( y* cos ( phi * pi /180)−x* s i n ( phi * pi /180) )ˆ5+c3 *( y* cos ( phi * pi

/180)−x* s i n ( phi * pi /180) )ˆ3+c1 *( y* cos ( phi * pi /180)−x* s i n ( phi * pi

/180) ) ) ) ˆ2/(1+0.5*(5* c5 *( y* cos ( phi * pi /180)−x* s i n ( phi * pi /180) )
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ˆ4+3*c3 *( y* cos ( phi * pi /180)−x* s i n ( phi * pi /180) )ˆ2+c1 ) ˆ2) ˆ2 + ( z−
TR−d0+(b4 *( y* cos ( phi * pi /180)−x* s i n ( phi * pi /180) )ˆ4+b2 *( y* cos (

phi * pi /180)−x* s i n ( phi * pi /180) )ˆ2+b0 ) ) ˆ2/(1−0.5*(4*b4 *( y* cos (

phi * pi /180)−x* s i n ( phi * pi /180) ) ˆ3+2*b2 *( y* cos ( phi * pi /180)−x* s i n

( phi * pi /180) ) ) ˆ2) ˆ2 = TRˆ2\n ’ ) ;

197

198 f p r i n t f ( f i d , ’ c o n s t r a i n t 2 CONVEX \n ’ ) ;

199 f p r i n t f ( f i d , ’ f unc t i on : ( ( x* cos ( phi * pi /180)−y* s i n ( phi * pi /180) )+(

c5 *( y* cos ( phi * pi /180)+x* s i n ( phi * pi /180) )ˆ5+c3 *( y* cos ( phi * pi

/180)+x* s i n ( phi * pi /180) )ˆ3+c1 *( y* cos ( phi * pi /180)+x* s i n ( phi * pi

/180) ) ) ) ˆ2/(1+0.5*(5* c5 *( y* cos ( phi * pi /180)+x* s i n ( phi * pi /180) )

ˆ4+3*c3 *( y* cos ( phi * pi /180)+x* s i n ( phi * pi /180) )ˆ2+c1 ) ˆ2) ˆ2 + ( z+

TR+d0−(b4 *( y* cos ( phi * pi /180)+x* s i n ( phi * pi /180) )ˆ4+b2 *( y* cos (

phi * pi /180)+x* s i n ( phi * pi /180) )ˆ2+b0 ) ) ˆ2/(1−0.5*(4*b4 *( y* cos (

phi * pi /180)+x* s i n ( phi * pi /180) ) ˆ3+2*b2 *( y* cos ( phi * pi /180)+x* s i n

( phi * pi /180) ) ) ˆ2) ˆ2 = TRˆ2\n ’ ) ;

200

201 f p r i n t f ( f i d , ’ v e r t i c e s \n ’ ) ;

202 f p r i n t f ( f i d , ’ 1 ( r1 * cos ( phi * pi /180)+LL* s i n ( phi * pi /180) ) (−r1 * s i n (

phi * pi /180)+LL* cos ( phi * pi /180) ) −s q r t (TRˆ2−r1 ˆ2)+TR+d0

c o n s t r a i n t 1\n ’ ) ;

203 f p r i n t f ( f i d , ’ 2 (−r1 * cos ( phi * pi /180)+LL* s i n ( phi * pi /180) ) ( r1 * s i n (

phi * pi /180)+LL* cos ( phi * pi /180) ) −s q r t (TRˆ2−r1 ˆ2)+TR+d0

c o n s t r a i n t 1\n ’ ) ;

204 f p r i n t f ( f i d , ’ 3 (−r1 * cos ( phi * pi /180)−LL* s i n ( phi * pi /180) ) ( r1 * s i n (

phi * pi /180)−LL* cos ( phi * pi /180) ) −s q r t (TRˆ2−r1 ˆ2)+TR+d0

c o n s t r a i n t 1 \n ’ ) ;

205 f p r i n t f ( f i d , ’ 4 ( r1 * cos ( phi * pi /180)−LL* s i n ( phi * pi /180) ) (−r1 * s i n (

phi * pi /180)−LL* cos ( phi * pi /180) ) −s q r t (TRˆ2−r1 ˆ2)+TR+d0

c o n s t r a i n t 1\n ’ ) ;

206 f p r i n t f ( f i d , ’ 5 ( r1 * cos ( phi * pi /180)−LL* s i n ( phi * pi /180) ) ( r1 * s i n (

phi * pi /180)+LL* cos ( phi * pi /180) ) s q r t (TRˆ2−r1 ˆ2)−TR−d0

c o n s t r a i n t 2\n ’ ) ;
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207 f p r i n t f ( f i d , ’ 6 (−r1 * cos ( phi * pi /180)−LL* s i n ( phi * pi /180) ) (−r1 * s i n

( phi * pi /180)+LL* cos ( phi * pi /180) ) s q r t (TRˆ2−r1 ˆ2)−TR−d0

c o n s t r a i n t 2\n ’ ) ;

208 f p r i n t f ( f i d , ’ 7 (−r1 * cos ( phi * pi /180)+LL* s i n ( phi * pi /180) ) (−r1 * s i n

( phi * pi /180)−LL* cos ( phi * pi /180) ) s q r t (TRˆ2−r1 ˆ2)−TR−d0

c o n s t r a i n t 2 \n ’ ) ;

209 f p r i n t f ( f i d , ’ 8 ( r1 * cos ( phi * pi /180)+LL* s i n ( phi * pi /180) ) ( r1 * s i n (

phi * pi /180)−LL* cos ( phi * pi /180) ) s q r t (TRˆ2−r1 ˆ2)−TR−d0

c o n s t r a i n t 2\n ’ ) ;

210

211 f p r i n t f ( f i d , ’ edges /* given by endpoints and a t t r i b u t e */\n ’ ) ;

212 f p r i n t f ( f i d , ’ 1 1 2 c o n s t r a i n t 1 \n ’ ) ;

213 f p r i n t f ( f i d , ’ 2 2 3 c o n s t r a i n t 1 \n ’ ) ;

214 f p r i n t f ( f i d , ’ 3 3 4 c o n s t r a i n t 1 \n ’ ) ;

215 f p r i n t f ( f i d , ’ 4 4 1 c o n s t r a i n t 1 \n ’ ) ;

216 f p r i n t f ( f i d , ’ 5 5 6 c o n s t r a i n t 2 \n ’ ) ;

217 f p r i n t f ( f i d , ’ 6 6 7 c o n s t r a i n t 2 \n ’ ) ;

218 f p r i n t f ( f i d , ’ 7 7 8 c o n s t r a i n t 2 \n ’ ) ;

219 f p r i n t f ( f i d , ’ 8 8 5 c o n s t r a i n t 2 \n ’ ) ;

220 f p r i n t f ( f i d , ’ 9 1 5 \n ’ ) ;

221 f p r i n t f ( f i d , ’ 10 2 6 \n ’ ) ;

222 f p r i n t f ( f i d , ’ 11 3 7 \n ’ ) ;

223 f p r i n t f ( f i d , ’ 12 4 8 \n ’ ) ;

224

225 f p r i n t f ( f i d , ’ f a c e s /* given by o r i en t ed edge loop */\n ’ ) ;

226 f p r i n t f ( f i d , ’ 1 5 −10 −1 9\n ’ ) ;

227 f p r i n t f ( f i d , ’ 2 6 −11 −2 10\n ’ ) ;

228 f p r i n t f ( f i d , ’ 3 7 −12 −3 11 \n ’ ) ;

229 f p r i n t f ( f i d , ’ 4 8 −9 −4 12 \n ’ ) ;

230 f p r i n t f ( f i d , ’ 5 −8 −7 −6 −5 c o n s t r a i n t 2 t en s i on (−cos ( ang le * pi

/180) ) \n ’ ) ;

231 f p r i n t f ( f i d , ’ 6 1 2 3 4 c o n s t r a i n t 1 t en s i on (−cos ( ang le * pi /180) )

\n ’ ) ;

232
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233 f p r i n t f ( f i d , ’ bod ie s /* one body , de f ined by i t s o r i en t ed f a c e s

*/\n ’ ) ;

234 f p r i n t f ( f i d , ’ 1 1 2 3 4 5 6 volume V dens i ty 0\n ’ ) ;

235

236 f c l o s e ( f i d ) ;

237

238 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

239

240 f unc t i on [ ]= w r i t e s o l v e b r i d g e ( i i 1 , j j 1 , b0 , d0 )

241 % This func t i on w r i t e s the procedure that Sur face Evolver uses to

c a l c u l a t e

242 % the equ i l i b r i um .

243

244 f i d = fopen ( ’ s o l v e p r o c . txt ’ , ’w ’ ) ;

245 f p r i n t f ( f i d , ’ b r idge . f e \n ’ ) ;

246 f p r i n t f ( f i d , ’ g500\n ’ ) ;

247

248 f p r i n t f ( f i d , ’ r\n ’ ) ;

249 f p r i n t f ( f i d , ’ g1000\n ’ ) ;

250

251 f p r i n t f ( f i d , ’ r\n ’ ) ;

252 f p r i n t f ( f i d , ’U\n ’ ) ;

253 f p r i n t f ( f i d , ’ g400\n ’ ) ;

254

255 f p r i n t f ( f i d , ’ r\n ’ ) ;

256 f p r i n t f ( f i d , ’ g250\n ’ ) ;

257

258 f p r i n t f ( f i d , ’ r\n ’ ) ;

259 f p r i n t f ( f i d , ’ g200\n ’ ) ;

260

261 f p r i n t f ( f i d , ’ r\n ’ ) ;

262 f p r i n t f ( f i d , ’ g100\n ’ ) ;
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263

264 f p r i n t f ( f i d , ’ l i s t v e r t i c e s where z> %7.6 f \n ’ , ( d0−b0 ) ) ;

265

266

267 f p r i n t f ( f i d , ’d\n ’ ) ;

268 f p r i n t f ( f i d , ’ s o l u t i o n b r i d g e%d%d . f e \n ’ , i i 1 , j j 1 ) ;

269

270 f c l o s e ( f i d ) ;

271

272 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

273 f unc t i on [ energy , area , Li ]= s o l v e b r i d g e e n e r g y ( i i 1 , j j 1 )

274 % This func t i on c a l c u l a t e s the i n t e r f a c e shape , energy , and

pr e s su r e us ing

275 % Sur face Evolver and the f i l e s wr i t t en by prev ious f u n c t i o n s .

276

277 [ s tatus , r e s u l t ]=system ( ’ / usr / l o c a l / bin / evo lv e r < s o l v e p r o c . txt ’ )

;

278

279 % Finding the energy

280 l c=length ( r e s u l t ) ;

281 f o r i i=l c :−1:1

282 i f r e s u l t ( i i −5: i i )==’ energy ’

283 l c 2=i i +3;

284 f o r j j=l c 2 : l c 2 +50

285 i f r e s u l t ( j j : j j +4)==’ s c a l e ’

286 l c 3=j j ;

287 break

288 end

289 end

290 energy=str2num ( r e s u l t ( l c 2 : l c3 −3) ) ;

291 break

292 end
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293 end

294

295 % Finding the area

296 f o r i i=l c :−1:1

297 i f r e s u l t ( i i −3: i i )==’ area ’

298 l c 2=i i +3;

299 f o r j j=l c 2 : l c 2 +50

300 i f r e s u l t ( j j : j j +5)==’ energy ’

301 l c 3=j j ;

302 break

303 end

304 end

305 area=str2num ( r e s u l t ( l c 2 : l c3 −3) ) ;

306 break

307 end

308 end

309

310 % Finding the l i q u i d−column length

311 f o r i i=l c :−1:1

312 i f r e s u l t ( i i −17: i i )==’ Id X ’

313 l c 2=i i +37;

314 f o r j j=l c 2 : l c

315 i f r e s u l t ( j j : j j +22)==’ Enter name o f dump f i l e ’

316 l c 3=j j −16;

317 break

318 end

319 end

320 v e r t i c e s s t r =( r e s u l t ( l c 2 : l c 3 ) ) ;

321 break

322 end

323 end

324

325 l c s t=length ( v e r t i c e s s t r ) ;

326 f o r i i =1: l c s t −12
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327 i f v e r t i c e s s t r ( i i : i i +12)==’ c o n s t r a i n t s 1 ’

328 v e r t i c e s s t r ( i i : i i +12)=’ ’ ;

329 end

330 end

331 v e r t i c e s c o=str2num ( v e r t i c e s s t r ) ;

332 Li=2*max( v e r t i c e s c o ( : , 3 ) ) ;


