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Abstract

Modal analyses with engine tests are the common tools used by P&WC to measure vibratory
stress levels on compressor blades and vanes subjected to aerodynamic excitation. Vibratory stress
levels are accurately measured with strain gauges and Non-Intrusive Stress Measurement System
(NSMS) probes during engine tests. A numerical tool predicting vibratory stress levels on these
components would help to do a more mature assessment of their designs and redesigns. Such a
tool would shave o� redesign iterations, time, and possibly engine test iterations.

Two good test case candidates, one blade and one vane, were chosen by P&WC for building the
aeroelasticity tool. The steady and unsteady Computational Fluid Dynamics (CFD) analyses were
performed using CFX and the Finite Element (FE) analyses were performed with ANSYS. Vibratory
stress levels were calculated using harmonic response and transient one-way aeroelasticity analyses.
A two-way aeroelasticity analysis was also attempted.

For the investigated resonance on the blade test case, the calculated vibratory stress levels were
1.34% higher than the stress levels measured during strain gauge test. For the vane, the engine
was tested with two di�erent inlet temperatures. The second inlet temperature was 50% higher
than the �rst one. This increased the maximum vibratory stress levels by 35.9%. The calculated
vibratory stress levels were 29.2% less than in test for the �rst inlet temperature and 41.1% less
than in test with the second one. The presence of separated �ow regions is a potential source of
error.

Two-way aeroelasticity was also attempted on the blade test case, but failed due to mesh
folding in the CFD domain. This issue shall be resolved during future work.
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Abrégé

Les analyses modales utilisées conjointement avec des données de tests moteur sont les outils
exploités par P&WC pour la mesure de contraintes vibratoires sur les ailettes et les redresseurs
assujettis à des excitations aérodynamiques dans un compresseur. Ces tests moteur sont e�ectués
avec des jauges de contraintes et des capteurs non intrusifs pour la mesure de contraintes. Un outil
numérique calculant les contraintes vibratoires sur ces composantes permettrait une évaluation
plus mature de leurs conceptions et modi�cations de conceptions. Un tel outil épargnerait des
itérations de modi�cation de conceptions, du temps et possiblement des tests.

Deux bons candidats, une ailette et un redresseur, furent choisis par P&WC pour créer cet outil
d’analyse aéroélastique. Les analyses numériques en dynamique des �uides (ou CFD) statiques et
transitoires furent déployées avec le logiciel CFX et les analyses d’éléments �nis avec le logiciel
ANSYS. Les contraintes vibratoires furent calculées avec les méthodes d’analyse aéroélastiques uni-
directionnelles par réponse harmonique et transitoire. Une analyse aéroélastique bidirectionnelle
fut également déployée.

Concernant la résonance de l’ailette, les contraintes vibratoires calculées sont 1,34% supé-
rieures à celles mesurées en test. Pour le redresseur, le moteur fut testé avec deux températures
d’admissions di�érentes. La seconde température était 50% supérieure à la première. Cette mon-
tée en température d’admission a augmenté les contraintes vibratoires maximales de 35,9%. Les
contraintes vibratoires calculées furent 29,2% inférieures à celles mesurées en test pour la première
température et 41,1% inférieures à celles mesurées en test pour la seconde température. La présence
de régions d’écoulements fractionnés pourrait être la cause de ces erreurs.

L’analyse d’aéroélasticité bidirectionnelle a été déployée sur l’ailette, cependant cette analyse
a échoué à cause d’un problème de repliement de maillage dans le domaine du �uide. Ce problème
devra être résolu à l’avenir.
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Chapter 1

Introduction

1.1 Problem Statement

The goal of this work was to implement a numerical aeroelasticity tool for vibratory stress levels
prediction at P&WC. This was an industrial project partially �nanced by MITACS Accelerate. This
numerical aeroelasticity tool uses CFD and FE techniques that are well known in the academic
world. The project was therefore focused on the implementation and validation of the numerical
aeroelasticity tool in an industry and not on academic research.

Present in the turboshaft, turbopropeller, turbofan, and Auxiliary Power Unit (APU) businesses,
P&WC, a United Technologies company, has more than 52,000 engines in service powering the
largest �eet of business and regional aircraft and helicopters over 200 countries and territories.
Every second, a P&WC powered aircraft takes o� or lands somewhere in the world. To preserve
its leadership in the aeronautical industry, P&WC engineers must use the latest technologies and
methodologies in their product design and redesign phases.

Avoiding High Cycle Fatigue (HCF) in compressor blades and vanes is one of the numerous
design and redesign challenges faced by P&WC engineers everyday. To know whether a compressor
blade or vane design or redesign will undergo HCF issues, the vibratory stress distribution in the
geometry must be known for every mode resonating during engine operation. The best way to
�nd the vibratory stress levels on compressor blades or vanes is to instrument these components
with strain gauges or NSMS probes, assemble them on an engine, and run it in a test cell. The data
collected by the instrumentation and FE modal analyses results give an accurate assessment of
the induced vibratory stress levels on compressor blades or vanes during engine operation. With
this assessment in hand, it can be found out whether the parts will have HCF issues or not. If
necessary, the assessment will also provide guidance for launching a redesign action for making
the components satisfactory in terms of HCF.

This methodology is the one currently used by the Component Dynamics engineers at P&WC.
Unfortunately, running an instrumented engine test costs hundreds of thousands of dollars;
therefore, if several redesign iterations are required for converging towards a satisfactory design,
the overall design cost may be quite high due to the time spent on the redesign activities and
especially the engine test iterations. Accordingly, it would be bene�cial for P&WC to have a
numerical tool for calculating the vibratory stress levels of the modes in resonance during engine
operation. Such a vibratory stress prediction tool would help P&WC to perform more mature
assessments of their compressor blades and vanes designs and redesigns. Also, it would potentially
help the engineers to converge faster towards a satisfactory design shaving o� time, engine tests
iterations, and design costs.

For a numerical tool to calculate accurate vibratory stress values on a compressor blade or
vane, it has to compute accurately the excitation and the dynamic response of the geometry
subjected to this excitation. For compressor blades and vanes, the excitation is aerodynamic.
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Chapter 1 • Introduction

When rotating, a compressor blade undergoes periodic excitation in space and time from the
wakes of the upstream vane rows and from the bow waves of the downstream vane rows. On
the other hand, a compressor vane undergoes periodic excitation in space and time from the
wakes of the upstream rotating blades and from the bow waves of the downstream rotating blades.
Therefore, an adequate vibratory stress prediction tool for compressor blades and vanes must be
performing transient CFD and FE analyses. These CFD and FE interactions are called aeroelasticity
or Fluid-Structure Interaction (FSI) analyses.

At P&WC, Compressor Aerodynamics engineers use the CFX software, an ANSYS product,
for CFD analyses and Component Dynamics engineers use the ANSYS software for FE analyses.
Therefore, P&WC already has in house commercial tools capable of undertaking aeroelasticity
analyses if used properly. Moreover, P&WC has accumulated a considerable amount of engine
strain gauge test data of compressor blades and vanes. Therefore, P&WC has all the elements
for establishing an aeroelasticity analysis procedure or tool for compressor blades and vanes.
One or more compressor components could be selected for establishing the numerical analysis
procedure, calculating the vibratory stress levels, and comparing them with the vibratory stress
levels measured during the strain gauge tests of these components for validating the procedure.

P&WC selected a compressor rotor blade design as a candidate for developing the aeroelasticity
analysis procedure. The available strain gauge data of this blade has been reviewed and the highest
vibratory stress obtained during the test has been identi�ed. One-way and two-way aeroelasticity
analyses have been performed for calculating the vibratory stress levels and comparing them with
the ones obtained during strain gauge test. Once the analyses were completed on the rotor blade,
the established one-way aeroelasticity procedure was repeated on a stator vane.

Note that the vibratory stress levels that were investigated on the two geometries were the
synchronous responses of modes in resonance. Consequently, it was known prior to the investiga-
tion that one-way and two-way aeroelasticity results should be similar. One-way aeroelasticity
should have been su�cient to get good vibratory stress levels predictions. However, it has been
decided to perform at least one two-way aeroelasticity attempt since this type of analysis has the
capability to predict asynchronous responses like �utter. Therefore, having a two-way aeroelas-
ticity procedure in place is bene�cial if an asynchronous response prediction was needed for a
compressor component.

This thesis summarizes the one-way and two-way aeroelasticity analyses conducted on the
compressor blade and vane. The results with the potential sources of error are presented and the
planned future work is described.

1.2 Aeroelasticity Theory

Dynamic aeroelasticity speci�cally is a combination of three disciplines: dynamics, �uid mechanics,
and solid mechanics. These three disciplines are widely used in the mechanical engineering �eld.
In mechanical engineering, �uid mechanics is used for the study of aerodynamics, solid mechanics
is used for the study of elastic forces in solids, and dynamics is used for the study of inertial forces
and motion [5].

As shown in �gure 1.1, there are two types of aeroelasticity: static aeroelasticity and dynamic
aeroelasticity. Static aeroelasticity regroups the aerodynamic forces and the elastic forces. Since
the inertial forces are not present, this type of aeroelasticity targets the static elastic forces induced
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on solids due to static aerodynamic forces. On the other hand, dynamic aeroelasticity regroups all
three disciplines and can be used to calculate the dynamic elastic forces in a solid due to dynamic
aerodynamic forces. Since the vibratory stress levels needed to be calculated on a rotating blade
and a vane for this work, dynamic aeroelasticity was used.

Inertial Forces
(Dynamics)

Aerodynamic Forces
(Fluid Mechanics)

Elastic Forces
(Solid Mechanics)

Dynamic
Aeroelasticity

Rig
id-
Bo
dy

Ae
rod

yn
am
ics

Mechanical

Vibrations

Static
Aeroelasticity

Figure 1.1: Aeroelasticity triangle

1.2.1 Dynamic Fluid Mechanics Theory

The governing equations in dynamic �uid mechanics are the continuity, momentum, and energy
Navier-Stokes (NS) equations in their conservative forms [1, 6]. Every variable in these equations
is space and time dependent. The continuity equation reads1:

∂ρ

∂t
+ ∇ · (ρu) = 0, ∀m ∈ Ωf, ∀t > 0 (1.1)

where ρ is the density, u, the velocity vector, m, any point in the three dimensional space, Ωf, the
applicable �uid domain, and t , the time. The momentum equation reads:

∂(ρu)
∂t
+ ∇ · (ρu × u) = −∇p + ∇ · τ + ρfext (1.2)

where p is the static pressure, fext the external force vector per unit mass, and τ the shear stress
tensor.

For a Newtonian �uid, like air, the shear stress tensor relation to the strain rate reads:

τ = µ
(
∇u + ∇T u − 2

3δ∇ · u
)

(1.3)

where µ is the dynamic (or shear) viscosity and δ the Kronecker delta function. The momentum
equation speci�c to Newtonian �uids can then be constructed by substituting equation (1.3) into
equation (1.2), which reads:

∂(ρu)
∂t
+ ∇ · (ρu × u) = −∇p + ∇ ·

(
µ
(
∇u + ∇T u − 2

3δ∇ · u
))
+ ρfext (1.4)

1Equations (1.1) to (1.12) are true ∀m ∈ Ωf and ∀t > 0. Consequently, it will not be speci�ed systematically at every
equation.
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Chapter 1 • Introduction

The total energy equation reads:
∂(ρhtot)

∂t
− ∂p
∂t
+ ∇ · (ρuhtot) = ∇ · (λ∇T ) + ∇ · (u · τ ) + u · ρfext + Eext (1.5)

where htot is the total enthalpy, λ the thermal conductivity,T the temperature, and Eext the external
energy. The total enthalpy is the sum of the static enthalpy and the kinetic energy which is:

htot = h +
1
2 ‖ u ‖

2 (1.6)

Reynolds Averaged Navier-Stokes Equations

The CFD analyses conducted in this work were steady and unsteady three dimensional analyses
of transonic PT6 engine compressors. Accordingly, some regions in the �uid domains had very
high Reynolds numbers. This means that the �uid models were turbulent. The assumptions
for incompressible or inviscid �ow were both obviously not valid. Therefore, the NS equations
demonstrated previously were the appropriate ones for CFD problems of this type since they
describe both laminar and turbulent �ows.

However, turbulent �ows involved in realistic problems include large turbulent regions com-
pared to the overall size of the domain and large time scales compared to the total time. Therefore,
to perform a Direct Numerical Simulation (DNS) of the NS equations accurately, a mesh much
smaller than the smallest suitable meshes used in numerical analyses is required. So, performing
DNS of these equations would require tremendously more computational power than available
today.

To account for the e�ects of turbulence while using a convenient mesh size for numerical
analyses, it can be assumed that the turbulent regions in the �ow exhibit average and �uctuating
characteristics. This assumption is introduced in the NS equations by imposing the velocity (u)
to be composed of an average term and a �uctuating term. Imposing this assumption on the NS
equations leads to the Reynolds Averaged Navier-Stokes (RANS) equations. The RANS equations
solve for the mean �ow quantities only. They do model the turbulence e�ects, but without the need
for the resolution of the �uctuations. Hence, the required mesh re�nement and computational
power are much less than if DNS of the NS equations was performed [8].

Since the RANS equations are composed of the same variables as the NS equations, every
variable in these equations is space and time dependent. As stated above, RANS equations are
constructed by imposing the velocity to be composed of an average term and a �uctuating term:

u = u + uf (1.7)

where the average term reads:

u =
1
∆t

∫ t+∆t

t
udt (1.8)

and where ∆t is a large time scale with respect to the turbulent �uctuations, but small with respect
to the total time of the analysis in question.

Substituting the averaged quantities into the NS equations gives the RANS equations. The
averaged continuity equation reads:

∂ρ

∂t
+ ∇ · (ρu) = 0 (1.9)
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It can be observed that the continuity equation is not altered, but the averaged form of the
momentum and energy equations contain some additional turbulent �ux terms. The averaged
momentum equation reads:

∂(ρu)
∂t
+ ∇ · (ρu × u) = −∇p + ∇ · (τ − ρuf × uf) + ρfext (1.10)

and the averaged total energy equation reads:

∂(ρhtot)

∂t
− ∂p
∂t
+∇ · (ρuhtot) = ∇ · (λ∇T − ρufh) +∇ · (u · (τ − ρuf ×uf)) +u · ρfext +Eext (1.11)

It is also important to note that the total enthalpy (htot) contains a turbulent kinetic energy
term which was not present in equation (1.6). The total enthalpy including the turbulent kinetic
energy term reads:

htot = h +
1
2
(
‖ u ‖2 + ‖ uf ‖2

)
(1.12)

Equations (1.9) through (1.12) form the RANS equations. They are the ones which are discre-
tised and programmed in the CFX solver used for solving the CFD analyses in this work.

The Mixing Plane Concept in Steady CFD Analyses

In the steady CFD analyses of this project, the time independent RANS equations were solved.
These equations are the RANS equations, but without the time derivative terms. The time inde-
pendent RANS equations are still nonlinear and must be solved by iteration until the residual
convergence criteria are met.

When doing steady CFD analyses in turbomachines composed of blade and vane rows, the
conventional method is to model only one passage of every blade and vane row and apply the
usual cyclic conditions at the boundaries where every passage mates with the adjacent ones.
Conventional cyclic modelling method is shown in �gure 1.2 where cyclic conditions are applied
on the ∂ΩR1 , ∂ΩR2 , ∂ΩS1 , and ∂ΩS2 boundaries.

However, the number of blades and vanes is often not the same in turbomachine rows. So,
conventional cyclic method is inadequate since modelling one passage per row results in non-unity
pitch ratios. This is the case of the rotor and stator passages shown in �gure 1.2 since PR , PS
which is a typical scenario in a real compressor. The mixing plane concept is therefore used for
computing steady CFD analyses by using cyclic conditions on a model composed of one passage
per row.

The idea behind this concept is that every passage is considered as a single domain which can
be meshed independently. The plane where the rotor and stator domains mate is called the mixing
plane and it is shown in �gure 1.2. While converging the residual of the the time independent
RANS equations, the following averaged quantity transfers are performed at the mixing plane
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Mixing Plane

Rotor Stator

∂ΩR2

PR

∂ΩR1

∂ΩS2

PS

∂ΩS1

Figure 1.2: Cyclic analysis with non-unity pitch ratio

after every residual convergence iteration:

p0, ∀m ∈ ∂Ωu → p0, ∀m ∈ ∂Ωd

t̂f, ∀m ∈ ∂Ωu → t̂f, ∀m ∈ ∂Ωd

T 0, ∀m ∈ ∂Ωu → T 0, ∀m ∈ ∂Ωd

k t, ∀m ∈ ∂Ωu → k t, ∀m ∈ ∂Ωd

ϵ t, ∀m ∈ ∂Ωu → ϵ t, ∀m ∈ ∂Ωd

ps, ∀m ∈ ∂Ωd → ps, ∀m ∈ ∂Ωu

t̂f, ∀m ∈ ∂Ωd → t̂f, ∀m ∈ ∂Ωu

(1.13)

where p0 is the average total pressure, t̂f the average �ow tangential unit vector in cylindrical
coordinates,T 0 the average total pressure, k t the average turbulence kinetic energy, ϵ t the average
dissipation rate, ps the average static pressure,m any point belonging to the three dimensional
space, ∂Ωu the boundary of the upstream domain at the mixing plane, and ∂Ωd the boundary of
the downstream domain at the mixing plane.

Since averaged values are considered at the mixing plane, it is highly recommended to use
this method only when the �ow is uniform at the mixing plane. Otherwise, results obtained with
this method are not meaningful. Furthermore, when using this approach, any unsteadiness that
may arise in the �ow (e.g. shock waves, wakes, separated �ows) are not transmitted from one
passage to another. Despite these consequences, the mixing plane concept provides a very good
approximation of the time averaged �ow [9].

There are two well known methods for averaging the �ow variables at the mixing plane on
∂Ωu and ∂Ωd. These methods are the area averaging and mass averaging methods. With the area
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averaging method, every �ow variable (fv) is averaged on ∂Ωu and ∂Ωd as follows:

f vu =
1
su

∫

∂Ωu

fvudsu

f vd
=

1
sd

∫

∂Ωd

fvddsd

(1.14)

where su and sd are the surface areas of ∂Ωu and ∂Ωd respectively and where fvu and fvd are the
�ow variables on ∂Ωu and ∂Ωd respectively. The area averaging method is the one that was used
in this work for solving the steady CFD analyses.

Transient Blade Row Modelling in Unsteady CFD Analyses

Since dynamic aeroelasticity was undertaken, transient CFD analyses of the compressor blade
and vane rows were performed. When performing transient CFD analyses, the full set of RANS
equations is solved. In this work, time domain solving was performed using the second order
backward Euler method scheme.

Again, the best approach in terms of computational e�ort and time is to model only one
passage of every blade and vane row. However, the mixing plane concept described earlier is not
appropriate for transient analyses because any unsteadiness in the �ow (e.g. shock waves, wakes,
separated �ows) is not transmitted from one passage to another.

The classical workaround for such an unsteady CFD analysis with a non-unity pitch ratio is to
deploy the pitch scaling method which is also known as pro�le transformation method. As shown
in �gure 1.3, this method consists in duplicating the blade and vane passages to bring the pitch
ratio to unity (PR = PS). If one of the components has a prime number of blades or vanes, (e.g. if
the rotor or the stator has 37 blades or vanes), a unity pitch ratio cannot be obtained unless all
the passages of the rotor and the stator are modelled (full 360◦ analysis). This is very costly in
terms of computational resources and time. In CFX, an alternative to the pro�le transformation
approach is to use the Transient Blade Row (TBR) approach. The TBR approach handles non-unity
pitch ratios through either a time transformation method or a Fourier transformation method.
This method cannot be used if the �uid domain undergoes mesh deformation which is the case in
a two-way aeroelasticity analysis [8].

The time and Fourier transformation methods both achieve phase-shifted cyclic conditions.
When phase-shifted cyclic conditions are achieved, the pitch-wise boundaries (∂ΩR1/∂ΩR2 and
∂ΩS1/∂ΩS2 ) are periodic to each other at di�erent times as shown in �gure 1.4 where the rotor-
stator relative position (Prel) is the same at times t = t0 − ∆t and t = t0. The time step size (∆t )
reads:

∆t =
PS − PR
ΩR

(1.15)

where ΩR is the rotational velocity of the rotor. In this work, transient CFD analyses were
performed using the TBR approach with the time transformation method. Therefore, only this
method is described in detail in this section.

The time transformation method handles the unequal pitch problem by transforming the time
coordinates in the circumferential direction to make the model fully cyclic in the transformed
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Figure 1.3: Cyclic analysis with pitch scaling approach

time domain. In cylindrical coordinates, every �ow variable (fv) is space and time dependent:

fv = fv (r ,θ , z, t ), ∀r ,θ , z ∈ ΩRS, ∀t > 0 (1.16)

where ΩRS is the domain of the rotor and the stator which is a volume. Consequently, the �ow
variables on the four cyclic faces (∂ΩR1 , ∂ΩR2 , ∂ΩS1 , and ∂ΩS2 ) can be de�ned as:

fvR1
= fvR1

(rR1 ,θR1 , zR1 , t ), ∀rR1 ,θR1 , zR1 ∈ ∂ΩR1 , ∀t > 0
fvR2
= fvR2

(rR2 ,θR2 , zR2 , t ), ∀rR2 ,θR2 , zR2 ∈ ∂ΩR2 , ∀t > 0
fvS1
= fvS1

(rS1 ,θS1 , zS1 , t ), ∀rS1 ,θS1 , zS1 ∈ ∂ΩS1 , ∀t > 0
fvS2
= fvS2

(rS2 ,θS2 , zS2 , t ), ∀rS2 ,θS2 , zS2 ∈ ∂ΩS2 , ∀t > 0

(1.17)

The �ow variables spatial cyclic boundary conditions on both passages read:

fvR1
(rR1 ,θR1 , zR1 , t ) = fvR2

(rR2 ,θR2 + PR, zR2 , t − ∆t )

fvS1
(rS1 ,θS1 , zS1 , t ) = fvS2

(rS2 ,θS2 + PS, zS2 , t − ∆t )
(1.18)

where ∆t is as per equation (1.15). The appropriate time transformation for making the model
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∂ΩS1

Figure 1.4: Cyclic analysis with time shifted boundary conditions

fully cyclic is:

r ′ = r
θ ′ = θ
z ′ = z

t ′ = t − λR,Sθ

(1.19)

where

λR,S =
∆t

PR,S
(1.20)

and where PR,S is the pitch of the rotor from the stator frame of reference.
Imposing the set of space-time transformations in equation (1.19) to the cyclic conditions of

equations (1.18) yields to regular spatial Boundary Condition (BC)s which are:

fvR1
(r ′R1
,θ ′R1
, z ′R1
, t ′) = fvR2

(r ′R2
,θ ′R2
+ PR, z

′
R2
, t ′)

fvS1
(r ′S1 ,θ

′
S1 , z

′
S1 , t

′) = fvS2
(r ′S2 ,θ

′
S2 + PS, z

′
S2 , t

′)
(1.21)

With this set of cyclic conditions, a fully cyclic model is obtained and periodicity is maintained
at any instant in the transformed time domain. This can be visualized in the physical time vs.
circumferential direction graph in �gure 1.5. It can be seen in this �gure that the rotor pitch is
smaller than the stator pitch in the physical time domain. However, their boundaries match in the
transformed time domain.

Therefore, the full RANS equations are solved in the transformed domain described above.
Since a fully cyclic model is obtained in the transformed domain, the �ow variables are not
averaged at the mixing plane. Accordingly, the �ow unsteadiness is transmitted between the two
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Figure 1.5: Physical boundaries: stator ( ) and rotor ( ); transformed time t ′ ( )

passages. Once the analysis is completed, meaningful results can be retrieved by switching the
�ow variables from transformed time domain (r ′, θ ′, z ′, and t ′) back to physical time domain (r , θ ,
z, and t ).

As it can also be observed in �gure 1.5, the rotor and the stator are marching at di�erent time
step sizes because each passage is experiencing a di�erent period. The stator period is:

TS =
PR
ΩR

(1.22)

whereas the rotor period is:

TR =
PS
ΩR

(1.23)

In each passage, the period must be discretised using the same time step (ht). So, the rotor and
stator periods read:

TS = ht∆tS (1.24)
TR = ht∆tR (1.25)

where ∆tS and ∆tR are the time step sizes of the stator and the rotor respectively.
Combining equation (1.22) with equation (1.24) and equation (1.23) with equation (1.25) relates

the pitch ratio to the time step sizes ratio:

PR
PS
=

∆tS
∆tR

(1.26)

When performing a transient analysis in CFX, a time step size has to be imposed. In a TBR
analysis using the time transformation method, the imposed time step size is the time step size of
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the stator (∆TS). The time step size of the rotor (∆TR) can then be calculated using equation (1.26).
Therefore, once the analysis is completed and that the variables are switched from the transformed
time domain to the physical time domain, the elapsed simulation time is considered the stator
simulation time. The rotor to stator time step size ratio relation with the pitch ratio demonstrated
in equation (1.26) can be observed in the graph in �gure 1.5.

1.2.2 Dynamic Solid Mechanics Theory

Every variable in the following dynamic linear elasticity equations are space and time dependent [4].
The local equation of linear elasticity reads2:

ρ
∂2u
∂t2
− ∇ · σ = f , ∀m ∈ Ωs, ∀t > 0 (1.27)

where σ is the stress tensor, f the total force vector per mass unit, m any point in the three
dimensional space, Ωs the applicable solid domain, and t the time. The stress tensor is governed
by the �rst constitutive law of elasticity which reads:

σ = 2µsϵ + λs tr(ϵ )T (1.28)

where µs is the rigidity parameter, ϵ the strain tensor, λs the Lame’s �rst parameter, and T the
temperature tensor. The strain tensor is governed by the second law of elasticity which reads:

ϵ =
1
2 (∇u + ∇

T u) (1.29)

Equations (1.27) through (1.29) are the linear dynamic solid mechanics equations required for
solving the mechanical systems in this work. As opposed to the RANS equations which were
discretised using Finite Volume (FV) for performing CFD analyses, the linear elasticity equations
are discretised using FE. Therefore, the weak form of these equations is needed. The weak form
reads: Find u ∈ U such that

∫

Ωs

(
v · ρ ∂

2u
∂t2
+ σ :

(1
2 (∇v + ∇

T v)
)
− v · f

)
dv −

∫

∂Ωσ

tp · vds = 0, ∀v ∈ U0 (1.30)

where ∂Ωσ is the boundary of the domain which is a surface, v the test function, tp is the traction
force which is acting on the boundary, U the space of kinematically acceptable displacements,
and U0 the space of kinematically homogeneous displacements. Equation (1.30) combined with
equations (1.28) and (1.29) are the equations which are discretised using FE.

Structural Matrices and Vectors in Finite Elements

In FE, the mass and sti�ness matrices and the force vectors can be built by applying the Galerkin
method on the weak formulation in equation (1.30) [4, 2]. The following matrices and vectors are
now de�ned in a three-dimensional basis. Therefore, from now on, matrices and tensors will be

2Equations (1.27) to (1.29) are true ∀m ∈ Ωs and ∀t > 0. Consequently, it will not be speci�ed systematically at
every equation
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denoted with square brackets [] and vectors with squiggly brackets {}. The �rst term of the weak
form provides the element mass matrix which reads:

[Me ] = ρ
∫

Ωe

[N ]T [N ]dv (1.31)

where [N ] is the element shape functions matrix and Ωe is the element domain which is a volume.
Note that, as opposed to equation (1.30), the density (ρ) has been taken out of the integral since it
is constant for all the mechanical analyses in this project.

The second term of the weak form gives the element sti�ness matrix which reads:

[Ke ] =
∫

Ωe

[B]T [D][B]dv (1.32)

where [B] is the strain displacement matrix based on the element shape functions and [D] the
elasticity tensor.

The third term of the weak form gives the element body force vector which reads:

{Fe } =
∫

Ωe

[N ]T {F }dv (1.33)

Finally, the fourth term of the weak form gives the element traction, or surface, force vector
which is:

{tpe } =
∫

∂Ωe

[Nn]T {tp}ds (1.34)

where [Nn] is the shape functions matrix for normal motion at the surface and ∂Ωe the surface
boundary of the element. In ANSYS Mechanical, the integrals are solved using Gauss numerical
integration which is the most popular integration method in FE.

The total mass and sti�ness matrices and the total force vectors read:

[M] =
N∑

e=1
[Me ] (1.35)

[K] =
N∑

e=1
[Ke ] (1.36)

{F } =
N∑

e=1
{Fe } (1.37)

where N is the total number of elements.

Steady State Analysis

In this work, steady state analyses of the test cases were computed to perform modal analyses
in a prestressed environment. A steady state analysis solves for displacement, strain, and stress
levels of a structure subjected to constant loads [7]. In a turbomachine, a rotor blade is subjected

12 55



1.2
���� Aeroelasticity Theory

to three constant loads: thermal, centrifugal, and gaspath. On the other hand, a stator vane is
subjected only to thermal and gaspath loads since it does not rotate.

The centrifugal load is a body force which reads:

{Fc} = ρ ‖ {ΩR} × {r } ‖2
‖ {r } ‖ {êr} (1.38)

where {ΩR} is the rotational velocity vector, {r } the radial vector, and {êr} the unit vector in the
radial direction. In the steady state analyses in this work, the radial vector is always perpendicular
to the axis of rotation which is always parallel to the z axis.

Since it is a body force, the element centrifugal force vector can be computed using equa-
tion (1.33):

{Fce } =
∫

Ωe

[N ]T {Fc}dv (1.39)

The thermal load is another body force. During operation, temperature can reach up to a few
hundreds of ◦C and, most of the time, is not distributed evenly in the blades or vanes. Therefore,
the thermal strains induce a force which is called thermal load. the element thermal load vector
reads:

{Fte } =
∫

Ωe

[B]T [D]{ϵte }dv (1.40)

where ϵte is the element thermal strain matrix.
Finally, the gaspath load is the average aerodynamic pressure load at every location on the

blade or vane surface. During operation, every location on blades and vanes surfaces is subjected
to an aerodynamic pressure which is composed of a �uctuating term and an average term. The
gaspath load is the average term. It has a considerable impact for steady stress assessments;
however, the impact on the elasticity tensor ([D]), hence on prestress modal analyses results, is
small. Consequently, the gaspath load was neglected.

In summary, for the steady state analyses of this project, the element force vector, which is
the sum of the body force and traction force vectors, for a stator was:

{Fe } = {Fte } (1.41)

and for a rotor:

{Fe } = {Fce } + {Fte } (1.42)

The system of equations to solve for steady state analyses reads:

[K]{u} = {F } (1.43)

where {u} is the total displacement vector which is found by solving equation (1.43). The element
strain vector can be computed in every element as follows:

{ϵe } = [B]{ue } (1.44)
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where {ue } is the element displacement vector. Finally, the stress vector can be computed in every
element as follows:

{σe } = [D]{ϵe } (1.45)

The total strain and stress vectors can then be assembled:

{ϵ } =
N∑

e=1
{ϵe }

{σ } =
N∑

e=1
{σe }

(1.46)

Modal Analysis

Modal analyses with prestress environment were performed on the test cases to �nd their steady
natural linear sinusoidal frequencies and mode shapes and also to perform harmonic response
analyses with the mode superposition method. With modal analyses in a prestress environment,
the elasticity tensor ([D]) is linearized with respect to the steady state equilibrium induced by the
constant loads. This equilibrium is solved with equation (1.43). This is why steady state analyses
needed to be performed [7].

For a steady state modal analysis, the system of equations to solve is the following:

[M]{ü} + [K]{u} = 0 (1.47)

Note that the total sti�ness matrix ([K]) has prestress e�ects included since it is computed with
the linearized elasticity tensor ([D]). For linear sinusoidal free vibrations, the displacement vector
({u}) is known to be:

{u} = {ϕi } cos(ωnit ) (1.48)

where {ϕi } is the eigenvector of the ith mode shape andωni is the ith natural frequency. Substituting
equation (1.48) into equation (1.47) yields:

(−ω2
ni [M] + [K]){ϕi } = {0} (1.49)

Equation (1.49) is satis�ed if {ϕi } = {0} or if the determinant of [K] − ω2
n[M] is zero. The �rst

option being trivial is not of interest. The second option gives the following solution:

det ([K] − ω2
n[M]) = 0 (1.50)

This is an eigenvalue problem where the number of obtained ω2
n values is equal to the number of

Degrees Of Freedom (DOF) of the system.
Once the ω2

ni values are obtained, the corresponding eigenvectors ({ϕi }) and modal displace-
ment vectors ({u}) for every mode can be computed. The modal strain vectors ({ϵ }) and stress
vectors ({σ }) for every mode can then be calculated using equations, (1.44), (1.45), and (1.46). Note
that the only natural frequencies that are considered are the positive ωni values since they are the
only ones that have a physical meaning.
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Transient Analysis

When performing a transient analysis, it can be assumed that the elasticity tensor ([D]) remains
constant, meaning that the total sti�ness matrix ([K]) is constant as well. This makes the elastic
force vector ({Fel}) linearly proportional to the nodal displacement vector ({u}):

{Fel} = [K]{u} (1.51)

In such a case, the system of equations becomes:

[M]{ü} + [C]{u̇} + [K]{u} = {F (t )} (1.52)

In this work, the total damping matrix ([C]) was built using a given damping ratio (ζ ) which is
constant in space and time.

In transient analyses, the force vector ({F (t )}) is the sum of the thermal, centrifugal, and
aerodynamic excitation loads. The system of equations is not linearized with respect to the steady
state equilibrium induced by the constant loads because the ANSYS Mechanical software design
does not allow it. If its design allowed such a transient analysis, the force vector would only
have been the aerodynamic periodic excitation which is the only time dependent load, and the
constant linearized elastic tensor ([D]) would have been used. Since the steady loads (thermal
and centrifugal) have to be included in {F (t )}, the elastic tensor ([D]) cannot be considered as
constant. Therefore, the elastic tensor ([D]) depends on the displacement vector ({u}). The system
of equations to solve is therefore:

[M]{ü} + [C]{u̇} + {Fel ({u})} = {F (t )} (1.53)

where:

{Fel} = [K ({u})]{u} (1.54)

For solving this system of equations, the Newmark method is performed for solving the time
domain [7]. Since this system of equations is nonlinear, any time integration operator is used
in association with the Newton-Raphson algorithm. With the Newmark method, the system of
equations at time tn+1 is:

[M]{ün+1} + [C]{u̇n+1} + {Feln+1 } = {Fn+1} (1.55)

where:

{Fn+1} = {Fn+1 (tn+1)}
{Feln+1 } = {Feln+1 ({un+1}}

(1.56)

With the Newmark method, the position and velocity vectors at time tn+1 are:

{un+1} = {un } + {u̇n }∆t +
[(1
2 − α

)
{ün } + α {ün+1}

]
∆t2 (1.57)

{u̇n+1} = {u̇n }[(1 − δ ){ün } + δ {ün+1}]∆t (1.58)
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where ∆t is the time step size and α and δ the Newmark’s integration parameters. By introducing
a residual vector:

{Rn+1} = {Rn+1 ({un+1})} (1.59)

equation (1.55) becomes:

{Rn+1} = {Fn+1} − {Feln+1 } − [M]{ün+1} − [C]{u̇n+1} (1.60)

The linearized form of the integration operator is obtained using the Newton-Raphson algorithm
as follows:

{Rn+1} + ∂{Rn+1}
∂{un+1} {∆un+1,k } = {0} (1.61)

with:

{Rn+1} = {Rn+1 ({un+1,k })} (1.62)

where {un+1,k } is the estimate of {un+1} at the kth residual convergence iteration and {∆un+1,k }
is the displacement increment of {un+1} at the kth residual convergence iteration. Therefore,
equation (1.55) linearized with the Newton-Raphson algorithm of equation (1.61) gives:

[
(a0[M] + a1[C]) + [Kn+1]

]
{∆un+1,k } = {Rn+1} (1.63)

where:

[Kn+1] = [Kn+1 ({un+1,k })] (1.64)

is the total sti�ness matrix at time tn+1, {Rn+1} is as per equation (1.62), and:

a0 =
1

α∆t2
(1.65)

a1 =
δ

α∆t
(1.66)

With the Newmark method, the amount of numerical damping is controlled by the Newmark’s
integration parameters (α and δ ). These parameters should respect the following conditions to
have an unconditionally stable Newmark scheme:

δ ≥ 1
2

α ≥ 1
4

(1
2 + δ

)2 (1.67)

In ANSYS Mechanical, an amplitude decaying factor (γ ) is used to set the Newmark’s integration
parameters (α and δ ) values. The relations between the Newmark’s integration parameters and
the amplitude decaying factor is:

δ =
1
2 + γ

α =
1
4 (1 + γ )

2
(1.68)
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where:

γ ≥ 0 (1.69)

Note that the amplitude decaying factor (γ ) satis�es the conditions given in equation (1.67).
Increasingγ results, obviously, in increasingα and δ which results in increasing numerical damping
and attenuating high frequency phenomena. In this work, transient analyses were performed to
make a high frequency mode resonate. Accordingly, γ was set to zero for the transient analyses
and the minimum acceptable α and δ values were used:

δ =
1
2

α =
1
4

(1.70)

Harmonic Response Analysis

Harmonic response analyses solve the linear system in (1.52). As opposed to transient analyses,
which can solve for any kind of time dependent external forces, harmonic response analyses can
only be used under the following restrictions:

• The structure must have constant or frequency-dependent sti�ness, damping, or mass
e�ects.

• Loads and displacements must be sinusoidal and have the same known frequency, but may
have di�erent phases.

• Loads must not be complex except for pressures.
Since compressor blades and vanes receive periodic aerodynamic excitation, this method can be
used for this project. Harmonic response analyses can be performed in a prestress environment
just like modal analyses. Therefore, the system of equations in (1.52) can be linearized with respect
to the equilibrium induced by the constant loads [7].

As stated above, every point in the structure is moving at the same known frequency. However,
they may not have the same phase. It is also known that the presence of damping may cause phase
shifts. The displacement vector can therefore be de�ned as:

{u} = {umaxeiϕp }eiΩft (1.71)

where i =
√−1, {umax} is the maximum displacement vector, Ωf the imposed, or forced, frequency,

and ϕp the displacement phase. Similarly, the force vector is de�ned as:

{F } = {Fmaxeiψp }eiΩft (1.72)

where {Fmax} is the maximum force vector andψp is the force phase.
If trigonometric notation is used, equations (1.71) and (1.72) become:

{u} = {umax (cos(ϕp) + i sin(ϕp))}eiΩft (1.73)
{F } = {Fmax (cos(ψp) + i sin(ψp))}eiΩft (1.74)

Furthermore, the following substitutions can be performed in these equations:

{u} = ({u1} + i{u2})eiΩft (1.75)
{F } = ({F1} + i{F2})eiΩft (1.76)
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Therefore, substituting equations (1.75) and (1.76) into equation (1.52) yields:

([K] − Ω2
f [M] + iΩf[C]) ({u1} + i{u2})eiΩft = ({F1} + i{F2})eiΩft (1.77)

Dividing the above system of equations by eiΩft leads to:

([K] − Ω2
f [M] + iΩf[C]) ({u1} + i{u2}) = {F1} + i{F2} (1.78)

Equation (1.78) gives the system of equations that is solved in harmonic response analyses. For
solving it, the two most popular methods are the full solution and the mode superposition methods.
With the full solution method, the system of equations is solved with Gaussian elimination via
complex algebra.

On the other hand, the mode superposition method uses the natural frequencies and mode
shapes obtained from modal analysis to calculate the response. Using this method imposes two
extra restrictions:

• Nonzero imposed harmonic displacements are not permitted
• Element damping matrices are not permitted
In this work, no nonzero harmonic displacements were imposed and the damping was always

given as a constant damping ratio (ζ ) independent of space or frequency. Therefore, the two
restrictions are satis�ed and the mode superposition method was used for all the harmonic response
analyses. It is important to note that, with this method, the total force vector ({F }) reads:

{F } = {Fnd} + s{Fs} (1.79)

where {Fnd} is the imposed sinusoidal force, {Fs} the load vector computed from the modal analysis,
and s the load vector scale factor.

The �rst step for employing the mode superposition method is to go back to the system of
equations in (1.52) and convert it to modal form. The following set of modal coordinates (yi) is
�rst de�ned:

{u} =
n∑

i=1
{ϕi }yi (1.80)

where {ϕi } is the ith mode shape vector and n is the total number of modes to be used. Substituting
the above equation in equation (1.52) gives:

[M]
n∑

i=1
{ϕi }ÿi + [C]

n∑

i=1
{ϕi }ẏi + [K]

n∑

i=1
{ϕi }yi = {F } (1.81)

Premultiplying the above equation by the transpose of any typical mode shape vector {ϕ j }T gives:

{ϕ j }T [M]
n∑

i=1
{ϕi }ÿi + {ϕ j }T [C]

n∑

i=1
{ϕi }ẏi + {ϕ j }T [K]

n∑

i=1
{ϕi }yi = {ϕ j }T {F } (1.82)

The orthogonal condition of the natural modes states the following:

{ϕ j }T [M]{ϕi } = 0, ∀i , j

{ϕ j }T [K]{ϕi } = 0, ∀i , j
(1.83)
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As stated above, element damping matrices are not permitted with the mode superposition
method. The damping is given as a Rayleigh (mass and sti�ness matrix coe�cients α and β) or
constant damping factor (ζ ). In the mode superposition method, the damping is such that:

{ϕ j }T [C]{ϕi } = 0, ∀i , j (1.84)

The damping was given as a constant damping ratio (ζ ) for all the harmonic response analyses
performed in this project.

Applying the conditions of equations (1.83) and (1.84), only the i = j terms of equation (1.82)
remain which gives:

{ϕ j }T [M]{ϕ j }ÿj + {ϕ j }T [C]{ϕ j }ẏj + {ϕ j }T [K]{ϕ j }yj = {ϕ j }T {F } (1.85)

In ANSYS Mechanical, it is imposed that the ÿj coe�cient is unity:

{ϕ j }T [M]{ϕ j } = 1 (1.86)

This is the normality condition when each eigenvector is normalized to the mass matrix.
The damping term is based on treating the modal coordinate as a single DOF system. Accord-

ingly, the ẏj coe�cient becomes:

{ϕ j }T [C]{ϕ j } = Cjϕ
2
j (1.87)

In this work,Cj is actually the same for every mode since a constant damping ratio (ζ ) is provided
in every performed harmonic analysis. For a single DOF system, damping (Cj ) can be expressed in
terms of damping ratio (ζj ) as follows:

Cj = 2ζj
√
KjMj (1.88)

The mass term is also based on treating the modal coordinate as a single DOF system and the
ÿj coe�cient becomes:

{ϕ j }T [M]{ϕ j } = Mjϕ
2
j (1.89)

However, from equation (1.86), equation (1.89) yields:

Mjϕ
2
j = 1 (1.90)

where solving for ϕ j implies:

ϕ j =
1√
Mj

(1.91)

In single DOF, the natural frequency of the jth mode is:

ωnj =

√
Kj

Mj
(1.92)
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Therefore, substituting equations (1.88), (1.91), and (1.92) into equation (1.87) gives:

{ϕ j }T [C]{ϕ j } = 2ζj
√
KjMj

( 1√
Mj

)2
= 2ζjωnj (1.93)

From equation (1.49), it can be stated that:

[K]{ϕ j } = ω2
nj [M]{ϕ j } (1.94)

Premultiplying by {ϕ j }T gives:

{ϕ j }T [K]{ϕ j } = ω2
nj {ϕ j }T [M]{ϕ j } (1.95)

and utilizing equation (1.86) gives:

{ϕ j }T [K]{ϕ j } = ω2
nj (1.96)

For convenience, the following notation is introduced:

fj = {ϕ j }T {F } (1.97)

Substituting equations (1.86), (1.93), (1.96), and (1.97) into equation (1.85) gives the equations
of motion in modal coordinates which reads:

ÿj + 2ωnjζjẏj + ω
2
njyj = fj (1.98)

For a steady sinusoidal vibration, fj and yj must be of the form:

fj = fcjeiΩft (1.99)
yj = ycjeiΩft (1.100)

where fcj is the complex force, ycj the complex amplitude of the jth mode, and, as speci�ed earlier,
Ωf the imposed, or forced, frequency.

Substituting equations (1.99) and (1.100) into equation (1.98) gives:

−Ω2
fycjeiΩft + 2ωnjζj iΩfycjeiΩft + ω2

njycjeiΩft = fcjeiΩft (1.101)

Dividing by eiΩft and putting ycj in evidence, the expression:

(−Ω2
f + 2ωnjζj iΩf + ω

2
nj )ycj = fcj (1.102)

is obtained. Solving for ycj gives:

ycj =
fcj

(ω2
nj − Ω2

f ) + i(2ωnjΩfζj )
(1.103)

The contribution vector from each mode ({Cj }) can then be computed as follows:

{Cj } = {ϕ j }ycj (1.104)
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Finally, the complex displacement vector ({uc}) is:

{uc} =
n∑

j=1
{Cj } (1.105)

Strain and stress vectors can then be calculated using equations (1.44), (1.45), and (1.46).
The advantage of working with the mode superposition method is that the system of equa-

tions in modal coordinates is uncoupled. This is because all the matrix algebra is solved in the
modal analysis and this is what requires the most computational e�ort and time. Usually, before
performing a harmonic response analysis, performing a modal analysis is good engineering prac-
tice since knowing the natural frequencies and mode shapes of a structure tells a lot about its
dynamic behaviour. However, particular attention must be paid to the number of modes that is
considered when using the method. If too few modes are considered, results may not be accurate
and meaningful.

1.2.3 Coupling Types

In static and dynamic aeroelasticity theory, there exists some closed-form solution for simple
case problems. However, when it comes to solving for complex geometries subjected to complex
aerodynamic loads such as those in this work, FE and CFD numerical tools built as per the equations
presented in sections 1.2.1 and 1.2.2 shall be employed. For solving an aeroelasticity problem with
these numerical tools, a coupling method of the FE and CFD solvers must be chosen. The possible
solution methods are shown in �gure 1.6.

Aeroelasticity Solving Methods

Monolithic Solver
(Fully Coupled)

Staggered Solver
(Partitioned)

Two-Way
Aeroelasticity

One-Way
Aeroelasticity

Harmonic
Response Analysis

Transient
Analysis

Figure 1.6: Aeroelasticity solvers used in this project

When solving complex three dimensional problems like the ones solved in industry like P&WC,
staggered solvers are used. A staggered solver is actually a combination of a FE solver and a
CFD solver which are both fully independent in nature [8]. In other words, they are often used
independently for solving dynamic aerodynamics or dynamic solid mechanics problems. When
doing aeroelasticity, the CFD solver handles the �uid related calculation and the FE solver handles
solid related calculation. The two solvers exchange information at their �uid-solid interface (∂Ωfsi)
so that the e�ects of the �uid on the solid can be considered and vice versa. Since two solvers are
involved, a non-conformal mesh of the �uid and the solid domain can be used. A non-conformal
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mesh means that the nodes of the two meshes do not share the same coordinates at ∂Ωfsi. A two
dimensional non-conformal mesh example is shown in �gure 1.7a. Further details on staggered
solver will be given in the coming sections.

Fluid-Structure Interface Ωfsi

(a) Non-conformal mesh

Fluid-Structure Interface Ωfsi

(b) Conformal mesh

Figure 1.7: Fluid-structure meshes: structure ( ) and �uid ( )

On the other hand, an aeroelasticity monolithic solver is a single solver resolving the equations
of the �uid and the solid simultaneously. The �uid and solid equations are therefore discretised
and solved together. This requires a conformal mesh with matching nodal positions between the
solid and the �uid meshes. A conformal mesh means that the nodes of the two meshes share the
same coordinate at ∂Ωfsi. A two dimensional conformal mesh example is shown in �gure 1.7b.
Even though this type of solver is the most robust, it is not used yet in numerical commercial tools
such as ANSYS.

1.2.4 One-Way Aeroelasticity

When solving aeroelasticity problems using a staggered approach, it can be decided to consider
only the aerodynamic forces subjected to the body without considering the solid displacements
in the �uid domain. This reduces considerably the complexity of the analysis and the required
computational power. The CFD portion is �rst solved in standalone, the aerodynamic forces on the
�uid-solid interface (∂Ωfsi) are extracted and applied on the solid domain. Then, the FE analysis
portion is solved. Therefore, the only exchange of information that occurs at the �uid-solid
interface (∂Ωfsi) is the aerodynamic forces transferred from the CFD solver to the FE solver. There
is no mesh morphing in the �uid domain since the solid domain is rigid when the CFD portion
is being solved. This type of analysis is called one-way aeroelasticity. One-way aeroelasticity
analysis is one of the two kinds of analysis that can be done using a staggered solver as shown in
�gure 1.6.

In dynamic aeroelasticity, if accurate results are desired, the one-way aeroelasticity assumption
may be used only if certain conditions are respected. First, one-way aeroelasticity shall not be used
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if an asynchronous response, for instance �utter, is expected in reality. One-way aeroelasticity
cannot predict such responses since the energy added to or removed from the solid by the �uid
is not captured, as the CFD solver does not consider the solid mesh displacements. Second, the
displacements of the solid domain must be small compared to the size of the �uid domain. If the
displacements of the solid domain are too large compared to the �uid domain size, the analysis
results will not be accurate. Finally, an accurate value of the aerodynamic damping must be known
and imposed in the FE analysis. This is particularly important when the synchronous response of
a mode in resonance is analyzed as performed in this project.

As stated above, the �rst step in one-way aeroelasticity analysis is to perform the CFD. In
dynamic aeroelasticity, a transient CFD analysis is required. However, a good industrial practice
in aerodynamics is to perform steady CFD analyses �rst. It is recommended to ensure that the
mesh size is appropriate for the averaged �ow quantities and that no mistakes have been made
in the analysis setup. As explained in section 1.2.1, in this project, the steady analyses were
performed using the time independent RANS equations using the mixing plane concept. Once
it is demonstrated that the steady CFD analyses converge properly and that the mesh density is
acceptable, the transient CFD analyses can be conducted.

As stated as well in section 1.2.1, the transient analyses were done using the full RANS
equations with the TBR method. Once the transient CFD analyses are completed, the static
pressure (ps = ps (x ,y, z, t )) should be extracted ∀t and ∀x ,y, z ∈ ∂Ωfsi. With the extracted static
pressure, the FE analysis of the solid can be conducted.

As shown in �gure 1.6, there exist two kinds of one-way aeroelasticity analyses: transient and
harmonic response analyses. From an aerodynamics (or CFD) point of view, there is no di�erence
between a transient and harmonic response one-way aeroelasticity analysis. The fact that the
one-way aeroelasticity analysis is a transient or harmonic response one depends only on the
type of FE analysis that is performed using the static pressure extracted from the transient CFD
analysis.

The details and theory about transient and harmonic response FE analyses were presented
in section 1.2.2. Since the time domain is solved in a transient analysis, it requires much more
computational power and time than a harmonic response analysis. If the transient phenomenon
of interest is not periodic, then a transient analysis is required. On the other hand, if the dynamic
behaviour of the structure is only needed for speci�c periodic excitation, a harmonic analysis
should be performed to save computational power and time.

If transient one-way aeroelasticity is chosen, the extracted static pressure from the transient
CFD analysis must be mapped on the solid mesh nodes belonging to ∂Ωfsi by �xed-point iteration.
With this pressure mapping on ∂Ωfsi, the traction or force vector ({tp}) can be computed. Then,
using equations (1.34), (1.41) or (1.42), and (1.37), the total force vector ({F } = {F (t )}) can be
constructed. The system of equations (1.53) can then be solved as per the FE transient analysis
method detailed in section 1.2.2.

On the other hand, if harmonic response one-way aeroelasticity is chosen, Fast Fourier Trans-
form (FFT) is performed on the static pressure extracted from the transient CFD analysis and the
real and imaginary static pressures (preal and pimag) corresponding to the desired imposed or forced
frequency (Ωf) are computed. Therefore, the complex pressure on the �uid-solid interface (∂Ωfsi)
reads:

pcj = pcj (x ,y, z) = prealj (x ,y, z) + ipimagj (x ,y, z), ∀x ,y, z ∈ ∂Ωfsi (1.106)
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The complex pressure is then mapped on every solid mesh node belonging to ∂Ωfsi by �xed-point
iteration. The complex force (fcj ) can then be computed. The harmonic response analysis with the
mode superposition method can then be performed by solving equations (1.103) to (1.105).

1.2.5 Two-Way Aeroelasticity

If an asynchronous response of the solid is expected, for instance �utter, or if the solid displacements
are large compared to the size of the �uid domain, a one-way aeroelasticity analysis would not give
meaningful results. In these circumstances, a two-way aeroelasticity analysis should be performed
instead. In dynamic two-way aeroelasticity, the transient CFD and FE analyses must be solved
simultaneously and exchange information at every time step at the �uid-solid interface (∂Ωfsi) by
�xed-point iteration. A harmonic response is not possible with ANSYS.

In the two-way aeroelasticity analysis attempted in this project, it has been decided to solve
the solid domain �rst at every time step. Therefore, at the beginning of time step tn , the system of
equations (1.53) is solved using the FE transient analysis methodology described in section 1.2.2.
Once it is solved, the following BCs are imposed:

{ufsi,f}(tn ) = {ufsi,s}(tn )
{u̇fsi,f}(tn ) = {u̇fsi,s}(tn )

(1.107)

where {ufsi,f} and {ufsi,s} are the displacement vectors at the �uid-structure interface of the �uid
and solid domains respectively and {u̇fsi,f} and {u̇fsi,s} are the velocity vectors at the �uid-structure
interface of the �uid and solid domains respectively. These quantities are mapped from the solid
domain to the �uid domain by �xed-point iteration and they induce deformation of the mesh
of the �uid domain. The time dependent RANS equations presented in section 1.2.1 can then be
solved at tn .

Once the RANS equations have been solved for this time step (tn), the following BC is imposed:

psfsi,s (tn+1) = psfsi,f (tn ) (1.108)

where psfsi,s and psfsi,f the static pressures at the �uid-structure interface on the solid and �uid
domains respectively. With this static pressure mapping on the solid domain on ∂Ωfsi by �xed-
point iteration, the traction force vector {tp } and the total force vector {F } can be computed at
tn+1 and the iterative time integration process can continue. The CFD solver also calculates the
aerodynamic damping at tn so that the FE solver can use it for tn+1.

In CFX, the TBR method does not support mesh morphing and therefore cannot be used.
The two-way aeroelasticity analysis attempt was therefore undertaken using the pitch scaling
approach detailed in section 1.2.1 and illustrated in �gure 1.3.

1.3 Test Cases

Two test cases were chosen for establishing the dynamic aeroelasticity procedure: the compressor
rotor 2 blade of a PT6 turboshaft engine and the compressor stator 1 vane of a PT6 turbopropeller
engine. A simpli�ed cross-section of the PT6 engine in shown in �gure 1.8. This simpli�ed cross
section is valid for both the turboshaft and turbopropeller versions of the PT6 engine.
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POWER SECTION GAS GENERATOR SECTION
power
turbine

compressor
turbine

centrifugal
compressor

axial
compressor

radial
inlet

exhaust
duct

combustion
chamber

accessory
gearbox

Figure 1.8: PT6 engine simpli�ed cross-section

The PT6 turboshaft engines can develop 1,000 to 2,000 shaft horsepower and the PT6 turbo-
propeller engines 500 to 2,000 shaft horsepower depending on aircraft and costumer applications.
Every PT6 engine is composed of a radial inlet, a four-stage axial compressor, a single-stage
centrifugal compressor (an impeller), and a three-stage turbine. It is a two-spool engine. Every
compressor rotor and the �rst turbine stage rotor are mounted on the shaft named the gas genera-
tor shaft or Ng. The turbine second and third stage rotors are mounted on the other shaft named
the Power Turbine (PT) shaft or Npt. The Npt shaft is the one connected to the aircraft gearbox
hence providing the power. The Ng shaft on the other hand provides the necessary gas �ow to
turn the Npt shaft.

1.3.1 PT6 Turboshaft Compressor Rotor 2 Blade

The �rst test case is the compressor rotor 2 blade of a PT6 turboshaft engine application. This
rotor is a 25 blade Integrated Bladed Rotor (IBR) for this turboshaft application and it is located
between stators 1 and 2 as shown in �gure: 1.9. In this project, the vibratory stress levels induced
by the periodic excitation from stator 1 were studied. This excitation is an upstream excitation
which means that it is caused by the periodic wakes of the stator 1 vanes. As shown in �gure 1.9,
stator 1 is composed of 40 vanes for this turboshaft application.

The rotor 2 model used in the FE analyses is shown in �gure 1.10. This model is actually a
14.4◦ (1/25) sector of the full 360◦ rotor. The reasons why only a 14.4◦ sector was used will be
explained in section 2.2.

1.3.2 PT6 Turbopropeller Compressor Stator 1 Vane

The second test case is the compressor stator 1 vane of a PT6 turbopropeller application. On the
application in question, the stator 1 is composed of 40 vanes brazed on a shroud as shown in �gure
1.11 and it is located between rotors 1 and 2. In this project, the vibratory stress levels induced by
the periodic excitation from rotor 1 were studied. This excitation is an upstream excitation which
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stator 1
40 vanes

rotor 2
25 blades

Figure 1.9: PT6 turboshaft compressor cross-section

Figure 1.10: Rotor 2 sector

means that it is caused by the periodic wakes of the rotor 1 blades.

rotor 1
16 blades

stator 1
40 vanes

Figure 1.11: PT6 turboshaft compressor cross-section

One of the stator 1 models used in the FE analyses is shown in �gure 1.12. This model is a 27◦
(3/40) sector of the full 360◦ stator. The other model used in the FE analyses is the full 360◦ model.
The reasons why FE analyses were done with these models will be explained in section 3.2.
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Figure 1.12: Stator 1 sector
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Chapter 2

Aeroelasticity Analyses on PT6 Turboshaft
Compressor Rotor 2 Blade

2.1 Strain Gauge Test Results Review

Before taking a look at vibratory stress data of rotor 2, the potential aerodynamic periodic excitation
sources must be known. As explained in section 1.3, every rotor in the compressor is mounted on
the Ng shaft in PT6 engines. Therefore, the relative velocity between a rotor blade and another
rotor blade is zero. Accordingly, the rotor 2 blades cannot receive aerodynamic periodic excitation
from the blades of another rotor. The components that can induce considerable excitation to the
rotor 2 are the stators. Since they are stationary, the relative velocity between every stator vane
and the rotor 2 blades is the absolute velocity of the Ng shaft which will be named ΩNg.

Any stator aerodynamic periodic excitation frequency (ΩfS) is:

ΩfS = NvΩNg (2.1)

where Nv is the number of vanes of the stator. Furthermore, the Engine Order (EO) of a stator
aerodynamic periodic excitation is de�ned as:

EO = Nv =
Ωfs
ΩNg

(2.2)

When rotor 2 has a mode in resonance, calculating the EO indicates which stator is the source of
excitation.

For the case of this PT6 turboshaft compressor, when rotor 2 was experiencing its highest
vibratory stress during the test, the EO was equal to 40. Since the EO depends on the rotational
velocity of the Ng shaft, this excitation will be denoted as a 40ENg excitation. The stator 1 could
therefore be identi�ed as the excitation source since it is composed of 40 vanes. It makes a lot of
sense that the highest vibratory stress was caused by the stator 1 excitation because in an axial
compressor, the upstream adjacent component is the one inducing the highest excitation. The
waterfall plot in �gure 2.1 shows the highest vibratory stress recorded.

In this waterfall plot, σ is the vibratory stress axis, Ωf the frequency axis, and ΩNg the Ng
shaft rotational velocity axis. The red line represents the 40ENg line and the following is true for
every point on this line:

Ωf
ΩNg

= 40 (2.3)

The highest vibratory stress measured by the strain gauge is also shown on the waterfall plot.
This stress will be called σR2,sg. The green and orange lines crossing σR2,sg are, respectively, the
vibratory stress frequency (ΩfS1,sg) and the Ng rotational speed (ΩR2,sg) for which σR2,sg occurs.
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σ

00 0
Ωf

ΩNg

σR2,sg

Figure 2.1: Waterfall plot: strain gauge data ( ), 40ENg ( ), ΩfS1,sg ( ), and ΩR2,sg ( )

Note that the 40ENg line is crossing σR2,sg indicating that this stress was a 40ENg one meaning
that it was caused by a 40ENg excitation, hence stator 1. Finally, it can also be observed that other
resonances due to the stator 1 excitation occur at lower frequencies since other vibratory stress
peaks were present. However, σR2,sg was the highest measured vibratory stress. To make a better
assessment of all the 40ENg vibratory stress peaks amplitudes, the 40ENg plot shown in �gure 2.2
was generated.

Vi
br
at
or
y
St
re
ss

σ

Ng Rotational Velocity ΩNg
00

(ΩR2,sg,σsg)

Figure 2.2: 40ENg plot: 40ENg strain gauge data ( )

On this 40ENg plot, only the 40ENg vibratory stress is considered and plotted with respect to
ΩNg. All the 40ENg vibratory stress peaks featuring on the waterfall plot in �gure 2.1 are shown
in the 40ENg plot as well, but a much better assessment of their amplitudes can be achieved. It
can then be observed that σR2,sg was at least twice higher than any other 40ENg vibratory stress
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peak. This resonance was therefore an excellent candidate for testing the aeroelasticity procedure.

2.2 Modal Analysis

Before performing the modal analysis, the Nodal Diameter (ND) in resonance when the rotor 2
receives a 40ENg excitation was calculated. On an IBR composed of an axisymmetric disk and
identical equally spaced blades such as rotor 2, the modal displacement and modal stress levels are
the same on every blade for any mode shape. However, the blades do not necessarily vibrate in
phase. This is where the notion of ND is important.

For an IBR or any bladed disk, the ND is an integer stating the number of times that a full
mode shape cycle repeats itself on the full circumference. If the number of blades (Nb) is even, the
possible NDs are:

0 ≤ ND ≤ Nb
2 (2.4)

and if the number of blades is odd, the possible NDs are:

0 ≤ ND ≤ Nb − 1
2 (2.5)

An ND 0 means that all the blades are in phase in a given mode shape. Note as well that the modes
have di�erent natural frequencies for every ND.

The ND in resonance on a bladed rotor is found by aliasing as follows:

ND = −EO + niNb (2.6)

where ni is any positive integer or zero. Note that with this equation, negative and positive ND
values can be obtained. A negative value means that the modes travel in the opposite direction to
the shaft rotation and a positive value means that the modes travel in the same direction as the
shaft rotation for the ND in question. A mode travelling in the opposite direction of shaft rotation
will be denoted as a backward travelling wave and a mode travelling in the same direction as the
shaft rotation as a forward travelling wave.

Rotor 2 has 25 blades and was subjected to a 40ENg excitation from stator 1. As per equa-
tion (2.5), the highest possible ND is 12. Moreover, as per equation (2.6), the ND in resonance is 10,
forward travelling wave. Therefore, the σR2,sд stress obtained in the strain gauge test was from a
mode in resonance at ND 10.

As stated in section 2.1, the rotor 2 model is a 14.4◦ (1/25) sector of the full 360◦ model. Since
harmonic response and transient one-way aeroelasticity and two-way aeroelasticity analyses were
desired, cyclic conditions could not be imposed since the aerodynamic forces applied on one blade
are not cyclic. Moreover, even though the forces were cyclic, the ANSYS version being used does
not support cyclic conditions in harmonic and transient analyses.

The reason why it has been decided to use a 1/40 sector without using cyclic conditions
rather than the full 360◦ model is that the ND in resonance was near the maximum ND (10 vs.
12). Therefore, the disk was almost acting like a rigid body for such a high ND. This model was
therefore meshed for performing the modal analysis and the FE portions of the aeroelasticity
analyses. The rotor 2 mesh of the blade is shown in �gure 2.3.
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Figure 2.3: Blade mesh of the rotor 2

The clamped BCs applied on the model are shown in �gure 2.4. In terms of FE, the clamped
BCs mean that:

{u} = 0, ∀x ,y, z ∈ ∂ΩBC (2.7)

where ∂ΩBC is any surface where the clamped BCs are applied. Therefore, the FE model that was
analyzed can be summarized as follows:

• Mesh composed of quadratic tetrahedron elements
• 525,992 nodes
• 305,448 elements
• 1,577,976 DOF on the complete model
• 17,788 nodes a�ected by the clamped BCs
• 1,524,612 DOF for the reduced model due to BCs

clamped

Figure 2.4: Rotor 2 clamped BCs

As explained in section 1.2.2 the modal analysis of rotor 2 was performed in a prestress
environment. Accordingly, a steady state analysis, which calculates the equilibrium induced by
the constant loads, was performed. With these results, the elasticity tensor ([D]) was linearized
with respect to this equilibrium and the total sti�ness matrix ([K]) was rebuilt. The steady loads
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to consider were the centrifugal and thermal loads. During the strain gauge test, σR2,sg occurred
at the rotational velocity of ΩR2,sg. The steady state analysis was therefore performed using this
rotational velocity and the temperature distribution on rotor 2 at this rotational velocity.

The modal analysis was then performed by solving the system of equations (1.50) and the
natural frequencies, modal de�ection, strain, and stress levels were calculated. Mode 14 was
identi�ed as the closest frequency to ΩfS1,sg. This was the mode in resonance during the strain
gauge test. The calculated natural frequency of mode 14 will be denoted as ωR2. The calculated
natural frequency was found to be 3.35% lower than the frequency at which it was in resonance
during strain gauge test:

ωR2 = 0.9665ΩfS1,sg (2.8)

which is an acceptable error. The mode shape of mode 14 is shown in the modal displacement
levels plot in �gure 2.5. As can be observed, the modal displacement levels of this mode shape are
concentrated at the tip of the blade.

Figure 2.5: Rotor 2 mode shape of mode 14

The σ11 and σ33 stress distributions were both looked at. The highest stress found is shown in
the stress distribution of the suction side of the blade in �gure 2.6. This highest stress was located
at the tip near the leading edge. The highest stress location is called the critical location. Every
numerical vs. experimental comparison were done at the critical location.

The strain gauge that measured σR2,sg was not located at the critical location. Therefore, a
stress scaling factor (SF) was calculated using the stress distribution of mode 14. The stress value
at the critical location (σR2,cl) was:

σR2,cl = SFσR2,sg (2.9)

when σR2,sg was measured.
To make sure that these modal analysis results were representative of reality when mode 14

was in resonance at ND 10, the modal analysis was launched again using cyclic conditions on
the sector for comparison purposes only. As mentioned before, the model with cyclic conditions
cannot be used in the aeroelasticity analyses. The clamped BCs on the 2 left images in �gure 2.4
were therefore replaced by cyclic conditions. The BCs for this cyclic modal analysis are shown in
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Figure 2.6: Rotor 2 σ11 stress distribution on the suction side for mode 14

�gure 2.7. The calculated natural frequency for mode 14, ND 10, was 1.63% higher than the one
obtained without cyclic symmetry and therefore 1.72% lower than during the strain gauge test:

ωR2,c = 1.0163ωR2

ωR2,c = 0.9828ΩfS1,sg
(2.10)

where ωR2,c is the calculated circular frequency of mode 14, ND 10.

clamped
cyclic conditions

Figure 2.7: Rotor 2 clamped and cyclic BCs

The calculated natural frequencies with and without cyclic conditions were close. Moreover,
the modal stress to displacement levels ratios were found to be the same for both analyses. This
shows that the assumption of a non-cyclic sector is valid speci�cally for mode 14, ND 10, for
rotor 2.

2.3 CFD Analyses

CFD analyses for predicting the transient static pressure on the blade were performed. Therefore,
the goal was to perform a transient CFD analysis modelling the stator 1 and rotor 2 interactions
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accurately. To simulate resonance of mode 14 of rotor 2, this analysis was achieved at the rotational
velocity where:

ΩfS1 = ωR2 (2.11)

where ΩfS1 is the stator 1 excitation frequency and ωR2 the natural frequency of mode 14 obtained
in the modal analysis of the rotor 2 sector without cyclic conditions. Based on equation (2.3) this
rotational velocity is:

ΩR2 =
ωR2
40 (2.12)

For doing such a transient analysis, the BCs (entrance of stator 1 and exit of rotor 2) must
be in line with the �ow conditions at a rotational velocity of ΩR2. However, the only known
conditions were the engine inlet temperature and pressure and the corrected mass �ow (ṁcorr) to
the atmospheric pressure (patm) and temperature (Tatm). Therefore, the full axial compressor was
modelled.

2.3.1 Inlet and Full Axial Compressor Steady Analysis

For this analysis, one passage of every component of the axial compressor and one passage of the
inlet were meshed. Therefore, a total of 9 passages were included in the model which is shown in
�gure 2.8. in this �gure, the black arrows at the entrance of the inlet passage and at the exit of the
stator 4 passage are the BCs applied on theses boundaries. On the other hand, the purple arrows
on the passages are the cyclic conditions.

BCs
cyclic conditions

Figure 2.8: PT6 turboshaft inlet and full axial compressor CFD model

As stated above, the engine inlet temperature and pressure and the corrected mass �ow to
the atmospheric pressure and temperature were known. The inlet temperature and pressure are
atmospheric pressure and temperature at sea level respectively. Therefore, the BC at the inlet was:

p0 = patm, ∀x ,y, z ∈ ∂Ωin (2.13)
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where p0 is the total pressure and ∂Ωin the inlet boundary.
The BC imposed at the exit of stator 4 reads:

ṁ = ṁcorr

√
Tatm

T 04

p04
patm

(2.14)

where ṁ is the mass �ow rate, ṁcorr the corrected mass �ow to the inlet pressure and temperature,
and p04 and T 04 the average total pressure and temperature at the stator 4 exit respectively which
are:

p04 =
1
A

∫

∂Ωout

p04dA (2.15)

T 04 =
1
A

∫

∂Ωout

T04dA (2.16)

where p04 and T04 are the total pressure and total temperature at the stator 4 exit respectively.
This set of BCs converged the analysis to �ow variable quantities corresponding to the operating
conditions at a rotational velocity of ΩR2.

Therefore, the inlet and full axial compressor CFD model that was analyzed can be summarized
as follows:

• Mesh of the inlet passage composed of tetrahedron elements and mesh of the axial component
passages composed of hexahedron elements

• 4,205,120 nodes
• 6,075,734 elements
• 12,615,360 DOF

The mesh of the rotor 2 passage at mid span is shown in �gure 2.9. The RANS equations, (1.9)
to (1.12), were then solved using the mixing plane concept with the area averaging method
introduced in section 1.2.1. The mixing plane concept had to be used since all the passages have a
di�erent pitch.

The maximum number of iterations was set to 300. After 300 iterations, convergence was
satisfactory. Results such as static and total temperature and pressure, density, and velocity were
veri�ed to make sure that their values were reasonable and that the mesh size was appropriate for
the �ow behaviour. The mass �ow rate and the stator 4 exit to the inlet pressure ratio were also
veri�ed to make sure that they were close enough to their design values for a rotational velocity
of ΩR2.

2.3.2 Two-Stage Axial Compressor Steady Analysis

The inlet and stages 3 and 4 were removed from the domain. Therefore, only the �rst two stages
of the compressor (rotor 1 to stator 2) were kept. This new CFD domain is shown in �gure 2.10.
Notice that a small block was added downstream of stator 2 for robustness purposes. This steady
analysis was also performed using the mixing plane concept with area averaging method.

The BC imposed at rotor 1 inlet is the average total pressure obtained in the inlet and full
axial compressor steady analysis on this same boundary. Similarly, the same is imposed for the
BC of the exit of the block downstream of stator 2, but for the static pressure instead of the total
pressure.
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Figure 2.9: Rotor 2 passage mesh at mid span

BCs
cyclic conditions

Figure 2.10: PT6 turboshaft stages 1 and 2 CFD model

The mesh of these four passages is the same as in the inlet and full axial compressor steady anal-
ysis. Therefore, the two-stage axial compressor CFD model that was analyzed can be summarized
as follows:

• Mesh of the four passages and the block downstream of stator 2 composed of hexahedron
elements

• 2,064,754 nodes
• 1,956,386 elements
• 6,194,262 DOF
• Converged solution of rotor 1 through stator 2 of the inlet and full axial compressor steady

analysis used as �ow initialization
Again, 300 iterations were performed and convergence was satisfactory. The �ow variables
quantity values were almost the same as what they were on the inlet and full axial compressor
steady analysis which means that the imposed BCs were reproducing well the e�ects of the
passages that have been removed. The obtained mass �ow rate was the same for the inlet and full
axial compressor steady analysis and the stator 2 exit to rotor 1 inlet pressure ratio was close to
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its design value for a rotational velocity of ΩR2.

2.3.3 Two-Stage Axial Compressor Transient Analysis

The same domain and same mesh as the ones of the previous steady analysis were used. Since the
�ow unsteadiness occurring in the stator 1 passage must be transmitted to the rotor 2 passage,
the transient analysis was done using the TBR method presented in section 1.2.1. Since the TBR
method can only be used at one passage interface, the mixing plane concept with the area averaging
method was used at the rotor 1 to stator 1 and rotor 2 to stator 2 interfaces.

So, the full RANS equations introduced in section 1.2.1 were solved. Rotor 1 and 2 passages
were imposed a rotational velocity of ΩR2 and the time step size (∆t ) was given as:

∆t =
PS1

25ΩR2
(2.17)

This time step was imposed to split the stator 1 excitation period into 25 time steps. The total time
of the analysis was set to:

ttot = 2 × 40 × 25∆t (2.18)

Therefore, the rotors did two complete rotations (720◦) in 2000 time steps. At every time step, a
maximum of ten iterations were allowed for residual convergence. The converged solution from
the previous steady analysis was used as �ow initialization for this transient analysis.

Once the analysis was completed, the static pressure history was extracted everywhere on
the blade surface (∂Ωfsi,R2) and FFT was performed for extracting the real and imaginary static
pressures at the frequency of ωR2.

2.4 Harmonic Response One-Way Aeroelasticity Analysis

The total damping of the rotor 2 blade was extracted from strain gauge reading when the maximum
vibratory stress (σR2,sg) was recorded. More speci�cally, the 40ENg plot, which is shown in �gure 2.2,
was used for extracting the damping which was imposed to the FE model for this analysis.

For extracting the damping from an EO plot, two popular methods are the half-power band-
width and Single Degree Of Freedom (SDOF) curve �tting methods. The curve �tting method
was used in this work [3]. With this method, the damping is obtained by using the least squares
method for making the best curve �t possible on the SDOF forced response steady state solution
with undetermined coe�cient equation which reads:

H (Ωf) =
Xωn
f0
=

1√
(1 − r 2)2 + (2ζ r )2

(2.19)

with:

r =
Ωf
ωn

(2.20)

where X is the amplitude of the parameter, ωn the natural frequency of the mode, f0 the force
amplitude, and Ωf the imposed or forced frequency. The parameter can be any parameter for
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which its amplitude depends on Ωf and ωn such as displacement, velocity, acceleration, strain,
stress, etc.

When the least squares method is applied on the SDOF steady state solution equation, the
least squares function reads:

∏
(ζ ,ωn, f0) =

nd∑

i

(Yi − Xi )
2 (2.21)

where:

Xi =
f0√(

1 − ( ωiωn
)2
)2
+

(
2ζ ωiωn

)2 (2.22)

and where nd is the total number of data point considered for the curve �tting, Yi the ith data
point amplitude value, and Xi the curve �t point at the ith data point. The best possible curve �t
can then be obtained by �nding the appropriate f0 and ζ values. The ζ value used for producing
the best curve �t corresponds to the damping factor for the SDOF linear forced response.

The curve �tting performed on the 40ENg plot in �gure 2.2 is shown in �gure 2.11. The half-
power line along with Ω1 and Ω2 are also displayed on the graph. The damping factor obtained
using the SDOF curve �tting method on the 40ENg plot will be denoted as ζR2,sg.
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Figure 2.11: SDOF curve �t: 40ENg data ( ), curve �t ( ), and half-power line ( )

The harmonic response was performed using the mode superposition method which is de-
tailed in section 1.2.2 using the results of the modal analysis detailed in section 2.2 as the modal
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environment. The imposed damping was set to ζR2,sg and the excitation frequency was set to ωR2
which is the frequency for which the real and imaginary static pressures were extracted. Since the
excitation frequency is set to be equal to the natural frequency of mode 14, all the energy will go
into that mode which should be a good steady state representation of the instant where the σR2,sg
vibratory stress was obtained in the test.

For assessing if the harmonic response one-way aeroelasticity method was giving a represen-
tative prediction of reality, the calculated σ11 stress at the critical location shown in �gure 2.6
was compared to the experimental vibratory stress scaled at critical location (σR2,cl) which can be
calculated using equation (2.9). The calculated σ11 stress at the critical location is denoted as σR2.
After comparison, it has been found that σR2 was 1.34% higher than σR2,cl:

σR2 = 1.0134σR2,cl (2.23)

This method is therefore extremely accurate for this test case. It is also very convenient for
vibratory stress levels calculation of a mode resonating in synchronous response since it is the
least expensive method in terms of computational power and time.

2.5 Transient One-Way Aeroelasticity Analysis

Since it has been found in section 2.4 that the harmonic response one-way aeroelasticity method
gives excellent results in terms of vibratory stress prediction for a synchronous response, it is fair
to claim that the transient one-way aeroelasticity method should not provide any added value to
the results. Therefore, this method should not be preferred to the harmonic response one-way
aeroelasticity method which is much less expensive in terms of computational power and time.
The transient one-way aeroelasticity analysis is, however, useful to perform for validating the
two-way aeroelasticity analysis setup.

A two-way aeroelasticity analysis would actually bring an added value to the prediction since
the total damping (ζR2,sg) does not need to be provided. The only damping that would need to be
provided is the material damping which is well known, but the aerodynamic damping e�ects are
part of the two-way aeroelasticity computation as explained in section 1.2.5.

Therefore, the transient one-way aeroelasticity of rotor 2 was performed as a preparatory
work for the two-way aeroelasticity analysis. The same FE model as the one used for the modal
analysis was used. The same time step size as the one set in the transient CFD analysis was
imposed. As stated in section 1.2.2, the amplitude decaying factor (γ ) was set to zero since high
frequency phenomena should not be attenuated. All the static pressure time history calculated
in the transient CFD analysis described in section 2.3 was mapped on the blade surface (∂Ωfsi,R2)
before undertaking the analysis and the imposed damping was ζR2,sg.

The Initial Condition (IC)s of the analysis were the following:

{u (t = 0)} = {0}
{u̇ (t = 0)} = {0} (2.24)

For applying the constant loads (centrifugal and thermal) at every time step without shocking the
system, time integration was turned o� for the two �rst time steps. Consequently, the system of
equations reduced to:

{Fel ({u})} = [K ({u})]{u} = {F } (2.25)
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So, only the Newton-Raphson algorithm is required for solving this system of equations. For
the �rst time step, the aerodynamic pressure mapping was not considered. The obtained nodal
displacements ({u}) were the displacements corresponding to a time t = ∆t . Therefore, the nodal
velocity vector at this time step was:

{u̇ (t = ∆t )} = {u (t = ∆t )} − {u (t = 0)}
∆t

(2.26)

which combined with equation (2.26) yields:

{u̇ (t = ∆t )} = {u (t = ∆t )}
∆t

(2.27)

For the second time step, the aerodynamic pressure mapping for the �rst transient CFD time step
was imposed with the thermal and centrifugal loads. The obtained results were therefore for time
t = 2∆t . The velocity vector was:

{u̇ (t = 2∆t )} = {u (t = 2∆t )} − {u (t = ∆t )}
∆t

≈ 0 (2.28)

The only di�erence between the displacement vectors at t = ∆t and t = 2∆t was the impact of the
aerodynamic static pressure mapping which was negligible since ∆t was small. For the remaining
time steps, time integration was turned on and the complete transient system of equations was
solved.

To assess if mode 14 was in resonance as expected, the σ11 and σ33 stress levels at mode 14
critical location shown in �gure 2.6 were plot as a function of time. This plot is shown in �gure 2.12.
It could be observed by looking at mode 14 critical location stress vs. time graph that mode 14
is in resonance since the σ11 and σ33 stress levels were getting higher and higher at every cycle.
On the other hand, it could also be observed that the stress levels had not reach their maximum
values when the analysis was completed since they were still on an increasing trend. Note as
well that the stress levels do not start from the zero line and that the σ33 stress was higher than
the σ11 stress. This is because these stress levels were the total ones (steady plus vibratory stress
levels). Since the steady loads induce a σ33 stress at the critical location, the σ33 stress begins from
a non-zero value. These results indicate that the analysis was setup properly. Accordingly, it was
worth undertaking a two-way aeroelasticity analysis.

2.6 Two-Way Aeroelasticity Analysis

As explained in section 1.2.5, the transient CFD and FE analyses are solved simultaneously in a
two-way aeroelasticity analysis. Moreover, mesh morphing (or mesh deformation) occurs in the
�uid domain. Since the �uid domain undergoes mesh morphing, the transient analysis cannot
be done using the TBR method. Therefore, the pitch scaling method described in section 1.2.1
was used since the �ow unsteadiness of stator 1 needed to be modelled and transmitted to rotor 2.
Consequently, stator 1 and rotor 2 passages were added to the �uid domain used in the previous
transient CFD analysis to make PR = PS. The �uid domain used for the transient CFD analysis is
shown in �gure 2.13.
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Figure 2.12: Stress vs. time for 2,000 time steps: σ11 ( ) and σ33 ( )

With a rotor 2 composed of 25 blades and a stator 1 composed of 40 vanes, 8 stator 1 passages
and �ve rotor 2 passages were required since:

PR = PS = 72◦ (2.29)

Therefore, the analyzed CFD model can be summarized as follows:
• Mesh of all the passages and the block at the stator 2 exit composed of hexahedron elements
• 7,463,582 nodes
• 7,056,277 elements

First, a steady CFD analysis was performed on this domain. The converged �ow obtained in
the passages of the stage 1 and 2 CFD steady analysis detailed in section 2.3.2 was used as �ow
initialization for this steady analysis. The boundary conditions were also the same as the steady
analysis in section 2.3.2. This steady analysis was done for the same reasons as the steady analysis
in section 2.3.2.

The converged �ow obtained with this steady analysis was used as �ow initialization for the
CFD transient analysis portion of the two-way aeroelasticity analysis. The coordinates of solid
domain blade corresponded to the coordinates of the center rotor 2 blade in the �uid domain. This
blade surface was, therefore, the �uid-structure interface.

The two-way aeroelasticity analysis was launched using the same time step size as in the
one-way aeroelasticity analyses. On the FE side, time integration was turned o� for the two �rst
time steps for the same reasons explained in section 2.5. However, mesh folding occurred in the
�uid domain and the analysis failed.
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BCs
cyclic conditions

Figure 2.13: PT6 turboshaft stages 1 and 2 CFD model for two-way aeroelasticity

It was attempted to correct by changing some mesh rigidity criteria in the �uid domain, but the
attempts were unsuccessful. It was therefore decided to stop the two-way aeroelasticity analysis.
If this analysis is re-attempted in the future, the suggested approach is to impose di�erent �uid
domain mesh rigidity criteria especially for the nodes and elements located near the �uid-structure
interface since this is where folding occurred.
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Chapter 3

Aeroelasticity Analyses on PT6
Turbopropeller Compressor Stator 1 Vane

3.1 Strain Gauge Test Results Review

The potential sources of excitation of the stator 1 should be obtained. The concepts explained at the
beginning of section 2.1 apply for this stator. However, components that can induce considerable
excitation are the rotor and impeller blades. Since every rotor is mounted on the same shaft (Ng)
in a PT6 engine, any aerodynamic periodic excitation is:

ΩfR = NbωNg (3.1)

where Nb is the number of blades on the rotor or impeller. Accordingly, the EO is de�ned as:

EO = Nb =
ΩfR
ωNg

(3.2)

For the case of this PT6 turbopropeller, when stator 1 was experiencing its highest vibratory
stress, the EO was equal to 16. Consequently, rotor 1 was identi�ed as the source of excitation.
The engine run where the highest vibratory stress occurred was performed under two di�erent
inlet temperature conditions. For the �rst condition, the inlet temperature was at a temperature
Tc1 and for the second condition, it was at a temperature Tc2 where Tc2 is 50% higher than Tc1:

Tc2 = 1.5Tc1 (3.3)

The waterfall plot in �gure 3.1 shows the highest vibratory stress recorded which was when the
inlet temperature was Tc2.

This vibratory stress is called σsg,c2. To better observe the di�erences between the vibratory
stress levels for the two conditions, the resonance is shown on the zoomed 16ENg plot in �gure 3.2.

From the 16ENg graph, it was observed that:

σsg,c2 = 1.359σsg,c1 (3.4)

Also, the resonance natural frequency is slightly higher at the �rst condition. It was found that:

ΩfR1,sg,c1 = 1.004ΩfR1,sg,c2 (3.5)

This di�erence in natural frequency is negligible. It probably occurs because the temperature
and average pressure on the vane are slightly di�erent due to the di�erence in inlet temperature.
The obtained natural frequencies in the analyses is compared with the excitation frequency of
condition 1 which, form now on, will be called ΩfR1,sg. Similarly, the rotational velocity at which
the excitation frequency occurred with the �rst condition will be called ΩS1,sg.
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Figure 3.1: Waterfall plot: strain gauge data ( ), 16ENg ( ), ΩfR1,sg,c2 ( ), and Ωsg,c2 ( )

3.2 Modal Analyses

As explained in section 3.1, stator 1 was excited by rotor 1 which is composed of 16 blades. As
for the rotor 2 test case, stator 1 ND in resonance for excitation coming from rotor 1 has to be
calculated. The same rules as equations (2.4) and (2.5) apply on stator 1. The possible NDs for a
stator depending on the number of vanes (Nv) is:

0 ≤ ND ≤ Nv
2 (3.6)

and if the number of vanes is odd, the possible NDs are any integer satisfying:

0 ≤ ND ≤ Nv − 1
2 (3.7)

Again, the ND in resonance can be found by aliasing using the following equation:

ND = −EO + niNv (3.8)

Since the stator 1 is subjected to a 16ENg excitation coming from the 16 blade rotor 1, the ND in
resonance is 16.

With this test case, considering only a one vane sector in the FE analysis was not a valid
assumption. As opposed to the rotor 2 test case, the stator 1 vane is attached to a very thin shroud
which is very �exible and undergoes a considerable amount of modal displacements even for high
NDs. The FE analyses were performed on two di�erent models: a three vane sector and a full
360◦ model with the 40 vanes. Obviously, the 40 vane model is the best possible representation of
reality in terms of solid mechanics. However, it is a very large model in terms of mesh size and
DOF and is therefore very expansive in terms of time and computational e�ort. The three vane
model was analyzed as well to see if this reduced model was a reasonable assumption. The reason
why three vanes were chosen is that when ND 16 is in resonance on a 40 vane stator, modes
periods repeat themselves at every 2.5 vanes:

2.5 = 40
16 (3.9)
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Figure 3.2: 16ENg plot: 16ENg strain gauge data for condition 1 ( ) and condition 2 ( )

The two models were meshed to be analyzed. The mesh at the vane level is shown in �gure 3.3.

Figure 3.3: Vane mesh of stator 1

The clamped BCs applied on the three vane model are shown in �gure 3.4. The two bottom
images in �gure 3.4 show the three vane model with all DOF clamped BCs on the cyclic faces.
These BCs are therefore not present on the 40 vane model which only has the BCs on the �ange
shown on the top images in �gure 3.4 along the circumference. The FE models that were analyzed
can be summarized as follows:

• Mesh composed of quadratic tetrahedron elements on the 2 models
• On the three vane model:

– 1,213,229 nodes
– 803,360 elements
– 3,639,687 DOF on the complete model
– 5,167 nodes a�ected by the clamped all DOF BCs
– 3,624,186 DOF on the reduced model due to BCs

47 55



Chapter 3 • Aeroelasticity Analyses on PT6 Turbopropeller Compressor Stator 1 Vane

• On the 40 vane model:
– 9,987,389 nodes
– 6,635,971 elements
– 29,962,167 DOF on the complete model
– 1,566 nodes a�ected by the clamped all DOF BCs
– 29,957,469 DOF on the reduced model due to BCs

clamped

Figure 3.4: Stator 1 clamped all DOF BC

As explained in section 1.2.2, the modal analysis of stator 1 was performed in a prestress
environment like the rotor 2 test case. The di�erence with rotor 2 test case is that the thermal
load is the only load considered in the prestress environment. Again, the gaspath load or the
average pressure load has some impact on the steady state of the vane, but negligible impact from
a prestress environment point of view. The temperature distribution on stator 1 at a rotational
velocity of ΩS1,sg was imposed to the FE models.

The modal analyses were performed on the two models by solving the system of equa-
tions (1.50). The natural frequencies, modal de�ection, strain, and stress levels were calculated.
By looking at the obtained natural frequency levels on the two models, the fourth mode, which
is the second bending mode of the vane, was identi�ed as the closest frequency to ΩfR1,sg. The
considered second bending mode shape on the 40 vane model was the ND 16 one. On the other
hand, on the three vane model, the considered second bending mode shape was the one shown in
�gure 3.5 which was the mode where the middle vane had the maximum modal displacements.
Since the middle vane was the farthest vane from the all DOF clamped BCs on the cyclic faces, it
was the one attached to the most �exible part of the shroud.

In the three vane model, the natural frequency of mode 4 shown in �gure 3.5 was 3.46% higher
than the natural frequency during the test:

ωR2,3v = 1.0346ΩfR1,sg (3.10)

One the other hand, the natural frequency of mode 4, ND 16, for the 40 vane model was 3.55%
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Figure 3.5: Rotor 2 mode shape of mode 4

higher than the natural frequency during the test:

ωR2,40v = 1.0355ΩfR1,sg (3.11)

The calculated natural frequencies ware therefore close to the one in the test and were also close
to each other. This is an indication that the three vane model may be reasonable.

From the results of both models, the σ11 stress distribution was plotted and was found to be the
same. The maximum modal stress to displacement levels ratio was also the same on both models
which is another indication that the three vane model may be a reasonable assumption. The
obtained σ11 stress distribution on the pressure side is shown in �gure 3.6. This �gure shows the
secondary critical location which was at the trailing edge mid-span. The primary critical location
was at the �llet radius leading edge. This region had zero σ11 stress when the secondary critical
location experiences its maximum σ11 value. Actually, the secondary critical location experienced
its maximum σ11 stress 180◦ later than the primary critical location in terms of phase.

Figure 3.6: Stator 1 σ11 stress distribution on the pressure side for mode 4

Analytical vs. experimental stress comparisons were performed with the secondary critical
location because the stress at the primary critical location was highly concentrated which made
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the stress value highly dependent on mesh density. Moreover, using the secondary critical location
for doing the analytical vs. experimental stress comparison, the scaling factor between the stress
read by the gauge and the stress at secondary critical location was unity. So, the calculated stress
values were compared to the stress values read by the strain gauge directly.

3.3 Harnonic Response One-Way Aeroelasticity Analyses

The CFD analyses required for doing one-way aeroelasticity are of exactly the same type as the
ones performed for the rotor 2 test case which are detailed in section 2.3. Therefore, they are not
detailed for this test case. Two steady and unsteady sets of CFD analyses have been performed:
one with an inlet temperature of Tc1 for modelling condition 1 and one with an inlet temperature
of Tc2 for modelling condition 2. This section focuses only on the harmonic response analyses
using the real and imaginary static pressures extracted from the unsteady CFD analysis.

The �rst step of the harmonic response analysis was to extract the damping from the test data.
This extraction was performed through the SDOF curve �tting method described in section 2.4.
The SDOF curve �tting was performed on the resonances where σsg,c1 and σsg,c2, which are shown
in �gure 3.2, were recorded. The obtained damping factors were extremely close to each other. The
di�erence was judged negligible. The damping factor obtained from the curve �tting performed
on the σsg,c2 resonance was chosen as the damping input for the harmonic analyses and is denoted
as ζS1,sg. The SDOF curve �tting and half-power lines are shown in �gure 3.7.
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Figure 3.7: SDOF curve �t: 16ENg data ( ), curve �t ( ), and half-power line ( )
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The second step in the harmonic analysis was to map the real and imaginary pressures extracted
from the unsteady CFD analyses which were run at a rotational velocity of ΩS1,sg. Therefore,
these pressures were extracted for the frequency of ΩfR1,sg. Since the unsteady CFD analyses were
performed using the TBR method for the two conditions, only one stator 1 vane was modelled.
However, the two FE models are composed of more than one vane. So, the real and imaginary
pressures were duplicated and mapped on the other vanes present in the FE models. The phase
di�erence of the aerodynamic force between each vane was considered in the duplication of these
pressures. For this particular case, the phase di�erence (∆ϕ) is:

∆ϕ = 2π EO
NV
= 2π 1640 = 0.8π (3.12)

The harmonic response analyses were run and a damping factor of ζS1 was imposed. As
mentioned previously, the real and imaginary pressures were extracted at the frequency of ΩfR1,sg
because the rotational velocity that was used in the unsteady CFD analyses was the one when
resonance occurred in test. To get the maximum possible vibratory stress in the harmonic response
analyses, the excitation frequency imposed in the 3 vane and 40 vane models analyses were ΩR2,3v
and ΩR2,40v respectively. In the rotor 2 test case, this modi�cation was not necessary since the
unsteady CFD analysis was run at the rotational velocity for which the excitation frequency was
equal to the natural frequency of mode 14.

With the 3 vane model, the calculated vibratory stress at the secondary critical location shown
in �gure 3.6 was 27.1% less than in test for condition 1 and 39.5% less than in test for condition 2:

σ3v,c1 = 72.9σsg,c1 (3.13)
σ3v,c2 = 60.5σsg,c2 (3.14)

On the other hand, with the 40 vane model, the calculated vibratory stress at the secondary critical
location shown in �gure 3.6 was 29.2% less than in test for condition 1 and 41.4% less than in test
for condition 2:

σ40v,c1 = 70.8σsg,c1 (3.15)
σ40v,c2 = 58.6σsg,c2 (3.16)

It could be observed that the 3 and 40 vane models results are close; so, the 3 vane model approx-
imation was reasonable. However, it was also observed that the results do not match the test
results as well as in the rotor 2 test case. Moreover, the error is greater with condition 2.

By looking at the unsteady CFD analysis results, �ow separation has been observed on the
inside and outside diameters of the vane for the two conditions. Flow separation for the two
conditions is shown on the Mach number plots at the outside diameter in �gure 3.8. These plots
were generated from the unsteady CFD analyses at a certain time step. In �gure 3.8a, it was
observed that a Laminar Separation Bubble (LSB) is present near the leading edge and that the
�ow separates a little after mid-chord. On the other hand, it was observed in �gure 3.8b that the
�ow separates from leading edge to trailing edge meaning that the vane is fully stalled for the
outside and inside diameters. Therefore, the separated �ow region is much bigger for condition 2.

There is a clear correlation between the analytical vs. experimental stress di�erences and
the size of the separated �ow region. This indicates that the separated �ow may be the source
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(a) Condition 1: �ow separation (b) Condition 2: stalled

Figure 3.8: Mach number plots at outside diameter

of error. This makes sense because as explained in section 1.2.1 the RANS equations do not
model the resolution of the �uctuations in turbulent regions. Since the separated �ow regions are
turbulent regions, the RANS equations may be missing some important �uctuations that could
have a considerable impact on the static pressure on the suction side of the vane.

The best approach to verify this hypothesis would be to run the unsteady CFD analyses using
Large Eddy Simulation (LES). With LES, the resolution of the �uctuations are modelled. Therefore,
if the hypothesis is correct, more accurate stress predictions are the expected outcomes if the
harmonic response one-way analysis is relaunched using LES in the unsteady CFD analyses.
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4.1 Accomplishments

Two one-way aeroelasticity analysis procedures have been established: harmonic response and
transient. The procedure is to perform a set of steady CFD analyses starting from the full axial
compressor and reducing the model to the components of interest. These steady CFD analyses
ensure that small and convenient CFD models can be used with accurate BCs. Then, an unsteady
CFD analysis is performed to model the time varying static pressure on the investigated blade
or vane. Finally, the harmonic response or transient FE analysis is performed using damping
extracted from strain gauge data to calculate the vibratory stress levels.

The harmonic response analysis is the fastest and easiest one-way aeroelasticity method since
it is a time independent approach. It was performed with the mode superposition method in this
project. P&WC is going to use this methodology when performing vibratory stress predictions
using one-way aeroelasticity. The downside of this type of analysis is that aerodynamic damping
input is required since it cannot be captured in the analysis. It may be di�cult to do vibratory
stress predictions for blades and vanes of a new engine for which no strain gauge data is available.

The harmonic response one-way aeroelasticity analysis methodology has been validated using
two test cases: the PT6 turboshaft rotor 2 blade and the PT6 turbopropeller stator 1 vane. The
vibratory stress prediction on the rotor 2 blade was 1.34% higher than the vibratory stress in test.
Therefore, the analysis prediction is representative of reality for this case.

On the other hand, the vibratory stress predictions were not accurate on the stator 1 test case.
Two FE models were considered: a 3 vane sector and the full stator with its 40 vanes. The engine
was tested with 2 di�erent inlet temperatures. the second inlet temperature was 50% higher than
the �rst one. This increased the maximum vibratory stress by 35.9%. These 2 inlet temperature
conditions were modelled and the vibratory stress levels were calculated. With the full stator
model, the calculated vibratory stress was 29.2% less than in test for the �rst inlet temperature
and 41.1% less than in test with the second one. The presence of separated �ow regions is a
potential source of error since the RANS equations do not model the resolution of the �uctuations
in turbulent �ows.

The transient one-way aeroelasticity method has been validated using the rotor 2 test case.
It requires much more time and computational power for solving than the harmonic response
method and does not o�er extra bene�ts. It is therefore not worth doing this type of analysis if
one-way aeroelasticity only is performed. On the other hand, if a two-way aeroelasticity needs
to be performed, it is highly recommended to perform this analysis since two-way aeroelasticity
can only be performed with a transient FE analysis. The transient one-way aeroelasticity analysis
should be used to ensure that the FE model is properly set up and that the mode for which the
vibratory stress levels are needed is in resonance.

Finally, a two-way aeroelasticity analysis was performed on the rotor 2 test case, but the
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analysis failed due to mesh folding in the CFD domain. All the di�erent CFX mesh rigidity
parameters were tried, but none of them prevented the mesh from folding. The methodology for
performing such an analysis was established, but not validated because of this issue.

4.2 Proposed Future Work

The harmonic response one-way aeroelasticity analysis will be repeated on other geometries to
verify that the accuracy of this type of analysis is systematic. This will indicate to what point
this type of analysis can be trusted. The unsteady CFD analyses of the stator 1 test case may
be relaunched with LES and the vibratory stress levels re-predicted to validate that the lack of
accuracy was because of �ow separation.

If it is systematically accurate, this methodology will be used for predicting vibratory stress
levels on blade and vane redesigns. The damping will be extracted from the strain gauge test of
the blade or vane primary designs and used in the analyses. Since redesigns usually have only
minor changes, damping should not be a�ected. Therefore, a strain gauge test on the redesign
may be avoided in such circumstances. This methodology will also be used for blade and vane
designs of new engines for which no test exists. However, its validity will have to be veri�ed
because the damping has to be assumed since it cannot be extracted from a test. This would not
avoid doing a strain gauge test since the damping value may not be accurate. However, it may
help to identify potentially dangerous modes that should be tuned out, hence reducing the chance
of failing the strain gauge test because of too high vibratory stress levels.

Finally, the mesh folding issue should be resolved by de�ning other mesh rigidity parameters
and imposing them to CFX until the issue is resolved. Once this is resolved, it should be tested
like the harmonic response method to see if predictions are good. This analysis could produce
more accurate predictions since aerodynamic damping is calculated in the CFD analysis. It would
therefore be very useful for new engine blade and vane designs. Two-way aeroelasticity could
also be used for predicting �utter.
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