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Abstract 
 
Flow-induced vibrations due to unsteady flow often occur in many engineering areas. 

A specific type of unsteady flow is represented by oscillatory and pulsatile flows, which 

are prevalent in industrial and biological systems; applications include pump and valve 

operations in pipeline systems as well as blood circulation. Associated to pulsatility, 

wave propagation in elastic tubes is recognised as the fundamental principle of the 

pressure pulse in arteries. This propagation phenomenon is due to the fluid-structure 

interaction and not to fluid compressibility. The pulse wave velocity is related to the 

underlying vessel wall stiffness. In biomechanics and vascular surgery, thin-walled shell 

theory can be applied to model the mechanics of veins, arteries, pulmonary passages, 

and artificial blood vessels.   

This thesis focuses on the development of a new theoretical framework able to 

reproduce the nonlinear dynamic response of shells and plates to axial pulsatile flow. 

The flow is set in motion by a pulsatile pressure gradient. Coupled fluid-structure 

Lagrange equations of motion for a non-material volume subject to pulsatile flow and 

pressure with and without wave propagation are obtained and presented for the first 

time in the literature. The studied systems are represented by a plate periodically 

supported and a circular cylindrical shell with flexible boundary conditions. The fluid 

model is based on the potential flow theory. Numerical bifurcation analysis and time 

integration methods are employed to investigate the stability of the systems described 

using a refined reduced order model.  
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The plate is modeled based on the von Kármán nonlinear plate theory and it is 

assumed to be periodically simply supported in both in-plane directions with immovable 

edges. The flow channel is bounded by a rigid wall. The effects on the dynamics of the 

plate of different system parameters such as flow velocity, pulsation amplitude, pulsation 

frequency, and channel pressurization are fully discussed.  

In vascular surgery, artificial blood vessels used for repairing and replacing damaged 

thoracic aorta in cases of aneurysm, dissection or coarctation can be modeled as thin-

walled shells conveying pulsating flow. For this purpose, in this study, isotropic and 

orthotropic circular cylindrical shells with mechanical properties of woven Dacron 

thoracic prostheses are modeled using the nonlinear Novozhilov shell theory. A pulsatile 

time-dependent blood flow model is considered by applying physiological waveforms of 

velocity and pressure during the heart beating period. The fluid is assumed to be 

Newtonian and the pulsatile flow is formulated using a hybrid model that contains the 

unsteady effects obtained from the linear potential flow theory and the pulsatile viscous 

effects obtained from the unsteady time-averaged Navier-Stokes equations. 

Geometrically nonlinear vibrations displaying interesting and intricate nonlinear 

dynamics (chaos, amplitude modulation and period-doubling bifurcation) are presented 

via frequency-response curves, time histories, bifurcation diagrams, and Poincaré maps.  

This study provides an efficient fluid-structure interaction model that can reveal 

important aspects on the nonlinear dynamics and stability of systems conveying pulsatile 

flow. It also addresses a crucial but still unexplored issue in cardiovascular surgery 

related to the dynamics of Dacron vascular grafts subject to physiological pulsatile blood 

flow. An innovative formulation of the three-dimensional quasi-linear viscoelasticity is 

presented and applied to fit original experimental data of relaxation in axial and 

circumferential directions of a woven Dacron aortic graft. Experimental dynamic tests 
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have been conducted on a Dacron prosthesis pressurized with a blood analog fluid. Modal 

damping values and natural frequencies have been estimated by experimental modal 

analysis. Numerical simulations and comparisons with experimental results are reported. 
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Sommaire 

 
Les vibrations induites par un écoulement à vitesse variable se manifestent souvent 

dans plusieurs domaines en ingénierie. Un type spécifique d’écoulement est celui pulsé, 

qui se produit dans des systèmes biologiques et industriels; des exemples sont les pompes 

et valves des pipelines et par le système circulatoire. Associée à la pulsatilité, la propa-

gation des ondes dans des tuyaux élastiques est considérée le principe fondamental du 

pouls de pression dans les artères. Ce phénomène de propagation est une conséquence de 

l’interaction fluide-structure et non de la compressibilité du fluide. La vitesse de propa-

gation des ondes est associée à la rigidité des parois des vaisseaux. En biomécanique et 

chirurgie vasculaire, la théorie des coques minces peut être utilisée pour décrire la méca-

nique des veines, artères, passages pulmonaires et prothèses vasculaires synthétiques. 

Cette thèse a comme objectif le développement d’une méthode théorique qui vise à 

reproduire la dynamique non-linéaire de coques et piastres soumises à un écoulement 

pulsé. Un gradient de pression pulsé cause le mouvement du fluide. Les équations de 

Lagrange qui considèrent l’interaction fluide-structure sur une structure flexible soumise 

à un écoulement et une pression pulsé avec et sans la propagation des ondes sont obte-

nues pour la première fois en littérature. Les systèmes étudiés sont une piastre périodi-

quement supportée et une coque circulaire cylindrique avec des conditions aux rives 

flexibles. Le modèle du fluide se base sur la théorie à potentiel. L’analyse numérique de 

bifurcation et l’intégration dans le temps sont utilisées pour étudier la stabilité du system 

représenté par un modèle d’ordre réduit.   
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La piastre est modelée en appliquant la théorie non-linéaire des piastres de von 

Kármán et elle est supposée d’être périodiquement supportée dans les deux directions 

dans le plan avec des supports immobiles. De l’autre côté par rapport à la piastre, l’écou-

lement du fluide est en contact avec une surface rigide. L’effet sur la dynamique de la 

piastre des différents paramètres - comme la vitesse de l’écoulement, l’amplitude de la 

pulsation, la fréquence de la pulsation, et la pressurisation du canal - est analysé en 

détail.  

En chirurgie vasculaire, les prothèses synthétiques utilisées pour réparer et remplacer 

les parties de l’aorte thoracique endommagées par un aneurisme ou une dissection peu-

vent être modelées comme des coques minces qui transportent un écoulement pulsé. Dans 

ce but, des coques circulaires cylindriques isotropes et orthotropes avec les mêmes pro-

priétés mécaniques des prothèses vasculaires en Dacron sont modelées en utilisant la 

théorie non-linéaire de Novozhilov. L’écoulement du sang est considéré pulsé et il repro-

duit la forme d’onde de vitesse et pression pendant le cycle cardiaque. Le fluide est 

considéré newtonien et l’écoulement pulsé est formulé en utilisant un modèle hybride qui 

considère les effets instationnaires de la théorie à potentiel et les effets visqueux pulsés 

obtenus grâce aux équations de Navier-Stokes moyennées dans le temps. Les vibrations 

non-linéaires du system sont caractérisées par un comportement dynamique intéressant 

et complexe (chaos, modulation en amplitude, bifurcation double-période) qui est pré-

senté grâce aux courbes de réponse en fréquence, dans le temps, digrammes des bifurca-

tions et mappes de Poincaré.  

Cette étude fournit une méthode efficace d’interaction fluide-structure qui révèle des 

aspects importants sur la dynamique non-linéaire et la stabilité des systèmes qui trans-

portent un écoulement pulsé. Une attention particulière est dédiée à un problème inex-
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ploré malgré crucial en chirurgie vasculaire associé à la dynamique des prothèses vascu-

laire en Dacron soumises à l’écoulement pulsé du sang. Une formulation innovative de 

la viscoélasticité quasi-linéaire tri-dimensionnelle est présentée et appliqueé aux données 

expérimentales de relaxation en direction circonférentielle et axiale d’une prothese aortic 

en Dacron. Une analyse modale experimentale a été performée sur une prothèse en Da-

cron pressurizée par un fluide alogue au sang. Les valeurs du taux d’ammortissement 

modale et les fréquences naturelles ont été estimés grâce à l’analyse modale lineare. Des 

simulations numériques et des comparaisons avec les données experimentales sont repor-

tées dans cette thèse.  
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Preface  
 
Thin-walled structures in contact with axial fluid flow can be found in many 

engineering and biomechanical systems and their dynamics are inevitably influenced by 

flow-induced inertia and forces. Making the thickness as small as possible is one of the 

main design requirements of structural elements in order to reduce spare material and 

to lighten the structure. However, in particular when subject to flow-induced vibration, 

structures can undergo large displacements and instability that must be analyzed using 

nonlinear elasticity in order to prevent their failure. Several important aspects of the 

structural response can only be predicted by nonlinear theory such as the transition from 

one dynamical state to the next one and the exploration of nonstandard dynamics (i.e. 

quasiperiodic and chaos regimes). 

Thin plates immersed in flowing fluid are widely used in many floating and submarine 

structures (ships, submarines, torpedoes) excited by an unsteady flow, and water 

retaining structures (dams, storage vessels) subject to earthquake loading. Under these 

conditions, the plate dynamic response to different sorts of excitations, such as harmonic 

fluid excitations, becomes of considerable interest. Moreover, the local resonant vibration 

behavior of plates has always represented a great concern to shipbuilding companies and 

operators. While extensive literature exists on the nonlinear dynamics of plates in a light 

medium (usually air), the literature related to nonlinear studies of plates coupled to 

flowing dense (heavy) fluid is scarce. 

In this thesis, nonlinear coupled fluid-structure interaction Lagrange equations of 

motion for plates in axial pulsatile flow are developed. The effect of different system 
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parameters such as flow velocity, pulsation amplitude, pulsation frequency, and channel 

pressurization on the stability of the plate and its geometrically nonlinear response to 

pulsating flow are fully discussed. The results show that the presence of positive 

transmural uniform pressure and small pulsation frequency would destroy the pitchfork 

bifurcation (divergence) that flat plates exhibit when subjected to uniform flow. 

Moreover, in the case of zero uniform transmural pressure, numerical results show a 

hardening type behavior for the entire flow velocity range when the pulsation frequency 

is spanned in the neighbourhood of the plate’s fundamental frequency.  On the contrary, 

a softening type behavior is presented when a uniform transmural pressure is introduced. 

Shells are curved light-weight structures made of shell elements and are very stiff for 

both in-plane and bending loads because of the curvature of their middle surface. For 

this reason they are widely used in many engineering fields where structures with the 

minimum amount of material are needed to meet the design requirements. In these 

applications (i.e. aeronautics, automotive engineering, space industry), the shells have a 

small thickness compared to the other dimensions and are referred to as thin-shells. 

Studying their stability with nonlinear theories is particularly interesting since they can 

easily present large displacements associated to small strains before collapse. When 

subjected to dynamic loads with moderate and large amplitudes, radial displacements 

larger than the shell thickness occur. In this case, nonlinear shell theories should be 

applied to study the dynamic behavior of these systems that can present complex 

dynamics.  

In biomechanics, thin-walled shells can be used to model the mechanics of vein, arteries 

and pulmonary passages. The peculiar characteristic of the cardiovascular system is the 

pulse generated by the heart. The highly pulsatile nature of the blood flow combined 

with the compliance of the arteries make the vessel walls locally deform and recover with 



Preface 

xv 
 

corresponding recoil. A wave motion is consequently generated in the arterial tree where 

pressure and the flow waves propagate downstream in the form of progressive waves at 

the same wave speed. How efficient1y the pressure pulse transmits depends on the 

propagation and reflection characteristics through different arteries and vascular 

branching junctions. The arterial pulse wave velocity (PWV) has been shown to be 

related to the underlying vascular stiffness because of its dependence on the geometric 

and elastic properties of the local arterial wall. With differing vascular impedances, wave 

reflections arise, because of the mismatching in impedances.  

In vascular surgery, Dacron and ePTFE (expanded polytetrafluoroethylene) represent 

the standard materials for large-diameter (12-30 mm) vascular grafts. These implants 

are widely used in various circumstances of vascular maladies requiring replacements of 

components of the cardiovascular tree, such as vessel patches for aneurysms, however, 

it is well known that they have distinctly different mechanical properties than the host 

arteries. The energy loss due to reflection and propagation of the pulse wave as it 

encounters the graft is considered to be the most significant mechanism to graft failure 

because of compliance mismatch. Their low compliance also compromises the efficiency 

of the whole human cardiovascular system. Wide knowledge about the distinctly 

different mechanical properties of the Dacron implants with respect to the native aorta 

is available in literature while very little is known about the dynamic behavior of these 

prostheses. 

To the author’s knowledge, this is the first study to address the dynamic response of 

a woven Dacron graft currently used in thoracic aortic replacements to pulsatile 

physiological blood flow and pressure. Nonlinear vibrations of the shell conveying 

pulsatile flow and subjected to pulsatile pressure are investigated taking into account 

the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-
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structure Lagrange equations of motion for a non-material volume with wave 

propagation in case of pulsatile flow are developed. Physiological waveforms of blood 

pressure and flow velocity are approximated with the corresponding Fourier series. To 

investigate the effect of the pulse wave propagation, only the first harmonic of the 

Fourier expansion is considered to describe the pulsatile pressure and flow. A 

parametrical study is performed for different values of modal damping coefficients and 

pulsatile wave speeds. For different combinations of these parameters, out of the 

physiological frequency range, interesting and intricate nonlinear dynamics, such as 

chaos and amplitude modulations, are detected in the vicinity of the fundamental natural 

frequency of the vessel. Several superharmonic resonance peaks appear in the 

physiological frequency range by including higher harmonics in the Fourier expansion of 

the physiological waveforms of pressure and velocity.  

Finally, in the limit case of low modal damping values, it is found that the prosthesis 

presents asymmetric vibration with deformation of the cross-section. In this deformed 

condition, high stress localized regions appear in the inner wall and flow separation or 

turbulence can develop eventually causing the failure of the prosthesis. Experimental 

results based on the damping identification and modal analysis tests of a woven Dacron 

graft are reported. The numerical natural frequencies are compared with the 

experimental results showing to be in very good agreement. 

This thesis’ main contribution to knowledge is the creation of an efficient fluid-

structure interaction model that can be utilized to study the dynamic response of flexible 

plates and shells in axial pulsatile flow. In particular, because of its relevant application 

in the field of cardiovascular surgery, its conclusions can be used to improve the 

understanding of the crucial issue of vascular grafts patency. Its potential is to reveal 
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important aspects of vascular mechanics, physiology, and pathology by comparing the 

dynamic behaviors of native and artificial blood vessels. 

Informing surgeons of the effects in the differences between dynamical behaviors of 

prostheses with respect to the human arteries can aid in surgical decision making. 

Eventually, this could also lead to inspiring the design and creation of new materials or 

techniques for the fabrication of next generation prostheses. 

The fluid-structure interaction model presented can also be applied to study the 

possibility of buckling with cross-section deformation of a straight thoracic aortic 

segment for critical physiological pressure and flow conditions. In the case of collapsed 

arteries, the identification of regions of large mechanical stresses on the artery surface 

can indicate possible ways for aortic dissection to be initiated. This could be of crucial 

importance in human health since aortic dissection is considered one of the most undi-

agnosed serious cardiovascular pathologies. 

Experimental activities have been conducted to characterize the mechanical and dy-

namic properties of woven Dacron aortic replacements. 

Uniaxial extension and relaxation tests have been performed on strips of a woven 

Dacron aortic prosthesis. An innovative quasi-linear viscoelastic model has been intro-

duced to experimentally investigate, for the first time, the direction-dependent relaxation 

of the aortic graft by using a bi-dimensional material model. This model implies a 

relevant simplification in case of direction-dependent viscoelasticity typical of aortic 

prostheses. 

Normal modes, natural frequencies and viscous damping ratios of a woven Dacron 

prosthesis with internal pressurized fluid have been obtained by means of a modal 

analysis. Numerical simulations based on a structural model with surface waves in the 
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longitudinal direction of the prosthesis (crimped structure) have been performed. 

Comparisons with the experimental results are reported and discussed in depth. 

The present thesis is article-based. Among the five papers reported here, three are 

published and the two most recent ones have been submitted in peer-reviewed 

international journals.  

The author is the primary author of the first four papers presented. Her contribution 

to the conception, design, and realization of such papers is primary, covering the 

mathematical modelling, the implementation of the numerical solution and 

corresponding results, and the writing of the manuscripts. The co-authors of these papers 

are the author’s supervisors who contributed in advising and supporting roles throughout 

this doctoral research project. Dr. Farbod Alijani, co-author of the first paper presented 

here, has also collaborated with the author in the initial phase of her Ph.D. studies by 

providing technical support with the use of the software AUTO.  

The fifth and final paper presented in this thesis is the result of the collaboration of 

Prof.Amabili with Dr.Giovanni Ferrari, Mr. Prabakaran Balasubramanian and the 

author. In particular, the author has participated to the realization of the tensile and 

relaxation tests reported in this manuscript.  

The experimental activities on a woven Dacron prosthesis presented in Chapter 7 have 

been performed by Dr. Giovanni Ferrari and Mr. Prabakaran Balasubramanian. The 

author has assisted these experiments by providing guidance with technical notes on the 

clinical practice of prostheses installation in the attempt to better reproduce 

physiological conditions in the experimental setup. 
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Thesis Outline 
 

The thesis is structured by articles showing the several steps leading to the 

development of the proposed fluid-structure interaction model for plates and shells in 

axial pulsatile flow.  

Chapter 1 introduces some concepts and methods used throughout the thesis for both 

nonlinear dynamics and fluid-structure interactions.  A detailed literature review on 

nonlinear vibrations of plates and shells in axial steady and pulsatile flow is presented 

in the same chapter. Due to the relevant application of the present work in 

cardiovascular surgery and biomechanics, the most significant studies on Dacron 

prostheses and pulsatile flow in blood vessels are included in the literature review. In the 

Introduction, the motivation and the objectives of the present work are clearly stated. 

Chapter 2 deals with the stability and the nonlinear vibrations of plates in axial 

pulsatile flow. The paper “Nonlinear vibrations of plates in axial pulsating flow” 

published in the Journal of Fluids and Structures [1] is presented in this chapter. 

Lagrange equations of motion are derived for the case of unsteady flow velocity. The 

effects of the oscillatory component of the velocity and the transmural uniform pressure 

on the stability of the plates in axial flow are discussed.  

Chapter 3 treats the dynamic behavior of shells subjected to pulsatile pressure and 

axial flowing fluid without wave propagation phenomenon. It is assumed that the 

oscillatory pressure variations occurred simultaneously at every point of shell, making 
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the fluid oscillate in bulk. The paper “Fluid-Structure Interaction for nonlinear response 

of shells conveying pulsatile flow” published in the Journal of Sound and Vibration [2] 

is reported. The isotropic shell taken into account is assumed to roughly approximate 

the Dacron vascular prostheses used for replacing damaged thoracic aorta in cases of 

dissection or aneurysm. The pulsatile flow and pressure reproduce the physiological time-

dependent velocity and pressure waveforms in the thoracic aorta. 

Chapter 4 presents the extension of the fluid-structure interaction model for flexible 

shells conveying pulsatile flow and pressure (Chapter 3) with the addition of the effect 

of pulse-wave propagation.  The corresponding paper “Nonlinear dynamics of shells 

conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for 

a single harmonic pulsation” published in the Journal of Sound and Vibration [3] is 

presented. A pulsatile blood flow model is considered by applying the first harmonic of 

the physiological waveforms of velocity and pressure during the heart beating period. 

The woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical 

shell. 

In Chapter 5, the fluid-structure interaction method illustrated in Chapter 4 is applied 

to the same woven Dacron graft subjected to physiological pulsatile blood flow and 

pressure. The manuscript “Nonlinear dynamics of Dacron aortic prostheses conveying 

pulsatile flow” recently submitted in a peer-reviewed international journal is reported. 

Interesting results on the dynamic behavior of the prosthesis for different values of heart 

rate are discussed in depth. 

Chapter 6 presents results of uniaxial extension and relaxation tests on strips of a 

woven Dacron prosthesis. An innovative quasi-linear viscoelastic formulation is 

introduced to consider direction-dependent viscoelasticity of the prosthetic fabric. The 

manuscript “Application of three-dimensional quasi-linear viscoelasticity to relaxation of 
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an aortic woven Dacron Graft” presented in this chapter has been recently submitted to 

a peer-reviewed international journal. 

In Chapter 7, natural frequencies and modal damping values estimated via 

experimental modal analysis of a woven Dacron graft are reported. Numerical natural 

frequencies are compared with the experimental results. 

Chapter 8 represents the concluding chapter of the thesis. It summarizes the objectives 

previously stated highlighting the significant findings of the present work. Discussions 

on ongoing related research as well suggestions for future works are explored. 
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Chapter 1 
 

Introduction and Literature Review 
 
 

1.1 Introduction  
In a very fundamental sense, the effect of the pulsation constitutes a central problem 

in the field of fluid-body interactions. Understanding the impact of oscillating flows of 

heavy fluids in flexible channels is of crucial interest for many biological and industrial 

processes. The pulsatile nature of blood flow dictates numerous aspects of circulatory 

physiology and pathology. Pulsatile flow is also observed in engines and hydraulic 

systems, as a result of rotating mechanisms pumping the fluid.  

The objective of this study is to reveal new nonlinear phenomena in these systems and 

to advance theoretical understanding resulting from the development of a new theoretical 

framework that fully captures the mutual coupling of fluids and flexible solids. The 

physical and mathematical modeling of pulse wave propagation, based on general fluid 

dynamical principles, is integrated, for the first time, with the study of the nonlinear 

dynamics of thin-walled structures subjected to dynamic loads. The intrinsic 

interdisciplinary aspects of this research clearly show the relevance of the proposed 

innovative modeling tool. Potential applications in cardiovascular research and clinical 

practice are presented. From an engineering perspective, artificial and native blood 

vessels can be considered cylindrical structures subject to combined loads due to 
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surrounding tissues and to blood flow and pressure. Any compliant vessel may buckle 

under these loads and deform from their originally straight cylindrical configuration. 

Moreover, the dynamic response analysis can reveal if sudden changes in diameter 

appears for certain heart rates provoking fluctuations in the shear stress and disturbed 

blood flow. This in turn may cause significant material damage, weakening transverse 

wall stiffness, leading to the initiation of a permanent wall dilatation or dissection. The 

stability and the dynamic behavior of these systems is an important issue for vasculature 

even if it has not been extensively studied so far. 

As a consequence of this lack in literature, a mathematically exact solution, within 

the hypotheses of potential flow and the series solution, has been developed in this thesis 

and the corresponding numerical results are presented. This theoretical approach is 

adapted to both plates and shells’ elastic bodies. This model can be utilized when the 

flow exciting the thin-walled structure contains harmonic components. Residual stresses 

because of pulsatile pressurization are evaluated and included in the model. 

Experimental results on the charactirization of mechanical and dynamic properties of 

woven Dacron aortic prostheses are included in this dissertation. The objective is to 

justify the values of some parameters (such as modal viscous damping and natural 

frequencies) considered in the numerical simulations of the fluid-structure interaction 

model applied to the aortic grafts made of Dacron.  

 

1.2 Literature Review 
Flow-induced vibrations of plates and shells are a major problem in many engineering 

applications including aerospace, aeronautics, automotive, nuclear, and naval industries. 

Plates are structural elements with a flat surface with given thickness and they can be 

found in wing skin, tail fins, flaps, and control surfaces of aircrafts and submarines. 



1.2.  Literature Review 
 

7 
 

Shells are light-weight structures made of shell elements, typically curved, and assembled 

to form large structures such as aircraft fuselage, spacecraft, rockets, cars, and storage 

tanks. Shell structures also appear in the form of membranes in many biological systems 

such as arteries, veins, pulmonary, and urinary passages. In order to accurately predict 

the nonlinear response of the structure, it is necessary to consider numerical models that 

take into account (i) nonlinear effects such as large structural deflections, and (ii) fluid-

structure interactions. Both theoretical and experimental aspects of nonlinear vibrations 

and stability of shells and plates with and without fluid structure interaction have been 

addressed by Amabili in his book [4]. All important aspects of fluid-structure interactions 

in slender structures in axial flow have been covered and synthesized by Païdoussis in 

his monograph [5]. Extensive literature reviews on the topic of nonlinear dynamics of 

shells in vacuo, filled with or surrounded by quiescent and flowing fluids can be found in 

[6, 7]. These reviews point to the fact that there remains much to be learned about 

nonlinear vibrations of shells and plates.  

The present literature review focuses on linear and geometrically nonlinear vibrations 

of plates and shells with fluid-structure interaction with industrial and biomedical 

applications. This review is structured as follows: after presenting the most significant 

studies of the very rich literature on the vibrations of shells and plates in axial flow, 

particular attention is devoted to the venerable subject of pulsatile flow. The dynamics 

of pipes, plates and shells subject to pulsatile flow is profoundly reviewed. In 

physiological systems, pulsatility is manifested in pressure and flow waves propagating 

throughout the whole circulatory tree. Understanding the physical principles of blood 

circulation has been the objective of hemodynamicists for centuries. For this reason, this 

literature review covers only the studies that are considered the standard reference 

sources in hemodynamics. The problem of stability (divergence and flutter) of pliable 
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shells coupled to flowing fluid is also reviewed. Finally, the most significant studies on 

Dacron prostheses used for thoracic aortic replacements and the assessed effects of their 

insertion in the cardiovascular system are presented. 

1.2.1 Plates in axial steady flowing fluid 

The literature related to linear vibrations of plates coupled to fluid is quite extensive 

(see Lamb [8], Kwak and Kim [9], Kwak [10], Fu and Price [11], Amabili and Kwak [12]). 

The majority of the approximate analytical methods that are used to study flow-induced 

vibrations are based on the assumption attributed to Lamb [8]; that the vibration modes 

of the structure in contact with still fluid (wet modes) are the same as those in vacuo 

(dry modes). Amabili and Kwak [12] removed the simplified assumption of identical wet 

and dry modes and obtained the mode shapes of the coupled system via the Rayleigh-

Ritz approach. Experiments on large amplitude vibrations of a circular plate at the 

bottom of a water-filled container were presented by Chiba [13]. In the case of flowing 

fluid, and in addition to the inertia effect of the fluid, the stiffness of the coupled plate-

flow system decreases with the flow speed, eventually leading to instability. Moreover, 

the presence of gyroscopic terms in the equations of motion gives rise to complex modes 

and therefore different points of the plate do longer oscillate in-phase. Guo and 

Paidoussis [14] used the Galerkin approach to study the hydroelastic instabilities of 

parallel assemblies of rectangular plates coupled to flow. They found that divergence 

and coupled mode flutter may occur for plates with any type of end supports, while 

single-mode flutter only arises for non-symmetrically supported plates. Kerboua et al. 

[15] used a different approach based on the combination of Finite Element Method 

(FEM) and Sander's shell theory to determine the natural frequencies of rectangular 

plates in contact with flowing fluid. In their study, the velocity potential and Bernoulli's 

equation were used to express the fluid pressure acting on the structure. A general 
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aerodynamic case of a single elastic plate embedded in a rigid surface (“baffle”) has been 

treated in Dowell [16]. Dowell also discussed the case of both finite and infinite plates 

on periodic supports for high supersonic flow [17]. As the number of bays becomes larger, 

he found that the flow velocity at which flutter occurs decreases. In supersonic flow, the 

elastic plate deflections increase from one bay to the next bay and this must be 

considered. For a finite square panel, Dowell [18] found that at high Mach number the 

flutter frequency is between the first and the second panel natural modal frequencies, 

while over the subsonic range of Mach number the flutter frequency rapidly falls to zero 

and the panel diverges rather than flutters.  

The literature related to nonlinear studies of plates coupled to flowing fluid is scarce. 

Nonlinear flutter of rectangular plates was investigated by Dowell [19, 20]. Ellen [21] 

studied the asymptotic nonlinear stability of simply supported rectangular plates 

subjected to incompressible flow (on one side only) considering both structural and fluid-

dynamic non linearities. The analysis performed by [21] was based on single-mode 

Galerkin approach and it was shown that fluid-flow nonlinearities introduce a subcritical 

instability while the stabilizing structural nonlinearities have a dominant effect in 

controlling the overall nonlinear behavior. Lucey et al. [22] examined the dynamics of a 

finite length plate, mainly in post-divergence regime where coupled-mode flutter may 

arise. The flow was considered to be inviscid, and the solution of the coupled problem 

was obtained by boundary-element and finite-difference method.  

1.2.2 Shells conveying steady flowing fluid 

The effects of internal flow on the stability of circular cylindrical shells have been 

extensively investigated both theoretically and experimentally by Paidoussis and Denise 

[23], Weaver and Unny [24] and Paidoussis et al. [25, 26]. Chen [27] wrote a 
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comprehensive review on flow-induced of circular cylindrical shells with emphasis on 

nuclear reactor system components. 

Matsuzaki and Fung [28] derived an exact analytic expression for the unsteady fluid 

pressure acting on the internal walls of a simply-supported circular cylindrical tube of 

finite length carrying flow. The results were applied to the buckling of a cylinder 

influenced by an internal flow and to the flutter of a cylinder with such a flow. They 

also examined the effect of viscous damping. One of their main findings is associated to 

the fact that buckling load of a cylinder subjected to axial and/or circumferential 

compression is always decreased by a subsonic internal flow. 

Lakis et al. [29] presented a hybrid approach combining the finite element method 

(FEM) and Sanders’ shell theory, in order to study the dynamic problem of anisotropic 

fluid-filled conical shells. In this method, an exact displacement function, derived from 

Sanders’ shell theory, was considered. In a successive study [30], this method was 

extended by including the influence of flowing fluid on the vibrations of an open 

cylindrical shell in the absence of fluid pressures and initial tensions. The effects of the 

presence of internal and/or external fluid on the free vibrations of the shell were 

investigated. Zhang et al. [31] developed a finite element model for studying the vibration 

of pre-stressed thin cylindrical shells conveying fluid. The method they proposed was 

based on Sanders’ nonlinear theory of thin shells and classical potential flow theory. 

They found that the frequencies increase as initial axial tensions, internal pressures, and 

radius-thickness ratios increase, and as flow velocities and length-radius ratios decrease. 

Their model has been compared with published experimental results proving to be 

reliable for the dynamic problem of prestressed thin cylindrical shells conveying fluid. 

By neglecting the effect of fluid viscosity and considering the potential flow model, 

nonlinear forced vibrations and stability of shells interacting with fluid flow were 
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investigated by Koval’chuk [32]. He used Donnell’s nonlinear theory together with the 

Galerkin approach and the Krylov-Bogolyubov-Mitropol’skii averaging technique to 

study the nonlinear vibrations of the shell, neglecting the effect of axisymmetric modes.  

Theory and experiments for the dynamic stability of circular cylindrical shells 

subjected to incompressible subsonic liquid and air flow have been reported by Karagiozis 

et al. [33-36].  

The effect of imperfections on the nonlinear stability of shells containing fluid flow has 

been investigated by Amabili et al. [37] by using a refined model. A Lagrangian approach 

based on (i) Donnell’s theory retaining in-plane inertia and (ii) Sanders-Koiter theory 

was utilized and differently from previous works, the effect of fluid viscosity considered 

by using the time averaged Navier–Stokes equations. It was shown that asymmetric 

geometric imperfections with the same number of circumferential waves as the mode 

associated with instability play a significant role, transforming the pitchfork bifurcation 

at divergence to a folding (saddle-node) bifurcation. Good agreement was shown with 

the available experimental results for divergence of aluminium shells conveying water.  

The combined effect of geometric imperfections and fluid flow on the nonlinear 

vibrations and stability of shells has been investigated by del Prado et al. [38]. The 

behavior of the thin-walled shell was modeled by Donnell's nonlinear shallow-shell theory 

and the shell was assumed to be subjected to a static uniform compressive axial pre-load 

plus a harmonic axial load. A low-dimensional model was obtained by using the Galerkin 

method and the numerical solutions were found by using a Runge-Kutta scheme. It was 

shown that the parametric instability regions, bifurcations and basins of attraction are 

affected by the initial geometric imperfection and the flow velocity. 
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1.2.3 Dynamics of pipes, plates and shells under pulsatile flow 

A specific type of unsteady flows includes oscillatory and pulsatile flows which occur 

in many engineering areas, such as the flow in hydraulic and pneumatic and pumping 

systems or applications of heat transfer. Oscillatory and pulsating flows in branching 

pipes have been extensively studied by investigators interested in biology. Additionally, 

a significant number of works can be found in literature concerning oscillatory or 

pulsatile flows in straight pipes (see for example, Uchida [39], Gerrard and Hughes [40], 

Hino et al. [41], Muto and Nakane [42], Shemer et al. [43]).  

Chen [44] was the first to have examined the stability of simply supported pipes with 

a flow  velocity with a time dependent harmonic component superimposed on the steady 

velocity. Since the fluid acceleration associated to the imposed velocity perturbations is 

neglected in Chen's equation of motion, Paidoussis and Issid [45] re-derived the equation 

of motion considering the neglected term. The longitudinal acceleration of the fluid was 

included making this model suitable for studying flow containing harmonic components. 

Ginsberg [46] derived the general equations of motion for small transverse displacement 

of a pipe conveying fluid based on the transverse force exerted by the flowing fluid. For 

the case of a simply supported pipe, the Galerkin method was utilized to obtain the 

solution. The dynamic instability regions were evaluated and it was shown that they 

increase with increased amplitude of fluctuation. Paidoussis [47] presented a theoretical 

analysis of the dynamical behaviour of slender flexible cylinders in axial flow, the velocity 

of which was perturbed harmonically in time. He found that parametric instabilities are 

possible for certain ranges of frequencies and amplitudes of the perturbations. These 

instabilities occur over specific ranges of flow velocities and, in the case of cantilevered 

cylinders, are associated with only some of the modes of the system. They found that 

the major instability region starts at a pulsating frequency which is equal to twice the 
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natural frequency of the shell with quiescent water. Bohn and Herrmann [48] investigated 

the dynamic behavior of articulated pipes conveying fluid with small periodic 

disturbances. They showed the influence of the magnitude of low rate oscillation on the 

appearance of parametric and combination resonances. Moreover, they defined an 

algebraic criterion base on the minimum flow rate amplitude in order to avoid parametric 

resonance. 

Ariaratnam and Namachchivaya [49] performed dynamic stability studies on 

cylindrical pipes obtaining explicit stability conditions for perturbations of small 

intensity by using the method of averaging. For large harmonic perturbation they 

proposed a numerical method based on Floquet theory due to Bolotin to obtain stability 

boundaries. The effects of flow velocity, dissipative forces, boundary conditions, and 

virtual mass on the extent of the parametric instability regions were discussed. Lee et al. 

[50] derived more realistic pipe dynamic equations (equations of axial, radial, and 

transverse vibrations, and equations of fluid momentum and continuity) which described 

fully coupled fluid-structure interaction mechanisms. They used Newton’s Law of motion 

to derive the equation to address the vibration of pipelines and used the deformable 

moving control volume concept to derive fluid equations. Their model can be used to 

solve practical problems encountered in valve and pump operations. 

Gorman et al. [51] derived the non-linear equation of motion of a flexible pipe 

conveying unsteady flowing fluid from the continuity and momentum equations of 

unsteady flow. These equations are fully coupled through equilibrium of contact forces, 

the normal compatibility of velocity at the fluid pipe interfaces, the conservation of mass, 

as well as the Poisson and friction coupling. A combination of the finite difference 

method and the method of characteristics is employed to extract displacements, 
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hydrodynamic pressure, and flow velocities from the equations. A numerical example of 

a pipeline conveying fluid with a pulsating flow has been illustrated. 

For non-steady flow in rectangular conduits, there is a decisive lack of information in 

the literature. Landau and Lifshits [52] reported the results of a purely harmonic flow 

giving the periodic solution of oscillating flow between two parallel plates in complex 

form. Fan and Chao [53] conducted a study on parallel, viscous, incompressible flow 

through long rectangular ducts when the axial pressure gradient is an arbitrary function 

of time. They found that under a harmonically oscillating pressure gradient for fast 

oscillation, there is a flattening of the velocity profile in the core region and the maximum 

velocity does not occur on the axis but near the wall. Similar characteristics had been 

experimentally observed by Richardson and Tyler [54] and theoretically investigated by 

Sexl [55] for flow through circular pipes and Uchida [39] for periodic motion. 

The literature on the aspects of dynamic instabilities of shells conveying pulsating 

fluid is scarce. Kadoli and Ganesan [56] studied the parametric instabilities in composite 

cylindrical shells containing the flow of a pulsating hot fluid. A coupled fluid structure 

interaction problem for a pulsating flow of hot water was used along with the time 

independent geometric stiffness matrix formulated based on the initial stresses due to 

flow of hot fluid through the composite cylindrical shell.  

Kubenko et al. [57] studied one-frequency nonlinear oscillations of a shell interacting 

with flowing fluid and subjected to the action of external periodic loads. The velocity of 

fluid in the shell could be either constant or contain pulsating terms of small amplitude. 

He extended the previous works of Koval'chuk [32] and Koval'chuk and Kruk [58], by 

using the mathematical procedure for the Krylov-Bogolyubov-Mitropol’skii method in 

studying multi-mode nonlinear free, forced, and parametrically excited vibrations of 

shells in contact with flowing fluid. Koval’chuk1 and Kruk [59]  also studied the 
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postcritical nonlinear vibrations of thin cylindrical orthotropic shells conveying a 

pulsating fluid. Kubenko et al. [60] investigated the vibrations of cylindrical shells 

interacting with a fluid flow and subjected to external periodic pressure with slowly 

varying frequency.  

1.2.4 Pulsatile flow in blood vessels 

The most obvious feature about blood flow in arteries is that it is pulsatile. Morgan 

and Kiely [61] and Womersley [62] were the first to study the blood flow in arteries based 

upon the differential equations of liquid flow in a thin-walled elastic tube. Their classical 

solution of the problem of oscillatory flow in an elastic tube has been successively 

expanded by Atabek [63], Cox [64], and Ling [65]. Womersley compared theory with 

experiments [66], considering tethering, branching, and longitudinal variation of the 

cross-sectional area, and giving particular attention to the computational method. 

Womersley [67] also developed the equations describing the arterial flow treating the 

whole arterial tree as being in a steady state oscillation.  

The monograph by McDonald [68], whose first edition appeared in 1960, introduced a 

new approach to study arterial hemodynamics concentrated on pulsatile phenomena. 

Based on this new approach, any pulse waveform has been considered to have a mean 

value and fluctuations around this mean expressed as a series of harmonic components. 

Pressure/flow relationships have been considered to be near linear so that any harmonic 

component of a pressure wave could be related only to the same harmonic of pressure 

and flow wave recorded simultaneously.  

In the ten years that have elapsed since the publication of McDonald's monograph, 

there have been very rapid advances in the understanding of the physical performance 

of the mammalian cardiovascular system based on experiments and mathematical 

development of the theory as shown in Bergel’s monograph [69]. Theoretical 
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consideration of the relationship between pulsatile pressure and flow, vessel wall 

properties, arterial impedance, reflections, and wave propagation are very deeply covered 

by McDonald in the second edition of his monograph [70]. Nichols and O’Rourke, both 

protégés of McDonald, wrote the third, fourth and fifth edition [71] of McDonald’s 

monograph endorsing the same approach on theoretical, physiological, and clinical 

principles on arterial pulsation resulting from ventricular ejection.   

Another remarkable monograph on the mechanics of circulation was written by Pedley 

[72] who included the prediction of flow patterns and wall shear stresses in arteries, both 

significant in the genesis of arterial diseases. Another major area of research that he 

addressed concerns flow in vessels, such as veins, when they undergo collapse (as 

discussed in Section 1.2.5). The physics of blood flow and the coupling of fluids and 

solids in the heart, arteries, veins, microcirculation are presented in precise terms of 

mechanics by Fung in his monograph [73].  

In arteries, the pulsating blood flow causes wave propagation in the vessel walls. It is 

the propagation of the pulse that determines the pressure gradient during the flow at 

every location of the arterial tree. The interaction between the fluid and the vessel walls 

depends mostly on the physical-mechanical properties of the arterial tissues and the 

blood. In particular, the propagation velocity of pulse waves through the arteries is a 

means of diagnosing atherosclerotic arterial damage and determining the arterial tonus. 

The arterial pulse wave velocity (PWV) has been shown to be related to the underlying 

wall stiffness through the Moens-Korteweg [74] equation  and has been used in a variety 

of applications for non-invasive estimation of arterial stiffness [75]. Taylor [76] showed 

that the presence of reflected waves causes the measured transmission velocity of a 

harmonic wave to vary greatly with frequency. Using the technique of measuring wave 

front velocities with a delay line (McDonald [77]), Nichols and McDonald [78] made an 
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extensive study of the wave velocity in the ascending aorta of dogs, showing that phase 

velocity values, averaged over the first ten harmonics, were in close agreement with the 

velocity of the wave front. Their results also demonstrated that an increase in mean 

arterial pressure increases the pulse wave velocity. Recently, pulsatile flow characteristics 

and wave propagation through elastic tubes have been extensively studied on the 

macroscale by Zamir [79]. 

1.2.5 Stability of blood vessels 

Any compliant structure runs the danger of collapsing. The dynamics of pliable shells 

is of direct interest to haemodynamics. Notably, veins and pulmonary passages are 

considered collapsible tubes [80] meaning that they can exhibit large area changes in 

response to small changes in transmural pressure [81]. The configuration of the tube and 

the tract affects the flow, and vice versa. When critical conditions are reached, the flow 

and the channel wall begin to exhibit self-excited oscillations (flutter). In the last decades, 

an enormous amount of theoretical and experimental work has been done on the statics 

and dynamics of pliable shells conveying fluid [82]. Conrad [83] and Katz et al. [84] were 

the first to demonstrate limit-cycle oscillations by using thin rubber tubes in experiments. 

Since then, great attention has been given to such oscillations because the combination 

of the flexible channel with the internal flow provides an unexpectedly rich nonlinear 

system [85]. A physiological example of self-excited oscillations of venae cavae during 

heart surgery using extracorporeal circulation has been presented by Matsuzaki [86]. 

Vessel collapse is most readily observed in the veins, but the arteries also collapse 

when subjected to high external pressure [87], even if they are traditionally considered 

capable of withstanding large deformations without adverse effects [88]. Recently, Ama-

bili et al. [89] investigated the phenomenon of aortic dissection using a shell model. They 

identified for the first time the nonlinear buckling (collapse) of the aorta as a possible 
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reason for the appearance of high stress regions at the inner layer of the aorta wall that 

may be responsible for the initiation of dissection. Aortic dissection is a catastrophic 

cardiovascular disease that occurs with a sudden rupture of the internal layer (tunica 

intima) of the aortic wall [90, 91]. A geometrically nonlinear model has been used to 

examine the possibility of buckling with cross-section deformation (i.e. shell-like buckling) 

of a straight thoracic aortic segment under specific pressure and flow conditions. The 

most critical combinations of pressure and flow during a heart beating period were 

considered as possible causes of triggering the buckling phenomenon. Preliminary results 

indicate that for specific pressure and quasi-steady flow, the collapse of the aorta occurs 

with considerable deformation. This collapse lasts for a short period of time because the 

pressure upstream forces the aortic wall back to its original shape.  

1.2.6 Vascular surgery: Dacron grafts 

In vascular surgery, artificial blood vessels can be modeled as thin-walled shells 

conveying pulsating flow. Implants are used in various circumstances of vascular 

maladies requiring replacements of components of the cardiovascular system such as 

vessel patches for aneurysms. Surgeons perform vascular prosthesis implantation to 

exclude the compromised arterial portion (afflicted with aneurysm or dissection for 

instance) from luminal pulsatile blood flow. This may be carried out by providing an 

artificial blood flow passage via a synthetic conduit. In particular, two techniques - open 

surgical repair (OSR) and endovascular aneurysm repair (EVAR) - are employed to 

repair the vessel avoiding rupture. Open surgical repair is a traditional and standard 

treatment modality based on a well-established procedure to treat patients with a high 

risk of rupture [92, 93]. In an open repair the surgeon will open the abdominal cavity, 

clamp the aorta just above and  below the aneurysm and then sew a fabric tube or graft 

made of polyethylene terephthalate (Dacron® or PET) or expanded 
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polytetrafluoroethylene (ePTFE) inside the aneurysm. Both the proximal and distal 

segments are stitched to healthy tissue.  

Large diameter (12-30 mm) vessel replacements with Dacron are the accepted clinical 

practice [94]. In particular, tightly woven, crimped, and non-supported Dacron fabric 

prostheses are currently used to replace thoracic and abdominal aorta with high rates of 

success [95]. Dacron vascular grafts were first implanted by Julian in 1957 and DeBakey 

1958 [96]. Early clinical evidence showed that Dacron was the most promising material 

among the porous woven fabrics tested as arterial prostheses [97]. Abbott [98], in his 

report addressed to vascular surgeons regarding the evaluation of safety, efficacy, and 

expected performance of arterial prostheses, identified their most desirable 

characteristics such as biocompatibility, durability, and porosity. Biomechanical 

properties, even if not absolutely necessary, are highly desirable. Indeed, prostheses 

should match the viscoelastic properties of the arteries to which they are to be 

anastomosed. This property of the central blood vessels, known as compliance, is 

responsible for the efficient propagation of the pressure pulse to the peripheral vessels. 

With pulsatile blood flow, the compliant aorta acts as an elastic reservoir, absorbing 

energy during systole and releasing it during diastole. When a pressure wave encounters 

a discontinuity in geometry or elastic properties, for example at an anastomosis between 

a graft and an artery, it will be partially reflected with a reduction in the energy 

transmitted along the vessel. As current synthetic grafts are significantly stiffer than 

host vessels, substantial energy losses may occur through the graft [99].  

Currently available textile vascular implants are not significantly different from those 

introduced six decades ago. Their structural geometry is analogous to traditional textile 

structures rather than to that of an arterial vessel. This difference is highlighted when 

late clinical complications arising from behavioural mismatch at the artery-implant 
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anastomosis [100]. Indeed, arteries behave as distensible cylindrical conduits whilst the 

non-compliant nature of Dacron grafts increases the risk of thrombosis and is known to 

reduce graft patency [101]. Very little is known about the dynamic behavior of vascular 

prostheses that can cause unwanted hemodynamic effects leading to their failure.  

 

1.3 Theoretical Background 
 

In this section some of the basics of the dynamics of structures, fluids, and coupled 

systems are briefly reviewed. The Lagrange equations of motions used for studying the 

dynamical behavior of fluid-structure interaction systems are presented. The 

fundamentals of nonlinear dynamics, stability, bifurcation analysis, and modern 

computational tools are also introduced. Finally, key concepts used throughout the thesis 

are defined here. 

1.3.1 Periodic nonlinear vibrations: softening and hardening systems 

One main feature in non-linear systems is the resonant frequency dependence on the 

vibration amplitude. For very small amplitudes, the resonance peak coincides with the 

natural frequency of the linear approximation. However, for larger amplitudes, the 

resonance frequency decreases with amplitude for softening systems and increases with 

amplitude for hardening systems [102]. 

An equation that exhibits an enormous range of well-known nonlinear behaviours and 

that is commonly used as an archetype in nonlinear dynamics is the Duffing equation 

[103]. This equation is a nonlinear second order differential equation that represents 

forced mass-spring systems with viscous damping, where the restoring force of the spring 

is nonlinear and it is given by 
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2 3
1 2 3 ( ),mx cx k x k x k x f t                                      (1.1) 

where m is the mass, c is the viscous damping coefficient, k1 is the linear spring stiffness, 

k2 is the quadratic, k3 is the cubic stiffness, x is the vibration amplitude and f(t) is the 

time-dependent force excitation. Eq. (1.1) can be rewritten in the form 

    2 2 3
2 32 / / ( ) / ,x x x k m x k m x f t m                           (1.2) 

where ζ is the modal damping ratio and ω is the natural circular frequency of the 

linearized system.  

 

 
Fig. 1.1. Frequency-response curve of forced damped Duffing equation (a) softening, (b) hardening 

nonlinear response; stable solution (continuous line), unstable solution (dashed line), ↑ or ↓ jumps (Amabili 

[4]).  

 

The response of such a system to harmonic excitation with a forcing frequency Ω in 

the neighbourhood of its linear resonance ω is shown in the frequency-response curves 

Fig. 1.1(a-b). The softening behavior of the system Fig. 1.1(a) is given by (i) the 

quadratic nonlinearity, (ii) the cubic nonlinearity with negative sign of k3, (iii) the 

combination of quadratic and cubic nonlinearities. The hardening nonlinear behavior is 

given by the prevalence of the cubic nonlinearities with positive sign of k3 on the 

quadratic one. A hysteretic effect arises for increasing and decreasing the excitation 

frequency and a limit point with vertical tangent is identified in both curves. A jump 
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phenomenon is detected in correspondence to that point causing a switch from one 

branch to another of the stable solution. 

The nonlinear behavior of plates usually presents a hardening response while shells 

experience a softening type response for small amplitude vibrations and a hardening type 

for large amplitude vibrations (Fig. 1.2). 

 

 
Fig. 1.2. Amplitude of the response of a spherical shell versus the excitation frequency (Amabili [4]). 

 

In nonlinear systems, other periodic solutions can be detected, such as subharmonic 

and superharmonic vibrations. In the case of sub-harmonic resonance, the driving force 

with frequency Ω produces a response at frequencies Ω/N, where N is an integer, and 

thus the resonance occurs at integer multiples of the fundamental frequency ω. Similarly, 

there will be resonance responses at low frequencies  ω /N. This is the so-called super-

harmonic resonance. 

1.3.2 Numerical integration of Lagrange equations of motion 

Partial differential equations governing systems dynamics can be discretized into an 

N second-order ordinary differential equations in the following form 

 , , , , , ,
1 1 1 1 1 1

2 cos Ω 1,...,
N N N N N N

j j j j j i i j i k i k j i k l i k l i
i i k i k l

x x z x z x x z x x x f t for j N 
     

            (1.3) 
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where N is an integer representing the number of degrees of freedom used to discretize 

the original partial differential equations, zj,i are the coefficients associated to the linear 

stiffness terms, zj,i,k and zj,i,k,l are the coefficients associated with the quadratic and cubic 

stiffness terms, respectively. The two most common methods used to obtain the 

discretized equation (Eq. (1.3)) of continuous systems are the Galerkin method and an 

energy approach leading to the Lagrange equations of motion. In both cases, the 

displacements are expanded using a sum of trial functions that satisfy the geometrical 

boundary conditions. However, while the Galerkin method discretizes the partial 

differential equations, the Lagrangian equations of motion are directly obtained 

minimizing the energy of the system. For a system of N degrees of freedom and 

generalized coordinates qj, the Lagrange equations are  

d
1... ,

d j
j j j

T T U
Q j N

t q q q

   
        

                         (1.4) 

 where T is the kinetic energy of the system, U is the potential energy of the system. 

The generalized forces Q are given by 

 ,j
j j

F W
Q

q q

 
  

 
                                      (1.5)                   

Where F represents the Rayleigh’s dissipation function that takes into account 

nonconservative damping forces proportional to generalized velocities and W is the 

virtual work done by external forces. 

The generic j-th equation of motion can be recast into the following two first-order 

equations  

 
 , , , , , ,

1 1 1 1 1 1

2 cos

j j

N N N N N N

j j j j j i i j i k i k j i k l i k l j
i i k i k l

x y

y y z x z x x z x x x f t  
     



      

  




 (1.6) 
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for j = 1,..,N. The resulting ordinary differential equation (ODE) system can be studied 

via two numerical schemes: direct numerical integration or continuation and bifurcation 

analysis. 

Direct numerical integration of the equations of motion by using Gear’s backward 

differentiation-formula (BDF), such as DIVPAG routine of the IMSL library [104], is 

suitable for dynamical systems with relatively high dimensions that exhibit different 

timescales in the response. 

In nonlinear vibrations, turning and bifurcation points may exist, leading to region 

with multiple solutions. Continuation methods [105] are able to pass turning points, to 

discover bifurcation points, and to follow secondary branches. Once a fixed point is found 

(e.g. trivial undeformed configuration of the unloaded system) a parameter can be varied 

(such as pressure, flow velocity and forcing frequency) until a bifurcation occurs, 

representing the instability point. A specific algorithm for branch switching must be 

used at the bifurcation point to investigate the post-critical behavior. 

A well-known software for continuation and bifurcation analysis of nonlinear ODE is 

AUTO [106]. This software is also capable of branch switching by using the pseudo-

arclength continuation and collocation methods. Continuation methods allow following 

the solution path, with the advantage that unstable solutions can also be obtained. 

1.3.3 Nonlinear and internal resonances 

The resonant solutions of nonlinear systems under harmonic excitation can be 

expected near the excitation circular frequencies Ω satisfying the following relations [107] 

 ,
1

Ω 1,.., 1, 2,.. 0, 1, 2,..
N

j n j j
j

k m j N k m


              (1.7) 

where ω is the circular frequency of the harmonic excitation and ωj, j=1,..,N are the 

natural circular frequencies of the discretized system. Specific cases of equation (1.7) are 
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 Subharmonic resonance Ω = nj ωj with nj = 2, 3, …; 

 Superharmonic resonance Ω = ωj / k with k = 2, 3, …; 

 Sub-superharmonic resonance Ω = mj ωj / k with mj / k  1, 2, … and k / mj   1, 2, … . 

In nonlinear systems, the commensurability of natural frequencies results in coupling 

of the normal modes and may cause their strong interaction. As a result, energy is 

interchanged between these modes, and multi-frequency, multi-modal response occurs. 

This phenomenon is known as internal resonance. As a consequence, complex responses 

with additional resonance peaks are observed for nonlinear systems in the presence of 

internal resonances. When the ratio of two or several natural frequencies is close to the 

ratio of small integers 

 1,2,.., , 1,...,i j n n i j N                        (1.8) 

Internal resonances are detected. Typical cases are: 

 one-to-one (1:1) internal resonance characteristic of doubly symmetric systems 

which have pairs of modes with the same natural frequency (e.g. circular shells, 

circular and square plates); 

 one-to-two (1:2) internal resonance ωi ≈ 2 ωj; 

 multiple internal resonances involving more than two modes. 

Internal resonances can also give additional branches in the solution through 

bifurcations when the excitation circular frequency Ω approaches ωi. This typically 

happens in axial-symmetric systems (e.g. circular cylindrical shells and circular plates) 

where two orthogonal modes exist with the same frequency (1:1 internal resonance). 

These modes are called companion modes and they are angularly described by sin(n) 

and cos(n), respectively, n being the circumferential wavenumber. Even if an external 

excitation drives only one of these two modes, close to the resonance a pitchfork 

bifurcation of the periodic solution arises, and a traveling wave periodic solution appears, 
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given by a combination of both the two modes with a specific phase shift. Even if the 

companion mode is not directly excited, an energy transfer appears in correspondence to 

this bifurcated branch between the driven and the companion mode because of the 

internal resonance. 

1.3.4 Bifurcations theory 

Varying one or more parameters in a nonlinear system can affect the type of long-time 

dynamical motion and bifurcations can arise. The study of these changes in nonlinear 

dynamics due to the variation of control parameters μ is referred to as bifurcation theory. 

The value of the parameters giving a qualitative or topological change in the nature of 

motion or equilibrium is called critical μcri or bifurcation value [4]. For certain values of 

μ, even a slight change might set off drastic changes in behavior, for example: (i) the 

number and/or stability or singular points could change, (ii) a periodic orbit could 

appear/disappear or gain/loose stability, and (iii) a chaotic attractor could 

appear/disappear or change character. A general dynamic system described by a set of 

n autonomous first-order differential equations can be written as 

  , ; ( ) , ,n kx F x x x t R R                           (1.9) 

where F is an n-vector of generally nonlinear functions, x is an n-vector of state 

variables, and μ is a k-vector of control or bifurcation parameters. An equilibrium point 

x0 has to satisfy the fixed point condition F(x0,μ)=0. By definition, a singular point x0 is 

hyperbolic if the Jacobian at that point  
0

0 ,
x x

F
J x

x








has no eigenvalues with zero real 

part. However, if there is at least one eigenvalue with zero real part, the equilibrium 

point is called a nonhyperbolic or degenerate fixed point and stability is determined by 

the nonlinear terms. The nature of motion about the equilibrium point (stability of the 

solution) is determined by the sign of the real part of the eigenvalues of the Jacobian 
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matrix. The motion about the equilibrium point is unstable if one eigenvalue has a 

positive real part. The linear stability analysis can be performed in order to determine 

the bifurcation value μcri for which the fixed points become nonhyperbolic [108]. If at the 

stationary state x0 the bifurcation parameter is μcri, then (x0, μcri) is a bifurcation point.  

Bifurcations are classified into continuous, discontinuous and catastrophic, depending 

on how the state of the system varies when the control parameter is gradually varied 

through its critical value. A dangerous bifurcation, when the response jumps to a remote 

chaotic attractor, is also known as “blue sky catastrophe”. Usually reversing the control 

parameter, a bounded response remains on the path of the new attractor resulting in 

hysteresis.  

Bifurcations of autonomous systems can be static, when solution branches are 

constituted by fixed point, or dynamic. A particular type of static bifurcation where the 

system transitions from one fixed point to three fixed points is called pitchfork 

bifurcation. Based on the stability of the branches, the pitchfork bifurcation can be 

supercritical or subcritical: in the first case a stable solution turns unstable, and two 

stable branches emerge on each side of the unstable solution (Fig. 1.3). In the case of a 

subcritical bifurcation, an unstable solution gains stability and two branches of unstable 

solution emerge. An example of dynamic bifurcation is the Hopf bifurcation where a 

branch of fixed points meets a branch of periodic solutions.  

 

 
Fig. 1.3. Supercritical pitchfork bifurcation (Amabili [4]).  
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The stability of periodic solutions can be studied using the Floquet theory that 

represents the analysis of linear systems of differential equations with periodic 

coefficients. Floquet multipliers are analogous to the eigenvalues of Jacobian matrices of 

equilibrium points. A set of linear, homogeneous, time periodic differential equations is 

given by [109] 

 d
( ) ,

d

x
A t x

t
                                  (1.10) 

where A(t) is an n×n matrix with minimal period T. The general solution of Eq. (1.10) 

can be written as the sum of n periodic functions multiplied by exponential terms  

  ( ) i

n
t

i i
i

x t c e p t ,                                   (1.11) 

where ci are constant values that depend on the initial conditions, pi(t) are n-vector 

functions periodic with period T, and βi are the Floquet exponents. Floquet multipliers λi 

are associated to Floquet exponents by the relationship i T
i e  . The Floquet exponents 

determine the long term behavior of the system. The periodic solution is stable if all 

Floquet exponents have negative real parts or, equivalently, all Floquet multipliers| λi | 

< 1 for i = 1, .., N. If any Floquet multiplier has modulus greater than one, the periodic 

solution is unstable. 

When a Floquet multiplier becomes equal to -1, a period-doubling bifurcation appears. 

This bifurcation refers to periodic vibrations in which the period doubles. The periodic 

solution that existed before the bifurcation value μcri with oscillation frequency Ω, 

continues as an unstable solution. In the case of supercritical bifurcation, a new stable 

branch is created at the bifurcation with oscillation frequency Ω/2 (double period). In 

the case of a subcritical bifurcation, a branch of unstable period-doubled solution is 

destroyed at the bifurcation point and the bifurcation is considered catastrophic since 
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the behavior of the system for μ > μcri can be dangerous or explosive [110]. This scenario 

represents one of the routes to chaos. 

When two complex conjugate Floquet multipliers reach unit modulus, a so-called 

Neimark-Sacker bifurcation appears. It is also named secondary Hopf since it is the Hopf 

bifurcation of a periodic solution. In case of a supercritical bifurcation, a new branch of 

stable quasiperiodic solution appears. In case of a subcritical bifurcation, a branch of 

unstable quasi-periodic solution is destroyed causing a catastrophic bifurcation. Circular 

cylindrical shells in nonlinear vibrations regime can experience supercritical Neimark-

Sacker bifurcations [4]. 

1.3.5 Chaotic vibrations 

Chaos is the random-like behavior of a deterministic system; in other words, the system 

is deterministic, nevertheless it behaves as if it were random but with a most significant 

difference. Indeed, while random systems are not restrained to specific state-space regions, 

the chaotic ones are. It is a type of motion that is sensitive to changes in initial conditions. 

In particular, the slightest change in the initial conditions results in trajectories that 

diverge exponentially at any given time sufficiently long afterwards.  

Only nonlinear system - with a number of dimensions equal or bigger than three - can 

exhibit chaos. An excellent engineering treatment of the theory of chaos is given by 

Moon [111] which clearly defines the peculiar characteristics  of chaotic vibrations: 

 high sensitivity to small changes in the initial conditions; 

 broad frequency spectrum of vibration even if the excitation is simply harmonic; 

 fractal nature of the oscillation in the phase space, denoting a strange attractor 

that can be observed in the Poincaré maps; 

 the existence of a particular route to chaos showing an increasing complexity of 

regular motion (e.g. period doubling bifurcations); 
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 the possibility of transient chaotic motion when the motion looks chaotic during 

a finite time and it appears to move on the strange attractor, but eventually 

settles into a periodic or quasiperiodic motion.  

1.3.6 Poincaré maps 

A Poincaré map is a collection of points obtained by collecting and storing a single 

point of the trajectory of the system in phase space for each cycle of motion, with 

consistent timing [111].  

For a periodically forced, second-order nonlinear oscillator, a Poincaré map can be 

obtained by stroboscopically observing the position x(t) and velocity  ẋ(t) at a particular 

phase of the forcing function (H. Poincaré, 1854-1912). A Poincaré section converts a 

continuous time evolution into a discrete time mapping. The motion will appear as a 

sequence of dots in the phase plane (x(t), ẋ(t)). A two-dimensional map is given by the 

plot of time-sampled sequence of data xn = x(tn) and yn = ẋ(tn) in the phase-plane and it 

is represented by the following difference equations 

    1 1, , , .n n n n n nx f x y y g x y                      (1.12) 

When there is a driving motion of period T and the sampling rule is taken as tn = nT 

+ t0,with n an integer, the two-dimensional map is called a Poincaré map [111]. Thus, if 

the motion is periodic (period-1), the Poincaré map consists of a single point in a (x, ẋ)-

plot; it consists of two points for period-2 motion. In general, being the excitation 

frequency Ω, the plot of a subharmonic motion with circular frequency Ωt / n consists of 

n points in the Poincaré map.  

If the vibration motion consists of two or more incommensurate frequencies (quasi-

periodic motion), the points on the corresponding Poincaré section will densely fill up a 

closed smooth curve [112].  
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A cloud of points in some defined pattern would suggest chaotic motion. In this case, 

a fractal nature phase space plots is often revealed, whereby a small such region, when 

blown up, displays a similar character at a more microscopic scale. The appearance of 

fractal-like patterns in Poincaré maps is a strong indicator of chaotic motion [111]. 

1.3.7 Fluid-Structure Interaction 

In many fluid-structure interaction problems, the flow velocity vector is characterized 

by a dominant steady flow-velocity component while all the others are perturbations 

induced by structural motion. Thus, 

 ,U V i v                                            (1.13) 
where V is the flow velocity vector, U is the undisturbed flow velocity in the x-direction, 

i is the unitary vector in the x-direction and Uv  . These flows are defined as 

linearized flows since, under these hypotheses, the Navier-Stokes equations can be 

linearized and simplified considerably. Uniform flows approaching a body can often be 

treated as irrotational and isentropic and the fluid can be considered inviscid. In these 

cases, the flow field may be expressed as 

 Ψ = Φ,U  V i                                 (1.14) 
where Ψ is a scalar potential function made of two components: one due to the mean 

flow, and one to the velocity potential Φ associated with the flow perturbations caused 

by the presence of the body. This unsteady perturbation potential Φ satisfies the Laplace 

equation 

 2Φ = 0.                                         (1.15) 
Hence, Euler’s equations simplify to the well-known unsteady Bernoulli equation 

        2Φ 1
0,

2 F

P
V

t 


  


                               (1.16) 

where 2 Ψ ΨV    , ρF is the fluid density. The pressure P is measured relative to the 

stagnation pressure of the free stream and it is defined by 
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 0 ,P P p                                           (1.17) 
where P0 corresponds to the steady potential flow and p is the perturbation component. 

It is assumed that the disturbances causing the deformations for the structures are 

sufficiently small for their squares and higher-order terms to be ignored [5].    

 The fluid domain is assumed to be a cylinder of infinite extent, inside a 

periodically supported shell of infinite length as shown in Fig. 1.4. Thus, the velocity 

potential can be obtained using the method of separation of variables [4]. The distance 

between the periodical supports is L and R is the radius of the shell. As a result, the shell 

radial displacement, the velocity potential and the perturbation pressure are periodic 

functions with main period 2L.  

 

 
Fig. 1.4. Infinite circular cylindrical shell periodically supported at distance L (Karagiozis et al. [36]). 

 

A cylindrical coordinate system x, r,  is introduced with the origin at one shell end. 

The radial displacement of the shell middle surface is indicated with w taken positive 

outward. The condition of impermeability of the surface of the shell may be expressed 

mathematically as  

 Φ
,

r R

w w
U

r t x

        
                            (1.18) 

that must be satisfied at any point of the contact surface between the shell and the 

fluid if no cavitation occurs. By using the method of separation of variables, Φ has the 

following form 

         , ,
1 0

Φ , , , cos .
M N

m m n m n
m n

x r t x r n f t   
 

               (1.19) 
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Substituting Eq. (1.19) in Eq. (1.15) and applying the condition that the velocity 

potential must be regular at r = 0, it is found that 

        ,sin and I ,m m n nx m x L r m x L               (1.20) 

where In is the modified Bessel functions of the order n of the first kind. Eq. (1.18) is 

satisfied by assuming 
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                (1.21) 

where 'In is the derivative of In with respect to the argument.  

By linearizing equation (1.16), it may be shown that the perturbation pressure p can 

be written as 

 Φ Φ
.F

r R

p U
t x




       
                              (1.22) 

Hence, the perturbation pressure at the shell wall, using Eq. (1.21) and Eq. (1.22), is 

given by 

 
2

,'
1 0

I ( / )
.

I ( / )

M N
n

F m n
m n n

m R LL
p U w

m m R L t x


  

       
              (1.23) 

Neglecting the effect of the fluid weight on the structure, Green’s theorem is used to 

obtain the total energy ETF associated to the flow as follows [4] 

 
Γ Γ

1 1 1 Ψ
dΓ = Ψ Ψ dΓ= Ψ d ,

2 2 2TF F F F

S S

E S
n

            v v   (1.24) 

where  and S are the cylindrical fluid volume inside the shell (delimited by the length 

L) and the boundary surface of this volume, respectively, and n is the coordinate along 

the normal to the boundary, taken positive outward. The mean flow potential Ux does 

not give any time-varying contribution to the energy of the flowing fluid, so it does not 

affect the shell dynamics. The total energy of the fluid can be reduced to 

 ,F F G FE T E V                                        (1.25) 
where TF represents the kinetic energy of the fluid, EG is the so-called gyroscopic energy 

and VF is the potential energy of the fluid.  
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The kinetic energy TF of the fluid associated to the perturbation potential is given by 
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The potential-like energy VF can be expressed as 
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where VF is negative meaning that the stiffness of the system decreases with U.  

The gyroscopic energy EG associated with the perturbation potential is  
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In the case of harmonic vibrations, the gyroscopic energy EG is globally zero proving 

that the system is conservative and no energy is dissipated. Indeed, the fluid was 

assumed inviscid. The gyroscopic energy represents the energy transferred among modes 

associated with the gyroscopic effect and it is related to the inertial Coriolis force. It is 

characteristic of systems with mass transport, called gyroscopic systems.  

The Lagrange equations of motion (Eq. (1.4)) for fluid-structure interaction systems 

are written as 
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           (1.29) 

where TS and US represent the kinetic and potential energy of the structure, 

respectively.  In the present case, 0S j F jT q T q     . The gyroscopic energy EG can 

be written in the following vectorial form 

 T1
,

2GE  q G q                                        (1.30) 

where the gyroscopic matrix G is an antisymmetric matrix with zeros on the diagonal. 

Applying this antisymmetric characteristic, the following expression is obtained  

 .G G

j j

E Ed

dt q q

  
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                                           (1.31) 
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Thus, the final expression of the Lagrange equations of motion can be written as 
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Chapter 2 

 

Plates in axial pulsatile flow 
 
 
 
In this chapter, the stability and nonlinear vibrations of plates in axial confined 

pulsatile flow are studied. The system investigated consists of an infinitely wide and 

infinitely long thin plate periodically supported made of isotropic homogeneous material 

subjected to an inviscid axial pulsatile flow on its upper surface. The mathematical model 

has been developed by the author and it is outlined here. The fluid is set in motion by 

an oscillatory pressure gradient. The nonlinear Lagrange equations of motion of the 

coupled system are obtained and solved by using a code based on the pseudo-arc-length 

continuation and collocation scheme. Different system parameters, such as flow velocity, 

pulsation amplitude, pulsation frequency, and channel pressurization are investigated 

and corresponding findings are compared to the case with steady flow. The paper 

“Nonlinear vibrations of plates in axial pulsating flow” published in the Journal of Fluids 

and Structures [1] is presented in this chapter. 
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NONLINEAR VIBRATIONS OF PLATES IN AXIAL PULSATING FLOW 

 

E. Tubaldi, M. Amabili, F. Alijani 

Department of Mechanical Engineering, McGill University 

  

Abstract 

A theoretical approach is presented to study nonlinear vibrations of thin infinitely 

long and wide rectangular plates subjected to pulsatile axial inviscid flow. The flow is 

set in motion by a pulsating pressure gradient. The case of plates in axial uniform flow 

under the action of constant transmural pressure is also addressed for different flow 

velocities. The plate is assumed to be periodically simply supported in both in-plane 

directions with immovable edges and the flow channel is bounded by a rigid wall. In this 

way the system under study is a finite rectangular plate with conditions on the fluid and 

the plate boundaries coming from the periodicity of the infinite system. The equations 

of motion are obtained based on the von Kármán nonlinear plate theory retaining in-

plane inertia via Lagrangian approach. The fluid model is based on the potential flow 

theory. The resulting Lagrange equations of motion of the coupled system contain 

quadratic and cubic nonlinear terms and are studied by using a code based on the 

pseudo-arc-length continuation and collocation scheme. The effect of different system 

parameters such as flow velocity, pulsation amplitude, pulsation frequency and channel 

pressurization on the stability of the plate and its geometrically nonlinear response to 

pulsating flow are fully discussed. It has been found that the presence of positive 

transmural uniform pressure and small pulsation frequency would destroy the pitchfork 

bifurcation (divergence) that flat plates exhibit when subjected to uniform flow. 

Moreover, in case of zero uniform transmural pressure numerical results show a 
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hardening type behavior for the entire flow velocity range when the pulsation frequency 

is spanned in the neighbourhood of the plate’s fundamental frequency.  On the contrary, 

a softening type behavior is presented when a uniform transmural pressure is introduced. 

 

2.1 Introduction 
Thin plates immersed in flowing fluids are widely used in many engineering 

applications where small plate thickness is required to minimize the weight, improve 

thermal exchange and to reduce costs. Under these conditions, the plate dynamic 

response to different sorts of excitations, such as fluid excitations, becomes of great 

interest.  

The dynamic interaction between an elastic plate and a surrounding fluid medium has 

been deeply investigated in literature. In particular, the literature related to linear 

vibrations of plates coupled to fluid is quite extensive (see e.g. Lamb [8], Kwak [9], Kwak 

and Kim [10], Fu and Price [11], Amabili and Kwak [12]). The majority of the older 

approximate analytical methods that are used to study flow-induced vibrations are based 

on the assumption attributed to Lamb [8] that the vibration modes of the structure in 

contact with still fluid (wet modes) are the same as those in vacuo (dry modes). In fact, 

it is based on this assumption that the so-called non-dimensional added virtual mass 

incremental factors (NAVMI) can be used to estimate the natural frequencies of the 

plate in still fluid from the natural frequencies in vacuo as shown by Kwak and Kim [9], 

and Kwak [10]. Amabili and Kwak [12] removed the simplified assumption of identical 

wet and dry modes and obtained the mode shapes of the coupled system via Rayleigh-

Ritz approach. Theoretical analysis and experimental studies have been carried out on 

the nonlinear hydroelastic vibrations of a cylindrical shell with an elastic bottom by 

Chiba (see [13], [113] and [114]). Guo and Paidoussis [14] used Galerkin approach to 
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study the hydroelastic instabilities of parallel assemblies of rectangular plates coupled to 

flow. They found that divergence and coupled mode flutter may occur for plates with 

any type of end supports, while single-mode flutter only arises for non-symmetrically 

supported plates. Tubaldi and Amabili [115] derived the eigenfrequencies and complex 

modes of an infinite plate periodically supported and coupled to flowing fluid using the 

Rayleigh-Ritz method. They found that for sufficiently high flow velocities the system 

becomes statically unstable. Implicit in the authors' analysis was the assumption that 

the plate deflection was the same between any two successive supports in the flow 

direction, aside from a phase change (change in sign) between two successive supports 

and the next set of supports, i.e. from one “bay” to the next. Indeed, for the low speed 

case treated by the authors, the instability is divergence at low speeds (rather than 

flutter which occurs at supersonic speeds) and the divergence instability is dominated 

by a single structural mode. In a successive study, Tubaldi et al. [116] studied the 

nonlinear vibrations of such system. They found that in the case of flat plates, bifurcation 

diagrams with respect to the flow velocity present a static loss of stability due to a 

pitchfork bifurcation. When geometric imperfections are taken into account, the 

pitchfork bifurcation disappears and the system presents a continuous post-buckling 

configuration. A hardening type nonlinearity was found for the entire flow velocity range 

explored in the case of flat plate. Conversely, an initial softening behavior turning to 

strong hardening for large vibration amplitudes was obtained for imperfect plates.  

The literature related to nonlinear studies of plates coupled to flowing fluid is scarce. 

Nonlinear flutter of rectangular plates was investigated by Dowell [19, 20]. Ellen [21] 

studied the asymptotic nonlinear stability of simply supported rectangular plates 

subjected to incompressible flow (on one side only) considering both structural and fluid-

dynamic nonlinearities. The analysis was based on single-mode Galerkin approach and 
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it was shown that fluid-flow nonlinearities introduce a subcritical instability while the 

stabilizing structural nonlinearities have a dominant effect in controlling the overall 

nonlinear behavior. Lucey et al. [22] examined the dynamics of a finite length plate, 

mainly in post-divergence regime where coupled-mode flutter may arise. The flow was 

considered to be inviscid and the solution of the coupled problem was obtained by 

boundary-element and finite-difference method. 

The unsteady interaction between a simple elastic plate and a mean flow has a number 

of interesting features such as the existence of negative-energy waves (NEWs). Indeed 

by introducing the concept of modal wave energy, Landahl [117] and Benjamin [118, 

119] showed that over a range of frequencies, neutral modes with negative wave energy 

exist (also named class A waves by Benjamin). In particular, Landahl [117] explained 

the seemingly paradoxical result that damping destabilizes class A waves by studying 

the flutter of an infinite panel in incompressible potential flow. It was shown that these 

waves are associated with a decrease of the total kinetic and elastic energy of the fluid 

and the wall, so that any dissipation of energy in the wall will only increase the wave. 

It was also found that the Kelvin-Helmholtz type of instability will occur when the 

effective stiffness of the panel is too low to withstand the pressure forces induced on the 

wall. Using the same concept of modal wave energy, Peake [120] studied the nonlinear 

stability of plates for heavy fluid loading considering both plate and fluid nonlinearities 

analytically. Also in this case it was found that the instability may arise if the 

destabilizing force due to the fluid loading exceeds the restoring stiffness of the plate. 

Unsteady flow-induced vibrations often occur in many engineering areas, for example, 

the flow in hydraulic and pneumatic and pumping systems or applications of heat 

transfer as well as biological systems. A specific type of unsteady flows includes 

oscillatory and pulsatile flows, which are prevalent in many biological, industrial and 
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natural systems (due to pump and valve operations in pipeline systems and even in 

human circulation).  Oscillatory and pulsating flows in branching pipes have been 

extensively studied by investigators concerned especially in biology. Additionally, a 

number of work have been reported in the literature concerning oscillatory or pulsatile 

flows in straight pipes (see for example Uchida [39], Gerrard and Hughes [40], Hino et al. 

[41], Muto and Nakane [42], Shemer et al. [43], Kerczek and Davis [121], Schneck and 

Ostrach [122], Elad et al. [123]). 

Pioneering studies related to dynamic instability of pipes conveying fluctuating 

fluid were from Chen [27] followed by Ginsberg [46], Paidoussis [47] and Paidoussis and 

Issid [45]. Ginseberg [46] derived the general equations of motion for small transverse 

displacement of a pipe conveying fluid based on the transverse force exerted by the 

flowing fluid. For the case of a simply supported pipe, the Galerkin method was utilized 

to obtain the solution. The dynamic instability regions were evaluated and it was shown 

that the region of dynamic instability increases with increased amplitude of fluctuations. 

Paidoussis [47] presented a theoretical analysis of the dynamical behaviour of flexible 

cylinders in axial flow, the velocity of which is perturbed harmonically in time. He found 

that parametric instabilities are possible for certain ranges of frequencies and amplitudes 

of the perturbations. These instabilities occur over specific ranges of flow velocities, and 

in the case of cantilevered cylinders are associated with only some of the modes of the 

system. Paidoussis and Issid [45] derived the equation of motion of a flexible pipe 

conveying fluid by taking into account the effects of external pressurization, external 

tension and the longitudinal acceleration of the fluid. Their numerical model could be 

utilized when flow contains harmonic components. Unsteady flow characteristics and 

wave propagation through elastic tubes have also been studied on the macroscale by 

Womersley [62] and Zamir [124]. Womersley [62] was one of the first to experimentally 
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study pulsatile flow and performed his studies on the femoral artery of a dog. In these 

studies, the velocity profiles, viscous drag, and Reynolds number were calculated from 

the pressure gradient. It was the pressure gradient that was used to determine the flow 

characteristics indirectly. Since then, much work has been performed on the flow stability 

and transition to turbulence of oscillatory and pulsatile flow both experimentally and 

numerically (see [125-129]).  Numerous experimental investigations were focused on 

fundamental studies of fully developed periodic pipe flows with sinousoidally varying 

pressure gradients (or flow rates). Low speed (laminar) pulsating flows were studied in 

order to analyze the flows through small pipes or in the blood circulation systems. 

Berguer et al. [130] developed a numerical model to analyze both laminar and turbulent 

pulsatile flows in aortic aneurysm models using physiological resting and exercise 

waveforms. They also compared hemodynamic stresses for non-Newtonian and 

Newtonian flows. The decreased stresses generated as a sequence of non-Newtonian effect 

were significant in realistic flow conditions. Recently, Khanafer et al. [131] numerically 

analyzed pulsatile turbulent flow, using simulated physiological rest and exercise 

waveforms, in axisymmetric-rigid aortic aneurism models. Khanafer et al. [132] also 

represented the first computational study to analyze turbulent pulsatile flow within 

compliant walls of an aneurysm and to determine realistic aneurysm wall stress values. 

The literature on the aspects of dynamic instabilities of composite shells conveying 

pulsating fluid is very much scarce. Kadoli and Ganesan [56] studied the parametric 

instabilities in composite cylindrical shells containing a pulsating hot fluid flow. A 

coupled fluid-structure interaction problem for a pulsating flow of hot water was used 

along with the time independent geometric stiffness matrix formulated based on the 

initial stresses due to flow of hot fluid through the composite cylindrical shell. They 
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found that the major instability region starts at a pulsating frequency which is equal to 

twice the natural frequency of the shell with quiescent water. 

The present study aims to extend the recent work of Tubaldi et al. [116] by studying 

nonlinear vibrations and stability of thin rectangular plates with immovable edges 

coupled to axial pulsatile flow. The case of plates in axial uniform flow under the action 

of constant transmural pressure is also addressed for different flow velocities. Lagrange 

equations of motion are derived for the case of unsteady flow velocity. The effect of 

different system parameters such as flow velocity, pulsation amplitude, pulsation 

frequency, and channel pressurization on the stability of the plate and its geometrically 

nonlinear response to pulsating flow are fully discussed. The frequency-amplitude 

responses presented here show a hardening type behavior in case of zero uniform 

transmural pressure. On the other hand, in the presence of uniform transmural pressure 

a softening type behavior is found. 

 

2.2 Mathematical formulation 
The system under investigation, shown in Fig. 2.1 consists of an infinitely wide and 

infinitely long thin plate made of isotropic homogeneous material subjected to an inviscid 

axial pulsatile flow on its upper surface. The plate is taken in the proximity of a rigid 

wall as shown in the Fig. 2.1. A right-handed rectangular Cartesian reference system 

(O;x,y,z) is considered with the x,y plane coinciding with the middle surface of the plate 

in its initial undeformed configuration and the z axis normal to it. The distance between 

the plate and the rigid wall is denoted by H and U is the undisturbed flow velocity of 

the axial pulsatile flow.  



2.2.  Mathematical formulation 
 

45 
 

 
Fig. 2.1. Schematic of the plate in axial flow with rigid wall. 

 

The plate is assumed to be simply supported with immovable edges and therefore the 

following boundary conditions should be satisfied at each edge (see [4]) 

 0u v w    and 0xM   at 0, ,x a                  (2.1a-d) 
0u v w    and 0yM   at 0, .y b                (2.2a-d) 

where xM  and yM  are the bending moments of the plate per unit length and can be 

obtained as follows:   
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and , ,u v w  are the displacements of a point on the middle surface of the plate in ,x y  

and z  directions, respectively. The discretization of the system can be obtained by using 

the Rayleigh-Ritz method. A base of plate displacements satisfying the geometric 

boundary conditions must be chosen to discretize the system. For this purpose, the 

following expressions are considered as expansions of the displacements ,u v  and w    
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where m and n are the numbers of half-waves in x and y directions, respectively. The 

generalized coordinates ,2( ), ( ), ( )rs c d mnu t v t w t  are unknown time-depending functions. M 

and N indicate the number of terms in the expansion of w and are usually smaller than 

the number of terms in the expansions of u (denoted by r and s) and v (denoted by c 

and d). It should be noted that the expansion of the displacement v includes only even 

number of half-waves in y-direction due to the symmetry of the system and since the 

fluid flow is just in x-direction. It can be noticed that the bending moment (Eq. (2.3a-

b)) at the edges of a periodically simply supported plate is zero if the supports are equally 

spaced. Indeed, applying the expansion of the transversal displacement w (Eq. (2.4c)) to 

the expression of the bending moments (Eq. (2.3a-b)) in x- and y-direction,  the sinus 

terms of the expansion vanish on the edges as shown in the boundary conditions in Eq. 

(2.1d) and Eq. (2.2d). 

2.2.1 Elastic strain energy and kinetic energy of the plate 

The elastic strain energy pU , assuming plane stress hypothesis, i.e. neglecting shear 

deformation, is given by 
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where h is the plate thickness; a, b are the in-plane dimensions in x and y directions, 
respectively and , ,xx yy xy    are the Kirchhoff stresses for homogeneous isotropic 

materials. Moreover, , ,xx yy xy    are the Green's strains that can be written as follows
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where ,0 ,0 ,0, ,x y xy    are the middle surface strains and they have the following 

expressions according to the von Kármán nonlinear plate theory 
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The kinetic energy pT  of the plate, neglecting rotary inertia, is given by   
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where s  is the mass density of the plate. 

2.2.2 Plate-flow interaction  

The fluid is assumed to be inviscid and incompressible, and the flow to be irrotational. 

Hence, the fluid-structure interaction can be described by the linear potential flow 

theory. By introducing the scalar potential function  , the velocity vector of the fluid 

V  may be written as 

 .V                                           (2.9) 
The potential  is expressed as: 

 ,Ux                                              (2.10) 
where the first component is due to the mean flow associated with the undisturbed 

flow velocity U and the second one is the unsteady perturbation potential   associated 

with the plate motion. 

The potential of the perturbation velocity satisfies the Laplace equation: 

 2 0.                                            (2.11) 
The boundary conditions representing impermeability condition and no cavitation at 

the plate and at the wall are: 
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Performing the Galerkin technique [115] showed that the perturbation potential can 

be obtained as follows: 
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where the coefficient rsk  is defined as 
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in which 
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2.2.3 Flow energy 

Neglecting gravity, the total energy tfE  associated with the inviscid and 

incompressible flow can be obtained as follows: 
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where V  is the fluid volume. 

Tubaldi and Amabili [115] found that the total energy of the fluid can be reduced to 
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where fE  is the energy associated with the perturbation potential and it has the 

following form 
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Indeed, the energy fE  can conveniently be divided into three terms 

 ,f f g fE T E V                                         (2.20) 

where ,f fT V  and gE  are the reference kinetic energy, the potential energy and the 

gyroscopic energy of the fluid, respectively and they have the following expressions 
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 2

1 1

1
(0),

2 4

M N

f f mn mn
m n

ab
T w m

 

                             (2.21a) 

1 1 1 1 1 1

1
(0) (0)

2 2 2

M N M M N M

g f mn pn mn pm rn mn mn mr
m n p m n r

b U b U
E w w m p w w m m

   
     

 
   

 
    ,   (2.21b) 

 
2 2

1 1 1 1

1
(0) .

2

M N M M

f f rn pn mn rm pm
m n r p

b U
V w w m rp

a

  
   

          (2.21c) 

The gyroscopic energy, Eq. (2.21b), represents the energy transferred among modes 

associated with the gyroscopic effect and it is related to the inertial Coriolis force. When 

increasing the flow velocity, the modes are changed from the well-known “in-phase” (i.e. 

with all points of the plate moving in-phase or anti-phase and fixed nodal lines) mode 

shapes of simply supported plates to complex mode shapes where points are moving with 

phase differences and nodal lines are no more fixed. For small flow velocities, the real 

part of the mode, which has the same shape of the natural mode of the plate for zero 

flow velocity, is predominant. On the contrary for large flow velocities, the imaginary 

part, which usually has the shape of two longitudinal half-waves for the first mode, 

becomes more significant as a consequence of the gyroscopic effect of the flowing fluid. 

Eq. (2.21a-c) are associated with the perturbation potential and can also be written 

in the following form 

 2 fT , T
fw M w                                    (2.22a) 

 
2 gE , T

fw C w                                          (2.22b)    

                  
2 fV , T

fw K w                                          (2.22c) 

where the vector w  is defined as  11 1 21 2( ),... ( ), ( ),... ( ),... ( ) .N N MNw t w t w t w t w tw =   

2.2.4 Pulsatile flow 

By assuming unsteady inviscid flow in a long duct of arbitrary cross-section, the 

constant property 1D unsteady Euler equation of the conservation of momentum reduces 

to 
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 d d
,

d df

p U

x t
                                     (2.23) 

where p  is the undisturbed pressure field. It is assumed that the flow disturbance due 

to the  plate motion diminishes far from the plate. The change in cross-section is not 

included in the continuity equation since in the present study it is negligible compared 

to the channel height H (w << H).  Hence, the pressure gradient that drives the fluid is 

expressed by 

 ( , 0,0)fp U    .                                        (2.24) 

We write the pressure and flow velocity in Eq. (2.23) as superposition of steady and 

unsteady (pulsatile in our case) components, using 

 ( , ) ( , ),sp x t p p x t                                  (2.25a) 
 ( ) ( ),sU t U U t                                       (2.25b) 

where sp  and sU  represent the steady component of the pressure field and the mean 

flow velocity, respectively. For a parallel flow the unsteady parts become 

 d d

d df

p U

x t
 


.                                    (2.26) 

In particular, a flow having a harmonic component superposed on the mean flow 

velocity sU  is considered flowing through the channel. Hence, the flow velocity ( )U t  

can be written as 

   ( ) 1 sin ,sU t U t                                       (2.27) 

thus the flow acceleration is 

  ( ) cos ,sU t U t                                      (2.28) 

 where   is the ratio between the pulsation amplitude and the steady velocity 
and   is the pulsation frequency. 

Substituting Eq. (2.28) in Eq. (2.23) we obtain  

 d d
cos( )

d d f s

p p
U t

x x
     

 .                             (2.29) 

 Hence, the pressure gradient that drives the fluid is expressed by a harmonic 

function, as it has to be, because the fluid acceleration is pulsating along the channel.  
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The pulsatile flow discussed here is ideal since it is assumed that at the same time 

instant, the flow velocity is the same for all points of the control volume. Indeed, since 

it is impossible to experimentally reproduce a pulsatile flow without introducing phase 

lag in the flow velocity in the axial direction, our ideal study is a good approximation of 

a real case when the phase lag in the velocity between the inlet (x=0) and outlet (x=L) 

surface can be considered small.  

2.2.5 Lagrange Equations of Motion  

As shown in Appendix A, the Lagrange equations of motion for the plate coupled to 

flowing fluid, knowing that 0p j f jT q T q     , are 

    d
, 1...

d
p f g p fg

j
j j j

T T E U VE
Q j dof

t q q q

     
    

    
,        (2.30) 

where dof R S M N C D       is the number of degrees of freedom and 

1 ,2,..., , ,
T T

dof rs c d mnq q u v w      q = , for 1.. , 1.. , 1.. , 1.. , 1.. , 1.. .r R s S m M n N c C d D       

It should be noted that the energy of the flowing fluid gives no contribution to the 

equations related to in-plane displacements. 

Under the hypothesis of unsteady flow the gyroscopic term d

d
g

mn

E

t w

 
  

 becomes 

  
1

d
(0) (0) ,

d 4

M
g f g

pn pn mn pm
pmn mn

E bU E
w m m p

t w w






  
      





         (2.31) 

 hence the Lagrangian equations Eq. (2.30) related to out-of-plane displacement can 

be rewritten as 

     
1,

d
(0) (0) 2

d 4

M
p f p ff g

pn pn mn pm mn
pm n mn mn

T T U VbU E
w m m p Q

t w w w






    
     

    





,       (2.32) 
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for 1... , 1... .m M n N   The term depending on the flow acceleration U  did not 

appear in the formulation of [115] where a steady flow was considered. The generalized 

forces jQ  can be obtained as follows 

,j
j

W
Q

q





                                             (2.33) 

where W  is the virtual work done by the external forces. In the present study, the 

virtual work is given by pressure field ( )sp p p t    and it has the following expression 

 

0 0
( , , ) ( , ) d d ,

a b

I IIW w x y t p x t x y W W                           (2.34)  

where   

 
0 0

( , , ) d d ,
a b

I sW w x y t p x y                           (2.35a) 

 
0 0

( , , ) ( , ) d d .
a b

IIW w x y t p x t x y                              (2.35b) 

Equation (2.34) is exact for infinitesimal deflection w of the plate, since in the 

Lagrangian description the pressure changes direction for large deformations in order to 

be always normal to the plate surface. However, for moderate deflections of thin plates 

equation (2.34) can be considered a good approximation. 

Subsituting Eq. (2.4c) into Eq. (2.35a), the virtual work IW  can be rewritten as 

  
2

1 1

4
.

M N
mn

I s
m n

m odd n odd

wab
W p

m n  

                                        (2.36) 

Similarly, the virtual work IIW  can be obtained as 

  2

2
1 1

12
.

mM N
mn

II f
m n

n odd

wa b
W U

m n


  


                         (2.37) 

Eq. (2.32) and Eq. (2.33) can be written in the following matrix form: 

   ,  f p f 2 3Mq + C + C q + K + K + N (q) + N (q,q) q = f            (2.38) 
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where p fM = M + M , pM  being the mass matrix of the plate and C  the damping 

matrix which is added to the equations of motion to simulate dissipation. Moreover, pK  

is the linear stiffness matrix of the plate, 2N  gives the quadratic nonlinear stiffness 

terms, 3N denotes the cubic nonlinear terms and f is the vector representing external 

forces obtained using Eq. (2.33), Eq. (2.36) and Eq. (2.37). The nonlinear terms in such 

a model are only associated with the structure; however, by changing the inertia of the 

system, its nonlinear properties consequently change. In order to obtain the equations of 

motion in a suitable form for numerical implementation, the system (2.38) is multiplied 

by the inverse of the mass matrix and then is written in the state-space form as follows 

    

    

-1 -1 -1 -1 -1
f p f 2 3

q = y

y = -M C + C q - M K + K + M N (q) + M N (q,q) q + M f



   (2.39) 

where y  is the vector of the generalized velocities and the dissipation term -1M C   is 

given by 

 
1 12 0

0 0

0 2 j j

 

 

 
   
  

-1M C





                              (2.40) 

which is related to the modal damping ratio of each generalized coordinate j . Matrix 

(2.40) is assumed to be diagonal in order to use modal damping.  

An alternative approach to discuss the fluid-structure interaction between the plate 

and the fluid flow is presented in Appendix B by applying the Bernoulli's theorem to 

obtain the relationship between the perturbation pressure *p  and the perturbation 

potential  .
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2.3 Numerical results 
The equations of motion have been obtained by using the Mathematica software by 

[133] in order to perform analytical surface integrals of trigonometric functions. A non-

dimensionalization of variables is performed for computational convenience: the 

frequencies are divided by the natural radian frequency 11  of the fundamental mode, 

and the vibration amplitudes are divided by the plate thickness h . The set of nonlinear 

ordinary differential equations (2.39) has been solved by using the software AUTO by 

[106] that is capable of continuation of the solution, bifurcation analysis and branch 

switching by using the pseudo-arclength continuation and collocation method. In 

particular, the plate response under harmonic excitations has been studied in three steps 

as follows: 

 The bifurcation analysis begins at zero velocity where the initial solution is the 

trivial undisturbed configuration of the plate by considering the uniform 

transmural pressure sp  as the first continuation parameter at fixed excitation 

frequency far from the resonance frequency of the plate, i.e. far away from mn ; 

 After reaching the desired uniform transmural pressure sp  amplitude and having 

the configuration of the plate due to pressurization, the steady flow velocity sU  

is used as the bifurcation parameter and it is incremented to reach a desired 

steady flow velocity (since the   ratio is kept constant, the pulsation amplitude 

varies with sU ). In particular, in the case of pulsatile flow, increasing the flow 

velocity the corresponding oscillatory pressure increases as well; 

 Once the desired steady flow velocity sU  is reached, the bifurcation continues 

by considering the pulsation frequency   as the continuation parameter to 

obtain the frequency-amplitude response of the plate. 
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The case analyzed here is an infinite plate with continuous simply supported 

constraints periodically repeated in x and y directions at distance a and b, respectively, 

and subjected to an inviscid axial pulsatile flow on its upper side. The characteristics of 

the system are: a = b = 1 m, h = 0.002 m, H = 0.5 m, Young’s modulus E = 206·109 

Pa, Poisson ratio ν = 0.3, ρs = 7850 kg/m3, and ρf = 103 kg/m3. 

Results have been obtained by using a model with 29 dof with the following terms in 

Eq.(4a-c): 

11 12 13 21 22 23 31 32 33 21 22 23 24 41 42 43 44 61 81 12 14 16 18 22 24

32 34 42 44

, , , , , , , , , , , , , , , , , , , , , , , , ,

, , , .

w w w w w w w w w u u u u u u u u u u v v v v v v

v v v v
 

The validity and the accuracy of a model with 29 dof has been already discussed in 

the convergence analysis previously performed in the paper [116] in the case of uniform 

flow as shown in Appendix C (Fig. C1).  

2.3.1 Nonlinear stability analysis 

The complete scenario of the static solutions of the plate for different uniform 

transmural pressures p  versus the dimensional uniform flow velocity U  ( 0)   for the 

fundamental generalized coordinate 11w  is presented in Fig. 2.2 obtained via AUTO 

software by [106]. It can be observed that for 0p   as the flow velocity increases, the 

plate remains undeformed 11( 0)w   until a supercritical pitchfork bifurcation appears at 

7.15 m/sU  and the system loses stability by static divergence. It is evident that after the 

pitchfork bifurcation, by increasing further the flow velocity, the amplitude of the 

response increases continuously. In presence of uniform transmural pressure there is no 

unstable branch since the pitchfork bifurcation is destroyed and a continuous post-

buckling configuration is obtained by increasing the flow velocity. In particular, the 

pitchfork bifurcation is destroyed by the loss of symmetry of the configuration caused 

by the presence of the pressure. In general, any term of the equations of motion causing 
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an initial transversal displacement different from zero (such as geometric imperfections 

or pressurization) destroys the pitchfork bifurcation and this is analogous to the 

continuous buckling of Euler-Bernoulli straight beams under eccentric axial loads or 

curved beams. 

 
Fig. 2.2. Bifurcation diagram of the non-dimensional amplitude of the maximum of  11w   versus the 

dimensional uniform flow velocity ( 0)   for the perfect plate for different uniform transmural pressures 
p; stable solution (continuous line) and unstable solution (dashed line).  BP stands for pitchfork bifurcation. 

 

The effect of increasing the uniform flow velocity U  ( 0)   is to deform the plate 

further in the direction already determined by the transmural pressure static 

displacement. Moreover, by increasing the uniform transmural pressure p ( 0)   the 

amplitude of the post-buckling solution increases.  In order to validate the code, the 

effect of uniform transmural pressure on the transversal displacement of the plate in 

quiescent fluid (U = 0) is compared to the commercial finite element ABAQUS solution 

in Fig. 2.3. In particular, the ABAQUS nonlinear analysis takes into account the change 

in the area of the plate due to the transverse deflection; even though our solution neglects 

this higher order effect, the two curves presented in Fig. 2.3 show a good agreement in 

the results. This clarifies that the surface and direction change of the distributed load 

has a secondary effect in the present case since the deflection is not very large. 
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Fig. 2.3. Non-dimensional amplitude of the maximum of displacement w  versus the dimensional 

uniform transmural pressure for the plate in quiescent flow ( 0)U   ; AUTO solution (continuous line) 
and Nonlinear ABAQUS solution (dashed line). 

 
The effect of the pulsation amplitude of the flow velocity on the sum of the static plus 

dynamic deflection is shown in Fig. 2.4 where the fundamental generalized coordinate 

11w  is presented by varying the steady velocity sU  for different   ratios (non-

dimensional pulsating frequency). 

 

Fig. 2.4. Non-dimensional amplitude of the maximum of  11w   versus the dimensional pulsatile flow 

velocity (non-dimensional pulsating frequency 11 0.01   ) for the perfect plate for different pulsating 

amplitude ratios   at zero transmural uniform pressure  0 Pasp  ; stable solution (continuous line) and 

unstable solution (dashed line).  
 
Also in the case of pulsatile flow, the pitchfork bifurcation is destroyed in favour of a 

continuous response (static plus dynamic) because of the oscillatory pressure gradient 

that drives the flow. Indeed, the symmetry of the system is broken by the presence of a 
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time dependent transmural pressure linearly varying in the axial direction due to 

pulsation. 

 
Fig. 2.5. Non-dimensional amplitude of the maximum and minimum of  11w   versus the dimensional 

pulsatile flow velocity (non-dimensional pulsating frequency 
11 0.01   , pulsation amplitude ratio 

0.01  ) for the perfect plate with and without uniform transmural pressure. Please note that in this 
figure the ordinate does not start from zero. 

 
As shown in Fig. 2.5, the effect of the uniform transmural pressure ( 10 Pa)sp   prevails 

on the oscillatory pressure ( )p t  driving a pulsatile flow with the non-dimensional 

pulsating frequency 11 0.01    and an amplitude pulsatile ratio 0.01  ; in fact, the 

pulsatile ratio is quite small.  Indeed, in this case the difference between the minimum 

and maximum amplitude of the generalized coordinate 11w  due to pulsation is drastically 

reduced if compared to the case without transmural uniform pressure ( 0 Pa)sp   for 

large flow velocities. In such a case ( 10 Pa)sp  , by increasing the amplitude pulsatile 

ratio  , the amplitude of the dynamic system response to be added to the static 

deflection increases as shown in Fig. 2.6. 
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Fig. 2.6. Non-dimensional amplitude of the maximum of  11w   versus the dimensional pulsatile flow 

velocity (non-dimensional pulsating frequency 
11 0.01   ) for the perfect plate for different pulsating 

amplitude ratios   for  transmural pressure 10 Pasp  . Please note that in this figure the ordinate does 

not start from zero. 

2.3.2 Frequency-amplitude response 

The next results represent the frequency-amplitude response of the same rectangular 

plate in axial pulsatile flow with and without uniform transmural pressure. 

The frequency response curves are obtained in the frequency neighborhood of the 

fundamental complex mode and the pulsatile frequency   has been non-

dimensionalized by the frequency 11  of the fundamental mode of the plate at zero flow 

speed and zero transmural pressure.  

Fig. 2.7 and Fig. 2.8 show the response of the same plate for different steady flow 

velocities sU  keeping constant the amplitude pulsatile ratio 0.01   and 0.03  , 

respectively (the modal damping ratio is assumed to be 0.05   for all generalized 

coordinates; here the harmonic excitation is given just by the flow pulsation non being 

applied any external force); the maximum amplitude of the generalized coordinate 11w   

for different flow velocities is presented for zero transmural pressure ( 0 Pa)sp  . 
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Fig. 2.7. Frequency-response curves for the fundamental generalized coordinate at different flow 

velocities; 0 Pasp   , 0.01   and 0.05   for all generalized coordinates; stable solution (continuous 

line) and unstable solution (dashed line). 
 

 
Fig. 2.8. Frequency-response curves for the fundamental generalized coordinate at different flow 

velocities; 0 Pasp  , 0.03   and 0.05   for all generalized coordinates; stable solution (continuous 

line) and unstable solution (dashed line). 
 

 It can be seen that the nonlinear behavior of the plate is hardening for the entire flow 

velocity range explored since the peak of the response moves towards right with respect 

to the natural frequency  11 . It is shown that the maximum of the response increases 

by increasing the axial steady flow velocity sU , which is logical because the pulsating 
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velocity, which is the excitation, is also linearly increasing with sU . In particular, for  

sU   2 m/s considering an amplitude pulsatile ratio 0.03  , the maximum amplitude 

of the generalized coordinate 11w  is twice the corresponding amplitude for 0.01  . 

Hence, the effect of increasing the amplitude pulsatile ratio is to increase the amplitude 

and the nonlinear response of the fundamental generalized coordinate as shown in Fig. 

2.9. 

 
Fig. 2.9. Frequency-response curves for the fundamental generalized coordinate at different flow 

velocities; 0 Pasp   , sU =1 m/s  and 0.05   for all generalized coordinates; stable solution 

(continuous line) and unstable solution (dashed line). 
 

In Fig. 2.7 a sudden drop in the amplitude response is detected around 11/ 1.2    

and it is accentuated by increasing the flow velocity. Looking at the frequency response 

curves of the other generalized coordinates, we can identify the activation of nonlinear 

interactions with other modes in this frequency range. The frequency-amplitude response 

of the generalized coordinates 11 21 31 23 33, , , ,w w w w w  (3D representations of the 

corresponding mode shapes are inserted inside the figures) of the plate for 3m/ssU   and 

5 m/ssU   are shown with an indication of stability in Fig. 2.10. They all present 

additional peaks and they participate in the response of the plate interacting with the 
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fluid proportionally to their frequency-response amplitudes. Even though the nonlinear 

behavior presented here is particularly intricate only limit points (folding) and no other 

types of bifurcations are detected by AUTO.  In particular, for 5m/ssU   the mode 21w  

gives an important quantitative contribution in the plate response around 11/ 1.2    

and around 11/ 3.8    where also the mode 23w  becomes significant, whereas the 

participation of modes 31w  and 33w  is less important.  In nonlinear systems, the 

commensurability of natural frequencies results in coupling of the normal modes and 

may cause their strong interaction. As a result, energy is interchanged between these 

modes, and multifrequency, multi-modal response occurs.  

This phenomenon is known as internal resonance. For thin plates, theoretical and 

experimental studies about internal resonance have been conducted by Yamaki and 

Chiba [134] and Yamaki et al. [135]. Modal interactions due to the nonlinearity may 

cause large-amplitude response of modes which linear analysis predicts to remain 

unexcited. In addition, complex responses with additional resonance peaks are often 

observed for nonlinear systems in the presence of internal resonances. 

Internal resonances are detected when the ratio of two or several natural frequencies 

is closed to the ratio of small integers (see [4]). Modal interactions between modes 

11 21 31, ,w w w and 23w  for sU  = 5 m/s, at different frequency ranges can be observed. 

In order to better investigate the response of the plate in the neighborhood of the 

modal interaction regions, the time response and the phase space diagrams of the most 

significant generalized coordinates for the plate at sU  = 5 m/s are depicted in Fig. 2.11-

Fig. 2.14.  
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Fig. 2.10. Frequency-response curves and 3D plots of mode shapes; 5m/ssU   (thick line), 3m/ssU 

(thin line), 0Pasp  , 0.01   and 0.05   for all generalized coordinates; (a) maximum 
11 /w h  , (b) 

maximum 
21 /w h , (c) maximum 

23 /w h , (d) maximum 
31 /w h , (e) maximum 

33 /w h ; stable solution 

(continuous line) and unstable solution (dashed line). 
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Fig. 2.11. Time response for 111.27  , 5m/ssU  , 0Pasp  , 0.01   and 0.05   for the most 

significant generalized coordinates; (a) maximum 
11 /w h  , (b) maximum 21 /w h , (c) maximum 31 /w h . 

Please note that in these figures the ordinate does not start from zero. 
 

In particular, Fig. 2.11 shows the time response at 11/ 1.27    and Fig. 2.13 shows 

the response at 11/ 3.82   . The corresponding phase-plane diagrams of these 

generalized coordinates are reported in Fig. 2.12 and Fig. 2.14, respectively.  

The loops in the phase plane diagrams are related to higher harmonics. For 

11/ 1.27   , the phase-plane diagram of 21w  in Fig. 2.12(b) shows three loops (third 

harmonic) and the phase plane diagram 31w  shows seven loops (seventh harmonic) in 

Fig. 2.12(c). Indeed, for 11/ 1.2   , a 3:1 and  7:1 internal resonance are detected 

between modes 11w  and 2 1w , 11w  and 31w , respectively. 
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Fig. 2.12. Phase-plane diagrams for 111.27  , 5 m/ssU  , 0 Pasp  , 0.01   and 0.05   for the 

most significant generalized coordinates; (a) phase-plane diagram of 11w , (b) phase-plane diagram of 21w , 

(c) phase-plane diagram of 3 1w , (d) frequency spectrum of 11w , (e) frequency spectrum of 21w , ( f )  

frequency spectrum of 31w . Please note that in the phase plane figures the ordinate does not start from 

zero. 
 

The corresponding frequency spectrum of the most significant generalized coordinates 

is depicted in Fig. 2.12(d-f). The multiple peaks in Fig. 2.12(d-f) prove the presence of 

higher order harmonics in the response of modes 11w , 21w  and 31w , respectively.  
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Fig. 2.13. Time response for 

113.82  , 5 m/ssU  , 0Pasp  , 0.01   and 0.05   for the most 

significant generalized coordinates; (a) maximum 11 /w h  , (b) maximum 21 /w h , (c) maximum 31 /w h , 

(d) maximum 23 /w h . Please note that in these figures the ordinate does not start from zero. 

 

Since the analysis performed here has as unique limit the number of modes used for 

discretizing the system, a higher order internal resonance can be detected regardless of 

the original equation of motion with accuracy of only third order; indeed, we are not 

dealing with a perturbation analysis and the nonlinearities in the stress-strain equations 

are exact. On the contrary, nonlinear normal modes analysis (especially with 

perturbation approach) can give inaccurate results for large amplitude vibrations as 

shown by Amabili and Touzé [136]. 
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Fig. 2.14. Phase-plane diagrams for 113.82  , 5m/ssU  , 0Pasp  , 0.01   and 0.05   for 

the most significant generalized coordinates; (a) phase-plane diagram of 11w  , (b) phase-plane diagram of 

2 1w , (c) phase-plane diagram of 3 1w , (d) phase-plane diagram of 2 3w . Please note that in these figures 

the ordinate does not start from zero. 
 

 For 11/ 3.82   , the mode 21w  participates with the first harmonic (Fig. 2.14(b)), 
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23w (Fig. 2.14(d)) with the third harmonic. At 11/ 3.8   , a 1:1 , 2:1 , 3:1 internal 
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vibration amplitude, but calculated from nonlinear equations) frequency-response curves 

for the plate for different uniform transmural pressure when 0.01  , 5 m/ssU   and 

0.01  .  

 

 
Fig. 2.15. Linear frequency-response curves for the plate for different transmural pressures when 

0.01,  0.05 m/ssU  , 0.01   . The static displacement due to transmural pressure has been removed 

from the graph so that only the oscillatory component is presented. 
 
It must be observed that the amplitude *

11w h  presented in Fig. 2.15 is the non-

dimensional amplitude of the first generalized coordinate after removing from it the 

static displacement due to the uniform transmural pressure sp  for zero flow velocity; in 

this way only the dynamic component of w11 is presented. It is shown that for small 

vibration amplitudes, the resonance frequency of the plate increases with the transmural 

pressure. In particular, according to Fig. 2.15, the response of the plate for 915 Pasp   

(which gives a static displacement equal to twice the thickness) is about four times the 

fundamental frequency comparing to the case with zero transmural pressure. Note that 

in Fig. 2.15 the pulsating frequency is made dimensionless with respect to the 

fundamental frequency of the plate without uniform transmural pressure.  
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Fig. 2.16-2.18 present the effect of uniform transmural pressure 915 Pasp   on the 

nonlinear response of the fundamental mode for several steady flow velocities sU  keeping 

constant the amplitude pulsatile ratio 0.01   (Fig. 2.16 and Fig. 2.17) and 0.03   

(Fig. 2.18). In both cases, the response of the system has a softening-type behavior since 

the peak response moves to the left with respect to 11 .  

 

 
Fig. 2.16. Frequency-response curves for the fundamental generalized coordinate at different flow 

velocities; 915Pasp  , 0.01   and 0.01   for all generalized coordinates; stable solution (continuous 

line) and unstable solution (dashed line). 
 
It is well known that shells usually experience a softening type behavior for small 

amplitude vibrations and a hardening type behavior for large-amplitude while the 

nonlinear behavior of plates presents usually a hardening response. In the case discussed 

here, because of initial pressurization, the plate has become a shallow shell and 

consequently the nonlinear behavior of the structure has turned from a hardening type 

to a softening type. By increasing the steady flow velocity sU , the softening behavior of 

the system is increased for both amplitude pulsatile ratios investigated here. Also in this 

case, by increasing the pulsation amplitude of the flow velocity, the amplitude of the 

response of the fundamental generalized coordinate considerably increases. 
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Fig. 2.17. Frequency-response curves for the fundamental generalized coordinate at different flow 

velocities; 915 Pasp  , 0.01   and 0.01   for all generalized coordinates; stable solution (continuous 

line) and unstable solution (dashed line). 
 
 

 
Fig. 2.18. Frequency-response curves for the fundamental generalized coordinate at different flow 

velocities; 915 Pasp  , 0.03   and 0.01   for all generalized coordinates; stable solution (continuous 

line) and unstable solution (dashed line). 
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been found that the presence of positive transmural uniform pressure and small pulsation 

frequency destroys the pitchfork bifurcation (divergence) that flat plates exhibit when 

subjected to uniform flow. The effect of different system parameters such as flow velocity, 

pulsation amplitude, pulsation frequency, and channel pressurization on the stability of 

the plate and its geometrically nonlinear response to pulsating flow are fully discussed. 

The frequency-amplitude responses presented here show a hardening type behavior in 

case of zero uniform transmural pressure. The vibration amplitude is accentuated by 

increasing the steady component of the pulsatile flow velocity (keeping the pulsatile 

amplitude ratio constant) and by increasing the pulsation amplitude as well. On the 

other hand, in the presence of uniform transmural pressure a softening type behavior is 

detected. Moreover, internal resonances in the response of the fundamental mode with 

other modes are observed for certain frequency ranges. 
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Chapter 3 

 

Shells conveying pulsatile flow 
 
 
This chapter addresses the study of isotropic circular cylindrical shells with flexible 

boundary conditions conveying pulsatile flow and subjected to pulsatile pressure using 

the same model presented in Chapter 2. The interest on this subject is motivated by the 

functioning of the vascular tree where the blood flow is driven by the pulsating pressure 

gradient produced by the heart that is acting as a pump. The shell studied here aims to 

roughly represent the woven Dacron prostheses used nowadays in clinical practice for 

thoracic aortic replacement. The pulsatile time-dependent blood flow model is considered 

by applying physiological waveforms of velocity and pressure during the heart beating 

period. However, the way the pulsatile flow is modeled is ideal since it is assumed that, 

for a given time instant, the pulsatile pressure and flow velocity are the same for all 

points of the control volume. Consequently, the oscillatory pressure variations occurred 

simultaneously at every point of shell, making the fluid oscillate in bulk. Hence, the wave 

motion of local movements of the fluid caused by pressure changes in a deformable shell 

is not included. Since the pulse wave speed increases by reducing the elasticity of the 

shell, this approximation is adequate when the shell presents a low elasticity allowing 

the wave speed to be much higher than the maximum flow velocity. The paper “Fluid-

Structure Interaction for nonlinear response of shells conveying pulsatile flow” published 

in the Journal of Sound and Vibration [2] is reported. 
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FLUID-STRUCTURE INTERACTION FOR NONLINEAR RESPONSE OF 

SHELLS CONVEYING PULSATILE FLOW 

 

Eleonora Tubaldi, Marco Amabili, Michael P. Païdoussis 

Department of Mechanical Engineering, McGill University 

Abstract 

Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow 

and subjected to pulsatile pressure are investigated. The equations of motion are 

obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The 

flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian 

pulsatile flow and it is formulated using a hybrid model that contains the unsteady 

effects obtained from the linear potential flow theory and the pulsatile viscous effects 

obtained from the unsteady time-averaged Navier-Stokes equations. A numerical 

bifurcation analysis employs a refined reduced order model to investigate the dynamic 

behavior. The case of shells containing quiescent fluid subjected to the action of a 

pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration 

response to pulsatile flow and transmural pressure are presented here via frequency-

response curves and time histories. The vibrations involving both a driven mode and a 

companion mode, which appear due to the axial symmetry, are also investigated. This 

theoretical framework represents a pioneering study that could be of great interest for 

biomedical applications. In particular, in the future, a more refined model of the one 

presented here will possibly be applied to reproduce the dynamic behavior of vascular 

prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases 

of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent 

blood flow model is considered here by applying physiological waveforms of velocity and 
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pressure during the heart beating period. This study provides, for the first time in 

literature, a fully coupled fluid-structure interaction model with deep insights in the 

nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and 

pulsatile flow. 

 

3.1 Introduction 
Shell-like structural components used for aerospace and biomechanical applications are 

particularly challenging as they undergo significant deformations and stresses, involve 

fluid-structure interactions and are made of materials whose properties are not fully 

known. 

Systematic research on the nonlinear dynamics of shells conveying fluid has been 

conducted by Païdoussis and it is synthesized in his monograph [5]. The effects of 

internal flow on the stability of circular cylindrical shells have been studied by Païdoussis 

and Denise [23], Weaver and Unny [24] and Païdoussis et al. [25, 26].  

Theory for the dynamic stability of circular cylindrical shells subjected to 

incompressible subsonic liquid and air flow have been reported by Amabili et al. [137-

140] and experiments by Karagiozis et al.[33, 34]. In the theoretical part of these studies, 

the shell was assumed to be in contact with inviscid fluid, and the fluid-structure 

interaction was described by the potential flow theory. Experiments on nonlinear 

dynamics of clamped shells subjected to axial flow were described in [33] and its visual 

experimental evidence was provided in [34]. A subcritical nonlinear softening behavior 

was reported for shells subjected to internal and external flow for the first time by 

Amabili [137]. It was found that, the interaction between the shell and the fully 

developed flow gives rise to instabilities in the form of static or dynamic divergence at 

sufficiently high flow velocities. The effect of imperfections on the nonlinear stability of 
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shells containing fluid flow has been investigated by Amabili et al. [141] by using the 

most refined model at present; fluid viscosity has also been considered. Good agreement 

was shown with the available experimental results for divergence of aluminum shells 

conveying water.  

Additional work can be found in the literature. The combined effect of geometric 

imperfections and fluid flow on the nonlinear vibrations and stability of shells has been 

investigated by del Prado et al. [38]. The behavior of the thin-walled shell was modeled 

by Donnell's nonlinear shallow-shell theory and the shell was assumed to be subjected 

to a static uniform compressive axial pre-load plus a harmonic axial load. A low-

dimensional model was obtained by using the Galerkin method and the numerical 

solutions were found by using a Runge-Kutta scheme. It was shown that the parametric 

instability regions, bifurcations and basins of attraction are affected by the initial 

geometric imperfection and the flow velocity. The effect of fluid viscosity was also 

retained by Karagiozis et al. [142] in studying the nonlinear vibrations of harmonically 

excited circular cylindrical shells conveying water flow. Periodic, quasi-periodic, sub-

harmonic and chaotic responses were detected, depending on the flow velocity, and 

amplitude of the harmonic excitation. It was found that, the softening behavior is 

enhanced by increasing the flow velocity. 

By neglecting the effect of fluid viscosity and considering the potential flow model, 

nonlinear forced vibrations and stability of shells interacting with fluid flow were 

investigated in [32, 57, 58, 60]. Koval’chuk [32] used Donnell’s nonlinear theory together 

with Galerkin approach and Krylov- Bogolyubov–Mitropol’skii averaging technique to 

study the nonlinear vibrations of the shell, neglecting the effect of axisymmetric modes. 

The same theory and solution methodology was used by Koval’chuk and Kruk [58]. 

However, in their analysis, the numerical model had six degrees of freedom that included 
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four asymmetric modes plus two axisymmetric modes. The axisymmetric modes were 

described as quartic sine terms. Kubenko et al. [57] extended the previous works of [32, 

58] by showing the mathematical procedure for the Krylov- Bogolyubov–Mitropol’skii 

method in studying multi-mode nonlinear free, forced and parametrically excited 

vibrations of shells in contact with flowing fluid. Kubenko et al. [60] have also studied 

the vibrations of cylindrical shells interacting with a fluid flow and subjected to external 

periodic pressure with slowly varying frequency. Nonlinear dynamics of cantilevered 

circular cylindrical shells subjected to flowing fluid has been investigated by Paak et al. 

[143], but the contribution of axisymmetric modes has been neglected. The nonlinear 

model of the shell was based on Flügge theory retaining nolinear terms due to mid-

surface stretching, and the fluid model was based on the potential flow theory. The 

unsteady interaction and asymptotic dynamics of a viscous fluid with an elastic shell has 

also been examined by Chueshov and Ryzhkova [144] using the linearized Navier-Stokes 

equations and Donnell’s nonlinear shallow shell theory.  

A specific type of unsteady flows includes oscillatory and pulsatile flows which 

occur in biological systems, such as human respiratory and vascular systems, as well as 

in many engineering areas, for example, the flow in hydraulic and pneumatic and 

pumping systems or applications of heat transfer. Oscillatory and pulsating flows in 

branching pipes have been extensively studied by investigators concerned especially in 

biology. Additionally, a number of work have been reported in literature concerning 

oscillatory or pulsatile flows in straight pipes (see for example, Uchida [39], Gerrard and 

Hughes [40], Kerczek and Davis [121], Schneck and Ostrach [122], Hino et al. [41], Muto 

and Nakane [42], Shemer et al. [43], Elad et al. [123]). Pioneering studies related to 

dynamic instability of pipes conveying fluctuating fluid were from Chen [27] followed by 

Ginsberg [46], Païdoussis [47] and Païdoussis and Issid [45].  Ginsberg [46] derived the 
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general equations of motion for small transverse displacement of a pipe conveying fluid 

based on the transverse force exerted by the flowing fluid. For the case of a simply 

supported pipe Galerkin method was utilized to obtain the solution. The dynamic 

instability regions were evaluated and it was shown that the region of dynamic instability 

increases with increased amplitude of fluctuation. Païdoussis [47] presented a theoretical 

analysis of the dynamical behaviour of flexible cylinders in axial flow, the velocity of 

which was perturbed harmonically in time. He found that parametric instabilities are 

possible for certain ranges of frequencies and amplitudes of the perturbations. These 

instabilities occur over specific ranges of flow velocities, and in the case of cantilevered 

cylinders are associated with only some of the modes of the system.  Païdoussis and Issid 

[45] derived the equation of motion for a flexible pipe conveying fluid; effects of external 

pressurization and external tension were included, the longitudinal acceleration of the 

fluid was taken into account, hence this model can be applied to problems when the flow 

contains harmonic components.  

In biomechanics, thin-walled shells can be used to model the mechanics of veins, 

arteries and pulmonary passages. Kamm [82] investigated the flutter phenomenon of 

veins and its associated collapse, while Païdoussis [5] investigated the fluid-structure 

interaction between the blood flow and the veins. The mechanisms leading to static 

collapse and flutter of biological systems have been explained but there remain questions 

regarding the causes that may lead to it because of the large deformations the system 

experiences. Thus, the dynamics of arteries should be easier to explain since arteries are 

traditionally considered capable of withstanding large deformations without adverse 

effects. In addition, arterial walls are structurally inhomogeneous, anisotropic and 

viscoelastic. In [145, 146], material nonlinearities (i.e. nonlinear stress-strain relations) 

based on hyperelastic and viscoelastic models have been used for modeling arteries in 



3.1.  Introduction 
 

79 
 

addition to geometrical nonlinearities (i.e. nonlinear strain-displacement relations). 

Material anisotropy, hyperelasticity, residual stresses have been accounted for in 

numerical models of the aortic wall in [147-149]. Unsteady flow characteristics and wave 

propagation through elastic tubes (like large arteries)  have also been studied on the 

macroscale by Wormersly [62] and McDonald [70]. Womersley [62] was one of the first 

to experimentally study pulsatile flow and performed his studies on the femoral artery 

of a dog. In these studies, the velocity profiles, viscous drag, and Reynolds number were 

calculated from the pressure gradient. It was the pressure gradient that was used to 

determine the flow characteristics indirectly. Since then, many works have been 

developed on the flow stability and transition to turbulence of oscillatory and pulsatile 

flow both experimentally and numerically [41, 125-129].  Numerous experimental 

investigations were focused on fundamental studies of fully developed periodic pipe flows 

with sinusoidally varying pressure gradients (or flow rates). Low speed (laminar) 

pulsating flows were studied in order to analyze the flows through small pipes or in the 

blood circulation systems. Berguer et al. [130] developed a numerical model to analyze 

both laminar and turbulent pulsatile flows in aortic aneurysm models using physiological 

resting and exercise waveforms. They also compared hemodynamic stresses for non-

Newtonian and Newtonian behavior and the non-Newtonian effects are demonstrated to 

be significant in realistic flow situations. Khanafer et al. [131] numerically analyzed 

pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in 

axisymmetric-rigid aortic aneurysm (AA) models. Khanafer et al. [132] also represented 

the first computational study to analyze turbulent pulsatile flow within compliant walls 

of an aneurysm and to determine realistic aneurysm wall stress values. Recently, Amabili 

et al. [89] have discussed the phenomenon of aortic dissection using a shell model. They 

identified for the first time the nonlinear buckling (collapse) of the aorta as a possible 
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reason behind the appearance of high stress regions at the inner layer of the aortic wall 

that may be responsible for the initiation of dissection.  

Furthermore, in vascular surgery, artificial blood vessels can be modeled as thin-

walled shell in axial pulsating flow. Indeed, implants have been used in various 

circumstances of vascular maladies requiring replacements of components of the 

cardiovascular system such as vessel patches for aneurysms. Surgeons perform vascular 

prosthesis implantation to exclude the compromised arterial portion (afflicted with 

aneurysm or dissection for instance) from luminal pulsatile blood flow. This may be 

carried out by providing with an artificial blood flow passage via a synthetic conduit. In 

particular, two techniques - open surgical repair (OSR) and endovascular aneurysm 

repair (EVAR) - are employed to repair the vessel avoiding its rupture. Open surgical 

repair is a traditional and standard treatment modality based on a well-established 

procedure to treat patients with a high risk of rupture [92, 93]. In an open repair the 

surgeon will open the abdominal cavity, clamp the aorta just above and  below the 

aneurysm and then sew a fabric tube or graft made of polyethylene terephthalate 

(Dacron® or PET) or polytetrafluoroethylene (PTFE) inside the aneurysm. Both the 

proximal and distal segments are stitched to healthy tissue. Large diameter (12-30 mm) 

vessel replacements with Dacron are the accepted clinical practice [94]. In particular, 

tightly woven, crimped and non-supported Dacron fabric prostheses are currently used 

to replace thoracic and abdominal aorta with high rates of success [95]. Indeed, Dacron 

is easy to use, durable, and have manageable resistance to thrombosis formation when 

used in large caliber vessels; however, it has also distinctly different mechanical 

properties than the native aorta [150]. The arteries of the body behave as distensible 

cylindrical conduits whilst non-compliant nature of Dacron grafts increases the risk of 

thrombosis and is known to reduce graft patency [101]. Very little is known about the 
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dynamic behavior of vascular prostheses that can cause unwanted hemodynamic effects 

leading to their failure.  

In this study, a shell with the mechanical properties of the Dacron aortic 

replacement is modelled as an isotropic cylindrical shell by means of nonlinear 

Novozhilov shell theory. A numerical bifurcation analysis employs a refined reduced 

order model to investigate the dynamic behavior of a pressurized shell conveying blood 

flow. A pulsatile time-dependent blood flow model is considered in order to study the 

effect of pressurization by applying physiological waveforms of velocity and pressure 

during the heart beating period. The fluid is modeled as a Newtonian pulsatile flow and 

it is formulated using a hybrid model that contains the unsteady effects obtained from 

the linear potential flow theory and the pulsatile viscous effects obtained from the 

unsteady time-averaged Navier-Stokes equations. Geometrically nonlinear vibration 

response to pulsatile flow is presented here via frequency-response curves and time 

histories. For high frequencies (out of the physiological range), the frequency response 

curves of the system present a sequence of period doubling and pitchfork bifurcations 

showing the existence of complex nonlinear dynamics for the circular cylindrical shell 

under consideration subject to high frequency harmonic excitation.  

 

3.2 Governing equations and assumptions 
In this study the nonlinear Novozhilov shell theory (Appendix D) is applied to model 

as isotropic linearly elastic shells the vascular prostheses currently used in aortic 

replacement surgery. The system under consideration is shown in Fig. 3.1 where O(x, θ, 

r) is the origin of coordinate system, R is the mean radius, h is the shell thickness, L is 

the shell length, u is the shell displacement in the x-direction, v is the shell displacement 
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in the θ-direction and w is the shell displacement in the r-direction (taken positive 

outward). 

 
Fig. 3.1. Schematic of the shell in axial flow with boundary conditions at the shell ends. 

 

 The following boundary conditions, with flexible constraints to simulate connection 

with the remaining tissue, are applied at the shell ends ( 0, )x L , 

                                  0, ,x a x r

w
v w N k u M k

x

         
,                         (3.1a-d) 

where 𝑁𝑥 is the axial stress per unit length, 𝑀𝑥 is the bending moment per unit length 

and 𝑘𝑎 is the distributed axial springs’ stiffness for asymmetric modes and 𝑘𝑟 is the 

rotational springs’ stiffness applied at the shell edges. The flexible boundary conditions 

at the shell ends are assumed to simulate the connection with connective tissue and the 

resected aorta  (i.e. axial and rotational constraints) [151]. In this study, as in the 

previous one conducted by Amabili et al. [89], the spring constraints are set to 
3 210 N/mak  and 210 N/radrk  . 

3.2.1 Elastic strain energy and kinetic energy of the shell 

A variational approach is employed to obtain the equations of motion for the aortic 

prosthesis segment. Specifically, the total kinetic energy of the shell is given by 

                                       
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where S  is the mass density of the shell and the overdot denotes a time derivative. 

In equation (3.2) the rotary inertia is neglected since the shell is assumed to be thin, 

according to Novozhilov nonlinear shell theory. The potential energy of the aortic wall 

US is made up of two contributions:              

 .S shell springU U U                                   (3.3) 

The elastic strain energy Ushell (Appendix E) of an isotropic circular cylindrical shell 

is given by 
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The potential energy stored by the axial and rotational springs at the shell ends is 

given by 
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             (3.5) 

The shell displacements are discretized by using trigonometric expansions that 

identically satisfy the geometric boundary conditions; these trigonometric functions are 

the eigenmodes of the linear problem in case of simply supported boundary conditions. 

In particular, 
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where n is the number of circumferential waves, m  is the number of longitudinal half-

waves, 𝜆𝑚 = 𝑚𝜋/𝐿, and t is the time; 𝑢𝑚,𝑛(𝑡), 𝑣𝑚,𝑛(𝑡) and 𝑤𝑚,𝑛(𝑡) are the generalized 

coordinates [4]. A nonlinear term 𝑢̂(𝑡) is added to the expansion of u (Eq. (3.6a)) to 

satisfy exactly the boundary conditions Eq. (3.1c); this term is obtained as a function of 

the generalized coordinates [37]. Thanks to the discretization with the generalized 
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coordinates, the dynamic behavior of the shell coupled to quiescent fluid under pulsatile 

pressure can be studied with a reduced-order model of 48 dof obtained by selecting terms 

with odd numbers of longitudinal half-waves m. Indeed, the terms with even m are 

activated in case of flowing fluid when complex modes arise. The inevitable effect of 

introducing a slight asymmetric stretch on the implant during the surgical suture, added 

to the manufacturing imperfections of the textile graft itself, makes always appear 

geometric imperfections on the walls of implanted vascular prostheses. In the present 

study it is assumed that geometric imperfections (deviations from the ideal circular 

cylindrical shape) are associated to zero initial stress, which is an acceptable hypothesis 

since the implant is thin. Hence, in presence of asymmetric geometric imperfections, the 

nonlinear vibrations of the shell coupled to pulsatile flow under pulsatile pressure, can 

be investigated with a reduced-order model of 51 dof obtained by selecting terms with 

both odd and even numbers of longitudinal half-waves m and neglecting the companion 

modes with last subscript s. In equation (3.6), modes with n=2 circumferential waves 

are used in addition to axisymmetric modes (n=0) and modes with 2n. The reason for 

the selection of n = 2 is that these are the low frequency modes for shells of the length 

studied in the present paper; also, n = 2 is the buckling shape observed in reference [45] 

for this shell dimensions.  

3.2.2 Fluid-structure interaction model 

The fluid is modeled as a Newtonian pulsatile flow. Although blood is a suspension of 

red blood cells, white blood cells, and platelets in plasma, its non-Newtonian nature due 

to the particular rheology is relevant in small arteries (arterioles) and capillaries where 

the diameter of the arteries becomes comparable to the size of the cells. On the other 

hand, it has been well accepted that in medium-to-large arteries blood can be modeled 

as a viscous and Newtonian fluid.  In addition, it is well known [75, 151] that in the 
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heart chambers and blood vessels, blood is incompressible. Finally, the change in 

elasticity at the union between a prosthesis and the compliant artery leads to an abrupt 

change in diameter which in turn produces a distortion of the local flow field [99, 152], 

causing eventually undesirable flow patterns such as flow separation, vortex formation 

and turbulence [153]; hence, in this analysis, the flow in the aortic prosthesis is assumed 

to be turbulent fully developed. The fluid-structure interaction model obtains the 

unsteady fluid motion by potential flow theory and the pulsatile viscous effects for 

turbulent flow by the unsteady time-averaged Navier-Stokes equations.  

 An unsteady perturbation potential   is introduced that satisfies the Laplace 

equation 
2 2 2

2
2 2 2 2

1 1
0.

x r r r r 
      

      
   

                         (3.7) 

If no cavitation occurs at the fluid-shell interface, the boundary condition expressing 

the contact between the shell wall and the flow is given by 

,
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                             (3.8)  

where 𝑈  is the undisturbed (pulsatile) blood flow velocity, which is time dependent. 

Equation (3.8) and the Laplace equations are satisfied if the solution for the velocity 

potential is given by [5]  

, ,
'

1 0

I ( / )
,

I ( / )

M N
m n m nn

m n n

w wL m r L
U

m m R L t x


  

  
     

                         (3.9)  

where 𝐼𝑛 is the modified Bessel function of the first kind  of order n, and 𝐼𝑛
′  is the 

derivative of 𝐼𝑛with respect to its argument. Therefore, the perturbation pressure p at 

the shell inner wall interface is found to be given by 
2
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where 𝜌𝐹  is the fluid density. 
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3.2.3 Potential Flow Energy 

Green’s theorem is used to obtain the total energy FE [4] associated with the flow, 

which can be divided into three terms: kinetic energy, potential energy and gyroscopic 

energy, as given in the expression below 

,F F G FE T E V                                       (3.11) 
where 𝑇𝐹 , 𝑉𝐹  and 𝐸𝐺 are the reference kinetic energy, the potential energy and the 

gyroscopic energy of the fluid, respectively and they have the following expressions [4]  
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In case of unsteady flow velocity U(t), the expressions of  𝑇𝐹 , 𝑉𝐹  and 𝐸𝐺 will be time 

dependent and because of that, a new term will appear in the Lagrange equations of 

motions as shown in Section 3.2.6. 

3.2.4 Viscous Effects for Pulsatile flow 

The unsteady time-averaged Navier-Stokes equations are employed to calculate the 

pulsatile viscous effects assuming that the flow is turbulent and fully developed. The 

result is a variable mean transmural pressure  ∆𝑃𝑡𝑚 along the shell because the pressure 

drop and a frictional traction on the internal wall in the axial direction. A detailed 

description of the solution for the unsteady time-averaged Navier-Stokes equations used 

here is given in [26, 141]. This type of hybrid model is particularly efficient from the 

computational point of view. In particular, in case of unsteady flow, the fluid pressure P 

on the shell surface assumes the following expression 
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where the friction factor f  can be calculated by using the empirical Colebrook equation. 

Therefore, the first effect of fluid viscosity and fluid acceleration is the appearance of an 

additional triangular pressure distribution along the shell. In the present study, it is 

assumed that 𝑃(𝐿
2
, 𝑅) = 0 so that P is directly added to the pulsatile uniform pressure 

differential 𝑝𝑚 acting on the shell wall (defined as the difference between the internal 

and external pressures on the shell wall), assumed positive outward. Therefore, the 

expression of P is given by 
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The pressure drop ∆𝑃0,𝐿 in the shell is  
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Neglecting the contribution of the flow acceleration, the constant axial friction traction 

force per unit area, is 
2 / 8.x ff U                                         (3.16) 

The friction factor f in Eq. (3.16) has been calculated as discussed in Appendix F. 

3.2.5 Representation of Pulsatile Velocity and Pulsatile Pressure  

The physiological waveforms of velocity and pressure during the heart beating period 

[154] are expressed in terms of Fourier series as follows 
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where Ω is the heart rate, mp  and U represent the steady component of the pressure 

field and the pulsatile mean flow velocity, respectively, and N represents the number of 

terms in the series expansion. The coefficients 𝑎𝑛 and 𝑏𝑛 are the Fourier cosine and sine 

coefficients, respectively. Specifically, in case of thoracic aorta (that has Womersley 

number 19  ), the phase lag between the oscillating pressure and the flow generated 
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[66] is ninety degree, as shown in Fig. 3.2 where N=8 terms in the Fourier expansion are 

used. In addition, the rapidly varying part of the flow lies in the proximity of the aortic 

wall while the central mass of the fluid reciprocates almost like a solid core [155]. 

The pulsatile flow discussed here is ideal since it is assumed that at the same time 

instant, the flow velocity is the same for all points of the control volume. The validity 

of this assumption is discussed in Appendix G.  

3.2.6 Lagrange Equations of Motion  

The expressions for the potential and kinetic energies of the shell (Eq. (3.2) and Eq. 

(3.4)) and the fluid Eq. (3.12a-c) are coupled in the Lagrange equations of motion. As 

shown in Appendix H, the Lagrange equations of motion for open systems in the present 

case, knowing that 0S j F jT q T q     , are written as follows: 

   
, 1...S F G S FG

j T
j j j

T T E U VEd
Q j N

dt q q q

     
    

    
                             (3.18) 

where 𝑇𝑠 and 𝑇𝐹  are the kinetic energy of the shell and the fluid, respectively, 𝑈𝑠 

and 𝑉𝐹  are the potential energy of the shell and the fluid, respectively, 𝐸𝐺  is the 

gyroscopic energy associated with the flow, and 𝑄𝑗 are the generalized external forces, 

including the transmural pressure ∆𝑃𝑡𝑚, which is affected by the physiological pulsatile 

pressure 𝑝𝑚  (Eq. (3.17b)) and the pressure drop ∆𝑃0,𝐿  (Eq. (3.15)), and the axial 

friction forces 𝜏𝑥 (Eq. (3.16)) as expressed in  
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where F represents nonconservative damping forces assumed to be of viscous type and 

taken into account by using Rayleigh’s dissipation function;  c is the viscous damping 

coefficient. Here the generic generalized coordinate, which are 
, , ,( ), ( ), ( )m n m n m nu t v t w t , is 

indicated with qj. The number of generalized coordinates (i.e. degrees of freedom of the 

system) is 𝑁𝑇 .  

Under the hypothesis of unsteady flow the time derivative of the gyroscopic term 

,G m nE w    of the Lagrangian equation becomes 
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                                   (3.21) 

Hence, Eq. (3.18) can be rewritten as 
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                       (3.22)  

The vector q of the generalized coordinates 
, , ,( ), ( ), ( )m n m n m nu t v t w t  is introduced and the 

final equations of motion for the aortic wall are given in matrix form in the following 

expression: 

    F S F 2 3Mq + C+ C q + K + K + N (q) + N (q,q) q = Q  ,                      (3.23) 

where S FM = M + M , SM  being the mass matrix of the shell and C  the damping 

matrix which is added to the equations of motion to model dissipation. Moreover, SK  is 

the linear stiffness matrix of the shell, 2N  gives the quadratic nonlinear stiffness terms, 

3N denotes the cubic nonlinear terms and Q is the vector representing external loads, 

which includes pressurization of the shell in the radial direction and axial friction forces.  

 In order to obtain the equations of motion in a suitable form for numerical 

implementation, the system (3.23) is multiplied by the inverse of the mass matrix and 

then is written in the state-space form as follows 
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where y  is the vector of the generalized velocities and the dissipation term -1M C   is 

given by 
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                                   (3.25)  

where j  is the modal damping ratio of each generalized coordinate and it is related 

to the coefficient c in Eq. (3.20b) that has a different value for each term of the mode 

expansion [4]. Matrix (3.25) is assumed to be diagonal in order to use the modal damping. 

In this study, the same damping ratio 0.12   is assumed for all modes.   

 

3.3 Numerical results 
The equations of motion have been obtained by using Mathematica 10 software [133] 

in order to perform analytical surface integrals of trigonometric functions.  

A non-dimensionalization of variables is performed for computational convenience: the 

frequencies are divided by the natural radian frequency 1,2  of the fundamental mode 

(m=1, n=2), and the vibration amplitudes are divided by the shell thickness h. The set 

of nonlinear ordinary differential equations (3.24) has been solved by using the software 

AUTO [106] that is capable of continuation of the solution, bifurcation analysis and 

branch switching by using the pseudo-arclength continuation and collocation method. 

Here, the nonlinear analysis of the shell coupled to pulsatile flow subjected to pulsatile 

pressure is divided in three steps. First, the pulsatile pressure is increased at zero flow 

velocity up to reach the desired value (Fig. 3.2(a)) giving the wall deformation and the 

initial stresses. In the second step, the pulsatile flow velocity is used as bifurcation 

parameter until it reaches the physiological conditions (Fig. 3.2(b)). Once the desired 

pulsatile flow velocity is reached, the bifurcation continues by considering the pulsation 
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frequency   (heart pulse) as the continuation parameter to obtain the frequency-

amplitude response of the shell (aortic prosthesis).  

 

 

 

Fig. 3.2. Flow (a) and transmural pressure (b) values in the aortic segment with ninety degree phase 
lag (Fourier series N=8). 

 

In order to investigate the behavior of shells containing quiescent fluid subjected to 

the action of a pulsatile transmural pressure, after the first step of the analysis, the 

bifurcation continues directly with the pulsation frequency   as continuation 

parameter at zero flow velocity. 

The characteristics of the shell simulating a thoracic aortic replacement discussed here 

(Fig. 3.1) are: 0.126 m,L  0.361mm,h  0.01575 m,R  10 MPa,E  0.27,v  31350kg/m ,S 

31050kg/m ,F   where E and ν are the Young modulus and the Poisson ratio respectively, 

𝜌𝑆 is the density of the Dacron shell and  𝜌𝐹  is the density of the blood. These elastic 

material properties have been chosen in agreement with previous studies [150, 156, 157] 

conducted on Dacron graft currently used in aortic replacements.  

In this study, the dynamic behavior of the shell coupled to quiescent fluid under 

pulsatile pressure are studied with a reduced-order model of 48 dof obtained by selecting 

the terms with odd numbers of longitudinal half-waves m  in Eq. (6a-c) since the terms 

with even m are only activated in case of flowing fluid when complex modes arise. For 
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large-amplitude vibrations, the response of the shell near resonance is given by 

circumferentially traveling waves, which can appear in one direction or in the opposite 

angular direction. The traveling wave appears when a second standing wave (mode), the 

orientation of which is at π/(2n) (where n is the number of nodal diameters) with respect 

to the previous one, is added to the driven mode. This second mode is called the 

companion mode. It has the same modal shape and frequency of the driven mode. These 

two modes with the same frequency (1:1 internal resonance) are angularly described by 

𝑐𝑜𝑠(𝑛𝜗) and  𝑠𝑖𝑛(𝑛𝜗), respectively, with n being the circumferential wavenumber. In the 

present study n=2 is considered, since this is the fundamental mode of the shell. It is 

important to observe that the companion mode arises as a consequence of the symmetry 

of the system. Indeed, in presence of significant asymmetric imperfections, the nonlinear 

vibrations of the shell coupled to pulsatile flow under pulsatile pressure, can be 

investigated with a reduced-order model of 51 dof obtained neglecting the companion 

modes. Since the axial symmetry of the shell is broken by the imperfections, the 

traveling-wave response is largely modified, because natural frequencies of the driven 

and companion modes do not coincide anymore. 

In the following section, both aforementioned models with 48 dof and 51 dof are applied 

to study the nonlinear response of shells subjected to pulsatile pressure with quiescent 

fluid and flowing pulsatile fluid, respectively. The physiological waveforms of velocity 

and pressure during the heart beating period [154] are expressed in terms of Fourier 

expansions Eq. (3.17a,b) considering N=8. 

3.3.1 Time response to pulsatile transmural pressure and flow 

The effects of physiological waveforms of velocity and pressure during the heart 

beating period (Fig. 3.2) on the aortic replacement are presented here through time 

responses of the shell for the angular coordinate 0   and for different values of the 
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axial coordinate x. Under these conditions, the shell transversal sections will be circular 

at any point since only axisymmetric modes are activated.  

 

 

Fig. 3.3. Time response of the nondimensionalized radial displacement /w h under (a) pulsatile pressure 
(model 48 dof) and (b) pulsatile velocity and pressure (model 51 dof) with a pulsating frequency 

5.65 /rad s (around 54 beats per minute).  
 

In particular, Fig. 3.3(a) shows the response of the shell with quiescent fluid under 

pulsatile pressure for / 4, / 2x L x L  and 3 / 4x L , obtained with the model of 48 dof. 

As expected, the time responses reproduce the trend of the pulsating excitation and the 

maximum amplitude is reached at the pressure peak for x=L/2; in addition, the responses 

for x= L/4 and x=3L/4 are identical at any time of the time period. Fig. 3.3(b) shows the 

response of the shell under pulsatile pressure and velocity for x=L/4, x=L/2  and x=3L/4, 

obtained with the model of 51 dof. It can be noticed that, because of the gyroscopic 

effect of the blood flow, the time responses for x= L/4 and x=3L/4 are not identical 

anymore. Indeed, when the flow velocity is introduced, the mode shapes change from the 

classical ones of simply supported shells and complex mode shapes arise. The matrix FC  

in Eq. (3.23) represents the energy transferred among modes associated with the 

gyroscopic effect and it is related to the Coriolis inertial force.  
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3.3.2 Frequency amplitude response to pulsatile transmural 
pressure in quiescent fluid 

The next results represent the frequency-amplitude responses of the shell under the 

pulsatile transmural pressure given in Fig. 3.2(a) in quiescent fluid obtained with the 48 

dof model. The presence of transmural pressure mp  affects the frequency response of the 

shell coupled to fluid and it is well known that for small vibration amplitudes, the 

resonance frequency of the shell increases [4]. For the shell under consideration, the 

resonance frequency at zero pressure is 1,2 87.06  rad/s associated to the mode w1,2; 

when the shell is pressurized with the steady transmural pressure 11884 Pamp   shown 

in Fig. 3.2(a), the frequency of the first asymmetric mode of the shell becomes 
*
1,2 1,25.05   and this value is used to non-dimensionalize the pulsating frequency Ω in 

the following figures. Fig. 3.4(a-d) shows the wide frequency spectrum of the maximum 

of the most significant axisymmetric modes 
1,0 /w h , 

3,0 /w h ,
5,0 /w h ,

7,0 /w h  (non-

dimensionalized with respect to the thickness h of the shell) by increasing the pulsating 

forcing frequency Ω of the pulsatile pressure from the minimum heart rate of 5.65 rad/s

(around 54 beats per minute). The frequency range presented here is much wider the 

physiological regime.  

In general, when the excitation frequency is small (see Fig. 3.4(a-d) for *
1,2/ 0.2  ), 

the shell vibrates axisymmetrically and the response is periodic. However, the existence 

of complex nonlinear dynamics is observed in Fig. 3.4(a-d) for the circular cylindrical 

shell subject to high frequency pulsation, i.e. *
1,2/ 0.2  . Indeed, by increasing the 

frequency of the dynamic load, for certain ranges of the frequency spectrum, the 

axisymmetric modes become unstable in favor of the activation of the asymmetric modes 
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through a series of period doubling (PD), pitchfork bifurcations (BP) and Neimark-

Sacker bifurcations (TR).  

 

 

Fig. 3.4. Frequency response curve for the axisymmetric modes (a) 
1,0w , (b) 

3,0w , (c) 
5,0w , (d) 

7,0w by 

varying the frequency Ω of the pulsatile pressure (model 48 dof); stable solution (continuous line), unstable 
solution (dashed line). 
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shown in Fig. 3.5(c-d) and Fig. 3.6(c-d). The amplitude of the companion modes detected 

is smaller compared to corresponding driven modes. 

 

 

Fig. 3.5. Nondimensionalized amplitude of the asymmetric modes (a) 
1,2,cw , (b) 

3,2,cw , (c) 1,2,sw , (d) 

3,2,sw  (model 48 dof) due to dynamic instability (PD, period doubling); stable solution (continuous line), 

unstable solution (dashed line); LP stands for limit point. 
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shell response leads to the appearance of more complex phase relationships among the 

generalized coordinates.  

In general, in circular shells under dynamic axial loads, period doubling bifurcations 

arise also for forcing frequencies close to twice the natural frequency of an asymmetric 

mode; this is usually referred as parametric instability [4]. Indeed, in this study, a period 

doubling bifurcation (dynamic instability) is detected around *
1,2/ 1.8   (Fig. 3.7). 

Before the bifurcation, the system presents a stable periodic solution with frequency Ω 

while, after the bifurcation, a new solution is represented by the bifurcated branch with 

frequency Ω/2 (double period).  

 

 

 

Fig. 3.6. Nondimensionalized amplitude of the asymmetric modes (a) 1,2,cw , (b) 3,2,cw , (c) 
1,2,sw , (d) 

3,2,sw  (model 48 dof) due to pitchfork bifurcation; stable solution (continuous line), unstable solution 

(dashed line). 
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As typical in nonlinear vibrations, multiple branches of solutions can be detected in 

the same frequency range (i.e. *
1,2/ 1.8  ) as shown in Fig. 8 where only the companion 

modes are activated. 

The fact that the frequency range *
1,2/ 1.8   is slightly shifted with respect to  

*
1,2/ 2   is due to the strong pulsatile component of the physiological pressure 𝑝𝑚 that 

forces the natural frequency *
1,2 (associated here to its average value  𝑝𝑚̅) to periodically 

change during the cycle.  Moreover, modal interactions due to the nonlinearity may 

cause large-amplitude response of modes which linear analysis predicts to remain 

unexcited. In addition, complex responses with additional resonance peaks are often 

observed for nonlinear systems in the presence of internal resonances. Internal resonances 

are detected when the ratio of two or several natural frequencies is closed to the ratio of 

small integers (see Amabili [4]).  Indeed in this study, since the ratio * *
3,0 1,0/ 3   , modal 

interactions between modes 1,0w and 3,0w  can be observed as shown in Fig. 3.4(a-d)  by 

calculating the frequency ratio between the peak of 3,0 /w h around *
1,2/ 1.8   and the 

1,0 /w h  around *
1,2/ 0.6  .  

Note here that *
1,2/ 0.6   corresponds to *

1,0/ 1   and therefore this is the main 

peak of the first axisymmetric mode (n = 0). In fact, the frequency *
1,0  is equal to 273.46 

rad/sec. 
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Fig. 3.7. Nondimensionalized amplitude of the asymmetric modes (a) 1,2,cw , (b) 
3,2,cw , (c) 

5,2,cw , (d) 

7,2,cw , (e) 
1,2,sw , (f) 3,2,sw , (g) 5,2,sw , (h) 7,2,sw (model 48 dof) due to dynamic instability (PD, period 

doubling); stable solution (continuous line), unstable solution (dashed line). TR stands for Neimark-Sacker 
Bifurcation. 
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3.3.3 Frequency amplitude response to pulsatile transmural 
pressure in pulsatile flowing fluid 

The next results represent the frequency-amplitude responses of the shell with 

asymmetric imperfections under the pulsatile transmural pressure given in Fig. 3.2(a) 

conveying the axial pulsatile flow in Fig. 3.2(b), obtained with the 51 dof model. As 

previously mentioned, in the following figures, the pulsating frequency Ω is made 

dimensionless with respect to the frequency of the first asymmetric mode of the shell 

*
1,2 under steady transmural pressure mp .  

 

 
Fig. 3.8. Nondimensionalized amplitude of the asymmetric modes (a) 1,2,sw , (b) 3,2,sw , (c) 5,2,sw , (d) 

7,2,sw (model 48 dof) due to dynamic instability (PD, period doubling); stable solution (continuous line), 

unstable solution (dashed line). TR: Neimark-Sacker bifurcation; BP: pitchfork bifurcation.  
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pulsatile pressure and pulsatile flow velocity from the minimum heart rate of 5.65 rad/s

(around 54 beats per minute).  

 

 

Fig. 3.9. Frequency response curve for the axisymmetric modes (a) 1,0w , (b) 
3,0w , (c) 5,0w , (d) 7,0w by 

varying the frequency Ω of the pulsatile pressure and flow (model 51 dof); stable solution (continuous line), 
unstable solution (dashed line). 
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Fig. 3.10. Frequency response curve for the axisymmetric modes (a) 2,0w , (b) 4,0w , (c) 6,0w  by 

varying the frequency Ω of the pulsatile pressure and flow (model 51 dof); stable solution (continuous line), 
unstable solution (dashed line). 
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Fig. 3.11. Nondimensionalized amplitude of the asymmetric modes (a) 1,2w , (b) 2,2w , (c) 3,2w  and (d) 

4,2w due to a pitchfork bifurcation (BP) around *
1,2/ 0.3  ; LP stands for limit point (model 51 dof).  

 

 

Fig. 3.12. Nondimensionalized amplitude of the asymmetric modes (a) 1,2w , (b) 2,2w , (c) 3,2w , (d) 4,2w  

and (e) 5,2w  due to a dynamic instability (PD, period doubling) around *
1,2/ 0.2  ; LP stands for 

limit point (model 51 dof).  
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Fig. 3.13. Nondimensionalized amplitude of the asymmetric modes (a) 1,2w , (b) 

2,2w , (c) 3,2w , (d)

4,2w , (e) 5,2w due to dynamic instability (PD, period doubling) around *
1,2/ 1.78   (model 51 dof). 

 

 
Fig. 3.14.  Nondimensionalized amplitude of the asymmetric modes (a) 2,2w , (b) 4,2w , (c) 6,2w , (d)

8,2w , (e) 1,2w due to dynamic instability (PD, period doubling) around *
1,2/ 2.28   (model 51 dof). 
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3.4 Conclusions 
In this study, a theoretical framework to model the dynamic behavior of a shell 

subjected to axial pulsatile pressure in quiescent and pulsatile flowing fluid is presented. 

The structural model has been developed by using the nonlinear Novozhilov shell theory 

for isotropic materials. A pulsatile time-dependent flow model based on the physiological 

waveforms of velocity and pressure during the heart beating period [154] has been taken 

into account. The fluid is modeled as a Newtonian pulsatile flow and it is formulated 

using a hybrid model that contains the unsteady effects obtained from the linear 

potential flow theory and the pulsatile viscous effects obtained from the unsteady time-

averaged Navier-Stokes equations. The dynamic behavior of the shell studied here under 

pulsatile pressure and flow is presented via frequency-response curves and time histories. 

In particular, the time responses reproduce the trend of the pulsating excitation; 

comparing the response for different values of the axial coordinate x, the gyroscopic effect 

associated to the presence of the axial flow can be noticed. 

For low frequency periodic excitations, only axisymmetric modes with an odd number 

of longitudinal half waves are activated in case of shell subject to pulsatile pressure in 

quiescent fluid. However, in presence of pulsatile flowing fluid all the axisymmetric 

modes participate in the response. The frequency response curves of the system present 

a sequence of Neimark-Sacker, period doubling and pitchfork bifurcations showing the 

existence of complex nonlinear dynamics for circular cylindrical shells subject to high 

frequency periodic excitations.  

The vibrations of shells containing quiescent fluid subjected to pulsatile transmural 

pressure are also studied involving driven and companion modes. Both families of modes 

are activated when bifurcations appear in the frequency spectrum of axisymmetric modes 

and both axisymmetric and asymmetric modes are excited in these frequency ranges. 
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The presence of companion modes in the shell response leads to the appearance of 

traveling waves around the shell. It has been found that the general trend of the 

frequency response of the axisymmetric modes of the system subjected to pulsatile 

pressure in axial pulsatile flowing fluid accurately reproduces the one in quiescent fluid 

with pulsatile pressure. The phenomenon of parametric resonance can be observed 

around *
1,2/ 1.8  ; this instability takes place suddenly when a transition between 

stable to unstable regions occurs. 

Concerning the limitations of the present work, a more accurate structural model 

should include the viscoelasticity and anisotropy of the graft material [150]. Nevertheless, 

this analysis represents the first study of nonlinear vibrations of shells with the 

mechanical properties of aortic replacements conducted with a global analysis tool 

(namely bifurcation analysis) capable of obtaining all stable and unstable solutions 

associated with aorta prosthesis under physiological and outside the physiological range 

of conditions of pulsatile transmural pressure and flow. In addition, this study provides, 

for the first time in literature, a fully coupled fluid-structure interaction model with deep 

insights in the nonlinear vibrations of circular cylindrical shells conveying pulsatile flow 

subjected to pulsatile pressure. Specifically, this study represents the first attempt to 

describe the nonlinear behavior of vascular prostheses whose dynamic response can cause 

unwanted hemodynamic effects leading to their failure. Since this type of analysis has 

never been performed for this type of biomechanical applications, a verification of the 

model can’t be performed for now. However, future experimental activities have been 

planned by the authors in order to validate this preliminary study. 
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Chapter 4 

 

Wave propagation phenomenon in shells 
conveying pulsatile flow 

 

 

This chapter treats the introduction of the pulse-wave propagation phenomenon in 

the fluid-structure interaction model presented in Chapter 3. The circular cylindrical 

shell is made of an orthotropic material in order to closely represent the mechanical 

properties of the woven Dacron thoracic aortic prostheses. The theoretical framework 

and numerical results are presented for a single harmonic pulsation representing the first 

harmonic of the physiological waveforms of velocity and pressure during the heart 

beating period. The pressure gradient and the flow velocity are functions of both the 

axial coordinate and time. This implies a substantial complication in the formulation of 

the coupled Lagrange equations of motion. Indeed, considering a portion of the compliant 

vessel conveying pulsatile flow as a control volume, because of the wave propagation 

phenomenon within vessel, the net inflow of mass through the boundaries of the control 

volume is different from zero at any given time. In order to describe the appearance of 

travelling pressure and velocity waves in a confined incompressible flow, the deformable 

control volume has to accommodate the accumulation/subtraction of mass. This type of 

formulation is particularly interesting from a mathematical viewpoint, since even if the 
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flow is governed by an elliptic equation (Laplace equation), the general behaviour of the 

fluid-structure interaction system is in many ways similar to that of a hyperbolic problem 

(wave equation). The paper “Nonlinear dynamics of shells conveying pulsatile flow with 

pulse-wave propagation. Theory and numerical results for a single harmonic pulsation” 

published in the Journal of Sound and Vibration [3] is presented. 

 

NONLINEAR DYNAMICS OF SHELLS CONVEYING PULSATILE FLOW 

WITH PULSE-WAVE PROPAGATION 

THEORY AND NUMERICAL RESULTS FOR A SINGLE HARMONIC 

PULSATION 

Eleonora Tubaldi, Marco Amabili, Michael P. Païdoussis 

Department of Mechanical Engineering, McGill University 

 

  

Abstract 
 

In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local 

movements of the fluid and deformation of the shell wall, which propagate downstream 

in the form of a wave. In biomechanics, it is the propagation of the pulse that determines 

the pressure gradient during the flow at every location of the arterial tree. In this study, 

a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell 

described by means of the Novozhilov nonlinear shell theory. Flexible boundary 

conditions are considered to simulate connection with the remaining tissue. Nonlinear 

vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are 
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investigated taking into account the effects of the pulse-wave propagation. For the first 

time in literature, coupled fluid-structure Lagrange equations of motion for a non-

material volume with wave propagation in case of pulsatile flow are developed. The fluid 

is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid 

model based on the linear potential flow theory and considering the unsteady viscous 

effects obtained from the unsteady time-averaged Navier-Stokes equations. 

Contributions of pressure and velocity propagation are also considered in the pressure 

drop along the shell and in the pulsatile frictional traction on the internal wall in the 

axial direction. A numerical bifurcation analysis employs a refined reduced order model 

to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood 

flow. A pulsatile time-dependent blood flow model is considered by applying the first 

harmonic of the physiological waveforms of velocity and pressure during the heart 

beating period. Geometrically nonlinear vibration response to pulsatile flow and 

transmural pulsatile pressure, considering the propagation of pressure and velocity 

changes inside the shell, is presented here via frequency-response curves, time histories, 

bifurcation diagrams and Poincaré maps. It is shown that traveling waves of pressure 

and velocity cause a delay in the radial displacement of the shell at different values of 

the axial coordinate. The effect of different pulse wave velocities is also studied.  

Comparisons with the corresponding ideal case without wave propagation (i.e. with the 

same pulsatile velocity and pressure at any point of the shell) are discussed here. 

Bifurcation diagrams of Poincaré maps obtained from direct time integration have been 

used to study the system in the spectral neighborhood of the fundamental natural 

frequency. By increasing the forcing frequency, the response undergoes very complex 

nonlinear dynamics (chaos, amplitude modulation and period-doubling bifurcation), 

deeply investigated here.  
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4.1 Introduction  
In deformable shells conveying pulsatile flow, pulsating pressure and flow propagate 

downstream in the form of progressive waves at the same wave speed. Lamb [158] 

considered for the first time in literature the problem of  “the velocity of sound in a 

tube, as affected by the elasticity of the walls”, thus involving both wave propagation 

and coupling between motions of the compressible fluid and the elastic tube wall. Lamb’s 

work has been extended by numerous researchers dealing with the problem of wave-

propagation in fluid-filled cylinders [159-161]. Unsteady flow characteristics and wave 

propagation through elastic tubes have also been studied more recently by Zamir [124]. 

In biomechanics, the pulsating flow of blood in the arteries causes wave propagation 

in the vessel walls and it is the propagation of the pulse that determines the pressure 

gradient during the flow at every location of the arterial tree. Womersley [62] was one of 

the first to experimentally study pulsatile flow performing his studies on the femoral 

artery of a dog. In these studies, it was the pressure gradient that was used to determine 

the flow characteristics indirectly. The interaction between the fluid and the vessel walls 

depends mostly on the physical-mechanical properties of the arterial tissues and the 

blood. In particular, the propagation velocity of pulse waves through the arteries is a 

means of diagnosing atherosclerotic arterial damage and determining the arterial tonus. 

The arterial pulse wave velocity (PWV) has been shown to be related to the underlying 

wall stiffness through the Moens-Korteweg [74] equation  and has been used in a variety 

of applications for noninvasive estimation of arterial stiffness [75]. Taylor [76] showed 

that the presence of reflected waves causes the measured transmission velocity of a 

harmonic wave to vary greatly with frequency. Using the technique of measuring wave 

front velocities with a delay line (McDonald [77]), Nichols and McDonald [78] made an 

extensive study of the wave velocity in the ascending aorta of dogs, showing that phase 
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velocity values, averaged over the first ten harmonics, were in close agreement with the 

velocity of the wave front. Their results also demonstrated that an increase in mean 

arterial pressure increases the pulse wave velocity. 

Modeling three dimensional blood flow in compliant arteries is extremely 

challenging because of the complexity of solving the coupled blood flow/vessel 

deformation problem. For this reason in some studies (Taylor et al. [162] and Oshima et 

al.[163]), the rigid-wall approximation of the vessel is justified because the vessel 

diameter change during the cardiac cycle is observed to be approximately 5-10% in most 

of the major arteries; moreover, in diseased vessels, the arteries are even less compliant 

and, wall motion is further reduced. Perktold and Rappitsch [164] showed that in the 

case of carotid artery under normal conditions, wall deformability does not significantly 

alter the velocity field. They demonstrated the effect of wall distensibility on the flow 

and wall shear stress patterns by comparing with the results of a rigid wall model. In 

particular, they found that the rigid wall model agrees with the diastolic geometry at 

the end of the pulse period of the compliant model. Moreover, the flow rates at the 

common carotid inflow and at the external outflow were found to be equal in both cases. 

However, this holds true for arteries with small wall motion and may not be valid for 

arteries with larger wall deformation [165] (e.g. the thoracic aorta). In particular, 

assuming rigid vessel walls means neglecting the wave propagation phenomenon within 

the tube and consequently changing the character of the resultant solutions. For the 

analysis of flow in compliant vessels, Formaggia et al.[166] proposed an approach to 

couple three-dimensional domains of the original Navier-Stokes equations with a 

convenient one-dimensional domain used to describe wave propagation methods. In order 

to properly represent the propagation phenomenon due to the fluid-structure interaction 

and not to fluid compressibility, the 2D/3D fluid-structure problem has been coupled 
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with a reduced one-dimensional model, which acts as an “absorbing” device for the waves 

exiting the computational domain. The appropriate framework for solving problems of 

computational modeling of blood flow in deforming vessels is the arbitrary Lagrangian-

Eulerian (ALE) description of continuous media, in which the fluid and solid domains 

are allowed to move to follow the distensible vessels and the deforming fluid domain 

[162, 167]. The ALE approach has been employed, resulting in numerical models with a 

large number of degrees of freedom for developing realistic anatomic and physiologic 

models of the cardiovascular system. Figueroa et al. [165] developed a method for 

simulating blood flow in three-dimensional deformable models of arteries based on the 

coupling of the equations of the deformation of the vessel wall at the variational level as 

a boundary condition for the fluid domain, by using basic assumptions of a thin-walled 

structure. The computational effort in their method is comparable to that for rigid wall 

formulations while respecting the essential physics and enabling realistic simulation of 

wave-propagation phenomenon in the arterial system, as well as a linearized description 

of the wall deformation. Recently, Amabili et al. [89] investigated the stability of a 

straight aorta segment conveying blood flow using a numerical bifurcation analysis that 

employs a refined reduced-order model. In particular, they identified for the first time 

the nonlinear buckling (collapse) of the aorta as a possible reason behind the appearance 

of high stress regions at the inner layer of the aortic wall that may be responsible for the 

initiation of aortic dissection. A geometrically nonlinear shell theory that takes into 

account three anisotropic layers (intima, media and adventitia) and incompressible 

potential flow were used in the model. Virtually, the mechanics of all fluid-conveying 

conduits in mammals is of this type: arteries, veins, pulmonary and urinary passages. 

Such physiological systems have been and still are being studied intensively [5, 70, 82, 

168]. The mechanisms leading to static collapse and flutter of collapsible tubes modelling 
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blood flow in veins, pulmonary passages and the urethra have been deeply investigated 

[169-171] and they may be said to be well understood. Different numerical models have 

been used to simulate healthy aortic walls or aortas under pathological conditions [149, 

172]. In recent models, material anisotropy, hyperelasticity of the aortic walls and 

residual stresses are considered in the analysis [173-175].  

Artificial blood vessels can also be modeled as thin-walled shells conveying 

pulsatile flow. Theory for the dynamic stability of circular cylindrical shells subjected to 

incompressible subsonic liquid have been reported by Amabili et al. [137]. In vascular 

surgery, implants have been used in various circumstances of vascular maladies requiring 

replacements of components of the cardiovascular system, such as vessel patches for 

aneurysms. However, mismatching in mechanical properties of grafts and host arteries 

can cause unwanted hemodynamic effects leading to graft failure. In particular, the 

energy loss due to reflection and propagation of the pulse wave as it encounters the graft 

is considered to be the most significant mechanism leading to graft failure because of 

compliance mismatch [176, 177]. Large diameter (12-30 mm) vessel replacements with 

Dacron are the accepted clinical practice [94]: tightly woven, crimped and non-supported 

Dacron fabric prostheses are currently used to replace the thoracic and abdominal aorta 

with high rates of success [95]. Indeed, Dacron is easy to use, durable, and has 

manageable resistance to thrombosis formation when used in large caliber vessels; 

however, it has also distinctly different mechanical properties than the native aorta [150]. 

With respect to the interaction of the implant wall with the blood flow, Tubaldi et al. 

[2] studied the nonlinear vibrations of a shell with the mechanical properties of  Dacron 

prostheses modeled as an isotropic cylindrical shell by means of the nonlinear Novozhilov 

shell theory under pulsatile pressure and flow. Specifically, physiological waveforms of 

velocity and pressure during the heart beating period were applied in order to investigate 
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the effect of the dynamic loading conditions of the shell. Results displayed a complex 

nonlinear dynamics (sequence of period doubling and pitchfork bifurcations) for the 

circular cylindrical shell subjected to high frequency harmonic excitation (beyond of the 

physiological range). The pulsatile flow taken into account was ideal since it was assumed 

that, for a given time instant, the pulsatile pressure and flow velocity were the same for 

all points of the control volume. Consequently, the oscillatory pressure variations 

occurred simultaneously at every point of shell, making the fluid oscillate in bulk. Hence, 

the wave motion of local movements of the fluid caused by pressure changes in a 

deformable shell was not taken into account. 

In this study, the effects of the pulse-wave propagation in the nonlinear vibrations of 

shells conveying pulsatile flow and subjected to pulsatile pressure are investigated. A 

circular cylindrical shell described by means of the nonlinear Novozhilov shell theory is 

used to model a Dacron thoracic aortic replacement. The material considered is 

orthotropic and the boundary conditions are flexible (distributed axial and rotational 

springs) to simulate the connection with the connective tissues. An input oscillatory 

pressure at the shell entrance is considered and it propagates down the shell causing a 

wave motion within the shell where, as a consequence, the pressure gradient and the flow 

velocity are functions of both the axial coordinate and time. Coupled fluid-structure 

Lagrange equations for a non-material volume with wave propagation in case of pulsatile 

flow are developed. The fluid is modeled as a Newtonian pulsatile flow, and pulsatile 

viscous effects are taken into account. Time responses of the radial displacement of the 

shell show the presence of a traveling wave propagating downstream.  Frequency 

responses corresponding to two different pulse wave velocities are compared with the 

ideal case of pulsatile pressure and velocity without pulse wave propagation. Interesting 

and intricate nonlinear dynamics (such as chaos and amplitude modulations) are 
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detected in the vicinity of the fundamental natural frequency, i.e. for a pulsation 

frequency larger than the physiological range. A two-to-one internal resonance is 

identified, giving rise to pitchfork bifurcations and leading to complex nonlinear 

dynamics.   

This study provides an efficient fluid-structure interaction model that can be 

applied to simulate human aorta and aortic replacements, once coupled to a laminated 

anisotropic shell with hyperelastic material properties. In the present study, the 

numerical results are for a single harmonic pulsation spanning a frequency range much 

wider than the physiological range in order to investigate the nonlinear dynamics of the 

system.  

 

4.2 Structural model 
In this study, the nonlinear Novozhilov shell theory is applied to model the woven 

Dacron vascular prostheses currently used in aortic replacement surgery. The system 

under consideration is shown in Fig. 4.1 where O(x, θ, r) is the origin of the coordinate 

system, R is the mean radius, h is the shell thickness, L is the shell length, u is the shell 

displacement in the x-direction, v is the shell displacement in the θ-direction and w is the 

shell displacement in the r-direction (taken positive outward).  

 

Fig. 4.1. Schematic of the shell conveying flow with boundary conditions at the shell ends. 
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The following boundary conditions, with flexible constraints to simulate connection 

with the remaining tissue, are applied at the shell ends ( 0, )x L , 

 0, , ,x a x r

w
v w N k u M k

x

         
 (4.1a-d) 

where 
xN is the axial stress per unit length, Mx is the bending moment per unit length 

and ka is the stiffness of the distributed axial springs for asymmetric modes only since 

axisymmetric modes are not restrained axially and 
rk is the stifness of the rotational 

springs applied at the shell edges for all modes. The flexible boundary conditions at the 

shell ends are assumed to simulate relatively stiff axial constraints for asymmetric 

deformations, enabling simulation of connective tissue stresses and remaining parts of 

the aorta, but allowing rotations [151] and axial axisymmetric motion. 

4.2.1 Elastic strain energy and kinetic energy of the shell 

A variational approach (already published by the authors in [2]) is employed to obtain 

the equations of motion for the aortic prosthesis segment. Specifically, the total kinetic 

energy of the shell is given by 

 
2

2 2 2

0 0

1
d d ,

2

L

s sT h u v w x R


                             (4.2) 

where 
s  is the mass density of the shell and the overdot denotes the time derivative. 

The potential energy of the Dacron shell US is made up of two contributions:  

 .S shell springU U U   (4.3) 

The elastic strain energy Ushell of the orthotropic circular cylindrical shell, assuming plane 

elastic stress, is given by 

    
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where  and   are the strains, whose directions are indicated by the subscript, and  

and  are the corresponding stresses. For orthotropic linearly elastic material, Ex and E 

are the Young’s moduli in x and  direction, respectively, and x is the Poisson ratio; 

for the Possion ratios exist the expression x x xE E    . The elastic strain energy can 

be written as 
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                    (4.5) 

where i,0 and i,0 are the strains referred to the middle surface of the shell, kx and k 

are the changes in curvature and kx is the change in torsion of the shell middle surface. 

The strains of the middle surface and the changes in curvature and torsion can be written 

as nonlinear quadratic functions of the displacements u, v and w of points of the middle 

surface through strain-displacement relationships that are given in [38] for the nonlinear 

Novozhilov shell theory. The potential energy stored by the axial and rotational springs 

at the shell ends is given by 
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  (4.6) 

The shell displacements are discretized by using trigonometric expansions that identi-

cally satisfy the geometric boundary conditions; these trigonometric functions are the 

eigenmodes of the linear problem in case of simply supported boundary conditions. In 

particular, 
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where n is the number of circumferential waves, m  is the number of longitudinal half-

waves, λm=mπ/L, and t is the time; um,n(t), vm,n(t) and wm,n(t) are the generalized coordinates 

[4]. A nonlinear term ( )u t
  is added to the expansion of u (Eq.(4.7a)) to satisfy exactly 

the natural boundary condition Eq(4.1c); this term is obtained as a function of the 

generalized coordinates [37]. In case of geometric imperfections, which break the axial-

symmetry of the system, it is possible to assume that, in addition to axisymmetric modes, 

only asymmetric modes with subscript c are activated. Thanks to the global 

discretization and in presence of imperfections, a reduced-order model can be considered 

by selecting terms with last subscript c yielding a model with 51 degrees of freedom 

(dofs). 

 

4.3 Fluid-structure interaction model 
The fluid is modeled as a Newtonian pulsatile flow. Although blood is a suspension of 

red blood cells, white blood cells, and platelets in plasma, it is well accepted that in 

medium-to-large arteries blood can be modeled as a viscous, incompressible Newtonian 

fluid. The proposed fluid-structure interaction model is used to obtain the unsteady fluid 

motion by potential flow theory and the pulsatile viscous effects for turbulent flow by 

the unsteady time-averaged Navier-Stokes equations. The high-frequency time 

dependence in the aortic flow, as well as the irrotational flow profiles at the ventricles, 

enable us to approximate the haemodynamics using the potential flow analysis [178].  
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The shell is considered to be conveying incompressible, isentropic and irrotational 

flow. The flow velocity vector Fv  can be expressed as  

 ( , ) ,U x t Fv i  (4.8) 

where U(x,t) is the pulsatile axial flow velocity, which is periodic in time but is also 

function of the axial coordinate x as a consequence of the wave-propagation model 

assumed here, and   is the unsteady perturbation potential associated to the shell 

motion; i represents the unit vector in the x-direction. The unsteady perturbation 

potential  satisfies the Laplace equation 
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2
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   

 (4.9) 

In case of compliant vessels (i.e. time-dependent control volume), the Laplace equation 

(4.9) derives from an integral law of mass conservation by equating the rate of change 

of mass inside the control volume to the net inflow of mass (see Appendix I). If no 

cavitation occurs at the blood-aorta interface, the boundary condition expressing the 

contact between the shell wall and the flowing fluid is given by 

 ( , ) ,
r R

w w
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              
 (4.10) 

where U(x,t) is the pulsatile blood flow velocity distribution within the deformable shell. 

Eqs. (4.9) and (4.10) are satisfied if the solution for the velocity potential is given by [5]  
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  (4.11) 

where In is the modified Bessel function of the first kind of order n, and 'In  is the deriv-

ative of In with respect to its argument. 

The Dacron implant considered here is meant to be a replacement for the thoracic 

aorta. In this portion of the aorta, the Womersley number is very high (α ≈ 15) and for 

this reason the central mass of the fluid reciprocates almost like a solid core [155].  Indeed, 
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the flow in the aorta and pulmonary trunk is similar to an entrance type flow that is 

not developed. Consequently, the validity of the assumption of the potential flow is 

justified by the fact that the core of the flow can be considered an inviscid region 

(potential core) that is surrounded by a thin developing boundary layer at the wall [179]. 

It is well known that in large arteries, because of the high value of the Womersley 

number and for Reynolds numbers sufficiently large, the boundary layer is very thin [75]. 

The roughness of the internal wall of the artery/implant influences the nature of the 

boundary layer. For this reason, pulsatile viscous effects are taken into account using 

the unsteady time-averaged Navier-Stokes equations. Finally, the vorticity in the aortic 

arch and the related effects as secondary flows (helices, vortices) typical of curved tubes, 

that can have a low impact on the flow in the thoracic aorta (straight tube) are neglected 

here. Frydrychowicz et al. [180] found that these secondary flow patterns predominantly 

depend on aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age of the 

patients. 

4.3.1 Fluid model: pulse-wave propagation of pulsatile velocity and 
pressure 

In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local 

movements of the fluid and deformation of the shell wall, which propagate downstream 

in the form of a wave. Hence, pressure and flow velocity distributions within the shell 

are oscillatory both in space and time and they can be represented by a Fourier series 

as follows: 
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where Ω is the heart rate, mp  and U  represent the steady components of the pressure 

field and the pulsatile mean flow velocity, respectively, and N is the number of terms in 

the series expansion. The coefficients an and bn are the Fourier cosine and sine coefficients, 

respectively, and are different for the velocity and pressure distributions; therefore they 

have a different second subscript. The wave speed c0 is given approximately by the so 

called Moens-Korteweg formula, well-known in haemodynamics [74] , 

 0 ,
2 F

E h
c

R



  (4.13) 

 where E is the circumferential Young’s modulus of the shell and F  is the constant 

fluid density. 

The Moens-Korteweg formula has the limitation of neglecting the viscous effects of 

the flow. This hypothesis is acceptable for the case studied here, since for blood flow in 

large arteries the Reynolds and the Womersley numbers are much larger than one and 

consequently the inertial effects dominate over the viscous ones. Hence, neglecting the 

blood viscosity in the tube outside the boundary layer next to the wall is often acceptable 

for the wave propagation problem. Under these hypotheses, the pulse wave analysis of 

an ideal fluid flow provides a reasonable approximation [75]. However, in some studies, 

the effect of viscosity and the nonlinear convection terms in the Navier-Stokes equations 

have been included to represent the wave speed with more accuracy [181]. 

4.3.2 Energy of the Flow 

Using Green’s theorem, the total energy of the flowing fluid is given by 
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where Γ is the cylindrical fluid volume inside the shell (delimited by the length L); in 

the scalar product  F Fv v  the flow velocity vector Fv  has been expressed as the sum of 
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the pulsatile axial flow velocity U(x,t), which is oscillatory both in space and time, and 

the unsteady perturbation potential  (x,t); S is the boundary surface of the volume Γ 

and n is the coordinate along the outer normal of the boundary. The integral associated 

with the term U2 is neglected since it does not give any energy contribution that is 

function of the generalized coordinates, so it disappears in the equations of motion. The 

last integral on the right-hand side of Eq.(4.14) can be expressed as follows 
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where Sin, Sout and Sshell  represent respectively the inlet, outlet and shell surface of the 

boundary surface S. Because of the phase delay due to the pulse wave propagation of 

pressure and velocity waves, it is found that 
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As a consequence, these terms will appear in the modified gyroscopic and potential 

energy of the flow. The last integral of the right hand side of Eq. (4.15) can be divided 

into three terms: kinetic energy TF , potential energy VF and gyroscopic energy EG , as 

given in the expression below 
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where 

 2 2
,'0 0

1 0

I ( / )1
d d ,

2 I ( / )

M N L
n

F F m n
m n n

m R LL
T w x R

m m R L

  
  

       

 22 , ,
'0 0

1 1 0 0

1 ( , ) I ( / )
d d ,

2 I ( / )

M M N NL m n l kn
F F

m l n k n

w wU x t L m R L
V x R

m m R L x x

  
    

 
 

    (4.18a-c) 

 2 , ,
, ,'0 0

1 0 1 0

I ( / )1 ( , )
d d .

2 I ( / )

M N M NL l k m nn
G F m n l k

m n l k n

w wm R LU x t L
E w w x R

m m R L x x

  
    

  
    

      

Since the velocity U(x,t) is time and space dependent, new terms associated to VF and 

EG will appear in the Lagrange equations of motions; the subscript G stands for 
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gyroscopic. Moreover, it is important to notice that in this case, the potential energy VF 

cannot be simplified in the expression with two summations [4] used for the case without 

wave propagation, since U(x,t) depends on the axial coordinate. 

4.3.3 Pulsatile viscous effects 

The unsteady time-averaged Navier-Stokes equations [26, 37] are employed to 

calculate the pulsatile viscous effects. A variable mean transmural pressure ΔPtm, 

representing the pressure drop along the shell, and an axial frictional traction force τx, 

acting on the internal wall, are introduced in the model. This type of hybrid model is 

particularly efficient from the computational point of view. In particular, in case of 

unsteady flow, the fluid pressure P on the shell surface takes on the following expression 

 2 ( , )
( , , ) ( , ) (0, , ),

4F

f U x t
P x R t U x t x P R t

R t
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 (4.19) 

where the friction factor f can be calculated by using the experimental Colebrook equa-

tion (assuming f = 0.097). It is assumed that ( /2, ) 0P L R  , so that P is directly added to 

the pulsatile uniform pressure differential pm acting on the shell wall (defined as the 

difference between the internal and external pressures on the shell wall), assumed posi-

tive outward. Therefore, the expression for P is given by 
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 (4.20) 

The pressure drop in the shell is  
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 (4.21) 

The pulsatile axial friction traction force per unit area [182] is  
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 (4.22) 
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4.3.4 Lagrange Equations of Motion for Open Systems  

The potential and kinetic energies of the shell and of the fluid are coupled in the 

Lagrange equations of motion. The vector q  that includes all the generalized coordinates 

, , ,( ), ( ), ( )m j m j m ju t v t w t  is introduced for sake of simplicity in the notation; the generic 

generalized coordinate is indicated by qj. The Lagrange equations of motion for open 

systems [183], in case of pulsatile flow with pulse wave propagation, can be written as 

follows: 
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where TS, TF and US have been previously defined in Eq. (4.2), Eq. (4.18a) and Eq. (4.3), 

respectively. The modified potential energy 
FV  and the modified gyroscopic energy GE  

of the flow are calculated not only at the shell wall, as given by Eq. (4.18b,c), but also 

at the inlet and outlet surfaces (see Appendix J). The vectors Fv  and Sv  are the velocity 

vectors of the fluid and of the structure at a generic point on the boundary surface S, 

respectively; NT is the number of degrees of freedom. The surface integrals are evaluated 

at the boundary surface S of the volume Γ, and n denotes the outer normal unit vector 

at that surface. The last two terms on the left hand side of Eq. (4.23) represent the 

correction terms in the version of the Lagrange equations of motion for a non-material 

volume containing the flux of kinetic energy appearing to be transported through the 

surface of the control volume (see Appendix G). 

 The generalized external forces Qj are represented by  
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where the first two integrals on the right-hand side represent an effect of the pulse-

wave propagation inside the shell and are included in Qj since they do not depend on 

the generalized coordinates and their derivatives, being therefore equivalent to a load; 

and the last two terms are related to the viscous damping and the pulsatile viscous 

effects, being  
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where c is the viscous damping coefficient and the expression of the virtual work W 

done by the displacement independent pressure load is exact for infinitesimal deflection 

w of the shell and it can still be considered a good approximation for moderate deflections 

of thin shells. On the contrary, for large deformations, it is crucial to model the pressure 

as a displacement dependent load (see Appendix K). 

 The resulting equations of motion for the system are given in matrix form by the 

following expression 

    ( ) ,S F F S F 2 3M M q + C + C q + K + K + N (q) + N (q,q) q = Q   (4.26) 

where SM  and FM  are the mass matrices of the shell and the fluid, respectively, FC is 

the gyroscopic matrix due to the flow, FK  is stiffness matrix due to the flow and C  

the damping matrix that is added to the equations of motion in order to simulate dissi-

pation. Moreover, SK  is the linear stiffness matrix of the shell, 2N  gives the quadratic 

nonlinear stiffness terms of the shell, 3N denotes the cubic nonlinear terms of the shell, 

and Q  is the vector representing the external loads (including viscous effects and pul-

satile effects). In order to obtain the equations of motion in a suitable form for numerical 
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implementation, the system Eq. (4.26) is multiplied by the inverse of the mass matrix 

and is then written in state-space form as follows: 

    ,
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where y is the vector of the generalized velocities and M  is the total mass matrix 

S FM = M + M ; the dissipation term -1M C   is given by 
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

,                                  (4.28) 

and it is related to the modal damping ratio j  and the natural frequency j  (rad/s) of 

each generalized coordinate qj. Matrix (4.28) is assumed to be diagonal in order to use 

modal damping. In general, experiments are necessary in order to determine the damping 

ratios. It must also be noticed that the damping ratios obtained for small amplitude 

vibrations are generally increasing in case of large amplitude vibrations, and this increase 

can be very large [184, 185]. 

 

4.4 Numerical results 
The equations of motion have been obtained by using the Mathematica software [133] 

in order to perform analytical surface integrals of trigonometric functions. A non-

dimensionalization of variables is performed for computational convenience: the 

frequencies are divided by the natural radian frequency 
12  of the fundamental mode, 

and the vibration amplitudes are divided by the shell thickness h. The set of nonlinear 

ordinary differential equations Eq. (4.27) has been solved by using the software AUTO 

[106] that is capable of continuation of the solution, bifurcation analysis and branch 

switching by using the pseudo-arclength continuation and collocation method. Here, the 
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nonlinear analysis of the aortic prosthesis is divided into three steps. First, the pulsatile 

pressure is increased at zero flow velocity up to the desired value (Fig. 4.2(b)), giving 

the wall deformation and the initial stresses. In the second step, the pulsatile blood flow 

velocity is used as a bifurcation parameter until it reaches the physiological conditions 

(Fig. 4.2(a)). 

 

 

  
 

Fig. 4.2. (a) Flow velocity and (b) transmural pressure values in the aortic segment; dotted line: physio-
logical data [186], continuous line: Fourier series N=1. 

 

 Once the desired pulsatile flow velocity is reached, the bifurcation continues by 

considering the pulsation frequency   (heart pulse) as the continuation parameter to 

obtain the frequency-amplitude response of the aortic prosthesis. However, the software 

AUTO, cannot follow quasi-periodic and chaotic solutions. Hence, a home-developed 

continuation code performing direct integration of the equations of motion by means of 

IMSL DIVPAG Fortran routine, which uses the Adams-Gear integration scheme, has 

been applied to investigate the nonlinear response of the system in those frequency ranges. 

In the direct integration method, at any increment of the bifurcation parameter, which 

is the excitation frequency, the solution is restarted by using the solution at the previous 
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point, plus a small perturbation, as the initial condition. The Poincaré maps and the 

corresponding bifurcation diagrams obtained by this method allow studying very 

complex nonlinear dynamics. 

 In this study, the characteristics of the Dacron implant under consideration, 

referring to Fig. 4.1, are: L =0.18 m, h=0.361 mm, R=0.015 m, x =0.3, E =12 MPa, 

Ex=0.87 MPa, S=1247 kg/m3, F=1050 kg/m3, ka=103 N/m2, kr=102 N/rad. These 

material properties have been chosen in agreement with previous studies [150, 187, 188] 

conducted on Dacron grafts currently used in aortic replacements.  

The physiological waveforms of velocity and pressure [186] in the thoracic aorta are 

considered for the Dacron replacement and they are expressed in terms of Fourier series. 

As a first approximation, only the first harmonic of the Fourier expansion is considered 

to describe the pulsatile pressure and flow, as shown in Fig. 4.2. The potential effect of 

the introduction of the replacement graft on the alteration of the physiological waveforms 

of pressure and velocity is neglected here. Indeed, this is a very interesting topic that 

unfortunately hasn’t been deeply investigated in literature because of its complexity. In 

particular, both geometrical and material mismatch of the artificial vessel with respect 

to the native aorta play a role in this regard. To the knowledge of the authors, some 

studies [189, 190] that addressed this subject found that the effect of the insertion in a 

thoracic aortic replacement affects slightly the shape of the pressure and velocity 

waveforms without altering the general trend of the function (mean flow values and main 

peaks of the function). For this reason, it is assumed that the first harmonic of the 

Fourier series used to represent the pulsatile flow in this study, is not affected by this 

slight alteration. 

Moreover, two different pulse wave velocities c0 have been considered in order to study 

the effect of this parameter on the dynamic response of the vessel with wave propagation. 
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In particular, the mean aortic pulse wave velocity c0 = 3.6 m/s [191] has been compared 

to the pulse wave velocity c0 = 11.72 m/s obtained with the Moens-Korteweg formula 

(Eq. (4.13)) for the Dacron implant considered here. 

4.4.1 Time responses for pulsatile transmural pressure and flow  

The time response of the Dacron implant subjected to steady plus the first harmonic 

component of physiological waveforms of velocity and pressure during the heart beating 

period is presented in Fig. 4.3; in particular, the shell radial displacement w, non-

dimensionalized with respect to the thickness h, is shown at the angular coordinate 0   

versus time and at three different axial positions x=L/4, L/2, 3L/4. The shell transverse 

sections are circular at any point since only axisymmetric modes are activated in this 

case.  

 

 
Fig. 4.3. Time response of the nondimensionalized radial displacement w/h under pulsatile pressure and 
velocity (a) with wave propagation with the mean aortic pulse wave velocity (b) without wave propagation; 
dashed line: x = L/4, dotted line: x = L/2, continuous line: x = 3L/4. 

 

The dynamic response of deformable shells conveying pulsatile flow with wave 

propagation with the mean aortic pulse wave velocity obtained with the software AUTO 
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is shown in Fig. 4.3(a) and can be compared to the response of the shell without wave 

propagation, i.e. with the same oscillatory pressure and velocity at all the points of the 

control volume simultaneously, which is presented in Fig. 4.3(b). The approximation 

implied in the case without wave propagation is acceptable only when the shell presents 

a low elasticity allowing the wave speed to be much higher than the maximum flow 

velocity. In Fig. 4.3(a), because of the phenomenon of pulse-wave propagation, the shell 

radial displacement for x = 3L/4 is clearly delayed with respect to the one for x = L/4, 

whereas in Fig. 4.3(b) the two corresponding curves are overlapped.  

4.4.2 Frequency-amplitude response: wave propagation phenomenon with 
the mean aortic pulse wave velocity versus the non-propagation case  

The effect of the wave motion with the mean aortic pulse wave velocity on the 

nonlinear vibrations of shells conveying pulsatile flow is discussed here by means of 

frequency-amplitude responses through the comparison with the case without wave 

propagation. When the shell is pressurized with the steady transmural pressure 

12253 Pamp  , which is the mean value obtained in Fig. 4.2(b), the frequency of the first 

axisymmetric mode becomes *
1,0 1,25.894 35.75 Hz    (here 1,2  is the natural frequency 

of the non-pressurized mode m=1, n=2) and this value is used to non-dimensionalize the 

pulsating frequency Ω in the following figures. The superscript * is used to indicate the 

natural frequency of the pressurized shell. 

Fig. 4.4 presents the maximum amplitude of the response versus the non-dimensional 

pulsating frequency Ω for the most significant axisymmetric modes w1,0/h and w2,0/h (non-

dimensionalized with respect to the thickness h of the shell) obtained by increasing the 

pulsating frequency. In particular, Fig. 4.4(a-b) shows the frequency-amplitude responses 

of the case with wave propagation and Fig. 4.4(c-d) refer to the case without wave 

propagation. 
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The frequency range presented here is much wider than the physiological one, which 

is limited to *
1,0/ 0.0931    with the assumption that no higher harmonics are 

introduced by the pulsation (which is not the case since higher harmonics are actually 

present, as shown in Fig. 4.2). 

  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Fig. 4.4. Frequency response curves for the axisymmetric modes: (a) w1,0 , (b) w2,0 with wave propagation 
with mean aortic pulse wave velocity; (c) w1,0, (d) w2,0 without wave propagation, obtained by varying the 
frequency Ω; stable solution (continuous line), unstable solution (dashed line), pitchfork bifurcation (BP) 
and Neimark-Sacker bifurcation (TR); ζ = 0.1. 

 

In both cases, the modal damping ratio ζ = 0.1 is assumed for all the generalized 

coordinates. The shell subjected to wave propagation vibrates axisymmetrically and the 

response is periodic throughout the frequency range investigated.  
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On the other hand, the case without wave propagation presents two pitchfork 

bifurcations (BP) close to the linear resonance, i.e. *
1,0/ 1   , and around *

1,0/ 2   , 

that causes the activation of the asymmetric modes (specifically modes with n=2), as 

shown in Fig. 4.5 and Fig. 4.6, respectively.  

 

 

 

 
 
Fig. 4.5. Bifurcation diagrams for the asymmetric modes (a) w1,2 , (b) w2,2 and axisymmetric modes (c) 

w1,0, (d) w2,0 without wave propagation for *
1,0/ 1   ; direct integration solution (black dotted line), 

unstable AUTO solution (red dashed line) ; ζ = 0.1. 

  
Results in Fig. 4.5 and Fig. 4.6 are the steady-state solutions and present the 

maximum of the generalized coordinates in a pulsation period. It is well known that 

complex responses with additional resonance peaks are often observed for nonlinear 

systems in the presence of internal resonances. 
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In particular, internal resonances can appear when the ratio of two or several natural 

frequencies is close to the ratio of small integers (see Amabili [4]).  In this study, since 

the ratio * *
2,0 1,0/ 2   , a 2:1 internal resonance between modes w1,0 and w2,0 is observed, 

as shown in Fig. 4.4(a-d). 

         
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4.6. Bifurcation diagrams for the asymmetric modes: (a) w1,2, (b) w2,2, and for the axisymmetric 

modes (c) w1,0, (d) w2,0 without wave propagation for *
1,0/ 2   ; direct integration solution (black dotted 

line), unstable AUTO solution (red dashed line); ζ = 0.1. 

 

Moreover, also the frequency ratio between the modes w1,2 and w1,0 is close to 2 (i.e. 

* *
1,2 1,0/ 2   ), causing a more complex nonlinear dynamics in this frequency range. Since 

in both ranges close to the linear resonance, i.e. *
1,0/ 1   , and close to *

1,0/ 2   , the 

software AUTO [106] could only determine an unstable solution in the case without 

wave propagation, the maximum vibration amplitudes shown in Fig. 4.5 and Fig. 4.6 
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are obtained by means of a self-developed continuation code based on direct integration 

of the equations of motion by using the IMSL DIVPAG package, which uses the Adams-

Gear integration scheme. The tool used to investigate parametrically the response of the 

shell in these frequency ranges is the Poincaré map sections shown in Figs. 4.7 and 4.8 

for *
1,0/ 1    and Figs. 4.9 and 4.10 for *

1,0/ 2   , respectively.  

 

 
 
 
 
 

 

 

 

 

 

 

 

Fig. 4.7. Poincaré maps of the case without wave propagation: (a) w1,2, (b) w2,2, (c) w1,0, (d) w2,0 for 
*
1,0/ 0.933   ; ζ = 0.1. 

 

Simple periodic motion, a period-doubling bifurcation (PD), periodic response with 

twice the excitation period (2T), amplitude modulations (quasi-periodic motion, M) and 

chaotic response (C) have been detected in both frequency ranges. In particular, in the 

case without wave propagation the pitchfork bifurcation at *
1,0/ 0.908    (Fig. 4.4(c)) 

causes an explosive change in the response; the phenomenon observed is called “blue sky 

catastrophe” whereby the simply periodic solution is transformed into a chaotic region. 
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This chaotic response is obtained at the resonance of mode (1,0). In the Poincaré map 

sections for *
1,0/ 0.933   , shown in Fig. 4.7, the shape of the chaotic attractor is a kind 

of hypersphere and it is evident that the response is associated with hyperchaos. Quasi-

periodic motion (amplitude-modulated response) is detected in the Poincaré map 

sections for *
1,0/ 1.052    (Fig. 4.8) by an infinite number of points filling a closed 

curve.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.8. Poincaré maps of the case without wave propagation: (a) w1,2, (b) w2,2, (c) w1,0, (d) w2,0 for 

*
1,0/ 1.052    ; ζ = 0.1. 

 
It can be observed that the curves in Fig. 4.8(a-b), representing the Poincaré map 

sections of the asymmetric modes w1,2 and w2,2 respectively, are composed by two 

intersecting curves symmetric with respect to the origin. 

Indeed, they have originated by the “movements” of the two points of the bifurcation 

diagrams of Poincaré maps in Figures 4.5(a-d) obtained for *
1,01.068 / 1.088   , i.e. in 

regime of a periodic response with two times the excitation period (2T) caused by a 
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period doubling (PD). Therefore, reading Figure 4.5 from the right-hand side to the left, 

a period-doubling bifurcation is first detected, followed by quasi-periodic response and 

only then chaos appears.  

 

      
 

 
 

Fig. 4.9. Poincaré maps of the case without wave propagation: (a) w1,2, (b) w2,2, (c) w1,0, (d) w2,0 for 
*
1,0/ 2.2   ; ζ = 0.1. 

 

Hence, the “blue sky catastrophe” phenomenon, detected by increasing the pulsating 

frequency, is instead interpreted as a more usual route to chaos when the frequency axis 

is read from the higher frequencies to the lower ones; this is usual for a softening type 

system, as the present one. 

Similar complex nonlinear dynamics are observed in the case without wave 

propagation for *
1,0/ 2   , as shown in Fig. 4.6. A “blue sky catastrophe” phenomenon 
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is detected, whereby a sudden, explosive change in the response occurs for 

*
1,0/ 1.822   (hyperchaos).The system regains stability with a period-2 (i.e. (2-T) 

periodic) orbit for *
1,0/ 1.896   .  

 

 
 

 
Fig. 4.10. Poincaré maps of the case without wave propagation: (a) w1,2, (b) w2,2, (c) w1,0, (d) w2,0 for 

*
1,0/ 2.214   ; ζ = 0.1. 

 
However, by increasing the forcing frequency Ω, the (2-T) periodic orbit loses stability 

at *
1,0/ 2.01    and this gives rise to another chaotic region of hyperchaos. Immediately 

after this region, Fig. 4.6 shows a region of lower vibration amplitude with alternated 

chaos and quasi-periodic solutions. Poincaré map sections for *
1,0/ 2.2    in Fig. 4.9 

show that the system response is chaotic but subjected to a strange attractor. Indeed, 
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the strange attractor is the quasi-periodic solution, whose Poincaré map sections for 

*
1,0/ 2.214   , see Fig. 4.10, display a closed orbit. 

Fig. 4.11 shows the effect of the modal damping ratio ζ on the nonlinear response of 

the system for the axisymmetric mode w1,0 around the linear resonance. Comparison is 

presented between the case with wave propagation with the mean aortic pulse wave 

velocity and the case without wave propagation. In order to obtain the same maximum 

amplitude of vibration at the resonance peak with the two models, the damping ratio ζ 

used in the case without wave propagation must be about 10 times larger than the one 

for the corresponding case with wave propagation. In particular, in the case with wave 

propagation, pitchfork bifurcations appear in this frequency range only for values of ζ ≤ 

0.05.  

 

  
 
 
 
 
 
 
 
 

Fig. 4.11. Frequency response curves (AUTO solution) for the axisymmetric mode w1,0 for different values 
of modal damping ζ: (a) with wave propagation with the mean aortic pulse wave velocity, (b) without 
wave propagation; stable solution (continuous line), unstable solution (dashed line), pitchfork bifurcation 
(BP) and Neimark-Sacker bifurcation (TR). 

4.4.3 Chaotic vibrations of shells conveying pulsatile flow with the mean 
aortic pulse wave speed 

As shown in the previous section, in order to observe interesting nonlinear dynamics 

in the case of shells conveying pulsatile flow with the mean aortic pulse wave velocity, 

the damping ratio ζ has to be relatively small (for the geometry considered here ζ ≤ 0.05). 

Fig. 4.12 shows the frequency-amplitude responses of the most significant axisymmetric 
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modes, w1,0, w2,0, w3,0, w4,0 , of the shell with wave propagation for a wide frequency range. 

As in the case without wave propagation, one main peak appears close to the linear 

resonance, i.e. *
1,0/ 1   , and another one around *

1,0/ 2   ; both are associated with 

pitchfork bifurcations (BP) that cause the activation of the asymmetric modes, as shown 

in the bifurcation diagrams of Poincaré maps in Fig. 4.13. However, away from the 

peaks, the behavior of the two systems is very different. In particular, in the case with 

wave propagation, the amplitude of the first axisymmetric mode w1,0 decreases for 
*
1,0/ 1   , before reaching the peak corresponding to the linear resonance. The response 

of w2,0 presents a rounded maximum around *
1,0/ 0.5   , which is not present at all for 

the case without wave propagation. 

 

    
 

  
Fig. 4.12. Frequency response curves for the axisymmetric modes with wave propagation with the mean 
aortic pulse wave velocity: (a) w1,0, (b) w2,0, (c) w3,0, (d) w4,0 by varying the frequency Ω; stable solution 
(continuous line), unstable solution (dashed line), pitchfork bifurcation (BP); ζ = 0.05. 
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In order to investigate the behavior of the system in the range close to the linear 

resonances, Poincaré maps have been computed by direct integration of the equations of 

motion. The bifurcation diagrams obtained by these Poincaré maps are shown in Fig. 

4.13. A “blue sky catastrophe” is detected around *
1,0/ 0.9918    causing the 

activation of the asymmetric modes and leading the system to a chaotic regime as shown 

in the Poincaré map sections in Fig. 4.14 ( *
1,0/ 0.995   ) and Fig. 4.15 ( *

1,0/ 1.002  

), both characterized by clouds of points. However, the points are more sparse in Fig. 

4.14 and more organized in Fig. 4.15. Amplitude modulations have been detected for 

*
1,01.002 / 1.008   as shown in the Poincaré map sections in Fig. 4.16 for 

*
1,0/ 1.003   . The frequency-response relationship in the vicinity of *

1,0/ 2    is 

presented in Fig. 4.17. A pitchfork bifurcation is detected for *
1,0/ 2.005    where a new 

branch appears, showing the activation of the asymmetric modes. This new branch is 

characterized by simple periodic motion and not by chaotic response as in the previous 

case without wave propagation (Fig. 4.6). 
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Fig. 4.13. Bifurcation diagrams for the asymmetric modes (a) w1,2 , (b) w2,2 , and for the axisymmetric 

modes (c) w1,0, (d) w2,0 with wave propagation with the mean aortic pulse wave velocity for *
1,0/ 1   ; 

direct integration solution (black dot line), unstable AUTO solution (red dashed line), stable AUTO 
solution (red continuous line) ; ζ = 0.05. 

 

4.4.4 Chaotic vibrations of shells conveying pulsatile flow with the 
Moens-Korteweg pulse wave velocity 

The pulse wave velocity is an index of the stiffness and elasticity of the vessels. It is 

well known that an elevated pulse wave velocity is a marker of arterial stiffness in older 

adults [192]. Similarly, since textile prostheses have stiffer walls compared to the 

distensible arteries, their insertion has significant effects on blood pulse wave velocity 

[176, 193]. For the Dacron implant considered here, the corresponding pulse wave 

velocity given by the Moens-Korteweg formula is equal to c0 = 11.72 m/s that is more 

than three times higher than the mean aortic pulse wave. This significant difference 

between the two values implies a substantial change in the dynamic behavior of the 

artificial vessel. 
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Fig. 4.14. Poincaré maps of the case with wave propagation with the mean aortic pulse wave velocity: (a) 
w1,2, (b) w2,2, (c) w1,0, (d) w2,0 for *

1,0/ 0.995   ; ζ = 0.05. 

 

 Fig. 4.18 and Fig. 4.19 represent the bifurcation diagrams of the most significant 

axisymmetric and asymmetric modes, w1,0, w2,0, w1,2, w2,2, of the shell with wave 

propagation with c0 = 11.72 m/s. As it can be observed comparing the bifurcation 

diagrams shown in Fig. 4.18 and Fig. 4.19 with Fig. 4.4(c-d), Fig. 4.5 and Fig. 4.6, the 

nonlinear dynamics of the shell conveying pulsatile flow with high wave velocity 

accurately reproduces the corresponding ideal case without wave propagation. Indeed, 

by increasing the pulse wave velocity, the behavior of the system with wave propagation 

is comparable to the limit case with the same oscillatory pressure and velocity at all the 

points of the control volume simultaneously. In both cases, complicated nonlinear 

dynamics like chaos, amplitude modulation and a period-doubling bifurcation are 



4.4.  Numerical results 
 

145 
 

observed close to the linear resonance i.e. *
1,0/ 1   , and around *

1,0/ 2   , causing 

the activation of the asymmetric modes (specifically modes with n = 2) for a damping 

ratio ζ =0.1. To avoid redundancy in presenting the similar results, the corresponding 

Poincaré maps are not reported since they are analogous to Figs. 4.7-4.10.   

  

 
 

 
Fig. 4.15. Poincaré maps of the case with wave propagation with the mean aortic pulse wave velocity: 
(a) w1,2, (b) w2,2, (c) w1,0, (d) w2,0 for *

1,0/ 1.002   ; ζ = 0.05. 
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Fig. 4.16. Poincaré maps of the case with wave propagation with the mean aortic pulse wave velocity: 
(a) w1,2, (b) w2,2, (c) w1,0, (d) w2,0 for *

1,0/ 1.003   ; ζ = 0.05. 

 

   
   

   
 

Fig. 4.17. Bifurcation diagrams for the asymmetric modes (a) w1,2 , (b) w2,2 and for the axisymmetric 
modes (c) w1,0, (d) w2,0 with wave propagation with the mean aortic pulse wave velocity for *

1,0/ 2   ; 

unstable AUTO solution (dashed line), stable AUTO solution (continuous line) ; ζ = 0.05. 
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Fig. 4.18. Bifurcation diagrams for the asymmetric modes (a) w1,2 , (b) w2,2 and axisymmetric modes 
(c) w1,0, (d) w2,0 with wave propagation with c0 = 11.72 m/s (direct integration solution). 

 
 
 

 



 Chapter 4.  Wave propagation phenomenon in shells conveying pulsatile flow 
  

148 
 

  
Fig. 4.19. Bifurcation diagrams for the asymmetric modes (a) w1,2, (b) w2,2 and axisymmetric modes (c) 

w1,0, (d) w2,0 with wave propagation with c0 = 11.72 m/s for *
1,0/ 1    (direct integration solution). 

 
 

4.5 Conclusions 
This study addresses, for the first time in the literature, the effect of pulse wave 

propagation on nonlinear vibrations of shells excited by pulsatile pressure and flow. It is 

considered that an input oscillatory pressure at the shell entrance propagates down the 

shell causing a wave motion within the shell where the pressure gradient and the flow 

velocity are functions of both the axial coordinate and time.  

 Time responses of the shell radial displacement for different values of the axial 

coordinate clearly show the wave motion that propagates downstream inside the shell. 

The dynamic behavior of the shell under pulsatile pressure and flow has also been 

examined via bifurcation diagrams and Poincaré maps.  

Two different pulse wave velocities have been considered in order to study the effect 

of this parameter on the dynamic response of the vessel with wave propagation. In 

particular, the mean aortic pulse wave velocity c0 = 3.6 m/s [191] has been compared to 

the pulse wave velocity c0 = 11.72 m/s obtained with the Moens-Korteweg formula for 

the Dacron implant considered here. These results have been compared with the case of 

shells conveying pulsatile pressure and velocity without considering the wave motion 
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phenomenon (an adequate approximation for shells with low elasticity that allows the 

wave speed to be much higher than the maximum flow velocity). Indeed, for a modal 

damping ratio ζ = 0.1 both cases without wave propagation and with the corresponding 

Moens-Korteweg pulse wave velocity present a complex response (chaos, amplitude 

modulation and a period-doubling bifurcation) close to the linear resonance with the 

activation of asymmetric modes, whereas the shell subjected to wave propagation with 

the mean aortic pulse wave velocity vibrates only axisymmetrically and the response is 

periodic throughout the frequency range investigated. Thus, it has been found that 

decreasing the pulse wave velocity stabilizes the system.  

 The effect of the modal structural damping ζ on the nonlinear response of the 

system of the axisymmetric mode w1,0 around the linear resonance has been studied, in 

the case of wave propagation with the mean aortic pulse wave velocity. In order to 

obtain the same maximum amplitude vibration at the first resonance peak, the damping 

coefficient ζ used in the case with wave propagation should be reduced about 10 times 

with respect to the corresponding case without wave propagation. Chaotic vibrations 

and amplitude modulations in shells conveying pulsatile flow with wave propagation 

with the mean aortic pulse wave velocity have been detected in the vicinity of the linear 

resonance considering a damping ratio ζ = 0.05.  

 With respect to the limitations of the present work, a more accurate structural 

model should include the viscoelasticity and possibly hyperelasticity of the graft material 

[150]. Moreover, for a proper representation of the physiological waveforms of pressure 

and velocity, more harmonics should be included in the Fourier expansion. In the second 

part of the present study, we expect that including higher harmonics in the Fourier 

expansion of the physiological waveforms of pressure and velocity will cause a shift 

towards lower frequencies of the first peak in the response. Consequently, this could 
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eventually lead to the appearance of a peak in the response in the physiological frequency 

range, or closer to it. However, despite of limitations, this analysis represents the first 

study where nonlinear vibrations of aortic replacements are investigated and makes a 

substantial progress in order to simulate the dynamics of installed implants. 
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Chapter 5 
 

Nonlinear dynamics of woven Dacron aortic 
prostheses 

 

 

This chapter deals with the study of the dynamical behavior of a woven Dacron 

prosthesis conveying pulsatile blood flow. The mathematical fluid-structure interaction 

model considered is the one with the wave-propagation effect presented in Chapter 4. 

The pulse is of physiological shape. The objective is to detect possible vibration 

phenomena in the physiological frequency range originated by the fluid-structure 

interaction. It is well accepted that the long-term patency of the prosthesis depends on 

its ability to mimic the mechanical behavior of the host artery. However, if vibrations 

of the artificial vessel walls are activated for certain heart rates, the related high stress 

concentration combined with the fatigue cycles of the heart beats, could contribute to 

material deterioration. The final intent of this chapter is to expand the knowledge of the 

physiology and pathophysiology of Dacron arterial grafts, considering among the risks 

of possible complications, the large amplitude wall oscillations of the artificial vessels. 

The manuscript “Nonlinear dynamics of Dacron aortic prostheses conveying pulsatile 

flow” recently submitted in a peer-reviewed international journal is reported. 
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NONLINEAR DYNAMICS OF DACRON AORTIC PROSTHESES 

CONVEYING PULSATILE FLOW 

Eleonora Tubaldi, Marco Amabili, Michael P. Païdoussis 

Department of Mechanical Engineering, McGill University 

 

Abstract 

This study addresses the dynamic response to pulsatile physiological blood flow and 

pressure of a woven Dacron graft currently used in thoracic aortic replacements. The 

structural model of the prosthesis assumes a nonlinear cylindrical orthotropic shell 

described by means of nonlinear Novozhilov shell theory. The blood flow is modeled as 

Newtonian pulsatile flow, and unsteady viscous effects are included. Coupled fluid-

structure Lagrange equations for open systems with wave propagation subject to 

pulsatile flow are applied. Physiological waveforms of blood pressure and velocity are 

approximated with the first eight harmonics of the corresponding Fourier series. Radial 

displacement time responses of the synthetic graft during exercise are compared to the 

ones at rest. Frequency-response curves in the physiological range show the geometrically 

nonlinear vibration response to pulsatile flow. During exercise, the bifurcation diagrams 

present several superharmonic resonance peaks. Different values of modal damping are 

considered. This study investigates a crucial issue in cardiovascular surgery and improves 

the understanding of vascular grafts patency through the analysis of their dynamic 

response to pulsatile flow.  
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5.1 Introduction 
Dacron (polyethylene terephthalate) and ePTFE (expanded 

polytetrafluoroethylene)  represent the standard materials for large-diameter (12-30 mm) 

vascular grafts used to replace components of the cardiovascular system in case of 

diseased arteries, such as vessel patches for aneurysms [194].  

Dacron grafts are commonly used as aortic replacements since they function well in 

this high-flow, low resistance circuits with high long-term patency [94, 195]. The use of 

tightly woven, crimped Dacron fabric grafts is accepted in clinical practice to substitute 

the abdominal and thoracic aorta with high levels of success [95]. Dacron is durable, easy 

to use, and if used to replace large caliber vessels presents manageable resistance to 

thrombosis formation; however, the synthetic implant does not match the biomechanical 

behavior of that of the host artery [150]. 

Prostheses should match the viscoelastic properties of the arteries to which they are 

to be anastomosed. This property of the central blood vessels, known as compliance, is 

responsible of an efficient propagation of the pressure pulse to the peripheral vessels. 

With pulsatile blood flow, the compliant aorta acts as an elastic reservoir, absorbing 

energy during systole and releasing it during diastole. When a pressure wave encounters 

a discontinuity in geometry or elastic properties, for example at an anastomosis between 

a graft and an artery, it will be partially reflected, reducing the energy transmitted along 

the vessel. As current synthetic grafts are significantly stiffer than host vessels, 

substantial energy losses may occur through the graft [99]. 

The consequences of low compliant artificial vessels on aortic hemodynamics and the 

left ventricle have been investigated [196-198], but only few reports have quantified these 

effects on human cardiovascular system efficiency. Kim et al. [199] compared aortic input 

impedance characteristics between patients with aortic interposition Dacron grafts 
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placed for traumatic aortic injury and normal age-matched control subjects. They found 

that at resting conditions, this compliance mismatch between the host aorta and the 

graft appears to be less important in the maintenance of distal blood flow during diastole. 

However, when high output is demanded, as during exercise, the compliance mismatch 

increases. This could explain the characteristic hemodynamic difference observed 

between the two groups including higher cardiac energetic cost to maintain a given flow 

due to a less compliant proximal aorta, and compromised decline in pressure pulse wave 

reflection. Matching the impedances would minimize wave reflection of the advancing 

pressure wave and it would restore the natural aortic Windkessel function [70, 200]. The 

compliance mismatch between arteries and grafts can also cause flow disruption, can 

contribute to false aneurysm formation [201] and it is known to reduce graft patency 

[101].  

Extensive knowledge about the distinctly different mechanical properties of the Dacron 

implants with respect to the native aorta is available in literature [150, 156, 188], while 

very little is known about the dynamic behavior of these prostheses. Vascular grafts can 

be modeled as thin shells conveying pulsatile flow. A preliminary numerical study on the 

fluid-structure interaction between a thoracic aortic Dacron prosthesis and the blood 

flow was conducted by Tubaldi et al. [2]. Results show complex nonlinear dynamics (i.e. 

period doubling, pitchfork bifurcations) in case of high-frequency harmonic excitation 

(well beyond the physiological range). The pulsatile flow was considered “ideal”, meaning 

that for a given time instant, the pulsatile flow velocity and pressure were the same for 

all points of the control volume. Thus, the fluid was assumed to oscillate in bulk with 

simultaneous oscillatory pressure variations at every point of the shell. Theory for 

stability and dynamics of circular cylindrical shells conveying fluid has been developed 

by Amabili et al.[137, 140, 141] . The most important aspects of fluid-structure 
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interactions in slender structures have been covered and synthesized by Païdoussis in 

the second volume of his monograph [5]. Veins, the urethra and pulmonary passages are 

physiological conduits that can be considered as pliable shells (collapsible tubes) [80], 

meaning that they can exhibit large area changes in response to small changes in 

transmural pressure [81, 169]. Indeed, even if they are surrounded by large masses and 

tissues and they are not necessarily straight or uniform along their length, their essential 

behavior can be represented by idealized models, the main one being the “Starling 

resistor” [202]. Vessel collapse is most readily observed in the veins (e.g. the jugular vein 

when standing erect, or the veins of the hand when an arm is raised), but the arteries 

also collapse when subjected to high external pressure [87], even if they are traditionally 

considered capable of withstanding large deformations without adverse effects. In 

deformable vessels conveying pulsatile flow, pulsating flow and pressure propagate 

downstream at the same wave speed in the form of travelling waves. The literature on 

wave propagation in compliant and collapsible tubes is truly vast [203, 204]. 

Blood pressure and flow waveforms depend on the physical properties of the 

cardiovascular system, such as the arterial geometry and distensibility [205]. Having a 

better understanding of the haemodynamics and pulse wave dynamics can be valuable 

for the diagnosis and treatment of most common arterial diseases. The pulse wave 

velocity (i.e. the propagation speed of pulse waves relative to the blood) through the 

arteries is an indirect measurement of arterial stiffness and tonus and it represents an 

important predictor of cardiovascular events such as atherosclerosis [206] and 

hypertension [207]. The pulse wave velocity (PWV) in arteries has been related to the 

underlying wall stiffness using the Moens-Korteweg [74] equation  and it is considered a 

noninvasive estimation of arterial properties [75]. 
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The highly pulsatile nature of the blood flow and the compliant nature of the blood 

vessels make the vascular system difficult to model. One-dimensional modelling is 

commonly applied to simulate in large arteries the changes in blood flow and cross-

sectional averaged blood pressure and velocity in time and along the axial direction, with 

good accuracy and low computational cost [71, 72, 208, 209]. The difficulty of solving 

the coupled blood flow-vessel deformation problem makes modeling 3-D blood flow in 

flexible arteries extremely challenging. These models are usually applied when a detailed 

description of the 3-D flow field is required, for example at a specific part of the vascular 

system where fluid phenomena are complex and of physiological or pathological interest 

(e.g., near a bifurcation, within an aneurysm, or in the vicinity of a heart valve or a 

stenosis) [210]. 3D models require computational fluid dynamics (CFD) approaches and 

some of the most recent ones have been extended to fluid-structure interaction analysis 

between blood and the arterial wall [211]. Arbitrary Lagrangian-Eulerian (ALE) 

formulation is one of the most famous computational techniques used to solve problems 

of modeling of blood flow in complinat vessels. In this approach, the Navier-Stokes 

equations are written in a moving reference frame that follows the motion of the vascular 

structure interface [162, 167]. The evolution of the ALE formulation is a boundary-fitting 

technique, where the fluid-solid interface is accurately captured via continuous changes 

of the fluid grid. However, in situations in which the motion of the vascular structure is 

large, ALE formulations may result in time consuming computations [212]. Even though 

these accurate fluid-structure interaction models may provide detailed descriptions of 

deformation and flow phenomena, their computational intensity is such that they cannot 

be used to study wave-propagation phenomena in the entire arterial tree or major parts 

of it. The choice of model depends on the degree of detail required, and usually modelling 

of the fluid-structure interaction of blood flow in arteries requires the combination of 
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different types of models each with their own spatial dimensions [166, 213, 214]. Pulse 

wave mechanics in systemic arteries can be described using mathematical and numerical 

tools based on lumped parameter models and 1-D wave propagation models [215, 216]. 

Arteries and veins in vivo are under significant mechanical stresses generated by blood 

pressure, lumen blood flow, surrounding tissue tethering, and body movement [75]. It is 

critical that arteries remain stable under these loads to maintain their physiological 

function. 

While the mechanical properties of the arterial wall have been studied extensively [217, 

218], articles related to the mechanical stability of arteries under physiological loads are 

rare. Han et al. [88] summarized in a literature review the state of the art studies 

regarding the stability of blood vessels reporting the common forms of buckling that 

occur, including cross-sectional collapse, longitudinal twist buckling, and bent buckling. 

Blood vessels, like water hoses or pipelines may also lose their stability under 

physiological loads due to fluid-structure interaction phenomena [171, 219]. Recently, 

Amabili et al. [89] investigated the stability of a shell roughly simulating a straight aorta 

segment conveying steady blood flow, using a numerical bifurcation analysis. The cross-

sectional collapse (nonlinear buckling) of the vessel has been identified as being 

potentially responsible of the appearance of high-stress regions at the intima layer of the 

aortic wall. Thus, this phenomenon represents a possible reason behind the initiation of 

aortic dissection. It has been well documented that excessive mechanical stress represents 

a risk factor for the pathological development of vascular diseases such as atherosclerosis 

[220] and for aneurysm rupture and atherosclerotic plaque rupture [221, 222]. 

The present study is the first to address the dynamic response to pulsatile 

physiological blood flow and pressure of a woven Dacron graft interposition in the 

thoracic aorta. The effect of wall distensibility has been considered despite the limited 
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elasticity of the woven Dacron prostheses in order to study the flow-induced wall 

oscillations of the implant. The structural model of the prosthesis assumes a nonlinear 

cylindrical orthotropic shell described by means of nonlinear Novozhilov shell theory. 

The blood flow is modeled as a Newtonian pulsatile flow, and unsteady viscous effects 

are included. Coupled fluid-structure Lagrange equations for open systems subject to 

pulsatile flow with wave propagation developed by Tubaldi et al.[3] are applied here. 

Physiological waveforms of blood pressure and flow velocity [186] are approximated with 

the first eight harmonics of the corresponding Fourier series. Time-responses of the radial 

displacement of the synthetic graft during exercise are compared to those at rest. 

Differences in the frequency content contributions are presented and discussed. 

Frequency-response curves in the physiological range display the geometrically nonlinear 

vibration response to pulsatile flow. During exercise (i.e. high pulsatile flow velocity and 

high heart rate) the dynamic response presents several superharmonic resonance peaks.  

Modelling dissipation is particularly relevant. The effect of different values of modal 

damping on the dynamic behavior of the prosthesis is investigated. In the limit case of 

low modal damping values, the prosthesis displays more complicated nonlinear dynamics.  

The growing understanding of the physiology and pathology of arterial grafts will 

ultimately produce practical therapeutic strategies for enhancing graft function and 

controlling currently common long-term adverse effects. 

 

5.2 Methodology 
In this study, woven Dacron artificial blood vessels currently used in aortic 

replacement surgery are modeled as thin-walled circular cylindrical shells. Because of 

their textile structure, Dacron prostheses are markedly anisotropic. A large difference 

exists in the modulus of elasticity between the circumferential and the axial directions. 
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Lee and Wilson [188] performed uniaxial tensile tests on woven Dacron implants and 

determined a typical stiffness ratio (circumferential/longitudinal) of about 15 for these 

materials. The strong anisotropy of the system is here taken into account by considering 

an orthotropic circular cylindrical shell.  Moreover, the yarn structure and complex fabric 

design of the graft provide a nonlinear stress-strain behavior; however, the Dacron can 

be assumed to be linearly elastic around specific pressure values. In our analysis, the 

values of Young’s modulus of the orthotropic material are obtained from the uniaxial 

tension tests given by [156, 188] linearized around the mean physiological pressure 

100 m m H gmp  . Hasegawa and Azuma [156] investigated experimentally stress 

relaxation patterns and the values of relaxation strength in Dacron synthetic grafts. 

Their results indicate that for these grafts stress relaxation is not prominent and they 

could be regarded approximately as perfectly elastic. Geometric nonlinearities in the 

strain-displacement relationships according to the classical Novozhilov nonlinear shell 

theory are retained in the model. The thin-walled circular cylindrical shell discussed here 

is shown in Fig. 5.1 with mean radius R, shell thickness h and shell length L. Because of 

the very thin nature of the shell under consideration (i.e. h/R = 0.024), rotary inertia 

and shear deformations can be neglected without compromising the accuracy of the 

model.  

A cylindrical coordinate system (O; x, r, θ) is introduced with the origin O at the center 

of one end of the shell. The displacements of an arbitrary point of coordinates (x, θ) on 

the middle surface of the shell are denoted by u, v and w, in the axial, circumferential 

and radial directions, respectively; w is taken positive outwards. 

The following flexible constraints are considered as boundary conditions in order to 

simulate connections with the host artery, and are applied at the shell ends ( 0, )x L : 
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where Nx and Mx are the axial stress and the bending moment per unit length, 

respectively. 

 
Fig. 5.1. Schematic of the shell in axial flow with boundary conditions at the shell ends. 
  

The distributed axial ka and rotational kr stiffness of the springs represent flexible 

boundary conditions applied at the shell ends. They allow rotations [151] and axial 

axisymmetric motion while they also simulate relatively stiff axial constraints for 

asymmetric deformations, reproducing the connection with the remaining parts of the 

aorta.  

5.2.1 Kinetic and Elastic Strain Energy of the Shell 

An energy variational approach is used to obtain the equations of motion for the aortic 

prosthesis segment conveying pulsatile flow with wave propagation (already published 

by the authors [3]). The total kinetic energy of the shell is given by 
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d d ,

2

L
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

                           (5.2) 

where 
s  is the mass density of the structure and the overdot represents the time 

derivative. The potential energy of the Dacron prosthesis US is made of two contributions:  

 .S shell springU U U   (5.3) 
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For an orthotropic linearly elastic material, Young’s moduli in the x and  direction 

are denoted by Ex and E, respectively, and the Poisson ratio is x; for the Possion ratios 

the following expression holds true: x x xE E    . Assuming plane elastic stress, the 

elastic strain energy can be written as 
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where i,0 and i,0 denote the strains referred to the middle surface of the shell, kx and 

k represent the changes in curvature and kx defines the change in torsion of the shell 

middle surface. The changes in curvature and torsion and the strains of the middle 

surface can be expressed as nonlinear quadratic functions of the middle surface 

displacements u, v and w through strain-displacement relationships that can be found in 

[38] based on the nonlinear Novozhilov shell theory. The potential energy stored by the 

rotational and axial springs at the shell ends can be written as 
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In order to discretize the system, the middle surface displacements u, v and w are ex-

panded by using approximate trigonometric functions identically satisfying the geometric 

boundary conditions. A linear modal base consisting of the eigenmodes of the simply 

supported shell is used to discretize the system and build a reduced-order model.  In 

order to reduce the number of degrees of freedom, it is important to use only the most 

significant modes. In particular, 

             
8 3 11 6

, , , , ,2 , ,0 ,0
1 1 1 2

( , , ) ( )cos ( )sin cos ( )cos 2 cos ( )cos ( )cos ,m n c m n s m m n c m m m m m
m m m m

m odd m even

u x t u t n u t n x u t n x u t x u t x       
   

         
 



 Chapter 5.  Nonlinear dynamics of woven Dacron aortic prostheses 
  

162 
 

          
8 6

, , , , ,2 ,
1 1

( , , ) ( )sin ( )cos sin ( )sin 2 sin ,m n s m n c m m n c m
m m

v x t v t n v t n x v t n x     
 

       (5.6a-c) 

              
8 11 6

, , , , ,0 ,0
1 1 2

( , , ) ( )cos ( )sin sin ( )sin ( )sin ,m n c m n s m m m m m
m m m

m odd m even

w x t w t n w t n x w t x w t x     
  

         

where m represents the number of longitudinal half-waves, λm=mπ/L, n denotes the 

number of circumferential waves, and t is the time; the generalized coordinates [4] are 

given by um,n(t), vm,n(t) and wm,n(t). A nonlinear term ( )u t
  is added to the expansion of u 

(Eq. (5.6a)) to satisfy the natural boundary condition Eq. (5.1.c); this term is given as 

a function of the generalized coordinates [37]. The presence of geometric imperfections 

on the prosthesis wall breaks the axial-symmetry of the system. Thus, it is assumed that 

only asymmetric modes with subscript c are activated in addition to axisymmetric modes. 

Applying a global discretization of the system in case of imperfections, a reduced-order 

model with 51 degrees of freedom (dofs) can be used selecting the terms with last 

subscript c in Eq. (5.6a-c). 

5.2.2 Blood Flow Model in Large Arteries 

The Dacron graft studied here is meant to be a thoracic aortic replacement. In this 

segment of the aorta, the Womersley number is very high (α ≈ 15) and consequently the 

central mass of the fluid behaves almost as a solid core [155].  Indeed, due to its high 

pulsatility, the blood flow in the aorta is similar to an entrance type flow, meaning that 

it does not have enough time to develop. Hence, potential flow theory can be used, since 

the core of the flow can be considered a potential core (i.e. inviscid region)  surrounded 

by a thin developing boundary layer on the wall [179]. In addition, the high-frequency 

time-dependent blood flow in the aorta, as well as the irrotational flow at the ventricles, 

allow to approximate the hemodynamics via potential flow analysis [178]. It is commonly 

accepted that in large arteries for Reynolds numbers sufficiently large, the boundary 
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layer is very thin [75]. In Section 5.2.5 the unsteady time-averaged Navier-Stokes 

equations are employed to calculate the pulsatile viscous effects on the internal wall.  

The fluid is modeled as an incompressible Newtonian pulsatile flow. The assumption 

of Newtonian behavior of blood is acceptable for high shear rate flow, e.g. in the case of 

flow through large arteries, while the non-Newtonian character of blood is typical in 

small arteries and veins where the presence of the white blood cells, red blood cells, and 

platelets in plasma produces that specific behavior. The fluid-structure interaction model 

used here has been developed by Tubaldi et al. [3] and the fluid is modeled using a hybrid 

model that considers the unsteady fluid motion by potential flow theory and the 

unsteady viscous effects for turbulent flow by the unsteady time-averaged Navier-Stokes 

equations.  

The shell is considered to be conveying isentropic, incompressible, and irrotational 

flow. Arteries and vascular prostheses are generally assumed to be tethered in the 

longitudinal direction, with their central axis fixed, and their wall to be allowed to 

deform only in the radial direction due to the internal pressure, which is considered to 

be constant over the luminal cross-section. This is consistent with the assumption that 

radial and azimuthal velocities are negligible compared to axial velocities [209, 223]. 

The flow velocity vector Fv  is given by  

 ( , ) ,U x t Fv i  (5.7) 

where i represents the unit vector in the x-direction, U(x,t) denotes the pulsatile axial 

flow velocity that is periodic in time but also, due to the wave-propagation phenomenon, 

it depends on the axial coordinate x. The unsteady perturbation potential Φ is associated 

with shell motion and it satisfies the Laplace equation [224]. Assuming that no cavitation 

occurs at the blood-prosthesis interface, the condition of impermeability of the surface 

of the vessel may be expressed mathematically as 
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5.2.3 Pulse-Wave Propagation of Physiological Waveforms of 
Velocity and Pressure 

In deformable vessels conveying pulsatile flow, the pulsating pressure and flow propagate 

downstream at the same wave speed in the form of travelling waves. Thus, a Fourier 

series can be used to represent pressure and flow velocity distributions, oscillatory both 

in space and time within the vessel, as follows: 

    , 0 , 0
1

( , ) cos ( / ) sin ( / ) ,
N

v n v n
n

U x t U a n t x c b n t x c 


        (5.9a) 

    , 0 , 0
1

( , ) cos ( / ) sin ( / ) ,
N

m m p n p n
n

p x t p a n t x c b n t x c 


        (5.9b) 

where mp  and U  denote the steady components of the pressure field and the mean flow 

velocity, respectively, Ω is the heart rate (HR), and N is the total number of terms in the 

Fourier series expansion. The coefficients bn and an are the Fourier sine and cosine 

coefficients, respectively, and are different for the velocity and pressure distributions. 

The wave speed c0 is approximately obtained by the Moens-Korteweg formula, widely 

used in haemodynamics [74] , 
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 where E  is the circumferential Young’s modulus of the vessel and ρF is the constant 

blood density. 

A limitation of the Moens-Korteweg formula is to neglect flow viscous effects. This 

hypothesis is adequate for the system studied here, since the Womersley and the 

Reynolds numbers are much larger than one for blood flow in large arteries and therefore 
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inertial effects prevail over the viscous ones. Thus, for the wave propagation problem, 

neglecting the blood viscosity outside the boundary layer next to the inner wall is often 

acceptable. Under these hypotheses, pulse wave analysis of ideal flowing fluid provides 

a reasonable approximation [75]. However, in some studies, in order to define the wave 

speed with more accuracy [181], the nonlinear convection terms of the Navier-Stokes 

equations and the viscosity effect have been included. 

5.2.4 Energy of the Flow 

Green’s theorem is used to obtain the total energy associated to the flow whose 

contribution on the shell surface can be divided into three terms: kinetic energy TF , 

gyroscopic energy EG , and potential energy VF, where 
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Because of the phase delay associated to wave propagation of velocity and pressure 

waves, new terms will occur in the Lagrange equations of motion due to the energy of 

the flow in the inlet and outlet surface [3]. 

5.2.5 Pulsatile viscous effects 

The nature of the boundary layer is influenced by the roughness of the inner wall 

of the prosthesis. For this reason, the unsteady time-averaged Navier-Stokes equations 

[26, 37] are used to take into account the pulsatile viscous effects. A variable mean 

transmural pressure ΔP0,L, representing the pressure drop along the shell, and an axial 

frictional traction force τx, acting on the internal wall, are introduced in the model. In 

case of unsteady flow, the fluid pressure P on the vessel surface is given by 



 Chapter 5.  Nonlinear dynamics of woven Dacron aortic prostheses 
  

166 
 

 2 ( , )
( , , ) ( , ) (0, , ),

4F

f U x t
P x R t U x t x P R t

R t
       

 (5.12) 

where the friction factor f is calculated through the experimental Colebrook equation 

(assuming f = 0.097). Assuming that ( / 2, ) 0P L R  , it is possible to directly add the pres-

sure P to the pulsatile uniform transmural pressure pm acting on the vessel wall. The 

pressure drop along the vessel can be written as  

 2
0,

( , )
(0, , ) ( , , ) ( , ) .

4L F

f U x t
P P R t P L R t U x t L

R t
        

 (5.13) 

The unsteady axial friction traction force per unit area [182] is   

 2( , ) ( , )
( , , ) .

8 2x F

U x t R U x t
x t R f

t
 

 
    

 (5.14) 

5.2.6 Lagrange Equations of Motion 

The Lagrange equations for a non-material volume, compared to the classical 

formulation for a material volume, involve a correction term given by the flux of kinetic 

energy transported through the surface of the control volume [183]. The vector q 

including all the generalized coordinates 
, , ,( ), ( ), ( )m j m j m ju t v t w t  is introduced for the sake of 

simplicity in the notation. The generic generalized coordinate is expressed by qj. In case 

of pulsatile flow with pulse wave propagation, the Lagrange equations of motion for open 

systems can be written as [3] 

 
   

     1 1
d d , 1... ,

2 2
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j j jS S

T T E U Vd E

dt q q q

S S Q j N
q q q

 

     
  

    
   

              
  F S

F F F S F F

v v
v v v v n v v n



  

       (5.15) 

where TS, TF and US have been previously defined in Eq. (5.2), Eq. (5.11a) and Eq. (5.3), 

respectively. The modified potential energy 
FV  and the modified gyroscopic energy 

GE  

of the flow are calculated not only at the vessel wall, as given by Eq. (5.11b,c), but also 

at the inlet and outlet surfaces [3]. The vectors Fv  and Sv  are the velocity vector of the 
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fluid and of the structure at a generic point on the boundary surface S, respectively; NT 

is the number of degrees of freedom. The surface integrals are evaluated at the boundary 

surface S of the volume Γ, and n denotes the outer normal unit vector at that surface. 

The generalized external forces Qj are given by  

 d d ,j F
j j j j

W F
Q U U

q x q x q q


 

      
            

  
 (5.16) 

where the two integrals on the right-hand side represent an effect of the pulse-wave 

propagation inside the vessel and are included in Qj since they are equivalent to a load 

not depending on the generalized coordinates or their derivatives. The last two terms 

are related to pulsatile viscous effects and viscous damping, as follows: 

  
2

0,

0 0

d d
L

L m xW P p w u x R


        , (5.17a) 

  
2

2 2 2

0 0

1
d d ,

2

L

F c u v w x R


        (5.17b) 

where in this formulation of the virtual work W  due to the pressure load is assumed 

to be displacement independent, which is a good approximation for moderate deflections 

of thin shells as is the case here. However, for large deformations, it is essential to model 

the pressure as a displacement dependent load [3]. 

 The resulting equations of motion for the coupled system can be written in matrix 

form as 

               ( ) ,S F F S F 2 3M M q + C+C q + K +K +N (q) + N (q,q) q = Q   (5.18) 

where SM  and FM  are the mass matrices of the shell and the fluid, respectively, FC is 

the gyroscopic matrix due to the flow, FK  is the stiffness matrix due to the flow and 

C  the damping matrix that simulates dissipation. Moreover, SK  is the linear stiffness 

matrix of the vessel, 2N  and 3N give the quadratic and cubic nonlinear stiffness terms 
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of the shell, respectively; Q  is the vector representing the external loads including vis-

cous and pulsatile effects. In order to obtain the equations of motion in a suitable form 

for numerical implementation, the system Eq. (5.18) is multiplied by the inverse of the 

mass matrix and is then written in state-space form as follows 

    ,


    

-1 -1 -1 -1 -1
F S F 2 3

q = y

y = -M C + C q - M K + K + M N (q) + M N (q,q) q + M Q



  (5.19)   

where M is the total mass matrix S FM = M + M and y  is the vector of the generalized 

velocities; the dissipation term -1M C   is given by 

 
1 12 0

0 0

0 2
T TN N

 

 

 
   
  

-1M C





, (5.20) 

and it is related to the modal damping ratio j  and the natural frequency j  (rad/s) of 

each generalized coordinate qj. Matrix (5.20) is assumed to be diagonal in order to use 

modal damping. Modal damping ratios, which can only be defined experimentally via 

modal analysis, control the vibration amplitude at the corresponding resonance peaks. 

However, away from the peaks of the frequency-response curve, the mass and stiffness 

of the system control the vibration amplitude.  

In linear viscoelasticity, a measure of “internal friction” is given by the loss tangent 

defined as the tangent of the angle δ(Ω) by which the strain is delayed with respect to 

the stress; this function depends on the vibration frequency Ω. The loss tangent is the 

parameter that characterizes dissipation in viscoelastic materials and it can be linked at 

resonance to the modal damping as follows: 

 2 ( ) tan ( )j
j j


   


   for  j =1,.., NT, (5.21) 
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where the subscript j refers to the j-th generalized coordinate, which has a specific mode 

shape and ωj are the NT natural frequencies of the system. At resonance, the ratio ωj/Ω 

on the right hand side of Eq. (5.21) becomes equal to one. Since damping plays a major 

role only in the frequency neighbourhood of the resonances, being the vibration ampli-

tude controlled by the mass and stiffness of the system away from them, it is possible 

to replace Eq. (5.21) with  

 2 ( ) tan ( )j j      for  j =1,.., NT. (5.22) 

In multi-degree-of-freedom systems, the use of modal damping with respect to 

viscoelastic dissipation presents the advantage of choosing different damping values for 

different degrees of freedom. Indeed, preliminary experimental modal analysis results 

(still ongoing) confirm that the asymmetric and axisymmetric modes of vibration do not 

have the same value of modal damping. In case of viscoelastic dissipation, the damping 

value depends on the vibration frequency but it is the same for any vibration mode 

shape. Moreover, the modal damping takes into account dissipation phenomena of 

different sources not only due to the material but also to fluid-structure interaction and 

boundary conditions. 

In this study, the modal damping is assumed to be constant for all the generalized 

coordinates. The value considered is ζ = 0.04 that has been obtained by preliminary 

modal analysis experiments (presently ongoing) on a Maquet Hemashiled woven Dacron 

graft.  
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5.3 Numerical results 
The Lagrange equations of motion have been obtained using the software Mathematica 

[133] able to perform analytical surface integrals of trigonometric functions. For 

computational convenience, vibration amplitudes have been non-dimensionalized with 

respect to the shell thickness h, as well as normalized with respect to the principal 

vibration period. A home-developed continuation code performing direct integration of 

the Lagrange equations of motion by means of IMSL DIVPAG Fortran routine has been 

employed to solve the set of nonlinear ordinary differential equations Eq. (5.19). In this 

direct integration method, which uses the Adams Gear integration scheme, at any 

increment of the bifurcation parameter (i.e. excitation frequency) the solution is 

restarted by adding a small perturbation to the solution at the previous point used as 

the initial condition. Poincaré maps and the related bifurcation diagrams obtained 

thanks to this method allow the study of very complex nonlinear dynamics. 

 The mechanical properties of the Dacron graft investigated here are: L =0.18 m, 

h=0.361 mm, R=0.015 m, x =0.3, E =12 MPa, Ex=0.87 MPa, S=1247 kg/m3, F=1050 

kg/m3, ka=103 N/m2, kr=102 N/rad. These material and geometric properties have been 

selected based on previous studies [150, 187, 188] conducted on Dacron prostheses. The 

choice of the Young’s modulus values has already been discussed in Section 5.2. 

The physiological waveforms of pressure and velocity [186] in the thoracic aorta are 

applied to the Dacron graft and they are expanded in terms of Fourier series. The first 

eight harmonics (N=8) of the Fourier expansion are considered to describe accurately 

enough the pulsatile pressure and flow [186] at rest, as shown in Fig. 5.2. During exercise 

the flow velocity curve (Fig. 5.2) displays the maximum velocity peak around 2.31 m/s, 

as provided in the literature as limit value in healthy conditions [225].  
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Fig. 5.2. (a) Flow velocity at rest (blue line) and during exercise (green line); (b) transmural pressure 
values in the aortic segment; dotted line: physiological data [186], continuous line: Fourier series with N=8. 

 
The small dip displayed in the graph of the aortic pressure (Fig. 5.2(b)) represents the 

dicrotic notch which coincides with the aortic valve closure. Before gradual decline, it 

is immediately followed by a brief rise (i.e. dicrotic wave) caused by the arterial elasticity 

that should be seen in all young individuals. This slight and sudden increase in aortic 

pressure introduces a high frequency contribution not reproduced in the Fourier 

expansion with N=8 considered here. However, the absence of the notch in the waveform 

is considered as the indicator of arterial stiffness, since it depends on physical 

characteristics of the arterial system such as impedance, compliance, and peripheral 

resistance. Thus, it is assumed here that the well-known increase in aortic stiffness due 

to the insertion of a low compliant vessel such as the Dacron implant reduces the 

amplitude of the dicrotic wave. 

The potential effect of the alteration of the physiological waveform of velocity and 

pressure due to the interposition of a synthetic vessel is neglected. This represents a very 

interesting research topic that because of its complexity has not been deeply investigated 

in the literature. Both material and geometrical mismatch of the vascular prosthesis with 

respect to the host aorta play an important role in this regard. To the authors’ knowledge, 

some studies [189, 190] addressing this subject found that the main effect of the insertion 

of a thoracic aortic implant slightly affects the shape of the velocity and pressure 
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waveform without any alteration of the general trend (main peaks of the function and 

mean flow values). The pulse wave velocity c0 = 11.72 m/s obtained through the Moens-

Korteweg formula (Eq. 5.10) has been considered for the Dacron implant studied here. 

5.3.1 Time responses and FFT to physiological waveforms of 
pressure and velocity  

The time responses of the Dacron graft subjected to the physiological waveforms of 

pressure and velocity for two different heart rates, HR = 60 bpm and HR = 180 bpm are 

presented in Fig. 5.3(a) and Fig. 5.3(b), respectively. The prosthesis radial displacement 

w, non-dimensionalized with respect to the shell thickness h, is shown versus time at 

three different axial locations x = L/4, L/2, 3L/4 considering the angular coordinate =0. 

The vessel transverse sections are circular at any point since only axisymmetric modes 

are activated. In Fig. 5.3(a-b), the shell radial displacement for x = 3L/4 is delayed with 

respect to the one for x = L/4 because of the pulse-wave propagation phenomenon. 

  

 
 
Fig. 5.3. Time response of the nondimensionalized radial displacement w/h under physiological pulsatile 

pressure and velocity, (a) at rest (HR = 60 bpm) and (b) during exercise (HR = 180 bpm); dotted line: x 

= L/4, dashed line: x = L/2, continuous line: x = 3L/4. Modal damping ratio ζ = 0.04. 
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It can be noticed that, the time response during exercise (HR = 180 bpm) presents 

large contributions of higher harmonics while the response at rest (HR = 60 bpm) 

reproduces the pressure behavior.  

Moreover, in Fig. 5.3(b) the vibration is large enough to even reach negative values 

(i.e. below the original undeformed configuration before pressurization) at x = L/4 in 

correspondence of the systolic pressure peak for t ≈ 0.4 T, where T is the time period. This 

inward axisymmetric contraction is of significant amplitude and reduces the aortic lumen 

for a short time.  This remarkable vibration amplitude highlights potential severe 

dynamic problems of the prosthesis under exercise conditions. This effect could also be 

associated to the relatively low damping of the structure that does not allow enough 

dissipation at high frequencies. Experimental results are needed to validate this 

interesting and promising finding.  

 

 
 

 
Fig. 5.4. Computed time response of the Dacron prosthesis subjected to physiological pulsatile flow 

and pressure at rest conditions, HR = 60 bpm; (a) w1,0(t),  (b) w2,0(t),  (c) w3,0(t),  (d) w4,0(t).  Modal damping 
ratio ζ = 0.04. 
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The most significant generalized coordinates w1,0, w2,0, w3,0, and w4,0 (i.e. those with 

larger amplitude) are shown in Fig. 5.4(a-d) and Fig. 5.5(a-d) for two different heart 

rates associated to rest (HR = 60 bmp) and exercise (HR = 180 bpm) conditions, 

respectively.  

The corresponding frequency spectra are represented in Fig. 5.6(a-d) and Fig. 5.7(a-

d). The generalized coordinates with an even number of longitudinal half waves are 

directly excited by the velocity, while the pressure wave acts mainly on the modes with 

an odd number of longitudinal half waves. 

 

 
 

 
 
Fig. 5.5. Computed time response of the Dacron prosthesis subjected to physiological pulsatile flow 

and pressure during exercise, HR = 180 bpm; (a) w1,0(t),  (b) w2,0(t),  (c) w3,0(t),  (d) w4,0(t).  Modal damping 
ratio ζ = 0.04. 
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The negative amplitude peak of the vibration for t ≈ 0.4 T for HR = 180 bpm is mainly 

due to modes w2,0 and w4,0 as shown in Fig. 5.5(b) and Fig. 5.5(d), respectively. The 

frequency spectra show high harmonic contributions in the response during exercise (HR 

= 180 bpm), in particular for the generalized coordinate w1,0 (Fig. 5.7(a)).  

 

 
 

 
 
Fig. 5.6. Frequency spectrum of the response of the Dacron prosthesis to physiological pulsatile pressure 

and velocity at rest conditions, HR = 60 bpm; (a) w1,0(t),  (b) w2,0(t),  (c) w3,0(t),  (d) w4,0(t).  Modal damping 
ratio ζ = 0.04. 
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and w4,0/h (non-dimensionalized with respect to the thickness h of the shell) obtained by 

increasing the pulsating frequency.  

 

 
Fig. 5.7. Frequency spectrum of the response of the Dacron prosthesis to physiological pulsatile pressure 

and velocity during exercise, HR = 180 bpm; (a) w1,0(t),  (b) w2,0(t),  (c) w3,0(t),  (d) w4,0(t).  Modal damping 
ratio ζ = 0.04. 
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the physiological pulsatile flow and pressure are here represented with eight harmonics 

(N=8), but higher harmonics up to 2N exist in the excitation due to the squared velocity 

term that appears in the potential flow energy VF (Eq. 5.11b), the pressure drop  ∆P0,L 

(Eq. 5.13),  and the pulsatile axial friction traction force per unit area τx (Eq. 5.14).  

 

 

 
Fig. 5.8.  Frequency  response curves of the axisymmetric modes: (a) w1,0 , (b) w2,0 , (c) w3,0, and (d) 

w4,0 obtained by varying the heart rate (HR); ζ = 0.01 (black line), ζ = 0.02 (green line), ζ = 0.03 (red line), 
ζ = 0.04 (blue line), ζ = 0.05 (magenta line). 
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provoke fluctuations in the flow shear stress and disturbed blood flow. Moreover, as 

shown in Fig. 5.10, for the limit case of damping ζ = 0.01, which is a bit smaller than 

what seems to be a realistic dissipation value, and high heart rates around HR = 190 

bpm, the prosthesis presents asymmetric vibration with deformation of the cross-section, 

compromising its proper functioning. A period-doubling bifurcation appears giving 

dynamic instability for a heart rate of 191.4 bpm. The mode shape of the vibrating 

Dacron prosthesis displays deformation with circumferential wave number n=2 [89] and 

it introduces bending of the wall, generating much higher stress in the inner wall. The 

response is periodic with the excitation period T  for 191.4 bpm < HR < 192.8 bpm and 

with two times the excitation period (2T) for 193.1 bpm < HR < 194.1 bpm.  

Figs. 5.11(a,b) are Poincaré maps obtained from direct time integration used to study 

the system in the spectral neighborhood associated to the asymmetric modes activation. 

The periodic response with two times the excitation period (2T) is detected by the two 

spots on the Poincaré maps for HR =  193.31 bpm (Fig. 5.11). The system recovers its 

stability at HR = 194.2 bpm associated to the zero amplitude vibration of the asymmetric 

modes. 

 

 
Fig. 5.9. Zoom in the sueperharmonic resonant peaks zone of the frequency  response curves of the 

axisymmetric modes: (a) w1,0 , (b) w2,0 , (c) w3,0, and (d) w4,0 obtained by varying the heart rate (HR); ζ = 

0.01 (black line), ζ = 0.02 (green line), ζ = 0.03 (red line), ζ = 0.04 (blue line), ζ = 0.05 (magenta line). 
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Fig. 5.10. Bifurcation diagrams for the asymmetric modes (a) w1,2, (b) w2,2, (c) w3,2, (d) w4,2; T and 2T 

stand for periodic response with the excitation period and twice the excitation period, respectively. Modal 
damping ratio ζ = 0.01. 

 
 

 
 
Fig. 5.11. Poincaré maps of the generalized coordinates (a) w1,2 and (b) w2,2 for HR = 193.32 bpm. 

Modal damping ratio ζ = 0.01. 
 

 

190 191 192 193 194 195
0

0.5

1

1.5

2

Heart rate [bpm]

M
ax

(w
1,

2 / 
h

)

(a)
T

2T

190 191 192 193 194 195
0

0.5

1

1.5

Heart rate [bpm]

M
ax

(w
2,

2 / 
h

)

(b) T

2T

190 191 192 193 194 195
0

0.2

0.4

0.6

0.8

1

Heart rate [bpm]

M
ax

(w
3,

2 / 
h

)

(c)
T

2T

190 191 192 193 194 195
0

0.2

0.4

0.6

0.8

1

Heart rate [bpm]

M
ax

(w
4,

2 / 
h

)

(d)

2T

T

(a) (b) 



 Chapter 5.  Nonlinear dynamics of woven Dacron aortic prostheses 
  

180 
 

5.4 Conclusions 
This study provides a deep insight in the dynamic behavior of textile structures used 

nowadays as vascular prosthetic grafts. Nonlinear vibrations of an artificial vessel excited 

by physiological pulsatile pressure and flow are here studied with time responses and 

frequency-amplitude responses by varying the heart rate.  

Modal damping values estimated by preliminary experimental modal analysis are 

relatively small (between ζ ≈ 0.01 and ζ ≈ 0.04), especially if compared to the damping 

values of biological soft tissues. 

Time responses of the vessel radial displacement for different values of the axial 

coordinate are considered for two physiological conditions: at rest (60 bpm) and during 

exercise (180 bpm). They both show the wave motion propagation downstream inside 

the vessel. Frequency contributions associated with higher harmonics are observed in the 

time responses at 180 bpm, while the response at 60 bpm reproduces the behavior of the 

pulsatile pressure.  

The effect of different modal damping ratios on the frequency response of the system 

is also investigated. Vibration amplitudes for heart rates between 60 bpm and 130 bpm 

are shown to not be affected by the damping values. Frequency-responses show resonance 

peaks for heart rates between 130 bpm and 200 bpm due to the superharmonics of the 

pulsatile flow excitation; their amplitudes are strongly affected by the value of the modal 

damping ratio. These resonant peaks can facilitate the graft dilative characteristic and 

disturb the flow. Different damping values ζ are considered based on the preliminary 

experimental characterization of this parameter. For the limit case of ζ = 0.01, flow-

induced asymmetric vibration of the aortic prosthesis is possible. A period-doubling 

bifurcation appears at HR = 191.4 bpm giving a dynamic instability characterized by a 

periodic response with two times the excitation period (2T). This vibration can cause 
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high stress concentration which, combined with the fatigue cycles of the heart beats, 

could contribute to material deterioration. We are currently developing a more accurate 

structural model that includes the imperfections of the vessel wall. Our experimental 

activities aim to characterize the viscous and viscoelastic parameters extracted in 

nonlinear dynamic regime. 

Interesting future research studies include simulating more realistic connections with 

the host artery by releasing boundary conditions in the radial direction, which would 

lower the natural frequencies of the system and make the vibration even more significant. 

Moreover, the effect of surface waves due to the crimped structure of the graft in the 

longitudinal direction can be included in the model. A more accurate experimental 

characterization of the material properties of Dacron implants currently used in clinical 

practice can be introduced in the analysis. The completion of the ongoing experimental 

activity aiming to obtain realistic damping values of such prostheses will provide a 

deeper insight in the dynamic behavior of these artificial vessels. 

Making surgeons aware of the effects in the differences between dynamical behavior 

of prostheses with respect to the human arteries can aid in surgical decision making and 

eventually inspire the design of new materials or techniques for the fabrication of a next 

generation prostheses that may be strong enough to resist dilatation and compliant 

enough to permit arterial pulsatile flow. 
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Chapter 6 
 

Quasi-linear viscoelasticity applied to an aortic 
woven Dacron graft 

 
 
An accurate experimental characterization of the material properties of woven Dacron 

implants is presented in this chapter. An innovative formulation of quasi-linear 

viscoelastic theory has been used to experimentally investigate the direction-dependent 

relaxation of an aortic graft made of woven Dacron by using a bi-dimensional material 

model. The manuscript “Application of three-dimensional quasi-linear viscoelasticity to 

relaxation of an aortic woven Dacron Graft” presented in this chapter has been recently 

submitted in a peer-reviewed international journal. 
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APPLICATION OF THREE-DIMENSIONAL QUASI-LINEAR  
VISCOELASTICITY TO RELAXATION OF AN AORTIC WOVEN DACRON 

GRAFT 
 
Marco Amabili, Giovanni Ferrari, Prabakaran Balasubramanian, Eleonora Tubaldi 

 
Department of Mechanical Engineering, McGill University 

 

Abstract 

An original, exact (within the limits of validity of the quasi-linear viscoelasticity) and 

simple formulation of the three-dimensional quasi-linear viscoelasticity is directly 

obtained manipulating the original Fung equation. The model allows a relevant 

simplification in case of direction-dependent viscoelasticity. The present formulation is 

applied to fit original experimental data of relaxation in axial and circumferential 

directions of an aortic graft made of woven Dacron. A significant difference between the 

reduced relaxation in circumferential and axial directions has been identified. The loss 

tangent, which is relevant in dynamic modelling, has been evaluated from the relaxation 

data and shows a large dependence on the direction.  

 

6.1 Introduction 
 The quasi-linear viscoelasticity (QLV) was introduced in biomechanics by Fung [1, 2], 

even if it was known before for rubber materials.  

 The theory of linear viscoelasticity applies for small deformations. In case of finite 

deformations, like the ones reached in arteries due to the pressure and flow pulsation, it 

is required the use of nonlinear (hyperelastic) stress-strain relationships. In order to 

address this problem, Fung introduced the QLV. The superposition principle is assumed 

to hold true in the QLV. The superposition is a characteristic of linear systems; in the 
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QLV it is applied to nonlinear elasticity and named nonlinear superposition. This is the 

reason for labelling the theory as quasi-linear: it extends the linear viscoelasticity to 

hyperelastic materials. The QLV presents the simplification that the reduced relaxation 

function is independent of the strain level. 

 The QLV theory is still very popular, as proved by its wide use in biomechanics 

literature. Here just a short review is reported.  

 Dortmans et al. [3] obtained the exact formulation for the reduced creep function in 

the case of continuous spectrum of relaxation within the framework of the QLV. Puso 

and Weiss [4] formulated a finite element implementation of anisotropic QLV using a 

discrete spectrum approximation and a single relaxation function. An implementation of 

three-dimensional QLV has been developed by Bischoff [5] and Giles et al. [6], also by 

using a single relaxation function for stresses in different directions. Giles et al. [6] also 

obtained interesting results by using a different nonlinear viscoelastic model based on 

the study conducted by Holzapfel et al. [7]. 

 Sarver et al. [8] derived stress normalization methods for QLV modeling of soft tissue. 

Gimbel et al. [9] studied the effect of overshoot on estimated QLV parameters. 

Abramovitch and Woo [10]  developed an improved technique for fitting experimental 

relaxation experiments to the QLV relaxation function for continuous spectrum. Troyer 

et al. [11] introduced a correction method for stress relaxation experiments, applicable 

also to QLV. Even in recent experiments on relaxation, data are fitted by using the 

reduced relaxation function obtained by Fung with the QLV (Castile et al. [12]). Babaei 

et al. [13, 14] introduced a discrete spectral analysis for determining QLV properties of 

biological materials.  

 In the present study, an original, exact (within the limits of validity of the QLV) and 

simple formulation of the three-dimensional QLV is obtained manipulating the original 
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Fung [2] equation. The model allows for a relevant simplification in case of direction-

dependent viscoelasticity. The present formulation is applied to fit original experimental 

data of uniaxial relaxation tests of strips taken in axial and circumferential directions 

from an aortic graft made of woven Dacron (Hemashield Platinum by Maquet). No 

previous studies on relaxation of woven Dacron (PET: polyethylene terephthalate), 

except the one by Lee and Wilson [15] at low strain rates, are known to the authors, 

while the static mechanical properties have been well investigated (e.g. Hasegawa and 

Azuma [16]; How [17]; Yeoman et al. [18]). 

 

6.2 Three-Dimensional QLV Theory 
 The three-dimensional QLV was introduced by Fung in Section 7.13 of his monograph 

[2] by using the equation (here a different notation is used) 

    3 3

1 1 0

( )
( ) (0 ) ( ) ( ) d

t
kl

ij kl ijkl îjkl
k l

t G t G t
 

   
 

 
     
 

E
E


 ,             (6.1) 

where ij  are the components of the second Piola-Kirchhoff stress tensor ( )tσ , E  is 

the Green’s strain tensor, kl  are the components of the instantaneous second Piola-

Kirchhoff stress tensor σ  corresponding to the static strain tensor E , and Gijkl are the 

components of the fourth-order tensor of the reduced relaxation functions. Many of the 

components of Gijkl are not independent. In case of isotropic material, only two inde-

pendent functions can be used.  

 If the derivatives of both Gijkl and kl  are continuous functions, equation (6.1) can be 

integrated by parts 
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where the last passage has been obtained by using the variable change t    and 

then changing back the variable symbol   to   in the resulting expression. Equations 

(6.1) and (6.2) are equivalent. Equation (6.2) must be valid also for t = 0, for which 

( 0) [ (0)]îj îjt   E ; this gives  

 ( 0)ijkl ik jlG t    ,                                       (6.3) 

where  indicates the Kronecker delta. Equation (6.3) shows that many of the 

functions Gijkl(t) are zero at t = 0; these Gijkl(t) decrease with time and are positive-

valued functions, so they must be zero at any time if their initial value is zero. Therefore, 

the relationship Gijkl(t) = 0 holds true if i k  and j l . This property can be used to 

rewrite equations (6.1) and (6.2) in a simplified way 

    
0

( )
( ) (0 ) ( ) ( ) d

t
ij

ij ij ij îjt G t G t
 

   



   
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E

E


 ,                        (6.4) 

   
0
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( ) ( ) ( ) d

( )

t
ij

îj ij ij

G t
t t

t


    


 

 
 E E  .                           (6.5) 

Equations (6.4) and (6.5), with respect to equation (6.2), do not contain summations 

anymore, so each stress has its own reduced relaxation function, which is much simpler 

and more intuitive. In addition, the fourth-order tensor of the reduced relaxation 

functions has been substituted with a second-order tensor G(t) of components Gij(t). This 

simplification is a consequence of considering the instantaneous elastic stress   instead 

of the strain in the QLV theory. Therefore, the same simplification cannot be achieved 

for the three-dimensional linear viscoelasticity. The number of independent reduced 

relaxation functions in the three-dimensional QLV theory is 6, even in the most general 
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anisotropic case. Even more important, there is no cross-link between relaxation in 

different directions. The reduced relaxation functions ( )ijG t  can be identified by three 

uniaxial and three shear relaxation tests.  

 The instantaneous elastic stresses  ( )kl t E  due to the Green’s strain tensor ( )tE  can 

be obtained from the hyperelastic model of the material [19] 

            
[ ( )]

( )

W t

t





E

σ
E

 ,                                                      (6.6) 

which can be rewritten in terms of components 

 11 12 13[ ( ), ( ), ( ),...]

( )kl
kl

W t t t

t

  






 .                                 (6.7) 

In equations (6.6) and (6.7) W is the strain energy density function of the material, 

obtained from one of the many hyperelastic models available in the literature for 

anisotropic materials. 

 The following expression, obtained by Fung [2] using the continuous spectrum of 

relaxation, can be applied for each one of the six independent functions Gij(t), so that 

they differ from each other only for the three material coefficients aij, 1ij
  and 2ij

  
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where g(t) is the exponential integral function defined by 

( ) d
x

t

e
g t x

x

 

  ,     for t  0.                           (6.9) 

For t  , the function g(t) tends to zero and Gij(t) takes the limit value 
1

2

1

( ) 1 ln ij
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ij ijG a





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The reduced relaxation function G(t) given in equation (6.8) is plotted in Figure 6.1 

versus time for 1  = 0.01 s, 2 =100 s and three different values of the coefficient a: 0.05, 

0.1, 0.25. 

 

 
Fig. 6.1. Reduced relaxation function G(t) versus time for 1  = 0.01 s, 2  = 100 s; curves for three 

different values of a are plotted: continuous line, a = 0.05; dashed line, a = 0.1; dot-dashed line, a = 0.25.  
 

In most cases, the viscoelastic material characterization is not available in different 

directions. Then, it is common practice to use a single function G(t) obtained by uniaxial 

tests (Puso and Weiss [4]; Bischoff [5]; Giles et al. [6]). Under this simplification, it is 

possible to write (in tensor notation) 
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6.3 Stress relaxation of a woven Dacron graft 
Strips of dimension 33.6  15 mm taken in axial and circumferential directions have 

been cut from an aortic woven Dacron graft (diameter 30 mm, thickness 0.35 mm, 

Maquet 175428P Hemashield Platinum Woven Double Velour). The grafts and the strips 

present waves of height 0.25 mm and wavelength 2.26 mm in the axial direction that 
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are designed in order to reduce the axial stiffness. Uniaxial traction tests have been 

performed on a test machine (Admet MicroEP with MTEST Quattro controller and load 

cell Honeywell 34) at room temperature, as shown in Figure 6.2. Both extension (at 

different strain rates) and relaxation tests have been carried out on both strips after 

some preconditioning cycles. A few samples from the same graft were tested and several 

tests were repeated. A similar outcome was obtained from different samples and repeated 

experiments.  

The results of uniaxial extension tests are presented in Figures 6.3(a,b) and show an 

hyperelastic behaviour with very different stiffness in the two directions. The effect of 

the strain rate is also significant. Previous results available in the literature for woven 

Dacron were for static tests (Hasegawa and Azuma [16]; Yeoman et al. [18]) or tests at 

low strain rates (Lee and Wilson [15]). 

 

 

Fig. 6.2. Photos of the extension experiment on the circumferential strip. On the left it is presented 
the strip before loading and on the right it is at the end of the extension test, showing a significant 
widening in the orthogonal direction. The “waves” in the axial direction of the specimen are clearly visible 
in both photos. 
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(a) (b) 

Fig. 6.3. Uniaxial extension tests on strips from a woven Dacron aortic graft (Hemashield Platinum by 
Macquet) at “low” and “high” strain rates; 2nd Piola-Kirchhoff stresses. (a) Circumferential strip, strain 
rates 0.01869   s-1 and 0.0001246   s-1; (b) axial strip, strain rates 0.06187xx   s-1 and 

0.0001547xx   s-1. 

 

6.3.1 Model fitting of experimental results to hyperelastic law 

 In case of simple deformation (plane stress and no shear), the anisotropic strain energy 

density function W can be written in the following form (Yeoman et al. [18]), which 

considers higher-order terms with respect to Fung et al. [20] 

 2 2 3 2 2 3
1 12 2 3 34 43 4exp( ) 1xx xx xx xx xxW C c c c c c c c                     ,     (6.13) 

where C > 0 is a stress-like material parameter and ci are non-dimensional material 

parameters, all independent; however, they must guarantee the convexity of W [21]. The 

fitting of the experimental data of the aortic graft material has shown that the model 

can be simplified, without losing accuracy, assuming 2 3 34 43 0c c c c    . The convexity of 

W is guaranteed if 1 0c  , 4 0c   and 12 0c  . 

 By using the expression of W formulated in equations (6.13), the second Piola-

Kirchhoff principal stresses take the following expressions 

 2 2 3
12 4 1 12 4( 3 )exp( )xx xx xx xx

xx

W
C c c c c c        




    


 ,              (6.14a) 
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 .              (6.14b) 

In case of uniaxial extension in axial direction x, equation (6.14a) is used to fit the 

data and (6.14b) is used to obtain   as a function of xx , which is then substituted back 

into equation (6.14a), by setting equation (6.14b) equal to zero. In fact, in case of 

uniaxial extension in axial direction x,  =0. This gives 

 12

12 xx

c

c   .                                           (6.15) 

Similarly, the curve for uniaxial extension in circumferential direction  is obtained 

from equation (6.14b) by setting (6.14a) equal to zero; the latter gives  

 12 4

4

3

3xx

c c

c





 .                                          (6.16) 

Each one of equations (6.14a,b) fits the corresponding experimental data set, in order 

to obtain the unknown material parameters C, c1, c12, c4. In particular, the material 

parameters that guarantee the best fit of the experimental data are obtained by 

minimizing the following nonlinear stress based function 
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 
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                      
                    (6.17) 

where i indicates the i-th experimental data and the subscripts “axial” and “circ” 

indicate if the tested strip of the graft is taken in axial or circumferential direction, 

respectively.  

 The experimental data for “low strain rate” and the fitting material model are 

presented in Figures 6.4(a,b) for the aortic graft in circumferential and axial directions, 

respectively.  
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(a) (b) 
 

Fig. 6.4. Fitting of the data from the “low strain rate” uniaxial extension tests to hyperelastic law. , 
experimental data; , material model. (a) Circumferential direction; (b) axial direction. 

 

The identified hyperelastic material parameters are given in Table 6.1. It is interesting 

to note that c12 < 0, which justifies the expansion in the direction orthogonal to the 

applied uniaxial tension observed in Figure 6.2. A significant deviation of the 

hyperelastic model with respect to the experimental data is observed in Figure 6.4(b) in 

the mid-range strains, where the curve presents a quick slope change. An improved 

curve-fitting is possible only choosing a different expression for the strain energy density 

function W. 

 
Table 6.1. Hyperelastic material model of the aortic graft in woven Dacron (Hemashield Platinum) 

obtained from “low strain rate” extension tests. 
 

C (MPa) c1 c12 c2 c4 

0.1641 630 -45.0 0 15.0
 

6.3.2 Model fitting of experimental results for relaxation 

 Uniaxial relaxation tests have been performed on axial and circumferential strips of 

an aortic Dacron graft. Relaxation experimental tests cannot be performed applying a 

step strain. Actual tests have a short ramp of strain growth, possibly linear and with 

high strain rate, followed by a hold at constant strain to allow relaxation. In order to fit 
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actual experiments with the reduced relaxation function given in equation (6.8), the 

following procedure is applied [10]. The instantaneous hyperelastic stresses in axial and 

circumferential directions are given by equations (6.14a,b), respectively (where (6.15) 

and (6.16) must be used). In the time interval 00
xx

t t  , i.e. during the ramp for the 

axial strip, the strain versus time is given by  

 ( )xx xx    ,                                              (6.18) 

where xx is the constant strain rate. The time derivative of equation (14a) in the 

interval 00
xx

t t  , making use of (6.15), is 
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Inserting equation (6.19) into (6.4), the following expression is obtained  
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In the time interval 0xx
t t , i.e. at constant strain 0( )

xxxx xx t   , the stress is given by  
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since after 0xx
t t  the derivative of equation (6.14a) with respect to time is zero. Ex-

periments give the values of the measured stresses Ri at discrete times ti. Equation (6.20) 

or (6.21), where the choice between the two expressions is made according to the value 

of ti, is evaluated at those specific times, giving ( )
i

i t t
t 


 . Then, the following least 

square objective function fxx, function of the material parameters, is built 
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where N is the number of experimental stresses measured. A similar objective function 

is built for the circumferential stress. The expression replacing equation (6.19) for tests 

in circumferential direction is 
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The hyperelastic and relaxation parameters that best fit the experiments are obtained 

by minimizing both objective functions simultaneously. However, while the hyperelastic 

parameters are strongly coupled, the coupling of the relaxation parameters is weak: i.e. 

their variation influences only slightly the hyperelastic parameters. Once the hyperelastic 

parameters of the material are known, the relaxation parameters are obtained individu-

ally minimizing the two objective functions independently.  

 Since minimizing the two objective functions simultaneously to obtain the 7 parame-

ters indicated in equation (6.22) is cumbersome, a different procedure has been imple-

mented in the present study. Initially, the hyperelastic parameters 1 12 4, , ,C c c c  have been 

identified by using the two stress-strain curves corresponding to the two ramps (just the 

raising part) at constant strain rate, obtained for the axial and circumferential strips, 

minimizing equation (6.17). These results are different than those obtained in Table 6.1 

and Figures 6.4(a,b) since the strain rate is higher. Then, a multiplication coefficient has 

been applied to the 3 parameters 1 12 4, ,c c c  (while C has been kept constant). This mul-

tiplication coefficient and the three reduced relaxation parameters 1 2, ,
xx xxxxa   , have 

been identified by minimizing a single least square objective function built for a single 

strip (axial or circumferential). This operation is relatively straightforward; it simply 
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requires verifying that the identified multiplication coefficient is the same obtained from 

the minimization of the two objective functions in different directions; otherwise it is 

necessary to iterate. In the present case, it was found the value 1.082 for the coefficient 

without any iteration. The method introduced by Babaei et al. [13, 14] could also be 

applied to identify the reduced relaxation parameters independently. 

   

 (a) (b) 
 
 

   (c) (d) 
 
 

Fig. 6.5. Fitting of relaxation experiments to QLV model. , experimental data (large dots for points 
on the ramp and small dots for points at constant strain); , material model. (a) Circumferential direction, 

0 1.841t

  s, 0.01869   s-1; close-up of the ramp and beginning of the relaxation curve for 

circumferential strip; (b) relaxation curve for circumferential strip; (c) axial direction, 
0 5.688

xx
t   s, 

0.06187xx   s-1; close-up of the ramp and beginning of the relaxation curve for axial strip; (d) relaxation 

curve for axial strip. 
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The experimental results and the stress obtained by the material model versus time 

are compared in Figure 6.5(a-d). Differences in the relaxation time history (i.e. after the 

ramp) are very small, except at the very beginning when the test machine cannot stop 

the ramp instantaneously, but it has a short deceleration phase. This is more visible in 

the test of the axial strip since a significantly larger strain rate has been used with 

respect to the circumferential strip. Instead, some differences are observed in the ramps 

and are related to the accuracy of the hyperelastic law, previously discussed. The iden-

tified material parameters for instantaneous hyperelastic response are given in Table 6.2; 

the values of ci are larger than those obtained in Table 6.1, while C is identical in this 

case. The coefficients of the two reduced relaxation functions are given in Table 6.3. 

Considering these values in equation (6.10), it gives the reduced relaxations for t  , 

which are 0.675 and 0.752 in circumferential and axial direction, respectively, with a 

significant difference. 

 

Table 6.2. Hyperelastic material model of the instantaneous elastic response of the aortic graft obtained 
from the    relaxation tests according to the QLV theory. 

 
C (MPa) c1 c12 c2 c4 

0.1641 799.2 -54.15 0 25.21 
 
 
Table 6.3. Reduced relaxation parameters of the aortic graft according to the QLV theory.  
 

Direction 1 (s) 2 (s) a 

Circumferential 0.005 300 0.0437 
Axial 0.007 400 0.0301 
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6.4 Damping and storage modulus 
 The reduced relaxation parameters are linked to the loss tangent by [2] 

 
   

   

1 1
2 1

2 2 2 2
2 1

tan tan
tan

1 ln 1 ln 1
2

a

a

 


   

   
     

,                             (6.24) 

where  is the vibration circular frequency (rad/s). This is interesting for the dynamic 

modelling of aortic grafts under pulsatile blood pressure and flow, where structural 

dissipation must be included. The real part of the reduced dynamic modulus to be used 

in this type of model is given by 
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Figures 6.6 and 6.7 show the frequency dependence of the loss tangent and the real 

part of the reduced dynamic modulus, respectively, in circumferential and axial 

directions for the woven Dacron graft. The physiological frequency range is 6.28  18.8 

rad/s. For  = 10 rad/s, tan 0.049 and 0.036 in circumferential and axial direction, 

respectively; the damping difference between the two directions is larger than 26 % with 

respect to the circumferential direction and 36 % with respect to the axial direction. It 

seems that this is the first time that direction-dependent damping values are reported 

for vascular grafts. 

 
Fig. 6.6. Frequency dependence (rad/s) of the loss tangent. Continuous line, circumferential direction; 

dashed line, axial direction.  
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Fig. 6.7. Frequency dependence (rad/s) of the real part of the reduced dynamic modulus (also named 

storage modulus). Continuous line, circumferential direction; dashed line, axial direction 

 

6.5 Conclusions 
 Equations (6.4) and (6.5) seem that have been obtained in the present study for the 

first time; they allow a relevant simplification in case of direction-dependent 

viscoelasticity. These equations are exact, within the limits of validity of the QLV theory. 

The present formulation has been used to experimentally investigate, for the first time, 

the direction-dependent relaxation of an aortic graft made of woven Dacron by using a 

bi-dimensional material model. A 11 % difference of the reduced relaxations for t   

between axial and circumferential directions has been observed for the woven Dacron, 

while the difference in the reduced relaxation parameters and damping is even larger. 

This indicates that investigation of direction-dependent viscoelasticity is worth the effort, 

and the present simplified formulation of the three-dimensional QLV facilitates the 

application of the theory. 
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Chapter 7 

 

Vibration tests of a woven Dacron prosthesis with 
internal fluid pressure 

 
 

7.1 Experiments 
Experimental activities on the vibrations of Dacron prosthesis have been undertaken 

in the Laboratory of Mechanical Vibrations and Fluid-Structure Interaction at McGill 

University. 

The experimental setup is composed by the tested Dacron prosthesis (Maquet 175428P 

Hemashield Platinum Woven Double Velour Vascular Graft) with its supporting metal 

frame Fig. 7.1(a-b), and the transducers and data acquisition system used to perform 

forced vibration testing. The sample dimensions are 28 mm diameter and 140 mm length 

in the pre-stretch configuration. A realistic value of axial stretch of the 30% of the 

original length has been imposed to the prosthesis installed onto a modular and 

adjustable frame designed for the experiment. Fixed boundary conditions were realized 

gluing the prosthesis at both ends to the support with a cyanoacrylic glue. In order to 

apply constant internal pressure, a pipe filled in with fluid has been connected to upper 

end of the Dacron graft. In the intent to simulate the physiological average pressure in 

the thoracic aorta, a constant internal pressure of 100 mmHg has been imposed through 

the fluid column of 1.36 m.  
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Fig. 7.1. (a) Experimental testing of Dacron prosthesis with internal fluid pressure; (b) Zoomed 

image of the tested prosthesis. 

 

Fig. 7.1(a) show the two segments of Dacron prosthesis used in the experimental setup. 

The tested sample is the one the right while the left one has been introduced to 

accommodate the volume change due to the axisymmetric modes with an odd number 

of half-waves. This configuration avoids the movement of the fluid in the water column 

and the related change in damping and potential energy. The horizontal configuration 

has been preferred with respect to the vertical one in order to not introduce a gradient 

of potential energy in the tested sample. 

The fluid used is a solution of glycerol (30%) and water (70%) that simultaneously 

matches the kinematic viscosity and density of the blood [226] as shown in Table 7.1. 

 
Table 7.1. Properties of the glycerin mix compared with the blood properties. 
 

Properties Blood Glycerin mix 
Density (kg/m3) 1060 1077.8

Viscosity (Ns/m2) 0.003-0.004 0.0030031 
 

(a) (b) 
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A Brüel & Kjær 8203 miniaturized force transducer has been used to measure the 

value of the excitation force. The transducer is connected by a stinger to the vibration 

electrodynamic exciter (shaker), a Brüel & Kjær 4810 powered by a Brüel & Kjær 2718 

power amplifier. The shape of natural modes of vibration has been obtained by means 

of scanning laser Doppler vibrometer (PolytecPSV-400).This technique allows the non-

contact measurement of a multitude of points on the surface of the circular cylindrical 

graft, disposed on a fine grid. Non-contact measurement systems are favored also because 

they do not introduce unwanted added masses. Modal analysis made use of a dedicated 

Polytec OFV-5000 data acquisition system. The data have been transferred and 

processed by the LMSTest.Lab – modal analysis module software. A low amplitude 

pseudo-random excitation has been used to perform an experimental modal analysis of 

the shell. The LMS Test. Lab system records the signals from vibration and force sensors 

both in time and frequency domain.  

The pressurized Dacron graft has been subjected to an experimental modal analysis, 

in order to characterize it. The experimental set-up has been used to perform a modal 

analysis on the fluid-filled shell, extracting the lowest natural frequencies and the 

corresponding normal modes and damping ratios. A burst-random signal has been 

generated by the electrodynamic exciter and the resulting applied force and the velocity 

response have been recorded and processed at a fine grid of points on the shell surface 

by using the laser Doppler scanning vibrometer [227]. The vibration velocity of a set of 

points on the surface of the artificial vessel has been measured and processed by the 

LMS PolyMax algorithm [228]. As a result, the sum of the Frequency Response 

Functions has been obtained and it is represented in Fig. 7.2; the corresponding mode 

shape is indicated at each resonance peak.  
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Fig. 7.2. Sum of the frequency response functions (FRFs) of the clamped Dacron prosthesis.   
 
The natural modes are classified by the number of half-waves m and n in the axial and 

circumferential direction, respectively. The experimental natural frequencies of the first 

five modes are given in Table 7.2, which also includes the modal damping ratios, 

calculated by the algorithm PolyMax.  

 
Table 7.2. Experimental modal analysis results of the clamped Dacron prosthesis. Natural frequencies 

and corresponding damping ratios. 
 

Mode 
Shape 

Experimental Results 

m n 
Freq. 
[Hz]

Damping, 
%

1 0 36.48 4.79
2 0 69.74 3.24
3 0 94.35 3.82
1 2 101.22 0.92 
2 2 115.79 1.82 
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It has to be noted that, reduced changes in the internal pressure in a range between 

90 mmHg and 110 mmHg do not affect significantly the sequence of the first three modes. 

As reported, the experimentally identified damping ratios vary between 0.92% and 4.79%. 

To the knowledge of the authors, these damping values represent the first experimental 

characterization of such parameter for Dacron thoracic aortic implants. Their range 

between 1% and 5 % is considerably smaller than the corresponding one of biological 

soft tissues that is commonly considered between 10% and 15% [217]. This discrepancy 

proves once again that the mechanical properties of Dacron implants significantly differ 

from the ones of the host arteries. Low values of modal damping, which indicate low 

energy dissipation, makes the study of the system’s dynamic behavior in response to the 

pulsatile flow more significant for its important clinical application and possible 

physiopathological effects.  

The modal damping values estimated by these experimental modal analysis tests 

have inspired the choice of the damping ratios considered in Chapter 5.  

 

7.2 Numerical simulations and comparisons with experimental 
results 

The structural model of the orthotropic circular cylindrical shell described in Chapter 

5 has been improved by including the surface waves due to the crimped structure of the 

graft in the longitudinal direction (Fig. 7.1(b)). 

The surface waves have been modeled as initial geometric imperfections of the circular 

cylindrical shell associated with zero initial stress. These surface imperfections are 

denoted by radial displacement w0 while in-plane initial imperfections are neglected. The 

middle surface strain-displacement relationships, changes in the curvature and torsion 
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obtained for the Novozhilov nonlinear shell theory of circular cylindrical shells with 

imperfections can be found in Appendix D.  

In order to determine the amplitude and the wavelength of the surface wave 

imperfections of the tested sample, pictures with high resolution camera have been taken 

and post-processed to determine the pixel location along the diameter and along the 

length of the shell as shown in Fig. 7.3(a). The extrapolated amplitude of a single wave 

imperfection is displayed in Fig. 7.3(b). 

 

 

 

 
 

Fig. 7.3. (a) Location of the pixel along the length vs diameter of the prosthesis; (b) extrapolated 

dimensions of the surface wave on the longitudinal direction of the prosthesis wall. 

 

(a) 

(b) 
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The total number of waves in the longitudinal direction of the tested Dacron prosthesis 

is equal to 62. The correspondent semi-amplitude in the radial direction is given by 

0.2515mm. The geometric imperfections w0 modelling the surface waves have been 

represented as follows: 

 0 0

124
sin ,w A

L

   
 

 (7.1) 

where the semi-amplitude A0  is equal to 0.2515 mm and the numbers of half-waves in 

the longitudinal direction is given by 124. 

The energy approach, described in Chapter 5 - Section 5.2.1, has been applied to 

obtain the Lagrange equations of motion. The flexible boundary conditions, represented 

by the distributed axial and rotational springs, have been replaced by immovable edges 

to simulate the experimental setup. Consequently, the potential energy due to the 

springs Uspring is equal to zero in this case. The kinetic TS and elastic strain Ushell energies 

of the shell are given by Eq. (5.2) and Eq. (5.4), respectively. The added mass effect due 

to the internal fluid is represented by the kinetic energy of the fluid TF given by Eq. 

(5.11a). Since the fluid is quiescent (flow velocity U = 0) the contribution of the 

gyroscopic EG and potential VF energy of the fluid is equal to zero. 

The effect of the initial pre-stress of the Dacron sample has been considered as 

additional strain energy of the shell. This additional strain energy due to an initial axial 

static pre-load can be written as follows: 
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where  S is the stress contribution of the static pre-load assumed to be uniform 

through the thickness and s
xN  is the initial axial pre-load per unit length in x direction, 

measured in N/m. The value of s
xN =59.6 N/m considered here, has been obtained ex-

perimentally through a tensile test performed on the Dacron sample.   

The Lagrange equations of motion can be written as 

 
   

, 1... ,
S preloadS F

j T
j j

U UT Td
Q j N

dt q q

   
   

   
 (7.3) 

where the generalized external forces Qj are given by  

 .j
j j

W F
Q

q q

 
 
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 (7.4) 

The energy F is associated to the viscous damping (Eq. (5.17b)) and the virtual work 

W is due to the pressure load 

 
2

0 0

d d ,
L

mW p w x R


    (7.5) 

where the internal pressure pm = 100 mmHg reproduces the experimental conditions. 

The approximate trigonometric functions used to describe the middle surface 

displacements u and w are the same as the ones considered in Eq. (5.6a,c). The 

circumferential displacement v is neglected since in case of quiescent fluid the torsional 

mode is decoupled with respect to the axial and radial modes. Only the axisymmetric 

modes are considered here with the addition of the modes w124,0, u124,0, w372,0, and u372,0 

associated to the imperfections. The total number of degrees of freedom is NT = 22 and 

it is given by: w1,0, w2,0, w3,0, w4,0, w5,0, w6,0, w7,0, w9,0, w11,0, w124,0, w372,0, u1,0, u2,0, u3,0, u4,0, 

u5,0, u6,0, u7,0, u9,0, u11,0, u124,0, u372,0. 

The software Mathematica [133] has been used to perform the surface integrals and to 

obtain the 2× NT first-order ordinary differential equations (ODEs) written in state space 
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form (Eq. (5.19)). These nonlinear ODEs are solved by using the bifurcation analysis 

software AUTO [106]. 

The geometrical and mechanical properties of the shell considered here are given by: 

L = 0.14 m, h = 0.35 mm, R = 0.0145 m, x = 0.3, E  = 7.15 MPa, Ex = 0.53 MPa, S 

= 1247 kg/m3, F = 1066.7 kg/m3. The pressurized natural frequencies obtained via the 

continuation analysis have been compared to the experimental ones in Table 7.3. 

 

Table 7.3. Natural frequencies comparisons between numerical and experimental results. 

Mode 
Numerical frequencies 

[Hz] 
Experimental 

frequencies [Hz] 
Error 

% 
1,0 35.12 36.48 3.72 
2,0 68.90 69.74 1.2 
3,0 100.01 94.35 5.99 

 

 

As shown in Table 7.3, the numerical and experimental natural frequencies present a 

good agreement with an error lower than the 6%. This experimental validation proves 

that the structural model considered is appropriate for representing the dynamic 

behavior of woven Dacron prostheses currently used in thoracic surgery. 
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Chapter 8 
 

Conclusions 
 
 

8.1 Implications of the study 
This thesis has dealt with the topic of the interaction of a flexible body with a pulsatile 

fluid that is a widespread phenomenon in nature, occurring in several applied disciplines 

and at different scales. This challenging problem has been addressed from a theoretical 

perspective focusing the attention on the development of coupled fluid-structure 

Lagrange equations of motion able to reproduce the nonlinear dynamic behavior of plates 

and shells in axial pulsatile flow.  

The main contribution of this research to the knowledge of plates in axial flow can be 

summarized in two relevant findings. First, the pitchfork bifurcation (divergence) that 

flat plates exhibit when subjected to uniform flow is destroyed by the presence of positive 

transmural uniform pressure and small pulsation frequency. Secondly, the frequency-

amplitude responses that display a hardening type behavior in case of zero uniform 

transmural pressure become softening in the presence of uniform transmural pressure. 

Typical phenomena of internal resonances in the response of the fundamental mode with 

other modes are observed for certain frequency ranges. 

Modeling of shell structures conveying pulsatile flow represents the most significant 

research outcome of the present study due to its meaningful implications in biomechanics. 
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The pulse-wave propagation phenomenon manifested in pressure and flow traveling 

waves propagating throughout the flexible medium has been included in the 

mathematical formulation presented. Vibrations and stability of woven Dacron grafts 

used in clinical settings for replacements of damaged thoracic aorta have been deeply 

studied for the first time in the literature. The pulse wave velocity, considered an index 

of the stiffness of the vessel, has been found to also play a key role in the dynamical 

behavior of the vascular graft. Decreasing the pulse wave velocity, by reaching close 

values to the mean aortic pulse wave velocity, stabilizes the system. Severe vibration 

phenomena of the graft wall have been detected in the physiological range under exercise 

conditions (i.e. high heart rates and pulsatile flow velocity) where several superharmonic 

resonance peaks have been detected. This behavior can cause high stress concentration 

which, combined with the fatigue cycles of the heart beats, could contribute to material 

deterioration. These findings highlight how urgent is to develop a new design of textile 

vascular implants able to mimic the mechanical and biological properties of the native 

aorta.  

Material properties of a woven Dacron prosthesis have been investigated with an 

original formulation of the three-dimensional quasi-linear viscoelasticity. This 

formulation has been used to experimentally study, for the first time, the direction-

dependent relaxation of an aortic graft made of woven Dacron by applying a bi-

dimensional material model. 

Experimenatal results of the modal analysis of woven Dacron prosthesis pressurized 

with internal fluid at the mean physiological pressure have been presented. Experimental 

modal damping values have been reported showing a good agreement with the numerical 

damping values considered throughout the thesis. The numerical and experimental 

natural frequencies have been compared presenting a good agreement with an error lower 
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than the 6%. This experimental validation proves that the structural model considered 

is appropriate for representing the dynamic behavior of woven Dacron prostheses 

currently used in thoracic surgery. 

 

8.2 Ongoing research 
Interesting ongoing research developments include the simulation of more realistic 

connections with the native aorta by releasing boundary conditions in the radial direction, 

which has shown experimentally to lower the natural frequencies of the system. Under 

these conditions, the vibration issue becomes even more widespread in the physiological 

range.  

 

8.3 Future developments  
The fluid-structure interaction model presented in this study can be validated 

experimentally. In this regard, measurements of radial displacements of a woven Dacron 

prosthesis excited by a pulsatile pump that reproduces the pumping heart should be 

undertaken. 

The model can be also applied to investigate the dynamic behavior of the human 

thoracic aortic segment. With this purpose, an accurate description of the viscoelastic 

and hyperelastic behavior of the aortic tissue should be included in the structural model. 

The experimental tests described in Section 6.2 could be performed on a segment of 

thoracic aorta in order to characterize it dynamically. Comparing the dynamic response 

to pulsatile flow of Dacron implants with the native aorta could unveil important 

directions in design optimisation research of vascular implants. Moreover, in case of 

vibration phenomena or instability of the aorta in the physiological frequency range, the  
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proper functioning of the vessel that ensures blood flow would be compromised. High 

stress concentration regions would appear on the aortic wall representing a possible 

reason behind the initiation of aortic dissection. This potential outcome would bring a 

huge contribution to the understanding of the underlying mechanism of aortic dissection 

that currently does not have a biomechanical explanation. 
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Appendix A. Lagrange equations for a non material 
volume  

 
 
Irshik and Holl [183] derived the Lagrange equations for a non-material (control) 

volume (used also by Ghayesh et al. [230]) as follows 

  '
'd

( ) d d ,
d

p f

j
j j j j j jS S

U VT T T
s T s Q

t q q q q q q

        
                      

 
v w

v w n n
  

   
 (A.1) 

where T  denotes the total kinetic energy contained in the control volume (i.e. the 

structure and the flowing fluid), v is the velocity vector of the fluid, w is the velocity 

vector of the structure, jQ  denotes the generalized forces.  ' 11

2 fT J  v v   denotes the 

density of the kinetic energy transported by the fluid where J  is the Jacobian 

determinant of the deformation gradient tensor (i.e. 1J   for incompressible fluid). The 

surface integrals are evaluated at the boundary surface of the control volume 

in out plate wallS S S S S     and n  denotes the outer normal unit vector at that surface. 

The total kinetic energy T  of the system is given by 

 .f p gT T T E    (A.2) 

Compared to the classical formulation for a material volume, a correction term 

containing the flux of kinetic energy appearing to be transported through the surface of 

the control volume is introduced in the equations of Lagrange written for a non-material 

volume.  

For the geometry under consideration, the natural domain of integration due to the 

shape functions in Eqs. (2.4a-c) and Eq. (2.13) is 2a  and 2b  in x and y-direction, 

respectively.  
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The two integrals of Eq. (A.1) calculated on the plate ( 0)plateS z   have the following 

expression 

 
2 2 2 2' 2

'

0 0 0 0

.
a b a b

j j j

T w
w dx dy T dx dy

q z q z q

                   
   


  

 (A.3) 

For the anti-symmetry of the plate deflection at the periodic supports, these two terms 

vanish. 

At the entry inS  and exit outS surfaces, the velocity vector of the plate w is zero (i.e. 

immovable edges) and the two integrals of Eq. (A.1) would vanish since the system 

conditions are the same and they cancel each other. Finally for the boundary condition 

Eq. (2.12b), the two integrals of Eq. (A.1) calculated at the wall surface wallS  give zero 

contribution. Hence, the Lagrange equations of motion for the plate coupled to flowing 

fluid, knowing that 0p j f jT q T q     , are  

    
, 1... ,

p f g p fg
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dt q q q
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 (A.4) 

 where dof R S M N C D       is the number of degrees of freedom and 

1 ,2, ..., , ,
T T
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Appendix B. Fluid-structure interaction by Bernoulli’s 
theorem 

 
An alternative approach to discuss the fluid-structure interaction between the plate 

and the fluid flow is to apply the Bernoulli's theorem to describe the relationship between 

the perturbation pressure *p  and perturbation potential  . In the case of inviscid and 

irrotational flow, Euler’s equations simplify to the well-known unsteady Bernoulli 

without body forces, 

 21
,

2
stag

f f

pp
V

t  


  


 (B.1) 

where stagp is the stagnation pressure. The pressure p is defined by 

 *
0 ,p p p   (B.2) 

where 0p corresponds to the steady potential flow and *p is the perturbation 

component. It is assumed that the disturbances causing the deformations of the plate 

are sufficiently small for their squares and higher-order terms to be ignored.  The 

perturbation pressure *p , exerted by the fluid on the plate is given by the linearized 

form of Eq. (B.1) and it may be shown that it has the following expression 

 *
fp U

t x
       

. (B.3) 

Using the definition of the flow potential  (Eq. (2.10)), Eq. (B.3) becomes 

 *
fp Ux U

t x
         

 . (B.4) 

The virtual work preW done by the perturbation pressure *p on the plate is given by 

 *

0 0 0 0 0 0 0 0

d d d d d d d d .
a b a b a b a b

pre f f fW p w x y U w x y w x y U x w x y
x t

   
    

           (B.5) 
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 According to this approach, the Lagrange equations of motion can be written as 

follows 

 
d

, 1... ,
d

p p
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j j

T U
Q j dof

t q q

  
   
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

  (B.6) 

where the generalized forces jQ  can be obtained   

   1 2 3 ,pre p p p
j

j j j j

W W W W
Q

q q q q

   
   
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where 1

0 0

d d
a b

p fW U w x y
x

 


  , 2

0 0

d d
a b

p fW w x y
t

 


   and  3

0 0

d d
a b

p fW U x w x y   . 

Analogies can be found between the right-hand terms of Eq. (B.5) and the energy 

approach used in paragraph (2.3). The first term 1pW , using Eq. (2.4c) and Eq. (2.13) 

can be rewritten as  

 1
1 1 10 0

d d (0) ,
2

a b M N R

p f f rn rn rm mn
m n r

Ub
W U w x y m k r w
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  
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 

    (B.8) 

where (0), andrn rn rmm k   have been defined in Eq. (2.16a), Eq. (2.14) and Eq. (2.15), 

respectively. Applying Eq. (2.14) to Eq. (B.8) and knowing that mr rmm r   , we ob-

tain  
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The following analogy with Eq. (2.22c) has been found 

12 .f p BV W   T
fw K w                               (B.10)  

The second term 2pW  of Eq. (B.5), using Eq. (2.4c) and Eq. (2.13) can be rewritten 

as 

2
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where  
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is obtained by substituting the expression of the coefficient m nk  (Eq. (2.14)). Hence, 

the virtual work 2pW can be seen as a sum of three terms 

 2 2 2 2 ,p p A p B p CW W W W    (B.13) 

where it has been defined 
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The following analogy with Eq. (2.22a) has been found 

 22 corresponds to   ,f p AT W  T
f fw M w w M w    (B.15) 

giving the same fluid inertial term in the Lagrange equations. In analogy, for the gyro-

scopic term we obtain 

 2 12 g p B p AE W W T
fw C w .+ =  (B.16) 

Moreover, according to the energy approach under the hypothesis of unsteady flow, 

the term  
1

(0) (0)
4

M
f

pn pn mn pm
p

bU
w m m p






 


 appeared in the gyroscopic term 
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 of the Lagrange equations (Eq. (2.32)) for 1... , 1...m M n N  . Applying the 

Bernoulli’s theorem, the following analogy has been found 

 22 corresponds to   ,g p CE W  T T
f fw C w w C w     (B.17) 

where  
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Furthermore, the third term 3pW  of Eq. (B.5), corresponds to the term IIW (Eq. 

(2.35b)). In case of channel pressurization, the virtual work IW (Eq. (2.35a)) done by the 

related external force must be added to these terms.  

Finally, substituting Eq. (B.9), Eq. (B.14a-c) and Eq. (2.35b) in the expression of the 

generalized coordinates jQ  (Eq. (B.7)), the Lagrange equations of motion expressed in 

Eq. (B.6) will coincide with the Lagrange equations (Eq. (2.32)) found following the 

energy approach.  
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Appendix C. Convergence analysis  
 
By using a different number of terms in the expansions of the displacements u, v, and 

w it is possible to study the convergence and the accuracy of the solution. The bifurcation 

diagrams of the fundamental mode 11w  with the flow velocity U as the bifurcation 

parameter based on 13, 29 and 37 dof models are shown in Fig. C1. The results from all 

models are in close agreement. In particular, the bifurcation point coincides for all the 

models under consideration. This indicates a quick convergence of the solution which 

presents a very slightly smaller amplitude of the stable branches of the deformed 

configuration for the model with 13 dof. On the other hand, the curves corresponding to 

29 and 37 dof models coincide perfectly. The model with 13 dof has the following terms 

11 21 31 21 41 61,  ,  ,  ,  ,  ,w w w u u u 81 12 14 16 18 22 34 ,  ,  ,  ,  ,  ,  u v v v v v v  and the 37 dof has 

 the following terms in Eqs. (4): 

11 12 13 21 22 23 31 32 33 21 22 23 24 41 42 43 44 61 62 63 64,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  w w w w w w w w w u u u u u u u u u u u u

81 83 12 14 16 18 22 24 26 28 32 34 36 42 44 46,  , ,  ,  ,  ,  ,  ,  ,   , ,  ,  ,  , ,  .u u v v v v v v v v v v v v v v  

 
Fig. C1. Amplitude of the static solutions of the fundamental mode 

11w  versus the flow velocity for the 

plate obtained using different numerical models; BP denotes pitchfork bifurcation. Only stable solutions 
are plotted (see Tubaldi et al. [116]). 
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Appendix D. Novozhilov Nonlinear Shell Theory: strain-
displacement relationships 

 
According to the Novozhilov [231] nonlinear shell theory, the middle surface strain-

displacement relationships, changes in curvature and torsion, are given by                                     
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where w0 represents the initial radial geometric imperfections of circular cylindrical 

shells associated with zero initial stress.  
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Appendix E. Elastic strain energy of circular cylindrical 
shells made of isotropic and linearly elastic materials 

 
The elastic strain energy 𝑈𝑠ℎ𝑒𝑙𝑙 (Eq. 3.4) of a circular cylindrical shell made of isotropic 

and linearly elastic material, under Kirchhoff-Love hypotheses, meaning that stresses in 

the direction normal to the shell middle surface are negligible and strains vary linearly 

within the thickness, is given by  

   
2

0 0 0

1
1 / d   d  d ,

2

L h

shell S x x x xU z R x R z


                 (E.1) 

where 𝜎𝑥, 𝜎𝜃 and 𝜏𝑥𝜃 represent the Kirchhoff stresses for a homogeneous and isotropic 

material (𝜎𝑟 = 0, case of plane stress) and are given by 
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 (E.2a-c) 

with E being the Young’s modulus and 𝜐 the Poisson ratio. 

The strains 𝜀𝑥, 𝜀𝜃 and 𝛾𝑥𝜃 of an arbitrary point of the shell are the Green’s strains 

represented by  

,0 ,0 ,0, , ,x x x x x xzk zk zk                                         (E.3a-c)  

where z is the distance of the arbitrary point from the middle surface of the shell. 

Finally, the strains 𝜀𝑥,0, 𝜀𝜃,0 and 𝛾𝑥𝜃,0 are the middle surface strains and 𝑘𝑥, 𝑘𝜃 and 𝑘𝑥𝜃 

are the changes in the curvature and torsion of the middle surface as represented in Eq. 

(D.1-6). 
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Appendix F. Darcy Friction Factor 
 
Energy losses in circular shells conveying flow are influenced by the flow resistance 

associated to the type of flow. The Darcy friction factor for a fully developed laminar 

flow ( Re 2300 ) in a circular channel can be expressed as follows 

 64
,

Re
f   (F.1) 

where 2
Re

RU


  represents Reynolds number, U is the mean velocity of the fluid and 

ν is the kinematic viscosity of the fluid. As shown in Eq. (F.1), in the laminar case the 

friction factor is independent of the roughness of the circular channel.  

However, in case of turbulent flow (Re 3000 ), the roughness of the tube surface 

influences the friction factor. In particular, in case of a smooth pipe with turbulent flow, 

an approximation formula due to Colebrook and White is 

 
1 2.51

2log .
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 
 (F.2) 

 The relative wall roughness is defined as  

 ,
2REL R

   (F.3) 

where δ is the average height of surface roughness of the shell surface. Eq. (F.2) is 

applicable when 610REL   (hydraulic smooth regime). Due to its implicit nature, Eq. 

(F.2) cannot be solved with respect to f. As a consequence, it is necessary to use an 

interpolation technique or another approximation formula, such as the empirical formula 

given by Blasius [75] 
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Both approximation formulas Eq. (F.2) and Eq. (F.4), with the relative discussion of 

turbulence, are based on steady mean flow. However, pulsatile flow makes the 

phenomenon of laminar-turbulence transition much more complex [232]. In this study, 

the following procedure has been used in order to obtain an approximation of the Darcy 

friction factor f in case of pulsatile flow. The average velocity U calculated via Fourier 

series of the physiological waveform of velocity during the heart beating period [154] is 

equal to 0.07387 /U m s . Assuming the blood kinematic viscosity 6 23.6 10 /m s   , 

the Reynolds number calculated using U  and the dimensions of the cylindrical shell 

under consideration ( 0.01575R m ), is equal to Re 646.36  (laminar flow regime). 

Hence, using Eq. (F.1), it is found the Darcy friction factor 0.099avgf  .  

The maximum flow velocity maxU  of the physiological waveform of velocity during the 

heart beating period [154] is equal to max 0.61 /U m s  which corresponds to the Reynold 

number Re 5337.5 (turbulent flow regime). Indeed, in the descending aorta, turbulence 

is generally tolerated during the deceleration of systolic flow [232]. In addition, assuming 

92.1 10 m    as the average height of surface roughness of Dacron aortic prostheses 

[233], the condition  610REL  is verified. Applying Eq. (F.4), it is found the Darcy 

friction factor max 0.037f  . 

In order to obtain an approximation of the Darcy friction factor in case of the pulsatile 

physiological blood flow, an average between the two aforementioned values avgf and 

maxf has been considered obtaining f  = 0.068.  
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Appendix G. Axial wave propagation in an elastic shell 
 
The pulsatile flow discussed here is ideal since it is assumed that for a given time 

instant, the pulsatile pressure and flow velocity are the same for all points of the control 

volume. In particular, it is assumed that the oscillatory pressure changes occur 

simultaneously at every point of shell to the effect that the fluid oscillates in bulk. Under 

this hypothesis, the flow velocity does not depend on the axial coordinate x but it 

depends only on the time variable t and the radial component of the transportation 

velocity is neglected. Hence, the wave motion of local movements of the fluid caused by 

pressure changes in a deformable shell is not taken into account. Since the wave speed 

(i.e. the speed with which the wave propagates axially down the shell) increases by 

reducing the elasticity of the shell, this approximation is adequate when the shell 

presents a low elasticity allowing the wave speed to be much higher than the maximum 

flow velocity. If the wall thickness is small compared with the shell radius and if the 

effects of viscosity can be neglected, the wave speed 𝑐0 is given approximately by the so 

called Moens-Korteweg formula [74, 234] 

 
0 ,

2 F

E h
c

R
  (G.1) 

where E is the Young modulus of the shell, h and R are the thickness and the radius of 

the shell respectively and 𝜌𝐹  is the constant fluid density.  

In first approximation, the woven Dacron graft can be considered transversely 

isotropic and its stress-strain relation can be modeled with a linear model both in 

longitudinal and circumferential directions [188] with the following average value for the 

circumferential Young’s Modulus 𝐸 = 12 MPa. Hence, the wave speed 𝑐0 for the case 

studied here (𝑅 = 0.01575 𝑚, 𝜌𝐹 = 1050 𝐾𝑔 𝑚3⁄ , ℎ = 0.000361 𝑚)  assumes the 
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approximate value of 𝑐0 = 11.44 m/s. Since the length of the prosthesis under 

consideration is 𝐿 = 0.126 m, the time delay Δt due to the wave speed 𝑐0 between outlet 

(𝑥 = 𝐿) and the inlet (𝑥 = 0) surfaces can be calculated 

 0/ 0.011s,t L c    (G.2) 

where it is assumed that all the harmonics of the pulsatile pressure and velocity travel 

at the same speed and that there are no effects of wave  reflection. In the physiological 

range, the heart beating period 𝑇  varies between 𝑇𝑚𝑖𝑛 = 0.3 s (around 200 

beats/minute) and 𝑇𝑚𝑎𝑥 = 1.1 s (around 55 beats/minute), hence the time delay Δt in 

Eq. (G.2) represents the 1% 𝑇𝑚𝑎𝑥 and the 3.7% 𝑇𝑚𝑖𝑛. 
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Appendix H. Lagrange equations for a non-material 
volume 

 
Irschik and Holl [183] derived the Lagrange equations for a non-material volume that 

represents an arbitrarily moving control volume in the terminology of fluid mechanics. 

The extension of the Lagrange equations to a control volume was obtained by using the 

method of fictitious particles. Within a continuum mechanics based framework, it is 

assumed that the instantaneous positions of both, the original particles included in the 

material volume, and the fictitious particles included in the control volume, are given as 

functions of their positions in the respective reference configurations, of a set of time-

dependent generalized coordinates, and of time. Imagining that the fictitious particles 

do transport the density of kinetic energy of the original particles, the partial derivatives 

of the total kinetic energy included in the material volume with respect to generalized 

coordinates and velocities are related to the respective partial derivatives of the total 

kinetic energy contained in the control volume. Within this concept, the total kinetic 

energy T of the original body instantaneously enclosed in the material volume V coincides 

with the total kinetic energy of the original particles enclosed in the fictitious non-

material volume wV  (which instantaneously is coinciding with V): 

 ' ' ,
w

w

V V

T T dV T dV    (H.1) 

where the variable 'T denotes the density of the kinetic energy transported by the fluid 

and it has the following expression 

  ' 11
,

2 FT J  F Fv v  (H.2) 

 and J  is the Jacobian determinant of the deformation gradient tensor (i.e. 1J   for 

incompressible fluid). 
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The version of the Lagrange equations found by Irschik and Holl [183] extended with 

respect to a non-material volume has the following expression:  

   '
'd

d d ,
d

S F
j

j j j j j jS S

U VT T T
s T s Q

t q q q q q q

       
                      

  SF
F S

vv
v v n n

   
 (H.3) 

where T  denotes the total kinetic energy contained in the control volume (i.e. the 

structure and the flowing fluid), Fv  and Sv  are the velocity vector of the fluid and of 

the structure, respectively; jQ  denotes the generalized forces without the terms 

associated to the potential energy of the fluid 𝑉𝐹  and of the structure 𝑈𝑆  (both 

considered in the left side of the equation). The surface integrals are evaluated at the 

boundary surface S and n denotes the outer normal unit vector at that surface. The 

scalar product  F Fv v can be rewritten as 

       2 2 ,U U U U
x


        

F Fv v  (H.4) 

where 𝑈  is the undisturbed (pulsatile) blood flow velocity, which is time dependent, 

and   is the unsteady perturbation potential (Eq. (3.9)). For low frequency ranges 

 U   , the term  (second-order perturbation term) can be neglected in Eq. 

(H.4) with respect to the other two terms (zero and first-order perturbation term).  

The total kinetic energy T  of the system is given by 

 .F S GT T T E    (H.5) 

Compared to the classical formulation for a material volume, a correction term 

containing the flux of kinetic energy appearing to be transported through the surface of 

the control volume is introduced in the equations of Lagrange written for a non-material 

volume. For the geometry under consideration, the natural domain of integration due to 

the shape functions in Eqs. (3.6a-c) is 2L in axial direction x. Indeed, since the distance 

between the periodical supports is L, the shell radial displacement w (Eq. (3.6c)) is 



Appendix H. Lagrange equations for a non-material volume 

230 
 

assumed to be a periodic function of main period 2L, and the same is verified for the 

velocity potential (Eq. (3.9)) and the perturbation pressure (Eq. (3.10)).  

The boundary surface S is composed by three terms  

 ,in out shellS S S S    (H.6) 

where 𝑆𝑖𝑛  and 𝑆𝑜𝑢𝑡  represent the inlet ( 𝑥 = 0 ) and outlet ( 𝑥 = 2𝐿 ) surfaces, 

respectively and 𝑆𝑠ℎ𝑒𝑙𝑙  is the shell lateral  surface. The two integrals in Eq. (H.3) 

evaluated at the inlet surface 𝑆𝑖𝑛 only have the following expression 

 
'

'

0 0 0 0

( ) d ,
in in

in in
x x x xj j jS S

T u u
U t dS T S

q x t q x q t   

            
                       

   
 (H.7) 

where 
'

F
j j

T
U

q q x
         

, u is axial displacement of the shell as expressed in Eq. (3.6a) 

and 
0x

u

t 


  

 Sv n represents the axial velocity of the shell at the inlet surface; for 𝑥 =

0, both fluid and shell velocities are discordant with the outer normal unit vector n of 

the inlet surface.  

In the same way, the two integrals in Eq. (H.3) evaluated at the outlet surface 𝑆𝑜𝑢𝑡 

only have the following expression 

 
'

'

2 2 2 2

( ) d .
out out

out out
x L x L x L x Lj j jS S

T u u
U t dS T S

q x t q x q t   

            
                     

   
 (H.8) 

In this case, for 𝑥 = 2𝐿, both fluid and shell velocities  are concordant with the outer 

normal unit vector n of the outlet surface. Indeed, since the axial displacement u is 

symmetrical at the periodic supports, it is verified that 
0 2x x L

u u

t t 

 


 
. Finally, the two 

integrals in Eq. (H.3) evaluated at the shell surface 𝑆𝑠ℎ𝑒𝑙𝑙  only have the following 

expression 
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'

' d .
shell shell

shell shell
r R r Rj j jS S

T w w
dS T S

q r t q r q t 

                              
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 (H.9) 

By substituting Eq. (3.8) into Eq. (H.9) and developing mathematical calculations, 

Eq. (H.9) may be rewritten as follows 

 2 d .
shell

F shell
r RjS

w
U S

q x x




   
    

 
 (H.10) 

By substituting Eq. (H.7), Eq. (H.8) and Eq. (H.10) into Eq. (H.3), it can be observed 

that the contributions at the inlet and outlet surfaces cancel each other since the system 

conditions at the entry and exit surfaces are the same expect for a discordant sign due 

to the scalar product with the outer normal at the respective boundary surface. Finally, 

because of the anti-symmetry of the shell deflection w at the periodic supports, Eq. (H.10) 

becomes 

 2 2 22 2

0 0 0
d d d d ,

L L

F F L
r R r Rj j

w w
U r x U r x

q x x q x x

 
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 

        
           

    
 (H.11) 

where the two terms cancel each other. Hence, the Lagrange equations of motion for 

the shell coupled to flowing fluid, knowing that 0S j F jT q T q     , are  

 
   

, 1... .S F G S FG
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dt q q q
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      (H.12) 
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Appendix I. Conservation of mass in a deformable control 
volume 

 
The flow velocity vector Fv  is expressed by Eq. (4.8). Considering a portion of the 

compliant vessel conveying pulsatile flow as a control volume, because of the wave 

propagation phenomenon within vessel, the net inflow of mass through the boundaries 

of the control volume is different from zero at any given time. Hence, in order to satisfy 

mass conservation, the time rate of change of mass must be equal to the net inflow of 

mass through the boundaries of the vessel. Therefore,  

    2 2

0
0

d ( , ) .
L x L

F F
x

R w x U x t R w
t

   





   

   (I.1) 

holds true [235]. In equation (I.1) only axisymmetric w is considered since asymmetric 

w gives no volume and no area changes at the entrance and exit surfaces. Applying the 

boundary condition Eq. (4.1b), the right-hand side of Eq. (I.1) becomes 

    2 2

0
( , ) ( , ) (0, ) .

x L

F F
x

U x t R w R U L t U t   



      (I.2) 

Writing   

      2 2 22 2 ,R w R Rw w w R w
t t

 
     

 
  (I.3)  

Eq. (I.1) can be rewritten as follows, 

 
2

2
( ).

U w
R w

x R


  


  (I.4) 

The inhomogeneous equation of mass conservation in case of incompressible flow, con-

sidering the effect of a mass source term m, is given by 

 ,F m  Fv  (I.5) 
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where the source m consists of mass of the incompressible fluid density ρF of volume 

fraction χ = χ(x,t) injected at a rate of 

 .Fm
t

 



 (I.6) 

Under the hypothesis of constant length L (i.e. 
0x

u L

 and 

x L
u L


 ), substituting 

Eq. (4.8) into Eq. (I.5), it is found that 

  2 2
2

2
,

R w L R LU

x t R L

 


   
     

    
 (I.7) 

where the right-hand side of the equation represents the variation of the control volume 

related to the accumulation ( 0U x   ) or the subtraction ( 0U x   ) of the mass of 

the fluid caused by the wave propagation phenomenon. With a sequence of calculations, 

it is found 

    
2 2 2

2 2 2

2 2
.

R w L R L w Rw w
w R

t R L t R R

 


      
             

  (I.8) 

Substituting Eq. (I.4) and Eq. (I.8) into Eq. (I.7), we obtain the Laplace equation 

 2 0.    (I.9) 

The appearance of travelling pressure waves is interesting both in the mathematical 

formulation and in the numerical modelling. From a mathematical viewpoint, even if the 

flow is governed by an elliptic equation (Laplace equation), the general behaviour of the 

fluid-structure interaction system is in many ways similar to that of a hyperbolic problem 

(wave equation). Indeed, as demonstrated here, an additional complexity comes from 

the correct representation of the accumulation/subtraction of mass in the deformable 

control volume in order to properly describe the traveling wave phenomenon. 
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Appendix J. Expression of the modified gyroscopic energy      

GE  

 
The modified gyroscopic energy 

GE  calculated not only on the shell wall, Eq.(4.18c), 

but also on the inlet and outlet surfaces, can be written in the following vectorial notation: 

 & &

1 1
,

2 2G G shell G In Out In OutE E E   T Tq G q q G q      (J.1) 

where the vector 1,2 ,2 ,2 1,0 ,0 ,0{ , } { ,.., ,.., , ,.., ,.., }ASYM AXISYM m M l Mw w w w w w q q q    represents 

the generalized asymmetric ASYMq and axisymmetric AXISYMq  coordinates of the radial 

displacement w only. For simplicity, here only the first harmonic is considered in the 

pulsatile component of the flow velocity ( 1v Pa U  and 1 0vb  in Eq. (4.12a)). The matrix 

G is not a gyroscopic matrix but it can be expressed in the following form 

      
0

cos cos ,P P

L
U U t U t

c

 
 

         
 

GYRO 1 2 3 4G G G G G G  (J.2) 

where  
G Y R OG  is the gyroscopic matrix associated to the pulsatile mean flow velocity 

U in the following antisymmetric form with zeros on the diagonal, 

 
0

,

0

 
   
  

GYRO
T

B

G

-B

  (J.3) 

where B is a triangular submatrix. This matrix corresponds exactly to the gyroscopic 

matrix associated to the gyroscopic energy GE in the case of shells conveying steady flow 

[4]. However, in the case of shells conveying pulsatile flow, the presence of travelling 

waves inside the shell due to pulse wave propagation, causes the appearance of the four 

matrices, 1G , 2G , 3G  and 4G , associated with the pulsatile component PU  of the velocity. 
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In particular, matrices 1G  and 3G  are block diagonal matrices. 1G  can be expressed in 

the following form: 

 .
 

  
 

1

F 0
G

0 H
 (J.4) 

The submatrix F has the following form: 
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where the subscripts i and j represent the number of longitudinal half-waves in the i-

th generalized coordinate of the vector ASYMq and of the j-th generalized coordinate of 

the vector ASYMq , respectively. The submatrix H can be expressed as follows: 
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where the subscripts i and j represent the number of longitudinal half-waves of the i-

th generalized coordinate of the vector AXISYMq and of the j-th generalized coordinate of 

the vector AXISYMq , respectively. Matrix 3G  has the same structure as matrix 1G . In 

particular, 3G  is given by  
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The submatrix F̂ has the following form: 
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Moreover, the following relation among the coefficients holds true: 
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Submatrix Ĥ  can be expressed as follows: 
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and the following relation among the coefficients holds true 
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,
,
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
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    
 (J.11) 

Matrices 2G  and 4G  in Eq. (J.2) are also block diagonal matrices. 2G  can be expressed 

as follows: 

 .
 

  
 

2

N 0
G

0 P
 (J.12) 

Submatrix N has the following form: 
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and submatrix P can be expressed as follows: 
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The coefficients of matrices 4G  and matrix 2G  display the same relationship between 

as that observed for matrices 3G  and 1G . The matrix &In OutG , associated to the 

gyroscopic energy due to the inlet and outlet surfaces &G In OutE in Eq . (J.1) is a symmetric 

matrix and it can be written as follows: 

  & 0cos( ) cos( ( 2 )) ,In Out PU t t L c   G R  (J.15) 

where R  is a block diagonal matrix that can be written as, 

 ,
 

  
 

S 0
R

0 T
 (J.16) 

where S and T are symmetric submatrices that couple the asymmetric and the 

axisymmetric modes, respectively. As shown in Eq. (4.23), in the Lagrange equations of 

motion the terms associated to the modified gyroscopic energy 
GE  are given by 

G G

j j

E Ed

dt q q

  
 

   
. Assuming 
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where J is the unit vector that has only the j–th unit term different from zero, it is 

possible to write 

 & & &

1 1 1
,

2 2 2
G

In Out In Out In Out
j

d E d

dt q dt

               

T T T T T Tq G J q G J q G J q G J q G J q G J       


  (J.18) 

where 
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  & 0sin( ) sin( ( 2 ))In Out PU t t L c     G R . (J.19b) 

Similarly, the following expression is obtained 
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1 1
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2 2
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Hence, the terms of the Lagrange equations of motion associated to the modified 

gyroscopic energy 
GE  can be rewritten as follows: 

    & & &

1
,

2
G G

In Out In Out In Out
j j

d E E

dt q q

  
          

T T T T T Tq G G J q G J q G G J q G J     
  (J.21) 

where both matrices  1

2
 TG G  and  & &

1

2 In Out In Out TG G  are clearly antisymmetric 

(gyroscopic).  Consequently, there is no dissipation in the system due to the fluid model. 

Moreover, since both matrices &In OutG  and G  are time-dependent, substituting Eq. 

(J.19a) and Eq. (J.19b) in Eq. (J.21), new time dependent (variable positive/ negative) 

stiffness terms will appear in the Lagrange equation of motion because of the wave 

propagation phenomenon. In particular, the contribution of the symmetric matrix 
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&In OutG  in the Lagrange equations of motion, associated with the asymmetric modes 

A SYMq , is a stiffness term (proportional to the displacement generalized coordinates) that 

couples the equations. Consequently, the same coupling in the stiffness due to &In OutG  

(Eq. (J.15)) is verified for the equations of motion associated with the axisymmetric 

modes AXISYMq . The effect of the matrix G  into the equations of motion of the 

generalized coordinates ASYMq can be summed up as follows: 

(i) in the equation of the generalized coordinate jq , the damping terms due to iq  

(with i j ) have the same coefficients with opposite sign as the corresponding 

damping terms due to jq  in the equation of the generalized coordinate iq , giving 

a pure gyroscopic effect; 

(ii) in the equation of the generalized coordinate jq , stiffness terms appear due to iq  

(with i j ) with coefficients that respect the  relations shown for matrices F  

and N , with respect to the corresponding stiffness terms due to jq  in the 

equation of the generalized coordinate iq . 

(iii) in the equation of the generalized coordinate jq , there are stiffness terms 

associated to jq . 

Same three contributions of the matrix G  are found into the equations of motion of 

the generalized coordinates AXISYMq , where in the second point instead of submatrices F  

and N  we refer to H  and P . 
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Appendix K. Displacement dependent pressure load for 
finite deflection of thick circular cylindrical shells  
 

The expression of the displacement dependent pressure load for circular cylindrical 

shells is given by [236] 

 

2

0 0

1 1 1

1 d d ,
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W p w u
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                     

 
   (K.1) 

where the higher-order terms are significant, compared to the linear term pw, in case 

of large deformations. However, for thin shells, their influence is smaller since the 

amplitude of the deformation w/R is smaller for the same order of normalized 

displacement w/h. Fig. 4.20 shows the comparison between the radial deformation of the 

shell under the static pressure load mp  evaluated by the exact displacement dependent 

Eq. (K1) and by the approximated displacement independent pressure mp . The curves 

are perfectly overlapped showing that the nonlinear terms of Eq. (K.1) are negligible for 

the case investigated here. However, the exact formulation of the virtual work done by 

the displacement dependent pressure must be used for large deformations. This 

formulation is of particular interest for soft biological tissue which can be described with 

different types of hyperelastic constitutive relationships and usually present large strains 

and deformations [237]. 
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Fig. 4.20. Longitudinal section. Normalized amplitude with respect to shell thickness h; load by pressure 

mp evaluated by the exact displacement dependent Eq. (K.1) (red dashed line), load by displacement 

independent pressure mp  (black line);  ζ = 0.1. 
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