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Abstract

A method for ranking efficient decision making units in Data Envelopment
Analysis is suggested. The method uses parametric programming and calcu­
lates "rigidity" of efficient units relative ta perturbations of input and output
data.

Theoretical results are applied ta 108 North American university libraries.
The efficiency of the libraries is determined by the Charnes-Cooper-Rhodes
tests. The radius of rigidity approach is applied to efficient libraries. In par­
ticular, we focus on the 1VlcGill University library and compare its efficiency
to other libraries using different data sets.

Une méthode pour classifier l'efficacité des unités décisionnelles dans l'­
analyse par enveloppement des données (DEA) est suggérée. Cette méthode
utilise la programmation paramétrique et calcule la "rigidité" des unités ef­
ficaces relative aux perturbations des données de base et des résultats.

Les résultats théoriques sont mis en pratique pour 108 bibliotèques uni­
versitaires Nord Americaines. L'efficacité des bibliatèques est déterminée
par le test de Charnes-Cooper-Rhodes. Des bibliotèques efficaces sont clas­
sifiées par la méthode de rayon de rigidité. En particulier, on prend le cas
de l'Université McGill et on compare son efficacité aux autres bibliotèques
en utilisant différents ensembles de données.
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Chapter 1

Introduction

Data Envelopment Analysis (DEA) was originally proposed in the late sev­

enties as a means of determining and improving the relative efficiencies of

not-for-profit organizations, such as hospitals, schools and government agen­

cies, whose goals, organization and structure, did not fit the standard meth­

ods of analysis. DEA allows comparison of a number of decision making

units (DMU's) based on a finite number of generally incomparable inputs

and outputs which are cornmon to aIl units.

The theoretical objective of this thesis is ta study stability of the basic

efficiency evaluation models in DEA. One of the major difficulties in DEA is

a large number of efficient DMU's, which are not comparable. This typically

occurs when there is a large number of different input and output data in

comparison ta the number of units being studied. We suggest two approaches

for ranking the efficient DMU's. One of these is briefiy described as follows:

Take an arbitrary efficient DMUk . Then find the largest perturbation of
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each variable in every other DMU i , i =1= k, which preserves efficiency of that

DMUk . For each variable, the smallest ofthese numbers is termed the "radius

of rigidity" of DMUk . In an ideal situatioll, aH efficient DMU's are then

ordered by their radii of rigidity. Academie models for calculating the radii

of rigidity can be highly stable (with unbounded radii of rigidity) or highly

unstable (with zero radii). It is shawn here that these extreme cases also

occur in practical situations.

The "radius of rigidity" approach is applied in this thesis ta seleeted

libraries from the 108 North American university libraries which are members

of the Association of Research Libraries. Our DEA analysis of these libraries

confirms the known fact that the number of efficient DMU's increases with

the number of data. (In a particular DEA model of 13 Canadian libraries,

12 were declared efficient.) This warrants a study of how to order efficient

DMU's.

A particular feature of this thesis is that it relates the performance of

McGill University library ta other university libraries. McGill's performance,

when a small number of different types of data is considered, was, until

recently, not very impressive. It consistently ranked below 87th place until

1994-95 when its efficiency ranking jumped to Ilth place. However, McGill's

performance appears to be improved when more different data is compared.

(Its library was actually declared efficient in 1993-94 and 1994-95 in a group

of 30 libraries with five input and seven output data.) When McGilllibrary is

declared inefficiently run, then DEA identifies "close" efficiently run libraries

that McGill should "emulate" to achieve efficiency. DEA also shows how

this can be done. It is interesting that the University of Illinois at Urbana-
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Champaign has been consistently declared as one of t.he libraries McGill

should emulate to improve efficiency.

The thesis is organized as follows: In Chapters 2 and 3, we recall the

general tools and various DEA models from the literature, with a t'oeus on

the Charnes-Cooper-Rhodes model (see, e.g., [14, 59, 16, 17, 50, 52]). Also,

we recaU sorne notions from the study of stable parametric optimization

(see, e.g., [9, 34, 60]). Chapter 4 surveys the methods which have been

used for sensitivity and post-optimality analysis in DEA models (see, e.g.,

[3, 10, Il, 18, 19, 20, 21, 22, 23, 24, 25, 39, 45, 46, 55, 56, 57]. Each method

is illustrated by a simple example. In Chapter 5, we introduce two radius

of rigidity models and two simplified marginal value formulae. The marginal

value formula given in Theorem 5.6 is proved under new assumptions. These

formulae can be used in input optimization (see, e.g., [9, 60, 62]) to calculate

the radii of rigidity. We also adjust characterizations of locally and globally

optimal inputs from input optimization to fit our radius of rigidity models.

Chapters 6 through 9 deal with applications. The first two of these chapters

present the results of having applied DEA ta North American university

libraries for a period of five years. A full model consists of l08libraries. Also,

a subset of 30 libraries with various sets of data is studied. Chapter 8 looks

at the application of the radius of rigidity approaches in detail, including

algorithms of the technique, simple examples and an application to library

data. AH empirical data used in this thesis are taken from [47, 30, 31, 40, 41].

The reader interested in the results for McGill, but not necessarily in the

details of the theory, may proceed directly to Chapter 9 which looks at how

the McGill library fared in the analysis.
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Chapter 2

Terminology

2.1 DEA Models

In this section, we survey the most popular models used in Data Envelopment

Analysis (DEA). The basic DEA model takes the form of a non-linear~ non­

convex fractional programming problem. We will assume that we have N

decision making units (DMU's), each with a set of strictly positive inputs

represented by Xi E ~m, j = 1, , N and a set of strictly positive outputs

represented by yi E ~s, j = 1, , N. It should be pointed out that the

number of DMU's must be sufficiently large as compared to the number

of inputs and the number of outputs for any confidence in the statistical

reliability of the input and output evaluations. DEA is units invariant in the

sense that the variables do not necessarily have ta be comparable amongst

themselves. Thus, we can include monetary variables snch as expenditures,

as weIl as unitary variables such as the number of employees, in the same
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model without any difficulties. For each, say the ktlt, DMU, the model seeks

to maximize a weighted ratio of 'virtual' outputs to 'virtual' inputs with

respect to a common pool of weighted ratios determined by aU N D!vIU's:

Max(u,v) (u, yk)/(V, X k)

S.t. (u, Y"i)/(v, Xi) ::; 1,

u" v 2:: o.

j = l, ... ,N

(

These programs must he solved for each of the k = 1, ... , N DMU's. In

each case, the DMU under consideration selects its own best possible set of

weights. Each program determines the coordinates of DMUk in the produc­

tion passibility set: the set of aH possible production levels as determined by

the current production levels of the DMU's being analyzed. Those DMU that

lie on the boundary of the production possibility set are said to lie on the

envelopment surface or the efficiency frontier, and are deemed ta be efficient:

under given technology and feasible production levels, it is not possible to

produce higher levels of output without increasing levels of input. The reader

may recognize that this is directly related ta the Pareto-Koopmans concept

of efficiency in economic theory. The work described above was an extension

of that of Farrell who considered the single output case which proved ta he

somewhat restrictive in application. For more on these tapies, the reader is

referred ta [33, 13].

Due ta an observation made by Charnes and Cooper in fractional pra­

gramming, it is possible ta convert the above model inta a linear program, a

number of versions of which exist in the literature. The idea is ta maximize

5
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a ratio of a sum of weighted outputs to a SUffi of weighted inputs (an out­

put oriented model) or to minimize the reciprocal ratio (an input oriented

model). The two primary models are the ratio model, developed by Charnes,

Cooper and Rhodes (CCR), and the additive model.

The CeR model for D:A;JUk , as presented in the original paper by Charnes,

Cooper and Rhodes [14], is given by

Max ()

s.t. 1/À 2:: YkO

XÀ ~Xk

À 2:: o.

An alternate version which employs the non-Archimedean construct € is given

by

N/in 9 - €(eTs+ + eTs-)

s.t. YÀ - s+ = Yk

()Xk - X À - s- = 0

À 2:: 0

s+ 2:: 0

s- 2:: o.

The existence of the solution to the CCR model is assured, see e.g., [20].

In [13}, the authors daim that the non-Archimedian extension is required

in the CeR model for rigorous theory and usage because it is necessary

for an algebraically closed system of the linear programming type. This

6
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guarantees optimal solutions at finite non-zero extremal points. Efficiency

is achieved, for the output oriented model, if the optimal value is one and

aU slack variables are zero. The presence of non-zero slacks in the optimal

tableau indicates a source of inefficiency.

The so-called additive model is given by the program

Min -eTs+ - eTs-

s.t. YÀ- s+ =Yk

-XÀ - s- = -}(k

L: Àj = 1,

which classifies DMUk as efficient if the optimal solution is zero.

In [36], these two models are classified aecording to the type of envelop­

ment surface that is constructed, either a variable or a constant returns-to­

scale funetion. A variable returns-to-seale envelopment surface consists of a

reference set which is the convex hull of aU the DMU vectors augmented by

the non-negative input-output possibilities that are dominated by this convex

hull. Such a set is provided by the additive mode!. A constant returns-to­

seale envelopment surface consists of a reference set which is the conical hull

of an the DMU vectors similarly augmented. Such a set is provided by the

ratio model.

Two other models commonly appear in the literature: the Banker~Charnes

and Cooper (BCC) model and the multiplicative mode!. Equivalent formula­

tions to the CeR models exist for the BCC models, the only difference being

the inclusion of a convexity constraint on the weights, namely, Ef=l Àj = 1.

Conditions for efficiency are the same as above. The multiplicative model

7
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uses a logarithmic transformation l'rom fractional ta linear l'onn. ThuH, t.he

multiplicative model would take the form

1\6 ns \"lLr / rrm XVi
'l ax r=l 1 rk i=l ik

and is converted to the following linear program

s m

Max L: J.LrYrk - E ViXik
r=l i=l

s m

s.t. :E J.LrY;.j - E ViXij ~ 0,
r=l i=l

- p,r ~ -1 r = 1, ... , s

j = 1, ... ,N

j = 1, ... , N

i = 1, ... , m.

(

Here the carat indicates the log of the original data point. For this formu­

lation, the efficiency frontier is a piecewise log-linear function. Efficiency

is achieved if the optimal value and all the slacks are zero. The N linear

programs differ only in the objective function.

A measure of efficiency which has recently been introduced into the DEA

literature by Thompson, Dharmapala and Thrall (see, e.g., [29]) is given as

a solution to the problem

where, for any choice of (u, v),

8
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This is a measure of relative efficiency of DMUo • It may be considered as an

extreme value statistic and treated by appropriately adapted versions of the

statistical theory of extreme values or it may be solved as a mathematical

programming problem.

The selection of the model and, consequently, the envelopment surface

used for analysis can frequently be determined by various assumptions, eCQ­

nomic and otherwise, regarding the data set. The eeR ratio model gives

an overall efficiency evaluation. The BCC model provides information about

returns-to-scale and gives a technical efficiency evaluation. The multiplica­

tive model provides a log-linear envelopment of the production process. And

the additive model relates efficiency results ta the economic concept of Pareto

optimality. In addition, a number of alterations can be made ta the selected

model ta more realistically fit the data. For instance, a use of exact weights

may be replaced by upper and lower bounds while allowing DEA to deter­

mine a best set of values from past performances. Or, if certain input or

output levels are not within the control of the DMU, for example, they may

be specified by government regulations or by population, these particular

inputs or outputs may be included in the determination of the reference set,

but excluded from the objective function and thereby do not affect the ef­

ficiency rating. One can also include ordinal relationships among virtual

multipliers to refiect the relative worth of certain inputs or outputs, or one

may include multiple time frames in the same model. For these topics, the

reader is referred to, for example, [24, 4, 49].

9



2.2 The CCR Model

This section provides theory and terminology for the eeR model and closely

follows the development in [59].

For each DMUk, k = 1, ...,N, the problem of determining its efficiency

rating is given by the fractional program

Max (u, yk)/(v, ",yk)

s.t. (u, Yi)/(v, Xi) ~ 1, j = 1, ...,N

u ~ 0,

v ~ 0,

where the constraints represent the common pool of an DMU's. Thus, higher

efficiency ratings imply producing more outputs with less inputs.

We will assume that an inputs and outputs are strictly positive and that

only those optimal solutions (u*, v*) for which v* # 0 are acceptable. The

above fractional form can then be transformed into a linear programming

problem.

Using the substitution

we find that

1
x = TV~ 11 = T'If,

(

with

(2.1)

10
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Hence

hecomes

j = 1, ... , N,

(2.2) (y, yi) ~ (X, Xi), j = 1, ..., N.

Thus, the CeR model is

(CCR, k) 1\t[ax(x,y) (y, ylc)

s.t. (y, yi) ~ (:1;, .xi ),

(.1:, Xk) =1

j=l, ... ,N

(

x ~O

y ~ O.

Alternately, it can he shawn that the constraint (....yk, x) ::;:: 1 ean he

replaced by (Xle, x) ~ 1. The two resulting program~ are equivalent.

Theorem 2.1 The constraint (Xk,x) = 1 can be replaced by (Xk,x) ~ 1 in

(CCR, k). The resulting optimal solutions and values are the same.

Proof: If (x, y) is an optimal solution of the latter problem, it suffices to

show that (xie, x) = 1. Ifthis were not the case, then we cao define x = 6-1x
and fj = cS-lij where cS = (Xie, x) E (0,1). The point (x, iJ) is feasihle for the

problem with the eonstraint (Xk,x) ~ 1 since cS > 0 and (X"k,X) = 1. But

(ylc, fi) > (ylc, y) sinee the optimal values are positive and 6 < 1. This

contradicts the optimality of (x, y).

Notice that one must solve sueh a problem for each of the N DMU's.

Each DMU chooses its optimal weighting from the cornmon feasihle pool.

Efficiency is defined as follows:

Il
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Definition 2.2 A DMU is efficient if the optimal value q* of (CCR, k) is

1. ft is inefficient if the optimal value is such tha.t 0 < q* < 1.

One may recognize that the CCR test presented here bears a diffcrent

form from the one presented in the original paper on DEA by Charnes,

Cooper, and Rhodes [14]. To avoid any non-Archimedean constructs, we

have employed the dual of the program used in that paper. The two an'

equivalent by linear programming theory.

Not only does DEA provide a means of ranking a number of similar

DMU's according to their efficiency, but it also allows identification of sources

of inefficiency and an estimate of the overall amount of inefficiency. Thus, we

can determine how an inefficient DMU can he made efficient. Let us show

how this is done.

Each inefficient DMU can be associated with a set of efficient DMU's,

which determine the boundaries of a facet of the efficiency frontier c10sest

to that inefficient DMU. It is onto that facet that we project the inefficient

DMU. The associated efficient DMU's form the set 'R.k = {j:pj > D} where

p* is the optimal solution of the dual variables associated with the cornmon

feasibility constraints given by 2.2. One notes that q* is the dual variable

associated wtih the constraint given in 2.1.

Theorem 2.3 The decision making units in the reference set 'R.k of an in­

efficient DMUk are efficient.

Praof: Let x* and y* be optimal primaI solutions and p* and q* be optimal

dual solutions for an inefficient DMUk . The corresponding complementarity

12
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conditions from linear programming are

pj[(y*, yi) - (x*, Xi)] = 0, } = 1, ... , N.

For j E 'Rk , we have pj > O. So

(2.3)

Now, for any ] E Rk, define

yi = ay*, xi = nx* j'or some Œ > O.

We daim that (xi, yi) is a feasihle solution of the primaI efficiency t.est for

DMUJ. First,

(yi, yi) - (xl, Xi) = a[(y*, yi) - (x*, Xi)} ~ 0, j = 1, ... , N,

by feasibility of (x*, y*) for DMUk. Also,

(xi, Xi) = n(x*, Xi)

= a(y*, yi), by (2.3)

- 1

for the choice

(2.4)
1

a = - > O.
(y*, Yi)

(

It is impossible that (y*, yi) = 0, beeause of the positivity assumption on

the data. That would mean y* = 0 and therefore (y*, yk) = 0 which implies

q* = 0 sinee the optimal values are equal. But q* = 0 is impossible because

it would imply p* = 0 which would imply yk ~ 0 contradieting the positivity

assumption on the data. So feasiblity is proven.

13
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Finally,

by t.he choice of (2.4) for a. Hence Dl\1Uj is efficient.

Definition 2.4 For an inefficient DAt/Uk1 we define its ideal DMU ta have

the ideal input and output vectors:

xo = L pjxj

JERk

yo = :E pjyi.
jER.k

(

The ideal DMU, given by XO and yo, uses strictly less input ta produce

at least as much output. This is guaranteed since

yo = L Pjyi ~ ylc
jE~k

by feasibility of p* in the dual problem, and

Xo = :E pjxj ::; q*X k < X k

jE~k

by feasibility of q* and p* in the dual problem and because 0 < q* < l.

AIso, the ideal DMU is efficient with respect to the efficient DMU's from

the reference set:

Theorem 2.5 An ideal decision making unit is efficient.

Proof: Let (x*, y*) and (p*, q*) be the optimal solutions of the primaI and

dual problems of the efficiency test for DMUb assumed inefficient. The

complementarity condition

N

(x*, [- LPjXi + q* Xk]) = 0,
j=1

14
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cau be expressed as

(2.5)

Define

N

q*(x*,Xk
) = l:Pj(x*,Xk

).
j=l

(2.6)
1x= -x*
q*

d - 1 *an y = -y .
q*

We will show that (x, y) is feasihle and that the ideal DMU reaches efficiency

at that point. First, since (x*, y*) is feasible,

(y*, yi) ~ (x*, Xi), j = 1, ... ,N,

so we can make the substitution (2.6) and we have

(2.7)

Since

(y, yi) ~ (x, Xi), j = 1, ... , N.

(

(y*, YO) = LjE"R.k pj(y., Yi.) = 1
(x*,Xo) LjE'RkPj(X*,XJ)

by (2.3), it therefore follows that

It remains to show that (x, XO) = 1. We have:

(x,XO) - ~(x* XO) by (2.6)q* ' ,

1 L . by definition of JYO- -; pj(x*, XJ),
q iE'Rk

1 N

- -; LPj(x·,Xi), sinee pi = 0 if j fi. 'Rk
q j=1

- (x*,Xk
), by (2.5)

- 1, by feasibility of x*.

15



(

(

Henee, the ideal DMU (XO, YO) is efficient.

So xo, yo provide the required input and output levels ta ensure an effi­

cient ranking. If an of the eomponents of the optimal solution x* a.re positive,

then the efficieney ratio q* indieates the necessary proportionate decrease in

eurrent input levels, while maintaining the same level of output, in order to

obtain efficiency. Thus,

or, the input should be proportionately decreased by 100(1 - q*)%.

2.3 Scaling in CCR Models

One property of DEA is that the models are units invariant in the sense

that the variables representing the inputs and outputs do not aH have to

be measured by the same unit. However, this may mean a wide range of

data values which could cause numerical instability and inconsistencies. Ali

[2] reeommends that DEA problems should he scaled in order ta avoid ill­

conditioned problems. Let us investigate exactly what happens if we seale

the data in the CeR tests.

Theorem 2.6 Consider (CeR, k). If the inputs xl, j = 1, ... , N are scaled

by a factor ~i > 0, i = 1, ... , m, and the outputs Y/ are scaled by a factor f3l >

0, 1= 1, ... , s, the ejJiciency rating for every DMUk , k = 1, ... , N remains the

same. Moreover, the ideal DMU of an inefficient DMU does not change. The

optimal solutions of the scaled DMU are multiples of the optimal solutions of

the unscaled DMU by the corresponding reciprocal scaling factors.
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Proof: Take Xi == Xi IQi and Yi = Yi /{3i, where (x*, y*) is the optimal solution

of the unscaled problem. Let the scaled data be referred ta by ~yj = (Cti~Yl) E

~m and yi = (f3iYii ) E ~s, j = 1, ... , N.

Claim: (x, y) E F:

by feasibility of x*. AIso,

by feasibility of (x*, y*).

Claim: (x, y) is optimal. First,

s *
(fi, yk) =~ ~i (f3;"Y/) = (y*, yk) = q*,

where q* is the optimal value of the unscaled problem.

If (x, y) was not optimal, then there would exist (x', yi) =1= (:r., y) such that

(y', (3 . yk) = q' > q*, where

s

q' == ~y~!Jiyk
i=l

s

and q* = L y;yrk
•

i=l

(

But then we could take yi = y~{3i and xi = X~Qi, contradicting the optimality

of (x*, y*) in the original unscaled problem.

Claim: pj = Pj, j == 1, ..., N where p* is an optimal solution of the unscaled

dual problem and fi is an optimal solution of the scaled dual prablem.

The complementarity condition from linear programming theory gives

17



Thus, pj = Pi = 0 for aH j ~ 'Rkl where 'R.k is the reference set for DMUk

as defined in the previous section. \iVhen Pi i= 0, we know that (y, {3 . yj) =

(x, Œ • .Xi) or, equivalently, (y*, yi) = (x*, Xi), where DMUj is efficient

(j E 'Rk ). Since q* = ij, we have from the complementarity condition

(2.8)

Thus,

and

L pj(x*, Xi) = L fii(x*, Xi).
JERk JERk

L (x* ,pj};:i - PiXi) = 0
iE'R.k

(x*, 2:= (l);.X~j - fijX i )) = O.
jE'R.k

(

Now (X k
, x*) = 1 and x* ~ 0 by feasibility. Since X k > 0, this implies that

x* > O. Otherwise, if x* = 0, the first condition would Ilot be satisfied. So

2: pjXi = L pjX
j
,

jE'R.k iE'R.k

and hence the ideal input vector is the same for the scaled and the un­

scaled problem, based on calculations with unscaled data. Because (y*, 1"j) =

(x*, Xi), j E 'R.k , we also have from (2.8) that

2: pj(y*, yj) = L Pj(Y*, yi).
iE'R.k jE'R.k

We showed in the proof of Theorem 2.3 that y* > O. So in a similar fashion,

we can derive that the ideal output vector is the same for the scaled and

unscaled problem. Again, this is based on calculations \Vith unscaled data.
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Chapter 3

Point-to-Set Mappings

This chapter introduces basic theory that is necessary to understand per­

turbed DEA models. In particular, we recall (see, e.g., [60]) basic notions

of parametric optimization and stability and state the Karush-Kuhn-Tucker

conditions for optimality.

3.1 Point-to-Set Mappings in Parametric Op­

t imization

Parametric optimization deals with models of the form

(P,O) M'inx f(x, fJ)

s.t. fi(X, 0) ~ 0, i E P.

(

It involves both the decision variable x E ~n and a parameter, or input,

o E ~p. Each choice of () determines a feasible set, F((}), a set of optimal

19



(

(

solutions F(fJ) = {x(fJ)} and an optimal value 1(0) = j(x(O),f}). The first

two objects are expressed by point-to-set mappings

F: fJ -t F(9) = {x E Rn : ji(X, 0) :::; 0, i E P}

and

F: 0 -t F(f}) = {x(B)}.

(Here, x(B) represents an optimal solution for the given O.) For each choice of

input 0, one seeks x E F(9) which provides the best optimal value. The set

of an fJ for which there exist feasihle points is denoted by :F = {9: F(f}) #- (/)}.

Thus, in the parametric optimization problem, we seek ta

NIinx j(x,9) = j(9)

s.t. ji(X,O):::; 0, 'l E P,

in order to subsequently

Min 1(9)

s.t. 0 E F.

We will assume that f(x,9) and fÏ(x,O), i E Pare continuous functions.

We will also define sorne point-ta-set mappings that will he used in Chap­

ter 5:

P=(9) - {i E P : fi(x, 8) = D};

P< (9) - {i E P : fi(x, 9) < D, for sorne x E F(O)};

F=(9) - {x E ~n : fi(x, 0) ~ 0, 'l E P=(B)};

F;(fJ) {x E ~n: ji(X,O) :::; O,i E P=(8*)}.
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Note that the latter is given relative to a fixed 8* E :F. The first two represent

the active and inactive constraints, respectively, for a given (). p= (()) is called

the minimal index set of active constraints. These two mappings give an

indication of the relative freedom of the constraints within the problem.

At this point, we require sorne basic topology for point-ta-set mappings

in order to define their continuity. In particular, we need the notions of open

and closed mappings.

Definition 3.1 A point-to-set mapping r: ~P ~ ~n is closed at (}* E ~P if,

given any sequence ()k ---t ()* and a seq1LenCe xk E f (()k) such that x k ---t :r* ~ 'i.t

follows that x* E f(9*).

Definition 3.2 A point-to-set mapping f: ~P 4 ~n is open at ()* E ~P if,

given any sequence ()k -+ ()* and any x* E f(9*), there exists a sequence

x k E f«(}k) such that x k ~ x*.

We can now define continuity of point-to-set mappings.

Definition 3.3 A point-ta-set mapping r: ~P -+ ~n is continuons at 0* E

~P if it is both open and closed at (J*.

A closely related concept is that of lower-semicontinuity of the point-ta­

set mapping. In fact, it can be shown that openness and lower-semicontinuity

of mappings are equivalent notions. Also, continuity of the constraint func­

tions guarantees that the feasible set mapping F is closed, so continuity of

F requires that openness, or equivalently lower-semicontinuity, be satisfied.

Let us formalize these statements.
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Definition 3.4 A point-to-set mapping r: mp ~ ~n is lower-semicontinuous

at ()* E ~p if, for each open set A c mn satisfying

An r((}*) =f: 0,

there exists a neighbourhood N(8*) of ()* suck that

An r(o) =f: 0 for each () E N(B*).

Theorem 3.5 A point-to-set mapping r: mp ~ ~n is open at B* if, and only

if, it is lower-semicontinuous at fJ*.

Theorem 3.6 Consider the model (P, ()) where the functions fi : ~n+p ~ ~,

i E P, are continuous. The point-to-set mapping F is closed at every ()* E ~p.

3.2 Stability

We will now define stability of a modeL For our needs, it suffices to consider

only convex models. These are models for which the functions f(·, fJ), f i (., ()) :

~n --+ ~ are convex functions for every () E ~P, i E P. Such models will be

studied around a fixed, but arbitrary, (}*. For simplification, we will use the

following notion:

Definition 3.7 Consider the convex model (P, ()) around sorne ()*. The

objective funetion f is said to be realistic at ()* if

F(()*) #- (/) and bounded.

We will also use uniformly bounded sequences of sets:
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Definition 3.8 A sequence of sets r(8) as f) ---t B* ù; said to be uniformly

bounded at 9* if r(B) C [< for every f) E N(9*) where K is a ball of .finite

radius and N(f)*) is some neighbourhood of f)*.

The following theorem, horrowed from [60], will he used repeatedly. Re­

caU that F: () ---t F(9) is continuous at sorne (J* if, and only if, it is open, or,

equivalently, lower-semicontinuous, at (J*.

Theorem 3.9 (Characterization of Continuity of F(B)) Consider the con­

vex model (P, ()) around some f)*. The following statements are equivalent:

(i) The point-to-set mapping F is continuous at ()* .

(ii) For ever'lJ realistic objective function f there exists a neighbourhood

N(f)* ) of ()* such that

F(f)) i= 0 and uniformly bounded

for ever'lJ () E N(9*). Moreover, aU the limit point" of x(H) E F(fJ), w;

() -t (j*, () E N((}*), are contained in ft'(f)*) .

(iii) For every realistic objective function f there exists (L neighbo'lLrhood

N(0*) of ()* such that

F(O) i= 0 for every () E N«(}*) and 0 ---t (J* 'im.plies j(8) ---t J«(J*).

An accompanying note is that for any model (P, B) with a. continuous

feasihle set mapping F, the optimal solution mapping F is closed. The above

characterization is crucial hecause it is integral ta our definition of stability.

23



(

Definition 3.10 A convex model (P, B) is said to be stable at a given

()* E F if the objective function is realistic and the feasible set mapping

F is continuous at ()* .

A convex model (P, 0) will not necessarily react continuously to contin­

uous perturbations of an input O. Those perturbations that do preserve the

lower-semicontinuity of the feasible set mapping F fonn a region of stability.

Definition 3.11 Consider the convex model (P, 0) around some 0* with a

realistic objective function. A set S C ~P, containing 0*, is called a region

of stability at 0* if, for every open set A c ~n satisfying

An F(O*) i= 0

there is a neighbourhood N(0*) of 0* suck that

An F(O) i= 0 for each (J E N(O*) n s.

3.3 KKT Conditions

To finish this chapter, we state the two versions of the Karush-Kuhn-Tucker

(KKT) conditions which serve to characterize optimality at a point x* and

we provide a saddle point condition which is necessary and sufficient for the

optimality of the parameter ()* for programs with linear constraints. The

conditions are stated for a convex problem of the form:

(

(CP) Min f(x)

s.t. fi(x)::; 0,

24
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The first version makes use of the Lagrangian over a rest.rictec1 set. The KKT

conditions are said to hold, if the system

\1J(x*) + L: u/v fi(X*) = 0,
iE'P(X" )

Ui ~ 0, i E P(x"'),

is consistent, where P(x*) = {i: ji(x*) = O} denotes the set of active con­

straints at x*. The latter version circumvents the restriction on the summa-

tion by incorporating the complementarity conditions:

vJ(x*) + L UiVJi(x*) = 0,
iE'P

UiJi(X*) = 0, i E P,

Ui ~ 0, i E P.

Note that the two systems are simultaneously either consistent or incon­

sistent.

Corollary 3.12 (Sufficiency of the KKT conditions) Consider the con­

vex program (CP), where ail functions are assumed differentiable, and a fea­

sible point x*. If the KKT conditions are satisfied at x*, then x* is an optimal

solution.

The above tools extend to the parametric case for fixed O. Thus, the

KKT conditions, for the convex model (P, 0) with a fixed (J and a feasible

point x* E F (0), can he expressed as

\1 f(x'" ,0) + L Ui«(J)VJi(x*, 9) = 0,
iE'P

ui(O)fi(x*, 0) = 0, i E P,

Ui«(J) ~ O,i E P.
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As 0 varies, so do the Lagrange rnultipliers (Le., they become functions of

the parameter 0). Thus, the KKT conditions also provide a characterization

of optimality for the parametric problem with fixed (J.

Finally, we include a saddle-point condition for optimality of sorne 0*

which is based on the classic Lagrangian

L(x, U; 0) = J(x, fJ) + L Uiji(x, 0).
iE'P

It is stated for linear models (Le., convex models where j(., O),ji(., fJ): ~m ~

~, i E 'P are linear functions. The results of this section can be extended to

the so-called LFS functions (see, e.g., [60, 44]).

Theorem 3.13 (Optimal Inputs for Linear Models) Consider the lin­

ear model (P, ()) around sorne 0*. Assume that the optimal value function

j: ~p --)0 R exists on F. Let x* be an optimal solution of the program (P, 0*).

Then (J* minimizes j on F if, and only if, there exists a non-negative vector

function u*: F ~ u*(O) E ~~ such that

L(x*, u; 0*) ~ L(x*, u* (0*); 0*) ~ L(x, u*(O); 0)

for every u E ~~, every x E ~n and every 0 E F.
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Chapter 4

Survey of Approaches to

Post-Optimality Analysis

4.1 Radius of Stability

In [39], Kuntz and Scholtes present means of determining what they caU

condition numbers for an efficient DMU. These quantities, called radii of

stability, provide information about the data perturbations which preserve

the current efficient status of a DMU. Thus, the method is only applicable

to efficient DMU's. The authors consider perturbations of the input-output

vector for a particular DMU, of a particular commodity and of aH sampled

production vectors. The condition numbers, or radii of stability, associated

with each of these perturbations are referred to as the individual conùition

number, the condition number with respect to a commodity i and the total

condition number, respectively.
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This is a cone-based CCR efficiency measure approach in which the tech­

nology cane (i.e., the set of aH production possibilities given current tech­

nology as represented by the sample production vectors), is explicitly con­

structed. The data is structured in a production matrix A, where each col­

umn represents both inputs and outputs for a DMU. A is in turn embedded

into a parametric family A(À) (i.e., A == A(Ào) for sorne parameter Ào ). The

sensitivity analysis of an efficient DMU, say Ab seeks to determine the ma."'C­

irnal number f such that Al (À) is an efficient element of the technology cone

T[A(À)] == {w E ~m+sI3z ~ 0: A(À)z ~ w} with IlÀ - ÀoII ::; €.

The individual condition number allows for perturbations of a particular

efficient DMU (i.e., A(À) == (À, A2, ••• , AN)' It coincides with the optimal

value of the program

lv/in IIx - Alli

s.t. x E T[A2 , .•• , AN].

For the il and Zoo norms, this can be converted to a linear program by stan­

dard transformations.

The condition number with respect ta a commadity allows for perturba­

tions of a single, say the first, commodity. Sa

(

Àl, ... , ÀN)
A(À) == ,

al, ... , aN

where ai are the remaining m + s - 1 commodities for each Div/Vi' If there

exists a vector v ~ 0 such that alv ~ 1 and a{v ::; 0 for every i == 2, ... , N,

then the condition number of Al with respect ta commodity 1 is infinity.
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Otherwise, the condition number is bounded below by the optÎlnal value of

the program

Nlin liA - ÀolI

s.t. -alV - Àl ~o

ai'V + Ài ~ 0, i = 2, ... ,.Pl

v ~ o.

Here, Ào represents the original unperturbed data and once agaiu, for the il

and Zoo norms, the above cau be transformed iuto a linear prognun.

Finally, the total condition number allows for unrestricted perturbations.

Thus, A(À) = [Àl , ... , ÀN ), Ài E ~m+s, i = 1, ... , N. This condition number is

given by the optimal value of the program

s.t.

v

~ 1

~ 0, i = 2, ... , N

~ o.

(

In aH cases, the condition number is dependent upon the choiee of norme

The theory is based on the result that, for ê1 given production matrix A, if A j ,

representing a sample production vector (i.e. a single vector of inputs and

outputs which represents a DMU) does not belol1g to the technology coue

spanned by the remaining sample production vectors, then Aj is an efficient

element of the technology cane spanned by aH sampIe production vectors. In

terms of our terminology, if a DMU does not belong to the cone generated by
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the other DMU's, then it is efficient with respect to the cone generatecl byaU

DMU's. Let us il1ustrate the above ideas on a concrete example, borrowed

from [60].

Example 4.1 Consider two DMU's, each with one input and two outputs.

The data is presented in the table below.

1

1

1

1

1

2

·C

The CCR test gives the following models to be solved for the respective

DMU's.

(CCR,l) Max Yt + Y2

s.t. Yt +Y2 ~ Xl

YI + 2Y2 ::; .'1: 1

Xl =1

Xl, Yt, Y2 ~ 0;

(CCR,2) Max YI + 2Y2

s.t. Y1 + Y2 ~ Xl

YI + 2Y2 ~ Xl

Xl =1

Xl, YI, Y2 ~ Q.
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Both DMU's are efficient since the objective is 1 in the optinlal solution.

Optimal solutions are [Yb Y2, xdT = [1, 0, 1]T in both cases and dual solutions

are [Pl, P2]T = [l,O]T and [O,1]T respectively. We will specifically consider

DMU2 •

For our example, the individual condition nunlber is given by the optimal

value of

l\fin Ilx-A2 11

s.t. -YI ~ Xl

YI ~ X2

YI ~ :Ca

YI ~ 0,

where A2 = (-1,1, 2)T is the production vector for Dl\fU2. The authors in

[39] use negative entries to represent inputs and positive entries for outputs.

For the LI norm, the condition number is 4 anù for the Loo norm, it is 2. Thus,

within a cell of size 4 centered at (-1,1,2), DMU2 will retain its efficiency.

A lower bound for the condition number with respect to commodity 1

(the input) for DMU2 is given by

This bound is 2 for the II norm and 1 for the Zoo norm. Sa, if we perturb
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the input for both DMU's up to a value of 1, D1vIU2 will remain efficient.

Also for DMU2 , the lower bound for the condition number with respect ta

either output for both of the previously employed norms was zero. A cursory

consideration of the example will make it clear that this bound is not very

t.ight. This condition number indicates that a pertubation of 0 of an output

will cause DMU2 ta remain efficient. This is nat particularly infonnative

and it is dear from an inspection of the data, that we could decrease output

2 by 1, retaining positivity of output 2 for D MUI and clearly retaining the

efficiency of D NIU2•

4.2 Radius of Classification Preservation

In a series of papers [25, 48, 19] by Rousseau and Semple et al., the concept

of a radius of classification preservation (RCP) is defined and discussed. Pro­

gram formulations are also presented. The Rep is the largest radius of a baIl

centered at the current input-output position of any DMU, either efficient

or inefficient, snch that aIl the points in the interior of this baIl preserve the

current efficiency classification of that DMU. Clearly, the Rep is dependent

on the chosennorm. Formulations, based on the ratio model, are given for

both the il and Zoo norms. Different formulations are required depending

on whether the DMU is classified as efficient or inefficient. For an efficient

DMU, the idea is to determine by how much it can be worsened before it lies

within the convex hull of the production vectors of the other DMU's, thereby

making it inefficient. In the case of an inefficient DMU, one seeks to measure

the minimum distance between the DMU and an unstable point. (A point
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is unstable if, and only if, for € > 0, the open baIl, centered at that point, of

radius €, contains bath efficient and inefficient points.)

There is also a combined formulation for a DJVIU/c which suffices for either

efficient or inefficient DMU's and which gives the classification as weIl as the

RCP:

s.t. y(k)" - s+ + a+e... - a-es = Yk

X(k)À + s- - a+em + a-em = :c/c

\ + - - +>01\, S ,S ,a ,a _ .

Here es and em are vectors of l's of the appropriate dimensions and y(k) and

X(k) represent matrices of outputs and inputs respectively with the column

for DA;JUk omitted. Based on the uniform norm, the sign of the optilnal

value indicates the classification, a negative identifying an inefficient DMU,

a positive identifying an efficient DMU, and the optimal value gives the RCP.

Example 4.2 Consider again the two DMU's from Example 4.1. The

RCP of DMU2 for the Loo norm under the combined formulation is given by

the optimal value of the program

Afin a+ -a-

s.t. Àl - st + 0:+ - a- =1

2À1 - st + 0:+ - a- =2

Àl + s- - a+ + a- =1

À, s+, s-, a+, 0:- ;::: O.
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The optimal solution is 0.5 suggesting that within a ball of radius 0.5 centered

at (1,1,2), DNIU2 will remain efficient. For the h norm, the R.CP, given by

the optimal value of

Min wt + tUt + tU-
s.t. )q - st + wt = 1

2,Xl - st + 'lUt = 1

'xl + s- + w- = 1

\ + + - + + ->0
.1\ l, SI' S2 , S ,W l , w2 , 'lU _ ,

is 1. Thus, within a ceU of size 1, DMU2 will remain efficient. The RCP of 1

is the greatest perturbation of aH variables combined that will preserve this

classification.

4.3 Sensitivity Analysis

In [20], Charnes, Cooper et al., introduce a sensitivity analysis method for

the additive model which provides sufficiency conditions for the continued

efficiency of a currently efficient DMU. Their method can he applied to in­

efficient DMU's, but is much simplified by restricting its application only

to efficient ones. The authors restrict their attention ta output reductions,

one at a time, of a particular DMU, that will maintain the efficiency of that

DMU.

Neralié [21] has further developed this work. He considers efficient DMU's

where allowable perturbations are defined by an increase of inputs and a
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decrease of outputs and by a decrease of inputs and an increase of outputs for

inefficient DMU's. In this manner, he is improving the status of inefficient

DMU's and worsening that of efficient ones. The fundamental idea is ta

determine by how lnuch inputs or outputs can be perturbed before there is

a change in the optimum tableau of the simplex method. He finds sufficient

conditions for the optimal basis to remain unchanged with the optimal value

still equal ta 1, thus preserving efficiency.

Sufficiency conditions for preserving efficiency are developed for pertur­

bations of a single input, a single output, for the simultaneous change of

aH inputs and an outputs, both separately and combined, of a particular

DMU. More recently, in [22, 23, 45, 46], Neralié has introduced sufficiency

conditions for the simultaneous change of all data, for the decrease of aU out­

puts of efficient DMU's with fixed inputs, for the decrease of a single output

of efficient DMU's with an increase of the same single output of inefficient

DMU's and, similarly, for the increase of a single input of efficient DMU's

and a decrease of the same input for inefficient DMU's, and for changes in

inputs and outputs of different proportionalities. Let us il1ustrate Neralié's

ideas on the DMU's from Example 4.1.

Example 4.3 Applying Neralié's methods of sensitivity analysis to our

two DMU example, we first chose ta decrease output 2 of DlvlU2 by a, making

the output vector [1,2 - al. The sufficiency conditions reduce to 0 ::; a ::; l.

Reduction of output 2 for DMU2 by 1 results in two identical and necessarily

efficient DMU's. Reducing output 2 by more than 1 results in DMU2 being

in a worse situation that D MUI , in the sense that it produces less output

for the same amount of input, thereby making it inefficient. Similarly, for
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output 1, with the output vector [l-a, 2], sufficiency conditions for continued

efficiency of DMU2 require a to be zero. If we increase the input by (3 and

decrease output 2 by a, the conditions imply that (3 = 0 and 0 ~ a ::; l.

So, for DMU2, with input 1+ {3 and output [1,2- a], we must not increase

the input and may decrease the output 2 by at most 1 in order to retain the

efficiency of DMU2 in comparison to an unchanged D1\lU1• These results

are easily seen by an inspection of the original data. It should be noted that

the determination of these sufficiency conditions were lengthy to compute,

even for such a simple example.

4.4 Cone-Ratio Model

Charnes, Cooper, Huang, Sun and Wei [10, Il, 18] have developed theory

for a cane-ratio model, specifically for polyhedral cones, and its relation to

multi-objective programming. This cane-ratio CeR model is based on the

original CCR model, but it allows for infinitely many DMU's and arbitrary

closed convex cones for the virtual multipliers. This method can aiso he

adapted to other models such as the additive model. The cone-ratio model

allows for the inclusion of additional relevant information in the construction

of a more adequate DEA model either by direct modification of the pro­

duction possibility set or by restricting the ranges on the marginal rates of

substitution of inputs or outputs.

The cone-ratio CeR model in the case of a finite number of DMU's is
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given by

Max f..LTYk

s.t. wTX + J,lTy :::; 0

WTXk = 1

w E 11, J,l E U.

X and Y represent matrices with input and output vectors respectively as

columns for aH DMU's. X k and Yk are the input and output vectors of

the particular DMU under consideration. A DMU is efficient if J-LTy/c = 1,

w* E lnt 11 and M* E Jnt U, where '*' indicates an optimal solution of the

above problern.

In particular, for polyhedral cones, (Le., canes which can be represented

as an intersection of a finite number of half:'spaces) one can write

V {v E mm: 'V = ATY for som.e y ~ D}

U - {u E ~s:u = BTz for sorne z ~ a},

for sorne m x l matrix A and sorne s x k matrix B. Thus, the problem can

he reformulated as

Max zT(BYk )

s.t. yT(AX) + zT(BY) :::; a

yT(AXk ) = 1

Y ~ 0, z ~ 0

y E El, Z E Ek .
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The authors show that certain fundamentals from linear programming the­

ory hold for the cane-ratio model, snch as weak and strong duality theorems.

They establish the existence of at least one efficient DrvIU in the cone-ratio

model and the projection of inefficient DMU's onto the efficiency surface, as

weB as the equivalence of an efficient DMU and a non-donlinated solution

from multi-objective programming. It is proven that a DMU ranked as effi­

cient under the eeR test will also be efficient in the cane-ratio model if the

optimal dual solution from the eeR test is contained in the constraint cone

used in the cone-ratio model. Otherwise, it will be ranked as inefficient.

The additional constraint canes may be selected sa as ta emphasize par­

ticular inputs or outputs or so as to favour individual DMU's. A constraint

cane tilted towards any objective, whether an input or an output, will em­

phasize that objective. Ta favour certain DMU's, one can place bounds on

the virtual multipliers. Those DMU's with ratios of multipliers falling within

the ranges specified by the bounds will remain efficient. In the case of poly­

hedral constraint canes, one can use the cone spanned by the optimal eeR
test dual vectors of those DMU's deemed most efficient by expert opinion.

Example 4.4 Let us use this method for the two DMU's in Example 4.1.

We leave the input multipliers unaffected and constrain the ouput multipliers

by defining the cone U = {ATa: Q 2:: O} with



(

This is equivalent to perturbing the data in the following manner:

(

If ai is sufficiently small and a2 is sufficiently large, this approximates to

DlvIUI DMU2

~Y 1 1

Yi 1 1

Thus, al is dominated by the observed value of YI, and a2 dominates the

observed value of Y2. The DMU's originally producing the most Y2 will still

be efficient. Here, the efficiency of both DMU's will be preserved under

the additional restrictions. If a2 is sufficiently small and a l is sufficiently

large, the situation is reversed. In that case, only D MU2 would maintain

its efficiency. Similar cones can be constructed for the inputs. Gnly those

DMU producing the least amount of the emphasized input would retain their

efficiency ranking. In order for us to initiate an emphasis towards a DlVIU

by using appropriate optimal virtual multipliers ta construct the cane, we

would require a larger sample size.
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4.5 Assurance Regions

Thompson [55] has done a great deal of work on a concept that he refers to

as Assurance Regions (AR). The method was first used in determining the

optimal location for a Superconducting Super Collider physics laboratory in

the V.S. when standard DEA techniques returned aU six possible locations

as efficient. The technique is applicable ta any model; it seeks to include

'priee-cast' inequality bounds for the mathematieal multipliers in the DEA

problem, thereby reducing the number of efficient DivrU's. One can use

survey data and expert opinion to specify or estimate boundary conditions

for the virtual multipliers.

For DEA problems with a finite number of DivrU's and a well-defined data

domain, Thompson defines a Strict AR to be a subset of virtual multipliers

W such that the vectors w, excluded from the AR, are not reasonable virtual

multipliers. A Flexible AR is defined such that it permits a low probability

for the exclusion of sorne reasonable virtual ffillltipliers. Here, the set of aIl

virtual multipliers W is equal to the union of the AR and the set of excluded

virtual multipliers.

Initially, Thompson considers a sequence of Assurance Regions which

gradually refine the original feasible set. Under this AR-I principle, t.he

regions can be specified as separable canes by using homogeneous sets of

linear inequalities. Specifical1y, he looks at the use of cane-ratios, but this

restriction is not necessary. In particular, he employs the use of bounds on

the ratios of virtual multipliers. Thus, an AR-I model can be described by:
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YjQl.fj ::; Yi, j = 1, , t;, i = 1, , S

xd3~ ::; Xj, j = 1, , m, i = 1, , m,

x,y ~ 0,

where QI. and {3 represent bounds on the changes in consllmption or prorh1r­

tian levels. This refiects a more realistic input-output behaviour dynulnic.

Practically, one can construct an input cane and an output cane. The AR-I

consists of all vectors w = [v, w]T where v belongs to the output cone and w

belongs to the input cone.

AR-I does not specify any interrelationships between the input and output

priees. 80 Thompson theoretically considers an additional tightening AR-II

which specifies the input and outputs cones and defines linkage constraints

aij ::; Yj/Xi ::; f3ij between the input and output virtual multipliers. These

non-separable canes allow the inclusion of priee ratios relative to marginal

rates of substitution in the mode!.

4.6 Dynamic Efficiency

As complement ta Thompson's development of Assurance Regions, Van Rooyen

[56] uses parametric analysis as a means of interpretating the CeR efficieney

test. He also introduces a modified test which measures the dynamic effi-
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ciency of a DMU.

For the eeR test, he shows that

(k) 8E(k) (k) (8E(k) ) 1
Yi = al~(k) and '''Cj = - axjk) E{k) ,

where E(k) is the efficiency evaluation for an inefficient D1\lU#;: a.nd :dk
:) a.nd

yjk) are the }argest individual components of the optimal solution (:c*, y*).

So y~k) is the rate of increase of efficiency of nMUk for an increase in output

i while x)k} is the rate of decrease of efficiency for an increase in input .1. In

addition, if the efficiency remains constant under perturbations of the data,

then x~k} / y;k), when well defined, is the shadow price of outputting Yi relative

to inputting Xi.

The modified test is

1\11ax (Yk, y)

s.t. (Y'k,y) - (Xk, x) ::; Eek

(Xk,x) = 1

x 2::0

y 2:: Q.

This program is dependent upon a fixed E, lEI < 1, chosen to rcfiect the

marginal efficiency over the usual efficiency. It measures how much better

an efficient DMU can become in relation to its efficient peers. Similarly, one

can determine by how much such a DMU can be worsened by minimizing

the above model.

Example 4.5 ln an application to the two DMU's from Example 4.1,

we have imposed linkage constraints QX ~ Yl ~ f3x on the feasihle set,
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inducing an increasingly restrictive cone. This is equivalent to placing bounds

on the marginal rate of substitution of output 1 with respect ta the input.

Thompson refers ta this as AR-II. It is also suggested in Van Rooyen and in

the cone-ratio methods described earlier. The results obtained were:

Cl {3 D1vIU1 DlvIU2

2 4 infeasible infeasible

1 3 1 1

0.5 1 1 1

0.5 0.75 0.875 1

0 0.5 0.75 1

Van Rooyen's dynamic model for determining how much better an efficient

DMU can become than its efficient peers gives the fol1owing results:

f DMU1 DMU2

0.5 1 1.5

0.1 1 1.1

0.01 1 1.01

0.001 1 1.001

0.0001 1 1.0001

Clearly, D MU2 is more resilient and its efficient ranking is more secure than

DMU1 • An attempt ta determine how much worse a DMU could become

resulted in unbounded solutions for both DMU's for the the values of f given

abave.
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4.7 Structural Efficiency

In [60], Zlobec suggests a form of parametric post-optimality analysis, t.he

goal of which is to reduce the number of DMU's classified as efficient.. The

feasihle set of an efficient DMUk is systematically decreased in an economi­

cally meaningful \Vay using the model:

(PO, 9) Max (y, yk)

s.t. (y, yk) ::; (x, X k),

(x, .X k
) = 1

x,y ~ 0

xEC1(O), YEC2 (O).

j = 1, ... , N

{

Here Cl (8) and C2 (8) are canes of the form

C l (8) - {.'L:x=A(O)u, 'U~O}

C2 (O) - {y: y = B(O)v, v ~ D},

and A(O) and B((J} are matrices whose elements are continuous functions of

the vector parameter (J. Thus, a structurally effieient DlVIU. relative to som(~

prescribed 0°, is defined ta be an efficient DMU that remains efficient for

every sufficiently small stable perturbation l'rom (Jo in the luodel (PO, fJ).

Zlohec notes that the classification of a DMU as structurally efficient is

dependent on the initial (Jo and on the allowable perturbations. AIso, every ef­

ficient DMU that remains efficient after applying (PO, (J), without restricting

perturbations to stable paths, is structurally efficient but the reverse is Ilot
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necessarily true. The intent of the method is related ta Thompson's Assur­

ance Regions or ta the Cane-Ratio methods with the additional requirement

of stable perturbations.

Example 4.6 Recall the two DMU's from Example 4.1. Notice that the

eeR model for DMU2 in our example reduces ta a program in two variables:

IvIax Y1 + 2Y2

s.t. Y1 + Y2 ::; 1

We will take

Cl (fJ) = {x E Rix = 'U, U ~ O}

and

C2 «(}) = {y E~21y = (1 -()) ( ~l ) , V ~ D},
-0 1 V2

where 8 is allowed to vary in the interval [0,2]. We are imposing no change

on the inputs from the usuai CCR test and we are invoking a decrease in each

of the outputs by the parameter O. For 1 ~ () :::; 2, the feasible set consists

of the single point [YI, Y2]T = [0, olT and so the model has an objective value

equai ta O. For 0 < () < 1, the feasihie set is a triangular region determined

by the constraints

1
VI + V2 :s (1 _ fJ)

(1 - 2fJ)VI + (2 - fJ)V2 ~ 1
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where the original variables Yl and Y2 are transformed by

Yl = VI - ()V2

Y2 = -OVl + V2·

The optimal value is 1 so DJvIU2 remains efficient for these pert.urbat.ions.

For () = 0, we recover the original problem.

An increase in () starting from 0 does not affect the efficiency ranking.

A local increase from () = 1 causes DlvIU2 ta lose its efficiency, but such

perturbations are not stable because the feasihle set drops to a point and,

therefore, D JvIU2 is considered structurally efficient. Note that it would not

remain efficient under equivalent cane restrictions in the cane-ratio mode!.

4.8 Summary

In this chapter, we have studied sorne of the popular post-optimality analysis

approaches in DEA. Every approach described in this chapter has different

goals and is structured to permit particular, and differing, perturbations of

the data. The methods can he divided into one of two classes: those that

seek to gradually restrict the feasible set in a meaningful way in order ta

eliminate sorne of the DMU's classified as efficient, and those that attempt

to determine those perturbations which preserve the efficiency classification

of a particular DMU while the others remain unperturbed. Those that faH

into the former category include the cone-ratio model, assurance regions and

structural efliciency. A graduaI elimination process is effected by adding and

then tightening additional constraints based on economic interpretations.
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The idea of a structurally efficient DMU is advantageous because there are

no limitations as to the allowable perturbations of the data. Also, interest is

restricted ta stable regions sa that the feasihle set and the optimal solutions

change in a continuons (economically meaningful) fashion.

The latter methods are dependent on the choice of norm and are only

readily solvable for the lt and loo norms. In these cases, the programs can

be reduced to Hnear ones, using familial' substitutions. Perturbations are,

in general, restricted ta very particular cases in the data of a single DlvIU.

In addition, results may be misleading if the method is dependent 011 main­

taining the original optimal basis. In this case, a global maximum may not

be found since DEA problems are degenerative in nature, and thus multiple

optimal bases are likely ta exist.
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Chapter 5

Radius of Rigidity Approach

In this chapter, we study a new approach in which we classify efficient DMU's

by their "radius of rigidity". The radius of rigidity problem seeks to de­

termine the maximal radius that guarantees the continued efficiency of a

currently efficient DMU. Much of the work that has been done in this field

involves perturbing the data only for the DMU currently under considera­

tion, whether it be efficient or inefficient. Here, we shaH restrict our interest

to efficient DMU's, but we will allow perturbations of the data for aH DMU's

except the DMU currently under consideration.

5.1 Theory for Radius of Rigidity Approach

In the theory that fol1ows, the maximal radius of rigidity problem is formu­

lated as the parametric optimization problern
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(L,6,k) Max 11611

s.t. (1.ri(O) ,y) ::; (Xi(O), .7:)

(xie, x) = 1

(ylc, y) = 1

y~O

x ~ O.

j=l, ... ,N, ji=k

(

We have referred to our problem as (L, 0, k). The 0 indicates a parametrized

problem; the L stands for linear. Since the objective function is a norm, it

is convex in 6 and, for fixed f), aU constraint functions are Hnear in x and

y. Notice that we are maximizing a convex function. We will thus restrict

our attention to norms which can he transformed iuto linear functions, for

example, h or loo. More work needs to be done for the Loo norm sinee the usual

transformation for minimizing this norm does not hold for a maximization

problem. For the moment, we will specifical1y consider the h norm.

We initially consider an efficient DMU le at () = 0, an unperturbed prob­

lem. The rounded brackets indicate the Euclidean inner product and () is a

vector determined by the perturbations which one wishes ta consider. The

constraints are identical to those in the original eeR test except for the ad­

dition of the constraint (ylc, y) = 1 and the deletion of one of the reference

set constraints, (yk,y) ::; (XIe,x). The additional constraint forces DMUIc to

remain efficient for perturbations of fJ not equal to zero. The constraint that

was removed was necessarily active but was redundant because the problem

already specifies that (Y\ y) = 1 and (Xie, x) = 1. As in the CCR test, we

assume that aH components of Xi and yi, j = 1, ... , N, are strictly greater
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than zero. We can now formally define the radius of rigidity.

Definition 5.1 The radius of rigidity of an efficient DMUk is the optimal

va,lue of (L, 6, k).

The radius of rigidity for an efficient DNIUk is a uniform measure of

the greatest allowable specified perturbation of the data which ensures the

continued efficiency of DA!fUk • The goal of the radius of rigidity problem is

to provide a. means of ranking the efficient DMU's. The interpretation of the

radius ofrigidity is as follows: it provides an indication ofhow seeure Dl\.;JUk's

efficient ranking is with respect to the assumed attempts at improvement

by other DMU's. In other words, it indicates how long an efficient DMUk

can remain statie and still be efficient while the other DMU's continue to

improve. In arder ta make comparison meaningful, we seale all input and

output data ta he between zero and one. (This can he done by dividing each

input (output) hy the largest one of the same type. Reeall Section 2.3 for a

justification.)

If we assume that inefficient DMU's will attempt to improve their effi­

ciency, then we should define the perturbations for these DMU's by

(5.1) Xi(O) (X - O]i, i = l, ... , m

(5.2) }j(O) = (Y + Oli, j = 1, ... , S

(5.3) 0 > o.

Note that for X(O), Y(O), Le., when () = 0, DMUj is unperturbed. For

an efficient DMU, there are two possible scenarios. Either we assume that

these efficient DMU's are attempting to increase their competitive edge, in
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which case perturbations for these DMU's would be specified as above. Or,

we may assume that they choose ta eut back on production while remain­

ing efficient. In that case, the perturbations of their data should he defined by

(5.4) -,Yi(B) - (X + 9]i, i = 1, ... , 'm,

(5.5) Yi(B) - [1/ - 8]i, i = 1, ... ,8

(5.6) e > Q.

One may tailor the perturbations according ta the type of situation regarding

which one seeks information.

Let us point out that although we eonsider the radius of rigidity for an

efficient DMU, the problem could be formulated for an inefficient DMU if,

for instance, one wished to determine how resilient an inefficient DMU was

ta perturbations of the data. This eould be done simply by replacing the

canstraint (yk, y) = 1 by (yk, y) ~ 1 or by forcing (1/ k , Y) to he greater

than the aetual efficiency evaluation.

An alternate approach to the radius of rigidity problem is given by

Max Il e 1\ +(xk,x)

s.t. (yi(8), y) ~ (.X"i(8) , x)

(Xk,x)~l

(yk,y)=l

y~O

x ~ 0,

j=I, ...,N,j#k

(

provided the optimal value of (X k , x) = 1. However, it remains to be shown
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that the optimal value of the expression (..-yk, ;z;) is always 1, and that in­

feasibility indicates that D !vfUk can no longer remain efficient under the

perturbation O. This problem is equivalent to a multi-objective program

with equal weights on the two objectives.

It is weIl known that the KKT conditions are necessary and sufficient con­

ditions for optimality of programs with linear constraints. (For the KKT con­

ditions, see Section 3.3.) However, the above model is not a Hnear program

(jointly in the (x, y, f}) variable). So to check optilnality, we need different

optimality conditions. First, we observe the equivalence between the KKT

optimality conditions and the saddle point characterization of optimality for

a fixed (J. Consider the Hnear model:

(L,O) Alinx j(x,9)

s.t. ji(X, 0) ~ 0, i E 'P,

where j(-, 8) and f i (., 0), i E 'P are assumed to be linear for every O. Let us

construct the corresponding classic Lagrangian

L(x, u; 0) = jCx, 0) + L uiji(X, 0)
iE'P

and define m to have the cardinality of P.

Theorem 5.2 Consider (L~ 0) where aU functions aT'e differentiable in x

around sorne 8. Then, jor every fixed 0 E ~P, at an arbitranJ x* E F (0), the

KKT conditions

(

(5.7) v xj(x*, 0) + L 'ui(9)Vx/i(X*, (J) = 0
iE'P
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(5.8)

(5.9)

are satisfied if, and only if, for the same vector function u(8): HP -+ R~, we

have

(5.10) L(x*, Uj 8) ~ L(x*, u(O); 0) ~ L(x, u(8)j 8)

for every x E ~n and for every u E R~.

This is a well-known facto (See, e.g., [62].)

In order to solve the problem (L, 8, k), we will use a marginal value

formula. First, we need conditions for the boundedness and continuity of the

Lagrange multiplier function. (We do Dot know how to prove the marginal

value formula if these functions are discontinuous.) It is weIl known that

Lagrange multipliers are unbounded if the constraints do not satisfy Slater's

condition.

We will establish a form of the marginal value formula which uses a

restricted Lagrangian. For a general convex model

(P,8) Minx f(x, 9)

s.t. fi(x, 0) ~ 0, i E P,

(5.11)

(

around a fixed 0* E :F, define

L~ (x, 'U, 0) = f(x,O) + I: 'Ui(O)fi(x,O),
iEP«IJ-)

where P«f}*) is as defined in Chapter 3. Let c he the cardinality of P«O*).
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Theorem 5.3 Consider the convex model (P, 9) a,round some 9* and a re­

gion of stability S at (}*. Then there exists a neighbourhood N (rr) of 8*

such that, for every fixed f) E N(O*) n S, x(O) E F*=(9) is an optimal so­

lution of the program (P, 9) if, and only if, there exists a vector function

ü: N (9*) n S --+ m+ such that

(5.12) L~ (x(9), u; 0) ~ L~ (x(O), ù(O); 9) ~ L~ (x,ü(9); 8)

for every U E R+ and every x E F.= (9) .

The proof of this theorem is given in [60]. The proof given there also

establishes the fact that

(5.13) L ùi(9)fi(i(O), 0) = O.
iEP«O*)

(

Theorem 5.4 Consider the convex model (P, 9) around some f)* with a

realistic objective funciton. Let S be a region of stability at f)* and let F.=

be lower-semicontinuous at 0* relative to S. Consider a sequence of sets of

Lagrange multipliers {Ù(O)} from the saddle-point condition (5.12) as f) --+

0*, 9 ES. Then every sequence u(9) E {ü((J)} is uniformly bounded for aU (J

sufficiently close to (J* and ail its accumulation points are in {ü((J*) }.

The assumptions for the MVF require lower-semicontinuity of F=(9) and

uniqueness of the optimal solution and of the saddle point. We will also

require certain assumptions about f). Let us consider perturbations in (a

particular region of stability):
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Theorem 5.5 (Marginal Value Formula) Consider the convex model (P,fJ)

with a realistic objective function at some B*, Let us assume that the m.ap­

ping F=: 0~ F= (B) is lower-semicontinuous at 0* relative to the set S, and

that the saddle point {.-t(O*), u(B*)} is nnique. Also ,suppose that the gTadients

\lof(x,B), \lofi(:r,O), i E P«O*) aTe continuous at (x(B*),fJ*). Then, fOT

every sequence fJ E S, {} ~ ()* for which the limit

() - ()*
l = Hm

8ESj(}~O" II{} - ()* Il
exists, we have

(MVP) l' f( 8) - J({}*) - M L< (- (8*) -«(J*). (}*) l
lm 118 (J Il - v 0 * x ,U l '.

OESjO~O" - *

(

Proof: First we note that, for perturbations in S,

F.=({}) - {x: fi(x, B) :$ 0, i E P=(l;1*)}

{x:fi(x,B):$ 0, i E P=(B)}

- P=(B).

Therefore, the requirement on lower-semicontinuity of F; in Theorem 5.4

and the usual MVF (see [60], Theorem 10.1) can be replaced by requiring

lower-semicontinuity of F=. But the latter implies lower-semicontinuity of

the mapping F. (See, e.g., [53], Lemma 1.4.) Hence, S is a region of stability.

We also note that for perturbations in S, the two inclusions can be rewrit-

ten as

F«(J*) c F;«(J), F({}) c F;«(J*).

Using the saddle-point condition from Theorem 5.3 for () E N«(J*) n S, we

have

L~(x((J),U;(}) ~ L~(x«(}),ü«(});B) ~ L~(x,u({});8)
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for every x E F.=(O), and for every u E ~~, and, in particular, at 0 = f}*,

L~ (x(9*), Vi 0*) ::; L~ (X(O*), U(O*)i 0*) ~ L~ (z, u(B*) i 0*)

for every Z E F;=(O*), and for every v E ~~.

By (5.13),

L ui(O)fi(X(O),O) = 0
iEP«9)

and

L 'üi(B*)fi(X(O*), 0*) = O.
iEP«O*)

Thus

L~(x(f)),U(O)i e) = J{B)

and

L;(x«(J*), U(O*); 0*) = f(o*).

After rearranging the above saddle-point conditions and adding and sub­

tracting the term L~(x(O*),U(O)i 0), we obtain

!(O) -1(0*) ~ L;(x,u(O),lJ) - L;(x(O*),u(O);lJ)

+ L~(x(O*), u(8); 0) - L;(x«(J*), v; 0*)

for every x E F;= (0), and for every v E R~.

By choosing 'V = ü(O*) E R~ and x = x(O*) E F;=(O) by the assumptions,

we have

(

l(B) -1«(}*) <

<

L~(i;(O*), 'ü«(}) , fJ) - L;(x(lJ*), 'iL(8); 8)

+ L;(x(8*), U(O); (J) - L;(x(O*), 'Ü(O*); B*)

L [ui(8) - 'Üi«(}*)]fi(i;«(}*) , (}) + V (}L~(x(O*), 'Ü(O*); 'W)(O - (J*)
iE'P«O*)
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for sorne point w between 8 and rJ*, by the Mean Value Theorem.

The index set P< (0*) can be split into two parts: the active constraints

Pa = {i E P< (rJ*): fi(.i(rJ*), fJ* = O}

and the llonactive constraints

Pn = {i E P«O*): ji(x(O*), 0* < O}.

Note that

L [Üi(O) - 'Ùi(O*))ji(X(O*), 9) ~ a
iEPn

for rJ's close to 0*. (Recall that 'Ùi(O*) = 0, i E Pn, by the KKT condition).

Also note that

L ['Üi(O) - Üi(O*))ji(X(rJ*), 8)
iE'Pa

2: [ü(9) - üi(8*)][fi(x(9*), 9) - fi(.i({}*), 0*)]
iE'Pa

and hence

lim L [ü(O) - Üi(O*)] ji(X(O*), 8) - [i(x(O*), 0*) = 0
OES;O-+O" iEPa 110 - 0* Il

whenever Üi(O) -+ Üi(O*), i E P«O*), by Theorem 5.4, and because the

functions fi (x ((}*), '), i E Pare assumed differentiable.

On the other hand,

ï(o) -j«(}*) ~ L~(x(O),u; rJ) - L~(z, ü(O*); 0*)

for every x E F;«(}*) and u E ~~.
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After adding and subtraeting the sarne term, and specifying u = ü(O*) and

z = x(B) E F.=(O*) by the assumtion, the first and third terms cancel. This

yields

j(B) - J(B*) ~ VoL;(x(O), u(O*); 'W)(O - B*)

for sorne w between () and 9* by the Mean Value Theorem. Bounding f(9) ­

j(O*) from both sides with the above inequalities, dividing by Il(} - 0* Il and

letting () --t ()* completes the proof.

The above proof was essentially given in [621. We have reprodueed it

here for the sake of completeness. The same formula hoIds under different

assumptions, as will he shawn in Theorem 5.6. But first, let us explain in

the next section why such a formula is important.

5.2 Input Optimization

Input optimization employs the marginal value formula in an iterative man­

ner to improve the eurrent optimal value of the objective function. In our

particular case, we wish to find the largest possible radius of rigidity and~

therefore, are maximizing the objective function. In application, we will con­

sider the problem as the minimization of the negative objective function.

Thus, we wish to find a path along which J(f}) is smaller than J(I}.) or, in

other words, where the left-hand side of the marginal value formula is strictly

negative. The path should preserve continuity of the feasihle point-ta-set

mapping F.

The input optimization process is two-fold. At each step, one determines
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a stable path of improvement, and then determines the maxiInal step that

can be taken along that path so that the path remains feasible and there is

local improvement of the objective. Once we have deterrnined a better input,

we repeat the process until a locally optimal input has been determined.

Note that different initial choices for () generally reslllt in different locally

optimal inputs. However, in our case, we will always begin with (Jo = 0 (Le.,

unperturbed data).

While any choice of path is acceptable, we simplify our calculations by

considering only linear paths. Thus, we are interested in changes to sorne

known on along the path

(5.14) Œ 2: 0,

(

where dn is the direction of improvement. A direction dn which guarantees

that the left hand side of the MVF be negative and, therefore, that the opti­

mal value of the objective function is locally decreasing, can he determined

by

Step two eoncerns the step size problem: how to determinc an optimal an'

By substituting ()n+l = en + Œnd" iuta (L, 9, k), one is left with the problem
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lv/in _11071. + nnd7t11

s.t. (yi (Œn ), y) ~ (.Xi (a11.),:1;), .i = 1, ... ,1V, .i i= k

(Xk,x) = 1

(yk, y) = 1

x 2:: 0

y 2:: 0

Œn ~ O.

As !(ak) is generally not known explicitly, we would use approximation tech­

niques snch as the Golden Section Method. This is a numerical approxima­

tion technique which allows us to localize an optimum of a function by grad­

ually reducing the interval in which the optimum lies. The process works for

unirnodal functions in one variable. (These are functions which have a local

minimum x* and for which the following properties hold:

and

if x* $ Xl < X2, then f(x2) > f(xd.)

The first step is to localize the interval [ao, bo] which ensures feasibility and

contains the local minimum by evaluating the function at two points. Then

we symmetrically reduce the original interval by ca1culating the value of the

function at only one point. (For details, see, e.g., [60]). We will return ta

this method in Sections 8.2 and 8.3.
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5.3 The Marginal Value Formula Revisited

In this section, we derive the marginal value formula under different assump­

tions than those in Theorem 5.S. These new assumptions appear to he Inore

appropriate for the radius of rigidity approach defined by (L', 8, k). Our

problem is of the form

(L', B) lvI'inx f(x,8)

s.t. fi(X, 8) ~ 0, i E Q

A(8)x = b.

Define the restricted Lagrangian involving only the objective and the inequal­

ity constraints as

LÇ(x, u; 8) = f(x, 8) + L 'ui(8)fi(X, 8)
iEQ

and the saddle-point condition

(5.15)

(

for x E F*=(B) and 'U E ~~, where c'is the cardinality of Q.

The new assumptions require that there exists a generalized Slater's point

at (J*. We say that the constraints of (L', 8*) satisfy the generalized Slater's

condition if there exists a point x' such that

fi(X',8*) < 0, i E Q

A((J*)x' - b.
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Theorem 5.6 (MVF under Generalized Slater's Condition) Consider

the model (L', e) with a realistic objective function at sorne f)* and a r'egion of

stability S at 0* intersected with the set {o: F(O*) ç F=«(}), P(f)) ç F=(8*)}.

Assume that the saddle point {x(O*), U(O*)} is unique and that the gradi­

ents Vof(x,O), Vofi(x, (}), i E Q are continuous at {x«(}*), (}*}. Also assume

that there exists a generalized Slater's point at ()*. Then for every sequence

() E S,O -* ()* for which the limit

l 1
· () - ()*

= lm
OES;O-+O· 1\ 0 - ()* Il

exists, we have:

lim 1(0) - j(o*) = V LÇ(x«(}*) u«(}*)· (}*) .z.
OES;O-+O· 1\ 0 _ ()* Il 0 "

Proof: First, we note that when there exists a generalized Slater's point at

0*, then the set Q from (L', 0) is the usual P«fJ*) from (P, ()) and P=(O*)

is the set of equality constraints. On the region of stability S, there exists

a neighbourhood N(O*) of ()* such that P=(B) ç P=(O*). (See, e.g., [60],

Theorem 7.13.) But P=(9*) is already just the set of equality constraints, so

the active constraints for aH 0 E N (8*) n Sare aiso the equality constraints.

In other words, in terms of our original notation, P=(O*) = P=(O). This

means that LÇ = L~ with c' = card{ Q}. AIso, lower-semicontinuity of

F(8) implies lower-semicontinuity of F;(O) = P=(O) under the generalized

Slater's condition.

Using the saddle-point condition from Theorem 5.3 for (} E N(O*) n S n

{(): F«(}*) ç F=«(J), F«(}) ç P=(O*)}, we have

LÇ(x(O),u;(})::; LÇ(x(fJ), U(O); lJ) ~ LÇ(x,u(O);fJ)
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for every x E F; (8), and for every u E ~~, and, in particular, at (J = f}*,

for every z E F*= (B*), and for every v E R~.

By (5.13),

L ui(B)fi(x(B), B) = 0
iEQ

and

L ui(f)*)fi(X(B*), 8*) = o.
iEQ

Thus

LÇ(x(B), ü(O); 8) = j(B)

and

LÇ(x(8*), ii(B*); 0*) = 1«(J*).

After rearranging the above saddle-point conditions and adding and sub­

tracting the term LÇ (X(O*), ù(O); 0), we obtain

J(0) - J(B*) ::; LÇ (x, 'ü(B), 9) - LÇ (x(O*), ü(0); 0)

+ LÇ(x(O*), u(B); B) - LÇ(x(O*), v; 8*)

for every x E F;(0), and for every v E ~~.

By choosing v = ü(B) E ~ and x = x(fJ*) E F(B*) ç F=(B) = F;(f)) ,

since P= (9) = p= (0*), and after cancellation,

j(O) - J(O*) < LÇ(x(O*),ù(O);9) - LÇ(x(B*),ü(O);O*)

- V oLÇ(x(O*),'ü(8);w)· (0 - 8*)
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where 'w is sorne point between fJ and ()* by the Mean Value Theorern.

Similarly,

l(fJ) - l(fJ*) < LÇ(x(O), Uj (}) - LÇ(x(O), ü((I*); 8)

+ LÇ (x(fJ), ü(fJ*); 0) - LÇ (z, ù(O*); 8*)

for every zEF;«(}*), and for every u E ~~.

Take u = 'il(O*) E ~i and z = .73(0) E F(O) ç F=({}*) = F*=({}*) sinee

P=(fJ) = P=(O*). Thus

1(0) - f«(}*) > LÇ(x(O),u«(}*);0) - LÇ(x(O),'il«(}*);B*)

= VoLÇ(x(O),ü(B*);w') ·(0-0*)

where w' is sorne point between 0 and (}* by the Mean Value Theorem.

Dividing by 1\ 9 - (}* Il, we have

V'oLÇ(x(O)"ü(8*);w'). (0 - 0*) f(9) - f(9*) V'oLÇ(x(O*),'ü(O);w)' (0 - fJ*)
--...:..-...;.,~-~--.;...----.-;,..< < .

Il () - ()* Il - Il () - (J* Il - Il fJ - 0* Il
As 0 ~ (J*, w and w' approach 9*, xcO) ~ x(9*) and u(O) ~ u(O*) by Theo­

rem 3.9 and by Theorem 5.4, for () E S, respectively, and by the uniqueness

assumption on the saddle point.

80 taking the limit, we have

l , iCO) -lco* ~ Le(-(O*) U-(0*) 0*) llm Il 0 () Il = v 0 - x, ;. ,
O~O·;OES - *

AlI of the above results require that we work in a region of stability. A linear

model with a realistic objective function that satisfies lower-semicontinuity

of F=(O) and a generalized Slater's condition at 0* is stable at any (1 in a
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feasihle neighbourhood of (J*. (See [60], Theol'em 14.1.) Hence the model

(L', 8, k) is stable at ()*. We give a direct proof.

Theorem 5..7 The radius of rigidity tests (L', 8, k), where k represents

an efficient DMU, are stable at every ()* for which the generalized Slater 's

condition holds.

Proof: Consider Xi and yi, j = 1, .. , N as the parameter evaluated at

sorne f)*. Note that the mapping F=: (J -+ F=(8) = {y: (yk, y) = I}, where

yk = yk (0), is lower-sernicontinuous because yk > o.

Clearly, the objective function is realistic. Since X k > 0 and yk > 0, the set

F(8) is bounded. Thus, p(O) is bounded and there exists an optimal solution

for an initial 0*.

Next we will construct a Slater's point for the inequality constraints. Take

y* = (yi) E RB sucb that Yi = (s~k)-l, i = 1, ... , s. Clearly, y* > 0 and

(yk, y*) = 1. One can now construct x* E ~m such that x* > 0 and

(yi,y*) < (Xi,x*), j = 1, .. ,N and (Xk,x*) < 1, since the kth constraint

has been removed from the reference set. Thus (L', (), k) is stable at 8*.

5.4 A Modification for the Radius of Rigidity

Approach

If a MVF does not hold, it is still possible ta find a better fJ, in the sense of a

larger optimal value function. For each variable, we solve a single parameter

model where 6 E R+ affects the variable under consideration for each DMU
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except an efficient DAt/Uk • The Inodel is solved by increasing () until the

prablem is no longer feasible. We recall that since the CCR model requires

positivity of aH data and we are subtracting () from the inputs, bounds must

be established ta ensure this. As long as the data has been normalized, we

can compare radii of rigidity for different variables. One may then compare

radii for different DMU's over different parameters. In particular, far each

DMU, one can take the minimal radius of rigidity across aH variables which

does not represent an imposed bound and then rank DMU's by taking the

maximum. We will designate this the max min ranking.

5.5 Characterizations of Locally and Glob­

ally Optimal Inputs

We have seen that for each choice of the parameter (), we obtain a model

which we minimize over aIl feasible decision variables x E ~n. We have

aIsa shown that we can improve the optimal objective value in x and () via

methods such as input optimization. Consequently, it is important in our

study of these models to be able ta identify those inputs that are locally

or globally optimal. Arter calculating the radius of rigidity, we can verify

its optimality by an optimality condition. This is done in this section for

(L, 0, k), but the theory also holds for (L/,9,k).

Definition 5.8 Consider the radius of rigidity model (L, (J, k) around sorne

(J*. Let S be a region of stability at ()*. If

1«(J*) ~ 1(9)
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for every () E N «(}*) n S, where N «(}*) is a neighbourhood of ()*, then ()* ù; a

locally optimal input relative to S.

Definition 5.9 Consider the radius of rigidity model (L, (), k) around sorne

e*. If

f«(}*) ~ f(O)

for all () E F, then ()* is a globally optimal input.

Theorem 5.10 (Characterization of Locally Optimal Inputs) Consider

the radius of rigidity model (L, (J, k) at sorne ()*. Let (i(9*), y(B*)) be a cor­

responding optimal solution and let S be a region of stability at ()*. Then ()*

is a locally optimal input with respect to S if, and only if, there exists a non­

negative vector function ü: N (fJ*) nS -+ ~~ such that, whenever () E N (()* ) nS

L«x«(}*), y«(}*)), u; (}*) ~ L«i«(}*), jj«(}*)) , u«(}*); (J*) ~ L«x, y), u«(}*); (J*)

for every u E ~~, and for every (x, y) E mm+s.

Proof: (Necessity)

We know that J«(}) exists and that f«(}*) ~ l(e) for an () E N(fJ*) n S. But,

from the proof of the saddle point characterization of optimality (Theorem

5.2), this is equivalent to

L«i«(}*), y«(}*)), u(8*); (}*) < L«i(9*), jj«(}*)) , 'Îi«(J*) , 0*)

< L«x, y), u(fJ); 8)

for aH (x, y) E Rm+s, by the same characterization. This proves the right­

hand side of the inequality.
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The left-hand side of the inequality l'ollows irnmediately l'rom feasibility of

(X(O*), '[j(0*)) and by positivity of u.

(Sufficiency)

The left-hand side of the saddle-point condition gives

f(x(O*), '[j(0*) ,0*) +L 1tiJi(X(O*), '[j(0*) ,0*)
iEP

< f(x(O*), y(O*), 0*) + L ûi«(J*)fi(x«(}*), y(O*), 0*),
iEP

for all U E ffi+. (We are using fi to represent the constraint functions and

the set P ta represent all constraints. RecaIl that any equality constraints

can be converted ta two inequality constraints.) Setting u = 0 gives

f(x(O*), y(O*), 0*) < f(x«(}*), Y(O·), 0*) + L ûi(O*)fi(x(O*), y(O*), 0*)
iEP

< f(x«(}*), y(O*), 0*)

by l'easibility of (x(O*), y(O*)). But this implies that

E üi«(}*)fi(x(O*), y(O*), (J*) = O.
iEP

Hence, by the right-hand sicle inequality

Je(}*) ~ J(x, y, 0) + L ui(O)fi(X, y, 0)
iEP

for aU (x, y) E ffi1n+s. In particular, for (x, y) = (x(O), y(B)), wc have

l(o*) ~ l(O) + L ui(O)fi(x«(}), y(O), B) ~ i(O)
iEP

for aH (J E N(O*)nS by non-negativity ofu(9) and by feasibility of (x(O), y«(J)).

Thus, 0* is a locally optimal input.
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Theorem 5.11 (Characterization of Globally Optimal Inputs) Consider

the radius ofrigidity model (L, 8, k) at some 0*. Let (x(O*),y(8*)) be a cor­

responding optimal solution. Assume that f::F ---t ~ exists. Then 8* is a

globally optimal input if, and only if, there exists a non-negative vector func­

tion u::F --+ ~~ such that

L«x«(}*), fj(O*)), u; (J*) ~ L«x(O*)y(f)*)), u(O*); 8*) ~ L«x, y), ù(O*); (J*)

for every u E ~~, and for every (x, y) E mm+s.

The proof proceeds exactly as in the case for locally optimal inputs except

that now (} E :F.
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Chapter 6

Application of CCR Tests to

North American University

Libraries

In this chapter, we provide the results of the CCR tests (CCR, k) applied

to 108 North American university libraries which constitute the university

affiliated members of the Association of Research Libraries (ARL). eeR tests

were applied to aIl 108 libraries for the last five years of available data, with

the exception of 1990-1991. The University of Auburn was not a member

of the ARL in 1990-1991, so the eeR tests for that year are based on the

remaining 107 libraries. The GAMS (General Algebraic Modelling System)

optimization software package was employed for this purpose under a student

licensed copy on a 486 IBM compatible to double precision. AU data are

obtained from [47, 30, 31, 40, 41]. They are scaled 50 that values faH below
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a thousand (see Theorem 2.6).

Initially, DEA was based on the use of five variables: total volumes

held, volumes added (gross) over the course of the academic year, nun1­

ber of current seriaIs, total expenditures and the SUffi of professional and

non-professional staff (not including student assistants). These arc the five

variables employed in the determination of the yearly ARL Membership In­

dex. Table 6.1 ranks the 108 members in decreasing order of efficiency based

on these five variables for 1994-95 using DEA (more precisely eeR) efficiency

tests. The letter "E" indicates an efficient library. Note that McGilllibrary

ranked Ilth in that group in the 1994 academic year. (This appears to be

a result of an additional 36 000 volumes added over the previous year and

an approximately $400 000 decrease in expenditures.) Prior to that year,

during the period 1990-1994, McGill ranked consistently between 87th and

96th . (See Table 6.2 for details.)

Subsequently, in an attempt to determine more realistic efficiency evalu­

ations, the CeR test was used with one additional variable: the number of

microform units. The ARL publications [47, 30;31, 40, 41] provide a complete

set of data for aIl108libraries and it was included in the model as an output.

It is interesting to note that in aIl instances, the inclusion of this additional

output resulted in either no change or an increase in the efficiency rating.

There were certain libraries which consistantly exhibited a large increase in

their efficiency rating with the additional data included in the model. These

are Florida State University, University of Kentucky, University of Missouri,

University of New Mexico, and both ViIginia Polytechnic Institute and Vir­

ginia State University counted as one university library (VPI & SU). Each
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Table 6.1: DEA ranking of efficiency for 1994-1995:

Inputs: Staff, Total Expenditures
Outputs: Total Volumes, Volunles Added (Gross), Cnrrent SeriaIs

E. Chicago 1.00000 29. Iowa 0.77280
E. Georgia Tech 1.00000 30. Minnesota 0.76850
E. Illinois, Urbana 1.00000 3l. Laval 0.76716
E. Oklahoma State 1.00000 32. North Carolina State 0.75805

33. Maryland 0.75241
5. Auburn 0.96319 34. California, Berkley 0.75213
6. Yale 0.92591 35. South Carolina 0.74212
7. Riee 0.92330 36. Virginia 0.73623
8. Dartmouth 0.91871 37. Notre Dame 0.73605
9. California, Davis 0.91641 38. Arizona 0.72408

10. California, L.A. 0.91271 39. Kansas 0.71774
40. B.C. 0.71083

Il. McGill 0.89881 4l. Stanford 0.70956
42. Indiana 0.70774

12. Duke 0.87861 43. Pennsylvania 0.70765
13. Massachusetts 0.87322 44. SUNY, Buffalo 0.70136
14. Alberta 0.86487 45. Harvard 0.69408
15. Michigan State 0.86093 46. Columbia 0.69404
16. California, Santa Barbara 0.85986 47. Ohio State 0.69238
17. Hawaii 0.85953 48. Syracuse 0.69114
18. Queen's 0.83981 49. Michigan 0.68485
19. Colorado State 0.83452 50. Oregon 0.68314
20. Guelph 0.83085 5l. Washington 0.67926
2l. Texas 0.82815 52. Missouri 0.67664
22. Washington State 0.82769 53. Wayne State 0.67623
23. Louisiana State 0.82286 54. Purdue 0.67158
24. Rochester 0.81837 55. Kent State 0.66719
25. Oklahoma 0.80956 56. North Carolina 0.65928
26. Georgia 0.80571 57. Colorado 0.65918
27. Howard 0.79375 58. Boston 0.65721
28. Princeton 0.78971 59. Nebraska 0.65707
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Table 6.1 cont'd.

60. Toronto 0.65338 85. VPI & SU 0.56321
6l. Brown 0.64926 86. McMaster 0.55745
62. Southern Illinois 0.63939 87. Southern California 0.55485
63. Florida State 0.63560 88. Iowa State 0.55436
64. SUNY, Albany 0.63248 89. Western Ontario 0.55389
65. Washington, St. Louis 0.63146 90. Georgetown 0.54826
66. M.LT. 0.63015 91. York 0.54638
67. Cornell 0.62479 92. California, San Diego 0.52737
68. Wisconsin 0.62319 93. Vanderbilt 0.52665
69. Tulane 0.62251 94. Florida 0.51459
70. Alabama 0.62237 95. Emory 0.51296
71. California, Riverside 0.62200 96. Houston 0.50538
72. Conneticut 0.62168 97. Brigham Young 0.48383
73. Case Western Reserve 0.62102 98. California, Irvine 0.48116
74. SUNY, Stony Brook 0.60872 99. Kentucky 0.48098
75. Johns Hopkins 0.60861 100. Pennsylvania State 0.48028
76. Delaware 0.60169 101. Manitoba 0.47750
77. Miami 0.59254 102. Cincinnati 0.47132
78. Arizona State 0.58596 103. Tennessee 0.47086
79. Temple 0.58366 104. Rutgers 0.45759
80. Waterloo 0.57726 105. Texas A&M 0.44871

" 81. Northwestern 0.57607 106. New York 0.44485
82. Saskatchewan 0.57387 107. Illinois, Chicago 0.40728
83. Pittsburgh 0.57287 108. New Mexico 0.39749
84. Utah 0.57075
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of these libraries showed an average increase in efficiency rating of at least

0.3, suggesting a very large microform collection in comparison to the rest of

their collection and in comparison to other libraries.

The ARL Membership Index provides a very different ranking of the

member libraries as compared ta the DEA technique. We compare the two

rankings in Table 6.2. There the first row for each library gives the ARL

Index rank; the second row gives the DEA rank. Once again, "E" indicates

an efficient library. (These indices, as weIl as the raw data used in the DEA

models, are available in the yearly ARL Statistical Publications [47, 30, 31,

40, 41].)

The ARL index is determined by the use of factor analysis, a set of

statistical techniques commonly used in the social sciences. The technique

attempts to find and characterize underlying dimensions or factors in a large

set of data. The specifie method employed is principal component analysis,

in which the original set of variables is represented in terms of a number of

cornmon factors. These factors are determined in sequence so that at each

successive stage a maximum of the total variance of the original variables is

accounted for. Thus, the first principal component is a linear combination

of the original variables contributing a maximum to their total variance; the

second, uncorrelated with the first, contributes a maximum of the residual

variance, etc. In practice, only a few of the cornponents need to be retained,

particularly if they account for a large percentage of the total variance.

In the case of the ARL data, using factor analysis, it was deterrnined

that there exist four strong patterns of library relations, the first of which

clearly represents library size and resource deployment. By analyzing the
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correlation matrix, one determines a subset of five variables, as indicated

above, associated with the hypothetical component representing library size.

From the correlation coefficients between these five variables and the hypo­

thetical factor, one derives the factor loadings which are essentially weights

associated with each variable. The index score is then found by multiplying

these weights by the data and summing over the five variables for each il1­

dividual library. It was found that the ARL data is lo~norma.l rat.her than

normal, sa logarithms of the original data are used. AIso, since the technique

is dependent on the total variance of the original variables, it is sensitive ta

linear transformations such as change of units. Consequently, aH values a.re

expressed in standard normal form. The resulting set of scores approximates

a normal curve with Harvard consistently ranking number one overall. Based

on its expenditures, its collections and the number of staff, Harvard is lm'ger
1

than any of the other ARL members. ARL membership criteria requires Cl.

score of over -1 and membership may be withdrawn if a library consistently

earns a score of less than -1.75. Any score greater than 0 indicates that

a library is above the median size. AlI scores are relative to the group of

libraries and so changes in rank from year to year are also relative. Since

the hypothetical component represents library size, the ranking gives no in­

dication of quality of collections or services or of efficiency of operation. For

more information on factor analysis or its specifie application to the ARL

data, one may refer to [37, 38] and [54].

As already indicated, there are discrepancies between the ranking of li­

braries as determined by the use of factor analysis and by DEA. The former

seeks to rank the libraries according to relative library size, whereas the latter
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attempts to determine the relative efficiencies. The first t.hing that. beconles

apparent. upon an inspection of the ARL and DEA rankings provided in Ta­

ble 6.2 is the greater consistency of a library's position in the ARL Index

as opposed to the DEA rankings. This is readily explained by the differillg

intents of the two methods: the ARL Index seeks to measure the relative size

of its members which is unlikely to change drastically over a short period of

time. Comparatively, DEA seeks to rank the relative operating efficiencies.

While it is unlikely that the operating policies governing the levels of these

variables will change radically from one year ta another, it is possible that

factors or events outside library control may result in sharp cuts in expen­

ditures or staff or an unexpectedly large number of new volumes added to

the library, thus altering the efficiency levels. (An illustration is the McGill

library jump to I1 th position in 1994-95 from 95 th position a year earlier.

This was a result of an increase in volumes added and a decrease in total

expenditures.) What can he seen l'rom Table 6.2 is that, while there are

greater yearly fluctuations in a library's position under DEA, the libraries

tend to remain within a certain range; thus, the top ten remain within the

top ten, the bottom ten stay at the bottom, and similar patterns occur in

groupings of libraries ranked in the middle.

The second noticeable difference between the two rankings is the dis­

crepancies between a library's rank in the ARL Index and under the DEA

evaluation. It is clear that there is very little direct correlation between size

and efficiency. In fact, in many instances it would seem that the smaller

libraries (i.e., those that rank low in the ARL Index) tend to be more effi­

cient and the larger libraries less so. Thus, "big" does not necessarily mean
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"better" in the sense of more efficient. It is likely that structure and orga­

nization of individuallibraries plays a much larger role in determining their

efficiency ranking than does their size. (Harvard is ranked 1st in 1994-95 by

the ARL Index and only 45th when its efficiency was questioned by DEA.)

An additional consideration is the choice of variables. DEA was based on

the same variables as were used in the factor analysis in order to allow for a

direct comparison. This may not have been appropriate given the distinctly

different objectives of the two methods. DEA is specifically concerned \Vith

input to output ratios. The ARL data, up until1994, had not provided any

variables which would serve to give an indication of library use, such as circu­

lation transactions. Nor are there any indicators of the quality of the services

provided or of the collections themselves. Also, given the number of D:rvIU's

used, it would likely have been more appropriate ta use more variables, but

in many instances, the ARL data is incomplete.

The top ten ARL members which have been consistently the largest for

the last five years according to the ARL Index are Harvard, the University of

California at Berkeley, Yale, the University of California at L.A., the Univer­

sity of Illinois at Urbana-Champaign, the University of Michigan, Columbia,

Stanford, the University of Toronto and Cornell, in approximately decreasing

order. Ofthese ten, only two, the University of Illinois at Urbana-Champaign

and the University of California at L.A., ranked as efficient under DEA dur­

ing the same five year period.

The University of Illinois at Urbana-Champaign was the only library to

maintain efficient status during the entire five year period.

The University of California at L.A.. , as well as Georgia Tech, ranked as
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efficient two years out of the five. However, the University of California at

L.A. ranked higher during the other three years than did Georgia Tech. Other

libraries ta rank as efficient during the five year period were the University of

Chicago, Oklahoma State, Michigan State, the University of Nebraska, the

University of Pennsylvania, the University of Kentucky, Colorado State and

Wayne State. In general, there were three or four libraries out of 108 that

were ranked as efficient each year.
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Table 6.2: Comparison of ARL and DEA rankings.

Inputs: Staff, Total Expenditures.
Outputs: Total Volumes, Volumes Added (Gross), enrrent SeriaIs.

'90 '91 '92 '93 '94

Alabama 95 101 99 91 95 ARL Index
38 39 40 46 70 DEA Rank

Alberta 32 33 26 34 25
82 83 27 64 14

Arizona 23 28 27 27 29
33 37 28 29 38

Arizona State 26 26 29 28 31
73 91 74 80 78

Auburn 68 75 71 75
31 7 5 5

Boston 55 66 63 59 61
69 54 59 56 58

Brigham Young 71 70 72 68 74
17 15 18 51 97

Be 25 27 25 25 27
96 101 85 71 40

Brown 69 73 69 50 72
56 57 49 17 61

California, Berkley 2 2 3 2 2
13 19 6 23 34

California, Davis 29 23 31 35 34
18 10 23 10 9

California, Irvine 74 74 84 84 84
93 93 100 90 98

California, L.A. 4 4 4 5 3
12 5 E E 10

California, Riverside 102 105 107 107 107
22 52 54 50 71
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'90 '91 '92 '93 '94

California, San Diego 34 31 38 40 41 ARL Index
91 86 103 93 92 DEA Rank

California, Santa Barbara 51 63 62 75 63
66 82 87 88 16

Case Western Reserve 104 102 105 104 98
59 72 83 72 73

Chicago 16 17 17 17 16
10 9 10 8 E

Cincinnati 62 67 71 78 65
103 102 99 103 102

Colorado 54 46 46 47 49
32 28 32 38 57

Colorado State 98 96 100 99 96
E 4 8 9 19

Columbia 10 8 7 7 7
Il 67 63 54 46

Conneticut 46 54 53 55 48
34 18 17 47 72

CorneII Il 9 10 Il Il
63 46 43 63 67

Dartmouth 81 79 68 73 68
62 56 33 32 8

Delaware 67 71 78 80 87
53 49 64 69 76

Duke 19 24 24 23 20
16 21 35 44 12

Emory 50 48 48 45 50
85 85 86 97 95

Florida 28 41 39 37 35
74 73 97 101 94

Florida State 58 80 82 79 81
24 66 68 55 63

Georgetown 52 51 49 52 45
95 92 89 79 90
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'90 '91 '92 '93 '94

Georgia 30 32 32 30 30 ARL Index
5 8 24 21 26 DEA Rank

Georgia Tech 105 108 108 108 105
E 6 14 30 E

Guelph 99 100 104 102 108
20 32 42 12 20

Harvard 1 1 1 1 1
46 59 70 74 45

Hawaii 44 42 40 48 47
7 3 4 6 17

Houston 106 104 101 94 92
68 69 58 78 96

Howard 64 72 79 90 103
81 75 75 73 27

Illinois, Chicago 66 59 64 74 70
107 105 108 108 107

Illinois, Urbana 6 6 5 4 5
E E E E E

Indiana 15 14 13 14 14
15 Il 9 28 42

Iowa 43 38 34 31 33
26 23 19 15 29

Iowa State 79 77 80 81 73
70 58 65 70 88

Johns Hopkins 35 36 36 39 39
88 97 90 96 75

Kansas 39 39 35 33 38
52 55 44 26 39

Kent State 87 93 102 105 91
28 60 60 45 55

Kentucky 59 34 52 58 51
54 E 57 60 99

Laval 56 52 51 54 55
104 106 98 86 31
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'90 '91 '92 '93 '94

Louisiana State 65 64 81 76 77 ARL Index
19 29 15 Il 23 DEA Rank

McGill 41 40 42 44 43
94 87 96 95 Il

McMaster 86 87 97 97 99
102 99 105 87 86

ivlanitoba 94 99 98 101 100
105 108 107 104 101

Maryland 42 50 50 41 42
97 84 92 81 33

Massachusetts 93 90 77 77 79
14 12 22 22 13

M.LT. 61 58 56 61 66
80 81 88 89 66

Miami 73 60 54 57 62
77 96 76 98 77

Michigan 7 Il Il 6 8
43 27 30 35 49

Michigan State 40 43 41 38 37
23 22 13 E 15

Minnesota 14 15 15 15 15
39 14 21 25 30

Missouri 72 62 59 65 60
44 43 51 43 52

Nebraska 76 76 74 56 76
64 62 56 E 59

New Mexico 60 53 61 53 52
106 107 106 105 108

New York 27 29 28 26 23
92 94 102 106 106

North Carolina 22 19 20 19 19
48 64 66 82 56
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Table 6.2 cont'd.
'90 '91 '92 '93 '94

North Carolina State 101 98 90 64 58 ARL Index
99 98 95 67 32 DEA Rank

Northwestern 31 30 30 29 32
36 36 45 53 81

Notre Dame 57 55 66 62 59
25 26 46 40 37

Ohio State 21 21 21 22 26
42 38 34 27 47

Oklahoma 97 89 91 86 88
9 7 Il 13 25

Oklahoma State 100 103 93 95 90
30 45 5 7 E

Oregon 88 88 88 87 80
45 42 50 58 50

Pennsylvania 24 25 16 21 22
51 48 E 57 43

Pennsylvania State 18 18 19 16 18
89 79 81 100 100

Pittsburgh 38 37 33 32 28
65 68 79 92 83

Princeton 17 16 18 18 17
35 33 38 52 28

Purdue 68 65 70 72 69
87 78 73 59 54

Queen's 83 82 83 82 85
86 88 72 39 18

Rice 107 107 103 103 104
41 44 29 48 7

Rochester 77 84 87 92 93
21 24 20 19 24

Rutgers 20 20 22 24 24
101 104 104 107 104
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Saskatchewan 92 91 96 98 101 ARL Index
83 89 61 36 82 DEA Rank

South Carolina 75 69 65 67 54
27 35 52 76 35

Southern California 36 35 37 36 36
6 40 84 18 87

Southern Illinois 84 81 86 85 86
29 13 16 24 62

Stanford 9 7 9 8 9
47 51 55 65 41

SUNY, Albany 103 106 106 100 102
78 76 69 66 64

SUNY, Buffalo 45 44 44 43 44
49 41 36 42 44

SUNY, Stony Brook 78 83 94 96 97
76 71 80 84 74

Syracuse 80 97 73 69 64
67 47 62 37 48

Temple 82 75 76 83 83
61 70 82 85 79

Tennessee 70 78 67 70 67
75 74 77 91 103

Texas 8 10 8 10 10
8 17 26 14 21

Texas A&M 49 49 45 49 56
79 90 31 94 105

Toronto 5 5 6 9 6
72 77 78 61 60

Tulane 90 95 85 88 89
58 61 53 41 69

Utah 96 92 60 51 53
50 63 67 68 84
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'90 '91 '92 '93 '94

Vanderbilt 47 57 58 60 57 ARL Index
84 100 94 102 93 DEA Rank

Virginia 33 22 23 20 21
57 25 37 20 36

VPI & SU 85 86 89 89 82
71 65 47 62 85

Washington 12 12 12 12 12
40 30 41 34 51

Washington State 91 94 95 93 94
60 53 48 31 22

Washington, St. Louis 48 47 47 42 40
55 50 71 75 65

Waterloo 89 85 92 106 106
100 80 93 99 80

Wayne State 37 45 43 46 46
E 20 25 33 53

Western C>ntario 53 56 55 63 71
98 103 101 77 89

Wisconsin 13 13 14 13 13
37 34 39 49 68

Yale 3 3 2 3 4
31 16 12 16 6

York 63 61 57 66 78
90 95 91 83 91
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Chapter 7

CCR Tests with More Data

In this chapter, we select particular libraries for which more data is available.

The libraries were selected according to the following criteria: aH Canadian

university affiliated libraries were included, also D.S. libraries whose size and

organization are comparable ta that of McGill and finally a few libraries that

were largest and most efficient overall as determined by the ARL Mernber­

ship Index and by DEA respectively. The sets of five and six variables arc

identical to those used in the previous section: total volumes, volumes added

(gross) in the given year, current seriaIs, number of professional and non­

professional staff (not including student assistants), total cxpellclitures~ and

the sixth variable, number of microform uuits. Efficiency evaluatiolls listcd

in decreasing order for 1994-1995 are given in Tables 7.1 and 7.2. For these

thirty libraries based on a five variable analysis, only two arc found ta he

efficient (the University of California ut L.A. and the University of Illinois nt

Urbana-Champaign).
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Table 7.1: Selected libraries ranked by DEA in 1994-1995:

Inputs: Staff, Total Expenditures;
Outputs: Total Volumes, Volumes Added (Gross), Current SeriaIs.

(

E. California, L.A.
E. Illinois, Urbana
3. Duke
4. Hawaii
5. McGill
6. Rochester
7. Yale
8. Queen's
9. South Carolina

10. Louisiana State
11. SUNY-Buffalo
12. Conneticut
13. Guelph
14. Laval
15. Alberta
16. Brown
17. Be
18. Syracuse
19. Southern California
20. Washington, St. Louis
21. Pittsburgh
22. Toronto
23. California, San Diego
24. York
25. Saskatchewan
26. Johns Hopkins
27. Waterloo
28. McMaster
29. Western Ontario
30. Manitoba

87

1.00000
1.00000
0.97697
0.94214
0.89881
0.85951
0.85774
0.83428
0.82973
0.82286
0.81889
0.81871
0.78828
0.76298
0.74814
0.70872
0.69775
0.67581
0.61935
0.61276
0.60238
0.59722
0.58210
0.56209
0.55626
0.55304
0.53008
0.51468
0.51239
0.47750
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Table 7.2: Selected libraries ranked by DEA in 1994-1995:

Inputs: Staff, Total Expenditures;
Outputs: Total Volumes, Volumes Added (Gross), Current SeriaIs,

IvIicroforms.

E. California, L.A.
E. Hawaii
E. Illinois, Urbana
E. Louisiana State
5. Rochester
6. Duke
7. Queen's
8. SUNY-Buffalo
9. South Carolina

10. McGill
11. Conneticut
12. Yale
13. Guelph
14. Alberta
15. Laval
16. Syracuse
17. BC
18. Southern California
19. Saskatchewan
20. Brown
21. York
22. Washington, St. Louis
23. Pittsburgh
24. Western Ontario
25. Johns Hopkins
26. California, San Diego
27. Toronto
28. \iVaterloo
29. McMaster
30. Manitoba

88

1.00000
1.00000
1.00000
1.00000
0.98947
0.98038
0.97531
0.90185
0.90049
0.89881
0.88122
0.86042
0.81327
0.77629
0.76298
0.76174
0.76078
0.73555
0.72101
0.71331
0.67830
0.64958
0.62898
0.61312
0.60540
0.60311
0.59722
0.55222
0.55085
0.49729
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The set of twelve variables consists of the following inputs: number of pro­

fessional and non-professional staff combined, number of student assistants,

. total expenditures, expenditures on seriaIs, expenditures on monographs, to­

tal salaries and wages and total volumes borrowed in inter-library loans; and

the outputs: total volumes in library, volumes added (gross) in the given

year, total number of eurrent seriaIs, total microform units in the library and

total volumes loaned in inter-library loans. Results can be found in Table

7.3.

Originally, a variable indicating university size which summed the num­

ber of staff and the number of full-time and part-time undergraduate and

graduate students was included, but this was dropped based on the fact that

this is not a factor over which the library has direct control. An additional

model was l'un on 1994-1995 data which included as an output variable to­

tal circulation transactions. This variable was included as an indication of

library use. Efficiency evaluations are provided in Table 7.4. The selection

of libraries and variables was, ta a large extent, determined by the data that

was available.

As in the analysis of aH 108 libraries, the efficiency evaluations showed

either no change or an increase with the inclusion of additional data in the

model. It is clear that too many variables in a modellead to a large pro­

portion of relatively efficient DMU's. This warrants additional analysis such

as the radius of rigidity approach. (Only two DMU's were classified as ef­

ficient in 1994-1995 based on a model using five variables. This number

increased to four in the six variable model and jumped to twellty-two and

twenty-three respectively in the twelve and thirteen variable models.) Those
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Table 7.3: Selected libraries rankedby DEA in 1994-1995:
Inputs: Staff, Student Assistants, Expenditure~Expenditures: on SeriaIs,

on Monographs, Salaries & Wages, Volumes Jjorrowed in Inter-library
Loans;

Outputs: Total Volumes, Volumes Added (Gross), Current Seriais,
Microforms, Volumes Loaned in Inter-library Loans.

E. Alberta 1.00000
E. Be 1.00000
E. California, L.A. 1.00000
E. Conneticut 1.00000
E. Duke 1.00000
E. Guelph 1.00000
E. Hawaii 1.00000
E. Illinois, Urbana 1.00000
E. Laval 1.00000
E. Louisiana State 1.00000
E. McGill 1.00000
E. Queen's 1.00000
E. Rochester 1.00000
E. Saskatchewan 1.00000
E. South Carolina 1.00000
E. SUNY, Buffalo 1.00000
E. Syracuse 1.00000
E. Toronto 1.00000
E. Washington, St. Louis 1.00000
E. Western Ontario 1.00000
E. Yale 1.00000
E. York 1.00000

23. Pittsburgh 0.94496
24. Manitoba 0.91004
25. Waterloo 0.90182
26. Johns Hopkins 0.82289
27. McMaster 0.81592
28. Brown 0.76617
29. Southern California 0.74137
30. California, San Diego 0.65855
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Table 7.4: Selected libraries ranked by DEA in 1994-1995:
Inputs: Staff, Student Assistants, Expenditure~Expenditures: on SeriaIs,

on Monographs, Salaries & WaKes, Volumes tsorrowed in Inter-library
Loans;

Outputs: Total Volumes, Volumes Added (Gross), Current SeriaIs,
Microforms, Volumes Loaned in Inter-library Loans, Total Circulation.

E. Alberta 1.00000
E. BC 1.00000
E. California, L.A. 1.00000
E. Conneticut 1.00000
E. Duke 1.00000
E. Guelph 1.00000
E. Hawaii 1.00000
E. Illinois, Urbana 1.00000
E. Laval 1.00000
E. Louisiana State 1.00000
E. McGill 1.00000
E. Manitoba 1.00000
E. Queen's 1.00000
E. Rochester 1.00000
E. Saskatchewan 1.00000
E. South Carolina 1.00000
E. SUNY, Buffalo 1.00000
E. Syracuse 1.00000
E. Toronto 1.00000
E. Washington, St. Louis 1.00000
E. Western Ontario 1.00000
E. Yale 1.00000
E. York 1.00000

24. Pittsburgh 0.96432
25. Waterloo 0.95046
26. Southern California 0.85340
27. Johns Hopkins 0.83255
28. McMaster 0.81592
29. Brown 0.79742
30. California, San Diego 0.67334
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libraries that had pOOl' efficiency ratings tended to remain inefficient when

more data was added, thus adhering to the consistent grouping of libraries

that was witnessed in the 108 DMU models. On the other hauù. aIlY libral':v

that obtained efficiency in sorne model would retain its efficient st.atus when

more variables were added.

Table 7.5 gives the rank of each of the thirty libraries for cach of fivc years

for models with five, six and twelve variables. As can he seen, the overall

rankings remained consistent, despite the enormous increases in the number

of efficient DMU's. While there are no clear guidelines as ta the optimal

selection of variables, it would appear that five variables were too few and

twelve were too many. Since more variables in the model seem to imply a

higher relative efficiency, one may question the choice of inputs and outputs

that produce too many efficient DMU's.
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DEA 1990 DEA 1991 DEA 1992 DEA 1993 DEA 1994

Alberta 20 18 E 24 23 E E E E 22 19 E 15 14 E
Be 22 20 E 23 22 19 12 17 25 15 16 E 17 17 E
Brown 18 23 25 21 24 26 16 19 28 E E E 16 20 28
California, L.A. 6 10 E 6 9 E E E E E E E E E E
California, San Diego 12 15 21 E E E 26 26 29 21 23 30 23 26 30
Conneticut 7 8 E E E E E E E 9 Il E 12 Il E

Duke E E E 5 7 E 10 14 E 14 15 E 3 6 E
Guelph 5 7 E 10 14 E 13 16 E 6 7 E 13 13 E
Hawaii 3 E E E E E E E E 5 E E 4 E E
Illinois, Urbana E E E E E E E E E E E E E E E
Johns Hopkins 24 25 30 29 29 29 28 27 30 27 27 29 26 25 26
Laval 27 26 E 22 26 24 23 25 E 18 21 E 14 15 E
Louisiana State 8 E E 13 10 E 8 6 E E E E 10 E E

ivIcGill 26 27 23 17 20 22 27 28 22 28 29 E 5 10 E

McMaster 29 28 29 27 28 21 29 29 23 25 25 23 28 29 27
Manitoba 30 30 24 30 30 30 30 30 24 30 30 25 30 30 24
Pittsburgh 14 14 26 18 19 27 18 21 27 26 26 28 21 23 23
Queen's 25 21 E 26 17 E 14 12 E 8 9 E 8 7 E
Rochester 9 6 E Il 5 E 9 7 E 13 10 E G 5 E
Saskatchewan 15 Il E 12 13 E Il 9 E 7 6 E 25 19 E
Southern California 4 5 E 7 12 E 15 15 26 Il 8 24 19 18 29
South Carolina 10 9 E 15 8 E 19 Il E 24 22 27 9 9 E

SUNY-Buffalo 13 13 E 8 Il 20 6 8 E 12 12 E Il 8 E
Syracuse 19 12 20 20 6 E 21 13 E 16 14 E 18 16 E
Toronto 17 19 E 19 21 E 17 20 E 17 18 E 22 27 E
Washington, St. Louis 16 17 27 14 16 25 24 23 E 23 24 26 20 20 E
Waterloo 28 29 E 16 18 28 22 24 E 29 28 E 27 28 25
Western Ontario 23 22 22 28 27 E 25 22 E 19 17 E 29 24 E
Yale Il 16 E 9 15 E 7 10 E 10 13 E 7 12 E
York 21 24 28 25 25 23 20 18 21 20 20 E 24 21 E

Table 7.5: DEA ranking based on 5, 6 and 12 variables for each of 5 years.
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Chapter 8

N umerical Results for the

Radius of Rigidity Approach

This chapter demonstrates the numerical implementation of the radius of

rigidity approach as given by (L, 8, k) with the objective function defined

by the lt norm and sorne (J ERP. We begin with the familiar academic

example seen repeatedly in Chapter 4 which illustrates two extreme stability

situations. Then, we provide the results of the radius of rigidity approach

for a subset of North American university libraries.

8.1 Pathologies in an Academie Example

We return once again to the example which was used in Chapter 4 to dernon­

strate the varions methods currently employed in post-optimality DEA. Re­

caU that both DMU's in the example are efficient with inputs and outputs
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as given below.

DNIUi DkIU2

.X~ 1 1

yi 1 1

y2 1 2

We will show that a radius of rigidity model can be highly unstable (re­

sulting in a zero radius of rigidity). Moreover, within the same set of DMU's,

the radius of rigidity model can he highly stable (resulting in an unbounded

radius of rigidity). Let us first consider the radius of rigidity for DMU2 . We

want DMU2 to remain efficient but unperturbed. DJvIU1 decreases its input

and increases its outputs, thereby improving its efficiency. Initially, we will

consider a single positive () imposing a perturbation on aU variables. Thus,

the radius of rigidity problem is given by

Max

s.t.

(J

x =1

(

Yi + 2Y2 = 1

(1 + 8)Yi + (1 + 8)Y2 ~ (1 - fJ)x

The second constraint specifies that Yi - 1 - 2Y2. Since Yi and Y2 are

positive, this implies that Y2 ~ 1/2. Substituting the first two constraints

into the third gives (1 + fJ)(l - Y2) ~ (1 - 8). After isolating Y2, we have

28
Y2 2: 1 + (Jo
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80 feasibility is guaranteed if

1 2f)
->-­
2 - 1 +0

or equivalently, for the interval 0 ::; (J ::; 1/3. Thus, the radius of rigidity is

1/3. Note that it is possible to prove global optimality of this 8 using the

saddle-point condition for linear functions (see Theorem 3.13).

Let us now consider the radius of rigidity for D 1\lU1• The model is given

by

Nlax 8

s.t. x =1

YI +Y2 =1

(1 + O)YI + (2 + 8)Y2 ::; (1 - (J)x

X, YI, ~/2, f) 2: o.

The constraints imply that Y2 < -29, which is inconsistent for f} > O. So here,

the radius of rigidity is O. Since the radius of rigidity for DMU2 is greater

than that for DMUI , we conclude that DMU2 is better than DJ\;/UI since

it can maintain its efficiency status under larger perturbations of the other

DMU. Notice that a generalized Slater's point exists in the radius of rigidity

model for DMU2 for aH () in :F = {o: 0 ::; 0 < 1/3} except for the optimal

point 8 = 1/3 where F(1/3) reduces ta a single point. Thus P=(8) = P=(O*)

and the two inclusions required hy the MVF hold for aIl feasihle () except

8 = 1/3. In the model for DMU., stability breaks down as :F = {O} with

F(O) = {(x, YI, Y2) = (1,1,0)}. Thus, the MVF is Dot applicable here.
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Next, we take a two parameter model in which outputs are perturbed

equally by Bl and the input by B2 • For DMU2 , the radius of rigidity model

is

Alax BI + (h

s.t. x =1

Yt + 2Y2 =1

(1 + BI )YI + (1 + Bl )Y2 $ (1 - ( 2 )x

X, Yb Y2, Ob O2 2: O.

Once again, feasibility dictates that Y2 ::; 1/2. Combining the constraints,

we have
1- O2

1/2 $ 1 - Y2 = YI + Y2 $ 1 + (h $ 1

and therefore,

The latter constraint is necessarily satisfied by positivity of 0i' Since we

wish to maximize IIBIII, the first constraint implies that optimality occurs for

(}* = (01, ()2) = (1, 0).

For D MU1 , the two parameter radius of rigidity model is

Max BI + (}2

s.t. x =1

YI + Y2 =1

(1 + (JI)YI + (2 + 9dY2 $ (1 - (2)X

X, Yb Y2, 91, ()2 ~ O.
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Feasibility requires that (YI, Y2, X) = (1,0,1), but this implies that a ~ -el - ()2

which is only possible if ((JI, (J2) = (0,0). We conclllde that DlvIU2 will re­

lnain efficient while DMUI's combined input and output effort is less than

or equal ta 1. However, D MUI will not remain efficient if DMU2 makes

any improvements ta its eurrent operating levels. Once again, DlifU2 ranks

better than DMUt .

Finally, we will consider a three parameter radius of rigidity model for

D MU2 in which each variable is affected by a different perturbation. The

model is

lvlax (Jt + 82 + fJ3

s.t. x =1

YI + 2Y2 =1

(1 + (Jt}YI + (1 + (J2)Y2 ~ (1 - f):~)3.:

X,YI,Y2,81 ,82 ,83 ~ D.

We daim that the point (Yb Y2, x) = (D, 1/2, 1) is feasible and results in an

unbounded objective. Using this point, we have

1 1 - ()3
-<--
2 - 1 + 92

which gives 82 + 263 $ 1. As long as we take 82 and (}3 satisfying this

constraint, we can senrl 81 ta infinity and feasibility is preserved. This results

in an infinite radius of rigidity. This seeming anomaly can be seen in Figure

8.1, which also depicts the efficiency frontier after the perturbations ta DMU t

determined by the one and two parameter models. It is interesting that these

extreme situations also appear when reallibrary data are used.
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8.2 Implementation and Interpretation

In this section we consider the specifies of solving the radius of rigidity prob­

lem (L, 8, k) with the objective function defined by the Et norm.

First, we will discuss the input optirnization method for sorne general

perturbation (J E ~p. The previous example showed that the MVF is not

always applicable to solving the radius of rigidity problem. Thus, we must

verify the assumptions that guarantee the validity of the MVF before we use

ît. For each iteration, at sorne initial fJ*, these are as follows:

1. The parameter f} must remain in the set S = {(J: p= (0) = p= «(J*)} n

{f}: F(fJ*) c F=(fJ), F(fJ) c F=(fJ*)};

2. The point-to-set mappping F= (fJ) must be lower-semicontinuous at 8*

relative to S;

3. The saddle point {i(8*),ü(8*)} must be unique;
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4. The gradients \lof(x, 0), \lOfi(X, 8), i E P< (0) must be continuons;

5. The limit

l 1
· 6 - f)*= lm

OESiO~O" 1\6 - 0*11
must existe

Let us consider each of these.

First, as long as there exists a generalized Slater's point, we have P=(9) =

P=(O*) for every 0 close enough to rr. In addition, since the equality con­

straints are independent of f), the two inclusions will hold as weIl. The map­

ping F=(O) is lower-semicontinuous because yk and )(k are assumed strictly

positive. Uniqueness of x(O) can he guaranteed by Tikhonov's regulariza­

tion. (The term -ç(llxll~ + Ilyll~) is added to the objective function.) The

optimal solution in (x, y) is then unique and by sending ç to 0, we obtain,

in the limit, the solution to the original problem. (See, e.g., [58].) Unique­

ness of u(9) is not necessarily guaranteed. However, the set {Ü(O)} is closed

sinee the conditions of Theorem 5.4 are satisfied. (Indeed, F; (fJ) is lower­

semicontinuous, since P=(8) = P=(fJ*) implies that F;(O) = F=((}). AIso,

the objective function is realistic sinee positivity of the data ensures that

F (0) is bounded. This set, also closed, ensures that there exists an optimal

solution for every feasible O. Finally, it was shown in the proof of Theorem

5.5 that S is a regÏon of stabiIity.) Sa, if one is not eoncerned with the 10­

cally fastest improvement of f(O), then uniqueness of ü(9*) can be reIaxed.

Continuity of the gradients is assured in (L, 8, k). FinaHy, for linear seareh

directions where Ok+l = Ok + odk
, a ~ 0, l = dllldii exists as long as d i= O.

Furthermore, if aH the assumptions of the MVF hoId, then, sinee every f) in
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the numerieal method is located on a region of stability and sinee the ob­

jective funetion is only a function of fJ, then we are guaranteed eontinuity of

t.he optimal value funetion. One may choose to normalize the data to ensure

greater numerieal consisteney.

The algorithm is as follows:

(i) Set ç equal to say 0.1; n = 0;

(ii) Set (Jo = 0;

(iii) Solve (L, 8, k) with (J = (Jn using the Tikhonov regularization condition

with the current ç to obtain a unique solution. Notice that (L, 9, k)

also depends on ç. Since the objective is now quadratic in x and y, we

may use a gradient method (see, e.g., [61), Section 5.3);

(iv) Calculate dn = -"VoL(x(on),ü(on);9n) with the problem expressed as

a minimization problem. This guarantees a direction of local improve­

ment since

lim iCO) - f(9*) = -dTd/l\dll
0-1-0" 118 - (J* Il

by the MVF;

(v) Determine the best step-size O:n, W here (Jn+ 1 = (Jn + and!". Since the

objective is a function of 0 only, as long as aH components of dn are

positive, this reduces to finding the largest O:n which guarantees feasi­

bility of the Hnear program. (One can use the Golden Section Method

to determine the best an' This entails maximizing [(0) over an interval

of a that guarantees feasibility of (Jn + and!" (see, e.g., [62] for details));
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(vi) Set on+l = en + Œndn (n =n + 1). Go to (Hi) until Œn ~ fl or dn ~ f2

or lIi(O) - 1(0*)11 ~ f3, where fil i = 1,2,3, is chosen to the desired

accuracy;

(vii) Replace ç by çjlD. If ç ~ f4, for sorne sufficiently small €4, then stop.

EIse, go to (ii).

At each new 0 E ~P, it is important to ensure that a generalized Slater's

point holds. Otherwise, the MVF may not guarantee a local direction of

improvement. The interpretation is straight-forward~ the higher the radius of

rigidity, the greater the resilience to improved efficiency by the other DMU's

and, therefore, the better the ranking.

8.3 Numerical Example

We will apply two techniques, the first described in the previous section and

the second described in Section 5.4, to the following example borrowed from

Neralié [46]:

DMUl DNIU2 DMU3 DMU4 DMU5

Xl 4 12 8 6 2

X2 6 8 2 6 8

Y 2 4 2 3 2

After solving the CCR model for each DMU, it is discovered that DMUl

and DMU2 are inefficient with efficiency evaluations of 0.857 while DMU's

3,4 and 5 are efficient.
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First, we apply input optimization using the MVF to a two parameter

model for DMU3 • The model is

Max 91 + 92

s.t. 2y =1

8Xl + 2X2 =1

(2 + (JI)Y - (4 - (J2)Xl - (6 - 62)X2 ::;0

(4 + 9dy - (12 - 62 )XI - (8 - (2)X2 ::;0

(3 + (Jdy - (6 - 62)Xl - (6 - (J2)X2 ::;0

(2 + BI)y - (2 - 62)Xl - (8 - (h)X2 ::;0

X., X2, Y ;::: O.

To ensure positivity of the data, we impose the restriction 62 ::; 2. After sorne

algebraic manipulation of the data, we determine that the set of feasihle ()'s

is given by :F = {(J E ~2: (JI + ()2 ::; 3; 62 ::; 2; fJi ;::: 0, i = 1,2}. The results

can be found in Table 8.1.

The optimal solution at (J* = (1.5,1.5) is (y«(J*), Xl (fJ*), X2(fJ*)) = (0.5,0,0.5)

and u«()*) = (U., U2, U3, U4, 0, 0, 0, 0, 0, 0, 0) with UI = 'U2 and 'U3 = 'U4. (Re­

caU that each of the equality constraints produce two inequality constraints.)

We can prove global optimality of this point using the saddle point condition

from Theorem 3.13. The Lagrange multipliers which satisfy the saddle point

are not unique and are identical ta U(O*). Notice that (}* is not a unique

global optimum. Two iterations were required for each value of € because

a maximal a which preserved feasibility was used, and the direction of im­

provement for aIl iterations was approximately (l, 1). Thus the first iteration
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ç (JI 92 Iterations

0.1 1.49763 1.50181 2

0.01 1.49966 1.50008 2

0.001 1.49991 1.49996 2

0.0001 1.49999 1.5 2

0.00001 1.5 1.5 2

0.000001 1.5 1.5 2

Table 8.1: Radii of Rigidity for DMU3

served to find the best () and the second to confirm this. For values of ç up ta

and including ç = 0.0001, a generalized Slater's point exists so the assump­

tions for the MVF hold. For ()* = (1.5,1.5), the feasible point reduces to a

single point and two additional constraints become active. Thus MVF does

not necessarily guarantee a direction of improvement from ()*. When this

method is applied to DMU4 > a radius of rigidity of 2/3 is obtained and, for

DMUs, the radius of rigidity is 2. We can thus rank these efficient DMU's

by their radii of rigidity. In decreasing order of rigidity, they are: DMU3 ,

DMUs, and DMU4 •

While this method typically produces a better parameter (), it may not

converge to a globally or even locally optimal solution. From experience, the

Lagrange multipliers consistently appear to take on values close or equal to

zero. Thus, the direction vector causes approximately equal increases in all
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pararneters.

Next, we apply the Inodified radius of rigidity approach in which we solve

the single parameter model for each variable. (This approach was described

in Section 5.4.) For instance, the radius of rigidity model for D1\11U3 for the

output is given by

AJax 8

(

s.t. 8x] + 2X2 =1

2y =1

(2 + 8)y - 4Xl - 6X2 ~O

(4 + O)y - 12xI - 8X2 :::;0

(3 + O)y - 6Xl - 6X2 ~O

(2 + 9)y - 2XI - 8X2 :::;0

Xl, X2, Y ~ O.

Note that when perturbing the inputs, the parameter () is subtracted from

the original data value. Since aH data must be strictly positive, we set the

following limits on 0 for each variable: for y, the limit is sorne arbitrarily

large number, for Xl, the limit is 2 and for X2, it is 6. These limits are

dependent on the variable and the DMU begin considered. The results are

given in Table 8.2.

Since T:Ji ~ r ji for every j = 4, 5 and every 'Ï = 1, 2, 3 (here j represents

the DMU and i represents the variable), we conclude that the "best" DMU

is DMU3 , followed by DAt/Us, and then DMU4 • This is the same ordering

as was obtained with the input optimization method.
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DMU3 DNIU4 DlvIUs

R.adius Limit Radius Limit Radius Limit

Xl 2 2 2 2 2 4

X2 3 6 2 2 2 2

Y 3 100 0.54 100 2 100

Table 8.2: Radii of Rigidity

We remark that the method which employs the MVF gives greater flexibil­

ity in terms of the allowable perturbations. Thus, depending on the situation

and the desired analysis and interpretation, it may be preferable to attempt

ta use that method. The latter method, however, requires no assumptions

be satisfied and thus is always applicable.

8.4 Application to North American Univer­

sity Libraries

We have applied the modified radius of rigidity approach to various subsets of

ARL members. AIl data was normalized. The code found in [9} was adapted

for our purposes. First, aH Canadian university libraries were selected for a

model with twelve different data sets, as seen in Chapter 7. In that group,

only one library (McMaster) was inefficient. In solving the radius of rigidity

problem, bounds were set to ensure positivity of the data. In almost aH cases,

the radius of rigidity attained the prescribed bound. Thus, for outputs,
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a tendency towards an "infinite" radius of rigidity was noticed (An upper

bound of 100 was set which, given that the data was normalized, was deemed

"sufficiently large".) On the other hand, for inputs, the radius of rigidity

typically reached the lower limit at which positivity of the data would be

lost. The larger the number of inputs and outputs, in comparison to the

number of DMU's, and the higher the number of efficient DMU's, the more

typical this behaviour.

Then, the model with aU Canadian libraries was scaled clown to six data

sets (the same six as were used in Chapter 7). Here, the efficient libraries

were the University of Alberta, Guelph, McGill, Queen's, Saskatchewan and

Waterloo. The same sort of behaviour recurred. It appears that the max­

min interpretation described in Section 8.2 is appropriate here. Using this

interpretation, we have the following ordering of efficient libraries: Alberta,

Queen's, Saskatechewan, Waterloo, Guelph and McGill. (Alberta is the most

rigid efficiently run, McGill is the least rigid efficiently run in this group.)

Finally, a subset of fifteen libraries was taken from the group of thirty

seen in Chapter 7. The analysis was based on six data sets from Chapter 7.

The results can be found in Table 8.3. For those libraries that are efficient,

the bounds are the same in aH cases: 0:::; (h :::; 100, i = 1, ...,4, 0 :::; Os ::;

0.330166, 0 ::; (}6 :::; 0.191436. As can be seen from the table, the university

libraries of British Columbia, California at L.A., Hawaii, Illinois at Urbana­

Champaign and Louisiana State are efficient. After determining the radius

of rigidity for each variable in turn, the following ranking of these efficient

libraries can be established: Illinois and British Columbia are comparably the

best since the radius of rigidity reaches the imposed bounds for aIl variables.
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Hawaii would rank below these two sinee the bounds were reached in an
cases except one and, in that case, the radius of rigidity was better than in

aU other instances. Louisiana State is next, followed by California sinee two

radii of rigidity of 0 would suggest a precarious effieiency evaluatioll. Note

that. the I\1cGilllibrary is ranked inefficient in this group.
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Outputs Inputs Rank

YI Yi 1~l Yt "Yl ":\2

Alberta Inefficient

B.C. 00 00 00 00 0.33 0.191 1-2

Brown Inefficient

California, L.A. 00 00 0 0.1482 a 0.191 5

California, San Diego Inefficient

Conneticut Inefficient

Duke Inefficient

Guelph Inefficient

Hawaii 00 00 00 1.2521 0.33 0.191 3

Illinois, Urbana 00 00 00 00 0.33 0.191 1-2

John Hopkins Inefficient

Laval Inefficient

Louisiana State 00 00 00 0.5601 0.33 0.0705 4

McGill Inefficient

McMaster Inefficient

Table 8.3: Radii of Rigidity for 15 Libraries in 1994-1995.

Inputs: Staff and Expenditures;

Outputs: Volumes, Volumes Added, Seriais and Microforms.
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Chapter 9

Efficiency Evaluations for

McGill

In this chapter, we will focus our attention on the University of McGilllibrary

(alllibraries are considered as a single unit); its efliciency evaluations in the

various models and its ideal operating Ievels. We will interpret the results in

non-technical terms. (For mathematical qualifications and terminology, see,

e.g., Chapters 2 and S.)

When all10S libraries and five data sets (staff, total expenditures, total

volumes, volumes added gross, and current seriais) are considered, McGill

ranks as about the 40th largest university library with respect to the ARL

Index. However, it has shown poor performance in regard to the efficiency

analysis using DEA. Under DEA, McGill had been consistently placed ap­

proximately 95th overall with the same five data, with efficiency evaluations

ranging from 0.47 to 0.53. Surprisingly, during the 1994 academic year, it
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exhibited ajump to I1 th position with an efficiency evaluation of 0.90. Based

on a single improved observation, it is impossible to determine whether or

not this is indicative of a trend of increased relative efficiency. This improve­

ment may weIl be based on a sharp decrease in that year's total expenditures

(by approximately $400 000) and an increase in gross volumes added (by

approximately 36 000 volumes) for McGilllibraries.

Table 9.1 gives actual and ideal operating levels for MeGill over a five year

period. This is based on results from the DEA model with five variables and

aIl lOS university libraries. The ideal values are calculated from the optimal

dual variables associated with the efficient libraries in MeGill's referenee set.

The referenee set consists of those efficiently run libraries which are "closest"

to McGill and the associated dual variable gives a numerical representation

of the importance of that library in providing an ideal profile for McGiIl.

(For more specifies, see Section 2.2.) It is interesting that the University of

Illinois at Urbana-Champaign has turned out in aIl efficiency evaluations as

the library McGill should emulate to improve its efficiency. For example, in

1994-1995, McGill's reference set consisted only of the University of Illinois at

Urbana-Champaign (with the associated dual equal to 0.535). Thus, McGiIl's

ideal input and output vectors are given by the associated dual times the

input and output vectors for Illinois:

XO = 0.535 [520, 22 388 297]T = [278, 11 977 739]T

and

yo = 0.535 [S 665 814, 191 077, 90 969]T = [4 636 211, 102 226~ 48668]T
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(If there had been more than one library in the referenee set, the ideal veetors

would have been given by the sum of the dual variable times the vectors for

the particular library over alllibraries in the reference set.) The ideal profile

means the following: during that year, !vleGilllibraries employed 315 people,

spent $13 299 751, eontained 2 878 716 volulues, added 102 164 volumes

(gross) and had 17 424 eurrent seriaIs. During that year, the McGilllibl'ary

was l'un inefficiently according to DEA. In order ta l'un efficiently, IVleGill

should have redueed its library staff to 278 people, deereased its expenditures

to $11 977739 and increased its volumes ta 4 636211, its new volumes (gross)

to 102 226 and its eurrent seriaIs ta 48 668. If McGill had been operating

at these levels, it would have been ranked as efficient in comparisol1 to the

other libraries. DEA seems to be suggesting that for a library of McGill's

size it should be running on a lower budget with fewer employees in orcier to

be ranked as efficient in relation to other university Iibrarics. HuweveL DEA

also suggests that an increased budget which is used to increase volumes and

seriaIs (i.e., outputs) will also improve its relative efficiency. One must keep

in mind that these DEA results are based on a particular set of variables.

Table 9.2 gives McGill's reference sets for each of the five years (Le.,

libraries McGill should look up to to impfove its efficiency). We also give

the optimal value of the dual variable associated with each library in the

set. (These values can be interpreted as the "intensities'~ of the influences on

McGill in order to make McGill efficient.) Note that the reference sets are

dominated by the presence of the University of Illinois at Urbana-Champaign.

It is again this library which is the "closest" efficiently run library to rvlcGill.

For the models based on a subset of thirty libraries, McGill is efficient
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Staff Expenditures Volumes VoluInes Addcd Serials

1990 Actual 280

Ideal 131

1991 Actual 279

Ideal 140

1992 Actual 279

Ideal 132

1993 Actual 276

Ideal 132

1994 Actual 315

Ideal 278

14 684 399 2 570 377

fi 897 508 2 571 936

15 155 419 2 621 044

7 473 280 2 624 337

13 989 375 2 766 775

6 948 980 2 766 775

13 704 719 2 824 083

7 252 265 2 825 277

13 299 751 2 878 716

Il 977 739 4 636 211

70 614

70 726

95887

96 012

68 580

68 580

66040

66040

102 164

102 226

17 812

29 052

17 541

29 440

18 524

29 928

17739

30320

17424

48668

c.

Table 9.1: DEA Analysis of McGill in a group of 108 libraries.

Inputs: Staff, Total Expenditures.

Outputs: Volumes, Volumes Added (Gross), Current SeriaIs.
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Reference Set

1990 Illinois, Urbana

Wayne State

Colorado State

Associated Dual

0.292

0.098

0.005

(

1991 Illinois, Urbana 0.264

Kentucky 0.198

1992 Illinois, Urbana 0.315

Pennsylvania 0.038

1993 Illinois, Urbana 0.328

Nebraska 0.020

1994 Illinois, Urbana 0.535

Table 9.2: DEA Reference Sets for McGill in a group of 108 libraries.

114



(

(

only in the twelve variable rnodel and in the two most recent years. How­

ever, in that model, in one year, twenty-one and, in the other, twenty-two

other libraries from the set of thirty were efficient. Its position dropped in

the six data model, even though its efficiency evaluation did not change.

(Sorne inefficient libraries improved their ranking but McGill did not.. ) With

an efficiency evaluation of 0.9, McGill ranked 5th when five variables were

considered and 10th when six variables were considered. In the four years

1990-1994, JvlcGill had consistently placed low in approximately the 12th

percentile, just as it did in the full lOS library model. Efficiencyevaluations

were very close for the five and six data models, around 0.52. Again, any

change in McGill's relative placement was due to the displacement of other

libraries as opposed to McGill itself. For each of the four years respectively,

the efficiency evaluations increased in the twelve data model with 30 libraries,

taking on the values 0.7, 0.97, 0.95 and 1.

Tables 9.3, 9.4 and 9.5 provide information pertaining ta an ideal profile

of McGill. In a group of 30 libraries, McGill was run inefficiently, and these

tables identify the "closest" efficiently run libraries and their desirable inten­

sities (associated dual variable) towards McGill to make it efficient. Table

9.3 gives the ideal input and output vectors, based on a six data model for

each of the five years considered. The actual values rerer ta McGill's observed

operating levels. The "ideal" data are the operating levels that would have

been necessary for McGill ta have been ranked as efficient. Table 9.4 gives

both the libraries in the reference sets and their associateù optirnal dual vari­

ables for both the five and six data models for each of the five years. Onp can

see how comparable these two models are and, once again, the importance
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of the University of Illinois at Urbana-Champaign as an efficient model for

McGill. Table 9.5 gives the libraries belonging to McGill's reference set (Le.,

the lihraries McGill should look up ta) and their associated optiInal dual

variable (Le., intensities towards McGill) for the twelve data mode!. By a

comparison of Tables 9.4 and 9.5, one remarks that the inclusion of addi­

tional data to the model clearly alters the efficiency frontier (Le., efficiency

structure of the libraries). This is evidenced by the faet that the reference

sets for the twelve data model are essentially different from those for the five

and six data model. This suggests that the inclusion of more data results in

a geometric alteration of the model, rather than a progression of inefficient

libraries towards a statie efficiency frontier.

Finally, we recall that, in Chapter 8, we applied the radius of rigidity

approach to various DEA models. The purpose of this was ta he able ta

rank efficiently run libraries by their "rigidity" or resilience ta improvements

in operating levels of the other libraries. Based on a model with twelve

variables which included aIl thirteen Canadian ARL mmnbers, rvIcGill \Vas

efficient along \Vith Il other libraries. (Only the University of iVlelVlaster

library was inefficient in that model.) For aIl twelve variables, McGill's radii

of rigidity attained the bounds imposed ta ensure positivity of aH data. A

radius of "infinity" was found for all five outputs. Thus, the other 12 libraries

can increase their outputs as much as they choose without affecting McGill's

efficient evaluation. The radii of rigidity for the inputs were 0.263, 0.094, 0.22,

0.3, 0.15, 0.2 and 0.134. Once aH of the 12 other libraries have increased the

relevant input by the values given above, NlcGill is still efficient and these

values cannot he increased any more or the model will no longer he viable
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Staff Expenditures Volumes Volumes Added Seria.is Microfonn

1990 Actual

Ideal

1991 Actual

Ideal

1992 Actual

Ideal

1993 Actual

Ideal

1994 Actual

Ideal

280

142

279

193

279

141

276

133

315

278

14 684 399 2 570 377

7 273 347 2 570 377

15 155 419 2 621 044

10 500 410 2 621 629

13 989 375 2 766 775

7 254 464 2 766 775

13 704 719 2 824 083

7 321 777 2 881 411

13 299 751 2 878 716

Il 977 739 4636 211

70614

70 614

95887

95 887

68580

68580

66040

66040

102 164

102 226

17812

27554

17 541

28986

18 524

29084

17739

31 048

17424

48668

1 161 647

l lUI G47

1 204 911

1 754 081

1 245 360

1 489 305

1 298 576

1 420 411

1 347 565

2 347427

(

Table 9.3: DEA Analysis of McGill in a group of 30 libraries.

Inputs: Staff, Total Expellditures.

Outputs: Volumes, Volumes Added (Gross), Current SeriaIs, lVIicroform

Units.
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5 Variable Model

Reference Set Associated Dual

6 Variable Nlodel

Reference Set Associated Dual

1990 Illinois, Urbana

Duke

1991 California, San Diego

Illinois, Urbana

Conneticut

1992 Illinois, Urbana

Alberta

1993 Illinois, Urbana

1994 Illinois, Urbana

0.229

0.188

0.342

0.217

0.049

0.299

0.085

0.340

0.535

Illinois, Urbana

Duke

Hawaii

California, San Diego

Illinois, Urbana

Connecticut

Illinois, Urbana

Alberta

Illinois, Urbana

Illinois, Urbana

0.228

0.187

0.004

0.342

0.217

0.049

0.299

0.085

0.340

0.535

(

Table 9.4: DEA Reference Sets for McGill in a group of 30 libraries.
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12 Variable Madel

Reference Set

1990 Alberta

Duke

California, L.A.

Yale

Associated Dual

0.280

0.176

0.069

0.061

1991 Alberta 0.228

Toronto 0.205

California, San Diego 0.137

Duke 0.113

California, L.A. 0.003

1992 California, L.A.

Yale

Waterloo

Alberta

0.168

0.125

0.110

0.100

(

Table 9.5: DEA Reference Sets for McGill in a group of 30 libraries.
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(since sorne of the data will become negative). Since rnost of the other

Canadian libraries in this subset also attained their bounds, cornparison of

the results proved ta be almost impossible. For the saIne set of 13 Canadian

AR.L members for which six variables were considered, McGill was again

efficient. Here, the radii of rigidity for the outputs were "infinit.y" with the

exception of the radius for the number of volumes added (gross) which \Vas

low at 0.0436. The radii of rigidity for the inputs attained their bounds of

0.263 and 0.229. These results placed McGill 6th among six efficient libraries

in the set of thirteen. In a final analysis of a subset of fifteen libraries, McGill

was inefficient and sa was not considered in the radius of rigidity analysis.

(For the full set of 15 libraries, see Table 8.4.)

Overall, McGill library did not place well in the efficiency evaluations

with the exception of the 1994 academic year in which it placed 11 th out of

108 libraries. This sudden jump in its ranking appears to be the result of

a decrease in expenditures and an increase in the number of gross volumes

added. DEA appears to suggest that for a library of McGill's size to be run

efficiently, it should reduce its expenditures and cut back on staff. One must

keep in mind that this was determined using a few select variables (originally

chosen by the ARL to indicate library size) which give no indication of the

quality of the collections or of the service provided. While fvIcGill had mnch

better efficiency evaluations in smaller models with more data, so did the

majority of the other libraries included in those models. The University of

Illinois at Urbana-Champaign consistently appeared as one of the libraries

which McGill should take as an example of an efficiently run library.
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Chapter 10

Conclusion

We have studied stability properties of several models used for efficiency

testing and ranking of efficient DMU's in DEA. In particular, we have sug­

gested a pararnetric programrning approach to ranking of the efficient nuits

by calculating their radii of rigidity.

The results have been applied to a group of 108 ARL university affiliated

libraries. Our numerical results confirm sorne of the daims made in the

literature, e.g., that an increase in the number of variables used in efficiency

tests generally increases the efficiency of the DMU's. This fact confirrns the

importance of ranking the efficient DMU's and warrants a follow-up study of

the radius of rigidity approaches initiated in this thesis.

We have found it interesting that sorne of the pathologieal behaviour

relative to stability round in our academie models extends ta the models

with real-life data. Our DEA comparison of the efficiency of the libraries has

produced essentially different results than those based on factor analysis with
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the same data. Particular attention was paid t.o the University of ?vfcGill

libraries, considered as one unit. We have obtained McGill's ranking in

different sets of libraries and with different data over a period of several

years. When its library was declared inefficient, we used DEA ta iclentify the

libraries that McGill should look up to in arder to improve its efficiency. The

results of the thesis could also be used to study how efficiently the libraries

are run within IvlcGill itself. This could form a possible tapie for future

research.
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