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Abstract

A method for ranking efficient decision making units in Data Envelopment
Analysis is suggested. The method uses parametric programming and calcu-
lates “rigidity” of efficient units relative to perturbations of input and output
data.

Theoretical results are applied to 108 North American university libraries.
The efficiency of the libraries is determined by the Charnes-Cooper-Rhodes
tests. The radius of rigidity approach is applied to efficient libraries. In par-
ticular, we focus on the McGill University library and compare its efficiency
to other libraries using different data sets.

Une méthode pour classifier I'efficacité des unités décisionnelles dans I’-
analyse par enveloppement des données (DEA) est suggérée. Cette méthode
utilise la programmation paramétrique et calcule la “rigidité” des unités ef-
ficaces relative aux perturbations des données de base et des résultats.

Les résultats théoriques sont mis en pratique pour 108 bibliotéques uni-
versitaires Nord Americaines. L'efficacité des bibliotéeques est déterminée
par le test de Charnes-Cooper-Rhodes. Des biblioteques efficaces sont clas-
sifiées par la méthode de rayon de rigidité. En particulier, on prend le cas
de 'Université McGill et on compare son efficacité aux autres biblioteques
en utilisant différents ensembles de données.
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Chapter 1

Introduction

Data Envelopment Analysis (DEA) was originally proposed in the late sev-
enties as a means of determining and improving the relative efficiencies of
not-for-profit organizations, such as hospitals, schools and government agen-
cies, whose goals, organization and structure, did not fit the standard meth-
ods of analysis. DEA allows comparison of a number of decision making
units (DMU’s) based on a finite number of generally incomparable inputs
and outputs which are common to all units.

The theoretical objective of this thesis is to study stability of the basic
efficiency evaluation models in DEA. One of the major difficulties in DEA is
a large number of efficient DMU'’s, which are not comparable. This typically
occurs when there is a large number of different input and output data in
comparison to the number of units being studied. We suggest two approaches
for ranking the efficient DMU’s. One of these is briefly described as follows:
Take an arbitrary efficient DMU,;. Then find the largest perturbation of




each variable in every other DMU;, ¢ # k, which preserves efficiency of that
DMU,. For each variable, the smallest of these numbers is termed the “radius
of rigidity” of DMU,. In an ideal situation, all efficient DMU’s are then
ordered by their radii of rigidity. Academic models for calculating the radii
of rigidity can be highly stable (with unbounded radii of rigidity) or highly
unstable (with zero radii). It is shown here that these extreme cases also
occur in practical situations.

The “radius of rigidity” approach is applied in this thesis to selected
libraries from the 108 North American university libraries which are members
of the Association of Research Libraries. Our DEA analysis of these libraries
confirms the known fact that the number of efficient DMU’s increases with
the number of data. (In a particular DEA model of 13 Canadian libraries,
12 were declared efficient.) This warrants a study of how to order efficient
DMU’s.

A particular feature of this thesis is that it relates the performance of
McGill University library to other university libraries. McGill’s performance,
when a small number of different types of data is considered, was, until
recently, not very impressive. It consistently ranked below 87" place until
1994-95 when its efficiency ranking jumped to 11%* place. However, McGill’s
performance appears to be improved when more different data is compared.
(Its library was actually declared efficient in 1993-94 and 1994-95 in a group
of 30 libraries with five input and seven output data.) When McGill library is
declared inefficiently run, then DEA identifies “close” efficiently run libraries
that McGill should “emulate” to achieve efficiency. DEA also shows how

this can be done. It is interesting that the University of Illinois at Urbana-
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Champaign has been consistently declared as one of the libraries McGill
should emulate to improve efficiency.

The thesis is organized as follows: In Chapters 2 and 3, we recall the
general tools and various DEA models from the literature, with a focus on
the Charnes-Cooper-Rhodes model (see, e.g., [14, 59, 16, 17, 50, 52]). Also,
we recall some notions from the study of stable parametric optimization
(see, e.g., [9, 34, 60]). Chapter 4 surveys the methods which have been
used for sensitivity and post-optimality analysis in DEA models (see, e.g.,
[3, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 39, 45, 46, 55, 56, 57]. Each method
is illustrated by a simple example. In Chapter 5, we introduce two radius
of rigidity models and two simplified marginal value formulae. The marginal
value formula given in Theorem 5.6 is proved under new assumptions. These
formulae can be used in input optimization (see, e.g., [9, 60, 62]) to calculate
the radii of rigidity. We also adjust characterizations of locally and globally
optimal inputs from input optimization to fit our radius of rigidity models.
Chapters 6 through 9 deal with applications. The first two of these chapters
present the results of having applied DEA to North American university
libraries for a period of five years. A full model consists of 108 libraries. Also,
a subset of 30 libraries with various sets of data is studied. Chapter 8 looks
at the application of the radius of rigidity approaches in detail, including
algorithms of the technique, simple examples and an application to library
data. All empirical data used in this thesis are taken from [47, 30, 31, 40, 41].

The reader interested in the results for McGill, but not necessarily in the
details of the theory, may proceed directly to Chapter 9 which looks at how
the McGill library fared in the analysis.
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Chapter 2

Terminology

2.1 DEA Models

In this section, we survey the most popular models used in Data Envelopment
Analysis (DEA). The basic DEA model takes the form of a non-linear, non-
convex fractional programming problem. We will assume that we have N
decision making units (DMU'’s), each with a set of strictly positive inputs
represented by X7 € ®™, j =1,..., N and a set of strictly positive outputs
represented by Y7 € R*, j = 1,..., N. It should be pointed out that the
number of DMU’s must be sufficiently large as compared to the number
of inputs and the number of outputs for any confidence in the statistical
reliability of the input and output evaluations. DEA is units invariant in the
sense that the variables do not necessarily have to be comparable amongst
themselves. Thus, we can include monetary variables such as expenditures,

as well as unitary variables such as the number of employees, in the same




model without any difficulties. For each, say the £, DMU, the model seeks
to maximize a weighted ratio of ‘virtual’ outputs to ‘virtual’ inputs with

respect to a common pool of weighted ratios determined by all N DMU’s:

Ma:z(u,u) (u, Y’“)/(v, Xk)

st. (u,Y9)/(v,X7) <1, J

1,..,N

U,V > 0.

These programs must be solved for each of the ¥ = 1,..., N DMU’s. In
each case, the DMU under consideration selects its own best possible set of
weights. Each program determines the coordinates of D MU} in the produc-
tion possibility set: the set of all possible production levels as determined by
the current production levels of the DMU’s being analyzed. Those DMU that
lie on the boundary of the production possibility set are said to lie on the
envelopment surface or the efficiency frontier, and are deemed to be efficient:
under given technology and feasible production levels, it is not possible to
produce higher levels of output without increasing levels of input. The reader
may recognize that this is directly related to the Pareto-Koopmans concept
of efficiency in economic theory. The work described above was an extension
of that of Farrell who considered the single output case which proved to be
somewhat restrictive in application. For more on these topics, the reader is
referred to [33, 13].

Due to an observation made by Charnes and Cooper in fractional pro-
gramming, it is possible to convert the above model into a linear program, a

number of versions of which exist in the literature. The idea is to maximize




a ratio of a sum of weighted outputs to a sum of weighted inputs (an out-
put oriented model) or to minimize the reciprocal ratio (an input oriented
model). The two primary models are the ratio model, developed by Charnes,
Cooper and Rhodes (CCR), and the additive model.

The CCR model for DM U, as presented in the original paper by Charnes,
Cooper and Rhodes [14], is given by

Maz 6
st. YA >2Y.0
XA <Xi
A 20

An alternate version which employs the non-Archimedean construct ¢ is given
by
Min 0 —e(eT'st +eT's™)
st. YaA—st=Y,
X, —XA—s =0
A >0
st >0

s” 20.

The existence of the solution to the CCR model is assured, see e.g., [20].
In [13], the authors claim that the non-Archimedian extension is required
in the CCR model for rigorous theory and usage because it is necessary

for an algebraically closed system of the linear programming type. This
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guarantees optimal solutions at finite non-zero extremal points. Efficiency
is achieved, for the output oriented model, if the optimal value is one and
all slack variables are zero. The presence of non-zero slacks in the optimal
tableau indicates a source of inefficiency.

The so-called additive model is given by the program

Min —eTst —elTs™

s.t. YA-s* =Y
XA -5 =-X;
Z >‘j = 1,

which classifies DMU, as efficient if the optimal solution is zero.

In [36], these two models are classified according to the type of envelop-
ment surface that is constructed, either a variable or a constant returns-to-
scale function. A variable returns-to-scale envelopment surface consists of a
reference set which is the convex hull of all the DMU vectors augmented by
the non-negative input-output possibilities that are dominated by this convex
hull. Such a set is provided by the additive model. A constant returns-to-
scale envelopment surface consists of a reference set which is the conical hull
of all the DMU vectors similarly augmented. Such a set is provided by the
ratio model.

Two other models commonly appear in the literature: the Banker, Charnes
and Cooper (BCC) mode! and the multiplicative model. Equivalent formula-
tions to the CCR models exist for the BCC models, the only difference being
the inclusion of a convexity constraint on the weights, namely, Zf; LA =L
Conditions for efficiency are the same as above. The multiplicative model

7




uses a logarithmic transformation from fractional to linear form

multiplicative model would take the form
Maz I, Y7 /T2, X
s.t. ‘:.=1 )/;l-;-r/n:il X:;‘ S 1, J - 1,...,N
My Vg 2> 1
and is converted to the following linear program
S _ m —~
Maz Y pYee— Y viXik
r=1 i=1

s m
s.t. Z /Lryrj - ZUiXij < 0, ] = ]., ceny N
r=1 i=1

—pr < —1 r=1,..,8

-v; < -1 1=1,..,m.

. Thus, the

Here the carat indicates the log of the original data point. For this formu-

lation, the efficiency frontier is a piecewise log-linear function. Efficiency

is achieved if the optimal value and all the slacks are zero. The N linear

programs differ only in the objective function.

A measure of efficiency which has recently been introduced into the DEA

literature by Thompson, Dharmapala and Thrall (see, e.g., [29]) is given as

a solution to the problem

3 S
M Zr:l uryro Zr:l uryrk
a'x(u,v) m ({7
Zi:l Vi%io Ei=1 ViTik

where, for any choice of (u,v),

S s
2or=1 Urlrk =1 UrYrj | .
_'—l—LLzmam{—I"T‘—ﬂU_L,,,,n}_

m
Yz ViTik = ViTij
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This is a measure of relative efficiency of DMU,. It may be considered as an
extreme value statistic and treated by appropriately adapted versions of the
statistical theory of extreme values or it may be solved as a mathematical
programming problem.

The selection of the model and, consequently, the envelopment surface
used for analysis can frequently be determined by various assumptions, eco-
nomic and otherwise, regarding the data set. The CCR ratio model gives
an overall efficiency evaluation. The BCC model provides information about
returns-to-scale and gives a technical efficiency evaluation. The multiplica-
tive model provides a log-linear envelopment of the production process. And
the additive model relates efficiency results to the economic concept of Pareto
optimality. In addition, a number of alterations can be made to the selected
model to more realistically fit the data. For instance, a use of exact weights
may be replaced by upper and lower bounds while allowing DEA to deter-
mine a best set of values from past performances. Or, if certain input or
output levels are not within the control of the DMU, for example, they may
be specified by government regulations or by population, these particular
inputs or outputs may be included in the determination of the reference set,
but excluded from the objective function and thereby do not affect the ef-
ficiency rating. One can also include ordinal relationships among virtual
multipliers to reflect the relative worth of certain inputs or outputs, or one
may include multiple time frames in the same model. For these topics, the

reader is referred to, for example, [24, 4, 49)].




2.2 The CCR Model

This section provides theory and terminology for the CCR model and closely
follows the development in [59).
For each DMUy, k£ = 1, ..., N, the problem of determining its efficiency

rating is given by the fractional program

Maz (u,Y*)/(v, X*)
st (u,Y)/(v,X?) <1, i=1.,N
u >0,

v >0,

where the constraints represent the common pool of all DMU’s. Thus, higher
efficiency ratings imply producing more outputs with less inputs.

We will assume that all inputs and outputs are strictly positive and that
only those optimal solutions (u*,v*) for which v* # 0 are acceptable. The
above fractional form can then be transformed into a linear programming
problem.

Using the substitution

T= G%FES’ I=TV, Y=Tu
we find that .
u,Y
Ev,X’“; =Y
with
(2.1) (z,X¥)=1(v,X¥) =1

10




Hence

(u, Y7) < (v, X9, j=1,..,N,
becomes
(2.2) (v, Y") < (2, X7), j=1,..,N.

Thus, the CCR model is
(CCR, k) ]\’I(L:B(m,y) (y, Yk)

st (y, YY) < (z,X7), ji=1.,N

(z, XF) =1
T >0
] > 0.

Alternately, it can be shown that the constraint (X*,z) = 1 can be

replaced by (X*,z) < 1. The two resulting programs are equivalent.

Theorem 2.1 The constraint (X*,z) = 1 can be replaced by (X*,z) <1 in

(CCR, k). The resulting optimal solutions and values are the same.

Proof: If (%, §) is an optimal solution of the latter problem, it suffices to
show that (X*, &) = 1. If this were not the case, then we can define £ = § 1%
and § = 671§ where § = (X*,z) € (0,1). The point (%, ) is feasible for the
problem with the constraint (X*, ) < 1 since § > 0 and (X*,%) = 1. But
(Y5, %) > (Y*,7) since the optimal values are positive and § < 1. This
contradicts the optimality of (z, ).

Notice that one must solve such a problem for each of the N DMU'’s.
Each DMU chooses its optimal weighting from the common feasible pool.

Efficiency is defined as follows:

11




Definition 2.2 A DMU is efficient if the optimal value ¢* of (CCR, k) is

1. It is inefficient if the optimal value is such that 0 < ¢* < 1.

One may recognize that the CCR test presented here bears a different
form from the one presented in the original paper on DEA by Charnes,
Cooper, and Rhodes [14]. To avoid any non-Archimedean constructs, we
have employed the dual of the program used in that paper. The two are
equivalent by linear programming theory.

Not only does DEA provide a means of ranking a number of similar
DMU'’s according to their efficiency, but it also allows identification of sources
of inefficiency and an estimate of the overall amount of inefficiency. Thus, we
can determine how an inefficient DMU can be made efficient. Let us show
how this is done.

Each inefficient DMU can be associated with a set of efficient DMU’s,
which determine the boundaries of a facet of the efficiency frontier closest
to that inefficient DMU. It is onto that facet that we project the inefficient
DMU. The associated efficient DMU’s form the set R, = {j: pj > 0} where
p* is the optimal solution of the dual variables associated with the common
feasibility constraints given by 2.2. One notes that ¢* is the dual variable

associated wtih the constraint given in 2.1.

Theorem 2.3 The decision making units in the reference set Ry of an in-

efficient DM Uy are efficient.

Proof: Let z* and y* be optimal primal solutions and p* and ¢* be optimal

dual solutions for an inefficient DMUy. The corresponding complementarity

12




conditions from linear programming are
gl YY) = (5, X)) =0, j=1,.,N.
For j € Ry, we have p; > 0. So
(2.3) (", Y = (z*, X9), je R
Now, for any j € Ry, define
y5 = oy, 7 = az* for some a > 0.

We claim that (z7,y7) is a feasible solution of the primal efficiency test for

DMU}. First,
@, ¥9) ~ (@, X%) = ol(y", Y9 - (2", X9)] <0, j=1,...N,
by feasibility of (z*,y*) for DMU,. Also,

(z7, X)) = alz*, X%)
= a(y’, Y, by (23)
=1

for the choice

(2.4) a= !

— >0
(y*, YY)

It is impossible that (y*, Y7 ) = 0, because of the positivity assumption on

the data. That would mean y* = 0 and therefore (y*,Y*) = 0 which implies
g¢* = 0 since the optimal values are equal. But ¢* = 0 is impossible because
it would imply p* = 0 which would imply Y* < 0 contradicting the positivity

assumption on the data. So feasiblity is proven.

13




Finally,
(W7, Y7) = a(y*,¥7) =1

by the choice of (2.4) for a. Hence DMU; is efficient.

Definition 2.4 For an inefficient D MUy, we define its ideal DMU to have
the ideal input and output vectors:
X° = Z p;-‘Xj Y= Z p;-'Yj.
JER: JERK

The ideal DMU, given by X° and Y°, uses strictly less input to produce

at least as much output. This is guaranteed since
Yo=Y pY >v*
JER
by feasibility of p* in the dual problem, and
X° = Z p;fXj < g Xt < Xk
JERY

by feasibility of ¢* and p* in the dual problem and because 0 < ¢* < 1.

Also, the ideal DMU is efficient with respect to the efficient DMU’s from

the reference set:
Theorem 2.5 An ideal decision making unit is efficient.

Proof: Let (z*,y*) and (p*,¢*) be the optimal solutions of the primal and
dual problems of the efficiency test for DMU;, assumed inefficient. The

complementarity condition
N _ R
(z*,[- Zp;X’ + ¢ X"]) =0,
=t

14




can be expressed as

k k
(2.5) (z*, X*) ij('n Xy,
Define
__ 1, -1,
(2.6) T=—z" and §=—y".
q q

We will show that (Z, 7) is feasible and that the ideal DMU reaches efficiency

at that point. First, since (z*, y*) is feasible,
(v*, Y9 < (z*, X%), j=1,..,N,
so we can make the substitution (2.6) and we have
(2.7) (7, Y < (z,X9), j=1,..,N.
Since 4
(¥, Y°)  Tjer, P;(y"Y7)

(@, X°)  Tjer, P}(z*, X7)
by (2.3), it therefore follows that

=1

(2, X°)=@Y")
It remains to show that (Z, X°) = 1. We have:
@X) = ~6X), by (20

= —ij(x X%, by definition of X°
7 JERk

- q—,,Zp;(x*,Xj), since pi=0 if j¢ Ry
ji=1
= (z*,X%), by (2.5)

= 1, by feasibility of z*.

15




Hence, the ideal DMU (X°,Y") is efficient.

So X°,Y"° provide the required input and output levels to ensure an effi-
cient ranking. If all of the components of the optimal solution z* are positive,
then the efficiency ratio ¢* indicates the necessary proportionate decrease in
current input levels, while maintaining the same level of output, in order to
obtain efficiency. Thus,

X° = q*)(lc,

or, the input should be proportionately decreased by 100(1 — ¢*)%.

2.3 Scaling in CCR Models

One property of DEA is that the models are units invariant in the sense
that the variables representing the inputs and outputs do not all have to
be measured by the same unit. However, this may mean a wide range of
data values which could cause numerical instability and inconsistencies. Ali
[2] recommends that DEA problems should be scaled in order to avoid ill-
conditioned problems. Let us investigate exactly what happens if we scale

the data in the CCR tests.

Theorem 2.6 Consider (CCR, k). If the inputs X,j = 1,..., N are scaled
by a factor o; > 0,i =1, ...,m, and the outputs Y]j are scaled by a factor B >
0,l=1,...,s, the efficiency rating for every DMU;, k =1, ..., N remains the
same. Moreover, the ideal DMU of an inefficient DMU does not change. The
optimal solutions of the scaled DMU are multiples of the optimal solutions of

the unscaled DMU by the corresponding reciprocal scaling factors.
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Proof: Take %; = z}/a; and §; = y}/8;, where (z*, y*) is the optimal solution
of the unscaled problem. Let the scaled data be referred to by X7 = (o,X7) €
R™ and Y7 = (BiY7) e R®, j=1,...,N.
Claim: (Z,9) € F:
@ X =3 Llaxh) = Yaxt =1,
i=1 1 i=1

by feasibility of z*. Also,

|

(:X?) <0

0.7 - @ %) = Y K () -

i=1 =1

2

by feasibility of (z*, y*).
Claim: (Z,7) is optimal. First,
@V =3 (6 ="V =7,
i=1 Pi
where ¢* is the optimal value of the unscaled problem.
If (Z,7) was not optimal, then there would exist (z',y’) # (Z,9) such that
(v',B-Y*) =q' > q*, where

¢ =Y yfY* and ¢ =) y'Y*
i=1 i=1
But then we could take y! = y.53; and z} = z;qy, contradicting the optimality

of (z*,v*) in the original unscaled problem.

Claim: p} = p;, j = 1,..., N where p* is an optimal solution of the unscaled
dual problem and p is an optimal solution of the scaled dual problem.

The complementarity condition from linear programming theory gives

Y pviy N T : :
pild. F(ﬂiy?) -y ;(a,—X{)] =0, j=1,..,N.
i=1 ¢ i=1 ¢

17




Thus, p; = p; = 0 for all j Ry, where Ry, is the reference set for DMUy
as defined in the previous section. When p; # 0, we know that (7, - Y7) =
(%, - X7) or, equivalently, (y*,Y7) = (z* X7), where DMU; is efficient
(j € Rg). Since ¢* = q, we have from the complementarity condition
(2.8) ¥ pE,X0) = 3 pilat, X0).

JER JERy

Thus,

S (:r*,p;Xj —-piX) =0
JERk

and

(z*, 3 (X7 - p;X7)) =0.

JERE
Now (X*,z*) = 1 and z* > 0 by feasibility. Since X* > 0, this implies that
z* > 0. Otherwise, if z* = 0, the first condition would not be satisfied. So
> piXT= 3 X7,
JER JERy

and hence the ideal input vector is the same for the scaled and the un-
scaled problem, based on calculations with unscaled data. Because (y*,Y7) =
(z*, X7), j € R, we also have from (2.8) that

> oY) =Y Byt YY).

JjER, JER:
We showed in the proof of Theorem 2.3 that y* > 0. So in a similar fashion,
we can derive that the ideal output vector is the same for the scaled and

unscaled problem. Again, this is based on calculations with unscaled data.
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Chapter 3
Point-to-Set Mappings

This chapter introduces basic theory that is necessary to understand per-
turbed DEA models. In particular, we recall (see, e.g., [60]) basic notions
of parametric optimization and stability and state the Karush-Kuhn-Tucker

conditions for optimality.

3.1 Point-to-Set Mappings in Parametric Op-
timization
Parametric optimization deals with models of the form

(P,8) Min, f(z,6)
st.  fiz,0) <0, ieP.

It involves both the decision variable £ € R™ and a parameter, or input,

6 € RP. Each choice of § determines a feasible set, F(f), a set of optimal
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solutions F(f) = {#(d)} and an optimal value f(8) = f(Z(6),6). The first

two objects are expressed by point-to-set mappings
F:0 - F@)={zeR": fi(z,0) <0,i € P}
and
F:0 — F(8) = {Z(8)}.

(Here, Z(@) represents an optimal solution for the given 6.) For each choice of
input 8, one seeks € F(#) which provides the best optimal value. The set
of all 6 for which there exist feasible points is denoted by F = {6: F'(8) # 0}.

Thus, in the parametric optimization problem, we seek to
Ming f(z,8) = f(8)
st.  fz,0) <0, i€P,
in order to subsequently
Min f(6)
st. feF.
We will assume that f(z,0) and f(x,0), i € P are continuous functions.

We will also define some point-to-set mappings that will be used in Chap-
ter 5:

P=0) = {ieP: fiz,0) =0}

P<@) = {ieP: fz,0) <0, for somez € F(§)};
F=(0) = {ze®R": fi(z,0) <0,i€ P=(O)};

F70) = {zeR": f(z,0) <0,i€ P=(6)}.
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Note that the latter is given relative to a fixed 6* € F. The first two represent
the active and inactive constraints, respectively, for a given 6. P=(8) is called
the minimal index set of active constraints. These two mappings give an
indication of the relative freedom of the constraints within the problem.

At this point, we require some basic topology for point-to-set mappings
in order to define their continuity. In particular, we need the notions of open

and closed mappings.

Definition 3.1 A point-to-set mapping I': RP — R™ is closed at §* € RP if,
given any sequence 8¥ — 8* and a sequence z* € T'(8%) such that 2% — x*. it

follows that z* € T(6*).

Definition 3.2 A point-to-set mapping I': R? — R" is open at 6* € R? if,
given any sequence 8% — 6* and any z* € T(0*), there ezists a sequence

z* € T(6*) such that z* — z*.
We can now define continuity of point-to-set mappings.

Definition 3.3 A point-to-set mapping I': R? — R" is continuous at §* €
R? if it is both open and closed at 0*.

A closely related concept is that of lower-semicontinuity of the point-to-
set mapping. In fact, it can be shown that openness and lower-semicontinuity
of mappings are equivalent notions. Also, continuity of the constraint func-
tions guarantees that the feasible set mapping F is closed, so continuity of
F requires that openness, or equivalently lower-semicontinuity, be satisfied.

Let us formalize these statements.
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Definition 3.4 A point-to-set mapping I': R — R" is lower-semicontinuous

at 0* € R? if, for each open set A C R™ satisfying
ANT(6*) # 0,
there exists a neighbourhood N(6*) of 6* such that
ANT(@) #0 for each 8 € N(6%).

Theorem 3.5 A point-to-set mapping I': RP — R is open at 0* if, and only

if, it is lower-semicontinuous at 6*.

Theorem 3.6 Consider the model (P, ) where the functions f* : R*? - R,

i € P, are continuous. The point-to-set mapping F is closed at every 8* € RP.

3.2 Stability

We will now define stability of a model. For our needs, it suffices to consider
only convex models. These are models for which the functions (-, 8), fi(-, ) :
R* — R are convex functions for every § € R?, i € P. Such models will be
studied around a fixed, but arbitrary, 8*. For simplification, we will use the

following notion:

Definition 3.7 Consider the conver model (P, 8) around some 6*. The

objective function f is said to be realistic at 6* if
F(6*) # 0 and bounded.

We will also use uniformly bounded sequences of sets:
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Definition 3.8 A sequence of sets I'(6) as § — 6* is said to be uniformly
bounded at 6* if T'(9) C K for every € N(8*) where K is o ball of finite

radius and N(6*) is some neighbourhood of 6*.

The following theorem, borrowed from [60], will be used repeatedly. Re-
call that F: @ — F(#) is continuous at some 6* if, and only if, it is open, or,

equivalently, lower-semicontinuous, at 8*.

Theorem 3.9 (Characterization of Continuity of F(0)) Consider the con-

vez model (P, 0) around some 6*. The following statements are equivalent:
(i) The point-to-set mapping F is continuous at 6*.

(ii) For every realistic objective function f there erists a neighbourhood

N(6*) of 6* such that

F(8) # 0 and uniformly bounded

for every 8 € N(6*). Moreover, all the limit points of T(#) € F(0), as
9 — 6*,0 € N(6*), are contained in F(6*).

(iii) For every realistic objective function f there erists a neighbourhood

N(6*) of 8* such that

F(8) # 0 for every 8 € N(6*) and 6 — 6* implies f(8) — F(6").

An accompanying note is that for any model (P, ) with a continuous
feasible set mapping F, the optimal solution mapping F'is closed. The above

characterization is crucial because it is integral to our definition of stability.
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Definition 3.10 A convex model (P, 8) is said to be stable at a given
6* € F if the objective function is realistic and the feasible set mapping

F is continuous at 6*.

A convex model (P, ) will not necessarily react continuously to contin-
uous perturbations of an input 8. Those perturbations that do preserve the

lower-semicontinuity of the feasible set mapping F form a region of stability.

Definition 3.11 Consider the convex model (P, 8) around some 8% with a
realistic objective function. A set S C RP, containing 6*, is called a region

of stability at 6* if, for every open set A C R" satisfying
ANF(@*)#0
there is a neighbourhood N(8*) of 8* such that

ANF(6)#0 for each 8 € N(6*)N S.

3.3 KKT Conditions

To finish this chapter, we state the two versions of the Karush-Kuhn-Tucker
(KKT) conditions which serve to characterize optimality at a point z* and
we provide a saddle point condition which is necessary and sufficient for the
optimality of the parameter 6* for programs with linear constraints. The

conditions are stated for a convex problem of the form:
(CP) Min f(z)
st fi(x) <0, 1€ P.
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The first version makes use of the Lagrangian over a restricted set. The KKT
conditions are said to hold, if the system

Vi) + Y wVfia) =0

i€P(z*)
u; > 0,1 € P(!B*),
is consistent, where P(z*) = {i: fi(z*) = 0} denotes the set of active con-
straints at z*. The latter version circumvents the restriction on the summa-
tion by incorporating the complementarity conditions:
Vi(z*) + Z wV fi(z*) =0,
i€P
u; f'(z*) =0,i € P,
u; > 0,1 € P.

Note that the two systems are simultaneously either consistent or incon-

sistent.

Corollary 3.12 (Sufficiency of the KKT conditions) Consider the con-
vez program (CP), where all functions are assumed differentiable, and a fea-
sible point z*. If the KKT conditions are satisfied at x*, then =* is an optimal

solution.

The above tools extend to the parametric case for fixed 6. Thus, the
KKT conditions, for the convex model (P, §) with a fixed # and a feasible

point z* € F(#), can be expressed as

Vf(z*,0) + > ulf)Vfi(z*,0) =0,
i€P
u;(8) fi(z*,0) = 0,i € P,

uz(e) 2 0,1 € P.
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As 0 varies, so do the Lagrange multipliers (i.e., they become functions of
the parameter 8). Thus, the KKT conditions also provide a characterization
of optimality for the parametric problem with fixed 6.

Finally, we include a saddle-point condition for optimality of some 6*
which is based on the classic Lagrangian

L(z,u;0) = f(z,0) + Z u;fi(z,0).
i€P

It is stated for linear models (i.e., convex models where f(-, #),f(-,8): R™ —
R, 7 € P are linear functions. The results of this section can be extended to

the so-called LFS functions (see, e.g., [60, 44]).

Theorem 3.13 (Optimal Inputs for Linear Models) Consider the lin-
ear model (P, ) around some 0*. Assume that the optimal value function
f:RP = R exists on F. Let z* be an optimal solution of the program (P, 6*).
Then 0* minimizes f on F if, and only if, there exists a non-negative vector

function u*: F — u*(0) € RE such that
L(z*,u;6%) < L(z*,u*(6");6*) < L(z,u*(0);0)

for every u € R, every z € R™ and every 6 € F.
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Chapter 4

Survey of Approaches to
Post-Optimality Analysis

4.1 Radius of Stability

In [39], Kuntz and Scholtes present means of determining what they call
condition numbers for an efficient DMU. These quantities, called radii of
stability, provide information about the data perturbations which preserve
the current efficient status of a DMU. Thus, the method is only applicable
to efficient DMU’s. The authors consider perturbations of the input-output
vector for a particular DMU, of a particular commodity and of all sampled
production vectors. The condition numbers, or radii of stability, associated
with each of these perturbations are referred to as the individual condition
number, the condition number with respect to a commodity ¢ and the total

condition number, respectively.
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This is a cone-based CCR efficiency measure approach in which the tech-
nology cone (i.e., the set of all production possibilities given current tech-
nology as represented by the sample production vectors), is explicitly con-
structed. The data is structured in a production matrix A, where each col-
umn represents both inputs and outputs for a DMU. A is in turn embedded
into a parametric family A()\) (i.e., A = A(),) for some parameter )\,). The
sensitivity analysis of an efficient DMU, say A;, seeks to determine the max-
imal number € such that A;()\) is an efficient element of the technology cone
T[A(N)] = {w € R™+*|32 > 0: A(\)z > w} with [|]A = A\]| <e.

The individual condition number allows for perturbations of a particular
efficient DMU (i.e., A(X) = (), A, ..., Ax)). It coincides with the optimal

value of the program

Min |z — A4
st. 1€ T[Ag, ey AN]

For the /; and [, norms, this can be converted to a linear program by stan-
dard transformations.
The condition number with respect to a commodity allows for perturba-

tions of a single, say the first, commodity. So

Ay e A
A(/\): 1 N :

ay, .-, AN

where a; are the remaining m + s — 1 commodities for each DMU;. If there
exists a vector v > 0 such that a;v > 1 and a;v < 0 forevery 2 = 2,..., N,

then the condition number of A, with respect to commodity 1 is infinity.
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Otherwise, the condition number is bounded below by the optimal value of

the program

Min ”/\ - )\o”
st. —av — )\1 _<_ 0
a;v + /\,_' S 0, i= 2, ey N

v > 0.

Here, A, represents the original unperturbed data and once again, for the /,
and l,, norms, the above can be transformed into a linear program.

Finally, the total condition number allows for unrestricted perturbations.
Thus, A(X) = [A1,..., An], A € R™F5, 4 =1,..., N. This condition number is

given by the optimal value of the program

Min ”[.Al, ...,AN] - [‘41, ,AN]”

s.t. Al’l) >1
A <0,i=2,..,.N
) >0

In all cases, the condition number is dependent upon the choice of norm.
The theory is based on the result that, for a given production matrix A, if A;,
representing a sample production vector (i.e. a single vector of inputs and
outputs which represents a DMU) does not belong to the technology cone
spanned by the remaining sample production vectors, then A; is an efficient
element of the technology cone spanned by all sample production vectors. In

terms of our terminology, if a DMU does not belong to the cone generated by
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the other DMU’s, then it is efficient with respect to the cone generated by all
DMU’s. Let us illustrate the above ideas on a concrete example, borrowed
from [60).

Example 4.1 Consider two DMU’s, each with one input and two outputs.

The data is presented in the table below.

DMU, DMU,
X 1 1
Y 1 1
Y, 1 2

The CCR test gives the following models to be solved for the respective
DMU'’s.

(CCR,1) Maz y+yo
st. thh+y <n
n+2y <
Ty =1

Z1, Y1, Y2 207

(CCR,2) Max w1 +2y:
st. 1ty <o
Nn+2y <oy
Ty =1

Tty Y1, Y2 20'
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Both DMU’s are efficient since the objective is 1 in the optimal solution.
Optimal solutions are [y, y2, 71]7 = [1, 0, 1]¥ in both cases and dual solutions
are [p1,p2]7 = [1,0)7 and [0, 1]7 respectively. We will specifically consider
DMU,.

For our example, the individual condition number is given by the optimal

value of
Min ||z — Ap||
s.t. -1 > T
(/31 2 Ty
n 2> x3
Y >0,

where A; = (—1,1,2)7 is the production vector for DMU,. The authors in
[39] use negative entries to represent inputs and positive entries for outputs.
For the I, norm, the condition number is 4 and for the [, norm, it is 2. Thus,
within a cell of size 4 centered at (—-1,1,2), DMU, will retain its efficiency.

A lower bound for the condition number with respect to commodity 1

(the input) for DMU, is given by

Min ||[M +1, A2 + 1)
st —uy —2m-X <0
vy + My + Ay <0
Uy, Vg > 0.

This bound is 2 for the !; norm and 1 for the [, norm. So, if we perturb
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the input for both DMU’s up to a value of 1, DMU,; will remain efficient.
Also for DMU,, the lower bound for the condition number with respect to
either output for both of the previously employed norms was zero. A cursory
consideration of the example will make it clear that this bound is not very
tight. This condition number indicates that a pertubation of 0 of an output
will cause DMU; to remain efficient. This is not particularly informative
and it is clear from an inspection of the data, that we could decrease output
2 by 1, retaining positivity of output 2 for DMU,; and clearly retaining the
eficiency of DMUs,.

4.2 Radius of Classification Preservation

In a series of papers [25, 48, 19] by Rousseau and Semple et al., the concept
of a radius of classification preservation (RCP) is defined and discussed. Pro-
gram formulations are also presented. The RCP is the largest radius of a ball
centered at the current input-output position of any DMU, either efficient
or inefficient, such that all the points in the interior of this ball preserve the
current efficiency classification of that DMU. Clearly, the RCP is dependent
on the chosen norm. Formulations, based on the ratio model, are given for
both the [; and I, norms. Different formulations are required depending
on whether the DMU is classified as efficient or inefficient. For an efficient
DMU, the idea is to determine by how much it can be worsened before it lies
within the convex hull of the production vectors of the other DMU’s, thereby
making it inefficient. In the case of an inefficient DMU, one seeks to measure

the minimum distance between the DMU and an unstable point. (A point
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is unstable if, and only if, for € > 0, the open ball, centered at that point, of
radius €, contains both efficient and inefficient points.)

There is also a combined formulation for a DA{U), which suffices for cither
efficient or inefficient DMU’s and which gives the classification as well as the
RCP:

Maz ot — o~
st. YEN—strate,—a e, =y
X®N+ s~ —atem + a6y, = i

Ast s, e, 0t >0.

Here e, and e,, are vectors of 1’s of the appropriate dimensions and Y*) and
X () represent matrices of outputs and inputs respectively with the column
for DMU, omitted. Based on the uniform norm, the sign of the optimal
value indicates the classification, a negative identifying an inefficient DMU,
a positive identifying an efficient DMU, and the optimal value gives the RCP.

Example 4.2 Consider again the two DMU’s from Example 4.1. The
RCP of DMU, for the [, norm under the combined formulation is given by

the optimal value of the program

Min at —a”
st. M—-sf+at—-a =1
M -85 +at—a =2
Mt+s —at+a- =1
MstsT,at,a >0
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The optimal solution is 0.5 suggesting that within a ball of radius 0.5 centered
at (1,1,2), DMU, will remain efficient. For the /; norm, the RCP, given by

the optimal value of

Min wl+wf +w”

st. M —sT+uwf =1
20 — 85 +wf =1
M+s +w =1

)\I,ST,S;,S_,U);—,'U);,'IU_ 2 0)

is 1. Thus, within a cell of size 1, DM U, will remain efficient. The RCP of 1
is the greatest perturbation of all variables combined that will preserve this

classification.

4.3 Sensitivity Analysis

In [20], Charnes, Cooper et al., introduce a sensitivity analysis method for
the additive model which provides sufficiency conditions for the continued
efficiency of a currently efficient DMU. Their method can be applied to in-
efficient DMU’s, but is much simplified by restricting its application only
to efficient ones. The authors restrict their attention to output reductions,
one at a time, of a particular DMU, that will maintain the efficiency of that
DMU.

Nerali¢ [21] has further developed this work. He considers efficient DMU’s

where allowable perturbations are defined by an increase of inputs and a
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decrease of outputs and by a decrease of inputs and an increase of outputs for
inefficient DMU’s. In this manner, he is improving the status of inefficient
DMU’s and worsening that of efficient ones. The fundamental idea is to
determine by how much inputs or outputs can be perturbed before there is
a change in the optimum tableau of the simplex method. He finds sufficient
conditions for the optimal basis to remain unchanged with the optimal value
still equal to 1, thus preserving efficiency.

Sufficiency conditions for preserving efficiency are developed for pertur-
bations of a single input, a single output, for the simultaneous change of
all inputs and all outputs, both separately and combined, of a particular
DMU. More recently, in [22, 23, 45, 46}, Nerali¢ has introduced sufficiency
conditions for the simultaneous change of all data, for the decrease of all out-
puts of efficient DMU’s with fixed inputs, for the decrease of a single output
of efficient DMU’s with an increase of the same single output of inefficient
DMU’s and, similarly, for the increase of a single input of efficient DMU’s
and a decrease of the same input for inefficient DMU’s, and for changes in
inputs and outputs of different proportionalities. Let us illustrate Nerali¢’s
ideas on the DMU’s from Example 4.1.

Example 4.3 Applying Nerali¢’s methods of sensitivity analysis to our
two DMU example, we first chose to decrease output 2 of DM U, by o, making
the output vector [1,2 — a}. The sufficiency conditions reduce to 0 < oo < 1.
Reduction of output 2 for DM U, by 1 results in two identical and necessarily
efficient DMU’s. Reducing output 2 by more than 1 results in DMU, being
in a worse situation that DMU], in the sense that it produces less output

for the same amount of input, thereby making it inefficient. Similarly, for
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output 1, with the output vector [1—-e;, 2], sufficiency conditions for continued
efficiency of DMU, require o to be zero. If we increase the input by S and
decrease output 2 by «, the conditions imply that 8 = 0 and 0 < o < 1.
So, for DMU,, with input 1 4+ 8 and output [1,2 — ], we must not increase
the input and may decrease the output 2 by at most 1 in order to retain the
efficiency of DMU, in comparison to an unchanged DMU;. These results
are easily seen by an inspection of the original data. It should be noted that
the determination of these sufficiency conditions were lengthy to compute,

even for such a simple example.

4.4 Cone-Ratio Model

Charnes, Cooper, Huang, Sun and Wei (10, 11, 18] have developed theory
for a cone-ratio model, specifically for polyhedral cones, and its relation to
multi-objective programming. This cone-ratio CCR model is based on the
original CCR model, but it allows for infinitely many DMU’s and arbitrary
closed convex cones for the virtual multipliers. This method can also be
adapted to other models such as the additive model. The cone-ratio model
allows for the inclusion of additional relevant information in the construction
of a more adequate DEA model either by direct modification of the pro-
duction possibility set or by restricting the ranges on the marginal rates of
substitution of inputs or outputs.

The cone-ratio CCR model in the case of a finite number of DMU’s is

36




given by

Maz pTY;
st. WX +uTY <0
wTXk =1

weV, pel.

X and Y represent matrices with input and output vectors respectively as
columns for all DMU’s. X, and Y are the input and output vectors of
the particular DMU under consideration. A DMU is efficient if u7Y, = 1,
w* € Int V and p* € Int U, where ‘*’ indicates an optimal solution of the
above problem.

In particular, for polyhedral cones, (i.e., cones which can be represented

as an intersection of a finite number of half-spaces) one can write

= {veR™v=ATy for some y >0}

U = {ue®R:u= BTz for some z > 0},

for some m x [ matrix A and some s x k matrix B. Thus, the problem can

be reformulated as

Maz 2T (BY;)

st. Yy (AX)+2T(BY) <0
yT(AX) =1
y>0,22>0

ye E' z¢e EF.
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The authors show that certain fundamentals from linear programming the-
ory hold for the cone-ratio model, such as weak and strong duality theorems.
They establish the existence of at least one efficient DMU in the cone-ratio
model and the projection of inefficient DMU’s onto the efficiency surface, as
well as the equivalence of an efficient DMU and a non-dominated solution
from multi-objective programming. It is proven that a DMU ranked as effi-
cient under the CCR test will also be efficient in the cone-ratio model if the
optimal dual solution from the CCR test is contained in the constraint cone
used in the cone-ratio model. Otherwise, it will be ranked as inefficient.
The additional constraint cones may be selected so as to emphasize par-
ticular inputs or outputs or so as to favour individual DMU’s. A constraint
cone tilted towards any objective, whether an input or an output, will em-
phasize that objective. To favour certain DMU’s, one can place bounds on
the virtual multipliers. Those DMU’s with ratios of multipliers falling within
the ranges specified by the bounds will remain efficient. In the case of poly-
hedral constraint cones, one can use the cone spanned by the optimal CCR
test dual vectors of those DMU’s deemed most efficient by expert opinion.
Example 4.4 Let us use this method for the two DMU'’s in Example 4.1.
We leave the input multipliers unaffected and constrain the ouput multipliers

by defining the cone U = {ATa: o > 0} with
1 a?

at 1

AT =
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This is equivalent to perturbing the data in the following manner:

DMU, DMU,
X 1 1
i 1+a' 1424
Y2 1+a®> 2+a?

If o' is sufficiently small and a? is sufficiently large, this approximates to

DMU, DMU,

X 1 1
Y 1 1
Y, a® a’

Thus, a' is dominated by the observed value of y;, and «?® dominates the
observed value of y5. The DMU'’s originally producing the most y, will still
be efficient. Here, the efficiency of both DMU’s will be preserved under
the additional restrictions. If a? is sufficiently small and a! is sufficiently
large, the situation is reversed. In that case, only DM U, would maintain
its efficiency. Similar cones can be constructed for the inputs. Only those
DMU producing the least amount of the emphasized input would retain their
efficiency ranking. In order for us to initiate an emphasis towards a DMU
by using appropriate optimal virtual multipliers to construct the cone, we

would require a larger sample size.
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4.5 Assurance Regions

Thompson [55] has done a great deal of work on a concept that he refers to
as Assurance Regions (AR). The method was first used in determining the
optimal location for a Superconducting Super Collider physics laboratory in
the U.S. when standard DEA techniques returned all six possible locations
as efficient. The technique is applicable to any model; it seeks to include
‘price-cost’ inequality bounds for the mathematical multipliers in the DEA
problem, thereby reducing the number of efficient DMU’s. One can use
survey data and expert opinion to specify or estimate boundary conditions
for the virtual multipliers.

For DEA problems with a finite number of DMU’s and a well-defined data
domain, Thompson defines a Strict AR to be a subset of virtual multipliers
W such that the vectors w, excluded from the AR, are not reasonable virtual
multipliers. A Flexible AR is defined such that it permits a low probability
for the exclusion of some reasonable virtual multipliers. Here, the set of all
virtual multipliers W is equal to the union of the AR and the set of excluded
virtual multipliers.

Initially, Thompson considers a sequence of Assurance Regions which
gradually refine the original feasible set. Under this AR-I principle, the
regions can be specified as separable cones by using homogeneous sets of
linear inequalities. Specifically, he looks at the use of cone-ratios, but this
restriction is not necessary. In particular, he employs the use of bounds on

the ratios of virtual multipliers. Thus, an AR-I model can be described by:
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Maz yTY*k
s.t. T Xk =1

y'Y —2TX <0

k o 4o -
(e <y, =18 i=1,...,s8
k : -
T: 0 L<zjpj=1.,m,i=1.,m
T,y 20,

where a and 3 represent bounds on the changes in consumption or procuc-
tion levels. This reflects a more realistic input-output behaviour dynamic.
Practically, one can construct an input cone and an output cone. The AR-I
consists of all vectors w = [v,w]” where v belongs to the output cone and w
belongs to the input cone.

AR-I does not specify any interrelationships between the input and output
prices. So Thompson theoretically considers an additional tightening AR-II
which specifies the input and outputs cones and defines linkage constraints
a;; < yj/z; < Pi; between the input and output virtual multipliers. These
non-separable cones allow the inclusion of price ratios relative to marginal

rates of substitution in the model.

4.6 Dynamic Efficiency

As complement to Thompson’s development of Assurance Regions, Van Rooyen
[56] uses parametric analysis as a means of interpretating the CCR efficiency

test. He also introduces a modified test which measures the dynamic effi-
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ciency of a DMU.
For the CCR test, he shows that

(k) (k)
y.i(k) = QE‘-—k— and ) = — ?_l?___ *1?,
ayi( ) J BX_gk) Bk

where E®) is the efficiency evaluation for an inefficient DM U, and II.'EIC} and

y§k) are the largest individual components of the optimal solution (z*, y*).

So ygk) is the rate of increase of efficiency of DM Uy for an increase in output
¢ while rcgk) is the rate of decrease of efficiency for an increase in input j. In
addition, if the efficiency remains constant under perturbations of the data,
then mgk) / yj(k), when well defined, is the shadow price of outputting y; relative
to inputting z;.

The modified test is
Maz (Y*y)
s.t. (],kvy) - (Xka .'E) < eex

(X*,z)=1

x>0

y = 0.
This program is dependent upon a fixed €, |¢] < 1, chosen to reflect the
marginal efficiency over the usual efficiency. It measures how much better
an efficient DMU can become in relation to its efficient peers. Similarly, one
can determine by how much such a DMU can be worsened by minimizing
the above model.

Example 4.5 In an application to the two DMU’s from Example 4.1,

we have imposed linkage constraints az < y; < Pz on the feasible set,
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inducing an increasingly restrictive cone. This is equivalent to placing bounds
on the marginal rate of substitution of output 1 with respect to the input.
Thompson refers to this as AR-IL. It is also suggested in Van Rooyen and in

the cone-ratio methods described earlier. The results obtained were:

a f DMU, DMU,

4 infeasible 1infeasible

1 3 1 1
05 1 1 1
0.5 0.75 0.875 1
0 05 0.75 1

Van Rooyen’s dynamic model for determining how much better an efficient

DMU can become than its efficient peers gives the following results:

€ DMU, DMU,

0.5 1 1.5

0.1 1 1.1
0.01 1 1.01
0.001 1 1.001
0.0001 1 1.0001

Clearly, DMU, is more resilient and its efficient ranking is more secure than
DMU;. An attempt to determine how much worse a DMU could become

resulted in unbounded solutions for both DMU’s for the the values of € given

above.
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4.7 Structural Efficiency

In [60], Zlobec suggests a form of parametric post-optimality analysis, the
goal of which is to reduce the number of DMU’s classified as efficient. The
feasible set of an efficient DMUy, is systematically decreased in an economi-

cally meaningful way using the model:

(PO, 8) Maz (y,Y*)
st. (1Y < (2, X5, j=1,.,N
(z, X¥) =1
z,y>0
z € C(0), y e Cy(0).

Here C}(0) and C,(8) are cones of the form

Ci(0) = {z:z=A(O)u, u>0}
Cy0) = {y:y=B(@)v, v >0},

and A(f) and B() are matrices whose elements are continuous functions of
the vector parameter 8. Thus, a structurally efficient DMU. relative to some
prescribed 6°, is defined to be an efficient DMU that remains efficient for
every sufficiently small stable perturbation from 6° in the model (PO, ).
Zlobec notes that the classification of a DMU as structurally efficient is
dependent on the initial #° and on the allowable perturbations. Also, every ef-
ficient DMU that remains efficient after applying (PO, 6), without restricting

perturbations to stable paths, is structurally efficient but the reverse is not
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necessarily true. The intent of the method is related to Thompson’s Assur-
ance Regions or to the Cone-Ratio methods with the additional requirement

of stable perturbations.
Example 4.6 Recall the two DMU’s from Example 4.1. Notice that the

CCR model for DMU; in our example reduces to a program in two variables:

Maz y, + 2y,

st 4y <1

n+2y <1
Y, 2 2 0.
We will take
Ci(0) ={zeRjz=u, u>0}
and

1 -0 (A
co=vew=( 1 ) (%] 20
-0 1 (%)

where 6 is allowed to vary in the interval [0, 2]. We are imposing no change
on the inputs from the usual CCR test and we are invoking a decrease in each
of the outputs by the parameter §. For 1 < @ < 2, the feasible set consists
of the single point [y, y2]7 = [0,0]7 and so the model has an objective value
equal to 0. For 0 < @ < 1, the feasible set is a triangular region determined

by the constraints

1
[
U+ v < (1_0)
(1—20)v1+(2—0)v2 <1

vy, v2 20
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where the original variables y; and y, are transformed by

n v — Bvy

y2 = —Bv + va.

The optimal value is 1 so DMU, remains efficient for these perturbations.
For 8 = 0, we recover the original problem.

An increase in # starting from 0 does not affect the efficiency ranking.
A local increase from 6 = 1 causes DMU, to lose its efficiency, but such
perturbations are not stable because the feasible set drops to a point and,
therefore, DMU, is considered structurally efficient. Note that it would not

remain efficient under equivalent cone restrictions in the cone-ratio model.

4.8 Summary

In this chapter, we have studied some of the popular post-optimality analysis
approaches in DEA. Every approach described in this chapter has different
goals and is structured to permit particular, and differing, perturbations of
the data. The methods can be divided into one of two classes: those that
seek to gradually restrict the feasible set in a meaningful way in order to
eliminate some of the DMU'’s classified as efficient, and those that attempt
to determine those perturbations which preserve the efficiency classification
of a particular DMU while the others remain unperturbed. Those that fall
into the former category include the cone-ratio model, assurance regions and
structural efficiency. A gradual elimination process is effected by adding and

then tightening additional constraints based on economic interpretations.
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The idea of a structurally efficient DMU is advantageous because there are
no limitations as to the allowable perturbations of the data. Also, interest is
restricted to stable regions so that the feasible set and the optimal solutions
change in a continuous (economically meaningful) fashion.

The latter methods are dependent on the choice of norm and are only
readily solvable for the [, and [, norms. In these cases, the programs can
be reduced to linear ones, using familiar substitutions. Perturbations are,
in general, restricted to very particular cases in the data of a single DMU.
In addition, results may be misleading if the method is dependent on main-
taining the original optimal basis. In this case, a global maximum may not
be found since DEA problems are degenerative in nature, and thus multiple

optimal bases are likely to exist.
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Chapter 5

Radius of Rigidity Approach

In this chapter, we study a new approach in which we classify efficient DMU’s
by their “radius of rigidity”. The radius of rigidity problem seeks to de-
termine the maximal radius that guarantees the continued efficiency of a
currently efficient DMU. Much of the work that has been done in this field
involves perturbing the data only for the DMU currently under considera-
tion, whether it be efficient or inefficient. Here, we shall restrict our interest
to efficient DMU’s, but we will allow perturbations of the data for all DMU’s

except the DMU currently under consideration.

5.1 Theory for Radius of Rigidity Approach

In the theory that follows, the maximal radius of rigidity problem is formu-

lated as the parametric optimization problem
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(L.6,k)  Maz || 6]
st (YI(0),y) < (X7(0),2) j=1,.,N, j#k

(Xk z)=1
(Yhy) =1
y20
x> 0.

We have referred to our problem as (L, 8, k). The 6 indicates a parametrized
problem; the L stands for linear. Since the objective function is a norm, it
is convex in 8 and, for fixed 6, all constraint functions are linear in z and
y. Notice that we are maximizing a convex function. We will thus restrict
our attention to norms which can be transformed into linear functions, for
example, l; or l. More work needs to be done for the I, norm since the usual
transformation for minimizing this norm does not hold for a maximization
problem. For the moment, we will specifically consider the /; norm.

We initially consider an efficient DMU, at 8 = 0, an unperturbed prob-
lem. The rounded brackets indicate the Euclidean inner product and € is a
vector determined by the perturbations which one wishes to consider. The
constraints are identical to those in the original CCR test except for the ad-
dition of the constraint (Y*,y) = 1 and the deletion of one of the reference
set constraints, (Y*,y) < (X*,z). The additional constraint forces DM Uy, to
remain efficient for perturbations of # not equal to zero. The constraint that
was removed was necessarily active but was redundant because the problem
already specifies that (Y*,y) = 1 and (X*,z) = 1. As in the CCR test, we

assume that all components of X7 and Y7, j = 1,..., N, are strictly greater
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than zero. We can now formally define the radius of rigidity.

Definition 5.1 The radius of rigidity of an efficient DMUy, is the optimal
value of (L, 6, k).

The radius of rigidity for an efficient DMUy is a uniform measure of
the greatest allowable specified perturbation of the data which ensures the
continued efficiency of DMUj. The goal of the radius of rigidity problem is
to provide a means of ranking the efficient DMU’s. The interpretation of the
radius of rigidity is as follows: it provides an indication of how secure DMU,’s
efficient ranking is with respect to the assumed attempts at improvement
by other DMU’s. In other words, it indicates how long an efficient DMU,
can remain static and still be efficient while the other DMU’s continue to
improve. In order to make comparison meaningful, we scale all input and
output data to be between zero and one. (This can be done by dividing each
input (output) by the largest one of the same type. Recall Section 2.3 for a
justification.)

If we assume that inefficient DMU’s will attempt to improve their effi-

ciency, then we should define the perturbations for these DMU’s by

(5.1) Xi8) = [X-6ii=1..,m
(5.2) Y;0) = [V +6]; 5=1,...,8
(5.3) 9 > o

Note that for X(0), Y(0), i.e.,, when § = 0, DMU; is unperturbed. For
an efficient DMU, there are two possible scenarios. Either we assume that

these efficient DMU’s are attempting to increase their competitive edge, in
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which case perturbations for these DMU’s would be specified as above. Or,
we may assume that they choose to cut back on production while remain-

ing efficient. In that case, the perturbations of their data should be defined by

(54) Xl(O) = [X—&—F)]l, t=1,...,m
(5.5) Vi0) = [Y=0) i=1,..s
(5.6) 8 > o

One may tailor the perturbations according to the type of situation regarding
which one seeks information.

Let us point out that although we consider the radius of rigidity for an
efficient DMU, the problem could be formulated for an inefficient DMU if,
for instance, one wished to determine how resilient an inefficient DMU was
to perturbations of the data. This could be done simply by replacing the
constraint (Y*,y) = 1 by (Y*,y) < 1 or by forcing (Y*,Y) to be greater
than the actual efficiency evaluation.

An alternate approach to the radius of rigidity problem is given by

(L',0,k)  Maz || 8] +(X* z)
st (Y(6),y) < (X’(0),2) F=1,..N, j#k

(Xk, z) <1
(Y5, y) =1
y20
z >0,

provided the optimal value of (X*,z) = 1. However, it remains to be shown

51




that the optimal value of the expression (X*,z) is always 1, and that in-
feasibility indicates that DMUj can no longer remain efficient under the
perturbation 6. This problem is equivalent to a multi-objective program
with equal weights on the two objectives.

It is well known that the KKT conditions are necessary and sufficient con-
ditions for optimality of programs with linear constraints. (For the KKT con-
ditions, see Section 3.3.) However, the above model is not a linear program
(jointly in the (z,y,#) variable). So to check optimality, we need different
optimality conditions. First, we observe the equivalence between the KKT
optimality conditions and the saddle point characterization of optimality for

a fixed #. Consider the linear model:

(L,8) Min, f(z,0)

st.  fiz,0) <0, ieP,

where f(-,8) and fi(-,8), i € P are assumed to be linear for every #. Let us

construct the corresponding classic Lagrangian
L(z,u;0) = f(z,0) + > uif*(z,0)
i€P

and define m to have the cardinality of P.

Theorem 5.2 Consider (L, 8) where all functions are differentiable in z
around some 0. Then, for every fized @ € RP, at an arbitrary z* € F(0), the
KKT conditions

(5.7) V.f(z*,0) + > w(@)Vafi(z*,0) = 0

1EeP
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(5.8) a(0) = 0

(5.9) 1 (0)fi(x*,0) = 0,i€P

are satisfied if, and only if, for the same vector function %(6): R? — RT, we
have
(5.10) Lis*,u;0) < L(z*,5(6); ) < L(z, 5(0); )

for every x € R" and for every u € RT.

This is a well-known fact. (See, e.g., [62].)

In order to solve the problem (L, 8, k), we will use a marginal value
formula. First, we need conditions for the boundedness and continuity of the
Lagrange multiplier function. (We do not know how to prove the marginal
value formula if these functions are discontinuous.) It is well known that
Lagrange multipliers are unbounded if the constraints do not satisfy Slater’s
condition.

We will establish a form of the marginal value formula which uses a

restricted Lagrangian. For a general convex model
(P,6) Min, f(,0)
st.  fY(z,0) <0, i€ P,
around a fixed 6* € F, define

(5.11) Li(z,u,0) = f(z,0) + > wl(8)f(z,9),

i€P<(8°)

where P<(6*) is as defined in Chapter 3. Let ¢ be the cardinality of P<(6*).

33




Theorem 5.3 Consider the convez model (P, ) around some 6* and a re-
gion of stability S at 6*. Then there ezists a neighbourhood N(8*) of 6*
such that, for every fited 6 € N(6*)N S, Z(6) € F=(8) is an optimal so-
lution of the program (P, 8) if, and only if, there exists a vector function

a: N(0*) NS — RS such that
(5.12) L$(2(0),u;0) < LT(2(6), a(6);0) < LS (z, @(8);6)
for every u € R and every z € F7(0).

The proof of this theorem is given in [60]. The proof given there also
establishes the fact that
(5.13) Y @(8)F(£(6),60) = 0.

iEP<(8*)

Theorem 5.4 Consider the convexr model (P, 6) around some 6* with a
realistic objective funciton. Let S be a region of stability et 6* and let F-
be lower-semicontinuous at 6* relative to S. Consider a sequence of sets of
Lagrange multipliers {ii(6)} from the saddle-point condition (5.12) as 0 —
6*, 6 € S. Then every sequence u(f) € {@(0)} is uniformly bounded for all 8

sufficiently close to 8* and all its accumulation points are in {@(6*)}.

The assumptions for the MVF require lower-semicontinuity of F=(#) and
uniqueness of the optimal solution and of the saddle point. We will also
require certain assumptions about #. Let us consider perturbations in (a

particular region of stability):
S ={6:P=(8) = P=(6")} n {6: F(0*) Cc F~(), F(8) C F=(6")}.
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Theorem 5.5 (Marginal Value Formula) Consider the conver model (P,6)
with a realistic objective function at some 8*. Let us assume that the map-
ping F=:0 — F=(0) is lower-semicontinuous at 0* relative to the set S, and
that the saddle point {Z(0*), W(6*)} is unique. Also suppose that the gradients
Vof(z,8), Vofi(z,8), i € P<(6*) are continuous at (Z(6*),0*). Then, for
every sequence 8 € S, 8 — 6* for which the limit

o A
= sesino 10— 6]

ezists, we have

. f0) - f() _ = (0%, 5 (6%): g°
(MVF) 06.%‘%520' W = V()Lf(?}(a ),u(() ),9 ) -1

Proof: First we note that, for perturbations in S,
F7(0) = {z:f(z,0) <0, i€ P7(6")}

= {z: fi(z,0) <0, i € P=(6)}

= F=(6).
Therefore, the requirement on lower-semicontinuity of F,” in Theorem 5.4
and the usual MVF (see [60], Theorem 10.1) can be replaced by requiring
lower-semicontinuity of F=. But the latter implies lower-semicontinuity of
the mapping F. (See, e.g., [53], Lemma 1.4.) Hence, S is a region of stability.

We also note that for perturbations in S, the two inclusions can be rewrit-

ten as
F(¢*) C FZ(8), F(0) C FZ(6").

Using the saddle-point condition from Theorem 5.3 for § € N(#*)N S, we

have

L3 (3(9),u;0) < LT(2(0),(0);0) < LT (=, 1(0); )
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for every x € F7(f), and for every u € R¢, and, in particular, at 6 = 6",
LE(E(0%),v;0") < L3(#(07), w(0%);0") < L (2,4(6%);07)

for every z € F7(0*), and for every v € RS.

By (5.13),
Y. wW(O)(EO),6) =0
ieP<(0)
and
Y @) fH(E(6),6") = 0.
iEP<(0%)
Thus
L3(E(0), (6);0) = F(6)
and

LE(E(67), 5(6°);0%) = f(6").
After rearranging the above saddle-point conditions and adding and sub-
tracting the term L$(Z(6*),1(0);0), we obtain
f6)=f6") < Li(z,u(0),0) — LI (&(67), u(6):0)
+ L3(Z(0%), 6(6); 6) — LI(Z(07), v; 67)
for every x € F=(6), and for every v € R.

By choosing v = 4(6*) € RS and z = £(6*) € F(0) by the assumptions,
we have

-~ o~

f6) - f(6") < L3(2(67),1(0),0) — LI(Z(67),u(0);0)
+ L (2(0%), w(0); 0) — LT(2(6%),a(6);6%)

< Y [m(8) — @(07)]F(2(67), ) + VoL (Z(F7), a(6); w) (0 — 07)
iEP<(0°)
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for some point w between & and #*, by the Mean Value Theorem.

The index set P<(#*) can be split into two parts: the active constraints
P = {i € P<(6"): f(%(6%),6* = 0}

and the nonactive constraints
P, = {i € P<(0"): f{(2(6%),6" < 0}.

Note that

3 [@:(0) — @:(8%)]F(E(8"),8) < 0

i€Pn
for @’s close to 8*. (Recall that @;(6*) = 0, i € P, by the KKT condition).
Also note that

> [a:(0) ~ @(97)]1f*(E(6"), 6)

i€Pe
= T [a0) - (O EE).0) - FEE).0)
1€P,
and hence
. T 16(6) - (e O = FEELT)

i€Pa
whenever %;(6) — 4;(6%), ¢ € P<(6*), by Theorem 5.4, and because the

functions f*(Z(6*),-), i € P are assumed differentiable.

On the other hand,
FO) — F(6%) = LT (2(8),u;0) — LT (2,0(6"); 6%)
for every z € FZ(0*) and u € RS.
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After adding and subtracting the same term, and specifying u = @(6*) and
z = Z(#) € F=(0*) by the assumtion, the first and third terms cancel. This
yields

£(0) = F(67) = VoLE(#(8), (6" ); w)(8 — 6%)

for some w between @ and 6* by the Mean Value Theorem. Bounding f(8) —

f(6*) from both sides with the above inequalities, dividing by ||# — 6*|| and

letting & — @* completes the proof.

The above proof was essentially given in [62]. We have reproduced it
here for the sake of completeness. The same formula holds under different
assumptions, as will be shown in Theorem 5.6. But first, let us explain in

the next section why such a formula is important.

5.2 Input Optimization

Input optimization employs the marginal value formula in an iterative man-
ner to improve the current optimal value of the objective function. In our
particular case, we wish to find the largest possible radius of rigidity and,
therefore, are maximizing the objective function. In application, we will con-
sider the problem as the minimization of the negative objective function.
Thus, we wish to find a path along which f (0) is smaller than f (6*) or, in
other words, where the left-hand side of the marginal value formula is strictly
negative. The path should preserve continuity of the feasible point-to-set
mapping F.

The input optimization process is two-fold. At each step, one determines

o8




a stable path of improvement, and then determines the maximal step that
can be taken along that path so that the path remains feasible and there is
local improvement of the objective. Once we have determined a better input,
we repeat the process until a locally optimal input has been determined.
Note that different initial choices for 6 generally result in different locally
optimal inputs. However, in our case, we will always begin with 8° =0 (i.c.,
unperturbed data).

While any choice of path is acceptable, we simplify our calculations by
considering only linear paths. Thus, we are interested in changes to some

known 6" along the path
(5.14) "+ = g™ + ad™, a >0,

where d" is the direction of improvement. A direction d" which guarantees
that the left hand side of the MVF be negative and, therefore, that the opti-
mal value of the objective function is locally decreasing, can be determined
by
d® = —V,oL3(Z(0™), a(6™); 6™).
Step two concerns the step size problem: how to determine an optimal a,.

By substituting "+ = 6" + a,,d" into (L, 0, k), one is left with the problem
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Min —||6" + a,d"||

st (Y(ap),y) < (Xj(a,,l),:zz), i=1,..N, j#k

(Xk z)=1
(Y¥,y) =1
z>0
y20
a, > 0.

As f () is generally not known explicitly, we would use approximation tech-
niques such as the Golden Section Method. This is a numerical approxima-
tion technique which allows us to localize an optimum of a function by grad-
ually reducing the interval in which the optimum lies. The process works for
unimodal functions in one variable. (These are functions which have a local

minimum z* and for which the following properties hold:

if 11 <z < %, then f(z1) > f(z)
and

if x° <1y < 1o, then f(x2) > f(z1).)
The first step is to localize the interval [ag, bp] which ensures feasibility and
contains the local minimum by evaluating the function at two points. Then
we symmetrically reduce the original interval by calculating the value of the

function at only one point. (For details, see, e.g., [60]). We will return to

this method in Sections 8.2 and 8.3.
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5.3 The Marginal Value Formula Revisited

In this section, we derive the marginal value formula under different assump-
tions than those in Theorem 5.5. These new assumptions appear to be more
appropriate for the radius of rigidity approach defined by (L', 8, k). Our

problem is of the form

(L',8)  Min, f(x,6)
st. fYz,0)<0,i€Q
Az =0b.

Define the restricted Lagrangian involving only the objective and the inequal-

ity constraints as

LS(z,u;0) = f(z,0) + 3 ui(6) (=, 0)

i€Q

and the saddle-point condition
(5.15) LS(£(6), u; 0) < LE(2(9), i(6); 6) < LE(x, 4(6); 0)

forz € F~(f) and u € §R_°;, where ¢’ is the cardinality of Q.
The new assumptions require that there exists a generalized Slater’s point
at 6*. We say that the constraints of (L', 6*) satisfy the generalized Slater’s

condition if there exists a point z' such that

fiz',6) < 0, i€Q
A%z = b
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Theorem 5.6 (MVF under Generalized Slater’s Condition) Consider
the model (L', 8) with a realistic objective function at some 6* and a region of
stability S at 6* intersected with the set {8: F(9*) C F=(6), F(8) C F=(6")}.
Assume that the saddle point {Z(6*),u(6*)} is unique and that the gradi-
ents Vof(z,0), Vofi(z,0),1 € Q are continuous at {Z(8*),0*}. Also assume
that there exists o generalized Slater’s point at 6*. Then for every sequence
0 € S,0 — 0* for which the limit

g—0

= el Ta o

ezists, we have:

(5.16) (MVF) |, lim 1% =S¢ I(lofi - g(ﬁl) = VLS (Z(6%), U(6"); 6") - L.

Proof: First, we note that when there exists a generalized Slater’s point at
6*, then the set Q from (L', 6) is the usual P<(6*) from (P, ) and P=(6*)
is the set of equality constraints. On the region of stability S, there exists
a neighbourhood N(6*) of 6* such that P=(8) C P=(8*). (See, e.g., [60],
Theorem 7.13.) But P=(6*) is already just the set of equality constraints, so
the active constraints for all § € N(8*) N S are also the equality constraints.
In other words, in terms of our original notation, P=(8*) = P=(6). This
means that LS = LY with ¢ = card{Q}. Also, lower-semicontinuity of
F(0) implies lower-semicontinuity of F, () = F=(6) under the generalized
Slater’s condition.

Using the saddle-point condition from Theorem 5.3 for 8 € N(#*) N SN
{8: F(6*) C F=(8), F(8) C F=(6*)}, we have

LE(%(8),u;0) < LE(Z(8), @(9);0) < LS(x,(0);0)
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for every z € F(6), and for every u € ?Ri, and, in particular, at § = 8*,
LE(Z(6%),v;8%) < LE(F(6%), 6(6*); 0*) < LE(z,@(0%); 6%)

=(p* c!
for every z € F7(6*), and for every v € RS.

By (5.13),
> @ (6) fi((6),6) =0
i€Q
and
> (%) (#(6"),67) = 0.
i€cQ
Thus
LS(5(9),@(0);0) = f(6)
and

LE(Z(0%), w(6*);0*) = f(0*).
After rearranging the above saddle-point conditions and adding and sub-
tracting the term LS(Z(6*),%(8);6), we obtain
F)—f(6) < LS(z,@(0),0) — LS(Z(6%), ©(9); 6)
+ LE(Z(0%), 4(6); 0) — LE(E(6*),v;67)
for every z € F(0), and for every v € §Rﬁ:
By choosing v = @(f) € RS and x = Z(8*) € F(8*) C F=(9) = F=(9),
since P=(8) = P=(8*), and after cancellation,
f0) - F(67) < LS@E(67),(6);0) — LE(2(67),u(6);67)
= VoL=(Z(8"), u(8);w) - (6 — 67)
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where w is some point between € and ¢* by the Mean Value Theorem.

Similarly,

f(0) - f(67) < LE(3(6),u;0) — LE(E(4), &(0"); 6)

+ LE(%(9), 4(6"); 0) — LE (2, w(6*); 6")
for every z € F7(8*), and for every u € RS.
Take u = @(6*) € R and z = #(0) € F(0) C F=(6*) = F=(8*) since

P=(0) = P=(#*). Thus

f(6) - f(67) = LS(2(9),u(6%);6) — LE(E(6), W(6");6%)
VoLS(%(6),@(6"); w') - (6 — 6%)

where w' is some point between # and * by the Mean Value Theorem.
Dividing by || @ — 6* ||, we have

VoLE(Z(6), (8");w') - (6 - 67) _ f(6) - f(67) < VoLE(E(6"), u(8);w) - (6 — 67)
| 6—6| A 6 — 6| '

As 6 — 0%, w and w' approach 8%, () — £(8*) and u(8) — ©(6*) by Theo-

rem 3.9 and by Theorem 5.4, for 8 € S, respectively, and by the uniqueness

assumption on the saddle point.

So taking the limit, we have

F() - f(e*

— Cox=(a*\ TT(OH*\- OF) .
sies ooy~ Vel @0),U07):67) -1

All of the above results require that we work in a region of stability. A linear

model with a realistic objective function that satisfies lower-semicontinuity

of F=(0) and a generalized Slater’s condition at #* is stable at any 6 in a
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feasible neighbourhood of 6*. (See [60], Theorem 14.1.) Hence the model
(L, 8, k) is stable at 6*. We give a direct proof.

Theorem 5.7 The radius of rigidity tests (L', 6, k), where k represents
an efficient DMU, are stable at every 8* for which the generalized Slater’s

condition hblds.

Proof: Consider X7 and Y7, j = 1,.., N as the parameter evaluated at
some 6*. Note that the mapping F=:0 — F=(0) = {y:(Y*,y) = 1}, where
Y* = Yk(0), is lower-semicontinuous because Y* > 0.

Clearly, the objective function is realistic. Since X* > 0 and Y* > 0, the set
F(0) is bounded. Thus, F'(6) is bounded and there exists an optimal solution
for an initial 6*.

Next we will construct a Slater’s point for the inequality constraints. Take
y* = (y}) € R° such that y7 = (sY*)"',i = 1,...,s. Clearly, ¥* > 0 and
(Y%, y*) = 1. One can now construct z* € R™ such that z* > 0 and
(Y7,y*) < (X9,2*), j = 1,.,N and (X*,2*) < 1, since the k" constraint

has been removed from the reference set. Thus (L', 6, k) is stable at 6*.

5.4 A Modification for the Radius of Rigidity
Approach

If a MVF does not hold, it is still possible to find a better 6, in the sense of a
larger optimal value function. For each variable, we solve a single parameter

model where § € R, affects the variable under consideration for each DMU
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except an efficient DMU;. The model is solved by increasing 8 until the
problem is no longer feasible. We recall that since the CCR model requires
positivity of all data and we are subtracting # from the inputs, bounds must
be established to ensure this. As long as the data has been normalized, we
can compare radii of rigidity for different variables. One may then compare
radii for different DMU’s over different parameters. In particular, for each
DMU, one can take the minimal radius of rigidity across all variables which
does not represent an imposed bound and then rank DMU’s by taking the

maximum. We will designate this the max min ranking.

5.5 Characterizations of Locally and Glob-
ally Optimal Inputs

We have seen that for each choice of the parameter 6, we obtain a model
which we minimize over all feasible decision variables z € R™. We have
also shown that we can improve the optimal objective value in z and 8 via
methods such as input optimization. Consequently, it is important in our
study of these models to be able to identify those inputs that are locally
or globally optimal. After calculating the radius of rigidity, we can verify
its optimality by an optimality condition. This is done in this section for
(L, 6, k), but the theory also holds for (L', 8,k).

Definition 5.8 Consider the radius of rigidity model (L, 0, k) around some
0*. Let S be a region of stability at 0*. If

f(6") < F(9)
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for every 8 € N(6*) N S, where N(6*) is a neighbourhood of 8*, then 8* is a

locally optimal input relative to S.

Definition 5.9 Consider the radius of rigidity model (L, 0, k) around some
o*. If

F(07) < (0)

for all 8 € F, then 6* is a globally optimal input.

Theorem 5.10 (Characterization of Locally Optimal Inputs) Consider
the radius of rigidity model (L, 0, k) at some 0*. Let (Z(0*),§(6*)) be a cor-
responding optimal solution and let S be a region of stability at 6*. Then 6*
is a locally optimal input with respect to S if, and only if, there exists a non-

negative vector function u: N(6*)NS — RS such that, whenever § € N(6*)NS
L((2(8%),5(8%)), u; 6) < L((2(8"),5(6%)), ©(6*); 6*) < L((=,y), @(6"); 6")
for every u € R, and for every (z,y) € R™**.

Proof: (Necessity)

We know that f(f) exists and that f(8*) < f(8) for all # € N(#*) N S. But,
from the proof of the saddle point characterization of optimality (Theorem

5.2), this is equivalent to

L((2(67),5(6%)), u(6%);6") < L((z(67),5(6%)), u(6%),6%)
< L((z,y),u(6);6)

for all (z,y) € R™*°, by the same characterization. This proves the right-

hand side of the inequality.
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The left-hand side of the inequality follows immediately from feasibility of
(2(0*),7(0%)) and by positivity of u.
(Sufficiency)

The left-hand side of the saddle-point condition gives

F(E(6%),5(6%),6%) +3 ufi(2(6%),5(6%),6")

i€P

F(z(8%),5(6°),6%) +>_a(6%)f , 5(6%),6%),

1€P
for all u € RS. (We are using f* to represent the constraint functions and
the set P to represent all constraints. Recall that any equality constraints

can be converted to two inequality constraints.) Setting u = 0 gives

F(@(6%),5(6%),6%) < F(2(67),5(6%),6%) + D @:(6%)f(2(67),5(6"),6")
iEP

< f(E(6%),9(6%),6%)
by feasibility of (Z(6*), 7(6*)). But this implies that

> u(0”) f FHE(0%), 5(0%),0%) = 0.

iEP
Hence, by the right-hand side inequality

f67) < f(e,9,8) + 3 wi(6) fi(=,y,6)
ieP
for all (z,y) € ®R™*¢. In particular, for (z,y) = (Z(6), §(9)), we have
f167) < F60) + X wi(6)£1(2(6),5(6).9) < F(0)
ieP

for all @ € N(6*)NS by non-negativity of u(#) and by feasibility of (Z(6), %(9)).
Thus, 6* is a locally optimal input.
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Theorem 5.11 (Characterization of Globally Optimal Inputs) Consider
the radius of rigidity model (L, 0, k) at some 0*. Let (£(6*),5(6*)) be a cor-
responding optimal solution. Assume that f:F — R exists. Then 6* is a
globally optimal input if, and only if, there erists a non-negative vector func-

tion U: F — RS such that
L((£(6%),5(6")), u; 8") < L((2(8")5(6")), @(6%); 0*) < L((2,y),1(8");67)
for every u € RS, and for every (z,y) € R™*°.

The proof proceeds exactly as in the case for locally optimal inputs except

that now 8 € F.
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Chapter 6

Application of CCR Tests to
North American University

Libraries

In this chapter, we provide the results of the CCR tests (CCR, k) applied
to 108 North American university libraries which constitute the university
affiliated members of the Association of Research Libraries (ARL). CCR tests
were applied to all 108 libraries for the last five years of available data, with
the exception of 1990-1991. The University of Auburn was not a member
of the ARL in 1990-1991, so the CCR tests for that year are based on the
remaining 107 libraries. The GAMS (General Algebraic Modelling System)
optimization software package was employed for this purpose under a student
licensed copy on a 486 IBM compatible to double precision. All data are
obtained from [47, 30, 31, 40, 41]. They are scaled so that values fall below
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a thousand (see Theorem 2.6).

Initially, DEA was based on the use of five variables: total volumes
held, volumes added (gross) over the course of the academic year, num-
ber of current serials, total expenditures and the sum of professional and
non-professional staff (not including student assistants). These are the five
variables employed in the determination of the yearly ARL Membership In-
dex. Table 6.1 ranks the 108 members in decreasing order of efficiency based
on these five variables for 1994-95 using DEA (more precisely CCR) efficiency
tests. The letter “E” indicates an efficient library. Note that McGill library
ranked 11** in that group in the 1994 academic year. (This appears to be
a result of an additional 36 000 volumes added over the previous year and
an approximately $400 000 decrease in expenditures.) Prior to that year,
during the period 1990-1994, McGill ranked consistently between 87t and
96t*. (See Table 6.2 for details.)

Subsequently, in an attempt to determine more realistic efficiency evalu-
ations, the CCR test was used with one additional variable: the number of
microform units. The ARL publications [47, 30,31, 40, 41] provide a complete
set of data for all 108 libraries and it was included in the model as an output.
It is interesting to note that in all instances, the inclusion of this additional
output resulted in either no change or an increase in the efficiency rating.
There were certain libraries which consistantly exhibited a large increase in
their efficiency rating with the additional data included in the model. These
are Florida State University, University of Kentucky, University of Missouri,
University of New Mexico, and both Virginia Polytechnic Institute and Vir-
ginia State University counted as one university library (VPI & SU). Each
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12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

S©wNS o

Table 6.1: DEA ranking of efficiency for 1994-1995:
Inputs: Staff, Total Expenditures

Chicago
Georgia Tech
[llinois, Urbana
Oklahoma State

Auburn

Yale

Rice

Dartmouth
California, Davis
California, L.A.

McGill

Duke
Massachusetts
Alberta

Michigan State
California, Santa Barbara
Hawaii

Queen’s

Colorado State
Guelph

Texas
Washington State
Louisiana State
Rochester
Oklahoma
Georgia

Howard
Princeton

1.00000
1.00000
1.00000
1.00000

0.96319
0.92591
0.92330
0.91871
0.91641
0.91271

0.89881

0.87861
0.87322
0.86487
0.86093
0.85986
0.85953
0.83981
0.83452
0.83085
0.82815
0.82769
0.82286
0.81837
0.80956
0.80571
0.79375
0.78971

72

Outputs: Total Volumes, Volumes Added (Gross), Current Serials

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45.
46.
47.
48.
49.
50.
51.
92.
93.
54.
95.
56.
97.
58.
59.

Towa
Minnesota
Laval

North Carolina State
Maryland
California, Berkley
South Carolina
Virginia

Notre Dame
Arizona
Kansas

B.C.

Stanford
Indiana
Pennsylvania
SUNY, Buffalo
Harvard
Columbia,
Ohio State
Syracuse
Michigan
Oregon
Washington
Missouri
Wayne State
Purdue

Kent State
North Carolina
Colorado
Boston
Nebraska

0.77280
0.76850
0.76716
0.75805
0.75241
0.75213
0.74212
0.73623
0.73605
0.72408
0.71774
0.71083
0.70956
0.70774
0.70765
0.70136
0.69408
0.69404
0.69238
0.69114
0.68485
0.68314
0.67926
0.67664
0.67623
0.67158
0.66719
0.65928
0.65918
0.65721
0.65707



»

60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.

Toronto

Brown

Southern Illinois
Florida State
SUNY, Albany
Washington, St. Louis
M.IT.

Cornell

Wisconsin

Tulane

Alabama

California, Riverside
Conneticut

Case Western Reserve
SUNY, Stony Brook
Johns Hopkins
Delaware

Miami

Arizona State
Temple

Waterloo
Northwestern
Saskatchewan
Pittsburgh

Utah

Table 6.1 cont’d.

0.65338
0.64926
0.63939
0.63560
0.63248
0.63146
0.63015
0.62479
0.62319
0.62251
0.62237
0.62200
0.62168
0.62102
0.60872
0.60861
0.60169
0.59254
0.58596
0.58366
0.57726
0.57607
0.57387
0.57287
0.57075
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85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.

101.
102.
103.
104.
105.
106.
107.
108.

VPI & SU
McMaster
Southern California
Towa State
Western Ontario
Georgetown

York

California, San Diego
Vanderbilt

Florida

Emory

Houston

Brigham Young
California, Irvine
Kentucky
Pennsylvania State
Manitoba
Cincinnati
Tennessee

Rutgers

Texas A&M

New York

Illinois, Chicago
New Mexico

0.56321
0.55745
0.55485
0.55436
0.55389
0.54826
0.54638
0.52737
0.52665
0.51459
0.51296
0.50538
0.48383
0.48116
0.48098
0.48028
0.47750
0.47132
0.47086
0.45759
0.44871
0.44485
0.40728
0.39749




of these libraries showed an average increase in efficiency rating of at least
0.3, suggesting a very large microform collection in comparison to the rest of
their collection and in comparison to other libraries.

The ARL Membership Index provides a very different ranking of the
member libraries as compared to the DEA technique. We compare the two
rankings in Table 6.2. There the first row for each library gives the ARL
Index rank; the second row gives the DEA rank. Once again, “E” indicates
an efficient library. ( These indices, as well as the raw data used in the DEA
models, are available in the yearly ARL Statistical Publications [47, 30, 31,
40, 41}.)

The ARL index is determined by the use of factor analysis, a set of
statistical techniques commonly used in the social sciences. The technique
attempts to find and characterize underlying dimensions or factors in a large
set of data. The specific method employed is principal component analysis,
in which the original set of variables is represented in terms of a number of
common factors. These factors are determined in sequence so that at each
successive stage a maximum of the total variance of the original variables is
accounted for. Thus, the first principal component is a linear combination
of the original variables contributing a maximum to their total variance; the
second, uncorrelated with the first, contributes a maximum of the residual
variance, etc. In practice, only a few of the components need to be retained,
particularly if they account for a large percentage of the total variance.

In the case of the ARL data, using factor analysis, it was determined
that there exist four strong patterns of library relations, the first of which

clearly represents library size and resource deployment. By analyzing the
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correlation matrix, one determines a subset of five variables, as indicated
above, associated with the hypothetical component representing library size.
From the correlation coefficients between these five variables and the hypo-
thetical factor, one derives the factor loadings which are essentially weights
associated with each variable. The index score is then found by multiplying
these weights by the data and summing over the five variables for each in-
dividual library. It was found that the ARL data is lognormal rather than
normal, so logarithms of the original data are used. Also, since the technique
is dependent on the total variance of the original variables, it is sensitive to
linear transformations such as change of units. Consequently, all values are
expressed in standard normal form. The resulting set of scores approximates
a normal curve with Harvard consistently ranking number one overall. Based
on its expenditures, its collections and the number of staff, Harvard is larger
thar; any of the other ARL members. ARL membership criteria requires a
score of over -1 and membership may be withdrawn if a library consistently
earns a score of less than -1.75. Any score greater than 0 indicates that
a library is above the median size. All scores are relative to the group of
libraries and so changes in rank from year to year are also relative. Since
the hypothetical component represents library size, the ranking gives no in-
dication of quality of collections or services or of efficiency of operation. For
more information on factor analysis or its specific application to the ARL
data, one may refer to [37, 38] and [54].

As already indicated, there are discrepancies between the ranking of li-
braries as determined by the use of factor analysis and by DEA. The former

seeks to rank the libraries according to relative library size, whereas the latter
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attempts to determine the relative efficiencies. The first thing that becomes
apparent upon an inspection of the ARL and DEA rankings provided in Ta-
ble 6.2 is the greater consistency of a library’s position in the ARL Index
as opposed to the DEA rankings. This is readily explained by the differing
intents of the two methods: the ARL Index seeks to measure the relative size
of its members which is unlikely to change drastically over a short period of
time. Comparatively, DEA seeks to rank the relative operating efficiencies.
While it is unlikely that the operating policies governing the levels of these
variables will change radically from one year to another, it is possible that
factors or events outside library control may result in sharp cuts in expen-
ditures or staff or an unexpectedly large number of new volumes added to
the library, thus altering the efficiency levels. (An illustration is the McGill
library jump to 11%* position in 1994-95 from 95 position a year earlier.
This was a result of an increase in volumes added and a decrease in total
expenditures.) What can be seen from Table 6.2 is that, while there are
greater yearly fluctuations in a library’s position under DEA, the libraries
tend to remain within a certain range; thus, the top ten remain within the
top ten, the bottom ten stay at the bottom, and similar patterns occur in
groupings of libraries ranked in the middle.

The second noticeable difference between the two rankings is the dis-
crepancies between a library’s rank in the ARL Index and under the DEA
evaluation. It is clear that there is very little direct correlation between size
and efficiency. In fact, in many instances it would seem that the smaller
libraries (i.e., those that rank low in the ARL Index) tend to be more effi-

cient and the larger libraries less so. Thus, “big” does not necessarily mean
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“better” in the sense of more efficient. It is likely that structure and orga-
nization of individual libraries plays a much larger role in determining their
efficiency ranking than does their size. (Harvard is ranked 1°¢ in 1994-95 by
the ARL Index and only 45 when its efficiency was questioned by DEA.)
An additional consideration is the choice of variables. DEA was based on
the same variables as were used in the factor analysis in order to allow for a
direct comparison. This may not have been appropriate given the distinctly
different objectives of the two methods. DEA is specifically concerned with
input to output ratios. The ARL data, up until 1994, had not provided any
variables which would serve to give an indication of library use, such as circu-
lation transactions. Nor are there any indicators of the quality of the services
provided or of the collections themselves. Also, given the number of DMU’s
used, it would likely have been more appropriate to use more variables, but
in many instances, the ARL data is incomplete.

The top ten ARL members which have been consistently the largest for
the last five years according to the ARL Index are Harvard, the University of
California at Berkeley, Yale, the University of California at L.A., the Univer-
sity of Illinois at Urbana-Champaign, the University of Michigan, Columbia,
Stanford, the University of Toronto and Cornell, in approximately decreasing
order. Of these ten, only two, the University of Illinois at Urbana-Champaign
and the University of California at L.A., ranked as efficient under DEA dur-
ing the same five year period.

The University of Illinois at Urbana-Champaign was the only library to
maintain efficient status during the entire five year period.

The University of California at L.A., as well as Georgia Tech, ranked as
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efficient two years out of the five. However, the University of California at
L.A. ranked higher during the other three years than did Georgia Tech. Other
libraries to rank as efficient during the five year period were the University of
Chicago, Oklahoma State, Michigan State, the University of Nebraska, the
University of Pennsylvania, the University of Kentucky, Colorado State and
Wayne State. In general, there were three or four libraries out of 108 that

were ranked as efficient each year.
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Table 6.2: Comparison of ARL and DEA rankings.

Inputs: Staff, Total Expenditures.
Outputs: Total Volumes, Volumes Added (Gross), Current Serials.

90 91 92 93 94

Alabama 95 101 99 91 95 ARL Index
383 39 40 46 70 DEA Rank
Alberta 32 33 26 34 25
82 83 27 64 14
Arizona 23 28 27 27 29
33 37 28 29 38
Arizona State 26 26 29 28 31
73 91 T4 80 78
Auburn - 68 75 71 75
- 31 7 5 5
Boston 5 66 63 59 61
69 b4 59 bH6 58
Brigham Young 71 70 72 68 74
17 15 18 b1 97
BC 25 27 25 25 27
96 101 85 71 40
Brown 69 73 69 50 72

56 57 49 17 61
California, Berkley 2 2 3 2 2
13 19 6 23 34
California, Davis 20 23 31 3B 3
18 10 23 10 9
California, Irvine 74 74 84 84 84
93 93 100 90 98
California, L.A. 4 4 4 5 3
12 o BE E 10
California, Riverside 102 105 107 107 107
22 52 54 50 Tl
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California, San Diego
California, Santa Barbara
Case Western Reserve
Chicago

Cincinnati

Colorado

Colorado State
Columbia

Conneticut

Cornell

Dartmouth

Delaware

Duke

Emory‘

Florida

Florida State

Georgetown

90

34
91
51
66
104
59
16
10
62
103
54
32
98
E
10
11
46
34
11
63
81
62
67
93
19
16
50
85
28
74
58
24
92
95

91

31

86

63

82
102
72

17

67
102
46
28
96

67
54
18

46
79
56
71
49
24
21
48
85
41
73
80
66
51
92

80

92

38
103
62
87
105
83
17
10
71
99
46
32
100
8
7
63
53
17
10
43
68
33
78
64
24
35
48
86
39
97
82
68
49
89

93 94
40 41
93 92
™ 63
88 16

104 98
72 73
17 16

§ E
78 65

103 102
47 49
38 57
99 96

9 19
7 7

o4 46
95 48
47 72
11 11
63 67
73 68
32 8
80 87
69 76
23 20
4 12
45 50
97 95
37 35

101 94
79 81
35 63
52 45
9 90

ARL Index
DEA Rank



Georgia
Georgia Tech
Guelph
Harvard
Hawaii
Houston
Howard
Ilinois, Chicago
Illinois, Urbana
Indiana

Iowa

Iowa State
Johns Hopkins
Kansas

Kent State
Kentucky

Laval

90 91 92
30 32 32
5 8 24
105 108 108
E 6 14
99 100 104
20 32 42
1 1 1
46 59 70
4 42 40
7 3 4
106 104 101
68 69 58
64 T2 79
81 75 75
66 59 64
107 105 108
6 6 5
E E E
15 14 13
15 11 9
43 38 34
26 23 19
™ 77 80
70 58 65
3 36 36
88 97 90
39 39 35
52 55 44
87 93 102
28 60 60
59 34 52
%4 E 57
96 52 51
104 106 98

81

93

30
21
108
30
102
12

74
48

94
78
90
73
74
108

14
28
31
15
81
70
39
96
33
26
105
45
58
60
94
86

94

30
26
1056

108
20

45
47
17
92
96
103
27
70
107

14
42
33
29
73
88
39
5
38
39
91
55
o1
99
35
31

ARL Index
DEA Rank




Louisiana State

MeGill

McMaster
Manitoba
Maryland
Massachusetts
M.ILT.

Miami
Michigan
Michigan State
Minnesota
Missouri
Nebraska
New Mexico
New York

North Carolina

90

65
19

41
94

86
102
94
105
42
97
93
14
61
80
73
77
7
43
40
23
14
39
72
44
76
64
60
106
27
92
22
48

91

64
29

40
87

87
99
99
108
50
84
90
12
58
81
60
96
11
27
43
22
15
14
62
43
76
62
53
107
29
94
19
64

92

81
15

42
96

97
1056
98
107
50
92
7
22
96
88
54
76
11
30
41
13
15
21
99
ol
74
56
61
106
28
102
20
66

82

93

76
11

44
95

97
87
101
104
41
81
7
22
61
89
o7
98
6
35
38
E
15
25
65
43
56
E
53
105
26
106
19
82

94

7
23

43
11

99
86
100
101
42
33
79
13
66
66
62
77
8
49
37
15
15
30
60
52
76
59
52
108
23
106
19
56

ARL Index
DEA Rank




Table 6.2 cont'd.
‘90 91 92 93 °04

North Carolina State 101 98 90 64 58 ARL Index
99 98 95 67 32 DEA Rank

Northwestern 31 30 30 29 32
36 36 45 53 81
Notre Dame 57 585 66 62 379
25 26 46 40 37
Ohio State 21 21 21 22 26
42 38 34 27 47
Oklahoma 97 8 91 86 88
9 7 11 13 25
Oklahoma State 100 103 93 95 90
30 45 5 7 E
Oregon 88 88 88 87 80
45 42 50 58 50
Pennsylvania 24 25 16 21 22

51 48 E 57 43
Pennsylvania State 18 18 19 16 18
8 79 81 100 100

Pittsburgh 38 37 33 32 28
65 68 79 92 83
Princeton 17 16 18 18 17
35 33 38 52 28
Purdue 68 65 70 72 69
87 78 73 59 54
Queen’s 83 82 8 82 8
86 88 72 39 18
Rice 107 107 103 103 104
41 44 29 48 7
Rochester 7T 84 87 92 93
21 24 20 19 24
Rutgers 20 20 22 24 24

101 104 104 107 104
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Saskatchewan
South Carolina
Southern California
Southern Illinois
Stanford

SUNY, Albany
SUNY, Buffalo
SUNY, Stony Brook
Syracuse

Temple

Tennessee

Texas

Texas A&M
Toronto

Tulane

Utah

90

92
83
75
27
36

84
29

47
103
78
45
49
78
76
80
67
82
61
70
75

49
79

72
90
58
96
50

91 92
91 96
89 61
69 65
35 52
35 37
40 &4
81 86
13 16

7 9
51 55

106 106
7% 69
4 44
41 36
83 94
71 80
97 73
47 62
776
70 82
8 67
477
10 8
17 26
49 45
9 31

5] 6
7T T8

95 85
61 53
92 60
63 67

84

93

98
36
67
76
36
18
85
24

65
100
66
43
42
96
84
69
37
83
85
70
91
10
14
49
94

61
88
41
51
68

94

101
82
54
35
36
87
86
62

41
102
64
44
44
97
74
64
48
83
79
67
103
10
21
56
105

60
89
69
53
84

ARL Index
DEA Rank



Vanderbilt
Virginia

VPI & SU
Washington
Washington State
Washington, St. Louis
Waterloo

Wayne State
Western Ontario
Wisconsin

Yale

York

90

47
84
33
57
85
71
12
40
91
60
48
55
89
100
37

53
98
13
37

31
63
90

91

o7
100
22
25
86
65
12
30
94
53
47
50
85
80
45
20
56
103
13
34

16

61
95

85

92

58
94
23
37
89
47
12
41
95
48
47
71
92
93
43
25
95
101
14
39
2
12
57
91

93 94
60 57
102 93
20 21
20 36
89 82
62 85
12 12
34 51
93 94
31 22
42 40
7 65
106 106
99 80
46 46
33 53
63 T1
77 89
13 13
49 68
3 4
16 6
66 78
83 91

ARL Index
DEA Rank



Chapter 7

CCR Tests with More Data

In this chapter, we select particular libraries for which more data. is available.
The libraries were selected according to the following criteria: all Canadian
university affiliated libraries were included, also U.S. libraries whose size and
organization are comparable to that of McGill and finally a few libraries that
were largest and most efficient overall as determined by the ARL Member-
ship Index and by DEA respectively. The sets of five and six variables are
identical to those used in the previous section: total volumes, volumes added
(gross) in the given year, current serials, number of professional and non-
professional staff (not including student assistants), total expenditures, and
the sixth variable, number of microform units. Efficiency evaluations listed
in decreasing order for 1994-1995 are given in Tables 7.1 and 7.2. For these
thirty libraries based on a five variable analysis, only two are found to be
efficient (the University of California at L.A. and the University of Illinois at

Urbana-Champaign).
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Table 7.1: Selected libraries ranked by DEA in 1994-1995:
Inputs: Staff, Total Expenditures;
Outputs: Total Volumes, Volumes Added (Gross), Current Serials.

E. California, L.A. 1.00000
E. Illinois, Urbana 1.00000
3. Duke 0.97697
4. Hawaii 0.94214
5. McGill 0.89881
6. Rochester 0.85951
7. Yale 0.85774
8. Queen’s - 0.83428
9. South Carolina 0.82973
10. Louisiana State 0.82286
11. SUNY-Buffalo 0.81889
12. Conneticut 0.81871
13. Guelph 0.78828
14. Laval 0.76298
15. Alberta 0.74814
16. Brown 0.70872
17. BC 0.69775
18. Syracuse 0.67581
19. Southern California 0.61935
20. Washington, St. Louis 0.61276
21. Pittsburgh 0.60238
22. Toronto 0.59722
23. California, San Diego  0.58210
24. York 0.56209
25. Saskatchewan 0.55626
26. Johns Hopkins 0.55304
27. Waterloo 0.53008
28. McMaster 0.51468
29. Western Ontario 0.51239
30. Manitoba 0.47750
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Table 7.2: Selected libraries ranked by DEA in 1994-1995:
Inputs: Staff, Total Expenditures;
Outputs: Total Volumes, Volumes Added (Gross), Current Serials,

Microforms.
E. California, L.A. 1.00000
E. Hawaii 1.00000
E. Illinois, Urbana 1.00000
E. Louisiana State 1.00000
5. Rochester 0.98947
6. Duke 0.98038
7. Queen’s 0.97531
8. SUNY-Buffalo 0.90185
9. South Carolina 0.90049
10. McGill 0.89881
11. Conneticut 0.88122
12. Yale 0.86042
13. Guelph 0.81327
14. Alberta 0.77629
15. Laval 0.76298
16. Syracuse 0.76174
17. BC 0.76078
18. Southern California 0.73555
19. Saskatchewan 0.72101
20. Brown 0.71331
21. York 0.67830
22. Washington, St. Louis 0.64958
23. Pittsburgh 0.62898
24. Western Ontario 0.61312
25. Johns Hopkins 0.60540
26. California, San Diego  0.60311
27. Toronto 0.59722
28. Waterloo 0.55222
29. McMaster 0.55085
30. Manitoba 0.49729
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The set of twelve variables consists of the following inputs: number of pro-
fessional and non-professional staff combined, number of student assistants,
_total expenditures, expenditures on serials, expenditures on monographs, to-
tal salaries and wages and total volumes borrowed in inter-library loans; and
the outputs: total volumes in library, volumes added (gross) in the given
year, total number of current serials, total microform units in the library and
total volumes loaned in inter-library loans. Results can be found in Table
7.3.

Originally, a variable indicating university size which summed the num-
ber of staff and the number of full-time and part-time undergraduate and
graduate students was included, but this was dropped based on the fact that
this is not a factor over which the library has direct control. An additional
model was run on 1994-1995 data which included as an output variable to-
tal circulation transactions. This variable was included as an indication of
library use. Efficiency evaluations are provided in Table 7.4. The selection
of libraries and variables was, to a large extent, determined by the data that
was available.

As in the analysis of all 108 libraries, the efficiency evaluations showed
either no change or an increase with the inclusion of additional data in the
model. It is clear that too many variables in a model lead to a large pro-
portion of relatively efficient DMU’s. This warrants additional analysis such
as the radius of rigidity approach. (Only two DMU’s were classified as ef-
ficient in 1994-1995 based on a model using five variables. This number
increased to four in the six variable model and jumped to twenty-two and

twenty-three respectively in the twelve and thirteen variable models.) Those
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Table 7.3: Selected libraries ranked by DEA in 1994-1995:

Inputs: Staff, Student Assistants, Expenditures, Expenditures: on Serials,
on Monographs, Salaries & Wagfs, Volumes Borrowed in Inter-library
0ans;

Outputs: Total Volumes, Volumes Added (Gross), Current Serials,
Microforms, Volumes Loaned in Inter-library Loans.

E. Alberta 1.00000
E. BC 1.00000
‘ E. California, L.A. 1.00000
E. Conneticut 1.00000
E. Duke 1.00000
E. Guelph 1.00000
E. Hawaii 1.00000
E. Illinois, Urbana 1.00000
E. Laval 1.00000
E. Louisiana State 1.00000
E. McGill 1.00000
E. Queen’s 1.00000
E. Rochester 1.00000
E. Saskatchewan 1.00000
E. South Carolina 1.00000
E. SUNY, Buffalo 1.00000
E. Syracuse 1.00000
E. Toronto 1.00000
E. Washington, St. Louis 1.00000
E. Western Ontario 1.00000
E. Yale 1.00000
E. York 1.00000
23. Pittsburgh 0.94496
24. Manitoba 0.91004
25. Waterloo 0.90182
26. Johns Hopkins 0.82289
27. McMaster 0.81592
28. Brown 0.76617

29. Southern California 0.74137
30. California, San Diego 0.65855
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Table 7.4: Selected libraries ranked by DEA in 1994-1995:

Inputs: Staff, Student Assistants, Expenditures, Expenditures: on Serials,
on Monographs, Salaries & Wages, Volumes Borrowed in Inter-library
oans;

Outputs: Total Volumes, Volumes Added (Gross), Current Serials,
Microforms, Volumes Loaned in Inter-library Loans, Total Circulation.

E. Alberta 1.00000
E. BC 1.00000
E. California, L.A. 1.00000
E. Conneticut 1.00000
E. Duke 1.00000
E. Guelph 1.00000
’ E. Hawaii 1.00000
E. Illinois, Urbana 1.00000
E. Laval 1.00000
E. Louisiana State 1.00000
E. McGill 1.00000
E. Manitoba 1.00000
E. Queen’s 1.00000
E. Rochester 1.00000
E. Saskatchewan 1.00000
E. South Carolina 1.00000
E. SUNY, Buffalo 1.00000
E. Syracuse 1.00000
E. Toronto 1.00000
E. Washington, St. Louis 1.00000
E. Western Ontario 1.00000
E. Yale 1.00000
E. York 1.00000
24. Pittsburgh 0.96432
25. Waterloo 0.95046
26. Southern California 0.85340
27. Johns Hopkins 0.83255
28. McMaster 0.81592
29. Brown 0.79742

30. California, San Diego 0.67334
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libraries that had poor efficiency ratings tended to remain inefficient when
more data was added, thus adhering to the consistent grouping of libraries
that was witnessed in the 108 DMU models. On the other hand. any library
that obtained efficiency in some model would retain its efficient status when
more variables were added.

Table 7.5 gives the rank of each of the thirty libraries for each of five years
for models with five, six and twelve variables. As can be seen, the overall
rankings remained consistent, despite the enormous increases in the number
of efficient DMU’s. While there are no clear guidelines as to the optimal
selection of variables, it would appear that five variables were too few and
twelve were too many. Since more variables in the model seem to imply a
higher relative efficiency, one may question the choice of inputs and outputs

that produce too many efficient DMU’s.
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DEA 1990 DEA 1991 DEA 1992 DEA 1993 DEA 1994

Alberta 20 18 E 24 23 E E E E 22 19 E 15 14 E
BC 22 20 E 23 22 19 12 17 25 15 16 E 17 17 E
Brown 18 23 25 21 24 26 16 19 28 E E E 16 20 28
California, L.A. 6 100 E 6 9 E E E E E E E E E E
California, San Diego 12 15 21 E E E 26 26 29 21 23 30 23 26 30
Conneticut 7 8 E E E E E E E 9 11 E 12 11 E
Duke E E E 5 7 E 10 14 E 14 15 E 3 6 E
Guelph 5 7 E 10 14 E 13 16 E 6 7 E 13 13 E
Hawaii 3 E E E E E E E E 5 E E 4 E E
Illinois, Urbana E E E E E E E E E E E E E E E
Johns Hopkins 24 25 30 29 29 29 28 27 30 27 27 29 26 25 26
Laval 27 26 E 22 26 24 23 25 E 18 21 E 14 15 E
Louisiana State 8 E E 13 10 E 8 6 E E E E 10 E E
McGill 26 27 23 17 20 22 27 28 22 28 29 E 5 10 E
McMaster 20 28 29 27 28 21 29 29 23 25 25 23 28 29 27
Manitoba 30 30 24 30 30 30 30 30 24 30 30 25 30 30 24
Pittsburgh 14 14 26 18 19 27 18 21 27 26 26 28 21 23 23
Queen’s 25 21 E 26 17 E 14 12 E 8 9 E 8 7 E
Rochester 9 6 E 11 5 E 9 7 E 13 10 E 6 5 E
Saskatchewan 15 11 E 12 13 E 11 9 E 7 6 E 25 19 E
Southern California 4 5 E 7 12 E 15 15 26 11 8 24 19 18 29
South Carolina 10 9 E 15 8 E 19 11 E 24 22 27 9 9 E
SUNY-Baffalo 13 13 E 8 11 20 6 8 E 12 12 E 11 8 E
Syracuse 19 12 20 20 6 E 21 13 E 16 14 E 18 16 E
Toronto 17 19 E 19 21 E 17 20 E 17 18 E 22 27 E
Washington, St. Louis 16 17 27 14 16 25 24 23 E 23 24 26 20 20 E
Waterloo 28 29 E 16 18 28 22 24 E 29 28 E 27 28 25
Western Ontario 23 22 22 28 21 E 25 22 E 19 17 E 29 24 E
Yale 1 16 E 9 15 E 7 10 E 10 13 E 7 12 E
York 21 24 28 25 25 23 20 18 21 20 20 E 24 21 E

Table 7.5: DEA ranking based on 5, 6 and 12 variables for each of 5 years.
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Chapter 8

Numerical Results for the

Radius of Rigidity Approach

This chapter demonstrates the numerical implementation of the radius of
rigidity approach as given by (L, 6, k) with the objective function defined
by the [; norm and some 8 € RP. We begin with the familiar academic
example seen repeatedly in Chapter 4 which illustrates two extreme stability
situations. Then, we provide the results of the radius of rigidity approach

for a subset of North American university libraries.

8.1 Pathologies in an Academic Example

We return once again to the example which was used in Chapter 4 to demon-
strate the various methods currently employed in post-optimality DEA. Re-

call that both DMU’s in the example are efficient with inputs and outputs
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as given below.

DMU, DMU,

JY ]. ].
Y! 1 1
Y? 1 2

We will show that a radius of rigidity model can be highly unstable (re-
sulting in a zero radius of rigidity). Moreover, within the same set of DMU's,
the radius of rigidity model can be highly stable (resulting in an unbounded
radius of rigidity). Let us first consider the radius of rigidity for DMU,. We
want DM U, to remain efficient but unperturbed. DMU,; decreases its input
and increases its outputs, thereby improving its efficiency. Initially, we will
consider a single positive # imposing a perturbation on all variables. Thus,

the radius of rigidity problem is given by

Maz 0
s.t. T =1
Y1+ 2y2 =1

1+0p+(1+0y <(1-0)z

z, y11y270 Z 0.

The second constraint specifies that y; = 1 — 2y,. Since y; and y, are
positive, this implies that yo < 1/2. Substituting the first two constraints
into the third gives (1 + 68)(1 — y3) < (1 — 0). After isolating y,, we have

20
V22 1p
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So feasibility is guaranteed if

20

>
T 140

N

or equivalently, for the interval 0 < # < 1/3. Thus, the radius of rigidity is
1/3. Note that it is possible to prove global optimality of this # using the
saddle-point condition for linear functions (see Theorem 3.13).

Let us now consider the radius of rigidity for DMU,;. The model is given

by

Mazx 7
s.t. T =1
Y1+ Y2 =1

1+ +2+80)y, <(1-06)z

Z, y1,3/2=9 Z 0.

The constraints imply that y, < —28, which is inconsistent for 8 > 0. So here,
the radius of rigidity is 0. Since the radius of rigidity for DMU, is greater
than that for DMU,, we conclude that DMU, is better than DMU, since
it can maintain its efficiency status under larger perturbations of the other
DMU. Notice that a generalized Slater’s point exists in the radius of rigidity
model for DMU, for all # in F = {6:0 < 6 < 1/3} except for the optimal
point # = 1/3 where F(1/3) reduces to a single point. Thus P=(8) = P=(6*)
and the two inclusions required by the MVF hold for all feasible 6 except
6 = 1/3. In the model for DMU,, stability breaks down as F = {0} with
F(0) = {(z,y1,y2) = (1,1,0)}. Thus, the MVF is not applicable here.
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Next, we take a two parameter model in which outputs are perturbed

equally by 8, and the input by 6;. For DMU,, the radius of rigidity model

is

Maz 6, + 0,
s.t. T =1
Y1 + 2y2 =1

I+6)n+(1+60)y <(1-6)x

L, Y1, Y2, 01,0‘2 Z 0.

Once again, feasibility dictates that y, < 1/2. Combining the constraints,

we have

1-20,
1/2<1 -y = Yo < <1
/2< Yo y1+y2_1+91_
and therefore,

6, +20,<1 and 6,+06,>0.

The latter constraint is necessarily satisfied by positivity of 6;. Since we

wish to maximize ||6}};, the first constraint implies that optimality occurs for
6* = (61,82) = (1,0).

For DMU,, the two parameter radius of rigidity model is

Mazx 91 + 02
s.t. T =1
11+ Y2 =1

A+ +2+0)y, <(1-6)x

x, Y1, Y2, 01, 02 > 0.
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Feasibility requires that (y,, ¥z, ) = (1,0, 1), but this implies that 0 < -6, — 6,
which is only possible if (6,6;) = (0,0). We conclude that DMU, will re-
main efficient while DMU,’s combined input and output effort is less than
or equal to 1. However, DMU, will not remain efficient if DMU, makes
any improvements to its current operating levels. Once again, DMU, ranks
better than DMU,.

Finally, we will consider a three parameter radius of rigidity model for

DMU, in which each variable is affected by a different perturbation. The

model is
Maz O + 62+ 03
s.t. z =1
Y1 + 2y =1

(L+0)y + (L +8)y < (1—-63)x

x, y17y2101a 02793 2 0.

We claim that the point (y1,y2,z) = (0,1/2,1) is feasible and results in an
unbounded objective. Using this point, we have

1 1-64
=<
27140,

which gives 6, + 26; < 1. As long as we take 8, and 63 satisfying this
constraint, we can send 6, to infinity and feasibility is preserved. This results
in an infinite radius of rigidity. This seeming anomaly can be seen in Figure
8.1, which also depicts the efficiency frontier after the perturbations to DMU,
determined by the one and two parameter models. It is interesting that these

extreme situations also appear when real library data are used.
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Figure 8.1:

8.2 Implementation and Interpretation

In this section we consider the specifics of solving the radius of rigidity prob-
lem (L, 8, k) with the objective function defined by the /; norm.

First, we will discuss the input optimization method for some general
perturbation 8 € R?. The previous example showed that the MVF is not
always applicable to solving the radius of rigidity problem. Thus, we must
verify the assumptions that guarantee the validity of the MVF before we use

it. For each iteration, at some initial 8*, these are as follows:

1. The parameter § must remain in the set S = {0: P=(0) = P=(6*)} n
(0: F(6) c F=(8), F(6) c F=(6")};

2. The point-to-set mappping F'=(0) must be lower-semicontinuous at 6*

relative to S;
3. The saddle point {Z(6*),%(6*)} must be unique;
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4. The gradients Vo f(z,0), Vofi(z,8), i € P<() must be continuous;

5. The limit
g -6

‘ 96

= lim
feS;0-»0*

must exist.

Let us consider each of these.

First, as long as there exists a generalized Slater’s point, we have P=(f) =
P=(6*) for every 8 close enough to #*. In addition, since the equality con-
straints are independent of 8, the two inclusions will hold as well. The map-
ping F=(6) is lower-semicontinuous because Y* and X* are assumed strictly
positive. Uniqueness of £(f) can be guaranteed by Tikhonov’s regulariza-
tion. (The term —£(||z||3 + ||yl|?) is added to the objective function.) The
optimal solution in (z,y) is then unique and by sending £ to 0, we obtain,
in the limit, the solution to the original problem. (See, e.g., [58].) Unique-
ness of #(f) is not necessarily guaranteed. However, the set {@(f)} is closed
since the conditions of Theorem 5.4 are satisfied. (Indeed, F(9) is lower-
semicontinuous, since P=(#) = P=(8*) implies that F(0) = F=(0). Also,
the objective function is realistic since positivity of the data ensures that
F(6) is bounded. This set, also closed, ensures that there exists an optimal
solution for every feasible #. Finally, it was shown in the proof of Theorem
5.5 that S is a region of stability.) So, if one is not concerned with the lo-
cally fastest improvement of f(#), then uniqueness of 4(6*) can be relaxed.
Continuity of the gradients is assured in (L, @, k). Finally, for linear search

directions where 85! = 6¥ + ad*, @ > 0, = d/||d

exists as long as d # 0.

Furthermore, if all the assumptions of the MVF hold, then, since every # in
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the numerical method is located on a region of stability and since the ob-
jective function is only a function of 8, then we are guaranteed continuity of
the optimal value function. One may choose to normalize the data to ensure
greater numerical consistency.

The algorithm is as follows:
(i) Set & equal to say 0.1; n = 0;
(ii) Set 6° = 0;

(iii) Solve (L, 8, k) with 8 = 6" using the Tikhonov regularization condition
with the current £ to obtain a unique solution. Notice that (L, 8, k)
also depends on £. Since the objective is now quadratic in z and y, we

may use a gradient method (see, e.g., [61], Section 5.3);

(iv) Calculate d® = —V,L(Z(6"), @(0"); 6™) with the problem expressed as
a minimization problem. This guarantees a direction of local improve-

ment since _ _
i £0) = F6)

———————— T — T
om0 [0 —0°] @ d/l)

by the MVF;

(v) Determine the best step-size oy, where 6**! = 0" + a,,d". Since the
objective is a function of # only, as long as all components of d" are
positive, this reduces to finding the largest «, which guarantees feasi-
bility of the linear program. (One can use the Golden Section Method
to determine the best a;,. This entails maximizing f(#) over an interval

of o that guarantees feasibility of 0™ + o, d" (see, e.g., [62] for details));
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(vi) Set 07+ = 4" + @, d™ (n = n + 1). Go to (iii) until o, < €; or d™ < €,
or ||f(0) - f(B*)l] < €3, where ¢;, 7 = 1,2,3, is chosen to the desired

accuracy;

(vii) Replace £ by £/10. If £ < e, for some sufficiently small ¢4, then stop.
Else, go to (ii).

At each new 6 € RP, it is important to ensure that a generalized Slater’s
point holds. Otherwise, the MVF may not guarantee a local direction of
improvement. The interpretation is straight-forward: the higher the radius of
rigidity, the greater the resilience to improved efficiency by the other DMU’s
and, therefore, the better the ranking.

8.3 Numerical Example

We will apply two techniques, the first described in the previous section and
the second described in Section 5.4, to the following example borrowed from

Neralié¢ [46]:

DMU, DMU, DMU; DMU, DMU;

X! 4 12 8 6 2
X? 6 8 2 6 8
Y 2 4 2 3 2

After solving the CCR. model for each DMU, it is discovered that DMU,
and DMU, are inefficient with efficiency evaluations of 0.857 while DMU’s

3,4 and 5 are efficient.
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First, we apply input optimization using the MVF to a two parameter
model for DMU;. The model is

Mazx 91 + 02
s.t. 2y =1
8z; + 225 =1

(24+0)y—(4-06)z1—(6—6)z, <0
(d+61)y— (12— O2)z1 — (8 — fr)z2 <0
B+0)y—(6—-60)z1— (6—b2)zz <O
(24+0)y—(2-62)z1— (8—02)za L0

Iy, T2,y Z 0.

To ensure positivity of the data, we impose the restriction ; < 2. After some
algebraic manipulation of the data, we determine that the set of feasible 8’s
is given by F = {# € R%: 0, + 0, < 3;0, < 2;0; > 0, i = 1,2}. The results
can be found in Table 8.1.

The optimal solution at 8* = (1.5, 1.5) is (g(6*), 2, (6*), £2(6*)) = (0.5,0,0.5)
and 4(6*) = (w1, up, u3, 44,0,0,0,0,0,0,0) with u; = u, and uz = u4. (Re-
call that each of the equality constraints produce two inequality constraints.)
We can prove global optimality of this point using the saddle point condition
from Theorem 3.13. The Lagrange multipliers which satisfy the saddle point
are not unique and are identical to #(f*). Notice that 6* is not a unique
global optimum. Two iterations were required for each value of £ because
a maximal o which preserved feasibility was used, and the direction of im-

provement for all iterations was approximately (1,1). Thus the first iteration
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3 6, 0, Iterations

0.1 1.49763 1.50181 2
0.01 1.49966 1.50008 2
0.001 1.49991 1.49996 2
0.0001 1.49999 1.6 2
0.00001 1.5 1.5 2
0.000001 1.5 1.5 2

Table 8.1: Radii of Rigidity for DM U;

served to find the best # and the second to confirm this. For values of £ up to
and including € = 0.0001, a generalized Slater’s point exists so the assump-
tions for the MVF hold. For 8* = (1.5,1.5), the feasible point reduces to a
single point and two additional constraints become active. Thus MVF does
not necessarily guarantee a direction of improvement from #*. When this
method is applied to DMU,, a radius of rigidity of 2/3 is obtained and, for
DMUs, the radius of rigidity is 2. We can thus rank these efficient DMU'’s
by their radii of rigidity. In decreasing order of rigidity, they are: DMUs3,
DMUs, and DMU,.

While this method typically produces a better parameter 8, it may not
converge to a globally or even locally optimal solution. From experience, the
Lagrange multipliers consistently appear to take on values close or equal to

zero. Thus, the direction vector causes approximately equal increases in all
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parameters.
Next, we apply the modified radius of rigidity approach in which we solve
the single parameter model for each variable. (This approach was described

in Section 5.4.) For instance, the radius of rigidity model for DM Uj for the

output is given by

Maz 7,
s.t. 8, + 229 =1
2y =1

(2+0)y—4z, —6z2 <0
(4+8)y — 12z, — 8z, <0
B3+0y—6z, -6z, <0
2+0)y~—-2z, -8z, <0

Ty, T2,y 20

Note that when perturbing the inputs, the parameter 6 is subtracted from
the original data value. Since all data must be strictly positive, we set the
following limits on # for each variable: for y, the limit is some arbitrarily
large number, for z;, the limit is 2 and for z;, it is 6. These limits are
dependent on the variable and the DMU begin considered. The results are
given in Table 8.2.

Since r3; > rj; for every j = 4,5 and every i = 1,2,3 (here j represents
the DMU and : represents the variable), we conclude that the “best” DMU
is DMU3, followed by DMUs, and then DMU;. This is the same ordering

as was obtained with the input optimization method.
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DMUs; DMU, DMUs,
Radius Limit Radius Limit Radius Limit
X! 2 2 2 2 2 4
X2 3 6 2 2 2 2

Y 3 100 0.54 100 2 100

Table 8.2: Radii of Rigidity

We remark that the method which employs the MVF gives greater flexibil-
ity in terms of the allowable perturbations. Thus, depending on the situation
and the desired analysis and interpretation, it may be preferable to attempt
to use that method. The latter method, however, requires no assumptions

be satisfied and thus is always applicable.

8.4 Application to North American Univer-
sity Libraries

We have applied the modified radius of rigidity approach to various subsets of
ARL members. All data was normalized. The code found in [9] was adapted
for our purposes. First, all Canadian university libraries were selected for a
model with twelve different data sets, as seen in Chapter 7. In that group,
only one library (McMaster) was inefficient. In solving the radius of rigidity
problem, bounds were set to ensure positivity of the data. In almost all cases,

the radius of rigidity attained the prescribed bound. Thus, for outputs,
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a tendency towards an “infinite” radius of rigidity was noticed (An upper
bound of 100 was set which, given that the data was normalized, was deemed
“sufficiently large”.) On the other hand, for inputs, the radius of rigidity
typically reached the lower limit at which positivity of the data would be
lost. The larger the number of inputs and outputs, in comparison to the
number of DMU’s, and the higher the number of efficient DMU’s, the more
typical this behaviour.

Then, the model with all Canadian libraries was scaled down to six data
sets (the same six as were used in Chapter 7). Here, the efficient libraries
were the University of Alberta, Guelph, McGill, Queen’s, Saskatchewan and
Waterloo. The same sort of behaviour recurred. It appears that the max-
min interpretation described in Section 8.2 is appropriate here. Using this
interpretation, we have the following ordering of efficient libraries: Alberta,
Queen’s, Saskatechewan, Waterloo, Guelph and McGill. (Alberta is the most
rigid efficiently run, McGill is the least rigid efficiently run in this group.)

Finally, a subset of fifteen libraries was taken from the group of thirty
seen in Chapter 7. The analysis was based on six data sets from Chapter 7.
The results can be found in Table 8.3. For those libraries that are efficient,
the bounds are the same in all cases: 0 < 60; <100, i =1,...,4, 0 < 65 <
0.330166, 0 < 6 < 0.191436. As can be seen from the table, the university
libraries of British Columbia, California at L.A., Hawaii, Illinois at Urbana-
Champaign and Louisiana State are efficient. After determining the radius
of rigidity for each variable in turn, the following ranking of these efficient
libraries can be established: Illinois and British Columbia are comparably the

best since the radius of rigidity reaches the imposed bounds for all variables.
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Hawaii would rank below these two since the bounds were reached in all
cases except one and, in that case, the radius of rigidity was better than in
all other instances. Louisiana State is next, followed by California since two
radii of rigidity of 0 would suggest a precarious efficiency evaluation. Note

that the McGill library is ranked inefficient in this group.
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Outputs Inputs Rank

i Y,
Alberta
B.C. co 00
Brown
California, L.A. 00 0
California, San Diego
Conneticut
Duke
Guelph
Hawaii 00 00
Illinois, Urbana 00 00
John Hopkins
Laval
Louisiana State 00 00
McGill
McMaster

Y; Yy Xy X»
Inefficient

o0 o0 0.33 0.191 1-2
Inefficient

0 01482 0 0.191

ot

Inefficient
Inefficient
Inefficient
Inefficient
oo 1.2521 0.33 0.191 3
00 00 0.33 0.191 1-2
Inefficient
Inefficient
oo 0.5601 0.33 0.0705 4
Inefficient

Inefficient

Table 8.3: Radii of Rigidity for 15 Libraries in 1994-1995.

Inputs: Staff and Expenditures;

Outputs: Volumes, Volumes Added, Serials and Microforms.
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Chapter 9

Efficiency Evaluations for

McGill

In this chapter, we will focus our attention on the University of McGill library
(all libraries are considered as a single unit); its efficiency evaluations in the
various models and its ideal operating levels. We will interpret the results in
non-technical terms. (For mathematical qualifications and terminology, see,
e.g., Chapters 2 and 8.)

When all 108 libraries and five data sets (staff, total expenditures, total
volumes, volumes added gross, and current serials) are considered, McGill
ranks as about the 40 largest university library with respect to the ARL
Index. However, it has shown poor performance in regard to the efficiency
analysis using DEA. Under DEA, McGill had been consistently placed ap-
proximately 95°® overall with the same five data, with efficiency evaluations

ranging from 0.47 to 0.53. Surprisingly, during the 1994 academic year, it
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exhibited a jump to 11** position with an efficiency evaluation of 0.90. Based
on a single improved observation, it is impossible to determine whether or
not this is indicative of a trend of increased relative efficiency. This improve-
ment may well be based on a sharp decrease in that year’s total expenditures
(by approximately $400 000) and an increase in gross volumes added (by
approximately 36 000 volumes) for McGill libraries.

Table 9.1 gives actual and ideal operating levels for McGill over a five year
period. This is based on results from the DEA model with five variables and
all 108 university libraries. The ideal values are calculated from the optimal
dual variables associated with the efficient libraries in McGill’s reference set.
The reference set consists of those efficiently run libraries which are “closest”
to McGill and the associated dual variable gives 2 numerical representation
of the importance of that library in providing an ideal profile for McGill.
(For more specifics, see Section 2.2.) It is interesting that the University of
[linois at Urbana-Champaign has turned out in all efficiency evaluations as
the library McGill should emulate to improve its efficiency. For example, in
1994-1995, McGill’s reference set consisted only of the University of Illinois at
Urbana-Champaign (with the associated dual equal to 0.535). Thus, McGill’s
ideal input and output vectors are given by the associated dual times the

input and output vectors for Illinois:
X° = 0.535 [520, 22 388 297]T = (278, 11 977 739]7
and
Y° = 0.535 [8 665 814, 191 077, 90 969]7 = [4 636 211, 102 226, 48 668]"
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(If there had been more than one library in the reference set, the ideal vectors
would have been given by the sum of the dual variable times the vectors for
the particular library over all libraries in the reference set.) The ideal profile
means the following: during that year, McGill libraries employed 315 people,
spent $13 299 751, contained 2 878 716 volumes, added 102 164 volumes
(gross) and had 17 424 current serials. During that year, the McGill library
was run inefficiently according to DEA. In order to run efficiently, McGill
should have reduced its library staff to 278 people, decreased its expenditures
to $11 977 739 and increased its volumes to 4 636 211, its new volumes (gross)
to 102 226 and its current serials to 48 668. If McGill had been operating
at these levels, it would have been ranked as efficient in comparison to the
other libraries. DEA seems to be suggesting that for a library of McGill’s
size it should be running on a lower budget with fewer emplovees in order to
be ranked as efficient in relation to other university libraries. However, DEA
also suggests that an increased budget which is used to increase volumes and
serials (i.e., outputs) will also improve its relative efficiency. One must keep
in mind that these DEA results are based on a particular set of variables.
Table 9.2 gives McGill’s reference sets for each of the five years (i.e.,
libraries McGill should look up to to improve its efficiency). We also give
the optimal value of the dual variable associated with each library in the
set. (These values can be interpreted as the “intensities” of the influences on
McGill in order to make McGill efficient.) Note that the reference sets are
dominated by the presence of the University of Illinois at Urbana-Champaign.
It is again this library which is the “closest” efficiently run library to McGill.

For the models based on a subset of thirty libraries, McGill is efficient
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Staff Expenditures  Volumes Volumes Added Secrials

1990 Actual 280 14 684 399 2570 377 70 614 17 812
Ideal 131 6 897 508 2571 936 70 726 29 052
1991 Actual 279 15 155 419 2621 044 95 887 17 541
Ideal 140 7473 280 2624 337 96 012 29 440
1992 Actual 279 13 989 375 2766 775 68 580 18 524
Ideal 132 6 948 980 2 766 775 68 580 29 928
1993 Actual 276 13 704 719 2 824 083 66 040 17 739
Ideal 132 7252 265 2825 277 66 040 30 320
1994 Actual 315 13 299 751 2878 716 102 164 17 424
Ideal 278 11 977 739 4636 211 102 226 48 668

Table 9.1: DEA Analysis of McGill in a group of 108 libraries.
Inputs: Staff, Total Expenditures.
Outputs: Volumes, Volumes Added (Gross), Current Serials.
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Reference Set Associated Dual

1990 Illinois, Urbana 0.292
Wayne State 0.098
Colorado State 0.005

1991 Illinois, Urbana 0.264
Kentucky 0.198

1992 Illinois, Urbana 0.315
Pennsylvania 0.038

1993 Illinois, Urbana 0.328
Nebraska 0.020

1994 Illinois, Urbana 0.535

Table 9.2: DEA Reference Sets for McGill in a group of 108 libraries.
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only in the twelve variable model and in the two most recent years. How-
ever, in that model, in one year, twenty-one and, in the other, twenty-two
other libraries from the set of thirty were efficient. Its position dropped in
the six data model, even though its efficiency evaluation did not change.
(Some inefficient libraries improved their ranking but McGill did not.) With
an efficiency evaluation of 0.9, McGill ranked 5 when five variables were
considered and 10** when six variables were considered. In the four years
1990-1994, McGill had consistently placed low in approximately the 12t
percentile, just as it did in the full 108 library model. Efficiency evaluations
were very close for the five and six data models, around 0.52. Again, any
change in McGill’s relative placement was due to the displacement of other
libraries as opposed to McGill itself. For each of the four years respectively,
the efficiency evaluations increased in the twelve data model with 30 libraries,
taking on the values 0.7, 0.97, 0.95 and 1.

Tables 9.3, 9.4 and 9.5 provide information pertaining to an ideal profile
of McGill. In a group of 30 libraries, McGill was run inefficiently, and these
tables identify the “closest” efficiently run libraries and their desirable inten-
sities (associated dual variable) towards McGill to make it efficient. Table
9.3 gives the ideal input and output vectors, based on a six data model for
each of the five years considered. The actual values refer to McGill’s observed
operating levels. The “ideal” data are the operating levels that would have
been necessary for McGill to have been ranked as efficient. Table 9.4 gives
both the libraries in the reference sets and their associated optimal dual vari-
ables for both the five and six data models for each of the five years. One can

see how comparable these two models are and, once again, the importance
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of the University of Illinois at Urbana-Champaign as an efficient model for
McGill. Table 9.5 gives the libraries belonging to McGill’s reference set (i.e.,
the libraries McGill should look up to) and their associated optimal dual
variable (i.e., intensities towards McGill) for the twelve data model. By a
comparison of Tables 9.4 and 9.5, one remarks that the inclusion of addi-
tional data to the model clearly alters the efficiency frontier (i.e., efficiency
structure of the libraries). This is evidenced by the fact that the reference
sets for the twelve data model are essentially different from those for the five
and six data model. This suggests that the inclusion of more data results in
a geometric alteration of the model, rather than a progression of inefficient
libraries towards a static efficiency frontier.

Finally, we recall that, in Chapter 8, we applied the radius of rigidity
approach to various DEA models. The purpose of this was to be able to
rank efficiently run libraries by their “rigidity” or resilience to improvements
in operating levels of the other libraries. Based on a model with twelve
variables which included all thirteen Canadian ARL members, McGill was
efficient along with 11 other libraries. (Only the University of McMaster
library was inefficient in that model.) For all twelve variables, McGill’s radii
of rigidity attained the bounds imposed to ensure positivity of all data. A
radius of “infinity” was found for all five outputs. Thus, the other 12 libraries
can increase their outputs as much as they choose without affecting McGill’s
efficient evaluation. The radii of rigidity for the inputs were 0.263, 0.094, 0.22,
0.3, 0.15, 0.2 and 0.134. Once all of the 12 other libraries have increased the
relevant input by the values given above, McGill is still efficient and these

values cannot be increased any more or the model will no longer be viable
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1990

1991

1992

1993

1994

Actual
Ideal

Actual
Ideal

Actual
Ideal

Actual
Ideal

Actual
Ideal

Table 9.3: DEA Analysis of McGill in a group of 30 libraries.

Staff Expenditures

280
142

279
193

279
141

276
133

315
278

Inputs: Staff, Total Expenditures.

14 684 399
T 273 347

15 155 419
10 500 410

13 989 375
7 254 464

13 704 719
7321 777

13 299 751
11 977 739

Volumes Volumes Added

2570 377
2570 377

2621 044
2 621 629

2766 775
2766 775

2 824 083
2 881 411

2878 716
4 636 211

70 614
70 614

95 887
95 887

68 580
68 580

66 040
66 040

102 164
102 226

Serials

17 812

27 554

17 541
28 986

18 524
29 084

17 739
31 048

17 424
48 668

Outputs: Volumes, Volumes Added (Gross), Current Serials, Microform

Units.
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Microform

1 161 647
L 161 647

1204 911
1 754 081

1 245 360
1 489 305

1 298 576
1 420 411

1 347 565
2 347 427




1990

1991

1992

1993

1994

Table 9.4: DEA Reference Sets for McGill in a group of 30 libraries.

5 Variable Model

Reference Set
Illinois, Urbana

Duke

California, San Diego
Illinois, Urbana

Conneticut

Illinois, Urbana
Alberta

Illinois, Urbana

Illinois, Urbana

Associated Dual

0.229

0.188

0.342
0.217
0.049

0.299
0.085

0.340

0.535

118

6 Variable Model

Reference Set
Illinois, Urbana
Duke

Hawaii

California, San Diego
Illinois, Urbana,

Connecticut

Illinois, Urbana
Alberta

Illinois, Urbana

Illinois, Urbana

Associated Dual

0.228

0.187

0.004

0.342

0.217

0.049

0.299
0.085

0.340

0.535




12 Variable Model

Reference Set Associated Dual
1990 Alberta 0.280
Duke 0.176
California, L.A. 0.069
Yale 0.061
1991 Alberta 0.228
Toronto 0.205
California, San Diego 0.137
Duke 0.113
California, L.A. 0.003
1992 California, L.A. 0.168
Yale 0.125
Waterloo 0.110
Alberta 0.100

Table 9.5: DEA Reference Sets for McGill in a group of 30 libraries.
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(since some of the data will become negative). Since most of the other
Canadian libraries in this subset also attained their bounds, comparison of
the results proved to be almost impossible. For the same set of 13 Canadian
ARL members for which six variables were considered, McGill was again
efficient. Here, the radii of rigidity for the outputs were “infinity” with the
exception of the radius for the number of volumes added (gross) which was
low at 0.0436. The radii of rigidity for the inputs attained their bounds of
0.263 and 0.229. These results placed McGill 6! among six efficient libraries
in the set of thirteen. In a final analysis of a subset of fifteen libraries, McGill
was inefficient and so was not considered in the radius of rigidity analysis.
(For the full set of 15 libraries, see Table 8.4.)

Overall, McGill library did not place well in the efficiency evaluations
with the exception of the 1994 academic year in which it placed 11** out of
108 libraries. This sudden jump in its ranking appears to be the result of
a decrease in expenditures and an increase in the number of gross volumes
added. DEA appears to suggest that for a library of McGill’s size to be run
efficiently, it should reduce its expenditures and cut back on staff. One must
keep in mind that this was determined using a few select variables (originally
chosen by the ARL to indicate library size) which give no indication of the
quality of the collections or of the service provided. While McGill had much
better efficiency evaluations in smaller models with more data, so did the
majority of the other libraries included in those models. The University of
Illinois at Urbana-Champaign consistently appeared as one of the libraries

which McGill should take as an example of an efficiently run library.
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Chapter 10

Conclusion

We have studied stability properties of several models used for efficiency
testing and ranking of efficient DMU’s in DEA. In particular, we have sug-
gested a parametric programming approach to ranking of the efficient units
by calculating their radii of rigidity.

The results have been applied to a group of 108 ARL university affiliated
libraries. Our numerical results confirm some of the claims made in the
literature, e.g., that an increase in the number of variables used in efficiency
tests generally increases the efficiency of the DMU’s. This fact confirms the
importance of ranking the efficient DMU’s and warrants a follow-up study of
the radius of rigidity approaches initiated in this thesis.

We have found it interesting that some of the pathological behaviour
relative to stability found in our academic models extends to the models
with real-life data. Our DEA comparison of the efficiency of the libraries has

produced essentially different results than those based on factor analysis with
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the same data. Particular attention was paid to the University of McGill
libraries, considered as one unit. We have obtained McGill’s ranking in
different sets of libraries and with different data over a period of several
years. When its library was declared inefficient, we used DEA to identify the
libraries that McGill should lock up to in order to improve its efficiency. The
results of the thesis could also be used to study how efficiently the libraries
are run within McGill itself. This could form a possible topic for future

research.
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