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Abstract

In this thesis the statistical analyses that were used to study the by now well known
bovine spongiform encephalopathy (BSE) epidemic are reviewed. Central to the analysis
is a backcalculation survival model whose development is discussed in detail. Various
techniques applied to examining the likelihood of a maternal infection route (in addition
to the main feed infection route) are discussed. It is found that maternal transmission is
likely to occur at low rates. Measures taken to eliminate meat and bone meal feed
supplements, the main infection source, have essentially eliminated BSE. However, the
magnitude of the latent effect of tainted meat on humans in the torm of the linked new
variant Creutzfeldt-Jacob disease is vet to be assessed.



Résumé

L'objectif de cette thése est d'examiner les méthodes statistiques utilisées dans traitement
et I'analyse des données provenant de I'épidémie de I'encéphalopathie spongiforme

bovine (ESB). Ces analyses sont formées a partir d'un modele de survie employant une
technique de retrocalcule, dont le développement est scruté. Nous examinons aussi
plusieurs estimés du taux de transmission mere-enfant de I'ESB. Les résultats démontrent
qu'en général, ce taux est faible. Les precautions visant a ¢liminer les suppléments
nutritifs dans I'alimentation pour bétail (1a source principale d'infection), ont

pratiquement éliminé le probléme de I'ESB. Toutefois, la gravité de I'effet latent des
viandes contaminées chez les humains, qui pourrait éventuellement se manifester par la
maladie de Creutzfeldt-Jacob, reste a étre évaluce.
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Chapter 1

Introduction

1.1 Bovine Spongiform Encephalopathy

The disease affecting cattle termed bovine spongiform encephalopathy {BSE) was first diagnosed
in Britain in November 1986. As of July 2000 there have been 176,922 occurrences in Great

Britain. Afflicted cattle show symptoms of increased nervousness. lack of coordination. and
- weakness leading to death approximately 6-12 months after the onset of svinptoms.

The infectious agents are believed to be "prions™. proteins that are chemically close to the
healthy variety produced in nerve tissue. It is widely accepted that BSE prions introduced
torally or through injection) into a cow’s body alter healthy proteins producing more prions.
thus causing a chain reaction. The subsequent build-up of prions in the nerve tissue brings on
disease symptoms after an average lag of 4-5 vears ' Anderson et al.. 1996 . Disease diagnosis
is based on observation of symptoms and autopsy brain tissue. Prion accumulation in brain
tissue gives the brain a sponge-like eppearance. hence the term “spongiform™. These protein
based infectious agents differ from viruses and bacteria in that they are not “alive”. That
is they do not contain genetic material: high temperatures and radiation do not aflect their
potency. Other well-known diseases related to prions are scrapie in sheep. TSE in rodents .
CJD (Creutzfeldt-Jakob Disease) and Kuru in humans. Stanlev Prusiner’s controversial work

Prusiner. 1995) led to the discovery of the infectious proteins which he coined “prions™. In
January 1998 Prusiner won the Nobel prize for his discovery.

The main source of BSE is meat and bone meal feed tainted with BSE infected cow tissue



and scrapie infected sheep tissue. The cow epidemic received much media attention in 1996
after two patients in England were diagnosed with a new variant of CJD and the possibility was
raised that their disease was caused by the consumption of BSE tainted meat. Medical studies

have confirmed that the diseases are causally linked { Bruce et al.. 1997).

1.2 The BSE epidemic in Great Britain

The quasi-carnivorous practice of feeding cattie meat and bone meal (MBM) is an old one. [n
Europe and North America (before various countries imposed bans) MBM formed a substantial
part of the diet of cows. Rendering plants convert animal remains into feed and oils, recycling
carcasses whose disposal would otherwise be problematic. In Britain over 14% of MBM is
recyvcled sheep. [t is believed that scrapie infected nerve tissue broke the species barrier sparking
the BSE epidemic. Large quantities of MBM were fed to British cattle in the early 80's. Around
this time certain flammable fat separating chemicals were eliminated from the rendering process
because of explosions at some plants. It is believed that these flammable substances may have
_deactivated the infectious proteins and that their removal resulted in prions entering the food
chain. Although the disease was not recognized untii 1986. infection may have occurred much
earlier since BSE is known to have a long incubation period (4-3 years on the average | Anderson
et al.. 1996} 1. and isolated preliminary cases may have gone undiagnosed. In November of 1986
the clinical and pathological investigation of a diseased cow led to the identification of BSE.
Epidemiological studies in 1988 and 1989 revealed that MBI from infected cattle and sheep was
the most likely cause of the persistent and frequent cutbreak of the disease in Great Britain's
cattle. In June of 1988 the disease was made notifiable to the Central Veterinary Laboratory.
and a database of confirmed cases was maintained by them. In July 1988 an MBM ban was
imposed. However. the ban was not fully effective until several vears later. On August lst
of 1996 a stricter more effective ban was initiated. However. at least one cow born after the
August 1. 1966 lived to experience the disease.
Deaths from the human form of BSE. new variant CJD. appear to be increasing. So far
this vear 14 Britons have died and 5 others are known to be dyving from the disease. Since it

first appeared in humans in 1996. a total of 71 people in Britain. 2 in France andl in Ireland



have contracted the disease.

1.3 Statistical Issues

The suspected and recently confirmed link between BSE and CJD has sparked intense study
of the dvnamics of the BSE epidemic and its implications to public health. Of great concern
is the perpetuation of the cow disease. and the possibility of a latent hazard to humans due
to past tainted meat consumption. Addressing these concerns scientists have focused on the
study of BSE transmission dynamics and estimates of infection rates in past and future cow
cohorts. Infection levels and information concerning the infectiousness of a cow at various
incubation stages are needed to estimate the magnitude of risk to cows and to humans. A cow's
infection hazard has been observed to depend on both its birth cohort (due to changing feed
practices) and age. Feed supplement consumption and possibly protein zbsorption vary with
age. creating an age dependency. Data used to estimate rates of infection are in terms of rates
of disease onset. Infection rates are related to onset rates via an incubation period density and
the probability of cow survival till onset. Hence. the incubation period distribution and the
cow survival distribution have an important role in the estimation of infection levels. Disease
perpetuation depends on the existence of alternate routes of infection. If routes other than feed
exist. then the MBM ban will not eradicate the disease. In particular the maternal route. (dam
infects fetus)., has been investigated and the horizontal route. {cow to cow:. has not vet been
ruled out.

The main tool used 10 address these concerns was a survival mode! developed by Anderson
et al.. {1996) and enhanced by Ferguson et al.. {1997b) and that takes into account cohort
membership. age at infection and age at disease onset. The model contains an age and time
dependent infection hazard. The age at infection and age at onset are related via a parame-
terized incubation period distribution. The feed and maternal infection routes are presented as
competing risks. A likelihood for the onset data is formulated in terms of the survival model
and the cow survival distribution. Maximum likelihood techniques are used to estimate model
parameters. The model. through backcalculation is applied to estimate past and future in-

fection. and numbers of future cases. It is also applied to the analysis of data arising from



a paired “maternal cohort™ study designed to investigate the maternal transmission assump-
tion ( Donnelly et al.. Maternal Cohort Study. 1997b:. : Donnelly et al. Analyvsis of Dam; Calf
pairs. 1997¢) . In the maternal cohort study animais were matched according to feed related
covariates: a pair consisted of an “exposed” and a “control” animal. The exposed cow’s dam
developed BSE near the time of the cow’s birth. Since the study animals were exposed to some
MBM feed (the paired nature of the study partially controlled for this confounding factor), the
question arises as to whether the observed heightened risk of the exposed group was due to
inherited genetic susceptibility and not to maternal transmission. Various genetic models have
been formulated but lack of data has made it impossible to confirm the existence of varying
susceptibility classes. So far all humans who have contracted new variant CJD have possessed
a particular genetic trait that predisposed them to the disease. [t is estimated that at least
40 percent of the British population shares that trait which involves a variation of the prion

protien.

1.4 General Outline

This thesis presents the work of a group of British scientists who analyvzed BSE related data
and presented their results in a series of papers.

Chapter 2 explains the main technique used in the development of Ferguson et al.’s (1997b)
BSE survival model: the backcalculation technique. Discrete and continuous examples of
backcalculation as well as variations :n the technique used to model the BSE onset density are
presented with increasing complexity. with illumination of the ideas being the goal.

Chapter 3 develops the backcalculation BSE onset survival model. This chapter explains
and elaborates the methods in Ferguson et al..;{1997b).

Chapter 4 presents methods used by Donnelly et al. (1997b) to analvze ubservations from
the maternal matched-pair cohort study. The aim of the study was to determine the likelihood
of a BSE vertical (dam to calf} infection route. Several likelihood methodis are developed. The
main likelihood relies on the survival model discussed in Chapter 3.

Chapter 5 is based on a paper by Donnelly et al. {1997c! that continues the discussion of

the existence of a vertical BSE infection route. Data from the main data base of BSE cases is



analvzed to confirm results of the maternal matched-pair cohort study. [he vutcome variable
is not BSE status given dam’s status (as in the maternal cohort study . rather iz is BSE status
of the dam of a diseased caif. A likelihood form containing parameters related to maternal
transmission is optimized and resulting estimates confirm those of the maternal-cohort study.

The purpose of this thesis is to take the reader through the "statistics story™ of the BSE

epidemic.



Chapter 2

Backcalculation

The technique of backcalculaton was developed by Brookmever  1988) 1o obtain a lower bound
on the number of future AIDS cases by estimating present levels of infection. Knowiedge of
the AIDS virus incubation distribution is used to “backcalculate™ past infection rates based
on present disease levels. A variation of this technique (Ferguson et al.1997b) is applied to
the problem of estimating BSE infection levels. Like AIDS. BSE has a long incubation period.
but. lacking a test for BSE infectivity and having recognized the disease fairly recently. the
incubation period distribution is not well known. Early statistical analvses of the AIDS epidemic
also encountered the latter problem. Unlike AIDS most infected cows do not survive till disease
onset as thev are. in most cases. slaughtered before. The backcalculation adaptation to BSE
involves assuming a parametric form for the incubation period distribution whose parameters
are estimated along with past infection rates and incorporates the cow -survival distribution
into the model. to explain disease onset data. [n this chapter we explain the backcalculation
technique applied to any disease with a long incubation period and present several examples

that build in complexity.

2.1 The Basics of Backcalculation

A disease with a long incubation period has two time dependent random variables of interest:
time of infection and time of disease onset. Let T = time of infection and & = incubation

period ithen. T - 5 = time of disease onset:. Assume that T and $ are independent. That is.

om0



assume that the length of the incubation period is independent of time of infection. This is a
reasonable assumption if environmental conditions affecting the progress ot the <isease remain
constant. Suppose the density of the incubation period. f(s). is known and the density of the

time of infection. /(t). is unknown. Furthermore . assuming that 0 < ¢ < ¢,. vnere t, is the

present time.
Kt.s)=I(t)f(s). 0€t<t.. D5 <00

is the joint density of time of infection. and incubation period.
If I' = time of onset. then. I’ = T = 5. The joint density of T [time of infection} and {~

time of disease onset) is then given by:
h(t.u)y =1 flu—=8). 0<t<t.t<u<x.

If the time of infection density. /(t). is assumed to belong to a parametric family of distri-
butions indexed by the parameter vector 6. then the ‘marginal density of [” s given by the

folowing backcalculation formula or convoiution integral:

min(u.t.)
g(u) =/ I1(t:8) f(u — t)dt {2.1;
0
or
mun(u.t.)
glu) = Z [0 f(u—18 2.2
t=0

if T and S are discrete.
Now. often as is the case with both AIDS and BSE. given the quantity of data. it is not
practical to include every observed onset date in the likelihood as it would be highly computa-

tionally intensive to fit. A simplified approach is to categorize onset times within contiguous

time intervals and work instead with count data.

Let 0 < t| < ... < t; = t. be a partition of interval '0.t.;. Define count variables X.,.



X: = the number of observed onset times in time interval {¢,_;.t,,. and

X4i+1 = the number of future cases resuiting from an infection time in interval 0. ¢t,}.

Let .V = the total number of future cases resulting from an infection in time interval [0. ¢t,].

k+l

N = Z X:-
=1

If .V is unknown then one of the aims of backcalculation is to estimate .N. . Backcalculation was
originally applied to estimate the number of AIDs infections obtained within a set time interval.
\We will see in Chapter 3. section 3.6 that the parameter .\, in the BSE likelihood has a different
meaning. representing the number of cattle in a given cohort and is a known quantity.) The
first challenge is to build a likelihood based on count observations. the unknown parameters
in the onset density g(u) and parameter NV (the number of infections occuring in fixed interval
[0.¢.]). Brookmeyer's backcalculation technique achieves this. \We divide this “challenge™ into
two steps: first. in the section that foilows. we discuss likelihoods of interval count observations
based on parametric densities. and then in section 2.3 count observation likelihoods based on

parametric densities arising from (2.1) and (2.2). the backcalculation densities and probability

functions respectively.

2.2 Density estimation if the presence of complete and incom-

plete interval count data

Let L’ represent any random variable with density g(u:6). ug < u < u.., where 6 is an unknown
parameter. Our object is to estimate parameter 6 from observed data. Let ug < uy < --- <
ug = u. be a partition of {ug.u;j. Suppose rather than values of the random variable I’ being
observed our observations are counts of the form: ry ... ..r; where r, = the number of sample
[" values occurring in {uj_.u,j. { = l.....k.. To obtain a maximum likelihvod estimate of 6

one must build a likelihood for the count observations. The likelihood is based on f(u:#) and

10



will therefore incorporate . Count random variables X..... X have a multinomial distribution

with parameters: p; ... .p:. where p, depends on 6 :

p,(ﬁ):/‘ g f)du. =1,k

i

A likelihood for our data is of the form:

M

- - 9Y1 . .- p. (B)Fe (2.3
L) = ———p()"  pa(®) .
2.4)
k-1
where. pg(8) =1 — Zpk(m and N =r+ ...+ Ik.
=1

Let.
1(8) = 1, logp1(6) = -+ - — I log p(6).

The function () differs from the log likelihood log L(8) by a constant. As is standard practice
function {(8) is maximized with respect to € to obtain the maximum iikelihuwed estimator. 8.

leading to the estimated density of L" :
g=g(u:b).

[f however. our data are “‘ncompiete”. that iz if the observation r; is ninknown. then N =
Ly — ... = ri. may be recarded as an unknown parameter and needs to be estimated together
with 6. Introducing the new parameter .V. define.

k-1
(6. N) =log \! —log(.V — Zz,)! + rilogpi(8) + - - - + o log pr(6).

=1

"~
[J]]

The function {(6. \) differs from log L(6..N') by a known constant. [f N and NV — S_'f;; I, are

assumed to be large the log likelihood is treated as a continuous function of .V and dflog V)

PN

may be approximated by log.V (Sanathanan. 1972:. The likelihood equations —7— = U. ana

ﬂ‘:—\\—l = 0 may then be solved simultaneously to vield the MLE's .V and 6.

. 11



In the example below a discrete density is estimated given a compiete set of count observa-

tions and then again given incomplete count data.

Example 1 Density estimation s the presence of complete and incomplete count data. Let.

6. 0<ux<1
guid)=q 1 -9 . 1<u<?2 . whered is unknoun.
0. clsewhere
Suppose we have two count observations Iy and rz. where ry = the number of sample
observations of the random variable U in (0.1). ra = the number of sample vbservations in

'1.3] and r3 = the number of sample observations in (3.2]. Suppose one vbserves: r; = 10,
Iy =¥ and r3 =3 Observations r. ry.and r3 have a multinomial likelilood uith parameters
p1.p2. and N where N = 1} ~ r9 + 13 = 23 . Parameters p; and py» can be ¢ rpressed in terms

of 8 through the density f(u:8) :

1
p6) = [ gui0du =0
0
3 1
pa(®) = [ glus)du = 5(1-6).
l -
Thus 0 is the only unknown parameter. The log likelihood is (up to a constant; cqual to:

1(6) = 10log 6 + (23 — 10)log =(1 — 6)

Differentiating | with respect to 8 and setting the dervative equal to zero we obfarn the martmumn

likelthood e¢stimates:

dl 10 13 —0
a6~ 9 1-6
_ 10
-3

If 3 s unknown. the log likelthood contains the additional unknown parameter N:

-

[(8.N) =log V! —log{n — 18)! +logf + Slog%(l —8)+ (N =1)log =11 —0)

[V s

= log V! —log(.V — 18)! + 10logé -~ (N - 10) log %(1 AR

12



Differentiating with respect to N and 8 (using the appronimation dflogN!) = loqN) one obtains

al 1w -1 .
55 =5 (V= 10(;—=) and
ol

1 . -
3N = log §(1 —8) +log NV —log(.V - 1®).

Setting the two equations equal to zero and solving simultaneously yields the maritmum likelihood

esttmates:

0=— and N = 26.

{1

2.3 Backcalculation examples with a known incubation period

density.

- The technique of backcalculation has two basic ingredients: the backcalculation convolution;
formula (2.1} and the interval data methods of section 2.2. [n the examples that follow the two
ingredients are combined vielding estimates of disease onset densities and future disease levels

starting with the simplest possible case: a disease contracted at one point in time.

Example 2 Suppose a disease is contracted at one point in time. t = \. by some of a group
of erposed individuals. and that the disease has a knoun tncubation period s > . with density

f(s). for 0 € 5 < 0. Then the infection density. I{t). for T = time of :nfection. s the trivial

one:’

1.t=0
I(t) =

0. elsewhere.

Using backcalculation formula (2.2) the onset time density. y(u). of U =time of disease onset

. IS

g(u) =3 I(t)f(u—t) = [(0) f(u — 0) = f(u).

t<u

13



In this case the time of onset density is the same as the incubation perrod density. and is
therefore knoun. We are interested in estimating .N. the number of cases resulting from infection
at time t = 1. [f we have at least one count observation: ry = the number of disease vccurrences
in {0.T)]. then we can estimate N. the number of disease occurrences in |0.00) by forming a

binomial likelihood for observation r| involving the unknown parameter N. The likelihood is:

Tt

L(N) = iP5 (L= p)Y T

Il!(.\( -y )!

Ty
where p = / f(u)du is knoun.
0
The log likelthood. up to a constant. is given by:
I(N)=log N!' —log(.V — 1 )! + rylogp + (N — ry) log(l — p).

The dertvative with respect to N (obtained using the ccntinuity approrimation of log N) is:

al . . ‘
N = log .V - log(.V — 1) + log(l — p).
Setting the above to :ero. and solving for N we obtain the MLE: N = .

-
—

We continue with an example of a disease contracted at two points in time. The discrete
infection density has one unknown parameter representing the weight at one of the two points in
its domain. The onset density is a mixture of the infection density and the iknown) incubation
density. Backcalculation vields estimates of the infection density’s unknown parameter and of

.N. the number of individuals infected at the two points.

Example 3 Suppose a disease is contracted at two points in time by a yroup of crposed indi-

viduals. and the disease has a known incubation period density f(s). The infection density [(t)



is given by :

.t=0
I(t) = 1—-0.t=1
0. elsewhere

The time of onset density g(u). calculated using dvackcalculation formula (2.2). where U = time

of disease onset. is

0f (u). u<l
Of(u) + (L —=0)flu—1). u>1

g(u) =
Suppose we have two observations ryand ra. where

1 = the number of disease occurrences in (0.1) = 20.
Iy = the number of disease occurrences in {1.2) = 25.

(z3 = the number of disease occurrences in {2.00) is unknown).

With the goal of estimating @ and N. where N = the number of individuals infected at t =0 or
t = 1 (which is the same as the number of disease occurrences in [0.oc) resulting from infection
at t =0 ort=1) we form the multinomsial likelthood:

S
{
e (N — Pt

Lie. N = 817 pa(0) 2 p3( ) "

where r. = x| + rq. and p3(A) = 1 — p1(8) — pa(H).



Erpressions for p;(0) .i = 1.2 are obtained from the backcalculation jormula for glu):

1 1
() = / glu)du = 9/ f(u)du = 8a. where a is known.
0'2 02 2
pg(O):f g(u)du=9/ f(u)du«—(l—@)/ flu—1)du =
3 1 1
2 1
Bf flu)du + (1 —0)/ flu)du
1 0
= 6b+ (1l —8)a. where b is also known.

1

Let us assume that @ = 5 and b= ;. The multinomial likelihood of 6 and N is then given by:

[3V] L

!

V! 1
201251 N — 43)!

| 1 1.
(59)20(—39-* .'_;)25(.';

L. N) = _ %9)*"‘-‘5.

LU'p to a known constant the loglikelihood is given by:

. - r = 1 = 1,1 - s L1
(8. N) =log N! — log(NV — 13)! + 2010g(§0) +25 log(—-_;O + -)-) + (.V —45) log(§ - 10).
Setting the two partials of | with respect to @ and N equal to zero and solving simultaneously
yields the estimates: N =70 and 8 = 3.

2

The next two examples assume that the disease was contracted over an interval of time.
The first example below assumes that infection is equally likely throughout the intervai. Thus
the incubation density is uniform and has no unknown parameters. Backcalculation vields an
estimate of .\, the number of cases resulting from infection during the iutervai. The second
example below assumes that the infection density is a step function with two steps whose heights
are represented in terms of unknown parameter §. Backcalculation vields estimates of 6 and

N

Example 4 Suppose that the density of the instant of contraction of a disease in uniform on

the interval (0.1). Furthermore we will assume that the incubation density is exponential with

16



mean . The infection density [(t) and the incubation density f{s} are green by:

.oty
[(t) = . and

0. elsewhere

e . 0<s< oo
f(s) =

0. elsewhere

The onset density g(u) is formed using backcalculation formula (2.2):

o [ flu=tidt= fleVdt =1 -4 u<l

glu) = ¢~ . ,
Jo O f(u—t)ydt = fe Dt = (e = e ™. u 21

Suppose one observes 20 cases between times U and [. so that

Iy} = the number of cases in [0. 1] = 20

(r2 = the number of cases in (1.00) is unknoun).

The probability function of the binomial random variable X, has parameter p = the probability

of disease onset occurring between time 0 and time I:

1 1
p=/ 9(“’d“=/ (1—e""du=¢""=2= 37
Y 0

If N = the number of cases resulting from infection in 0.1 . then N has iivelihood:

. V! o v
L(N) = m(;;,)mu — .63)Y 20

The loglikelihood. up to a known constant. is given bdy:

(V) = log N! —log (V' — 20)! — .\ log(.63)

17



and. hence the marimum likelihood estimate is given by

N =54,

o

If one has more than one count observation. then one is able to discern more about the

shape of the infection density. [t is then reasonable to assume that the infection density is a

step function where the height of each step is an unknown parameter.

Example 5 Suppose a disease is contracted over a known interval of timme and the infection

density I(t). is assumed to be a step function with two steps. The incubation density f(s).

is
assumed to bte erponential with mean equal to [.
g. 0<t <l
I(t) =
1-6.1<t<2
f(s)=e"% 5>0.
Onset density g(u) is calculated with backcalculation formula (2.2):
Ifu<g?,
4 YPe-(u-tds =91 —"%), < v < |
glu) =/ (e 4Dt = ' Jo ’ ( < u<
° BL—c )+ [1=Pe 8 0dt = (1 =0 ') e —ehle™ . 1S u<?
if u>?2
2 | , |
g(u)=/ I(t)e‘(““’dt=/ ee““-”dz+/ (1 —8)e =dt = {Ble! — 1} ~ (1 = O)fe — )
0 0 1

Suppose we have two observations

Iy = the number of cases diagnosed in interval [0.1) = 10
Iy = the number of cases diagnosed in interval [1.2) = 20

(r3 = the number of cases diagnosed in interval [2.00) is unknouwn).

18



. The rmultinomial likelihood L(8. N') has parameters pi(€). | = 1.2.3 representing the probabilitics

that a case is diagnosed in one of the three intervals.

pi(8) = /L B(1 — e ")du = (.37)0
0
2

p2(0)=/ {(1—8e 1)+ (e —eB)(e™?2 —e Y)}du = .37 + (.26)0
1

pa(@) = .63 — (.63)6.
The loglikelihood up to a known constant is given by
H{N.8) = log N! = log(.V — 30)! + 10log(8) + 20log(.37 + .268) + (.V - 130) log(.63 — .638).

We form the two partials of I(N.8) .

2{_9-‘. 5.2 ',V-30

6 9 3T+.260 6-1

3l

56% =log.V — log(.¥ — 30) + log(l — 8) + log(.63).

Leading to the marimum likelihood estimates

2.4 A look at backcalculation when the incubation density is

unknown.

The backcalculation technique developed by Brookmever (Brookmever. 1988 assumes knowl-
edge of the incubation period distribution. This knowledge together with disease onset obser-
vations vield an estimate of the infection onset densities. In the case of Bovine Spongiform
Encephalopathy the incubation density is not known. It is difficult to independently estimate

since the incubation period seems to be related to the dose of the aetiological agent and the
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means of infection (oral or injection to the brain,. If one tries to parameterize the incubation
density and estimate its parameters along with those of the incubation density then the model
becomes overparameterized vielding more than one set of values that maximize the likelihood.
In Ferguson et. al.’s (1997b) article. backcalculation is applied with a parameterized form for
the incubation density vielding more than one set of parameter estimates or more than one
BSE disease model. In this section we examine backcalculation without complete knowledge
of the incubation density through a series of examples.

A disease contracted at one point in time has a known infection density : the trivial one). In
this case lack of knowledge of the incubation density leads to a model where the onset density.
g(u). is equal to the incubation density f(u:6) (as in example 2 of this chapter). Thus. f(u:6)
and g(u)) are estimated using the method of density estimation in the presence of incompiete

interval count data as seen in section 2.2.

Example 6 Consider a disease contracted at two points in time and a parameterized discrete
incubation probability function which can take on two values. In the erample that follows we
see that backcalculation yields two sets of solutions for the model parameters. Suppose a disease
was contracted at times. t =0 and t = 1. by some of a group of exposed individuals.

Let the following discrete probability function f(s:6) be the assurned form for the incubation

period probability function:

f. s=0
f(s:8) = 1 -4, 5.=1

0. elsewhere.

Let [(t:a) be the assumed infection probability function:

a. t=0
[{i:a) = l—a. t-=1

0. elseuwhere



Then. " = time of onset can equal 0.1 or 2. and the cackcaiculation formula for g(u) yields:

9(0) = nd
g(l)=n(1_())-‘,.([—.1)0:(1—9—21_19

g2)y=(l—al—-0)=1—n —~A-—nb.
After time t = 2 we observe the values of rg.ry.Is.

Io = the number uith onset att =0
£y = the number with onset att =1

ro = the number with onset at t = 2.

(note: N= rg+ Iy = ray = the total number of infected individuals. In this erample our count

observations are “complete”.)
Observations rg.r).and. 2 have a multinomial likelthood with parameters pg.py.and. py =

| — po — p1- The parameters are dependent upon a and 6 :

po = g(0) = ab
pr=9(l)=a -0 -2ab

pr=g2)=1-n—-#A=nb.

The figlikelihood has the form:

-1

L(a.8) = mpo(g)npl(g):: paA ) *?

and. the system of equations:
90 ~ ‘3pg Ipy Opa’ I 90 6

9L —-(% oL %)(Jpo 1 Ip2
da ~ “dpy Ipy Tpa da da Ja



:5 reduced to the system:

aL JdL oL

dpa Ip1 Opa

which yield multinomial parameter MLEs:

LT L n D
Po = - PL= - P2= -
Estimators of a and 8 are found by solving:

po = ab 12.6)
pr=a+6-2a6

pr=1—-a-0+ab.
which lead to the quadratic:
62 — (2p, + p2)0 + py = 0.

having solutions

_ (2p1 = p2) £ V(201 ~ p2)? — 4P
= - .

0

Notice that the system of equations in lines 2.6 are symmetric in & and §. chicli implies that i
(80. ag) is a pair of solutions of the system. then (8).a,) =(aq.0g) s also a solution. In order
to obtain unique marimum likelihood estimators additional constraints must be tntroduced. This

:s desiradle if one wants to estimate [(t) or f(s).
-

The next example generalizes the one above and introduces a method for generating sets
of solutions that maximize the likelihood and estimate the parameters of ciscrete infection and

incubation densities.

$

Example 7 Suppose a disease could be contracted at n + 1 points in time: ¢ =0.1.....n. and



that the incubation perod s can be any of the m — 1 values s =0.1....m. That .

fg. s=0
6. s=1
f(s:8) = |
b, s=m
L 0. clsewhere.
and.
( ag., t=0
ay. t=1
Ita)= ﬁ
an. l=n
| 0. clsewhere.
) After time n+m we observe a (complete set of ) counts .'9.Ly.... . In+m where r, = the number
of cases with onset at t = i. Let N = S 72" x,. The muitinomal likelithood of the observed

counts s of the form:

M

L(8.0) = ——— P - Py ()™
.I.'l. .. .-rn+m.

The MLE's are p, = 3. i = 0....n ~ m. The relationship between p. (p- = the proovability of

disease onset at time t = r) and parameters a and 0 is given by the dackcalculation formula:

pr=g(r) = Z ;. r=0.....m+n.

tv)=r

b
-1

Maxirmum likelihood estimators for a and 6 are found by solving the m ~ n system of equations

in 2.7) . Let a(r) and O(r) represent polynomials:

a(z) =ag +... + ar”. and

6(:) = 00 + I Oynxm.



Finding a real solution for the system of equations in (2.7) is equivalent *o finding a real fac-

torization of the polynomial:

p(I) =po+ . = Pnems "
having positive coefficients. The equations in (2.7) are recovered by equating the coefficients of
the polynomuals on both sides of the equality: p(r) = a(x)8(r).

Since polynomials over the real numbers factor into irreducible factors of degrees 2 and 1.
one would erpect many such factorizations. a(x)0(r) to ertst by rearranging or pertnuting the
irreducible factors. 4 unique solution would require the addition of many added assumptions or

of constraints on the functions I(t) and f(s).

.|

In the next example the technique introduced above is applied to generate ail the sets of
maximum likelihood estimates for a disease that was observed to have four onset times and is

assumed to have two distinct incubation periods.

Example 8 The follouing erample uses the notation introduced in the previous e rample. Sup-
pose that a disease is observed to have onset at 4 distinct points i time with the jollowing
estimated probabilities:

6 11

1
ﬁ~ Py = =7 D2 = —. p';‘:-Tl'

Po = 1 T

Then. the polynomual. p(r). introduced in the previous ergmple. 1s given by:

L

p(z) = oY)

. 1
(=62 =1l +6} = 33 = D = D(r =31 = ozifls,

If it is knoun that infection occurred at two distinct points in time. and the incuoation period
can be one of three distinct periods. then the number of factorizations of p\c) into polynomials:

a(r). of degree two. and 6(r) of degree one. will correspond to the numoer of sets of parameter

3
estimates : {ag.a1}. and {6g.61.62}. There are = 3. such factorizations yielding three



sets of equally likely estimates:

1, . 1
p{r) = {6(1:" +3r 4.-'-’)}{1(1' —3)} = alr)6(r).
1 1 L 1 3
Q.'2=§.O]=EC10='§ and 91='I~ 90:1'

1, . 1
p(x) = {g(.z.'z +4r + 3]}{3(—[ "'-2)} = a(z)f(r).
1 1 3 1 2
azzg.a1=§.ao=§ and 91=§- 90=:‘;~

p(z) = {%(I?' + 5z +6)}{_§(r + 1)} = a(r)d(r).

1
ag = and 9‘=—), 8y =

.
-

[ BV g

o] e

3
Qg = —.ay =;".

—

Finally we consider incubation and infection random variables having continuous densities.

- Example 9 The previous examples were all discrete. The following is a simple cxample of a

backcalculation model based on an infection time and incubation period which are both assumed

to be continuous erponential random variables.

Let.

fe % ¢t >0

I{t) = . and
0. elsewhere
ae . s>

f(s) =
0. elsewhere

Then.

g(u) = /-u [(t:0)f(u —t:a)dt
(v}

= /-u fe tae ~Hu-tlqp
0

_ fa
" (a=0)

[e—du — Ul
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Notice that glu) s symmetric in 6 and a. The symmetry makes it 1mpossible to have unique
MLEs. since if (8. a) marimizes the ltkelihood: L[(0.aiuy. ....un). thent a.0) will be a marimum
as well.

3d

Although parameters may not be uniquely estimated when the incubation density is un-
known. one can choose a set of likely parameters based on prior knowledge. or one can examine

the resuiting range of densities and the range of parameter estimates that are equally likely.

2.5 Backcalculation in the presence of low survivability

In the examples of Chapter 2. section 2.4 we assume that after a final time ‘equal to the
maximum time of infection plus the maximum incubation period; all exposed individuals wiil
have experienced onset.

In the case of BSE. due to the low survivability of cattle 'i.e. slaughtering patterns). most
infected animals do not live to experience disease onset. Thus. the observations of disease onset
counts are lower than they would be if cattle were allowed to survive.

Anderson et al.. (1996). and Ferguson et al.. (1997b). have modified the backcalculation
formula to incorporate an (independently estimated) cow survival distribution which explains
the discrepancy between the number of infections and cases.

In this section we shall assume that we observe a birth cohort from time of birth until death
due to disease or otherwise. Observations are disease counts in subintervals of the cohort’s
life span. Furthermore we assume that members of the cohort have low survivability (due to
slaughtering practices; and their survival distribution is known. We wiil see how the survival
distribution is included in the likelihood.

Let {0.t,, be the maximum life span of cohort members. Let 0 =t; < ... < {; =, be a
partition of [0.t,} and r;..... rx be disease count observations. r, = the number of disease onsets

observed in {t,—;.¢,). { = 1. .... k. The onset density of I” = time of onset. yiu). 0 < u < 0. in



the absence of mortality :i.e. slaughtering practices). is given by:

min(u.f.)
g\u) =/ [{(t)f(u —t)dt. and
0

ty
pi = / glu)du = Pr{onset in it,_|.t,).in the absence of mortaiity .
t

-1

In the presence of mortality or low survivability.

fa¥)

pi == Pr{survivorship until ¢,} - Pr{onset in it,_;.¢t,) |survivorship until ¢,}
t
=5(t) - g(u)du.
ey

where the survival distribution is S(a) = the probability that a cow survives until age a iin

non-epidemic timesi. More preciselv.

Pr{onset in (u.u + du)}

= Pr{survival until time u} - Pr{onset in [u.u + du)i survival until u}

Hence.
Ly
p‘-=/ S{u)g(u)du. (2.8)
Loy

Note: [f p = p, +... = pi. then p = the probability that a member of the birth cohort is infected
and lives until disease onset. If pr.; = 1 — p. then px.; = the probabilitv that a cohort member

does not experience disease onset.

Define multinomial variables X;..... X4, :

X, = the number of cohort members having experienced disease onset in {,_|.¢,).{ = l.....k. and

Xx+1 = the number of cohort members not having experienced disease onset.

The muitinomial variables Xj..... Xix.;. have a distribution depending un the parameters .\\.

p1.--.. Pk. Where N = the size of the cohort and p;. : = L..... & are defined by equation (2.8) as



functions of the unknown parameters of g(u).

In Chapter 3. section 3.6 we see that the likelihood of BSE observations incorporates a
survival distribution to explain the discrepancy between low onset levels and high infection
rates.

In the next chapter the techniques seen in this chapter are applied towards the construc-
tion of the BSE survival model. Background information. examples and details are added to

Ferguson et al.’s (1997b} presentation. beginning with an overview of the development of the
BSE model.



Chapter 3

The BSE Model

Now that we reviewed backcalculation and have 'in Chapter 2. seen several hvpothetical ex-
amples. we are ready for the development of the BSE backcalculation survival model. The
model originally appeared in Anderson et al. {1996} and was later enhanced in Ferguson et al.

11997bi. This presentation is based on Ferguson et al.’s enhanced model.

3.1 An Overview of the Development of the BSE Model

The BSE epidemic started in Britain in the late 1980°s. peaked in the early Y0's and has been
rapidly decreasing since then. The pattern of disease is a reflection of ineat and bone meal
MBM feed practices. Large quantities of recvcled meat and bone meal were fed to cows in
the early 20's. [n 1988 the MBM feed ban. imposed to curtail BSE . caused the number of new
infections to rapidly decrease. Thus the infection hazard function depends on o time variable.
The epidemic has not ended and today January 2000 France continues to ban the import of
British beef.

An additional dependency of infection risk on age of cow has been observed. This may be
linked to age dependent feeding patterns and perhaps to age dependent absorbancy rates of the
infectious prion agent (Anderson et al.. 1996. Ferguson et al.. 1997b".

Although tainted feed is believed to be the main infection route. it has been demonstrated
that the existence of a maternal route (in the womb or during the birthing process) is likely

Donnelly et al..1997b). and the possibility of a horizontal infection route :cow to cow! has
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not been yet been eliminated. Multipie infection routes are included in Firguson et al.'s BSE
model as “competing risks ”: the feed and horizontal additive components are continuous risks
and the maternal component is a discrete risk. assumed be positive oniyv at age zero. The
magnitude of maternal risk is estimated iteratively. The first generation of exposed cattle were
feed infected. Each successive generation had a maternal risk proportional to the number
of maternally infectious dams in the previous generation. Thus. maternal risk is estimated
iteratively based on the feed risks of the previous generations.

Infection ages of cohort members are unknown. Observations available to estimate the age
at infection density parameters are counts r; expressed more precisely in the form (¢g. r,}, where
to = the cow’s birth vear . and r, = the number of cohort tq BSE cases diagnosed in the i** year
of the cohort’s life span. The difference between the age at onset and age at infection is the
incubation period. The backcalculation formula (2.1} (which requires some knowledge of the
incubation period density) expresses the age at onset density in terms of the age at infection
density and the incubation period density.

Since most cows are slaughtered (for meat) before age 7. it must be assumed that most
- infected cows do not survive unti disease onset. Therefore. the available onset counts are small
in comparison to the number of infections. Knowledge of the surtrval distmbution of British
cows ( in the absence of an epidemic). together with backcalculation formula (2.1) enable the
formation of a likelthood for the available disease onset counts. Maximization of the likelihood
results in the estimation of the joint age at infection,/age at onset densityv parameters.

We begin the presentation of Ferguson et al.’s model with the definition of competing risks.

3.2 Multiple routes of infection presented as competing risks

The backcalculation formula in the BSE model (N.\. Ferguson. 1997b . considers the time of
infection to be a failure time variable. where failure in this case means infection. If failure can
be attributed to more than one cause then the various causes are termed competing risks. The

multiple causes or multiple infection routes are represented in the failure time densityv through



the hazard function. Let \(¢:6) denote the hazard function at time ¢. That is
A(t:8)dt =2 Pr{ failure occurs in ‘t.t + dt)! failure has not vet occurred?.

Then. every failure time density. [(t:68). and corresponding survival distribution >(¢:4) have

hazard form representations

t
I(t:0) = ,\(t:B)exp(—/ A(t':0)dt'). and
0

5(!:9):93(;)(—[ At 8)dt').
0

[f there are competing risks of failure then the hazard function can be written as a sum of
competing hazard functions. These functions (defined below estimate the failure rates for a

specific cause given the “removal ~ of all other causes.

. Definition 10 (Kalbfleisch and Prentice. p.167) : Let T be a continuous failure time vartable.
Suppose that when failure occurs it may be attributed to eractly one of m distinct causes. Let J
denote the cause for failure. where J is an integer in the set {[.2....n}. Then \,(t:0). the ji*

competing risk component, is defined by the cquality:
A (t:0)dt = prob{T < t.t —dt).J = jiT > t}.

Assurning J must be a unique element from set {1....in}. we have the competing risks hazard

decomposttion:

Mt:0) = 3" A)(t:0). and

=1

[(£:6) = (A[(t:8) + - - - Am(L:0))S(t: 8).
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The density [(t:8) can be decomposed into a sum of subdensities as follows:

[(:0) =Y _[,(:0) where.

J=l

t
I,(t:0) = .\J(_tzé))exp(—/ A(t':8)dt).
()

Given observations of the competing risks failure time vartaole T. and each observation’s cause

of failure. each A,;(t:6) can be estimated (Kalbfleisch and Prentice. p.168).

3

Now. the main BSE infection route (i.e. the primary “risk” or cause of failure’ is believed to
be tainted feed. A second likely infection route is maternal transmission: infection occurring in
the womb or during the birthing process. If the cow population at risk is a ziven bdirth cohort.
then the infection time variable. T. is an age at infection where t = U is age U. Furthermore. a
cow has a positive maternal risk only when ¢t = 0. Thus the maternal competing risk component
is discrete and T is a mixed continuous/discrete failure time variable. 'In the next section we
will look at continuous/discrete failure time variables in more detail.; If A(1) = Ag(t) + Ayg(2).

where Ag(t) is the feed risk component and As(t) is the maternal risk component. then.

, R t=0
Avft) =
0. elseuwhere
and R = the probability that a calf in the given cohort will be maternally infected.

In section 2.3 we give an example of a mixed densityv arising from a competing risks model

where one risk function is discrete.

32



3.3 Mixed Continuous/Discrete Failure Time Densities.

Let I(t). t > 0 be a mixed failure time density. Suppose that Pr{T = a,} > 0 for a finite set of

points {a;.....an}. Let S(t). t > 0. be the survivor function of the random variable 7. where

S(t) =Pr{T > t}.and

sy = [ node+ ST Ha
(t) /t t)dt + Y I(a

Qe 2t
[f A(t) is the hazard of T. then
t
S _—.exp(—/ A(t)dt' g, <:(1 — A(a,)). and
0

t
[ty = \()S(¢t) = ,\(t)exp(—/ At T, <1 — Ma,j) Kabfleisch & Prentice. p.%i.
0

Example 11 4 competing risks model where one risk function is discrete

Suppose A(t) = Ai(t) + Ao(t). where A\ and A2 are competing risk functions. Furthermore,

SUppose.

R. t=0
A2(t) =

0.elsewhere.

[he random vartable T is a mured continuous, discrete failure time carrable with a positive

density at T=0. The infection density I(t) 1s erpressed in hazard form:

t
I{t) = ,\1(t)exps:—/ AM()dt (1 — R t > 0. and
0

[(0) = A\, (0) — R.
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A combined form for [it) is:

4
I(t) = ,\1(t)exp{—/ M()dt' (1 = R) + R&(t).  where
0

X 1. ¢t=0
&t) =
0. elsewhere

3.4 The BSE Joint Infection/Onset Competing Risks Density

Let A. A> 0. be a random variable representing the age at BSE infection for a cow of birth
cohort. fg. where tg = the birth vear of the cohort. The age at infection densitv [{aitg). for

cohort tg can be written in hazard {orm:

I(ajtg) = A(alty) exp[— /: Aa'ltg)da'l.

Suppose that farmer-determined age dependent feeding patterns of cows do not change over
time. and that age dependent protein absorption rates are. similarly tirne invariant. Fur-
thermore. it is known that the amount of MBM given to cows varied over time. Thus one
can justify Anderson et al.1996} factoring the hazard A(ait). into time dependent and asge

dependent factors

Alajt) = rit)gla). 3.1

The function g(a) reflects age dependent protein absorption and feeding practices. The function
r(¢) reflects time dependent M BM feeding patterns.

The hazard function for cohort tq is defined to be:

AMajtg) = r(to + a)g(a). where

Maltg)da =2 Pr{d € ja.a+da)iA>a.T = tg +a}.

At the time that this model was proposed it was accepted that there existed two and possibly

3
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<hree routes of infection: oral feed route. vertical «dam to calf} infection route and horizontal
cow to cow infection route. The three infection routes are competing risks of infection and

‘he hazard is written as a sum of the competing risk components ' see section 3.2 :

Alajt) = Arp(alt) + Axr(alt) — Ay (ait)

=rr(t)gr(a) + ra(t)ga(a) + ra(t)ga(a).

where the maternal risk is non-zero only at birth yielding the discrete function.

l. a=
gum(a) =
0.a>0
Consequently.
rv(tg). a=20
Ayvr(aite) = sito) . where

0. a>0

Aar(0jto) = Pr{a dam born at time tg is maternally infected}

= Pl‘{:l = Olt = to}.

The components re(t)gr(a) and ry(t)gy(a) are not formulated as easily. The authors (Fer-
guson et al. 1997b) express the time dependent feed factor. re(t) as a piecewise quadratic
curve and estimate its unknown parameters when the likelihood is optimized. Furtnermore.
the function gg(a) is assumed to have a parametric form whose unknown parameters are also
estimated when the likelihood is maximized. At the time of the studyv thiere was no evidence
of horizontal transmission. Any parameters related to horizontal transmission are fixed and
not estimated. For most of the discussion the authors assume that horizontal transmission
does not exist and we will at a later point continue with this assumption. The presence of the
discrete competing risk component Ajr(altg) makes the age at infection variable. . a mixed
continuous/discrete randon variable. with a positive probability at 4 =0. A form lor the age

at infection density corresponding to the above hazard is derived in a similar wayv to Example



11 of this chapter and is given by:

‘d
I{alte) = i Ap(ajta) + Ay (aite)] exp[—/ (Ap(a' tg) = Ag(a'to))da'i(l — rv(tg))(1 — &(a))
0

+ rir(to)d(a).
} 1. a=0
where. &(a) =
0. elsewhere
Assuming that the incubation period. S. is independent of birth cohort and of the age of a cow.

it follows that the joint density of A and U is given by:

Ja. ulte) = I(alto) f(u — a) 13.2)
= {[AFr(alte) + AH(alto)]exp[-/ (Ar(a'lto) + Ap(aito))da’l(l — ry(te))(1 — &(a))
Q

+ rar(to)é(a)} f(u — a) 3.3)
where. a 2 0. and u 2 a.
The density ./(a. u.tg). is the major component of the backcalculation formula 2.1:. It is used
to form a likelihood of count observations reflecting BSE onset rates. Mlaximization of the
likelihood leads to parameter estimates and an estimate of the time of infection density, I{aitg).
The density J(a. uitg) has many unknown parameters. If some parameters can be expressed
in terms of others then the likelihood equation will not vield unique MLEs. The authors go
through great lengths to express the maternal risk component. ry(t). in terms of feed hazards
of previous generations. In the next section we see the relationship between a maternal hazard

and past feed hazards. furthermore. we see how this relationship vields the desired expression.

3.5 Estimation of the maternal risk component

The many components of the joint infection/onset density make it impossible tc estimate from
onset data alone. One does not know the infection route of a case and therefore cannot
separate the three risk components. The authors Ferguson et al.., 1997b . simplify the model

by assuming that there is no horizontal transmission ithe existence of horizontal transmission
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has never been demonstrated: leaving only feed and maternal components. The authors point
out that the maternal risk component can be traced back to a feed risk. The lirst generation of
exposed cattle were oniy feed infected. Cattle of the second generation were exposed to tainted
feed and a maternal risk from dams that were feed infected. Subsequent generations had a
maternal risk proportional to the number of infectious dams in the previous generation. Every
infectious dam can be traced to a feed infection in a previous generation. In this section we
see how the maternal risk is expressed in terms of feed risks of previous generations.

Recall that the maternal risk component is a discrete component. and is nonzero only at

r‘_\y(t). a=0
Ay (ajt) = and.
0. a>0
ry(t) = Pr{a calf born at time ¢ is maternally infected} 3.4)
= Pr{a dam is infectious and preonset at time t and infects her calf}. (3.5)

- The probability of a calf being maternally infected is proportional to the proportion of infectious,
preonset. dams. A\ dam that is post onset can give birth: however. its calf is likely to be culled.)

The proportionality constant is the probability that an infected preonset dam ‘ransfers the

infection to its calf. Therefore.

ry(t) = «{ the proportion of infectious preonset dam s at time ¢}.

where. « = Pr{ a dam infects its calf {the dam is infectious and preonset at time t}.

The infection, onset density {3.2) is used to obtain an expression for the proportion of infec-
tious preonset dams at time t. The following observations play a role in forming an expression

for the proportion of infectious preonset dams at time ¢ :

e [t is clear that a dam must be infected to be infectious.

e The probability of a dam being infected depends on its age at time ¢ and is a function of

infection/onset density (3.2).
e The level of infectiousness of a dam will be expressed as a function of the time left until
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disease onset in the dam. where level of infectiousness is assumed to increase as onset

time approaches.

Suppose an infected preonset dam is of age r at time t. and has v vears left until onser.

Then u = v + r is the age at which disease onset will occur. The probability that an age r

/ / J(a.ujt - r)dadu
r 0

where J(a.u|t — r) is BSE infection/onset density (3.2). To express the probability of infec-

dam is infected is

tiousness we define function
Qur(v) = Pr{an infected cow is maternaily infectious v vears left unul disease onset}.

The probability that an age r dam is maternally infectious and preonset at time t is

ysm(t.r) = j Qag(u — r)/ J(a. uit — rydadu. (3.6)
r 0

We present two special cases of yys(t.r) that elucidate the general case.

Example 12 Adssume that an infected dam is always maternally infections. then

Qvy(e)y =1, and
yy(t.r) = Pr{age r dam 1s maternally infectious and preonset 11 time +}
= Pr{age r dam is infected and preonset at time t}

=Pr{d<randl > r}
x r

=/ / J(a.ujt —r)dadu . (t — r = wyear of birth of the dam)
r ]

= / Qag(u—r) / J(a. uit — r)dadu.
r )]



Example 13 Suppose an infected cow s maternally infectious only during the last half year of

the incubation pertod. That is:

, 1. 0< e <12
Que(v) =

0. elsewhere

Then the probability that an age r dam at time t is infectious and preonset is:

y;\r’(c'r) = Pl‘{0< A S r.r S U S r - 1/2}
r+1/2 r
Pri0 < A<r. 0<SU-r< 1/2}=/ / J(a.ut — ridadu
r 0

x r
= / Qy(u — r)] J(a. uit — r)dadu.
r 0

Now that we have a formula for the probability that a dam is infectious. we are one step

closer to the aim of obtaining a formula for the maternal risk component r;(t). Recall that
ryr(t) = «{the proportion of maternally infectious. preonset. dams at time t}.
Which leads to a heuristic justification for expression {3.7) below:
ra(t) Ze Z Pr{a dam is infectious r < age of dam < r +dr}-

r>2

Pr{r < age of dam < r <= dr}

22, z ot F)ya (¢t ridr.
r

or. more precisely.

~3c
Fu(t) = e/ ore(t.r)y(t. F)dr. 3.7
2

where oy(t. ). the age distribution. reflects the fact that the probability that a dam is of age

r depends on ¢ as well as r. The following points are worth noting about equation 3.7:
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e Since a dam is a cow of age > 2. the lower limit of integration in (3.7, is 2.

e All cattle of age > 2 are assumed to be dams since almost ail bulls are siaughtered before

age 1.

e Formula (3.7) is. in a sense. recursive since formula (3.6) for yys(t.r) contains the density

(3.2) which contains rys(t — r).

The authors use an iterative approach to “unravei” formula (3.7 and obtain the nonrecursive
equivalent. The following example derives a nonrecursive formula for ry,(¢) under simplifving

assumptions for illustrative purposes.

Example 14 Suppose that in a certain cow population cows give birth to one calf at age 2.
and all births occur in the same season. [n that population a dam is defined to oe a cow of age

2. Furthermore assume that every infected dam is infectious and tkat there 1s no horizontal

transmission of infection. Then.

Qur(v) =1, v 20, since every infected dam is infectious.
l.r=2

oap(t.r) = . since a dam is a cow of age 2.
0. elsewhere

e o) r
yar(t.r) = / / J(a.uit - r)dadu. (the probability of being infected and preonset by age .
r ]
a

Jla. wt —ry = \plait - r)exp{—/ Ag(a'it — ryda'lf(u = ) (1 = ry(t — rm){i = *a))
0

—ratt = r)é(a}f(u - a).

and. ry(t) =c¢ ya(t.2) ( oa(t.7) is nonzero only at r=2).

Hence.

x 2
ra(t) =c yap(t.2) = C/ / J(a.ujt — 2)dadu
2 0

x 2 3
=cf / {/\F(ait—'l)exp[-/ Ap(@’lt = 2)da'l f(u — a)(1 = ry(t —2))i1 —&a))
2 [s] 0

~ra(t —2)8(a) f(u — a)}dadu.
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Leading to the recursive formula

ra(t) = t/ /-{«\F(ait -2)- 1 3.8)
2 0
Q

exp{—/ Ap(a'lt =2)da'lf(u — a)}dadull — ryt = 2)) 3.9)
0

-yt — .))c/ f(u)du.
2

Observe that the above 1s the sum of the probabilities

ry(t) = ¢ - Pr{a dam is preonset feed infected and not matermally infectedit}

~ ¢ - Pr{a dam is maternally infected and preonsetit}.
Let

F(t) = Pr{a dam is feed infected and preonset it. no maternal infection}. and

G(t) = Pr{a dam is preonset !maternally infected}.
Then substituting F(t) and G(t) into expression (3.5)
ra(t) = cF(t)(1 - r_-;;(t —2)) + G(t)rar(t = 2).
In summary we have shoun that
ra(t) =eF(NL —ry(t =2)) =eG({t)rys (¢ =2} t=2.4.6.5... . $3.100
The above recursive formula crpresses the maternal transmission probaotlity of one generation

in terms of the probabilities of feed infection and maternal infection in the previous generation.

Rearranging the terms we have.

ra(t) = cF(t) —eryg(t —.))[F(f) - (:(f)].
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Thus .

rv(2) = eF(2).

ru(d) = cF(4) = EIF(4) = G
Leading to the nonrecursive formula
ra(t) =cF(t) —?F(t =2) = EF(t = 4) — - — "2 FQ)F(4) - G(H)].

Hence. ryy(t) is expressed only in terms of € and feed infections of previous generations reducing

the task of estimating a maternal risk function to that of estimating one parameter. <.

po—

The authors Ferzuson et al. {1997b). have a parallel formula for ry/(¢) in the general case.
We now show how the general formula is obtained the details of which were omitted by the
authors.

In Example 14 above. the cow population was partitioned into hypothetical generations
spaced 2 vears apart and recursive formula (3.10) for rys(t) expressed the maternal risk. rys(¢).
in terms of ryr(t — 2): the maternal risk of the previous generation. I[n the general case the

authors partition the cow population into actual generations:

Gen; = the first generation exposed to tainted feed

Gens = the offspring of Gen,. etc.

Let
Cn =Geny, JGeng_1J...JGeny.
That is

Cp = the cow population whose most recent generation is Genn,.



The maternal risk depends of the current cow population. Population 7y Lad onlv a feed risk.
population (', had a feed risk and a maternaj risk from dams of () that were iced infected.
To emphasize the dependence of rys(t) on the cow population and the dependence of the cow
population on the current vear t. we will use the notation ry;(Cpy)} wWhere nit) is an integer
and C,; is the cow population at time t. Using this notation and generalizinz .3.10} above.

we can express the maternal risk of population Cy(, in terms of the maternal risk of Cp(e)-;.

ru(Chey) = ¢{the proportion of infectious. preonset dams in population C'; )}
= ¢{the proportion of feed infected infectious preonset dams in C'y(,}
+ ¢{the proportion of maternally infected preonset dams in Cy,}
= «{the proportion of feed infected infectious preonset dams in C’, .}
— ¢?{the proportion of feed infected infectious preonset dams in ( iryo1)

+ ¢2{the proportion of maternally infected infectious preonset dams in Crgty-11-

The last term can be expressed in terms of feed and maternal risks of population ('(;)_s. etc.

In this more general setting we can derive an expression for ry(t) analogous to expression

3.101. Let.

a
Ir(ait) = ,\F(ait)exp{—/ Ap{a’it)da’l. the age at feed infecticn densitiv.
0

Jla. uit) = Ie(alt) flu —a)(l = ry ()1 = ~(a)) = flu)édla)ru).

the joint :feed or maternal. infection. onset densitv. a > 0. n > .

Starting with formula (3.7 we have

~ x =< r
rayit) =c‘/ U_\.[(f.r‘)y.u‘\t.r)dr':c/‘ f_'TM(t.r‘)'/A Qu(u—r)/ Jla.wt - rydadudr
2 2 " 0

x< x r
=c/ magit. r)/ Qu(u—-r)/ {IF(ait = r flu —a)(l = ry(t —r) = flaw)é(a)ry(t — ) bdad
2 r 0
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Rewriting as a sum of integrals

x x
ra(t) = C/ oultt. T')/ Qg —r)- 311,
2 r

/ Irlait — rYflu — a)(1 = rag(t — r))dadudr (312
0

x x
- c'] ol r)/ Mg(u — r) f(u)ryit — ridudr
2 r

=e{W (1 —ry)i(t) +ci® - (rar)](t). where ¥ and ¢ are intergral operators representing

the factors that multiply ¢ in {3.11}.

On the left side we have ry((t) (or equivalently raf(Cpr(py)). On the right side we have ry(t —r)
or equivalently r\s(Cp;-r)); where r > 2. Due to slaughtering practices most cows do not
live bevond age 3. Using this information together with the fact that most cows have one calf
a vear we make an approximating substitution: raf(t — r) = ryy(Cry-1. and introduce the

notation: r&';) = ryy(Cr). Hence.

(n)

ry =c(®—V)- P00 (D).

Repeated substitutions of the above recursive equation into itself leads ‘o a non recursive

{
formula for r_‘\';) :

n
rgr}):chhll*b—\l‘)'_l'_-c\y'(l). 3.3

=1
Thus. the current maternal risk is expressed in terms of ¢ and feed risks of previous generations.
The only unknown feed risk parameter left in density :3.2) is . the probability of maternal
transmission of infection. This simplifies the backcalculation likelihood based on density 3.2:
by reducing the number of unknown parameters and eliminating the need to estimate the

maternal hazard component when maximizing the likelihood.



3.6 Maximum Likelihood methods

After establishing the form of the parametric joint infection. onset density vne would like (o
estimate the unknown parameters from available observations.

Data used in the model was taken from :the Central \eterinarv Laboratoryv'=) BSE case
reports, stratified by birth cohort and age at onset. The failure time variable was age at disease
onset with covariate birth cohort. Thus. observations were grouped into veariv categories
determined by birth cohort and within each birth cohort by vearly age at unset intervals. The
great number of observations make the inclusion of a likelihood term for everv observation too
computationally intensive. A count variable evaluated within each cell summarized the data
vielding muitinomial observations used in the model’s likelihood. Assuming that the life span

ol a cow is 18 vears. let

X.1, = the number of diseased cattle of cohort tg with age at onset in the " vear. i = 1,... 13.

X9, = the number of cohort {g cattle that did not experience the disease.

When backcalculation was applied to estimating future AIDS infection levels the multinomial
parameter ~ N, representing all infections acquired during a set time interval. was unknown
and was estimated when the likelihood was maximized. In this case the parameter. " N".

representing the size of a birth cohort is known and is equal to .\;.. Let

\:, = the size of cohort to. -0 that

i9
> Xewp = Nio

r=i

Let the multinomial parameters

pit, = Pr{onset in vear ! cohort tg}

= E(-Yl.l'j)
N



and

P1a..o = Pr{a cow does not live to experience disease onset :cohort tp}.

Let

Lo, i=1....19

be the observed values of the count variables defined in (3.17} where.

18
L9t = -\-zo - E Lr.ty.
=1

[f L” = age of disease onset. then a probability related to p, ., that is easier to express. is defined

as an intermediate step in the formulation of an expression for p,,,. Let
pi(t) =Pr{i = 1 < U < {f calf born at time t} i = 1..... 18
and

p(t.u) = Pr{a cow becomes a case by age u jborn at time ¢}.

p(t) =pit.i) —p(t.i — 1).

Since most cattle are siaughtered before age three. and since in the derivation of the expression
for density J(a.uit) it is assumed that there is an "absence of slaughtering practices™ the
separately estimated survival distribution. S(¢). is included in the expression for p(t.u) o

account for the discrepancy between numbers of infections and cases. Let

S(a) = Pr{survivorship until age a}
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then.

p(t.i]:/ S(u}/ Jla. uit)dadu. 314
0 0

[t is assumed that the parameter p,.,. is close to p,{t) for t close to tg. If T = the random

variable representing time of birth. then:

Pito = E(pi(Dita < T < tg + 1)

{each cohort includes calves born during a one vear span:.

Let R represent the restriction: tg < T < tg+ 1. Then.

Duta = ET(P:(T)IR)) =Er R(ptlT)) 3.15%

Let B(t) be the (time of birth) density of random variuble T. The conditional density of TR

has density B g:

B(t)

Bra(tlR) = .
TR o Bieydt

Using :3.15) the multinomial parameters are given by.

Prto = ET g(p:(T)) 3,16
o+
= p:(t) Br git)dt

to

=/'°“ pit)B(t)
Jeo*= B(t)dt

to
- [T peB, [ S LB,
'°*-‘ B(t)dt to S22 Byt

dt

i=1....n{tg) — L.

and. P19..ta = 1 - Zpt.!n.
=1



It is assumed that the union of all birth cohort observations:

“fo{-rl-lo' - Ln(en).ts }

have a multinomial distribution. The loglikelihood written up to additive constants) is equal

to:

S Z {Z18.00 In(P18.co) + T1o Luts In(Pisy) }- (3.17)
to

From (3.14) and {3.16)The quantities p;,, are expressed in terms of the unknown parameters
of J(a.ujt). Not all parameters of J(a.ujt) can be estimated from onset observations alone..
The likelihood may be overparameterized. If both the infection densitv. /(a. t). and the
incubation density. f(s). are parameterized with unknown parameters then the model is likely
to be overparameterized or unidentifiable. If this is the case then some quantities isuch as the
mean incubation period) must be guessed at or estimated from independent data. The maternal
transmission rate. e. can be estimnated from data accumulated during the maternal transmission
study see Chapter 4i. In particular. parameters in the maternal infectiousness distribution
Q(v). were assigned a few hyvpothesized values deterrmuning at which point in the incubation
period infectiousness is assumed to begin (e.g.: within 6 months of onset) and separate sets of
MLEs" were calculated for each assigned value. Some information on the incubation period
distribution is provided by the maternal cohort study and the oral dosing study . Anderson et.
al 1996 \aximization of the loglikelihood after some parameters are tixed. viekis parameter
estimates of the remaining unknown parameters of J(a.u:t). The resulting estimates will be
summarized in the last section of this chapter. The parametric forms assumed f{or some of the

functions that appear in J(a. ujt) are reviewed in the next section.
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3.7 Incubation period and age-dependent susceptibility distri-

butions

Recall by equation 1 3.1 that the feed hazard. \g(alt). is assumed to factor into a time dependent

factor and an age dependent tactor:

Ar(ajt) = rp(t)g(a).

The function g(a) retlects the age dependent absorption rates of the aetiological agent in addi-
tion t0 exposure to the agent due to age dependent feeding practices of meat and bone meal.
The authors (Ferguson et al.. 1997b1 tried fitting the likelihood 3.17) with various functional
forms for g{a). the age dependent susceptibility density. and f(s). the incubation period densitv.
[t was found that the basic model results were robust to changes in the tunctionai {orms.

The following three functional forms were tried for the incubation period density: A Gamma

density with a delay

0. u< (1 —aj)a

flu)=q (u=il —ap)ag)aiezies-!

X exp ;_(u-(l-a;;aq)alog l Lu> (L =ay)ae

a Weibull density with a delay

. <l —ayjaq

flu)y= (u — (1 —ap)ay)™!
(1 i1 oae) )
~expg—(“ (1 m;clx;;"(: 1 1)) w >l =npay

and one referred to as a “mechanistic incubation period density”™ which we derive below) to
model the incubation period of BSE "Medley & Short. 1996i. The delavs in both the Gamma
and Weibull densities reflect the fact that there are almost no known cases of BSE in cattle
below the age of 2. Therefore the incubation period is believed to be greater than or equal to
3)

2. The mechanistic densityv was found to give the best model fit and its derivation iz based on

the incubation dynamics of the BSE prion aetiological agent. It is believed that the incubation
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period is related to the initial infecting prion dose and that onset is triggered when the prion
level reaches a specific level. We now discuss the “mechanistic density” in detail.

Let. dg represent the proportion of the triggering prion dose that entered the body upon
infection. The authors assume that do has density h{dg). Let d represent the prion level at

time t. [t is assumed that d increases exponentially. Let
d(t) = doe™*!

describe the deterministic growth of the prion substance over time. Recall that d(t) is the
proportion of the triggering prion dose. Therefore. at time t for which d(t) = doe ' = 1.

disease symptoms appear and the incubation stage has ended making time ¢ equal to s. the

incubation period. Thus the incubation period. s. is a function of the initial dose g :

_ —In(do).

"

dg =€~ """ and s

A change of variables expresses density f(s) in terms of A. the density of the initial dose

d(e™"19)
ds

h(e™ ™ *)me ™ ™7,

fis) = —h(e™ ")

[f h is assumed to be a Gamma density with parameters a and .3. then.

) o— L _-tiye-l, -7 30 -s
f(a) - [‘(a}jo (: ) - lc
1 Qoe %M 00 / e ¥ ™M \)
A T

vielding the functional form of the mechanistic incubation period density.

Eight 'un-normalized: functional forms are explored for the age-dependent susceptibil-



ity /exposure distribution. g(a) :

—a/~y

l. g(a) =€

-a/

2.9(a) =€ -2

I
d
—~
[1.)
]
e
2
3
j=l
v
I 3V

7. CDF = (1 — expi—(v1a)")(1 — exp{—(~3a) 3 7™*)

8. CDF = as above but with a step at a = 2. doubling after 2 vears of age.

The first form assumes exponentially decayving susceptibility and constant exposure. The second
form also assumes exponentially decaving susceptibility with constant feed exposure. The third
form assumes that the exposure is constant and the susceptibility is Gamma distributed. The
fourth form is similar to the seconc but the level of susceptibility/exposure doubles at age
2. The fifth form assumes constant susceptibility until age ~2. and exponential decaying with
constant exposure after age ~2. The sixth form assumes constant exposure ana susceptibility.
The seventh form is a cumulative density function. empiricallv derived : Anderson et al. 1996}
and assumes constant exposure. This parametric form is very tlexible in that it can take on
many shapes.

The likelihood was found to be robust to changes in the functional forms of the incubation
period density and the susceptibility,exposure distribution. Only the most extreme form 6 of
constant exposure and susceptibility had an unacceptable goodness of fit. The combination
of the “mechanistic incubation period density™. and the empirically derived age, susceptibility

density. form 7. vielded the best goodness of fit {Ferguson et al.. 1997bi. We conclude this



section with the infection/onset density and the related “best fit” forms:

J(a. ujto) = [(ajte) f(u — a) (3.18)
= {Ar(aito) exp{— f Ar(a'lto)da’}(1 - rar(to))(L — §(a))
+ra(to)é(a)} f(u —a)

where. @ > 0. and u > a.

Ar(alto) = rr(t)g(a).

./0" g(a')da' = (1 — exp{—(ma)™])(1 — exp{—(~3a)™"™]),

1 Qge ¥ ai/es age” Y™
f&) = tay3 | "o xpl =)

n
ra(t) =D [ETH@ - W)W (1), see 13.13),

=1

and rg(t) is a piece-wise quadratic function.

3.8 Basic Results

The likelihood created with the mechanistic distribution and form 7 above for the incubation
distribution and the age/susceptibility density, respectively leads to an estimate of 954.000
infections between the years 1974-1995 and to a prediction that there wouid be 9340 new cases
for the vears 1997-2001. :The actual number of case between January 1997 and Julv 2000 is
9786.. Estimates of the mean incubation period are consistently between 1.7-3.3 vears for all
models with relatively satisfactorv goodness of fit. Estimates of the total number of animals
infected lie in the range 900.000-1.130.000. Predictions of the number of cases between 1997
and 2001 show much variation. Future case predictions are highly effected by changes in the
tail end of the feed risk profile. If the future feed risk is assumed to be nonexistent then
all predicted cases would be maternal infections. Maternal cases are easier to estimate since
the risk of infection is easier to predict. Under the assumption of horizontal transmission the
number of predicted cases for the vear 2001 was over 100.000. However. having no experimental

evidence to back up assumed parameters related to horizontal transmission. the prediction is



only speculative.



Chapter 4

Maternal Transmission - The Paired

Study

The maternal cohort study. initiated in July 1989 which. owing to the long incubation period.
- concluded in 1997. examined the possibility of a maternal transmission BSE infection route.
Maternal transmission refers to the transmission of infection from an infected usually preonset)
dam to the calf in the womb or during the birthing process. Three groups of statisticians
analysed the study’s observations and presented their conclusions {Gore et al.. Maternal Cohort
Study. 1997. Donnelly et al.. Maternal Cohort Study. 1997b. Curnow et al. Maternal Cohort
Study. 1997V, A vertical infection route rdam to calf. would prolong the BSE epidemic but
would not sustain it indefinitely for several reasons: dams have an average of only one caif a
vear. slaughtering practices insure that the cattle population is more or less constant. and the
probability of maternal transmission from an infectious dam to calf is likely to be much less
than one. However. maternal transmission may imply the presence of disease in a wider range

of body tissues and perhaps the existence of vertical transmission of other prion diseases such

as CJD in humans.

The study design was 301 matched pairs of maternally exposed and control animals. The
exposed cows were born of dams who had BSE at the time of calving or developed the disease

within 13 months. The control animals were born of dams that were free of BSE up to age

34



®

6. . Almost all infected cows that live to experience disease. have disease onset before age
6. This is partly because susceptibility to infection is age dependent.. Between 1986 and
1988 calves were recruited and placed on one of three study farms. Theyv were followed for 7
vears to observe BSE pathology and then slaughtered and examined to determine their disease
status. The maternally exposed group were observed to have a significantly enhanced risk of
disease. Had the study calves noc been exposed to tainted feed. then observed enhanced
risk in the maternally exposed group could be attributed to maternal transmission. However.
study calves were given MBM both before recruitment and. on at least one study farm. after
recruitment. Thus. MBM is a confounding factor which makes it difficult to distinguish between
an enhanced risk due to maternal transmission and one due to varying genetic susceptibility
to BSE. Matching was based on natal herd. calving period and time of recruitment into the
study. The matching variables are related to the feed risk of a study animal. Hence. paired
animals are assumed to have similar exposure to tainted feed. Donnelly et. al. {1997b) found
that risk of disease increases with calves born to dams in a later incubation stage. This finding

supports the maternal transmission theory but does not rule out the theory of varving genetic

" susceptibility or some combination of both.

We discuss Donnelly et al.’s {1997b) methods. which build on the infection/onset survival
model described in Chapter 3. The authors explore three models utilizing covariates related
to the study’s confounding effect of feed exposure and to the relative contribution of maternal
exposure. The first is a logistic regression model having BSE prognosis as a dependent vari-
able. The covariates are variables related to feed exposure. maternai exposure. and maternal
incubation stage. However. genetic susceptibility is not represented in this :nodel. In order
to estimate the relative etfects of maternal transmission and genetic susceptibility one needs a
model that incorporates parameters reflecting risks of different modes of disease transmission
and of genetic susceptibility. The second model categorizes the study observations by BSE
status and maternal exposure status and assigns likelihood terms according to category. The
likelihood terms contain parameters related to maternal transmission and to genetic suscepti-
bility. The third model utilizes information concerning modes of disease transmission. genetic
susceptibility. the incubation density and . when appropriate. the dam’s incubation stage at

time of birth. Parameters related to these effects are represented in the likelihocd whose terms
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are formed from infection/onset density (3.2). The authors start with an exploratory data
analysis looking for evidence of genetic susceptibility. and for a relationship between the ma-
ternal transmission rate and the dam’s incubation stage. supporting the theory of maternal

transmission.

4.1 Exploratory Data Analysis

Of the 301 study pairs. 18 were prematurely censored. Among the 602 animals. 42 maternally
exposed and 13 control animals developed the disease. The proportion of BSE-atfected exposed
calves was .139. and the proportion of BSE-affected controls was .043. The authors found the
difference to be significantly different from zero. p=value <.0001. The difference. .139-.043 =
.096. can be used to estimate the maternal transmission parameter ¢ see Chapter 3. section
3.5). where ¢ = the probability that an animal born to a BSE infected dam experiences maternal
transmission.

[t is important to take into account the paired nature of the study since doing so gives
insight to the possibility of the enhanced risk being partially due to genetic susceptibility.
Suppose feed exposure alone was the cause of the infected study animals’ BSE status. Then
the exposed animals’ enhanced risks may be attributed to an enhanced genetic susceptibility
to feed infection. since animals are paired based on variables related to feed exposure. If the
BSE status of the exposed animal is independent of the BSE status of the matched control.
then one can conciude that the enhanced risk is due to maternal transmission alone. However.
if pairing is related to disease risk then one cannot rule out the possibility that enhanced risk
may be partly due to enhanced genetic susceptibility of the exposed calf. The following is a
contingency table of observed and expected pair outcomes indicating that pairing is related to
BSE status. For example the table entry value of 36 indicates that there were 36 pairs whose
maternally exposed calf had + BSE status at the study’s conclusion and whose control calf had
- BSE status at the studyv’s conclusion.

Observed(Expected) maternally exposed



+ -
Observed(Expected) control + 6 (1.8] T11.2)
_ 36 (40.27 252 (247.8)

There is a significant difference between observed and expected BSE status counts under the
null hypothesis that BSE statuses of paired animals ar~ independent.. Fisher's exact test has
a two sided p-value of .004. Thus. feed related variables may be contributing to the exposed
animals’ increased disease risk. The connection between increased risk and exposed status may

be explained by the presence of a heightened genetic susceptibility in the exposed group.

4.1.1 Maternal incubation stage

[f one established a dependence of BSE-infectivity in exposed calves on the dam’s incubation
stage, then one could claim that the observed enhanced risk amongst exposed study calves
must be at least partly due to maternal transmission. A simple calculation of relative risks

illustrates that such a dependence is plausible:

(porportion of disease atfected exposec calves the categorv)
(porportion of disease atfectea controis “he category)

Relative risk of cows in a category =

Relative risk of exposed calves = :—é% =3.23

Relative risk of exposed calves

born after onset. = 5.00

Relative risk of exposed calves

born during the incubation period. = 291

The increase in relative risk amongst exposed calves born after the dam experiences disease
onset suggests that the incubation stage of a calf's dam is related to transmission of infection.
The authors performed two tests to determine if BSE-risk varies significantly with incubation

stage. Both tests use the paired nature of the data to control for the exposed calves’ feed risk:

Test - 1
Pairs are stratified by vear of birth (1987. 1988 or 1989) of the exposed animal and by

incubation stage of the BSE infected dam (onset less than 30 days after birth. 51-100 days,
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101- 130 davs. more than 130 days). For each classification "excess risk of exposed animals”
is estimated. Excess risk for a cell is defined as the mean of the random variable z.. evaluated

at each pair in cell c. where:

1. if exposed only is infected

I —1. if control only is infected

0. otherwise.

The sample mean estimates together with 95% confidence ‘ntervals. are presented in the next
table:
vear of birth onset < 30 onset 31 - 100 onset 101 - 1530 onset >130

1987 0.50=0.50 0.50%+0.50 0.67+0.33 0.33+0.33
1988 0.12+0.04 0.14£0.05 0.13+0.15 -0.08=0.06
1989 0.02+£0.03 0.04£0.24 0.00 0.00

No conclusions can be drawn from 1987 data since the sample sizes are too small. In 1988
one does see a drop of excess risk in animals born more that 130 days before onset in the dam.
The drop of excess risk supports the existence of maternal transmission. On the other hand if
the excess risk is due to maternal transmission then one would expect the 1989 estimates to be
similar to those of 1988. However. the 1989. less than 30 days estimate is low and contradicts

the increased risk at late incubation stage theory.

Test - 2

The second method splits the 301 pairs into two groups :of pairs . where division is based
on the dam's incubation stage at the birth of the exposed animal. The pair BSE-status :
L.~ [+, -+, O (-.-) } frequency distributions for the two groups are compared using
Fisher's exact test. Eight different divisions were tested. The frequency distributions of the

two groups divided at the 150 day before onset™ point are given below-.

< 150 days. maternally exposed



- - Total
- 6 3 9
Control
- 34 214 248

Total 40 217 257

> 150 days. maternally exposed

+ - Total
] o 4 1
Control T
- 2 38 40

Total 2 42 4
Pairing helps lessen the possible effect of genetic susceptibility since one is comparing groups

of exposed calves whose matches have the same BSE status. If. for exampie. we are comparing
the two (- control. +exposed) groups. then one can assume that genetic susceptibility does not
have a significant role.

Fisher's exact test vielded a p-value of .011 suggesting that the frequencies were different.
and that there is an enhanced risk of disease in animals born during a later incubation stage.

Results of the exploratory data analysis suggested evidence of a relationship between en-
hanced risk and maternal incubation stage. Hence, genetic susceptibility to feed infection
may have contributed to the increase in risk amongst exposed calves. [n order to understand
the various factors contributing to the exposed group's enhanced risk the authors build three
likelihoods for study observation which incorporate parameters related to disease transmission.
The first is a logistic regression model with BSE status as the outcome variable. The second

is a multinomial likelihood for observed disease counts within categories determined by birth

period and the third is a full survival likelihood whose terms depend on infection,onset density
3,20,

4.2 Logistic Regression Model

A logistic regression model having BSE status as a dependent variable and covariates reflecting
feed exposure and maternal exposure is a natural model that one would try given the study

observations. The authors found that feed risk varied a great deal between herds. Animals
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came from a wide range of herds with few animals per herd. making it not feasible to inciude a
fixed herd effect in the model. Hence. a random effects term was introduced where by it was
assumed that the effect due to the herd is drawn randomliy from some population. Normal in
this case. [n order to represent feed exposure as accurately as possible the authors estimated

the Pr{positive BSE pathology |herd}. The following model was explored:

logit{ Pr(Y;|Us)} = a+ Ui+ 1,;3

Y;; = BSE status for the j*® animal in the i*® pair. j = 1.2
U; = the assumed (herd dependent) random intercept effect (4.1)
for observations Yy, and Y,2, U, is assumed to be N{0.02). (4.2)
x;; = vector of covariates for j** pair member in i** observation
3 = vector of regression coefficients
a = the intercept

The covariates of interest are age at purchase (used to reflect feed exposure) and the maternal

incubation stage of dams of exposed calves.

4.3 Basic Mechanistic Likelihood Model

To test the hypotheses of increased risk amongst exposed calves being due to maternai trans-
mission or genetic susceptibility. one needs to estimate parameters that are measures of each
risk. Any model containing a genetic susceptibility parameter must also contain information
about feed risk since short of identifving a susceptibility gene. a calf’s zenetic predisposition
can only be ascertained if one has information related to the amount of tainted feed consumed
by the calf and the BSE status of its dam. Period of birth is the covariate related to feed
consumption: calves weaned in winter months can be assumed to have been exposed to more
food supplements such as MBM and calves born after the feed ban are assumed to have less
exposure to MBM.

The mechanistic model is a likelihood of count data derived from study observations.
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Matched pairs are stratified by birth period. Within each birth period pairs are split into
an exposed group and a control group. It is assumed that within a birth period the feed
exposure is more or less constant so that pairing is no longer necessary. \Vithin each group
the count of BSE positive cows is a binomial variable whose probability is expressed in terms

of the following three parameters:

7y = feed risk within birth period b
¢ = the probability that an exposed caif is maternally infected

s = the relative risk for all birth periods of a genetically susceptable cow (s > 1).

Let.
pse = the probability of an exposed birth period b calf developing the disease.and
psc = the probability of a control birth period b calf developing the disease.
Then.
pve = € + (1 — ¢}{l — exp(—37)}
= Pr{disease is maternally transmitted} +
Pr {disease is not maternally transmitted M calf is feed infected}.
and.

prc = 1 — exp(—my)

= Pr {calf is feed infected}.

Note: Since study cows are observed for seven vears it is assumed that all infections lead to

disease onset.

The joint likelihood for all counts over all birth periods is the product of the binomial

probability functions of the BSE count variables in each category. The iog likelihood is given
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below:

Z:bg logie + (1 — ){1 — exp(—sm) }| + (mee — Ipe) log;l —¢ — (1 — ¢){1 — exp(—sms)}|
b

+ Ipc log{l — exp(—m)} + (npc — Inc ) log{exp(—m»)}.

Note: The effect of maternal incubation stage cannot be examined by this model.

4.4 Full Survival Mechanistic Likelihood Model

The full survival mechanistic likelihood model assigns likelihood terms to each member of the
observered pairs based on infection/onset density (3.2). natal herd. time of birth and exposure
status. The inclusion of the density introduces more parameters related to the infection process.
The authors have three likelihood forms for exposed animals and three for controls. The forms
depend on the animals’' BSE statuses at the end of the study. The infection,;onset density has

a maternal transmission parameter and a genetic susceptibility parameter. However it does not
have a parameter related to incubation stage in the dam at the time of calving. Thus. the
significance of both parameters can be tested.

Let f(s) represent the incubation period density. Let g(a) be the likelihood of feed infection
for a cow of age a. given a constant level of feed infectivity. Let A’y (t) denote the risk of feed
infection at time ¢ in herd h and let Q(v) represent the probability that a dams’ infection could
be transferred to its calf if the dam is v time units away from disease onset. Let ¢ be the rate of
maternal transmission and s a genetic susceptibility parameter. where s = | means no genetic
susceptibility and s > 1 indicates the presence of genetic susceptibility.

Each observed pair member is assigned one of three forms for the likelihood term based on
the three possible end of study BSE statuses: onset before the end of the study. no clinical signs
of onset but positive clinical pathology, and no signs of onset. e call the three forms for the
likelihood terms A. B. and C. The three forms depend on function r. Function - depends on
the age at onset in a calf () and in the case of exposed animals it also depends on the dam’s

incubation stage (v). It is formulated under the assumption that a study calf could not be feed



infected after recruitment into the study after age ax). For exposed animals.

r(u.v)du = Pr {exposed calf is infected at birth by a dam with v years till onset
and has onset in (u.u + du}} +
Pr {exposed calf is not infected at birth 1

calf is feed infected before age a, and has onset in (u.u ~— dul}.
More precisely,
a
r(u.v) = eQv) f(u) + {1l - c‘Q(L')}/ sKp(to +ag{a) -
0

QG
exp{— / sKy(to +a')g(a)da'} f(u — a)da. where
0

ax = age at recruitment.
For control animals.
r(u)du = Pr{cow is feed infected before age ax and has onset in ‘u.u +du)}.

More precisely.

(u) =[0 ® Ki(to +a)g(a)exp{—-£ " Rx(to +a')g(a')da'} f{u — a)da.

Now. we can define the likelihood forms 4. B. and C under the assumption that feed infection

did not occur after recruitment into the study.

Adu = Pr{exposed calf is infected at birth and has onset in {(u. u — duj} =
Pr{exposed calf is not infected at birth N
calf is feed infected before age ax and has onset in (u.u + dui}

Bdu = Pr{cow has onset at age >a. jonset age is >ax}

Cdu = Pr{cow does not have onset between ages ax and a. |

onset age is >ax}
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where a; = the age of recruitment into the study. and a. = the age at censoring.

More precisely.

PR ; imal wi h = '
A= Ty . for an animal with onset at age u where a, = age at recruitment.
1= o T(u)du
18
Jao T(u)du . . o . .
B = = . for an animal without onset of clinical signs by age of censoring,

T l- Jo* T(u)du
but with positive clinical pathology where a. is age at censoring and 183 is a cow’s life span.
1— f2 r(u)du
1 — fo* m(u)du

C= . for an animal without signs of clinical onset by age of censoring.

As in Chapter 3. function f(s) is the incubation density and function g(a) is the age at
infection density. Both functions were not fitted to Maternal cohort study data. rather existing
estimated parametric forms similar to those estimated in Anderson et al.i1996) were used. The
denominators in terms A. B and C represent the probability that a cow has onset after age of
recruitment. Since almost all cases of BSE are in cows above the age of two. and recruitment
age was for the most part less than two. the denominator is very close to one and was assumed
to be equal to one by the authors. The likelihood is constructed as a product of tems of type
A.B.C.

The full likelihood model was compared via likelihood ratio tests to simpler models in order
to test model assumptions. The following simpler models were explored:

eThe incubation period distribution was eliminated resulting in a the likelihood term equal
to the probability that BSE pathology is observed by age 7.

e Feed risk function Ku(t) was assumed to be constant.

e The age susceptibility and absorption function g(a) was eliminated. thus in this model
feed infection was assumed not to depend on age

The results obtained from the optimization of the logistic regression. mechanistic and full

survival mechanistic models are summarized in the next section.



4.5 Study Results

4.5.1 Logistic Regression

The following fixed covariates were taken into consideration in the logistic regression model:

e maternal exposure to BSE
e age al recruitment
e birth cohort

e study farm

® sex.

A covariate allowing for incubation stage effect was added. The covariate was set equal
to | if the dam’s disease onset occurred X days before calving. The model was fitted for
X = 100.110.....170 days and for X = oo (maternal effect throughout the incubation period).
The maternal effect was most significant within 130 days of birth. The fact that incubation

stage is significant suggests the presence of maternal transmission.

4.5.2 Basic Mechanistic Likelihood Model

Model resuits were sensitive to the number of birth classes used to stratifv pairs and to the
birth cut offs determining classes. The case of 2 birth periods: before and after July 18. 1988,
the date of the MBM feed ban. vielded a model favouring A4 : ¢ = 0 and rejecting Hg : s = 1.
This suggests no maternal transmission and the existence of genetic susceptibility. However.
when the cut off date was August 18. 1988 both H4 and Hpg were accepted. \When the data
were divided into 10 birth classes the composite null hypothesis H4 :c =0 and Hg : 5 = 1 was

rejected.

The authors conclude that the grouping of pairs caused a loss of statistical power and that

this simple model was insufficient.



4.5.3 Full Survival Mechanistic Likelihood Model

Models were fitted under the following assumptions:
[. Maternal transmission and no genetic susceptibility (s = 1).
II. Full duration maternal transmission and genetic susceptibility.
I[II. Genetic susceptibility only

V. Full duration maternal only.

All five model were fitted using two forms I and I for g(a) and f(s). Form I consists of the
combination: mechanistically derived incubation period distribution and an empirically derived
feed /susceptibility distribution (forms C and 7 of chapter 3. section 7) Form C consists of the
combination: mechanistically derived incubation period distribution and a gamma distributed
feed /susceptibility (forms C and 3). The models containing form [ had a maternal only model
that was significantly better than the other two However. the models containing form /7 had
the combination maternal and agenetic model as the best fit. Parameter ¢ was estimated at
.099 by the first and at .062 by the second. The second model estimated s at 2.39.

The results suggest that both a full maternal model and a combination of maternal and

genetic are most likely.



Chapter 5

Maternal Transmission - Analysis of

Dam /Calf pairs of BSE Cases

5.1 Introduction

Results from the maternal cohort paired study (discussed in Chapter 1} revealed the likely
presence of a maternal transmission risk whose magnitude depends on the incubation stage of
the dam at the time of calving. To confirm the paired study results Donnelly et al. (1997c¢).
analyzed dam/calf data available in the large database of confirmed BSE cases initiated in 1986
by Britain's Central Veterinary Laboratory. The authors concentrated on cases born after the
July 1988 Meat and Bone Meal ( MBI feed ban. Information related to the BABs'  born after
ban BSE cases: dams. dams’ incubation stage during calving. dams’ herd and holding were
recorded in most cases. There were approximately 30.000 BABs with disease onset before June
1996. the time of data collection. A dam of a BAB is labeled: + . if the dam had onset within
48 months of calving. The authors used information from the CVL database to determine
if a dam’s incubation stage influences disease transmission to its calf. and if feed risk may be
enhanced bv genetic susceptibility. Like in the paired cohort study feed infection is still a
confounding factor as the use of meat and bone meal decreased but did not disappear after the

feed ban.

The authors emploved two strategies 1o achieve their results. Firstly. quantities estimating



the expected number of BABs born to dams in various disease incubation stages were computed
under the null hypothesis that disease status in a dam is not related to disease status in its
calf and the expected numbers were compared to the observed cases. Second a likelihood
model similar to the mechanistic model in the paired cohort study {Chapter 4. section 4.3}
was developed. However. the dependent variable was not disease outcome of the calf given
incubation stage of the dam. rather it was the incubation stage of the dam given future disease
onset in the calf. Thus Bayes Rule was used to calculate the reversed conditional probabilities.
The model is an improvement on the mechanistic model as it categorizes BABs by cohort and
holding. An observed clustering of cases within holdings (Ferguson et al.. 1997b) suggests the
need to estirnate feed risk within holding as well as within cohort. The mechanistic model
of Chapter 4 was ineffective since feed risk was caiculated within cohort. The model reviewed
in this chapter estimates feed risk within holding and cohort thus taking into account the
clustering of cases. This chapter's model incorporates the covariate: maternal incubation
period of the dam at the time of calving, whose significance with respect to the calf’s future
disease status would imply the existence of maternal transmission. The authors started with
a simple calculation of the expected number of BABs born at various incubation stages in the

dam under the null hypothesis that incubation stage does not influence disease transmission.

5.2 Calculation of expected number of BABs born during var-

ious incubation stages in the dam

The authors divide the maternal incubation period into seven stages. k = 1.2.....6.-1. where
k = —1 indicates lack of disease in a calf's dam. Expected numbers of BABs corresponding
to the seven stages are estimated within birth cohort and holding. For the remainder of this

section let us imagine. for the sake of clarity. that there is only one holding and one cohort.



Let.

D = the number of dams giving birth to calves in “the cohort™ (Each
birth cohort is one vear in the length, and dams give birth to approximately one
calf a vear. so D is also the size of the cohort.|
D = the number of dams in incubation stage k at time of calving.
Or = the number of observed BABs with +k dams (i.e. dams who were in incubation
stage k. at time of calving; Ox < Dy .)

B = the number of BABs in the given holding/birth cohort.

Under the null hypothesis of independence the occurrence / non occurrence of BSE occurring
in either dams or calves. the expected value of Ox depends on the proportion of D] dams in

the dam population:

Prob(+k dam N =+ calf) = Prob(+k dam)- Prob(+ calf), which is estimated by
D B

DD
Multiplying both sides by D we have:

B
E(Ox) = D{ -

The estimated expected value of O, under independence is compared with the observed value

ratio

B = -2
E(Ox)

A ratio significantly greater than one indicates a greater risk of disease amongst calves born to
dams in incubation stage & than if there were independence. \When several holdings and cohorts
are considered the expected values of Oy are computed within holding;cohort categories and

summed. Bootstrap confidence intervals for R did show significantly enhancec risks armongst
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calves born 10 dams in late incubation stages. Only a likelihood approach would vield estimates
of parameters related to disease transmission. The next section expiains how likelihood terms

for BABs were derived.

5.3 A likelihood model used to assess the relative contributions

of maternal transmission and genetic susceptibility.

The great number of observations extracted from the CVL data base make a full likelihood
approach. such as the one employed in the maternal paired cohort study, computationally
intensive. Categorizing observations is more practical given the size of the data set. A model
similar to the mechanistic model of the paired cohort study is developed and improved upon
by estimating the feed hazard within holding as well as birth cohort and by incorporating a
parameter that represents the dam’s incubation stage at the time of calving. If feed hazard
varies within holding and cohort, then a study of the corresponding case levels amongst exposed
_and control calves would give insight to the presence of heightened genetic feed susceptibility
amongst exposed calves. As in the mechanistic model a cow survival distribution is not employed
to explain the relatively few numbers of cases compared with the numbers of infections since
estimation of separate distributions within each holding would be necessary. Instead a factor.
a. representing the reciprocal of the probability that an infected animal will be observed to
become a case. is introduced.

Feed hazard is calculated based on the total number of cases within a holding, cohort cat-
egory. Since almost all cases occur amongst BABs whose dams are free of disease. BABs that
may have been maternally infected were not removed. Let (failure time) random variable T
represent the time of infection. We assume that in the absence of slaughtering practices the
life span of a cow is 18 vears so that 0 < T < 18. Let A;j(t) = the infection hazard in the i*®

holding within the j** cohort.. Then the cumulative feed hazard is given by

18
Wiy = / Aj(t)dt
0



and the failure time survival function in the i** holding. j** cohort is
Si(t) = e Jo ks

which is equal to the probability of not being feed infected by age t for a cow that has not been
maternally exposed. The probability of being feed infected within the cow’s life time can be
estimated from the number of cases and the probability that an infected cow lives to experience
onset. If y;; is the probability of feed infection in holding :. cohort j, then.

Jyi; = Pr{disease onset |holding i. cohort j} =

where. By, ~c, = number of BABs in holding :. within cohort j
Dy, ~c, = size of i*® holding within the j**® cohort.

3 = the probability that an infected cow lives to experience onset.

The parameter J is estimated separately using the backcalculation model in Ferguson et al.

(1997b). Let 3 denote the estimate. Now

- 1 By, - . . .
bi; = BTG o Pr{disease infection {holding i. cohort j}.
d DH‘:-CJ

We use y,, to estimate the cumulative feed hazard in the absence of maternal exposure. by

noting that
18
Jyi; =1 - e~ Jo Aulads
This leads to the estimate of the cumulative feed hazard

i8 _
Ty = A Aj(s)ds =2 —log(l — Jgi;) = 5;.

Maternal transmission probabilities. estimated within each of six incubation stages. are



represented by:

k. A=1.....6 and - 1.

where k£ = —1 means that the dam did not experience disease onset.

As in the mechanistic model the probabilities of infection within the &** incubation stage for

herd i and cohort j are given by:

p;; = Pr{infection in herd . cobort j |K = ~1}
= 1-S(18) =1 —e ™.
Pi:, = Pr{infection in herd . cohort j {K = k}
= Pr{maternal infection} + Pr{feed infection N not maternally infected}

= ¢x + (1 —ex)(1 —e™ "™ 1),

The parameter s is the susceptibility factor where. s > | implies greater susceptibility to disease.
" Unlike the mechanistic model of Chapter 4 the observed random variable is not disease status
of calf. Rather it is the dam’s incubation stage given the calf’s future disease onset. Bayes’
Rule is used to invert the above probabilities to conditional probabilities corresponding to the
observed data. I[n addition one needs survival probabilities for infected cows born of infected
dams and born of non-infected dams. For the sake of simplicity we will drop the {j subscripts
and assume that all calculations of probabilities refer to the i** holding and the j** cohort.

Let.

s7 = the probability that an infected cow born of an infected dam survives until disease onset.
s~ = the probability that an infected cow born of a non-infected dam survives until disease onset.
D = the size of the holding/cohort.
Dy = the number of + k dams of calves in the holding/cohort who were in incubation sage &
at the time of calving,

D~ = the number of dams of the holding/cohort who were not infected at the time of calving.



Using Baves™ Rule

Pr{K = k |future onset in calf} =
s* Pr{infection |K =k} - Pr{K =k}
s- Pr{infection N (K = —1)}+s* Pr{infection N (K = 1)}+...+s* Pr{infection N (K = 6)}

‘D'
<t
TPy B

™

- -

=D + D7 o D

s7p T-ra"p{—D‘-*...fS"’pg—Dﬁ-
_ s*pr Di

“p-D— - g+ 6 + N+

sTp~D~ +s* 3, Py D}

VK # -1,

. . - s*pi DY
Pr{K = —1 |future onset in calf} =1 — E T S
k=1 s p D™ +s Zk:lpk Dk

The joint likelihood of all observations within a cohort/holding depends on the ordering of
the observations. There are a finite number of dams in each incubation stage and for the rt*
cow Pr{ K = k} is dependent on the dams’ incubation stages of calves L.....r — L.

Let K, be the random variable that assigns the dam’s incubation stage at calving to the
) r*? cow. The likelihood of all observations in the i** holding and j** cohort is a product of

conditional probabilities summed over all possible orderings:

size of
cohort/holding

Ly= Y [T <(Ke=kelkr,oikey)

all orderings r=1

Maximum likelihood estimates for parameters s and ex. A = —1.1.....6. are obtained by maxi-

mizing

L = Z L;'J.
[ ]

The results of the study confirm the presence of an enhanced risk of disease amongst calves
born of dams that had the disease or were in a late incubation stage. Estimates of ¢; increased
as k decreased (closer to onset), suggesting direct maternal transmission. The hypothesis
Hop : ¢ = € Yk was rejected and the hypothesis Hp : ¢, = 0 k = 1,2.....6 and —1 was also

rejected. Both suggest that BSE status of a calf is influenced by the incubation stage of its



dam at the time of calving. The maximum likelihood estimate of parameter s was <1. which
is not biologically plausible. This may have occurred since calves born to dams in veryv early
incubation stages had a low observed cases over expected cases ratio. One cannot conclude
that s # 1 without information about the genotypes of dams and their calves.

The analysis of dam/calf pairs from the CVL database served as a confirmation of the
enhanced risk of exposed calves and of the dependence of risk on the incubation stage of the
dam observed during the maternal cohort study. The model does not demonstrate evidence of
enhanced genetic susceptibility. The authors conclude that without genotype data one cannot

exclude the possibility of a genetic component.



Conclusion 15 The papers reviewed are intricate examples of the modeling of disease trans-
mission dynamics. Knowledge gatned through observation of the BSE ep:demic and experimen-
tation with spongiform diseases together with survival analysis and backcalculation techniques
form the basis of the BSE infection/onset density (3.2) and provide a beautiful cxample of nat-
ural sciences and mathematical techniques working together. The infectionsonset density is
applied to estimate infection levels in past and present populations and to predict future case
numbers. The density is used once more in the analysis of data from the maternal matched-pair
cohort study addressing the question of the eristence of maternal transmission of infection from
a dam to its calf.

The BSE epidemic continues to be a major concern of European health officials, the British
meat industry and many others. An apparent cluster of four or possibly five cases in the
Village of Queniborough in Leicestershire, England was recently discovered and is now being
tnvestigated. In the past year (1999) there was a sharp rise in the number of cases of new
variant CJD (25 cases) bringing the total number of cases up to 75. In addition a cow born
on August 25th. 1996 . twenty five days after further strict controls related to the use of meat
" and bone meal was enforced. lived to subsequently develop BSE. This suggests a maternal
transmission infection route which was shown to be prooable in the papers reviewed in this
thesis. There is now growing concern that the disease may appear in the U'nited States. In
the state of Wisconsin the deer and elk populations are experiencing a serious epidemic where
an estimated fifteen percent have chronic wasting disease (CWD). the deer form of BSE. The
disease is believed to have been spread in gaming farms which use MBJM fred supplements.

There ts stdl a great deal left to learn adout prion diseases. The cristence of horizontal
BSE transmission has not been confirmed. \laternal transmission was statistically shoun to
be probable but the mechanics of transmission is not understood. The magnitude of the future
threat to humans of CJD infections caused by past tainted meat consumption is of course the
major concern of all involved. One hopes that continued research and careful tracking of cases

will lead to a better understanding of this risk.

(4]
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