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Abstract

ln this thesis the statistical analyses that were used to study the by now well known
bovine spongiform encephalopathy (BSE) epidemic are reviewed. Central to the analysis
is a backcalculation survival model whose development is discussed in detail. Various
techniques applied to examining the likelihood of a maternai infection route (in addition
to the main feed infection route) are discussed. It is found that maternai transmission is
likely to occur at low rates. Measures taken to eliminate meat and bone meal feed
supplements. the main infection source. have essentially eliminated aSE. However. the
magnitude of the latent effect of tainted meat on humans in the tbrm of the linked new
variant Creutzfeldt-Jacob disease is yet to he assessed.
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Résumé

L'objectifde cette thèse est d'examiner les méthodes statistiques utilisées dans traitement
et l'analyse des données provenant de l'épidémie de l'encéphalopathie spongiforme
bovine (ESB). Ces analyses sont fonnées à partir d'un modèle de survie employant une
technique de retrocalcule~dont le développement est scruté. Nous examinons aussi
plusieurs estimés du taux de transmission mère-enfant de l'ESB. Les résultats démontrent
qu'en général~ ce taux est faible. Les precautions visant à éliminer les suppléments
nutritifs dans l'alimentation pour bétail (la source principale d'infection)~ ont
pratiquement éliminé le problème de l'ESB. Toutefois~ la gravité de l'effet latent des
viandes contaminées chez les humains, qui pourrait éventuellement se manifester par la
maladie de Creutzfeldt-Jacob~ reste à être évaluée.
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Chapter 1

Introduction

1.1 Bovine Spongiform Encephalopathy

The disease affecting cattle tenned bovine spongiform encephalopathy (BSEJ was first diagnosed

in Britain in ='iovember 1986. As of July 2000 there have been 1;6,922 occurrences in Great

Britain. Affiicted cattle show symptoms of increased neryousness. lack of coordination. and

weakness leading ta death approximately 6-12 months aiter the onset of symptoms.

The infectious agents are believed to be "prions". proteins that are chemically close to the

healthy \'ariety produced. in nerve tissue. It is widely accepted that BS E prions introduced

:orally or through injection) into a cow's body alter healthy proteins producing more prions.

thus causing a chain reaction. The subsequent build-up of prions in the ner\"(.~ tissue brings on

disease symptoms after an average lag of -1-5 years 1. Anderson et aL. 1990. Di:5ea:se diagnosis

is based on obsen'ation of s~'rnptoms and autopsy brain tissue. Prion ac.:cumulation in brain

tissue giyes the brain a sponge-like r..ppearance. hence ~he term "spongiform". These protein

based infectious agents differ from \'iruses and bacteria in that they are not .. alive". That

is they do not contain genetic material: high temperatures and radiation do not affect their

potency. Other well-known diseases related. to prions are scrapie in sheep. TSE in rodents .

CJD (Creutzfeldt-Jakob Disease', and Kuru in humans. Stanley Prusiner's c:ontro\'ersial work

Prusiner. 1995) 100 to the discovery of the infectious proteins which he cained ··prions". In

January 1998 Prusiner won the Xobel pme for his discovery.

The main source of BSE is meat and bane meal feed tainted with BSE infected cow tissue
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and 5crapie infected sheep tissue. The co\\' epidemic received. rnuch rneàia attention in 1996

after [\\"0 patients in England were diagnosed. with a new variant of CJD and the possibility was

raise<! that their disease was caused. by the consumption of BSE tainted meal. ~ledical stuàies

have conf1rmed that the diseases are causally linked (Bruce et al.. 1997:.

1.2 The BSE epidemic in Great Bri:ain

The quasi-carnivorous practice of feed.ing cattle meal and bone rneal (~lB:\I) is an old one. [n

Europe and ~orth America (before various countries imposed bans 1 ~lB~1 formed a substantial

part of the diet of cows. Rendering plants convert animal remains inta feed anà oils. recycling

carcasses whose disposai would othef\\'ise be problematic. ln Britain over l4% of ~IB:\1 is

recyc1ed sheep. It is believed that scrapie infected nen'e tissue broke the species barrier sparking

the BSE epidemic. Large quantities of ~IB~l were feci ta British caule in the early SO·s. Around

this time certain flammable fat separhting chemicals were eliminated from the rendering process

because of explosions at sorne plants. [t is believed that these flanunable substances may have

deacti\'ated the infectious proteins and that their removal resulted in prions entering the food

chain..-\lthough the disease was not recognized until 1986. infection may ha\'e o<~curred much

earlier since BSE is known ta have a long incubation period l-l-S years on the average ~ Anderson

et al.. 1996) 1. and isolated preliminary cases may have gone undiagnosOO. In :\overnber of 1986

the clinical and pathological investigation of a diseased cow led ta the identification of B5E.

Epidemiological studies in 1988 and 1989 re\'ealed that ~IB~l from infected caule anà sheep was

the most likely cause of the persistent and frequent outbreak of the dïsease in C;reat Britaiu":)

caule. In June of 1988 the disease was made notifiable ta the C~ntral \'eterinar~' Laboratory.

and a database of confirmed cases was maintained by them. [n July 1988 au ~IB~l ban was

impûsed. However. the ban was not fully effecti\'e until se\'eral years later. On .\ugust 1::)t

of 1996 a stricter more effective ban was initiated. However. at least one co\\" barn after the

.-\ugust 1. 1966 lived to experience the disease.

Deaths from the hwnan form of BSE. new variant CJD. appear to be increasing. So far

this year 1-1 Britons have died and 5 others are known ta be dying from the disease. Since iL

first appeared in humans in 1996. a total of -:-4 people in Britain. 2 in France and1 in Ireland
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have contracted the disease.

1.3 Statistical Issues

The suspected and recently confirmed link between B5E and CJD has sparked intense study

of the dynamics of the B5E epidemic and its implications to public health. Of great concern

is the perpetuation of the cow disease. and the possibility of a latent hazard ta hwnans due

to past tainted meat consumption. Addressing these concerns scientists ha\'e focused on the

study of BSE transmission dynamics and estimates of infection rates in past and future cow

cohorts. Infection levels and information concerning the infecliousness of a cow at various

incubation stages are need.ed ta estimate the magnitude of risk ta cows anà to humans. A cow's

infection hazard has been observed to depend on both ils birth cahort 1(iue to changing feed

practicesl and age. Fee<! supplement consumption and possibly protein absorption \'ary with

age. creating an age dependency. Data use<! ta estimate rates of infection are in terms of rates

of disease ooset. Infection rates are related ta onset rates via an incubation period density and

the probability of cow survival tiU onset. Hence. the incubation period distribution and the

cow survival distribution have an important raIe in the estimation of infection levels. Disease

perpetuation depends on the existence of altemate routes of iIÛectian. If routes other than feed

exist. then the ~IB~I ban wiU not eradicate the disease. In particular the maternaI foute. (dam

infects fetus 1. has been investigated and the horizontal route. (cow to cow 1. has not yet been

ruled out.

The main tool used to address these concerns was a :sur\"i\"ai moclel de\"eloped by Anderson

et al.. : 1996) and enhanced by Ferguson et al.. (1997b) and that takes into account cohan

membership. age at infection and age at disease onset. The modei contains an age and time

dependent infection hazard. The age at infection and age at onset are related \·ia a paramt'­

terized incubation period distribution. The feed and maternaI infection routes are presented a:i

cornpeting risks. A likeIihood for the onset data is formulated in terms of the survivai model

and the cow sunival distribution. :'.Iaximum likelihood techniques are used to estimate madei

parameters. The model. through backcalculation is applied ta estimate past and future i~­

fection. and numbers of future cases. It is also applied ta the analysis t)f data arising from

5
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a paired "maternaI cahon" 5tudy designed to investigate the maternaI transmission assump­

tion \ Donnelly et al.. :\laternal Cohort Study. 1997b:. :,Donnelly el al. .-\nalysis of Dam/ Calf

pairs. 1997cl . ln the materna! cohort study animais were matched accordin~ ta feed related

covariates: a pair consisted of an .. exposed." and a .. control" animal. The exposed cow's dam

developed B5E near the time of the cow's birth. Since the study animals were expo:;ed ta sorne

~IB~1 feed (the paired nature of the study partially controlled. for trus confounding factor}, the

question arises as to whether the observed heightened risk of the exposed group was due to

inherited genetic susceptibility and not to maternal transmission. Various genetic models have

been formulated but lack of data has made it impossible to confinn the existence of varying

susœptibility classes. Sa far aIl humans who have contracted new variant C JO have possessed

a particular genetic trait that predisposed them to the disease. It is estimated that at least

-10 percent of the British population shares that trait which involv€'s a variation of the prion

protien.

1.4 General Outline

This thesis presents the wark of a group of British 5cientists who analyzed B5E related data

and presented their results in a series of papers.

Chapter :2 explains the main teclmique used in the developrnent of Ferguson et al.·s l199ib l

BSE sW'vival model: the backcalculation technique. Discrete and continuons examples ùf

backcalculation as well as \'ariations ;n the technique used. ta model the B5E onset density are

presented \\;th increasing complexity. with illumination of the ideas being the ~oal.

Chapter :3 develops the backcaIcwation B5E onset 5urYÎ\-al mode!. This chapter explains

and elaborates the methods in Ferguson et a1..( 199ïbJ.

Chapter -t presents rnethods used by Dozmellyet al. (199ibl to anaIyze ubsen"ations from

the maternaI matched-pair cohort study. The aim of the sludy was ta determine the Iikelihood

of a B5E vertical (dam ta caIn infection route. Severallikelihood methods are de'"elopeci. The

main likelihood relies on the survÎ\-al model discussed in Chapter 3.

Cbapter 5 is based on a paper by Donnelly et al. (199ic: that continues the discussion of

the existence of a vertical B5E infection route. Data from the main data base of B5E cases is

6
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analyzed to confirm results of the maternaI rnatched-pair cohort study. Tht' \Hltcome \'ariable

is not BSE status !;iven dam's 5tatus \as in the maternai cohon ~tud~·:. rather i: is B5E :::;tatus

ùf the dam of a diseased calf. .\ Iikelihood forro <:ontainin~ parameters reialt~d to maternaI

transmission is optimized and resulting estimates confirm those of the materllal-cohort study.

The purpase of trus thesis is ta take the reader through the "statistic::; ~tory" of the B5E

epidemic.

-j
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Chapter 2

Backcalculation

The technique of backcalculaton was developed by Brookmeyer t 19881 to übtain a lower bounà

on the nwnber of future AlDS ca'5eS by estimaling present levels of infection. Knowiedge oi

the AIDS virus incubation distribution is used to -backcalculate" past infection rates based

on present disease levels. A variation of this technique \Ferguson et aL1997b) is applied ta

the problem of estimating BSE infection levels. Like AIDS. BSE has a long incubation periode

but. lacking a test for BSE infectivity and having recognized the ùisease fairl.:; reœntIy. the

incubation period distribution is not well known. Early statistical analyse~ l)f the AIDS epidemic

also encoWltered the latter problem. 19n1ike AIDS most infected cows do not survl\'e till disease

onset as they are, in most cases, slaughtered before. The backcalculatioIl adaptation to BSE

im'oives assumin~ a parametric [orm for the incubation period distribution wnoSt:' pararnetE"~rs

are l':5timated along with past infection rat~ and incorporates the CO\\' ..;nr;i\"ai distribution

into the model. ta explain disease onset data, In trus chapter we e~1>lain the hackcalculation

technique applied to any disease \\ith a long incubation period and pre:5ent ~e\'eral E'xarnples

that build in complexity.

2.1 The Basics of Backcalculation

.-\ disease with a long incubation period. has two time dependent randonl \'ariabl~ of interest:

time of infection and time of disease onsee Let T = time of infection and ~. = incubation

period 1 then. T ~ S = time of disease onset! ..-\ssurne that T and 5 are imiependent, That is .

s



• assume that the length of the incubation period is independent of time of infection. This is a

reasonable ~sumption if en\'ironmental conàitions atfecting the prog.ress ur' tlIt;' c'5ease rernain

constant. Suppose the density of the incubation period. f("~). i5 known and the density of the

lime of infection. I(t). i5 unknown. Funherrnore. assuming chat 0 S t St •. ·....·nere t. is the

present time.

k(t. s) = I(t)f(s). 0 ~ t ~ t•. 0 ~ .., < 00

Îs the joint density of time of infection. and incubation period.

[f U = time of onset. then. C = T ...:... S. The joint density oi T . time of infection 1 and ["

time of disease onset 1 is then gi\'en by:

h(t.u) = [(t)f(u-t). O~t~t•. t~u<x.

[f the lime of infection density. I(t). i5 assumed to belong to a paranletric family of distri­

butions indexed by the pararneter vector O. then the 'marginall density of r' :s given by the

following backcalctÙation fonntÙa or convolution integral:

or

if T and Sare dî5crete.

rmin(u.t. )

g(u) = Jo let: 8)f(u - t)dt

tIllD( !l.t. )

g~ li) = L 1(t: ()) f (IL - t)

[=0

(2.1:

.) .)

•

:'\ow. often as i5 the case with both AIDS and BSE. given the quantity of data. il is not

practical to include every obser\"ed onset date in the likelihood as it would bp highly computa-

tionally intensi\'E:' to fit. .-\. simplified approach is to categorize onset time~ \\"~thin contiguou5

time inten-als and work instead \\;th count data.

Let 0 < t 1 < ... < tk = t. be a partition of inten-al ~O. t.J. DE'fine count \"ariables X ..

9
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t=l. .... k ..... l.

.\t = the number of observed. onset times in time interval {tl-l. Ct). and

.\k+l = the number of future cases restÙting from an infection rime in interval ~O. t.;.

Let .\" = the total number of future ca:;es resulting from an infection in time interval [O. t.j.

k+l

.V = L.\z.
t=l

If .V is unknown then one of the airos of backcalculation is lo estimate ~\". ,Backcalculation was

ùriginally applied. to estimate the nwnber of AIDs infections obtained within a ~et time interval.

\\'e will see in Cbapter 3. section 3.6 that the parameter .\". in the BSE likelihood has a different

meaning. representing the nurnber of caule in a given cohort and is a known quantity.1 The

tirst challenge is to build a likelihood based on count observations. the llnknown parameters

in the onset density g(u) and parameter ~V (the number of infections occuring; in fixed interval

[O. t.l). Brookmeyer's backcalculation technique achieves this. \Ve di\-ide this "challenge" into

two steps: tirst. in the section that foilows. we discuss likelihoods of inten'al connt observations

based on parametric densities. and then in section 2.3 count observation likelihoods based on

parametric densities arising from t2.1) and (2.2). the backcalculation densities and probability

functions respectively.

2.2 Density estimation if the presence of complete and incom­

piete interval count data

Let L" repre;ent any random \'ariable with density g(u: 0). lLO ~ lL ~ IL •• where () is an unknown

parameter. Our object i5 to estimate parameter () from observed data. Let llO < lLi < .. , <

tLk = lL. be a partition of [uo. ud. Suppose rather than \'alues of the random \'ariable [; being

obsen"ed our obseryations are caunts of the farm: Il. ." . . .rk where rI = the llUIuber of sanlple

C \'alues occurring in lUi-l. utj. i = 1. .... k .. To obtain a ma.ximum iikelihood t?stimate of 0

one must build a likelihood for the caunt obsen·ations. The likelihood i~ basro on f( u: 0) and

10
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will therefore incorporate d_ Count randoIn \-ariable::; XI . ....•\" have a nlultinunüal distribution

'.\-ith parameters: Pl. _. - . p;-. where Pt depends on 8 :

1'.(0) = 1.":, 9lu:O)du. 1 = 1. .... 1.:•

.\ likelihood for our data i:5 of the [orro:

.V! x x
L(O) = , ,PI(O) 1. - - Pio:(O) le.

Il .. ··Ik·

~ 2.-1)

k-I

LL'here. Pk(O) = l - L Pkl8 ) and .V = -L + ... + -Lk·

1=1

The function [(0) differs from the log likelihood log L(O) by a constant. .-\:5 i:5 :-itandard practice

function l(O) is maximizeà with respect to 0 to obtain the maximtuIl iike!ihuucÏ pstimator. O.

leading to the e::;timated density of L"

If ho\\,p\-er. ùur data are -:ncompiete". that i~ if the l)bserYation .r;. i~ 11lÜGlùwn. then S =
..fI - ... - r;.;. may be regarde<! as an unknown parameter and net"tb to he t'~tiInaled together

with 8. Introducing the new paralneter .V. define.

k-l

[(O..V) = log.Y! -log(.\" - 2:Xt)! +,r11ogpI(0) + .. - +.I~: lûgPklO). ;2.5)
t=l

~ ( cr fr L (0 ")' If \' . \- ,k-1The nlnction lO. .Y) diuers om log ..\ by a Knawn constant. . ana. - .:-1=1 I t are

assumed ta be large the iog likelihood is treated as a continuous functian 1)[ .\' and d(1ag: .Y!)

b . ed b l \" (S h 19-"'· Th l' I --l'hood . i:l(t1_S) U -may e approXlmat y og. anat anan. 1_:. e lr.r- l equatlan~ ~ = . ana

JI':.,:..... )= 0 rnay then be :501vOO simultaneously to yield the ~ILE'5 .Y and () .

11
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ln the example below a discrete àensity is estimateà given a complete ~et oi connt obserya­

tions and then again giyen incomplete count data.

Exarnple 1 Denstty estzmation l.S the pre.StnCf; of complete and incompldt CÙll.nt data. Lft.

{

O, 0 < u < l

g{ u: ft) = l - f). 1:5 IL ~:2 . where () lS UnknO'lL71.

O. t:::lse'lL'here
S'uppose we have two count observations Xl and X2. Irh(;TE. Il = thf Il umber of samplé

observations of the random variable [/ in ro. 1). l'!. = the numoeT of samplt- observations in

) .~1 and X3 = the number of sample observations in (~' 2) . Suppose one ub-'lerz·ts: Il = 10.

X"l = 8. and I3 ='~ Observations Il . .I2.and.r3 havE. a multinomial likélihùvd ll.·ith parameters

Pl. P2· and .Y lL'hen .Y = Xl -r X2 + X3 = 23 . Parameters Pl and P'! can Or: t .rprc."sfd in terms

ofe through the. dtnsity f(u:O) :

Pl(O) =1l

glu: O)du = 0

J
~ l

P2(9) == • g(u:(I)du = :)(1 - 8).
1 -

Thus f) i.s thé only unknown parnmeter. The log likE.lihood is (UP to a c071.sla,-z!) t quai to:

l
l( (}) = 10 log 8 + (23 - 10) log :) (l - B)

Diff~ Tèntzatmg 1 tClth T'fspecl to 0 and sttting tht dtT~rati1.·t tqual ta :ou 1I'f oh!arll thf" ma.nmllln

likdihood t5t :mate5:

dl _ 10 13 _ 0
dO - 0" - l - 8 - .

. 10
()= -.

23

If I3 15 unknO'!L71. the log like.lihood contain.s thé additional unknou:n parnm~ttr .V:

[((J • •Y) = log _y! - logln - le)! + logO ~ S log ~Iî - B) + (.Y - 18) lÜ2; ~d - 0)\ 2\ -:2'

= log .Y! - log(.V - 18)! + 10 log (1 -'- l-Y - 10) log ~ (1 - 0),

12



•

•

Diffu"fntiating u"lth respect to Sand 0 (using the approximacl.On d(logX!! == /ùqX) one obtaws

al 10 \' ( -1) .- = - .... ( - 10) -- anaao f). l - f)

:~ = log ~(l - 0) + log.V - log(.V - 18).

Se.tting the two equations equal to zero and solL'ing simuitaneo1lSly yields tht. rnaximnm likelihood

~stimates:

. 5
(} = - and.V = 26.

13

2.3 Backcalculation examples with a known incubation period

density.

The technique of backcalculation has two basic ingredients: the backcalculation \t.'Onvolution)

formula (2.1; and the inter\"al data methods of section 2.2. In the example::s that follow the two

ingredients are combineà yielding estimates of disease anset densities and f'llure disease levels

starting \\;th the simplest possible case: a disease contracted at one point in lime.

Example 2 Suppose. a disw.se is contrncted al one point in lime. t = IL b.'l :;omt: of a group

df tl-pOStd inàieiduals. and that tht. diséase has Q A.ïlOU-n rncuoation ptrwd ...; :> li. lCith dr:.nsztll

f(8). for 0 ~.s < =o. Then thé infection densily. l(l). for T = limE. of Ulftction. :s tht; trirzai

one:

{

1. t = 0
lCt) =

O. elseu:here.

Csing backcalculation formula (2.2) the. onstt timE density. y(u). vf [. =fimt: of diSf.Q.St onset

.LS

g(u) = L l(t)f(u - t) = l(O)fCu - 0) = feu).
t~u

13
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In this case the time of onset den.süy lS the same as the incuiJation pt "od dcllSléJ.;. and i.s

theTEfore h.'7WLL'11.. tt"e are mte:rested in tstimating .V. tht. numbt:r nf caseS rF..'i'ILlliflY from infection

at lime t = O. If we have at Lt;a.st one cou.nt observation: Il = the numiu;.r vf dl.'it::Q.Se occurrenCtS

ln [O. Til. then we can estimate .V. the nu.mber of diséase OCCUrrEnces in. lO. 00) vy form.ing a

binomial like.lihood for observatio n .r 1 involving the unhlOum parame tt. r .V. The Likdihood is:

where p = !oTt f(u)du is J.:nown.

The Log likeLihood. up to a c:onstant. is given by:

l(~V) = log .N! - log(.V - .rI)! + Il logp + (aV - .rI) log( 1 - p}.

The derivative u.rith respect to ~V (obtained u.sing the cc. ntinuit'lj approximatzon of log .V) is:

~~ ;:::::; log aV - log(aV - Id + log( l - .0).

8etting the above to :ero. and solving for ~V we obtain the J[LE: ."; = ~O' •

\\ae continue with Son example of a disease contracted at two points in time. ll1e dis{:n'~E'

infection density has one unknown parameter representing the weight al one of the ~\\"o points in

its domain. The onset density i5 a mixture of the infection density and thp (known ) incubation

density. Backcalculation yields estirnates of the infection density's unknown parameter and of

aV. the nurnber of individuals infected at the twa points.

EXaJ1lple 3 Suppose. a diseasf is contrncte.d at two points in limE by a yro'up of trpost.d indi­

dduals. and the. disease has a A:notL7t incubation period density f(.s). Tht. lI1ffctioll density I(t)

14
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is gzve.n by :

The time of onstt de.nsity gtu). calculated u.sing backcalculation fonnula (2. .2 J. iL'lU:'TE U = time

of disease onset. is

{

Of(u). u S 1
g(u) =

Of(u) + (1 - O)f(u - 1). u > l

juppose we have tu:o observations Xl and I2. where

Xl = the number of disease occu.rrences in (O. 1) = 20.

I2 = the number of disease occurrences in (1. 2) = :25.

(X3 = the number of disease OCCUTrfnces in [2.ool i.s u",).;nolC.'11,),

U'ïth the goal of éstimating 0 and .Y. where .V = the. numbe.r of individuaLs il1/f.:.dcd al t = 0 or

t = 1 (which is the. same as the number of disease occurrences in [O. oc) rf'$'ulting from infection

al t = 0 or t = 1) lce form the. multinomial likelihood:

Irhere x. = Il + I2. and P3((}) = l - PI(O) - p'z(O) .

15
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Expressions for Pi(O) . i = L. 2 are oblained from the. backcalculation formula for g~ u l:

Pl(O) = fol g(u)du = 0 fol f(u)du = Oa. u:he", a is hW'ŒIl.

'2 '}. 'l

P2(O) = j g(u)du = 0 j f(u)du ~ (1 - 0) j f(u - 1 )du =

'2 l

oj f(u)du + (1 - 8) fo f(u)du

= Ob + (1 - O)a. lL'here b i.s aLso knoW11.

Le.t us assume that a = ~ and b = i. The multinomial likelihood of 0 and .v i." then given by:

L(9 'i) = .v! (~0)20(_~o + ~)25(~ _ ~O)S -.&5.
. . 20!25!(~V - 45)! 2 4:2 2 -t

Cp to a J..rzO'WT1 constant the loglikeLihood i.s given by:

L(O . •V) = log~V! -log(~V - "5)! + 2010g(~8) + 251og(-~8 + 1) + (.V - 45) lOg(~ - ~8).

Sctting the t!L'O partiaLs of 1 with respect to (J and .V EqUal to ~ET'O and soLt'ing .,imultaneously
- '~

yields the e.stimates: .V = 70 and () = 7'

The next two exarnples assume that the disease was contractoo o\'er an inter\'ai of time.

The tirst example below a:;surnes that infection is equally likely t hrou~hout the inter\"ai. Thus

the incubation density is uniform and has no unknown parameters. Backcalcnlation yields an

estimate of .Y. the number of cases resulting from infection during; the iIlter\'ai. The second

example below assumes that the infection density is a step function with two steps whose heights

are represented in terms of unknown parameter O. Backcalculation yields estimates of (J and

.Y.

EXaITlple 4 SUppOSE that the density of the instant of contraction of a di5ea.st in uniform on

the inte.n:ai (O. 1). Furthermore we UJill assume that the incubation den~it.'1 i..s erponential u.:ith

16



• rnean 1. ThE injEction dt:.llSLt.1I 1(t) anà the. incubation dEnslClj fCs} are gl CUl 611:

{
l.U~t~l

[(i) =
O. elselL'here

. and

•

{

e-:J. 0 < s < 00
l(s) = .

O. dsewhere

The onset dt:.nsity g(u) is formed using backcaicuLation formuLa (2.2):

Suppose one observes 20 cases between limes 0 and 1. .sa thai

.x 1 = the number of cases in [O. 1) = 20

(X2 = the number of c~es in (Loc) is unÀ.71ou:n).

The probability function of the binomiaL random variable X'1 has parame.tcr p = the probabiLity

of disease onset occurring betwee12. time 0 and time 1:

If S = thE namber of cases T'Esulting from infection in ~O. 1:. then .\" !las iii.:dihood:

The loglikdihood. up to a k12.otL'n constant. is gi'L'en hy:

L(.V) = log.Y! -log(.\' - 20)! - .Ylog~.6:3)

li



• and. hence the maxim'um likdihood. éstimate is gù:en by

.\" = 5-1.

Cl

li one has more than one count observation. then one is able to discem more about the

shape of the infection density. It is then reasonable to assmne that the infection density is a

step function where the height of each step is an unknown parameter.

Exarnple 5 8uppose a disease is contmcted o'Uer a knO'tlm interval of ti1ne and thl; infection

density l(t). is assumed ta be a step function with twa steps. The incubation density les). lS

assumed to oe expDnential with mean equal tD 1.

{

(J. 0 < t < 1
let) = -

1 - G. 1 '5 t '5 :2

l(s) = e-.!I. 8> o.

OnsEt denszty g(u) is calculated lL-ith backcalculation formula (2.2):

1/ u ::; 2.

{
J; Oe - (u - t)dt = ()(1 - t: - l' L 0 ~ 'L '5 L

0(1 - ~-l) + J~~(l - O)e-(u-tldt = (L - Of? 1; - 't - t(J)t-·L
• 1'5 IL <: ~

•

Suppose U·f. have two obsf.rt:atiDns

Il = the number of cases diagnosêd in inten:ai (O. 1.) = 1.0

I2 = the number of cases diagnosed in interr.:al [1. 2) = 20

(Z3 = the n-umber of cases diagnosed in internai (2. (0) is UnhWll"n) .

18
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The multinomiallikelihood L(O . .\") has paramt.te.rs PilO). i = l.:!.:3 repreSttLlillg the. probabilititS

that a case is diagnosed in one of the. three inte.rt'al.5.

Pl(l}) = li 9(1 - e-")du ~ (.37)9

2

P2(0) = ! {Cl - Oe- I ) + (e - eO)(e -2 - e -1 )}du ~ .37 + (.26)0

1'3(0) ~ .63 - (.63)0.

The loglikelihoodup to a J..:nown constant i.s given by

l(:V.O) = log :V! - log(.V - :10)! + LO 10g(0) + :20 10g(.37 + .260) + (.V - :)()) log(.6:l - .636).

a!e form the two particUs of l(.V. 0) .

al LO 5.2 .V - ;10
86 = 0" + .37 + .269 + 0 - l

~~ = log.X -log(.V - :10) + log(l - 0) + log(.53).

Le.ading to the maximum likelihood estimate.s

() = .215 and .\.. = .59.

2.4 A look at backcalculation when the incubation density is

unknown.

The backcalculation tedmique developed by Brookmeyer (Brookmeyer. 1988! assumes knowl­

edge of the incubation period distribution. This knowledge together \\ith disease anset obser­

\lltions yield an estimate of the infection onset densities. In the case of 8o\-ine Spongiform

Encephalopathy the incubation density is not known. It is difficult to independently estimate

:5ince the incubation period seems to be related ta the dose of the aetiolocical agent and the
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means of infection (oral or injection ta the brain J. If one tries ta parameterize the incubation

density and estimate its parameters along with those of the incubation density then the model

becomes overparameterized yielding more than one set of values that ma.ximize the likelihood.

ln Ferguson et. al.·s l. 199ib) article. backcalculation is applied with a parameterized. form for

the incubation density yielding more than one set of parameter estimates or more than one

B5E disease model. ln this section we examine backcalculation withoul complete knowledge

of the incubation density through a series of examples.

:\ disease contra.cted at one point in time has a known infection density :the trivial one). [n

this case lack of knowledge of the incubation density le'lds ta a model \vhere the onset density.

g(u). is equal to the incubation density fCu: 6) (as in example :2 of this chapter). Thus. f(u:6)

\and g( u)) are estimated using the method of density estimation in the presence of incomplete

inter\"al count data as seen in section 2.2.

Example 6 Consider a disease contrncted at two points in lime and a parnmeterized diacrete

incubation probability function which can take on two values. ln the e.ramplt:. that follows we

.otee that backcalculation yields tu:o sets of solutions for the model paramelers. Suppose a di.sease

!L'as contrncted at times. t = 0 and t = L by some of a group of éIpose.d i1lditid-uaLs.

Let the following discrete prnbability function [Cs: 9) be the assume.d form for the incubation

period probability function:

Let I(t:o) be the ass-umed infection prnbability function:

{

o. t = 0

l( i: 0) = 1 - o. t - 1

O. elseu·here

20
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fhf.,l. C = rime oj onset can e.qua? O. 1 or:2. and the oackcaiculation form.1l1a for !1( u) yie.lds:

gtO) = rd)

g( 1) = (\(1 - 0) + (1 -, \)0 = t.l - i) - ".!o.l}

g(2) = f l - Ct)( l - 0) = 1 - '1 - ~ - 'll} .

.-\ft€r ume t = :1 IL'f. obsf.n.Je the L'alues of IO. ri' .1:2 •

.1:0 = the number lL'1th onset al t = 0

.xl = the number u'ith onset al t = l

I2 = the number u.:1th anSE! al t = '2.

(note S= .co ~.ri ~ l'l = the total number of infe.ctt.d indü'1dual..s. [Tl thls t-l'amplt our count

vbst.M:ations are -complete".)

Observations Io . .xl.and• .1:2 have a mullinomiallikeLihood u'ith paramftfr$ pO·PI.and. P'l =
1 - Po - Pl. The parnmeters are dept;ndent upon Q. and () :

Po = g(O) = 00

Pl = g( 1) = Q - B - 'loB

TlIt 'uyltkt.lihood ha$ tht furm:

and. thf. system of equations:
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• :s reduce.d ta the SljstEm:

JL lJL JL
-=-=-=u.
ôpo ;jPl âp2

lchich yield muLtinomial parametEr ~\lLE's:

Estimators of Q and (J are found b-y solving:

Pl = Ct + 0 - "2ü()

P2 = l - t'\ - 0 + (1 tJ.

u:hich le.ad ta the quadratic:

hatting solutions

0= (2Pl • 152) ± )(:2Pl + P2)2 - -IPI .
:2

(2.6)

•

Xotia that the SljstEm of t.quations in lint:.s 2.6 an ... ymmt.lnc in n rIllà IJ ..,hidi i1l1plit ...; that !.r

(00 • llO) is a pair 0/ solu.tions of thé systEm. tkén (th. Cq) = (00.00) is also a .wiutioll. In orrit r

ta obtain ILnlq'UE ma.rimum likelihood estimators additional constrnints mt/oSt bt mtroduce.d. This

:s dEsirnble if ont. tcants to Estimate. [ft) or f(s}.

The next example generalizes the one abo\'e and introduces a method for generatin!1; ~~lS

üf solutions that maximize the likelihood and estimate the parameters of discrete infection anù

incubation densities.

ExaJ11ple 1 Suppose a disea.se could be contrnctéd at n ...,- l points in timt:.: t = O. 1..... n. and
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• that the. incttbation perwd .s can be. any of the. m ~ 1 L'alues s = O. 1. .... m. Thal /.s.

00. s = li

0l. S = t

1(.s: 0) =

O. tlsewhere.

and.

00. t = 0

al. t=1

[(t: a) =

O. dsewhere .

.-lfter lime n~m we observe a (complete set of) counts _'0. Il •.... I n + m IcherE I~ = the number

of CaséS œith on..~et at t = Î. Let .V = '~:orn I t • The multinomzal likEiihood of the obsen'fd

counts 15 of the fonn:

\
.,

• • .rI (o)n+mL«(J.o.) = l,Pl .. 'Pn+m .
Il,, .• In+m·

Tht. .\fLE·s are Pt = ~. i = O..... n - m. Thé relation...;hip bdlL't::tn p~ (p~ = thf pmbabilitll (/j

disease onset at Ume t = r) and paramete.rs Q and 0 is gùJen by lht. backcalclllallOll formula:

Pr=g(r)= L ctt(Jj.r=O..... m+n.
t+)=r

l') ­1-.1

•

.\lanm'um likelihood tstimators for Q and (J are found by solving the rn ~ Tl .sy.~tt.m of e.quatiol1S

in (2.7). Ld a(r) and O(r) represe.nt polynornials:

( ) " '\ d
Q X = 00 T ... ~ Qn.L" • an
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• Finding a real solution for thE system of Equations 1n (2.7) :5 f:quwalt.n.t fo jinc1inq a real fac­

torr.=ation of the polynomzal:

hat:ing positit·€ co€fficiEnts. The Equations in (2.7) are recol'trEd by tquating tht coefficients of

the polynomzaLs on both sid€s of the tquaLity: p(I) = ü(x)OC-r).

Since polynomiaLs over the real numbers factor into ir'l"ea-ucible factor.... of de.gret.s :2 and 1.

one would f.rpect many such factoïizations. a(x)O(x) to €rist by rearrangmg or pErmuting the

lrreducible factors . .-t unique solution 1L'ould require the addition of manIJ addtd assumptions or

of constmznts on the functions I(t) and f(s).

ln the next example the technique introduced above is applied to generate ail the sets of

maximum likelihood estimates for a disease that was ohser\"ed ta ha\'e fonr onset times and is

assumed to have two distinct incubation periods.

EXaJ11ple 8 The jollou'1ng t.ramplE uses the notation introducEd in tht. prE t·iO/loS t .l'ample. SLLp­

pOSE that a diseas€ is obsen:ed to have. onset at 4 distinct points m , imt lL'1éh the followlllg

tstimated probabilities:

116
Po = :1.1' Pl

6 1
= :1-1 .0'2 = :2-1' P1 = :.! l .

•

ThOl. the polynomzal. p(I). intmduced in the prEt:i01LS t.rample. l$ g7n::.n bl/:

l 3 2 l
p(x) = :l-l {x ~ tl.r ~ llx ~ 6} = 2-1 (x - 1Hx - 2)(.r - :1) = nl.r;f}(.rL

If it is knOlL-n that mfe.ction occurred at tUJO distinct points in time. and thf lTlcubation period

can De one of thTEê. distinct periods. then the number of factorizations oj P\.r) i'l!o poltj1lOmiaJ.s:

ü(x). of degTEe tu...o. and O(x) of degree. one. u:ill cOT"T'E.Spond to the n'llmo€r of ..iets of pammEter

(
:13 )tst imates : {Qo. Cl 1 }. and {Bo. BI, 02 }. TherE arE = :l. s uch factori~QtlOns yielding thTEf.

2-1



• :-jEts of rqually likdy tstimatéS:

l .) l}
p(r) = {ti(X- ... :~x -+- 2)}{4(x ~ ;~) = rùx)B(.r).

l l l 1:1
<.12 = -.0.1 = -.LlO = - and 81 = -. 00 = -.ti :!.:) -l-l

p(x) = {l~ (,r2 + 5,r + ô) }{~(x + l}} = a(x)O(x).

l 5 l l l
Q'2 = -.LÊI = -.L10 = - and 01 = -. 00 = -.

:!-l 24:! 2:!

Finally we consider incubation and infection random \'ariables having continuous densities.

Example 9 The p~uious examples were all discrete. The follou.:ingi.s a simple Example of a

backcalculation modd based on an infection time and incubation period l.L'hich are both assumEd

to be continuo'us e.rponentiaL random variables.

Ld.

Then.

[(1) = {

f(s) = {

Oe -rJt. t > U

U. tlselL'he.n.

o t - (k:f. :; > u

O. tlsewht:T'E

. and

•

g(u) = fou [(t:(J)f(u - t:a)d!

= fou (Je-d'ae -,,(u-t1dt

80 [-du __ -aul
- (a _ 0) e t:; •

:25
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.VotiCt that g( Li) is symmEtnc zn fi and Q. The symmetn; makt:.s il lmpo..;.., lolt:.. t0 havE. uniqut:.

.\lLEs. SlnCf. if (B.e..) maximi:.es thelikelihood: L(O.aiul . .... un). tht:.n 1 n.V) will Of: a ma.rim"um

as well.

o

Althaugh parameters may not be uniquely estimated when the incubation density is un­

known. one can choose a set of likely parameters based on prior knowledge. or one can examine

the resulting range of densities and the range of pararneter estimates that are equally likely.

2.5 Backcalculation in the presence of low survivability

In the examples of Chapter 2. section 2...t we assume that after a final time ,equal to the

maximum time of infection plus the maximum incubation period; aU exposed indi\"iduals will

have experienced onset.

[n the case of BSE. due to the low sUI'vi\"ability of cattle 1 Le. slaughterin~ patterns). mast

- infected animals do nat live to experience d.isease onset. Thus. the observations of disease anset

counts are lower than they would be if cattle were allowed to survive.

Anderson et al.. (1996). and Ferguson et al.. (l99ib l. have mod.ified the backcalculation

fonnula to incorporate an (independently estimated) co\\' sun'Ï\'al distribution which explains

the discrepancy between the number of infections and cases.

[n this section we shall assume that we obsen'e a birth cohort from time 'Ji birth until death

due to disease or otherwise. Obseryations are disease counts in subinter'.-al::i .)1" :b.e cahon's

life span. Furthermore we assume that members of the cohon ha\"{~' lo\\" :5tlI':i\'ability \due tû

slaughtering practices) and their sun"Ï\'al distribution is known. \\"e will st'e ho\\" the suni\"al

distribution is included in the likelihood.

Let [O. t.; he the maximwn life span oi cohort members. Let 0 = tl < ... < il-: = t. he a

partition of [O. t.l and Il, .... Iie be disease COllOt obsen·ations. I! = the number of disease onser5

obsen'ed in Lit-l. td. i = 1. .... k. The onset density of e = time of onset. yt.Il). 0 < u < ~. in
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• the absence of mortality ; i.e. ::;laughtering practices t. is given by:

rmil1( Il.C.)

g~u) = Jo [(t)f(u - t)dt. and

l
l ,

Pi = gtu)du = Pr{onset in ~tt-l' tt). in the absence of mortaiity~.
t, _ 1

ln the presence of mortality or la\\" slll"\·i\'ability.

Pi ~ Pr{survivorship until tt} . Pr{onset in tit-l. tt) !sur:ivorship until ft}

=S(~) ·lt

, g(u)du.
t, -1

where the 5urvival distribution is S( a) = the probability that a cow survi\"(~s until age a 1 ln

non-epidemic timesl. ~lore precisely.

Pr{onset in [u. u + du)}

= Pr{survival until time u} . Pr{onset in LU. li + dU'I! sllrYival until u}

Hence.

l
e,

Pi = S(u)g(u)du.
t.-l

(2.8)

•

~ote: li P = Pl ~ ... ~ Pk. then P = the probability that a member of the birth cohort i5 infected

and lin's until disease onset. [f Pk"'!""l = 1-p. then P~:.l = the probability that a t..:ohort member

<iees not experience disease onset.

Define multinomial \'ariables X 1 •..•• X'A=+ 1 :

.\i = the number of cohort members having experienœd disease anset in ~t : _ l . t l ). i = 1. .... k. and

X"ft+l = the numœr of cohort members not having experienced disease onset.

The rnultinomial \a.riables .\l ..... _\k+l. have a distribution depending vIl the parameters .Y.

Pl ..... Pk· where .Y = the size of the cahon and Pi. i = 1. .... k are defined by equation ;2.81 as
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•

functions of the unknown parameters of g(u).

ln Chapter 3. section 3.6 we set" that the like1ihood of BSE ùbseryations incorporates a

5urvival distribution to explain rhe discrepancy between la\\' anset le\'els and high infection

rates.

In the next chapter the techniques seen in this chapter are applied towards the construc­

tion of the BSE sun'Ï'\-al mode!. Background information. examples and details are aàded to

Ferguson et aL's 1 1997b') presentation. begiIUling \\;th an o\-en-iew of the deyelopment of the

BSE modeL
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Chapter 3

The B8E Model

\'ow that we reviewed. backcalculation and have' in c..napter "2. seen sen'rai il.\-pothetical ex­

amples. we are ready for the development of the BSE bac~calculation :'iHrYi':al model. The

model originally appeared in Anderson et al. (1996', and was later enhanced in Ferguson et al.

!. 199';1) L This presentation is base<! on Ferguson et al:s enhanced. model.

3.1 An Overview of the Development of the BSE r..lodel

The BSE epidemic started in Britain in the late 1980'5. peaked in the early !JO'~ and has been

rapidly decreasing since then. The pattern of disease is a reftection of meaL and bane meal

~lB~[: feed pra.ctices. Large quantities of recycleà meat and bone meal were feci to cows in

the early ~O·s. ln 1988 the ~lB).l fced ban. irnp05ed to curtail BSE . cau:5etl the munber of new

infections ta rapidly decrease. Thus the infection hazard function de.pend.5 on a. time 'Variable.

The epidemic has not ended and today (January 2000 '] France continues ta han [he import of

British beef.

.-ln additional de.pendency of infection risk on age. of cow has been Ob.ie.ïl·td. This may be

iinked ta age dependent feeding patterns and perhaps to age dependent absorbancy rates of the

infectious prion agent (Anderson et al.. 1996. Ferguson et al.. 199ïb·.

_-\lthough tainted feed is believed. to he the main infection route. it ha::; been demonstrated

t hat the existence of a maternaI route (in the womb or during the birthing proœss 1 is likely

Donnelly et al.. 1997bL and the possibility of a horizontal infection route :co\\" to cow 1 has
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not been yet been eliminated. o\Iultiple inféction roUtE... are includéd in ;.~ rg'ILSUIl ft al. .~ as!:'

modt.l as -competing risks": the feed. and horizontal additive component~ are cüntinuous ri::;k~

and the maternaI component is a discrete risk. assurned be positi\"f' on1~' at age zero. T!n

magnitude of maternal risk is estimated iteratively. The tirst generation or (>xposeci canle were

feed infected. Each successive generation had a maternal risk proportional to the number

of maternally infectious dams in the previous generation. Thus. maternaI risk is estimated

iteratively based on the feed risks of the previous generations.

Infection ages of cohon members are unknown. Observations a\'ailable to estirnate the age

at infection density parameters are counts Xi expressed more precisely in the farm (to. Il)' where

to = the cow's birth year . and Xl = the number of cohort to BSE cases dia~noseà in the i th year

of the cohort's lire span. The difference bet",een the age at onset and a~e at infection is the

incubation period. The backcalculation formula (2.1) l which requires sorne knowied.~e of the

incubation period density) expresses the age at onset density in tenns of the age at infection

density and the incubation period density.

Since. most cows are slaughtered (for meat) before age 1. it must bt assumed that most

. mfeeted cows do not SUrL"Ïve until di.sease onset. Therefore. the available onset counts are small

in comparison to the number of infections. Knowledge. of the. su.rr.:n.'al dlstnb'ution of British.

c:ows ( in the absence of an Epidemie). together with backcalculation formula (2.1) e.nable the.

formation of a likelihood for the available di.sease onset counts. ~laximization of the likelihood

results in the estimation of the joint age at infection/age at onset density parameters.

\'Oe begin the presentation of Ferguson et al.·s model with the ciefinition of cornpeting risks.

3.2 Multiple routes of infection presented as competing risks

The backcalculation formula in the BSE model (~.~l. Ferguson. 1997bL considers the time of

infection to he a failure time \°ariable. where failure in tbis case means infection. If failure can

be attributed to more than one cause then the various causes are termed ("ompetin~ risks. The

mtÙtiple causes or multiple infection routes are represented in the failure ~ime density through
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the hazarà function. Let ,,\( t: 0) denote the hazarà function at time t. That is

,,\( t: fi)dt ~ Pr{ failure occurs in ~t. t ~ rit) 1 failure ha.::s not yet occnrred~.

Then. t'very failure lime density. 1Ct: (}). anà corresponding sur\'i\'al distribution S( t: fi) ha\'e

~lazard forro representations

l(1: 0) = -\(1: 0) exp( - fo' -\( l': O)dt'). and

S( t: 0) =f'Xp\ - fo' -\( l': 0 )dt').

[f there are cornpeting risks of failurc then the hazard function can tH' writlt'n a~ a SUffi of

competing hazard functions. These funetions \defined belo\\" 1 estimate the failure rates for a

specifie cause given the "rernoval" of ail other causes.

. Definition 10 (KaLbfle.Uich and Prentice. p.167J : Let T he. a cantin'lLo"lt.'i lai/un' lime. eariable..

Suppose. that I.rhe.n failure uccurs lt may Dt; attributéd ta tIactLy oné of ln di..;tlnct m.ll-ses. Let J

denote the cause for failure.. where J lS an integer in the set {l.l.....Tl}. Thff1 "';(t: 0). the lh
compe.ting nsk camponent. is define.d by the tquality:

A)(t: O)dt = prob{T ~ ~t. t - rit). J = j;T 2: n.

.lssuming J TT1w;t De. a ILllique. ElEmEnt from sd {J. ... m}. /l'e. hae!. the. cornpding risks hazard

,ff,composLéion:

m

,,\(t~O) = L À)(t:O). rznd
}=1

l(t:O) = (...\1(t:0) + ... /\m(t:O))S(t:O) .
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The density lU: 0) can he decompostd into (l sum vf suhdénsllzes a.-; follol1.~~:

m

1( t: ()) = ~ 1) (t: 0) {L'hé re. .-­)=1

I)(t: (}) = \)(1: (}) eXPI-l' Ail': (}Idt'j.

Given obser'l..'ations oj the. competing risks fai/ure time. L'aMaDle T. and taen oùstïL'ation's Ca"l.LSf.

of failuTE. tach ÀJ(t: 0) can be. tstimated (Kalbfle.isch and PT"f;ntice.. p.168 J.

),"ow. the main B5E infection route (Le. the primary .• risk" or cause of failure 1 is belie\"E~d to

he tainted feeà..\ second likely infection route is maternaI transmission: infect ion occurring in

the womb or during the birthing process. il the cow population at risk i::; a ~yen birth cohort.

then the infection lime \'ariable. T. is an age at infection where t = U is a~e U. furthermore. a

co\\" has a positive maternaL risk onl~' when t = O. Thus the maternaI compt>ting; risk component

is discrete and T is a mixed continuous/discrete failure tim«= variable.. [n the next section we

will look at continuous/discrete failure time \-ariables in more detail. i If ..\(t) = Àp(t) .. À.\I(t).

where Àp\t} is the feed risk component and À.\I(t) is the maternai risk compUIlte·nt. then.

{

R. t = 0
/\.\l (t) =

O. tls€u'here

and R = the probability that a calf in the ~in~n cohon will be matt'rnall~· ::lÏectro.

[n :5ection 2.3 we gi\"e an example of a mixed density arising from a comp(~t in!2. risks model

where one risk function is discrete.
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3.3 Mixed Continuous/Discrete Failure Time Densities.

Let !( n. t 2: 0 be a nlixeà failure time Jensity. Suppose that Pr{ T = {l!} > u for a tinite :;et of

points {al ..... l.1n }. Let ~(t). t 2: O. be the :5un'ivor function oi the random \"ariable T. where

~(t) = Pr{T ~ t}.and

~(t) =[r [(t)dt + 1: [(at/'
t a.~t

[f À(t) is the hazard of T. then

s(tl =exp[- fa' >.(t'ldt'] [1••«ll - >'(a,)). and

1(t) = .\1t) S (t) = .\(t) exp[- 1.' .\(t' )dt' :n•. <t (1 - >'( a, j ) Kablleisch •..., l'rcnt ice. p.51.

Example Il A competing nsks modEl where one ïisk function i5 discrett

Suppose À(t) = )'1(t) +- À'2(t). u:here Àl and À'2 are com~ting risk functions. Furthermore.

suppose.

fht mnaOTn L'unaOlt. T !~ (l mZIEd c·ontznUOlL.51 discRtt: frz;[Urf t:mf 1"(lTlI1i;lr ~'ïth '1 pos/lin

dt.nL..;LtI/ al T=O. The mfectzon dénszty [ft) zs erpresstd Ul. ha;ard jarm:

let) = .\[(t)exPl- fa' .\1 (t'jdt':(l - Rl. 1 > U. ,wd
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• 0-\ combine.d form for 1ft) is:

l(t) = AI (t)eXPl-l' ,\tlt')dt'j(l- R) + RNt). ".h."

6(t) = {~: .:s::'here

3.4 The BSE Joint Infection/Onset Competing Risks Density

Let A..-\~ O. be a random \"ariable representing the age at BSE infection für a cow of birth

cohort. to. where to = the birth year of the cohort. The a~e at infection dt'n~it\- [(l1lto). k'lf

cohort to can be written in hazard forrn:

l(alto) = A(alto) expl-l
a

A(a'[tolda'j.

Suppose that farmer-determined age dependent feeding patterns of cows do net change O\'er

time. and that age dependent protein absorption rates are. similarly timt. invariant. Fur­

thermore. it is known that the amount of :\IB:\1 given to cows \Oaried üW'f time. Thus one

can jU5tify 1 :\nderson et al.1996) factoring the hazard À(a~t). into time dependem anà ag('

(iependent factors

:>'1

•

The function g(a) reflects age dependent protein absorption and feetiin~ practÎ<'t?~. The function

r(t) reflects time dependent :\IB~I feeding patterns.

The hazard function for cohort to is defined to be:

À(altol = r(to T a)g(a). \\-here

À(alto)da ~Pr{.-\ E [a. a +da)I.-\ ~ flo T = to ~a}o

At the time that this model was proposed it \Vas accepted that there exi5ted two and possibly



•

•

: hra- routes of infection: ùral feed. route. vertical 1 danl ta calf 1 infection rOUlP ar'..<.i horizontal

co\\" ta co\\" i infection route. The thra- infection routes are cotnpeting risks of infection and

~ he hazard is writ ten as a SlUll of the competin~ risk components .Se€' :oi~t ion :t:2 :

.\(alt) = '\F(alt) + .\;\t(a!t) ....... ÀH(alt)

= rF(t)gp(a) + r.\I(t)9.\I(a) + rH(t)gH(l1).

where the maternaI risk 1S non-zero only at birth yielding the discrete function.

{

La = 0
g.\I(a) =

O. a > 0

C ùnsequently.

{

r\f(to). a = 0
;\.\[(aito) =' . where

O. a> 0

.\,\(Olto) = Pr{a dam barn at time to is maternally infected}

= Pr{.-\ = Olt = to}.

The components rF(t)gF(a) and rH(t)9H(a) are not farmulated as easily. "nlt~ authors (Fer­

guson et al. 1997b'l express the time dependent feed factor. rF(t) a:i a piec:ewise qlladratic

,:llT\"e and estimate its unknown parsuneters when the likelihood is optin:ized. Furthermore.

the function gF(a) is assumed to have a parametric form whose llnknown parameters are also

èSlimated when the likelihood is maximized. .-\t the lime of the study tliere was no e\'Ïdence

of horizontal transmission. Any parameters related ta horizontal transmission are fi.xed and

not estimated. For most of the discussion the authors assume that horizontal transmission

does not exist and we will at a later point continue with this assumption. The pre~ence of the

discrete competing risk component À.\f(alto) makes the age at infection ':ariable..-1. a mixed

contînuous/discrete random \"ariable. with a positi\'e probability al .-\ = O.•-\ [orm for the age

al infection density corresponding to the above hazard is derived in a sinùlar way to Example
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li of tlUs chapter and is ~i\'en by:

[(ait,,) = )'F(allol + Àn(ait,,)] eXPl-l" (ÀF(a' 10) .,- Àn(ll'·lo))da'l(l - "·./(Io})( 1 -li(a))

-r- r.\l(to)6(a).

{

1. a=û
Ichere. 6(a} =

O. elsewhere

.-\5suming that the incubation period. S. is independent of birth cohort and of tt.e age of a cow.

it fol1ows that the joint density of :\. and l· i5 given by:

J(a. ulto) = l(alto)f(u - a) (3.2)

= {[ÀF(alt,,) T Àn{ait,,)j eXPl-l"(ÀF{a'!/o) + Àn(a'ilo))da']{l - r\l\lo))( 1 - 8(a))

+ r.\f(t() )8(a)} f( u - a) \3.3)

where. a ~ O. and u ~ a.

Thedensity J(a.u.to). is the majorcomponent of the backcalcwation fommla :2.1'. It isused

to farm a likelihood of count observations reflecting BSE anset rates. ~laxir:1ization of the

likelihood leads to parameter estimates and an estimate of the time of infection den:5ity! l(aito).

The density J(a. U!to) has many unknown parameters. If sorne parameters can be expressed

in terms of others then the likelihood equation will not yield unique ~ILE~. The authors go

throu~h great lengths ta express the maternai risk component. r\[U). in t('rm~ ·)f feed hazards

of previous generations. In the next section we see the relationship between a rr.aternal hazard

and past feed hazards. furthermore. we see how this relationship yields the d~ired expression.

3.5 Estimation of the maternaI risk component

The many components of the joint infection/anset density make it impossible te- estimate from

ünset data alone. One does nat know the infection route of a case and therefore cannat

separate the three risk components. The authors Ferguson et aL,. 199tb '. ~implify the madel

by a.ssuming that there is no horizontal transmission \ lhe existence of horizoIltal transnùssion
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• has never been demonstrated! leaving oIÙy feed and maternaI component5. The authors point

out that the maternal risk component can be traced back to a feed risk. The tirst generation of

exposed caule were ooly feed infected. Cattle of the second generation were exposed to tainted.

feed and a maternaI risk from dams that were feed infected. Subsequent generations had a

maternaI risk proportionai ta the number of infectious dams in the pre\'iou5 generation. Every

infectious dam can be traced to a feed infection in a previous generation. In this section we

see how the maternaI risk is expressed in terffiS of fee<! risks of previous generations.

Recall that the maternai risk component is a discrete component. and is nonzero only al

cl = O.

{

r.\1 (t). a = 0
'\'\I(alt) =

O. a > 0
and.

•

r.\JCt) = Pr{a calf bom at time t is maternally infected} ,,3.-1)

= Pr{a dam is infectious and preonset at time t and infect:: her calf}. (3.5)

The probability of a calf being maternally infected is proportional to the proportion of infectious,

preonset. dams. .-\ dam that is post onset can give birth: howe\"er. its calf i:; likely to be culled.)

The proportionality constant is the probability that an infected preonset dam :ransfers the

infection ta its calf. Therefore.

r\rU) = t.{ the proportion of infectious preonset dam s at tinle t}.

where. t. = Pr{ a dam infects ilS calf ithe dam is infections and preûn~N iH rime t}.

TIIe infection/onset density ::t2) is used to obtain an expression lor the proportion of infec­

tious preonset dams at time t. The following obsen·ations play a raIe in forming an expression

for the proportion of infectious preonset dams at time t :

• [t is clear that a dam must be infected to be infectious.

• The probability of a dam being infected depends on ilS age al lime t and i:s a function of

infection/onset density 1.3.2),

• The level of infectiousness of a dam will he expressed as a function of the time left tmtil
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• disease onset in the dam, where le\"el of infectiousne;s is assuffieci ln increase as onset

lime approaches.

Suppose an infected preonset dam is of age r at time t. and has l' '\"ears left until anset.

Then U = t' + r is the age al which disea..;e onset will occur. The probability that an age r

dam is infected is

1"" for J(a. ujt - r)dadu

where J(a, ult - r) is BSE infection/onset density (3.2), Ta expre5S the probability of infec­

tiousness we define ftUlction

n.H(V) = Pr{an infected cow is maternally infectious iL' years ieft until disease onset}.

The probability that an age r dam is maternally infectious and preonset at time t is

•

YM(t. T) = lX o..,(u - r) for J(a. uit - r)dadu.

\'ge present twa special cases of Y.\I(t. r) that elucidate the general case.

Example 12 A.ssume that an infected dam is always maternaUy infection", tht.n

Y.H(t. r) = Pr{ age:. r dam tS rnatf.rnally inftctiolts anà PT"E(}T.'..8tl '1( t:rr.t f}

= Pr{ age r dam is infeeted and pTEflnStt at limt t}

= Pr{.-\ < rand [" > r}

= 1"" for J(a. uit - r)dadu . (t - r = y~ar of birlh vf th. àam)

= r O",(u - r) for J(a. uit - r)dadu.
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EXaITlple 13 Suppose an tnfecttd cow tS matemall.1J infEctious only during the last ha1.! YEar of

rhe incubation pErlod. Thal is:

{

1. 0 ~ t' ~ 1/"2
{"hIle) =

O. elSé whére

Then the probabilily that an age r dam at lime t is infectious and pn:onsel is:

YAI(t. r) = Pr{O < .-\ ~ r. r ~ f../ ~ r + 1/2}

l
r + 1/ 2 fr

Pr{O < A ~ r. 0 ~ L~ - r ~ 1/2} = r Jo J(a. il t - r)dadu

= f.x n.\I(u - r) for J(a. uit - r)dadu.

Xow that we have a formula for the probability that a dam is infectiotls. we are one step

doser ta the aim of obtaining a formula for the maternaI risk component ,..·.1 (t). Recall that

r.\r( t) = t: {the proportion of maternally infectious. preonsE't. dan~ at time t}.

\\'hich leads to a heuristic justification for expression (3.7) below:

r.\I(t) ~ t L Pr{a dam is infectious r ~ age of dam < r ~ tir} .
1"~1

Pr{r :s age of dam < r" dr}

S:: t L (J'.\I (t. ")Y.\[ (t. r )dr.
,.

or. more precisely.

r.\I(t) =. J~x "'.\I(t. r)Y .•c(t. r)dr.

where O".\[(t. r). the age distribution. reflects the faet that the probabilit!· that a dam is of age

r depends on t as weil as r. The following points are worth noting about equation :t7:
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since a dam is a cow of agE. J.

•

•

• Since a dam is a cow of age 2: 2. the lower limit of integration in \ :~. '7, is :2.

• AU cattle of age ~ 2 are assumed to be dams since almost aH bulls are slaughtered before

age 1.

• Formula (3.7) is. in a sense. recursive since formula (3.6) for Y.\1(t. r) contains the density

\3.2) which contains r.\I(t - r).

The authors use an iterative approach to .. Wlfa\'er' formula \3. -:', and obtain the nonrecursive

equi\'a1ent. The following example derives a nonrecursive formula for r .\[ ( l) under simplifying

assumptions for illustrative purposes.

EXéUllple 14 Suppose that in a ce~ain cow population cows gü:e birth to one caLf at age 2.

and ail births occur in the same season. ln lhat popuLation a dam is define.d to De a cow of age

2. Furthermore assume that every infeded dam is infectiou,s and tr.a.t then; 18 no horizontal

tmnsmission of infection. Then.

f!M (l:) == 1. L' ~ O. since évery Înfected dam is infectious.

{

1. r=:!
(7.\I(t. r) =

O. elsewhere

Y.u(t. r) = 1"'" fa' J(a. 'Lit - r)dadu. (Ihe probability of being in/ecl,d and prwnsel by age ri.

J( u. ,,,1 - r: = .\p(ail - rl exp[- faB Àp(a'il - r)da'!f( a - ,,)(1 - r \I(t - ri l( l - ~(a))

- r.utl - r)6(a)f(u - a).

and. r.\lU) = t y.\[(t.2) ( (7.u(t. r) is nonzero only al r=2).

Hence.

r.I(t) = " Y.I,(t. ::n = < 1"'" fa' J(a. ail - 2)dadu

x 2 a

= ,,1 fa {À p ( ait - 2) exp[- fa ÀF(a'll - 2)da']f( a - Ill( 1 - '"-\l(t - 2))( 1 - Eo(a))

-; r.\[(t - 2)8(a)f(lL - a)}dadu.
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• Leading to the recursit:e formula

r.\I(t) = ,. J.~12

Pdait -:/) .

èXpi-1a
[).F(a',t - 2)da']f(LL - 'l)}datlu(l - ".\nt - :.!))

~ r.\lll - :2)c:: [:te f(u)du.J2

ObSEïlJC that the abot:e l.S the sum of the probabûities

r.u(t) = t:.. Pr{a dam is pre.onset feed infecte.d and not matérnaily infe.ctttf.,t}

- t: . Pr{ a dam is maternally infected and pn:onsf.t! t}.

Lu

F(t) = Pr{a dam is feed infe.cted and preonset il. no matenlal inftctzon}. and

G(t) = Pr{a dam lS preonSEt !maternally infected}.

Then substzt·u.tmg FU) and G(t) mto expression (,1.8)

r.\,(t) = tFU)(l - r.u(t - :l}) + r:.G(t)r.\[(t - 2).

1" .';Ilmmaïl/ u:t havE sholcn that

r.\l(t) = tF(t)(l - r\(t -2)) ~tG(t)r.\t(t -:2). t = :2.-l.h.S....

,3.8)

\3.9)

•

Thê aGOVE ïf.curslt·e formula r=.rpresses the maternai transmission probabtlity nIollt: gt:nerntion

m tenns of the probabiIities of feed infection and maternai infection in the pïf.riQ'us gcneration.

Rearranging the ttrm.s LL'e hal.;e..

r.\[(t) = t.F(t) - t:r.\f(t - :2)[F(t) - G(t)j .

·u
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•

Thu.s .

T.\1 (2) = tF(2).

T,\.[(-t) = c::F(4) - c:
2 [F(-l) - G(4)j.

Leading to the nonrecursive formula

Bence.. T;\I(t) i5 erpn:.ssed only in tenns oft andfeed infections ofpn:.t'io·us gt1urations reducing

the task of estimating a maternai. risk function ta that of estimating one parnme.iEr. c:.

The authors Ferguson et al. (l99ïbL have a parallel formula for r,\f(t) in the general case.

\\'e now show ho\\" the general formula is obtained the details of which were omitted by the

authors.

In Example 14 above. the cow population was partitioned inte hypothetical generations

spaced 2 years apart and recursive fonnul&. (3.10) for r,u(t) expressed the mater:lal risk. T.U(t).

in terms of T;\[(t - :!): the maternal risk of the pre\;ous generation. [n the general case the

authors partition the co\\" population into actual generations:

Genl = the first generation exposed to tainted fe~i

Gen2 = the oifspring of Gent. ètC.

Let

That is

C TI = the co\\" population whose most reeent generation i~ Ge nT!'
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The maternaI risk depends ùf the ('urrent co\\" population. Population CI Lad onl~· il feed risk.

popu.lation C~ had a feeà risk and a maternai risk from dams of Cl (hat wprf' [ceù inîecteà.

To emphasize the dependence of r \tU) on the cow population and the depenàence of the cow

population on the current year t. we will use the notation r.H(Cn(f») where nit) is an integer

and Cntt> is the co\\" population at time t. l-:sing this notation and generalizin:r . :3.10 l above.

we can express the maternaI risk of population Cn(t) in terms of the maternaI risk of Cn(t)-l'

r.\1 (Cn(t)} = t{ the proportion of iru·ectious. preonset dams in population Cnlt)}

= t{ the proportion of feed infecte<! infectious preonset dams in Cn(!l}

.. e:{ the proportion of maternally infected preonset dams in Cn(t} }

= t{ the proport ion of feed infected infectious preonset dams in C~ \' 1}

- c::
2 {the proportion of feed infected infectious preonset dam:; in ('.::r1-1}

~ t
2 {the proportion of matemally infected infectious preonset dams in Cn(t}-l}'

The last term can be expressed in terms of feed. and maternaI risks of population C ..(t)-2- etc.

In trus more generai :setting we can derÎve an expression for r\f(t) analo2::ons (0 e:x.1>ression

:3. 1UI . Let.

/p(ait) = ,v(ait)e''Pl-10
4

Ap(a'lt)da'1. the age al fee<! infection densiUy.

J(a. U1t) = [F(aIOj(u -11)(1- r\I(t))(l -'~fQ)) - j(lL)t.(a)r\{ll).

the joint : feed. or materna!, iniection onset densit~·. rI ~ o. II > IL

Starting with formula l :3.7~ we ha\'e

r" (t 1= <1"" <'.\1 (t. r) y.\1\ t. r) dr = <1""" <"1 (t. r) 1'" n.1I (u - r) for J ('1. 11'1 - ;'1 r/adtulr

= < 1""" (T1I(t, r) 1""" n,,(u - r) 10"{!p(ait - rlf(u - "l(l - rll(t - t'I) ~ jï"l6(alrll\t - 1'1 f(!al/

-13



• Re\\Titing as a 5UID of integrals

r\1 ~ t) = è ( X CT\! U. r) 1x n .\! (u - ,.) .
J2 r

l' lp(a,t - r)f(u - ,z)(l - r\l(t - rl)dadudr

~ é t'X CT.ult. r) lX O;\[(u - r)j(u)r.\!\t - r)dudr
J2 r

3.1 :2

= è[W . ~ 1 - r.\1 )1(t) + t[ctt . (r.\! )l(t). where \If and ctt are intergral operators representing

t he factors that multiply t in (3.11 ).

On the 1eft side we have r.\[U) (or equi\"alently r.\r(Cn(t))). On the right -.;idc Wl?' have 1".\rlt - r)

or equivalently r\f(Cn(t-rl)) where r 2: 2. Due to 51aughterin~ practicl>s lllü:st cows do not

li\'e beyond age 3. e5ing trus information together \\;th the fact that most CL)\\'S have one calf

a year we make an approximating substitution: r.\[(t - r) = r.\1(Cn (t)- i, and introduce the

notation: r\~) = r.\I(Cn ), Henœ.

Repeated 5ubstitutions of the abo\'e recursÏ\'e equation into it5elf leatb "0 Cl. non r€'Cursi\'e

formula for r\~) :
n

r(n)_,' 1-1(4)_\{I)1-1'. \{J.(1\
.H - L-5 . t .,.

1=1

:t 13)

•

Thus. the CUITent maternaI risk is expressed. in terms of é and feed risks \)1 ?re\'lol1s generations.

The only tmknown feed risk parameter left in density : :3.:!~ ls è. the probabiIity of maternaI

transmission of infection. This simplifies the backcalculation likelihOO<i basai on density -:L2'i

by reducing the number of unknown parameters and eliminating the !1èt.."<i to estimate the

maternaI hazarà component ",hen maximizing the likelihood.



• 3.6 Maximum Likelihood methods

•

.\fter establishing the fonn of the parametric joint infection.onsel density lme wouId like tù

t'stinlate the unknown parameters from a\"ailable ob:sen·ations.

Data used in the model was taken from : the Central \'E'terinar~' Laboratory':, 1 BSE ca~e

reports. stratified by birth cohort and age at onset. The failure time variable was a!;1;e at disease

anser with covariate birth cohort. Thus. obser\'ations were grouped iIltû :·;eariy categories

JeterffiÎned by birth cohort and within each birth cohort by yearly age at 0Il~et inten·als. The

great number of observations make the inclusion of a likelihood term for e\'eD' obseryation tao

computationally intensive. .-\ count variable evaluated within eacn cel! stlIIUnarize<i the data

yielding multinomial observations used in the mode!'::; likelihood..\:;suming that the life span

ùi a co\\" is 15 years. let

."(l.t., = the number of diseased cattle of cohort to with age at oru;et in tht:' t 'h year. i. = 1. ... 15.

•"( 19.tù = the number of cohort to cal tle that did not experience the disea~e"

\\nen backcalculation was applied ta estimating future AlOS infection lt'\"eb the multinomial

parameter ...Y". representing aU infections acquired tIuring a set time imen"aL was llnknown

and was estimated when the likelihood was maxirnized. In this case the pararneter...S".

repre~enting the size of a birth cohort is known and is equaI to .\·r~. Let

.Y,.'} = the size of cahart to. ~t) rhat

19

L ."(u,] = .Yr.1 •

t=i

Let the multinomial parameters

Pi.to = Pr{anset in year i .cohon to}

= E(.~t.t'J) . = 1 1".\P
to

. t • '" ....
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•

and

P19.to = Pr{a co\\" does not li\'e to experience dise~e onset :cohon ta}.

Let

.L'do! i = 1.. ,.. 19

be the observed yalues of the count variables defined in \3.17) where.

lS

.r19.to = 'Yra - L .rUa.
:=1

li L: = age of disease onset. then a probability related to Pl.to that is easier to express, is defined

as an intermed.iate step in the formulation of an expression for PUo. Let

Pt(t) = Pr{i - 1 < U < il calf born at time t} i = 1. .... 18

and

pet. u) = Pr{a cow becomes a case by age Il ,born al time l}.

pU) = pl t. i) - p(t. i - 1).

Since most cattle are slaughtered before age three. and since in the deri\'ation of the expression

for density J(a. Uit) it is assumed that there is an "absence of slaughtering practices" ~he

~eparately estimated ~ur\'i\'al distribution. S(t). is included in the expression for p~t. u) tù

account for the discrepancy between numbers of infections and cases. Let

S(a) = Pr{sur\'i\'orship until age a}

-16



• then.

I
I l'.J.pu· il = 0 S( u} 0 .na. lLi t )dadu. :~. l-ll

It is assumed that the parameter PUa' is close ta Pt\t} for t close to to. If T = the random

\'ariable representing time of birth. then:

Pi.to = E(Pi(T)lto < r < to + 1)

(each cohort includes calves born during a one year span:.

Let R represent the restriction: to < T < to + 1. Then.

:3.151

Let B(t) be the \ time of birth, density of random \'ariuble T. The conditional density of TI R

has rlensity Br R:

B .tiR) _ B(t)
TR~ - rto"'~B d'

ho (t) t

Csing ~,;t15) the multinornial parameters are given by.

•

Pdl) = ET R\Pt (T))

j
.r".,.~

= PI(t)BTR\t)dt
r.j

= ItQ+~ PiU)B(t) dt
lI} J~Q+~ B(t)dt

I
tOT~ pU.' i)B(t) ltc+~ p(t. i - LlB(t)

= dt - , rit.
rQ f~OT~ B(t)dt CI) J~~~"'~ B(t)dt
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and. P19..CI} = l - L Pdo.

t=l

j = 1. ... ,,(to) - 1.



• It is a~sumed that the union of ail birth cohort obser\"ation~:

have a multinonùal distribution. The loglikelihood written IIp to aJditin:> constants 1 is equal

to:

loc L {Il8.to In(P18.Co) + L:~lIt.t'1 ln(Pua)}'
Co

(3.17)

From 1,3.1-1) and (3.16)The quantities Pi.to are expressed in terms of the unknown parameters

()f J(cz. uit). ~ot aU parameters of J(a.uit) can be estimated from onset observations alone..

The likelihood rnay be overparameterized. [f both the infection densit~·. [(a. t). and the

•

incubation density. f(s). are parameterized with unknown parameters then the model is likely

to be overpararneterized or unidentifiahle. If this is the case then sorne quantities 1such as the

mean incubation period) must he guessed alOI' estirnated from independent data. The maternai

transmission rate. e. can be estimated from data accumulated during the maternai transmission

::itudy :;ee Chapter -l';. [n particular. parameters in the maternaI infectiou~ness distribution

f2( c). were assigned a few hypothesized values deternuning at which point in the incubation

period infectiousness is assumed to begin (e.g.: within 6 months of onset 1 and ~eparate sets of

~lLEs' \Vere calculated for each assigned \·alue. Sorne information on the incubation period

distribution is pro\"ided by the maternaI cohort 5tud~' and the orai dosinl.!; ~tl1ciy '. .-\nderson et.

a.l 199ô,. ~laximization oi the loglikelihood after sorne paramett.-'rs are tixed. \"Ïeid~ parameter

t'stimates of the remaining unknown parameters of J(a. u:t). The r('5ultin~ estimate5 will be

:mnunarized in the last section of trus chapter. The parametric forms assnmed [or ~ome of the

ftillctions that appear in J(a. ult) are reviewed in the next section.

-18



• 3.7 Incubation period and age-dependent susceptibility distri­

butions

Recall by equation l :3.1 i that the feed hazard. ,\p(alt). is assumed to Îa(:tor into a lime dependent

factor and an age dependent factor:

Àp(ait) = rp(t)g(a).

The function gla) retlects the age dependent absorption rates of the aetiolo~ical agent in addi·

tian to exposure to the agent due to age dependent feed.ing practices of meat and bone meal.

The authors [Ferguson et al.. 199ib', tried fitting the likelihood :3.1,;"l with \"arious functional

fonns for gla). the age dependent 5usceptibility density. and f(·.,). the incubation perioddensit\".

Il was found that the ba:;ic model results were robust to c:han~es in the functionai forros.

The following three functional forms were tried for the incubation period density: :\ Ganuna

density with a delay

O. IL ~ (1 - a})o'2

(u - (1 - Ctda'2)QfCl~iQ3-1f(u) 0= {

x exp 1
(U-(l-Ol )O'2)Ot Cl'2 i

ct]
u. > (1 - 'k 1 JO'l

a \\"eibull density with a delay

li> \l-'i\)C1'.!

•

and one referred to as a .. mechanistic incubation period density·· which W(1 derÎ\"e below, ta

model the incubation period of BSE' :\ledley & Short. 1996 i. The delays in bath the Ganuna

and \\·eibull densities reftect the fact that there are almost no known cases of BSE in cattle

below the age of 2. Therefore the incubation period is belie\-ed ta be greater than or equal to

2. The mechanistic density was found to gi\'e the best model fit and its derÏ\-atioIl i::; nased on

the incubation dynamics of the BSE prion aetiological agent. [t is belie\"pù that the incubation
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period is related to the initial infecting prion dose and that onset is triggered ,,-hen the prion

lèvel reaches a specifie level. \\'e now diSCU5S the .. mechanistic density" i~l detail.

Let. do represent the proportion of the triggering prion dose that entered the body upon

inîection. The authors assume that do has density h(do). Let d represent the prion level at

lime t. It is assumed that d increases exponentially. Let

d(t) =;:: doe-~t

describe the deterministic g;rowth of the prion substance over time. Recall that d(t) is the

proportion of the triggering prion dose_ Therefore. at time t for which d( t) =;:: doe·: r = 1.

âisease symptoms appear and the incubation stage has ended making t.inlc t equal lo s. the

incubation period. Thus the incubation period. s. is a function of the initial do~e do :

-ln(ckt)do =;:: e--'1" and s =;:: ----

.\ change of variables expresses density J(s) in terms of h. the density of the initial dose

J(s) = -h(e--:.1). d(e--'
l
.1)

ds

=;:: h(e-"'!"):-le -"'l".

[f h is a5sumed. to be a Gamma density \\ith parameters Ct and 3. thep..

yielding the functional form of the mechanistic incubation perioà density.

Eight :un-normalized! functional fOrInS are explored for the age·dept:'nàent sU5ceptibil-
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ity jexposure distribution. g(a) :

1. g(a) = e -al"'t

:2. g(a) = e -a/A'l ~ ""'2

3. g(a) = a-:1 - 1e -tl./'''q

4. g(a) =e-a/'Vl +"'2. a~2

= 2(e-af
'V

t + "'r'l), a > :2

5. g(a) = 1. a ~ :2

6. g(a) = 1

ï. CDF = l1 - exp[-C":'laf1;)(1 - exPL-(....3ar:!~-'"'D

8. CDF = as above but with a step at a = 2. doubling after 2 years of age.

The first farm assumes exponentially decaying susceptibility and constant exposure. The second

farro also assumes exponentially decaying susceptibility with constant feed expasure. The third

form assumes that the exposure 1S constant and the susceptibility is Gamma distributed. The

fourth fonn is similar ta the seconc. but the level of susceptibility/exposure doubles at age

:!. The fifth fonn assumes constant susceptibility until age ....2. and exponential decaying with

constant exposure arte!' age "'2. The sixth forrn assumes constant exposure ana susceptibility.

The se\·enth forro is a cumulatÎ\'e density function. ernpirically deri\"ed : _\ndt'l"Son et al. 1996'1

and assumes constant exposure. This parametric fonn i:5 \'ery rlexible in that il can take on

rnany shape:;.

The likelihood was found to be robust to changes in the functional forms of the incubation

period. density and the susceptibility/exposure distribution. Only the most t'xtrerne forrn 6 of

constant exposure and susceptibility had an unacceptable goodness of fit. The combination

of the "mechanistic incubation period density-. and the empirically derh·ed. age, ~usœptibility

densit~. form ï. yielded the best goodness of fit tFerguson et al.. 1997b1. \'"e conclude this
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• section with the infection/onset density and the related "best fif' forms:

J(a. ulto) = l(alto)f( u - a)

= {>'F(altol exp[-14

>'F(a'!to)da'!O - ".\1 (ta)) ( 1 - Na))

+ r.\(to)e5(a)} feu - a)

where. a ~ O. and u ~ a.

n

r.u(t) = Llt:- 1(cIl- '11)1-1] . t\{l· (1). see 1 :3.13\.
1=1

and rp(t) is a piece-wise quadratic function.

3.8 Basic Results

l3.18)

•

The likelihood created with the mechanistic distribution and fonn '7 abo"e for the incubation

distribution and the agejsusceptibility density, respectively leads to an estimate of 954.000

iIÛections between the years 1974-1995 and to a prediction that there wouid be 9340 new cases

for the years L997-2001. ;The actuai number of case between January L997 and .Iuly :2000 is

9786., Estimates of the rnean incubation period are consistently between -1.7-.5.3 years for ail

modeis with relatively satisfactory goodness of fit. Estimates of the total number of animaIs

infected lie in the range 900.000-1.130.000. Predictions of the number of Ca:5es between 1997

and 200 l show much ,"ariation. Future case predictions are highly effected. by changes in the

tail end of the feed risk profile. If the future fee<! risk is assumed to be nonexistent then

ail predicted cases would be materna! infections" ~Iatemal cases are easier to est imate since

the risk of iIÛection is easier to predict. t·nder the assumption of horizontal transmission the

nwnber of predicted cases for the year 2001 was over 100.000. However. ha,-ing no experimental

evidence to back up assumed parameters related to horizontal transmission. the prediction is
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only speculative.
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Chapter 4

Maternai Transmission - The Paired

Study

The maternaI cohan study. iIÙtiated in July 1989 which. owing to the long incubation period.

- concluded in 1997. examined the possibility of a maternal transmission BSE infection route.

~Iaternal transmission refers to the transmission of infection from an infected usually preonset 'l

dam to the calf in the womb or during the hirthing process. Three groups of statisticians

analysed the study's observations and presen~edtheir conclusions (Gare et al.. ~latemal Cohort

Study. 1997'. Donnelly et al.. ~laternal Cohort Study. 1997b. Curnow et al. ~laternal Cohon

~tudy. 1997', ..-\ vertical infection route ldam to calf. would prolon~ th.: BSE epiàemic but

woulci not 5ustain it indefinitely for several reasons: dams have an avera~e of lJIlly one calf a

year. slaughtering practices insure that the cattle poptÙation is more or less constant. and the

probability of maternaI transmission from an infectious dam to calf is likely to be much less

than one. Howe\·er. maternaI transmission may imply the presence of disease in a \\c;der range

of body tissues and perhaps the existence of vertical transmission of other prion diseases such

as C JD in humans.

The study design was 301 matchcd pairs of matemally expose<! and control animaIs. The

exposed cows were born of dams who had BSE at the time of cal\;ng or de'\'eloped the disease

within 13 months. The control animaIs were barn of dams that were free of BSE up to age
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•

6. . .-\lmost aU infected cows that live to experience disease. have disease anset before age

ri. This is pan1r because susceptibility to infection is age dependent.. Between 1986 and

1988 calves were recruited and placed on one of three study farms. They were fallowed for i

years ta observe B5E pathology and then slaughtered and exanùned to determine their disease

status. The matemally exposed group were observed. to have a significantly enhanced. risk of

disease. Had the study calves nOL been exposed ta tainted feed. then obseryed enhanced

risk in the matemally exposed group could he attributed to maternaI transmission. However.

study calves were given ~IB~1 bath before recruitment and. on at least one 5tudy farro. aitel'

recruitment. Thus. ~IB~l is a confounding factor which makes it difficult to distinguish between

an enhanœd risk due to maternaL transmission and one due to varying genetic :::usœptibility

ta BSE. ~Iatching was based on natal herd. caLving period and time of recnlitment into the

study. The matclùng variables are reLated. ta the feed risk of a study animal. Henœ. paired

animaIs are assumed to have similar exposure to tainted feed. Donnelly et. al. 1.199ib) found

that risk of disea.se increases ",,;th caIves barn to dams in a later incubation stage. This finding

supports the maternaI transmission theory but does not role out the theory of varying genetic

susœptibility or sorne cornbination of bath.

\Ve discuss DonneUy et al.·s (199ib) methods. which build on the infection/onset survival

model described in Chapter 3. The authors explore three modeis utilizing co\'ariates related

ta the study's confounding effect of feed exposure and to the relative contribution of maternai

exposure. The first is a logistic regression model having B5E prognosis as a ciependent vari­

able. The covariates are \'ariables related to feed exposure. maternaI expo:5ure. and maternaI

incubation stage. However. genetic susceptibility is not represented in this model. [n arder

to estimate the relative etTects of maternai transmission and genetic susceptibility one needs a

modei that incorporates parameters reftecting risks of different modes of disea~ transmission

and of genetic susceptibility. The second model categorizes the study observations by B5E

status and maternai exposure status and assigns likelihood terms according to category. The

likelihood terms contain parameters related to maternaI transmission and ta genetic suscepti­

bility. The third model utilizes information concerning modes of disease transmission. genetic

susceptibility~ the incubation density and . when appropriate. the dam's incubation stage at

lime of birth. Parameters related to these effects are represented in the likelihoctd whœe terms
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are formed from infection/onset density (3.2). The authors start with an exploratory data

analysis looking for evidence of genetic susceptibility. and for a relationship between the ma·

ternal transmission rate and the dam's incubation stage. 5upporting the theory of maternaI

transmission.

4.1 Exploratory Data Analysis

Of the 301 study pairs. 18 were prematurely censored.. :\mong the 602 animaIs. 42 maternally

expose<! and 13 control animals developed the disease. The proportion of BSE-affected. exposed

calves was .139. and the proportion of BSE-affected controis was .043. The authors found the

difference to be significantly different from zero. p=value <.0001. The eiifference.. 139-.043 =

.096. can be used ta estimate the maternaI transmission parameter t: l.see Chapter :3. section

3.5). where é = the probability that an animal born to a BSE infected dam experiences maternai

transmission.

It is important to take into account the paired. nature of the study since doing 50 gives

insight to the possibility of the enhanced risk being partially due ta genetic susceptibility.

Suppose feed exposure alone was the cause of the infected study animals' BSE status. Then

the exposed animals' enhanced risks may be attributed to an enhanced genetic susceptibility

to feed infection. since animaIs are paired. based on variables related. to feed exposure. li the

B5E status of the exposed animal is independent of the B5E status of the matched control.

t hen one can conclude that the enhanced risk is due to maternaI transmission alone. However.

if pairing is related to disease risk then one cannat rule out the possibility that enhanced risk

may be partly due to enhanced genetic susceptibility of the exposed calf. The following is a

contingency table of obser\'ed. and expected. pair outcomes indicating that pairing is related to

BSE status. For example the table entry value of 36 indicates that there were 36 pairs whose

maternally exposed calf had + BSE status at the study's conclusion and whose control calf haà

- BSE status al the study's conclusion.

Observed(Ex1>ected.) maternally exposed
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• Observedi Expected1 control

+
6 (1.81

36 (40.2·l ~52 (2-1i.8·'
There is a significant difference het\Veen observed and expected BSE status counts under the

null hypothesis that B5E statuses of paired animais ar~ independent.. Fïsher's exact test has

a t\Va sided p-vaiue of .004. Thus, feed related variables may be contributing to the exposed

animais' increased disease risk. The connection between increased risk anà expased status may

he explained by the presence of a heightened genetic susceptibility in the expose<! group.

4.1.1 Maternai incubation stage

[f one established a dependence of B5E-infectivity in exposed calves on the dam's incubation

stage, then one could daim that the observed enhanced risk amongst exposed study calves

must he at least partly due to maternai transmission. :\ simple calculation of r{"lative risks

illustrates that such a dependence is plausible:

Relative risk of co\Vs in a category = (porportion of diseue alfected exp0:5ec caiv...s the c4teitOrv ,
- (porportion oi diseue atfec:ea cùntroi:; 'ne ci\te~;)ry 1

Relative risk of exposed calves

Relative risk of expose<! calves

born after onset.

~ - '3'>3.043 -"-

.5.00

Relati \'e risk of exposed cah'es

born during the incubation perlod. = 2.91

•

The increase in relatÏ\'e risk arrlongst exposed. cal\'es born after the dam experiences disease

onset suggests that the incubation stage of a calfos dam is related. to trarumùssion of infection.

The authors performed two tests to determine if BSE-risk varies significantly with incubation

stage. 80th tests use the paired nature of the data to control for the exposed. calves' feed risk:

Test - 1

Pairs are stratified by year of birth (1987. 1988 or 1989) of the exposai animal and by

incubation stage of the B5E infected dam (onset less than 50 days after ~irth. 51-100 days!
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• 1Ul- 150 days. more than 150 days J. For each classification" excess risk of exposed animais'·

is estimated. E.xcess risk for a cell is defined as the mean of the random \"ariable I,... evaluated

al each pair in cell c. where:

1. if exposed only is infected

-1. if control oruy is infected

O. otherwise.

•

The sample mean estimates together with 95% confidence ;nter....ais. are presente<! in the next

table:

year of birth onset ;:; 50 onset 51 - 100 onset 101 - 150 anset > 150

19Si 0.5O±0.5O 0.50±0.50 O.6i±0.33 O.33±O.:13

1988 0.12±0.O-t 0.14±0.05 0.13±0.15 -0.08=0.06

1989 0.02±0.03 0.04±0.24 0.00 0.00

:'\0 conclusions can he dra\\ïl from 198i data since the sample sizes are too small. ln 1988

one does see a drop of excess risk in animals born more that 150 days before onset in the dam.

The drop of excess risk supports the existence of maternal transmission. On the other hand if

the excess risk is due ta maternaI transmission then one would expect the 1989 estimates to be

similar ta those of 1988. However. the 1989. less than 50 days estimate is low and contradicts

the increased risk at late incubation stage theory.

Test - 2

The second method splits the 301 pairs into two groups ,of pairs. where dh-ision is based

on the dam' 5 incubation stage at the birth of the exposed animal. The pai: BSE-status 1

.+._1. :+.- i. (-.+ 1. or (-.-,1 " frequency distributions for the t\\"o groups ar~ cornpared. using

Fisher's exact test. Eight difIerent divisions were tested. The frequency distributions of the

two groups dÎ\;ded. at the -150 day before onset- point are given below.

;:; 150 days. matemally exposed

58



• ..... Total

6 3 9
Control

34 ~14 :!-l8

Total -la :!17 257

> 150 days. maternally exposed

-or Total

+ a -l -l
Control

2 38 40

Total '1 42 -t4
Pairing helps lessen the possible eirect of genetic susceptibility since one is comparing groups

of exposed. calves whose matches have the same BSE status. If. for example. we are comparing

the two (. control. +exposed) groups. then one can assume that genetic susceptibility does not

ha\'e a significant roie.

Fisher's exact test yielded a p-value of .011 suggesting that the frequencies were different.

and that there is an enhanced risk of disease in animais born during a later incubation stage.

Results of the exploratory data analysis suggested evidence of a relationship between en­

hanced risk and maternai incubation stage. Hence. genetic susceptibility to feed infection

may have contributed to the increJl.Se in risk amongst exposed calves. ln order to understand

the \'arious factors contributing to the exposed group's enhanced risk the authors build three

likelihoods for 5tudy observation whkh incorporate parameters related. to disease transmission,

The first is a lo~stic regression model with B5E status as the outcome \'ariable. The second

is a multinornial likelihood for observed disease COtults within categories ùctennined by birth

period and the third is a full survÏ\-allikelihood whose terrns depend on infection/anset density

::3.21.

4.2 Logistic Regression Madel

•
:\ logistic regression model having BSE status as a dePendent variable anà covariates refiecting

feed exposure and maternal exposure is a natural model that one would try given the study

observations. The authors found that feed risk \-aried a great deal between henis. .-\nimals

59



•

•

came from a wide range of herds with few animais per herd. making it not feasible ta include a

fi..xed herd effect in the model. Hence. a random effects term was introduced where by it was

assumed that the effect due ta the herd is drawn randomly from sorne population. Xormal in

trus case. [n arder ta represent feed exposure as accurately as possible the authors estimated

the Pr{positive BSE pathology Iherd}. The following model was explored:

logit{ Pr (YijICi)} - Q: + Ui + .r~j;

Y ij - BSE status for the lh animal in the ith pair. j = 1.2

Ci = the assumed (herd dependent) random intercept effect (4.1)

for observations Yil and Y121 l·l is assumed ta be X(O,17~). (4.2)

x:
1

- vector of covariates for j'h pair rnember in irh observation

3 - \'ector of regression coefficients

Cl - the intercept

The covariates of interest are age at purchase (used. to refiect feed exposure 1 and the maternai

incubation stage of dams of exposed. calves.

4.3 Basic Mechanistic Likelihood Madel

Ta test the hypotheses of increased risk amongst exposed cah-es being àue to maternaI trans­

mission or genetic susceptibility. one needs ta estimate pararneters that are measures of each

risk. Any model containing a genetic susceptibility parameter must a150 contain information

about feed risk since short of identifying a susceptibility gene. a calf"s genetic predisposition

can oruy he ascertained if one has information related to the amount of tainted feed consumed

by the calf and the BSE status of its dam. Period of birth is the covanate related to feed

consumption: calves weaned in winter months can he assumed to ha\'e been exposed ta more

food supplements such as ~lB~l and calves bom after the feed ban are assumed to have less

exposure to :\lB~1.

The rnechanistic mode1 is a likelihood of count data deri\"ed from study observations .
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~latched pairs are stratified by birth period. \\ïthin each birth period pairs are split into

an exposeà group anà a control group. [t is assumeci that within a birth period the feed

exposure is more or less constant 50 that pairing is no longer necessary. \\ïthin each group

the count of BSE positive cows is a binomial variable whose probability is expressed in terms

of the foilowing three pararneters:

;-:"b = feed risk within birth period b

t:: = the probability that an exposed calf is maternally infected

oS = the relative risk for aU birth periods of a genetically susceptable cow :s ~ 1).

L~t.

PbE = the probability of an exposed birth period b calf developing the Jisease.and

PbC = the probability of a control birth period b calf developing the disease.

Then.

PbE = € + t1 - t){l - exp( -.s~b)}

= Pr {disease is rnaternally transmittai} +

Pr {disease is not matemally transmitted n calf is feed ~llfccted}.

and.

PbC = l - exp( -~b)

= Pr {calf is feeci infected}.

~ote: Since study cows are obsenped for seven years it is assumed that an :nfections lead to

disease onset.

The joint likelihood for aIl counts over ail birth penods is the product of the binomial

probabili ty fUIletions of the B5E count variables in each category. The iog likelihood is ginon
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belov.-:

L IbE logit ~ (l - c){ 1 - exp( -Si'rb)}l + (ntJE - IbE ) log) - ~ - (l - d {l - exp( -Si'rb}}l
b

-r- IbC log{ 1 - exp( -~b)} + (nbC - IbC) log{exp( -;rb)}.

:\ote: The effect of maternaI incubation stage cannat be examined by lhis model.

4.4 Full Survival Mechanistic Likelihood Model

The full sunival mechanistic likelihood model assigns likelihood terms to each member of the

observered pairs based on infection/onset density (3.2), natal herà. time of birth and exposure

status. The inclusion of the àensity introduces more parameters related. to the infection proœss.

The authors have three likelihood forrns for exposed animals and three for contraIs. The forInS

depend on the animaIs' B5E statuses at the end of the study. The infection/onset density has

a maternaI transmission parameter and a genetic susceptibility parameter. However it does not

have a parameter related. ta incubation stage in the dam at the lime of calving. Thus. the

significance of bath parameters can he tested.

Let [(5) represent the incubation period density. Let g(a) he the likelihood of feed infection

for a co\\" of age a. gi\"en a constant level of feed infecti\"ity. Let Kh(t) denote the risk of feed.

infection at time t in herd h and let O(t:) represent the probability that a dams· infection could

be transferred to ilS calf if the dam is l.' time units away from disease on:5el. L~t ~ be the rate of

materna! transmission and 5 a genetÎc susceptibility parameter. where .., = l means no genetic

5usceptibility and s > 1 indicates the presence of genetic susceptibility.

Each obser..ed pair member is assigned one of three forms for the likelihood term based on

the three possible end of study BSE statuses: anset before the end of the study. no clinical signs

of anset but positive clinical pathology, and no signs of onset. \\·e calI the three forInS for the

likelihood terms :\. B. and C. The three forms depend on function i. Function 7 depends on

the age at onset in a calf (u) and in the case of exposed animals it also depends on the dam"s

incubation stage (l.'). ft is formulated under the assumption that a study calf could not he feed
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infected after recnùtment into the sludy \after age ale). For exposed animaIs.

;-(u. L')du 2: Pr {exposed calf is iniected at birth by a dam with L' years till anset

and has onset in Cu. u + du}} +

Pr {expose<! calf is not infected at birth n

calf is feed. infected before age ale and has onset in (u. u -- du!}.

j,lore precisely,

1"(U, L') = <-n(t')/(u) + {l - <-ne,,)} Lao SKh(tO + a)g(a) .

exp{ - [ sK~(to + a')g(a')da'} I(u - a)da, where

ale = age at recruitment.

For control animais.

i(u}du == Pr{cow is feed infected before age ale and has anset in :u. u + du)}.

j,1are precisely.

faR faR
T(U) = Jo Kh(to +- a}g(a} exp{ - Jo Kh(to +- a')g(a'}da'} J(a - rz)da.

:\ow. we can define the likelihood forms A. B. and C under the assurnption that feeà infection

did not occur after recruitment into the study.

.-\du ~ Pr{exposed calf is infected at birth and has onset in (u. u - du]} ~

Pr{exposed calf is not infected at birth n

calf is feed infected before age ale and has onset in (u. u +- du])

Bdu == Pr{cow has anset at age >a-: lanset age is >ak}

Cdu == Pr{cow does not have OD-~t between ages ale and a-: i

anset age is >ak}
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where ak = the age of recruitment into the study. and al" = the age al censoring.

:"lore precisely.

-\. = T(U) for an animal with onset at age u where a~ = age at recruitment.
. l-!oaIcT(u)du'

J~8 T(u)du
B = ra . for an animal without onset of clinical signs by age of censoring,

l - Jo Ir i(u)du

but \\;th positive clinical pathology where ac is age at censoring and 1S is a cow's lire span.

C = 1 - ft:: i(u)du for an animal without signs of clinical onset by age of censoring.
l - J;" I(u)du .

:\s in Chapter 3. function les) is the incubation density and function g(a) is the age at

infection density. 80th functions were not fitted to ~Iaternalcohort study data. rather existing

estimated parametric forros similar to thase estimated in Anderson et al. 1 1996 i were used. The

denominators in terms A. B and C represent the probability that a cow has onset after age of

recruitment. Since aImost ail cases of B5E are in cows above the age of two. and recruitment

age was for the mast part less than two. the denominator is very close ta one and was assumed.

ta he equal ta one by the authors. The likelihood is constructed as a product of tems of type

.4. B. C.

The full likelihood model was compared via likelihood ratio tests to simpler models in arder

to test model assumptions. The following simpler models were explored:

.The incubation period distribution was eliminated resulting; in a the likelihood term equal

to the probability that B5E pathology is observed by age 7.

• Feed risk function Kh (t) was assumed to he constant.

• The age susceptibility and absorption function gt.a) was eliminated. thus in this model

feed infection was assumed. not to depend on age

The results obtained from the optimization of the logistic regression. mechanistic and full

5urYÎ\-al mechanistic models are summanzed in the next section.
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4.5.1 Logistic Regression

The fol1owing fixed covariates were taken into consideration in the logistic regression model:

• maternaI exposure to B5E

• age at recrui tment

• birth cohort

• study farm

• sex.

:\ covariate allowing for incubation stage effect w&; added.. The covariate was set equal

to l if the dam's disease onset occurred X' days before calving. The model was fitted for

.\'" = 100. 110..... 170 days and for .\'" = 00 (maternaI effect throughout the incubation period)'

The maternaI effect was most significant within 130 days of birth. The fact that incubation

stage is significant suggests the presence of maternaI transmission.

4.5.2 Basic IVlechanistic Likelihood IVlodel

~lodel resuits were ~ensiti\'e to the nlUIlber of birth classes used ta ~tratify pairs and to the

birth cut offs determining classes. The case of 2 birth periods: before and after July 18. 1988.

the date of the :\18:\1 feed ban. yielded a model favouring HA : t = 0 and rejecting H B : :) = 1.

This suggests no maternaI transmission and the existence of genetic susceptibiüty. However.

when the eut off date \\"as August IS. 1988 bath H.~ and H B were accepte<!. \Vhen the data

\\-ere divided into 10 birth classes the composite null hypothesis H.-\ : c:: = 0 and H B : :; = 1 was

rejected.

The authors conclude that the grouping of pairs caused a 1055 of statistical power and that

trus simple model was insufficient.
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4.5.3 Full Survivall\tlechanistic: Likelihood l\tlodel

~Ioàels were fitted under the following assumptions:

1. ~Iaternal transmission and no genetic 5usceptibility (.s = 1).

II. Full duration materna! transmission and genetic susceptibility.

III. Genetic susœptibility only

V. Full duration maternaI only.

AlI five model were fitted using two forros 1 and II for g(a) and I(s). Forro 1 consists of the

combination: mechanistically derived incubation period distribution and an ernpirically derived

feed/susceptibility distribution (forros C and i of chapter 3. section ii Form C consists of the

combination: mechanistically derived incubation period distribution and a gamma distributed

feed;'susceptibility lfonns C and 3). The models containing form 1 had a maternaI only model

that was significantIy better than the other two However. the models containing fonn II had

the combination materna! and agenetic model as the best fit. Parameter t: was estimated at

.099 by the first and at .062 by the second. The second model estimated .s at 2.39.

The results suggest that bath a full maternaI model and a combination of maternaI and

genetic are mœt likely.
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Chapter 5

Maternal Transmission - Analysis of

Dam/Calf pairs of B8E Cases

5.1 Introduction

Results from the maternai cohort paired study (discussed in Chapter -il revealed the likely

presence of a maternaI transmission risk whose magnitude depends on the incubation stage of

the dam at the time of calving. To confirm the paired study results Donnelly et al. (1997c).

analyzed dam/calf data available in the large database of confirmed B5E cases initiated in 1986

by Britain's Central \eterinary Laboratory. The authors concentrated on cases born after the

July 1988 }'leat and Bone ~Ieal ,}.lB~I) feed ban. Information related to the 13:\Bs' \born after

ban B5E caseSl dams. dams' incubation stage during caI\"ing~ dams' herd and holding \Vere

recorded in most cases. There were approximately 30.000 BABs with disease onset before June

1996. the time of data collection. .\ dam of a BAB is labeled: + . if the dam Imd anset within

48 months of calving. The authors used information from the CVL database ta determine

if a dam's incubation stage influences disease transmission to its calf. and if fee<! risk may be

enhanced by genetic susceptibility. Like in the paired cohort study feed infection is still a

confolmding factor as the use of meat and bone meal decreased but did not disappear aiter the

fee<! ban.

The authors employed t\Vo strategies ta achieve their results. FirstLy. quantities estimating
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the expected. number of BABs barn to dams in various disease incubation stages were computed

tUlder the ntÙl hypothesis that disease status in a dam is not related to disease status in its

calf and the expected. numbers were compared to the observed cases. Second a likelihood

model similar to the mechanistic model in the paired cohort study (Chapter -1. section -1.3)

was developed. However. the dependent variable was not disease outcorne of the calf given

incubation stage of the dam, rather it was the incubation stage of the dam given future disease

onset in the calf. Thus Bayes Rule was used to calculate the reversed conàitional probabilities.

The model is an improvement on the mechanistic model as it categorizes BABs by cohort and

holding. An observed clustering of cases within holdings (Ferguson et al.. 1997b) suggests the

need to estimate feed risk within holding as weil as within cohort. The mechanistic model

of Chapter -1 was ineffective since feed risk was calculated within cohort. The model reviewed

in this chapter estimates feed risk within holding and cohort thus taking into account the

clustering of cases. This chapter's model incorporates the covariate: maternaI incubation

period of the dam at the time of ca1ving, whose significance with respect ta the calfs future

disease status would imply the existence of maternaI transmission. The authors started with

a simple ca1culation of the expected number of BABs barn at various incubation stages in the

dam under the null hypothesis that incubation stage does not influence disea.:se transmission.

5.2 Calculation of expected number of BABs born during V8r­

ious incubation stages in the dam

The authors <livide the maternai incubation period into seven stages. k = 1.:!.....6.-1. where

k = -1 indicates lack of disease in a calf's dam. E..'Cpected numbers of BABs corresponding

to the seven stages are estimated within birth cohort and holding. For the renlainder of this

section let us imagine, for the sake of clarity. that there is only one holding and one cohort .
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Let.

D = the number of dams giving birth ta cah-es in "the cohan·' (Each

binh cohort is one year in the length. and dams give birth ta approximalely one

calf a year. 50 D is aiso the size of the cahon. 1

D; = the nwnber of dams in incubation stage k at time of calving.

Ok = the number of observed BABs with +k dams (Le. dams who were in incubation

stage k. at time of calving; 0/1; < D;.)

B = the number of BABs in the given holding/hirth cohort.

l·nder the null hypothesis of independence the occurrence / non occurrence of B5E occurring

in either dams or calves. the expected value of Ok depends on the proportion of Dt dams in

t he dam population:

Prob( +k dam n ~ calf) = Prob(+k dam)· Prob( + calfL which is estimated by

Dt B
DD

~lultiplyingboth sides by 0 we have:

The estimated expected value of Ok under independence is compared with the observed. value

ratio

:\ ratio significantly greater than one indicates a greater risk of disease amongst calves barn ta

dams in incubation stage k than if there were independence. \\llen several holdings and cohons

are considered the expected \'a1ues of Ok are computed \\;thin holding/cohan categories and

sununed. Bootstrap confidence intervals for Rk did show significantly enhanceè. risks amongst
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calves bom to dams in late incubation stages. Qnly a likelihood approach would yield estimates

of parameters related to disease transmission. The next section explains ho\\" likelihood terms

for BABs were derived..

5.3 A likelihood model used to assess the relative contributions

of maternaI transmission and genetic susceptibility.

The great number of observations extracted from the CVL data base rnake a full likelihO<Jd

approach. such as the one employed in the maternaI paired cohort study, computationally

intensive. Categorizing observations is more practical given the size of the data set. A model

similar to the mechanistic model of the paired cohon study is developed and improved upon

by estimating the feed hazard within holding as weIl as birth cohort and by incorporating a

parameter that represents the dam's incubation stage at the time of calving. [f feed. hazard

varies within holding and cohon, then a study of the corresponding case levels amongst expœed

. and control ca1ves would give insight to the presence of heightened genetic feed susœptibility

amongst expose<! calves. As in the mechanistic model a cow sm'Vival distribution is not employed

ta explain the relatively few numbers of cases compared. \\;th the numbers of infections since

estimation of separate distributions within each holding would he neœssary. [nstead a factor.

Q. representing the reciprocal of the probability that an infected arumal will be observed to

hecome a case. is introduœd.

Feed hazard is calculated based on the total nurnber of cases within a holding/cohon cat­

egory. Since almost aIl cases occur amongst BABs whose dams are free of dîsease. BABs that

may have been maternally infected were not removed. Let ~ failure time 1 random variable T

represent the time of infection. \Ve assume that in the absence of slaughtering; practices the

life span of a cow is 18 years 50 that 0 ~ T < 18. Let Àij{t) = the infection hazard in the -i th

holding \\;thin the jth cohort.. Then the cumulative feed hazard is given by
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and the failure time 5urvi\'al function in the ith holding, ph cohan is

which is equal ta the probability of not being feed infected by age t for a co\\" that has not been

maternallyexposed, The probability of being Cee<! infected. within the cow's lire time can be

estimated from the number of cases and the probability that an infected cow li\-es to experience

onset. If Yij is the probability of feed infection in holding i, cohort j 1 then.

3 P {di Ih Id' . h '}~...I 8H,.-C.
Yij = r sease onset oIng l. co art J = D J

H, -Cl

where. BH,,-C] = number of BABs in holding i. \\;thin cohort j

DH.-C] = size of i'h holding within the lh cohort.

3 = the probability that an infected cow lives ta experience anset.

The pararneter 3 is estirnated. separately using the backcalculation model in Ferguson et al.

(199ib). Let J denote the estimate. ~ow

1 BH,-c]
Yi] = :::: Pr{disease infection iholding i. cohart j},J Dn,;-c]

\\'e use YZ] to estimate the cumulative Ceed hazard in the absence of maternaI expo~ure. by

noting that

This leads ta the estimate of the cumulative feed hazal"d

~laternal transmission probabilities. estimated. within each of six incubation stages. are
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represented by:

C.k. Jo: = 1. .._.6 and - 1.

where k = -1 means that the dam did not experience disease onset.

As in the mechanistic model the probabilities of infection within the k th incubation stage for

herd i and cohort j are given by:

pi; = Pr{infection in herd Î·. cohort j IK = -l}

= l - 5(18) = l - e - 1ft i.

P:" = Pr{infection in herd i. cohort j IK = k}

= Pr{maternal infection} + Pr{Ceed infection n not matemally infected.}

The parameter .s is the susœptibility factor where. .s > 1 implies greater 5usceptibility to disease_

Cnlike the mechanistic model of Chapter 4 the observed random variable is not disease status

of calf. Rather it is the dam's incubation stage given the calfs future rusea:se onset. Bayes'

Rule is used to invert the above probabilities to conditional probabilities corresponding ta the

observed data. ln addition one needs survival probabilities for infected co\Vs barn of infected

dams and barn of non-infected dams. For the sake of simplicity we will drop the ij subscript5

and assume that ail calculations of probabilities reCer to the j!h holding and the lit cohort.

Let .

.s + = the probability that an infected co\\" barn of an infected dam survives tmtil disease onset.

s - = the probability that an infected co\\" barn of a non-infected dam sur\-i\-es until disease anset.

D = the size of the holding/cahon.

D; = the number of + k dams of calves in the holdin~/cohortwho were in incubation sage k

at the time of cal\"ing~

0- = the number of dams of the holding/cohort who were not infecteci at the time of calving.
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Pr{K = k Ifuture anset in calf} =

s+ Pr{infection IK = k}. Pr{K = k}
s- Pr{infectionn lK = -l}}+s+ Pr{infectionn (K = IJ}+... ~s-t- Pr{infection n (K = 6)}

. D-
~ s+p;~

~-'p-;) - . '~p-;- ~, '+p+~
~ DT~ 1 D T ••• -r-S 60

s+p+D+
_ k k. ... • K =F -1.

s-p-O- + s+ L:=l Pk D~ .

6 s+p+D+
Pr{K = -1 !future onset in calf} = 1 - L __ _ :,,~ + +'

.\:=1 S P 0 + S l-k=l Pk Ok

The joint likelihood of a11 observations within a cohort/holding depends on the ordering of

the observations. There are a finite number of dams in each incubation stage and for the r th

cow Pr{ K = k} is dependent on the dams' incubation stages of calves 1. .... r - 1.

Let K,. be the random variable that assigns the dam's incubation stage al calving to the

r'h cow. The likelihood of all observations in the i'h holding and ph cohort is a product of

conditional probabilities summed over al! possible orderings:

lSize of
cohon/ holding

L Il (Kr = k,.lk1, .... k,.-l)
aH orderings ,.=1

~Ia.ximum likelihood estirnates for parameters s and ék. k = -1. 1. .... 6. are obtained by maxi-

mizing

The results of the study confirm the presence of an enhanced risk of disease amongst calves

born of dams that had the disease or were in a late incubation stage. Estimates of ék increased

as k decreased (closer to onset) , suggesting direct maternaI transmission. The hypothesis

Ho : Ek = é lrik was rejected and the hypothesis Ho : tk = 0 k = L 2..... 6 and -1 was also

•
rejected. 80th suggest that B5E status of a calf is influenœd by the incubation stage of its
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dam at the time of calving. The maximum likelihood estimate of parameter s was < 1. which

is not biologica11y plausible. This xr.ay have occurred sinœ calves born ta dams in very eariy

incubation stages had a low observed. cases over expected cases ratio. One cannot conclude

that s "1' l without information about the genotypes of dams and their calve5.

The analysis of dam/calf pairs from the CVL database serve<! as a confirmation of the

enhaneed risk of exposed calves and of the dependenœ of risk on the incubation stage of the

dam observed during the maternaI cohort study. The model does not demonstrate evidence of

enhanœd genetie susceptibility. The authors conclude that \vithout genotype data one cannat

exclude the pœsibility of a genetie component.
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Conclusion 15 The papers reviewed are intricate examples of the modeling of disease trans­

mission dynamics. Knowledge gained through obsen..'ation of the B5E ep·.demic and experimen­

tation with spongiform diseases togetheru:ith suruival analysis and backcalculation techniquéS

form the basis of the BSE infection/onset density (.'1.2) and provide a beautt"ful cIample of nat­

u:rol SCIences and mathematical tech!1iques working together. The inff.ction/onset densityis

applied to estimate infection leveLs in past and present populations and ta predict future case

numbers. The density is wed once more in the analysis of data from the maternai matched-pair

cohon study addressing the question of the existence of maternai transmission of infection frnm

a dam to its calf.

The BSE epidemic continues ta be a major concern of European heaith officiais, the British

meat indwtry and many others. .-ln apparent clwter of four or possibly five cases in the

~ ïllage of Queniborough in Leicestershire. England was recently discouere.d and is now being

investigated. ln the past year (1999) there was a sharp rise in the number of cases of new

L'ariant CJD (25 cases) bringing the total number of cases up to 7.5. ln addition a cow barn

on .4ugu.st 25th. 1996 . twenty flve days after Junher strict controls relatro ta the use of meat

. and bone meal was enforced. lived ta subsequently develop BSE. This suggests a maternal

transmission infection route which was shown to be probable in the papers reuiewed in this

thesi.s. There is now growing concern that the disease may appear in the United States. ln

the state of n'isconsin the deer and elk populations are experiencing a S€rious epidemic where

an fstimated fifteen percent have chronic u'asting disease (CnrD), the dter fonn of BSE. The

diseasE. LS belie'L'td ta haVE been spread in gaming farrru; lL"hich USé .\[8.\1 Ju:d supplements.

There is still a great de.al left ta le.am about prion diseases. The tJ'isttnce of horizontal

B8E transmission has not be.en confinned. J[aternal transmisswn a-as statistically shoum to

be probable but the mechanics of transmission i.s not understood. The. magnitude. of the future

threat to humans of CJD infections cause.d by past tainted me.at con.sumption is of course the

major concern of all involved. One hopes that continued rese.arch and careful trnd:ing of caséS

will ltad ta a b€tter unde.rstanding of this risk.
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