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ABSTRACT

In 1944 E L. Post posed a question which was to remain open for twelve years

(2,5)

and evoke two simultaneous , independent solutions depending upon very intricate

®)

constructions both of which use a technique which has been called "the priority method"

This thesis is an intuitive exposition of this method and is divided into five parts.

The first is a statement of notation and definitions. The second discusses
Post's classification of recursively enumerable sets and leads to the question : "Can
there be two recursively enumerable but non-recursive sets such that the first is
recursive relative to the second, but not vice-versa?". The third is an expansion of
the work by G.E. Sacks which abstracts the mechanism of priority from the proofs of
Friedberg and Muénik and uses it to exhibit the two recursively enumerable sets about
which Post conjectures. Sections four and five explain the actual constructions of

Friedberg and Muénik.
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CHAPTER |

INTRODUCTION

In 1944 Emil Post published his paper "Recursively Enumerable Sets of Positive
Integers and Their Decision Problems"(é). This paper initiated the classification of
recursively enumerable sets, and raised the question : Can there be two recursively
enumerable but non-recursive sets such that the first is recursive relative to the second
but not vice~versa? This question, which came to be known as Post's problem, was

answered in the affirmative by Richard Friedberg(2) and A.A. Mu‘énik(b) in 1956.

As a preliminary step to the discussion of this problem and its solutions, it is

necessary to state certain definitions.

A function, ¢, is a partial recursive function in the sense of Herbrand-
Godel~Kleene iff o is defined inductively by a finite set of equations,
E, where f is the principal function letter of E and for each n-tuple
(X1, ..+, x_)in some set called the domain of definition of ¢ there is
exactly one numeral, X, such that from E it can be shown that
f(x., ..., X )=%, and the value of g(x,, ..., x ) for the natural
n . n . ;
numbers x., ..., x _as arguments is the natural number x, for which |

% is the numeral .

A function, &, is a general recursive function iff it is a partial recursive
function and its domain of definition is the set of all n-tuples.

A function general recursive in ancther function, h, is essentially the
same as above except that the system E can involve in addition to the
initial functions, the function, h.



A recursive set is a set whose characteristic function is recursive. A set
recursive in a function, h, is a set whose characteristic function is
recursive in h.

A non-empty set, R, is recursively enumerable iff it is of the form
{t '[E y d(y) = t}and & is a partial recursive function } .

A set is recursively enumerable in a function, h, iff it is as above, but
& is general recursive in h.

The decision problem for a set, S, isamatter of effectively determining
whether an arbitrary positive integer is or is not a member of S.

The degree (of unsolvability) of a function, f, is zero iff the function
is recursive. lts degree is greater than the degree of a function, g,

iff g is recursive in f, but not vice-versa. The degree of f is the set of
all functions, h, such that f is recursive in h and h is recursive in f.
The degrees of f and k are incomparable if k is not recursive in f and
vice-versa.

The degree (of unsolvability or undecidability) of a set is the degree of
its characteristic function.

In particular A and B are any two sets whose degrees of unsolvability are incom-
parable iff the decision problem for A cannot be reduced to that of B, and vice-versa, or
in other words, iff if it is impossible to tell whether any arbitrary element is in A on the

basis of it (or some elements calculable from it) being in B, or vice-versa.

There are two problems here. The first, that of the existence of a recursively
enumerable, non-recursive set is quite straight forward and will be shown here ; the
second, the existence of a pair of recursively enumerable sets whose degrees are incom-

parable will be proven in Chapter ll, Corollary 1.



Let T and U be the primitive recursive predicates defined in Kleene(3) (IM) :

T(e,x,y) : y is the Godel number of e calculation starting from a set
of equations with Godel number, e, which define a partial recursive

function f(x).

U(y) : If y is the least value making T(e,x,y) true, then U(y) is the
value of f(x) given by this calculation.

6 sk . . .
Post( ) proves that a set of positive integers is recursive when and only when both it and

its complement with respect to the natural numbers are recursively enumerable .

Using the above we can now prove the existence of o set which is recursively

enumerable, but non-recursive.

Proof : Consider the set

R = [flEy(j = U(y) and ExT(x,x,y)}} .

R is the range of U, a primitive recursive function defined for all y such that ExT(z,x,y)
and certainly for those values of y for which E x(T(x, x,y)), so R is recursively enumerable.

We must now show that the complement of R, N =R, is not recursively enumerable .

Suppose it were. Then
N =-R = [ t I"[E y(t = U(y) and ExT(x,x,y))B

would be the range of a partial recursive function. That means that the function




L Ayt # Uly) or Ay "lExT(x,x,y)] which can be rewritten [ Ay(t # U(y))or
Ax =E y(T(x,x,y))] is partial recursive. As U is defined for all y such that E y T(x,x, y),
it must follow that =E yT(x,x,y) is partial recursive. Since —E yT(x,x,y) is partial

3)

recursive, by Kleene's Theorem XIX, an extension of the Enumeration theorem"™ ', there

is a number, z, such that for all x
E yT(zo,x,y) iff E y(T(x,x,y)).
Since this holds for all x, it must hold when x = z, giving
E yT(zo,zo, y) iff —E yT(zo,zo, y)

which is absurd.

So N = R is not recursively enumerable and R is recursively enumerable but non-

recursive.,

A slightly more involved version of this T predicate also due to Kleene will be
used in the construction of the recursively enumerable sets of different degrees of unsol-

vability:

1 if i=0Oand y e A, or
. fi(y) i=1 and y ¢ B.
) | 5
f(y)= = p. =
s . i
1<y
m p, otherwise.
ity

is the Course-of~Values function for f; .



T (f {y), e,x,y) as the primitive recursive predicate : e is the Godel
numbser of a formal procedure for calculating one function, g, given
another, and y is the Gédel number of a formal application of this pro-
cedure starting with a set of equations having f as its principal function
letter and substituting x for the variable of f'

U(y) as the particular primitive recursive ﬁrnchon which takes on the
value, g(x), for the least y which malkes T (' fl (y), e,x,y) true.

The concept degree of recursive undecidability is based on that of reducibility
of decision problems. There have been three precise formulations of this idea : Turing
reducibility, Kleene's general recursive reducibility, and Post's canonical reducibility.
These concepts have all been proven to be equivalent. Using the notation of Kleene,
where f is a function and f is its degree : there is a Godel number associated with the
system of equations defining any function, f, recursive in another function, g. Thus
there can be only countably many degrees f such that f € g for any given g ; each
degree has at most countably many predecessors and consists of at most countably many
functions. Since there is a continuum of functions, there must be a continuum of degrees.

(9)

Spector'”’ showed that the degrees are not dense in themselves. That is, given
degrees a, ¢ with a< ¢, there does not always exist a degree b with a<b<c. In fact for

any degree a, there is a degree c» a with no degree between. Thus among all degrees>a,

there is.a minimal one. In particular there is a minimal degree of recursive unsolvability.

It will be shown in Chapter Ill, Corollary 2 that there is a sequence of simul-

taneously recursively enumerable sets whose degrees are independent. Therefore, there



must be at least countably many different degrees of recursively enumerable sets. Kleene
4 -

and Post( ) abstract from the degrees of unsolvability of sets to degrees as such and prove

that the degrees less than cr equal to 0' form an upper semi-lattice, where 0' is the

degree of the completion of a recursive function.
Remark 1 : The set of degrees form an upper semi-lattice.

Let A] , A2 be two sefs ; and let degree (A]) be aj- Let the set
A]‘JA2 = (2" 37 I ne A] &y e AZ} . If degree (A]‘/Az) is defined to be (a] U 02),
and (a] U 02) is called the least upper bound of a, and Ay then a]*( (a] u a2) and
an< (a] U 02). Therefore given any iwo degrees of sets, their least upper bound is also

a degree of a set. The degrees of sets form an upper semi-lattice.

Remark 2 : It will be useful to note that every countable, partially ordered
set, P, is isomorphic fo a subset of a set NR’ or in other words imbeddable in NR’ where

N_ is defined as follows : N is the range of the relation, R, N is the natural numbers,

R R
the partial ordering € R is any recursive, reflexive, anti-symmetric and tfransitive relation

and R = {(x,y) I x,y, € Nand x g Ry} . We say that g R is recursive if the predicate

(mg R n) is recursive.



CHAPTER I

POST'S CLASSIFICATION

Post's paper(é) presents a portion of the theory of recursive functions of positive
integers in an intuitive and informal style. He notes that if a problem, P], has been
reduced to a problem, P2, a solution for P2'yields a solution to P], while if P] is proved
to be unsolvable, P2 must also be unsolvable. As in the definition for sets : two unsol-
vable problems are of the same degree of unsolvability if each is reducible to the other ;
one of lower degree of unsolvability than another if it is reducible to the other, but not
vice-versa ; and of incomparable degrees of unsolvability if neither is reducible to the
other. Post states that the problem of determining the degrees of unsoivability of unsol-
vable decision problems is a primary probiem in the theory of recursively enumerable sets.
He shows at an early stage that there is a highest degree of recursive unsolvability, that
of a set he calls the complete set, K, which is any set such that the decision problem for

every recursively enumerable set is reducible to the decision problem for it.

One of the simplest ways in which the decision problem of a set of natural
numbers, .S], would be reducible to a set of natural numbers, 52, would arise if there
was an effective method which would determine for each positive integer, n, a positive
integer, m, such that n is, or is not, in S] according as m is, or is not, in 52. If
somehow we determined whether m is, or is not, in 52, we would determine n to be, or

not be in S] . We say S] is many-one reducible to 52 if m = f(n) where f(n) is a recursive

function ; and one-one reducible if in addition different n's lead to different m's.




sefs

6 . . . .
Posf( ) defines four non-empty classes of recursively enumerable, non-recursive

iii)

The class of seis called complete sets is the family of sets, K, with the
property that the decision problem for all recursively enumerable, non-
recursive sefs can be reduced in a one-one manner to that of a complete

set.

The class of creative sets is the family of sets, R, such that there is a
recursive function, f, defined on some set of natural numbers A in the
complement of R and for all n ¢ A f(n) is in the complement of R, but
not in A. Post shows that a complete set K is one-one reducible to a

creative set.

The class of simnle sets is the family of sets, S, whose complements are
infinite, but contain no infinite recursively enumerable set. Post shows

that a creative set is many-one reducible to a simple set.

The class of hypersimple sets is the family of sets, H, whose complements
are infinite and have the properf); that there is no infinite recursively
enumerable set of mutually exclusive finite sequences of positive integers
such that each sequence has at least one member in the complement.

Post shows that every hypersimple set has a lower degree of recursive
unsolvability than every complete set relative fo many-one and one-one

reducibility.



Post leaves open the question : "Do there exist sets of degree of unsolvability

less than K?".

If this question is to be answered in the affirmative, he offers the class of
hypersimple sets as a possible class of candidates from which to construct such a sef.

(1)

This conjecture was disproved by Dekker® ’ who showed that to any recursively enumerable
non-recursive set G there corresponds a hypersimple set, H such that G and H are redu-

cible to each other.
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CHAPTER Il

SACKS : THE PRIORITY METHOD

Sacks designates as the "priority method” any method of proof which owes its

inspiration to the solution of Post's problem given by Friedberg or Muénik. He sets up

some new apparatus to reveal the details of a recursive construction in which one attempts

to set up a certain staius quo at an early level and make decisions in the future which

will be unlikely to disturb this arrangement. In effect one gives a priority to the existing

situation even if it means definitely not creating the advantageous situation at a later level.

Sacks defines the following machinery :

Requirement : R = ((F', H’)

Meet

iel (iisapositive integer)} ,
P i i

FAH =0, andF' = h%,.“,né , H -(md.“.,mH?.

A requirement R is a sequence of ordered pairs of finite disjoint

sets of positive integers.

A set T meets a requirement, R, iff for some i € | FieT and
H'nT=o0.

where L is a finite subset of |. If L = {h ;, ««., h } then
h h o m

i(L=2%...+2"

. As this function is the core of all

constructions, it is shown fo be a 1 ~ 1, onto function :



Function :

Onto :

One-one :

11

Let L be the finite set (ho, cery, hm} .
h h] h
(L) =2°%+2" +...+2

m

Let L' be another finite set equal to L.

If L=L" then L' has the same members as L, and

h hy hm
i(L')y = 2 42 4+ .. +2M= j(L), so | is a function.
a
Let n be any natural number : if n is even, n =2 ° bo’
a
o

(ao? 0), andif nisodd, n=2 " m (ao = 0), and m = (1 +b])
where b] is even and bo, b] are [ess than n, so this decomposition

can be done at most a finite number of fimes.

(o] G.I a
2% + 20+ ..o+ 2™an ..
o o +a] qo+a'l + .00t
.+ 2

=
Il

m

If j(L)=j(L')=n. It is easy to show L = L' by complete induction

onn.

Suppose for all k<n : k = |(Lo) = |(L0 ) implies L0 = Lo where

Lo’ L(') are finite sets. There are two cases : n even: Then n=2b

where b is unique and b is less than n, so b = i(LO) = i(L(; ) implies
o =Lo =Ch, h} . SetL= h +1,h +1, ..., h +I

m o 1 m
Since multiplication is well-defined, this is the unique set L with

j(L)=2bandso L =L". n odd :
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Then n =1 + b where b is unique, less than n and even.
b= |(Lo) = i(Lo) implies L0 = Lo . (Lo U {0} )is the unique
set, L such that j(L) = n, since addition is a well-defined

operation. Therefore L = L'.

Enumerate requirements :  Let t be a function whose domain and range are

Priority Set :

included in the natural numbers. Restrict domain t to those s
which make (i—]((f(s))o)n i-]((f(s))]) = 0)0 true statement, and

calculate (t(s))z.

The symbol (f(s))i is defined to be : the power to which the irh
prime is raised in the unique prime number decomposition of the
natural number t(s). If

i ((s)), ) s called F°,

j—]((t(s))]) is called H®, and g(i‘(s))2 is called g(s), then t
enumeraies requirements by assigning the number k = g(s) to the

set R ; Rk = {(FS, Hs)lg(s) = k } .

00
T, of the functiont: T = U Ts’ where TS is defined inductively :
s=0
s=0T =20
o

s > 0 There are two cases :

i) if (a), (b), or (c)is true, then TS = TS_] ;
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(a) There is an r € s such that g(r)< g(s),

>0, FET |, FST, HAT | =0, and

1
H'NF # o.
(b) There is an r <s such that g(r) = g(s),

(>0, T |, FeT, andHNT_, = 0.

r=1’ 1

(c) HNT _, # O.

ii)  if none of these conditions are true : = Ts-l UF.

It will be useful to note that the set Ts is dependent only on the

values of t(i) for i ¢ s, and the sets, Ti for i<s.

Met at stage s : Rk is met af stage s if s> 0, g(s) =k ; Fsi Tc_] , and F°S Ts'

Injured at stage s : Rk is injured af stage s if there isanr<s, Rk was met at

stage r, H'N Ty= 0and H'N T, # 0.

]

The following observations on the definitions will be needed later in many of the

proofs.
If R is met at stage s, then

i) Clauses (a), (b), and (c) must be false at stage s ;
i) HNT = 0;and

iii) if R is not injured at any stage ofter s, T meets Rk'




Proof :

i)

iii)

14

— H s
If not, then Ts = Ts_ If Rk is met af stage s, F ¢ Ts-—l'

1°
but F°C TS. This contradicts Ts = Ts-l’ so (a), (b), and

(c) must be false at stage s.

Since (c) is false at stage s, then HN Ts-l = 0. Since Rk
is a requirement, FPAH = 0, and Ts = Ts-l U F implies
HnT =o0.

s
As Rk is met at stage s and not injured at any stage s'» s,
F°c T_and HN T, =0foralls'5s, but then F°< T and

H’N T =0, and T meets R

k*

Looking at this in another way, we have defined T in a manner which will enable

us to make T meet g(s) at stage s whenever we set TS = TS_] U F° and manage to keep

Tun H® = Ofor all ups. If we don't want or have been unable to make T meet Rg(s) of

f tT = .
stage s we set T TS_]

i)
i)

. $
If (¢) is true, HN Ts-] # 0, so T cannot meef Rg(s)'

If (b)is true, then for some r< s :

1) Rg(r) was met at stage r.
Proof : Frgé T ,andFST.
—_— r-1 r
2) Rg(r) is not injured at any stage v, vr< u<s.
Proof : If Rg(r)was injured at stage u, then H'N Tu # 0. Since

T €T
u

-1 H'N TS_] # 0 contradicting the statement H'N Ts__] =

0.
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3) As we do not wish to injure Rg(r) at any future stage, we set
Ts - Ts—]
iti) If (a) is true, then for some r< s :
1 R was met at stage r.
) g(r) g

Proof : same as ii) 1).

2) Rg(r) is not injured at any stage v, r < u<s.
Proof : same as ii) 2).
. . e s
3) Rg(r) would be injured at stage s, if Ts = Ts_] uFrF.
Proof + Since HOF* # 0, H'N T # 0. Therefore T =T _,,
because we do not wish to injure Rg(r) at stage s for the sake of
meeting Rg(s) at stage s. Thus a higher priority has been assigned

to Rg(r) than to Rg(s)'

Lemma I : If r¢sand Rl< is met at stage r and at stage s, then there isa v

such that r< u< s and Rk is injured at stage u.

Proof : If Rk is met at stage r and s, k =g(r) = g(s), and Fr$ Tr-l’

FET and HN T =0; FT _, FPFST_and H'NT_=0. Here T =T . U F, so (b)
r s—1 s s s s-l

is not true, (for if (b) were true, then TS = Ts~l ). The only clause of (b) it is still possible

to contravene is H'N Ts-] =0: Rk is met at stage r so H'N T,y =0and H'N Tr = 0 must

follow, since HNF' = 0. If H'N Ts_] # 0, there is a u r<u< s such that Tuﬂ Hr;é 0,

and since there are only a finite number of Ti's between Tr and Ts' there is a first u, and Rk
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is injured at this u.

It will be convenient to define m. fo be the number of times a requirement Ri can
be met. Ri is then injured at least m. = 1 times, since between every two stages at which

it is met, it must be injured at least once.

Lemma ll : For each k, the set [.5 I Rk is injured at stage s] has cardinality

less than 2k, and the set ( 5 I Rk is met at stage s] has cardinality at most 2k.

Proof : By complete induction on k :

Assume for i< k : the cardinality of {_s , some R. is injured at

stage s) is less than 2'.

Wheni=0,1, ..., k =1, how many injuries can be done to any of the Ri's? For

any i, there can be at most 2 - 1,

k-1, k-1 k-1 | |
I 2-1)= 3 2°- ¥ 1 =21 -k<2-k.
i=0 i=0 i=0
Set : R = (s I there is i< k such that Ri is injured at stage s_} , SO

R<2k -k

S = [s l there is i (i < k) and Ri is met at stage s} .

Since each R can be met at most once more than it is injured, S can be at most
k"“] k"'] k
I m = L (m - 1)+k<2 -k+k<2
. . i
i=0 i=0

k
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In order to prove that an Rk is injured at any stage s less than 2’k times, it is

sufficient to show :

If Rk is injured at stage s, there is an i< k such that Ri is met at stage s.

Proof : Suppose R|< is injured at stage s :

By definition there is an r < s such that Rk was met at stage r ;

H N Ts_ =0and H' N Ts # Owhich implies H'N Fsyé 0. Since Rk is met at stage r,

1
F¢ T _, FST, and H'N T =0. From above H'N T, =0, and HM T_# 0 implies
HOF# 0, andas N T # HN T, T # T . Therefore T =T_, U F and
(a), (b) and (c) are all false. It is true that F'¢ T, FE T, HNT_ =0and

H'n F # 0, so (a) and (b) can only be a false if it is not true that g(r)¢g(s), or

g(s)<g(r) =k.

Now we have to show that i = g(s)<g(r) = k and Ri = Rg(s) = [(FS: H®) I g(s) = i)
is met at stage s. We have : Fsi',t Ts-—] and F°E Ts ; from above
HN Ts-] = 0 or (c) would be true, contradicting TS # TS_] ;
HNF° =0as Ri is a requirement, so

HNT =0.
S

Therefore R is met at stage s for some i< k.

Remark 3. For any requirement Ri(i s k), there is a u, such that for any

s »u, R is neither injured nor met at stage s.
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Proof : We know that RI< is injured only a finite number of times, and
that between any two meets there is an injury. Therefore, there are only a finite number
of stages at which RI< is met, and there is a finite u at or after which Rk is neither met

nor injured.

A requirement is defined to be t-dense iff for each finite set L, there is

an s » 0 such that g(s) =k, FS$TS_], HSN Ts-l =0and LNFS = 0.
Theorem | : If + enumerates requirements, then
i) T, the priority set of t, is recursively enumerable in t ;
and
ii) T meets every t-dense requirement.
Proof : It is necessary to show that if Ti is recursively enumerable in t

for all i, and Ti+] is obtained from Ti by a recursive function, then T is recursively enum-
)

erable in t. From the definitionof T, T = 'UO Ti where TiQ Ti-—l’
I:

U Fi if (a) and (b) and (c) are false.

Ti-- =Ti if (a), (b)or

1

(c) is true, and Ti = Ti—]
By complete induction on i : Assume r> 0, Tk(k <r) is recursively enumerable in

t. It must be shown that Tr is recursively enumerable in t. In particular, r = 1<, Tr—l

is recursively enumerable in t. This means Tr-—l = { Y, I h(x) = Y and h is recursively

enumerable in f] .

Coase 1: If T = Tr-—l , obviously Tr is recursively enumerable in f.
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Case 2 : If Tr = Tr- U F where F' = i-] ((t(s))o) : i_] is a one~one

1

function, therefore i._](t(s))0 is completely defined whenever

(f(s))o is, and i_] ((f(s))o) is recursively enumerable in t; so

r. . .
F' is recursively enumerable in t.

. r . o
Enumerate Tr ¢ Since Tr-l and F' are both finite sets, Tr can
be enumerated by calculating a term of Tr-] and then a term
of F" and so on. The union of two sets recursively enumerable

in t is recursively enumerable in t.

i) If T is to meet a requirement, Rk ; Rk must be met at some stage and not
injured thereafter. There is some stage u at or after which no requirement, Ri’ (igk)is
met or injured. Choose this u, and define L= U (HW U FW). We determine s, by

Wg U
noting that since Rk is t~dense, there is an s> 0 such that :
i) g(s) = k,
. ESET
i) FPET_,

i) HN T_; =0, and

1
. s
iv) FFaL = 0.
Choose the least s which satisfies these conditions. We have set Ts = Ts-] at this stage s,
since s is greater than u.  To determine r : We recall that if condition (b) is true at
stage s> 0, there is an r < s such that Rk is met at r, not injured up to stage s, and

g(r) =g(s) =k. I will be shown in a few lines that (b) must be frue when u, s, and r are

chosen thusly.
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We now note that

i) s> u, since if sg v, FPe L, contradicting FAL= 0; and
i) r< u, since R!< is met at stage r, and u was chosen so that

at or offer u, no requirement Ri(i < k) is met or injured.

If condition (b) is true at stage s, then Rk is met at stage r<s, and neither
injured up to or at stage s, nor at or after stage u < stage s. Therefore Rk is met at
stage r and not injured at any stage after r. [f condition (b) is true af stage s, T meets

R . To show that condition (b) must be true at stage s :

k

1. If TS # Ts-] U Fs, then (a), or (b), or (c) is true af stage s.

Recall we did set Ts = Ts~] . By the definition of Rk is t~dense,

S

s = £ T :
FET | andsoT =T , #T | UF.
2. If both conditions (c) and (a) are false, then (b) is true.
i) If (c) is true, HN TS_] # 0, contradicting Rk is t-dense.
So (¢) is false.
i) If (a) is true : There was an r< s such that g(r)< g(s) =k,

H'OF® # 0, and Rk=g(r) was met af stage r. Since r is
less than u, H'C L, but HNF® # 0 implies LN FS # 0

confradicting the t-denseness of Rk . So (a) is false.

To generate particular sets A and B which are non-recursive, recursively enumer-

able and have incomparable degrees of unsolvability. These sets will be generated
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inductively by stages, s :

s =0, letT_=0, F =H®°=0, andg(s)=0;

s > 0, Iei'AS:{n’QneTs__]} ;BS={n|2n+]eTs_]}

Let Fso and f: be the characteristic functions of As and BS ;

0 ifsiseven; e =(s)
i=1=~(s) = °
® 1 ifsisodd.

Case 1: Em)Osmgs{Ey)yss [T: (vf‘; (y), e, p:, y) and U(y) = ]]

ts a true statement. ?;(y), T: (?;(y), e, p’Z ., y), and U(y)
are defined in the introduction as in IM, Theorem IX * and

. . m th . .
relevant surrounding material, and P 15 the e prime raised

il
to the m' " power .

If v is the greatest value for m € s which makes this predicate
true, then set :

F {20 +1 - 1)

{Zn + i I fi(n)= 1 and ng s}

HS

g(s)

il

2e + i + 1.

I

Case 2: Otherwise, set F*=H®=0and g(s) = 0. Now Ts = Ts-—] if

conditions (a), (b), or (c) on page 13 are true, and TS = Ts_] U F
o)

otherwise. We let T = _U] Ti .
':
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Remark 4. From these definitions Ts_]ﬂ H®=0foralls. Ifi=0,
HY = {2n l f;)(n)= landn¢s} , soif 2ne K®, n is not in As and 2n¥ Ts—] .
Fi=1,H = { 2n+] If:(n)=l andngs }, so if 2n+ 1 isin H®, n is not in B, and
Z2n + 1 is not in Ts—] .
Let (s) = ZI(FS) . 3i(Hs) . 59(5) ; then t is defined for all s. If the one element
of F* is even, then i =1, and all the elements of H® are odd, and vice versa. Therefore,
t enumerates requirements, and T is the priority set for t. Hence T is recursively enumer-

able in t.

LefA={n|2neT} and B = {n|2n+]eT} . then A, B are both
recursively enumerable, and A = U A ; B = U B where {A} and
s»0 syo  ° " s>o0

{BS} o e nested sequences of sets. If f and t ! are the characteristic functions for
$>0

Aand Btheni=0, 1: f;(n) =f'(n) for a large enough s.

Corollary 1 :  There are two recursively enumerable sets whose degrees of

unsolvability are incomparable.

Proof : It must be shown that A and B are two recursively enumerable

sets whose degrees of unsolvability are incomparable. By the Normal Form Theoreml

Theorem IX * . .y - .. .
: For every function, h, which is recursive in a function, g, an e can be

found such that h(n) = U(py((j)i<y g(j) is defined and T: (g(y), e,n,y))) where U and

1 . . . .
T, are the particular primitive recursive functions.

1
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If B were recursive in A, there would be a finite set of equations, E = E] ’
E2, ceey En’ such that each Ei(] £ j§ n) is one of the primitive recursive schemata, or
the characteristic function for A, or is derivable from the characteristic function for A
by a finite number of applications of the primitive recursive schemata, and En is the

- . . - 1
characteristic function for B. That is, F‘]would be recursive in fo, and f would be

expressible as :

Flin) = U (uy((i) i< y °() is defined & 11 (%), e,n,¥))) for some e and all n.

To show that B is not recursive in A. The set B is not recursive in A if the set
of equations defined by any Godel number, e, is not a set fitting the description of E,
or the set of equations defined by e does not forecast whether or not some element is in

B. Let us define the function

e} () = Uluy(() | <y £° (i) s defined &T) (F°(y), e,n, ).

o
There is no loss in generality in assuming that {e}  is the characteristic function for

some set of natural numbers, since if it is not then it is not equal to f', the characteristic
, . £ 1 1,
function for B. If for all e, there is at least one n such that {e}  (n) # f(n)thenf is

. . O
not recursive in f .

If R is a requirement, either it is or it is not t-dense.

Ze+1

If R2€+] is t-dense, then by Theorem I, T meets R2e+] , and there is an s with

the following properties :
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i) g(s)=2e+1. Hencei=1- (s)c> = 0, but g(s) # 0 implies that Case 2

is not true, since if Case 2 were true, g(s) = 0. Case 1 is true, and there must exist an

r and a y such that

y<s & T:(f?(y), e, p;, y)and U(y) =1: EQ.1.

F* = {2p; + 1} ; and H® = {2n|f2(n)=lcmd n< s]
.o ] r . 1, r
i) FFET. Thus P, € B= {n|2n+] e T} , thatis, f (pe)=0.

iii) HNT = 0. Consequently, if any element, 2n is in HS, it is not in T, and
n is not in A ; fo(n) = 1. From the definition of HS, f?(n) =1forall nss, so fC;(n) = fo(n)

forall ngs. Since ygs, it follows from EQ.1 that
© r 0 . Oy + . 1 »o r _
(e} (p,)=Uly((i) i<y f(j)is defined and T (F"(y), e, p_, y)}=1.

o
So for all e, there is an r whereby 1 = fe}f (p;) # f] (p;) = 0.

If R2e+] is not t~dense, there is a finite set, L, such that for all s> 0

i) HnT . =0,

s—1
i) LN F® = 0, and
iii) g(s) = 2e+1;

imply iv) F°c Ts-—] .

We know (i) is true by Remark 4.
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Since L is finite, there is an m > O assuring 2pg' + 1 is greater than all members

of L.

Suppose p: isin B: Then 2p: + 1isinT, and for some s> 0, 2pem + Tisin

T -T .. We can be sure that thisT =T
5 s-1 s s~1

F® is the set {2p;n + 1} . As m was chosen fo ensure (2p:: + 1) would be greater than

U Fr # Ts—l' sos F*is non-empty in fact
all membersof L, FFA L = &, so (ii) holds.

Case 2 is not true, since if Case 2 were true, F* would be empty. Case 1 is true,

whereby g(s) = 2¢ + 1 ; (iii) is verified for this s.

It follows from Ts- U fF # Ts—] that Fs.‘t Ts—l . When pem is in B there isan s

1
for which (i), (i), (iii) hold and (iv) is false, hence p;n is not in B, and f (p':) =1.

o
It is now necessary to show that p;n is in A by showing that {e}f (p;n) = 0.

Suppose the contrary :
° m . o s Oy - . 1 o m
{e} (pe )=1=Uuy((j) j<yf(j)is defined & T . (F(y), e, Pg ¢ y)).

In particular there is a y such that £2(j) is defined for all j<y. Since f:(j) = £°(j) for all
sufficiently large s, choose an swithi=1 - (s)o, e= (s)] , mgs, andygs. Case 1is

true for thiss.

This means F° = 2per +1 whererzm, so 2per + 1 is greater than or equal to
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Zp;n + 1 which is greater than all members of L, so FAL=0. (ii) is true.
At this stage s, as Case 1 is true, g(s) = 2e + 1, so (iii) holds.

From our earlier argument, we know p: is not in B for all m > O such that 2p;n +1
is greater than all members of L. Certainly then for r3 m, p; is not in B ; 2p; + 1 is not in

T ; F° is not a subset of T, and, a fortiori, FS¢ Ts-] contradicting the hypothesis that Rze.ﬂ

is not t-dense.

)
Therefore (e} f (p;n) = 0 and f](p::) = 1.

B is not recursive in A.

To show that A is not recursive in B :

If A were recursive in B, f° would be recursive in f] and ° would be expressible as :
fo(n) =U(uy((j) j <y f](i) is defined and T: (F](y), e, n, y))) for some e and all n.

Let us define the function
1

f -
{e} (n) = Ulpy((j) i<y f](y) is defined and T: (f](y), e, n, y)),

a characteristic function for some set of natural numbers. If for all e, there is at least one
1

n such that fe}f (n) # fo(n) then f° is not recursive in fi, and A is not recursive in B. This

argument is identical to the one showing B is not recursive in A with the exception of the
o

L f
notational changes from {e} to {e) .

To expand this idea we can show that there is a sequence of non-recursive,
recursively enumerable sets which have incomparable degrees of unsolvability. The con-

struction of this sequence {Ai'! i 20 is very similar to the construction of sefs A and B in
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. s 8 s _ 14+n
the previous corollary. We generate the sets F°, H, Ts’ Am = {n | Po € Ts—l} by

. . . T4n
induction on stage s, and define Am = {n I P, € T} .

s =0 F® = H° = T_ = Oand g(0)=0.
s >0 For each m > 0, let An As(m,n) be the representing function of
An':', u= (s)o, e= (s)] . The lambda notation is due to A. Church(lo).

If A(n) is a term and A contains n as a free variable then AnA is

the function defined by the condition that (A\nA(n))}(7) = A(7).

Let fl; denote the function Amn | A (m + sg((m + 1) = u), n) where the subscript

m + sg((m + 1) = v) = [m + 1 ifu<m

m ifuzm,
is a device fo ensure that the first component of the set classification does not equal u.

For reading ease, name this quantity v(m). Again there are two cases :

2 b
Case 1 : (Em) 0<b s (Ey) yss (T] (f:(y,y), e, P, y) &Uly) =1).
If r is the greatest value of b which makes the predicate true,
r
T L
set : F = {_pu e}
s _ T+n v _ <
H = {pv(m) Ifs(m,n)—lm\s &ngs}
ois) = 2Y. 3%,
Case 2: Otherwise, set F=H = 0, and g(s) = 0. In either case

T =T, if (a), (b)or (c) are true, T.=T 4V F® otherwise, and
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For every s : F is either empty or a power of the uth prime and
H® is either empty or the set of powers of some primes, but never
the o prime. In other words for every s, P\ H® = 0.

Defining t(s) = ZE(FS) . 3i(Hs) . 59(5) t enumerates requirements,

T is the priority set for t, and T is recursively enumerable in t.

Remark 5. In this sequence it is also true that HM Ts-—l = 0 for all s.

140 . . B L = 1 T )
{pv(m) lf (m,n) = 1' mgs & nss} or, more simply, if pv(m) isin H’, then n is

not in A° for m # u, which by definition of A® , ensures that p]-l-n isnotinT ..
m m v(m) s=1

Let AU = { n I lem € T} for all u20. and An A(u,n) be the representing

function for AU.

Since T is recursively enumerable, A o A . are all recursively enumerable,

'II

and Au = U AU where for each v, (A } s » 0 is a nested sequence of sets. If FU
$ >0

denotes the function Amn | A (v(m), n), we know

0 n e A
f%(m,n) =
1 n £ A,

. u
where m can be any number not equal to u. For a big enough s, f%m,n) = fs(m,n).

{ } is recursively independent iff for each u o, the set Au is not
recursive’in the function Amn | A(v(m), n).

The sequence of sefs is simultaneously recursively enumerable iff every
set in the sequence is recursively enumerable.
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Corollary 2:  There exists a sequence of recursively independent, simulta-

neously recursively enumerable sets.

Proof : By our construction of A , A, ... we know that {A.} is
o’ "l i»o

a sequence of simultaneously recursively enumerable sets. In order to show independence,

we must prove that AU is not recursive in any finite number of the other sets Ai(i>,0), (u#1).

Suppose AU was recursive in some other sets of the sequence, then the charac-
teristic function for Au would be AnA(u, n) = U(py((j ) k) i, k< yfu(i,k) is defined and
T']?(? u(y, y), e,n,y))). Let us define the function

U

ge} f (n) = U(uy((i)(k) i,k,< y £ (j, k) is defined and T fﬁu(y,y),e,n,y)))-

U
., _ . .
We can state that [}~ is the characteristic function of some set of natural numbers, since

if it is not, then it is not the characteristic function for AU. If for all e, there is at least

U
one n such that {e} f (n) # A(u,n) then AU is not recursive in the other sets of the sequence.

Letw = 2" . 3% and proceed as in Corollary 1.

If Rw is a requirement, either it is or is not t-dense.

If Rw is t~dense, then from Theorem |, T meets Rw and there is an s with the

following three properties :

Y. 3%. Since g(s) # 0, Case 1 must be true for

this s and there isarand a y
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2v~
y$s & T](fu(y,y), e, p;, y)and Uly) =1, £EQ.2.

r
F° = {pl+pe} ; and

]

H® {p\]/z;) IF:(m,n)=l mss & ns s)

. s r T+n r
i) F°ST. Thuspe € Au = {nlpu € T} ,orA(u,pe)=0.

iii) HAT = 0. Consequently if any element p\]/—(t:) e H, it is not
inT and n is not in Au’ fu(m,n) =1. From the definition of H® :
F: (m,n)=1forall m, ngs, so fu(m,n) = f: (m,n) for all m, n,% s.

Since y s, it follows from EQ.2 that

V)
(e} " (R1) = Uluy((iXk) .k, <y £(j, k) s defined &
T]Z(?U(y,y), e, p, Y=1.

V)

So for all e there is an r whereby 1 = {_e} f (per);éA(u, p; )=0.

If Rw is t-dense, then there is a finite set, L, and for all s> O :

. s _
i) HNT | = 0,
i) LAF® = 0, and
iii) g(s) = w together

imply iv) FeT

We know (i) is true by Remark 5.
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b

+
Since L is finite, there is a b ? 0 assuring that pl Pe s greater than all members

b
of L. AsF® is either empty or {pl+pe} ,FAL = 0; (ii)holds.

Let p: be in Au'

b b

Then pl+pe is in T, and for some s 0, pl"'pe is in TS - Ts-] . We can be sure

that Ts = Ts_] u F # Ts—l’ so: F'is non-empty and Case 2 is not true. Case 1 is true

whereby g(s) =w, so (iii) is verified for this s.

It follows from Ts-l U F # Ts—l that Fssli TS_] . When p: is in Au' there is an
s for which (i), (ii), and (iii) hold but (iv) is false. Hence p: is not in Au' A(u, p:) =1.
: b
It is now necessary to show that (e} (pe) = 0. Suppose the converse :
¥ b . . Ure oy s . 2mu b
{e} (p ) =1 = UGuy((i)i) i, k, < y £(j,k) is defined & T (F (y,y), e, p_s ¥))-

In particular there isay, fu(i,k) is defined for all j, k, ¢ y. Since fL;(i,k) = fU(|,k) for all

sufficiently large s, choose a suitable s such that (s)o =u and (s)] =e. Case 1 is true for

this s.
_ s ]+pr l+p .
This means F~ = {pu e} where r 2 b, so P, © isgreater than or equal to
b
pl+pe which is greater than all members of L, so FNL=0. (i) is true.

At this stage s, as Case 1 is true, g(s) =w, so (iii) holds.
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. b . .
From our earlier argument, we know p, isnotin AU for all b > 0 such that

b

+
pl]J Pe is greater than all members of L. Certainly then for r2 b, p; is not in Au’ and

r
pl+pe isnot inT; F® is not a subset of T and, a fortiori, FS¢ TS_] .
b b
Therefore {e} (pe) =0 and A (u, pe) =1.
AU is not recursive in Ai (i # v).

Since the degrees of unsolvability of recursively enumerable sets are partially
ordered, the degrees of any sequence of recursively independent, simultaneously recursively
enumerable sets can be imbedded in the upper semi-lattice of degrees of recursively

enumerable sets as a result of the next corollary.

Coroilary 3 :  If P is a countable, partially ordered set, then P is imbeddable

in the upper semi-lattice of degrees of recursively enumerable sets.

Proof : It will be sufficient to show that NR is imbeddable in the upper

semi~lattice. We show that N is imbeddable in the upper semi-lattice of degrees of

R
recursively enumerable sets by showing that if m, n ¢ N and Cm, Cn are recursively
enumerable sets then m $pn iff Cm is recursive in Cn . In Sacks' terms this is an order~

isomorphism ; a monotonic property, an order preservation. We must construct a suvitable

sequence of sets (C;_}i € NR.
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Take {Ai] i > 0 to be a sequence of recursively independent, simultaneously
. n+] . .
recursively enumerable sets. For eachm2 0, letB = {p l neA}: éachB is
m m m m
recursive in Am’ so the {Bi} i 2 0 are simultaneously recursively enumerable, and
recursively independent. In addition the Bi are pairwise disjoint since Bi contains only
th . . . .
powers of the i prime. Let Cm =U {Br I rsp m} ’ Cm is recursively enumerable, since

the Bi's are simultaneously recursively enumerable and & R is recursive.

It is now necessary to show that CU is recursive in Cv if and only if usg R Vr

where u, v are in NR'

Suppose C is recursive in C , and ug_v: ThenB NC =0sinceC = U B,
U v TR U v Ve RV r
(v %R v) and {Bi} are disjoint, and Cv is recursive in the sets of the sequence

{Bi} i20 i#u, since x is in CV if and only if there is an m and an n such that x = p;H

and m g, vand x is in Bm . We know that the { Bi} are independent, so BU is not recursive

R

in Cv as it is recursive in the other Bi(i #u), but CU is recursive in Bu’ and therefore not
recursive in Cv' This contradicts the given, and it follows that C, recursive in Cv implies

ug, v.

R

If vg, v, we must show that CU is recursive in Cv. From u rsR v, CUE_ Cv SO :

R

- . . . , n+l .
x is in CU if and only if there is an m and an n such thai x = P where m S Y and x is in

B . We saw that € | was a transitive relation so m g R Y and u Sp Vv imply mg RV by
m

R

definition C = U Br(r $ Rv), 50 Bm§ C. Since the Bi's are disjoint, x is in Bm if and oniy

if x is in Cv ; or x is in Cu’ is equivalent to x e Cv : or CU is recursive in Cv.
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CHAPTER IV

FRIEDBERG'S SOLUTION

In 1956 Richard M. Friedberg(z) discovered a solution to Post's problem. His

original argument went as follows :

f

If f] is recursive in f2, then there is an e, for which f](x?(e)) =U(uyT 2(e,x?(e ) y)
for all numbers x?(e), defined for this e and all a.
In order to show that f] is not recursive in f2 :
i) define a number x?(e) for every pair of integers, a, e ;
a'-1
f .
i) If at some stage a'( p a), T]2 (e,x?(e),y) and U(y) = 1, then we set

(<] () = 0.
£
iii) We ensure (as nearly as possible) that T]2 (e,xa(e), y) and U(y) = 1 will

be true for all a”» o', (see Remark F.5).

O(EaF?(x) =0)(i=1,2)
iv) fi(x) = {

1 otherwise

It is necessary to define f.! and f2 and show that they are partial recursive functions.

Since they will be (0, 1) valued, they can be considered as representing functions of recur-

sively enumerable sets.

TO DEFINE : x? and f? . (i=0,1);

a =20 f(])(x) = f;(x) = 1 forall x

2% for all e.

x‘]’(e) x;_(e)
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Case 1 :

Case 2:
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(a odd)

a=2b+1 Let e, be the number of different prime divisors of b.
) k)

ii) x?(e) = x?-](e) for all e.

57! (x) for all x.

fa—l

. a-1, a-1 _ 2 a-1 \
Subcase 1.1: |If f] (x] (ea)) =1 and (Ey<o)T] (ea,x] (eo),y,
and U(y) = 1, then

-1 -1 -1
iii) . f?(xc]l (ea)) =0; f(]](x) = fC]l (x) for all x # x? (ea),

i

iv) .1 x;(e) 26(20 +1)all ey e

_a-1
x2(e) = %, (e) allecg e,

Subcase 1.2: Otherwise,

iii) .2 f?(x) = f?_](x) for all x,

iv) .2 x;(e) = x;—](e)for all e.

(a even)

a=2b+ 2, where e, is the number of prime divisors of b.
) #260 = 76 for all x,
i) x;(e) = x;-](e)for all e.

Fa-]

-1, a-1 1 -1
Subcase 2.1 : If fg (x; (e)) =1 and (Ey< a)T] (ea,x; (eq), y)

and U(y) =1, then
iii) . f;(xg_](e))=0; f;(x)=F;—](x)for all x;rfx;_](ed),

iv) . x?(e) = 2°(2a + 1) for all e> e,
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x?(e) = x?—](e) for all eg e,

Subcase 2.2: Otherwise,
i) .2 f;(x)

iv) .2 x‘]’(e)

f;“(x) for all x,

i

xT_](e) for all e.

0 fEafi(x)=0 (i=1,2)
Define f.(x) = :
! 1 Otherwise.

Then f, and f, represent recursively enumerable sets.

] 2

Remark F.1.  This result is used in Friedberg's Lemma | and corresponds to Sacks'

Lemmal.

If fia(x) changes value at stages a =r and a =5 (r¢ s) from 1 to 0, then there isa v,

r<uc<s, such that F;J(x) changes value from O to 1 at stage u.

Proof : Given f;_](x) =1, f; {(x)=0
s=1
fi

(x)=1, f?(x)=0

Here f. (X) =f ( (X) I, andr - s =k, some finite number. If f?—l(x) = fgs_l_])(x)
(fori=1, ... - 1), then fs ]( )= f?—k(x) = f;(x) which is false. So for some stage

ar<acds fi (x)=1. Since there are a finite number of stages between r and s, there must

be a first one at which this occurs. Call this stage "u".

Remark F.2. If x?(e) changes value infinitely often, f?(x? (e)) changes value
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. . . . a
infinitely often, since at any stage a at which x; changes, f? does not.

If f?(x) changes value from 1 to 0 at n stages, it must change value from 0 to 1 at
at least n - 1 stages and at at most n + 1 stages, and af each of these stages x?(e) changes
value. In particular, if f?(x) changes value from 1 to O at infinitely many stages there are

infinitely many stages at which it changes back from Oto 1.

Lemmall : For any given e, x?(e) changes only finitely often as a increases

through the natural numbers.

Proof : Suppose this lemma does not hold. There is some e such that x?(e)

changes infinitely often as a increases through the natural numbers, and therefore there is a

— a . pe e .
least e, €, such that x](é) changes value infinitely often as a increases.

If x?(—é) # x‘;_-](é_), then

i) Subcase 2.1 is true ; and
. . - - . a-1, a~1—,
i) there isan e' = e, <@ for which f2 (x2 (e")) = 1and, as

x;_](e) = x2(e) for all e, f;(x;_](g')) = f;(x;(;')) = 0,

When this occurs at stages a’, a", we know by Remark F.1, that there is a v a'€ uga"
such that F;_](x;—](e_')) =0 and f;(x;(g')) =1. At stage u f2 changes value from 0 to 1 and
therefore Subcase 2.1 is not true and f;_](x) = f;(x) for all x, so if f;_](x;_](nén')) %f;(x;(g')),
then x;*](g')% x;(g'). This is true for the infinitely many stages u (a'< u ¢ a") where X4

changes value at a' and a".
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x; changing value implies that
i) Subcase 1.1 is true at stage u.
i) e, = e¢ e'.
i) f‘]’"(x‘]’"](e)) =1.

iv) f(;(x'ij(e)) = 0.

Again between any two stages of u at which fl]J(x) changes value from 1 to 0, there
is a stage u' such that fl]J -](xli’ -](e)) = 0 and f'i, (xl]J (e)) = 1. Since at this stage fl does

not change value, xl]J -](e) # xl]J (e) for the infinitely many u' at which f] changes back from

Oto 1.

Therefore we have exhibited an e(=eu< e) such that xl;(e) changes infinitely often,

contradicting our hypothesis that e was the least such number. The lemma must hold.

. a . . .
In the same manner for any given e, x2(e) changes only a finite number of times as

a increases through the natural numbers.

Remark F.3. If fi(x) is the characteristic function of a finite set, Si’ it is equal

to zero for only a finite number of values of x.

Since x?(e) changes only a finite number of times, for any given e, there is a

a" a' . NPT
stage a' for each e such that X (e)= X4 (e) for all a2 a'; i.e. after a certain finite

stage, not constructively defined ; x?(e) is a constant, say zi(e).
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Since f?(x) can change at most once more than x?(e), for each given e, there is
* *k
a stage a* such that fia (x) = F? (x) for all a**» a*; i.e. after a certain finite stage, not

constructively defined, f?(x) is a constant.

Remark F.4. There is ana, for all x, after which f?(x) does not change and this

last value is the same as fi(x).

]
Since x?(e) has a last value, zi(e), and f? (x?(e)) can change at most once more

for some a') a, f? (zi(e)) has a last value.

Suppose fi(zi(e)) =1, then there is no a such that f?(zi(e)) =0or f;](:(.i(e)) =1 for

all a. That is, fia(zi(e)) = fi(zi(e)) for all a.

Suppose fi(zi(e)) = 0. There is a stage a such that f?(zi(e)) = 0. Since this a is
finite, there is a least stage at which this happens, say a'. f?|(zi(e)) = 0 for the first time ;
or f?*(zi(e)) =1 for all a*» a’. This a' must be greater than or equal to the stage a at which
x(]](e) takes the value zi(e) ; or xi(e) changes last, so x?"(e) = zi(e) forall a"2a'. If
f?"(zi(e)) were to change back to 1 at stage a”, from Lemma | we know xiq"(e)would have

to change value and this does not happen at any stage a" 2 a'. Therefore fia (zi(e))= fi(zi(e))

for all a"y a'.

fCI

, Remark F.5. If T]2(ea, x?(ea), y) is true at some stage a, but for a'p a

f '
T]2 (ed, x](ea), y) is false, then at stage a', f; has changed value. Subcase 2.1 must be
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(@
. a' _a . 2 a \
true, but ea< e, since x, (ea,) = x](ea). Therefore the only way to falsify T] (ea,x](ea), Y,

at some later stage a' is by having the simultaneous condifigns : Subcase 2.1 is true at
f
stage a', but ea,> e, Similarly the only way to falsify T]](ea, x;(ea), y) is by having

Subcase 1.1 true, ande 3 e .
a” "a

Lemma Il : Let z](e) be the last unchanged value assumed by x(]J(e) as a
f
increases, then Ey [le(e, z](e), y) and U(y) = 1= (f](z](e)) = 0).

f .
Proof : If Ey (le(e, z](e), y) and U(y) = 1) : Choose a stage a'> a, such

that a' is odd and so large that f? (z](e)) = f](z](e)). This can be done by Remark F.4. If
f(: (z](e)) = 0, then F](z](e)) = 0 and the lemma is proved.

a'-1, a

] .
If f(]] (z](e)) =1, for all a', then F] (x] ](e)) =1 for all a’» a. Starting with
the formal procedure, E, with f2 as principal function letter, G.N.(E) = e, there is no

finite y, or no finite G.N. of this procedure for the argument z](e). This contradicts the

given. There must be a stage a'> a such that F](z](e)) = f(]] (z](e))= 0.

Now, if f](z](e)) =0, then E a f?(z](e)) = 0 and for this a :

i) x?(e) =z](e), and
a~1
i:2
i) (Ey<a)T,” (e, zq(e), y)and U(y) = 1.

Suppose this condition is falsified : This can be true only if f; -] changes value
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for a' > a and z](e) does not. This means that ea,a e for those a'> a. We know for any
fixed e, say e = 1, there are infinitely many e ,=e- 1. At stage a' only finitely many
of these e can have been calculated, so there will always be another e, a'> a such that

e, = €~ 1¢ e, causing z](e) to change value, contradicting the given. Therefore

t _ f
F; ] does not change value for any a'> a, f; . F2 and Ey T]2(e, z](e), y) and U(y) =1.
By interchanging the subscripts for the f's, z's and x's : Let z2(e) be the last unchanged

f
value assumed by x;(e) as a increases ; then Ey [T]](e, zz(e), y) and U(y) = ]]

= (F 2 fe)) = 0).

Theorem | :  There exist two functions f] and F2, both of which represent

recursively enumerable sefs and neither of which is recursive in the other.

Proof : In an exact analogy to Sacks' Corollary 1, we have shown that

for all e, there is an n, depending on e, such that

f.
fn) £ Uy Tle, n, yD i £ 0 G 0s =1, 2).

So f] is not recursive in F2 and vice-versa. To define two sets Si(i =1,2) : by stages.

a=0 f?(ze)=0ifeeA
=1 ife ¢ A
x‘i’(e) = 3.2

P60 = £93.2°) # (2% ) forall e’ ¢ A.

Therefore, f?(x) = Qfor all x.
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o a» o0 f?, and x? are defined as before.

Then Si B {xlfi(x) =0} .

Theorem Il :  Given a set, A, there exist two sets nof recursive in one another,

both enumerable by a procedure recursive in A and both of degree higher than that of A.

Proof : We have shown that the recursively defined f] and f2 have incom~-

parable degrees of recursive unsolvability. Since fi is the characteristic function for
Si(i =1,2). S] and 52 have incomparable degrees of unsolvability (neither is recursive
in the other), and we have exhibited two recursively enumerable sets which are recursively

independent.
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CHAPTER V

MUCNIK'S SOLUTION

— .
Mu‘c’:mk's( )soluhon to Post’s problem appears to be much more complex than

Friedberg's.

Friedberg accepts and uses the notation and constructions of Kleene. In particular
the T predicate is used to define recursively enumerable, non-recursive sets and if any

function is recursive in a second one, it can be expressed in Kleene's normal form for some

Godel Number, e.

Muénik defines a class of M problems as any mathematical fask whose achievement
can be resolved into an infinite sequence of elementary acts whose results can each be
characterized by a natural number. An M-problem can be put into one to one correspon-
dence with its set of solving equations and is algorithmic or solvable if at least one of its

solving functions is general recursive.

The decision problem for B is reducible to the decision problem for A, if there
exists a general recursive operator which maps the characteristic function of A into the

characteristic function of the set B.

Muénik defines and uses the following new concepts :
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quasisequence : a finite or infinite sequence of numbers and some new
symbol A used as a symbol for an undefined quantity : The length, M{1},
of a quasisequence, |, is the number of its components.

mutually consistent :  elements a and b are mutually consistent, a b,
if a=bora=NA\, orb=\, quasisequences | and |2 are mutually

consistent if | (n) !2(n) for all ng Min(M [l} ).

cover : a'l covers aﬁ(a & a,) if either a, =a,ora, =A. fla Fz means

that f](n)} 2(n) for all ng Mf?n(M {li} ).
compatible : quasisequences ey and e, are compatible, &= ey if
e (n;v‘e ( ) for all ng min(M {|} . erxe, if they are not compatible.

redicate : a sequence of 1's and zeroes. A quasi-predicate : a sequence
of 1's, O's and N\'s.

The concept of a partial recursive operator is a precise form of the notion of an
effective mapping of systems of functions into functions. Mutnik then proves that the map
from infinite quasisequences into sequences of any partial recursive operator is construc-
tively defined by some primitive recursive function. This is certainly still true if the set
of partial recursive operators is defined on a subset of infinite quasisequences, the infinite
sequences. In addition if we define t as a characteristic value of the operator Px if

o
x(t) = X r then it can be shown that Px has only a finite number of characteristic values,
t, for any given X . This is somewhat similar to Sacks' Lemma that any requirement can

be injured at most a finite number of times, and Friedberg's Lemma that xi(e) can change

value only a finite number of times.

Let dx | W I be a finite predicate which gets taken into d)‘< | W I by the operator Px'
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A function defined on a segment of the natural numbers is orderly. To every orderly

function, gfx(w), there corresponds some sequence of pairs of quasisequences (dx lm I, d)'( Iw l),

 with p’x(m) as its index. This ;zfx(w) serves the same purpose as a pairing function. Intro-

duce a parametric representation z = g(x,0) ; x = x(t), w =w(t). z = z(t), where x(t), w(t),
and z(t) are primitive recursive functions. Denote the predicates dx(f) I w(t) I and
t

Lt

d)'((f) I w(t) I by f i t | and f'[t |, and f I t by the quasisequences derived from

t }’ = m(t) and

K l t I, f—'l t l by replacing all occurrences of 0 by A. Note that M {:f

M|t [p = men.

In order to solve Post's problem two recursively enumerable, non-recursive sets
must be constructed. Let these sets be E and G whose characteristic functions are e and

g respectively. We define e and g recursively as follows

Construct sequences {fi} , {ei} , {gi}

: ol .

b =0, e =f = of
o =0 e r g, =cf
Assume that to’ cee, f2k N and 9or * - 9o OTE already

defined. Put t = pt, satisfying la) - 1d)

2k-+1
a) ||z gy

) f|t]sfoy] olt, 2) ¥

where a(t,k) is the control function defined by :
alt,q) = max{ alt,q), «(+,9)} ,

alt,q) =  max {m(fi)} + 15
i< i(t,q)



a‘(t,q)= max (m'(ti))+]
iSi(flq)

i(t,q) = max (i)
(i< ghx(t, )¢ x(t)

Te) (i) (xlhg g ) =x(t) & F I Foi1 Ia‘gzk 6 | Foi |~'”" ey )i

) f lf x(ey . f I'r

)o((f, %) -

P 941~y U I Fok+1 I .

Set ey 1 = (e F' l Pk | Do

2t b %)

Put f2k+2 = pt, satisfying 2a) - 2d) :

%) f I f l:[eZkH:] a(t, 2k+1)

H { = — ! o .
2) (i) oy bektyy) "(*)&flfzi =eoer1 > f I*zi |“"92k+1 )i

Tt

2d) f! |f

X99per1 - )a(t,‘2k+1 )

)

Seteyp g YU f | Fok+2 | P Ogi4n = Gy o F | Folet2 | a(t A+1)

2k+27

Sefe*=l.J ei;g*=Ugi,e=(e*o)\)qndg=(g*o)\).
i i

The predicates e and g are defined from e and g by replacing all occurrences of A by 0.

Muénik defines the idea of strong minimality as : s is strongly minimal with

respect to x if i i .
p o ifr>s implies x(fr) > X 2 x(fs)
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Muénik formulates this theorem from which a solution to Post's problem follows :
There exist recursively enumerable, non-recursive sets E and G such that, for all
X, PX(E)%E and Px@) # e, where e and g are the characteristic functions of E and G
respectively, i.e. the recursively enumerable sets E and G are not reducible to each other.

This theorem is proved for the two cases : if t,. is defined then foiel always exists, and

2i

is defined but t does not exist. In the first case a number s strongly minimal with

Fai 2i+1

respect fo x is chosen. One finds a characteristic value for P satisfying conditions 2a)

- 2d). Since we have set 2k+1> s, and assumed Px (e) =g, the result that x(f2k+2) =X

)
contradicts the strong minimality of s. Therefore Px (e)#g. In an analogous fashion it
o

is shown that Px (9) #e. From this it follows that the sets E and G are not recursive and
o
not reducible to one another.

Muénik also states the theorem that there is a recursive sequence of recursively
enumerable sets {Eg such that the decision problem for each of them is not reducible to
recursive conjunction A\ AE (AE is the decision problem for Em). He omits the

m#n  m m

proof as it is much more complicated. The details are given in here in Chapter 1l,

Corollary 2.
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