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ABSTRACT 

ln 1944 LL Post posed a question which was to remain open for twelve years 

and evoke two simultaneous(2,5), independent solutions depending upon very intricate 

constructions both of which use a technique which has been cal/ed "the priority method"(8). 

This thesis is an intuitive exposition of this method and is divided into five parts. 

The first is a statement of notation and defin itions. The second discusses 

Pastis classification of recursively enumerable sets and leads to the question: "Can 

there be two recursively enumerable but non-recursive sets such that the first is 

recursive relative to the second, but not vice-versa? Il • The third is an expansion of 

the work py G.E. Sacks which abstracts the mechanism of priority from the proafs of 

Friedberg and Mu~nik and uses it to exhibit the Iwo recursively enumerable sets about 

which Post conjectures. Sections four and five explain the actual constructions of 

Friedberg and Mu~n ik . 
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CHAPTER 1 

INTRODUCTION 

ln 1944 Emil Post published his paper "Recursively Enumerable Sets of Positive 

Integers and Their Decision Problems"(6). This paper initiated the classification of 

recursively enumerable sets, and raised the question: Can there be two recursively 

enumerable but non-recursive sets such that the first is recursive relative to the second 

but not vice-versa? This question, which came to be known as Postls prob/em, was 

answered in the affirmative by Richard Friedberg(2) and A.A. Mutnik(5) in 1956. 

As a preliminary step to the discussion of th is problem and its solutions, it is 

necessary to state certain definitions. 

A function, l, is a partial recursive function in the sense of Herbrand­
Gëdel-Kleene iff 1 is defined inductively by a finite set of equations, 
E, where f is the principal function letter of E and for each n-tuple 
(xl' ... , x ) in some set called the domain of definition of 1 there is 
exactly onennumeral, X, su ch that from E it can be shown that 
f(x

1
, ... , 3< ) =3<, and the value of l(x

1
, ••• , x ) for the natural 

numbers xl' n .•. , x as arguments is the natural nllmber x, for wh ich 
_. h 1 n x IS t e numera . 

A function, p, is a general recursive function iff it is a partial recursive 
function and its domain of definition is the set of ail n-tuples. 

A function general recursive in cmother function, h, is essentially the 
sorne as above except that the system E can involve in addition to the 
initial functions, the function, h. 
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A recursive set is a set whose characteristic function is recursive. A set 
recursive in a function, h, is a set whose characteristic function is 
recursive in h. 

A non-empty set, R, is recursively enumerable iff it is of the form 
( t 1 [E Y p(y) = t)and pis a partial recursive function} . 

A set is recursively enumerable in a function, h, iff it Îs as above, but 
pis general recursive in h. 

The decision problem for a set, S, isamatter of effectively determining 
whether an arbitrary positive integer is or is not a member of S. 

The degree (of unsolvability) of a function, f, is zero iff the function 
is recursive. Its degree is greater than the degree of a function, g, 
iff 9 is recursive in f, but not vice-versa. The degree of f is the set of 
ail functions, h, such that f is recursive in h and h is recursive in f. 
The degrees of f and k are incomparable if k is not recursive in f and 
vice-versa. 

The degree (of unsolvability or undecidability) of a set is the degree of 
its characteristic function. 

ln particular A and B are any two sets whose degrees of unsolvability are incom-

parable iff the decision problem for A cannot be reduced to that of B, and vice-versa, or 

in other words, iff if it is impossible to tell whether any arbitrary element is in A on the 

basis of il' (or sorne elements calculable From it) being in B, or vice-versa. 

There are two problems here. The first, that of the existence of a recursively 

enumerable, non-recursive set is quite straight forward and wi Il be shown here ; the 

second, the existence of a pair of reclJrsively enumerable sets whose degrees are incom-

parable will be proven in Chapter III, Corollary 1. 
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Let T and U be the primitive recllrsive predicates defined in Kleene (3) (lM) : 

T(e,x,y): y is the Godel number of c calculation starting from a set 
of equations with Godel number, e, which define a partial recursive 
function f(x). 

U(y): If y is the least value making T{e,x, y) true, then U(y) is the 
value of f(x) given by this calculation. 

Post(6) proves that a set of positive integers is recursive when and only when both it and 

its complement with respect to the naturel numbers are recursively enumerable. 

Using the above we can now prove the existence of a set which is recursively 

enumerable, but non-recursive. 

Proof: Consider the set 

R = Ct 1 Ey ft = U(y)andE><T(x,x,y)]}. 

R is the range of U, a primitive recursive funcf'Ïon defined for ail y such that Ex T(z,x, y) 

and certainly for those values of y for which E x(T(x,x, y», so R is recursively enumerable. 

We must now show that the complement of R, N - R, is not recursively enumerable. 

Suppose it were. Then 

N - R = [ t l' CE y{t = U(y) and ExT(x,x,Ym~ 

woulcl be the range of a partial recursive function. That means that the function 
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(Ayt 1 U{y) orAy 'ExT{x,x,y)] which can be rewritl'en [Ay(t 1 U{y))or 

Ax .... E y{T{x,x,y))] is partial recursive. As LI is defined for ail y such that E yT(x,x, y), 

it must fol/olN that 'E yT{x,x, y) is partial recursive. Since -'E yT{x,x, y) is partial 

recursive, by I<leenels Theorem XIX, an extension of the Enumeration theorem(3), there 

is a number, z , su ch that for ail x 
o 

E yT{z ,x, y} iff -'E y{T{x,x, y)). 
o 

Since this holds for ail x, it must hold when x = z , giving 
o 

E yT{z ,z ,y) iff """lE yT(z ,z ,y) 
o 0 0 0 

which is absurd. 

So N -. R is not recursively enumerable and R is recursively enumerable but non-

recursive. 

A slightly more involved version of this T predicate also due to I<leene will be 

used in the construction of the recursively enumerable sets of different degrees of unsol-

vabil ity: 

'i ( ) = s y 1T 

;< Y 

is the Course-of-Values function for fi 
s 

ïf i=O and y € A, or 
i=l and y € B. 

'II' p. otherwise. 
1 

"-. 
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T~ (i (y), e,x,y) as the primitive recursive predicate: e is the Gode 1 
numbser of a formaI procedure for calculating one function, g, given 
another, and y is the Gode 1 number of a forma 1. appli cat ion of th is pro­
cedure starting with 0 set of equations havins fi as its principal function 
letter and substitul"ing x for the variable of fi. S 

S 

U{y) as the particular primitive recursive fynction which takes on the 
value, g(x), for the least ywhich mokes Tl (f~(y), e,x,y) true. 

The concept degree of recursive undecidability is based on that of reducibility 

of decision problems. There have been three precise formulations of this idee: Turing 

reducibility, Kleenels general recursive reducibility, and Postls canonical reducibility. 

These concepts have ail been proven to be equivalent. Using the notation of Kleene, 

where f is a function and..!. is its degree: there is a Godel number associated with the 

system of equations defining any function, f, recursive in another function, g. Thus 

there can be only countably many degrees..!. such that..!. ~ fI for any given fI y each 

degree has at most countably many predecessors and consists of at most countably many 

functions. Since there is a continuum of functions, there must be a continuum of degrees. 

Spector(9) showed that the degrees are not dense in themselves. That is, given 

degrees a, c with a < c, there does not always exist a degree b with a<b<c. In fact for 

any degree a, there is a degree c) a with no degree between. Thus among ail degrees> a, 

there is.a minimal one. In particular there is a minimal degree of recursive unsolvability. 

It will be shown in Chapter III, Corol/ary 2 that there is a sequence of simul-

taneously recursively enumerable sets whose degrees are independent. Therefore, there 
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must be at least countably many different degrees of recursively enumerable sets. Kleene 

and Post(4) abstract from the degrees of unsolvability of sets to degrees as such and prove 

that the degrees less than cr equal to O' form an upper semi -Iattice, where O' is the 

degree of the completion of a recursive function. 

Remark 1 The set of degrees form an upper semi-Iattice. 

Let Al' A
2 

be two sets; and let degree (Al) be al' let the set 

AiV A2 = C 2 n 3 Yin € Al & Y € A2 }. If degree (A {A2) is defined to be (al U 02)' 

and (al U a
2

) is called the least upper bound of a
1 

and a 2, then al < (al U a 2) and 

02< (al U a2)· Therefore giv~n any Iwo degrees of sets, their least upper bound is also 

a degree of a set. The degrees of sets form an upper semi-Iattice. 

Remark 2 : It will be useful to note that every countab!e, partially ordered 

set, P, is isomorphic to a subset of a set N
R

, or in other words imbeddable in N
R

, where 

N
R 

is defined as follows: N
R 

is the range of the relation, R, N is the natural numbers, 

the partial ordering ~ R is any recursive, reflexive, anti-symmetric and transitive relation 

and R = {(x, y) 1 x, y, € N and x ~ R y} . We say that ~ R is recursive if the predicate 

(m ~ R n) is recursive. 
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CHAPTER Il 

POSTIS CLASSIFICATION 

Postls paper(6) presents a portion of the theory of recursive functions of positive 

integers in an intuitive and informai style. He notes that if a problem, Pl' has been 

reduced to a problem, P
2

, a solution for P
2

.yields a solution to Pl' while if Pl is proved 

to be unsolvable, P 2 must also be unsolvable. As in the definition for sets: two unsol­

vable problems are of the sa me degree of unsolvability if each is reducible to the other ; 

one of lower degree of ul1solvabi 1 ity than another if it is reducible to the other, but no!" 

vice-versa;. and of incomparable degrees of unsolvability if neither is reducible to the 

other. Post states that the problem of determining the degrees of unsolvabi lit y of unsol-

vable decision problems is a primary problem in the theory of recursively enumerable sets. 

He shows at an early stage that there is a highest degree of recursive unsolvability, that 

of a set he calls the complete set, K, which is any set such that the decision problem for 

every recursively enurnerable set is reducible to the decision problem for it. 

One of the simplest ways in which the decision problem of a set of natural 

numbers, .Sl' would be reducible to a set of natural numbers, S2' would arise if there 

was an effective method which would determine for each positive integer, n, a positive 

integer, m, su ch that n is, or is not, in Sl according as mis, or is not, in 52. If 

somehow we determined whether mis, or is not, in $2' we would determine n to be, or 

not be in $1. We say $1 is many-one reducible to 52 if m = f(n) where f(n) is a recursive 

function ; and one-one reducible if in addition different n IS lead to different m's. 
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Post(6} defines four non-empty classes of recursively enumerable, non-recursive 

i} The class of sats called complete sets is the family of sets, Kr with the 

property that the decision problem for ail recursively enumerable, non­

recursive sets can be reduced in a one-one manner to that of a complete 

set. 

ii} The class of creative sets is the family of sets, R, such that there is a 

recursive function, f, defined on sorne set of natural numbers A in the 

complement of R and for ail n € A f(n} is in the complement of R, but 

not in A. Post shows that a complete set 1< is one-one reducible to a 

creative set. 

iii) The class of simple sets is the family of sets, S, whose complements are 

infinite, but contain no infinite recursively enumerable set. Post shows 

that a creative set is many-one reducible to a simple set. 

iv} The class of hypersimple sets is the family of sets, H, whose complements 

are infinite and have the pro pert y that there is no infinite recursively 

enumerable set of mutually e>(clusive finite sequences of positive integers 

such that each sequence has at least one member in the complement. 

Post shows that every hypersimple set has a lower degree of recursive 

unsolvability than every complete set relative to many-one and one-one 

reducibil ity. 
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Post leaves open the question: "00 there exist sets of degree of unsolvability 

less than K '? Il • 

If this question is to be answered in the affirmative, he offers the class of 

hypersimple sets as a possible ciass of candidates from which to construct such a set. 

This conjecture was disproved by Dekker(l) who showed that to any recursively enumerable 

non-recursive set G there corresponds a hypersimple set, H su ch that Gand H are redu­

cible to each other. 
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CHAPTER III 

SACKS: THE PRIORlTY METHOD 

Sacks designates as the "priority method" any method of proof which owes its 

inspiration to the solution of Postls problem given by Friedberg or Mu~nik. He sets up 

some new apparatus to reveal the details of a rec::ursive construction in which one attempts 

to set up a certain staius quo at an early level and make decisions in the future which 

will be unlikely to distul'b this arrangement. In effect one gives a priority to the existing 

situation even if it means definitely not creoting the advantageous situation at 0 loter level. 

Sacks defines the following machinery : 

.Requirement: R = ((Fi, Hi) 1 i € 1 (i is a positive integer)] , 

Fin Hi = 0, and Fi = (no' ... , nF~ ,Hi = &n
Of 

••• , m
H
! . 

1 1 

A requirement R is a sequence of ordered pairs of finite disjoint 

sets of positive integers. 

Meet: A set T meets a requirement, R, iff for some i € 1 FkT and 

i 
H n T = O. 

j:L-v1 where L is a finite subset of 1. If L = (h , ... , h ) then 
h h 0 m 

j(L) = 2 0 + ... -1- 2 m. As th is function is the core of ail 

constructions, it is shown to be a 1 - l, onto function : 
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Let L be the fin He set (h , ... , h ) 
o m 

h hl h 
j(L) = 2 0 + 2 +. .. + 2 m. 

Let L' be another finite set equal to L. 

If L = L', then LI has the same members as L, and 

h hl h 
HL 1) = 2 0 + 2 + ..• + 2 m = j(L), 50 j is a function. 

a 
o 

Let n be any natural number: if n is even, n = 2 b 
0' 

a 
(a > 0), and if n is odd, n = 2 0 m (a = 0), and rn = (1 + b

l 
) 

o 0 

where b1 is even and b
o

' b 1 are Jess than n, so this decomposition 

can be done at rnost a finite number of times. 

a a a 
n - 2 0(1 + 21(1 + + 2 m (1)) ... ) 

a a +0
1 

a +a
1 

+ ... + a 

= 2 0 + 2 0 + + 20 m 

h h 

= 2 0 + ... + 2 m. 

If j(L) = j(L 1) = n. It is easy to show L = LI by complete induction 

on n. 

Suppose for ail k<n: k = j(L ) = j(L 1 ) implies L = LI where 
o 0 0 0 

L , LI are fin ite sets. There are two cases: n even: Then n = 2b 
o 0 

where b rs unique and b is less than n, so b = j(L ) == j(L 1 ) implies 
o 0 

L = L 1 = (h , ... , h J . Set L = h + 1 i hl + l, ... , h + 1 
o 0 0 m 0 m 

Since multiplical'ion is well-defined, this is the unique set L with 

j(L) = 2b and sa L = L'. n odd : 



12 

Then n = 1 + b where b is unique, less than n and even ° 

b = j(L ) = j(L 1) implies L = LI ° (L U {a} ) is the unique 
o 0 0 0 0 

set, L such that j(L) = n, since addition is a well-defined 

operation. Therefore L = Llo 

.~numerate requirements: Let t be a function whose domain and range are 

Priority Set: 

included in the natural numberso Restrict domain t to those 5 

which make (j-1 «t(s»o)() ;-1 «t(s))1) = O)a true statement, and 

calculate (t(s))20 

The symbol (t(s». is defi ned to be: the power to wh ich the i th 
1 

prime is raised in the unique prime number decomposition of the 

natural number t(s). If 

j-1«t(s» ) is called FS
, 

o 

j-1«t(s»1) is called HS
, and g(t(s»2 is called g(s), then t 

enumerares requirements by assignïng the number k = g(s) to the 

00 

T, of the function t: T = UT, where T is defined inductively : 
5=0 5 5 

5 = 0 T = 0 
o 

5 ) 0 There are two cases: 

i) if (a), (b), or (c) is true, then T
s 

= T
s
-

1 
r 
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(a) There is an r< s such that g(r}< g(s}, 

r> 0, Fr rt T r-l' FrÇ; T r' H
r n T s-l = 0, and 

H
r n FS 1- O. 

(b) There is an r < s su ch that g(r) = g(s}, 

r>O, Fr~ T
r
_

l
, FrS;T

r
, and HrlÎ T

s
-
1 

= O. 

if none of these conditions are true: T = T 1 U F
S

• 
s s-

It will be useful to note that the set T is depandent only on the 
s 

values of t(i) for i ~ s, and the sets, T. for i < S. 
1 

Me! at stage s: Rk is met at stage s if s> 0, g(s) = k ;. FS~ T
5

-
1 

' and FSS; T
s

' 

Injured at steige s: Rk is injured at stage s if there is an r< s, Rk was met at 

stage r, H
r n T 1 = ° and H

r n T ..j O. s- s T 

The following observations on the definitions will be needed later in many of the 

If R is met at stage s, then 

i) Clauses (0), (b), and (c) must be false at stage s ;. 

ii) HSn T = O· and 
s " 

ii i} if R is not in jured at any stage after s, T meets Rk' 
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i) If not, then T = Tl' If R, is met at stage s, FS,l. T l' 
s s·' < ':t: s-

but FSt; T • This contradicts T = T l' 50 (a), (b), and 
s s s-

(c) must be false at stage s. 

ii) Since (c) is false ot stage s, then HSn T
s
_

1 
= O. Since Rk 

is a requirement, FSn HS = 0, and T = T 1 U FS 
implies 

s s-

iii) As Rk is met at stage sand not injured at any stage Sl~ s, 

FSÇ T and HSn T 1 = 0 for ail Si ~ s, bu!' then FSÇ; T and 
5 s 

s 
H n T = 0, and T meets Rk . 

Looking at this in another way, we have defined T in a manner which will enable 

us to make T meet g(s) ot stage 5 whenever we set T = T 1 U FS 
and manage to keep 

5 s-

Tu n HS = 0 for a Il u ~ s. If we don It want or have been unable to make T meet R 9{S) at 

stage 5 we se t T = T l' s s-

i) If (c) is true, H
S
" T

s
_1 f 0, 50 T cannot meet Rg(sr 

ii) If (b) is true, then for some r< s : 

1) R g(r) was met at stage r. 

rd:. r 
Pro of : F.,.. T r- 1 and F ~ \. 

2) Rg(r) is not in jured at any stage u, r< u<.s. 

Proof: If R ( ) was in ',ured at stage u, then ,ln T 1- O. Since 
-- gr U' 

Tu ç \-1' I-{ n T 5-1 f 0 contradicting the statement H
r n Ts- 1 = O. 
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As we do not wish to injure Rg(r) at any future stage, we set 

T = Tl. s s-

iii) If (0) is true, then for some r< s : 

1) Rg(r) was met at stage r. 

Proof: same as ii) 1). 

2) Rg(r) is not injured at any stage u, r < u< s. 

l'roof: same as i i) 2). 

3) Rg(r) would be injured at stage s, ifT
s 

=T
s
_1 U F

S 
. 

Proof ~ Since Hrrt F
S 1- 0, H

r 
fi T 1- o. Therefore T = Tl' 

-- s s s-

because we do not wish to injure Rg(r) ot stage s for the sake of 

meeting Rg(s) at stage s. Thus a higher priority has been assigned 

to Rg(r) t'han to Rg{s)" 

Lemma 1 : If r < sand Rk is met at stage rand at stage s, then there is a u 

such that r < u <. sand Rk is in jured at stage u. 

Proof: If Rk is met at stage r and s, k =g{r) =9{s), and Fr$T
r
_

l
, 

FrS; T and H
r 

n T
r = 0; FSrl- T l' FSf.; T and HSn T = O. Here T = T l U F

S
, so (b) 

r T s- s s s s-

is not true, (for if (b) were true, then T = Tl). The only clause of (b) it is still possible 
s s-

to contravene is Hrn T 1 = 0: Rk is met at stage r so HI' fi T 1 = ° and HI' li T = ° must s- ~ 1'- r 

follow, since H
r n Fr = O. If Hrn T 1 1- 0, there is a u r < u< s such that T n HI' 1- 0, 

s- u 

and since there are only a finite number of T.ls between T and T 1 there is a first u, and R, 
1 r s < 
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is injured at this u. 

It will be convenient te define m. to be the number of times a requirement R. can 
1 1 

be met. R. is then injured at least m. - 1 times, since between every two stages at which 
1 1 

it is met, it must be in jured at least once. 

Lemmall: For each k, the set (s 1 Rk is injured cd stage s] has cardinality 

less thon 2
k

, and the set (s l' Rk is met at stage s] has cardinality at most 2
k 

Proof : By complete induction on k : 

Assume for i < k: the cardinal ity of (s 1 some Ri is in jured at 

stage s J is less th an 2
1 

• 

any i, 

When i = 0, 1, ... , k - 1, how many in juries con be done to any of the R. 's1 For 
1 

i 
l'here con be at most 2 - 1, 

k-1 k-1 
i r (2 - 1) == r 

i=O i=O 

k-1 
2
i 

- r 
i=O 

Set: R = (s 1 there is i <: k such that R. is in jured at stage s1 , so 
1 

R<2k - k; 

S = (s 1 there is i (i <: k) and Ri is met al' stage s} • 

Since each R can be met al' most once more thon it is in jure d, Scan be at most 

k-1 
r m. = 

i=O 
1 

k-1 k k 
r (m. - 1) + k < 2 - k + k ,,2 . 

• 0 1 
1= 
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ln order to prove that an Rk is in jured at any stage 5 less than 2
k 

times, it is 

sufficient to show: 

If Rk is in jured at stage s, there is an i < k such that Ri Îs met at stage s. 

Pro of : Suppose Rk is in jured at stage 5 : 

By definition there is an r < 5 such that Rk was met at stage r ;. 

H
r fi T 1 = ° and H

r 
IÎ T f ° which implies H

r 
IÎ F

S f O. Since Rk is met at stage r, 
5- 5 

Fr1 T l' FrS T , and Hrn T = O. From above Hrn T 1 = 0, and Hrn T f ° implies 
r- r r 5- 5 

H
r 
fi F

S f 0, and as H
r 
(\ T 1"1 l-{ nT, T 1 '1 T . Therefore T = T 1 U F

S 
and 

5- 5 5- S S 5-

(a), (b) and (c) are ail false. It is true that Fr~ T
r
-

1
, Fr G T

r
, Hrn T

s
-

1 
= ° and 

Hrn F
S f 0, so {a} and (b) can only be a t'aise if it is not true that g{r)~ g{s), or 

g{s}(g{r) = k. 

Now we have to show that i = 9{s)<9{r) = k and Ri = Rg{s) = ({F
s
, H

S
) 1 g{s) = ï) 

s..!. S 
is met at stage s. We have: != ~l.t T 1 and F G T ;. From above 

s- s 

HSn T 5-1 = ° or (c) would be true, contradicting Tsf T s-l ; 

HSn F
S = .0 as R. is a requirement, so 

1 

Therefore R. is met at stage 5 for sorne i < k. 
1 

Remark 3. For any requirement R.(i ~ k), there is a u, such that for any 
1 

s ~u, R is neither injured nor met at stage s. 
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Proof : We know that Rk is injured only a finite number of tim~s, and 

that between any two meets there is an in jury . Therefore, there are only a finite number 

of stages Cit which Rk is met, and there is a fin ite u at or after wh ich Rk is neither met 

nor in jured. 

A requirement is defined to be t-dense iff for each finite set L, there is 
ans>Osuchthatg{s)=k, FS~T l' HSnT 1 =OandLnFs=o. s- 5-

Theorem 1 

Proof : 

If t enumerates requirsments, then 

i) T, the priority set of t, is recursively enumerable in t ; 

and 

ji) T meets every t-dense requirement. 

It is necessary to show that if T. is recursively enumerable in t 
1 

for ail i, and T. 1 is obtained from T. by a recursive function, th en T is recursively enum-
1+ 1 

00 

erable in t. From the definition of T, T = U T. where T.~ T. l' T. l = T. if (a), (b) or 
i=O 1 1 1- l" 1 

(c) is true, and T. = T. 1 U FI if (a) and (b) and (c) are false. 
1 1-

By complete induction on i : Assume r> 0, \(k" r) is recursively enumerable in 

t. It must be shown that \ is recursively enumerable in t. In particular, r - 1 < r, T r-l 

is recursively enumerable in t. This means T 1 = {y 1 h(x) = y and h is recursively 
r- 0 0 

enumerable ln t J . 

Case l : If T = Tl' obviously T is recursively enumerable in t. 
r r- r 
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If T = T 1 U Fr where Fr = j-1 «t{s» ): r l is a one-one 
r r- 0 

function, therefore j-1(t(s» is completely defined whenever 
o 

(t(s» is, and j-1 «t(s» ) is recursively enumerable in t ; so 
o 0 

Fr is recursively enumerable in t. 

Enumerate T: Since T 1 and Fr are bath finite sets, T can -----r r- r 

be enumerated by calculating a term of T 1 and then a term 
r-

of Fr and so on. The union of two sets recursively enumerable 

in t is recursively enumerable in t. 

i i) If T is to meet a requirement, Rk ; Rk must be met at some stage and not 

in jured thereafter. There is sorne stage u ot or cfter wh ich no requirement v R., (i ~ k) is 
1 

met or injured. Choose this u, and define L = U (Hw U F
W

). We determine s, by 
w~ u 

noting that since Rk is t·~dense, there is an s> ° su ch that : 

i) 

i i) 

i i i) 

iv) 

g(s) = k, 

Fst T s-l' 

HS
(\ T = 0, and 

s-1 

FSn L = O. 

Choose the least s which satisfies these conditions. We have set T = T 1 at this stage s, 
s s-

since s is greater than u. To determine r: We recall that if condition (b) is true at 

stage s> 0, there is an r < s such that Rk is met at r, not in jured up to stage s, and 

g(r) = g(s) = k. It will be shown in a few lines that (b) must be true when u, s, and rare 

chosen thusly. 
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We now note that 

i) 5 ~ u, since if s~ u, FSS; L, contradicting FSn L = 0; and 

ii) r<. u, since Rk is met at stage r, and u was chosen 50 that 

ut or after u, no requirement R.(i~ k) is met or injured. 
1 

If condition (b) is true at stage s, then Rk is met at stage r < s, and neither 

injured up to or at stage s, nor at or after stage u < stage s. Therefore Rk is met at 

stage rand not in jured at any stage after r. If condition (b) is true at stage s, T meets 

Rk' T 0 show that condition (b) must be true at stage s : 

1. If T f TUFs, then (a), or (b), or (c) is true at stage s. 
5 5-1 

Recall we did set T
s 

= T
s
- 1' By the definition of Rk is t-dense, 

F
s ri. T d T - T -:f. l' U FS 
~ l' an 50 - 1 J 1 . 5- 5 s- 5-

2. If both conditions (c) a~d (a) are false, then (b) is true. 

i) If (c) is true, H
5n T

s
_

1 
f 0, contradicting Rk is t-dense. 

50 (c) is false. 

ii) If (a) is true: There was an r< 5 such that g(r)< g(s) = k, 

Hrn F
S f 0, and Rk=g(r) was met at stage r. Since r is 

less than u, HrC L, but Hrn F
S f 0 implies Ln FS f 0 

contradicting the t-denseness of Rk' 50 (a) is false. 

To generate particular sets A and B which are non-recursive, recursivelyenumer-

able and have incomparable degrees of unsolvabi 1 ity. These sets will be generated 
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inductively by stages, 5 : 

o 0 
5 = 0, leI' T 0 :::: Of F = H = 0, and g{s) = 0 ; 

s :> 0, lei' A ::: r n 1 2n e Tl} ; B = { n 1 2n + 1 e Tl) 
s l s- s s-

Let fO and fi be l,he characteristic functions of A and B ; 
s s S 5 

Case l 

Case 2 : 

(
o if s is even; e = (s) 

i = 1 - (s) :.:: 0 

o \.. l if s is odd. 

(Em) 0;: m~ s (Ey) y~ s [TIl (fi (y), e, pm, y) and U(y):= 1J 
s e 

V'i 1 -j m 
is a true stafement. f (y), Tl (f (y), e, p ,y), and U(y) 

s s e 

are defined in the introduction as in lM, Theorem IX * and 

1 d·· 1 dm. h th. . d re evant surroun 1119 matena ,an p IS tee prime ralse 
e 

th 
ta the m power. 

If r is j-he greatest value for m.:$ s which makes this predicate 

true( then set: 

F
S = [2 r 

Pe + 1 - i} 

HS 
= (2n + i If!(n)=l andn~s} 

g(s) = 2e + i + 1. 

Otherwise, set F
S = HS 

= 0 and g(s) = O. Now T = T l if 
5 s-

conditions (a), (b), or (c) on page 13 are true, and T = T l U F
S 

s s-
00 

otherwise. We let T = U T. 
j=l 1 



( Remark 4. 

22 

From these definitions T ln H
S = ° for ail s. If i = 0, s-

HS = (2 nif 0 (n) = 1 and n ~ s} , so if 2 n € r:s 
1 n i s not in A and 2 n f Tl' 

s s s-

If i = 1, H
S = [2n + 1 1 f!(n) = 1 and n~ s } , so if 2n -1- 1 is in H

S
, n is not in B, and 

2n + 1 is not in Tl' s-

Let t(s) = 2i(F
s
), 3i(H

s
) . 59(s) r then t is defined for ail s. If the one element 

of FS 
is even, then i = 1, and ail the elements of H

S 
are odd, and vice versa. Therefore, 

t enumerates requÎi"ements, and T is the priority set for t, Hence T is recursively enumer-

able in t. 

Let A = [n 1 2n € T} and B = {n 1 2n + 1 € T} ;. then A, B are both 

recursively enumerable, and A = UA; B = U B where tA} and 
s>o s S)O s s s>o 

( B J are nested sequences of sets. If fO and f 1 are the characteristic functions for 
s s> 0 

A and B then i = 0, 1 : fi (n) = fi(n) for a large enough s. 
s 

Corol/ary 1 : There are two recursively enumerable sets whose degrees of 

unsolvabilityare inçomparable. 

Proof: It must be shown that A and B are two recursively enumerablo 

sets whose degrees of unsolvabilit~· are incomparable, By the Normal Form Theorem
lM 

Theorem IX * F f' h h' h . "f' b : or every unctlon, ,w IC IS recurslve ln a unctlon, g, an e can e 

found su ch that h(n) = U(fJy((j)j « y g(;) is defined and T ~ (g (y), e, n, y») where U and 

T ~ are the particular primitive recursive functions, 
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If B were recursive in A, there would be a finite set of equations, E = El' 

E2' .•. , E , such that each E.(l ~ i~ n) is one of the primitive recursive schemata, or 
n 1 

the characteristic function for A, or is derivable from the characteristic function for A 

bya finite numbcr of applications of the primitive recursive schemata, and E is the 
n 

characteristi c function for B. That is, f1 would be recursive in fO, and f 
1 

would be 

expressible as : 

f1(n) = U (.,.y((j) i< y f°(j) is defined & T~ (f0(y), e,n,y))) for sorne e and ail n. 

To show that B is not recursive in A: The set B is not recursive in A if the set 

of equations defined by any Godel number, e, is not a set fitting the description of E, 

or the set of equations defined by e does not forecast whether or not sorne element is in 

B. Let us define the function 

o 
{e} f (n) = U(.,.y((j) i <y fO (j) is defined & T~ (io(y), e,n,y))). 

o 
There is no loss in generality in assuming that (e} f is the characteristic function for 

sorne set of natural numbers, since if it is nof' then it is not equal to f1, the characteristic 

function for B. If for ail e, there is at least one n such that f e1 fO (n) 1 f1(n) then f1 is 

t .. fO no recurslve 111 • 

If R
2e

+
1 

is a requirement, either it is or it is not t-dense. 

If R
2e

+
1 

is t-dense, then by Theorem l, T meets R
2e

+
1

, and there is an s with 

the following properties : 
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i) g(s) = 2e + 1. Hence i = 1 - (5) = 0, but g(s) 10 implies that Case 2 
° 

is not true, since if Case 2 were true, g(s) = O. Case 1 is true, and there must exist an 

r and a y such that 

y ~ 5 & T 11 (f0 (y), e, p r, y) and U(y) = l : 
5 e 

EQ.1. 

ii) FS~T. Thus p; € B = {n 12n + 1 € T} , that is, f1 (p;) = O. 

iii) HSfl T = O. Consequently, if any element, 2n is in HS, it is not in T, and 

n is not in A ; fO(n) = 1. From the definition of HS, fO(n) = 1 for ail n~ s, 50 fO(n) = fO(n) 
5 5 

for ail n;S s. 5ince y~ s, it follClws from EQ.1 that 

° (e} f (p r) = U(f-Iy((j) j < y f°(j) is defined and T 11 ('f0(y), e, p r, y») = 1. 
e e 

° 50 for ail e, there is an r whereby 1 = (e)f (pr) 1 f1 (pr) = O. 
e e 

If R
2e

+
1 

is not t-dense, there is a finite set, L, such that for ails> 0 

i) HSfl T = 0, 
5-1 

i i) Ln F
S 

= 0" and 

j ii) g(s) = 2e 1." 1 

imply iv) FSÇ T 
5-1 . 

We know (i) i$ tru(~ by Remark 4. 
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Since L is finite, there is an m> 0 assuring 2pm + 1 is greater than ail members 
e 

Suppose pm is in B: Then 2pm + 1 is in T, and for sorne s> 0, 2pm + 1 is in 
e e e 

T - Tl. We can be sure that this T == T 1 U F
S yi Tl' so; F

S 
is non-empt}' in fact 

s s- s s- s-

FS 
is the set {2pm + 1) . As m was chosen to ensure (2pm + 1) would be greater than 

e e 
s 

ail members of L, F n L == pf, so (ii) holds. 

Case 2 is not true, since if Case 2 were true, F
S 

would be empl-y. Case 1 is t'rue, 

whereby g(s) == 2e + 1 ; (iii) is verified for this s. 

It follows From T l U F
S yi T l that Fs4; T 1. When pm is in B there is an s 

s- s- s- e 

for which (i), (ii), (iii) hold and (iv) is false, hence pm is not in B, and fl (pm) == 1. 
e e 

fO 
It is now necessary to show that pm is ïn A by showing that (e} (pm) = o. 

e e 

Suppose the contrary : 

° {el f (p;) = 1 = U(I-ly«j) j < y f°(j) is defined & T ~ (f0(y), e, p;, y»). 

ln particular there is a y such that f°(j) is defined for ail i < y. Since f°(j) = fO(j) for ail 
s 

sufficiently large s, choose an s with i == l - (s)o' e = (s)l ' m ~ s, and y ~ s. Case 1 is 

true for th is s. 

Th is means FS = r r 
2 p + 1 where r ~ m, so 2 p + 1 is greater th an or equal to 

e e 
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l. 
2pm + l which is greater thon ail members of L, so FSn L = O. (ii) is true. 

e 

At this stage s, as Case 1 is true, g{s) = 2e + l, so (iii) holds. 
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From our earlier argument, we know pm is not in B for ail m ;> Osuch that 2pm + 1 
e e 

is greater than ail members of L. Certainly then for r ~ m, pris not in B ; 2p r + l is not in 
e e 

T ; F
S 

is not a subset of T, and, a fortiori, FSst T l contradicting the hypothesis that R
2 

l 
s- e+ 

is not t-dense. 

o 
( } f m l m 

Therefore e (p) = 0 and f (p ) = l . 
e e 

B is not recursive in A. 

To show that A is not recursive in B : 

If A were recursive in B, fO would be recursive in f 
1 

and fO would be expressible as : 

fO(n) = U{I-Iy((j) i < y f 
1 (j) is defined and T ~ (71 

(y), c, n, y») for sorne e and ail n. 

Let us define the function 

f1 

{e} (n) == U(I-Iy({j) i < y fl{y) is defined and T ~ (f1{y), e, n, y»), 

a characteristic function for sorne set of natural numbers. If for 011 e, there is at least one 
1 

n such that Ce)f (n) -1 fO{n) then fO is not recursive in fi, and A is not recursive in B. This 

argument is identical to the one showing B is not recursive in A with the exception of the 
fO f1 

notational changes from fe) to le} . 

To expand this idea we can show that there is a sequence of non-recursive, 

recursively enumerable sets which have incomparable degrees of unsolvability. The con­

struction of this sequence (A.) i ~ 0 is very similar to the construction of sets A and B in 
1 
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. 5 5 5 (1 l+n the prev 10 us coro Il ary. We generate the sets F , H , T ,A = n p 
5 m m by 

induction on stage s, and define Am = {n 1 p!+n € T} • 

5 = 0 

5 > 0 

F
O = HO = T = 0 and g(O) = O. 

o 

For each m> 0, let Àn AS(m, n) be the representing function of 

AS, u = (5) , e = (5)1 . The lambda notation is due to A. Church (10). 
m 0 

If A(n) is a term and A contains n as a free variable then À nAis 

the function defined by the condition that (À n A( n»(n) = A(n). 

Let fU denote the function À m niA (m + sg«m + 1) .:. u), n} where the subscript 
5 

m + sg«m + 1) .:. u} = [m + 1 if u < m 

m if u ~ m, 

is a device to ensure that the first component of the set classification does not equal u. 

For reading"ease, na me this quantity v(m). Again there are two cases: 

Case 1 : 

Case 2 : 

2 .... u b 
(Em) 0< b ~ 5 (Ey) y~ s (Tl (f (y, y), e, p , y) & U(y) = 1). 

s e 

If r is the greatest value of b which makes the predicate true, 
r 

set: F
S = (p~+Pe) 

g(s) = 

Otherwise, set F
S = HS = 0, and g(s) = O. In either case 

T = T 1 if (a), (b) or (c) are true, T = T l U F
S 

otherwise, and 
s 5- 5 S-

00 

T = UT .. 
i=l 1 



28 

F Fs. . h f h th. d or every s : IS elt er empty or a power 0 t e u prime an 

H
S 

is either empty or the set of powers of sorne primes, but never 

th . sn S the u prime. In other words for every s, F H = O. 

'(Fs) '(Hs) ( ) 
Defining t(s} = 21 • 31 • 5g 

s t enumerates requirements, 

T is the priority set for t, and T is recursively enumerable in t. 

Remark 5. In this sequence it is also true that HSn T 1 = 0 for ail s. 
s-

HS = {p~(;} 1 f~ (m,n) :11 m~s & n~ s} or, more simply, if P~(;) is in HS
, then n is 

s s l+n 
not in Am for ml u, which by definition of Am' ensures that pv(m) is not in T s-l' 

Let Au = ( n 1 p~+n € T) for ail u ~ O. and Àn A(u, n) be the representing 

function for A . 
u 

Since T is recursively enumerable, Ao' Al' ... are ail recursively enumerable, 

and A = U AS where for each u, {A s} s ,. 0 is a nested sequence of sets. If fU 
u s)O u u 

denotes the function À m niA (v(m), n), we know 

f"(m,n) = c n € A 

niA, 

where m con be any number not equal to u. For a big enough s, fU(m, n) = f~ (m, n). 

tA.}. is recursively independent iff for each u'::;'o, the set Au is not 
recLrsi'Jeoin l'he function À m n 1 A(v(m), n). 

The sequence of sets is simultaneously recursively enumerable iff every 
set in the sequence is recursively enumerable. 
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Corollary 2 : There exists a sequence of recursively independent 1 simulta-

neously recursively enumerable sets. 

By our construction of A , Al' ... we know that (A.}. is 
o 1 1>0 

Proof : 

a sequence of simultaneously recursively enumerable sets. In order to show independence, 

we must prove that A is not recursive in any finite number of the other sets A.(i ~O), (u 1- i). 
u 1 

Suppose A was recursive in some other sets of the sequence, then the charac­
u 

teristic function for A would be ÀnA(u,n) = U(fJy{{j)(k) j,k,< yfu{j,k) is defined and 
u 

T~(f:u(y,y), e,n,y»). Let us define the function 

u 
rel f (n) = U(f-Iy({j)(k) ;,k,< yfu{j,k) is defined and T~(fu(y,y),e,n,y))). 

u 
We con state that (e) f is the characteristic function of some set of natural numbers, since 

if it is not, then it is not the characteristic function for A . If for ail e, there is at least 
u 

u 
one n such that (e) f (n) 1- A(u, n) then A is not recursive in the other sets of the sequence. 

u 

Let w = 2u 
. 3

e 
and proceed as in Corollary 1 . 

If R is a requirement, either it is or is not t-dense. 
w 

If R is t-dense, then from Theorem l, T meets Rand there is an s with the ... w w 

following three properties : 

i) 
u e 

g(s) = w = 2 . 3 . Since g(s) 1- 0, Case 1 must be true for 

this sand there is a r and a y 
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2 .... u r 
y~ s & T 1 (f (y,y), e, Pe' y) and U{y) = 1. EQ.2. 

1+ r 
F

S 
.- (pu Pel ; and 

H
s = { 1 +n 1 f U ( ) 1 & } P v{ m) 5 m, n = m.~ 5 n ~ 5 • 

ii) FSS; T. Thus P r € A = {n 1 P l+n € T} ,or A{u, P r) = O. 
e u u e 

iii) Hsn T = O. Consequently if any element P~(~) € H
S
, it is not 

in T and n is not in A , fU{m,n) = 1. From the definition of H
S 

: 
u 

u u u 
f (m,n) = 1 for ail m, n~ s, 50 f (m,n) = f (m,n) for ail m, n,tÇ s. 

5 5 

Since y ~ s, it fol/ows From EQ. 2 that 

u 
(el f (pr) = U(I-'y((j)(k) i,k,<. y fU O/k) is defined & 

e 
2 ..... u r 

Tl (f (y/y), e, Pe' y»)= 1. 

U 

50 for aIl e there is an r whereby l = {el f (p r) 1- A(u, p r ) = O. 
e e 

If R is t-dense, then there is a fi n i te set, L, and for ail s> 0 : 
w 

i) HSn T = 0, 
5-1 

ii) Ln FS = 0, and 

iii) g{s) = w together 

imply iv) FS 
f:; T 

5-1 

We know (i) is true by Remark 5. 
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b 
Since L is fin ite, there is ab> 0 assur;ng that p l+Pe is greater than ail members 

b u 

of L. As F
S 

is either empty or f p1+Pe} , FSf\ L = 0 F (ii) holds. 
u 

that T 
5 

b 
Let P be in A . 

e u 

1+ b b 
Then Pu Pe is in T, and for sorne s1 0, p~+Pe is in T - Tl. We can be sure 

s 5-

= T 1 U F
S f Tl' 50: F

S 
is non-'empty and Case 2 is not true. Case 1 is true 

5- 5-

whereby g(s) =w, so (iii) is verified for this s. 

It follows From T
s
- 1 U F

S f T s-l that Fst T 5-1. When P: is in Au' there is an 

5 for which (i), (ii), and (iii) hold but (iv) is false. Hence pb is not in A , A(u, pb) = 1. 
eue 

1 t is now necessary to show that 
u 

(e l f (pb) -_ o. S h J uppose t e converse : 
e 

ln particular there is a y, fU(j,k) is defined for ail i, k, < y. Since fU(j,k) = fO,k) for ail 
5 

sufficiently large s, choose a suitable s such that (5)0 = u and (5)1 = e. Case 1 is true for 

this s. 

b 
l+p 

P e 
u 

l r 1 + r 
This means F

S 
= (pu +Pe} where r ~ b, 50 Pu Pe i5 greater than or equal to 

which is greater th an ail members of L,50 F
S

" L = O. (ii) i5 true. 

At thi5 stage s, a5 Case 1 is true, g(s} =w, 50 (iii) holds. 
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From our earl ier argument, we know pb is not in A for ail b '> 0 su ch that 
e u 

is greater than ail members of L. Certainly then for q:. h, pr is not in A , and 
e u 

is not in T ; F
S 

is not Cl subset of T and, a fortiori, FS~ T s-l . 

fU b b 
Therefore {el (p) = 0 and A (u, p ) = 1. 

e e 

A is not recursive in A. (i 1- u). 
U 1 

Since the degrees of unsolvability of recursively enumerable sets are partially 

ordered, the degrees of any sequence of recursively independent, simultaneously recursively 

enumerable sets can be imbedded in the upper semi-Iattice of degrees of recursively 

enumerable sets as a result of the next corollary. 

Corollary 3 : If P is a countable, partially ordered set, then P is imbeddable 

in the upper semi-Iattice of degrees of recursively enumElrable sets. 

Proof : It will be sufficient to show that N
R 

is imbeddable in the upper 

semi-Iattice. We show that N
R 

is imbeddable in the upper semi-Iattice of degrees of 

recursively enumerable sets by showing that if m, n € N and C ,C are recursively 
m n 

enumerable sets then m ~ R n iff C is recursive in C . In Sacks' terms this is an order-
m n 

isomorphism ; a monotonie property, an order preservation. We must construct a suitable 

sequence of sets (Ct} i € N
R

. 
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Take fA.) i> 0 to be a sequence of recursively independent, simultaneously 
1 

recursive/y enumerable sets. For each m ~ 0, let B = f p n+ 11 n € A } : èach B is 
m m m m 

recursive in A , so the {BJ i>,. 0 are simultaneously recursively enumerable, and 
m 1 

recursively independent. ln addition the B. are pairwise disjoint since B. contains only 
1 1 

f h .th . 
powers 0 tel prime. Let C = U {B 1 r:s R m} ,C is recursively enumerable, since m r m 

the Bi 's are simultaneously recursively enumerable and ~ R is recursive. 

It is now necessary to show that C is recursive in C if and onl y if u ~ R v, 
u v 

where u, v are in N
R

. 

Suppose C is recursive in C , and u J R v: Then B n C = 0 since C = U B, 
u v u v v r~ v r 

(u i
R 

v) and {Bi} are disjoint, and Cv is recursive in the sets of the sequence 
.... R 

{B.J i ~O il- u, since x is in C if and only if there is an m and an n such thal' x = p n+1 
1 v m 

and m ~ R u and x is in B . We know that the ( B.) are independent, 50 B is not recursive 
m 1 u 

in C as it is recursive in the other B.(i 1- u), but C is recursive in B , and therefore not 
v 1 u U 

recursive in C . This contradicts the given, and it follows that C recursive in C implies 
v u v 

u ~R v. 

If u ~R v, we must show that C is recursive in C . From u "'R v, C SC so: 
u v u v 

x is in Cu if and only if there is an m and an n su ch that x = p~+l where m ~R u and x is in 

Bm' We saw that ~ R was a transitive relation 50 m ~ R u and u ~ R v imply m ~ R v ; by 

definition C = U B (r ~ RV)' so B ~ C. Since the B.'s are disjoint, x is in B if and on:y 
r m 1 m 

if x is in C ; or x is in C , is equivalent to x € C ; or C is recursive in C . 
v u v u v 
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CHAPTER IV 

FRIEDBERGIS SOLUTION 

ln 1956 Richard M. Friedberg(2) discovered a solution to Postls problem. His 

original argument went as follows : 
f 

If fI is recursive in f
2

, then there is an e, for which fl(x~(e» = U(fJyT 2(e,x~(e),y) 

for 011 numbers x~(e), defined for this e and 011 a. 

ln order to show that fI is not recursive in f 2 : 

i) 

ii) 

iii ) 

iv) 

define a number x~(e) for every pair of integers, a, e ~ 
0

1-1 
f 2 a 

If at sorne stage 0 1(>,..0), Tl (e,x
1
(e),y) and U(y) = l, then we set 

al al 
fI (xl (e) = O. 

al 
f 

We ensure (as nearly as possible) that T
1
2 (e,x~(e),y) and U(y) = 1 will 

be true for 0110">,.0 1
, (see Remark F.5). 

[O(Eaf~(X) = O)(i = 1,2) 
f.(x) = 

1 1 otherwise 

It is necessary to define f 1 and f 2 and show that they are partial recursive functions. 

Since they will be (0, 1) valued, they con be considered as representing functions of recur-

sively enumerable sets. 

TO DEFINE: x~ and f~; (i = 0,1): 
1 1 

0=0 
o 0 

fI (x) = f 2(><) = for 011 x 

o 0 e 
x1(e) = x2(e) = 2 for 011 e. 
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Case 1 : 

Case 2 : 
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(a odd) 

a = 2b + 1 Let e be the number of different prime divisors of b. 
o 

i) f~(x) = f~-l(x) for ail x. 

ii) 
a-1 = xl (e) for ail e. 

Subcase 1 • 1 : 
a-1 

(e ,x
1 

(e ),y) 
a a 

and U{y) = 1, then 

i ii) • 1 
a a-1 a a-1 a-1 
f1(~~1 (e

a
))=O;f

1
(x)=f1 (x)forallxlx

1 
(e

a
), 

iv) • 1 
e 

= 2 (2a + 1) a Il e -} e , 
a 

a-1 = x2 (e) ail e< ea' 

S ubcase 1 .2: Otherw i se, 

i i i) .2 a 0-1 
f 1 (x) = f 1 (x) for a Il x, 

iv) .2 o a-1 
x

2
(e) = x

2 
(e)foralle. 

(a even) 

a = 2b + 2, where e is the number of prime divisors of b. 
a 

i) f~()~) = f~-l(x) for Clii x, 

i i) 
a 0-1 

)(2(e) = x
2 

(e)for ail e. 

a-1 
a-1 a-1 f 1 

Subcase 2.1: If f 2 (x
2 

(e» = 1 and (Ey< a)T 1 
a-1 

(e ,x
2 

(e), y) 
a a 

and U(y) = 1, then 

i i i) . l 

iv) • 1 
a e 

x
1
(e) = 2 (2a+1)foralle>e

a 
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Subcase 2.2: Otherwise, 

iii} .2 a a-1 
f 2(x) = f 2 (x) for ail X, 

iv} . 2 a a-1 
x 1 (e) = x 1 (e) for a Il e . 

--L01 Define f.{x} 
1 

if Ea f~(x) = ° (i := 1, 2) 
1 

Otherwise. 

Then f 1 and f 2 represent recursively enumerable sets. 

Remark F. 1 . This result is used in Friedberg '5 Lemma ! and corresponds 1'0 Sacks 1 

Lemma 1. 

a 
If f. (x) changes value at stages a = r and a = s (r < s) From 1 to 0, then there is a u, 

1 

u 
r ... u < s, such that f. (x) changes value from 0 to 1 al' stage u. 

1 

Proof : Given 
r-l 

f. (x) = 1 , 
1 

r 
f. (x) = 0 

1 

5-1 
f. (x) = 1 , 

1 
f:(x) = O. 

1 

r s s-1 s-i (s-i-l) 
Here f.(x) = f.(x) = 0, f. ()() = l, and r - s = k, sorne finite number. If f. (x) = f. (x) 

1 1 1 1 1 

s-1 s-k r 
(for i = 1, '" f k - 1), then f. (x) = f. (x) = f.{x} which is false. So for sorne stage 

1 1 1 

a r <: a" s f~(x} = 1. Since there are a finite number of stages between r and S, there must 
1 

be a first one at which this occurs. CalI this stage "u". 

Remark F. 2. If x~(e} changes value infinitely often, f~(x~ (e}) changes value 
1 1 1 
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infinitely often, since at any stage a at which x~ changes, f~ does not. 
1 1 

a 
If f. (x) changes value From 1 to 0 at n stages, it must change value From 0 to 1 at 

1 

at least n - 1 stages and at ot most n + 1 stages, and at each of these stages x~(e) changes 
1 

value. In particular, if f~(x) changes value from 1 to 0 at infinitely many stages there are 
1 

infinitely many stages at which it changes bock From 0 ta 1. 

Lemma 1 : For any given e, x~(e) changes only finitely often as a increases 

through the natural numbers. 

Proof : Suppose this lemma does not hold. There is sorne e such that x~(e) 

changes infin itely often as a increases thïOugh the natural numbers, and therefore there is a 

1 east e, ë, such that x ~ (ë) changes va 1 ue i nfi ni te 1 y ofte n as a i ncreases . 

i) Subcase 2. 1 is true ; and 

'1 '1 ) h . -. - f h . h fa - 1 ( a - 1 (-1 ).\ 1 d t ere IS an e = e a <: e or w IC 2 x
2 

e 1 = an, as 

a-1 a a-1 - a a-
x

2 
(e) = x

2
(e) for ail e, f

2
(x

2 
(el)) = f

2
(x

2
(e l)) = O. 

When th is occurs at stages al, ail, we know by Remark F . 1, that there is a u a 1<; u< ail 

u-1 u-l - u u-
su ch that f

2 
(x

2 
(el)) = 0 and f

2
(x

2
(e l)) = 1. At stage u f

2 
changes value from 0 to 1 and 

u-l u u-1 u-l -' u u-
therefore Subcase 2.1 is not true and f

2 
(x) = f

2
(x) for ail x, 50 if f 2 (x

2 
(el)) 1- f

2
(x

2
(e l)), 

then )(~-\e'l) 1- )(~(;I). This is true for the infinitely many stages u (a l< u < ail) where xl 

changes value at al and ail. 



x~ changing value implies that 

i) 

i i) 

iii) 

iv} 

Subcase 1 . 1 is true at stage u. 

e = e~el. 
u 
u-l u-1 

f 1 (x 1 (e)) = 1. 
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Again between any two stages of u ot which f~(x) changes value from 1 to 0, there 

u 1-1 u 1-1 u 1 u 1 
is a stage u l such that f

1 
(xl (e)) = 0 and f

1 
(x

1 
(e)) = 1. Since at this stage f

1 
does 

1 1 1 

not change value, x~ - (e) 1 )<~ (e) for the infinitely many II I at which f
1 

changes back from 

o to 1 . 

Therefore we have exhibited an e(=e
u 

< -;;;) such that x~(e) changes infinitely often, 

contradicting our hypothesis that e was the least such number. The lemma must hold. 

ln the same manner for any given e, x~(e) changes only a finite number of times as 

a increases through the natural numbers. 

Remark F.3. If f.(x) is the characteristic function of a finite set, S., it is equal 
1 1 

to zero for only a finite number of values of x. 

Since )<~(e) changes only a finite number of times, for any given e, there is a 

Il 1 

stage al for each e such that x? (e) = x? (e) for ail a"~ al; i.e. cfter a certain finite 
1 1 

stage, not constructively defined ; x?(e) is a constant, say z.(e). 
1 1 
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Since f?{x) can change at most once more than x?(e), for each given e, there is 
1 1 

a* a** 
a stage a* such that f. (x) = f. (x) for ail a**~ a* ; i.e. after a certain finite stage, not 

1 1 

constructively defined, f?{x) is a constant. 
1 

Remark F .4. There is an a, for ail x, after which f?{x) does not change and this 
1 

last value is the same as f.{x). 
1 

a al a 
Since xi (e) has a last value, zi{e), and fi (x

1
{e» can change at most once more 

al 
for sorne al> a, f. (z.{e» has a last val ue. 

1 1 

Suppose f.{z.(e» = 1, then there is no a such that f?{z.{e» = Oor f?(z.(e» = 1 for 
1 1 1 1 1 ·1 

ail a. That is, f?(z.(e» = f.(z.(e» for ail a. 
1 1 1 1 

Suppose f.(z.{e» = O. There is a stage a such that f?{z.(e» =. O. Since this a is 
1 1 1 1 

1 

finite, there is a least stage at which this happens, say al. f? (z.(e» = 0 for the first time ; 
1 1 

~. 

or f? (z.(e» = 1 for ail a*> a:. This al must be greater than or equal to the stage a atwnich 
1 1 

a ail 
x

1
(e) takes the value z.(e); or x.(e) changes last, so x. (e) = z.{e) for ail a"-3-a l. If 

1 1 1 1 

ail ail 
f. (z.(e» were to change back to 1 at stage ail, From Lemma 1 we know x. (e) would have 

1 1 1 

ail 
to change value and this does not happen at any stage ail ~ al. Therefore f. (z.(e») = f.(z.(e» 

1 1 1 1 

for ail a"~ al. 

fa 

al Remark F .5. If T 1
2
{e

a
, x~{ea)' y) is true at sorne stage a, but for al~ a 

f2 al 
T

1 
(e

a
, xl{e

a
), y)isfalse, thenatstagea l, f

2 
has changed value. Subcase2.1 mustbe 
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4a 

at sorne later stage al is by having the simultaneous conditions: Subcase 2.1 is true at 
fa 

stage al, but e 1> e • Similarly the onlyway to falsify Tl\e , x
a
2
(e ), y) is by having 

a a a a 

Subcase 1 .1 true, and e I~ e . 
a a 

a 
Lemmall: Let zl(e) be the last unchanged value assumed by xl(e) as a 

f
2 

increases, then Ey (T 1 (e, zl(e), y) and U{y) = lJ == (fl(zl(e» = aJ. 

f
2 

Pro of : If Ey (Tl (e, zl(e), y) and U(y) = 1): Choose a stage al) a, such 

1 

that al is odd and so large that f~ (zl(e» = fl(zl(e». This can be done by Remark F.4. If 
al 

f
l 

(zl(e» = 0, then fl(zl(e» = ° and the lemma is proved. 

al a l-1 al-l 
If f

l 
(zl(e» = l, for ail al, then f

l 
(xl (e» = 1 for ail al> a. Starting with 

the formai procedure, E, with f
2 

as principal function letter, G.N.(E) = e, there is no 

finite y, or no finite G.N. of this procedure for the argument zl(e). This contradicts the 

al 
given. There must be a stage al~a such that fl(zl(e» = f

l 
(zl(e»)= a. 

i) 

ii) 

Suppose this condition is falsified: This can be true only if f~l-l changes value 
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for al > a and zl{e) does not. This means that eal~ e for those al> a. We know for any 

fixed e, saye - 1, there are infinitely many e = e - 1. At stage al only finitely many 
a 

of these e can have been calculated, 50 there will always be another e 1 al) a such that 
a 

e = e - l ( e, causing zl(e) to change value, contradicting the given. Therefore 
a f 
a l -1 a l -1 2 

f 2 does not change value for any al> a, f 2 = f 2 and Ey Tl (e, z'l (e), y) and U{y) = 1 . 

By interchanging the subscripts for the fis, ZIS and )(IS: Let zie) be the last unchanged 
f 

value assumed by x~(e) as a increases ; then Ey [ T 11 (e, z2(e), y) and U(y) = 1] 

Theorem 1 : There exist two functions f 1 and f 2' both of wh ich represent 

recursively enumerable sei"s and neither of which is recursive in the other. 

Proof : ln an exact analogy to Sacksl Corollary 1, we have shown that 

for ail e, there is an n, depending on e, such that 

f. 
fi(n) 1- U (!-Iy T l'(e, n, y» i 1- j (i, j, = 1, 2). 

$0 f 1 is not recursive in f 2 and vice-versa. To define noVo sets $i(i = 1,2): by stages. 

a = 0 

= if e 1 A 

o 
x. (e) = 3. 2 

1 

o 0 0 e -.L o( el) f. (x. (e» = f. (3.2 ) T f. 2 for ail el € A. 
1 1 1 1 

o 
Therefore, f. (x) = 0 for ail >(. 

1 
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a "} 0 f?, and x? are defined as before. 
1 1 

Then S. = (x 1 f.(x) = o} . 
1 1 

Theorem Il : Given a set, A, there exist Iwo sets noi' recursive in one another, 

both enumerable by a procedure recursive in A and both of degree higher than that of A. 

We have shown that the recursively defined f
1 

and f
2 

have incom­

parable degrees of recursive unsolvability. Since f. is the characteristic function for 
1 

Proof : 

Si(i = 1,2). Sl and S2 have incomparable degrees of unsolvability (neither is recursive 

in the other), and we have exhibited two recursively enumerable sets which are recursively 

independent. 
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CHAPTER V 

.... 
MUCNIK '5 SOLUTION 

Muc:nik 's(5) solution to Post's problem appears to be much more complex than 

Friedberg 's. 

Friedberg accepts and uses the notation and constructions of Kleene. In particular 

the T predicate is used to define recursively enumerable , non-recursive sets and if any 

function is recursive in a second one 1 it can be expressed in K leene 's normal form for some 

Gode 1 Number 1 e. 

Mu~nik defines a c1ass of M problems as any mathematical task whose achievement 

can be resolved into an infinite sequence of elementary acts whose results can each be 

characterized by a natural number. An M-problem can be put into one to one correspon-

dence wil-h its set of solving equations and is algorithmic or solvable if at least one of its 

solving functions is general recursive. 

The decision problem for B is reducible to the decision problem for A, if there 

exists a general recursive operator which maps the characteristic function of A into the 

characteristic function of the set B. 

Mucnik defines and uses the following new concepts: 
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quasisequence: afin ite or infin ite sequence of numbers and sorne new 
symbol À used as a symbol for an undefined quantity: The length, M fI} , 
of a quasisequence,l, is the number of its components. 

mutually consisten~: elements a and b are mutually consistent, a .... b, 
if a = bor a = À, or b = À ~ quasisequences 1] and 1

2 
are mutually 

consistent if 1 l (n) .... 1
2

(n) for ail n~ Min(M (1 il ). 

com~atible: quasisequences el and e
2 

are compatible, el::' e
2

, if 
el{n .... e

2
(n) for ail n~ min{M (I~ ). el x e

2 
if the y are nof compatible. 

Eedicate: a sequence of lis and zeroes. A quasi-predicate: a sequence 
of lis, OlS and À 15. 

The concept of a partial recursive operator is a precise form of the notion of an 

effective mapping of systems of functions into functions. Mu'fnik then proves that the map 

from infinite quasisequences into sequences of any partial recursive operator is construc-

tively defined by sorne primitive recursive function. This is certainly still true if the set 

of partial recursive operators is defined on a subset of infinite quasisequences, the infinite 

sequences. In addition if we define t as a characteristic value of the operator P if 
x 

o 
x(t) = x , then it can be shown that P has only a finite number of characteristic values, 

o x 

t, for any given x • This is somewhat similar to Sacks' Lemrna that any requirement can 
o 

be injured at most a finite number of times, and Friedbergls Lernma that x.{e) can change 
1 

value only a finite number of times. 

Let d
x 

1 w 1 be a fin ite predicate which gets taken into d~ 1 w 1 by the operator Px' 



45 

A functÎon defined on a segment of the natural numbers is orderly. To every orderly 

function, ~)w), there corresponds sorne sequence of pairs of quasisequences (d
x 

/ w /, d~ / w 1), 
with fD' (w) as its index. This fD' (w) serves the same pur pose as a pairing function. Intro-

x x 

duce a parametric representation z = ~(x,w) ; x = x(t), w = w(t). z = z(t), where x(t), w(t), 

and z(t) are primitive recursive functions. Denote the predicates d x{t) 1 w(t} 1 and 

d~(t) 1 w(t) 1 by rit 1 and fil t l, and fit l, fi 1 t 1 by the quasisequences derived From 

fit l, f' 1 t 1 by replac ing ail occurrences of 0 by À. Note that M (f 1 t Il = m(t) and 

M {fi 1 t I} = ml(t). 

ln order to solve Postls problem two recursively enumerable, non-recursive sets 

must be constructed. Let these sets be E and G whose characteristic functions are 'ë and 

9 respectively. We define 'ë and 9 recursively as follows : 

Construct sequences (t.} , te.} , (g.} 
1 1 1 

to = 0, e 0 = f 1 0 l ' go = Cfl 1 0 1 . 

Assume that to ' ... , t2k ; e
o

' ... , e 2k ; and go' ... , g2k are already 

defined. Put t
2k

+
l 

= flt, satisfying la) - 1d) 

la) fltl~g2k; 
lb) fit 1;,. [g2k1 a{t,2k); 

where a(t, k) is the control function defined by : 

a(t,q) = max{ ;(t,q), ;I(t,q)) , 

;(t,q) = ma>< {m(t.)J + 1 f 
• .( ) 1 
I~ 1 l',q 
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;I(t,q) = max (ml(t.))+ 1 
i~ i(t,q) 1 

i (t,q) = max (i) 
(i ~ q)x(t.)~x(t) 

1 

lc) (i)i <. k( (x(t2i+1) = x(t) & f 1 t2i+1 l~g2k )->(1: 1 t2i+1 1:;: e 2k )) ; 

1 d) fi 1 t 1 x (e 2k' fi 1 t 1 ) a( t , 2k) . 

Put t
2k

+
2 

= IJt, satisfying 2a) - 2d) : 

2a) fit 1 ~ e 2k+1 ; 

2b) f! t 1 :::::-[e2k+l] a(t,2k+l) 

2c) (i)i ~ k ()<{t2t ) = x(t) & f 1 t 2i !;:;:;-e2k+ l -+fi ! t 2i 1 ~g2k+1 ); 

2d) fi 1 t 1 x(g2k+1 ' fi 1 t 1 )a(t, 2k+1) 

Sete2k+2=e2k+1 U fi t 2k+2 1; g2k+2=(g2k+1' fi 1 t2k+21)a(t2k+2' 2k+1) 

Set e* = U e. ; g* = Ug. , e = (e* 0 À) and 9 = (g* 0 À). 
• 1 • 1 
1 1 

The predicates; and gare defined From e and 9 by replacing ail occurrences of À by O. 

Mucnik defines the idea of strong minimality as: s is strongly minimal with 

respect to x if r > s implies x(t ) '>){ ~ x(t ). 
oro s 
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Mucnik formulates this theorem From which a solution to Postls problem follows : 

There e><Îst recursively enumerable, non-recursive sets E and G such that, for ail 

x, P (e) l '9 and P ('9) 1 ;;, where ;; and '9 are the characteristic functions of E and G 
x x 

respectively, i.e. the recursively enumerable sets E and Gare not reducible to each other. 

This theorem is proved for the two cases: if t
2i 

is defined then t
2i

+
1 

always exists, and 

t
2i 

is defined but t
2i

+
1 

does not exist. In the first case a number s strongly minimal with 

respect to x is chosen. One finds a characteristic value for P satisfying conditions 20) 
o 

- 2d). Since we have set 2k+l ~ s, and assumed P (ë") = '9, the result that x(t
21 

2) = x 
x <+ 0 

o 
contradicts the strong minimal ity of s. Therefore P (;;) l '9. In an analogous fashion it 

x 
o 

is shown that P ('9) 1;;. From this it follows that the sets E and Gare not recursive and 
x 

o 
not reducible to one another. 

Mucnik also states the theorem that there is a recursive sequence of recursively 

enumerable sets {El such that the decision problem for each of them is not reducible to 
n 

recursive conjunction 1\ A
E 

(A
E min m m 

is the decision problem for E ). He omits the 
m 

proof as it is much more complicated. ,The details are given in here in Chapter Il, 

Corollary 2. 
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