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Estimating inverse probability weights using
super learner when weight-model specification is
unknown in a marginal structural Cox model
context
Mohammad Ehsanul Karima∗, Robert W. Plattb,c,d,e, and The BeAMS study
group§

Correct specification of the inverse probability weighting (IPW) model is necessary for consistent inference from
a marginal structural Cox model (MSCM). In practical applications, researchers are typically unaware of the
true specification of the weight model. Nonetheless, IPWs are commonly estimated using parametric models,
such as the main-effects logistic regression model. In practice, assumptions underlying such models may not hold
and data-adaptive statistical learning methods may provide an alternative. Many candidate statistical learning
approaches are available in the literature. However, the optimal approach for a given dataset is impossible to
predict. Super Learner (SL) has been proposed as a tool for selecting an optimal learner from a set of candidates
using cross-validation. In this study, we evaluate the usefulness of a SL in estimating IPW in four different
MSCM simulation scenarios, in which we varied the specification of the true weight model specification (linear
and/or additive). Our simulations show that, in the presence of weight model misspecification, with a rich and
diverse set of candidate algorithms, SL can generally offer a better alternative to the commonly used statistical
learning approaches in terms of MSE as well as the coverage probabilities of the estimated effect in an MSCM.
The findings from the simulation studies guided the application of the MSCM in a multiple sclerosis cohort from
British Columbia, Canada (1995-2008) to estimate the impact of beta-interferon treatment in delaying disability
progression. Copyright c© 2016 John Wiley & Sons, Ltd.
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Introduction

It is not always feasible to conduct a clinical trial to assess effectiveness of a treatment. Marginal structural models
(MSMs) may be used to infer from an observational study that emulates a hypothetical randomized clinical trial. For
survival outcomes, marginal structural Cox models (MSCMs) can be used to model the causal effect of treatment on
survival in the presence of time-dependent confounding. These approaches can be illustrated using counterfactual theory
[1–3]. Given potential confounding between an outcome and the treatment exposure of interest (e.g., time-dependent
confounders), that could potentially distort the causal relationship of interest, methods such as inverse probability of
treatment weighting (IPW), can be used obtain consistent estimates of causal effects defined by MSCMs [4–7].

IPWs are frequently used to estimate causal effects from MSCMs. The properties of the estimated IPWs influence
the estimated effects from MSCM and their accuracy. As with any model, causal interpretation of a treatment effect
estimate from an MSCM requires assumptions including positivity, consistency, conditional exchangeability, and correct
specification of the MSCM and the weight model [7, 8]. If the weight models are correctly specified, estimates from
the MSCM will be efficient. However, previous research has shown that MSCM estimates are highly sensitive to weight
model misspecification [9, 10].

Few guidelines on how to calculate IPWs in a longitudinal setting are available in the literature [5, 8, 11]. They
are commonly estimated using main-effects logistic regression models. In practical applications, researchers are often
unaware of the true form of the weight model, i.e., whether non-linearity (e.g., quadratic or higher-order effects) or
non-additivity (e.g., interaction terms) is required to describe the relationship adequately. To capture more features of
the data, researchers may choose to make the parametric specification complex, i.e., include additional higher order
effects and interactions. But such models may include more parameters than the observed data can support when dealing
with high-dimensional data with large number of covariates or datasets with a relatively small number of observations.
Arbitrary model specification can lead to erroneous inference. Assessment of the fit of logistic models for IPW is rarely
seen in the MSCM literature [12, 13].

Alternative modelling strategies, such as statistical learning methods, are appealing to many as these approaches can
data-adaptively detect non-linear, non-additive and higher-order effects as well as find better classification boundaries in
transformed covariate spaces [14, 15]. However, it is impossible to a priori predict which approach performs best in a
given dataset [16].

One proposed solution is to use Super Learner (SL) [16]. SL uses a set (library) of user-specified candidate learners or
methods. This library may include parametric and semi-parametric regression models as well as data-adaptive statistical
learning methods [17]. Using cross-validation, this approach optimally combines the predicted values from each candidate
learner through a weighted average and computes estimated predicted values that asymptotically outperform each of the
candidate estimators in the library if the correct parametric model is not included in the candidate library. Therefore, as
true parametric specification of the weight model is almost always unknown, SL may offer a better alternative to logistic
regression model or other data-adaptive statistical learning approaches.

As the performance of learners varies in different data sets, it is tempting to choose a rich collection of learners in the
user-specified candidate library for SL. However, only a few studies have applied SL in the context of longitudinal MSM
or MSCM. So far, a very limited number of learners, e.g., logistic regression models, polychotomous regressions, neural
networks, k-nearest neighbors and boosted classification and regression trees (CART) have been considered as candidate
learners [18–21]. Neugebauer et al. [19] studied the implementation of a SL in a single data analysis. Other studies were
focused on implementing the SL algorithm in large or high-dimensional datasets and choose a limited list of candidate
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learners to avoid further computational burden [18, 20, 21]. There exist other studies using MSCM that were focused on
data-adaptive methods, but not SL [15, 22, 23]. We extend the literature by including a wide range of diverse prediction
algorithms (10 learners; described later) in the SL candidate library in a simulation study in which including a rich SL
candidate library is computationally manageable. In this simulation study, for the first time, we assess the usefulness
of using SL in a MSCM context in four explicit scenarios where the true parametric exposure-confounder relationships
include non-additivity, non-linearity, both or none. Our aim is to assess the benefits of using super learning approach
to estimate the MSCM weights in terms of estimated treatment effect MSE when the treatment assignment model is
misspecified to varying degrees.

The remainder of the paper is organized as follows. In the next section, we describe the notation for MSCM, SL, design
of the simulation study, and the metrics used to evaluate their performances. Then we summarize the results from the
simulation scenarios and illustrate the application of SL in fitting MSCM using the data from multiple sclerosis cohort
from British Columbia, Canada (1995-2008) [24, 25]. The paper concludes with a discussion of the results, and the
implications and limitations of the current study.

Methods

In order to compare the performance of SL under weight model misspecification, we conduct a number of Monte Carlo
simulations. Here we define the notation for MSCM and SL.

Notations for Marginal Structural Cox Model

Assume that regular measurements at visits m = 0, 1, 2, . . .K are collected in a hypothetical longitudinal study. Let
the time of the baseline visit be t0 = 0 and the corresponding measured covariates denoted by L0. Let T be the exact
failure time until which follow-up continues. The treatment status (Am = 1 if the subject is treated in the m-th interval
and Am = 0 otherwise) is measured immediately after recording the value of a continuous covariate (Lm) at the m-th
time interval [tm, tm+1). We denote Ām = (A0, A1, . . . , Am) and L̄m = (L0, L1, . . . , Lm) the observed treatment history
and covariate history respectively through the end of interval m. The corresponding realizations of Ām and L̄m are
ām = (a0, a1, . . . , am) and l̄m = (l0, l1, . . . , lm) respectively. We also define the failure indicator at the time tm+1 as
Ym+1 = I(T ≤ tm+1), and the failure history through the end of interval m+ 1 as Ȳm+1 = (Y1, Y2, . . . , Ym+1). Let
Ā−1 = L̄−1 = 0 and Y0 = 0. If the time-dependent confounder L̄m is a strong predictor of the treatment exposure for
a subject in a given time-period, then IPW down-weights the corresponding person-time contribution. Such weighting
removes the time-dependent confounding from the relationship between outcome and treatment exposure.

There are 2K+1 possible treatment regimes (realizations of ĀK): āK = (a0, a1, . . . am, . . . aK). These include 0̄K =

(0, . . . , 0) (never treated), 1̄K = (1, . . . , 1) (always treated) and āK = (0, . . . , 0, 1, . . . , 1) (partly treated) etc. We let the
counterfactual failure time had a subject followed a (hypothetical) regime āK be denoted by T āK . The counterfactual
outcome history under the treatment regime is, then, denoted by Ȳ āKK+1. Therefore, we can define an MSCM for regime ām
as follows:

λām(m) = λ0̄(m) exp
(
γ(m, ām, ψ1)

)
, (1)

where the causal effect is indicated by a constant parameter vector ψ1, γ is a known function, λām(m) and λ0̄(m) are
hazard functions for T ām and T 0̄m (counterfactuals at time tm) respectively at time m. For the treatment regime ām, the
causal hazard ratio can be defined as λām(m)/λ0̄m

(m) comparing with 0̄m. A causal effect is said to be present (ψ1 6= 0) if
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for any ām(m = 0, 1, . . . ,K) , λām(m) 6= λ0̄(m). The equality of the hazard functions for all K intervals is indicative of
the absence of a causal effect (ψ1 = 0). We can specify γ = ψ1f(Am) + ψ2L0 based on a function of treatment exposure
(e.g., current exposure [5] or cumulative exposure [26]).

Note that, to keep notations manageable and concordant with the current literature, the above definition of the MSCM
deals with the simple situation where there is only one continuous time-dependent confounder (Lm) that may affect future
treatment decisions (Am) and the hazard function under consideration (λām(m)) deals with only the current treatment
exposure (Am). In practice, MSCM is capable of addressing situations where there are multiple binary, categorical or
continuous time-dependent confounders and the hazard function can be fairly complicated. For example, later in this
paper, we do consider a situation when two time-dependent (one binary Sm and one continuous Lm) confounders are
present that affect future treatment decisions. We also consider a situation when the hazard function depends on the
cumulative treatment exposure.

Estimation of ψ1 from the MSCM

Standard modelling approaches that include Lm as a covariate, may provide biased estimates of ψ1 if Lm is influenced
by past exposure [5]. Instead of using Lm as a covariate, MSCM uses it to calculate inverse probability weights that
are person-time specific measures of the degree to which Lm confounds the treatment selection process. Stabilization of
the weights is generally advocated to decrease weight variation, which consequently increase the precision of MSCM
estimates. The stabilized weights are derived from the following equation:

swim =

m∏
j=0

pr(Aij = aij |Āi,j−1 = āi,j−1, Li0 = li0)

pr(Aij = aij |Āi,j−1 = āi,j−1, Li0 = li0, L̄ij = l̄ij)
. (2)

Corresponding normalized version of the weight can be calculated as follows:

sw
(n)
im =

swimnm∑
i∈rm swim

, (3)

where rm denotes the risk-set at time m, nm denotes the total number of subjects in the risk-set and sw and sw(n)

are the stabilized and stabilized normalized weights respectively. These weights create a pseudo-population where the
confounding due to the time-dependent confounder is removed from the relationship between outcome and treatment
exposure. We fit the MSCM using the Cox model with IPWs to estimate ψ1 in equation (1) [27] and calculate the robust
sandwich standard error (calculated based on residuals and weights) [28, 29].

Estimating Inverse Probability Weights via Super Learner

SL starts with a candidate list of learners or prediction algorithms and evaluates the performance of each. Using V-fold
cross-validation, it predicts the outcome for the validation data, based on the fit from the training data using each
candidate learner. It relies on a loss function to calculate the weights for the chosen candidate learners. The optimal
weighted combination of the candidate learners under consideration is the SL function that ultimately provides the SL
prediction [14, 17, 21]. Web-Appendix A illustrates the steps required to implement this algorithm [14, 21]. Table 1 lists
10 candidate learners that are included in our SL’s [16, 17, 30] candidate library to estimate IPWs. This list contains a
wide range of learners, such as, parametric, nonparametric, tree-based and non-linear models.

All analyses were performed using R 3.2.2 [31]. Web-Table B2 in Web-Appendix B includes the sample R code to
fit the candidate learner models.

4 www.sim.org Copyright c© 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 00 1–20

Prepared using simauth.cls



IPW via super learner in MSCM

Statistics
in Medicine

Table 1. Candidate learners included in the super learner under consideration.

Learner Description Reference

Logistic regression The main terms of the covariates [32]
Stepwise logistic regression Variables selected from the main and the 2nd

order terms based on AIC criterion
[33]

Elastic net Mixing parameter = 0.5 [34]
Bayesian logistic regression Cauchy prior with scale = 2.5 [35]
Classification and regression trees (CART) Complexity parameter = 0.01 [36]
Pruned CART Complexity parameter chosen such that the

cross-validated error rate is minimum
[36]

Bagged CART Based on 100 replications [37]
Boosted CART Based on 5, 000 trees and interaction depth = 3 [38]
Random Forest Based on 1, 000 trees [39]
Support vector machines Polynomial kernel [40, 41]

Simulating Data Suitable for MSCM Fit

The simulations performed in the current paper are extensions of the simplistic MSCM simulations proposed so far in the
literature [22, 23, 27, 42–46] that were constructed based on rigorous methodological/theretical foundation [47, 48]. For
example, much simulations of MSCM in the literature deal with only one binary time-dependent confounder that affects
future treatment [23, 27, 42, 43, 45, 47, 48], whereas the current paper deals with a continuous time-dependent confounder,
which has only recently been explored in the literature [15, 49]. In these papers, it was repeatedly shown (e.g., in [27, 47])
that, even in the simplest situation under consideration (i.e., only one binary time-dependent confounder), the MSCM fitted
in the data generated from the proposed algorithm [47, 48] provides more accurate estimation than using a simple time-
varying Cox model. In this study, the first simulation considers Lm to be a continuous variable so that we can assess the
effect of polynomial terms in Lm and/or the interaction termAm−1 × Lm in the true treatment decision model (as in [15]).
In particular, past treatment exposure status Am−1 is a predictor of Lm, which then predicts future treatment exposure Am
as well as future failure status Ym+1 via 1/ log(T 0̄). Therefore, Lm is a time-dependent confounder affecting the future
treatment choices [5]. Furthermore, in the current work, we have added two more simulations to deal with scenarios
with additional complexities: (i) two time dependent confounder, (continuous Lm and binary Sm) (ii) complex hazard
function (cumulative treatment). A further simulation was added to assess the effect of having a larger cohort size. Web-
Appendix C includes pseudocodes for MSCM data simulation. Other than the above mentioned works that follows Young
et al’s framework [47, 48], there exits a number of studies that have proposed various other algorithms of simulating data
suitable for fitting MSCMs [11, 20, 21, 50, 51].

Simulation scenarios In this simulation scenario, Lm is a continuous variable and we assume linearity in the logit. The
sampling distributions of Lm depends on its previous lagged values as well as the lagged values of Lm and Am, i.e., lm−1

and am−1, as follows:

Lm = E(Lm = lm|Am−1, Lm−1, Ym = 0;β)

= β0 + β1

(
1/ log(T 0̄)

)
+ β2Am−1 + β3Lm−1. (4)

The time-dependent treatmentAm is sampled from a Bernoulli distribution with probability pA. In this simulation study,
to generate treatment status Am, we considered 4 different models. The form of the true treatment models is as follows:
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A. When the Hazard Function Depends on the Current Treatment Exposure :
I. Additivity and linearity: In the treatment status generating model, only main effects are included as follows:

logit(pA) = logit Pr(Am = 1|Lm, Am−1, Lm−1, Ym = 0;α)

= α0 + α1Am−1 + α2Lm + α3Lm−1. (5)

II. Non-additivity: The interaction termAm−1 × Lm mimics the commonly occurring situation that both of these factors
Am−1 and Lm influence future treatment decisions, which is realistic for many disease settings:

logit(pA) = logit Pr(Am = 1|Lm, Am−1, Lm−1, Ym = 0;α)

= α0 + α1Am−1 + α2Lm + α3Lm−1 + α4(Am−1 × Lm). (6)

III. Non-linearity: In the treatment status generating model, 2 quadratic terms are included as follows:

logit(pA) = logit Pr(Am = 1|Lm, Am−1, Lm−1, Ym = 0;α)

= α0 + α1Am−1 + α2(Lm)2 + α3(Lm−1)2. (7)

IV. Non-linearity and non-additivity: The treatment status generating model includes an interaction as well as 2
quadratic terms:

logit(pA) = logit Pr(Am = 1|Lm, Am−1, Lm−1, Ym = 0;α)

= α0 + α1Am−1 + α2(Lm)2 + α3(Lm−1)2 + α4(Am−1 × Lm). (8)

B. When the Hazard Function Depends on the Cumulative Treatment Exposure: In many practical scenarios,
considering cumulative treatment exposure could be more realistic than considering the current treatment exposure.
The history of binary treatment exposure for each patient can be cumulatively added to create the cumulative treatment
exposure variable. To generate the data accordingly, the parameter for the cumulative exposure is set as the target
parameter in the data generating algorithm. Unlike the previous scenarios, Lm−1 (and consequently α3) is not present in
the following treatment generating models in order to ensure the unbiasedness of the cumulative treatment effect [15, 46].

V. Additivity and linearity: The treatment status at each stage Am depends on the previous therapy, Am−1 and current
disease activity, Lm:

logit(pA) = logit Pr(Am = 1|Lm, Am−1, Ym = 0;α)

= α0 + α1Am−1 + α2Lm. (9)

VI. Non-additivity: The treatment status Am depends on the previous therapy, Am−1, current disease activity, Lm and the
interaction term Am−1 × Lm:

logit(pA) = logit Pr(Am = 1|Lm, Am−1, Ym = 0;α)

= α0 + α1Am−1 + α2Lm + α4(Am−1 × Lm). (10)
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VII. Non-linearity: The treatment status Am depends on the previous therapy, Am−1 and quadratic term of the current
disease activity, Lm:

logit(pA) = logit Pr(Am = 1|Lm, Am−1, Ym = 0;α)

= α0 + α1Am−1 + α2(Lm)2. (11)

VIII. Non-linearity and non-additivity: The treatment status Am depends on the previous therapy, Am−1, quadratic term
of the current disease activity, Lm and the interaction term Am−1 × Lm:

logit(pA) = logit Pr(Am = 1|Lm, Am−1, Ym = 0;α)

= α0 + α1Am−1 + α2(Lm)2 + α4(Am−1 × Lm). (12)

C. When Multiple Time-dependent Confounders are Present that Affect Future Treatment Decisions :
Previously, we generated a continuous time-dependent confounder Lm. In this new simulation scenario, we consider
generating another binary time-dependent confounder, Sm. At each time interval, values of the binary Sm are sampled
from a Bernoulli distribution with probability pS , where pS is defined as follows:

logit(pS) = logit Pr(Sm = 1|Am−1, Sm−1, Ym = 0;β)

= β0 + β1I(T 0̄ < c) + β2Am−1 + β3Sm−1, (13)

where, T 0̄ is the untreated counterfactual survival time and c is an arbitrary cut-point used to generate the binary variable
I(T 0̄ < c). Below we list all the treatment generating models under consideration:

IX. Additivity and linearity: Only main effects are included as follows:

logit(pA) = logit Pr(Am = 1|Lm, Sm, Am−1, Lm−1, Sm−1, Ym = 0;α)

= α0 + α1Am−1 + α2Lm + α3Lm−1 + α22Sm + α32Sm−1 (14)

X. Non-additivity: The interaction terms Am−1 × Lm and Am−1 × Sm are included:

logit(pA) = logit Pr(Am = 1|Lm, Sm, Am−1, Lm−1, Sm−1, Ym = 0;α)

= α0 + α1Am−1 + α2Lm + α3Lm−1 + α4(Am−1 × Lm)

+α22Sm + α32Sm−1 + α42(Am−1 × Sm) (15)

XI. Non-linearity: 4 quadratic terms are included as follows:

logit(pA) = logit Pr(Am = 1|Lm, Sm, Am−1, Lm−1, Sm−1, Ym = 0;α)

= α0 + α1Am−1 + α2(Lm)2 + α3(Lm−1)2 + α22(Sm)2 + α32(Sm−1)2 (16)
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XII. Non-linearity and non-additivity: The treatment status generating model includes an interaction as well as 4
quadratic terms:

logit(pA) = logit Pr(Am = 1|Lm, Sm, Am−1, Lm−1, Sm−1, Ym = 0;α)

= α0 + α1Am−1 + α2(Lm)2 + α3(Lm−1)2 + α4(Am−1 × Lm)

+α22(Sm)2 + α32(Sm−1)2 + α42(Am−1 × Sm) (17)

Simulation Specifications

The true causal effect of treatment is assumed to be hazardous (ψ1 = 0.5 on the log-hazard scale) to the subjects (in equation
(1)). The associated parameter vector in equation (4) is β = (β0, β1, β2, β3) = (log(3/7),−2,− log(1/2),− log(3/2)).
When the hazard function depends on the current treatment exposure, the associated parameter vectors in
equations (5)-(8) are α = (α0, α1, α2, α3, α4) = (log(2/7), (1/2), (−1/2),− log(3/5), 1.2). When the hazard
function depends on the cumulative treatment exposure, the associated parameter vectors in equations (9)-
(12) are α = (α0, α1, α2, α4) = (log(2/7), (1/2), (−1/2), 1.2). When multiple time-dependent confounders are
present that affect future treatment decisions, the associated parameter vectors in equations (14)-(17) are
α = (α0, α1, α2, α3, α4, α22, α32, α42) = (log(2/7), (1/2), (−1/2),− log(3/5), 1.2, 0.5, 1.1,−0.8). Also, The associated
parameter vector in equation (13) is β = (β0, β1, β2, β3, β32) = (log(3/7),−2,− log(1/2),− log(3/2), 2.5).

We have generated cohorts with n = 250 subjects, each with up to 10 visits, to assess the impact of estimating the
MSCM parameter ψ1 using weights via SL. The event rate under consideration is λ0 = 0.10 (monthly events throughout
the follow-up). To assess characteristics of a larger cohort, these simulations are repeated for n = 1, 500 subjects, with
maximum 10 follow-up visits. The Monte Carlo study consists of N = 1, 000 simulated datasets for each setting under
consideration.

Specification of Weight Models to Estimate IPW

The numerator model for the stabilized weights (shown in equation (2)) included the lagged value of treatment status
Am−1 and the follow-up month index m. The denominator model for the stabilized weights included the numerator model
covariates as well as the time-dependent covariate Lm for simulation settings V-VIII. For simulation settings I-IV, the
lagged value Lm−1 was also included in the denominator model. For simulation settings IX-XII, we further included the
time-dependent covariate Sm and the lagged value Sm−1 in the denominator model. In a given simulation setting, while
estimating IPW via any candidate learners as well as SL, we used the same covariate list. For example, in simulation
setting XII, while estimating denominator model of IPW via any candidate learners, we included the following covariates:
Am−1, Lm, Lm−1, Sm, Sm−1 and m. In contrast, in simulation setting VIII, the following covariates were used: Am−1,
Lm and m to estimate denominator model of IPW via any candidate learners.

Performance metrics

We assessed the performance of the weighting schemes using the following measures

• Bias =
∑N

q=1(ψ̂1 − ψ1)/N : The average difference between the true and N = 1000 estimated parameter (log
hazards ratio) from the MSCM model. Here, q = 1, 2, . . . , N = 1000.

• SD =
√∑N

q=1(ψ̂1 − ψ̄1)2/(N − 1) where ψ̄ =
∑N

q=1 ψ̂1/N

• MSE =
√∑N

q=1(ψ̂1 − ψ1)2/N
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• Model-based SE: The average ofN = 1000 estimated standard errors of the estimated causal effect from the MSCM
model.
• Coverage probabilities of model-based nominal 95% CIs: Proportion of N = 1000 datasets in which true parameter

was contained in the estimated 95% CI.

Results

A. Simulation Settings I - IV:

a) Stabilized Weights and Cohort Size, n = 250: The results obtained from the simulation scenarios I-IV (when the
hazard function depends on the current treatment exposure) are presented in Tables 2 - 5. The methods are listed in
ascending order with respect to the estimated MSE. In general the SL approach did well in all of these simulation settings
as it includes both parametric and non-parametric approaches as candidate learners. Among the candidate learners,
boosted CART performed very well in all scenarios. The MSE of this method was closest to that of the SL approach. One
exception was when the treatment model was linear and additive. Then elastic net, which is known to be more stable than
logistic regression, did slightly better than the boosted CART approach. In general, SVM and random forest performed
poorly in our simulations in terms of MSE and coverage probabilities. Below we outline the performance of parametric
and non-parametric candidate learners in terms od bias, SD and MSE.

When the treatment generating model was additive and linear (simulation - I: main-effects only) and candidate
learners also used an additive and linear form for the weight model specification, parametric models, such as elastic
net, Bayesian logistic regression and logistic regression performed well in terms of bias. These parametric models
generally ranking lower than the CART methods (w.r.t. bias) when we considered non-additive terms (simulation - II that
includes interaction) or non-linear terms (simulation - III that includes polynomials) or both (simulation - IV that includes
interaction and polinomial terms) in the treatment generating model. In general CART methods can automatically
consider interaction and polynomial terms and it is not surprising that these methods perform better than the parametric
models in the presence of non-additive or non-linear terms.

In terms of SD, parametric models only performed well in the simulation - I scenario. In simulation - II scenario,
bagged and boosted CART methods perform better (w.r.t. SD) than these parametric models. As soon as a non-linear term
is introduced (simulation - III and IV), parametric models perform worse (w.r.t. SD) that even the inferior CART models
(simple and pruned CARTS).

While considering MSE, we can see the parametric models perform similarly to superior CART methods (boosted and
bagged CARTs) only for simulation setting - I (see Table 2). For rest of the settings, these parametric models generally do
perform worse (see Tables 3, 4, 5).

b) Normalized Stabilized weights: As a sensitivity analysis, we used sw(n) instead of sw in the MSCMs. The
corresponding results are presented in Web-Table D1-D4 in Web-Appendix D. The results are, in principle, similar to
those when sw was used in the MSCMs.

c) Truncated Stabilized Weights: We also applied 1% truncation to the stabilized weights (sw). The corresponding
results are presented in Web-Table E1-E4 in Web-Appendix E. As shown in these tables, when the large weights were
truncated as little as 1%, MSE of resulting effect estimate reduced. This resulted in logistic regression and elastic net to
do better compared to the untruncated analysis in terms of MSE in the scenarios where non-linear terms were present
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Table 2. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is linear and additive in describing the association between the

exposure and the confounder (simulation scenario - I, with weights sw)

Bias MSE SE SD Cov.Pr.

Super learner -0.0719 0.0844 0.312 0.281 0.969
Elastic net -0.1336 0.1031 0.308 0.292 0.934

Boosted CART -0.1493 0.1039 0.314 0.286 0.951
Bayesian logistic 0.0195 0.1071 0.323 0.327 0.972

Logistic 0.0645 0.1218 0.329 0.343 0.972
Bagged CART -0.2469 0.2749 0.386 0.463 0.837

Stepwise 0.1458 0.3750 0.346 0.595 0.950
CART -0.4232 0.4221 0.397 0.493 0.722

Pruned CART -0.6215 0.6246 0.342 0.488 0.507
SVM 0.3807 1.7024 0.502 1.248 0.601

Random Forest -0.6002 2.4178 0.309 1.434 0.148

Table 3. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is linear but non-additive in describing the association between

the exposure and the confounder (simulation scenario - II, with weights sw)

Bias MSE SE SD Cov.Pr.

Super learner 0.00825 0.0312 0.185 0.176 0.970
Boosted CART 0.02492 0.0316 0.187 0.176 0.965
Bagged CART -0.00614 0.0325 0.193 0.180 0.965

Stepwise 0.03801 0.0654 0.223 0.253 0.966
Random Forest 0.03017 0.0741 0.294 0.270 0.973

CART 0.02451 0.0769 0.229 0.276 0.914
Pruned CART -0.04692 0.0849 0.222 0.288 0.867

Elastic net 0.21918 0.0881 0.207 0.200 0.839
Bayesian logistic 0.24436 0.1011 0.210 0.203 0.822

Logistic 0.25562 0.1083 0.213 0.207 0.814
SVM 0.16572 0.2104 0.240 0.428 0.845

Table 4. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is additive but non-linear in describing the association between

the exposure and the confounder (simulation scenario - III, with weights sw)

Bias MSE SE SD Cov.Pr.

Super learner 0.1059 0.259 0.468 0.498 0.9667
CART 0.2217 0.324 0.473 0.524 0.9170

Bagged CART 0.3249 0.342 0.491 0.486 0.9410
Boosted CART 0.3369 0.357 0.498 0.493 0.9157
Pruned CART -0.0903 0.411 0.472 0.634 0.8550

Stepwise 0.2332 0.594 0.421 0.735 0.7655
Elastic net 0.3813 0.601 0.540 0.675 0.8960

Bayesian logistic 0.4147 0.602 0.571 0.656 0.9000
Logistic 0.3290 0.695 0.488 0.766 0.8847

Random Forest -1.1129 1.402 0.434 0.405 0.2420
SVM 2.1906 6.128 0.323 1.153 0.0287

in the true weight model. In terms of MSE, pruned CART did not do well. As before, random forest and SVM still did
not perform well. Web-Appendix I includes the graphs (Figures I1-I12) of these summaries (e.g., bias, MSE, coverage
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Table 5. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is non-linear and non-additive in describing the association

between the exposure and the confounder (simulation scenario - IV, with weights sw)

Bias MSE SE SD Cov.Pr.

Super learner 0.0952 0.241 0.468 0.481 0.9688
CART 0.2038 0.305 0.471 0.513 0.9230

Bagged CART 0.3018 0.315 0.487 0.473 0.9470
Boosted CART 0.3386 0.356 0.497 0.491 0.9137
Pruned CART -0.1086 0.402 0.470 0.624 0.8560

Bayesian logistic 0.3522 0.506 0.562 0.618 0.9190
Elastic net 0.3490 0.551 0.537 0.655 0.9060

Stepwise 0.2186 0.555 0.428 0.712 0.7928
Logistic 0.3110 0.660 0.490 0.751 0.8933

Random Forest -1.1216 1.423 0.434 0.406 0.2320
SVM 2.1899 6.137 0.324 1.158 0.0289

probability) when weights are progressively truncated at higher percentiles in each simulation scenario. In general, the
bias of all weight estimation approaches agreed at 50% truncation. This matches with the expectation that when weights
are truncated 50%, irrespective of the weight estimation technique, the corresponding treatment effect estimate converges
to that from a baseline-adjusted (i.e., unadjusted for time-dependent confounding) analysis [8].

d) Stabilized Weights and Larger Cohort Size, n = 1, 500: The results from the simulations when larger cohorts are
available (i.e., n = 1,500) are shown in Web-Tables F1-F4. The ψ1 estimates perform much better in terms of SD in all the
settings under consideration compared to the n = 250 case (Tables 2-5). Consequently, the MSEs are generally smaller in
all settings with larger cohort sizes. When cohort size increases, the parametric models generally show better performance
in terms of bias than the CART methods (simple, bagged and pruned) compared to the scenarios with smaller cohort
size, except for the scenario where non-additive terms are included in the treatment generating model. The boosted CART
method perform very well in terms of bias in all scenarios. In terms of SD, the bagged and boosted CART models show
better performance (w.r.t. SD) than the parametric methods, except for the scenario where non-linear terms are included
in the treatment generating model. In general, in terms of MSE, SL and boosted CART methods perform better than
most of the other candidate learners in the settings we have considered. In particular, boosted CART method performed
best in simulation settings - I, II, and IV, whereas SL performed best in simulation setting - III. However, in this larger
cohort scenario, when we compare these two methods (SL and boosted CART) in terms of 95% coverage probability,
it is apparent that coverage probabilities from SL are always closer to 0.95 compared to that from the boosted CART.
However, irrespective of the cohort sizes, a few characteristics remain the same: e.g., stepwise (which includes second
order interaction terms) and CART methods are generally doing better in simulation setting - II (that includes interaction
or non-additive term) and SVM and random forest methods generally perform worse in most settings.

B. Simulation Settings V - VIII:

When the Hazard Function Depends on the Cumulative Treatment Exposure: Web-Tables G1-G4 shows the pattern
of MSE in estimating the MSCM parameter when the hazard function depends on the cumulative treatment exposure
instead of current treatment exposure. Except for simulation setting VI, stepwise method performs best in terms of bias.
However, boosted CART performs best in terms of SD. Only in simulation setting V, boosted CART outperforms SL in
terms of MSE. However, when compared with respect to 95% coverage probability in the same setting (simulation setting
V), coverage probability from SL is actually closer to 0.95 compared to that from the boosted CART. For rest of the
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settings (simulation settings VI, VII and VIII), SL outperforms all the candidate learners under consideration in terms
of MSE. When the true treatment selection model includes non-linearity in the covariates (scenarios VII and VIII), we
can see increased magnitudes of bias associated with the mis-specified IPW estimation methods under consideration. This
potentially explains the poor coverage probabilities for all methods in the corresponding scenarios (scenario VII and VIII).

C. Simulation Settings IX - XII:

When Multiple Time-dependent Confounders are Present that Affect Future Treatment Decisions: Web-Tables
H1-H4 shows the pattern of MSE for the MSCM parameter when two time-dependent confounders are present. In
simulation settings IX and X, both boosted and bagged CART methods perform better than the SL in terms of MSE.
Unlike previous cases, the coverage probabilities of the SL approach are also further away from 0.95 compared to both of
these methods (boosted and bagged CART). For simulation settings XI and XII, SL outperforms these two methods, along
with the other candidate learners under consideration in terms of bias, SD and MSE.

Multiple Sclerosis Data Analysis

We apply the methodology described in this paper to the British Columbia (BC) MS cohort data (1995-2008) [15, 23–
25, 52–57] to estimate the effect of β-IFN on time to irreversible disability progression. In this study, irreversible
progression of disability is measured by sustained expanded disability status scale (EDSS) 6, which is confirmed
after at least 150 days, with all subsequent EDSS scores being 6 or greater. Web-Appendix §J describes the baseline
characteristics, eligibility and exclusion criteria of the MS cohort. Based on these criteria, 1, 697 patients were included in
the study [24, 25]. At the end of follow-up, 138 subjects reached irreversible disability, measured by sustained Expanded
Disability Status Scale (EDSS) of score 6.

In this analysis, ‘cumulative relapses over the last two years’ (hereafter ‘cumulative relapses’) was considered as a
time-dependent confounder. β-IFN exposure was defined as a time-dependent variable Am, measured on a monthly basis.
MSCMs are an appropriate choice of model to adjust for the time-dependent confounder Lm cumulative relapses and
baseline confounders L0: age, sex, disease duration, and EDSS score [25]. To estimate the stabilized weights sw, we
used the SL with the same candidate learners used in our simulations. For all learners, the numerator model for treatment
and censoring included the baseline covariates L0 (EDSS score, age, disease duration, sex), the lagged treatment status
Am−1, and the follow-up month index m. The denominator model included the numerator model covariates as well as the
time-dependent covariate Lm ‘cumulative relapses’. The resulting sw weighted MSCM further adjusted for the baseline
covariates to estimate the hazard ratio (ĤR = exp(ψ̂1) = 1.35) and corresponding confidence intervals based on robust
standard errors (0.316; see Table 6). Web-Table K1 in Web-Appendix K shows corresponding estimates from the fitted
MSCMs for increased levels of weight truncation. In general, the weights were well-behaved (mean approximately 1 and
small SD) and the analyses did not yield any strong evidence of an association between β-IFN exposure and time to
reaching sustained EDSS score of 6.

Discussion

When estimating weights for the MSCM, it is common practice to use main-effects logistic regression to model the
treatment decision process. However, misspecification of the weight model (e.g., when the model deviates from linearity
or additivity) severely affects the estimate of the MSCM treatment effect. Our aim is to see if the uses of super learning
approach to estimate the weights can improve the MSE and the coverage probabilities of the treatment effect estimate
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Table 6. The marginal structural Cox model (MSCM) fit with the
normalized stabilized inverse probability of treatment and censoring
weights sw for time to sustained EDSS 6 to estimate the causal effect
of β-IFN treatment for multiple sclerosis (MS) patients from British
Columbia, Canada (1995-2008). The model was also adjusted for the

baseline covariates EDSS, age, disease duration and sex.

Covariate Estimate∗ HR † SE(HR) 95% CI ‡

β-IFN 0.30 1.35 0.32 0.85 - 2.13
EDSS 0.48 1.62 0.14 1.36 - 1.92§

Disease duration# -0.22 0.81 0.16 0.59 - 1.10
Age# 0.26 1.30 0.13 1.01 - 1.68§

Sex¶ -0.29 0.75 0.19 0.45 - 1.23

HR, Hazard ratio; CI, confidence interval; EDSS, expanded disability
status scale
∗ Estimated log HR
† HR, indicating the instantaneous risk of reaching sustained and

confirmed EDSS 6
‡ Based on robust standard error.
§ 95% CI that does not include 1.
# Expressed in decades.
¶ Reference level: Male

when the treatment assignment model is misspecified.

We assessed the performance of the SL approach with a diverse list of candidate learners for estimating IPW in a
MSCM context via simulation. We considered four settings characterized by varying degrees of deviance from linearity
and additivity to describe the treatment decision model. When stabilized weights were computed via this SL, the
resulting MSCM estimates computed from SL generally performed better in terms of MSE and the coverage probabilities
compared to individual candidate learners. It harnessed the power of both parametric and non-parametric approaches to
produce better results in all the scenarios under consideration. Similar performances were also observed when stabilized
normalized weights were computed from the same SL. These simulations shows the utility of using SL approach with
rich set of candidate learners in practical scenarios when the form of the treatment decision model is unknown and may
deviate from linearity, additivity or both.

Throughout the simulation scenarios, one of the candidate learners, boosted CART, performed very close to
that of SL. This approach was shown to outperform logistic regression as well as other popular statistical learning
approaches in its use in the propensity score context [58] and in the context of estimation of MSCM weights [15].
SVMs performed poorly in the current context, which is also not surprising [15]. It is unclear how SVMs correct
for confounding variables in their predictions. Use of confounder-correcting SVM (ccSVM) may aid in improving
predictions in the presence of confounders [59]. When the SL candidate library includes such poorly performing learners
in a given context, it is possible that the learners with good performance, such as bagged and boosted CART, may
outperform SL in some complex scenarios in terms of MSE. However, even in those scenarios, SL generally performs
close to the best performing learner in terms of MSE or sometimes performs even better in terms of coverage probabilities.

Based on the overall good performance of the SL approach in our simulations, we implemented a SL with the same
rich candidate library in a MS application. We estimated the effect of β-IFN on irreversible disability progression using
the MSCM with a stabilized weights estimated via the SL. The hazard ratio estimates from the super learning approach is
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1.349, and this effect estimate was not significant (95% CI 0.853− 2.134). This conclusion is consistent with those of the
previous studies [24, 25].

We have also assessed the performance of the practice of weight truncation. From previous literature, we know that
small amount of weight truncation is often helpful and a suggested practice in the literature when large weights are present
[15, 22]. Not surprisingly, truncation at a lower level (e.g., 1%) improved the performance of parametric approach such
as logistic regression model in the current context. However, as shown in the previous literature, there is a bias-variance
trade-off associated with such practice and researchers need to be cautious about using this approach [8]. For example,
when the weights were generated from the logistic regression approach and subsequently 5% truncated, the estimated HR
was reported as 1.11 (95% CI 0.64− 1.95) in the same MS dataset [25]. Although the corresponding CI width was similar
to the one obtained in the current study using a SL approach, the HR substantially moved towards the null as a result of
truncation.

This work has some caveats. The ability of SL approach depends on the choice of candidate learners, and hence results
from our simulation cannot be generalized beyond the settings and candidate learners we considered. The performance
of the candidate learners also depends on tuning the parameters chosen by the analyst. In our study, we mostly retained
the default settings offered by off-the-shelf package SuperLearner [60], thereby facilitating use of these methods by
practitioners. The SL approach is an ensemble method, that requires fitting all the candidate learners considered in the
user-specified library in order to obtain the final SL prediction. Therefore, the computational burden of SL is generally
much higher than that of standard approaches such as logistic regression. This is especially true when computationally
intensive learners, such as bagged CART or boosted CART [15] are included in the candidate library [20]. In general, the
computation time for SL is at least twice the sum of all the candidate learners’ computation time, considering fitting on
the training sets, computing the corresponding weights from the validation sets and fitting the entire data eventually [61].
Similar to other MSCM simulation studies [22, 27], we computed robust sandwich standard error [28, 29] in this paper.
To get more reliable estimate of the standard error, resampling methods, such as the bootstrap could be used [8, 42, 62].

Many of the statistical learning approaches used as candidate learners for the SL library are very useful variable-
selection tools for choosing the variables that need to be adjusted for in the model as well as identifying the functional
form of their empirical relationship. However, these tools are not meant to replace subject-matter knowledge and
expert-opinion. For example, in a treatment modelling context, if we control for variables that are unrelated to outcome,
although it can improve the predictive performance, the efficiency of the effect estimate may suffer [63–66]. Moreover,
if we control for known instrumental variables and colliders, the bias may be amplified [67]. However, recent simulation
studies have shown that, such increases in bias are rather small in practical epidemiological settings compared to bias
resulting from omitting confounders from the analysis [68–70]. In practical situations, when it may be hard to determine
whether a variable is a confounder or an instrumental variable, these studies suggested that it is possibly more harmful
to omit a variable (i.e., under-adjustment) rather than controlling for it (i.e, over-adjustment). However, there may be
other specific settings when bias amplification may be substantial [71]. In our simulations, we assumed ‘no unmeasured
confounders’ and did not consider any instrumental variables. Future simulation studies emulating practical settings could
examine whether these obstacles have a major impact in the context of MSCM weight computation.
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Estimating inverse probability weights using super learner when weight-model specification is unknown in
a marginal structural Cox model context

Mohammad Ehsanul Karim, Robert W. Platt, and The BeAMS study group

Supporting Information:

A. Steps for Super Learner

The aim of any statistical model is to represent the true data generating process. It is common practice to rely on
parametric regression methods. In a real word data analysis, in the absence of knowledge about the true data generating
process, parametric regressions may be too restrictive and are unlikely to adequately represent complex relationships.
Flexible semiparametric or nonparametric models have some compelling advantages in this regard. With nonparametric
approaches, such as statistical learning methods, the analyst does not have to commit to a specific functional form for
the relationship between the variables in a given dataset. Tree-based statistical learning methods (e.g., classification
and regression trees (CART), bagged CART and boosted CART), have the ability to discover non-linear, polynomial
and interaction terms. On the other hand, support vector machines (SVMs) are better equipped to solve classification
problems by mathematically transforming variables into higher-dimensional spaces. However, the performance of various
statistical learning methods varies in different datasets and analyst will not know a priori which learner (or method) to
choose a priori. Ensembling and the Super Learner (SL) allow the analyst to combine multiple learners into one single
learner and obtain the optimal prediction measured by a chosen criterion (minimum cross-validated mean squared error
is typically used).The analyst can strengthen the predictive power of the Super Learner by including various types of
candidate learners (parametric regression, flexible and nonparametric statistical learners).

The steps for implementing SL are as follows:

1. First we need to choose the candidate learners that we want to use in our SL. This step has to be done priori to any
data analysis. For the purpose of illustration, let us choose k = 5 candidate learners (e.g., choose 5 learners from
Table 1), say, Logistic regression, elastic net, CART, random forest and SVM.

2. We need to decide how many cross-validation sub-samples or blocks we want to use. For the purpose of illustration,
let us chose V = 3 and let that we have n = 90 participants or subjects in the data. The sub-samples should
contain an approximately equal number of subjects or samples (n/V = 90/3 = 30 subjects in each sub-sample),
be mutually exclusive (non-overlapping), randomly allocated and should be similar in distribution with respect to
the two treatment classes. These sub-samples will be used for performing V -fold cross validation.

3. We use V -fold cross-validation (V = 3) to obtain the predicted probabilities for each learner to fill the prediction
matrix (n×K) shown in Table SA1. To fill each column, we perform the following for each learner (k = 5):

i. In order to get these predictions, we first use first 2 sub-samples (‘training sets’) to fit each learner, where
treatment A is the dependent variable and covariates (say, L and the corresponding lag value) that influences
the treatment generation process are considered as independent variables. This fit is evaluated in the remaining
sub-sample (here, the 3rd sub-sample is the ‘validation set’). This way we calculate predicted probabilities for
the validation set.

ii. Next we define the 1st and 3rd sub-samples as training sets and evaluate the fit on the 2nd sub-sample. We
calculate predicted probabilities for 2nd sub-sample.

iii. Finally, we define the last 2 sub-samples as training set and evaluate the fit on the 1st sub-sample. We calculate
predicted probabilities for 1st sub-sample.
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For each given learners, the above three steps will provide us the predicted probabilities for all subjects in all sub-
samples (i.e., step i will provide predicted probabilities from the 3rd sub-sample, step ii will provide from the 2nd
sub-sample and step iii will provide from the 1st sub-sample). That means, for n = 90 subjects in the data with 30

subjects in each sub-sample, for the first learner (logistic regression), step i will provide predicted probabilities for
30 subjects from the 3rd sub-sample, step ii will provide predicted probabilities for 30 participants from the 2nd
sub-sample and step iiiwill provide predicted probabilities for 30 subjects from the 1st sub-sample. In the prediction
matrix (n×K) shown in Table SA1, these three segments (of predicted probabilities from sub-samples 1, 2 and 3)
will constitute the column 1 of predicted probabilities (for all 90 subjects) obtained from the logistic regression.
Now, we move on to the second learner (elastic net), and obtain the entire column 2 of predicted probabilities (for
all 90 participants) obtained from the elastic net approach. Similarly we fill the column 3− 5 using the rest of the
learners (e.g., CART, random forest and SVM). Therefore, for k = 5 candidate learners, we will have 5 columns of
predicted probabilities pk; k = 1, 2, . . . , 5.

4. We run a binary regression P (A = 1|P ) = expit(η1p1 + η2p2 + η3p3 + η4p4 + η5p5) where treatment status A is
considered as the dependent variable and 5 columns of predicted probabilities pk are considered as independent
variables. We estimate ηk. To increase the stability of the SL, we add the restriction that

∑
(ηk) = 1 and ηk ≥ 0.

Let that, we have, η1 = .3, η2 = 0, η3 = .6, η4 = .1 and η5 = 0. We retain only the η’s associated with non-zero
coefficients.

5. Fit all k = 5 algorithms on the entire dataset. We obtain 5 columns of predicted probabilities Q̄k; k = 1, 2, . . . , 5.
6. To get the SL prediction, we use the columns of step 5 (Q̄k) weighted by the coefficients of step 4 (ηk): Q̄SL =

η1Q̄1 + η3Q̄3 + η4Q̄4. Candidate learners 2 and 5 were omitted as their corresponding η’s were zero. Incorporating
the prediction from an algorithm with zero coefficient does not contribute to substantial improvement of the overall
fit. According to the chosen loss function (minimum expected squared error), this weighted combination should be
associated with the smallest cross-validated mean-squared error (CV MSE; i.e., average of sum of squares of the
difference of treatment status A and the predicted probabilities).

Table S A1. Prediction matrix (n×K) in step 3 of the super learner estimation. In this example,
sample size, n = 90, number of learners under consideration, K = 5 and number of sub-samples,

V = 3.

Sub-sample Subject id Column 1 Column 2 Column 3 Column 4 Column 5
Logistic Elastic net CART Random forest SVM

Sub-sample 1

subject 1 -† - - - -
subject 2 - - - - -
. . . - - - - -
subject 30 - - - - -

Sub-sample 2

subject 31 - - - - -
subject 32 - - - - -
. . . - - - - -
subject 60 - - - - -

Sub-sample 3

subject 61 - - - - -
subject 62 - - - - -
. . . - - - - -
subject 90 - - - - -

† Each of the blank cells will be filled with a predicted value calculated by the learner described
at the top of that column via V -fold cross-validation.
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C. Pseudo-code for MSCM simulation

Pseudocodes used for MSCM data generation in our simulations are as follows:

C.1. Hazard Function Depends on the Current Treatment Exposure

GET K ← 10 (maximum follow-up);
λ0 ← 0.10;
n← 250 (and 1, 500 for larger cohorts);
β = (β0, β1, β2, β3)← [log(3/7),−2,− log(1/2),− log(3/2)] (parameter vector for generating L);
α = (α0, α1, α2, α3, α4)← [log(2/7), (1/2), (−1/2),− log(3/5), 1.2] (parameter vector for generating A);
ψ1 ← 0.5 (true log-hazard value of the treatment effect)

COMPUTE FOR ID = 1 to n
INIT: L−1 ← 0; A−1 ← 0; Y0 ← 0; Hm ← 0

T 0̄ ∼ Exponential(λ0)

FOR m = 0 to K
Lm ← E(Lm = lm|Lm−1, Am−1, Ym = 0;β)

← β0 + β1

(
1/ log(T 0̄)

)
+ β2Am−1 + β3Lm−1

logit pA ← logit Pr(Am = 1|Lm, Lm−1, Am−1, Ym = 0;α)

← α0 + α1Am−1 + α2Lm + α3Lm−1

(for simulation scenario - I: main effects only: additive and linear)
← α0 + α1Am−1 + α2Lm + α3Lm−1 + α4(Am−1 × Lm)

(for simulation scenario - II: non-additive effect: a 2-way interaction)
← α0 + α1Am−1 + α2(Lm)2 + α3(Lm−1)2

(for simulation scenario - III: non-linear effects: 2 quadratic terms)
← α0 + α1Am−1 + α2(Lm)2 + α3(Lm−1)2 + α4(Am−1 × Lm)

(for simulation scenario - IV: non-additive & non-linear effects)
Am ∼ Bernoulli(pA)

Hm ←
∫m+1

0
λāj (j)dj

← Hm + exp(ψ1Am)

IF T 0̄ ≥ Hm

Ym+1 ← 0

ELSE
Ym+1 ← 1

T ← m+ (T 0̄ −Hm)× exp(−ψ1Am)

END IF
ENDFOR m

ENDFOR ID

PRINT ID, m, Ym+1, Am, Lm, Am−1, Lm−1

C.2. Hazard Function Depends on the Cumulative Treatment Exposure

GET K ← 10 (maximum follow-up);
λ0 ← 0.10;
n← 250;
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β = (β0, β1, β2, β3)← [log(3/7),−2,− log(1/2),− log(3/2)] (parameter vector for generating L);
α = (α0, α1, α2, α4)← [log(2/7), (1/2), (−1/2), 1.2] (parameter vector for generating A);
ψ1 ← 0.5 (true log-hazard value of the cumulative treatment effect)

COMPUTE FOR ID = 1 to n
INIT: L−1 ← 0; A−1 ← 0; Y0 ← 0; Hm ← 0; cum(A−1)← 0.
T 0̄ ∼ Exponential(λ0)

FOR m = 0 to K
Lm ← E(Lm = lm|Lm−1, Am−1, Ym = 0;β)

← β0 + β1

(
1/ log(T 0̄)

)
+ β2Am−1 + β3Lm−1

logit pA ← logit Pr(Am = 1|Lm, Lm−1, Am−1, Ym = 0;α)

← α0 + α1Am−1 + α2Lm

(for simulation scenario - V: main effects only: additive and linear)
← α0 + α1Am−1 + α2Lm + α4(Am−1 × Lm)

(for simulation scenario - VI: non-additive effect: a 2-way interaction)
← α0 + α1Am−1 + α2(Lm)2

(for simulation scenario - VII: non-linear effects: 2 quadratic terms)
← α0 + α1Am−1 + α2(Lm)2 + α4(Am−1 × Lm)

(for simulation scenario - VIII: non-additive & non-linear effects)
Am ∼ Bernoulli(pA)

cum(Am)← cum(Am−1) +Am

Hm ← Hm + exp(ψ1cum(Am))

IF T 0̄ ≥ Hm

Ym+1 ← 0

ELSE
Ym+1 ← 1

T ← m+ (T 0̄ −Hm)× exp(−ψ1cum(Am))

END IF
ENDFOR m

ENDFOR ID

PRINT ID, m, Ym+1, Am, Lm, Am−1, Lm−1, cum(Am)

C.3. Multiple Time-dependent Confounders Present that Affect Future Treatment Decisions

GET K ← 10 (maximum follow-up);
λ0 ← 0.10;
n← 250;
c← 30;
β = (β0, β1, β2, β3, β32)← [log(3/7),−2,− log(1/2),− log(3/2), 2.5] (parameter vector for generating L and S);
α = (α0, α1, α2, α3, α4, α22, α32, α42)← [log(2/7), (1/2), (−1/2),− log(3/5), 1.2, 0.5, 1.1,−0.8] (parameter vector

for generating A);
ψ1 ← 0.5 (true log-hazard value of the treatment effect)

COMPUTE FOR ID = 1 to n
INIT: L−1 ← 0; A−1 ← 0; Y0 ← 0; Hm ← 0
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T 0̄ ∼ Exponential(λ0)

FOR m = 0 to K
logit pS ← logit Pr(Sm = 1|Sm−1, Am−1, Ym = 0;β)

← β0 + β1I(T 0̄ < c) + β2Am−1 + β32Sm−1

Sm ∼ Bernoulli(pS)

Lm ← E(Lm = lm|Lm−1, Am−1, Ym = 0;β)

← β0 + β1

(
1/ log(T 0̄)

)
+ β2Am−1 + β3Lm−1

logit pA ← logit Pr(Am = 1|Lm, Lm−1, Sm, Sm−1, Am−1, Ym = 0;α)

← α0 + α1Am−1 + α2Lm + α3Lm−1 + α22Sm + α32Sm−1

(for simulation scenario - IX: main effects only: additive and linear)
← α0 + α1Am−1 + α2Lm + α3Lm−1 + α22Sm + α32Sm−1 + α4(Am−1 × Lm) + α42(Am−1 × Sm)

(for simulation scenario - X: non-additive effect: 2-way interactions)
← α0 + α1Am−1 + α2(Lm)2 + α3(Lm−1)2 + α22(Sm)2 + α32(Sm−1)2

(for simulation scenario - XI: non-linear effects: 4 quadratic terms)
← α0 + α1Am−1 + α2(Lm)2 + α3(Lm−1)2 + α22(Sm)2 + α32(Sm−1)2 + α4(Am−1 × Lm) + α42(Am−1 × Sm)

(for simulation scenario - XII: non-additive & non-linear effects)
Am ∼ Bernoulli(pA)

Hm ←
∫m+1

0
λāj (j)dj

← Hm + exp(ψ1Am)

IF T 0̄ ≥ Hm

Ym+1 ← 0

ELSE
Ym+1 ← 1

T ← m+ (T 0̄ −Hm)× exp(−ψ1Am)

END IF
ENDFOR m

ENDFOR ID

PRINT ID, m, Ym+1, Am, Lm, Am−1, Lm−1
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D. Using Normalized Stabilized Weights

Tables SD1-SD4 shows the summaries of MSCM results when sw(n) weights were used in the MSCMs:

Table S D1. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is linear and additive in describing the association between the

exposure and the confounder (simulation scenario - I, with weights swn)

Bias MSE SE SD Cov.Pr.

Super learner -0.0719 0.0844 0.312 0.281 0.969
Elastic net -0.1336 0.1031 0.308 0.292 0.934

Boosted CART -0.1493 0.1039 0.314 0.286 0.951
Bayesian logistic 0.0195 0.1071 0.323 0.327 0.972

Logistic 0.0645 0.1218 0.329 0.343 0.972
Bagged CART -0.2469 0.2749 0.386 0.463 0.837

Stepwise 0.1458 0.3750 0.346 0.595 0.950
CART -0.4232 0.4221 0.397 0.493 0.722

Pruned CART -0.6215 0.6246 0.342 0.488 0.507
SVM 0.3807 1.7024 0.502 1.248 0.601

Random Forest -0.6002 2.4178 0.309 1.434 0.148

Table S D2. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is linear but non-additive in describing the association between

the exposure and the confounder (simulation scenario - II, with weights swn)

Bias MSE SE SD Cov.Pr.

Super learner 0.00825 0.0312 0.185 0.176 0.970
Boosted CART 0.02492 0.0316 0.187 0.176 0.965
Bagged CART -0.00614 0.0325 0.193 0.180 0.965

Stepwise 0.03801 0.0654 0.223 0.253 0.966
Random Forest 0.03017 0.0741 0.294 0.270 0.973

CART 0.02451 0.0769 0.229 0.276 0.914
Pruned CART -0.04692 0.0849 0.222 0.288 0.867

Elastic net 0.21918 0.0881 0.207 0.200 0.839
Bayesian logistic 0.24436 0.1011 0.210 0.203 0.822

Logistic 0.25562 0.1083 0.213 0.207 0.814
SVM 0.16572 0.2104 0.240 0.428 0.845
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Table S D3. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is additive but non-linear in describing the association between

the exposure and the confounder (simulation scenario - III, with weights swn)

Bias MSE SE SD Cov.Pr.

Super learner 0.1059 0.259 0.468 0.498 0.9667
CART 0.2217 0.324 0.473 0.524 0.9170

Bagged CART 0.3249 0.342 0.491 0.486 0.9410
Boosted CART 0.3369 0.357 0.498 0.493 0.9157
Pruned CART -0.0903 0.411 0.472 0.634 0.8550

Stepwise 0.2332 0.594 0.421 0.735 0.7655
Elastic net 0.3813 0.601 0.540 0.675 0.8960

Bayesian logistic 0.4147 0.602 0.571 0.656 0.9000
Logistic 0.3290 0.695 0.488 0.766 0.8847

Random Forest -1.1129 1.402 0.434 0.405 0.2420
SVM 2.1906 6.128 0.323 1.153 0.0287

Table S D4. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is non-linear and non-additive in describing the association

between the exposure and the confounder (simulation scenario - IV, with weights swn)

Bias MSE SE SD Cov.Pr.

Super learner 0.0952 0.241 0.468 0.481 0.9688
CART 0.2038 0.305 0.471 0.513 0.9230

Bagged CART 0.3018 0.315 0.487 0.473 0.9470
Boosted CART 0.3386 0.356 0.497 0.491 0.9137
Pruned CART -0.1086 0.402 0.470 0.624 0.8560

Bayesian logistic 0.3522 0.506 0.562 0.618 0.9190
Elastic net 0.3490 0.551 0.537 0.655 0.9060

Stepwise 0.2186 0.555 0.428 0.712 0.7928
Logistic 0.3110 0.660 0.490 0.751 0.8933

Random Forest -1.1216 1.423 0.434 0.406 0.2320
SVM 2.1899 6.137 0.324 1.158 0.0289
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E. Using 1% Truncated Stabilized Weights

Tables SE1-SE4 shows the summaries of MSCM results when we applied 1% truncation on the stabilized weights (sw):

Table S E1. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is linear and additive in describing the association between the

exposure and the confounder (simulation scenario - I, with 1 percent truncated weights sw)

Bias MSE SE SD Cov.Pr.

Logistic -0.209 0.0953 0.274 0.227 0.928
Stepwise -0.166 0.0972 0.282 0.264 0.937

Bayesian logistic -0.243 0.1087 0.271 0.223 0.895
Super learner -0.294 0.1377 0.273 0.226 0.855

Boosted CART -0.327 0.1725 0.287 0.256 0.830
Elastic net -0.357 0.1758 0.265 0.221 0.758

Bagged CART -0.330 0.2467 0.347 0.371 0.791
CART -0.490 0.4119 0.358 0.414 0.653
SVM -0.634 0.5986 0.337 0.444 0.480

Pruned CART -0.734 0.7432 0.311 0.452 0.401
Random Forest -0.667 2.5115 0.304 1.438 0.152

Table S E2. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is linear but non-additive in describing the association between

the exposure and the confounder (simulation scenario - II, with with 1 percent truncated weights swn)

Bias MSE SE SD Cov.Pr.

Super learner -0.03361 0.0283 0.176 0.165 0.960
Boosted CART -0.00255 0.0286 0.181 0.169 0.967
Bagged CART -0.04414 0.0307 0.186 0.169 0.964

Stepwise -0.00675 0.0347 0.199 0.186 0.968
CART -0.02322 0.0510 0.209 0.225 0.945
SVM 0.05271 0.0549 0.229 0.228 0.935

Elastic net 0.16668 0.0613 0.193 0.183 0.876
Random Forest 0.02297 0.0696 0.290 0.263 0.975

Bayesian logistic 0.18973 0.0699 0.195 0.184 0.858
Logistic 0.19881 0.0741 0.197 0.186 0.846

Pruned CART -0.10244 0.0797 0.207 0.263 0.851



10 Supporting Information: IPW via super learner in MSCM

Table S E3. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is additive but non-linear in describing the association between

the exposure and the confounder (simulation scenario - III, with with 1 percent truncated weights swn)

Bias MSE SE SD Cov.Pr.

Bagged CART 0.01709 0.171 0.482 0.413 0.990
Logistic -0.08342 0.193 0.504 0.431 0.990

Elastic net -0.03482 0.201 0.532 0.447 0.989
Boosted CART 0.05679 0.215 0.484 0.460 0.969

Super learner -0.24995 0.215 0.456 0.391 0.969
Bayesian logistic 0.00167 0.222 0.557 0.471 0.987

CART -0.04451 0.279 0.471 0.526 0.935
Stepwise 0.18140 0.380 0.558 0.589 0.928

SVM 0.08047 0.404 0.534 0.630 0.900
Pruned CART -0.36151 0.523 0.465 0.627 0.793

Random Forest -1.13148 1.444 0.434 0.405 0.232

Table S E4. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is non-linear and non-additive in describing the association

between the exposure and the confounder (simulation scenario - IV, with with 1 percent truncated weights swn)

Bias MSE SE SD Cov.Pr.

Bagged CART -0.00119 0.163 0.477 0.404 0.993
Logistic -0.10034 0.191 0.499 0.426 0.990

Elastic net -0.05451 0.196 0.524 0.440 0.989
Bayesian logistic -0.03656 0.208 0.541 0.454 0.988

Boosted CART 0.05727 0.218 0.482 0.463 0.965
Super learner -0.25664 0.219 0.454 0.391 0.968

CART -0.06114 0.272 0.469 0.518 0.938
Stepwise 0.13323 0.348 0.547 0.574 0.940

SVM 0.06720 0.442 0.530 0.662 0.900
Pruned CART -0.37529 0.522 0.462 0.617 0.792

Random Forest -1.14088 1.466 0.434 0.406 0.221
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F. Using Larger Cohorts

Tables SF1-SF4 shows the summaries of MSCM results when we applied the stabilized weights (sw):

Table S F1. Summary of the log-hazard ratio from the simulation study with 1,500 subjects, each with up to 10 visits
(1,000 Monte Carlo dataset) where the treatment selection model is linear and additive in describing the association

between the exposure and the confounder (simulation scenario - I, with weights sw)

Bias MSE SE SD Cov.Pr.

Boosted CART -0.05068 0.00846 0.119 0.0768 0.986
Super learner -0.01030 0.01135 0.118 0.1061 0.968

Elastic net -0.00858 0.01470 0.120 0.1209 0.959
Stepwise 0.00918 0.01477 0.123 0.1212 0.959

Bayesian logistic 0.00598 0.01546 0.122 0.1242 0.945
Logistic 0.00728 0.01552 0.122 0.1244 0.945

Pruned CART -0.09985 0.02458 0.115 0.1209 0.840
CART -0.16008 0.03841 0.111 0.1131 0.694

Bagged CART -0.17591 0.04080 0.109 0.0993 0.662
Random Forest -0.14608 0.23601 0.423 0.4633 0.950

SVM -0.23728 0.67414 0.157 0.7860 0.799

Table S F2. Summary of the log-hazard ratio from the simulation study with 1,500 subjects, each with up to 10 visits
(1,000 Monte Carlo dataset) where the treatment selection model is linear but non-additive in describing the association

between the exposure and the confounder (simulation scenario - II, with weights sw).

Bias MSE SE SD Cov.Pr.

Boosted CART 0.0561 0.0157 0.139 0.112 0.974
Super learner 0.0254 0.0210 0.142 0.143 0.943

Pruned CART -0.0695 0.0359 0.139 0.176 0.855
Stepwise -0.0108 0.0367 0.165 0.191 0.943

CART -0.1472 0.0383 0.128 0.129 0.819
Bagged CART -0.1664 0.0428 0.126 0.123 0.753

Elastic net 0.3309 0.1385 0.166 0.170 0.458
Bayesian logistic 0.3631 0.1642 0.173 0.180 0.405

Logistic 0.3682 0.1685 0.174 0.181 0.392
Random Forest -0.3152 0.5364 0.510 0.661 0.934

SVM 0.2054 0.9616 0.177 0.959 0.505
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Table S F3. Summary of the log-hazard ratio from the simulation study with 1,500 subjects, each with up to 10 visits
(1,000 Monte Carlo dataset) where the treatment selection model is additive but non-linear in describing the association

between the exposure and the confounder (simulation scenario - III, with weights sw).

Bias MSE SE SD Cov.Pr.

Super learner -0.0132 0.0229 0.162 0.151 0.986
Elastic net 0.0735 0.0304 0.158 0.158 0.928

Bayesian logistic 0.0963 0.0346 0.158 0.159 0.905
Logistic 0.0967 0.0347 0.158 0.159 0.905

Boosted CART -0.0643 0.0454 0.159 0.203 0.964
Bagged CART -0.3026 0.1215 0.140 0.173 0.419
Pruned CART 0.3098 0.2144 0.250 0.344 0.703

CART -0.2597 0.2382 0.207 0.413 0.563
Stepwise 0.3491 0.4243 0.296 0.550 0.689

Random Forest -0.2104 0.7196 0.645 0.822 0.896
SVM -0.3055 1.2931 0.261 1.095 0.624

Table S F4. Summary of the log-hazard ratio from the simulation study with 1,500 subjects, each with up to 10 visits
(1,000 Monte Carlo dataset) where the treatment selection model is non-linear and non-additive in describing the

association between the exposure and the confounder (simulation scenario - IV, with weights sw).

Bias MSE SE SD Cov.Pr.

Boosted CART 0.1598 0.0446 0.190 0.170 0.977
Super learner 0.2909 0.1388 0.268 0.282 0.932

Elastic net 0.2507 0.1443 0.231 0.240 0.705
Bayesian logistic 0.2756 0.1603 0.235 0.246 0.682

Logistic 0.2766 0.1610 0.235 0.246 0.682
Bagged CART -0.4426 0.2371 0.150 0.186 0.205

CART -0.2771 0.3011 0.232 0.507 0.591
Pruned CART 0.3965 0.3554 0.283 0.416 0.545

SVM -0.0945 1.0882 0.237 1.003 0.167
Stepwise 0.8940 1.2130 0.437 0.698 0.591

Random Forest -0.3952 1.7614 0.669 1.080 0.886
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G. Cumulative Treatment Effect

Tables SG1-SG4 shows the summaries of MSCM results when the hazard function depends on the cumulative treatment
exposure (with stabilized weights sw):

Table S G1. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is linear and additive in describing the association between the
exposure and the confounder (simulation scenario - V, with weights sw) and the hazard function depends on the cumulative

treatment exposure.

Bias MSE SE SD Cov.Pr.

Boosted CART -0.0170 0.0154 0.129 0.123 0.961
Super learner -0.0348 0.0193 0.129 0.134 0.946

Elastic net -0.0132 0.0215 0.130 0.146 0.944
Bagged CART -0.0640 0.0216 0.135 0.132 0.952

Bayesian logistic -0.0177 0.0262 0.135 0.161 0.932
Logistic -0.0169 0.0284 0.137 0.168 0.932

CART 0.0315 0.0302 0.148 0.171 0.896
Pruned CART 0.0577 0.0358 0.149 0.180 0.871

Stepwise 0.0074 0.0450 0.139 0.212 0.909
SVM 0.2544 0.3604 0.132 0.544 0.596

Random Forest -0.8305 1.2149 0.303 0.725 0.254

Table S G2. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is linear but non-additive in describing the association between
the exposure and the confounder (simulation scenario - VI, with weights sw) and the hazard function depends on the

cumulative treatment exposure.

Bias MSE SE SD Cov.Pr.

Super learner -0.0737 0.0161 0.138 0.140 0.952
Boosted CART -0.0490 0.0170 0.141 0.116 0.905

Elastic net -0.0361 0.0170 0.130 0.128 0.952
Bayesian logistic -0.0415 0.0171 0.132 0.131 0.952

Logistic -0.0466 0.0178 0.133 0.133 0.952
SVM -0.0476 0.0234 0.133 0.405 0.882

Bagged CART -0.1027 0.0283 0.140 0.129 0.905
CART -0.0988 0.0334 0.149 0.157 0.857

Pruned CART -0.0642 0.0392 0.145 0.161 0.905
Stepwise 0.2297 0.2431 0.199 0.478 0.857

Random Forest -0.3636 2.9064 0.514 1.660 0.667
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Table S G3. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits
(1,000 Monte Carlo dataset) where the treatment selection model is additive but non-linear in describing the association
between the exposure and the confounder (simulation scenario - VII, with weights sw) the hazard function depends on the

cumulative treatment exposure.

Bias MSE SE SD Cov.Pr.

Super learner -0.250 0.102 0.184 0.200 0.6640
Boosted CART -0.279 0.112 0.174 0.183 0.5780

Elastic net -0.300 0.133 0.165 0.207 0.4860
Bayesian logistic -0.299 0.137 0.168 0.217 0.4840

Logistic -0.305 0.142 0.169 0.221 0.4660
Stepwise 0.106 0.172 0.211 0.401 0.7334

Bagged CART -0.455 0.248 0.182 0.201 0.2720
Pruned CART -0.497 0.288 0.172 0.202 0.1860

CART -0.519 0.316 0.188 0.216 0.2470
SVM -0.558 0.478 0.158 0.409 0.0892

Random Forest -1.139 4.476 0.567 1.783 0.6540

Table S G4. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is non-linear and non-additive in describing the association
between the exposure and the confounder (simulation scenario - VIII, with weights sw)and the hazard function depends

on the cumulative treatment exposure.

Bias MSE SE SD Cov.Pr.

Super learner -0.260 0.110 0.190 0.205 0.6520
Boosted CART -0.298 0.119 0.178 0.173 0.5500

Elastic net -0.326 0.147 0.169 0.201 0.4450
Bayesian logistic -0.325 0.151 0.172 0.213 0.4360

Logistic -0.330 0.156 0.173 0.218 0.4270
Stepwise 0.101 0.178 0.219 0.410 0.7515

Bagged CART -0.476 0.264 0.186 0.194 0.2540
Pruned CART -0.507 0.297 0.176 0.199 0.1820

CART -0.531 0.326 0.191 0.208 0.2360
SVM -0.577 0.512 0.161 0.423 0.0917

Random Forest -1.140 4.445 0.579 1.773 0.6660
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H. Mutiple Time-dependent Confounders

Tables SH1-SH4 shows the summaries of MSCM results when the hazard function depends on the cumulative treatment
exposure (with stabilized weights sw):

Table S H1. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is linear and additive in describing the association between the
exposure and the confounder (simulation scenario - IX, with weights sw) and there exists two time-dependent confounders

that affect future treatment status.

Bias MSE SE SD Cov.Pr.

Boosted CART -0.0813 0.0908 0.291 0.290 0.958
Bagged CART -0.1091 0.1056 0.295 0.306 0.934

Super learner -0.1089 0.1414 0.305 0.360 0.914
Elastic net -0.0814 0.1793 0.314 0.416 0.897

CART -0.1166 0.1838 0.333 0.413 0.879
Bayesian logistic -0.0908 0.1869 0.319 0.423 0.895

Logistic -0.0940 0.1993 0.324 0.436 0.891
Pruned CART -0.1611 0.2053 0.331 0.423 0.860

Stepwise -0.1042 0.4332 0.352 0.650 0.816
Random Forest -0.4041 3.5317 0.909 1.835 0.662

SVM -0.2290 22.9746 0.269 4.788 0.694

Table S H2. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits
(1,000 Monte Carlo dataset) where the treatment selection model is linear but non-additive in describing the association
between the exposure and the confounder (simulation scenario - X, with weights sw) and there exists two time-dependent

confounders that affect future treatment status.

Bias MSE SE SD Cov.Pr.

Boosted CART -0.131 0.104 0.304 0.294 0.949
Bagged CART -0.135 0.109 0.297 0.301 0.942

Super learner -0.140 0.135 0.305 0.341 0.922
Elastic net -0.141 0.156 0.305 0.369 0.903

Bayesian logistic -0.135 0.164 0.311 0.382 0.900
Logistic -0.131 0.173 0.316 0.396 0.897

CART -0.133 0.184 0.339 0.408 0.901
Pruned CART -0.177 0.212 0.339 0.425 0.876

SVM -0.388 0.393 0.278 0.492 0.767
Stepwise -0.117 0.403 0.357 0.624 0.856

Random Forest -0.672 3.340 0.870 1.700 0.658
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Table S H3. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits
(1,000 Monte Carlo dataset) where the treatment selection model is additive but non-linear in describing the association
between the exposure and the confounder (simulation scenario - XI, with weights sw) and there exists two time-dependent

confounders that affect future treatment status.

Bias MSE SE SD Cov.Pr.

Super learner 0.0165 0.0922 0.309 0.303 0.964
Boosted CART -0.0665 0.1062 0.324 0.319 0.955
Bagged CART -0.0684 0.1130 0.328 0.329 0.941

CART 0.1078 0.2892 0.413 0.527 0.865
Elastic net -0.5065 0.3559 0.274 0.315 0.496

Bayesian logistic -0.4995 0.3614 0.277 0.334 0.497
Logistic -0.4973 0.3636 0.278 0.341 0.491

Pruned CART 0.1413 0.3859 0.450 0.605 0.832
Stepwise 0.4364 0.5019 0.341 0.558 0.721

SVM -0.4240 1.7600 0.327 1.257 0.645
Random Forest -0.4300 2.6455 0.842 1.569 0.698

Table S H4. Summary of the log-hazard ratio from the simulation study with 250 subjects, each with up to 10 visits (1,000
Monte Carlo dataset) where the treatment selection model is non-linear and non-additive in describing the association
between the exposure and the confounder (simulation scenario - XII, with weights sw) and there exists two time-dependent

confounders that affect future treatment status.

Bias MSE SE SD Cov.Pr.

Super learner -0.0387 0.125 0.335 0.351 0.949
Boosted CART -0.1978 0.170 0.353 0.362 0.921
Bagged CART -0.2158 0.203 0.358 0.396 0.879

CART -0.0638 0.340 0.434 0.579 0.848
Elastic net -0.4931 0.402 0.300 0.398 0.548

Bayesian logistic -0.4687 0.406 0.303 0.432 0.548
Logistic -0.4619 0.407 0.303 0.440 0.550

Pruned CART -0.0998 0.413 0.449 0.635 0.824
Stepwise 0.4083 0.566 0.374 0.632 0.736

SVM -0.4558 1.350 0.332 1.069 0.583
Random Forest -0.3598 59.520 0.885 7.707 0.663
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I. Simulation Graphs

Figures SI1-SI12 shows the trends of bias, MSE and coverage probabilities of MSCM estimates when weights are
progressively truncated at higher percentiles in each simulation scenario.

Simulation - I

Figure S I1. Bias in MSCM estimate ψ̂1 when the weights are progressively truncated in a simulation study of 1, 000 datasets with 250 subjects observed at most 10 times
(Simulation - I).
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Figure S I2. Mean squared error in MSCM estimate ψ̂1 when the weights are progressively truncated in a simulation study of 1, 000 datasets with 250 subjects observed at most
10 times (Simulation - I).
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Figure S I3. The coverage probability of model-based nominal 95% confidence intervals based on the MSCM estimate ψ̂1 when the weights are progressively truncated in a
simulation study of 1, 000 datasets with 250 subjects observed at most 10 times (Simulation - I).
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Simulation - II

Figure S I4. Bias in MSCM estimate ψ̂1 when the weights are progressively truncated in a simulation study of 1, 000 datasets with 250 subjects observed at most 10 times
(Simulation - II).
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Figure S I5. Mean squared error in MSCM estimate ψ̂1 when the weights are progressively truncated in a simulation study of 1, 000 datasets with 250 subjects observed at most
10 times (Simulation - II).
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Figure S I6. The coverage probability of model-based nominal 95% confidence intervals based on the MSCM estimate ψ̂1 when the weights are progressively truncated in a
simulation study of 1, 000 datasets with 250 subjects observed at most 10 times (Simulation - II).
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Simulation - III

Figure S I7. Bias in MSCM estimate ψ̂1 when the weights are progressively truncated in a simulation study of 1, 000 datasets with 250 subjects observed at most 10 times
(Simulation - III).
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Figure S I8. Mean squared error in MSCM estimate ψ̂1 when the weights are progressively truncated in a simulation study of 1, 000 datasets with 250 subjects observed at most
10 times (Simulation - III).
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Figure S I9. The coverage probability of model-based nominal 95% confidence intervals based on the MSCM estimate ψ̂1 when the weights are progressively truncated in a
simulation study of 1, 000 datasets with 250 subjects observed at most 10 times (Simulation - III).
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Simulation - IV

Figure S I10. Bias in MSCM estimate ψ̂1 when the weights are progressively truncated in a simulation study of 1, 000 datasets with 250 subjects observed at most 10 times
(Simulation - IV).
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Figure S I11. Mean squared error in MSCM estimate ψ̂1 when the weights are progressively truncated in a simulation study of 1, 000 datasets with 250 subjects observed at
most 10 times (Simulation - IV).
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Figure S I12. The coverage probability of model-based nominal 95% confidence intervals based on the MSCM estimate ψ̂1 when the weights are progressively truncated in a
simulation study of 1, 000 datasets with 250 subjects observed at most 10 times (Simulation - IV).
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J. Summary of the Selected Cohort and Exclusion Criteria

The eligibility for β-IFN treatment in BC was adapted from the provincial government’s reimbursement scheme. This
criteria used for β-IFN treatment are: patients have to be at least 18 years old, have an Expanded Disability Status Scale
(EDSS) score of 6.5 or below (i.e., able to walk 20 meters without resting with constant bilateral support) and have
definite MS with a relapsing-onset course.

Table S J1. Characteristics of the selected cohort of patients with relapsing-onset
multiple sclerosis (MS), British Columbia, Canada (1995-2008).

Baseline Ever-β-IFN Never-β-IFN
characteristics exposed exposed

Number 868 829
Women, n (%) 660 (76.0) 637 (76.8)
Disease duration, average (SD) 5.8 ( 6.6 ) 8.3 ( 8.5 )
Age, average (SD) 38.1 ( 9.2 ) 41.3 ( 10.0 )
EDSS score, median (range) 2.0 ( 0-6.5 ) 2.0 ( 0-6.5 )
Relapse rate / year†, median (IQR) 0.5 ( 0-1.2 ) 0.5 ( 0-1.0 )
Active follow-up time‡, average (SD) 5.2 ( 2.8 ) 4.5 ( 2.9 )
† Over the 2 years prior to baseline.
‡ First to last EDSS measurement, measured in years.

2, 671 patients met the eligibility criteria to receive β-IFN treatment between July 1995 and December 2004. Of these,
patients who were exposed to a non-β-IFN immunomodulatory drug, a cytotoxic immunosuppressant for MS (n = 172),
or an MS clinical trial (n = 21) prior to baseline were excluded from the analysis. If the exposure occurred after baseline,
data were censored at the start of the exposure to the non-β-IFN treatment. Further exclusion criteria included unknown
MS onset date (n = 10), insufficient EDSS measurements (n = 436), reaching of the outcome (n = 218) or the secondary
progressive stage before the eligibility date (n = 217). Some patients met multiple exclusion criteria. As a result, 1, 697

patients were selected. A summary of their characteristics are reported in Table SJ1.
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K. Additional Analysis of Multiple Sclerosis Data

Table S K1. The impact of truncation of the sw (generated via super learner) on
the estimated causal effect of β-IFN on reaching sustained EDSS 6 for BC MS

patients (1995-2008).

Truncation Estimated weights Treatment effect estimate
percentiles Mean (log-SD) Min-Max HR SE† 95% CI†

None 1.056 (-0.771) 0.392 - 2.379 1.349 0.316 0.853 - 2.134
(1, 99) 1.056 (-0.773) 0.443 - 2.030 1.278 0.278 0.834 - 1.957
(5, 95) 1.055 (-0.782) 0.469 - 1.965 1.187 0.241 0.797 - 1.767
(10, 90) 1.051 (-0.808) 0.486 - 1.898 1.215 0.236 0.830 - 1.778
(25, 75) 0.990 (-1.404) 0.693 - 1.310 1.234 0.223 0.866 - 1.760
(35, 65) 0.973 (-2.000) 0.818 - 1.124 1.253 0.222 0.886 - 1.772
Median‡ 0.995 (-Inf) 0.995 - 0.995 1.288 0.225 0.914 - 1.815

log-SD, logarithmic transformation of standard deviation; Min, minimum;
Max, maximum; CI, confidence interval; HR, Hazard ratio; SE, standard error.
† Based on robust standard error.
‡ Baseline-adjusted analysis.
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