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Abstract - One of the most important problems of 
hybrid h-p adaption in finite element electromagnetics has 
been the accurate and efficient resolution of the 
singularities associated with sharp material edges and 
comers. One of the key obstacles has been the lack of 
objective standards by which to evaluate and compare 
adaptive control strategies. A set of optimal adaption 
benchmarks for the fundamental electromagnetic point and 
line singularity models is presented. The primary adaption 
procedures and control schemes are evaluated and compared. 
The absolute and relative performance of the competing 
approaches is discussed. 

started to emerge [5], [6], practical h-p adaptive strategies 
for electromagnetic FEA still remain out of reach. One 
important reason for this slow progress - aside from the 
inherent complexity of implementing and controlling h-p 
adaption - is the lack of objective benchmarks by which to 
measure the merits and flaws of adaptive strategies. 

One of the most important challenges for all types of 
adaption in FEA is the accurate and efficient resolution of 
the singularities associated with sharp material edges and 
corners [7]. The purpose of this contribution is to present 
a set of adaption benchmarks for these singularities, and 
illustrate their usefulness in the analysis and design of 
optimal h-p adaption strategies. 

I. INTRODUCTION 
II. ADAFTON BENCHMARKS 

Currently, finite element analysis (FEA) is widely used 
in electromagnetic design - typically, FEA tools are used 
to computationally simulate and evaluate the performance 
of a new device design before building a prototype. Today, 
the state-of-the-art in FEA research lies in the development 
of adaptive solver technologies. In the future, it is believed 
that adaptive solvers will be able to reliably compute the 
performance of a proposed device to within the engineer's 
specified tolerances. 

Today. three basic adaption models are under study: h- 
type; p-type; and combined h- and p-type (called h-p). 
Essentially, these models only differ in the techniques used 
to update the finite element discretization within the 
adaptive feedback loop (described below). 

A. Generate initial discretization. 
Repeat 

B. Solve finite element problem. 
C. Evaluate solution accuracy; if adequate STOP. 
D. Identify regions of inadequate discretization. 
E. Update finite element discretization. 

Until STOP. 

Simply stated, h-adaption adds elements to the mesh to 
improve a discretization; p-adaption increases element 
orders within the mesh to improve a discretization; and h-p 
adaption employs a combination of both procedures. 

While h-adaption has become increasingly popular in 
electromagnetic FEA research during the past ten years [ 11- 
[4], and more recently, effective p-adaption codes have 
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The adaption analyses are based on the fundamental 
point-charge and line-current singularity models. The 
following benchmarks were computed for each model. 

1. Optimal h-adaption (Orders 1 and 2). 
a) All nodes free to move with each adaptive step. 
b) Only new nodes free to move in an adaptive step. 
c) All new nodes set by element bisection. 

2. Optimal p-adaption (Orders 1, 2 .4 ,  and 8). 
a) All element orders updated uniformly with each 

adaptive step. 
b) Element orders updated non-uniformly (mixed-order 

padaption) in an adaptive step. 

3. Optimal h-p adaption (Orders 1, 2. 4, and 8). 
a) Decoupled: h- followed by p-adaption. 
b) Fully integrated h- and p-adaption. 

In this work, optimal adaption implies optimal functional 
convergence. The different types of adaption techniques 
considered here are intended to represent a range of methods 
varying in computational cost and practicality of 
implementation. For each case, new degrees of firedom 
@OF') are added to the discretization so as to yield the besr 
possible improvement in functional value for each adaptive 
step. The optimal placement of the new nodes is 
determined by solving a fulldomain cons.mined 
optimization problem at each adaptive step [8]. 
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111. RESULTS 

A set of 50 optimal adaption benchmarks were 
computed for the two singularity models. Each benchmark 
is based on the resolution of a region close to - but 
excluding - the singularity under consideration. A radial 
neighbourhood spanning a 100-fold decay in potential was 
used. In order to obtain the best possible resolution in the 
rate of convergence for the optimal adaption methods 
studied in this work, each adaptive iteration was based on 
increasing the number of @OF) in a discretization by the 
minimal increments appropriate to the type of adaption 
being considered. The following results represent a cross- 
section of the benchmarks computed. 

A. Optimal Meshes 

Fig. 1 illustrates the radial discretization, for the point 
singularity model, of a range of h-adaption optimized 
meshes in which all nodes were free to move in each 
adaptive step. Both first- and second-order meshes are 
presented, but only the geometric nodes are plotted. It is 
noted that for the same number of DOF, in the point 
singularity model, the resulting distributions of DOF will 
differ between the first- and second-order meshes when all 
nodes are free to move in each adaptive step. The 
corresponding results for the line singularity model have 
the interesting property that the first- and second-order 
optimal h-adaption meshes have exactly the same 
distribution of DOF when all nodes are free to move with 
each adaptive step. The radial discretizations are plotted on 
a logarithmic scale because of the proximity of some of the 
nodes to each other near the singularity. Fig. 2 shows a 
range of the different types of optimal h-adaption second- 
order meshes for the line singularity model: A + all nodes 
free to move; B + only new nodes free to move; C + new 
nodes set by element bisection. It is interesting to note the 
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move in each adaptive step for the point singularity model. 
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Fig. 2. Optimal h-adaption meshes for the line singularity model using 
second-order elements. 

first two t y p  of optimal h-adaption represented in Fig. 2 
result in meshes with highly refined discretizations near the 
singularity, while the optimal meshes obtained with 
element bisection using second-order elements, can not 
resolve the singularity as rapidly. Similar results were 
obtained for the point singularity. The meshes obtained 
for both models, when using the first two types of optimal 
h-adaption, have very similar distributions of DOF. This 
may suggest some practical techniques for obtaining 'near' 
optimal h-adaption meshes at a cost less than would be 
required for the best possible case when, all nodes are free to 
move in each adaptive step. 

Fig. 3 compares evolving optimal h - p  adaptive 
discretizations for the point singularity: A + integrated h-p 
adaption; B + decoupled h-p adaption. In each adaptive 
step, the integrated h-p adaptive solver improves the 
discretization by either bisecting an element or increasing 
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Fig. 3. Evolving discretimuons for optimal h-p adaption for the point 
singularity.. 
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Fig. 4. Optimal h-adaption convergence (point singularity). 

the order of an element, such that the optimal improvement 
in the functional value is achieved. The decoupled h-p 
adaptive solver considered here, first refines the mesh by an 
optimal element bisection algorithm until a given rate of 
convergence is attained, and then improves the 
discretization by increasing the order of an element in each 
subsequent adaptive step (i.e., mixed-order p-adaption). 
The two types of h-p' adaption corresponding to Fig. 3, 
result in rather different types of optimal discretizations. 
The integrated approach, initially, attempts to resolve the 
singularity by increasing element order rather than by 
element bisection. The decoupled approach, considered in 
this instance, seems to result in a better distribution of 
DOF since it produces optimal meshes with a higher 
density of DOF near the singularity, compared with the 
more uniform distribution produced by the integrated 
approach. Analogous results were obtained for the line 
singularity. 

z 

ee 

7 8 9 10 11 12 13 14 15 
DOF 

Fig. 5. Optimal h-adaption convergence (line singularity). 
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Fig. 6. Optimal p-sdapion convergence (point singularity). 

B.  Optimal h-adaption Convergence 

Fig. 4 and Fig. 5 illustrate the optimal convergence of 
a range of h-adaption strategies applied to the point and line 
singularity models, respectively: A 4 element bisection 
(2ND order elements); B + new nodes free to move in each 
step (2morder elements); C + all nodes fire to move in 
each step (2ND order elements); D + element bisection 
(lST order elements); E all nodes free to move in each 
step (IST order elements). The two singularity models 
display similar characteristics in terms of their optimal h- 
adaption convergence. For second order elements, the 
strategy in which only new nodes are free to move in each 
adaptive step has comparable error convergence with that of 
the computationally more expensive strategy in which all 
nodes are free to move in each adaptive step. The optimal 
element bisection for second-order elements, by contrast, 
converges comparatively slowly. When first-order elements 
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Fig. 7. optunal padaption convergence (line singularity). 
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Fig. 8. Optimal h-p adaption convergence (point singularity). 

are employed, however, the relative performance of the 
bisection strategy, with respect to the fully optimal (all 
nodes free to move) fmt-order strategy, improves. This is 
due primarily to the more rapid resolution of the 
singularity that is possible with a first-order element 
bisection scheme than with its second-order counterpart. 
That is, for the same number of DOF, a first-order 
bisection strategy can distribute the DOF more effectively 
than a similar second-order approach, at least until a certain 
error tolerance level (- 2%). 

C. Optimal p-adaption Convergence 

Fig. 6 and Fig. 7 illustrate the optimal convergence of 
p-adaption strategies applied to a range of uniform initial 
meshes for the point and line singularity models, 
respectively: A + 4 elements, uniform p-adaption; B + 8 
elements, uniform p-adaption; C + 12 elements, uniform 
p-adaption; D + 4 elements, mixed-order p-adaption; E + 
8 elements. mixed-order p-adaption; F + 12 elements, 
mixed-order p-adaption. For the two singularity models, 
when starting from uniform initial meshes, mixed-order p- 
adaption results in a faster rate of convergence. When 
starling from h-adaption optimal meshes obtained with all 
nodes free to move, however, it was observed that the 
difference in the rates of convergence between uniform- and 
mixdader p-adaption is not as substantial as that shown 
in Fig. 6 and Fig. 7. Also, it has been observed in 
previous work that uniform order p-adaption becomes more 
efficient than optimal h-adaption, once the mesh is 
sufficiently well refined using an optimal h-adaption 
strategy. 

D. Optimal h-p adaption Convergence 

Fig. 8 illustrates the optimal convergence for two h-p 
adaption strategies for the point singularity, specifically, 

those considered previously in Fig. 3: A + integrated h-p 
adaption; B + decoupled h-p adaption (optimal element 
bisection followed by mixed-order p-adaption). Evidently, 
the decoupled approach is able to distribute the DOF more 
efficiently, and therefore, provides a faster rate of 
convergence. Similar results were obtained for the line 
singularity model. 

IV. CONCLUSIONS 

A set of important optimal adaption benchmarks has 
been presented. Based on a comparison of these results it 
is clear that a very rapid variation in discretization is 
required to resolve singularities efficiently. Therefore, 
adaption strategies which can best combine the advantages 
of efficient distribution of DOF of both h- and p-type 
adaption, will provide the most desirable convergence rates. 
Theoretically, decoupled h-p adaption can never produce 
better convergence performance than fully integrated h-p 
adaption. However, based on the results presented in this 
contribution, the most effective practical implementation 
of h-p adaption is a decoupled approach. For example, 
such an approach might use an optimal h-adaption method 
based on low-order elements to refine the mesh initially, 
until a suitable convergence criterion is satisfied, and then 
employ an optimal p-adaption strategy to meet a more 
stringent criterion. 

There are several types of error measures which may be 
used in adaptive E A  [9], [lo]. For this work, however, 
adaptive refinement was based on optimal functional 
values. The principal reason for this choice is associated 
with the mathematical formulation used, which is based on 
variational finite element methods. Future investigations 
into the characteristics of optimal h-p adaption near 
singularities in finite element electromagnetics. might 
include a comparison of various types of error measures. 
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