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Abstract 

Research related to boronic acids, from synthetic development to materials to drug discovery, has 

skyrocketed in the past 20 years. In terms of drug discovery, the incorporation of boronic acids into 

medicinal chemistry endeavours has seen a steady increase in recent years. In fact, the Food and Drug 

Administration (FDA) and Health Canada have thus far approved five boronic acid drugs, three of which 

were approved in the past four years, and several others are in clinical trials. Boronic acids have several 

desirable properties that has led to their increased use, including potentially enhancing potency of drugs 

and/or improving their pharmacokinetics profile. This review explores discovery processes of boronic acid 

drugs. It begins with a brief scope of boron in natural products and in current drugs, followed by an 

investigation into the various rationalizations for boronic acid incorporation and the synthetic developments 

that focused on facilitating their addition into organic compounds. We hope that the knowledge we have 

assembled in this literature review will encourage medicinal chemists to consider the potential benefits of 

incorporating boronic acids into their future drug discovery endeavours. 
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1. Introduction 

Boron is ubiquitous in nature, from being an essential component of plant structural integrity [1] and 

metabolism [2] to being a regulator of mammalian vitamin D levels [3] and bone health [4]. In the form of 

boronic acids and esters, it is considered to be safe [5] for incorporation into pharmaceutical development. 

In fact, instances of boron-based studies, whether for synthetic, biological, or pharmaceutical endeavours 

have skyrocketed since the late 1990’s. Figure 1A illustrates the PubMed literature search results including 

“boron” in the publication title. More specifically, boron-related drug discovery endeavours have also made 

increasing appearances in scientific literature. Figure 1B illustrates the PubMed literature search results of 

“boron” in the publication title and “drug” in the text, showing a steep escalation in usage starting in the 

1990’s. Boronic acids as drugs are becoming increasingly relevant. In fact, four boron-containing drugs have 

been approved in the past five years, (Bortezomib as approved in 2005), with several others in clinical trials. 



 

Figure 1: PubMed search results of the terms “boron” (A) and “boron” + “drug” (B). 

Despite the use of boronic acids in diagnostic tools [6, 7], Boron Neutron Capture Therapy (BNCT) 

radiation treatment [8, 9], bioconjugation [10], materials [11], and catalysis [12], among others, our focus in 

this review is on small molecule drugs containing boronic acids and esters and their associated design and 

therapeutic application. Reasons for incorporation of boronic acids into drug discovery endeavours vary, 

ranging from improvement of drug activity to enhancement of pharmacokinetic properties. The discovery 

process of boronic acids also depends on the approach, such as substrate mimicry or peptidomimetics design, 

rational design via computational methods, or use as bioisosteres to substitute for certain functional groups.  

This review outlines the rationalization of boronic acid use and associated discovery processes, including 

incorporation of boronic acid moieties into bioactive compounds. While we do include a diverse scope of 

boron-based drug applications, this review in no means covers the vast span of boronic drug discovery (Figure 

1), but instead provides examples of progress made so far in pharmaceutical applications of boronic acids, 

along with a few examinations of the rationale behind inclusion of boronic acids. 

2. Occurrence of boron in nature.  

2.1. Boron in bacteria.  

Boromycin (Figure 2), isolated from a Streptomyces antibioticus strain in African soil, was the first ever 

natural product found to contain trace amounts of boron [13]. Since then, this macrolide has been studied for 

its therapeutic properties. One study reported nanomolar potency against several HIV-infected cell lines [14]. 

Boromycin was also studied for its potent antibiotic activity against several strains, including Mycobacterium 

tuberculosis [15]. A related macrolide, Aplasmomycin, isolated from Streptomyces griseus and named for its 

anti-plasmodium activity, was discovered about 10 years later and has a structure similar to that of Boromycin 

[16] (Figure 2). In these two natural products, boron has a structural role, inducing the folding of the polyols 

into compact structures. 
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Figure 2: Boron in bacterial-derived antibiotics. 

These two bacterial compounds were both recently found to inhibit a biomolecular pathway in 

Helicobacter pylori, bacteria implicated in stomach cancer [17]. Derivatives of these two antibiotics (not 

shown), including Aplasmomycin B and C and N-acetylboromycin, also occur naturally and have also 

exhibited antibiotic activity. For a more comprehensive review of these natural boron-containing macrolides, 

see Dembitsky et al. [18]. 

2.2. Boron in plants. 

Boron is vital to plants and algae. In fact, boron deficiency in plants is detrimental to survival and often leads 

to plant death [19]. Similarly to the natural products described above, it is known to form complexes with 

polysaccharide moieties – through interactions with diols – in the plant cell wall membrane and is therefore 

essential for structural integrity [1]. The mechanism is not fully understood, but one study of tobacco plants 

revealed that boron-deficient plants contained more reactive oxygen species (ROS) than control plants. The 

researchers hypothesize the ROS levels build up as a signalling mechanism when there is a disturbance in 

the structural integrity of the cell wall as a result of boron loss [19]. Although cell wall assembly seems to be 

its major role, boron is also known to be essential in several other plant biomechanisms, such as nitrogen 

fixation and plant metabolism [2]. 

2.3. Importance in mammalian systems  

Although the full extent of boron’s roles in mammalian biological systems is not completely understood, 

several studies link boron to various mammalian biomechanisms. In fact, the World Health Organization 

(WHO) declares boron as a “probably essential element” for humans [20]. 

Boron is suggested to be important in mammalian bone health and is present in higher concentrations in 

bones than in other tissues [20]. A study conducted by Gorustovich et al. aimed to determine the effect of 

boron-deficient diets on dental bone modelling and remodelling. It was found that boron-deficient diets 

inhibited bone formation when compared to boron-supplemented control diets, although the mechanism was 

not elucidated. These results were consistent with earlier discoveries that boron deprivation in rats led to 

decreased bone volume in vertebral development [21]. Another study employing mice with diabetes-induced 

osteoporosis showed that boron supplements improved bone strength and overall health in not only the 

diabetic mice, but also in the control group. These results were consistent with other animal studies, and 

suggest that boron supplementation may be beneficial for bone strength [4]. However, further studies would 

need to be conducted to demonstrate parallel effects in humans. 

Boric acid treatment even advances wound healing. A preliminary study revealed that treatment with 3% 

boric acid solution on intensive care patients with deep wounds resulted in transfer to normal care three times 

as quickly as patients receiving standard treatments [22]. Another in vivo study of boron delivered in the form 

of a boric acid solution showed upregulation of synthesis of extracellular matrix proteins responsible for 

tissue reparation, although further studies are needed to determine the mechanisms of these observations [23]. 

Several studies have shown that vitamin D deficiencies are compensated by boron supplementation. One 

study involved boron supplementation in the vitamin-D-adequate or -inadequate diets of chickens. It was 

found that addition of boron improved overall chicken health (mineral levels, body weight, food 

consumption, etc.) in both the vitamin-D-inadequate and control groups, though the increase was greater in 

the vitamin-D-inadequate group [24]. This study, along with other studies relating dietary boron to vitamin 



D levels, led to one group hypothesizing that boron's potential mechanism involves inhibition of an enzyme 

involved in metabolism of vitamin D to an inactive form [3].  

Even from the few above studies, it is clear that boron is implicated in several mammalian biomechanisms. 

For more comprehensive reviews on boron in biological systems, see Uluisik et al. [25]. 

3. Scope of boronic acid drugs 

3.1. Approved boron-containing drugs 

So far, five approved drugs exist on the market that contain boron (Figure 3). The first to be approved was 

Bortezomib, marketed under the name Velcade®, approved by the U.S. Food and Drug Administration 

(FDA) in 2005 [26] and by Health Canada in 2008 [27] for the treatment of multiple myeloma. The structure 

was originally discovered through the study of substrate mimics in the form of peptidic aldehydes, which, 

through co-crystallization with the target were found to bind covalently to the nucleophilic threonine residue. 

However, as aldehydes are unsuitable for further drug development studies, boronic acid analogs were tested 

and showed high potency [28, 29]. Although several proposed mechanisms of anti-cancer activities have 

been reported, its major mechanism of action involves the ubiquitination pathway of protein degradation; 

Bortezomib is a proteasome inhibitor, blocking the degradation of apoptotic proteins in tumour cells [30]. 

Through co-crystallization studies, it is suggested to act as a reversible covalent inhibitor, blocking the action 

of nucleophilic threonine residues in the active sites of the proteasome [31].  

Ninlaro®, or Ixazomib, similarly to Bortezomib, was approved by the FDA in 2015 [32] and by Health 

Canada in 2016 [33] for treatment of multiple myeloma [32] and is a second generation proteasome inhibitor 

[34]. It is the first oral proteasome inhibitor [32], as Velcade® (Bortezomib) is currently administered as 

weekly injections [26]. Ixazomib was discovered from a screening of boron-containing proteasome inhibitors 

with improved pharmacokinetic properties over Bortezomib. Its mechanism of action was found to be nearly 

identical to that of Bortezomib, yet it was found to be more potent, less prone to inducing adverse side effects 

(higher specificity), and even to treat certain patients whose tumours have developed resistance to 

Bortezomib [34]. Although approved, Ixazomib is also under clinical trials as part of combination therapies 

to treat multiple myeloma [34, 35].  

 

Figure 3: Approved boron-containing drugs 

Kerydin®, or Tavaborole, received global approval [36] by the U.S. FDA in 2014 to treat onychomycosis, 

a fungal infection [37]. Its structure was originally discovered through structure-activity relationship (SAR) 

studies of a similar anti-bacterial borinic ester. Upon testing against several types of fungi, it was found to 

have broad-spectrum antifungal activity [38, 39]. Tavaborole’s mechanism of action is believed to involve 

the inhibition of fungal Leucyl-tRNA synthetase, preventing protein synthesis and thus fungal growth, and 

is three orders of magnitude more selective for fungal Leucyl-tRNA synthetase than the human equivalent. 

The necessity of the boron-containing moiety was confirmed by 50-fold loss of inhibitory activity upon 

testing analogues that substituted boron for carbon [40].  
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EucrisaTM, or Crisaborole, was approved in 2016 by the U.S. FDA [41] and by Health Canada in 2018 to 

treat mild to moderate eczema [42]. It was discovered by the same research group as that who discovered 

Tavaborole through a screening of a boron-containing compound library against phosphodiesterase 4 (PDE4) 

and cytokine release factors, both implicated in anti-inflammatory response pathways [43]. 

VabomereTM is a combination drug (Figure 1 includes only the boronic acid component) approved by the 

U.S. FDA [44] and Health Canada in 2017 [45] to treat bacterial infections [46]. It includes Vaborbactam, a 

β-lactamase inhibitor, and Meropenem, an inhibitor of bacterial cell-wall synthesis. Although Vaborbactam 

is not an antibacterial itself, it is administered in combination with the carbapenem Meropenem to prevent its 

hydrolysis by β-lactamases [47]. In terms of its discovery, boronic acids were already known to be potent β-

lactamase inhibitors through their reversible covalent bond with catalytic serine residues [48]. Vaborbactam 

was therefore designed by structure-based modifications of various known active analogues. It was intended 

to be a reversible covalent inhibitor, and crystallography studies confirm its covalent complexation with the 

catalytic serine (pdb: 4XUZ) [49]. Furthermore, the researchers successfully induced selectivity over other 

mammalian serine proteases through incorporation of a cyclic borinic acid, which would not fit in the smaller 

active sites of native serine proteases with more flexible substrates [49]. 

3.2. Boron-containing drugs under investigation 

Although not yet approved, there are several boronic acid drugs under investigation in clinical trials (Figure 

4). 

Dutogliptin [50] is a dipeptidyl peptidase 4 (DPP4) inhibitor. It failed in Phase II clinical trials for diabetes 

mellitus, but it is now under investigation in a combination therapy with granulocyte-colony stimulating 

factor (G-CSF) to treat myocardial infarctions. While implicated in diabetes, DPP4 is also responsible for 

degradation of factors responsible for recruiting stem cells for cardiac muscle repair. A Phase II trial of co-

administration of Dutogliptin with G-CSF, a stem cell mobilizer [51], is currently underway [52]. 

Acoziborole, also referred to as SCYX-7158 or AN5568, is a parasite-inhibiting drug candidate to treat 

Human African Trypanosomiasis (HAT) [53], although neither its biological target nor its mechanism of 

action is known [54]. Current available HAT treatments are unfortunately quite cytotoxic and lack efficacy. 

Acoziborole, on the other hand, is safe, orally bioavailable, and has the potential to be administered in one 

sole dose [53]. It is currently in Phase III trials [55]. 

GSK3036656, another benzoxaborole compound, is a leucyl-tRNA synthetase inhibitor for treatment of 

Tuberculosis infections [56]; it was designed to be a reversibly covalent inhibitor that binds to Ade76 of 

tRNA and prevents RNA synthesis [57]. It’s structure is a modified version of GSK2251052, or AN3365, 

which failed in Phase II due to development of resistance [58]. An SAR study produced GSK3036656, a 

potent inhibitor with favorable pharmacokinetic properties that shows selectivity for bacterial leucyl-tRNA 

synthetase over the human homologue [57]. This compound is currently in Phase II studies for Tuberculosis 

[59]. 



 

Figure 4: Boron-containing drugs in clinical trials 

Similar to the already-approved Crisaborole is AN2898, another phosphodiesterase 4 inhibitor for the 

treatment of atopic dermatitis [60]. Clinical trials are ongoing, but in a Phase II study, it was deemed to be 

safe and effective for treatment [61]. As can be seen in Figure 3 and Figure 4, the structures are nearly 

identical, save for one extra nitrile in AN2898’s side chain. 

An antiviral compound, GSK2878175, has completed Phase 2 clinical trials [62] as a combination therapy 

targeting the Hepatitis C virus RNA polymerase NS5B enzyme. Its design stemmed from optimizations of 

the metabolic profile of a failed clinical candidate. After several rounds of structural modification, in vitro 

and in cellulo assays confirmed potent activity of GSK2878175, and in vivo studies confirmed its superior 

pharmacokinetic profile [63]. 

Although not a synthetic drug, boric acid itself is currently in Phase II/III clinical trials as BASIC (Boric 

Acid, Alternate Solution for Intravaginal Colonization), formulated as a cream to treat bacterial vaginosis 

(BV) [64]. Separate Phase IV clinical trials are also ongoing, testing a boric acid in combination with 

probiotics – as a combination capsule – to treat BV and candidiasis, or yeast infection [65]. 

While there are only a handful of boron-containing drugs currently in clinical trials, several have been 

halted for various reasons. One example is AN3365, mentioned above. Currently, however, studies of analogs 

are underway which have produced compounds that appear to evade this resistance [66]. Others include 

Talabostat (PT-100), a multi-target anti-cancer drug which failed in Phase III [67] ; PHX1766, an HCV 

protease inhibitor that failed in accelerated Phase I trials [68] ; and Delanzomib, a proteasome inhibitor 

similar to Bortezomib and Ixazomib that failed in Phase I/II trials due to limited efficacy [69]. 

Based on the frequency of boron drugs reaching Phase II clinical trials, it is likely there will be further 

developments and more approvals in coming years. 

3.3. Over-the-counter boron-containing drugs and supplements 

As discussed earlier, elemental boron supplements have been used in many animal studies to investigate 

the role of boron in mammalian systems. Although not approved by the FDA, general safety has led to the 

sale of boron supplements as long as they are not labeled as a treatment for any disease [70]. 

Although it is undergoing clinical trials as a cream to treat BV [48], boric acid solutions and powders have 

been available over-the-counter for many years, such as for ophthalmic [71] or vaginal [72] use, though its 

effectiveness may be questionable.  

Calcium fructoborate (CF), sold under FruiteX-B®, is found naturally in fruits and vegetables and is a 

complex of fructose with boronic acids (intracellular) or esters (extracellular) [73]. It is sold as a supplement 

whose claims include improvement of bone and cardiovascular health. Although these claims are not fully 
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substantiated, a double-blind study on middle-aged adults with osteoarthritis did conclude that CF led to 

improvement in quality of life of patients in the short-term with a favourable prognosis for inflammation. 

The mechanism of action for this result is not fully known, although in vitro studies reveal that CF is 

responsible for inhibiting the release of proteins responsible for inflammation response (e.g. interleukins) 

[74]. The claim of improvement in cardiovascular health is still preliminary, although early clinical studies 

indicate that CF significantly reduces levels of low-density lipoprotein and triglycerides while raising levels 

of high-density lipoprotein, suggesting that CF may improve cardiovascular health [75]. Despite these results, 

long-term studies and larger cohorts are necessary for more conclusive results. 

3.4. Boron-containing compounds in drug discovery 

Though they have yet to lead to approved drugs, there have been countless drug discovery endeavours that 

have incorporated boron into the target molecules for a variety of therapeutic purposes. The following 

sections highlight some medicinal chemistry applications of boronic acids so far. 

3.4.1. Anti-cancer boron-containing compounds 

As described earlier, Bortezomib, or Velcade® (Figure 3), was the first boronic acid drug to be approved 

by the U.S. FDA for the treatment of multiple myeloma,[26] followed several years later by Ixazomib, or 

Ninlaro® (Figure 3) [32]. These approvals have led to a surge of boronic acids drug discovery. Furthermore, 

due to off-target effects and resistance development against Bortezomib,[29] research continues into 

proteasome inhibitors, especially after the clinical failure of Delanzomib (Figure 5) [69]. Han et al. recently 

conducted an SAR relationship study of urea-containing peptidic compounds as proteasome inhibitors. From 

this study, they discovered compound 1 (Figure 5). In in vitro assays, 1 exhibited sub-picomolar activity 

against the human 20S proteasome. Furthermore, its activity against eleven human cancer cells lines was 

consistently in the nanomolar range, and in vivo mice assays revealed that not only was its anti-tumour 

activity similar to that of Bortezomib, but it also exhibited lower toxicity and more promising 

pharmacokinetic properties. Based on these promising results, this compound is currently in pre-clinical 

studies [76]. More recently, Lei et al. have focused on the discovery of a proteasome inhibitor that would not 

only be effective for multiple myeloma, but also triple-negative breast cancer. Through an SAR study of 

Bortezomib and Ixazomib analogues, they discovered compound 2 (Figure 5), an unusual eight-membered 

ring boronic ester pro-drug, which exhibited low nanomolar activities in vitro and in cellulo similar to those 

of the two approved drugs. In vivo assays against triple negative breast cancer in mice also yielded promising 

results, including tumour necrosis. However, the pharmacokinetics of 2 require lead optimization, as in vivo 

bioavailability is low [77]. 

 

Figure 5: Examples of boronic acid compounds as anti-cancer therapeutics 

In much more recent context, the dipeptidyl peptidase (DPP) family of serine proteases, including DPP8 

and DPP9, have been discovered to be involved in various biomechanisms in cancer and associated immune 



response [78]. Studies utilizing DPP8/9 inhibitor Talabostat (Figure 5), a drug that failed in Phase III as a 

non-selective DPP/FAP/POP inhibitor [67], show that inhibition leads to induction of cell death through 

several immune response mechanisms [79]. However, results are still inconclusive, as Talabostat is non-

selective and the extent of its mechanisms of action is not fully known [78]. DPP8 and DPP9 are very 

structurally similar to a widely-studied homologous enzyme, DPP4, and many studies focused on inhibitors, 

mainly on nitriles [80] but some boronic acids (Gly-Boro-Pro and Ala-Boro-Pro, Figure 5) [81], targeting 

DPP4 for diabetes treatment were tested on both DPP8 and DPP9 to determine selectivity. Similarly, while 

there exist several FDA-approved DPP4 inhibitors (e.g. sitagliptin, saxagliptin) [82], DPP4 has more recently 

been discovered to be implicated in certain epithelial cancers. In fact, preliminary studies have demonstrated 

that in patients with diabetes and colorectal or lung cancer, DPP4 inhibition is associated with greater overall 

survival [83], though further studies are required. Additionally, recent accounts associate DPP4 inhibitor use 

with increased risk for pancreatic cancer, although results so far are inconclusive, as longer-term studies are 

required [84]. 

Apart from the proteosome or DPP family, boronic acids in anti-cancer pursuits include modifications of 

failed drug Combretastatin A-4 targeting tubulin assembly by Kong et al. [85], and design of epidermal 

growth factor receptor (EGFR) tyrosine kinase (TK) inhibitors by Ban et al., both design rationales explored 

in more detail later [86]. 

3.4.2. Anti-viral boron-containing compounds 

Viral proteases are also common biological targets of boron-based inhibitors, such as the NS3 protease of 

the hepatitis C virus (HCV). Though there exist approved drugs for the HCV NS3 serine protease [87], 

research has gone into discovery of inhibitors that replace the α-ketoamide moiety of approved drugs with 

boronic acid moieties, taking advantage of the catalytic serine in the active site. For example, one group based 

at Anacor Pharmaceuticals has studied on modifying telaprevir and boceprevir, both linear hexapeptides, 

with cyclic boronic acids (3, Figure 6) [88], but eventually improvements in structure and a few additional 

HCV NS3 approved drugs danoprevir and vaniprevir [87] led to studies of macrocylic drug structures (4, 

Figure 6) [89]. More recent examples of viral NS3 protease inhibition with boronic acids include that of 

flaviviruses such as dengue fever virus (DV) and Zika. One group in particular discovered modified 

dipeptides (Phe-Arg) containing boronic acids as reversible covalent groups (5, Figure 6) that were over one 

hundred times more active than the carboxylic acid derivatives [90]. 

On a separate note, the human immunodeficiency virus (HIV) aspartic acid protease was recently targeted 

with an aromatic boronic acid exhibiting subpicomolar activity (6, Figure 6), two orders of magnitude more 

potent than its previously-published carboxylic acid derivative (Figure 11) and current HIV approved 

protease inhibitor, Darunavir [91]. In a follow-up SAR study, Ghosh et al. [92] studied a set of analogues of 

Darunavir and this compound. Their study design and rationale are discussed on more detail later, with similar 

studies. 
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Figure 6: Examples of boronic acid compounds as antivirals 

3.4.3. Other anti-infective boron-containing compounds 

Boronic acids have been used quite widely in drug discovery studies targeting fungal, bacterial, and 

parasitic infections. As discussed earlier, some boronic acid drugs have either been approved (Figure 3) or 

are currently in clinical trials (Figure 4) for anti-fungal or anti-parasitic therapeutics, all of which contain the 

boronic acid benzoxaborole structure. This scaffold was also recently applied, again by Anacor 

Pharmaceuticals, to studies of the parasitic infection cryptosporidiosis, yielding compound AN7973 (Figure 

7A). This compound exhibited potent in vitro and in vivo activities against infected mice and showed 

favourable pharmacokinetics. It is currently in pre-clinical studies. 

The bacterial enzyme β-lactamase has also been a target in boronic acid drug discovery, and is the target 

of approved drug Vaborbactam (Figure 3) [93]. One of the most potent β-lactamase inhibitors reported to 

date was discovered through a fragment-guided in silico design (7, Figure 7A) and exhibited sub-nanomolar 

activity in vitro and promising results in vivo, though pharmacokinetics need improvement [94]. 

Nevertheless, drug discovery studies targeting β-lactamase have continued due to increasing need to combat 

anti-bacterial resistance [93]. 

 



 

Figure 7: Examples of bioactive boronic acid compounds (A) targeting non-viral infections and (B) for other 

therapeutic applications 

3.4.4. Other therapeutic applications of boron-containing compounds 

Besides as anti-cancer and anti-infective therapeutics, boron drugs have a number of other applications. In 

fact, one recent study discovered anti-Alzheimer’s drugs from modifying curcumin, a known amyloid-beta 

(AB) aggregation inhibitor, to contain a borinic acid moiety (8, Figure 7B). After an SAR study, compound 

was found to not only be a potent AB aggregation inhibitor on the same order as curcumin, but also exhibited 

good antioxidant activity, as oxidative stress is associated with neurodegeneration [95]. 

As previously discussed, the benzoxaborole scaffold has been applied over a large scope of enzymes, 

including the phosphodiesterase 4 (PDE4) inhibitor [43] Crisaborole, to treat mild to moderate eczema [41]. 

Autotaxin, a target also implicated in inflammation, as well as fibrosis and cancer, has been targeted with 

boronic acid drugs, including the benzoxaborole scaffold [96] and aromatic boronic acids [97, 98]. Kraljić et 

al. have designed benzoxazole analogues (9, Figure 7B) of recently-discovered hits that not only exhibited 

submicromolar potency against autotaxin, but also very favourable pharmacokinetic properties [96], though 

further biological studies are needed to confirm potency. 

Recently, Larcher et al. discovered a series of bis-benzoxaboroles targeting carbonic anhydrase, an enzyme 

implicated in several diseases, though isoform selectivity is difficult.[99] They found their linked bis-

benzoxaborole inhibitors to be potent against the disease-implicated carbonic anhydrases, while remaining 

selective over the human cytosolic form. Their most promising compound, 10 (Figure 7B), contains two 

benzoxaboroles connected by an almost-symmetrical seven-atom linker containing one stereocenter [100]. 

3.5. Design of boron in drugs 

Reasons and rationalizations for inclusion of boron, namely in the form of boronic acids, varies, as covered 

in a section above highlighting approved drugs and drugs in clinical trials. This section focuses in more detail 

on the design and rationalization leading to incorporation of boronic acids into drug discovery endeavours. 

3.5.1. Boronic acids as bioisosteres 

Boronic acids are ionically stable in physiological pH [101], making them promising unionized alternatives 

for ionized bioisosteres (Figure 8). 
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Figure 8: pKa of boronic acid [101], carboxylic acid [102], and phosphate protons [103]. 

As a more specific example, boronic acids have been studied as bioisosteres of carboxylic acids. Their 

structures are similar, but the boronic acid's higher pKa allows it to be unionized at physiological pH [102]. 

Examples of this bioisostere application include studies by Albers et al. [97, 98] and Ghosh et al. [92]. A 

discussion detailing their design rationale follows. 

Phosphates, while not as similar in structure to boronic acids as carboxylic acids, have also been replaced 

with boronic acids to study nucleosides [103]. For example, the Vasseur research group has synthesized 

analogues of DNA nucleotides, replacing the phosphate group with a boronic acid (Figure 9A). 

Computational studies revealed that these boronucleotides were very structurally very similar to their native 

analogues [104]. Furthermore, reaction with native ribonucleotide uridine gave the corresponding 

dinucleotide through reaction of the boronic acid with diol of the RNA nucleotide (Figure 9B) [105]. 

 

Figure 9: Vasseur's boronucleotide analogues. (A) structure of the boronucleotide, replacing the phosphate 

with a boronic acid [104]; (B) reversible reaction of RNA's uridine with the boronucleotide thymidine 

analogue [105]. 

For a more comprehensive review of boronic acids in nucleic acid chemistry, see a review from the Vasseur 

research group [106]. 

3.5.2. Utilizing boronic acids for improvement of pharmacokinetic properties 

Addition of boron or replacement of certain functional groups with a boron-containing group affects the 

octanol-water partition coefficient (logP) and distribution coefficient (logD), which, in turn, affects several 

pharmacokinetic properties [107]. 



One example of utilizing a boronic acid as an isostere for a phenol group to improve solubility was 

investigated by Kong et al. [85]. In their study of analogs of Combretastatin A-4, an anti-cancer agent halted 

in Phase II clinical trials [108], they aimed to improve both the activity and solubility of the compound 

without the use of a phosphate prodrug. Their replacement of an aromatic phenol with an aromatic boronic 

acid (Figure 10) led to not only improved bioactivity, but a nearly two-fold improvement in solubility in 

acidic media, suggesting the enhanced stability and solubility upon oral administration [85]. 

 

Figure 10: Improved properties of upon utilizing the boronic acid group as an isostere for (A) Combretastatin 

A-4 [85] and (B) Fulvestrant [109]. 

Another example of utilizing boron for improved bioavailability comes from Liu et al. and their research 

in the discovery of breast cancer selective estrogen receptor downregulators (SERDs). The researchers aimed 

to improve the compound Fulvestrant [109], the only FDA-approved SERD (Figure 10) [110]. Wanting to 

overcome rapid glucuronidation of its phenol, the researchers replaced the phenol group with an aromatic 

boronic acid. Not only did the activity of the boron analogue remain nearly equipotent as Fulvestrant in 

cellulo against breast cancer cells, but it displayed superior pharmacokinetic properties and was therefore 

more potent in vivo [109]. More specifically, incorporation of a boronic acid slowed down the clearance rate 

of Fulvestrant, allowing for a slow release upon slower metabolic oxidation of the boronic acid to the phenol. 

ZB716 is currently in pre-clinical development [111]. The same research group, continuing their studies of 

SERDs, has since utilized the boronic acid moiety as an orally available bioisostere for phenols in their 

discovery and development of other anti-breast cancer drugs [110]. 

3.5.3. Utilizing boronic acids for improvement of drug activity 

Boronic acids have been utilized as bioisosteres for several different functional groups, including 

carboxylic acids as mentioned above. One example from Albers et al. involves a study in which the 

researchers replace a carboxylic acid with a boronic acid in aims to improve potency of their hit autotaxin 

inhibitor [97, 98]. Their rationale included knowledge of a threonine nucleophilic residue; they realized that, 

while the carboxylic acid moiety could hydrogen bond to the nucleophilic threonine, a boronic acid could act 

as an electrophile to block the enzyme’s activity reversibly [97]. 
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Figure 11: Use of a boronic acid as an isostere for a carboxylic acid to improve anti-autotaxin activity [97, 

98] and anti-HIV activity [92]. 

In their studies of HIV protease inhibitors, Ghosh et al discovered analogues of Darunavir containing either 

carboxylic acids or boronic acids (Figure 11). Upon testing the inhibitors against the enzyme itself, both 

series of compounds exhibited low-nanomolar potencies. When tested against MT-2 cells, however, the 

boronic acids retained their potency, while the carboxylic acids potency decreased by at least 2 orders of 

magnitude. This inactivity was attributed to the inhibitors' presumed inability to cross the cell membranes, as 

their binding mode was very similar by X-ray crystallography (aside from their differing bicyclic side chains) 

[92]. 

 

3.5.4. Boronic acids as reversible covalent inhibitors 

When used as an isostere for a carboxylic acid, boronic acids can be used in peptide mimics as a reversible 

covalent group. In fact, most drug discovery studies depend on boron's ability to react with a serine or cysteine 

residue in the active site of various protease enzymes. (For a much more comprehensive review of boronic 

acids as inhibitors of proteases, see Smoum et al [112]. For a review on covalent inhibitors, see De Cesco et 

al [113]) Figure 12 outlines the general reaction of three reversibly covalent warheads in a serine protease, 

as compared to the natural peptide substrate. Unlike the weakly electrophilic nitrile C, the aldehyde and 

boronic acid reactions B and D result in a tetrahedral intermediate that mimics that of the substrate reaction 

A, which likely explains their higher potencies and longer residence time in the active sites serine proteases 

[114]. 



 

Figure 12: Comparison of various reversibly covalent warheads (B-C) to a peptidase-substrate reaction (A), 

using the example of serine proteases [114]. The serine proton is either transferred to the electrophile or the 

basic residue of the catalytic triad, depending on the enzyme’s mechanism. Figure adapted from Plescia et 

al. [114]. 

Nevertheless, although aldehydes are ubiquitous in nature, their high reactivities cause oxidative stress in 

humans and lead to cytotoxic, mutagenic, and carcinogenic effects, among others [115]. Boronic acids, on 

the other hand, are generally considered safe [5] and are therefore preferred over aldehydes for drug 

development. Figure 13 shows the mechanism of the reversible covalent bond formation between a catalytic 

nucleophilic residue and the electrophilic boronic acid. 

 

Figure 13: Generic reversible mechanism of a catalytic serine residue attacking an electrophilic boronic acid, 

including stabilization by a tyrosine residue. 

One study takes advantage of this transition state mimic in their SAR studies to target β-lactamases. Instead 

of the irreversibly-binding β-lactam group, the researchers incorporated a reversibly covalent boronic acid 

(Figure 14), achieving nanomolar potencies [116]. 
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Figure 14: Transition-state mimics in the discovery of β-lactamase inhibitors. (A) irreversible reaction of β-

lactamase cleaving cephalothin; (B) reversible reaction of boronic acid inhibitor 13. Figure adapted from 

Rojas et al. [116]. 

Vaborbactam (Figure 3), as discussed earlier, was designed to be a serine protease inhibitor of β-lactamases 

to complex with the catalytic serine residue [49]. Figure 15 shows the crystal structure of β-lactamase CTX-

M-15 covalently complexed with Vaborbactam. 

 

Figure 15: Vaborbactam (teal) complexed into the active site of β-lactamase CTX-M-15 (gray), nucleophilic 

serine highlighted (green) (pdb: 4XUZ).[49] 

In another study by Ban et al. [86] mentioned earlier, the researchers designed several boronic acid analogues 

of EGFR TK inhibitors that originally contained Michael acceptors acting as irreversible inhibitors. A few 

are featured in Figure 16, but boronic ester analogues of each were also synthesized. 

The intention was to target the active site's cysteine residue (resultant of a tyrosine mutation) without 

needing an irreversible inhibitor. Upon in vitro and in cellulo testing, it was found that (1) the boronic acids 

were slightly more potent than their boronic ester derivatives; (2) the boronic acids 14.1 and 14.3 exhibited 

submicromolar activity against EGFR TK without inhibiting other human kinases (14.2's linker was deemed 

too short upon low inhibitory activity); and (3) 14.3 continued to inhibit EGFR activity even after five-hour 

incubation [86]. The boronic acid therefore remained bound the cysteine residue in a pseudo-irreversible 

manner without the risk of a suicide inhibitor. 



 

Figure 16: Modification of EGFR TK inhibitor to replace the acrylamide Michael acceptor group with the 

boronic acid moiety.[86] 

In our own research, we have found that the replacement of nitriles in our compounds have increased both 

potency [117] and residence time in the active site of the enzyme prolyl oligopeptidase (POP) [114]. Figure 

17A shows two of our inhibitors differing only in their electrophiles. The boronic ester derivative exhibits 

nanomolar activity, while the nitrile it replaced exhibited double digit micromolar activity. Figure 17B shows 

two other inhibitors by Jansen et al. [118] exhibiting potencies against POP and an homologous enzyme 

fibroblast activation protein α (FAP) increased by an order of magnitude upon replacement of the nitrile with 

the boronic acid. 

 

Figure 17: Inhibitors showing increased potency by replacing the nitrile electrophile with a boronic 

ester/acid. (A) Our group’s designed POP inhibitors [117]; (B) Two POP-FAP inhibitors by Jansen et al. 

[118]. 

Unfortunately, as discussed in a recent review from our group, current docking programs do not account for 

reactivity of an electrophile nor for the kinetics of the binding/dissociation (residence time) [113]. For 

example, our own covalent docking program, FITTED [119-121], gives identical predicted poses for both 15 

and 16 (Figure 18), yet the in vitro activities of these compounds differ by three orders of magnitude. 
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Figure 18: (A) 15 (teal) docked to POP (gray); (B) 16 (teal), hydrolyzed, docked to POP (gray). 

Compounds from Plescia et al. [117] and are docked using FITTED [119-121]. 

Bortezomib (Figure 3), as previously discussed, was designed to be a reversible covalent inhibitor. Several 

peptide analogs containing various covalent groups, including aldehydes, were probed against the tumour 

proteasome, though boronic acids were the only functional group that were suitable for further pre-clinical 

studies. Figure 19A shows Bortezomib co-crystallized to the human 20S proteasome complex (pdb code 

5LF3) [122]. 

 

Figure 19: Bortezomib (teal) (A, pdb code 5LF3) and Ixazomib (teal) (B, pdb code 5LF7) complexed to the 

human 20S proteasome complex (gray), with the nucleophilic threonine highlighted (green) [122]. 

Ixazomib (Figure 3), whose structure is very similar to Bortezomib, was discovered several years after 

Bortezomib’s approval, as discussed earlier. It’s mechanism of action is similar: it inhibits the catalytic 

threonine in the active site of the 20S proteasome. Figure 19B shows Ixazomib crystallized in the active site.  

Talabostat, or Val-Boro-Pro (Figure 20), is a dipeptidic boronic acid dipeptidyl peptidase (DPP) inhibitor 

[123]. It was marketed as a multi-target drug that inhibited cancer-implicated homologous serine proteases, 

FAP and DPP4, DPP8, and DPP9. Its mechanism of action involved activation of innate immune response 

against tumours through its dipeptidyl peptidase inhibition [124]. Talabostat was discovered during a study 

of DPP family inhibition. Because DPP enzymes cleave terminal dipeptides with Xaa-Pro (i.e. any amino 

acid adjacent to proline) sequences from their substrates, the researchers tested a number of Xaa-Pro analogs 

in which the proline was substituted with boroPro, or a boronic acid in place of the carboxylic acid [125] to 

bind to the catalytic serine [123]. 

Ultimately, inefficacy lead to its failure at Phase III [101]. Although not confirmed, it is believed to have 

failed due to in vivo cyclization to its inactive form via the free amine reacting intramolecularly with the 

boronic acid moiety [126] (Figure 20). 

It is speculated that Talabostat failure was also due to lack of patient tolerance at doses high enough for 

anti-tumoral activity, due to partial toxicity [127]. This compound continues to be studied, however, and 

more recently, it was used to crystallize DPP8 [128] and is the first ligand-bound crystal structure of this 

enzyme available on the Protein Data Bank. Figure 21 shows this crystal structure with Talabostat bound to 

the catalytic serine in the active site, confirming its covalent inhibition.  

 

Figure 20: Cyclization of Talabostat at physiological and basic pH. Adapted from Kelly et al. [126]. 



 

Figure 21: Talabostat (teal) co-crystallized with DPP 8 (gray) with the nucleophilic serine highlighted 

(green). (pdb: 6HP8) [128]. 

In general, reversible covalent inhibition is a promising approach in drug discovery, as outlined in a recent 

review out of our group [113]. Its use in medicinal chemistry endeavours is on the rise, as seen in Figure 22.  

 

Figure 22: PubMed search results of the terms “reversible covalent.” 

3.5.5. Boronic acids and esters as prodrugs 

Boronic acids have been used as anti-cancer pro-drugs. Several groups have taken advantage of elevated 

levels of reactive oxygen species (e.g. H2O2) in certain cancer cells and resultant drug oxidation to synthesize 

prodrugs that release the active species upon oxidation. Lin et al. studied boronic acid substituted 

Camptothecin B1 as a prodrug for neoplastic drug SN-38 [129]. Taking advantage of elevated levels of 

reactive oxygen species (ROS) hydrogen peroxide in cancer cells,[130] the group used a boronic acid that 

would be oxidized to the hydroxylated SN-38 (Figure 23). 

 

Figure 23: Oxidation of pro-drug B1 to SN-38 by intracellular reactive oxygen species hydrogen peroxide 

[129]. 

Upon adding to cell media, the researchers measured that nearly 60% of B1 was converted to SN-38 after 

48h incubation. Upon testing against several cancer cell lines, they found that even with this structural 

change, B1 exhibited comparable or greater cytotoxicity than SB-38 and was actually a greater inhibitor of 

their target enzyme, DNA Topoisomerase I [129]. Using a boronic acid analogue, they were able to 

successfully design a prodrug that is not only active on its own but releases its chemotherapeutic drug in vivo.  

Another example utilizes a boronic acid-containing extension to active drug Belinostat and involves a 

more complex prodrug release. In their quest to improve bioavailability and biocompatibility of Belinostat, 

they included boronic acid moieties, giving prodrugs 19 and 20 (Figure 24). Upon in cellulo testing of the 

active compound and both prodrugs, it was found that prodrug 19 exhibited activity three to five times less 

than that of Belinostat, but, more surprisingly, that prodrug 20 was weaker than prodrug 7 by an order of 

magnitude, and in one case, was 30 times less potent [131]. 
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Figure 24: Comparison of drug and boronic prodrug activities. Figure adapted from Zheng et al. [131]. 

 

 

Figure 25: Proposed mechanism of oxidation of prodrug and subsequent release of drug. Figure from Zheng 

et al. [131]. pin refers to the pinacol protecting group 

To explain this large difference in activity between the prodrugs 19 and 20, the authors proposed a 

mechanism to determine the means by which the active compound Belinostat is released (Figure 25). Upon 

assumed oxidation by H2O2 present in the cells, only prodrug 19 is able to undergo a mechanism to release 

the resultant phenolic moiety and a para-quinone; prodrug 20 rests as a phenolic intermediate. The inability 

of prodrug 20 to release the active form of the drug likely explains its decreased activity in cellulo. When 

Belinostat and prodrug 19 were tested in mice, however, the in vivo efficacy of tumour growth inhibition 



(TGI) of 19 was significantly greater, contradicting in cellulo data. Tissue analysis found that 19 released 

Belinostat, but amounts of boronic acid 21 remained, potentially contributing to slower release and therefore 

higher efficacy [131]. 

Our own group has used boronic esters as prodrugs for their corresponding boronic acids. The basic buffer 

used in our assays hydrolyzed the (+)-pinanediol-protected boronic ester 23 (Figure 26A) to their respective 

free boronic acids within 20 minutes after mass spectroscopy analysis (Figure 26B) [114, 117]. This study’s 

results allow for a much more diverse scope of potential drugs in future medicinal chemistry endeavours: 

harsh conditions normally used to cleave boronic esters to free boronic acids (strong acid, BBr3/BCl3, 

fluoride, etc.) normally affect other sensitive functional groups, such as methoxy esters or Boc- or Cbz-

protected amines. Using a buffer-sensitive boronic ester allows for inclusion of many more functional groups 

that contribute to potency of potential drugs.  

 

Figure 26: (A) Buffer-mediated hydrolysis of compound 23 to the active species 24; BCl3-sensitive carbons 

highlighted in blue; (B) Mass spectroscopy study of the boronic ester hydrolysis. Figure adapted from Plescia 

et al. [114]. 

In fact, in our own synthetic efforts, the harsh conditions attempted to hydrolyze 23 resulted in (1) 

premature precipitation of the starting material in strongly acidic media during attempted transesterification 

of the (+)-pinanediol auxiliary and (2) mixtures of debenzylated products upon utilizing BCl3 to remove the 

(+)-pinanediol protecting group. In vitro testing the boronic ester directly allowed us to obtain a very potent 

compound without having to sacrifice the study of a boron-based drug [114]. 
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Figure 27: Hydrolysis of prodrug Ixazomib Citrate to Ixazomib. 

Ninlaro®, or Ixazomib, is formulated as a prodrug so as to ensure oral bioavailability. The boronic acid is 

complexed with a citrate molecule to form a citrate ester, which is cleaved under aqueous physiological 

conditions to give the active form Ixazomib (Figure 27) [34]. 

From these examples, it is clear that not only can a boronic acid or ester be a prodrug to release the desired 

chemical species in vivo, but a boronic ester can also be utilized to release the desired boronic acid drug. For 

a more comprehensive review of boronic acids and esters as prodrugs, see Cadahía et al. [132]. 

3.5.6. Using computational methods 

Certain discoveries of bioactive boronic acid compounds originated with predictive computational 

methods. One case from the Shoichet research group designed a virtual screening protocol to discover boronic 

acid inhibitors of AmpC β-lactamase. The researchers screened a virtual library of 23,000 commercially 

available boronic acids. They then selected several ligands that scored in the top two percent and tested them 

both in vitro and against several cell lines. Several hits were obtained, and one in particular (7, Figure 28A, 

B) exhibited in vitro potency of 10 nM and was potent against cells when administered with Cefotaxime 

[133]. 

 

Figure 28: Computational methods for boronic acid drug discovery. (A) boronic acid hit 25 discovered by 

virtual screening; (B) crystal structure of hit 25 (yellow, green electron map) superposed over its predicted 

binding pose (magenta) to AmpC β-lactamase; (A and B from London et al. [133]) (C) hit 26 for optimization 

with one fragment 27 used in the in silico design, giving resultant hit 7 [94]; (D) docking prediction of 

fragment 27 superposed to docking prediction of 7 (from Eidam et al. [94]) 

A different approach to the discovery of AmpC β-lactamase inhibitors was taken by Eidam et al. and used 

fragment-based in silico hit optimization [94]. Following previous studies of the Shoichet lab which used 

molecular docking to determine the best fragments for the enzyme active site [134], Eidam et al. superposed 

docked fragments with their hit molecule to determine the most promising side chain modifications. Through 

several rounds, they were able to modify their hit to improve the in vitro activity by two orders of magnitude 

into sub-nanomolar potency (Figure 28C, D) and achieve potency in cellulo and in vivo upon testing in 

combination with Ceftazidime [94]. 



Although many research groups do not use computational methods to design their target compounds, 

countless studies involve using molecular docking to rationalize differences in inhibitor activity to improve 

their compounds for future work.  

4. Boronic acids in delivery systems 

Apart from inclusion of boronic acids in bioactive compounds, boronic acids' ability to bind to diols (e.g. 

sugars) on the extracellular domain has been exploited in studies aiming to improve cellular uptake of 

liposomes and macromolecules; boronic and borinic acids have been conjugated to more complex molecular 

systems for the purpose of  macromolecule delivery, such as increased uptake of gene-delivery complexes 

[135], transport of proteins [136], and cellular uptake of liposomes [137]. 

In one example, Yadav et al. observed uptake issues of genetic material containing terminal 

polyethylenimines (PEIs). Reaction of these PEIs with 4-bromobutylboronic acid yielded tertiary amines 

with terminal boronic acids (Error! Reference source not found.). These modifications increased uptake of 

the plasmids without compromising structural integrity of the carrier nor cell viability [135], as the boronic 

acids' high pKa allows for unionized interaction with the membrane. 

 

Scheme 1: Reaction of polyethylenimines with 4-bromobutylboronic acid, from Yadav et al.[135] 

Another research group aimed to facilitate cell entry of liposomes by incorporating boronic acids on the 

surface. They began with the design of an aminoglycerolipid conjugated to an aromatic boronic acid (Figure 

29A and B). Through a series of fluorescent experiments using rhodamine-labeled phosphatidylethanolamine 

(Rd-PE), they determined that liposomes with 10% boronic acid-conjugated lipid content entered the cells, 

while control liposomes did not [137]. 

One group has incorporated benzoxaboroles into delivery vehicles for the transport of proteins over 

mammalian bilayers (Figure 29, C and D). They designed a delivery vehicle with benzoxaborole conjugated 

to o-hydroxydihydrocinnamic acid derivative trimethyl lock (TML), which would in turn be conjugated to 

green fluorescent protein (GFP), a fluorescent protein unable to traverse the lipid bilayer. A series of 

experiments and control experiments led to the conclusions that (1) benzoxaborole was aiding in the uptake 

of the GFP; (2) the uptake was proceeding through an endosomal pathway; and (3) the labeling was stable 

but ultimately reversible, leading to the release of the delivered target protein in the cells [136]. 
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Figure 29: (A) Close-up schematic diagram of a liposome's terminal boronic acids interacting with 

carbohydrates on the extracellular domain of the cellular membrane lipid bilayer; (B) Schematic diagram 

depicting uptake of boronic acid-coated liposomes; PC = phosphatidylcholine, BAL = boronic acid-coated 

liposomes, Rd-PE = rhodamine-labeled phosphatidylethanolamine; (C) (D); Figures A and B from Zhang et 

al. [137]; Figures C and D from Andersen et al. [136]. 

Although there exist many other applications of boron in delivery systems, such as advanced nanomaterials 

and usage in radiation therapy, they are beyond the scope of this review. 

5. Synthesis of boronic acid drugs 

Access to all of these drugs and potential drugs would not be possible without efficient synthetic 

methodologies. To obtain the final boronic acids, prodrugs are usually synthesized first, as boronic acids are 

difficult to purify and to carry through multiple steps. Boronic acid synthesis varies depending on surrounding 

functional groups, whether it is to be aromatic or aliphatic, and if applicable, the desired stereochemistry of 

the final product. Furthermore, in the synthesis of boropeptides, such as Delanzomib, the process synthesis 

is not so different from the discovery synthesis. Similar methodologies allow for more efficient development 

[138]. 

5.1. Synthesis of α-aminoboronates 

One of the more popular α-aminoboronic ester derivatives is the proline-derived analog. As discussed 

earlier, medicinal chemistry endeavours targeting certain families of peptidases have relied heavily on the 

use of this chiral boronic analogue of proline (Figure 30, 29).  

The increased use of α-amino boronic acids in the discovery of inhibitors of this family of serine proteases 

has led to the increased commercial availability of prepared and enantiopure (+)-pinanediol-protected α-

amino boronic ester analogs of many amino acids, such as the very commonly used isoleucine, used in the 

synthesis of Bortezomib[139] and Ixazomib, and proline, used in the synthesis of Talabostat.[140] 

 

Figure 30: Commercially available enantiopure boronic (+)-pinanediol esters.[140] 

The Ellman group at Yale has developed syntheses of highly enantiopure α-amino boronic esters using 

their own Ellman chiral auxiliary to synthesize diastereopure (R)- or (S)-tert-butyl-sulfinylimines [141, 142]. 

 

 

Figure 31: Ellman syntheses of diastereopure sulfinylimines [141, 142]. 

In fact, the Ellman group’s research sparked interest in synthetic development of chiral 29 for the synthesis 

of boro-peptide inhibitors, as performed by Chen. et al. [143]. 



 

Scheme 2: Synthesis of enantiopure CB-2 via the Ellman borylation. a) CuI (10 mol%), Cs2CO3 (10 mol%), 

L (10 mol%), B2pnd2* (1 eq), benzene, rt, 48h; b) NaOtBu, DMF, rt, 6h; c) HCl, dioxane-MeOH, rt, 30 mins. 

*pnd refers to (+)-pinanediol protecting group[143] 

In our own chemistry, we have found that the α-amino boronic pinacol esters are very difficult to purify 

and consequently difficult to carry through multiple steps, as they react with SiO2 in flash chromatography 

columns and therefore require used of H2O-deactivated SiO2, as reported by the Ellman group [141]. 

However, application of a transesterification with (+)- or (-)-pinanediol as reported by the Matteson group 

[144] (Figure 32) gives diastereopure boronic esters that are more easily purified on a silica gel column.  

 

Figure 32: Matteson conversion of boronic pinacol ester to (+)-pinanediol ester via transesterification  

5.2. Aromatic boronic esters and acids 

The synthesis of aryl boronic esters and acids is well-established, such as in synthesis of starting material 

for the Suzuki cross-coupling reaction, one of the most widely used coupling reactions in medicinal 

chemistry. The Miyaura reaction allows for the facile synthesis of these boronic esters (Figure 33) [145]. 

Furthermore, purification is much simpler than that of the α-aminoboronic ester derivatives, as they can be 

purified by flash chromatography on normal phase silica. 

 

Figure 33: The Miyaura reaction [145]. 

Many aromatic boronic acids are available commercially (e.g. from Sigma-Aldrich [146], BoroChem 

[147], or Combi-Blocks [140]) either as building blocks or as known bioactive compounds for testing. 

With this chemistry, the discovery of drugs containing this aromatic boronic ester group can be facilitated 

with in silico combinatorial chemistry studies; aryl halides can be virtually converted to aryl boronic acids to 

generate large libraries for virtual screening [133]. 

5.3. Other aliphatic boronic acids 

Already well known and studied is the addition of bis(pinacolato)diboron, or B2pin2 to α,β-unsaturated 

compounds (Figure 34). Usually, reactions involve a metal catalyst for activation of the boron and a base for 

assisting in heterolytic cleavage of the B–B bond. For a comprehensive review of various conditions and 

associated mechanisms of addition, see Lillo et al. [148]. 
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Figure 34: Addition of boron to α,β-unsaturated compounds 

The Baran lab recently discovered a nickel-catalyzed decarboxylative borylation method applicable to a 

variety of aliphatic carboxylic acids. Their method involves simple preparation of metal- and ligand-

containing suspensions, quick reaction times, and high yields. Although not completely stereo-selective, 

diastereoselectivity can be improved with lower reaction temperatures and steric control [149]. Their research 

sparked several other decarboxylative-borylation procedures, including a modified, transition metal-free 

procedure using blue light as a radical initiator [150], an iridium- and visible light catalyzed procedure [151], 

and another Baran procedure copper-catalyzed reaction [152]. A summary of these decarboxylative 

borylations can be found in Figure 35.  

 

Figure 35: Decarboxylative borylations [149-152]. 

Baran’s nickel chloride method was applied to a small library of various aliphatic carboxylic acids, 

including several natural products and known bioactive compounds. In fact, decarboxylative borylation was 

conducted to obtain known compounds 32 and 33, bioactive against human neutrophil elastase (HNE) 

implicated in cystic fibrosis (CF) (Figure 36). This new synthesis, including a deprotection step, allowed for 

efficient preparation and gave a single diastereomer. Furthermore, the boronic acid analog of the original 

trifluoromethyl ketone hit exhibited a potency increase of three orders of magnitude [149]. 

 

Figure 36: Compounds active against human neutrophil elastase (HNE) implicated in cystic fibrosis (CF); 

Compound 32 synthesized with Baran’s decarboxylative deborylation [149]. 

While we have highlighted here only a few of the more common synthetic procedures for boronic acid 

incorporation, many others have been developed over the years. For a more comprehensive review of 

synthesis of bioactive boronic acids, see Yang et al. [153]. 

5.4.  Deprotection of boronic ester pro-drugs 

Boronic ester prodrugs are often deprotected before initial in vitro testing to their bioactive boronic acid 

analogues. Various methods exist for this deprotection step. The choice of conditions depends on stability of 

the starting compound and compatibility of the comprising functional groups. 



Some research groups opt to perform simultaneous cleavage of tert-Butyloxycarbonyl (Boc) or 

carboxybenzyl (Cbz) protecting groups and boronic ester using BCl3 or BBr3 [154, 155]. Unfortunately, these 

highly reactive Lewis acids affect certain other functional groups, such as benzyl ethers/amines or methoxy 

groups. In the synthesis of Bortezomib, the final boronic ester is deprotected via a transesterification with 

isobutylboronic acid [156]. Again, with reaction conditions that require strong acid, certain functional groups 

are not compatible. Other methods for deprotection include a telescoped method reacting the boronic ester 

first with potassium hydrogen difluoride (KHF2) to give the boron trifluoride potassium salt, followed by 

hydrolysis in the presence of TMSCl or LiOH to give the free boronic acid [157], or oxidative cleavage via 

sodium periodate [158, 159]. A summary of these methods is provided in Figure 37. Furthermore, boronic 

acids at the β-position of an electron withdrawing group were discovered to be susceptible to deprotection 

by forming an ionic bicyclic structure with diethanolamine, followed by acidic hydrolysis (Figure 37) [160]. 

Interestingly, this cage-like bicyclic intermediate was used in the process chemistry synthesis of a 

Delanzomib pro-drug for clinical trials, as it improved purity and stability [138]. 

 

Figure 37: (A) Summary of boronic ester deprotection methods [154-159]; (B) conversion of β boronic esters 

to boronic acids via diethanolamine cages [160]. pin refers to the pinacol protecting group. 

In our own studies, we have found that the deprotection of our boronic esters was not necessary, as our 

basic buffer mediated the hydrolysis of (+)-pinanediol boronic esters. Figure 38 displays two compounds and 

mass spectroscopy studies monitoring the relative abundance of the ester and acid species. Even for two 

compounds with different expected intrinsic reactivities (di-ortho-fluoro vs. unsubstituted), the hydrolysis 

rate was very similar; both esters were cleaved within twenty minutes, i.e. during the sample preparation step 

before the enzyme was even added.  

 

Figure 38. Hydrolysis studies of boronic esters 34 and 35 in POP assay buffer. The graphs display relative 

abundance of each ionic species at intervals over 50-63 minutes. Figure from Plescia et al. [117]. pnd refers 

to the (+)-pinanediol protecting group. 

In the case of the protecting group not being labile enough to hydrolyze in buffer, they would need to be 

deprotected under the discussed conditions. Purification of the resultant boronic acids is unfortunately not so 
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straight-forward, as they are not suited for normal phase silica gel column chromatography, and require 

reverse-phase conditions, often by semi-preparative or preparative HPLC [118, 154]. 

6. Conclusion and Perspectives 

The abundance of boron in natural products and its general safety as a mineral make it an attractive 

synthetic target in drug discovery endeavours. Following the approval of Bortezomib, there have been many 

medicinal chemistry endeavours aimed at discovering boronic acid drugs.  

As we have seen in this review, several approaches have been taken in the discovery of boron-containing 

drugs. Because of its reversible electrophilicity, it is commonly used as a reversible covalent group to 

incorporate into peptides to inhibit proteases, whether that was the original intention, or the result of 

medicinal chemistry hit optimizations. We have also seen that boronic acids or esters, stable and unionized 

at physiological pH, have been incorporated as bioisosteres of ionized groups, such as carboxylic esters or 

phosphate groups, for either activity or pharmacokinetic improvement or for structural purposes. Boron-

containing groups have additionally been used as prodrugs, either boronic esters for their corresponding acids, 

such as FDA-approved Ixazomib, or boronic acids and esters for their ability to be oxidized in vivo to their 

active analogue by tumour environments abundant in reactive oxygen species. Finally, we have described 

boron-based drugs designed by computational methods, including virtual screening and de novo design. 

Along with drug design came the associated synthetic efforts aimed at synthesizing boronic acids. Since 

the approval of Bortezomib, much focus has been on the design of diastereopure aliphatic boronic 

esters/acids, especially α-amino boronic esters/acids. In turn, many groups have taken advantage of these 

discoveries to incorporate boronic acids into their drug discovery programs.  

Lastly, we saw several examples of boronic acids facilitating drug and macromolecule delivery, either 

through incorporation into lipid bilayer for entry via liposomes or through reversible conjugation to a protein.  

These explorations into boron-based drug discovery will hopefully shed light on the benefits of boron 

incorporation and encourage medicinal and pharmaceutical chemists to consider boronic acids and esters as 

possibilities and solutions in their drug discovery programs. 
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