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Abstract—Mathematical modeling and computer simulation
of heat transfer in the liver play a key role in prediction of
radiofrequency ablation outcome. While multi-physics modeling
should be used for accurate simulation of heat transfer in a
highly perfused organ like the liver, the computational cost of
such a problem could have a negative impact on the simulation
time. This paper extends a highly parallel finite element based
method to simulate the multi-physics heat transfer problem in
the liver efficiently. An MPI-based strong coupling method is
developed and tested on cluster nodes. The scalability of this
work is assessed by performing simulations on up to 1024 cores.

Index Terms—Finite element method (FEM), heat transfer in
the liver, radiofrequency ablation.

I. INTRODUCTION

RADIOFREQUENCY ablation (RFA) is a cancer
treatment technique that delivers electrical currents to

a tumor in order to damage the cancerous cells by raising the
temperature. RFA is the most widely used minimally invasive
approach for liver cancer treatment; however, the ablation zone
is difficult to control due to various factors such as the cooling
effect of the liver vessels. This challenge can result in an
imperfect outcome of the treatment potentially leading to a
higher local recurrence and a lower survival rate.

In order to address the concerns related to the misprediction
of the ablation zone, the use of computational models for
RFA has gained interest in the past two decades [1], [2],
[3], [4]. Contrast Enhanced Computed Tomography (CECT)
allows determination of the vascular anatomy inside the liver
and quantification of the liver perfusion. This enables a
reliable treatment planning based on simulation models that
can be adapted to the physiology of each patient. To simulate
RFA therapies and predict the extent of the ablation zone,
a multi-physics model is needed. Particularly, the interaction
between the liver tissue and the blood vessels inside the liver
should be modelled by a non-linear multi-physics simulation.

Multi-physics modeling generally leads to a system of
non-linear equations which is usually solved iteratively based
on the Newton Raphson (NR) method. At each iteration,
a linear system of equations is solved by either directly
computing the inverse of the system matrix or iteratively
solving a system of algebraic equations starting from an initial
guess. Either way, obtaining the solution is computationally
expensive. As such, the multi-physics heat transfer problem
has often been over-simplified in the literature by either
assuming a constant blood temperature or by decoupling of
the blood-tissue interaction.

The finite element Gaussian belief propagation (FGaBP)
method [5] is a distributed reformulation of the traditional
finite-element method (FEM), whose main advantage to FEM
is its efficient parallel scalability. This paper presents an

MPI-based multi-physics extension of FGaBP [6] to solve the
coupled heat transfer problem in radiofrequency ablation of
hepatic tumors. Section II presents the mathematical model
of the coupled heat transfer problem. Section III introduces
the new parallel multi-physics algorithm. Section IV provides
the implementation details, simulation results, and the parallel
performance of the algorithm. Finally, Section V delivers
concluding remarks.

II. MODELING OF HEAT TRANSFER IN THE LIVER

The most commonly used model for heat transfer in the
tissue is the Pennes model:

ρc
∂T

∂t
= Q+∇ · (d∇T ) +H(Tbl − T ), (1)

where T is the temperature (K), c is the special heat
capacity of liver (J/kg/K), ρ is the tissue density (kg/m3),
Q = σ|∇v|2 is the heat source (W/m3), d is the
thermal conductivity (W/m/K), H is the convective transfer
coefficient (W/m3/K) and Tbl is the blood temperature (K).
The Pennes model assumes the blood temperature is constant,
i.e., 310 K. However, this is only true within and close to large
vessels [3]. For this reason, Payne et al. [4] model the heat
transfer problem with two coupled equations:

(1−ε)ρticti
∂Tti
∂t

= (1−ε)Q+(1−ε)∇·(d∇Tti)+H(Tbl−Tti),
(2a)

ερblcbl(
∂Tbl
∂t

+v ·∇Tbl) = εQ+ ε∇· (d∇Tbl)−H(Tbl−Tti).
(2b)

In these two equations, subscripts ‘ti’ and ‘bl’ stand for tissue
and blood, respectively. The two additional parameters ε and
v are the fraction of blood volume over total volume and
blood velocity (m/s), respectively. Note that the blood flow
velocity field must be prescribed. Equations (2) are nonlinear
due to the linear dependency of thermal conductivity d on
temperature. Payne et al. [4] solve the coupled blood and tissue
equations based on the Picard linearization which is only valid
if the non-linearity is mild. In this paper, the Newton Raphson
method is used to solve the non-linear coupled equations
of (2). The spatial discretization is based on FEM and the
backward differentiation formula of order two is employed
for time discretization:
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Fig. 1. (Left): Two adjacent elements in the FEM mesh. (Right): The
corresponding graph.

where the superscript n denotes the nth time step and ∆t is
the time step value.

III. ALGORITHM

The belief propagation algorithm was primarily used in
probability problems to find marginal distributions of random
variables from their joint distribution. If the joint and the
marginal distributions are Gaussian, the algorithm is called
Gaussian belief propagation (GaBP). The application of
GaBP for solving systems of linear equations in parallel
was originally proposed by [7] and was extended to FEM
applications (FGaBP) by [5], [8]. As shown in Fig. 1, FGaBP
turns the FEM mesh into a graph. The graph consists of
two types of nodes called variable nodes (VN) and factor
nodes (FN) and also non-directional edges that connect each
FN to the VNs in its neighborhood. The FEM solution at
each VN is considered a Gaussian random variable whose
shape is found by two parameters, the marginal mean, µ
and the marginal variance, σ. FGaBP finds µ and σ by
passing messages between each FN and all the VNs in its
neighborhood iteratively. The vector that contains the marginal
mean values at convergence is the FEM solution.

In a uni-physics problem, each message contains
information about the mean and variance of the VNs.
On the other hand, in our multi-physics scenario, the
messages should carry information about how the mean and
variance of the tissue (blood) temperature depend on the
blood (tissue) temperature. By doing so, we can deal with
the tissue-blood interaction in the element level. The key
property of FGaBP which allows this is that the messages
sent by a FN at each FGaBP iteration only depend on the
local data, i.e., the values in the neighborhood of the FN.
Mathematically, we can write:m

ti
ai = fi(Tti

a ,T
bl
a )

mbl
ai = gi(Tti

a ,T
bl
a ).

(4)

Here, mti
ai and mbl

ai are messages sent from factor node
a to variable node i ∈ N (a) for tissue and blood
temperature, respectively. The vectors Tti

a and Tbl
a contain

tissue temperature and blood temperature in the neighborhood
of factor node a, N (a). The functions fi and gi describe
the dependency of the messages on the temperature values
in N (a). It’s important to note that fi (gi) is a non-linear
function of Tti

a (Tbl
a ) because of the temperature dependency

of d in (2). At each FGaBP iteration, the non-linear system
of (4) can be solved with Newton’s method. A local Jacobian

matrix, Ja is constructed based on the functions fi and gi as
follows:

Ja =

[
Jti,ti Jti,bl
Jbl,ti Jbl,bl

]
2n×2n

, (5)

where n is the number of nodes per element. The entries of
Ja are found based on the derivatives of fi and gi with respect
to mti

ai and mbl
ai. For instance, the sub-matrix Jti,ti is formed

as:

Jti,ti(L(i),L(j)) =
∂(mti

ai − fi)
∂mti

aj

, (6)

where 1 ≤ L(i),L(j) ≤ n are the local indices corresponding
to the global variable nodes i, j ∈ N (a). These partial
derivatives are calculated analytically based on the update
rules of FGaBP introduced by [8]. After the local Jacobian
is formed, message updates are computed as:{{
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}
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∆mbl
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}
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}
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(7)

The above update rule is carried out for each factor node
a and then the FGaBP algorithm propagates the updated
messages throughout the mesh. After the FGaBP iterations
have converged, we proceed to the next Newton iteration
and compute the local Jacobians and update messages again.
This continues until the local update messages are smaller
than a threshold, meaning the cell-wise Newton’s method has
converged for the current time step.

IV. IMPLEMENTATION AND RESULTS

The computational domain is discretized using hexahedral
mesh. Starting by a coarse mesh (and its corresponding graph),
mesh refinement is conduced by splitting each hexahedral
element into eight smaller elements successively. As proposed
by [8], a multi-grid scheme to transfer information between
different refinement levels is used to accelerate FGaBP
iterations. The multi-grid approach resembles a preconditioner
in reducing the number of iterations on the finest level.

An MPI (message passing interface) version of the
multi-physics FGaBP method is developed in this paper. The
MPI code is built upon the parallel distributed computing in
deal.II [9]. The parallel pseudo-code is shown by Algorithm
1. For massively parallel computations, deal.II builds on the
p4est [10] library and so does our code for mesh partitioning.
Deal.II assigns each part of the partitioned mesh to one MPI
process. Each processor stores the cells it owns and also one
layer of adjacent cells—called ghost cells—that are owned
by other processors. The locally owned cells and ghost cells
can be identified by specific indices that deal.II assigns to
them. We exploit this feature to define adjacent factor nodes
and interface nodes in each sub-domain, and communicate
messages between MPI processes. Such communication occurs
at the end of each FGaBP iteration. This is shown graphically
by Fig. 2. The dashed line is the interface between the
two partitions, while the layers shown by grey elements are
the ghost layers and are shared between the two partitions.



1 for NR iteration m = 1, 2, . . . do
2 for cell a in sub-domain s do
3 for node i ∈ N (a) do
4 Calculate local Jacobian Ja;
5 Calculate local residual;
6 Update the messages mti

ai and mbl
ai;

7 if a is an interface cell then
8 if i is at the interface then
9 Send out mti

ai and mbl
ai to the

adjacent sub-domains;
10 end
11 end
12 end
13 end
14 Update global residual;
15 if global tolerance < NR threshold then
16 break;
17 end
18 for FGaBP iteration t = 1, 2, . . . do
19 for each sub-domain s in the domain do
20 Load input messages from adjacent

sub-domains;
21 for cell a in sub-domain s do
22 for node i ∈ N (a) do
23 Propagate the messages mti

ai and
mbl

ai inside s;
24 if a is an interface cell then
25 if i is at the interface then
26 Send out mti

ai and mbl
ai to

the adjacent sub-domain;
27 end
28 end
29 Update T ti

i and T bl
i ;

30 Calculate local message residual;
31 Send out local message residual;
32 end
33 end
34 Update global message residual;
35 end
36 if global message residual < FGaBP threshold

then
37 break;
38 end
39 end
40 end

Algorithm 1: Parallel NR with local Jacobian calculation.

Consequently, the messages sent inside elements a and b are
communicated between the two processors.

The numerical results of the parallel algorithm are verified
against the built-in RFA model in COMSOL Multiphysics
software (Fig. 3). More information about the COMSOL
model can be found on their website [11]. The model
parameters are chosen according to measurement values
reported in the literature [4]. A uniform blood velocity field
with magnitude between 10-15 cm/s and upward direction
(same direction as the cylindrical blood vessel) is employed.

Fig. 2. Mesh partioning using p4est. The dashed line shows the interface
between two sub-domains Ω1 and Ω2.

Fig. 3. The built-in COMSOL model of RFA.

Figure 4 depicts two-dimensional thermal maps after 10
minutes of ablation, based on the Pennes model (left) and
the coupled equations of (2) (right). It shows that assuming a
constant blood temperature results in lower tissue temperature
in regions that are further apart from large blood vessels. Also,
the effect of the blood flow on the thermal map is illustrated by
the upward skewness in Fig. 4, right. The tissue temperature
from COMSOL and our algorithm at a specific location inside
the domain are depicted in Fig. 5. The Root-Mean-Square
(RMS) error for 10 minutes of ablation is 0.021 oC.

To assess the parallel efficiency of our method, we perform
a strong scaling analysis. The global unstructured mesh is
partitioned first. We map each partition to one MPI process
(node), and use one thread per process. The algorithm is tested
on Compute Canada cluster nodes. Each node contains an
Intel Gold 6148 Skylake 2.4 GHz CPU with 186 GB DRAM.
Figure 6 shows the speedup for solving the multi-physics
system of 200,000 double-precision unknowns. The speed-up
degrades from 1 to 2 processes because of the introduction
of mesh partitioning and MPI communication. The parallel
performance then improves by increasing the number of
processes up to 128. After this point, the overhead of
communication between the processes and also the assembly
of the solution vector dominates the computation time,
resulting in the degradation of parallel scalability.

The convergence plot of the parallel NR method is depicted



Fig. 4. Thermal maps obtained from simulation of the Pennes model (left)
and (2) (right).

Fig. 5. Comparison between COMSOL and the parallel NR algorithm. Plot
shows tissue temperature at a specific point for 10 minutes of ablation.

in Fig. 7. If the initial messages are chosen sufficiently close
to the solution, the quadratic convergence can be observed in
NR iterations until the convergence criterion is achieved. To
ensure the initial guess is close enough to the NR solution,
we had to run the algorithm in a Gauss-Seidel manner for a
few iterations first.

V. CONCLUSIONS

A FEM-based message passing algorithm is modified and
applied to the coupled heat transfer equations that emerge in
the modeling of RFA. By forming local Jacobian matrices
instead of a global sparse Jacobian, our method provides
a highly scalable strong coupling algorithm for solving the
non-linear coupled equations on multiple cluster nodes. This

Fig. 6. Strong scaling analysis.

Fig. 7. Convergence plot of the algorithm.

is important in the context of a fast and accurate simulation of
RFA treatment for hepatic tumors, considering that the coupled
heat transfer problem has often been solved in a decoupled
manner because of its high computational cost. The correctness
of the algorithm is verified by comparing its results against
COMSOL multiphysics software. The parallel scalability of
the FGaBP method is retained in the multi-physics algorithm.
The parallel implementation shows speedups of more than one
hundred times with respect to one MPI processor.

REFERENCES

[1] M. Bullo, V. D’Ambrosio, F. Dughiero, and M. Guarnieri, “A 3-d cell
method formulation for coupled electric and thermal problems,” IEEE
Tras. Magn., vol. 43, no. 4, pp. 1197–1200, 2007.

[2] V. D’Ambrosio, P. Di Barba, F. Dughiero, M. Mognaschi, and
A. Savini, “Non-invasive thermometry for the thermal ablation of liver
tumor: A computational methodology,” International Journal of Applied
Electromagnetics and Mechanics, vol. 25, no. 1-4, pp. 407–412, 2007.

[3] C. Audigier, T. Mansi, H. Delingette, S. Rapaka, V. Mihalef,
D. Carnegie, E. Boctor, M. Choti, A. Kamen, N. Ayache et al., “Efficient
lattice boltzmann solver for patient-specific radiofrequency ablation of
hepatic tumors,” IEEE Transactions on Medical Imaging, vol. 34, no. 7,
pp. 1576–1589, 2015.

[4] S. Payne, R. Flanagan, M. Pollari, T. Alhonnoro, C. Bost, D. O’Neill,
T. Peng, and P. Stiegler, “Image-based multi-scale modelling and
validation of radio-frequency ablation in liver tumours,” Phil. Trans.
R. Soc. A, vol. 369, no. 1954, pp. 4233–4254, 2011.

[5] Y. El-Kurdi, W. J. Gross, and D. Giannacopoulos, “Efficient
implementation of gaussian belief propagation solver for large sparse
diagonally dominant linear systems,” IEEE Trans. Magn., vol. 48, no. 2,
pp. 471–474, 2012.

[6] A. Akbari and D. Giannacopoulos, “An efficient multi-threaded
newton-raphson algorithm for strong coupling modeling of multi-physics
problems,” Computer Physics Communications, vol. 258, 2021.

[7] O. Shental, P. H. Siegel, J. K. Wolf, D. Bickson, and D. Dolev, “Gaussian
belief propagation solver for systems of linear equations,” in 2008 IEEE
International Symposium on Information Theory. IEEE, 2008, pp.
1863–1867.

[8] Y. El-Kurdi, W. J. Gross, and D. Giannacopoulos, “Parallel
multigrid acceleration for the finite-element gaussian belief propagation
algorithm,” IEEE transactions on magnetics, vol. 50, no. 2, pp. 581–584,
2014.

[9] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, “Algorithms
and data structures for massively parallel generic adaptive finite element
codes,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 2, pp. 1–28, 2012.

[10] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable algorithms
for parallel adaptive mesh refinement on forests of octrees,” SIAM
Journal on Scientific Computing, vol. 33, no. 3, pp. 1103–1133, 2011.

[11] C. Bost. Heat transfer in biological tissue with thermal
damage analysis. [Online]. Available: https://www.comsol.com/blogs/
heat-transfer-in-biological-tissue-with-thermal-damage-analysis/

https://www.comsol.com/blogs/heat-transfer-in-biological-tissue-with-thermal-damage-analysis/
https://www.comsol.com/blogs/heat-transfer-in-biological-tissue-with-thermal-damage-analysis/

