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Abstract—The usefulness of second-order functional derivatives
for resolving convergence properties in adaptive finite-element
electromagnetics is investigated. Second-order criteria are pro-
posed to assess the convergence of the global solution for arbitrary
discretizations of scalar Helmholtz systems. Effective convergence
criteria are introduced and evaluated for some practical applica-
tions.

Index Terms—Adaptive systems, electromagnetic analysis, error
analysis, finite-element methods.

I. INTRODUCTION

T HE STUDY of refinement criteria for finite-element adap-
tion in electromagnetics has been the focus of a consid-

erable amount of work for more than a decade and is now a
well-established research area [1], [2]. Today, a variety of local
error indicators are used in practice for establishing reliable so-
lution error distributions, which can then be efficiently corrected
by selectively adding degrees of freedom (DOF) to regions of
high relative error [3], [4]. In addition, the study of the con-
vergence of global solution accuracy for finite-element electro-
magnetics has similarly received substantial attention [5], [6]. It
is now widely accepted that the rate of solution convergence is
strongly dependent on both the specific problem under consid-
eration and the type of adaption model used [7]. For example,
it has been demonstrated that the intensity of local singulari-
ties in the field solution, as well as the percent increment in
the number of DOF used in each adaptive step to update a dis-
cretization, can significantly affect the convergence rate of a
given adaptive refinement scheme [2], [5], [7]. Consequently,
for adaptive refinement strategies applied to practical systems,
it is common to estimate the solution accuracy by usinga pos-
teriori error estimators. Typically, these are either identical or
closely related to the error indicators used to guide the adaptive
process [1]–[4]. However, in this work, it is demonstrated that
local error estimators can fail to effectively resolve the conver-
gence properties of finite-element solutions under certain condi-
tions. The purpose of this paper is to investigate the usefulness of
second-order functional derivative-based criteria for assessing
the convergence of the global solution accuracy more reliably
for arbitrary discretizations of scalar Helmholtz systems. The
essential components of the underlying derivation are discussed
in the next section.
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II. SECOND-ORDER FUNCTIONAL DERIVATIVES

Functional derivative based local error indicators have been
previously developed and employed successfully in adaptive
finite-element methods for electromagnetics [4], [8], [9].
However, the objective of this contribution is to study the
convergence properties of second-order functional derivatives
with respect to finite-element global solution accuracy in scalar
Helmholtz systems. Therefore, it is appropriate to first define
the specific functional that will be considered, as well as the
functional gradient error indicators that are inherently related to
the second-order functional derivatives examined in this work.

Consider the second-order, scalar, partial differential equa-
tion

(1)

in the enclosed region bounded by the surface , with
boundary conditions and , where

electromagnetic field unknown for which to be solved;
material-related parameter equal to, , or 1;
wave number of the system;
source function.

If the surface bounding the entire problem regionis com-
prised of the union of the Dirichlet and Neumann surfaces, i.e.,

, then a corresponding functional may be written
as

(2)

for which the true solution to (1) is the admissible function
that renders the above functionalstationary, as explained in
[10]. Functional gradient error indicators are closely related
to this variational principle used to determine the solution to
the finite-element problem [4], [8]. With this type of approach,
regions of inferior discretization in a finite-element mesh can
be detected and ranked by evaluating the sensitivity of the
functional with respect to differential displacements of the
geometric nodes. Therefore, by computing the gradients of
the functional with respect to vertex positions, it is possible to
determine where to improve the discretization. These first-order
functional derivative-based error indicators may be computed
directly for the functional (2). For example, electromagnetic
systems that possess translational or rotational symmetries
may be analyzed using 2-D finite-element formulations and in
Cartesian problems, where the field solution variation is inde-
pendent of the coordinate variable, i.e., , which
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are the - and -components, respectively, of the first-order
functional derivatives for the scalar triangular element with
vertex positions , , may be readily deter-
mined from the matrix forms

(3)

and

(4)

evaluated over the elements that share the vertex in question.
Here, and are the field solution and the source term vec-
tors, respectively, and the square matricesand contain
the and first-order derivative information, respectively, that
corresponds to the Laplacian part of the functional for vertex

of a triangular element. The entries of the ma-
trices and are defined by

(5)

and

(6)

where is the element area, andand are geometric param-
eters related to an element’s vertex positions and can be defined
as follows with the subscripts progressing modulo 3:

and (7)

is the elemental integral (in homogeneous coordinates) of
the product of the derivatives of theth and th basis functions,
with respect to the th and th simplex coordinates. Theand

first-derivatives of the wave and source functional terms are
given by the second and third terms in each of (3) and (4), re-
spectively, where is the elemental integral (in homogeneous
coordinates) of the product of theth and th basis functions.
Once the gradients of the functional with respect to vertex po-
sitions have been computed, they may be used in various ways
as error indicators [4]. One simple approach (Type-A) is to as-
sess a weighted sum of the vertex-based first-order functional
derivatives for each element and then use these values to rank
the elements for refinement, as explained in [4].

Similarly, second-order functional derivative-based quanti-
ties are defined in terms of derivatives with respect to element
vertex positions [9]. For example, in 2-D Cartesian problems,
the - and -components, respectively, of the second-order
functional derivatives for the scalar triangular element with
vertex positions , may be readily determined
from the matrix forms

and (8)

evaluated over the elements that share the vertex in question.
The square matrices and contain the and second-
order derivative information, respectively, that corresponds to
the Laplacian part of the functional for vertex of
a triangular element. The entries of the matricesand are
defined by

(9)

and

(10)

It should be noted that the “mixed” second-order functional
derivative terms with respect to both theand element vertex
positions are incorporated into the definitions of matricesand

in (9) and (10). It may also be noted that the partial deriva-
tives of and with respect to the element vertex
positions, which appear in (5), (6), (9), and (10), can be deter-
mined directly from (7) and are given for reference in Table I.
Subsequently, the corresponding second-order partial deriva-
tives of these product terms, which appear in (9) and (10), may
be readily determined from (7) and Table I: They evaluate to in-
teger constants (, , and ).

As in the first-derivative case [4], the second-order functional
derivative formulas are valid for any choice of legitimate fi-
nite-element basis functions and may be computed for uniform-
or mixed-order meshes, as may be required by specific refine-
ment models such ash-, p-, or hp-adaptive methods. It is in-
teresting to note that the second-order derivatives of the wave
and source terms of the functional, with respect to the vertex
positions, are zero. This suggests that second-order functional
derivative quantities may be most useful for 2-D Laplace sys-
tems. It may also be noted that the benefits of combined first-
and second-order functional derivative-based local error indi-
cators have been considered in [9]. However, the convergence
properties of the practical second-order functional derivative
criteria defined by (8) have not been previously investigated and,
therefore, are examined in the following sections.

III. RESULTS

A simple one-dimensional (1-D) free-space example is
presented in order to illustrate the pitfalls that can occur when
assessing the finite-element solution convergence with local
error estimators. In addition, the practical significance of using
second-order functional derivative-based convergence criteria
is examined with a 2-D Laplace system for a range of practical
adaption models.
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TABLE I
EXPLICIT FORMS OF@(b b )=@y IN TERMS OFb

Fig. 1. Three-element discretization for 1-D electrostatic potential analysis of
point charge benchmark. (a) Uniform first- and second-order mesh. (b) Globally
optimal first-order mesh. (c) Globally optimal second-order mesh. Note that the
radial meshes are plotted on a logarithmic scale because of the proximity of
some of the nodes to each other near the point charge. The point charge is located
at the origin; node A is fixed atr = 0:1 m, node D is fixed atr = 10 m, and
the various positions of nodes B and C are specified in Table II.

TABLE II
NUMERICAL RESULTS FORPOINT CHARGE BENCHMARK

A. 1-D: Free-Space Point Charge Test System

This benchmark system was first studied in [7] and is based
on the classical free-space point charge model. The objective
for this benchmark system is to compute the functional value
based on the resolution of a radial neighborhood close to the
point charge and spanning a 100-fold decay in electric scalar
potential: the point charge, of magnitude C, is located
at the origin, and the two boundaries of the problem domain
are set at radial distances of 0.1 m and 10 m away from the
charge. The primary feature of this system is the rapid field so-
lution variation close to the singularity. This feature is common
to many practical devices that contain sharp material corners
and has been shown to drastically reduce the convergence rate
of the finite-element method. The analysis details and results for
the 1-D example, based on resolving the classical point charge
benchmark, are given in Fig. 1 and Table I (see also Table II). To
focus ideas, functional gradient ( and ) [4] and
field-discontinuity [ and ] [3] error indicators
were evaluated for both uniform and globally optimal first- and

Fig. 2. Laplace benchmark system; initialh-mesh (32 triangles).

Fig. 3. Second-orderh-adaption functional derivative convergence.

second-order meshes, based on standard Lagrangian elements.
For the uniform discretizations, both the functional gradient and
field-discontinuity quantities correctly indicate a large error for
the functional value. However, for the optimal discretizations,
only the second-order functional derivative correctly suggests
poor functional convergence in both cases. The functional gra-
dient error indicators are identically zero, as expected for the
optimal meshes, and the field-discontinuity indicator predicts a
nonzero functional error only for the first-order case.

B. 2-D Laplace Test System

The Laplace benchmark system is described by Fig. 2. It is
one quarter of a square coaxial line in cross-section—the stan-
dard “L” problem. The conductor boundary conditions are 1
V and 0 V, as indicated, and the symmetry planes are labeled

. Second-order functional derivative convergence results are
presented in Fig. 3 for first-, second-, and fourth-order uni-
form h-refinements (initial mesh uniformly subdivided to add
elements to the discretization). In addition, the second-order
h-adaption convergence result based on a functional gradient
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Fig. 4. Example refinement due toh-adaption for Laplace system.

Fig. 5. First-orderh-adaption functional derivative convergence.

error estimator described earlier (Type-A [4]) is included for
comparison. For the latter case, the initial mesh is selectively
refined by adding elements to the discretization only in regions
of high solution error as determined by the Type-A indicator
[4]. An exampleh-adapted mesh is illustrated in Fig. 4 for ref-
erence. Note that all the results shown in Fig. 3 correspond to
the initial mesh of Fig. 2. In each case, the convergence of the
second-order functional derivative is plotted for four refinement
iterations. A 50% increment in the number of DOF per adap-
tive step was used for theh-adaption results. These results sup-

port the basic hypothesis that second-order functional deriva-
tive-based criteria can be used effectively to assess the con-
vergence of the global solution accuracy for both uniform and
h-adapted discretizations of Laplace systems. In contrast, the
analogous first-order functional derivative convergence results
shown in Fig. 5 demonstrate that the global solution accuracy is
overestimated by several orders of magnitude. Finally,p-adap-
tion (mixed-order meshes) and combinedhp-adaption conver-
gence results for this benchmark system also corroborate the
findings presented in this section (results not shown).

IV. CONCLUSION

New convergence criteria based on second-order functional
derivatives have been proposed and evaluated for scalar 2-D
electromagnetic adaptive finite-element analysis. The results
for the benchmark systems investigated demonstrate that
the second-order derivative criteria may be more reliable for
assessing the convergence of the global solution accuracy for
arbitrary discretizations of 2-D scalar systems than local error
estimators used in practice. These preliminary findings suggest
that further theoretical and experimental studies may be useful
to clearly establish the practical value of these convergence
criteria.
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