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This paper presents an analytical approach to magnetic force microscopy (MFM). Some features
of a realistic magnetic tip, modeled by a truncated pyramid, have been studied theoretically. By use
of analytical formulas to describe the magnetic field above a sample with periodic domains and per-
pendicular anisotropy, tip-sample interaction has been calculated as a function of tip geometry and
tip-sample distance. Lateral resolution and sensitivity are related to the geometrical parameters
that describe the shape of the tip, which leads to the surprising result that it is not the tip with the
smallest tip radius that gives rise to the highest lateral resolution in MFM. Depending on the tip
volume, the force sensitivity can vary by more than a factor of 3. The lateral resolution is shown to
decrease, as expected, with increasing tip-sample separation. The theoretical results presented here
are of relevance for the interpretation and comparison of experimental results. For a tip of given
geometry and magnetization, the results of this paper allow the determination of the expected la-
teral resolution and sensitivity as a function of tip-sample separation.

I. INTRODUCTION

Atomic force microscopy (AFM) (Ref. 1) has been ap-
plied to magnetic samples for the first time by Martin
et al.? and Saenz et al.’> The sensor in magnetic force
microscopy (MFM) consists of a sharp magnetic tip
mounted on a cantilever. Forces acting on the tip cause a
deflection of the cantilever which can be measured by
electron tunneling"? or by interferometry.>* The mea-
sured interaction forces depend on the magnetic structure
of the sample and the physical properties, such as magne-
tization and geometry, of the tip. Up to now, some effort
has been made to study experimentally the stray fields
from a magnetic recording head,? an isolated domain
wall,® or whole domains.*™’ Theoretically, MFM has
been investigated by a number of previous authors for
various magnetizations of tip and sample.>3 713 Recent-
ly, samples which are interesting as novel recording
media with perpendicular anisotropy have been investi-
gated in MFM experiments.*”!* For such cases the
magnetic contrast has been calculated earlier. %!

The aim of this paper is to continue previous work, cal-
culating the magnetic contrast of samples with perpen-
dicular anisotropy in MFM experiments as a function of
tip geometry and tip-sample separation, and to present a
completely analytical approach. The paper is organized
as follows: First, an expression is given for the magnetic
field above the sample. Then the force acting on a tip
modeled by a truncated pyramid is derived. We then
simulate the effect of geometrical tip parameters on the
lateral resolution and the force sensitivity. Finally, the
lateral resolution as a function of tip-sample distance
with optimized geometrical tip parameters is presented.

II. RESULTS AND DISCUSSION

In MFM the magnetic tip is scanned over the surface
of a sample and interacts with the magnetic field pro-
duced by the sample. The energy of such an interaction
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is described by
E=—[ [ [H@rMay, (1)

tip
where M is the tip magnetization and H(r) is the magnet-
ic field above a sample. A uniformly magnetized tip is as-
sumed. In the experiment, the magnetic tip has one de-
gree of freedom which we define as the z axis. The force
acting on the tip in the direction of the z axis is related to
the interaction energy

oF

F, 3% | (2)
The magnetic field used in formula (1) is created by the
magnetization distribution in the sample.” Let us assume
that our sample is a thin film with the thickness a and
infinite dimensions in all other directions. Figure 1 shows
such a sample with the chosen coordinate system. We as-
sume that there is a stripe domain structure with anisot-
ropy perpendicular to the sample surface. Domains have
the same width and a periodicity D. The magnetic field
H outside such a sample was presented earlier, 11!

D

FIG. 1. Domain structure with the coordinate system.
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where M, is the magnetization of the sample.

Using this formula in further calculations, we neglect disturbances in the field caused by the presence of a tip and any
changes inside the tip caused by the sample. In previous papers the tip had the shape of a cylinder terminated by a
hemisphere.'®!! Now we assume that it has the shape of a truncated pyramid. Figure 2 sketches this case. Such a
shape is more similar to the real shape of the electrochemically etched tips used in MFM. Electrochemically etched
tips are known to be described very well by a hyperboloid defined by the apex radius of curvature and the half angle of
the shank.!®> A truncated pyramid is a good approximation of a hyperboloid and mathematically much more con-
venient. We use Egs. (1), (2), and (3) to calculate the force acting on a tip. Noting the invariance of the stray field
against y translations, we obtain the formula describing the force,
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d ’
* * 0z ? oz

f (z'+ bitana ’ @)

F(x,2)=2(tana) [ "dz'(z’'+b)

—(z'+b)tana

where M, and M, are the magnetization components of the tip. L, b, and «a are defined in Fig. 2. Substituting H from
formula (3), we can calculate the second integral,

Flx2)= 3 S(M,M,,M,aD,a) [ dz'(z'+blexp — 2T (20 +1)2" |sin 2T (20 + (2" +b)tana | , )
n=0
where
S(MS,MX,MZ,a,D,a)=—32M5(tana)% [1—exp —(2n +1)@~ exp | —(2n _H)_Z_DTIZ_
X | M,cos |(2n +1)2TX |+ M sin |(2n +1) 22X
D D
The last integral can be solved analytically, !¢
F(x,2)= Y S(M;,M,,M,,a,D,a) bf—x%%))‘[p sin(k)—r cos(k)]
n=0 P r
+z'f_"§_:1_2£2_§[p sin(k)—r cos(k)]
p*+r
—%[(pz—rz)sin(k)—@rcos(k)] 16 (6)
Z

p=—2w/D)2n+1),
r=Q2w/D)2n + 1)tana , M
o L
and \ /
/

k =2mw/D(2n +1)(z'+b)tana . ]

We thus have reached our goal of deriving an analyti- 2R S ,
cal equation describing the magnetic forces acting on a £hd :
tip. The sample is described by the magnetization M, N )/ b
the thickness @, and the domain structure period D, while ™ .
the tip is characterized by its magnetization components ‘V
M,, M,, the length L, the angle «, and the base length
2R, (Fig. 2). Formula (6) is exact for the case of a mag- FIG. 2. Pyramidal tip model used for the calculations in the
netic stripe domain structure. Figure 3 presents data for new coordinate system. L is the length of the tip.
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FIG. 3. Magnetic images for two cases: (dashed line) tip
magnetization is directed perpendicularly to the sample surface
(z axis); (solid line) tip magnetization is parallel to the sample
surface (x axis). Height of scanning z =200 A.

two cdses, when the tip magnetization is along the x axis
(solid line) and along the z axis (dashed line). We used
the following numerical values: For =109
ergs/(G s cm® )JTbFe, M,=1714 ergs/(Gscm ) for iron
tip, D = 20000A a= 500A L =3000 A, R, =900 A,
R ;=400 A, and z =200 A. For a cyl1ndr1cal -tip model
the quantitative features of the force trace changes by less
than 10% if the length L is changed from 3000 to 10° A

In the first case (tip magnetization parallel to the sample
surface), we note the asymmetry of the image which
reflects the asymmetry of the configuration. The same
contrast has recently been obtained experimentally by
Rugar et al.” on Tb-Fe-Co alloy with a domain pattern
comparable to Fig. 1. Unfortunately they only published
qualitative data, so a more detailed, quantitative compar-
ison with our theory is not possible.

Let us now focus our attention on the case when the tip
magnetization is perpendicular to the sample surface.
This case is represented by the dashed line in Fig. 3.
Here, the symmetry of the tip-sample configuration is
reflected in the obtained image. To understand this im-
age, we plotted the field H, above the sample at a dis-
tance z =200 A in Fig. 4. Qualltatwely, this field can be
described as follows. We can imagine two thin films mag-
netized perpendicular to the surface and opposite to each
other, separated by a large distance between their edges.
If this distance is decreased, the superposition of the
stray fields of the two films will lead to the peak-peak
structure observed in Fig. 4. The peak-peak distance is
shortest if the film separation is zero, replicating our sam-
ple domain structure. We point out that the peak struc-
tures marked 4 and B in Fig. 3 are a reflection of the
infinitely narrow domain wall. Therefore, the lateral sep-
aration between the peak A4 and the valley B (peak-valley
separation AB) is a good measure of the lateral resolu-
tion. We expect that the contrast between peaks 4 and B
will not be as pronounced above real domain walls of
finite width. We define the peak-valley amplitude of the
signal as the sensitivity over a domain wall. The sensi-
tivity, thus defined, is directly related to the experimen-
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FIG. 4. Magnetic field H, above the sample at z =200 A.

tally observable force contrast.

Generally, an infinitely small tip would lead to the
highest lateral resolution. MFM tips are usually electro-
chemically etched from thin wires or foils. This deter-
mines the base length R,. The length L can be controlled
easily by bending the wire or foil. It is rather difficult,
but not impossible, to control the length R, precisely.
Let us fix the length L =3000 A.

We can now ask what should the shape of the tip be in
order to get the smallest peak-valley separation AB (i.e.,
the highest lateral resolution). To answer this question
we fix the base length R,=2100 A and the tip-sample
separation z =1000 A. If the dimension R, of the trun-
cated pyramid is changed, this simultaneously will vary
the angle a. We then calculate the peak-valley separation
AB and the sensitivity values as a function of a. The re-
sults are shown in Fig. 5. The tip with the smallest tip
length R, is marked by an asterisk. It is surprising that
the highest resolution is not obtained with a tip with zero
tip length R,;. We define the angle related to the
minimum peak-valley separation 4B as the critical angle
a.. We can understand this phenomenon as follows: The
final resolution is due to three different contributions to
the force arising from the magnetic charges on the top
(side length Rg), the base (with side length R;), and the
sides of the truncated pyramid. Keeping R, and L con-
stant and varying the angle a from the largest value to
zero decreases the slope of the sides and thus improves
the resolution. Simultaneously, the base length R, in-
creases from zero to R,; this decreases resolution. For
large angles a the improvement of resolution due to the
effect from the sides of the pyramid dominates. For
smaller angles « the increasing of R; dominates and wor-
sens the resolution. At the critical angle a, both effects
are balanced. The effect arising from the area defined by
R, is constant as L is constant.

Sensitivity decreases the smaller the length R, is. This
is clear as the whole volume of the tip also decreases. We
point out the large sensitivity range from 1 to nearly
3.5X107° N.

Looking at Fig. 5 we can understand why it is so
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FIG. 5. Dependence of peak-valley separation AB and sen51»
tivity vs angle a obtained w1th the tip described by R, =2100 A,
L =3000 A, and z =1000 A.

difficult to compare the experimental results of different
authors. For the same ratio R, /L, resolution and sensi-
tivity strongly depend on the angle a. The angle a of the
tips has to be very well controlled in order to achieve
quantitative reproducibility of results measured by
different tips.

We expect that tips at a fixed z level with different
R, /L values have different critical angles. This is
confirmed by calculations. Figure 6 shows the depen-
dence of critical angle a, versus the ratio R, /L for fixed
L and two different z levels of the tip. It is interesting
that this dependence is nearly linear with the same slope
independent of z. We find a similar functional depen-
dence when we plot the peak-valley separation 4B versus
critical angle. Nearly linear curves with the same slope
at two different z levels have been obtained (Fig. 7). We
see from both Figs. 6 and 7 that the critical angle is a
very important feature describing the tip. For a given tip
with a given R, /L value the critical angle a, can be
determined from Fig. 6. This then allows the determina-
tion of the maximum resolution at a certain distance z
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FIG. 6. Relanon between R, /L and critical angle a, at two z
levels. L =3000 A, R, varied.
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FIG. 7. Relation between critical angle a. and peak-valley
separation AB at two z levels.

(Fig. 7). In the experiment, it is very important how the
resolution changes with the z level.

Let us consider the case with fixed length L =3000 A
and R, =900 A. At each z level we calculate the critical
angle and the minimal peak-valley separation 4B. These
data are plotted in Fig. 8. The resolution strongly de-
pends on the scan height z. When scanning closer to the
surface a sharper tip is necessary to obtain the highest
resolution while at distances of more than 1000 A the tip
should be more parallelepiped than pyramidal. It seems
theoretically possible to obtain a peak-valley separation
of better than 500 A with uniformly magnetized tips
operated close to the sample (Fig. 7). However, as has
been pointed out, '%!>!7 it is not possible to scan the sam-
ple very close to the surface because of the influence of
the tip on the sample. The magnetic stray field produced
by the tip is large at such a small distance and it can des-
troy the magnetic structure of the sample. If the coer-
civity and magnetization of the sample are known, we
can estimate the tip-sample separation where we can
neglect disturbances inside the sample caused by the tip
presence. '*17 We partly avoid this problem by taking the
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FIG. 8. Dependence of peak-valley separation 4B and criti-
cal angle a, vs z height of scanning. R,/L =0.3, R, =900 A,
and L =3000 A.
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tip without magnetizing it before the experiment. Then a
lateral resolution of better than 100 A could be
achieved.>'* In order to explain this result the domain
structure of the tip has to be taken into account.'® The
presented theory assumes, however, a uniformly magnet-
ized tip and can be applied successfully to experiments
with the use of such a tip. The lateral resolution experi-
mentally observed with the use of such tips is of the order
of 1000 A.>*

From the results of this paper, it is not possible to
make a general statement about the best obtainable la-
teral resolution in MFM. Tips with a domain structure
inside make the problem especially difficult to describe.
We can obtain the high resolution with such tips but the
problem is to control the domain structure inside.'®
Therefore it is obvious that care has to be taken when
comparing experimental results obtained with different
tips and scanning heights.

III. CONCLUDING REMARKS

All the presented simulations can, of course, be repeat-
ed with constant R, and a. Thus the optimized value of
L or R; can be found. Similarly, R, and R, can be kept
constant. We then find the highest resolution for L — oo,
which is not surprising in view of Figs. 6 and 7 and, of
course, has the same physical explanation given above for
the existence of «.. In summary, a mathematical ap-
proach has been presented to describe MFM as a func-
tion of tip geometry (parameters R, L, and a) and tip-
sample distance z. We find the following results: (1) The
magnetic image of a domain pattern with perpendicular
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anisotropy strongly depends on the direction of the tip
magnetization (Fig. 3). (2) Surprisingly, the highest la-
teral resolution is not related to the tip with the smallest
tip radius R;. (3) At each z level and for each ratio R, /L
there is a critical angle a, for the highest resolution (Fig.
5). (4) For the same ratio R, /L but different angles «,
the measured sensitivity can differ by more than a factor
of 3 (Fig. 5). (5) Critical angles a, are a nearly linear
function of the ratio R, /L for each z level (Fig. 6). (6)
The peak-valley separation AB (lateral resolution) de-
pends nearly linearly on the critical angle «a, for each z
level (Fig. 7). (7) The peak-valley separation AB (lateral
resolution) strongly depends on the z level (Fig. 8).

We have shown in this paper how geometrically tip pa-
rameters influence the highest lateral resolution which
can be achieved with the technique of MFM. We have
presented theoretical evidence that the lateral resolution
and sensitivity strongly depend on geometrical tip param-
eters. This has to be taken into account when comparing
experimental results obtained with different tips. The
relevant parameters defining tip geometry and the
sample-tip distance are crucial if quantitative information
is to be deduced from measured force or compliance
curves in MFM experiments.
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