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Abstract

The construction of software cost estimation models remains an active topic of
research. The basic premise of cost modeling is that a historical database of
software project cost data can be used to develop a quantitative model to predict
the cost of future projects. One of the difficulties faced by workers in this area is that
many of these historical databases contain substantial amounts of missing data.
Thus far, the common practice has been to ignore observations with missing data.
In principle, such a practice can lead to gross biases, and may be detrimental to the
accuracy of cost estimation models. In this paper, we describe an extensive
simulation where we evaluate different techniques for dealing with missing data in
the context of software cost modeling. Three techniques are evaluated: listwise
deletion, mean imputation and eight different types of hot-deck imputation. Qur
results indicate that all the missing data techniques perform well, with small biases
and high precision. This suggests that the simplest technique, listwise deletion, is a
reasonable choice. However, this will not necessarily provide the best performance.
We provide a decision tree to select the best performing missing data techniques
depending upon the patten, mechanism and percentage of missing data.
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Résumé

La construction de modéles d'estimation de coit logiciel demeure un sujet de
recherche important. Le principe de base de la modélisation de colt est de
constituer une base de données sur {'historique des colts de projets logiciels, afin
de développer un modéle quantitatif pour prédire les colts de projets futurs. Une
des difficultés auxquelles on est confronté est que ces bases de données
contiennent des quantités importantes de données manquantes. Jusqu'a présent,
l'usage a été d'ignorer les observations incomplétes. En principe, de telles
pratiques peuvent conduire a d'importantes erreurs, et peuvent nuire a la précision
du modele. Dans ce document, nous présentons une simulation approfondie ou
nous évaluons différentes techniques pour traiter des données manquantes dans le
cadre de la modélisation de colt logiciel. Les trois techniques évaluées sont:
I'élimination des enregistrements non complets, l'imputation par la moyenne et huit
types différents d'imputation par appariement. Nos résuitats montrent que ces
techniques sont efficaces, avec peu d'erreurs et une grande preécision. La technique
la plus simple, la suppression par liste, semble donc un choix raisonnable.
Toutefois, elle ne donnera pas nécessairement les meilleures performances. Ainsi,
nous fournissons un arbre de décision pour séléctionner la meilleure technique en
fonction de la répartition, du mécanisme d'apparition et du pourcentage des
données manquantes.
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Chapter 1: Introduction

There exists a vast literature on the construction of software cost estimation models,
for example [63][18][1][2][12][25][44][30]{51](85]{93](83](90]. The basic premise is
that one can develop accurate quantitative models that predict development effort’
using historical project data.’ The predictors constitute a measure of size, whether
measured in terms of LOC or a functional size measure, and a number of
productivity factors that are collected through a questionnaire, such as questions on
required reliability, documentation match to life cycle needs and analyst capability

(87].

Knowing the estimated cost of a particular software project early in the development
cycle is a valuable asset [63]. Management can use cost estimates to approve or
reject a project proposai or to manage the development process more effectively.
For example, additional developers may need to be hired for the complete project or
for areas that will require a large amount of effort. Furthermore, accurate cost
estimates would allow organizations to make more realistic bids on external
contracts. Cost estimation models have not been limited to prediction of total project
cost. For instance, some recent work constructed a model to estimate the effort to
perform a software process assessment [46], and to estimate the effort required to
become ISO 9001 certified [72][73], both of which are relevant to contemporary
software organizations.

A common practical problem with constructing cost estimation models is that the
historical software engineering data sets frequently contain substantiai amounts of
missing values [15][16][37). Such missingness would impact the productivity factors
in historical data sets most severely since they are the variabies collected through a
questionnaire.* While one should strive to minimize missing values, in practice their

' Effort is considered to be the most important ingredient of cost, and is aimost always the variable of interest.
? Other related models that can be constructed using histarical project data include those for size and schedule prediction [32].

! Our concem here is not with non-respondents to a questionnaire, but with those who raspond to same questions and not
others. A great deal of effort should be placed an reducing nonresponse to ensure that resulting conclusions are as accurate as
possible. For example, a study by Heberlein and Baumgartner [40] examined the effects of many variables on response rate. It
was found that follow up letters and questionnaires judged to be salient to the respondent have the largest effect on the
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presence is usually unavoidable. Missing values are not unique to software cost
estimation, but is a problem that concerns empirical scientists in other disciplines

[50](41][57].

The most common factors that lead to the presence of missing data include
individuals not responding to all questions in a questionnaire, either because they
run out of time*, they do not understand the questions or they do not have sufficient
knowledge to answer the questions and opt not to respond, ° or individuals may not
wish to divulge certain information that may be harmful or embarrassing to them.’
Furthermore, the amount of missing values tends to increase as more variables are
present in the data set [75]. It is common for cost estimation data sets to have a
multitude of productivity factors.

There are many techniques that have been developed to deal with missing data in
the construction of quantitative models [58]. The simplest technique is to ignore
observations that have missing values (this is called listwise deletion). In fact, this is
the default approach in most statistical packages [58]. This, however, can resuit in
discarding large proportions of a data set and hence in a loss of information that was
costly to collect. For example, Kim and Curry [50] note that with only 2% of the
values missing at random in each of 10 variables, one would lose 18.3% of the
observations on average using listwise deletion. Furthermore, in a simulation they
performed with 5 variables having 10% of their values missing at random, 59% of the
observations would be lost with listwise deletion, on average. [n addition, listwise
deletion may bias correlations downwards. If a predictor variable has many missing
high values, for example, then this would restrict its variance, resulting in a deflation

response rate. An increase in salience of the study to the respondent, including how much knowledge and interest the
respondent has in the subject matter will result in a higher importance placed on the study, resuiting in a higher response rate.
In addition, increased contact with the respondent, including follow up letters, will further increase perceived importance of the
study and also result in higher response rates [76]. Also, the effacts of factors such as sponsorship, personalization, length,

and monetary rewards on response rates have been examined in the fiterature. Further details on survey design to maximize
the response rate are praovided in (28], (27] and [76].

* Itis generally known that an increase in affort required to complete surveys is likely 10 result in many respondents complaining
and teaving many questions unanswered [24].

® Itis not uncommon to treat “Don’t Know” (DK) responses as missing values when there is no intrinsic interest in the fact that a
DK response has been provided [80].

® Itis comman that respondents refuse to provide certain information. For example, in surveys that contain a questicn about
personal income, it Is expected that individuals with very high and very low incomes do not offer this information [S8][50]. Ina
cost estimation context, respondents may not wish to express the low level of domain or programming experience of the leam
leader, especially if the individual is easily identifiable.
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of its correlation with a completely observed criterion variable. The same applies if
the missing values were on the criterion variable. Measures of central tendency may
be biased upwards or downwards depending on where in the distribution the missing
data appear. For example, the mean may be biased downward if the data are
missing from the upper end of the distribution.

Another set of techniques impute the missing values. A common approach is to use
mean imputation. This involves filling in the missing values on a variable with the
mean of observations that are not missing. However, mean imputation attenuates
variance estimates. For example, if there are 30 observations of which 5 have
missing values, then we could substitute five means. This would increase the
number of observations without affecting the deviations from the overall mean,
hence reducing the variance [59][62]. There are alternative forms of imputation that
are based on estimates of the missing values using other variables from the subset
of the data that have no missing values.

In the context of cost estimation, researchers rarely mention how they dealt with
missing values.” When they do, their solution tends to be to ignore observations with
missing values, i.e. listwise deletion. For example, in the Walston and Felix study
[93], different analyses rely on a different number of observations from the historical
database, indicating that for some of the variables there were missing values. In one
recent cost estimation study of European space and military projects, the authors
removed observations that had missing values, resulting in some instances to the
loss of approximately 38% of the observations [18]. A comparison study of different
cost estimation modeling techniques noted that for approximately 46% of the
observations there were missing values (20]. The authors then excluded
observations with missing values for the different types of comparisons performed.
Another study used a regression model to predict the effort required to perform a
software process assessment based on the emerging ISO/IEC 15504 international

" This is also a typical problem in other disciplines. For example, in one study {77], articles from the Journal of Applied
Psychology and Personnel Psychology were randomly chosen and examined lo see what methods were used to handle
missing data. [t was found that many studies do not state whether or not abservations contained missing data. It follows that in
these cases the technique for dealing with missing data is not mentioned either. One reason for this could be that journals only
accept those studies that are deemed strong and may hesitate to publish studies that report high feveis of missing data.
Evidence suggested that 1/2 to 2/3 of the studies ignored observations with missing values.



standard [46]. In this study 34% of the total number of observations were excluded
from the analysis due to missing values.’

To date, there is no evidence that such a simple practice is the best one, or if it is
detrimental to the accuracy of cost estimation models. It is plausible that certain
types of imputation techniques would save the large proportions of discarded data
and result in models with much improved prediction accuracy. It would be of practical
utility then to have substantiated guidelines on how to deal with missing values in a
manner that would minimize harm to model accuracy. This study takes a step in that
direction.

In this paper, we present a detailed simulation study of different techniques for
dealing with missing values when building cost estimation models: listwise deletion,
(unconditional) mean imputation, and eight different types of hot-deck imputation.
We also simulate three different types of missingness mechanisms: (a) missing
completely at random, (b) where missingness depends on the size of the project,
and (c) where missingness depends on the value of the variable with missing values;
two types of missing data pattems: univariate (random) and monotone; and
missingness on one productivity factor up to all productivity factors in a model.

Our evaluative criteria focus on the accuracy of prediction, and consist of the
common measures: Absolute Relative Error and Pred25 [25]. The summary
measures are the bias and variation of the accuracy measures. We focus on
ordinary least squares regression as the modeling technique since this is one of the
most common modeling techniques used in practice [37], e.qg.,
[70][93][23][22][ 18]{63]. Furthermore, there has been recent evidence that ordinary
least squares regression is as good as or better than many competing modeling
techniques in terms of prediction accuracy [19][20].

Briefly, our results indicate that all MDTs have a good performance in terms of bias
and precision under the different contexts simulated. This suggests that the simplest
technique, listwise deletion, is a reasonable choice. However, listwise deletion will

* In some other studies missing values were deait with in a non-traditional manner. For example, a recent cost estimation madel
construction study raplaced °I don't know” and "it does not apply” respanses on a productivity factor with the middle point on a
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not provide the best performance amongst the different MDTs. We present a
decision tree to select the best performing MDT depending upon the pattemn,
mechanism, and percentage of missing data.

In the following chapter, we present an overview of the missing data problem and the
techniques that have been developed for dealing with it. Chapter 3 describes our
research method in detail. The results of our simulation are described in Chapter 4
with a discussion of their implications and limitations. We conclude the paper in
Chapter 5 with a summary and directions for future research.

5-paint scale (80].

14



Chapter 2: Background

In this chapter, we define some terminology and provide an overview of missing data
techniques (MDTs) and their general applicability.

2.1 Terminology

An important distinction when discussing MDTs is the mechanism that caused the
data to be missing [58]. Consider a data set with two variables, X, and X,. Let us
assume that missing data occurs on variable X, only. To make the scenario
concrete, let variable X, be analyst capability and variable X, be project size. If the
probability of response to X, does not depend on either X, or X,, then it is said that
the missing data mechanism is Missing Completely At Random (MCAR). Thus, if the
missingness of the analyst capability variable is independent of project size and
analyst capability, the mechanism is MCAR. If the probability of response depends
on X, but not on X, then we say that the missing data mechanism is Missing At
Random (MAR). This would be exemplified by the situation whereby the missingness
on the analyst capability variable is higher for, say, small projects than for large
projects. The third mechanism is if the probability of response depends on the value
of X, itself. This would occur if respondents tend not to answer the question when
the analyst capability is, say, low. This is termed non-ignorable response.

In general, the suitability of MDTs will be influenced by the missing data mechanism

and the percentage of observations with missing values. We outline some common
MDTs below.

2.2 Common Missing Data Techniques (MDTSs)

There exist several strategies for dealing with missing data. It is generally accepted
that if the data set contains a relatively small amount of missing data and if this data
is missing randomly, then all MDTs will be equally suitable [31][53][50](3][74]. It
should be noted that caution must be exercised when classifying data sets as having
small amounts of missing data. For example, if the smail amount of missing data is
only found in a few variables and is distributed randomly among all observations, the
total percentage of observations containing missing data may be relatively large [50].
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The choice of MDT becomes more important as the amount of missing data in the
data set increases [74]. Another important factor in choosing a suitable MDT is the
mechanism that lead to the missing values, whether MCAR, MAR or non-ignorable
[58]. In general, bias will result if the distribution of the missing values is different
from that of the observed values [31].

There are two general classes of MDTs that can be applied: deletion methods and
imputation methods. These are described below.

2.2.1 Deletion Methods

In summary, deletion methods ignore missing values. These procedures may resuit
in the loss of a significant amount of data, but are widely used because of their
simplicity [77][50].

2.2.1.1 Listwise Deletion

Analysis with this method makes use of only those observations that do not contain
any missing values. This may result in many observations being deleted but may be
desirable as a result of its simplicity [50]. This method is generally accepted when
there are small amounts of missing data and when the data is missing randomly. if
missingness is not random (e.g. non-ignorable) this method may lead to biases.[58]
For example, consider a study in which respondents with low incomes are less likely
to respond to a question about personal income. If all the observations with missing
values for personal income were discarded, then the conclusions of the analysis
would be biased towards individuals with higher incomes. Conversely, if missingness

is completely random, excluding observations with missing data would not affect the
conclusions of the study.

2.2.1.2 Pairwise Deletion

In an attempt to reduce the considerable loss of information that may result from
using listwise deletion, this method considers each variable separately. For each
variable, all recorded values in each observation are considered and missing values
are ignored. For example, if the objective is to find the mean for the personal income
variable, the mean is computed using all recorded incomes. In this case, reported
incomes in all observations will be considered, regardiess of whether they are

16



missing other variables. This technique will likely result in the sample size changing
for each considered variable. Note that pairwise deletion becomes listwise deletion
when all the variables are needed for a particular analysis, (e.g. multiple regression).
For the same reasons as mentioned for listwise deletion, this method will perform
well, without bias, if the data is missing at random [58].

It seems intuitive that since pairwise deletion makes use of all observed data, it
should outperform listwise deletion in cases where the missing data is MCAR and
correlations are small [58]. This was found to be true in the Kim and Curry study [50].
In contrast, other studies have found that when correlations are large, listwise
outperforms pairwise deletion [3]. The disadvantage of pairwise deletion is that it
may generate an inconsistent covariance matrix in the case where multiple variables
contain missing values. In contrast, listwise deletion will always generate consistent
covariance and correlation matrices [50].

In cases where the data set contains large amounts of missing data, or the
mechanism leading to the missing values is non-random, Haitovsky proposed that
imputation techniques might perform better than deletion techniques [38].

2.2.2 Imputation Methods

The basic idea of imputation methods is to replace missing values with estimates
that are obtained based on reported values [81](32]. In cases where much effort has
been expended in collecting data, the researcher will likely want to make the best
possible use of all available data and prefer not to use a deletion technique [24].
Imputation methods are especially useful in situations where a complete data set is
required for the analysis [S8]. For example, in the case of multiple regression, ail
observations must be complete. In these cases, substitution of missing values
results in all observations of the data set being used to construct the regression
model. It is important to note that no imputation method should add information to
the data set. In the case of multivariate data, it makes sense that we might be able to
obtain information about the missing variable from those observed variables. This
forms the basis for imputation methods. The primary reason for using imputation



procedures is to reduce the non-response bias that would resuit if all the
observations that have missing values are deleted.

It has been proposed that a good imputation procedure should:

1) use observed values to predict a distribution for the missing values. The method
should then impute values based on this distribution [59].

2) use all the observed values for each observation containing missing values [59].

3) use any external constraints about values being imputed. (For example, variables
X, + X, must be less than or equal to k.) [58][81]

4) not impute values that have been extrapolated a considerable distance from the
observed data. (Except in the case where substantial evidence is available to
warrant this.) [59]

5) impute values that do not change the predicted distribution (in 1) [59][{81].

6) provide methods that adjust conclusions made from the data set since it has
been imputed with missing values [59].

2.2.2.1 Mean Imputation

This method imputes each missing value with the mean of observed values. For
example, a missing income could be replaced by the mean of all observed incomes.
The advantage of using this method is that it is simple to implement and no
observations are excluded, as would be the case with listwise deletion. The
disadvantage is that the measured variance for that variable will be underestimated
[78][58]. For example, if a question about personal income is less likely to be
answered by those with low incomes, then imputing a large amount of incomes
equal to the mean income of reported values decreases the variance. Note that
mean imputation does not satisfy all of the six points listed above.

2.2.2.2 Hot-Deck Imputation
Hot-deck imputation involves filling in missing data by taking values from other
observations in the same data set. The choice of which value to take depends on the

observation containing the missing value. The latter property is what distinguishes
hot-deck imputation from mean imputation.
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In addition to reducing non-response bias and generating a complete data set, hot-
deck imputation preserves the distribution of the sample population. Unlike mean
imputation, which distorts the distribution by repeating the mean value for all the
missing observations, hot-deck imputation attempts to preserve the sample
distribution by substituting different observed values for each missing observation.

Hot-deck imputation selects an observation (donor) that best matches the
observation containing the missing value (client). The donor then provides the value
to be imputed into the client observation. For example, a study may be able to gather
a certain variable for all observations, such as geographic location. In this case, a
categorical hot-deck is created in which all observations are separated into
categories according to one or more classification variables, in this case geographic
location. Observations containing missing values are imputed with values obtained
from complete observations within each category. In this case, it is assumed that the
distribution of the observed values is the same as that of the missing values. This
places great importance on the selection of the classification variables and assumes
a large correlation between the observed and missing values.

In other cases, there may not be any categorical data and the variables in which to
assess ‘similarity’ may be numerical.

Numerical hot-decks are typically found in data sets that contain muitivariate
observations with numeric variables. In this case, a donor is selected that is the most
similar to the client. Similarity is measured by using a distance-function that
calculates the distance between the client and prospective donors. The hot-deck is
the set of all complete observations. For each client, a donor (or set of donors) is
chosen from the hot-deck that contains the smallest distance to the client. This
distance can be based on one or more variables of the observation. The selection of
which variables on which to use the distance-function is ideally those variables that
are highly correlated to the variable being imputed. In the case where a set of donors
has been obtained, the value to impute may be taken from the best donor, random
donor, or an average over all donors. The purpose of selecting a set of donors is to
reduce the likelihood of an extreme value being imputed one or more times [32][(81].



Colledge et al. concluded that hot-deck imputation appears to be a good technique
for dealing with missing data, but suggested that further analysis be done before
widespread use [24].

2.2.2.3 Cold-Deck Imputation
This method is similar to hot-deck imputation except that the selection of a donor
comes from the results of a previous survey {58].

2.2.2.4 Regression Imputation

This is a modeling technique that replaces each missing value with a predicted value
based on a regression model. First, a regression model is built using both the
complete and incomplete observations. For each incomplete observation, each
missing value is replaced by the predicted value found by using the regression
model [58].

2.2.2.5 Multiple imputation Methods

Modeling techniques that impute one value for each missing value underestimate
standard error. This is the case because imputing one value assumes no
uncertainty. Multiple imputation remedies this situation by imputing more than one
value, taken from a predicted distribution of values [61]. The set of values to impute
may be taken from the same or different models displaying uncertainty towards the
value to impute or the model being used respectively. For each missing value, an
imputed value is selected from the set of values to impute, each creating a complete
data set. Each data set is analysed individually and final conclusions are obtained by
merging those of the individual data sets. This technique introduces variability due to
imputation, contrary to the single imputation techniques. The only disadvantage, with
respect to single imputation techniques, is that it is more computationally intensive
[58]. Consequently, this technique is most useful when the data set contains small
amounts of missing data in a small proportion of the observations [79].

2.3 Summary

To our knowledge, there have been no previous studies of MDTs within software
engineering. Therefore, it is not possibie to determine which MDTs are suitable and
under what conditions for software engineering studies.



in our study, we focus on three types of MDTs: listwise deletion, mean imputation,
and hot-deck imputation. We chose listwise deletion because it is common practice
in software cost estimation studies, and therefore we wished to determine its
performance. Furthemmore, it has been noted that in general empirical enterprises,
listwise deletion and mean imputation are the most popular MDTs [74]. Hot-deck
imputation is of interest since it has been adopted in some highly visible surveys,
such as the British Census [7][32], the U.S. Bureau of the Census Current
Population Survey, the Canadian Census of Construction [32], and the National
Medical Care Utilization and Expenditure Survey [57}. Furthermore, some authors
contend that the hot-deck is the most common MDT for complex surveys [31].



Chapter 3: Research Method

In this chapter, we outline the objective of the study and describe the data set used.
In addition, we discuss the research design and how the empirical study was
conducted.

3.1 Objective of Study

The objective of this study is to compare different MDTs for dealing with the problem
of missing values in historical data sets when building software cost estimation
models. Specifically, listwise deletion, mean imputation and hot-deck imputation
were compared. The focus is on simple methods that would allow researchers to
easily implement the result. Since for cost estimation models the most important
performance measure is their prediction accuracy, we evaluate how this accuracy is
affected by using the different missing data techniques. By identifying the most
appropriate technique, future researchers would have substantiated guidance as to
appropriate ways for dealing with missing values.

3.2 Data Source and Content

The data set used in this study is called the Experience Database. The Experience
Database began with the co-operation of 16 companies in Finland. Each company
must purchase the Experience tool and contribute the annual maintenance fee. This
entitles them to the tool that incorporates the database, new versions of associated
software and updated data sets. Each company can add their own data to the tool
and are encouraged, through incentives, to donate their data to the shared
database. For each project donated, the company is given a reduction in the annual
maintenance fee. Since all companies collect the data using the same tool and the
value of each variable is well defined, integrity and comparability of the data is
maintained. In addition, companies that provide data are subsequently contacted in
order to verify their submission.

The primary advantage of this data base, with respect to this study, is that it does not
contain missing values. The fact that this relatively large data set does not contain
missing values is due to the careful manner in which the data was collected and



extensive follow up. This allows us to simulate various missing data patterns, as will
be explained below.

The data set is composed of 206 software projects from 26 different companies. The
projects are mainly business applications in banking, wholesale/retail, insurance,
public administration and manufacturing sectors. This wide range of projects allows
for generalizable conclusions that can be applied to other projects in the business
application domain. Six of the companies provided data from more than 10 projects.
The system size is measured in unweighted and unadjusted Function Points [2]. For
each project, we had the total effort in person-months and values on fifteen
productivity factors. The variables considered in our analysis are presented in Table
1. The productivity factors are defined in detail in Appendix B.

Variable | Description Values / Range / Unit

Effort Totat project sffort Pearsan hours (ph)

FP System size measured in function points Unadjusted Unweighted Function Points
PFO1- 15 Productivity Factors: 1 -5 (very small - very large)

PF15
Customer Participation, Development Environment Adequacy,

Staff Availability, Use of Standards, Use of Methods, Use of Toals.
Software Complexity (Logical), Requirements Volatility, Quality
Requirements (Software), Efficiency Requirements, Installation
Requirements, Staff Analysis Skills, Staff Application Knowledge.
Staff Tool Skills, Statf Team Skills

Table 1: Variables used in our simulation from the Experience Database.

3.3 Cross Validation

If a cost estimation model is developed using a particular data set and the accuracy
of this model is evaluated using the same data set, the accuracy obtained will be
optimistic. The calculated error will be low and will not represent the performance of
the model on another, separate data set. This study divides the Experience
database into two parts. Since 30% of the software projects came from a bank, the
database was split into a bank data set (63 projects) and the rest (143 projects). We
termed the former the test data set, and the latter the training data set. The cost
estimation model is developed using the 143 projects in the training data set. We
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then evaluated its prediction performance on the 63 project test data set. This
approach is similar to the situation whereby a multi-organizational data set is used to
build a model, and then an individual organization applies that model for its own
projects (e.g. [73]).

3.4 Regression Model

We used multivariate least squares regression analysis by fitting the data to a
specified model that predicts effort [39]. The selected model specification is
exponential, because linear models revealed marked heteroscedasticity, violating
one assumption for applying regression analysis. °

The general form of the regression model is as follows:

log(Effort)= B, + B, log(FP)+ 3 B... log(T;) Eqn. 1

where the T values are the productivity factors.

It is known that many of the productivity factors are strongly correlated with each
other [18][52][86]. Although some cost estimation models have been developed that
contain many productivity factors, [93][5][12][64] found that for a given environment,
only a small number of significant productivity factors are needed in order to develop
an accurate effort estimation model. This conclusion is supported by [52]{67] and [8].

Therefore, we first reduced the number of variables down from 15 using only the
training data set. Two approaches were followed. A mixed stepwise process was first
performed to select variables having a significant influence on effort (alpha=0.05). In

’ One can make other substantive arguments for selecting this functicnal form. In software engineering, there has been a
debate over whether economies of scale do indeed exist, and if so, what is the appropriate functionat form for modeling such
economies. The concept of economies of scale states that average productivity increases as the system size increases. This
has been attributed, for example, to software development tools wheraby the initial tool institutionalization investment may
preclude their use on small projects [12]. Furthermore, there may be fixed overhead costs, such as project management, that
do not increase directly with system size, hence affording the larger projects economies of scale. On the other hand, it has
been noted that some overhead activities, such as documentation, grow at a faster rate than project size [45], contributing to
diseconomies of scale. Furthermore, within a single organization, itis plausible that as systems grow larger, then larger teams
will be employed. Larger teams introduce inefficiencies due to an increase in communication paths {14}, the potential for
personality conflicts (12], and more complex system interfaces [25]. A series of studies on the existence of (dis)economies of
scales provided inconsistent resuits [9][10]{52]. In another effort to determine whather such (dis)economies of scale exist, Hu
[42] compared a simple linear model with a quadratic, log-linear, and transleg models, and used objective statistical procedures
to make that determination. He aiso investigated what the appropriate functional form should be. He concluded that the
quadratic form is the most appropriate. Subsequently, his study was criticised on methodological grounds {71][18]. Anather
study that compared functional forms, that addressed some of these shortcomings, conciuded that the log-linear form, which
we use, is the most plausible one {18]. The general multiplicative form for cost estimation medels has also been recommended
in [67] since the impact of each of the productivity factors is likely to be proportional to the size of the software.



this case the size measure, FP, was selected due to its strong influence on effort, as
well as a subset of the productivity factors. An alternative approach was also
investigated, namely using the leaps and bounds algorithm [34]. This is an efficient
algorithm for performing regressions for all possible combinations of the 15
productivity factors (size was always included). The model with the largest adjusted
R? value was selected. Both approaches gave similar results in terms of prediction
accuracy on the test data set. We therefore selected the model from the leaps and
bounds algorithm since it performs an exhaustive search.

The final model is summarized in Table 2. We refer to this model as the baseline
model since it has been developed with the complete training data set (i.e., no
missing values).

Variable (lcg) Parameter Value Standard Error tvalue Pri>I1tl)
Intercept 2.687 0.558 4813 <0.0001
System size (function points) 0.9104 0.08565 10.629 <0.0001
Customer participation 0.2413 0.19139 1.261 2.095x10'
Use of tocls -0.3392 0.27905 -1.216 2263 x 10"
Logical complexity of softwars 0.5274 0.21987 2.399 1.782 x 10°
Requirements volatility 0.7223 0.21949 3.291 1.274x10
Quality requirements 0.3061 0.25774 1.188 2370x10"
Application knowledge of staft -0.3528 0.14897 -2.368 1830 x10 *

Table 2: Baseline model parameters. The adjusted R’ is 0.605, and the F test of all
parameters equal to zero produced a p value <0.0001.

We used the condition number of Belsley et al. [11] as an indicator of collinearity in
this model. it was lower than the threshold of 30, and hence we can be confident that
there are no multicollinearity problems in this model.

The baseline model has parameters whose signs are in the expected direction.
Perhaps the user participation effect requires further explanation. it wouid be
expected that increased user participation would lead to higher effort since
interaction effort with the users increases.



3.5 Scale Type Assumptions

According to some authors, one of the assumptions of the OLS regression model is
that all the variables should be measured at least on an interval scale [13]. This
assumption is based on the mapping originally developed by Stevens [88] between
scale types and "permissible” statistical procedures. In our context, this raises two
questions. First, what are the levels of our measurement scales? Second, to what
extent can the violation of this assumption have an impact on our results?

Our productivity factors utilized a single item each. In practice, single item measures
are treated as if they are interval in many instances. For example, in the construction
and empirical evaluation of the User Information Satisfaction instrument, inter-item
correlations and principal components analysis are commonly performed [43].

It is also useful to note a study by Spector [84] that indicated that whether scales
used have equal or unequal intervals does not actually make a practical difference.
In particular, the mean of responses from using scales of the two types do not exhibit
significant differences, and that the test-retest reliabilities (i.e., consistency of
questionnaire responses when administered twice over a period of time) of both
types of scales are both high and very similar. He contends. however, that scales

with unequal intervals are more difficult to use, but that respondents conceptually
adjust for this.

Given the proscriptive nature of Stevens' mapping, the permissible statistics for
scales that do not reach an interval level are distribution-free (or nonparametric)
methods (as opposed to parametric methods, of which OLS regression is one) [82].
Such a broad proscription is viewed by Nunnally as being "narrow" and would
exclude much useful research [69]. Furthermore, studies that investigated the effect
of data transformations on the conclusions drawn from parametric methods (e.g., F
ratios and t tests) found little evidence supporting the proscriptive viewpoint
[55][54][6]. Suffice it to say that the issue of the validity of the above proscription is,
at best, debatable. As noted by many authors, including Stevens [88], the basic point
is that of pragmatism: useful research can still be conducted even if, strictly



speaking, the proscriptions are violated [13]{35][89]. A detailed discussion of this
point and the literature that supports our argument is given in [17].

3.6 Evaluative Measures

in order to evaluate the impact of MDTs, we define two different evaluative
measures:* magnitude of relative error (MRE) and prediction at level [ (PRED(/))
[25]. These are calculated from the model developed using the training data set and
evaluated on the test data set.

The MRE is defined as:

| Actual Effort - Predicted Effort|
REi = x100
Actual Effort:

Eqn. 2

The MRE value is calculated for each observation i whose effort is predicted. The
aggregation of MRE over all predicted observations, N , was achieved by taking the
median of the MRE (MdMRE) over N observations.”" It provides the percentage
error in the estimate.

A complementary criterion that is also used is the prediction at level [,
PRED(I) =%x100. where k is the number of observations where MRE is less than

or equal to /. For our study we set | to 25%. The Pred25 provides the percentage

of observations whose effort estimates were within 25% error.

" A third potential evaluative measure is concerned with consistency of estimation. This is defined as the correlation between
the estimated and the actual effort, and has been used in a number of previous studies [67](2]{49]. The logic of using this
measure is that the existence of consistancy, even if it is consistency in under or overastimation, project managers wouid be
able to easily adjust for that using say a constant muitipiier and the estimation model would still be of value. However. it was
shown in a recent report {21] that adjusting consistent underestimates with a constant muttiplier will increase accuracy but

dramatically increase variabiilty, and will reduce the acccuracy of overastimates. In qur simulation we, therefore, focus only on
accuracy of prediction.

" An implicit assumption in using MRE as a measure of predictive accuracy is that the error is proportional to the size of the
project. For example, a 15 person-month overestimate for a 15 person-month project is more serious than for a 100 person-
month project. On the ather hand, Miyazaki et al. have criticised the MRE measure because it penalizes averastimates more
than underestimates [66], and propose a new measure to alleviate this. However, Shepperd and Schofield [83] note that the
proposed Myiazaki measure of accuracy is effectively two distinct measures that should not be combined. We therefore utilize
the commonly used MRE as no aiternatives have enjoyed acceptance within the software engineering community.



3.7 Simulation Approach

There are three general approaches that one can use to study the effect of dealing
with missing values, two being simulations. The first possibility is to use an actual
data set that had missing data, that were subsequently obtained through follow-up
activities. This would allow the researcher to compare the performance of models
using the data set with missing values after an MDT is applied, and the complete
data set after follow-up. This is the approach used in the study by Cox and Folsom
[26]. However, it is rare in practice to have such a data set.

The second is a Monte Carlo simulation. Under this approach, one constructs
artificial data sets whose variables have known distributions and known inter-
correlations. Then one creates missing values in these artificial data sets following
various missingness schemes that one wants to study. Subsequently, different
MDTs are applied and their performance evaluated in comparison to the known
characteristics of the artificial data generation.

An example of such a Monte Carlo simulation is [78]. The analysis considered only
cases where observations were partially incomplete, not those in which there was a
complete non-response. Techniques considered were listwise deletion, pairwise
deletion, mean imputation, regression imputation, and hot-deck imputation. The
complete data set used for the analysis was generated from a population correlation
matrix. Various statistics were generated based on the complete data set to be
compared with those generated after inducing missing values and application of the
various MDTs. Missing values were imputed in 10, 20 and 30% of the observations
randomly. The effectiveness was based on calculation of root mean squared error
and absolute error.

A potential disadvantage of the Monte Carlo approach is that one cannot be certain
that the population characteristics that are being simulated are congruent with real
data sets. Therefore, one would not know the extent to which the conclusions can be
generalized to actual practical situations. This approach can be mitigated by basing
the population parameters on values obtained from previous studies, such as in the
Monte Carlo simulation performed by Kim and Curry [50].



An alternative approach is to use an actual data set relevant to the problem. This
data set would have to be complete (i.e., no missing data). One would then create
missing values that follow a known pattem. Subsequently, different MDTs are
applied and their performance evaluated in comparison to the results that would be
obtained had there been no missing data.

An example of this kind of approach is the study of [53]. This study analysed the
performance of five MDTs for dealing with data missing nonrandomly, namely,
listwise deletion, pairwise deletion, mean imputation, simple regression imputation,
and muitiple imputation. Performance of each technique was based on parameter
estimates of a two-predictor regression model. Bootstrap samples were taken from
actual field data and missing values were assigned to one variable, based on the
value of that variable.

The approach we have followed in our study is in the final category. We used the
Experience Database as our complete data set. The overall simulation approach is
summarized in Figure 1.

Establish Baseline Model
MdJdMRE and Pred25

lterate 500 times:
Induce missing data in training data set
Apply MDT and build regression model using training data

Compute MAMRE and Pred25 on the test data set

Compare results from 500 iterations
with baseline MdMRE and Pred25

Figure 1: Summary of simulation approach.



The baseline model was already described in Section 3.4. Using the baseline model,
we predicted the effort on the test data set and found the MdAMRE to be 47% and the
Pred25 to be 24%. Note that the calculation of these measures is based on the
original units, not the log transformed. The exponential function is applied to the
predicted effort in order to convert it back to its original unit. These serve as our

baseline MAMRE and baseline Pred25 and will be referred to as MdMRE, .. and
Pred25

baseline

respectively.
We describe the remaining steps of our simulation approach below.

3.8 Simulating Missing Data
We consider four parameters in simulating the missing data:

¢ The percentage of observations with missing data

o The number of variables that have missing data (we only consider missing
values on the productivity factors)

e The missing data mechanism
e The pattern of missing data

Five different percentages of missing values were simulated (5,10,15,25,40). It is
generaily accepted that data sets with more than 40% missing data are not useful for
detailed analysis.

Since our final model has six productivity factors, we consider missing values on one
up to all six variables.

Three missing data mechanisms were evaluated: missing completely at random
(MCAR), missing at random (MAR), and non-ignorable missingness.

The implementation of the MCAR mechanism to impute missing data was
straightforward. Missing values were imputed for the relevant variable completely at
random.

For MAR, we simulated the situation where missing values depend on the size of the
project. The implementation of the MAR mechanism to induce missing data, involves



first ordering the observations according to project size. Missing values are induced
with biases for both small and large project sizes. Once the data set is ordered, it is
split up into quintiles with the first and last quintiles containing 28 observations and
the middle three containing 29 observations. Each quintile will receive different
percentages of missing values. The total percent of missing values is divided by 10
to get a value for k. The separate quintiles wiil be induced with 4k, 3k, 2k, k, and Ok
missing values. For example, if the total amount of missing data to be created is
10%, then each quintile will be induced with 4, 3, 2, 1, and 0% missing values. It is
important to note that within each quintile, missing values are induced randomly.

For non-ignorable missingness, we simulated missing values that depend on the
particular variable in question. Implementation was identical to MAR except that the
observations were ordered by the variable to be induced with missing data. Quintiles
were formed and missing values were created as described for MAR. Missing values
are induced with biases for both low and high values for each variable.

Two pattens of missing data were simulated. The first is univariate missing data,
whereby the values are missing on each variable separately according to one of the
mechanisms described below. Each independent variable was induced with missing
vaiues according to the pattern shown in Figure 2 (left panel).

The second is monotone missing data, whereby the variables can be ordered in
terms of their extent of missingness. This means that all observations with missing
data for X, also have missing data for X,, but the reverse is not always true [61].

The implementation of monotone missing data is illustrated with two variables. It
easily generalizes to the case of more than two variabies. The monotone pattern of
missingness is shown in Figure 2 (right panel). The first variable is induced the same
way as for the univariate case. Next, half of the observations that contain missing
values at the first variable will have their second variable induced with a missing
value. For the MCAR mechanism of missing data, half of the total number of
observations containing missing data will have missing data on two variables. For
the MAR mechanism, half of the observations for each quintile will contain missing
data for both variables. It follows that although the total amount of missing values
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. being induced is greater in the monotone case as compared to the univariate case,
the total number of observations that contain at least one missing value will be the

same.

X X % X, X: X X

Figure 2: Univariate and monotone patterns of missing data.

in total, then, we defined 29 340 missing data schemes.” For each missing data
scheme we applied each of the 10 MDTs described below. This gives a total of
293 400 different study points in the simulation. For each study point and MDT
combination we performed the simulation 500 times." For each of the 500 iterations,
we built a new ordinary least squares regression model. Subsequently, we
performed a prediction on the test set and computed the evaluative measures.

3.9 Summary Measures

For each run of the simulation we computed the MAMRE and Pred25. From these
numbers we have to produce summary measures. We consider two types of
summary measures: bias and precision. Bias tells us how different the results are
from those that would be obtained had there been no missing data (i.e., the
baseline). Precision informs us about the dispersion or variability.

* At the outset this may seem to be a large number. However, for the monatane pattems having more than one productivity
' factor with missing values, we must consider ail possible permutations of the productivity factors with missing vaiues.



Bias was computed from the 500 simulations as follows:

MRE, ;.pom = median|MdMRE, — MAMRE, . ,....
StubvP 15iS500 | basel Eqn. 3

For the MRE, we computed the median absolute difference across all 500
simulations. This provides us a measure of the bias of the MDT compared to the
MRE that wouid be obtained had there been no missing data.

Pred25., . pum = nfggjiganredZi — Pred2s,,;,.

Eqn. 4

For the Pred25, we computed the median absolute difference across all 500
simulations. This provides us a measure of bias of the MDT compared to the Pred25
that would be obtained had there been no missing data.

Both of the above measures express bias in terms of the change in percentage. For
example, if MRE,, ... iS5, that means that overall, using the MDT will be different
from the baseline MAMRE by 5 MRE percentage points. Thus, if the baseline

MdMRE is 46%, then the overall MDT MdMRE could be 51%. The same applies to
Pred25.

Precision was evaluated using the inter-quartile range as follows:

IQR (MAMRE, - MdMRE, )
5500 Eqn. 5

IQR (Pred2S, - Pred25,,..,.)

15i$500

We present the precision results in the form of box and whisker plots (for an
overview of these types of plots, please see Appendix A).

3.10 MDTs Evaluated
The implementation of the MDTs that we studied is described below.

3.10.1 Listwise Deletion
For listwise deletion, observations containing missing data are ignored. The

regression model is built using only observations that contain no missing values.

" We randomly selected some of the study points and performed the simulations with 1000 iterations. Our conclusions were
not affected, and in fact even the summary values obtained were vary similar.
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3.10.2 Mean Imputation

After the database has been induced with missing values, each missing value is
replaced by the mean calculated for all observed cases for that variable. For the
univariate case, the mean is calculated for the variable that contains missing values
and this value is imputed for all observations that contain a missing value. For the
multivariate case, muitiple means are calculated, one for each variable that contains
missing values. The same value wiil be imputed for ail observations.

Once all the values have been imputed, the regression model is generated. Unlike
listwise deletion, no observations are lost and the regression model is based on the
complete data set containing imputed values.

3.10.3 Hot-Deck Imputation

Once the missing observations have been created in the database, each missing
value is imputed with a donor value picked from the one of the observations without
missing data. We now present some notation to help explain the different types of
hot-deck imputation that we impiemented.

We divide the data set into those observations with missing values, the missing set,

and those observations without missing values, the complete set. Let x be the
vector of all variables measured on the " observation in the missing set, and x, be
the value of the ;" variable measured on the observation. Further, let ¢, be the

vector of all variables measured on the k" observation in the complete set, and let

c, be the value of the ;" variable measured on that observation.

We constructed a numeric hot-deck function. In setting up a hot-deck function,
different hot-deck parameters can potentially have a nonnegligible impact on its
performance:

¢ In calculating a distance between an observation in the missing set and the
complete set, variables containing values that are much larger than those in
other variables will dominate the distance (e.g., size has a much larger range
than the productivity factors). Standardization will prevent those variables

34



from having a larger influence (in effect, treating all variables as being equally
important). Which standardization technique should be used ?

¢ There are multiple possible distance measures that can be employed. Which
one should be used?

Below we describe these parameters and the particular values that we evaluated,
including justifications for the selections made.

First, we consider three different standardization approaches: 2-score, mean

absolute, and Z,, in addition to the case of no standardization.

A simulation study in the area of cluster analysis, found one type of standardization
scheme to be superior in recovering the underlying cluster structure under different
conditions including error free data, and data with noise and with outliers [65].
However, the parameters of that simulation are not necessarily reflective of software
cost data, and therefore this standardization scheme, referred to as Z., is evaluated

here:

7 o Gy _minc,) Eqn. 6

* " max(c, ) - min(c, )

As will be noted, this has a non-robust denominator in that it will be easily affected
by even a single outlier. A more traditional standardization scheme that makes the
unit of the variables the sample standard deviation is the z-score:

Cy -lz% Eqn.7

3o -tza ]

Z —score =

A more robust approach for standardization is to use the mean absolute deviation
[91] instead of the standard deviation in the denominator. This is robust because the
deviations are not squared, therefore atypical points do not exaggerate it [48].
Robustness is desirable because software measurements typically have a few
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extreme values that may exert strong influence on the analysis results (e.g., see
(68]).

cy _lz% Eqn. 8

Mean Absolute =

For each observation that contains a missing value, a distance is determined
between it and all observations in the complete set. A multitude of different distance
functions can reasonably be used in a hot-deck function. We limit ourselves to the
common distance functions in other disciplines. We also limit ourselves to the
context where the predictor variables are continuous, since we treat them this way in
the regression model.

Kaufman and Rousseeaw {48] define the Minkowski distance as follows:

1

dy = (Z lch - xvr Jq
I

Eqn. 9

The most commonly used distance functions for continuous variables are the
Euclidean and Manhattan distances.

The Euclidean distance between a component i in the missing data set and a
component k in the complete set is given by (i.e., g=2):

Euclidean, = Z(C,, —.r,,)z Eqn. 10

!
The Manhattan distance is defined by (i.e., g=1):
Manhartan,, = Z Icv ‘-‘u'l Eqn. 11
J

A priori, there is no compelling reason to prefer one distance function over another,
and therefore, it is prudent to evaluate them empirically.
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Using both functions, a value is determined for the distance between the observation
containing a missing value and all observations in the hot-deck. The distance
function takes as input the size variable and all productivity factors except the one
that is missing. The missing value is imputed with the variable from the observation
in the hot-deck that has the smallest distance from the observation containing the
missing value.

Once all missing values have been imputed with values obtained from the hot-deck,
the data set is complete and the regression model is generated.

In the case of monotone missing data with two variables, the data set is divided into
three parts, observations that contain one missing value (M1), observations that
contain two missing values (M2), and observations that contain no missing values
(complete set). A given percentage of observations will contain missing values on
one independent variable, say X,. In half of these cases the observation will contain
a missing vaiue at another independent variable, say X, This can be easily
generalized to the case with more than two missing variables.

Values are imputed into M1 observations in the same way as for the univariate case.
For M2 observations, two values from the same hot-deck observation with the
smallest distance to each observation are imputed. It is important to note that the
distance function for the M2 observations will be based on one less independent
variable than for the M1 observations.

Once all missing values have been imputed with values obtained from the complete
set, there are no more missing values, and the regression model is generated.

Once the model has been derived, it is then used to predict the effort for each
software cost project in the bank database.

3.11 Summary

In this chapter, we have described the overail simulation approach. In total we had
293 400 study points that were simulated, each with 500 iterations. This includes all
techniques for generating missing values combined with the MDTs studied. Such a
comprehensive simulation should provide us with a reasonable picture of the
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strengths and weaknesses of each MDT under different missing data scenarios.
Furthermore, the fact that the simulation is based on an actual data set should give
us confidence in the applicability of the results within the same application domain.
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Chapter 4: Results

We first provide some descriptive statistics for the data set. Then we present the
results for each MDT in tum. Due to the large amount of resuits that can be
presented, we are only able to show resuits that demonstrate the pattems that were
observed.

Table 3 presents the abbreviations of each productivity factor that will be used in
future figures and tables.

Abbreviation | Productivity Factor

cP Customer Participation

ut Use of Tools

SC Software Complexity

RV Requirements Volatility

QR Quality Requirements

SK Staff Application Knowledge

Table 3: Productivity factors with corresponding abbreviations

Evaluative resuits are given in terms of the MRE,,,.., and Pred25.. ..., as

described in Eqn. 3 and Eqn. 4, calculated for all 500 iterations. In some instances,
we also present box and whisker plots for MAMRE and Pred25 differences from the
baseline values to show the extent of variation.

The results are grouped into the four combinations of MCAR and MAR vs. non-
ignorable missingness, and univariate vs. monotone patterns. The exception is
listwise deletion because there is no difference between univariate and monotone
patterns.

4.1 Descriptive Statistics
Table 4 summarizes the descriptive statistics for system size (FP) and project effort
(person-hours: ph). The table shows the results for the whole database, the test data
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set, and the train data set. Projects in the test data set are from the banking domain
and generally have a higher effort than those in the whoie database. The breakdown
of projects per organization type for the whole data base is 38% banking, 27%
insurance, 19% manufacturing, 9% wholesale, and 7% public administration. Table 5
summarizes the descriptive statistics for each of the productivity factors. Figure 3
and Figure 4 illustrate the proportions of projects for different application types and
target platforms for the whole database and the test and train data sets. It can be
seen that the proportions of application type and target piatform are similar for the
whole database and the test and train data sets.
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Figure 3: Distribution of projects by application type.
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Figure 4: Distribution of projects by target platform.



Test data set Train data set Whole data set
Size (FP) | EHfort (pn) | Size (FP} | Effort (ph) { Size (FP)} | Effort (ph)
min 10 583 10 250 10 250
mean 108.2 8109.5 122.8 5999.6 118.7 6644.9
max 558 63694 487 51100 558 63694
st. dev 113 10453.9 g97.2 77324 101.6 8684.3
obs 63 63 143 143 206 206

Table 4: Descriptive statistics for system size and effort.

f

i Test data set Train data set

; productivity factors productivity factors

! | cpl utl scl mvl omi skl cpl uti scl AvioRl sk
min L a0 il 2l o ol o

medlan 3l 3l 3l 4l 4 3 3 3 3 3 3 3
imean | 3.1 28 33 38 4 31/ 32 3.1 32 31/32 3

max . 5| 4 5| sl st s s s s s s s
'stdev | 1.02] 071 0.9i 0.5/ 0.75/ 0.95] 0.92] 0.68/ 0.9/ 0.84] 0.8] 1.09i
lobs | 63l 631 63| 631 631 631 143] 143 1430 143] 143 143|

Table 5: Descriptive statistics for system productivity factors

4.2 Listwise Deletion

The following section contains the results for the listwise deletion MDT.

4.2.1 MCAR and MAR Mechanisms

Table 6 shows the MRE,,..,... and Pred25,,,... Values™ for listwise deletion under
the MCAR and MAR mechanisms. Here, the values are only for the univariate

pattern. The results for the monotone pattern are not presented because with
listwise deletion they are, by definition, exactly the same as in the univariate case.

** For a description of the summary measures, see Section 3.9.
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Miss 5% 10% 15% 25% 40%
Mech. |Bias |-ing | MdMRE |Pred25] MdMRE | Pred25| MAMRE | Pred25| MJMRE | Pred25| MJMRE | Pred25
MCAR|n/a |cP | 0.92 16 1.1 1.6 1.4 1.6 16 | 16 2.3 32
ut | o.s3 16 1.1 1.6 14 16 18 | 16 2.1 3.2
sC | o.s82 16 1.2 16 14 | 16 17 | 16 2.3 16
RV | o.85 1.6 1.2 1.6 13 | 16 18 | 16 23 | 32
QR | 088 | 1.6 1.1 16 1.3 1.6 1.8 1.6 24 | 32
SK | 090 | 16 1.1 1.6 1.2 1.6 1.7 3.2 26 | 3.2
MAR ilarge [CP | o0.81 1.6 1.0 1.6 1.2 1.6 1.6 1.6 18 | 32
ut | o7e 1.6 1.0 1.6 1.2 1.6 1.5 32 1.9 3.2
sc | 075 1.6 1.1 1.6 12 | 1.6 15 1.6 2.0 3.2
RV | 075 1.6 1.0 1.6 1.3 | 16 1.6 3.2 2.1 3.2
QR | 084 | 16 1.1 1.6 12 | 16 1.5 1.6 1.8 32
| SK | 086 | 16 1.0 1.6 12 | 16 15 3.2 1.9 32
smallicP | 085 | 16 13 | 16 14 ' 16 1.6 1.6 24 16
ut 0.93 1.6 12 | 16 14 | 16 1.6 1.6 25 1.6
SC | 092 : 16 11 | 16 14 | 16 1.7 1.6 2.3 16
| RV | 089 | 16 1.1 16 12 | 1.6 18 1.6 2.3 1.6
QR | 088 | 16 11 16 12 | 18 1.7 16 | 23 1.6
E SK | 094 | 16 12 | 16 14 | 16 1.6 16 2.4 16

Table 6: Listwise deletion for univariate missing data on all productivity factors. For
the MAR case, it is indicated whether there is more missingness for large vs. small

projects.

A number of conclusions can be drawn from this table:

and MAR mechanisms.

The bias™ increases as the extent of missing data increases, for both the MCAR

o For the MAR mechanism, there is no striking difference between biases for large
vs. small projects.

¢ There are no striking differences between the MAR and MCAR mechanisms.

¢ The Pred25 value peaks at a 3.2% difference for 40% missing data. In our
context this would mean that 2 more out of the 63 projects in the test set have an
MRE greater than 25% when using listwise deletion.

o MdJMRE peaks at a difference of 2.6% for 40% missing data. This means that the
estimation accuracy will be different from the case where complete data is
collected by an average of only 2.6%.

™ For a description of this summary measure, see Section 3.9.

42




e For low percentages of missing data, up to 15%, listwise deletion performs
remarkably well, with a negligible bias in its performance. At higher extents of
missing data, the bias in terms of MAMRE and Pred25 is still rather small in
absolute terms. Since these results hold even for 6 productivity factors with
missing values, they indicate that listwise deletion is a reasonable approach to
use with MCAR and MAR missing data.
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Figure 5: Listwise deietion on each productivity factor with 5% missing data, using
MCAR mechanism.
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Figure 6: Listwise deletion on each productivity factor with 40% missing data, using
MCAR mechanism.

Figure 5 shows box and whisker plots® of the MAMRE bias when using listwise
deletion for 5% missing values under the MCAR mechanism for all six productivity
factors. Contrast this with Figure 6, which shows the MCAR results for 40% missing
data. It will be noticed that the variation in MAMRE is larger for 40% missing data.
Thus, the variability in the performance of listwise deletion deteriorates as the extent
of missing data increases. However, it should be recalled that this deterioration is
slight, in that variability increases by about 2-4%. A confirmatory pattem can be seen
in Figure 7, where we see that the MAMRE bias from using the listwise deletion MDT
for one of the productivity factors increases as the extent of missing data increases.
The same pattern was observed for all productivity factors and for MAR.

" Box and whisker piots present precision resuits, as described in Section 3.9.
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Figure 7: Summary of MdMRE results - listwise deletion for Customer Participation
productivity factor under MCAR.

Figure 8 shows a similar increase in variability for the Pred25 measure, indicating
that listwise deletion provides less stable resuits as the extent of missing data
reaches 40%. A similar pattern was observed for the other variables.
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Figure 8: Summary of Pred25 results - listwise deletion for Customer Participation
productivity factor under MCAR.

4.2.2 Non-ignorable Missingness Mechanism

5% 10% 15% | 25% 40%

Missing [Bias [MAMRE] Pred25 [MdMRE] Pred25 |MdMRE| Pred25 [MdMRE| Pred25 |MdMRE] Pred25
CP low | 0.82 1.6 0.84 1.6 1.1 1.6 15 16 1.6 | 32
high] 0.77 | 1.6 1.3 1.6 1.4 3.2 1.7 3.2 20 48
ut low | 0.86 | 1.6 1.1 | 16 1.2 : 1.6 1.5 186 1.8 32
high | 0.82 1.6 1.0 | 16 1.2 | 16 16 16 2.5 1.6

!(SC low | 0.88 1.6 1.2 | 16 15 32 2.4 3.2 35 =~ 32

|

high| 0.75 | 1.6 1.0 16 1.2 1.6 1.7 1.6 26 16
RV low 072 | 16 1.1 1.6 15 ' 16 2.0 1.6 29 ' 16
high | 0.72 1.6 1.0 1.6 1.2 ' 32 16 @ 32 22 @ 32
QR low 0.86 1.6 1.0 | 16 14 | 16 1.5 1.6 22 | 16
| high | 0.77 1.6 11 16 12 | 16 1.7 3.2 25 . 32
SK low | 0.96 1.6 1.2 1.6 1.2 1.6 1.7 1.6 22 32
thigh | 0.80 1.6 1.1 1.6 1.3 1.6 14 ' 32 20 - 32

Table 7: Listwise deletion MDT for univariate missing data on all productivity factors
using non-ignorable missing data mechanism. It is also indicated whether there is
more missingness for low vs. high values.

Table 7 shows the results for non-ignorable missingness. Here we can observe that:

o The performance of listwise deletion deteriorates as the extent of missingness
increases.
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¢ There is no systematic pattem of either greater missingness in low vs. high
values being better.

o Up to 15% misisng data, listwise deletion still has negligible biases.

o The results, when compared to MCAR and MAR, are not much worse,
indicating that the bias performance of listwise deletion remains the same
irrespective of the missingness mechanism.

The pattern observed above regarding the variability in our accuracy measures was
also observed for the non-ignorable missingness study points.

in general, we can conclude that listwise deletion has a remarkably small bias, even
at high percentages of missing data. The disadvantage of listwise is that the
variability in the accuracy tends to be large at higher percentages of missing data.

4.3 Mean Imputation
The following section contains the results for the mean imputation MDT.

4.3.1 MCAR and MAR Mechanisms, Univariate Case

Table 8 shows the resuits for mean imputation for univariate missing data under the
MCAR and MAR mechanisms. The MAR results are for higher biases on both smalil
and large projects.
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U IMiss 5% 10% 15% 25% 40%
Mech. |Bias |-ing | MAMRE [Pred25 | MAMRE [ Pred25 | MdMRE | Pred25| MdMRE | Pred25{ MAMRE | Pred25
MCAR[nva [cP [ 020 0 0.34 0 0.39 0 060 | 16 | 077 | 16

ut | o.1s 0 028 | 16 | 037 | 16 | 060 | 16 | 08 | 16
sC | 029 0 0.41 0 053 | 16 | 060 | 16 | 077 | 16
RV | 036 | 16 | 064 | 16 | 075 | 16 1.0 32 15 3.2
QR | 053 0 076 | 16 | 098 | 16 16 | 1.6 18 | 32
sk | 0.36 0 0.67 0 0.84 0 10 | 16 13 | 18
MAR Jlarge [CP | 0.23 0 0.32 0 0.38 0 060 16 | 075 16
Ut | o1 | o 025 | 16 | 03 | 16 | 080 . 16 14 16
‘; | SC | 023 0 0.40 0 062 | 16 | 070 16 | 081 32
: | RV | 0.40 0 063 | 16 | 075 | 32 1.0 32 1.2 48
; ; QR | 057 0 .77 | 0 1.0 . 16 1.5 = 16 20 16
| | SK | 040 0 0.68 0 080 ' 0 1.1 1.6 1.3 1.6
5 'smalllcP | 020 | 0 0.32 0 0.41 0 0.60 0 066 16
: ! UT | 016 | O 0.34 0 043 | 0 050 16 | 060 16
| ! sc | o028 | o | 047 | 16 | 084 | 16 | 070 18 | 10 32
RV | 044 | 16 | 057 16 | 080 | 32 15 32 2.1 48
! QR | 055 0 085 | 16 10 | 16 16 32 21 48
| sK | 037 0 0.61 0 085 , 0 1.0 . 16 1.2 16

Table 8: Mean Imputation for univariate missing data on all productivity factors. For
the MAR case, it is indicated whether there is more missingness for large vs. small
projects.

A number of conclusions can be drawn from this table:

The bias increases as the extent of missing data increases, for both the MCAR
and MAR mechanisms.

For the MAR mechanism, there is no striking difference between biases for large
vs. small projects.

There are no striking differences between the MAR and MCAR mechanisms.

The Pred25 value peaks at a 4.8% difference for 40% missing data. In our
context this would mean that 3 more out of the 63 projects in the test set have an
MRE greater than 25% when using mean imputation.

MdMRE peaks at a difference of 2.1% for 40% missing data. This means that the
estimation accuracy will be different from the case where complete data is
collected by an average of only 2.1%.

For low percentages of missing data, up to 25%, mean imputation performs
remarkably well, with a negligible bias in its performance. At higher extents of
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missing data, the bias in terms of MAMRE and Pred25 is still rather small in
absolute terms.

Compared to listwise deletion, mean imputation tends to have a slightly smaller bias
in terms of MAMRE for MAR and MCAR for univariate missing values. For the
Pred25 results, its performance is slightly better up to 256% missing data, after which
it is more difficult to see a difference from listwise deletion.
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Figure 9: Summary of MUMRE results — mean imputation for Customer Participation
productivity factor under MCAR.
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Figure 10: Summary of Pred25 results - mean imputation for Customer Participation
productivity factor under MCAR.

Figure 9 and Figure 10 are box and whisker plots for one of the productivity factors.
These show the MAMRE and Pred25 results as the missingness percentage
increases under MCAR. As can be seen, the variability tends to increase for
increased missingness. The same pattern was observed for other variables and
under MAR. However, it will be noticed that the extent of variability tends to be
smaller than for listwise deletion, indicating more stability in the bias of mean
imputation.

In general, we can state that mean imputation under the MCAR and MAR
mechanisms with univariate missing data performs rather well. While it does exhibit
bias, this is rather small, and tends to be as good as or better than for listwise
deletion. Furthermore, the variability of the bias tends to be smaller.

43.2 MCAR and MAR Mechanisms, Monotone Pattern

Table 9 shows the results for the MCAR and MAR mechanisms for the monotone
pattern of missingness for two variables. The first productivity factor listed in the
“Missing” column contains the larger amount of missing data (the conclusions do not
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change if the order is reversed, and therefore all possible permutations are not
presented here).
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| Miss- 5% 10% 15% 25% 40%
Mech. |Bias ling | MAMRE | Pred25| MAMRE (Pred25| MAMRE |Pred25]| MdMRE |Pred25] MdMRE | Pred25
MCAR|na icPUT| 0.25 0 0.43 0 0.54 1.6 0.69 1.6 0.96 3.2

cp,sc| o0.32 0 0.45 16 0.57 1.6 0.66 1.6 0.83 16
CP,RV] 0.37 1.6 0.47 1.6 0.68 1.6 0.81 3.2 0.95 32
CP.QR| 0.65 0 0.75 0 0.89 1.6 11 | 16 14 | 16
CP,SK| 0.35 0 0.49 0 0.50 0 063 | 16 068 | 16
ut.sc| o.2s 0 0.41 1.6 0.53 1.6 073 | 16 13 | 32
uTRvV| 033 1.6 0.47 1.6 0.54 1.6 072 | 16 1.1 32
UT,QR| 0.53 0 0.66 1.6 0.73 1.6 1.1 . 16 15 1.6
UT.SK] 028 0 0.40 0 0.43 1.6 056 | 16 0.85 1.6
SC.RV| 0.42 1.6 0.51 1.6 0.68 1.6 092 | 32 1.3 3.2
SC.QR|] 044 | O 0.63 16 0.73 1.6 10 | 32 1.2 3.2
IsCSK|] 032 i 0 0.48 16 0.61 1.6 0.69 16 0.75 32
RV.QR| 0.66 1.6 0.87 32 12 | 32 1.6 4.8 1.9 48
RV,SK| 0.52 1.6 0.82 1.6 1.1 | 16 1.6 3.2 2.1 3.2
QR,SK| 0.69 0 0.87 1.6 091 | 1.6 1.3 1.6 1.8 1.6
MAR |large |CP,UT} 0298 | 0O 0.43 0 048 | 16 092 | 16 1.0 1.6
crsc| o288 o 0.45 16 054 | 1.6 066 @ 16 0.75 1.6
CPRV] 029 | o 049 | 16 069 | 16 0.75 1.6 0.93 32

g ICPQR] 046 | 0 069 | 0 0.85 0 1.1 1.6 1.3 1.6

i iICP,SK| 0.26 0 052 | 0 0.56 0 0.61 1.6 0.64 1.6

. uTscl 023 o 033 | 16 | 054 16 | 10 32 15 32
| UT.RV| 024 16 049 | 16 0.69 32 1.0 3.2 1.8 48
: UT.QR] 046 , © 069 | 16 0.96 1.6 14 32 1.8 3.2

UTSK| 021 | o 041 | 16 0.55 1.6 0.93 1.6 15 3.2
i 'SCRV] 035 | © 055 | 16 0.83 1.6 0.84 32 1.1 4.8
i 'SCQR] 045 | © 064 | 16 0.74 1.6 1.1 1.6 1.5 32
'sC,SK| 028 @ 0 048 | 1.6 0.60 1.6 0.66 16 0.58 3.2
‘RV,QR| 054 @ 16 086 | 16 1.1 3.2 1.8 32 20 48
RV,SK| 047 | 16 079 | 16 1.1 3.2 1.4 32 1.3 6.3

; QR,SK| 0.56 0 0.77 0 1.1 1.6 1.4 16 1.9 1.6

'small |[CP,UT| 0.25 0 0.39 1.6 0.47 1.6 0.60 16 0.85 3.2

1 cpsc| 032 | 0 0.42 1.6 0.49 1.6 0.62 1.6 0.82 3.2

CPRV] 037 | 0 0.57 1.6 065 @ 16 0.85 3.2 1.1 48
.CP,QR| 055 [} 0.75 1.6 093 @ 1.6 1.0 1.6 1.3 32

| :CP.SK| 0.30 0 0.48 0 0.53 0 0.63 16 0.86 1.6

: UT.SC| 0.26 0 040 | 16 | 047 ., 186 | 063 16 1.0 16

‘ UTRV] 028 | 0 0.46 1.6 0.50 1.6 0.58 16 0.88 3.2

: UTQR| 049 | 0 0.59 1.6 064 @ 16 0.95 1.6 12 16

| WuTSK| 023 | o 0.34 0 037 ¢ 0 0.44 1.6 0.47 1.6

'SC.RV] 0.0 1.6 0.52 1.6 0.65 1.6 0.90 1.6 1.5 1.6

! iSC,QR| 0.44 0 0.68 1.6 0.71 1.6 1.1 32 1.7 32

; SC,SK| 0.34 0 048 | 1.6 057 | 16 073 | 16 0.94 1.6

I AV,.QR| 0.63 16 087 ! 32 1.1 32 24 | 48 37 4.8
; RV,SK| 046 16 0.74 1.6 0.88 1.6 1.8 | 32 3.3 3.2
l QR,SK| 0.8 ] 0.78 1.6 1.1 1.6 17 | 16 1.9 3.2

Table 9: Mean imputation MDT for monotone missing data on combinations of two

productivity factors. For the MAR case, it is indicated whether there is more

missingness for large vs. small projects.




From this table we can observe that:

The bias increases as the extent of missing data increases, for both the MCAR
and MAR mechanisms.

For the MAR mechanism, there is no striking difference between biases for large
vs. small projects.

There are no striking differences between the MAR and MCAR mechanisms.

There is no significant difference in performance for different combinations of
productivity factors.

The monotone pattern performs slightly worse than the univariate pattern.

The Pred25 value peaks at a 6.3% bias for 40% missing data. In our ésg;ext this
would mean that 4 more out of the 63 projects in the test set have an MRE
greater than 25% when using mean imputation.

MdMRE peaks at a bias of 3.7% for 40% missing data. This means that the
estimation accuracy will be different from the case where complete data is
collected by an average of only 3.7%.

For percentages of missing data up to 25%, mean imputation performs
remarkably well, with a negligible bias in its performance.

Table 10 shows the resuits for the case where more than two productivity factors
contain 40% missing data under the MCAR and MAR mechanisms. The MAR results
are for higher biases on both small and large projects. in agreement with the pattern
shown in Figure 2, the first productivity factor listed contains the larger amount of
missing data than the second, the second more than the third, and so on. Due to the

similarity of the results for the presented permutations, further resulits with additional
permutations are not presented.
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| MCAR MAR (large) | MAR (smail)
Missing MdJMRE| Pred25 | MAMRE | Pred25 |MdMRE]| Pred25
CP,UT,SC 1.1 3.2 1.0 3.2 0.90 3.2
CP,UT,SC,RV 1.0 3.2 0.90 3.2 0.96 3.2
CP.UT.SC,RV,QR 1.0 3.2 1.1 3.2 0.86 3.2
CP.,UT,SC,RV,QR,SK 0.93 3.2 1.0 3.2 0.79 3.2
UT,SC,RV 1.3 3.2 1.7 4.8 1.0 1.6
UT,SC,RV,QR 1.4 3.2 1.8 4.8 1.0 1.6
UT,SC,RV,QR,SK 1.3 3.2 1.8 4.8 1.0 1.6
UT.SC,RV,QR,SK,CP 1.4 3.2 1.7 48 1.0 1.6
SC,RV,.QR 14 3.2 1.5 4.8 2.0 1.6
ISC,RV,QR,SK 1.5 3.2 1.5 4.8 2.0 2.4
:SC,RV,QR,SK,CP 1.5 3.2 1.4 4.8 2.0 1.6
iSC,RV,QR,SK,CP,UT 1.6 3.2 1.3 4.8 2.0 1.6
RV,QR,SK 2.1 4.8 1.8 4.8 3.4 48
RV,QR,SK,CP 2.2 4.8 1.7 4.8 3.4 4.8
RV,QR,SK,CP,UT 2.1 48 1.8 4.8 3.4 4.8
RV,QR,.SK,CP,UT.SC 2.1 48 1.8 4.8 3.1 4.8
QR,SK,CP 1.8 1.6 1.6 1.6 2.1 3.2
IQR,SK,CP,UT 18 | 32 1.6 1.6 2.1 3.2
QR,SK,CP,UT,SC 16 | 16 1.8 1.6 2.1 3.2
i{QR,SK,CP,UT,SC,RV 1.8 | 32 2.3 1.6 2.1 3.2
SK,CP,UT 090 | 1.6 0.90 1.6 0.80 1.6
SK,CP,UT,SC 090 | 1.6 0.90 3.2 0.70 1.6
SK,CP,UT,SC,RV 090 i 1.6 1.0 3.2 0.80 1.6
SK,CP,UT,SC,RV,QR 11 16 0.90 3.2 0.80 1.6

Table 10: Mean Imputation, 40% missing data, monotone pattern, and muitiple
productivity factors using MCAR and MAR mechanisms. For the MAR case, it is

indicated whether there is more missingness for large vs. small projects.

Here we can observe that the performance is equivalent to the monotone pattern

with two productivity factors.

4.3.3 Non-ignorable Missingness Mechanism, Univariate Case
Table 11 shows the results for the case where the mechanism for missing data is

non-ignorable. Cases with biases towards low and high values for each productivity
factor are distinguished.
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] | 5% | 10% | 15% I 25% 40%
Missing |Bias [MdMRE] Pred25 |[MdMRE] Pred25 |MdMRE] Pred25 |MdMRE| Pred25 [MdMRE] Pred25
CP low | 033 ] 0 057 | 0 088 | 0 1.1 16 | 16 | 3.2
high | 0.20 | 0 | 0.31 0 |03 | 0 | o097 | 16 | 071 | 3.2
uT low | 029 | 0 | 059 | 0 074 | 16 | 089 | 16 | 16 | 16
high| 047 | O | 030 | 16 | 037 | 16 | 044 | 16 | 076 _ 16
SC low | 029 | 0 043 | 16 | 060 | 16 | 073 32 | 15 . 48
‘; high| 031 | O | 051 | 16 | 075 | 16 | 064 _ 16 | 1.0 . 16
RV low | 078 | 16 | 14 | 32 | 22 | 48 | 35 48 | 49 16
% high| 032 | 16 | 039 | 16 | 066 | 1.6 | 088 | 16 | 13 | 32
QR [low | 0.71 0 11 16 | 16 | 32 | 22 ' 48 | 32 . 63
high] 052 | 0 | 060 | 0 | o091 0 14 | 16 | 14 16
SK low | 033 | 0 | 044 | 0O | 049 | O | 060 ' 16 | 092 16
lhigh | 049 T 0 1.0 0 15 | 16 | 25 . 32 | 43 | 63

Table 11: Mean imputation MDT for univariate missing data on ail productivity
factors using non-ignorable missing data mechanism. It is also indicated whether
there is more missingness for low vs. high values.

The following observations can be made about the univariate non-ignorable case:
¢ The bias increases as the extent of missing data increases.

¢ [n general, the non-ignorable case with bias towards high values performs better
than MCAR and MAR whereas bias towards low values results in poorer
performance.

¢ [n general, having more missing observations with high values performs slightly
better than having more missing observations for low values on the variable.

o At 40% missing values, the Pred25 bias peaks at 6.3. In our context this would
mean that 4 more out of the 63 projects in the test set have an MRE greater than
25% when using mean imputation.

o The MAMRE bias peaks at 4.9%, which is considerably larger than any of the
values that we have seen so far.

o At and below 15% missing data, both the MAMRE and Pred25 biases tend to be
better than for listwise deletion for non-ignorable missingness.
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4.3.4 Non-ignorable Missingness Mechanism, Monotone Pattern

Table 12 shows the results for the monotone pattem of missing data and the non-
ignorable mechanism. In agreement with the pattern shown in Figure 2, the first
productivity factor listed contains the larger amount of missing data than the second.
It is important to note that for the monotone pattem of missing data, it is only the first
productivity factor listed in the “Missing” column that contains missing values
according to the non-ignorable mechanism.

5% | 10% | 15% | 25% | 40%

Bias |Missing [MAMRE | Pred25 [MdMRE]| Pred25 |[MdMRE| Pred25 |MdMRE|Pred25|MdMRE| Pred25
high |CP,UT 0.24 0.39 1.6 0.50 1.6 13 ' 32 1.9 ' 32

CP,SC 0.32 0.36 1.6 0.55 1.6 088 @ 16 097 @ 32

CP,.QR | 050 0.68 | 0.74 1.6 0.80 16 | 078 - 32

0
| CP.SK 0.22 035 . 0 036 ;. 1.6 0.62 1.6 0.79 3.2

0
0
CP,RV 0.27 0 042 | 16 0.50 1.6 071 32 1.1 4.8
0
0
0

uT.SC 0.24 035 @ 1.6 041 | 1.6 049 : 16 1.3 1.6

UT,RV 028 @ 1.6 039 | 1.6 049 | 1.6 066 - 16 1.2 1.6

UT.QR 049 . O 062 : 1.6 0.83 1.6 13 16 1.4 1.6

UT,SK 028 @ 039 . 1.6 052 | 1.6 0.7 1.6 0.77 1.6

SC.RV 038 = 1.6 0.58 1.6 0.76 1.6 0.90 1.6 1.8 1.6

SC.QR 0.36 0.59 1.6 0.72 1.6 1.3 1.6 1.7 1.6

SC.SK 0.32 047 | 1.6 0.58 1.6 0.71 1.6 1.0 1.6

RV.QR | 045 _ 16 | 057 = 16 | 072 | 16 | 1.2 16 | 18 16

|
!
| RV,SK | 039 057 | 16 | 072 ' 16 | 090 3.2 1.3 3.2
! QR,SK | 058 0.78 0 0.95 0 1.2 1.6 1.8 1.6

iCP,SC 0.39 0.66 | 1.6 073 | 1.6 1.1 1.6 2.2 4.8

|CP,RV 047 = 1. 089 ' 16 0.94 @ 16 1.3 3.2 1.4 4.8
ICP.QR 0.58 092 @ 1.6 093 | 16 1.2 1.6 1.6 3.2
CP.SK 0.40 069 ' 0 082 ' 0 099 ' 16 1.2 3.2
IUT,SC 0.33 051 16 072 | 1.6 1.1 3.2 1.1 1.6
UT.RV 033 | 16 055 @ 16 064 | 3.2 1.0 . 32 1.7 3.2
UT.QR 044 ' 0 058 ' 16 069 | 1.6 094 16 1.3 1.6
UT,SK 027 | 0 0.45 1.6 058 | 1.6 066 @ 16 0.96 1.6
SC.RV 040 @ 1.6 0.70 3.2 093 : 3.2 1.6~ 4.8 35 = 32
! SC.QR 0.53 0 1.0 3.2 1.2 | 48 2.0 4.8 3.6 3.2
I SC,SK 035 | 0 0.65 1.6 0.76 1.6 1.1 32 19 = 48
RV.QR | 097 @ 32 21 | 48 28 | 48 4.7 4.8 62 = 32
RV,SK 0.81 1.6 1.6 3.2 24 | 48 4.0 4.8 6.0 1.6
QR,SK 0.66 0 0.85 1.6 14 | 16 1.9 | 3.2 3.6 4.8

0

Q

6

0
| 0 4
llow ICP.UT 0.35 0 0.59 0 077 | 1.6 1.1 16 1.3 48

0

6

0

0

0

Table 12: Mean Imputation MDT for monotone missing data on combinations of two
productivity factors using non-ignorable missing data mechanism. It is also indicated
whether there is more missingness for low vs. high values.

The following observations can be made about the monotone non-ignorable case:
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¢ The bias increases as the extent of missing data increases.

o The performance is similar to that of MCAR and MAR when more high values of
the productivity factor contain missing values, but slightly worse for low values.

e In general, bias towards high values results in slightly better performance than
low values on the variable.

¢ The performance is slightly worse than the univariate case.

e There is no marked difference in performance for different combinations of
productivity factors.

e At 40% missing values, the Pred25 bias peaks at 4.8. In our context this would
mean that 3 more out of the 63 projects in the test set have an MRE greater than
25% when using mean imputation.

¢ The MJMRE bias peaks at 6.2%. This value is relatively large compared to the
results seen so far.

Next, we present the results where more than two productivity factors contain
missing data under the non-ignorable mechanism. Table 13 shows the results for the
case where more than two productivity factors contain 40% missing data. The

conclusions do not change for additional permutations, and therefore they are not
presented here.
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| bias=low | bias=high

Missing MdMRE| Pred25 |MdMRE| Pred25
CP,UT,SC 1.4 4.8 1.5 3.2
UT,SC,RV 1.3 1.6 1.4 1.6
SC.RV,.QR 4.1 3.2 2.2 1.6
RV,QR,SK 6.5 3.2 1.6 3.2
QR,SK.CP 3.4 4.8 1.8 1.6
SK,CP,UT 1.2 1.6 3.5 4.8
CP,UT,SC.RV 1.5 4.8 1.7 3.2
UT.SC,RV.QR 1.3 1.6 1.4 3.2
SC.RV.QR,SK 4.3 3.2 2.3 1.6
AV.QR,SK,CP 6.3 3.2 1.8 1.6
QR,SK,.CP.UT 3.1 4.8 1.9 1.6
SK,CP,UT,SC 1.1 1.6 3.3 4.8

CP,UT,SC,RV,QR 1.6 48 1.6 3.2
UT,SC,RV,QR,SK 1.3 1.6 1.3 1.6
SC,RV,QR,SK,CP 4.1 3.2 2.2 1.6
RV,QR,SK,CP,UT 6.3 3.2 1.9 32
QR,SK,CP,UT,SC 3.1 48 1.6 1.6
SK,CP,UT.SC,RV 1.1 1.6 3.0 48
'CP,UT,SC,RV,QR,SK| 1.7 48 1.7 32
\UT,SC,RV.QR,SK,CP] 1.3 1.6 1.4 3.2
'SC,RV,QR,SK,CP,UT| 4.2 3.2 23 1.6
RV,QR,SK,CP,UT.SC] 6.3 3.2 1.8 32
QR,SK,CP,UT,SC,RV] 3.1 48 2.1 1.6
SK,CP,UT.SC,RV,QR} 1.1 1.6 33 4.8

Table 13: Mean Imputation MDT for 40% monotone missing data on multiple
productivity factors using non-ignorable missing data mechanism. It is also indicated
whether there is more missingness for low vs. high values.

it can be seen that the resuits are similar to those in Table 12, where two productivity
factors contained missing values. Specifically, in cases where the first productivity
factor is the same the results are equivalent. Therefore, adding productivity factors
according to the monotone pattem does not affect the results.

4.4 Hot-Deck
The following section contains the results for the hot-deck imputation MDTs.

4.4.1 MCAR and MAR Mechanisms, Univariate Case
The MCAR and MAR missing data mechanisms are presented, with bias towards
both large and small projects (MAR only). The Euclidean and Manhattan distance
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functions are labelled “E” and “M” respectively. Table 14 summarizes the results for

the univariate missing data pattern on the Customer Participation productivity factor.

No Standardization
5% 10% 15% 25% 40%
Mech. |Bias |Dist| MOMRE | Pred25 | MAMRE |Pred25| MdMRE | Pred25| MAMRE | Pred25| MAMRE | Pred2s
MCARnia | M| o0.26 0 0.38 0 0.45 16 | 060 16 | 080 1.6
E| 027 0 0.43 0 0.48 16 | 076 16 0.96 1.6
MAR jlarge | M | 022 0 0.27 0 0.36 0 0.65 16 0.82 1.6
E} o021 0 0.43 0 0.58 0 0.73 1.6 1.0 1.6
small [ M| 025 0 0.47 16 0.58 1.6 075 | 16 1.1 1.6
E| 026 0 0.45 16 0.54 16 | o082 1.6 1.3 1.6
Z - score Standardization
5% 10% 15% 25% 40%
Mech. |Bias |Dist| MdMRE |Pred25| MdMRE ! Pred25 | MdMRE |Pred25| MdMRE | Pred25| MdMRE | Pred25
MCARlva | M| 025 0 0.43 0 0.44 16 | 063 16 0.85 1.6
E| 030 0 0.46 0 0.48 1.6 0.73 1.6 1.0 1.6
MAR Jlarge | M | 024 0 0.40 0 0.44 0 0.55 1.6 0.79 1.6
E| 030 0 0.43 0 0.52 0 0.71 16 0.74 1.6
ismall | M | 0.23 0 0.39 16 0.48 16 | 067 16 0.80 1.6
| PE| o032 0 049 | 16 0.55 16 | 072 1.6 1.0 1.6
@Iean Absolute Standardization
! 5% 10% 15% 25% 40%
Mech. |Bias |Dist| MdMRE [Pred25| MAMRE [Pred25| MAMRE [Pred25| MAMRE [Pred25| MdMRE [Pred25
MCAR|n/a | M| 028 ¢ 0 0.46 0 0.49 0 0.64 1.6 070 = 1.6
i L E | 0.29 0 052 | 0 0.56 0 0.71 1.6 0.90 1.6
MAR jlarge | M | 0.28 0 039 | 0 0.46 0 070 = 16 0.80 1.6
FE| 026 0 0.49 0 0.50 0 073 @ 16 0.86 1.6
small | M [ 0.31 0 0.48 1.6 0.46 16 | 074 @ 16 0.76 1.6
! E| 0239 | 0 | 04 | 16 | 058 | 16 | 071 16 | 081 15
25 Standardization
| 5% 10% 15% 25% 40%
Mech. |Bias | Dist] MAMRE [Pred25| MAMRE | Pred25 | MAMRE | Pred25 | MdMRE |Pred25| MdMRE | Pred2s
MCARjna | M| 0.28 0 0.38 0 0.49 1.6 0.60 1.6 076 & 1.6
E|] 025 | 0o 039 | 16 0.51 16 | 056 16 0.85 16
iMAR large [M [ 023 0 029 | 0 043 | 0 0.58 16 0.79 16
! i E) 021 0 0.31 0 040 | O 0.60 16 0.80 1.6
' ismall | M| o0.31 0 0.36 16 | o056 16 | 069 @ 16 | 089 1.6
| | E|] 030 | o 0.43 16 | 054 16 | 069 : 1.6 0.86 1.6

Table 14: All Hot-Deck MDTs for univariate missing data on Customer Participation

productivity factor. For the MAR case, it is indicated whether there is more
missingness for large vs. small projects.

The following conclusions can be drawn from this table:
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¢ The bias increases as the extent of missing data increases, for both the MCAR
and MAR mechanisms.

¢ For the MAR mechanism, there is no striking difference between biases for large
vs. small projects.

¢ There are no striking differences between the MAR and MCAR mechanisms.

o« There are no significant differences between any of the standardization

techniques or the two distance measures for both the MCAR and MAR
mechanisms.

¢ The Pred25 value peaks at a 1.6% bias for 40% missing data. In our context this
would mean that 1 more out of the 63 projects in the test set have an MRE
greater than 25% when using mean imputation. Although the difference is

relatively small, this is smaller than that of both the listwise deletion and mean
imputation MDTs.

¢ MdAMRE peaks at a bias of 1.3% for 40% missing data. This means that the
estimation accuracy will be different from the case where complete data is
collected by an average of only 1.3%. Again, although the difference is small, it is
better than listwise deletion and mean imputation.

e For all percentages of missing data, hot-deck imputation performs remarkably
well, with a negligible bias in its performance. This hoids regardless of the
standardization technique or distance measure used.

Given that the different hot-deck implementations have similar results, we focus
below on the one with z-score standardization and Euclidean distance.



5% | 40%
Factor |Mech. |Bias |MdMRE | Pred25 |[MdMRE ! Pred25
cP MCAR {n/a 0.30 1.0 1.6
MAR [large| 0.30 074 | 1.6
small] 0.32 1.0 | 1.6
ut MCAR n/a 0.25 0.85 1.6

0
0
0
0
MAR |large] 0.21 1.6 1.7 | 1.6
small] 0.25 0 052 | 1.6
SC MCAR |n/a 0.32 0 1.2 i 3.2
MAR |large| 0.25 0 088 | 3.2
small] 0.39 0 14 ' 32
RV MCAR!n/a 0.46 1.6 24 ' 16
MAR llarge| 0.40 1.6 21 . 3.2

small] 055 | 1.6 28 | 1.6
QR |MCAR|n/a | 062 | 0 . 26 48
MAR Jlarge] 060 | 0 | 25 @ 48
| ‘ smalll] 067 7 0 @ 29 | 48
0
0

SK ‘MCAR |n/a 0.37 093 | 16

‘MAR large| 0.51 085 16
i i smallf 035 { O . 11 | 1.6

Table 15: Traditional” Hot-Deck Imputation for univariate missing data on each

productivity factor. For the MAR case, it is indicated whether there is more
missingness for large vs. small projects.

Table 15 summarizes the results for traditional hot-deck imputation for each
productivity factor at both extremes of percentage of data missing. it can be seen
that there are no striking differences between the different productivity factors nor
each of the mechanisms.

" The hot-deck method using z-score standardization and Euclidean distance function.
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Figure 11: Summary of MdAMRE resuits - traditional” Hot-Deck imputation for
Customer Participation productivity factor under MCAR.
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Figure 12: Summary of Pred25 results - traditional”® Hot-Deck Imputation for
Customer Participation productivity factor under MCAR.

" The hot-deck method using z-score standardization and Euclidean distance function.
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The traditional® hot-deck imputation results for imputation using the MCAR
mechanism on one productivity factor, Customer Participation, are summarized in
Figure 11 and Figure 12. It can be seen that the MdMRE and Pred25 for all
percentages of missing values are equal to the MRE and Pred25 of the complete
data set analysis. The variance increases slightly for 40% missing data, but is not as
pronounced as that for listwise deletion and mean imputation.

4.4.2 MCAR and MAR Mechanisms, Monotone Pattern

Table 16 summarizes the results for the monotone missing data pattern on The
Customer Participation and Use of Tools productivity factors (the conclusions do not
change for other permutations of productivity factors, and are therefore not
presented here).
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'No Standardization

5% 10% 15% 25% 40%
Mech. |Bias |Dist| MAMRE |Pred25| MdMRE |Pred25| MAMRE |Pred25| MdMRE | Pred25| MAMRE | Pred25
MCARina | M| 031 0 0.47 1.6 0.60 1.6 0.74 16 1.0 1.6
E| 030 0 0.48 1.6 0.58 1.6 0.73 1.6 1.0 1.6
MAR (large | M | 0.29 0 0.52 1.6 0.63 16 0.93 16 1.1 3.2
E| 030 0 0.44 0 0.7 1.6 0.82 16 1.1 1.6
small | M | 0.29 1.6 0.47 1.6 0.55 16 0.76 1.6 097 | 16
E| 030 1.6 0.46 1.6 0.55 16 0.82 1.6 1.0 32
Z — score Standardization
5% 10% 15% 25% 40%
Mech. |Bias |Dist]| MAMRE | Pred25| MdMRE | Pred25{ MdMRE |Pred25] MdMRE | Pred25| MdMRE | Pred25
MCAR|v/a | M| 035 1.6 0.50 1.6 0.61 16 0.79 16 0.96 1.6
E|] o036 0 0.58 0 0.61 16 0.74 1.6 1.0 1.6
MAR flarge | M | 0.33 0 0.48 1.6 067 | 1.6 0.83 1.6 1.0 1.6
E| o3 0 0.57 1.6 073 | 1.6 0.86 1.6 1.1 1 18
small | M| o033 1.6 0.46 1.6 061 | 1.6 0.69 1.6 10 1 16
E| o03s 0 0.44 1.6 0.60 | 1.6 0.80 1.6 097 | 1.6
iMean Absolute Standardization
W ‘ 5% 10% 15% 25% 40%
Mech, |Bias |Dist| MAMRE | Pred25{ MAMRE |Pred25| MAMRE | Pred25| MdMRE | Pred25| MAMRE |Pred2s
MCARinva ' M| 031 0 0.49 1.6 0.67 1.6 081 ' 1.6 1.1 1.6
! | E] 037 , 0 052 | 1.6 063 | 1.6 0.83 1.6 1.0 1.6
MAR jlarge ' M{ 036 @ 0 057 16 | 067 | 16 | 094 | 16 | 099 1.6
E| 035 0 059 | 0 069 | 1.6 0.91 1.6 0.98 1.6
: small | M| 0.35 0 052 | 1.6 064 | 16 0.78 1.6 1.00 1.6
! , "E} 032 | 0 052 | 16 057 | 16 073 ' 16 0.94 1.6
25 Standardization
‘ 5% 10% 15% 25% 40%
Mech. |Bias | Dist| MJMRE | Pred25| MAMRE |Pred25| MAMRE | Pred25| MAMRE |Pred25] MdMRE | Pred2s
MCAR|none | M | 0.34 0 0.51 1.6 0.60 1.6 0.77 1.6 0.99 1.6
i E} 032 0 044 | 16 057 ' 1.6 072 | 1.6 1.0 1.6
MAR llarge | M | 0.30 0 048 | 1.6 062 | 1.6 084 | 16 1.1 1.6
E|] 027 0 0.45 16 060 | 1.6 083 | 16 1.0 1.6
small | M| 036 | o 0.50 1.6 0.65 1.6 0.71 1.6 0.88 : 16
E| 034 0 046 | 16 058 1.6 0.68 1.6 098 | 16

Table 16: Hot-Deck MDTs for monotone missing data on Customer Participation and
Use of Tools productivity factors. For the MAR case, it is indicated whether there is
more missingness for large vs. small projects.

From this table we can observe that:

MCAR and MAR mechanisms.

vs. small projects.

Bias tends to increase as the extent of missing data increases, for both the

For the MAR mechanism, there is no striking difference between biases for large




o There are no striking differences between the MAR and MCAR mechanisms.

o There are no significant differences between any of the standardization
techniques or the two distance measures for both the MCAR and MAR
mechanisms.

e The Pred25 value peaks at a 3.2% difference for 40% missing data. In our
context this would mean that 2 more out of the 63 projects in the test set have an
MRE greater than 25% when using mean imputation. Although the difference is
small, this value is smaller than that for mean imputation.

o MdJMRE peaks at a difference of 1.1% for 40% missing data. This means that the
estimation accuracy will be different from the case where complete data is
collected by an average of only 1.1%. Again, this is slightly better than mean
imputation.

e For all percentages of missing data, hot-deck imputation performs remarkably
well, with a negligible bias in its performance. This holds regardless of the
standardization technique or distance measure used.

o Hot-deck imputation technique on monotone missing data performs slightly worse
than for the univariate case.

Given that the different hot-deck implementations have similar results, we focus
below on the one with z-score standardization and Euclidean distance.

Table 17 summarizes the results for the case where more than two productivity
factors contain low and high extremes of missing data under the MCAR and MAR
mechanisms for the traditional hot-deck imputation. The MAR resuits are for higher
biases on both small and large projects.
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5% 40%

Factor |Mech. |Bias | MAMRE | Pred25 | MdMRE | Pred25
CP,UT |[MCAR|n/a 0.36 0 1.0 1.6
MAR |large 0.31 0 1.1 1.6
small 0.35 0 0.97 1.6
UT,SC [MCAR |n/a 0.33 0 1.1 1.6
MAR |large 0.25 1.6 1.7 3.2
small 032 | O 0.81 1.6
SC,RV [MCAR|n/a 050 | 1.6 1.5 1.6
MAR [large | 037 . 16 12 | 32
small 0.50 1.6 1.7 1.6
RV,QR IMCAR|w/a 077 | 1.6 34 3.2
MAR ,(Ia_rge 066 | 1.6 25 1 3.2
small 0.88 16 | 37 : 16
QR,SK [MCAR|n/a 0.77 0 24 ' 32
MAR |large 0.74 0 24 | 32
! small 0.63 ! 0 2.0 3.2
ISK,CP {MCAR |n/a 0.53 | 0 | 097 ! 16
MAR llarge 0.64 0 | 0983 ! 1.6
ismail 0.44 | 0 | 099 | 16

Table 17: Traditional® Hot-Deck Imputation for monotone missing data on
combinations of productivity factors. For the MAR case, it is indicated whether there
is more missingness for large vs. small projects.

In general, the resuits are similar to those presented in Table 16, where the
Customer Participation and Use of Tools productivity factors contained missing data.
It can be seen that there is no significant difference in performance for all
combinations of two productivity factors.

4.4.3 Non-ignorable Missingness Mechanisms, Univariate Case

Table 18 shows the results for the case where the mechanism for missing data is
non-ignorable. Cases where there is non-ignorable missing data with biases towards
low and high values for each productivity factor are distinguished. The traditional hot-
deck method, using z-score standardization and Euclidean distance measure, is
presented. The results for the other standardization techniques and Manhattan
distance function are similar and are thus not presented here.

™ The hot-deck method using z-score standardization and Euclidean distance function.
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cp ut sC RV QR SK

Bias| MAMRE | Pred25| MdMRE |Pred25| MdMRE | Pred25 | MAMRE |Pred25| MdMRE | Pred25| MAMRE | Pred25
Low 1.5 3.2 0.86 1.6 1.8 3.2 4.8 1.6 3.4 6.3 0.86 1.6
Highy 1.1 1.6 2.0 1.6 1.3 1.6 1.6 1.6 1.4 1.6 34 4.8

Table 18: Traditional® Hot-Deck Imputation MDT for 40% univariate missing data on
each productivity factor using non-ignorable missing data mechanism. It is also
indicated whether there is more missingness for low vs. high values.

The following observations can be made about the univariate non-ignorable case:

¢ The performance of hot-deck for the non-ignorable case is slightly worse than for
MCAR and MAR.

o At 40% missing values, the Pred25 bias peaks at 6.3. In our context this would
mean that 4 more out of the 63 projects in the test set have an MRE greater than
25% when using mean imputation.

¢ The MdMRE bias peaks at 4.8%.

¢ At 40% missing data, both the MAMRE and Pred25 biases are slightly better
overall compared with mean imputation with non-ignorable missingness.

4.4.4 Non-ignorable Missingness Mechanism, Monotone Pattern

Table 19 shows the results for 40% missing data with monotone pattern and the
non-ignorable mechanism. Cases where there is non-ignorable missing data with
biases towards low and high values for each productivity factor are distinguished. In
agreement with the pattern shown in Figure 2, the first productivity factor listed
contains the larger amount of missing data than the second. It is important to note
that for the monotone pattern of missing data, it is only the first productivity factor
listed in the “Missing” column that contains missing values according to the non-
ignorable mechanism. The traditional hot-deck method, using z-score
standardization and Euclidean distance measure, is presented as the results for the
other standardization techniques and Manhattan distance function are similar and
are thus not presented here.

* The hot-deck method using z-score standardization and Euclidean distance function.
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CPUT UT,SC SC,RV RV,QR QR,SK SK,CP

Bias| MdMRE | Pred25| MdMRE |Pred25] MdMRE |Pred25| MdMRE | Pred25{ MdMRE |Pred25| MdMRE  Pred25
low 1.3 3.2 0.99 1.6 3.9 3.2 7.0 3.2 2.7 3.2 0.99 1.6
high 1.2 1.6 1.4 1.6 1.2 1.6 1.7 1.6 1.5 1.6 2.8 3.2

Table 19: Traditional”’ Hot-Deck Imputation MDT for 40% monotone missing data on
combinations of productivity factors using non-ignorable missing data mechanism. It
is also indicated whether there is more missingness for low vs. high values.

The following observations can be made about the monotone non-ignorable case:
¢ The performance is slightly worse than that of MCAR and MAR.

¢ The results are similar or slightly worse overall compared to the univariate pattern
for the non-ignorable case (Table 18).

e The Pred25 bias for this high level of missing data peaks at 3.2. In our context
this would mean that 2 more out of the 63 projects in the test set have an MRE
greater than 25% when using mean imputation.

¢ The MdMRE bias peaks at 7.0%.

The hot-deck resuits presented indicate that there is no marked difference in the
performance of different types of hot-deck. Furthermore, while the MdMRE and
Pred25 results are slightly better than listwise deletion and mean imputation, but the

improvement is so slight that they would easily be offset by the complications of
setting up a hot-deck.

4.5 Concordance Between Train and Test Set

While constructing cost estimation models, it is a common assumption that the
population represented by the training data set would be the same as the population
represented by the test data set, and similar to any new projects for which cost
predictions are made. If this is not the case, then this has implications on the
performance of MDTs.

Note from Table 5 that the Requirements Volatility (RV) variable distribution has a
different central tendency (mean or median) for the train and test data sets.
Specifically, the test data set tends to have projects with a larger Requirements

" The hat-deck method using z-scare standardization and Euclidean distance function.
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Volatility than the training data set. When there are non-MCAR missing values on
RV such that there are more values missing on smaller values of RV, we witness a
deterioration of the imputation MDTs, for univariate and monotone pattemns. We
explain this below.

RV is correlated with the size of the project, in that projects with little effort are likely
to have a low Requirements Volatility, and also are likely to be smaller. Therefore,
the pattern of missingness for non-ignorable missingness with more missing values
for low RV will tend to be similar to MAR when smaller projects are more likely to
have missing values.

Also, recall that the accuracy measures we use tend to penalize smaller projects
more. For instance, a 10 person-month overestimate for a 10 person-month project
would have a much worse MRE than for a 100 person-month project.

When there are more missing values for small RV projects, values imputed by mean
imputation will by definition be larger than the actual RV values. Therefore, the
regression model will be predicting worse for small projects in the test data set, and
because of the behavior of MRE, this will result in a small prediction accuracy.

Hot-deck imputation works best when the hot-deck covariates are strongly correlated
with the variable with missing values. In our case, the covariates that we used were
not strongly correlated with RV. Therefore, the hot-deck tended to impute vaiues that

were larger than the actual RV values, resulting in behavior similar to mean
imputation.

Because of the above, listwise deletion performed better than the imputation
techniques when low values of RV had many missing values. In fact, this kind of
outcome would be expected whenever the training data set has projects that have,

on average, smaller values on a particular variable and missingness occurs more
frequently on smaller values on that variable.

4.6 Summary
Below we provide an overall summary of our findings:
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In general, all MDTs tend to perform well in absolute terms, with their bias
being consistently of a low percentage. This has some implications on
previous software engineering research. Given that the most common
practice thus far has been to use listwise deletion, our results indicate that the
detrimental consequences of this would be rather minor. Listwise deletion has
the appeal of being a simple approach. However, researchers couid do better,
as we discuss below.

For all mechanisms and pattens, we found that the performance of the MDTs
(in terms of bias and precision) deteriorates as the percentage of missing data
increases.

The precision of listwise deletion tends to be worse than the other MDTs,
especially as the percentage of missing data increases (Figure 13 exempilifies
this trend).

We did not find marked differences in the performance between MCAR and
MAR mechanisms. The only exception is for monotone patterns with a large
percentage of missing data, where the imputation techniques tend to perform
slightly worse under MAR in terms of Pred25. This is evident in the summary
plot in Figure 13.

For hot-deck imputation, the differences amongst the various types of hot-
deck parameters were not marked. Therefore, we suggest a traditional hot-
deck is appropriate. A traditional hot-deck uses Euclidean distance and z-
score standardization. Euclidean distance is the most common distance
measure, and thus its appeal. Standardization is a reasonable thing to do
given that otherwise size would systematically dominate any distance.

In general, the MDTs tend to perform slightly worse with monotone patterns of
missingness compared with the univariate pattem.®

* Except for listwise deletion, where the results are exactly the same as for the univariate missingness case.

70



For monotone patterns of missingness, increasing the number of productivity
factors with missing values to more than two does not have a marked impact
on the performance of MDTs.”

The MDTs tend to perform slightly worse under non-ignorable missingness
compared with MCAR and MAR.

Any hot-deck imputation technique will work well in absolute terms, with
accuracy differences from a complete data set rarely, if ever, going above 3%.
A summary of the performance of the three MDTs is presented in Figure 13.
Mean imputation performs slightly worse than hot-deck, but the degradation is
minor. Listwise deletion still performs very well, but its performance is a slight
degradation over mean imputation and hot-deck. The above conclusions hold
irrespective of the missingness mechanism (MCAR or MAR), missingness
patten (univariate or monotone on two variables), extent of observations with
missing values (up to 40%), and productivity factors under consideration.

 Excapt for listwise deietion, where the results are exactly the same as for the univariate missingness case.
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Figure 13: 40% Missing Data on Customer Participation productivity factor using
MCAR, MAR and Non-ignorable(NI). 'Use of Tools productivity factor also contains

missing data. "The hot-deck method using z-score standardization and Euclidean
distance function.

4.7 Discussion

The best way to handle missing data is to maximize response in the original sample.
In some cases, it may be desirable to resample if large amounts of missing data are
in the original sample. But in the most likely scenario, in which there is missing data,
we can make some practical recommendations. Furthemmore, if ensuring complete
data sets would be too costly, then our recommendations would result in models that
would be almost as accurate had complete data sets been attained.



We found that in general, all MDTs perform rather well in terms of bias and
precision. The differences between the MDTs under the various simulated conditions
are small. This implies that common practices thus far of using listwise deletion
would not have penalized the accuracy of cost estimation models too greatly.

One potential reason for this finding is that the impact of the productivity factors is
rather small compared with the effect of size. This is similar to the conclusion drawn
in a previous study, where Matson et al. showed that there was only a small
improvement when productivity factors were added to the baseline model relating
effort to project size [63]. If this is the general case, then ignoring or imputing the
missing values on the productivity factors would have little influence on the accuracy
of the prediction models.

However, one would in principle prefer to use an MDT with the smallest bias and
greatest precision. Therefore, it is up to the analyst to decide whether the added
complexity of other MDTs, such as hot-deck, is worth the improvement in bias and
precision.

Amongst the MDTs examined, we found that imputation techniques perform better
than listwise deletion.* To obtain the best performance from cost estimation models,
it would therefore be prudent to apply the appropriate imputation technique. QOur
recommendations are summarized in the decision tree of Figure 14. The tree has a
decision point at the non-terminal nodes, and the edges indicate the vaiue. For
example, starting from the root, if one believes that the missingness mechanism is
MCAR or MAR, then take the edge on the left, otherwise take the edge on the right.
The terminal nodes indicate the recommended MDT.

* The exception is when there is a discrepancy batween tha distribution of variables between the training data set and the test
data set, or future projects, wheraby the training data set tends to have smaller values, as described in Section 4.5.
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Mechanism

MCAR/MAR Non-lgnorable

Pattern Pattern

Univarlm/\notone Univariate Monotone

Mean % Missing Hot-Deck  Hot-Deck
Imputation®

<40% 40%
Mean Hot-Deck™
Imputation®™

Figure 14: Recommendations for selecting MDTs. (a) This is generally the case,
irrespective of the percentage of missing data. (b) It should be noted that here the
difference between the choice of mean imputation and hot-deck is slight.

In order to apply the above decision tree, one has to determine whether the missing
data mechanism is MCAR, MAR, or non-ignorable. It is possible to test whether data
is missing completely at random [60]. To test for MAR, one could construct a logistic
regression model with the dependent variable being the missing status and the
covariates being those fully observed. If any of the covariates is found to be
associated with the missingness indicator, then one could decide that the
missingness mechanism is MAR. The remaining parameters necessary to use the
decision tree (i.e., pattemn and percentage of missing data) are easily determined
from a data set.
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4.8 Comparison to Previous Work

The literature suggests that under MCAR and a low percentage of missing data,
listwise deletion tends to perform well. For instance, Gilley and Leone [36] state “If
the item nonresponse is nonsystematic and represents a small percentage of a
reasonably large sample, then excluding the nonrespondents from the sample would
have a negligible effect on any statistical results”, and Frane [33] notes “if the
number of subjects with missing data is small, if data are missing at random, and if
interest lies in statements regarding a population rather than individuals, the
elimination of subjects with missing data is likely to lead to a satisfactory analysis.”
Furthermore, one Monte Carlo simulation provides corroborative results in that at low
percentages of missing values (10% or less), they found that listwise deletion does
not give markedly distorted estimates of regression coefficients and R’ when data is
missing at random [74].

Another study (53] analysed the performance of five MDTs for dealing with data
missing nonrandomly, namely listwise deletion, pairwise deletion, mean imputation,
simple regression imputation, and multiple imputation. Performance of each
technique was based on parameter estimates of a two predictor regression model.
The results showed that in general the three imputation techniques examined, mean
imputation, simple regression imputation and multiple imputation, did not perform
well with nonrandomly missing data. In contrast, the listwise and pairwise deletion
techniques performed wel: when the level of missing data was less than 30%. This is
consistent with our results, in that listwise deletion produces reasonable results
under a variety of different missingness schemes and reiatively high percentages of
missing data.

For low percentages of missing values under MCAR, Roth (77], based on a literature
review, recommended using hot-deck imputation. A simulation study by Lee and
Chiu [56] led to the conclusion that listwise deletion is a preferred MDT to mean

imputation when computing the polychoric correlation. We are, however, assuming a
regression model.
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Roth and Switzer [78] performed a Monte Carlo simulation comparing different
MDTs. Techniques considered were listwise deletion, pairwise deletion, mean
imputation, regression imputation, and hot-deck imputation under an MCAR
mechanism. The resuits showed that pairwise deletion had the least amount of
dispersion and average error around true scores for bivariate correlations. In the
case of multiple regression, the performance of pairwise deletion was similar to that
of listwise deletion. Furthermore, the authors recommended against the use of mean
imputation. For regression parameters, the authors noted that there are slight
differences between the various MDTs studied. This is consistent with our
conclusions, even for MAR and non-ignorable missingness mechanisms. In our
study, however, we did find that mean imputation performed better than listwise
deletion for the MCAR setting.

Another simulation found that for data missing at random, mean imputation tended to
perform slightly better than listwise deletion [74]. This is consistent with our results.
For high percentages of missing values under MCAR and MAR, Roth recommended
hot-deck imputation [77]. This is the same conclusion that we drew based on our
simulations for the software cost estimation problem. Similarly, he recommends hot-
deck for low percentages of data that is not missing at random. At high percentages
of data that are not missing at random, Roth suggested maximum likelihood
estimation {77]. However, we did not evaluate this as part of our study. We did find
that hot-deck imputation worked best under these conditions for the software cost
estimation problem.

One study by Kaiser found that the performance of hot-deck methods decreases
with an increase in the proportion of records containing missing values, the increase
in the number of missing values in each record, or the combination of both [47]. This
is somewhat consistent with our results, except that we did not find that increases in
the number of variables that have missing values beyond two had a substantial
impact on the accuracy of hot-deck imputation. Further evaluations of the hot-deck
procedure were performed [31][4][26][29].
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Cox and Folsom [26] performed a simulation using an actual data set, where they
were evaluating estimates of univariate means and proportions under different
MDTs. They found that for discrete questionnaire items, hot-deck tended to reduce
bias compared to listwise deletion, with better performance for items that had the
greatest missingness. However, they also noted that the variance of the estimates
was inflated by hot-deck. This was also noted by Emst [29]. For continuous items,
they concluded that the performance of hot-deck was inferior: it did not reduce the
bias in the estimates and when it did, the variance was large. This is consistent with
our results, in that the productivity factors can be considered as discrete variables by
their definition, and we found that hot-deck tended to outperform listwise deletion.
Another simulation was performed by Ford [31] where he compared six different
MDTs, including four variants of hot-deck imputation. His criteria were estimates of
the mean and its variance. Ford found that there was no difference in the
performance amongst the different MDTSs, although they were better than listwise
deletion. This finding is also consistent with our simulation results. Both of the above
studies, however, focus on parameters that are different from those that we
evaluated (i.e., the accuracy of predictions from a regression model).

Perhaps the most important message from the above review is that it is critical to
evaluate quantitative techniques using software engineering data sets. There is a
mixed correspondence between our results and those obtained from previous
studies. This is not surprising since the previous work used different evaluation
criteria, and the distributions of the variables they simulated were different.
Furthermore, techniques such as hot-deck, which tend to work best when there are
strong correlations between the covariates and the variable with missing values, will
perform differently depending on the correlation structure amongst the variables.
This correlation structure may not be transportable from other disciplines.

4.9 Limitations

In this paper, we reported on a simulation study to evaluate some MDTs for dealing
with missing data during the construction of software cost estimation models. While
we have attempted to design the simulation to be as comprehensive as possibie,
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covering many plausible different missingness scenarios, we cannot claim that this
study is the last word on missingness for cost estimation modeling. Below we identify
the limitations of the study, which in tum suggest avenues for further research.
However, it should be noted that most of these limitations are a consequence of the
scope that we have defined for our study. We already simulated more than 280 000
study points, which is quite extensive. Further simulations can be performed to
address situations that we have not considered.

Our simulation study was performed using one data set in the business application
domain. Although the data set was large, giving us confidence in the conclusions we
draw, other simulations would have to be performed on different data sets to confirm
our findings. We have attempted to be precise in describing the details of our
simulation as an aid for future replications.

We only simulated missingness on the productivity factors. Our rationale has been
that if data on the size variable and the effort variable are missing, when building a
cost estimation model, then one has little to go on. This may be a reflection of a
serious data collection problem. Whereas missingness on questionnaire responses,
while not desirable, is more likely to happen.

Our evaluation criteria concemed only prediction accuracy. We did not consider the
parameter estimates in the regression models or the effect of MDTs on statistical
tests of significance. The objective of our study was to focus on the utility of such
models for making effort predictions for new projects. It is plausible that a simulation
that used other evaluative criteria may come up with different recommendations.

The simulations we performed selected six productivity factors out of an initial fifteen.
We did not utilize the dropped nine productivity factors during the imputation
procedures we used. Since the excluded factors are likely strongly correlated with
some of the included factors (and this is one reason for dropping them in our
analysis due to the increased risk of collinearity in the regression model otherwise),
they may have served as useful covariates in a hot-deck and have resuited in even
better performance for this imputation MDT. However, in practice, researchers would



be more likely to exclude variables with many missing values from their analysis, and
therefore excluded variables would not necessarily serve as good covariates.

We only considered up to 40% of the observations having missing values, which
encompasses most practical situations. It is possible that in some studies there
would be more than 40% missing values. However, it is contended that this would be
an indicator of a severe data collection problem. For instance, Raymond and
Roberts [74] state “With 40 percent of the data missing, one would have to question
seriously the appropriateness of conducting any analysis.” Furthermore, the wisdom

of doing any analysis with 30-40% missing data has been questioned by Roth [77]
and Ford [31].

When one is constructing a cost estimation model, it is not known a priori whether
the available data set is concordant with future projects. Therefore, when the choice
of MDT depends on this knowledge, as alluded to in Section 4.5, it is difficult to
choose the optimal MDT. We therefore based our recommendations on the
assumption that there is such a concordance. This is the same assumption invoked

in all previous cost estimation studies that utilize historical data.

Finally, our simulation focused on ordinary least squares regression as the modeling
technique. This is the most popular technique for building cost estimation models,
and has been found in recent studies to perform at least as good as altematives. It is
plausible that other modeling techniques would require different MDTs.
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Chapter 5: Conclusions

The objective of this paper was to perform a comprehensive simulation to evaluate
techniques for dealing with missing data in cost estimation models. We simulated a
total of 293 400 study points, varying: the number of variables with missing data
(from 1 to six), the percentage of missing data (from 5% to 40%), the missing data
mechanism (MCAR, MAR, and non-ignorable missingness), the missing data pattern
(univariate and monotone), and comparing 10 different techniques for dealing with
missing data. The performance of this study was greatly facilitated by the existence
of a large and complete software project data set. This is not very common, as many
cost data sets do have missing values.

Our results provide practical and substantiated guidelines for researchers and
practitioners constructing cost estimation models when their data sets have missing
values. Aithough we show that deleting observations with missing values has a small

penalty, better performance would be obtained from applying imputation techniques.

We encourage the replication of this simulation study on alternative data sets to
confirm, or otherwise, our conclusions. If indeed further replications confirn our
findings, then this has important practical significance to those building cost
estimation models. Furthermore, future work ought to examine alternative imputation

techniques, as these may provide even better performance than the ones we
studied.
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Appendix A: Box and Whisker Plots

In this paper, box and whisker plots are used quite frequently. This appendix is
intended to explain how to interpret such a diagram.

Extreme
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e e ‘ . 3*IQR
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.o~ n ........ jl[QR
Quthers 0
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Figure 15: Description of a box and whisker plot.

Box and whisker plots are used to show the variation in a particular variable. Figure
15 shows how such a plot is constructed. The box represents the inter-quartile range
(IQR). The IQR bounds the 25" and 75" percentiles. The 25 percentile is the value
of the variable where 25% or less of the observations have equal or smaller values.
The same is true for the 75" percentile. The whiskers are the largest values within
1.5 times the size of the box. This value of 1.5 is conventional. Outliers are within 1.5
times the size of the box beyond the whiskers, and extremes are beyond the outliers.

Finally, usually there is a dot in the box. This dot denotes the median, or the 50"
percentile.

The box and whisker plot provides a versatile way for visualizing the obtained values
on a variable.
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Appendix B: Definitions of the Productivity Factors
This appendix provides a short description of the productivity factors in the LATURI

data set, as well as the question from the questionnaire used to collect data

pertaining to that factor. Each question contains the five possible answers, based on

the 1 — 5 numerical scale. In addition, each productivity factor is separated into one

of four groups: project, pracess, product, and people factors.

B.1 Project factors
The following list contains those productivity factors that assess elements of the

software project.

B.1.1

B.1.2

Customer Participation

How actively the customer (user) participates in the development

1 — Very Small: The customer does not have time to participate in the project
definition or in project development.

2 — Smalll: Customer participation is passive. The customer has approved a
small amount (less than 30%) of software function.

3 - Nominal: The customer participates in the project at satisfactory level. The
customer has approved approximately half of the functions (30-70%).

4 — Much: The customer actively participates in the project. The customer has
defined and approved most of the functions (over 70%), including ail of the
most important functions.

5 — Very Much: The customer participates very actively. Consequently, most
of the functions will be slightly volatile.

Development Environment Adequacy
The performance level of tool and equipment resources during the project

1 = Very Small: Development facilities continually fall short of expectations.
Constructing test environments requires special arrangements.



B.1.3

2 — Small: There are shared equipment/machine resources. Delays exist in
some stages (e.g. compiling and testing).

3 - Nominal: There is enough equipment and tool resources during
development work. All members have their own workstation.

4 - Much: There is enough equipment and tool resources to handle capacity
peaks (e.g. efficiency, storage, response time).

5 — Very Much: There exist dedicated development environments specifically
for this project.

Staff Availability
The availability of software personnel during the project

1 — Very Small: Availability of the key software personnel to perform most
tasks is small. Key personnel are involved in many customer and
maintenance responsibilities simultaneously.

2 — Small: The team members are involved in other simultaneous projects in
addition to maintenance responsibilities. This project is low priority.

3 - Nominal: The key members of this project are invoived in one other
project at most. Responsibilities of this other project can effect their
availability for this project.

4 - Much: Members are involved in this project close to full time. Some key
staff may have some availability problems.

5 -~ Very Much: Qualified software personnel are available when needed, and

can fully participate in this project. Personnel are ready for short bursts of high
overload during the project.

B.2 Process factors

The following list contains those productivity factors that assess elements of the
software process.

B.2.1

Use of Tools
Use and quality of tools available for the project
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B.2.2

B.23

1 — Very Small: Minima! amount of tools are available (e.g. editors, compilers,
simple debugging tools).
2 - Small: Basic tools are available (e.g. interpreters, editors, compilers,

debuggers, databases, libraries).

3 - Nominal: There exists a development environment, data base
management system and support for most phases.

4 - Much: Modern tools are available (e.g. CASE, project planning,
application generators). There are standardized interfaces between phases
and/or tools.

5 — Very Much: Integrated CASE environment that covers the whole life cycle.
All tools can support each other.

Requirements Volatility
Stability of customer (user) requirements

1 — Very Small: Requirements are continuously changing. More than 30% of
the functions are new or modified versions of the original requirements.

2 — Smail: Some essential changes are made that impact total architecture.
Project must retum to previous phases and modify previous resuits. 15-30%
of the functions are new or modified.

3 - Nominal: Changes to specifications occur, but they are managed and their
impact is minor (less than 15% of the functions are new or modified).

4 — Much: Some changes to specifications, some new or adapted functions,
some minor changes in data contents.

5 — Very Much: No new features added during the project.

Use of Standards
The quality of the existing standards and procedures applied on this project.

1 - Very Small: Standards and basic practices are developed during the
project.



2 — Small: Standards are partially known. Additional procedures must be
developed for some tasks.

3 — Nominal: Standards are well known. General standards are used that
have been applied in the past. Some tailoring is needed for most major tasks.

4 — Much: Detailed standards are used that have been applied in the same
environment in the past.

5 - Very Much: Stable and detailed standards are used that are familiar to the
team.

B.2.4 Use of Methods
The use and quality of methods to be applied during the project

1 — Very Small: The project does not use any modern software engineering
methods (e.g. mostly meetings, individual use, trials, etc.).

2 — Small: The use of methods is minimal. Traditional concepts are used (e.g.
structured analysis and design, top-down design, etc.)

3 ~ Nominal: Well known methods are used (e.g. structured analysis and
design, conceptual analysis, entity relationship modeling, etc.)

4 - Much: Detailed methods are integrated that cover most activities. Support
exists for most methods and all members of the project use methods.

5 - Very Much: Methods are used that cover the whole lifecycle and are

tailored to satisfy specific project needs. Methods are supported for each
individual project.

B.3 Product factors

The following list contains those productivity factors that assess elements of the
software product.

B.3.1 Software Complexity (Logical)

Computing, I/O-needs, algorithmic features and user interface requirements

1 - Very Much: Require functionally and technically difficult solutions. User
interface is very demanding. Distributed databases (many database systems).
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B.3.2

B.3.3

2 — Much: Require processing that is more demanding than normal. Database
is large and demanding.

3 - Nominal: Are functionally typical. Normal standard database.
4 - Small: Are functionally clear. Database solution is clear.
5 — Very Small: Are routine. No need for user interfaces. Simple database.

Quality Requirements (Software)
The quality goals that product must satisfy

1 - Very Much: There exist quantified quality requirements. 100% satisfaction
of the technical and functional goals must be satisfied, minimizing the amount
of the maintenance work.

2 — Much: There exist formal reviews and inspections between all phases.
Attention devoted towards documentation, usability and maintenance.

3 - Nominal: There exists proper documentation and critical features. Design
and implementation is tested, modules/job flows tested, as well as
walkthroughs. The maintenance work is planned.

4 - Small: Basic requirements are satisfied (documentation, implementation

testing, system testing, module testing). No statistical control or reviews.

5 — Very Small: No explicit or measurable quality requirements. “Quick and
dirty” is allowed.

Efticiency Requirements
The efficiency goals for the software

1 — Very Much: Efficiency of software is essential. There exist strict efficiency
goals that require continuous attention and specific skills.

2 - Much: Specific quantified goals are in effect. Response time, transaction
processing and turnaround time requirements can be reached by advanced
design and implementation techniques.
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B.3.4

3 - Nominal: The capacity level of the software is stable and predictable. The
response time, transaction load and tumaround times are typical.

4 — Smali: The efficiency goals and requirements are easy to attain.

5 - Very Small: No efficiency requirements are present that need attention
and planning.

Installation Requirements
The training needs for users and number of different platforms

1 - Very Much: Software developed for a thousand or more users. The

expected lifetime is long. There are several user organizations and several
different platforms.

2 - Much: Large amount of training is needed for several organizations. Extra
software needed for conversions, possible parallel runs. Several platforms.

3 — Nominal: Typical amount of training. Number of users is approximately 10
to 50.

4 - Small: Some training needed. Approximately 10 users.

5 - Very Small: No training needs. Only a few users.

B.4 People factors

The following list contains those productivity factors that assess elements of the
people involved in the software project.

B.4.1

Staff Application Knowledge

Knowledge of project team (supplier and the customer) of the application
domain

1 - Very Small: The application experience of the team is less than six
months.

2 — Small: The application experience is small. Some members of the project
staff have application experience. The average experience is 6 to 12 months.
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B.4.2

B.4.3

3 - Nominal: The team has good experience in the application domain. The
average experience is 1 to 3 years.

4 — Much: The team has good experience in the application domain. In
addition, business dynamics is known. The average experience is 3 to 6
years.

5 — Very Much: The application area is well known to the team and the
business as a whole. The average experience is more than six years.

Staff Analysis Skills
The analysis skills of the project staff at the project outset

1 — Very Small: No experience in requirements analysis or from similar
projects.

2 - Small: Approximately one third of the staff has experience on analysis and
design activities in similar projects.

3 — Nominal: 30 to 70% of the project staff has experience in analysis work.
The project has also one very experienced member.

4 — Much: Most of the project staff has experience in specifications and
analysis. The project manager is a professional in analysis work.

5 — Very Much: Project staff consists of first-class professionals with a strong
vision and experience in requirements analysis.

Staff Tool Skills

The experience of the project team (supplier and customer) with development
and documentation tools at the project outset

1 — Very Small: The team has no experience with the necessary tools. The
average experience is less than 6 months.

2 ~ Small: The experience with tools is below average. Some members have
experience with some of the tools. The average experience is 6 to 12 months.
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B.44

3 — Nominal: The experience with tools is good for approximately half the
team. Development and documentation tools are well known. The average
experience is 1 to 3 years.

4 — Much: The tools needed for the project are well known to most team
members. Some members can give support for their use. The average
experience is 3 to 6 years.

5 - Very Much: All tools are well known to all team members. Support is
available for specific needs of the project. The average experience is more
than 6 years.

Staff Team Skills
The ability of the project team to work effectively and according to best project
practices

1 - Very Small: Team is scattered. There are minimal project and
management skills.

2 — Small: Only some team members have previous experience with similar
projects. Team is not united as a group.

3 - Nominal: Most team members have experience with similar projects. The
commitment towards project goals is good. No motivation to practice true
team spirit.

4 — Much: The project group is very active and knows how to exploit the team
concept effectively.

5 - Very Much: Team anticipates possible problems very well. Team can
solve, in an effective way, most personal and team conflicts. There exists
superior team spirit.
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Appendix C: Source Code

This appendix contains the S-plus source code for the developed functions used in
the simulation.

C.1 Univariate Missing Data Functions
The following section contains the source code for functions used in the simulation of
univariate missing data.

C.1.1 generate()

This is the highest level function, called from the command line, when evaluating the
performance of MDTs on univariate missing data. There is a maximum of nine
parameters that must be passed to this function, depending on which MDT is being
evaluated. For listwise deletion and mean imputation, only the first six parameters
must be passed: “random.pattem”, “bias”, “percent’, “attribute”, “technique’, and
“iterations”. The “stand”, “k” and “minkowski” parameters are only necessary when
evaluating one of the hot-deck imputation MDTs. The following table describes each
parameter.

Parameter Description

random.pattern Mechanism of missing data (“‘MCAR” or “MAR")

bias Indicates bias towards “large” or “small” projects (MAR
only)

percent Percentage of missing data (e.g. 15)

attribute Attribute in data set to be imputed with missing values (e.g.
“TO1")

technique MDT to be evaluated (‘CC" for listwise deletion,
“MeanMethod” for mean imputation and “HotDeck” for hot-
deck imputation)

iterations Number of iterations to be performed in the simulation (e.g.
500)
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stand (hot-deck only) Standardization technique, if any, to be applied (“none” for
no standardization, “z5" for Z,, “trad” for z-score, and
“meanabsolute” for mean absolute)

k (hot-deck only) Number of nearest neighbours (e.g. 1)

minkowski (hot-deck only) | Distance function (1 for Manhattan, 2 for Euclidean)

For example, to evaluate listwise deletion for 15 percent missing data, using the
MAR mechanism of missing data with bias towards small projects, on the “T01"
attribute, over 500 iterations, one would type
“generate(“"MAR","small”,15,"T01","CC",500)" at the command line. This function
calls three other functions listed in this appendix: hot.deck( ), naVector( ) and
MARVector( ), which are discussed below.

and Pred25 as

This function retumns the two summary measures, MRE_ ... Snaypont

described in Eqn. 3 and Eqn. 4.

The following is the source code:

generate <-
function(random.pattern,bias,percent,attribute,technique, iterations,stand="none" k=1,minkowski=2) {

#set up vector with desired percentage of NAs (MCAR mechanism)
#vector contains 143 elements (number of observations in the data set)
#NAs represent missing values

navector <- naVector(percent)

#set up vectors, one for each quintile, with different percentages of NAs (MAR mechanism)
#NAs represent missing values

#first and last quintiles contain 28 elements and the middle three contain 29 elements
#total number of elements in all vectors is 143 (number of observations in the data set)
G1Vector <- MARVector(percent,4)

G2Vector <- c(MARVector(percent,3),0)

G3Vector <- c(MARVector(percent,2),0)

G4Vector <- c(MARVector(percent,1),0}

G5Vector <- rep(0,28)

#get regression model and evaluative measures for train data set (no missing values)
#LATURIRestLog is the log-transformed train data set

#LATURIBank is the test data set

#LATURIBankLog is the log-transformed test data set

#WORKSUP represents effort, UUFP represents size, and T01 - T13 are productivity factors
#generate model using ordinary least squares regression

f.clean <- ols(WORKSUP ~ UUFP + TO1 + T06 + TO7 + T08 + T09 + T13, LATURIRestLog)
#using model, predict effort in the test data set
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worksup.predict.clean <- exp(predict(f.clean,LATURIBankLog))
#calculate magnitude relative error (MRE)

MRE.clean <- abs((worksup.predict.clean -
LATURIBank[,"WORKSUP"])/LATURIBank[,"WORKSUP"])
#aggregate set of MRE values

MedianMRE.clean <- median(MRE.clean)

#calculate prediction at level 25 (Pred25)

Pred25.clean <- length(MRE.clean{MRE.clean <= 0.25]) / 63

#main body of simulation, repeat simulation of imputing missing data and using MDT “iterations”
#number of times

results.matrix <- sapply(seq(1:iterations),

function(x,navector,random.pattern,bias,attribute technique,iterations,stand,k,minkowski,G1Vector,G2
Vector,G3Vector,G4Vector,GSVector,f.clean,worksup.predict.clean){

#impute missing values into train data set according to desired missing value mechanism
switch(random.pattern,
MCAR =
{
#make copy of train data set
newlLATURIRest <- LATURIRestLog
#set desired attribute of data set with appropriate percentage of missing values
newLATURIRest[, attribute] <- newLATURIRest[,attribute] + sample(navector)
2
MAR =
{
#make copy of train data set
#if larger projects are to contain higher percentages of missing data
if (bias == "large”)
#order data set accordingly
newLATURIRest <- LATURIRestLog{rev(order(LATURIRestLog[,"UUFP"]),]
else
#smaller projects are to contain higher percentages of missing data.
#order the data set accordingly
newLATURIRest <- LATURIRestLogforder(LATURIRestLog[,"UUFP"),]

#set desired attribute of data set with appropriate distribution of NA
newLATURIRest({,attribute] <- newlLATURIRest[,attribute] +

c(sample{G1Vector),sample(G2Vector),sample(G3Vector),sample(G4Vector),G5Vector)
}
Yé#switch

#apply desired MDT
switch(technique,
#listwise deletion
CC=
{
#generate model
f <- ols(WORKSUP ~ UUFP + TO1 + T06 + TO7 + T08 + T09 + T13, newLATURIRest)
#predict effort of test data set based on madel generated
worksup.predict <- exp(predict(f, LATURIBankLog))

#find magnitude relative error
MRE <- abs((worksup.predict - LATURIBank{,"WORKSUP"])/LATURIBank{,"WORKSUP"])



#aggregate set of MREs

MedianMRE <- median(MRE)

#calculate Pred25

Pred25 <- length(MRE[MRE <= 0.25]) / 63

#return results
return(c(MedianMRE, Pred25))
b

#mean imputation

MeanMethod =

#find mean for attribute containing missing values
MeanForAttribute <- mean(newLATURIRest[,attribute],na.rm=TRUE)
#impute mean of attribute for each missing value
newLATUR!Rest[,attribute] <- sapply(newLATURIRest{,attribute],
function(x,MeanForAttribute){if(is.na(x)) return(MeanForAttribute) else
return(x)
}.MeanForAttribute)
#generate model
f <- ols(WORKSUP ~ UUFP + TO1 + T06 + TO7 + TO8 + TO9 + T13, newLATURIRest)
#predict effort of test data set based on model generated
worksup.predict <- exp(predict(f, LATURIBankLog))

#ind magnitude relative error

MRE <- abs((worksup.predict - LATURIBank{,"WORKSUP"])/LATURIBank[,"WORKSUP"))
#aggregate MREs

MedianMRE <- median(MRE)

#calculate Pred25

Pred25 <- length(MRE[MRE <= 0.25]) / 63

#return results
return(c(MedianMRE, Pred25))
3
#hot-deck imputation
HotDeck =
{
#identify observations in data set containing a missing value
ccVector <- sapply(newlL ATURIRest(, attribute], function(x){if(is.na(x)) retum(T) else return(F)})

#separate complete observations from those that contain a missing value
complete.cases <- newLATURIRest{!ccVector,]
missing.cases <- newLATURIRest{ccVector,]

#get list of attributes of data set that do not contain any missing values
all.attribute.names <- names(newLATURIRest)

complete.case.attributes <- all.attribute.namesfall.attribute.names = attribute]
#remove attribute containing missing values from "missing.cases"
missing.cases <- missing.cases{complete.case.attributes]

# perform standardization, if any
if (stand != *none”)

#get number of attributes in data set

length.names.dataset <- length(names(newLATURIRest))
#compute the central tendency value, depending on standardization method to be applied
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Central.complete <- switch(stand,
25=sapply(seq(length.names.dataset), function(x,d)
{min(d[,x])},newLATURIRest),
traditional=sapply(seq(length.names.dataset), function(x,d)
{mean(d[,x])},newLATURIRest),
meanabsolute=sapply(seq(length.names.dataset), function(x,d)
{mean(d[,x])},newLATURIRest))
#compute the dispersion value, depending on standardization method to be applied
Dispersion.complete <- switch(stand,
25= sapply(seq(length.names.dataset), function(x,d)
{diff(range(d[,x]))},newlLATURIRest),
traditional= sapply(seq(length.names.dataset), function(x,d)
{sqrt(var(d[,x],na.method="include"))},newLATURIRest),
meanabsolute= sapply(seq{length.names.dataset), function(x,d)
{mean(abs(d[,x]- mean(d[,x]))} },newLATURIRest))
#scale the data set
newlLATURIRest <- scale(newLATURIRest, Central.complete, Dispersion.complete)
}
#prepare data to be passed to hot.deck( )
#observations that form the hot-deck
hotdeck.obs <- newLATURIRest{!ccVector,]
#observations that contain a missing value
missing.obs <- newLATURIRest{ccVector,]

#call to hot.deck( ), function returns vector of values to impute.
impute.values <- hot.deck(hotdeck.obs[,complete.case.attributes),
missing.obs[,complete.case.attributes],complete.cases|,attribute], k. minkowski)

#convert vector of values to impute to a data frame

impute.values <- data.frame(impute.values)

#add the name of the attribute

names(impute.values) <- attribute

#add the column with the imputed values to the observations with a missing value
missing.cases <- cbind.data.frame(missing.cases, impute.values)

#combine the complete observations with the “repaired” missing value ones
newlATURIRest <- rbind.data.frame(complete.cases,missing.cases)

#create model, compute evaluative measures and return results
f <- 0IsS(WORKSUP ~ UUFP + TO1 + T06 + TO7 + T08 + T09 + T13, newlLATURIRest)
worksup.predict <- exp(predict(f, LATURIBankLog))
MRE <- abs((worksup.predict - LATURIBank(,"WORKSUP"])/LATURIBank[,"WORKSUP"])
MedianMRE <- median(MRE)
Pred25 <- length(MRE[MRE <= 0.25]) / 63
return(c(MedianMRE, Pred25))
}
y#switch
Hifunction

,navector,random.pattern,bias, attribute technique, iterations, stand,k, minkowski,G1Vector,G2Vector,G
3Vector,G4Vector,G5Vector,f.clean,worksup.predict.clean)

#aggregate results over the number of iterations

#return the median of the absolute difference between calculated and actual(complete data set)
MdMRE <- median(abs(results.matrix{1,] - MedianMRE.clean))

MdPred25 <- median(abs(results.matrix(2,] - Pred25.clean))
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#retum summary of results
ResuitSummary <- c(MdMRE,MdPred25)
return{ResultSummary)

}

C.1.2 hot.deck()

This function is called by generate( ) when applying the hot-deck MDT. In total, five
parameters are passed to this function. The following table describes each
parameter.

Parameter Description

complete.cases | The subset of observations that have no missing values

missing.cases | The subset of observations with missing values

complete.mv The vector for the variable in the data set that contains missing

values
Kk The number of nearest neighbours
minkowski The value to differentiate between Euclidean and Manhattan

distances, 2 or 1 respectively

Note that the missing value column is separate from the rest of the columns. This
means that if “TO1" is the missing value column, then “complete.cases” and
“missing.cases” do not have this column. That “T01” column for the complete data
set is in “complete.mv”.

This function returns a vector of values to impute, corresponding to the observations
in missing.cases.

The following is the source code:

hot.deck <-

function(compiete.cases, missing.casaes,compiete.mv,k,minkowski)
{
#get number of observations in the hot-deck
complete.Nobs <- length{complete.cases(,1])
#get number of observations that contain a missing vaiue
missing.Nobs <- length(missing.cases[,1])

#get number of attributes in “complete.cases” and "missing.cases”
length.names.ce <- length(names(complete.cases))
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length.names.miss <- length(names(missing.cases))
#check that both “complete.cases” and “missing.cases" data sets have the same
#number of attributes
if (length.names.cc = length.names.miss)
stop("Complete and missing set have different no of variables”)

# weights are set to 1 by defauit
weights <- rep(1,7)

#convert to a matrix, this reduces computation time
missing.cases <- as.matrix(missing.cases)
complete.cases <- as.matrix(complete.cases)

#for each observation with a missing value
estimate <- sapply(seq(1:missing.Nobs),
function(i,complete.Nobs, missing.cases,complete.cases,complete.mv,weights,k,minkowski)

#for each observation in the hot-deck

#calculate the distance to the missing value observation

distances <- sapply(seq(1:complete.Nobs),
function(j,i,missing.cases,complete.cases, weights,minkowski)

#calculate distance (Euclidean or Manhattan) for each individual attribute
dvec <- abs{missing.cases(i,]-complete.cases(j,])*minkowski

#aggregate over all attributes

d <- (sum(weights*dvec))*(1/minkowski)

#return distance from the current missing value observation to

#the current hot-deck observation

return (d)

}, i, missing.cases,complete.cases,weights,minkowski)

#sort the possible values to impute based on the calculated distances
orderedObsNo <- complete.mv[order(distances)]

#select the number of nearest neighbours to be considered
hot.deck.subset <- orderedObsNo[1:k]

#here a decision is made based on the value of k (number of nearest neighbours)
#If k is 1, return the "hot.deck.subset” as the value to impute.
#1f k > 1, then must select one out of "hot.deck.subset” at random.
if(k==1) return(hot.deck.subset)
else
{
#create list of possible indices to choose from
possible.indices <- seq(k)
#find random index and return value in hot.deck.subset for this index
retumn(hot.deck.subset{sampie(possible.indices)[1]])
}
3

complete.Nobs, missing.cases,complete.cases,complete.mv,weights,k, minkowski}

# retumn the values to impute
return{estimate)

}
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C.2 Monotone Missing Data Functions
The following section contains the source code for functions used in the simulation of
monotone missing data.

C.2.1 generate.multi( )

This is the highest level function, called from the command line, when evaluating the
performance of MDTs on monotone missing data. There is a maximum of ten
parameters that must be passed to this function, depending on which MDT is being
evaluated. For listwise deletion and mean imputation, only the first seven must be
passed: “random.pattern”, “bias”, “percent”, “attribute1”, “attribute2”, “technique”, and
“iterations”. The “stand”, “k” and “minkowski” parameters are only necessary when
evaluating one of the hot-deck MDTs. The parameters only differ from generate( ) in
the addition of “attribute2”. This is the second attribute that will be imputed with
missing values. The parameter “attributel” represents the attribute that will be
imputed with more missing values than “attribute2”, according to the pattern shown
in Figure 2.

For example, to evaluate listwise deletion for 15 percent missing data, using the
MAR mechanism of missing data with bias towards small projects, on the “T01” and
“TO2"  attributes, and over 500 iteratons, one would type
“generate.multi“MAR",”small",15,"T01","T02","CC",500)" at the command line. This
function calls three other functions listed in this appendix: hot.deck.muiti( ),
naVector( ) and MARVector( ), which are discussed below.

This function returns the two summary measures, MRE and Pred25 as

StudyPaint StudyPaint
described in Eqn. 3 and Eqn. 4.

The following is the source code:

generate.multi <-

function(random.pattern,bias,percent,attribute1,attribute2 technique, iterations, stand="none" k=1,mink
owski=2) {

#set vectors with desired percentage of NAs (MCAR mechanism)

#both vectors contain 143 elements (number of observations in the data set)
#the second vector contains half the amount of NAs than the first

#NAs represent missing values

navector1 <- naVector(percent)
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navector2 <- naVector(percent / 2)

#set up vectors, one for each quintile, with different percentages of NAs (MAR mechanism) for
#each attribute (“attribute1” and "attribute2”)

#final character in vector name(*1" or "2") denotes vector for “attribute1” and "attribute2”, respectively
#the vector for "attribute2” contains half the amount of NAs than that for “attribute1”

#first and last quintiles contain 28 elements and the middle three contain 29 elements

#total number of elements in all vectors for each attribute is 143 (number of observations in
#the data set)

G1Vector1 <- MARVector(percent,4)

G1Vector2 <- MARVector(percent / 2,4)

G2Vectort <- ¢c(MARVector(percent,3),0)

G2Vector2 <- ¢(MARVector(percent / 2,3),0)

G3Vector1 <- c(MARVector(percent,2),0)

G3Vector2 <- c(MARVector({percent / 2,2),0)

G4Vector1 <- c(MARVector(percent,1),0)

G4Vector2 <- ¢c(MARVectar(percent / 2,1),0)

G5Vector1 <- rep(0,28)

G5Vector2 <- rep(0,28)

#assemble two vectors with NAs for each attribute that will be imputed with missing values.
MARVector1 <- c(G1Vector1,G2Vector1,G3Vector1,G4Vector1,GSVector1)

MARVector2 <- ¢(G 1Vector2,G2Vector2,G3Vector2, G4Vector2, G5Vector2)

#get regression model and evaluate measures for train data set (no missing values)
#LATURIRestLog is log-transformed train data set

#LATURIBank is the test data set

#LATURIBankLog is the log-transformed test data set

#WORKSUP represents effort, UUFP represents size, and TO1 — T13 are productivity factors
#generate model using ordinary least squares regression

f.clean <- ols(WORKSUP ~ UUFP + TO1 + T06 + TO7 + T08 + T09 + T13, LATURIRestLog)
#using model, predict effort in the test data set

worksup.predict.clean <- exp(predict(f.clean,LATURIBankLog))

#calculate magnitude relative error (MRE)

MRE.clean <- abs({worksup.predict.clean -
LATURIBank({,"WORKSUP"])/LATURIBank([,"WORKSUP"})

#aggregate set of MRE values

MedianMRE.clean <- median(MRE.clean)

#calculate prediction at level 25 (Pred25)

Pred25.clean <- length(MRE.clean[MRE.clean <= 0.25]) / 63

#main body of simuiation, repeat simulation of imputing missing data and using MDT “iterations”
#number of times
results.matrix <- sapply(seq(1:iterations),
function(x,navector1,navector2, random.pattern,bias, attribute1,attribute2, technique, iterations, stand,
k,minkowski,MARVector1, MARVector2,f.clean,worksup.predict.clean){

#impute missing values into train data set according to desired missing value mechanism
switch(random.pattern,
MCAR =

{

#make copy of train data set

newLATURIRest <- LATURIRestLog

#create a random sample of the data set

newlLATURIRest <- newlLATURIRest{sample(seq(143)),]
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#set desired attributes of data set with appropriate percentage of missing values
newLATURIRest],attribute1] <- newLATURIRest[,attribute1] + navector1
newlLATURIRest[,attribute2] <- newLATURIRest( attribute2] + navector2
L
MAR =
{
#make copy of train data set
if (bias = "large")
#if larger projects are to contain higher percentages of missing data
#order data set accordingly
newLATURIRest <- LATURIRestLog[rev(order(LATURIRestLog{,"UUFP*))),]
else
#smaller projects are to contain higher percentages of missing data
# order the data set accordingly
newlLATURIRest <- LATURIRestLog[order(LATURIRestLog[,"UUFP"),]
#create a random sample of the data set. The cbservations in the train data set are arranged
#at random within each quintile.
#generate a random sequence of observation numbers
sequence_Obs <- ¢c(sample(seq(1,28,1)),
sample(seq(29,57,1)),
sample(seq(58,86,1)),
sample(seq(87,115,1)),
sample(seq(116,143,1)))
#order the data set according to sequence_Obs
newLATURIRest <- newLATURIRest[sequence_Qbs,]
#set desired attributes of train data set with appropriate number of missing values
newLATURIRest(,attribute1] <- newLATURIRest(,attribute1] + MARVector1
newLATURIRest[,attribute2] <- newLATURIRest[,attribute2] + MARVector2

}
)#switch

#apply desired MDT
switch(technique,
#listwise deletion
CC=
{
#generate model
f <- ols(WORKSUP ~ UUFP + TO1 + TO6 + TO7 + T08 + TO9 + T13, newLATURIRest)
#predict effort of test data set based on model created
worksup.predict <- exp(predict(f, LATURIBankLog))

#find magnitude relative error

MRE <- abs((worksup.predict - LATURIBank[,"WORKSUP"])/LATURIBank{,"WORKSUP"})
#aggregate set of MREs

MedianMRE <- median(MRE)

#calculate Pred25

Pred25 <- length(MRE[MRE <= 0.25]) / 63

#retumn resuits
returmn{c(MedianMRE, Pred25))
h

#mean imputation
MeanMethod =

{

#get the mean for “attribute1”
MeanForAttribute1 <- mean(newLATURIRest{,attribute1],na.rm=TRUE)
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#get the mean for "attribute2”
MeanForAttribute2 <- mean{newLATURIRest],attribute2],na.rm=TRUE)

#replace each missing value of attribute with the mean for that attribute
newlATURIRest(,attribute1] <- sapply(newLATURIRest[,attribute1],
function{x,MeanForAttribute1){if(is.na(x)) return(MeanForAttribute1)
else return(x)
},MeanForAttribute1)
newLATURIRest[,attribute2] <- sapply(newLATURIRest[,attribute2],
function(x,MeanForAttribute2){if(is.na(x)} return(MeanForAttribute2)
else return(x)
},MeanForAttribute2)

#generate model

f <- 0ls(WORKSUP ~ UUFP + T0O1 + T06 + TO7 + TO8 + T09 + T13, newlLATURIRest)
#predict effort in test data set based on model generated

worksup.predict <- exp(predict(f, LATURIBankLog))

#find magnitude relative error

MRE <- abs((worksup.predict - LATURIBank{,"WORKSUP"])/LATURIBank[,"WORKSUP"})
#aggregate MREs

MedianMRE <- median(MRE)

#calculate Pred25

Pred25 <- length(MRE[MRE <= 0.25]} / 63

#return results
return(c(MedianMRE,Pred25))
h

#hot-deck imputation

HotDeck =
{
#identify observations in data set containing one or more missing values
ccVector <- sapply(newlLATURIRest(,attribute1],function(x)}{if(is.na(x)) return(T) else return(F)})
#generate the set of observations that do not contain any missing values
complete.cases <- newLATURIRest[lccVector,]

#generate the set of observations that contain one or two missing values

missing.cases <- newLATURIRest[ccVector,]

#generate vectors containing possible values to impute for "attribute1” and "attribute2" of
#observations with missing values

complete.mv1 <- compiete.cases{,attribute1]

complete.mv2 <- complete.casesi,attribute2]

#get list of all attribute names

all.attribute.names <- names(newLATURIRest)

#get list off all attribute names excluding “attribute1”

complete.case.attributes <- all.attribute.names(all.attribute.names!=attribute 1]

#get list of all attribute names exciuding "attribute1” and "attribute2”

#(this is the list of attributes that do not contain any missing values)

complete.case.attributes.two <- all.attribute.namesiall.attribute.names!=attribute1 &
all.attribute.names!=attribute2]

#identify observations in data set that contain two missing values
miss2Vector <- sapply(newLATURIRest,attribute2],function(x)(if(is.na(x)) return(T)

else return(F)}}
#get the set of observations that contain two missing values



missing.cases.two <- newLATURIRest{miss2Vector,]

#remove attributes that contain missing values

missing.cases.two <- missing.cases.two[complete.case.attributes.two]
#get the set of observations that contain only one missing value
missing.cases.one <- newLATURIRest{xor(miss2Vector,ccVector),]
#remove the attribute that contains missing values

missing.cases.one <- missing.cases.one[complete.case.attributes]

# perform standardization, if any
if (stand != "none*)
{
#The complete train data set is separated into three separate parts(A, B and C)
#part A is the train data set excluding attribute1 and attribute2
#part B is "attribute2” of the train data set
#part C is “attribute1® of the train data set
#This is done because standardization cannot be performed with NAs in the data set.

#standardization of part A
#get train data set excluding “attribute1” and “attribute2”
newLATURIRest.xAtt2 <- newlLATURIRest[,complete.case.attributes.two]
#get number of attributes in "newLATURIRest.xAtt2"
length.names.dataset <- length(names(newlLLATURIRest.xAtt2))
#compute the central tendency value, depending on standardization method to be applied
Central.complete <- switch(stand,
25=sapply(seq(length.names.dataset), function(x,d)
{min(d[,x])},newLATURIRest.xAtt2),
traditional=sapply(seq(length.names.dataset), function(x,d)
{mean(d(,x])},newLATURIRest.xAtt2),
meanabsolute=sapply(seq{length.names.dataset), function(x,d)
{mean(d[,x])}.newLATURIRest.xAtt2))
# compute the dispersion value, depending on the standardization method to be applied
Dispersion.complete <- switch(stand,
25= sapply(seq(length.names.dataset), function(x,d)
{diff(range(d[,x]))},newLATUR!Rest.xAtt2),
traditional= sapply(seq(length.names.dataset), function(x.d)
{sqrt(var(d[,x]))},newLATURIRest.xAtt2),
meanabsolute= sapply(seq(length.names.dataset), function(x,d)
{mean(abs(d[,x]- mean(d[,x]))) },newLATURIRest.xAtt2))

# scale the data set
newLATURIRest.xAtt2 <- scale(newLATURIRest.xAtt2, Central.complete, Dispersion.complete)

#standardization of part B

#create a data frame of "attribute2” from train data set
newlLATURIRest.Att2 <- data.frame(newLATURIRest[,attribute2])
#remove NAs from "newLATURIRest. Aft2®

newLATURIRest.Att2 <- newLATURIRest. Att2[!miss2Vector,]
#add correct name of attribute

newlLATURIRest.Att2 <- data.frame(newLATURIRest.Alt2)
names(newLATURIRest.Att2) <- attribute2

#set length of list of attribute names for "newLATURIRest.Att2"
length.names.dataset <- length{(names(newLLATURIRest.Att2))

# compute the central tendency value, depending on standardization method to be applied
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Central.complete <- switch{stand,
25=sapply(seq(length.names.dataset), function(x,d)
{min{d[,x])},newLATURIRest. Att2),
traditional=sapply(seq(length.names.dataset), function(x,d)
{mean(d[,x])},newLATURIRest.Att2),
meanabsolute=sapply(seq{length.names.dataset), function(x,d)
{mean(d[,x])},newLATURIRest.Att2))
# compute the dispersion value, depending on standardization method to be applied
Dispersion.complete <- switch(stand,
25= sapply(seq(length.names.dataset), function(x,d)
{diff(range(d[,x}]))},newLATURIRest.Att2),
traditional= sapply{seq(length.names.dataset), function(x,d)
{sqrt(var(d{,x].na.method="include"})},newLATURIRest.Att2),
meanabsolute= sapply(seq(length.names.dataset), function(x,d)
(mean(abs(d[,x}- mean(d[,x}))) },newLATURIRest.Att2))

# scale the data set
newLATURIRest.Att2 <- scale(newLATURIRest.Att2, Central.complete, Dispersion.complete)

#separate the set of standardized abservations that contain two missing values from the rest
missing.obs2 <- newlLATURIRest.xAtt2[miss2Vector,)
newlLATURIRest.xAtt2 <- newLATURIRest.xAtt2[!miss2Vector,]

#getpart C (Note: part C does not need to be standardized)

#get “attribute1” column from "newlLATURIRest"

att1.col <- data.frame(newLATURIRest[,attribute1})

#shorten "att1.col" by removing NAs that are from observations that also have a
#NA for "attribute2"

#this is done so that it will be the same length as parts A and B

att1.col <- att1.col[!miss2Vector,]

#convert to data frame and add appropriate name to column

att1.col <- data.frame(att1.coi)

names(att1.col) <- attribute1

#combine parts A,Band C

#combine "newlATURIRest.xAtt2* (standardized), "newLATURIRest.Att2" (standardized) and
#"att1.col" (not standardized)

#this data set contains all cbservations except for those with two missing values
newlLATURIRest <- ¢cbind.data.frame(newLATURIRest.xAtt2,newLATURIRest.Att2,att1.col)
#identity observations in data set containing one missing value

ccVector <- sapply(newlLATURIRest{,attribute1],function(x){if(is.na(x)) return(T) else return(F)})

#observations that form the hot-deck
hotdeck.cbs1 <- newLATURIRest{!ccVector,]
#observations that contain only one missing value
missing.obs1 <- newLATURIRest{ccVector,]

#call to hot.deck.multi{ ), function returns values to impute
impute.values <- hot.deck.multi(hotdeck.obs1[,complete.case.attributes],
missing.obs1{,complete.case.attributes],
missing.obs2[,complete.case.attributes.two],
complete.mv1,complete.mv2,attribute2,
k,minkowski)
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. else #no standardization
{
#prepare data to be passed to hot.deck.multi( )
#observations that form the hot-deck
hotdeck.obs1 <- newlL ATURIRest[iccVector,)
#observations that contain only one missing value
missing.obs1 <- newLATURIRest[xor(ccVector,miss2Vector),]
#observations that contain two missing values
missing.obs2 <- newLATURIRest[miss2Vector,}

#icall to hot.deck.multi( ), function returns values to impute
impute.values <- hot.deck.multi(hotdeck.cbs1[,complete.case.attributes},
missing.obs1[,complete.case.attributes],

missing.obs2(,complete.case.attributes.two),
complete.mv1,complete.mv2,attribute2,
k,minkowski)

}#if - else

#add values to impute for observations with only one missing value

#get the values in “impute.values” that correspond to the values to impute
impute.values1 <- data.frame(impute.values([1]])

#add the name of “attributet”

names{impute.values1) <- attribute1

#add the column with the vaiues to impute

missing.cases.one <- cbind.data.frame(missing.cases.one, impute.values1)

#add values to impute for observations with two missing values

#get the values in “impute.values” that correspond to the values to impute
impute.values2 <- impute.values([[2]]

attribute1.column <- impute.values2{1,}

attribute2.column <- impute.values2{2,]

#convert to a data frame

attribute1.column <- data.frame(attribute1.column)

attribute2.column <- data.frame{attribute2.column)

#add the names of the attributes

names(attribute1.column) <- attribute1

names(attribute2.column) <- attribute2

#add both columns of values to impute

missing.cases.two <- cbind.data.frame(missing.cases.two, attribute1.column, attribute2.coiumn)

#combine the complete cases with the ‘repaired’ missing value ones
newlLATURIRest <- rbind.data.frame(complete.cases,missing.cases.one,missing.cases.two)

#create model, compute evaluative measures and return resuits

f <- 0lsS(WORKSUP ~ UUFP + TO1 + T06 + TO7 + T08 + T09 + T13, newLATURIRest)
worksup.predict <- exp(predict(f, LATURIBankLog))

MRE <- abs((worksup.predict - LATURIBank[,"WORKSUP"])/LATURIBank[,"WORKSUP"])
MedianMRE <- median(MRE)

Pred25 <- length(MRE[MRE <= 0.25]) / 63

return{c(MedianMRE, Pred25))

}
Y#switch
H¥function
. ,navector1,navector2,random.pattern,bias,attribute1,attribute2,technique, iterations,stand, k, minkowski,
MARVector1 MARVector2, f.clean,worksup.predict.clean)
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#aggregate results over the number of iterations

#return the median of the absolute difference between calculated and actual(complete data set)
MdMRE <- median{abs{results.matrix{1,] - MedianMRE.clean))

MdPred25 <- median{abs(resuits.matrix(2,] - Pred25.clean))

#return summary of resuits

ResultSummary <- ¢(MdMRE,MdPred25)

retum(ResultSummary)

}

C.2.2 hot.deck.multi()

This function is called by generate.multi( ) when applying the hot-deck MDT. In total,
eight parameters are passed to this function. The parameters are the same as those

for hot.deck( ) except for the following:

Parameter Description

missing.cases.one | The subset of observations with one missing value

missing.cases.two | The subset of observations with two missing values

complete.mv The vector for the variable “attribute1” that contains missing values
in the data set

complete.mv2 The vector for the variable “attribute2” that contains missing values
in the data set

Note that “missing.cases.one’, “missing.cases.two” and “complete.cases” do not
have the column represented in "complete.mv’. in addition, "missing.cases.two"
does not have the column represented in "complete.mv2".

This function retums the values to impute, corresponding to the observations in
“missing.cases.one" and "missing.cases.two".

The following is the source code:

hot.deck.muiti <-
function(complete.cases,missing.cases.one, missing.cases.two,complete.mv,complete.mv2,attribute2,
k=1,minkowski=2)

{

#get list of attributes in *compiete.cases”(the hot-deck)

all.attribute.names <- names(complete.cases)

#get list of all attributes excluding “attribute2"

complete.case.attributes.two <- all.attribute.names{all.attribute.names!=attribute2]
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#get number of observations in hot-deck
complete.Nobs <- length(complete.cases[, 1])

#get number of attributes in “complete.cases”, "missing.cases.one” and “missing.cases.two”
length.names.cc <- length{names(complete.cases))
length.names.miss1 <- length{names(missing.cases.one))
length.names.miss2 <- iength(names(missing.cases.two))
#check that "complete.cases" and "missing.cases.one" data sets have the same
#number of attributes
if (length.names.cc != length.names.miss1)
stop("Complete and missing set have different no of variables")

# weights are set to 1 by default
weights <- rep(1,length.names.cc)
weights2 <- rep(1,length.names.cc - 1)

#create hot-deck for observations that contain two missing values

#This hot-deck is the same as the hot-deck for observations containing one missing vaiue except
#the second missing attribute, “attribute2”, is removed. (Observations with two missing values
#do not have this attribute and so it is not needed in the hot-deck)

complete.cases.two <- complete.cases{,complete.case.attributes.two]

#hot-deck MDT is performed in two parts (A and B).
#Part A applies the hot-deck MDT to observations that contain one missing value and
#Part B applies the hot-deck MDT to observations that contain two missing values.

#Part A

#get number of observations that contain one missing value
missing.Nobs1 <- length(missing.cases.onef, 1])

#convert to matrix, this reduces computation time
complete.cases <- as.matrix(complete.cases)
missing.cases.one <- as.matrix(missing.cases.one)

#tor each observation containing one missing value
estimate1 <- sapply(seq(1:missing.Nobs1),

function(i,complete.Nobs, missing.cases.one,complete.cases,complete.mv,weights, k,minkowski)
{
#for each observation in hot-deck
#calculate the distance to the missing value observation
distances <- sapply(seq(1:complete.Nobs),
function(j,i, missing.cases.one,complete.cases,weights,minkowski)
{
#calculate distance (Euclidean or Manhattan) for each individual attribute
dvec <- abs(missing.cases.one[i,]-complete.cases(j,])*minkowski
#aggregate over all attributes
d <- (sum(weights“dvec)*(1/minkowski)
#return distance from the current missing value observation to
#the cuirent observation in the hot-deck
retumn (d)
}. i, missing.cases.one,complete.cases,weights,minkowski)
#sort the possible values to impute based on the calculated distances
orderedObsNo <- complete.mv{order(distances)]
#select the number of nearest neighbours to be considered
hot.deck.subset <- orderedObsNo[1:k]
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#here a decision is made based on the value of k (number of nearest neighbours.
#!f kis 1, return the “hot.deck.subset” as the value to impute.

#if k > 1, then must select one out of "hot.deck.subset” at random.

if(k==1) retumn(hot.deck.subset}

else

#create list of possible indices to choose from
possible.indices <- seq(k)
#find random index and return value in “hot.deck.subset” for this index
index.to.pick <- sample(possible.indices){1]
#retum value to impute
return(hot.deck.subsetfindex.to.pick])
}
L

complete.Nobs, missing.cases.one,complete.cases,complete.mv,weights, k, minkowski)

#Part B

#get number of observations that contain two missing values
missing.Nobs2 <- length(missing.cases.two(,1])

#convert to matrix, this reduces computation time
complete.cases.two <- as.matrix(complete.cases.two)
missing.cases.two <- as.matrix(missing.cases.two)

#for each observation containing two missing values
estimate2 <- sapply(seq(1:missing.Nobs2),
function(i,complete.Nobs,missing.cases.two,complete.cases.two,
complete.mv,complete.mv2,weights2,k,minkowski)

#tor each observation in hot-deck
#calculate the distance to the missing value observation
distances <- sapply(seq(1:complete.Nobs},
function(j,i,missing.cases.two,complete.cases.two,weights2,minkowski)
{
#calculate distance (Euclidean or Manhattan) for each individual attribute
dvec <- abs(missing.cases.two(i,]-complete.cases.two(j,])*minkowski
#aggregate over all attributes
d <- (sum(weights2*dvec))*(1/minkowski)
#return distance from the current missing value observation to
#the current observation in the hot-deck
return (d)
}, i, missing.cases.two,complete.cases.two,weights2,minkowski)
#sort the possible values to impute, for both attributes, based on the calculated distances
orderedObsNo <- complete.mv{arder(distances)]
orderedObsNo2 <- complete.mv2[order{distances)]
#select the number of nearest neighbours {0 be considered
hot.deck.subset <- orderedObsNo[1:k]
hot.deck.subset2 <- orderedObsNo2[1:k]

#here a decision is made based on the value of k {number of nearest neighbours)

#if kis 1, retumn “hot.deck.subset” and “hot.deck.subset2” as the values to impute.

#if k > 1, then must select one out of “hot.deck.subset” and “hot.deck.subset2" at random.
if(k==1) return(c(hot.deck.subset,hot.deck.subset2))

else

{

#create list of possible indices to choose from
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possible.indices <- seq(k)

#find random index

index.to.pick <- sample(possible.indices)[1]

#return both values to impute for this index

return{c(hot.deck.subset[index.to.pick],
hot.deck.subset2[index.to.pick]))

}

h
complete.Nobs, missing.cases.two,complete.cases.two,complete.mv,
compiete.mv2,weights2,k,minkowski)

#return the values to impute

retumny(list(estimate1,estimate2))

}

C.3 Commonly Used Functions
The following section contains the source code for functions used in the simulation of
both univariate and monotone missing data.

C.3.1 naVector()

This function is cailed by generate( ) and generate.multi{ ). The purpose of this
function is to create a vector of NAs, representing missing values, to be imputed in
one attribute in the data set when applying the MCAR mechanism. The function
assumes that there are 143 observations in the data set and so if x = 10, then this
function would produce a vector of 143 elements, 14 of which are NAs and the rest
are zeros.

The following is the source code:

naVector <-
function(x)

{
#number of NAs for vector

numTrue <- round(143 * x * 0.01, digits=0)
#number of zeros for vector

numFalse <- 143 - numTrue
#concatenate
¢(rep(NA,numTrue),rep{0,numFaise))

C.3.2 MARVector()

This function is called by generate( ) and generate.multi( ). The purpose of this
function is to create a vector with the appropriate percentage of NAs, representing
missing values, to be imputed in one quintile of the data set when applying the MAR
mechanism. This corresponds to the quintiles of the 143 observation data set and
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discussed in Section 3.8. The function contains two parameters, “x’, representing the

total percentage of missing values to be imputed for the atftribute, and “k”, the

number identifying the quintile.

The following is the source code:

MARVector <- function(x,k)

#number of NAs for vector

numTrue <- round(143 “ x / 10 * k * 0.01, digits=0)
#number of zeros for vector

numFalse <- 28 — numTrue

#concatenate
c(rep(NA,numTrue},rep(0,numFalse))

}
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