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Abstract

The construction of software cost estimation models remains an active topie of

research. The basic premise of cost modeling is that a historical database of

software project cast data can be used to develop a quantitative model ta predict

the cost of future projects. One of the difficulties faced by workers in this area is that

many of these historical databases contain substantial amounts of missing data.

Thus far, the common practice has been to ignore observations with missing data.

ln principle, such a practice can lead to gross biases, and may be detrimental to the

accuracy of cast estimation models. In this paper, we describe an extensive

simulation where we evaluate different techniques for dealing with missing data in

the context of software cast modeling. Three techniques are evaluated: Iistwise

deletion, mean imputation and eight different types of hot..deck imputation. Our

results indicate that ail the missing data techniques perform weil, with small biases

and high precision. This suggests that the simplest technique, Iistwise deletion, is a

reasonable choice. However, this will not necessarily provide the best pelformance.

We provide a decision tree ta select the best performing missing data techniques

depending upon the pattern, mechanism and percentage of missing data.
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Résumé

La construction de modèles d'estimation de coût logiciel demeure un sujet de

recherche important. Le principe de base de la modélisation de coût est de

constituer une base de données sur l'historique des coûts de projets logiciels, afin

de développer un modèle quantitatif pour prédire les coûts de projets futurs. Une

des difficultés auxquelles on est confronté est que ces bases de données

contiennent des quantités importantes de données manquantes. Jusqu'à présent,

l'usage a été d'ignorer les observations incomplètes. En principe, de telles

pratiques peuvent conduire à d'importantes erreurs, et peuvent nuire à la précision

du modèle. Dans ce document, nous présentons une simulation approfondie où

nous évaluons différentes techniques pour traiter des données manquantes dans le

cadre de la modélisation de coût logiciel. Les trois techniques évaluées sont:

l'élimination des enregistrements non complets, l'imputation par la moyenne et huit

types différents d'imputation par appariement. Nos résultats montrent que ces

techniques sont efficaces, avec peu d'erreurs et une grande précision. La technique

la plus simple, la suppression par liste, semble donc un choix raisonnable.

Toutefois, elle ne donnera pas nécessairement les meilleures performances. Ainsi,

nous fournissons un arbre de décision pour séléctionner la meilleure technique en

fonction de la répartition, du mécanisme d'apparition et du pourcentage des

données manquantes.
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Chapter 1: Introduction
There exists a vast Iiterature on the construction of software cast estimation models,

for example [63][18][1][2][12][25][44][30][51][85][93][83][90]. The basie premise is

that one can develop aecurate quantitative models that prediet development effortt

using historieal project data.2 The predictors constitute a measure of size, whether

measured in terms of LOC or a functional size measure, and a number of

productivity factors that are collected through a questionnaire, such as questions on

required reliability, documentation match to Iife cycle needs and analyst capability

[87].

Knowing the estimated cost of a particular software project early in the development

cycle is a valuable asset [63]. Management can use cast estimates to approve or

reject a project proposai or to manage the development process more effectively.

For example, additional developers may need to be hired for the complete project or

for areas that will require a large amount of effort. Furthermore. accurate cast

estimates would allow organizations to make more realistic bids on external

contracts. Cast estimation models have not been Iimited to prediction of total project

cost. For instance, some recent work constructed a model to estimate the effort to

perform a software process assessment [46], and to estimate the effort required to

become ISO 9001 certified [72][73], both of which are relevant to contemporary

software organizations.

A common praetical problem with eonstructing eost estimation models is that the

historieal software engineering data sets frequently contain substantial amounts of

missing values [15][16][37]. Such missingness would impact the productivity factors

in historieal data sets most severely since they are the variables colleeted through a

questionnaire. 3 While one should strive te minimize missing values, in practiee their

, Effort Is considered to be the most important Ingredient of cast and is afmost atways the variable of interest.

t Other refated models that can be construeted uslng hlstorfcaJ project data include those for siZe and schedule prediction [92}.

JOur concem here iS not witt! non-respondents ta a questionnaire. but with ttlose who respond to sorne questions and not
others. A great dea1 of effort should be placed on reducing nonresponse to ensure that resunlng conclusions are as accurate as
possible. For example. a study by Heberleln and Baumgartner [40} examined the effects of many variables on respense rate. It
was found lhat follow up letters and questionnaires judged to be salient to the respondent have the largest effect on the
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presence is usually unavoidable. Missing values are not unique ta software cost

estimation, but is a problem that concerns empirical scientists in other disciplines

[50][41 ][57].

The mast common factors that lead ta the presence of missing data include

individuals not responding ta ail questions in a questionnaire, either because they

run out of time', they do not understand the questions or they do not have sufficient

knowledge to answer the questions and opt not ta respond, 5 or individuals may not

wish to divulge certain information that may be harmful or embarrassing to them.6

Furthermore, the amount of missing values tends ta increase as more variables are

present in the data set [75]. It is common for cost estimation data sets to have a

multitude of productivity factors.

There are many techniques that have been developed ta deal with missing data in

the construction of quantitative models [58]. The simplest technique is ta ignore

observations that have missing values (this is called listwise de/etion). In tact, this is

the default approach in most statistical packages [58]. This, however, can result in

discarding large proportions of a data set and hence in a loss of information that was

costly to collect. For example, Kim and Curry [50] note that with only 20/0 of the

values missing at random in each of 10 variables, one would lose 18.30
/0 of the

observations on average using Iistwise dalation. Furthermore, in a simulation they

performed with 5 variables having 10% of their values missing at random, 590
/0 of the

observations would be lost with listwise deletion, on average. In addition, listwise

deletion may bias correlations downwards. If a predictor variable has many missing

high values, for example, then this would restnct its variance, resulting in a deflation

response rate. An increase in salience of the study to the respondent. includlng how much knowledge and interest the
respondent has in the subject matter will result ln a hfgher importance placed on the study, resultlng in a higher response rate.
ln addition, increased contact with the respondent. including follow up letters, will further increase perceived importance of the
study and atso result in hlgher response rates [76}. AIse. the effects of factors such as sponsorship. personallzatlon. length.
and monetary rewards on response rates have baen examined in the ftterature. Further details on survey design to maximize
the response rate are provided in [281. [27] and [76].

• It is generally known that an increase in effort required to complete surveys is fikely to result in many respondents compiaining
and leaving many questions unanswered [24}.

5 Il is not uncommon to treat MOon't KnoW- (OK) responses as missing values when there is no intrinsic interest in the faet that a
OK response has been provfded (80).

1 It iS common that respondents refuse to provfde certain informatlon. For example. in surveys that contain a question about
personaJ Income. il Is expected that indlviduals with very high and very low incames do not offer this information [58][5O}. In a
cost estfmatfon context. respondents may not wish to express the low levai of damain or programming experience of the team
leader, especially if the indivfduaJ is easily identifiable.
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of its correlation with a completely observed criterion variable. The same applies if

the missing values were on the criterion variable. Measures of central tendency may

be biased upwards or downwards depending on where in the distribution the missing

data appear. For example, the mean may be biased downward if the data are

missing from the upper end of the distribution.

Another set of techniques impute the missing values. A common approach is to use

mean imputation. This involves filling in the missing values on a variable with the

mean of observations that are not missing. However, mean imputation attenuates

variance estimates. For example, if there are 30 observations of which 5 have

missing values, then we could substitute five means. This would increase the

number of observations without affecting the deviations trom the overall mean,

hance reducing the variance [59][62]. There are alternative forms of imputation that

are based on estimates of the missing values using other variables from the subset

of the data that have no missing values.

ln the context of cost estimation, researchers rarely mention how they dealt with

missing values. 7 When they do, their solution tends to be to ignore observations with

missing values, i.e. listwise dalation. For example, in the Walston and Felix study

[93], different analyses rely on a different number of observations trom the historieal

database, indicating that for sorne of the variables there were missing values. ln one

recent cost estimation study of European space and military projects, the authors

removed observations that had missing values, resulting in sorne instances to the

loss of approximately 38°,'0 of the observations [18]. A comparison study of different

cast estimation modeling techniques noted that for approximately 460/0 of the

observations there were missing values [20]. The authors then excluded

observations with missing values for the different types of comparisons performed.

Another study used a regression model to predict the effort required ta perform a

software process assessment based on the emerging ISOllEe 15504 international

rThis is aJso a typical problem ln other disciplines. For example. in one study [n). articles tram the Journal of Applied
Psychology and Personnel Psychology were randomly chosen and examlned ta see what methods wer& used ta handle
misslng data. It was round !hat many studles dO not state wheUler or not observatfons contalned missing data It follows !hat in
these cases the technique for deanng with misslng data is not mentioned eïtt1er. One reason for ttlis could be that joumals only
accept U'\ose studfes that are deemed strong and may hesitate to publiSh studies that report high levels of mIssfng data.
Evidence suggested that 1/2 ta 213 of the studles Ignored obServations with misslng vaJues.
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standard [46]. In this study 340/0 of the total number of observations were excluded

trom the analysis due to missing values.s

Ta date, there is no evidence that such a simple practice is the best one, or if it is

detrimental to the accuracy of cast estimation models. It is plausible that certain

types of imputation techniques would save the large proportions of discarded data

and result in models with much improved prediction accuracy. It would be of practical

utility then to have substantiated guidelines on how ta deal with missing values in a

manner that would minimize harm ta model accuracy. This study takes a step in that

direction.

ln this paper, we present a detailed simulation study of different techniques far

dealing with missing values when building cast estimation models: Iistwise deletion,

(uncanditional) mean imputation, and eight different types of hot-deck imputation.

We also simulate three different types of missingness mechanisms: (a) missing

completely at random, (b) where missingness depends on the size of the project,

and (c) where missingness depends on the value of the variable with missing values;

two types of missing data patterns: univariate (random) and monotone; and

missingness on one praductivity tactor up ta ail productivity factors in a model.

Our evaluative criteria focus on the accuracy of prediction, and consist of the

common measures: Absolute Relative Error and Pred25 [25]. The summary

measures are the bias and variation of the accuracy measures. We focus on

ordinary least squares regression as the modeling technique since this is one of the

most common modeling techniques used in practice [37], e.g.,

(70][93][23][22][18][63]. Furthermore, there has been recent evidence that ordinary

least squares ragression is as good as or better than many competing modeling

techniques in terms of prediction accuracy [19][20].

Briefly, our results indicate that ail MOTs have a good performance in terms of bias

and precision under the different contexts simulated. This suggests that the simplest

technique, listwise deletion, is a reasonable choice. However, Iistwise deletion will

• ln some ether studles missfng values were dealt wldl in a non-tradltional manner. For example. a racent cast estImadon model
constructIon SbJdy replaced -1 don't know" and -It does not apply'" responses on a produetMty factor wrth the middle point on a
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• not provide the best performance amongst the different MOTs. We present a

decision tree to select the best perforrning MDT depending upon the pattern,

mechanism, and percantage of missing data.

ln the following chapter, we present an overview of the missing data problem and the

techniques that have been developed for dealing with il. Chapter 3 describes our

research method in datail. The results of our simulation are described in Chapter 4

with a discussion of their implications and limitations. We conclude the paper in

Chapter 5 with a summary and directions for future research.

• S-point scala [80).
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Chapter 2: Background
ln this chapter, we define sorne terminology and pravide an overview of missing data

techniques (MOTs) and their general applicability.

2.1 Terminology

An important distinction when discussing MOTs is the mechanism that caused the

data to be missing [58). Consider a data set with two variables, X, and ~. Let us

assume that missing data oceurs on variable X, only. Ta make the scenario

concrete, let variable X, be analyst capability and variable ~ be project size. If the

probability of response ta X, does nat depend on either X, or ~, then it is said that

the missing data mechanism is Missing Completely At Random (MCAR). Thus, if the

missingness of the analyst capability variable is independent of project size and

analyst capability, the mechanism is MCAR. If the probability of response depends

on ~ but not on X" then we say that the missing data mechanism is Missing At

Random (MAR). This would be exemplified by the situation whereby the missingness

on the analyst capability variable is higher fOf, say, small projects than far large

prajects. The third mechanism is if the probability of response depends on the value

of X, itself. This would occur if respandents tend not ta answer the question when

the analyst capability is, say, low. This is termed non-ignorable response.

ln general, the suitability of MOTs will be influenced by the missing data mechanism

and the percentage of observations with missing values. We outline sorne comman

MOTs below.

2.2 Comman Missing Data Techniques (MDTs)

There exist severai strategies for dealing with missing data. It is generally accepted

that if the data set cantains a relatively small amount of missing data and if this data

is missing randamly, then ail MOTs will be eQuallY suitable [31][53)[50)[3][74]. It

should be noted that caution must be exercised when c1assifying data sets as having

small amounts of missing data. For example, if the small amount of missing data is

only found in a few variables and is distributed randomly among ail observations, the

total percentage of observations containing missing data may be relatively large [50).
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• The choiee of MOT becomes more important as the amount of missing data in the

data set increases [74]. Another important factor in choosing a suitable MOT is the

mechanism that lead to the missing values, whether MCAR, MAR or non-ignorable

[58]. In general, bias will result if the distribution of the missing values is different

trom that of the observed values [31].

There are two general classes of MOTs that can be applied: deletion rnethods and

imputation methods. These are described below.

2.2.1 Deletion Methods

ln sumrnary, deletion methods ignore missing values. These procedures may result

in the loss of a significant amount of data, but are widely used because of their

simplicity [17][50].

2.2. 1.1 Listwise De/efion

Analysis with this method makes use of only those observations that do not contain

any missing values. This may result in many observations being deleted but may be

desirable as a result of its simplicity [50]. This rnethod is generally accepted when

there are small amounts of missing data and when the data is missing randomly. If

missingness is not randorn (e.g. non-ignorable) this method rnay lead to biases.[58]

For example, consider a study in which respondents with low incornes are less Iikely

to respond to a question about personal incorne. If ail the observations with rnissing

values for personal incarne were discarded, then the conclusions of the analysis

would be biased towards individuals with higher incarnes. Conversely, if rnissingness

is completely random, excluding observations with missing data would not affect the

conclusions of the study.

•

2.2.1.2 Pairwise Delefion

ln an atternpt to reduce the considerable [oss of information that may result trom

using Iistwise deletion, this method considers each variable separately. For each

variable, ail recorded values in each observation are considered and missing values

are ignored. For example, if the objective is ta find the mean for the personal income

variable. the mean is computed using ail recorded incarnes. In this case, reported

incarnes in ail observations will be considered, regardless of whether they are
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• missing ether variables. This technique will Iikely result in the sample size changing

for each considered variable. Nota that pairwise dalation becomes listwisa deletion

when ail the variables are naeded for a particular analysis, (a.g. multiple regression).

For the sarne reasons as mentioned for Iistwise deletion, this method will perform

wall, without bias, if the data is missing at random [58].

It seems intuitive that since pairwise dalation makes use of ail observed data, it

should outperform listwise deletion in cases whare the missing data is MCAR and

correlations are small [58]. This was found ta be trua in the Kim and Curry study [50].

ln contrast, other studies have found that when correlations are large, Iistwise

outperforms pairwise daletion [3]. The disadvantaga of pairwise dalation is that it

may generate an inconsistant covariance matrix in the case where multiple variables

contain missing values. In contrast, listwise deletion will always generate consistent

covariance and correlation matrices [50].

ln cases where the data set contains large amounts of missing data, or the

mechanism leading to the missing values is non-random, Haitovsky proposed that

imputation techniques might perform better than deletion techniques [38].

2.2.2 Imputation Methods

The basic idea of imputation methods is to replace missing values with estimates

that are obtained based on reported values [81][32]. In cases where much effort has

been expended in collecting data, the researcher will likely want ta make the best

possible use of ail available data and prefer not to use a deletion technique [24].

Imputation methods are especially useful in situations where a complete data set is

required for the analysis [59]. For example, in the case of multiple regression, ail

observations must be complete. In these cases, substitution of missing values

results in ail observations of the data set being used to construct the regression

model. It is important to note that no imputation method should add information ta

the data set. In the case of multivariate data, it makes sense that we might be able ta

obtain information about the missing variable from those observed variables. This

forms the basis for imputation methods. The primary reason for using imputation•
17



• procedures is to reduce the non-response bias that would result if ail the

observations that have missing values are deleted.

It has been proposed that a good imputation procedure should:

1) use observed values to predict a distribution for the missing values. The method

should then impute values based on this distribution [59].

2) use ail the observed values for each observation containing missing values [59].

3) use any external constraints about values being imputed. (For example, variables

X, + ~ must be less than or equal ta k.) [59][81]

4) not impute values that have baen extrapolated a considerable distance trom the

observed data. (Except in the case where substantial evidence is available to

warrant this.) [59]

5) impute values that do not change the predicted distribution (in 1) [59][81 l.

6) provide methods that adjust conclusions made tram the data set since it has

baen imputed with missing values [59].

2.2.2. 1 Mean Imputation

This rnethod imputes each missing value with the mean of observed values. For

example, a missing incarne cauld be replaced by the mean of ail observed incarnes.

The advantage of using this method is that it is simple to implement and no

observations are excluded, as would be the case with Iistwise deletion. The

disadvantage is that the measured variance for that variable will be underestirnated

[78][58]. For example, if a question about personal incorne is less Iikely to be

answered by those with low incemes, then irnputing a large amount of incarnes

equal to the mean incorne of reported values decreases the variance. Note that

mean imputation does not satisfy ail of the six points listed above.

•
2.2.2.2 Hot-Deck Imputation

Hot-deck imputation involves filling in missing data by taking values trom other

observations in the same data set. The choice of which value ta take depends on the

observation containing the rnissing value. The latter property is what distinguishes

hot-deck imputation tram mean imputation.
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ln addition to reducing non-response bias and generating a complete data set, hot

deck imputation preserves the distribution of the sample population. Unlike mean

imputation, which distorts the distribution by repeating the mean value for ail the

missing observations, hot-deck imputation attempts to preserve the sample

distribution by substituting different observed values for each missing observation.

Hot-deck imputation selects an observation (donor) that best matches the

observation containing the missing value (client). The donor then provides the value

ta be imputed into the client observation. For example, a study may be able to gather

a certain variable tor ail observations, such as geographic location. In this case, a

categorical hot-deck is created in which ail observations are separated into

categories according to one or more classification variables, in this case geographic

location. Observations containing missing values are imputed with values obtained

trom complete observations within each category. In this case, it is assumed that the

distribution of the observed values is the same as that of the missing values. This

places great importance on the selection of the classification variables and assumes

a large correlation between the observed and missing values.

ln other cases, there may not be any categorical data and the variables in which to

assess 'similarity' may be numerical.

Numerical hot-decks are typically tound in data sets that contain multivariate

observations with numeric variables. In this case, a donor is selected that is the most

similar to the client. Similarity is measured by using a distance-function that

calculates the distance between the client and prospective donors. The hot-deck is

the set of ail complete observations. For each client. a donor (or set of donors) is

chosen trom the hot-deck that contains the smallest distance to the client. This

distance can be based on one or more variables of the observation. The selection of

which variables on which ta use the distance-function is ideally those variables that

are highly correlated to the variable being imputed. In the case where a set of donors

has been obtained, the value to impute may be taken from the best donor, random

donor, or an average over ail donors. The purpose of selecting a set of donors is to

reduce the likelihood of an extreme value being imputed one or more times [32][81 J.
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• Colledge et al. concluded that hot-deck imputation appears ta be a good technique

for dealing with missing data, but suggested that further analysis be done before

widespread use [24].

2.2.2.3 Cold-Deck Imputation

This method is similar to hot·deck imputation except that the selection of a donor

cornes from the results of a previous survey [58].

2.2.2.4 Regression Imputation

This is a modeling technique that replaces each missing value with a predicted value

based on a regression model. First, a regression model is built using both the

complete and incomplete observations. For each incomplete observation, each

missing value is replaced by the predicted value tound by using the regression

model [58].

2.2.2.5 Multiple Imputation Methods

Modeling techniques that impute one value for each missing value underestimate

standard error. This is the case because imputing one value assumes no

uncertainty. Multiple imputation remedies this situation by imputing more than one

value, taken from a predicted distribution of values [61]. The set ot values to impute

may be taken trom the same or different models displaying uncertainty towards the

value ta impute or the model being used respectively. For each missing value, an

imputed value is selected trom the set of values to impute, each creating a complete

data set. Each data set is analysed individually and final conclusions are obtained by

merging those of the individual data sets. This technique introduces variability due ta

imputation, contrary ta the single imputation techniques. The only disadvantage, with

respect to single imputation techniques, is that it is more computationally intensive

[58]. Consequently, this technique is most useful when the data set contains small

amounts of missing data in a smatl proportion of the observations [79].

•
2.3 Summary
Ta our knowledge, there have been no previous studies of MDTs within software

engineering. Therefore, it is nat possible to determine which MDTs are suitable and

under what conditions for software engineering studies.
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• In our study, we focus on three types of MOTs: listwisa dalation, mean imputation,

and hot-deck imputation. We chose listwise delation bacause it is common practice

in software cast estimation studies, and therefore we wished to determine its

performance. Furthermore, it has been noted that in general empirical enterprises,

Iistwise deletion and mean imputation are the most popular MOTs [74]. Hot-deck

imputation is of interest since it has been adopted in sorne highly visible surveys,

such as the British Census [7][32], the U.S. Bureau of the Census Current

Population Survey, the Canadian Census of Construction [32], and the National

Medical Care Utilization and Expenditure Survey [57]. Furthermore, sorne authors

contend that the hot-deck is the most common MDT for complex surveys [31].

•
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Chapter 3: Research Method
ln this chapter, we outline the objective of the study and describe the data set used.

ln addition, we discuss the research design and how the empirical study was

conducted.

3.1 Objective of Study
The objective of this study is ta compare different MOTs for dealing with the problem

of missing values in historical data sets when building software cost estimation

models. Specifically, Iistwise deletion, mean imputation and hot-deck imputation

were compared. The focus is on simple methods that would aHow researchers to

easily implement the result. Since for cast estimation models the most important

perfonnance measure is their prediction accuracy, we evaluate how this accuracy is

affected by using the different missing data techniques. By identitying the most

appropriate technique, future researchers would have substantiated guidance as to

appropriate ways for dealing with missing values.

3.2 Data Source and Content
The data set used in this study is called the Experience Database. The Experience

Database began with the co-operation of 16 companies in Finland. Each company

must purchase the Experience tool and contribute the annual maintenance tee. This

entitles them to the tool that incorporates the database, new versions of associated

software and updated data sets. Each company can add their own data to the tool

and are encouraged. through incentives, to donate their data to the shared

database. For each project donated, the company is given a reduction in the annual

maintenance tee. Since ail companies collect the data using the same tool and the

value of each variable is weil defined, integrity and compaiability of the data is

maintained. ln addition, companies that provide data are subsequently contacted in

arder ta verity their submission.

The primary advantage of this data base, with respect ta this study, is that it does not

contain missing values. The fact that this relatively large data set does not contain

missing values is due to the careful manner in which the data was collected and
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extensive follow up. This allows us to simulate various missing data patterns, as will

be explained below.

The data set is composed of 206 software projects trom 26 different companies. The

projects are mainly business applications in banking, wholesale/retail, insurance,

public administration and manufacturing sectors. This wide range of projects allows

for generalizable conclusions that can be applied to other projects in the business

application damain. Six of the companies provided data tram more than 10 projects.

The system size is measured in unweighted and unadjusted Function Points [2]. For

each project, we had the total effort in person-months and values on fifteen

productivity factors. The variables considered in our analysis are presented in Table

1. The productivity factors are defined in detail in Appendix B.

Variable Description Values 1Range 1Unit

Effort Tota! project effort Person hours (ph)

FP System slze measured in functlon POints Unadlusted Unweighted Functlon Points

PF01- 15 Produetlvity Factors: 1- 5 (very small - very large)

PF15
Customer Participation. Development Environment Adequacy.

Staff AvaiJabinty. Use of Standards. Use of MethodS. Use of ToolS.

Software Complexity (Logical). Requirements Volatllity. Quallty

Requirements (Software). Efflclency Requirements. Installation

Requirements. Staff AnaJysiS Sklils. Staff Application Knowledge.

Staff Taol Skilis. Staff Team Skllls

Table 1: Variables used in our simulation trom the Experience Oatabase.

3.3 Cross Validation
If a cost estimation model is developed using a particular data set and the accuracy

of this model is evaluated using the same data set, the accuracy obtained will be

optimistic. The calculated error will be low and will not represent the performance of

the model on another, separate data set. This study divides the Experience

database into two parts. Since 30°,'0 of the software projects came trom a bank, the

database was split into a bank data set (63 projects) and the rest (143 projects). We

termed the former the test data set, and the latter the training data set. The cost

estimation model is developed using the 143 projects in the training data set. We
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• then evaluated its prediction performance on the 63 project test data set. This

approach is similar ta the situation whereby a multi-organizational data set is used to

build a model, and then an individual organization applies that model for its own

projects (e.g. [73]).

3.4 Regression Madel
We used multivariate least squares regression analysis by fitting the data to a

specified model that predicts effort [39]. The selected model specification is

exponential, because Iinear models revealed marked heteroscedasticity, violating

one assumption for applying regression analysis. 9

The general form of the regression model is as follows:

log(Effort)= 130 + PI log(FP)+ LP,.t log(~ )
1>0

where the T, values are the produetivity factors.

Eqn.1

•

It is known that many of the productivity factors are strongly correlated with each

other [18][52][86]. Although sorne cast estimation models have been developed that

contain many productivity factors, [93][5][12][64] found that for a given environment,

ooly a smail number of signifieant productivity factors are needed in order ta develop

an aecurate effort estimation model. This conclusion is supported by [52][67] and [8].

Therefore, we first redueed the number of variables down from 15 using ooly the

training data set. Two approaches were followed. A mixed stepwise process was first

performed ta select variables having a signifieant influence on effort (alpha=O.OS). In

'l One can make ather substantive arguments for selecting thiS funetJanal form. In software engineering. there has been a
debate over whether economies of scale do indeed exist. and if so, what is the approprlate functional form for madeling such
economies. The concept of econamies of scate states that average productlvity incresses as the system size increases. This
has been attrlbuted. for example. to software develapment tools whereby the initiai tool institutlonaliZation investment may
preclude their use on smalt proiec1s [12]. Furthermore. there may be fixed averhead cests. such as project management that
do nat increase dfrectty with system sae. hence affording the larger projects economies of scale. On the other hand. it has
baen noted that some averhead aetivitfes. such as documentation. growat a faster rate than project size [45]. contributlng to
diseconomies of scale. Furthermore. within a single organlzation. il iS plausible that as systems grow Iarger. then larger teams
will be employed. Larger teams lntroduce inefficfencies due to an increase in communication paths [14]. the potentiaJ for
personallty conflTcts [12}. and more complex system interfaces [25}. A series of studies on the existence of (dis)economies of
scafes provided InconsiStent results [9R10R52]. In another effort to determlne whether such (dIs)econamies of scate exist. Hu
[42} compared a simple Bnear modal with a quadratlc. lag-llnear. and translog modets. and used objective statistlcal procedures
to malee that determlnatlon. He also investlgated what the approprlats functfanaJ farm should be. He concluded that the
quadratfc form is the most appropriate. SUbsequenUy. his study was crltfdsed on methodologicaJ grounds [71 R18]. Another
study !hat compared functfanaJ forms. that addressecJ some of these shortcamings. concluded that the log-llnear form. whiCh
we use. is the mast plausible one [18}. The general mUftlplfcative tonn far cast estimation mooels has also baen recommended
in [67] since the impact of each of the productivity factors iS llkely to be prapartlonal ta the sae of the software.
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this case the size measure, FP, was selected due ta its strong influence on effort, as

weil as a subset of the productivity factors. An alternative approach was also

investigated, namely using the leaps and bounds algorithm [34]. This is an efficient

algorithm for performing regressions for ail possible combinations of the 15

productivity factors (size was always included). The model with the largest adjusted

R2 value was selected. Both approaches gave similar results in terms of prediction

accuracy on the test data set. We theretore selected the model trom the leaps and

bounds algorithm since it performs an exhaustive search.

The final model is summarized in Table 2. We refer ta this model as the baseline

model since it has been developed with the complete training data set (Le., no

missing values).

Variable (log) Parameter Value Standard Errar tvalue Pr (> 1t 1)

Intercept 2.687 0.558 4.813 <0.0001

System size (functlon points) 0.9104 0.08565 10.629 <0.0001

Customer participation 0.2413 0.19139 1.261 2.095 x la'

Useot lools -0.3392 0.27905 ·1.216 2.263 x 10'

Loglcal complexity of software 0.5214 0.21987 2.399 1.782 x 10~

Aequirements volatlilty 0.7223 0.21949 3.291 1.274 x 10 l

QuaJlty requirements 0.3061 0.25n4 1.188 2.370 x la •

Application knowtedge of staff -0.3528 0.14897 ·2.368 1.930 x 10 ./

Table 2: Baseline model parameters. The adjusted R2 is 0.605, and the F test of ail
parameters equal to zero produced a p value <0.0001.

We used the condition number of Belsley et al. [11] as an indicator of collinearity in

this modal. lt was lower than the threshold of 30, and hence we can be confident that

there are no multicollineartty problems in this modal.

The baseline model has parameters whose signs are in the expected direction.

Perhaps the user participation effect requires further explanation. It would be

expected that increased user participation would lead ta higher effort since

interaction effort with the users increases.
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• 3.5 Scale Type Assumptions
According to some authors, one of the assumptions of the OLS regression model is

that ail the variables should be measured at least on an interval scale [13]. This

assumption is based on the mapping originally developed by Stevens [88] between

scale types and "permissible" statistical procedures. In our context, this raises two

questions. First, what are the levels of our measurement scales? Second, to what

extent can the violation of this assumption have an impact on our results?

Our productivity factors utilized a single item each. In practice, single item measures

are treated as if they are interval in many instances. For example, in the construction

and empirical evaluation of the User Information Satisfaction instrument, inter-item

correlations and principal components analysis are commonly performed [43].

It is aisa useful to note a study by Spector [84] that indicated that whether scales

used have equal or unequal intervals does not actually make a practical difference.

ln particular, the mean of responses trom using scales of the two types do not exhibit

signifieant differences, and that the test-retest reliabilities (Le., consisteney of

questionnaire responses when administered twice over a period of time) of bath

types of scales are both high and very similar. He contends. however, that scales

with unequal intervals are more diffieult ta use, but that respondents conceptually

adjust tor this.

Given the proscriptive nature of Stevens' mapping, the perrnissible statistics for

scales that do not reach an interval level are distribution-tree (or nonparametric)

methods (as opposed ta parametric methads, of which OLS regression is one) [82].

Such a broad proscription is viewed by Nunnally as being lInarrowl' and would

exclude much useful research [69]. Furthermore, studies that investigated the effect

of data transformations on the conclusions drawn tram parametric methods (e.g., F

ratios and t tests) found fittle evidence supporting the proscriptive viewpoint

[55][54][6]. Suffice it to say that the issue of the validity of the above proscription is,

at best, debatabla. As noted by many authors, including Stevens [88], the basic point

is that of pragmatism: useful research can still be conducted aven if, strictly•
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• speaking, the proscriptions are violated [13][35][89]. A detailed discussion of this

point and the literature that supports our argument is given in [17].

3.6 Evaluative Measures
ln arder ta evaluate the impact of MOTs, we define two different evaluative

measures:'o magnitude of relative error (MRE) and prediction at level 1 (PRED( 1))

[25]. These are calculated trom the model developed using the training data set and

evaluated on the test data set.

The MRE is defined as:

IActual Efforo - Predicted Efforol
MREi= xLOO

Actual Effort
Eqn.2

•

The MAE value is calculated for each observation i whose effort is predicted. The

aggregation of MRE over ail predicted observations, N , was achieved by taking the

median of the MRE (MdMRE) over N observations.,t It provides the percentage

error in the estimate.

A complementary criterion that is also used is the prediction at level l,

PRED(l) =!-x LOO, where k is the number of observations where MAE is less than
N

or equal to L. For our study we set 1 to 25%. The Pred25 provides the percentage

of observations whose effort estimates were within 25% error.

'0 A third potentlal evaluatlve measure iS concemed wi1h consistency of estimation. This is defined as the correlation between
the estlmated and the aetual effort. and has been used in a number of previous studles [67][2][49]. The logie of using this
measure iS that the existence of consistency. aven if it iS consistency in under or overestimation. project managers would be
able to easily ad[ust for that using say a constant multiplier and the estimation model would still be of value. How9Ver. it was
shown in a racent report [21] that adlustlng consistent undemstlmates with a constant multiplier will increase accuracy but
dramatlcally increase variabiUty. and will reduce the acccuracy of overestlmates. In our simulation we. therefore. focus only on
accuracy of prediction.

Tt An implicit assumptlon in uslng MRE as a measure of predictive accuracy iS that the errer is proportlonal ta the size of the
profect. For example. a 15 person-month overestlmate for a 15 perscn.month proiect is more serious than for a 100 person
month project On the ether hand. Mlyazakl et al. have critlclsed the MAE measure because it penafizes ovemstlmates more
than underestfmates [66]. and propose a new measure to atleviate this. However. Shepperd and Schofield [83} note that the
proposed Myiazaki measure of accuracy is effec1lvely two distinct measures that should not be combinecl We therefore utIlize
the commonly used MRE as no alternatives have enjoyed acceptance wittlln the software engineering community.
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3.7 Simulation Approach
There are three general approaches that one can use to study the effect of dealing

with missing values, two being simulations. The tirst possibility is to use an actual

data set that had missing data, that were subsequently obtained through follow-up

activities. This would allow the researcher ta compare the performance of models

using the data set with missing values after an MOT is applied, and the complete

data set after follow-up. This is the approach used in the study by Cox and Foisom

[26]. However, it is rare in practice to have such a data set.

The second is a Monte Carlo simulation. Under this approach, one constructs

artificial data sets whose variables have known distributions and known inter

correlations. Then one creates missing values in these artificial data sets following

various missingness schemes that one wants to study. Subsequently, different

MDTs are applied and their performance evaluated in comparison to the known

characteristics of the artificial data generation.

An example of such a Monte Carto simulation is [78]. The analysis considered only

cases where observations were partially incomplete, not those in which there was a

complete non-response. Techniques considered were Iistwise deletion, pairwise

deletion, mean imputation, regression imputation, and hot-deck imputation. The

complete data set used for the analysis was generated tram a population correlation

matrix. Various statistics were generated based on the complete data set to be

compared with those generated after inducing missing values and application of the

various MDTs. Missing values were imputed in 10, 20 and 30% of the observations

randomly. The effectiveness was based on calculation of root mean squared error

and absolute error.

A potential disadvantage of the Monte Carlo approach is that one cannat be certain

that the population characteristics that are being simulated are congruent with real

data sets. Theretore, one would not know the extent ta which the conclusions can be

generalized to actual practical situations. This approach can be mitigated by basing

the population parameters on values obtained trom previous studies, such as in the

Monte Carlo simulation performed by Kim and Curry [50}.
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• An alternative approach is ta use an actual data set relevant ta the problem. This

data set would have ta be complete (Le., no missing data). One would then create

missing values that tollow a known pattern. Subsequently, different MOTs are

applied and their performance evaluated in comparison ta the results that would be

obtained had there been no missing data.

An example of this kind of approach is the study of [53]. This study analysed the

performance of five MOTs for dealing with data missing nonrandomly, namely,

Iistwise deletion, pairwise dalation, mean imputation, simple regression imputation,

and multiple imputation. Performance of each technique was based on parameter

estimates of a two-predictor regression model. Bootstrap samples were taken trom

actual field data and missing values were assigned to one variable, based on the

value of that variable.

The approach we have followed in our study is in the final category. We used the

Experience Database as our complete data set. The overall simulation approach is

summarized in Figure 1.

Establish Baseline Model
MdMAE and Pred25

l'
Iterate 500 times:

Induce missing data in training data set

Apply MOT and build regression model using training data

Compute MdMRE and Pred25 on the test data set

"

•
Compare reluits tram 500 Iterations
with baseline MdMAE and Pred25

Figure 1: Summary of simulation approach.
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• The baseline model was already described in Section 3.4. Using the baseline model,

we predicted the effort on the test data set and found the MdMRE to be 47% and the

Pred25 ta be 24%. Note that the calculation of thase measures is based on the

original units, not the log transformed. The exponential function is applied ta the

predicted effort in order to convert it back ta its original unit. These serve as our

baseline MdMRE and baseline Pred25 and will be referred to as MdMREbas~!/Il~ and

Pred25bas~line respectively.

We describe the remaining steps of our simulation approach below.

3.8 Simulating Missing Data
We consider four parameters in simulating the missing data:

• The percentage of observations with missing data

• The number of variables that have missing data (we only consider missing

values on the productivity factors)

• The missing data mechanism

• The pattern of missing data

Five different percentages of missing values were simulated {5,1 0,15,25,40}. It is

generally accepted that data sets with more than 40% missing data are not useful for

detailed analysis.

Since our final model has six productivity factors, we consider missing values on one

up ta ail six variables.

Three missing data mechanisms were evaluated: missing completely at randam

(MCAR), missing at random (MAR), and non-ignorable missingness.

The implementation of the MCAR mechanism to impute missing data was

straightforward. Missing values were imputed for the relevant variable completely at

random.

For MAR, we simulated the situation where missing values depend on the size of the

• projeet. The implementation of the MAR meehanism to induee missing data, involves
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tirst ordering the observations according ta project size. Missing values are induced

with biases for bath small and large project sizes. Once the data set is ordered, it is

split up into quintiles with the first and last quintiles containing 28 observations and

the middle three containing 29 observations. Each quintile will receive different

percentages of missing values. The total percent of missing values is divided by 10

ta get a value for k. The separate quintiles will be induced with 4k, 3k, 2k, kt and Ok

missing values. For example, if the total amount of missing data to be created is

10%, then each quintile will be induced with 4, 3, 2, 1, and 0% missing values. It is

important ta note that within each quintile, missing values are induced randomly.

For non-ignorable missingness, we simulated missing values that depend on the

particular variable in question. Implementation was identical ta MAR except that the

observations were ardered by the variable ta be induced with missing data. Quintiles

were formed and missing values were created as described for MAR. Missing values

are induced with biases for both lowand high values for each variable.

Two patterns of missing data were simulated. The first is univariate missing data,

whereby the values are missing on each variable separately according ta one of the

mechanisms described below. Each independent variable was induced with missing

values according ta the pattern shawn in Figure 2 (Ieft panel).

The second is monotone missing data, whereby the variables can be ordered in

terms of their extent of missingness. This means that ail observations with missing

data for~ also have missing data for XlI but the reverse is not always true [61].

The implementation of monotone missing data is iIIustrated with two variables. It

easily generalizes to the case of more than two variables. The monotone pattern of

missingness is shawn in Figure 2 (right panel). The first variable is induced the same

way as for the univariate case. Next, hait of the observations that contain missing

values at the first variable will have theïr second variable induced with a missing

value. For the MCAR mechanism of missing data, half of the total number of

observations containing missing data will have missing data on two variables. For

the MAR mechanism, half of the observations for each quintile will contain missing

data for both variables. It follows that although the total amount of missing values
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• being induced is greater in the monotone case as compared to the univariate case,

the total number of observations that contain at least one missing value will be the

same.

D DD

Figure 2: Univariate and monotone patterns of missing data.

•

ln total, then, we defined 29 340 missing data schemes. t2 For each missing data

schema we applied each of the 10 MOTs described below. This gives a total of

293 400 different study points in the simulation. For each study point and MOT

combination we performed the simulation 500 times. t3 For each of the 500 iterations,

we built a new ordinary least squares regression modeL Subsequently, we

performed a prediction on the test set and computed the evaluative measures.

3.9 Summary Measures

For each run of the simulation we computed the MdMRE and Pred2S. From these

numbers we have ta produce summary measures. We consider two types of

summary measures: bias and precision. Bias tells us how different the results are

tram those that would be obtained had there been no missing data (Le., the

baseline). Precision informs us about the dispersion or variability.

12 At the outset this may seem ta be a large nurnber. However. for the monotone patterns having more than one productlvity
factor with misslng vafues. we must conslder all possible permutations of the productlvity factors with misslng values.
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• Bias was computed trom the 500 simulations as follows:

MREsnui\,polflr =medianlMdMREj - MdMREbaJdin~ 1
lSiS500 Eqn.3

Eqn.4

For the MRE, we computed the median absolute difference across ail 500

simulations. This provides us a measure of the bias of the MDT compared ta the

MRE that would be obtained had there been no missing data.

Pred25sfUd\'Polnt =medianlPred25, - Pred25beLs~/intl
lSis.500

For the Pred25, we computed the median absolute difference across ail 500

simulations. This provides us a measure of bias of the MDT compared to the Pred25

that would be obtained had there been no missing data.

Bath of the above measures express bias in terms of the change in percentage. For

example, if i'dREshuAPlJlnr is S, that means that overall, using the MDT will be different

from the baseline MdMRE by 5 MRE percentage points. Thus, if the baseline

MdMRE is 46%
, then the overall MDT MdMRE could be 51 0/0. The same applies ta

Pred2S.

Precision was evaluated using the inter-quartile range as follows:

lQR (MdMR~ - MdMREbcudrnt )
1!i.S500

lQR (Pred25r - Pred25buJtlin~ )
IStS500

Eqn.5

•

We present the precision results in the torm of box and whisker plots (for an

overview of these types of plots, please see Appendix A).

3.10 MOTs Evaluated

The implementation of the MOTs that we studied is described below.

3.10.1 Listwise Deletion

For Iistwise deletion, observations containing mlsslng data are ignored. The

regression model is built using only observations that contain no missing values.

13 We randûmly selected some of the study points and perfonned the simulations with 1000 iteratfons. Our conclusions were
not affected. and in tact aven the summary values obtalned were very simlfar.
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3.10.2 Mean Imputation

After the database has been induced with missing values, each missing value is

replaced by the mean calculated for ail observed cases for that variable. For the

univariate case, the mean is calculated for the variable that cantains missing values

and this value is imputed for ail observations that contain a missing value. For the

multivariate case, multiple means are calculated, one for each variable that contains

missing values. The same value will be imputed for ail observations.

Once ail the values have been imputed, the regression model is generated. Unlike

listwise deletion, no observations are lost and the ragression model is based on the

complete data set containing imputed values.

3.10.3 Hot-Deck Imputation

Once the missing observations have been created in the database, each missing

value is imputed with a donor value picked from the one of the observations without

missing data. We now present sorne notation to help explain the different types of

hot-deck imputation that we implemented.

We divide the data set into those observations with missing values, the missing set,

and those observations without missing values, the complete set. Let XI be the

vector of ail variables measured on the jth observation in the missing set, and x
l
/ be

the value of the /h variable measured on the observation. Further, let Ct be the

vector of ail variables measured on the k th observation in the complete set, and let

ClJ be the value of the rh variable measured on that observation.

We constructed a numeric hot-deck function. ln setting up a hot-deck function,

different hot-deck parameters can potentially have a nonnegligible impact on its

performance:

• ln calculating a distance between an observation in the missing set and the

complete set, variables containing values that are much larger than those in

other variables will dominate the distance (e.g., size has a much larger range

than the productivity factors). Standardization will prevent thase variables
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• from having a larger influence (in effect, treating ail variables as being equally

important). Which standardization technique should be used ?

• There are multiple possible distance measures that can be employed. Which

one should be used?

Below we describe these parameters and the particular values that we evaluated,

including justifications for the selections made.

First, we consider three different standardization approaches: z-score, mean

absolute, and Zs' in addition to the case of no standardization.

A simulation study in the area of cluster analysis, found one type of standardization

scheme ta be superior in recovering the underlying cluster structure under different

conditions including error free data, and data with noise and with outliers [65].

However, the parameters of that simulation are not necessarily reflective of software

cost data, and therefore this standardization scheme, referred to as Z,,' is evaluated

here:

Ctl - min( Ct)

Z~ = .
max(ct ) - mm(ct )

Eqn.6

As will be noted, this has a non-robust denominator in that it will be easily affected

by even a single outlier. A more traditional standardization scheme that makes the

unit of the variables the sample standard deviation is the z-score:

L
ct, --~ ct,nt

Z - score = '"""';:::========

Eqn.7

•
A more robust approach for standardization is to use the mean absolute deviation

[91] instead of the standard deviation in the denominator. This is robust because the

deviations are not squared, therefore atypical points do not exaggerate it [48].

Robustness is desirable because software measurements typically have a few
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• extrema values that may exert strong influence on the analysis results (a.g., saa

[68)).

1
c· --~ C

kt n~ kt
Eqn.8

For each observation that contains a missing value, a distance is deterrnined

between it and ail observations in the complete set. A multitude of different distance

functions can reasonably be used in a hot-deck function. We Iimit ourselves to the

commen distance functions in other disciplines. We also Iimit ourselves to the

context where the predictor variables are continuous, since we treat them this way in

the ragression modal.

Kaufman and Rousseeaw [48] define the Minkowski distance as follows:

1

d" =(~ h -.t"l~ )
Eqn.9

The most commenly used distance functions for continuous variables are the

Euclidean and Manhattan distances.

The Euclidean distance between a companent i in the missing data set and a

component k in the complete set is given by (Le., q =2):

A priori, there is no compelling reasan ta preter one distance function over another,

and theretore, it is prudent to evaluate them empirically.•

Euclideanik = L{ct, - xrj r
J

The Manhattan distance is defined by (Le., q = 1):

Manhattan;! =L Ict, - Xii1
J

Eqn.10

Eqn.11
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Using bath functions, a value is determined for the distance between the observation

containing a missing value and ail observations in the hot-deck. The distance

function takes as input the size variable and ail productivity factors except the one

that is missing. The missing value is imputed with the variable trom the observation

in the hot-deck that has the smallest distance trom the observation containing the

missing value.

Once ail missing values have been imputed with values obtained trom the hot-deck,

the data set is complete and the regression model is generated.

ln the case of monotone missing data with two variables, the data set is divided into

three parts, observations that contain one missing value (M1), observations that

contain two missing values (M2), and observations that contain no missing values

(complete set). A given percentage of observations will contain missing values on

one independent variable, say X" ln hait of these cases the observation will contain

a missing value at another independent variable, say ~. This can be easily

generalized ta the case with more than two missing variables.

Values are imputed into M1 observations in the same way as for the univariate case.

For M2 observations, two values trom the same hot-deck observation with the

smallest distance ta each observation are imputed. It is important ta note that the

distance function tor the M2 observations will be based on one less independent

variable than for the M1 observations.

Once ail missing values have baen imputed with values obtained trom the complete

set, there are no more missing values, and the regression model is generated.

Once the model has baen darived, it is then used to predict the effort for each

software cost project in the bank database.

3.11 Summary
ln this chapter, we have described the overall simulation approach. ln total we had

293 400 study points that were simulated, each with 500 iterations. This includes ail

techniques for generating missing values combined with the MOTs studied. 5uch a

comprehensive simulation should provide us with a reasonable picture of the
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strengths and weaknesses of each MDT under different missing data scenarios.

Furthermore, the fact that the simulation is based on an actual data set should give

us confidence in the applicability of the results within the same application domain.
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Chapter 4: Results
We tirst provide sorne descriptive statistics tor the data set. Then we present the

results for each MDT in tum. Due to the large amount of results that can be

presented, we are only able to show results that demonstrate the patterns that were

observed.

Table 3 presents the abbreviations of each produetivity factor that will be used in

future figures and tables.

Abbreviation Productivity Factor

CP Customer Participation

UT Use of Toois

SC Software Complexity

RV Requirements Volatility

OR Quality Requirements

SK Staff Application Knowledge

Table 3: Productivity factors with corresponding abbreviations

Evaluative results are given in terms of the MREstuJ'.Pmnl and Pred25s1uJrPmnl' as

described in Eqn. 3 and Eqn. 4, calculated for ail 500 iterations. In sorne instances,

we also present box and whisker plots for MdMRE and Pred25 differences trom the

baseline values to show the extent of variation.

The results are grouped into the four combinations of MCAR and MAR vs. non

ignorable missingness, and univariate vs. monotone patterns. The exception is

Iistwise deletion because there is no difference between univariate and monotone

patterns.

4.1 Descriptive Statistics

Table 4 summarizes the descriptive statistics for system size (FP) and project effort

(persan-hours: ph). The table shows the results for the whole database, the test data
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• set t and the train data set. Projects in the test data set are tram the banking damain

and generally have a higher effort than those in the whale database. The breakdown

of projects par organization type for the whole data base is 380/0 banking, 27%

insuranca, 19% manufacturing t 9% wholesale t and 7% public administration. Table 5

summarizes the descriptive statistics for each of the praductivity factors. Figure 3

and Figure 4 iIIustrate the proportions of projects for different application types and

target platforms for the whole database and the test and train data sets. It can be

seen that the proportions of application type and target platform are similar for the

whole database and the test and train data sets.
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Figure 4: Distribution of projects by target platform.
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Test data set Train data set Whol. data set

Size (FP) Effort (ph) Size (FP) Effort (ph) Sile (FP) Effort (ph)

min 10 583 10 250 10 250

mean 109.2 8109.5 122.8 5999.6 118.7 6644.9

max 558 63694 487 51100 558 63694

st. dey 111.3 10453.9 97.2 n32.4 101.6 8684.3

obs 63 63 143 143 206 206

Table 4: Descriptive statistics for system size and effort.

Testdlta set 1 Train data set
productlvtty factors 1 productlvity factors

cpi UTI scl RV! CRi SKI cpj UTi sel Avi cRI SKI

min 11 11 11 21 21 li li 11 11 11 11 11

medlani 31 31 31 41 41 31 3i 31 3i 31 31 31

mean 3.11 2.91 3.31 3.81 41 3.1i 3.21 3.1i 3.21 3.11 3.21 31

si 41 51 51 51 51 51 51
1 si 51max 51 51

st.dev ; 1.021 0.7i 0.9i 0.95i 0.751 0.951 0.921 0.681 0.91 0.841 0.81 1.091

obs 1 631 631 631 631 63\ 631 1431 14311431 14311431 1431

Table 5: Descriptive statistics for system productivity factors

4.2 Listwise Deletion

The following section contains the results for the listwise deletion MDT.

4.2.1 MCAR and MAR Mechanisms

Table 6 shows the J'dREStud,Pornr and Pred25studl'PllInr values l4 for listwise deletion under

the MCAR and MAR mechanisms. Here, the values are only for the univariate

pattern. The results for the monotone pattern are not presented because with

listwisa daletion they are, by definition, exactly the same as in the univariate case.

,. For a description of the summary measures. see Section 3.9.
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Miss 5% 10% 15% 25% 40%

Mech. Bias -ina MdMRElpred25 MdMRE 1Pred25 MdMRE 1Pred25 MdMRETPred25 MdMREIpred25
MCAR nia CP 0.92 j 1.6 1.1 1 1.6 1.4 1

1.6 1.6 1 1.6 2.3 1 3.2!

UT 0.83 i 1.6 1.1 1 1.6 1.4
1

1.6 1.8 1 1.6 2.1 1 3.2, 1

1 SC 0.82 1 1.6 1.2 1 1.6 1.4 1 1.6 1.7 i 1.6 2.3 1 1.6

1

1

AV 0.85 1 1.6 1.2
1

1.6 1.3 1 1.6 1.8 i 1.6 2.3 1 3.21

CR 0.88 , 1.6 1.1 1 1.6 1.3 1 1.6 1.8 1.6 2.4 i 3.21 :

SK 0.90 i 1.6 1.1 1 1.6 1.2 1 1.6 1.7 3.2 2.6 1 3.21
,

MAR 1large CP 0.81 " 1.6 1.0 1 1.6 1.2 1 1.6 1.6 1.6 1.8 1 3.2
1 1

UT 0.76 1 1.6 1.0 i 1.6 1.2 1 1.6 1.5 3.2 1.9 ; 3.2
1

se 0.75 1 1.6 1.1 i 1.6 1.2 1 1.6 1.5 1.6 2.0 3.21

'AV 0.75 1 1.6 1.0 1 1.6 1.3 ! 1.6 1.6 3.2 2.1 3.2i

i 'CA 0.84 1 1.6 1.1 1 1.6 1.2 1 1.6 1.5 1.6 1.8 3.2i !
1 SK 0.86 i 1.6 1.0

,

1.6 1.2 1 1.6 1.5 3.2 1.9 3.21 1

I,small CP 0.85 1.6 1.3 1 1.6 1.4 i 1.6 1.6 1.6 2.4 1.6
UT 0.93 1.6 1.2 1 1.6 1.4 i 1.6 1.6 1.6 2.5 1.6
Ise 0.92 ! 1.6 1.1 ! 1.6 1.4 1 1.6 1.7 1.6 2.3 1.6
AV 0.89 1 1.6 1.1 i 1.6 1.2 1 1.6 1.8 1.6 2.3 1.6

1 ICA 0.88 t 1.6 1.1 1.6 1.2 ! 1.6 1.7 1.6 2.3 1.6
i iSK 0.94 1 1.6 1.2 1.6 1.4 1 1.6 1.6 : 1.6 2.4 1.6,

1
i

1

Table 6: Listwise deletion for univariate missing data on aH productivity factors. For
the MAR case, it is indicated whether there is more missingness for large vs. smail
projects.

A number of conclusions can be drawn from this table:

• The bias '5 increases as the extent of missing data increases, for bath the MCAR

and MAR mechanisms.

• For the MAR mechanism, there is no striking difference between biases for large

vs. small projects.

• There are no striking differences between the MAR and MCAR mechanisms.

• The Pred25 value peaks at a 3.2% difference for 400/0 missing data. In our

context this would mean that 2 more out of the 63 projects in the test set have an

MRE greater than 25% when using Iistwise deletion.

• MdMRE peaks at a difference of 2.6°k for 40% missing data. This means that the

estimation accuracy will be different from the case where complete data is

collected by an average of only 2.6°fc».

" For a description of thfs summary measure, see Section 3.9.
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• For low percentages of missing data, up to 15%, Iistwise deletion performs

remarkably weil, with a negligible bias in its performance. At higher extents of

missing data. the bias in terms of MdMRE and Pred25 is still rather smalt in

absolute terms. Since these results hold even for 6 productivity factors with

missing values, they indicate that Iistwise deletion is a reasonable approach to

use with MCAR and MAR missing data.
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Figure 5: Listwise deletion on each productivity factor with 5% missing data, using
MCAR mechanism.
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Figure 6: Listwise deletion on each productivity factor with 40% missing data, using
MCAR mechanism.

Figure 5 shows box and whisker plots'6 of the MdMAE bias when using Iistwise

deletion for SOk missing values under the MCAR mechanism for ail six productivity

factors. Contrast this with Figure 6, which shows the MCAR results for 40% missing

data. It will be noticed that the variation in MdMAE is larger for 40% missing data.

Thus, the variability in the performance of Iistwise deletion deteriorates as the extent

of missing data increases. However. it should be recalled that this deterioration is

slight, in that variability increases by about 2-4°k. A confirmatory pattern can be seen

in Figure 7, where we see that the MdMRE bias tram using the listwise deletion MOT

for one of the productivity factors increases as the extent of missing data increases.

The 5ame pattern was observed for ail productivity factors and for MAR.

• T' Box and whisker plots present precision resuJts. as described in Section 3.9.



o

o

a

o
o
o

CJ

o

o
o
()

o
o

o
o

o

o

•

•o

12,..----------------------....,
11
10
9
8
7
6
5
4

l 3
CI) 2
as 1
ai a
w
a: ·1
~ ·2
~ ·3

·4
·5
·6
·7
·8
·9

·10.tl "-- .....1

•

5 10 15 2S 40

Percsntage of Missing Values

Figure 7: Summary of MdMRE results - Iistwise delation for Customer Participation
productivity factor under MCAR.

Figure 8 shows a similar increase in variability for the Pred25 measure, indicating

that Iistwise deletion provides less stable results as the extent of missing data

reaches 40%. A similar pattern was observed for the other variables.

•
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4.2.2 Non-ignorable Missingness Mechanism

•

i i 5% 1Oo~ 15% 250/0 40%
1Mlsslng 1BIas MdMREI Pred25 MdMREI Pred25 MdMREI 'm25 MdMREI Pred25 MdMAEI Pred25
Icp ilow 0.82 1 1.6 0.84 1 1.6 1.1 i 1.6 1.5 1.6 1.6 i 3.2
i high o.n! 1.6 1.3! 1.6 1.4 i 3.2 1.7 3.2 2.0 1 4.8
IUT ilow 0.86 '1 1.6 1.1 1.6 1.2: 1.6 1.5 1.6 1.8 3.2
! !high 0.82 1 1.6 1.0 1 1.6 1.2 1 1.6 1.6 1.6 2.5 1.6
!Se 110w 0.88! 1.6 1.2 t 1.6 1.5 1 3.2 2.4 3.2 3.5 3.2
: !high 0.75: 1.6 1.0 1.6 1.2 1 1.6 1.7 1.6 2.6 1 1.6
jRV low 0.72 1 1.6 1.1! 1.6 1.5! 1.6 2.0 1.6 2.9! 1.6
i high 0.72 1 1.6 1.0! 1.6 1.2: 3.2 1.6 3.2 2.2 3.2
ICR low 0.86 1 1.6 1.0 1 1.6 1.4 i 1.6 1.5 1.6 2.2 1 1.6
1 \high c.n i 1.6 1.1 1 1.6 1.2 \ 1.6 1.7 3.2 2.5 3.2
ISK Ilow 0.96 1 1.6 1.2 1 1.6 1.2 i 1.6 1.7 1.6 2.2 3.2
1 ihigh 0.90 1 1.6 1.1 i 1.6 1.3! 1.6 1.4 3.2 2.0 3.2

Table 7: Listwise dalation MDT for univariate missing data on ail productivity factors
using non-ignorable missing data mechanism. It is also indicated whether there is
more missingness for low vs. high values.

Table 7 shows the results for non-ignorable missingness. Here we can observe that:

• The performance of Iistwise delation deteriorates as the extent of missingness

increases.
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• There is no systematic pattern of either greater missingness in low vs. high

values being better.

• Up to 15% misisng data, listwise deletion still has negligible biases.

• The results, when compared to MCAR and MAR, are not much worse,

indicating that the bias performance of listwise deletion remains the same

irrespective of the missingness mechanism.

The pattern observed above regarding the variability in our accuracy measures was

also observed for the non-ignorable missingness study points.

ln general, we can conclude that Iistwise deletion has a remarkably small bias, even

at high percentages of missing data. The disadvantage of Iistwise is that the

variability in the accuracy tends to be large at higher percentages of missing data.

4.3 Mean Imputation
The following section contains the results for the mean imputation MOT.

4.3.1 MCAR and MAR Mechanisms, Univariate Case

Table B shows the results for mean imputation for univariate missing data under the

MCAR and MAR mechanisms. The MAR results are for higher biases on both small

and large projects.
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1 1 5% 10% 15% 25% 40%
1 1Miss

Mech. Bias -Ina MdMAE 1Pred25 MdMRE Pred25 MdMRE 1Pred25 MdMRE 1Pred25 MdMRE 1Pred25
MCAR nia CP 0.20 1 0 0.34 0 0.39 1 0 0.60 1 1.6 o.n 1 1.61 !

UT 0.16 1 0 0.28 1.6 0.37 1 1.6 0.60 1 1.6 0.82 ! 1.61 !

SC 0.29
1

0 0.41 0 0.53
1

1.6 0.60 1 1.6 o.n 1.6
RV 0.36

1
1.6 0.64 1.6 0.75 1 1.6 1.0 1 3.2 1.5 l 3.21

OR 0.53 1 0 0.76 1 1.6 0.98 1 1.6 1.6 1 1.6 1.8 3.21 ! i

SK 0.36 1 0 0.67 1 0 0.84 1 0 1.0 1 1.6 1.3 1 1.6
1

MAR j,arge CP 0.23 1 a 0.32 1 a 0.38
1

0 0.60 1.6 0.75 1.61

1 UT 0.11 ! 0 0.25 1.6 0.36 i 1.6 0.80 1.6 1.4 1.6
1 Ise 0.23 1 a 0.40 1 0 0.62 1 1.6 0.70 1.6 0.61 3.2
1 1 1

1

iRV 1 0.63 1 1.6 0.75 ! 3.2 1.0 3.2 1.2 4.81 0.40 0
1 ! 1

i ICR 0.57 1 0 D.n ! a 1.0 1.6 1.5 1.6 2.0 1.6i
1 jSK 0.40 1 a 0.68 ! a 0.80 a 1.1 1.6 1.3 1.6!
Ismall CP 0.20 ; a 0.32 ! a 0.41 ! a 0.60 0 0.66 1.6
! IUT

1

0.16 0 0.34 1 0 0.43 ! 0 0.50 1.6 0.60 1.61

1 Ise 0.28 1 0 0.47 ! 1.6 0.54 : 1.6 0.70 1.6 1.0 3.2
1

1

1

IRV 0.44 1 1.6 0.57 1.6 0.80 ! 3.2 1.5 3.2 2.1 4.81 1

ICA 0.55 1 a 0.85 1 1.6 1.0 ! 1.6 1.6 3.2 2.1 4.81 1 1

1 iSK 0.37 1 a 0.61 i 0 0.85 0 1.0 1.6 1.2 1.6
1 i ,

Table 8: Mean Imputation for univariate missing data on ail productivity factors. For
the MAR case, it is indicated whether there is more missingness for large vs. small
projects.

A number of conclusions can be drawn from this table:

• The bias increases as the extent of missing data increases, for both the MCAR

and MAR mechanisms.

• For the MAR mechanism, there is no striking difference between biases for large

vs. small projects.

• There are no striking differences between the MAR and MCAR mechanisms.

• The Pred25 value peaks at a 4.8% difference for 40% missing data. In our

context this would mean that 3 more out of the 63 prajects in the test set have an

MRE greaterthan 250/0 when using mean imputation.

• MdMRE peaks at a difference of 2.1°,10 for 40°,10 missing data. This means that the

estimation accuracy will be different trom the case where complete data is

collected by an average of only 2.1 %.

• For low percentages of missing data, up ta 25°,10, mean imputation performs

remarkably weil, with a negligible bias in its performance. At higher extents of
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missing data, the bias in terms of MdMRE and Pred25 is still rather small in

absolute terms.

Compared to listwise deletion, mean imputation tends to have a slightly smaller bias

in terms of MdMRE for MAR and MCAR for univariate missing values. For the

Pred25 results, its performance is slightly better up to 25°1'0 missing data, after which

it is more difficult to see a difference trom listwise deletion.

Q

40

Figure 9: Summary of MdMRE results - mean imputation for Customer Participation
productivity factor under MCAR.
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Figure 10: Summary of Pred25 results .. mean imputation for Customer Participation
productivity factor under MCAR.

Figure 9 and Figure 10 are box and whisker plots for one of the productivity factors.

These show the MdMRE and Pred25 results as the missingness percentage

increases under MCAR. As can be seen, the variability tends ta increase for

increased missingness. The same pattern was observed for other variables and

under MAR. However, il will be noticed that the extent of variability tends to be

smaller than for listwise deletion, indicating more stability in the bias of mean

imputation.

ln general, we can state that mean imputation under the MCAR and MAR

mechanisms with univariate missing data performs rather weil. While it does exhibit

bias, this is rather small, and tends ta be as good as or better than for listwise

deletion. Furthermore, the variability of the bias tends ta be smaller.

4.3.2 MCAR and MAR Mechanisms, Monotone Pattern

Table 9 shows the results for the MCAR and MAR mechanisms for the monotone

pattern of missingness for two variables. The tirst productivity factor listed in the

"Missing" column contains the larger amount of missing data (the conclusions do not
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change if the arder is reversed, and therefore ail possible permutations are not

presented here).
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1 1
5% 10% 15% 25% 40%l 'Miss-

Mech. Bia. ina MdURE 1Pred25 MdMAE Pred25 MdMRE 1Pred25 MdMRETPred25 MdURE 1Pred25

MCARINIa CP.UT 0.25 1 0 0.43 0 0.54 ! 1.6 0.69 i 1.6 0.96 ! 3.2
'CP,SC 0.32 1 0 0.45 1.6 0.57 1 1.6 0.66 i 1.6 0.83 ! 1.61

CP,RV 0.37 1 1.6 0.47 1.6 0.68
1

1.6 0.81 1 3.2 0.95 i 3.2
CP,OR 0.65 1 a 0.75 0 0.89 1 1.6 1.1 1 1.6 1.4 i 1.6

1

CP.SK 0.35 1 0 0.49 1 0 0.50 1 0 0.63 : 1.6 0.68 1 1.6

IUT.SC 0.28 1 0 0.41 1.6 0.53 j 1.6 0.73 1.6 1.3 3.2
UT,RV 0.33 1 1.6 0.47 1.6 0.54 1 1.6 0.72 1 1.6 1.1 3.2

1

IUT,OR 0.53 1 0 0.66 1
1.6 0.73 1 1.6 1.1 1.6 1.5 ; 1.61 :

UT,SK 0.26 i 0 0.40 0 0.43 1 1.6 0.56 1 1.6 0.85 1.6
[SC,RV 0.42 1 1.6 0.51 1 1.6 0.68 ! 1.6 0.92 1 3.2 1.3 3.21 1

i SC,OR 0.44 ! 0 0.63 1.6 0.73 1 1.6 1.0 3.2 1.2 3.2
SC,SK 0.32 j 0 0.48 1

1.6 0.61
1

1.6 0.69 1.6 0.75 3.2
RV,OR 0.66 1 1.6 0.87 1 3.2 1.2 i 3.2 1.6 1 4.8 1.9 4.8
RV,SK 0.52 1 1.6 0.82 1.6 1.1 1 1.6 1.6 3.2 2.1 3.21 :

OR,SK 0.69 1 0 0.87 1 1.6 0.91 1 1.6 1.3 1.6 1.8 1.6
1 i 1

jMAR l'arge !CP,UT 0.29 1 0 0.43 1 a 0.48 1.6 0.92 i 1.6 1.0 1.61
1

1

1 ICP,SC 0.28 i 0 0.45 1 1.6 0.54 1 1.6 0.66 1.6 0.75 1.6

1

1

! !CP,RV 0.29 ! 0 0.49 1 1.6 0.69 ! 1.6 0.75 1.6 0.93 3.21

: !CP,OR 0.46 0 0.69 1 0 0.85 0 1.1 1.6 1.3 1.6! i

! 1

iCP.SK 0.26 0 0.52 : 0 0.56 0 0.61 1.6 0.64 1.6i i 1

1

1
1 IUT.SC 0.23 1 0 0.39 1.6 0.54 1.6 1.0 3.2 1.5 3.2
1

1

1 UT,RV 0.24 1 1.6 0.49 1 1.6 0.69 3.2 1.0 3.2 1.8 4.8
! :UT,OR 0.46 0 0.69 1 1.6 0.96 1.6 1.4 3.2 1.8 3.2
i :

! 1

i :UT,SK 0.21 : 0 0.41 i 1.6 0.55 1.6 0.93 1.6 1.5 3.2~
1

1
1i 'SC,RV 0.35 1 0 0.55 1.6 0.83 1.6 0.84 3.2 1.1 4.8

1

'SC.OR 0.45 ! 1 1.6 0.74 1.6 1.6i 1 0 0.64 1.1 1.5 3.2
1 !SC,SK 0.28 i 0 0.48 1 1.6 0.60 1.6 0.66 1.6 0.58 3.2
1

1
,

:RV,OR 0.54 1 1.6 0.86 ! 1.6 1.1 3.2 1.8 3.2 2.0 4.81i
1 RV.SK ! !i 0.47 1.6 0.79 1.6 1.1 3.2 1.4 3.2 1.3 6.31

! ,CR.SK 0.56 1 0 o.n 0 1.1 1.6 1.4 1.6 1.9 1.61 1 ; ;

1

:smalll CP.UT 0.25 1 0 0.39 i 1.6 0.47 1.6 0.60 1.6 0.85 3.21

: 'CP.SC 0.32 a 0.42 1 1.6 0.49 1 1.6 0.62 1.6 0.82 3.21

1 1
1

1

:CP,RV 0.37 1 a 0.57 ! 1.6 0.65 i 1.6 0.85 3.2 1.1 4.8
iCP,OR 0.55 0 0.75 1 1.6 0.93 1.6 1.0 i 1.6 1.3 3.2

1

:CP.SK 0.30 1 0 0.48 1 0 0.53 0 0.63 1.6 0.86 1.6i i

! iUT,SC 0.26 1 0 0.40 ! 1.6 0.47 1.6 0.63 1.6 1.0 1.6
i i ,

iUT.RV 0.28 1 0 0.46 1 1.6 0.50 1.6 0.58 1.6 0.88 3.2i 1
1

iUT.CR 0.49 1 0 0.59 1 1.6 0.64 1.6 0.95 1.6 1.2 1.61

1 IUT.SK 0.23 1 0 0.34 1 0 0.37 1 0 0.44 1.6 0.47 1.6:
1

i Ise.RV 0.40 1 1.6 0.52 i 1.6 0.65 1 1.6 0.90 1.6 1.5 1.6
1

i ,SC,OR 0.44 1 0 0.68 1 1.6 0.71 1 1.6 1.1 3.2 1.7 3.21

1

ISC,SK 0.34 1 0 0.48
1

1.6 0.57 ! 1.6 0.73 1.6 0.94 1 1.6
1 RV,CR 0.63 1 1.6 0.87 1 3.2 1.1 1 3.2 2.4 4.8 3.7 4.8
1 1 i
! RV,SK 0.46

1 1.6 0.74 1 1.6 0.88 i 1.6 1.8 ! 3.2 3.3 3.2
1

1 ICR.SK 0.58
1 a 0.78

1
1.6 1.1 i 1.6 1.7 i 1.6 1.9 : 3.21

Table 9: Mean Imputation MDT for monotone missing data on combinations of two
productivity factors. For the MAR case, it is indicated whether there is more
missingness for large vs. small projects.
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From this table we can observe that:

• The bias increases as the extent of missing data increases, for bath the MCAR

and MAR mechanisms.

• For the MAR mechanism, there is no striking differenee between biases for large

vs. small projects.

• There are no striking differences between the MAR and MCAR meehanisms.

• There is no signifieant difference in performance for different combinations of

productivity factors.

• The monotone pattern performs slightly worse than the univariate pattern.
...is.

1./
• The Pred25 value peaks at a 6.3% bias for 40% missing data. In our âontext this

would mean that 4 more out of the 63 projeets in the test set have an MRE

greater than 25% when using mean imputation.

• MdMRE peaks at a bias of 3.7% for 40% missing data. This means that the

estimation accuracy will be different tram the case where complete data is

collected byan average of only 3.7%.

• For percentages of missing data up ta 25%, mean imputation performs

remarkably weil, with a negligible bias in its performance.

Table 10 shows the results for the case where more than two productivity factors

contain 40% missing data under the MCAR and MAR mechanisms. The MAR results

are for higher biases on both small and large projeets. In agreement with the pattern

shawn in Figure 2, the tirst productivity factor Iisted contains the larger amount of

missing data than the second, the second more than the third, and so on. Due to the

similarity of the results for the presented permutations, further results with additional

permutations are not presented.
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MCAR MAR (large) MAR (amall)
Mlssfng MdMRE Pred25 MdMRE Pred25 MdMRE Pred25
CP,UT,SC 1.1 3.2 1.0 3.2 0.90 3.2
CP,UT,SC,RV 1.0 1 3.2 0.90 3.2 0.96 3.2
CP,UT,SC,RV,OR 1.0 1 3.2 1.1 3.2 0.86 3.2
CP,UT,SC,RV,OR,SK 0.93 3.2 1.0 3.2 0.79 3.2
UT,SC,RV 1.3 3.2 1.7 4.8 1.0 1.6
UT,SC,RV,OR 1.4 3.2 1.8 4.8 1.0 1.6
UT,SC,RV,OR,SK 1.3 3.2 1.8 4.8 1.0 1.6
UT,SC,RV,OR,SK,CP 1.4 1 3.2 1.7 4.8 1.0 1.6
SC,RV,OR 1.4 1 3.2 1.5 4.8 2.0 1.6
SC,RV,OR,SK 1.5 1 3.2 1.5 4.8 2.0 2.4
SC,RV,OR,SK.CP 1.5 1 3.2 1.4 4.8 2.0 1.6
SC,RV,aR,SK.CP,UT 1.6 3.2 1.3 4.8 2.0 1.6
RV,QR,SK 2.1 1 4.8 1.8 4.8 3.4 4.8

1

RV,OR,SK.CP 2.2 i 4.8 1.7 4.8 3.4 4.8
RV,aR,SK,CP,UT 2.1 1 4.8 1.8 4.8 3.4 4.8

1RV.OR,SK,CP,UT,SC 2.1 1 4.8 1.8 4.8 3.1 4.8
:OR,SK.CP 1.8 1 1.6 1.6 1.6 2.1 3.2
iOR,SK,CP,UT 1.8 1 3.2 1.6 1.6 2.1 3.2
:OR,SK.CP,UT,SC 1.6 ! 1.6 1.8 1.6 2.1 3.2
:OR,SK.CP,UT,SC,RV 1.8 ; 3.2 2.3 1.6 2.1 3.2
iSK.CP,UT 0.90 1 1.6 0.90 1.6 O.SO 1.6i

:SK.CP,UT,SC 0.90 i 1.6 0.90 3.2 0.70 1.6
!SK.CP,UT,SC.RV 0.90 1 1.6 1.0 3.2 0.80 1.6
ISK.CP,UT,SC,RV,CR 1.1 i 1.6 0.90 3.2 0.90 1.6

Table 10: Mean Imputation, 40°,10 missing data, monotone pattern, and multiple
productivity factors using MCAR and MAR mechanisms. For the MAR case, it is
indicated whether there is more missingness for large vs. smail projects.

Here we can observe that the performance is equivalent to the monotone pattern

with two productivity factors.

4.3.3 Non-ignorable Missingness Mechanism, Univariate Case

Table 11 shows the results for the case where the mechanism for missing data is

non-ignorable. Cases with biases towards low and high values for each productivity

factor are distinguished.
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! 5°k 10% 15% 250/0 40%
Mlsslng Bias MdMAEI Pred25 MdMAE Pred25 MdMREI Precl25 MdMREI Pred25 MdMREI Pred25
CP low 0.33 1 a 0.57 a 0.88 0 1.1 1 1.6 1.6 i 3.21

1
1

high 0.20 1 a 0.31 a 0.34 1 0 0.97 i 1.6 0.71 i 3.21

UT low 0.29 1 a 0.59 a 0.74 1 1.6 0.89 i 1.6 1.6 1 1.6
1 high 0.17 1 a 0.30 1 1.6 0.37 1 1.6 0.44 i 1.6 0.76 i 1.6

I

SC low 0.29 1 a 0.43 1 1.6 0.60 1 1.6 0.73 i 3.2 1.5 4.81

high 0.31 1 a 0.51 1 1.6 0.75 1 1.6 0.64 1.6 1.0 : 1.61

IAV low 0.78 1 1.6 1.4 ! 3.2 2.2 1 4.8 3.5 i 4.8 4.9 1.6
! high 0.32 1 1.6 0.39 i 1.6 0.66 i 1.6 0.88 i 1.6 1.3 3.21

OA low 0.71 1 0 1.1 ! 1.6 1.6 i 3.2 2.2 ~ 4.8 3.2 6.3
high 0.52 1 a o.so 1 a 0.91 1 a 1.4 ! 1.6 1.4 i 1.6i

SK low 0.33 1 a 0.44 1 a 0.49 1 a 0.60 ! 1.6 0.92 1.61

high 0.49 ! a 1.0 ! a 1.5 1 1.6 2.5 3.2 4.3 6.3

Table 11: Mean imputation MDT for univariate missing data on ail productivity
factors using non-ignorable missing data mechanism. It is also indicated whether
there is more missingness far law vs. high values.

The following observations can be made about the univariate non-ignorable case:

• The bias increases as the extent of missing data increases.

• ln general, the non-ignorable case with bias towards high values performs better

than MCAR and MAR whereas bias towards low values results in paarer

performance.

• In general, having more missing observations with high values performs slightly

better than having more missing observations for low values on the variable.

• At 400/0 missing values, the Pred25 bias peaks at 6.3. In our context this would

mean that 4 more out of the 63 projects in the test set have an MRE greater than

25% when using mean imputation.

• The MdMRE bias peaks at 4.9°1'0, which is considerably larger than any of the

values that we have seen so far.

• At and below 150/0 missing data, both the MdMRE and Pred25 biases tend to be

better than for listwise delation for nonoaignorable missingness.
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4.3.4 Non-ignorable Missingness Mechanism, Monotone Pattern

Table 12 shows the results for the monotone pattern of missing data and the non

ignorable mechanism. In agreement with the pattern shown in Figure 2, the tirst

productivity factor Iisted contains the larger amount of missing data than the second.

It is important to note that for the monotone pattem of missing data, it is only the tirst

productivity factor listed in the "Missing" column that contains missing values

according to the non-ignorable mechanism.

! 5% 10% 150/0 250/0 400k
lalas Mlsslna MdMREI Pred25 MdMAEI Pred25 MdMAEI Pred25 MdMAEI Pred25 MdMAEI Pred25
ihigh CP,UT 0.24 1 a 0.39 1 1.6 0.50 1 1.6 1.3 ~ 3.2 1.9 3.2
1 CP.SC 0.32 1 a 0.36 1 1.6 0.55 i 1.6 0.88 1.6 0.97 3.2

! CP,RV 0.27 ! a 0.42 1 1.6 0.50 ! 1.6 0.71 1 3.2 1.1 4.8
CP.OR 0.50 i a 0.68 i 0 0.74 ! 1.6 0.90 1.6 0.78 3.2

1

ICP.SK 0.22 1 0 0.35 0 0.36 i 1.6 0.62 1.6 0.79 3.2i 1

: iUT.SC 0.24 1 a 0.35 1.6 0.41 ! 1.6 0.49 1.6 1.3 1.6
1

1

1
IUT.RV 0.28 1.6 0.39 i 1.6 0.49 i 1.6 0.66 1.6 1.2 1.6
IUT.OR 0.49 0 0.62 i 1.6 0.83 i 1.6 1.3 1.6 1.4 1.6
iUT.SK 0.28 0 0.39 1.6 0.52 1 1.6 0.71 1.6 o.n 1.6

1 iSCRV 0.38 1.6 0.58 1 1.6 0.76 1 1.6 0.90 1.6 1.8 1.6
1

1

ISC.OR 0.36 0 0.59 1 1.6 0.72 ! 1.6 1.3 1.6 1.7 1.61

ISC.SK 0.32 0 0.47 1 1.6 0.58 1 1.6 0.71 1.6 1.0 1.61

RV.OR 0.45 1.6 0.57 i 1.6 0.72 1 1.6 1.2 1.6 1.8 1.61

RV.SK 0.39 a 0.57 ! 1.6 0.72 1 1.6 0.90 3.2 1.3 3.2
IORSK 0.58 1 0 0.78

1 a 0.95 1 a 1.2 1.6 1.8 1.6i

jlow ICP,UT 0.35 1 0 0.59 i 0 o.n j 1.6 1.1 1.6 1.3 4.8
:CP,SC 0.39 1 0 0.66 1.6 0.73 1 1.6 1.1 1.6 2.2 4.8
ICP,RV 0.47 1.6 0.89 1 1.6 0.94 1.6 1.3 3.2 1.4 4.8
iCP.OR 0.58 0 0.92 1.6 0.93 i 1.6 1.2 1.6 1.6 3.2
iCP.SK 0.40 0 0.69 : 0 0.82 1 0 0.99 1.6 1.2 3.2
UT.SC 0.33 i 0 0.51 1 1.6 0.72 1.6 1.1 3.2 1.1 1.6
iUT,RV 0.33 i 1.6 0.55 1 1.6 0.64 3.2 1.0 3.2 1.7 3.2: 1 :

'UT,OR 0.44 ; 0 0.58 ! 1.6 0.69 ! 1.6 0.94 1 1.6 1.3 1.61 1

UT,SK 0.27 1 0 0.45 1 1.6 0.58 1 1.6 0.66 1.6 0.96 1.6
SC,RV 0.40 1 1.6 0.70 1 3.2 0.93 : 3.2 1.6 4.8 3.5 3.21

SC,aR 0.53 1 0 1.0 1 3.2 1.2 : 4.8 2.0 4.8 3.6 3.21

SC,SK 0.35 : 0 0.65 1 1.6 0.76 i 1.6 1.1 3.2 1.9 4.81 1

RV,OR 0.97 1 3.2 2.1 i 4.8 2.8 4.8 4.7 4.8 6.2 3.2
1RV,SK 0.81 ! 1.6 1.6 i 3.2 2.4 1 4.8 4.0 4.8 6.0 1.6
CR,SK 0.66 1 0 0.85 i 1.6 1.4 ! 1.6 1.9 1 3.2 3.6 4.8

Table 12: Mean Imputation MDT for monotone missing data on combinations of two
productivity factors using non-ignorable missing data mechanism. It is also indicated
whether there is more missingness for low vs. high values.

The following observations can be made about the monotone non-ignorable case:
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• The bias increases as the extent of missing data increases.

• The performance is similar ta that of MCAR and MAR when more high values of

the productivity factor contain missing values, but slightly worse for low values.

• In general, bias towards high values results in slightly better performance than

low values on the variable.

• The performance is slightly worse than the univariate case.

• There is no marked difference in performance for different combinations of

productivity factors.

• At 40% missing values, the Pred25 bias peaks at 4.8. In our context this would

mean that 3 more out of the 63 projects in the test set have an MRE greater than

250/0 when using mean imputation.

• The MdMRE bias peaks at 6.2%. This value is relatively large compared ta the

results seen 50 far.

Next, we present the results where more than two productivity factors contain

missing data under the non-ignorable mechanism. Table 13 shows the results for the

case where more than two productivity factors contain 40% missing data. The

conclusions do not change for additional permutations, and therefore they are not

presented here.
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blss=low bfs8=hlgh
Mlsslna MdMAE Pred25 MdMRE Pred25
CP.UT,SC 1.4 4.8 1.5 3.2
UT,SC,RV 1.3 1.6 1.4 1.6
SC,RV,OR 4.1 3.2 2.2 1.6
RV,OR,SK 6.5 3.2 1.6 3.2
ORtSK,CP 3.4 4.8 1.8 1.6
SK,CP,UT 1.2 1.6 3.5 4.8
CP,UT,SC,RV 1.5 4.8 1.7 3.2
UT,SC,RV,CR 1.3 1.6 1.4 3.2
SC,RV,QR,SK 4.3 3.2 2.3 1.6
RVtORtSK,CP 6.3 3.2 1.8 1.6
ORtSKtCP.UT 3.1 4.8 1.9 1.6
SK,CP.UT,SC 1.1 1.6 3.3 4.8
CP.UT.SCtRV,QR 1.6 4.8 1.6 3.2
UT.SC.RVtCR.SK 1.3 1.6 1.3 1.6
ISC,RV.OR.SK,CP 4.1 3.2 2.2 1.6
1RV.CR,SKtCP.UT 6.3 3.2 1.9 3.2
OR.SK,CP.UT.SC 3.1 4.8 1.6 1.6
SK.CP.UT.SC.RV 1.1 1.6 3.0 4.8
iCp.UT,SC.RV,OR,SK 1.7 4.8 1.7 3.2
;UT,SC,RV,CR.SKtCP 1.3 1.6 1.4 3.2
jSCtRV.OR,SK,CP,UT 4.2 3.2 2.3 1.6
1RV,OR,SK.CP,UT.SC 6.3 3.2 1.8 3.2
iaR,SK,CP.UT.SC,RV 3.1 4.8 2.1 1.6
iSK.CP.UT.SC.RV,CR 1.1 1.6 3.3 4.8

Table 13: Mean Imputation MDT for 40% monotone mlsslng data on multiple
productivity factors using non-ignorable missing data mechanism. It is also indicated
whether there is more missingness for low vs. high values.

It can be seen that the results are similar to those in Table 12, where two productivity

factors contained missing values. Specifically, in cases where the tirst productivity

factor is the same the results are equivalent. Therefore, adding productivity factors

according to the monotone pattem does not affect the results.

4.4 Hot-Deck
The following section contains the results for the hot-deck imputation MDTs.

4.4.1 MCAR and MAR Mechanisms, Univariate Case

The MCAR and MAR missing data mechanisms are presented, with bias towards

both large and smalt projects (MAR only). The Euclidean and Manhattan distance
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• functions are labelled "E" and "M" respectively. Table 14 summarizes the results for

the univariate missing data pattern on the Customer Participation productivity factor.

No Standardization 1

1

5% 10% 15% 25% 40%

Bias IOistMech. MdMRE 1Pred25 MdMRE 1Pred25 MdMAE 1Pred25 MdMAE 1Pred25 MdMAE 1Pred25
MCAR nia M 0.26 1 0 0.38

1
a 0.45 1 1.6 0.60 1 1.6 0.80 ! 1.6

1 E 0.27 1 0 0.43 1 a 0.48 1 1.6 0.76 1.6 0.96 i 1.6!

MAR large M 0.22 1 0 0.27 1 0 0.36 1 0 0.65 1 1.6 0.82 : 1.6
E 0.21 1 0 0.43 1 0 0.58 1 0 0.73

1
1.6 1.0

1
1.6

I
small M 0.25 1 a 0.47 1 1.6 0.58 1 1.6 0.75 i 1.6 1.1 1.6

1 E 0.26
1 a 0.45 1 1.6 0.54 1

1.6 0.82 1 1.6 1.3 i 1.6
1

Z - score Standardization i
1

UeCh.IBiae
50/0 10% 15"0 25% 40%

Dist MdMAE 1Pred25 MdMRE 1Pred2S MdMAE 1Pred25 MdMAE 1Pred2S MdMAE 1Pred25
MCAR nia M 0.25

1 a 0.43
1 0 0.44 1 1.6 0.63 1 1.6 0.85 1.6

i lE 0.30
1

a 0.46 1 a 0.48 ! 1.6 0.73 1.6 1.0 1.6
IMAR large M 0.24 1 a 0.40 1 0 0.44 ! 0 0.55 1.6 0.79 1.6
1 E 0.30

1 0 0.43 1 0 0.52 ! 0 0.71 1.6 0.74 1.6
1 lsmall M 0.23 1 0 0.39 ! 1.6 0.48

1

1.6 0.67 1.6 0.80 1.6
1

1 :E 0.32
1 a 0.49 : 1.6 0.55 1.6 0.72 1.6 1.0 1.61

1

1

Iii 5% 10% 15% 25% 40%

1 Mech. Bi.. i Dist MdMAElpred25 MdMRE 1Pred25 MdMRE 1Pred2S MdMAE 1Pred25 MdMAE 1Pred25

iMCARlnia lM 0.28 ! 0 0.46 j 0 0.49 1 a 0.64 : 1.6 0.70 1.61

iE 0.29 i 0 0.52 1 a 0.56 ! 0 0.71 1.6 0.90 1.6!

1MAR large 1 M 0.28 i 0 0.39 1 0 0.46 l 0 0.70 1.6 0.80 1.6

1

! E 0.26 ! 0 0.49 1 0 0.50 i 0 0.73 ; 1.6 0.86 1.6
Ismall! M 0.31 i 0 0.48 1 1.6 0.46 1 1.6 0.74 1.6 0.76 1.6

1

1 1 1

E 0.29 ! a 0.44 1 1.6 0.58 ! 1.6 0.71 1.6 0.81 1.5i 1 i 1

:Mean Absolute Standardization

lzs Standardlzatlon
i 1

1
5% 10% 15% 25% 40%1

Mech.1Bi.. lDist MdMRE 1Pred25 MdMAE 1Pnd25 MclMAE tPred25 MdMRE 1Pred25 MdMRE 1Pred25
MCARlnla lM 0.28 i a 0.38 1 0 0.49 ! 1.6 0.60 1 1.6 0.76 1.61 1

1

lE !1 0.25 1 0 0.39 1 1.6 0.51 1.6 0.56 : 1.6 0.85 1.61

MAR Ilarge 1 M 0.23 i a 0.29 ! 0 0.43 i 0 0.58 1.6 0.79 1.6+

i 1E 0.21 1 0 0.31
1

0 0.40 0 0.60 1 1.6 0.80 1.61

Ismalll M 0.31 i 0 0.36 ! 1.6 0.56 ! 1.6 0.69 1.6 0.89 1.6

IlE 0.30 1 0 0.43 ! 1.6 0.54 1 1.6 0.69 : 1.6 0.86 1.61 1 :

•

Table 14: Ali Hot-Oeck MOTs for univariate missing data on Customer Participation
productivity factor. For the MAR case, it is indicated whether there is more
missingness for large vs. small projects.

The foUowing conclusions can be drawn from this table:
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• • The bias increases as the extent of missing data increases, for bath the MCAR

and MAR mechanisms.

• For the MAR mechanism, there is no striking difference between biases for large

vs. small projects.

• There are no striking differences between the MAR and MCAR mechanisms.

• There are no significant differences between any of the standardization

techniques or the two distance measures for both the MCAR and MAR

mechanisms.

• The Pred25 value peaks at a 1.6°k bias for 400/0 missing data. In our context this

would mean that 1 more out of the 63 projects in the test set have an MRE

greater than 25% when using mean imputation. Although the difference is

relatively small, this is smaller than that of bath the Iistwise deletion and mean

imputation MDTs.

• MdMRE peaks at a bias of 1.3°k for 40% missing data. This means that the

estimation accuracy will be different trom the case where complete data is

collected by an average of only 1.3%
• Again, although the difference is small, it is

better than listwise deletion and mean imputation.

• For ail percentages of missing data, hot-deck imputation perforrns remarkably

weil, with a negligible bias in its performance. This holds regardless of the

standardization technique or distance measure used.

Given that the different hot-deck implementations have similar results, we focus

below on the one with z-score standardization and Euclidean distance.

•
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1

Mech.IBIII
5% 1 40%

1Factor MdMRE 1 Pred25IMdMREI Pred25

lep MCARlnJa 0.30 1 a 1 1.0 ! 1.6

iMAR Ilarge 0.30 1 0 1 0.74 1 1.6
1 1smail 0.32 1 a 1 1.0 1 1.6!

UT MCARlnJa 0.25 i 0 ! 0.85 ! 1.6
IMAR \large 0.21 1 1.6 1 1.7 1 1.61 1

1 ! 1smail 0.25 i 0 1 0.52 ; 1.6
Isc 1MCAR 1nia 0.32 ! 0 1 1.2 l 3.21 1

1

jMAR 1large 0.25 1 0 1 0.88 : 3.21 ! 1

1
Ismall 0.39 1 0 1 1.4 ! 3.21 1

IAV 1MCAA 1nia 0.46 i 1.6
1

2.4 : 1.61

1 iMAR !Iarge 0.40 i 1.6 ! 2.1 3.21

1
1 Ismall 0.55 i 1.6 1 2.8

1

1.6! 1
!

iCR !MCARlnla 0.62 ! 0 2.6 ! 4.8
1 !MAR !Iarge 0.60 1 0 ! 2.5 : 4.81 i

1

1

1smail 0.67 ! 0 2.9 4.81

:SK :MCAR 1nia 0.37 0 0.93 1 1.61

i MAR !Iarge 0.51 0 0.85 1.61
1
1 ismall 0.35 0 1.1 1 1.6
1 ! 1

Table 15: Traditional'7 Hot..Deck Imputation for univariate missing data on each
productivity factor. For the MAR case, it is indicated whether there is more
missingness for large vs. small projects.

Table 15 summarizes the results for traditional hot-deck imputation for each

praductivity factor at bath extremes of percentage of data missing. It can be seen

that there are no striking differences between the different productivity factors nor

each of the mechanisms.

fT The hot-deck method using z-score standardlzation and Euclidean distance function.
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Figure 11: Summary of MdMRE results - traditionalT8 Hot-Deck Imputation for
Customer Participation productivity factor under MCAR.
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Figure 12: Summary of Pred25 results - traditionalT8 Hot-Deck Imputation for

Customer Participation productivity factor under MCAR.

Il The hot--deck me1hod using z~core standardlzatlon and Euclfdean distance function.
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• The traditional t8 hot-deck imputation results for imputation using the MCAR

mechanism on one productivity factor, Customer Participation, are summarized in

Figure 11 and Figure 12. It can be seen that the MdMRE and Pred25 for ail

percentages of m!ssing values are equal to the MRE and Pred25 of the complete

data set analysis. The variance increases slightly for 40% missing data, but is not as

pronounced as that for listwise delation and mean imputation.

4.4.2 MCAR and MAR Mechanisms, Monotone Pattern

Table 16 summarizes the results for the monotone missing data pattern on The

Customer Participation and Use of Tools productivity factors (the conclusions do not

change for other permutations of productivity factors, and are therefore not

presented here).

•
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Mech. Bi. 1Di..

5% 10% 15% 25% 40%

MdMAE Pred25 MdMAE PrecI25 MdMAE Pred2S MdMAElpred25 MdMAE Pred25

MCAR1nia M 0.31 0 0.47 1.6 0.60 1.6 0.74 1 1.6 1.0 1.6
E 0.30 a 0.48 j 1.6 0.58 1

1.6 0.73 1 1.6 1.0 1.6
MAR large M 0.29 1 a 0.52 1.6 0.63 1.6 0.93 1 1.6 1.1 3.2

E 0.30
1

a 0.44 0 0.71 1.6 0.82 1 1.6 1.1 1.61

small M 0.29 1 1.6 0.47 1.6 0.55 1.6 0.76 1 1.6 0.97 1 1.61 1

1
E 0.30 1 1.6 0.46 1

1.6 0.55 1.6 0.82
1

1.6 1.0 1 3.2

1 No Standardization•
1Z - score Standardization

iMean Absolute Standardlzatlon

1
5% 10% 15% 25% 40%

Mech.IBias Dist MdMAE 1Pred25 MdMRE 1Pred25 MdMAE 1Pred25 MdMAElpred25 MdMAE 1Pred25

MCARlnla M 0.35 1 1.6 0.50 1 1.6 0.61 1 1.6 0.79 1 1.6 0.96
1

1.6
f

E 0.36 i a 0.58 1 a 0.61 ! 1.6 0.74 1 1.6 1.0 1.6
1 1

IMAR large 1 M 0.33
1

a 0.48 1 1.6 0.67 1 1.6 0.83 1.6 1.0 1.6
1 E 0.31 1 a 0.57 1 1.6 0.73 i 1.6 0.86 1 1.6 1.1 1 1.6

1

1

small M 0.33 ! 1.6 0.46
1

1.6 0.61 i 1.6 0.69 i 1.6 1.0 1 1.6

i 1 E 0.35 1 a 0.44
1

1.6 0.60
1

1.6 0.80 ; 1.6 0.97 ! 1.61

1

1 1 5% 10% 15% 25% 40%
Mech.1Bias 1 Dlstt-M-d-M-A-E-r'I-Pre-d2-s-t--M-dM-A-E-r-lp-red25---+-M-d-M-A-E""T'"1P-red2S--t-M-d-M-A-E"""'TI-Pr-ed2-S-t--M-dM-AE-T'""IP-red2--tS

,MCARlnJa 1 M 0.31 1 a 0.49: 1.6 0.67! 1.6 0.81 1.6 1.1 1.6
1 ! ; E 0.37! a 0.52 1 1.6 0.63! 1.6 0.83 1.6 1.0 1.6
lMAR Ilarge ,M 0.36 a 0.57 1 1.6 0.67! 1.6 0.94 1.6 0.99 1.6
1 i i E 0.35! a 0.59: a 0.69 i 1.6 0.91 1.6 0.98 1.6
1 jSmall 1 M 0.35 i a 0.52! 1.6 0.64 1 1.6 0.78 1.6 1.00 1.6
1 1 : E 0.32 1 a 0.52 1 1.6 0.57: 1.6 0.73 1 1.6 0.94 1.6
1

1z5 Standardization

! i 1 5% 10% 15% 25% 40%
1 !
iMech. 1Bias 1 Dist MdMAE 1Pred25 MdMAE 1Pred25 MdMAE 1Pred2S MdMAE 1Pred25 MdMAE 1Pred25
IMCARlnone i M 0.34 1 a 0.51

1
1.6 0.60 1 1.6 o.n 1 1.6 0.99 1.61

Iii E 0.32 a 0.44 1 1.6 0.57 1 1.6 0.72 1.6 1.0 1.6! 1

IMAR !Iarge ! M 0.30 a 0.48 1.6 0.62 1 1.6 0.84 1 1.6 1.1 1.61 i

IlE 0.21 a 0.45 1.6 0.60
1

1.6 0.83 1.6 1.0 1.6i i 1

! smalt 1 M 0.36 a 0.50 1 1.6 0.65 1 1.6 0.71 : 1.6 0.88 : 1.61

IlE 0.34 a 0.46
1 1.6 0.59

1
1.6 0.68 l 1.6 0.98 i 1.6

Table 16: Hot-Deck MOTs for monotone missing data on Customer Participation and
Use of Toois productivity factors. For the MAR case, it is indicated whether there is
more missingness for large vs. small projects.

From this table we can observe that:

•
• Bias tends to increase as the extent of missing data increases, for both the

MCAR and MAR mechanisms.

• For the MAR mechanism, there is no striking difference between biases for large

vs. small projects.
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• • There are no striking differences between the MAR and MCAR meehanisms.

• There are no signifieant differences between any of the standardization

techniques or the two distance measures for both the MCAR and MAR

meehanisms.

• The Pred25 value peaks at a 3.2% difference for 40% missing data. ln our

context this would mean that 2 more out of the 63 projects in the test set have an

MRE greater than 25% when using mean imputation. Although the difference is

small, this value is smaller than that for mean imputation.

• MdMRE peaks at a difference of 1.1 % for 40% missing data. This means that the

estimation accuraey will be different tram the case where complete data is

collected by an average of only 1.10/0. Again, this is slightly better than mean

imputation.

• For ail percentages of missing data, hot-deck imputation performs remarkably

weil, with a negligible bias in its performance. This holds regardless of the

standardization technique or distance measure used.

• Hot-deck imputation technique on monotone missing data performs slightly worse

than for the univariate case.

Given that the different hot-deck implementations have similar results, we focus

below on the one with z-score standardization and Euclidean distance.

Table 17 summarizes the results for the case where more than two productivity

factors contain low and high extremes of missing data under the MCAR and MAR

mechanisms for the traditional hot-deck imputation. The MAR results are for higher

biases on both small and large projects.

•
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5% 40%
Factor Mech. Bias MdMAE i Pred25 MdMAE 1 Pred25
CP,UT MCAR nia 0.36 1 a 1.0 1 1.6

1

MAR large 0.31 1 a 1.1 1 1.6
small 0.35 i a 1 0.97 1 1.6

UT,SC MCAR nia 0.33 i a 1.1 1 1.61

MAR large 0.25 ! 1.6 1.7 1 3.21

Ismall 0.32
1 a 0.81 1 1.6i

SC,RV MCARlnla 0.50 i 1.6 1 1.5 i 1.6
MAR large 0.37 1 1.6 1.2

1

3.21 1

! 1smail 0.50 1 1.6
1

1.7
1

1.61

IRV.CR 1MCAR 1nia 0.77 i 1.6 i 3.4 i 3.21 1 !

IMAR !Iarge 0.66 1 1.6 1 2.5 i 3.2
1 small 0.88 1 1.6 ~ 3.7 : 1.61

iQR,SK MCARlnia 0.77 ! a 1 2.4 3.21

0.74 a 1 2.4 3.21 1MAR !large 1 !

0.63 1 a ! 2.0 1 3.2, 1 lsmall 1 1

!SK,CP 1 MCAR Inla 0.53 1 a 1 0.97 ~ 1.6
1 IMAR !Iarge 0.64 ! a 0.93 1 1.6

1

1

i ismall 0.44 1 a i 0.99 i 1.6i i 1

Table 17: TraditionaP9 Hot-Deck Imputation for monotone mlsslng data on
combinations of productivity factors. For the MAR case, it is indicated whether there
is more missingness for large vs. small projects.

ln general, the results are similar to those presented in Table 16, where the

Customer Participation and Use of Toois productivity factors contained missing data.

It can be seen that there is no signifieant difference in performance for ail

combinations of two productivity factors.

4.4.3 Non-ignorable Missingness Mechanisms, Univariate Case

Table 18 shows the results for the case where the mechanism fer missing data is

non-ignorable. Cases where there is non-ignorable missing data with biases towards

low and high values for each productivity factor are distinguished. The traditional hot

deck method, using z-scere standardization and Euclidean distance measure, is

presented. The results for the other standardization techniques and Manhattan

distance function are similar and are thus not presented here.

,. The hot-deck method uslng z-score standardfzatlon and Eudldean distance tunctfon.
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CP UT SC RV CR SK

Bi•• MdMRE Pred25 MdMRE Pred25 MdMRE Pred25 MdMRE Pred25 MdMRE Pred25 MdMRE Pred25
Law 1.5 3.2 0.86 1.6 1.8 3.2 4.8 1.6 3.4 6.3 0.86 1.6

High 1.1 1.6 2.0 1.6 1.3 1.6 1.6 1.6 1.4 1.6 3.4 4.8

Table 18: Traditionaro Hot-Deck Imputation MDT for 400k univariate missing data on
each productivity factor using non-ignorable missing data mechanism. It is also
indicated whether there is more missingness for low vs. high values.

The following obsertlations can be made about the univariate non-ignorable case:

• The performance of hot-deck for the non-ignorable case is slightly worse than for

MCAR and MAR.

• At 40% missing values, the Pred25 bias peaks at 6.3. In our context this would

mean that 4 more out of the 63 projects in the test set have an MRE greater than

250/0 when using mean imputation.

• The MdMRE bias peaks at 4.8%.

• At 40% missing data, both the MdMRE and Pred25 biases are slightly better

averall campared with mean imputation with non-ignorable missingness.

4.4.4 Non-ignorable Missingness Mechanism, Monotone Pattern

Table 19 shows the results for 40% missing data with monotone pattern and the

nan-ignorable mechanism. Cases where there is non-ignorable missing data with

biases towards low and high values for each productivity factor are distinguished. In

agreement with the pattern shawn in Figure 2, the ftrst productivity factor Iisted

cantains the larger amount of missing data than the second. It is important to note

that for the monotone pattern of missing data, it is only the first productivity factor

Hsted in the "Missing" column that contains missing values according to the non

ignorable mechanism. The traditional hot-deck method, using z-score

standardization and Euclidean distance measure, is presented as the results for the

other standardization techniques and Manhattan distance function are similar and

are thus nct presented here.

~ The hot-deck method uslng z-score standardlzation and Euclldean distance fundion.
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r
CPtUT UT,SC SC,RV RV,QA QR,SK SK,CP

1Bias MdMAE Pred25 MdMRE Pred25 MdMRE Pred25 MdMRE Pred25 MdMRE Pred25 MdMRE Pred25
Ilow 1.3 3.2 0.99 1.6 3.9 3.2 7.0 3.2 2.7 3.2 0.99 1.6

Ihigh 1.2 1.6 1.4 1.6 1.2 1.6 1.7 1.6 1.5 1.6 2.8 3.2

Table 19: Traditionaf' Hot-Deck Imputation MDT for 40% monotone missing data on
combinations of productivity factors using non-ignorable missing data mechanism. It
is also indicated whether there is more missingness for low vs. high values.

The following observations can be made about the monotone non-ignorable case:

• The performance is slightly worse than that of MCAR and MAR.

• The results are similar or slightly worse overall compared to the univariate pattern

for the non-ignorable case (Table 18).

• The Pred25 bias for this high level of missing data peaks at 3.2. In our context

this would mean that 2 more out of the 63 projects in the test set have an MRE

greater than 25% when using mean imputation.

• The MdMRE bias peaks at 7.0%.

The hot..deck results presented indicate that there is no marked difference in the

performance of different types of hot..deck. Furthermore, while the MdMRE and

Pred25 results are slightly better than listwise deletion and mean imputation, but the

improvement is so slight that they would easily be offset by the complications of

setting up a hot..deck.

4.5 Concordance Between Train and Test Set
While constructing cost estimation models, it is a common assumption that the

population represented by the training data set would be the same as the population

represented by the test data set, and similar to any new projects for which cost

predictions are made. If this is not the case, then this has implications on the

performance of MDTs.

Note from Table 5 that the Requirements Volatility (RV) variable distribution has a

different central tendency (mean or median) for the train and test data sets.

Specifically, the test data set tends to have projects with a larger Requirements

lT The hot-deck method using z-score standardlzatfon and Euclfdean distance funetion.
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Volatility than the training data set. When there are non-MCAR missing values on

RV such that there are more values missing on smalter values of RV, we witness a

deterioration of the imputation MDTs, for univariate and monotone patterns. We

explain this belaw.

RV is carrelated with the size of the project, in that projects with Iittle effort are Iikely

to have a low Aequirements Volatility, and also are likely to be smaller. Therefore,

the pattern of missingness for non-ignorable missingness with more missing values

far low AV will tend to be similar ta MAR when smaller projects are more likely to

have missing values.

Also, recall that the accuracy measures we use tend to penalize smaller projects

more. For instance, a 10 person-month overestimate for a 10 person-month project

would have a much worse MRE than for a 100 person-month project.

When there are more missing values for small RV projects, values imputed by mean

imputation will by definition be larger than the actual AV values. Therefore, the

regression model will be predicting worse for small projects in the test data set, and

because of the behavior of MRE, this will result in a small prediction accuracy.

Hat-deck imputation works best when the hat-deck covariates are strongly correlated

with the variable with missing values. In our case, the covariates that we used were

not strongly correlated with RV. Therefore, the hot-deck tended to impute values that

were larger than the actual RV values, resulting in behaviar similar to mean

imputation.

Because of the above, Iistwise delation performed better than the imputation

techniques when low values of RV had many missing values. In fact, this kind of

outcome would be expected whenever the training data set has prajeets that have,

on average, smalter values on a particular variable and missingness oceurs more

frequently on smaller values on that variable.

4.6 Summary
Belaw we provide an overall summary of our findings:
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• In general, ail MOTs tend ta perform weil in absolute terms, with thair bias

being consistently of a low percentage. This has sorne implications on

previous software engineering research. Given that the most common

practice thus far has baen to use Iistwise daletion, our rasults indicate that the

detrimental consequences of this would be rather minor. Listwise deletion has

the appeal of being a simple approach. However, researchers could do better,

as we discuss below.

• For ail mechanisms and patterns, we found that the performance of the MOTs

(in terms of bias and precision) deteriorates as the percentage of missing data

increases.

• The precision of Iistwise deletion tends to be worse than the other MOTs,

especially as the percentage of missing data increases (Figure 13 exemplifies

this trend).

• We did not find marked differences in the performance between MCAR and

MAR mechanisms. The only exception is for monotone patterns with a large

percentage of missing data, where the imputation techniques tend to perform

slightly worse under MAR in tenns of Pred25. This is avident in the summary

plot in Figure 13.

• For hot·deck imputation, the differences amongst the various types of hot·

deck parameters were not marked. Therefore, we suggest a traditional hot·

deck is appropriate. A traditional hot·deck uses Euclidean distance and z·

score standardization. Euclidean distance is the most cammon distance

measure, and thus its appeal. Standardization is a reasonable thing to do

given that otherwise size would systematically dominate any distance.

• In general, the MOTs tend ta perform slightly worse with monotone patterns of

missingness compared with the univariate pattern. 22

ZZ Except for listwise deletfon. where the results are exaetly the same as for the univarfate missingness case.
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• For monotone patterns of missingness, increasing the number of productivity

factors with missing values to more than twa does not have a marked impact

on the performance of MOTs.23

• The MOTs tend to perform slightly worse under non-ignorable missingness

compared with MCAR and MAR.

• Any hot..deck imputation technique will work weil in absolute terms, with

accuracy differences tram a complete data set rarely, if ever, going above 3%.

A summary of the performance of the three MOTs is presented in Figure 13.

Mean imputation performs slightly worse than hot-deck, but the degradation is

minor. Listwise deletion still performs very weil, but its performance is a slight

degradation over mean imputation and hot..deck. The above conclusions hold

irrespective of the missingness mechanism (MCAR or MAR), missingness

pattern (univariate or monotone on two variables), extent of observations with

missing values (up to 40%
), and productivity factors under consideration.

D Except for listwise defetion. where the results are exacUy the same as for the univariate missingness case.
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4.7 Discussion
The best way to handle missing data is to maximize response in the original sample.

ln sorne cases, it may be desirable to resample if large amounts of missing data are

in the original sample. But in the most likely scenario, in which there is missing data,

we can make sorne practical recommendations. Furthermore, if ensuring complete

data sets would be too costly, then our recommendations would result in models that

would be almost as accurate had complete data sets been attained.
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We found that in general, ail MOTs perform rather weil in terms of bias and

precision. The differences between the MOTs under the various simulated conditions

are small. This implies that common practices thus far of using Iistwise deletion

would not have penalized the accuracy of cost estimation models too greatly.

One potential reason for this tinding is that the impact of the productivity factors is

rather small compared with the effect of size. This is similar to the conclusion drawn

in a pravious study, where Matson at al. showed that there was only a small

improvement when productivity factors were added to the baseline model relating

effort to project siza [63]. If this is the general case, then ignoring or imputing the

missing values on the productivity factors would have little influence on the accuracy

of the prediction models.

However, one would in principle prafer to use an MDT with the smallest bias and

greatest precision. Therefore, it is up ta the analyst to decide whether the added

complexity of other MOTs, such as hot-deck, is worth the improvement in bias and

precision.

Amongst the MOTs examined, we found that imputation techniques perform better

than listwise deletion.24 To obtain the best performance from cost estimation models,

it would therefore be prudent to apply the appropriate imputation technique. Our

recommandations are summarized in the decision tree of Figure 14. The tree has a

decision point at the non-terminal nodes, and the edges indicate the value. For

example, starting trom the root, if one believes that the missingness mechanism is

MCAR or MAR, then take the edge on the left, otherwise take the edge on the right.

The terminal nodes indicate the recommended MOT.

a- The exception is when there is a discrepancy between the distribution of variables between !he training data set and the test
data set. or future projects. wtIereby the traJnfng data set tends ta have smaller values. as descrtbed in S8CUon 4.5.
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Figure 14: Recommendations for selecting MDTs. (a) This is generally the case,
irrespective of the percentage of missing data. (b) It should be noted that here the

difference between the choiee of mean imputation and hat-deek is slight.
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ln arder to apply the above decision tree, one has to determine whether the missing

data mechanism is MCAR, MAR, or non-ignorable. It is possible ta test whether data

is missing ccmpletely at random [60). Tc test for MAR, one could construct a logistic

regression model with the dependent variable being the missing status and the

covariates being those fully observed. If any of the covariates is found to be

associated with the missingness indicator, then one could decide that the

missingness mechanism is MAR. The remaining parameters necessary to use the

decision tree (Le., pattern and percentage of missing data) are easily determined

tram a data set.
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• 4.8 Comparison to Previous Work
The literature suggests that under MCAR and a low percentage of missing data,

Iistwise deletion tends to perform weil. For instance, Gilley and Leone [36] state Ulf

the item nonresponse is nonsystematic and represents a small percentage of a

reasonably large sample, then excluding the nonrespondents trom the sample would

have a negligible effect on any statistical results", and Frane [33] notes ulf the

number of subjects with missing data is small, if data are missing at random, and if

interest lies in statements regarding a population rather than individuals, the

elimination of subjects with missing data is Iikely to lead ta a satisfactory analysis."

Furthermore, one Monte Carlo simulation provides corroborative results in that at low

percentages of missing values (10% or less), they found that Iistwise deletion does

not give markedly distorted estimates of regression coefficients and R2 when data is

missing at random [74].

Another study [53] anarysed the performance of five MOTs far dealing with data

missing nonrandomly, namely Iistwise detetion, pairwise deletion, mean imputation,

simple regression imputation, and multiple imputation. Performance of each

technique was based on parameter estimates of a two predictar regression model.

The results showed that in general the three imputation techniques examined, mean

imputation, simple regression imputation and multiple imputation, did not perform

weil with nonrandomly missing data. In contrast, the listwise and pairwise deletion

techniques performed wei: when the level of missing data was less than 30%. This is

consistent with our results, in that Iistwise deletion produces reasonable results

under a variety of different missingness schemes and relatively high percentages of

missing data.

For low percentages of missing values under MCAR, Roth (71], based on a Iiterature

review, recommended using hot-deck imputation. A simulation study by Lee and

Chiu [56] lad to the conclusion that listwise deletion is a preferred MDT to mean

imputation when computing the polychoric correlation. We are, however, assuming a

regression model.

•
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• Roth and Switzer [78] performed a Monte Carlo simulation comparing different

MDTs. Techniques considered wera listwise delation, pairwise delation, mean

imputation, regression imputation, and hot-deck imputation under an MCAR

mechanism. The results showed that pairwise deletion had the laast amount of

dispersion and average error around true scores for bivariate correlations. In the

case of multiple regression, the performance of pairwise de(etion was similar to that

of listwise daletion. Furthermora, the authors recommended against the use of mean

imputation. For regression parameters, the authors noted that there are slight

differences between the various MDTs studied. This is consistent with our

conclusions, even for MAR and non-ignorable missingness mechanisms. In our

study, however, we did find that mean imputation performed better than Iistwise

deletion for the MCAR setting.

Another simulation found that for data missing at random, mean imputation tended ta

perform slightly better than Iistwise deletion [74]. This is consistent with our results.

For high percentages of missing values under MCAR and MAR, Roth recommended

hot-deck imputation (77]. This is the same conclusion that we drew basad on our

simulations for the software cost estimation problem. Similarly, he recommends hot

deck for low percentages of data that is not missing at random. At high percentages

of data that are not missing at random, Roth suggested maximum likelihood

estimation (77]. However, we did not evaluate this as part of our study. We did find

that hot-deck imputation worked best under these conditions for the software cost

estimation problem.

One study by Kaiser found that the performance of hot-deck methods decreases

with an increase in the proportion of records containing missing values, the increase

in the number of missing values in each record, or the combination of both [47]. This

is somewhat consistent with our results, except that we did not find that increases in

the number of variables that have missing values beyond two had a substantial

impact on the accuracy of hot-deck imputation. Further evaluations of the hot-deck

procedure were performed [31 ][4][26][29].

•
16



• Cox and Folsom [26] performed a simulation using an actual data set, where they

were evaluating estimates of univariate means and proportions under different

MOTs. They found that for discrete questionnaire items, hot-deck tended to reduce

bias compared to Iistwise deletion, with better performance for items that had the

greatest missingness. However, they also noted that the variance of the estimates

was inflated by hot-deck. This was also noted by Ernst [29]. For continuous items,

they concluded that the performance of hot-deck was inferior: it did not reduce the

bias in the estimates and when it did, the variance was large. This is consistent with

our results, in that the productivity factors can be considered as discrete variables by

their definition, and we found that hot-deck tended ta outperform Iistwise deletion.

Another simulation was performed by Ford [31] where he compared six different

MOTs, including four variants of hot-deck imputation. His criteria were estimates of

the mean and its variance. Ford found that there was no difference in the

performance amongst the different MDTs, although they were better than Iistwise

daletion. This finding is al50 consistent with our simulation results. Both of the above

studies, however, focus on parameters that are different tram those that we

evaluated (Le., the accuracy of predictions from a ragression model).

Perhaps the most important message tram the above review is that it is critical to

evaluate quantitative techniques using software engineering data sets. There is a

mixed correspondence between our results and those obtained trcm previous

studies. This is not surprising since the previous work used different evaluation

criteria, and the distributions of the variables they simulated were different.

Furthermore, techniques such as hot..deck, which tend ta work best when there are

strong correlations between the covariates and the variable with missing values, will

perform differently depending on the correlation structure amongst the variables.

This correlation structure may not be transportable from other disciplines.

4.9 Limitations
ln this paper, we reported on a simulation study ta evaluate sorne MOTs for dealing

with missing data during the construction of software cost estimation models. While

• we have attempted to design the simulation to be as comprehensive as possible,
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covering many plausible different missingness scenarios. we cannat claim that this

study is the last word on missingness for cast estimation modeling. Below we identify

the limitations of the study, which in tum suggest avenues for further research.

However, it should be noted that most of thase limitations are a consequence of the

scope that we have defined for our study. We already simulated more than 290 000

study points, which is quite extensive. Further simulations can be performed to

address situations that we have not considered.

Our simulation study was performed using one data set in the business application

domaine Although the data set was large, giving us confidence in the conclusions we

draw, other simulations would have to be perfomled on different data sets to confirm

our findings. We have attempted ta be precise in describing the details of our

simulation as an aid for future replications.

We only simulated missingness on the productivity factors. Our rationale has been

that if data on the size variable and the effort variable are missing, when building a

cost estimation model, then one has Iittle ta go on. This may be a reflection of a

serious data collection problem. Whereas missingness on questionnaire responses,

while not desirable, is more Iikely to happen.

Our evaluation criteria concemed only prediction accuracy. We did not consider the

parameter estimates in the regression models or the effect of MOTs on statistical

tests of significance. The objective of our study was ta focus on the utility of such

models for making effort predictions for new projects. It is plausible that a simulation

that used other evaluative criteria may come up with different recommendations.

The simulations we performed selected six productivity factors out of an initial fifteen.

We did not utilize the dropped nine productivity factors during the imputation

procedures we used. Since the excluded factors are Iikely strongly correlated with

sorne of the included factors (and this is one reason for dropping them in our

analysis due to the increased risk of collinearity in the regression model otherwise),

they may have served as useful covariates in a hot-deck and have resulted in aven

better performance for this imputation MDT. However, in practice, researchers would
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be more likely to exclude variables with many missing values trom their analysis, and

therefore excluded variables would not necessarily serve as good covariates.

We only considered up to 40°,'0 of the observations having missing values, which

encompasses most practical situations. It is possible that in sorne studies there

would be more than 40% missing values. However, it is contended that this would be

an indicator of a severe data collection problem. For instance, Raymond and

Roberts [74] state "With 40 percent of the data missing, one would have ta question

seriously the appropriateness of conducting any analysis." Furthermore, the wisdom

of doing any analysis with 30-40% missing data has been questioned by Roth [77]

and Ford [31].

When one is constructing a cast estimation model, it is not known a priori whether

the available data set is concordant with future projects. Therefore, when the choice

of MDT depends on this knowledge, as alluded to in Section 4.5, it is difficult ta

choose the optimal MDT. We therefore based our recommendations on the

assumption that there is such a concordance. This is the same assumption invoked

in ail previous cast estimation studies that utilize historieal data.

Finally, our simulation focused on ordinary least squares regression as the modeling

technique. This is the most popular technique for building cost estimation models,

and has been found in recent studies to perform at least as good as alternatives. It is

plausible that other modeling techniques would require different MDTs.
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Chapter 5: Conclusions
The objective of this paper was ta pertorm a comprehensive simulation to evaluate

techniques for dealing with missing data in cast estimation models. We simulated a

total of 293 400 study points, varying: the number of variables with missing data

(from 1 ta six), the percentage of missing data (trom 5% to 40%
), the missing data

mechanism (MCAR, MAR, and non-ignorable missingness), the missing data pattern

(univariate and monotone), and comparing 10 different techniques for dealing with

missing data. The performance of this study was greatly facilitated by the existence

of a large and complete software project data set. This is not very common, as many

cost data sets do have missing values.

Our results provide practical and substantiated guidelines for researchers and

practitioners constructing cost estimation models when their data sets have missing

values. Although we show that deleting observations with missing values has a small

penalty, better performance would be obtained from applying imputation techniques.

We encourage the replication of this simulation study on alternative data sets to

confirm, or otherwise, our conclusions. If indeed turther replications confirm our

findings, then this has important practical significance ta those building cast

estimation models. Furthermore, future work ought ta examine alternative imputation

techniques, as these may provide even better performance than the ones we

studied.
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Appendix A: Box and Whisker Plots
ln this paper, box and whisker plots are used quite frequently. This appendix is

intended ta explain how ta interpret such a diagram.

Figure 15: Description of a box and whisker plot.

Box and whisker plats are used to show the variation in a particular variable. Figure

15 shaws how such a plat is constructed. The box represents the inter-quartile range

(IOR). The ICR baunds the 25" and 751t1 percentiles. The 25lt1 percentile is the value

of the variable where 25% or less af the observations have equal or smaller values.

The same is true far the 75lf1 percentile. The whiskers are the largest values within

1.5 times the size of the box. This value af 1.5 is conventianal. Outliers are within 1.5

times the size of the box beyond the whiskers, and extremes are beyond the outliers.

Finally, usually there is a dot in the box. This dot denotes the median 1 or the SOlt1

percentile.

The box and whisker plot provides a versatile way for visualizing the obtained values

on a variable.
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Appendix B: Definitions of the Productivity Factors
This appendix provides a short description of the productivity factors in the LATURI

data set, as weil as the question trom the questionnaire used to collect data

pertaining to that factor. Each question contains the five possible answers, basad on

the 1 - 5 numerical scale. In addition, each productivity factor is separated into one

of four groups: project, process, product, and people factors.

B.1 Project factors
The following list contains those productivity factors that assess elements of the

software project.

8.1.1 Customer Participation

How actively the customer (user) participates in the development

1 - Very Small: The customer does not have time to participate in the project

definition or in project development.

2 - Small: Customer participation is passive. The customer has approved a

small amount (Iess than 300/0) of software function.

3 - Nominal: The customer participates in the project at satisfactory level. The

customer has approved approximately half of the functions (30-70%
).

4 - Much: The customer actively participates in the project. The customer has

defined and approved most of the functions (over 700/0), including ail of the

most important functions.

5 - Very Much: The customer participates very actively. Consequently, mast

of the functions will be slightly volatile.

8.1.2 Development Environment Adequacy

The performance level of tool and equipment resources during the project

1 - Very Small: Development facilities continually fall short of expectations.

Constructing test environments requires special arrangements.
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2 - Small: There are shared equipmentlmachine resources. Delays exist in

sorne stages (e.g. compiling and tasting).

3 - Nominal: There is enough equipment and tool resources during

development work. Ali members have their own workstation.

4 - Much: There is enough equipment and tool resources to handle capacity

peaks (e.g. efficiency, storage, response time).

5 - Very Much: There exist dedicated development environments specifically

for this project.

8.1.3 Staff Availability

The availabiHty of software personnel during the project

1 - Very Small: Availability of the key software personnel ta perform most

tasks is small. Key personnel are involved in many customer and

maintenance responsibilities simultaneously.

2 - Small: The team members are involved in other simultaneous projects in

addition to maintenance responsibilities. This project is low priority.

3 - Nominal: The key members of this project are involved in one other

project at most. Responsibilities of this other project can effect their

availability for this project.

4 - Much: Members are involved in this project close ta full time. Sorne key

staff may have sorne availability problems.

5 - Very Much: Qualified software personnel are available when needed, and

can fully participate in this project. Personnel are ready for short bursts of high

overload during the project.

8.2 Process factors
The following Iist contains those productivity factors that assess elements of the

software process.

8.2.1 Use of Tools

Use and quality of tools available for the project
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1 - Very Small: Minimal amount of tools are available (e.g. editors, compilers,

simple debugging tools).

2 - SmaH: Basic tools are available (9.g. interpreters, editors, compilers,

debuggers, databases, Iibraries).

3 - Nominal: There exists a development environment, data base

management system and support for mest phases.

4 - Much: Modem tools are available (e.g. CASE, project planning,

application generators). There are standardized interfaces between phases

and/or tools.

5 - Very Much: Integrated CASE environment that covers the whole Iife cycle.

Ali tools can support each other.

8.2.2 Requirements Volatility

Stability of customer (user) requirements

1 - Very Small: Requirements are continuously changing. More than 300
/0 of

the functions are new or modified versions of the original requirements..

2 - SmaU: Sorne essential changes are made that impact total architecture.

Project must retum to previous phases and modity previous results. 15-300/0

of the functions are new or modified.

3 - Nominal: Changes to specifications occur, but they are managed and their

impact is minor (Iess than 150/0 of the functions are new or modified).

4 - Much: Sorne changes to specifications, sorne new or adapted functions,

some minor changes in data contents..

5 - Very Much: No new features added during the project.

8.2.3 Use of Standards

The quality of the existing standards and procedures applied on this project.

1 - Very Small: Standards and basic practices are developed during the

project.
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2 - Small: Standards are partially known. Additional procedures must be

developed for sorne tasks.

3 - Nominal: Standards are weil known. General standards are used that

have been applied in the pasto Sorne tailoring is needed for most major tasks.

4 - Mueh: Detailed standards are used that have been applied in the same

environment in the past.

5 - Very Mueh: Stable and detailed standards are used that are familiar to the

team.

8.2.4 Use of Methods

The use and quality of methods to be applied during the projeet

1 - Very Small: The project does not use any modem software engineering

methods (e.g. mostly meetings, individual use, trials, etc.).

2 - Small: The use of methods is minimal. Traditional concepts are used (e.g.

structured analysis and design, top-down design, etc.)

3 - Nominal: Weil known methods are used (e.g. structured analysis and

design, coneeptual analysis, entity relationship modeling, etc.)

4 - Mueh: Detailed methods are integrated that cover most activities. Support

exists for most methods and ail members of the project use methods.

5 - Very Much: Methods are used that cover the whole lifeeycle and are

tailored to satisfy specifie project needs. Methods are supported for each

individual project.

8.3 Product factors
The following Iist cantains those productivity factors that assess elements of the

software produet.

B.3.1 Software Complexity (Logical)

Computing, I/O-needs, algorithmic features and user interface requirements

1 - Very Much: Require funetionally and technically difficult solutions. User

interface is very demanding. Distributed databases (many database systems).
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2 - Much: Require processing that is more demanding than normal. Database

is large and demanding.

3 - Nominal: Are functionally typical. Normal standard database.

4 - Small: Are functionally clear. Database solution is clear.

5 - Very Small: Are routine. No need for user interfaces. Simple database.

8.3.2 Quality Requirements (Software)

The quality goals that product must satisfy

1 - Very Much: There exist quantified quality requirements. 100% satisfaction

of the technical and functional goals must be satisfied, minimizing the amount

of the maintenance work.

2 - Much: There exist formai reviews and inspections between ail phases.

Attention devoted towards documentation, usability and maintenance.

3 - Nominal: There exists proper documentation and cntical features. Design

and implementation is tested, modulesljob flows tested, as weil as

walkthroughs. The maintenance work is planned.

4 - Small: Basic requirements are satisfied (documentation, implementation

testing, system testing, module testing). No statistical control or reviews.

5 - Vert Small: No explicit or measurable quality requirements. "Quick and

dirty" is allowed.

8.3.3 Efficiency Requirements

The efficiency goals for the software

1 - Vert Much: Efficiency of software is essential. There exist strict efficiency

goals that require continuous attention and specifie skills.

2 - Much: Specifie quantified goals are in effect. Response time, transaction

processing and tumaround time requirements can be reached by advanced

design and implementation techniques•

86



•

•

3 - Nominal: The capacity level of the software is stable and predictable. The

response time, transaction load and tumaround times are typical.

4 - Small: The efficiency goals and requirements are easy to attain.

S - Very Small: No efficiency requirements are present that nead attention

and planning.

8.3.4 Installation Requirements

The training needs for users and number of different platforms

1 - Very Much: Software developed for a thousand or more users. The

expected lifetime is long. There are several user organizations and severa)

different platforms.

2 - Much: Large amount of training is needed for several organizations. Extra

software needed for conversions, possible parallel runs. Several platforms.

3 - Nominal: Typical amount of training. Number of users is approximately 10

to 50.

4 - Small: Sorne training needad. Approximately 10 users.

5 - Very Small: No training needs. Only a few users.

8.4 People factors
The following Iist contains those productivity factors that assess elements of the

people involved in the software project.

8.4.1 Staff Application Knowledge

Knowledge of project team (supplier and the customer) of the application

demain

1 - Very Small: The application experience of the team is less than six

months.

2 - Small: The application experience is small. Sorne members of the project

staff have application experience. The average experience is 6 to 12 months.
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3 - Nominal: The team has good experience in the application domaine The

average experience is 1 to 3 years.

4 - Much: The team has good experience in the application domaine In

addition, business dynamics is known. The average experience is 3 to 6

years.

5 - Very Much: The application area is weil known ta the team and the

business as a whole. The average experience is more than six years.

8.4.2 Staff Analysis Skills

The analysis skills of the project staff at the project outset

1 - Very Small: No experience in requirements analysis or trom similar

projects.

2 - Small: Approximately one third of the staff has experience on analysis and

design activities in similar projects.

3 - Nominal: 30 to 70% of the project staff has experience in analysis work.

The project has also one very experienced member.

4 - Much: Most of the project staff has experience in specifications and

analysis. The project manager is a professional in analysis work.

5 - Very Much: Project staff consists of first-class professionals with a strong

vision and experience in requirements analysis.

8.4.3 Staff Tooi Skills

The experience of the project team (supplier and customer) with development

and documentation tools at the project outset

1 - Very Small: The team has no experience with the necessary tools. The

average experience is less than 6 months.

2 - Small: The experience with tools is below average. Sorne members have

experience with sorne of the tools. The average experience is 6 to 12 months.
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3 - Nominal: The expertence with tools is good for approximately half the

team. Development and documentation tools are weil known. The average

experience is 1 to 3 years.

4 - Much: The tools needed for the project are weil known to most team

members. Sorne members can give support for their use. The average

expertence is 3 to 6 years.

5 - Very Mueh: Ali tools are weil known to ail team members. Support is

available for specifie needs of the project. The average experienee is more

than 6 years.

8.4.4 Staff Team Skills

The ability of the project team ta work effectively and according to best project

practices

1 - Very Small: Team is scattered. There are minimal project and

management skills.

2 - Small: Only sorne team members have previous experience with similar

projects. Team is not united as a group.

3 - Nominal: Most team members have experience with similar projects. The

commitment towards project goals is good. No motivation to practice true

team spirit.

4 - Much: The project group is very active and knows how to exploit the team

concept effectively.

5 - Very Much: Team anticipates possible problems very weil. Team can

solve, in an effective way, mast personal and team canflicts. There exists

superior team spirit.
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Appendix C: Source Code
This appendix contains the S-plus source code for the developed functions used in

the simulation.

C.1 Univariate Missing Data Functions
The following section contains the source code for functions used in the simulation of

univariate missing data.

C.1.1 generate()

This is the highest level function, called trom the command line, when evaluating the

performance of MOTs on univariate missing data. There is a maximum of nine

parameters that must be passed to this tunction, depending on which MDT is being

evaluated. For listwise deletion and mean imputation, only the tirst six parameters

must be passed: "random.pattem", "bias", llpercenf, "attribute", "technique", and

"iterations". The "stand", "k" and llminkowski" parameters are only necessary when

evaluating one of the hot-deck imputation MDTs. The tollowing table describes each

parameter.

Parameter Description

random.pattem Mechanism of missing data ("MCAR" or "MAR")

bias Indicates bias towards lliarge" or "small" projects (MAR

only)

percent Percentage of missing data (e.g. 15)

attribute Attribute in data set to be imputed with missing values (e.g.

"T01")

technique MDT to be evaluated ("CC" for listwise deletion,

"MeanMethod" for mean imputation and "HotDeck" for hot-

deck imputation)

iterations Number of iterations ta be performed in the simulation (e.g.

500)
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stand (hot-deck only) Standardization technique, if any, to be applied ("none" for

no standardization, "z5" for ls, 'rad" for z-score, and

"meanabsolute" for mean absolute)

k (hot-deck only) Number of nearest neighbours (e.g. 1)

minkowski (hot-deck only) Distance function (1 for Manhattan, 2 for Euclidean)

For example, ta evaluate Iistwise deletion for 15 percent missing data, using the

MAR mechanism of missing data with bias towards small projects, on the "T01"

attribute, over 500 iterations, one would type

"generate("MAR","small",15,"T01","CC",SOO)" at the command line. This function

caUs three other functions Iisted in this appendix: hot.deck( ), naVector( ) and

MARVector( ), which are discussed below.

This function retums the two summary measures, MAEs!udYPolI\t and Pred25SludyPoJnr as

described in Eqn. 3 and Eqn. 4.

The following is the source code:

generate <-
function(random.pattem,bias,percent,attribute,technique,iterations,stand="nonen,k=1.minkowski=2) {

#set up vector with desired percentage of NAs (MCAR mechanism)
#Vector contains 143 elements (number of observations in the data set)
#NAs represent missing values
navector <- naVector(percent)

#set up vectors, one for each quintile, with different percentages of NAs (MAR mechanism)
#NAs represent missing values
#tirst and last quintiles contain 28 elements and the middle three contain 29 elements
#total number of elements in ail vectors is 143 (number of observations in the data set)
G1Vector <- MARVector(percent,4)
G2Vector <- c(MARVector(percent,3),0)
G3Vector <- c(MARVector(percent.2),0)
G4Veetor <- c(MARVector{percent,1 ).0)
G5Veetor <- rep(O,28)

#get regression model and evaluative measures for train data set (no missing values)
#LATURIRestLog is the log-transformed train data set
#LATURIBank is the test data set
#LATUAIBankLog is the log-transformed test data set
#WORKSUP represents effort. UUFP represents sile. and TCl - T13 are productivity factors
#generate model using ordinary (east squares ragression
tclean <- ols{WORKSUP - UUFP + Ta1 + TaS +T07 + TOe + TOe + T13, LATUAIRestLog)
#using model, predict effort in the test data set
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worksup.predict.ctean <- exp(predict(f.ctean.LATURIBankLog))
#calculate magnitude relative error (MRE)
MRE.clean <. abs{(worksup.predict.clean ..
LATURIBank[,RWORKSUP"])/LATURI8ank[,-WORKSUP-])
#aggregate set of MRE values
MedianMRE.clean <. median(MAE.clean)
#calculate prediction at level 25 (Pred25)
Pred25.clean <. length(MRE.clean[MRE.clean <= 0.25]) 163

#main body of simulation. repeat simulation of imputing missing data and using MDT "iterations"
#number of times
results.matrîx <- sapply(seq(1 :iterations).

function{x.navectof.random.pattem,bias.attribute.technique,iterations,stand.k,minkowski.G1Vector,G2
Vector.G3Vector.G4Vector.G5Vector.f.clean,worksup.predict.cfean){

#impute missing values into train data set according to desired missing value mechanism
switch{random.pattem.
MCAR=

{
#make copy of train data set
newLATURIRest <- LATURIRestLog
#set desired attribute of data set with appropriate percentage of missing values
newLATURIRest[.attribute] <- newLATURIRest[.attribute) + sample(navector)
},

MAR =
{
#make copy of train data set
tif larger proiects are to contain higher percentages of missing data
if (bias = IIlargell

)

#order data set accordingly
newLATURIRest <.. LATURIRestLog[rev(order(LATURIRestLog[.ItUUFplt]».)
else
#smaller proieets are to contain higher percentages of missing data.
#order the data set accordingly
newLATURIRest <.. LATURIRestLog[order(LATURIRestLog[,RUUFPï),)

#set desired attribute of data set with appropriate distribution of NA
newLATURIRest[,attribute] <- newLATURIRest(,attribute] +

c(sample{G1Vector).sample(G2Vector),sample(G3Vector),sampfe(G4Vector) ,G5Vector)
}

)#switch

#apply desired MDT
switch{technique,
#Iistwise deletion
CC=

{
#generate model
f <. ols(WORKSUP - UUFP + TOl + TaS + T07 + TaS + TOe + T13. newLATURIRest)
#prediet effort of test data set basad on model generated
worksup.predict <. exp(predict(f,LATURIBankLog»)

#find magnitude relative error
MRE <- abs«(worksup.predict - LATURIBank[,-WORKSUP-])ILATURIBank[,RWORKSUP1)
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#aggregate set of MRE5
MedianMRE <- median(MRE)
#calculate Pred25
Pred25 <- length(MRE[MRE <= 0.25]) 163

#retum results
retum(c(MedianMRE,Pred25»
},

#meao imputation
MeanMethod =

(
#find meao for attribute containing missing values
MeanForAttribute <- mean(newLATURIRest[.attribute},na.nn=TRUE)
#impute mean ot attribute for each missing value
newLATURIRest[,attribute] <- sapply(newLATURIRest[,attribute],

tunction(x,MeanForAttribute){if(is.na(x» retum(MeanForAttribute) else
retum(x)

},MeanForAttribute)
#generate model
f <- ols(WORKSUP - UUFP + T01 + T06 + T07 + TOa + TaS + T13, newLATURIRest)
#predict effort of test data set based on model generated
worksup.predict <- exp(predict(f,LATURI8ankLog))

#find magnitude relative error
MRE <- abs«worksup.predict - LATURI8ank[,MWORKSUP"]}/LATUR18ank[,"WORKSUp·'])
#aggregate MREs
MedianMRE <- median(MRE)
I#calculate Pred25
Pred25 <- length(MRE[MRE <= 0.25]) 163

I#retum results
retum(c(MedianMRE,Pred25»
},

#hot-deck imputation
HotOeck=

(
#identify observations in data set containing a missing value
ccVeetor <- sapply(newLATURIRest[,attribute],tunction(x){if(is.na(x)) retumm else retum(F)})

#separate complete observations trom those that contain a missing value
complete.cases <- newLATURIRest[!ccVector,]
missing.cases <- newLATURIRest[ccVector,]

#get list of attributes of data set that do not contain any missing values
all.attribute.names <- names(newLATURIRest)
complete.case.attributes <- all.attribute.names[all.attribute.names != attribute]
#remove attribute containing missing values trom ·missing.cases·
missing.cases <- missing.cases[complete.case.attributes]

# perform standardization, if any
if (stand != ·none")
(

#get number of attributes in data set
length.names.dataset <-length(names(newLATURIRest»
#compute the central tendency value, depending on standardization method to be applied
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Central.complete <- switch{stand,
z5=sapply{seq(length.names.dataset), function(x,d)

{min(d[,x))},newLATURIRest),
traditional=5apply(seq(length.names.dataset), function(x,d)

(mean(d[,x])}tnewLATURIRest).
meanabsolute=5apply(seq(length.names.dataset)t function(x,d}

(mean(d[,x])}tnewLATURIRest))
#compute the dispersion value, depending on standardization method to be applied
Dispersion.complete <- switch(stand,

z5= sapply(seq(length.names.dataset), function(xtd)
(diff(range(d[,x]))},newLATURIRest),

traditional= sapply(seq(length.names.dataset)t function(x.d)
(sqrt(var(d[tx),na.method="includell»}tnewLATURIRest).

meanabsolute= sapply(seq(length.names.dataset)t function(x,d)
{mean(abs(d[tx}- mean(d[,x]))) },newLATURIRest»

#scale the data set
newLATURIRest <- scale(newLATURIRest, Central.completet Dispersion.complete)

}
#prepare data to be passed to hot.deck( )
#observations that form the hot-deck
hotdeck.obs <- newLATURIRest[!ccVector.}
#observations that contain a missing value
missing.obs <.. newLATURIRest[ccVectortI

#call ta hot.deck()t funetion retums vector of values ta impute.
impute.values <.. hot.deck(hotdeck.obs[,complete.case.attributes}.

missing.obs[,complete.case.attributesltcomplete.cases[.attnbuteltk,minkowski)

#convert vector of values ta impute ta a data frame
impute.values <- data.frame(impute.values)
#add the name of the attribute
names(impute.values) <- attribute
#add the eolumn with the imputed values ta the observations with a missing value
missing.cases <- cbind.data.frame(missing.cases, impute.values)

#combine the complete observations with the "repaired" missing value ones
newLATURIRest <- rbind.data.frame(complete.cases,missing.cases)

#create model, compute evaluative measures and retum results
f <- ols(WORKSUP - UUFP + TOl + TOS + T07 + TaS + TOe + T13, newLATURIRest)
worksup.predict <- exp(predict(f,LATURIBankLog))
MRE <- abs«worksup.predict - LATURIBankL"WORKSUP"])/LATURIBank[,"WORKSUP"l}
MedianMRE <- median(MRE}
Pred25 <- length(MAE[MRE <= O.25J) 163
return(c(MedianMAE,Pred25})
}

)#switch
}#function

tnavectortrandom.pattern,biastattribute,technique,iterations,standtk,minkowski.G1Vector,G2Vector.G
3Vectof,G4VectortG5Veclor,f.clean,worksup.predict.clean)

#aggregate results over the number of Iterations
#retum the median of the absolute difference between calcurated and actual(complete data set)
MdMAE <- median(abs(results.matrix[1,l - MedianMRE.clean»
MdPred25 <- median(abs(results.matrix(2,l - Pred25.clean))
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#retum summary of results
ResultSummary <- c(MdMRE,MdPred25)
retum(ResultSummary)
}

C.1.2 hot.deck()

This function is called by generate( } when applying the hot-deck MDT. In total, five

parameters are passed to this function. The following table describes each

parameter.

Parameter Description

complete.cases The subset of observations that have no missing values

missing.cases The subset of observations with missing values

complete.mv The vector for the variable in the data set that contains missing

values

k The number of nearest neighbours

minkowski The value to differentiate between Euclidean and Manhattan

distances, 2 or 1 respectively

Note that the missing value column is separate from the rest of the columns. This

means that if "TOl n is the missing value column, then "complete.cases" and

"missing.cases" do not have this column. That "TD1" column for the complete data

set is in "complete.mv".

This function retums a vector of values to impute, corresponding to the observations

in missing.cases.

The following is the source code:

hot.deck <..
function(compfete.cases,missing.cases,compfete.mv,k,minkowskil

(
#get number of observations in the hot.cfeck
complete.Nobs <-length(complete.casesL1n
#get number of observations that contain a missing value
missing.Nobs <- length(missing.cases[,1D

#get number of attributes in "complete.cases· and IImissing.casesli

length.names.cc <- length(names(complete.cases)
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length.names.miss <- length(names(missing.cases))
#check that both "complete.cases" and "missing.cases· data sets have the same
#number of attributes
if (Iength.names.cc != length.names.miss)

stop("Complete and missing set have different no of variables")

# weights are set to 1 by default
weights <- rep(1.n

#convert to a matrix, this reduces computation lime
missing.cases <- as.matrix(missing.cases)
complete.cases <- as.matrix(complete.cases)

#for each observation with a missing value
estimate <- sapply(seq(1 :missing.Nobs),

tunction(i.complete.Nobs,missing.cases,complete.cases,complete.mv,weights,k,minkowski)
(
#for each observation in the hot-deck
#calculate the distance to the missing value observation

distances <- sapply(seq(1 :complete.Nabs),
functionO,i,missing.cases,complete.cases.weights.minkowski)

{
#calculate distance (Euclidean or Manhattan) for each individual attribute

dvec <- abs{missing.casesp,]-eomplete.casesÜ,]}"minkowski
#aggregate over ail attributes
d <- (sum(weights·dvec))"(1/minkawski)
#retum distance from the current missing value observation to
#the current hot-deck observation
retum (d)
}, i, missing.cases,complete.cases,weights,minkowski)

#sort the possible values to impute based on the calculated distances
orderedObsNo <- complete.mv[order(distances)1
#select the number of nearest neighbours ta be cansidered
hot.deck.subset <- arderedObsNo[1 :k}

#here a decision is made based on the value of k (number of nearest neighbours)
#If k is 1. retum the Ilhot.deck.subset" as the value ta impute.
#If k > 1, then must select one out of Ilhat.deck.subsee at random.
if(k=1) retum{hat.deck.subset)
else

(
#create list of possible indices ta choose tram
possible.indices <- seq(k)
#find random index and retum value in hot.deck.subset for this index
retum(hot.deck.subset[sample(possible.indices)[1ll)
}

},
complete.Nobs.missing.cases,complete.cases.complete.mv,weights,k,minkowski)

# retum the values to impute
retum(estimate)

}
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C.2 Monotone Missing Data Functions
The following section contains the source code for functions used in the simulation of

monotone missing data.

C.2.1 generate.multi()

This is the highest level function, called tram the command line, when evaluating the

performance of MOTs on monotone missing data. There is a maximum of ten

parameters that must be passed to this function, depending on which MDT is being

evaluated. For Iistwise deletion and mean imputation, only the first seven must be

passed: "random.pattem", "bias", "percent", "attribute1", "attribute2", "technique", and

"iterations". The "stand", "1( and "minkowski" parameters are only necessary when

evaluating one of the hot..deck MDTs. The parameters only differ from generate( ) in

the addition of "attribute2". This is the second attribute that will be imputed with

missing values. The parameter "attribute1" represents the attribute that will be

imputed with more missing values than "attribute2", according to the pattern shown

in Figure 2.

For example, to evaluate Iistwise deletion for 15 percent missing data, using the

MAR mechanism of missing data with bias towards small projects, on the I&T01" and

"T02" attributes, and over 500 iterations, one would type

"generate.multi("MAR","smalt",15,"T01 ","T02","CC",500)" at the command line. This

function caUs three other functions Iisted in this appendix: hot.deck.multi( },

naVector() and MARVector(), which are discussed below.

This function retums the two summary measures, MREstucsyPQ,nt and Pred2sSludyPclnt as

described in Eqn. 3 and Eqn. 4.

The following is the source code:

generate.multi <-
function(random.pattem,bias,percent,attribute1 ,attribute2,technique,iterations,stand="none",k=l ,mink
owski=2) (

#set vectors with desired percentage of NAs (MCAR mechanism)
#both vectors contain 143 elements (number of observations in the data set)
#the second vector contains hait the amount of NAs than the first
#NAs represent missing values
navector1 <- naVector(percent)
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navector2 <:- naVectar(percent /2)

#set up vectors, one for each quintile, with different percentages of NAs (MAR mechanism) for
#each attribute ("attribute1" and "attribute211

)

#final character in vector name("1" or "2") denotes vector for "attribute1" and "attribute2", respectively
#the vector for "attribute2" contains half the amount of NAs than that for -attribute1"
#first and last quintiles contain 28 e/ements and the middle three contain 29 elements
#total number of e/ements in ail vectors for each attribute is 143 (number of observations in
#the data set)
G1Vectarl <:- MARVector(percent,4)
G1Vector2 <- MARVectar(percent/2,4)
G2Vector1 <- c(MARVector(percent,3),0)
G2Vector2 <- c(MARVector(percent /2,3),0)
G3Vectorl <:- c(MARVector(percent,2),0)
G3Vector2 <- c(MARVector(percent /2,2),0)
G4Vector1 <- c(MARVector(percent,1),0)
G4Vector2 <- c(MARVector(percent /2,1 ),0)
G5Vectar1 <- rep(O,28)
G5Vector2 <- rep(O,28)
#assemble two vectors with NAs for each attribute that will be imputed with missing values.
MARVector1 <-c(G1Vector1,G2Vector1.G3Vector1.G4Vector1,G5Vector1)
MARVector2 <- c(G1Vector2,G2Vector2,G3Vector2,G4Vectar2,G5Vector2)

#get regression madel and evaluate measures far train data set (no missing values)
#LATURIRestLog is log..transforrned train data set
#LATURIBank is the test data set
#LATURI8ankLog is the log-transforrned test data set
#WORKSUP represents effort, UUFP represents size, and TOl - T13 are productivity factors
#generate model using ordinary least squares regression
tclean <- ols(WORKSUP - UUFP + TOl + TaS + TD7 + TOS + T09 + T13, LATURIRestLog)
#using model. predict effort in the test data set
worksup.predict.clean <- exp(predict(f.clean,LATURIBankLog)}
lcalculate magnitude relative error (MRE)
MRE.clean <- abs«(worksup.predict.clean-
LATURIBank(,"WORKSUP"])/LATURIBankLIIWORKSUPli]}
#aggre9ate set of MRE values
MedianMRE.clean <:- median(MRE.clean)
lcalculate prediction at level25 (Pred25)
Pred25.clean <:- length(MAE.clean[MRE.clean <= 0.25]) /63

#main body of simulation, repeat simulation of imputing missing data and using MOT 14iterations"
#number of times
results.matrix <:- sapply(seq(l :iterations),
function(x,navector1.navector2,random.pattem.bias.attribute1,attribute2.technique.iterations,stand,

k.minkowski.MARVector1 ,MARVector2.f.clean,worksup.predict.cleanH

#impute missing values inta train data set according to desired missing value mechanism
switch(random.pattem.
MCAR=

{
#make copy of train data set
newLATURIRest <:- LATURIRestLog
#create a random sample of the data set
newLATURIRest <- newLATURIRest[sample(seq(143),I
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Iset desired attributes of data set with appropriate percentage of missing values
newLATURIRestLattributel] <- newLATUAIRest[,attributel] + navectorl
newLATUAIAest[,attribute2] <- newLATUAIRest[,attribute2] + navector2
},

MAR =
{
#make copy of train data set
if (bias = IIlarge")
tif larger projects are to contain higher percentages of missing data
#order data set accordingly
newLATURIRest <- LATURIRestLog[rev(order(LATURIRestLog[,dUUFpd]»,)
else
#smaller projects are ta contain higher percentages of missing data
# order the data set accordingly
newLATURIRest <- LATURIRestLog[order(LATURIRestLog[,·UUFP1),)
#create a random sampie of the data sel The observations in the train data set are arranged
lat random within each quintile.
#generate a random sequence of observation numbers
sequence_Obs <- c(sample(seq(l ,28,1)),

sample(seq(29,57,l »,
sample(seq(58,8S,1n,
sample(seq(87.115,l )),
sample(seq(116,143,1)))

#order the data set according to sequence_Obs
newLATURIRest <- newLATURIRest[sequence_Obs,)
#set desired attributes of train data set with appropriate number of missing values
newLATURIRest[,attribute1) <- newLATURIRest[,attribute1] + MARVectorl
newLATURIRest[,attribute2] <- newLATUAIRest[,attribute2] + MARVector2
}

)#switch

#apply desired MDT
switch(technique,
#Iistwise deletion
CC=

{
#generate model
f <- ols(WORKSUP - UUFP + TOl + TOS + T07 + T08 + T09 + T13, newLATURIRest)
#predict effort of test data set basad on modal created
warksup.predict <- exp(prediet(f.LATURIBankLog))

#find magnitude relative errar
MRE <- abs«warksup.prediet - LATURIBank[,dWORKSUplI])/LATURIBank[,"WORKSUP1)
#aggregate set of MREs
MedianMAE <- median(MRE}
#calculate Pred25
Pred25 <- length(MRE[MAE <= 0.25]) 163

#retum rasults
retum(c(MedianMRE,Pred25»

},
#mean imputation
MeanMethod =

{
#get the mean for dattribute1-
MeanForAttribute1 <- mean(newLATURIRest[,attribute1],na.11T1=TRUE)
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#get the mean for "attribute211

MeanForAttribute2 <- mean{newLATURIRest[,attribute2],na.rm=TRUE)

#replace each missing value of attribute with the mean for that attribute
newLATURIRest(,attribute1] <- sapply(newLATURIRestLattribute1],

function(x,MeanForAttribute1)(if(is.na(x» retum(MeanFarAttribute1)
else retum(x)

},MeanForAttribute1 )
newLATURIRest[,attribute2] <- sapply(newLATURIRestLattribute2],

function(x,MeanForAttribute2){if(is.na(x» retum(MeanForAttribute2)
else retum(x)

l,MeanForAttribute2)

#generate model
f <- ols(WORKSUP - UUFP + TOl + T06 + T07 + TOB + T09 + T13, newLATUAIRest)
#predict effort in test data set based on model generated
worksup.predict <- exp(predict(f,LATURIBankLog»

#find magnitude relative error
MAE <- abs«worksup.predict - LATURI8ank[,"WOAKSUplI])/LATURIBank[,ItWOAKSUplt])
#aggregate MAEs
MedianMRE <- median(MAE)
#calculate Pred25
Pred25 <- length(MRE[MAE <= 0.25]) / 63

#retum results
retum(c(MedianMRE,Pred25»

},
#hot-deck imputation
HotDeck=

{
#identify observations in data set containing one or more missing values
ccVector <- sapply(newLATURIRestf,attribute1],function(x){if(is.na(x)) retum(T) else retum(F)})
#generate the set of observations that do not contain any missing values
complete.cases <- newLATURIRest[!ccVector,J
#generate the set of observations that contain one or two missing values
missing.cases <- newLATURIRest(ccVector,]

#generate vectors containing possible values to impute for "attributel n and lIattribute2" of
#observations with missing values
complete.mvl <- complete.cases[,attributel]
complete.mv2 <- complete.cases[,attribute2]

#get list of ail attribute names
all.attribute.names <- names(newLATURIRest)
#get list off ail attribute names excluding "attributel·
complete.case.attributes <- all.attribute.names(aU.attribute.names!=attribute1]
#get Iist of aIl attribute names excluding "attributel" and "attribute2"
#(this is the list of attributes that do not contain any missing values)
complete.case.attributes.two <- all.attribute.names[all.attribute.names~=attribute1&

all.attribute.names!=attribute2]

#identify observations in data set that contain two missing values
miss2Vector <- sapply(newLATURIRest[,attribute2),function(x){if(is.na(x» retum(T)

erse retum(F}})
#get the set of observations that contain two missing values
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missing.cases.two <- newLATURIRest[miss2Vector,]
#remove attributes that contain missing values
missing.cases.two <- missing.cases.two(complete.case.attributes.two]
#get the set of observations that contain only one missing value
missing.cases.one <- newLATURIRest(xor{miss2Vector,ccVector),]
#remove the attribute that contains missing values
missing.cases.one <- missing.cases.one(complete.case.attributes]

# perform standardization, if any
if (stand != "none")
(

#The complete train data set is separated into three separate parts{A, Band C)
#part A is the train data set excluding attribute1 and attribute2
#part B is "attribute2" of the train data set
#part C is lIattribute1 1t of the train data set
#This is done because standardization cannot be performed with NAs in the data set.

#standardization of part A
#get train data set excluding "attribute1" and "attribute2"
newLATURIRest.xAtt2 <- newLATURIRest[,complete.case.attributes.two]
#get number of attributes in "newLATURIRest.xAtt211

length.names.dataset <- length(names{newLATURIRest.xAtt2»
#compute the central tendency value, depending on standardization method to be applied
CentraLcomplete <- switch(stand,

z5=sapply(seq(length.names.dataset), funetion(x.d)
(min(d(,x])},newLATURIRest.xAtt2),

traditional=5apply(seq(length.names.dataset), function(x,d)
{mean(d[,x])},newLATURIReslxAtt2),

meanabsolute=sapply(seq(length.names.dataset), function(x,d)
(mean(d[,x])},newLATURIRestxAtt2»

# compute the dispersion value, depending on the standardization method to be applied
Dispersion.complete <- switch(stand,

z5= sapply(seq(length.names.dataset), function(x,d)
{diff{range(d(,x)))},newLATURIRest.xAtt2).

traditional= sapply(seq{length.names.dataset), function(x.d)
{sqrt(var(d(,x])},newLATURIRest.xAtt2),

meanabsolute= sapply(seq(length.names.dataset), function(x,d}
(mean(abs(d[,x]- mean(dLx)))) },newLATUAIRest.xAtt2})

# scale the data set
newLATUAIRest.xAtt2 <- scale(newLATUAIRest.xAtt2, Central.complete, Dispersion.complete)

#standardization of part B
#create a data frame of lIattribute211 from train data set
newLATUAIRest.Att2 <- data.frame(newLATUAIAestLattribute2])
#remove NAs from -newLATURIAest.Att211

newLATURIRest.Att2 <- newLATURIAest.Att2[!miss2Vector,]
#add correct name of attribute
newLATUAIRest.Att2 <- data.frame(newLATUAIAest.Att2)
names(newLATUAIRest.Att2) <- attribute2
#set length of list of attribute names for -newLATURIRest.Att2"
length.names.dataset <- length(names(newLATURIAestAtt2»
# compute the central tendency value, depending on standardization method ta be applied
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CentraJ.complete <- switch(stand,
z5=sapply(seq(length.names.dataset), function(x,d)

(min(d[,x])},newLATURIReslAtt2),
traditional=sapply(seq(length.names.dataset), function(x,d)

(mean(d[,x])},newLATURIRestAtt2),
meanabsolute=sapply(seq(length.names.dataset), function(x,d)

(mean(d[,x])},newLATURIRest.Att2»
# compute the dispersion value, depending on standardization method to be applied
Dispersion.complete <- switch(stand,

z5= sapply(seq(length.names.dataset), tunction(x,d}
{diff(range(d[,x}»},newLATURIRest.Att2),

traditional= sapply(seq(length.names.dataset), tunction(x,d)
(sqrt(var(d[,x),na.method="include"»},newLATURIRest.Att2),

meanabsolute= sapply(seq(length.names.dataset), function(x,d)
(mean(abs(d[,x]- mean(dLx)))) },newLATURIRest.Att2))

# scale the data set
newLATURIRest.Att2 <- scale(newLATURIRest.Att2, Central.complete, Dispersion.complete)

#separate the set of standardized observations that contain two missing values from the rest
missing.obs2 <- newLATURIRest.xAtt2[miss2Vector,)
newLATURIRest.xAtt2 <- newLATURIRest.xAtt2[lmiss2Vector.]

#get part C (Note: part C does not need ta be standardized)
#get "attributel 11 column trom "newLATURIRest"
attl.col <- data.frame(newLATURIRest[,attributel]}
#shorten lIattl.col" by removing NAs that are trom observations that also have a
#NA for "attribute211

#this is done so that it will be the same length as parts A and B
attl.col <- attl.col[!miss2Vector,1
#convert ta data frame and add appropriate name to column
attl.col <- data.frame(attl.col)
names(attl.col} <- attributel

#combine parts A, Band C
#combine "newLATURIRest.xAtt2" (standardized), "newLATURIRest.Att2" (standardized) and
#"attl.col" (not standardized)
#this data set contains ail observations except for those with two missing values
newLATURIRest <- cbind.data.frame(newLATURIRestxAtt2.newLATURIRest.Att2,attl.col)
#identify observations in data set containing one missing value
ccVector <- sapply(newLATURIRest(,attributel],function(x){if(is.na(x» retum(T) else retum(F}})

#observations that torm the hot-deck
hotdeck.obs1 <- newLATURIRest[!ccVector,1
#observations that contain only one missing value
missing.obs1 <- newLATURIRest[ccVector,]

#call to hot.deck.multi( ), function retums values to impute
impute.values <- hot.deck.multi(hotdeck.obs1(tcomplete.case.attributesI,

missing.obs1 [,complete.case.attributesI,
missing.obs2[,complete.case.attributes.twoI,
complete.mvl ,complete.mv2,attribute2,
k.minkowski)

102



•

•

else #no standardization
{
#prepare data ta be passed to hot.deck.multi( )
#observations that form the hot-deck
hotdeck.obsl <- newLATURIAest[!ccVector,l
#observations that contain only one missing value
missing.obsl <- newLATUAIAest[xor(ccVector.miss2Vector) ,1
#observations that contain two missing values
missing.obs2 <- newLATURIRest[miss2Vector,l

#call ta hot.deck.multi( ), function retums values to impute
impute.values <- hotdeck.multi(hotdeck.obsl [,complete.case.attributes),

missing.obs1[,complete.case.attributes),
missing.obs2[,complete.case.attributes.two],
complete.mvl.complete.mv2.attribute2.
k.minkowski)

}#if - else

#add values ta impute for observations with only one missing value
#get the values in "impute.values" that correspond ta the values ta impute
impute.valuesl <- data.frame(impute.values[lm
#add the name of "attribute1"
names(impute.valuesl) <- attributel
#add the column with the values ta impute
missing.cases.one <- cbind.data.frame(missing.cases.one. impute.valuesl)

#add values to impute for observations with two missing values
#get the values in ~impute.values" that correspond to the values to impute
impute.values2 <- impute.values[2]]
attributel.column <- impute.values2[1.]
attribute2.column <- impute.values2[2.1
#convert to a data frame
attributel.column <- data.frame(attributel.column)
attribute2.column <- data.frame(attribute2.column)
#add the names of the attributes
names(attributel.column) <- attributel
names(attribute2.column) <- attribute2
#add both columns of values to impute
missing.cases.two <- cbind.data.frame(missing.cases.two. attributel.column. attribute2.column)

#combine the complete cases with the 'repaired' missing value ones
newLATURIRest <- rbind.data.frame(complete.cases,missing.cases.one,missing.cases.IWo)

#create model. compute evaluative measures and retum results
f <- ols(WORKSUP - UUFP + TOl + Ta6 + Ta7 + TaS + TOS + T13, newLATURIRest)
worksup.predict <- exp(prediet(f,LATURIBankLog))
MRE <- abs«worksup.predict - LATURIBank[,·WORKSUP"])1lATURIBank[,·WORKSUp·n
MedianMRE <- median(MAE)
Pred25 <- length(MRE[MRE <= 0.25]) 163
retum(c(MedianMRE.Pred25»)
}

)#switch
}#function

,navector1 ,navector2,random.pattem.bias.attribute1 ,attribute2.technique,iterations,stand,~minkowski.

MARVector1.MARVector2,f.clean,worksup.predict.cfean)
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#aggregate results over the number of iterations
#retum the median of the absolute difference between calculated and actual(complete data set)
MdMRE <- median{abs(results.matrix[1,]- MedianMRE.clean»)
MdPred25 <- median{abs(results.matrix[2,]- Pred25.clean»

#retum summary of results
ResultSummary <- c(MdMRE,MdPred25)
retum(ResultSummary)
}

C.2.2 hot.deck.multi()

This function is called by generate.multi( ) when applying the hot-deck MOT. ln total,

eight parameters are passed ta this function. The parameters are the sarne as those

for hot.deck( ) except for the following:

Parameter Description

missing.cases.one The subset of observations with one missing value

missing.cases.two The subset of observations with two missing values

complete.mv The vector for the variable Uattribute1ft that contains missing values

in the data set

complete.mv2 The vector for the variable Uattribute2" that contains missing values

in the data set

Note that "missing.cases.one", "missing.cases.twoft and "complete.cases" do not

have the column represented in Ilcomplete.mvil. In addition, "missing.cases.two"

does not have the colurnn represented in "cornplete.mv2".

This function retums the values ta impute, corresponding to the observations in

Iimissing.cases.one" and "missing.cases.two".

The following is the source code:

hot.deck.multi <
funetion{complete.cases,missing.cases.one,missing.cases.two,complete.mv,complete.mv2,attribute2,
k=1,minkowski=2)

{
#get Iist of attributes in ·complete.cases-Cthe hot-deck)
all.attribute.names <- names(complete.cases)
#get list of ail attributes excluding -attribute2-
complete.case.attributes.two <- all.attribute.names[all.attribute.names!=attribute2]
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#get number of observations in hot-deck
complete.Nobs <- length(complete.casesL1))

#get number of attributes in "complete.cases", Ilmissing.cases.onell and "missing.cases.twon

length.names.cc <-length(names(complete.cases))
length.names.miss1 <-length(names(missing.cases.one))
length.names.miss2 <- length(names(missing.cases.two))
#check that ·complete.cases" and Ilmissing.cases.onen data sets have the same
#number of attributes
if (Iength.names.cc != length.names.miss1)

stop(·Complete and missing set have different no of variablesN
)

# weights are set ta 1 by default
weights <- rep(1,length.names.cc)
weights2 <- rep(1,length.names.cc - 1)

#create hot-deck for observations that contain two missing values
#This hot-deck is the same as the hot-deck for observations containing one missing value except
#the second missing attribute, lIattribute2", is removed. (Observations with two missing values
#do not have this attribute and so il is not needed in the hot-deck)
complete.cases.two <- complete.cases[,complete.case.attributes.two}

#hot-deck MDT is performed in two parts (A and B).
#Part A applies the hot-deck MDT ta observations that contain one missing value and
#Part B applies the hot-deck MDT to observations that contain two missing values.

#Part A
#get number of observations that contain one missing value
missing.Nobs1 <-length(missing.cases.one[,1})
#convert to matrix, this reduces computation time
complete.cases <- as.matrix(compfete.cases)
missing.cases.one <- as.matrix(missing.cases.one)

#for each observation containing one missing value
estimate1 <- sapply(seq(1 :missing.Nobs1),

function(i,complete.Nobs,missing.cases.one,complete.cases,complete.mv,weights,k,minkowski}
(
#for each observation in hot-deck
#calculate the distance to the missing value observation
distances <- sapply(seq(1 :complete.Nobs),

tunctionO,i,missing.cases.one,complete.cases,weights,minkowski}
(
#calculate distance (Euclidean or Manhattan) for each individual attribute
dvec <- abs(missing.cases.one[i,}-complete.casesU,])J\minkowski
#aggregate over ail attributes
d <- (sum(weights~dvec)Y'(1/minkowski)
#retum distance trom the current missing value observation ta
#the current observation in the hot-deck
retum (d)
}, it missing.cases.one,compfete.cases,weights,minkowski)

#sort the possible values to impute basad on the calculated distances
orderedObsNo <- complete.mv[order(distances)]
#select the number of nearest neighbours to be considered
hot.deck.subset <- orderedObsNo[1 :k]
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#here a decision is made based on the value of k (number of nearest neighbours.
#If k is 1, retum the IIhot.deck.subset· as the value to impute.
#If k > 1, then must select one out of ·hot.deck.subset" at random.
if{k 1) retum{hot.deck.subset)
else

{
#create list of possible indices to choose tram
possible.indices <- seq{k)
#find random index and retum value in whot.deck.subser for this index
index.to.pick <- sample(possible.indices)[1]
#retum value ta impute
retum(hot.deck.subsetUndex.to.pick]}
}

},
complete.Nobs,missing.cases.one,complete.cases,complete.mv,weights,k,minkowski)

#Part B
#get number of observations that contain two missing values
missing.Nobs2 <- length(missing.cases.two[,1])
#convert to matrix, this reduces computation time
complete.cases.two <- as.matrix(complete.cases.two)
missing.cases.two <- as.matrix(missing.cases.two)

#for each observation containing two missing values
estimate2 <- sapply(seq(1 :missing.Nobs2),

tunction(i,complete.Nobs,missing.cases.two,complete.cases.two,
complete.mv,complete.mv2,weights2,k,minkowski)

{
#for each observation in hot~eck

#calculate the distance to the missing value observation
distances <- sapply(seq(1 :complete.Nobs),

functionO,i,missing.cases.two,complete.cases.two,weights2,minkowski)
{
#calculate distance (Euclidean or Manhattan) for each individual attribute
dvec <- abs(missing.cases.two[i,]-eomplete.cases.twoU,])"minkowski
#aggregate over ail attributes
d <- (sum(weights2*dvec»)A(1/minkowski)
#retum distance from the current missing value observation to
#the current observation in the hot-deck
retum (d)
l, i, missing.cases.two,complete.cases.two,weights2,minkowski)

#sort the possible values to impute, for both attributes, based on the calculated distances
orderedObsNo <- complete.mv[order(distances»)
orderedObsNo2 <- complete.mv2[order(distances»)
#select the number of nearest neighbours to be considered
hot.deck.subset <- orderedObsNo[1 :k]
hot.deck.subset2 <- orderedObsNo2(1 :k]

#here a decision is made based on the value of k (number of nearest neighbours)
#If k is 1, retum "holdeck.subsef and "hotdeck.subset2" as the values to impute.
#If k > 1. then must select one out of "holdeck.subset" and "hot.deck.subset2" at random.
if(k=1) retum(c(hot.deck.subset,holdeck.subset2)
else

{
#create list of possible indices to choose from
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possible.indices <- seq(k)
#find random index
index.to.pick <- sample(possible.indices)[1]
#retum both values to impute for this index
retum(c(hot.deck.subset[index.to.pick],

hot.deck.subset2pndex.to.pick]))
}

},
comprete.Nobs,missing.cases.twotcomplete.cases.two,complete.mv,
complete.mv2.weights2,k,minkowski)

#retum the values to impute
retum(list(estimate1,8stimate2»

C.3 Commonly Used Functions

The following section contains the source code for functions used in the simulation of

bath univariate and monotone missing data.

C.3.1 naVector()

This function is called by generate( ) and generate.multi( ). The purpose of this

function is to create a vector of NAs, representing missing values, to be imputed in

one attribute in the data set when applying the MCAR mechanism. The function

assumes that there are 143 observations in the data set and so if x =10, then this

function would produce a vector of 143 elements, 14 of which are NAs and the rest

are zeros.

The following is the source code:

naVeetor <
function(x)
{

#number of NAs for vector
numTrue <- round(143 .. x .. 0.01, digits=O)
#number of zeros for vector
numFalse <- 143 - numTrue
#concatenate
c(rep(NA,numTrue),rep(OtnumFafse»
}

C.3.2 MARVector()

This function is called by generate( ) and generate.multi( ). The purpose of this

function is to create a vector with the appropriate percentage of NAs, representing

missing values, ta be imputed in one quintile of the data set when applying the MAR

mechanism. This corresponds to the quintiles of the 143 observation data set and

107



•

•

discussed in Section 3.8. The function contains twe parameters, "x" 1 representing the

total percentage of missing values to be imputed for the attribute, and "k" 1 the

number identifying the quintile.

The following is the source code:

MARVector <- funetion(x,k)
{
#number of NAs for vector
numTrue <- round(l43 • x/la • k • 0.01, digit5=O)
#number of zeros for vector
numFalse <- 28 - numTrue
#concatenate
c(rep(NA,numTrue),rep(O,numFalse))

}
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