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A Convolution-Free Finite-Element Time-Domain Method for the
Nonlinear Dispersive Vector Wave Equation
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In this paper, a Finite-Element Time-Domain method is presented for the solution of the second-order Vector Wave Equation
(VWE) subject to electrically complex materials, including general combinations of linear dispersion, instantaneous nonlinearity, and
dispersive nonlinearity. The presented method is novel in that it offers greater geometric flexibility than existing Finite-Difference
methods, incorporates both instantaneous and dispersive nonlinearity, scales to arbitrary dispersive and nonlinear orders, and is
simpler, faster, and requires less computational complexity than existing mixed formulations due to the use of edge elements only.
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I. INTRODUCTION

THE need for fast, efficient, and reliable telecommunica-
tions infrastructure has evolved and grown tremendously

over the past decades. In particular, advances in nonlinear
optics, material sciences, and fabrication methods have vastly
improved data transmission and reception, and continue to be
indispensable tools as devices and people become increasingly
connected. As a result, the need for techniques to aid in the
design of electromagnetic devices which leverage complex
material interactions has also grown rapidly, representing a
cost-effective substitute for empirical study.

Given this present need, several numerical methods have
been devised for the study of materials exhibiting complex
properties, such as dispersion and nonlinearity, however in
general they tend to contain simplifications. For example,
popular approximative methods such as the Slowly Vary-
ing Envelope Approximation (SVEA) [1] and the Nonlinear
Schrödinger Equation (NLSE) [2], may require slowly varying
structures or waveforms, cannot contend with abrupt changes
in material properties, or require propagation confined to a
relatively small angular area. As a result, in many cases, only
a full-wave (non-approximative) treatment of the nonlinear
Maxwell’s Equations can yield the true behaviour of a physical
system. For instance, Joseph & Taflove [3], [4] found several
instances in which the NLSE disagreed with a method which
solved Maxwell’s Equations directly.

One popular numerical method for Maxwell’s Equations is
the Finite-Element Time-Domain (FETD) method. However,
the adaptation of FETD to nonlinear media has not yet
received much treatment to date. FETD methods dealing with
linear dispersion [5], nonlinear conductivity [6] and nonlinear
permeability [7], [8] have been developed, though are not
very general when it comes to arbitrary electric nonlinearity.
The method in [9], in contrast, models both instantaneous and
dispersive nonlinearities within the mixed FETD framework.
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However, the use of the auxiliary differential equation method
to model dispersion and an explicit time-marching scheme,
mean the resulting method is difficult to scale to higher
dispersive orders, and suffers from reduced stability.

In contrast, the mixed nonlinear FETD method presented
in [10] not only models nonlinearity and dispersion, but does
so using the z-transform technique, Newton-Raphson iteration,
as well as an implicit Crank-Nicolson based update scheme,
yielding a robust, scalable, stable, and accurate algorithm,
capable of modeling very general material behaviours. In this
paper, a novel successor of the method in [10] is presented.
Specifically, rather than being based on a mixed FETD for-
mulation (using both edge and face elements), the method
here derived is simpler and more straightforward in that it
makes use of the second-order Vector Wave Equation (VWE)
formulation, requiring only the use of edge elements. Further-
more, the accuracy, stability, and scalability of the original
algorithm are maintained, while allowing the use of higher-
order hierarchical elements and requiring less computational
resources. The accuracy and convergence of the new nonlinear
VWE FETD method is then verified, and the simulation of a
temporal soliton demonstrated in two dimensions.

II. ELECTRICALLY COMPLEX MEDIA

In ordinary linear media, a material’s polarization density
vector ~P and the electric field ~E are directly proportional,
with the constant of proportionality being the linear electric
susceptibility χ(1). However, in the case of linear dispersion,
the susceptibility can be frequency-dependent, necessitating a
convolution between χ(1) and ~E in time. Moreover, nonlinear
materials can see the susceptibility itself also become a func-
tion of the field strength, | ~E|. For many materials, an adequate
model for the polarization density which accounts for these
interactions is given by the following:
~P = ε0χ

(1) ∗ ~E + ε0χ
(3)(αE2 + (1− α)g(t) ∗ E2) ~E (1)

in which the susceptibility χ(1) models linear dispersion, χ(3)

an instantaneous Kerr and/or stimulated Raman nonlinearity
(with the α term controlling their relative strengths), and ∗
denoting convolution [3].
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III. DERIVATION

To begin, Faraday’s and Ampère’s laws are expressed as
follows:

∇× 1

µ
~B = ~J +

∂ ~D

∂t
(2)

∇× ~E = −∂
~B

∂t
(3)

where the displacement field ~D is related to the polarization
density via the constitutive relation ~D = ε0 ~E + ~P .

Combining equations (2) and (3), and eliminating the mag-
netic field, the second-order Vector Wave Equation (VWE) for
the electric field is obtained:

∇× 1

µ
∇× ~E +

∂2

∂t2
(ε0 ~E + ~P ) = −∂

~J

∂t
(4)

Applying a standard Finite-Element variational approach, (4)
can be transformed into a semi-discrete system:

∂2

∂t2

(
εL ∗ [T̃ ]{e}+ [T̂ ]{e}

)
+ [S]{e}+ {f} = 0 (5)

where εL is the linear part of (1), and the elemental matrices
and vectors are given by:

[T̃ ]ij =

∫
Ω

~W
(1)
i · ~W (1)

j dΩ (6)

[T̂ ]ij =

∫
Ω

ε0χ
(3)(αE2 + (1− α)g(t) ∗ E2) ~W

(1)
i · ~W (1)

j dΩ

(7)

[S]ij =

∫
Ω

1

µ
(∇× ~W

(1)
i ) · (∇× ~W

(1)
j )dΩ (8)

{f}i =

∫
Ω

∂ ~J

∂t
· ~W (1)

i dΩ (9)

with ~W (1) representing a vector 1-form (edge element) basis
function.

At this stage, a temporal discretization must be applied
to (5). Rather than using the Crank-Nicolson method as in
[10], here the closely related Newmark-β method is used
instead. While the Crank-Nicolson method for mixed elements
is posited to be unconditionally stable (in the linear case),
Newmark-β is provably so for β = 1

4 . Furthermore, the
system in (5) is simpler due to only using one type of basis
function, requiring two fewer matrices to populate and store,
and no need to explicitly update the magnetic field. However,
the VWE kernel does admit solutions which can lead to so-
called late-time growth. Thus, for very long simulations, the
mixed approach may be more advantageous, despite the added
complexity and cost.

Nonetheless, equation (5) contains two complicating factors.
The first is the presence of convolutions within (5) and (7),
and the second is the presence of the nonlinearity within (7).
In the former case, convolutions will be addressed via the z-
transform technique, whereas in the latter case a nonlinear
Newton-Raphson iteration will be adopted.

A. The Z-Transform Technique

When the Newmark-β method is applied to (5), the convo-
lution associated with the linear dispersive term can be shown
to take the following form:

{L}(t) , εL ∗ [T̃ ]{e}(t). (10)

Following a technique first proposed in [5], and also applied
in [10], the Laplace transform of (10) can be taken. The
resulting εL(s) can generally be written as the quotient of
two s-dependent polynomials, while the convolution itself is
transformed into a multiplication. A Möbius or bilinear trans-
formation can then be applied, mapping from the continuous
s-domain to the discrete z-domain:

s 7→ 2

∆t

1− z−1

1 + z−1
(11)

Applying this transformation to the s-domain version of (10)
results in a quotient of two z−1 dependent polynomials,
multiplied by [T̃ ]{e}(z). Upon normalizing the first term in
the denominator and cross multiplying, one can express the
z-transform of the convolution as a function of z−1. By
then using the time-shifting property of the z-transform, and
converting back to the time-domain, one can obtain an update
equation for the convolution at the present time, as a function
of past values:

{L}n = a0[T̃ ]{e}n + · · ·+ ap[T̃ ]{e}n−p

− b1{L}n−1 − · · · − bp{L}n−p. (12)

Rather than implement (12) directly, a more efficient procedure
can be adopted, as suggested in [5]. Instead of explicitly
storing past field and convolution values, they can instead be
accumulated into auxiliary variables as time marching pro-
gresses. The resulting update scheme containing the auxiliary
variables {Wα}n can thus be written as follows:

{Wα}n = aα[T̃ ]{e}n − bα{L}n + {Wα+1}n−1 α < p (13)

{Wα}n = aα[T̃ ]{e}n − bα{L}n α = p (14)

{L}n = a0[T̃ ]{e}n + {W1}n−1 (15)

Hence, any term of the form (10) can be replaced in (5) with
the equivalent update expression in (15).

A similar procedure can be adopted for the nonlinear
convolution present within the [T̂ ] matrix in (7). In that case,
B , g(t) ∗ E2, and the update equations become:

Gnα = hα(E2)n − wαBn + Gn−1
α+1 α < p (16)

Gnα = hα(E2)n − wαBn α = p (17)

Bn = h0(E2)n + Gn−1
1 (18)

Substituting this into (7) yields an expression for the [T̂ ] matrix
at the current time step:

[T̂ ]nij =

∫
Ω

ε0χ
(3)
(
α(E2)n+

(1− α)[h0(E2)n + Gn−1]
)
~W

(1)
i · ~W (1)

j dΩ (19)
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B. Nonlinear Iteration

With a procedure in place for the convolutions, the remain-
ing concern is the nonlinearity. As mentioned in Section II
and as evident in equation (19), the presence of nonlinearity
dictates that the [T̂ ] matrix is now time-dependent. This
amounts to requiring that the matrices be kept within the tem-
poral derivatives when Newmark-β is applied. The resulting
nonlinear update equation then bears a striking similarity to
its linear counterpart:(

[K]n+1 +
∆t2

4
[S]

)
{e}n+1 =

2

(
[K]n − ∆t2

4
[S]

)
{e}n −

(
[K]n−1 +

∆t2

4
[S]

)
{e}n−1

− ({W1}n + 2{W1}n−1 + {W1}n−2)

− ∆t2

4
({f}n+1 + 2{f}n + {f}n−1). (20)

where [K] = a0[T̃ ] + [T̂ ].
This nonlinear system of equations can be solved by nonlin-

ear iteration or root-finding. In particular, the Newton-Raphson
method can be applied:

{x}(k+1) = {x}(k) − [J ]−1{F}(k) (21)

where k is the iteration number, and [J] is the Jacobian matrix
defined as:

[J ]ij =
∂{F}i
∂{x}j

. (22)

Since the Jacobian only takes derivatives with respect to
{e}n+1, only terms on the left-hand side of (20) will con-
tribute. However, due to the remarkable similarities between
the Crank-Nicolson and Newmark-β methods initially noted
in [5], this term also shares many structural similarities to that
derived in [10]. As a result, it is expected that the two methods
should share similar Jacobians.

Indeed, by expressing the matrix-vector product explicitly,
and applying the product rule, the Jacobian can be found to
be:

[J ]nij = [K]nij +
∆t2

4
[S]ij +

∑
k

∂[K]nij
∂{e}nj

{e}nk . (23)

After further simplification, the last term in (23) can be written
as an integral, yielding the final form of the Jacobian:

[J ]nij = [K]nij +
∆t2

4
[S]ij+∫

Ω

1

En
∂εn

∂En
( ~W

(1)
i · ~En)( ~W

(1)
j · ~En)dΩ (24)

where in the present case:

∂εn

∂En
= 2ε0χ

(3)En(α+ (1− α)h0) (25)

As expected, the expressions in (24) and (25) are identical to
those previously obtained for the mixed method in [10].

IV. IMPLEMENTATION

While the procedure outlined in Section III is relatively
straightforward, there are nonetheless some subtleties. For
example, given that the [K] and [J ] matrices are functions
of {e}, they necessarily change with each successive Newton-
Raphson iteration. As a result, both matrices must be locally
recomputed and globally reassembled, not only at each time
step, but at each nonlinear iteration of each time step.

Furthermore, in linear elements, the elemental matrices
are generally obtainable in closed-form. However, due to the
presence of E within the [K] and [J ] matrices, such closed
form expressions are, in general, not obtainable. As a result,
both matrices must be numerically computed using quadrature
rules, within each nonlinear element. This also requires that
the nonlinear convolution be known at each quadrature point.

Lastly, while the underlying Newmark-β method is uncon-
ditionally stable for linear media, there are few general tech-
niques available to analyze the stability of nonlinear numerical
methods. While it is hoped that the unconditional stability
is maintained in the nonlinear case, there is no guarantee.
Nevertheless, for all numerical tests performed in the following
section, no instabilities were found to occur.

V. RESULTS

A. Convergence and Accuracy

To test the algorithm derived above an exact solution was
manufactured to which the computed one could be compared.
Specifically, the current density ~J was selected such that the
exact temporal solution for the electric field over a unit square
in two dimensions was the differentiated Blackman-Harris
pulse. Perfect Electric Conductor (PEC) boundary conditions
were applied at each of the four domain edges.

Since the linear dispersive algorithm has already been
tested in [5], the test permittivity contained only a dispersive
nonlinear term (α = 0), for which χ(1) = 2.2, χ(3) = 4.1, and
g(t) was selected to represent a first order Debye dispersion
with a relaxation time of τe = 10−9 s.

The two solutions were then compared over progressively
refined uniform meshes. The solution error was measured in
both the L2 and L∞ norms, and is shown in Fig. 1 versus the
average mesh edge length, h, for ∆t = h/c.

Given the basis functions used, the solution should converge
globally to first order in h (and therefore also in t), which is
precisely the observed trend in both norms. The algorithm
therefore performs as expected and with good accuracy.

B. Temporal Soliton

Having demonstrated the accuracy of the method, the algo-
rithm was then applied to the physically significant problem of
a temporal soliton propagating in a dielectric slab waveguide.

A temporal soliton is a nonlinear phenomena whereby the
tendency for a pulse to become distorted under anomalous
linear dispersion is counteracted by a material’s nonlinearity,
yielding a pulse which does not change shape as it propagates.

To demonstrate this, a dielectric slab waveguide measur-
ing 10 µm wide, by 100 µm long, was simulated in two



NUMERICAL TECHNIQUES - MO1-1 4

10-2 10-1
10-3

10-2

10-1

Fig. 1. Convergence in the L2 and L∞ norms.

dimensions (though the derivation in Section III is independent
of dimension, and thus equally applicable to problems in
3D). The center dielectric measured 2 µm thick, with the
remaining areas being free space. The pulse was excited
on the leftmost boundary with a hyperbolic secant envelope
in time. The pulse had a full width at half maximum of
52.7 fs, and a fundamental frequency of 50 THz. The linear
dispersion was modeled as being second-order Lorentz, with a
resonant frequency of 30 THz, damping factor of 2×1011, and
static/infinite susceptibilities of 6.1 & 4.7, respectively. The
nonlinear parameters were also modeled, in part, by a Lorentz-
type dispersion, with an optical phonon period of 3.36×10−14

s, phonon lifetime of 1×10−13 s, χ(3) = 1.1×10−18 m2/V 2,
and α = 0.7.

Fig. 2 shows the pulse after propagating 80 µm distance
within the guide. The upper plot shows the distortion expe-
rienced by the pulse in the absence of nonlinearity. In stark
contrast, the introduction of nonlinearity in the bottom plot
establishes a temporal soliton, whose initial shape is still
roughly intact. Furthermore, a rough comparison of this result
to that obtained in [10] reveals that the VWE formulation
performs about 13% faster and consumes 37% less memory
than the mixed method, for h = 0.3 µm.

VI. CONCLUSION

In conclusion, a novel formulation of the Finite-Element
Time-Domain method has been presented for the treatment
of electrically complex materials. In contrast to existing tech-
niques, the presented algorithm adopts the FETD, z-transform,
Newmark-β, and Newton-Raphson approaches, yielding a
flexible, stable, accurate, and scalable scheme. Moreover, by
discretizing the vector wave equation, rather than the cou-
pled first order Maxwell’s equations, the resulting algorithm
is simpler in that it only requires the use of vector edge
elements. This results in fewer memory requirements, faster
execution times, as well as the ability to implement higher
order hierarchical basis functions. The accuracy of the method
was verified via a convergence study, and the creation of an
optical soliton demonstrated in a dielectric slab waveguide.

Lastly, as detailed briefly in Section IV, the presented
nonlinear algorithm poses a significant computational burden.

Fig. 2. Comparison of pulse distortion (top) caused by anomalous linear
dispersion, and a temporal soliton (bottom).

However, there are strategies available to mitigate this cost.
For example, Jacobian-Free Newton-Krylov methods [11] can
be used instead of traditional Newton-Raphson iteration, al-
leviating the need to recompute and reassemble the Jacobian
each iteration. Moreover, many aspects of the algorithm above
are suitable for implementation on emerging parallel architec-
tures, such as Graphics Processing Units (GPUs), with initial
investigations showing substantial improvement.
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